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Preface 

The three-dimensional arrangement of the genome in the nucleus plays a fundamental role in 

regulating its activities (Fraser and Bickmore, 2007). Disruption of genome architecture is associated 

with genome instability such as mutations, chromosomal rearrangements and aneuploidy 

(Fudenberg et al., 2011). These abnormalities can ultimately lead to cancer (Corces and Corces, 

2016). The study of genome architecture is a very dynamic and active field of research aiming to 

understand the relationship between nuclear organization and genome function. 

At each cell division, the genome undergoes a dramatic reorganization to form highly 

compacted and individualized chromosomes, as seen classically as X-shaped chromosomes in 

metaphase (Figure 1). This process, called chromosome condensation, is essential for the proper 

transmission of the genome to daughter cells (Hirano, 2016). It was discovered 25 years ago already 

that the highly conserved condensin complex is a key driver of mitotic chromosome condensation 

(Hirano and Mitchison, 1994; Saka et al., 1994). 

In the last few years, Chromosome Conformation Capture assays in different organisms have 

revealed that condensin organizes mitotic chromosomes into consecutive loops of chromatin 

organized around a central axis (Gibcus et al., 2018; Kakui et al., 2017; Naumova et al., 2013; 

Tanizawa et al., 2017). Very recently, in vitro data show how condensin can translocate on naked 

DNA and extrude DNA to form these loops (Ganji et al., 2018; Kong et al., 2019; Terakawa et al., 

2017). However, how condensin behaves in vivo on chromatin, in the face of numerous obstacles 

such as nucleosomes, tightly DNA-bound proteins or the transcription machinery, is still unknown. 

The association of condensin with chromatin is a prerequisite for chromosome condensation. 

How condensin is recruited to chromosomes is still unclear. Studies in various organisms have shown 

that condensin covers the whole genome but is specifically enriched near highly expressed genes in a 

transcription-dependent manner (D’Ambrosio et al., 2008; Dowen et al., 2013; Gruber and Errington, 

2009; Kim et al., 2013, 2016; Kranz et al., 2013; Nakazawa et al., 2015; Sutani et al., 2015). This 

suggests that transcription can impinge on the distribution of condensin along chromosomes. 

However, it is not clear whether these high-occupancy condensin sites represent loading sites or sites 

where condensin accumulates in the face of obstacles. Condensin peaks could represent sites where 

condensin is initially recruited. Alternatively, they could represent sites where condensin 

accumulates after sliding from its loading sites. Techniques used to assess genome-wide localization 

of condensin (based on Chromatin Immunoprecipitation) do not allow to distinguish between these 

two possibilities.  

In vertebrates at least, the link between transcription and condensin is paradoxical, as 

condensin associates with chromatin mostly in mitosis, when transcription by all three RNA 
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polymerases is largely repressed (Gottesfeld and Forbes, 1997). How does transcription contribute to 

establish condensin-positioning sites in mitosis, when transcription is inactive? Recent works have 

demonstrated that transcription might be maintained at low levels in mitosis (Palozola et al., 2017) 

and that bursts of transcription at the onset of mitosis precede the full extinction of transcription 

(Liang et al., 2015), suggesting that transcription and condensin loading on chromosomes could 

temporally coexist. Some observations show that transcription factors could directly recruit 

condensin to chromatin at highly transcribed genes (D’Ambrosio et al., 2008; Iwasaki et al., 2010, 

2015; Kim et al., 2016). Conversely, it has been suggested that a by-product generated during 

transcription such as nucleosome free regions at promoters of genes (Toselli‐Mollereau et al., 2016), 

transcription-associated topological stress (Legros et al., 2014), ssDNA or RNA (Nakazawa et al., 2019; 

Sutani et al., 2015) could impact the loading/positioning of condensin in mitosis. Taken together, 

these observations suggest that transcription must play a crucial and conserved role in the 

recruitment and/or the positioning of condensin complexes along chromosomes. However, what 

transcription-associated features impact the loading/positioning of condensin remains poorly 

understood (Bernard and Vanoosthuyse, 2015; Robellet et al., 2016).  

At the beginning of my PhD project, the literature was quite controversial on this topic. Some 

publications claimed a positive role for transcription in determining condensin positioning, but other 

works stated the opposite. During my project I focused on this intriguing interplay between 

transcription and condensin, using tRNA genes as models.  

Prior to my arrival, the lab had used genetic screens in Schizosaccharomyces pombe to identify 

factors associated with the transcription machinery that impact the function of condensin 

(Vanoosthuyse et al., 2014). When I joined the lab, I focused on one of those transcription-associated 

regulators of condensin, a conserved DNA/RNA helicase called Sen1. The lab had shown previously 

that the deletion of Sen1 was able to partially suppress the growth defects of a condensin mutant 

(Legros et al., 2014).  

 During my 4 years in the lab (M2 + PhD), I characterised Sen1 as a factor preventing the 

accumulation of condensin specifically in the vicinity of RNA polymerase III (RNAPIII)-transcribed 

genes (Chapter 1). I demonstrated that Sen1 is a cofactor of RNAPIII, required for efficient 

transcription termination (Chapter 2). Finally, I described how the function of Sen1 in RNAPIII 

transcription termination underlies its role in the positioning of condensin at RNAPIII-transcribed 

genes (Chapter 3).  
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Two main contributions emerged from my work:  

1) The identification of Sen1 as the first accessory factor required for RNAPIII transcription 

termination, challenging the current model that RNAPIII does so autonomously. This 

work is published in EMBO Journal.  

 

2) The demonstration that the quality control of RNAPIII transcription contributes to the 

positioning of condensin in mitosis. 
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Introduction 

 

I. Genome architecture changes throughout the cell cycle 

Eukaryotic genomes must be carefully folded and packaged to fit inside the small space of the 

cell nucleus. The length of total DNA in a single human cell, if stretched out, is nearly 2 meters long, 

but it is folded inside a nucleus 5-10 μm in diameter. Numerous cellular processes share the same 

DNA template, including for example transcription and DNA replication, and require the genome to 

remain accessible. It is therefore crucial that chromosomes are folded in a way that is compatible 

with these essential cellular processes and also with processes that require a more compact and rigid 

genome structure, i.e. the segregation of chromosomes towards the two daughter cells in mitosis 

(Fraser et al., 2015). 

As cells progress through the cell cycle, chromosomes undergo dramatic morphological changes. 

Decondensed and loose chromosomes in interphase (Figure 1A) are rapidly and efficiently packaged 

into highly compact mitotic chromosomes (Figure 1B). Thus, chromosome condensation at the onset 

of mitosis occurs in a short period of time and must therefore be highly efficient. This massive 

reorganization of genome architecture at each cell division requires the action of dedicated 

machineries. One of these protein machines, known as condensin, belongs to the Structural 

Maintenance of Chromosomes (SMC) family of proteins. The conserved SMC complexes, including 

cohesin and condensin, associate with DNA and influence a large variety of DNA-based processes, 

including sister chromatid cohesion, chromosome condensation, transcription and replication 

(reviewed in Hirano, 2016). The role of condensins in shaping mitotic chromosomes is the focus of 

my research. 

In this general introduction, I will first present an overview of genome organization through the 

cell cycle. I will then introduce the different SMC complexes and their roles in genome organization. 

Finally, I will focus on the SMC condensin complex and present the currently available data describing 

the possible links between gene transcription and condensin function. 

 

A) Genome organization in interphase 

The folding of interphase chromosomes follows a hierarchical organization. In recent years, 

microscopic techniques such as Fluorescence In Situ Hybridization (FISH) and molecular approaches 

including Chromosome Conformation Capture (3C) technologies allowed scientists to interrogate 

chromatin organization at multiple resolutions (reviewed in Fraser et al., 2015). In particular, the 

high-throughput version of the 3C method, called Hi-C, enables the detection of chromatin contacts  
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Figure 1: Chromosome compaction changes during the cell cycle. Fluorescent micrographs of mitotic newt
lung cells. Microtubules are stained with Anti-β-Tubulin. Chromosomes are counterstained with Hoechst
33342. (A) In interphase, chromatin is in its least condensed state and appears loosely distributed
throughout the nucleus. (B) Reorganization of chromosomes in mitosis. Stages of mitosis: A-B: prophase.
Chromosome compaction begins during prophase. C: prometaphase. Chromosomes are highly compacted.
D-E: Metaphase. Alignment of chromosomes at the metaphase plate. F: anaphase. Chromosomes are
segregated into daughter nuclei. G: telophase. In late anaphase and telophase the mitotic chromatin
decondenses to re-establish its interphase structure. H: cytokinesis. From Rieder & Khodjakov, 2003.

A

B
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at a whole-genome scale (Lieberman-Aiden et al., 2009). The progressive improvement in the 

resolution of Hi-C techniques in the last decade uncovered general principles of chromosome folding 

(Figure 2) (Szalaj and Plewczynski, 2018).  

At the level of the whole nucleus, individual chromosomes occupy separated territories that are 

irregular in shape but typically about 1–2 μm in diameter (Figure 2A, B and F). In higher eukaryotes, 

every interphase chromosome has its preferred location and preferred neighbouring chromosomes 

within the nucleus. These chromosome territories constitute the largest feature of nuclear 

architecture (Cremer and Cremer, 2010).  

At the megabase level, chromosomal arms segregate into regions of preferential long-range 

interactions that form two mutually excluded types of chromatin, referred to as “A” and “B” 

compartments (∼5 Mb in size) (Figure 2C and G). “A” compartments correlate with gene density, 

transcriptional activity, chromatin accessibility, and activating chromatin marks. “B” compartments 

are mostly enriched in repressive chromatin. Each compartment is characterized by extensive 

contacts with multiple domains of the same type (A or B) (Nagano et al., 2017; Rao et al., 2014). 

At the scale of several hundreds of kilobases (kb), chromosomes fold into smaller domains. 

Chromatin interactions are much favoured within a domain compared to inter-domain interactions 

with neighbouring chromatin domains on the same chromosome. These contacts (∼1 Mb in size) are 

referred to as “topologically-associating domains” (TADs) and have been described in many species, 

indicating that they may represent a conserved feature of genome organization (Figure 2D and G) 

(Dekker and Heard, 2015; Lieberman-Aiden et al., 2009).  

At lower scales (10-100 kb), chromatin is able to form long-range interactions in which two 

distant DNA segments are brought close to each other forming a loop (Figure 2E and H). These loops 

exhibit a great variability in their length and stability. Different types of loops may be involved in 

various cellular mechanisms. One of the best-characterized function of loops is to bring together 

distant enhancers and promoters (Szalaj and Plewczynski, 2018).  

Disruption of this hierarchical organization of the genome in interphase has been linked to 

changes in gene transcription (Fraser and Bickmore, 2007). Illustrating this functional link, tethering 

of chromosomes to the nuclear periphery has been shown to influence gene expression (Finlan et al., 

2008) and deletion of the sequence at a TAD boundary has been shown to produce transcription 

misregulation (Nora et al., 2012). Numerous studies have pointed out that chromatin looping plays a 

role in gene regulation by promoting or preventing contacts between gene promoters and regulatory 

elements. Studies investigating the impact of DNA looping on gene expression have looked at several 

loci such as the prolactin gene (Cullen et al., 1993), the β-globin locus (Tolhuis et al., 2002), the 

H19/Igf2 locus (Murrell et al., 2004) and the Shh locus (Amano et al., 2009).  
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Figure 2: Hierarchical genome organization in interphase. Hi-C heatmaps at different scales: (A) Whole
genome (chromosomes occupy separate chromosomal territories and rarely interact with each other). (B)
Whole chromosome. (C) Megabase (checkered pattern corresponding to compartments A and B) (D)
Megabase (clear square formations along the diagonal are indicative of topological domains). (E) Hundred
kilobases (individual peaks corresponding to chromatin loops ). (F-H) Model of genome folding at these
scales. Adapted from Szalaj and Plewczynski, 2018.
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In conclusion, chromatin loops in interphase constitute the structural unit of the hierarchical 

organization of the genome. The loops are subjected to a complex and tight regulation, aiming at 

controlling cellular processes such as transcription.  

 

B) Genome reorganization in mitosis 

The fidelity of mitosis is essential for life, and successful completion of this process relies on 

drastic and rapid changes to the organization of chromosomes (Hirano, 2016).  

 

i. Chromosomes are individualized and compacted in mitosis 

The dramatic reorganization of the nucleus during cell division has fascinated microscopists for 

more than a century. The German anatomist Walther Flemming described cell division in 1882 as we 

know it today. The substance in the nucleus was termed “chromatin” because of its affinity for dyes. 

Flemming proposed the term “mitosis” to characterize the formation of paired threads (greek = 

mitos) during division of the cell nucleus. At the time, Flemming proposed that chromatin network in 

resting nucleus (interphase) transforms into threads (mitotic chromosomes), thereby representing 

continuity of the nuclear material (Figure 3, compare to Figure 1B) (Flemming, 1882).  

Mitotic chromosome condensation at the onset of mitosis is responsible for the individualization 

and compaction of chromosomes (Hirano, 2016). As DNA replication results in the entanglement of 

the two DNA molecules (Sundin and Varshavsky, 1980), the resolution of such intertwines 

(catenanes) upon mitotic entry is crucial for efficient and faithful chromosome segregation. 

Therefore, the formation of mitotic chromosomes requires both the resolution of replicated sister 

chromatids and the compaction of chromatin. Additionally, condensation of chromatin into sturdy 

chromosomes is also necessary to confer the physical properties required for their segregation. 

Chromosomes must be stiff, resilient, and elastic enough to withstand forces coming from pulling 

microtubules during anaphase to prevent damage and breaks caused by external tensions (Piskadlo 

and Oliveira, 2016).  

How are chromatin fibres organized within mitotic chromosomes?  

 

ii. Mitotic chromosomes are organized into arrays of consecutive loops  

In the late 1970s, Laemmli and colleagues proposed that mitotic chromosome structure arises 

from a set of non-histone proteins that fold the chromatin fibres into loops (Figure 4). To test their 

hypothesis, Laemmli and colleagues isolated histone-depleted chromosomes after treating mitotic 

chromosomes from Hela cells with an excess of polyanions dextran sulphate and  
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Figure 3: Drawing of mitosis in newt cells by Walther Flemming. Sequence of chromosome movements
during mitosis. (A to C) During prophase the chromosomes form within the nucleus from a substance
termed “chromatin” because of its affinity for dyes. (D) After nuclear envelope breakdown, the
chromosomes interact with the two separating “centrosomes” to form a spindle-shaped structure. (E)
Prometaphase. (F) Metaphase. After the chromosomes attach to the spindle, they become positioned on its
equator, halfway between the two poles. (G) Anaphase. The two chromatids move toward the opposing
poles. (H) Telophase. During the final stages of mitosis, neighbouring chromosomes within the two groups
fuse to form the daughter nuclei. (I) Cytokinesis. (J) Microtubules pulling apart sister chromatids to opposite
poles in anaphase. Compare to Figure 1B. Adapted from Flemming, 1882.
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heparin (Paulson and Laemmli, 1977). They found that DNA remained highly organized by a core of 

non-histone proteins whose structure retained the size and shape of the original chromosomes. The 

authors referred to these proteins as the “chromosome scaffold” and observed that loops of DNA 

extended outward from the scaffold (Paulson and Laemmli, 1977). Laemmli and colleagues 

demonstrated later that in intact mitotic chromosomes swollen in a low-salt buffer, chromatin loops 

emanate from the chromosome scaffold (Figure 4) (Earnshaw and Laemmli, 1983; Lewis and 

Laemmli, 1982; Maeshima et al., 2005).  

Recent studies, using chromosome conformation capture techniques confirmed such 

organisation in chromatin loops observed in electron micrographs (Gibcus et al., 2018; Kakui et al., 

2017; Naumova et al., 2013; Tanizawa et al., 2017). Naumova et al. performed chromosome 

conformation capture experiments in different human cell types in interphase and in mitosis. These 

experiments revealed that mitotic genome organization strongly differs from the compartmentalized 

and cell type-specific organization of the genome in interphase (Naumova et al., 2013). In 

metaphase, chromosomes are made of consecutive and homogenous arrays of chromatin loops. This 

folding of chromatin within mitotic chromosomes is consistent among cell types and mitotic 

chromatin loops are formed by loci located 2-12 Mb apart (Naumova et al., 2013). Consistent with 

this work, in fission yeast, Hi-C studies have shown that short range (<100 kb) interactions in 

interphase are replaced by long range (∼1 Mb) interactions in mitosis (Kakui et al., 2017; Tanizawa et 

al., 2017).  

Gibcus et al. have described a pathway for mitotic chromosome formation using DT40 chicken 

cells. The authors collected synchronous cells at different time points during mitotic progression and 

analysed chromosome organization by microscopy and Hi-C. Their study revealed that upon mitotic 

entry, interphase organization is lost and chromatin fibres are converted into arrays of consecutive 

loops (Gibcus et al., 2018), consistent with previous studies (Naumova et al., 2013). The authors 

proposed a model in which, in prophase an inner chromosome scaffold forms with a radial 

arrangement of loops from 30 to 40 kb up to 60 kb in size around the scaffold (Figure 5). As cells 

progress through mitosis, the distance between interacting loci increases. During prometaphase, the 

central scaffold acquires a helical arrangement with loops rotating around the scaffold as steps in a 

spiral staircase. As prometaphase progresses, outer loops grow, and they are subdivided into smaller 

loops producing a nested arrangement of loops. The number of kilobases per turn continues to grow 

and results in the shortening of chromosomes to form the mature mitotic chromosome (Figure 5) 

(Gibcus et al., 2018). 

 

In conclusion, mitotic chromosomes show a highly uniform organization in which large 

chromatin loops constitute the structural unit and are consecutively arranged.  
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Figure 4: Architecture of metaphase chromosomes. (A) Electron micrographs of a metaphase chromosome
swollen in a low-salt buffer showing radial loops emanating from points all along the chromatid arms. (B)
Higher magnification view showing the nucleosomal arrangement of the chromatin in the loops. Adapted
from Earnshaw & Laemmli, 1983.

Figure 5: Model for mitotic chromosome formation. In prophase, chromosomes are compacted into arrays
of consecutive loops around a chromosome scaffold. During prometaphase, the central scaffold acquires a
helical arrangement with loops rotating around the scaffold as steps in a spiral staircase. As prometaphase
progresses, outer loops grow, they split into smaller loops, the number of loops per turn increases, resulting
in the shortening of chromosomes to form the mature mitotic chromosome. Adapted from Gibcus et al,
2018.
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C) Chromatin loops are different between interphase and mitosis 

As described above, the genome is extremely structured in the cell nucleus and its organization 

undergoes drastic changes throughout the cell cycle. Interphase chromatin is hierarchically organized 

but remains, however, accessible to transcription and DNA replication machineries. In addition, the 

loose conformation of chromatin allows the control of interactions between genomic loci, through 

chromatin loops. On the other hand, mitotic chromosomes are organized in helically arranged loop 

arrays and chromatin acquires a compact structure. Chromatin loops represent, therefore, the 

structural units of chromosomes during all the cell cycle (Figure 6). 

A variety of microscopy-based and sequencing-based techniques have shown, however, that the 

nature of interphase and mitotic chromatin loops is different (Figure 6). Interphase loops are smaller 

(∼10-100 kb), heterogeneous, they are not arranged around a central axis and they control gene 

expression. On the contrary, mitotic loops are larger (∼1-10 Mb), they form all over mitotic 

chromosomes, they are arranged in homogenous arrays of loops, they are formed at the onset of 

mitosis in a very short period of time, and their purpose is to compact chromosomes (Figure 6). 

These differences between interphase and mitotic loops could be explained either by a unique 

machinery responsible for the formation of the loops that is differently regulated between 

interphase and mitosis, or alternatively, two different machines that form different loops. 

 

Biochemical and genetic experiments led to the discovery of Structural Maintenance of 

Chromosomes (SMC) complexes as major components of chromosomes. Numerous studies 

demonstrated that the SMC complex condensin is central for chromatin looping during mitosis while 

the SMC complex cohesin underlies the formation of chromatin loops in interphase (Gibcus et al., 

2018; Naumova et al., 2013; Rao et al., 2014, 2017).  

 

In the next sections, I will describe the discovery, structure and function of SMC complexes, with 

particular focus on cohesin and condensin. I will then describe the in vitro data supporting the model 

in which cohesin and condensin fold the genome by extruding loops of DNA. I will discuss whether 

structural differences between cohesin and condensin could underlie the formation of different 

loops. Finally, I will focus on condensin and its function in the context of chromatin. 
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Figure 6 : Chromatin loops in interphase and mitosis. The interphase genome is organized at a low scale by
irregular loops. Mitotic chromosomes by contrast are compact rod-like structures containing arrays of
homogenous nested loops. Adapted from Sedeño Cacciatore and Rowland, 2019.
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II. The SMC complexes organize the chromosomes in the nuclear space 

SMC complexes are key players in the spatiotemporal organization and maintenance of 

chromosomes from bacteria to humans.  

 

A) Discovery of SMC 

SMC proteins were discovered independently by both biochemical and genetic approaches. 

As mentioned previously, Laemmli and colleagues used electron microscopy to analyse the 

structure of mitotic chromosomes. The authors observed that a chromosome scaffold forms the 

backbone of mitotic chromosomes with chromatin loops attached to this central axis (Figure 4) 

(Earnshaw and Laemmli, 1983; Lewis and Laemmli, 1982; Paulson and Laemmli, 1977). It was shown 

that the scaffold consists of a subset of non-histone proteins that includes two major proteins, ScI 

and ScII (Lewis and Laemmli, 1982). ScI was identified as topoisomerase II (Earnshaw et al., 1985). 

Topoisomerase II is an evolutionary conserved protein that can untangle DNA and relax the 

intertwined supercoils in a DNA molecule by passing one DNA molecule through a transient double-

stranded break in another (Wang, 1996). The requirement of Topoisomerase II for chromosome 

condensation was also shown in fission yeast using genetic approaches, as Topoisomerase II mutants 

fail to segregate chromosomes (Uemura et al., 1987).  

Another biochemical approach used mitotic chromosomes assembled in vitro. When incubated 

in Xenopus egg extracts, sperm chromatin is converted into condensed mitotic chromosomes (Hirano 

and Mitchison, 1994). Hirano and Mitchison identified two chromosome-associated proteins (CAPs) 

present in Xenopus egg extracts, XCAP-C and XCAP-E (Hirano and Mitchison, 1994). 

Independent genetic studies led to the discovery of two gene products required for 

chromosome segregation in yeast. Cloning of a budding yeast gene responsible for the 'Stability of 

Mini Chromosomes' led to the identification of Smc1 (Strunnikov et al., 1993). Yanagida's group 

demonstrated that the proteins mutated in the cut3 and cut14 fission yeast mutants showing the 

“cell untimely torn” (cut) phenotype, were homologues of the SMCs involved in chromosome 

condensation and segregation (Figure 7) (Saka et al., 1994). Almost simultaneously, Saitoh et al. 

showed that ScII, one of the major components of the chromosome scaffold, is a chicken homologue 

of an SMC protein (Saitoh et al., 1994). 

Hirano and his colleagues later characterised the CAP proteins and discovered a pentameric 

complex, that they named condensin, including a heterodimer of XCAP-C (SMC4) and XCAP-E (SMC2) 

and three non-SMC subunits XCAP-D2, XCAP-G, and XCAP-H (Hirano et al., 1997). The authors 

showed that immunodepletion of condensin results in chromatin decompaction, suggesting that the  
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Figure 7 : Thermosensitive mutants of fission yeast condensin lead to chromosome condensation and
sister chromatid separation defects . Painting of the chromosome arm in cut3-477 and cut14-208 by FISH.
Wild type, cut3-477 and cut14-208 cells were cultured at 36°C and fixed. The probes for FISH consisted of
mixed DNAs derived from 11 cosmids in the left arm of chromosome 2. The spindle pole bodies (SPB)
(functionally equivalent to the centrosome) were visualized using anti-sad1 antibodies. DAPI-staining of
nuclear chromatin is shown in the third column. Superimposed images of FISH, SPB and DAPI are depicted
on the right. Note in cut3-477 and cut14-208 cells the formation of chromosome bridges in anaphase. Wt
IP: wild type interphase. Wt M: wild type mitosis. The bar indicates 10 µm. Adapted from Saka et al, 1994.
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complex has a key role in chromosome condensation (Hirano et al., 1997). In 1997 also the 

laboratory of Kim Nasmyth discovered the cohesin complex in budding yeast (Michaelis et al., 1997). 

In 1995, Smc2 was identified in budding yeast and it was shown to be required for chromosome 

segregation (Strunnikov et al., 1995). 

The identification of a second condensin complex in vertebrate cells was later reported (Ono et 

al., 2003). The condensin complex initially discovered was named condensin I, while the newly 

identified condensin complex was named condensin II. Whereas the two SMC subunits are identical 

in both complexes, the non-SMC subunits are different (Ono et al., 2003). Both condensins I and II 

are almost ubiquitous in eukaryotes, and only a limited number of organisms have condensin I only 

(such as S. cerevisiae and S. pombe).  

The results from many diverse technical approaches have converged in the discovery of a large 

superfamily of SMC. SMC have been found in all eukaryotes examined, and numerous prokaryotes as 

well, and play crucial roles in chromatid cohesion, chromosome condensation, and DNA repair. 

Although SMC complexes have diverse functions, they share a conserved architecture. 

 

B) Structure of SMC complexes 

SMC complexes are characterized by their ring-like shape structure (Figure 8). The ring is made 

up of three proteins along its circumference: two SMC subunits (homo or heterodimers) 

complemented by a kleisin subunit (Figure 8B). The SMC family of proteins regroups large ATPases 

with an unusual domain organization. Each SMC subunit is 1,000–1,500 amino acids in length and has 

a central hinge domain flanked by two long coiled-coils. The N-and C-terminal domains of the coiled 

coils contain Walker A and Walker B motifs, crucial for ATP binding (Figure 8A). The SMC folds back 

on itself through antiparallel coiled-coil interactions, creating an ATP-binding head domain.  

Within a complex, two SMC proteins interact at the hinge region, forming long-armed V-shaped 

dimers (Figure 8B). The length of each arm is ∼50 nm, equivalent to the length of 150 bp of dsDNA.  

The ATPase domain is structurally similar to an ATP-binding cassette (ABC) domain and their 

ATP-binding and hydrolysis cycle modulates engagement and disengagement of the two head 

domains (Hirano, 2016). In the presence of ATP, the two ATPase heads engage and create a 

compartment between the hinge and the engaged heads (Chapard et al., 2019; Vazquez Nunez et al., 

2019).  

The activities of the SMC ring are regulated by peripheral subunits, many of which are either 

composed of α-helical HEAT (Huntingtin, Elongation factor 3, protein phosphatase 2A, TOR1 domain) 

repeats or Tandem Winged-Helix Domains (WHD) and associate via the kleisin subunit (Haering and 

Gruber, 2016a; Uhlmann, 2016). Non-SMC subunits are responsible for differences in localization,  
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Figure 8: Structure of SMC. (A) Each SMC protein has a central globular hinge domain. This domain is
flanked by two extended coiled-coils, both of which end with a globular domain that contains a Walker A or
a Walker B motif (amino acid consensus sequences that are present in NTP-binding proteins). The protein is
folded at the hinge, leading to anti-parallel interaction between the coiled domains. This brings the amino
and carboxyl termini together to form a functional ATPase domain, which is structurally similar to an ATP-
binding cassette (ABC) domain. Adapted from Jeppsson et al., 2014. (B) Within a complex, two SMC proteins
interact at the hinge region, forming long-armed V-shaped dimers, which in turn are associated with
complex-specific non-SMC subunits. A kleisin subunit completes the ring. The activities of the core
complexes are regulated by diverse peripheral subunits, many of which are either composed of α-helical
HEAT-repeats or Tandem Winged-Helix Domains (WHD) and associate via the kleisin protein. (C) Prokaryote
SMC. (D) Eukaryote SMC. Adapted from Eeftens and Dekker, 2017.

A
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dynamic and function of SMC complexes (Andrews et al., 2005; Fujimoto et al., 2005; Green et al., 

2012; Ono et al., 2003).  

The ring-shaped structure and the ATPase activity of SMC lead to the proposal that they can act 

as machines that manipulate chromosomal DNA within their compartments, in order to shape 

chromosomes. SMC could embrace DNA inside the ring or inside the compartment created when 

SMC heads engaged through ATP. It has been shown that SMC can encircle DNA (Cuylen et al., 2011; 

Haering et al., 2008; Ivanov and Nasmyth, 2005; Kanno et al., 2015; Wilhelm et al., 2015) and more 

recently, a better description of DNA entrapment inside the SMC compartments has been reported 

(Chapard et al., 2019; Kong et al., 2019; Vazquez Nunez et al., 2019). Interestingly, disrupting the 

integrity of the condensin ring, results in segregation defects in budding yeast (Cuylen et al., 2011, 

2013), suggesting that topological entrapment of DNA within the condensin ring might be required 

for chromosome condensation. However, it is not yet clearly established how the ring-like structure 

of SMC contribute to their functions. 

 

Prokaryote and eukaryote SMC share functional properties in chromosome organization. 

Eukaryotes have at least six SMC proteins that interact with different partners to form the SMC 

complexes. SMC complexes have a conserved structure but play different roles in chromosome 

architecture. Many efforts are focused on understanding what features of eukaryote SMC specify 

their functions. Bacteria have a single SMC, and even if it has not be formally demonstrated that 

bacterial SMC is the functional counterpart of the eukaryotic condensin complex, the analysis of this 

bacterial protein would contribute to our understanding of the more sophisticated eukaryotic 

complexes (Hirano, 2005). 

 

C) Prokaryote SMC 

 Prokaryotes have only a single type of SMC that forms a homodimer. Bacillus Subtilis and 

Caulobacter Crescentus contain a homodimer of Smc and the kleisin protein ScpA. The additional 

regulatory protein ScpB, which contains a WHD domain, associates with ScpA (Figure 8C). On the 

other hand, the structure of the Escherichia Coli SMC-like protein comprises the MukB homodimer, 

and its accessory proteins, MukE and MukF. MukE contains tandem WHDs and MukF is the kleisin 

subunit (Figure 8C). The structure of MukBEF differs slightly from those of the other SMC complexes 

in the fact that the MukF kleisin domain forms dimers that allows the formation of multimers of SMC 

complexes (Hirano, 2016), at least in vitro (Matoba et al., 2005).  

Disruption of Smc and MukB results in increased anucleate cells (Moriya et al., 1998; Yamazoe et 

al., 1999). These anucleate cells form after abnormal cell division at the ends of elongated cells that 
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result from defective segregation. These studies suggest that bacterial SMC play a role in 

chromosome partitioning.  

The roles of Smc and MukB in chromosome organization have been investigated at the 

molecular level. Recent experiments have shown that upon chromosomal loading at parS, Smc-ScpAB 

moves onto flanking DNA aligning the two chromosomal arms progressively from ori to ter. Hi-C 

maps of thermosensitive Smc mutants in B. Subtilis at the non-permissive temperature showed the 

loss of the interactions between the arms, suggesting that Smc promotes the colinearity of 

chromosomal arms (Wang et al., 2017). C. Crescentus SMC is not essential for cell survival, suggesting 

that other mechanisms act to ensure proper chromosome segregation. Consistent with data in B. 

Subtilis, Hi-C maps of Δsmc, ΔscpA, and ΔscpB cells in C. Crescentus revealed a decrease in inter-arm 

interactions (Tran et al., 2017).  

In E.Coli, the function of MukBEF differs from Smc-ScpAB. Chromosome conformation capture 

experiments indicate that MukBEF may generate a series of DNA loops covering most parts of the 

chromosome instead of co-aligning the two chromosome arms. This process would therefore be 

more similar to what happens in eukaryotes. A contact map of cells depleted for mukB showed a 

reduction in long-range interactions, suggesting that MukBEF is needed to establish chromosomal 

contacts between distant DNA regions (Lioy et al., 2018). 

Despite differences in loading and action, both bacterial SMC complexes play an essential role in 

chromosome organization. Smc-ScpAB seems to act as a translocation factor moving through 

chromosome arms. On the other hand, MukBEF appears to be required for the formation and 

maintenance of loops.  

Through this thesis I will mention several works in B. subtilis and C. crescentus regarding SMC 

loading and translocation on chromosomes that contribute to my study on condensin function. 

 

D) Eukaryote SMC 

Eukaryote SMC complexes, contrary to prokaryote, are built from heterodimers of different SMC 

subunits. There are three different SMC complexes in eukaryotes, cohesin, condensin and SMC5/6 

complexes (Figure 8D). Despite their structural homology, each of these SMC complexes performs 

specific, non-redundant functions in the maintenance of chromosomes. Current models predict that 

this is because they associate with different types of regulatory subunits and exhibit different 

localization pattern on chromosomes (Baxter et al., 2019).  
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i. The SMC5/6 complex 

SMC5-6 complex was initially identified as a complex involved in DNA repair (Lehmann et al., 

1995; Nasim and Smith, 1975). However, several studies now show that SMC5/6 could play a role in 

regulating gene transcription during plant development and in inhibiting transcription of viral 

genomes (reviewed in Aragón, 2018).  

SMC5/6 is composed of a SMC5–SMC6 heterodimer and at least four additional non-SMC 

elements (Nse proteins). In addition to the ATPase activity (Bermúdez-López et al., 2015; Kanno et 

al., 2015), the SMC5/6 complex possess the Nse2 subunit, a SUMO E3 ligase that facilitates the 

SUMOylation of substrates by the SMC5/6 complex and also self-SUMOylation (Andrews et al., 2005). 

Nse4 is the kleisin subunit that bridges the SMC5/6 heads. Nse1 and Nse3 contain tandem winged-

helix domains (WHD) (Figure 8D). Two additional HEAT-containing repeats, Nse5 and Nse6 form a 

subcomplex and associate with SMC5/6 (not depicted in Figure 8D) (Aragón, 2018).  

A study in budding yeast shows the role of Smc5/6 in reducing topological stress accumulated 

downstream of replication forks (Kegel et al., 2011). This work indicates that SMC5/6 via its interplay 

with topology can impact chromosome dynamics, however a role in chromosome organization has 

not yet been reported. In order to pursue this study in SMC-dependent genome organization, I will 

stay focused on cohesin and condensin.  

 

ii. The cohesin complex 

Cohesin was first discovered for its vital role in holding sister chromatids together from the time 

of DNA replication until anaphase onset to ensure proper chromosome segregation in anaphase 

(Michaelis et al., 1997).  

Cohesin complexes consist of typical SMC ring structures (Figure 8D) that interact with several 

accessory subunits. Mammalian cohesin is composed of SMC1, SMC3 and two non-SMC subunits, the 

kleisin subunit SCC1 (Scc1 in budding yeast and Rad21 in fission yeast) and a HEAT-repeat subunit, SA 

(stromal antigen) (Scc3 in budding yeast and Psc3 in fission yeast) (Figure 8D). The hinge domains of 

SMC1 and SMC3 bind tightly to each other, whereas the ATPase heads of both proteins are physically 

connected by SCC1. The ATPase activity of cohesin is required for its loading (Arumugam et al., 2003) 

and function (Hu et al., 2011; Petela et al., 2018). The loader NIPBL-MAU2 (Scc2-Scc4 in budding 

yeast) recruits cohesin to chromosomes (Ciosk et al., 2000; Watrin et al., 2006). PDS5 (a HEAT repeat-

containing subunit) and WAPL are two other proteins that associate with the four canonical cohesin 

subunits and act to dissociate cohesin from chromosomes (Haering and Gruber, 2016a; Uhlmann, 

2016).  
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Apart from its prominent role in sister chromatid cohesion, cohesin takes part in many other 

chromosomal processes, including organization of the genome into chromatin loops (reviewed in van 

Ruiten and Rowland, 2018).  

Cohesin and the insulator protein CTCF were found to colocalize in mammalian cells on 

chromatin (Wendt et al., 2008), at the anchors of loops (Rao et al., 2014) and at boundaries of TADs 

(Lieberman-Aiden et al., 2009; Nora et al., 2012; Rao et al., 2014).  

CTCF is an essential protein that is highly conserved from fly to human but absent in yeast, C. 

elegans and plants. CTCF binds genomic DNA through a central 11-zinc-finger DNA binding domain 

and its binding sites contain a directional sequence consensus of 11 to 15 bp (Ong and Corces, 2014). 

It was suggested that DNA loops correlate with the presence of pairs of CTCF sites arranged in a 

convergent orientation (Rao et al., 2014). This was supported by a study in mammals, showing that 

inversion of CTCF-binding sites alters looping and expression of a locus (Guo et al., 2015). 

In yeast, (CTCF is absent) cohesin is enriched at sites of convergent transcription that represent 

the boundaries of the domains (Gullerova and Proudfoot, 2008; Lengronne et al., 2004; Mizuguchi et 

al., 2014).  

Consistent with a role for CTCF and cohesin in genome organization, depletion of CTCF results in 

fewer intra-TAD contacts (Zuin et al., 2014). Loss of cohesin function causes a complete loss of 

interphase loops in mouse liver cells (Schwarzer et al., 2017) and human cell lines (Rao et al., 2017). 

In fission yeast, cohesin is required for maintaining interacting domains ∼50-100 kb in size, since a 

loss of function mutation of cohesin causes the disruption of local contacts (Mizuguchi et al., 2014).  

It has been proposed that CTCF defines contact points for cohesin-mediated chromosomal 

interactions. A current model suggests that, once loaded onto DNA, cohesin extrudes chromatin 

loops until it encounters convergent CTCF sites or convergent genes (Busslinger et al., 2017; 

Fudenberg et al., 2016; Wutz et al., 2017). This “loop extrusion” model will be presented in detail in 

the section II.E.  

 

Cohesin remains the most studied SMC complex. During this thesis I will bring elements 

regarding cohesin loading, translocation and loop formation that contribute to my study on the role 

of condensin in mitotic chromosome organization. 

 

iii. The condensin complex 

Condensin is essential for chromosome assembly and segregation during mitosis. Inactivation of 

condensin in organisms from bacteria to human cells leads to failure in chromosomes condensation. 

As a consequence, chromosomes remain entangled leading to the formation of anaphase 
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chromosome bridges (Figure 7) (Cuylen et al., 2013; Hirano et al., 1997; Saka et al., 1994; Woodward 

et al., 2016).  

The five subunits of condensin form the ring and contrary to cohesin, no other accessory 

proteins have been found. The condensin complex contains a SMC2–SMC4 heterodimer, a kleisin 

subunit and two HEAT repeats subunits (Figure 8D). Mammals possess two different condensin 

complexes: condensin I and II, that share the SMC subunits but have different non-SMC subunits. 

Condensin I contains HEAT subunits called CAP-D2 and CAP-G, and the CAP-H kleisin subunit. 

Condensin II has CAP-D3, CAP-G2 (HEAT-repeat subunits) and the CAP-H2 kleisin subunit (Ono et al., 

2003).  

Without condensin, mitotic chromosomes retain their interphase structure with local 

interactions. Two studies in fission yeast analysed the contribution of condensin to large mitotic 

loops, using different tools to inhibit condensin. Kakui et al. arrested cells in metaphase by repressing 

the expression of the Slp1 activator of the anaphase-promoting complex. Condensin was depleted by 

repressing the expression of Cut14 and promoting its degradation vie an auxin-inducible degron. 

Kakui et al. observed by Hi-C that under these conditions, long-range interactions were lost, 

suggesting that condensin is responsible for contact interactions in mitosis (Kakui et al., 2017). 

Tanizawa et al. performed Hi-C in thermosensitive mutants of condensin cut14-208 and cut3-477 at 

36°C and found that large domains interactions were reduced (Tanizawa et al., 2017). These studies 

suggest that condensin mediates the formation of long-range contacts during mitosis and predict 

that this organization could explain chromosome compaction. 

Gibcus et al. investigated the differing contributions of condensin I and II to mitotic chromosome 

formation in vertebrates. They depleted condensin I or II in G2-arrested cells and Hi-C was performed 

as cells progressed through mitosis. They showed that either condensin can mediate the formation of 

arrays of chromatin loops, however, they play distinct roles at different structural levels in mitotic 

chromosome formation. Condensin II, is nuclear in interphase and associates with chromosomes as 

early as prophase; it was shown to be centrally located on chromosomes and to compact 

chromosomes into arrays of consecutive loops. On the other hand, condensin I only gains access to 

chromosomes after nuclear envelope breakdown and it was shown to subdivide large condensin II-

mediated loops into smaller loops (see Figure 5, condensin I is shown in red and condensin II in blue ) 

(Gibcus et al., 2018).  

It has been proposed that condensin, like cohesin, can extrude DNA to form mitotic loops (Ganji 

et al., 2018; Kong et al., 2019). This “loop extrusion” model, and the evidences supporting it, will be 

explained in the section II.E. 

To further understand condensin function, I detail in the next sections what is currently known 

of in vitro condensin-DNA interactions and activities of condensin. 



32 
 

a) The interaction of condensin with DNA  

A prerequisite for chromosome condensation is the association of condensin with chromatin. 

Thermosensitive mutants of fission yeast condensin, in which condensin association with 

chromosomes is reduced fail to properly segregate chromosomes in anaphase (Nakazawa et al., 

2015; Sutani et al., 2015; Tada et al., 2011).  

To study the association of condensin with chromatin, I will address two main points: the nature 

of condensin-DNA interactions, and the cell-cycle regulated association of condensin with 

chromosomes.  

How does condensin interact with DNA? Three types of condensin-DNA interactions have been 

described in vitro: topological entrapment of DNA (Cuylen et al., 2011), binding of SMC subunits to 

ssDNA (Akai et al., 2011; Piazza et al., 2014) and binding of HEAT-repeat subunits to dsDNA 

(Kschonsak et al., 2017; Piazza et al., 2014).  

An attractive multistep binding of condensin to DNA has been recently described (Figure 9). 

Using magnetic tweezers, it has been shown that the association of condensin with DNA can take 

place in the absence of ATP. This ATP‐independent interaction is able to survive washing steps with 

physiological salt concentrations, but it does not survive in buffer conditions of high ionic strength, 

which indicates that the ATP‐independent interaction of condensin with DNA may be electrostatic in 

nature. When condensin is added to DNA in the presence of ATP, it is, however, able to survive high‐

salt conditions. This suggests that the ATP‐dependent mode of DNA binding must be exceptionally 

stable. These evidences suggest a model in which condensin first interacts electrostatically through 

the HEAT-repeat subunits to then topologically entrap DNA in an ATP-dependent manner (Figure 9) 

(Eeftens et al., 2017). 

When does condensin associate with chromosomes? In higher eukaryotes, condensin II is 

located within the nucleus during interphase and associates with chromosomes in prophase. 

Condensin I only contact chromosomes after nuclear envelope breakdown in prometaphase (Haering 

and Gruber, 2016b; Hirota et al., 2004; Ono et al., 2003). In organisms with a closed mitosis like 

fission yeast, condensin has to be imported into the nucleus before mitotic chromatin compaction. In 

the case of fission yeast, condensin requires the CDK-dependent phosphorylation of Smc4/Cut3 for 

nuclear localization (Thadani et al., 2012). 

 

b) The activities of condensin in vitro 

SMC2 and SMC4 subunits provide the ATPase activity to the condensin complex, required for 

chromosomes condensation. However, how the energy of ATP hydrolysis promotes chromosome 

compaction is still unclear. 
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Figure 9: Multistep binding mechanism of condensin with DNA. Condensin first binds to DNA
electrostatically, presumably through the HEAT‐repeat subunits. Upon ATP hydrolysis, condensin embraces
the DNA topologically. High salt or high force can disrupt the electrostatic interactions in vitro. Adapted
from Eeftens et al, 2017.
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In vitro studies have uncovered several activities of condensin, namely, the ability to introduce 

positive supercoiling into DNA, ssDNA reannealing, DNA translocation and DNA loop extrusion (Akai 

et al., 2011; Ganji et al., 2018; Kim et al., 2019; Kimura and Hirano, 1997; Kong et al., 2019; Sutani 

and Yanagida, 1997; Sutani et al., 2015; Terakawa et al., 2017). 

In vitro studies revealed that condensins are able to introduce ATP-dependent positive 

supercoils on circular DNA in the presence of topoisomerase I (Kimura and Hirano, 1997). Yet it is not 

clear if condensin supercoiling activity is required for in vivo chromosome condensation. 

Using magnetic-tweezers, a study with Xenopus condensin showed that condensin can bind to 

DNA in the absence of ATP, but it only compacts the DNA in the presence of hydrolysable ATP (Strick 

et al., 2004). Similar results were obtained in another magnetic-tweezers study on the S. cerevisiae 

complex that examined how the rate of compaction depends on protein concentration, ATP 

concentration, and the force applied on the DNA (Eeftens et al., 2017). Interestingly, both magnetic-

tweezers studies on eukaryotic condensin failed to detect a supercoiling activity for condensin, which 

disagree with the observations of Hirano (Kimura and Hirano, 1997). 

It has been shown in vitro that SMC subunits of condensin promote DNA renaturation reactions 

(the rewinding of single-strand DNA into double helical DNA) (Akai et al., 2011; Sutani and Yanagida, 

1997). In vivo studies in fission yeast demonstrated, that an RPA (Replication protein A, the major 

protein that binds to ssDNA) mutant with reduced affinity to ssDNA restores the growth of condensin 

mutants (Akai et al., 2011). This observation suggests that ssDNA stabilized by RPA could hinder 

chromosome segregation. Additionally, it was shown in fission yeast that condensin accumulation 

sites are sensitive to nuclease P1 (which digests ssDNA or ssRNA), suggesting that these sites contain 

ssDNA (Sutani et al., 2015). The authors of this study proposed that unwound DNA produced by 

transcription, detrimental for chromosomes condensation, is recognized and rewound by condensin 

(Sutani et al., 2015). 

To what extent these biochemical activities of condensin contribute to chromosome 

condensation in vivo is unclear. 

Very recently, DNA translocation and DNA extrusion activities of condensin have been 

demonstrated in vitro (Ganji et al., 2018; Terakawa et al., 2017). These evidences, together with in 

vitro evidences for cohesin translocation on DNA (Davidson et al., 2016; Stigler et al., 2016), support 

the proposed “loop extrusion model”.   

 

E) The loop extrusion model to explain SMC-driven chromatin loop formation 

How do cohesin and condensin function to organize chromosomes into chromatin loops? 

Currently, two models have been proposed to explain how SMC complexes bring together distal 
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elements (Figure 10). The stochastic crosslinking model proposes that SMC complexes entrap DNA 

elements that by chance are in close proximity and thereby stabilize stochastic interactions (Figure 

10A) (Cuylen et al., 2013; Thadani et al., 2012). In this model, the topological entrapment of two DNA 

strands within condensin would explain the long-range interactions mediated by condensin. 

Alternatively or additionally (Sakai et al., 2018), another model has recently gained a lot of attention: 

the loop extrusion model (Figure 10B). An increasing amount of evidence supports the notion that 

the common molecular mechanism that underlies the action of SMC complexes is their ability to 

create and progressively enlarge loops of DNA (Alipour and Marko, 2012; Goloborodko et al., 2016; 

Nasmyth, 2001). In this model, an SMC initially binds DNA. Then DNA then bends to form an initial 

loop. The SMC ring reels DNA generating a loop (Figure 10B). Cohesin extrusion would be blocked by 

convergent CTCF sites in human, and convergent genes in yeast (Rowley and Corces, 2018). There is 

no evidence yet that condensin extrusion could be blocked by DNA-bound proteins or transcription. 

Condensin II does not accumulate at CTCF sites in interphase cells (Dowen et al., 2013), suggesting 

that CTCF can not block condensin II. 

Several in vitro experiments performed on purified condensin support the loop extrusion model. 

An elegant DNA-curtain study showed that the S. cerevisiae condensin complex is a 

mechanochemical molecular motor that translocates on naked DNA (Figure 11A) (Terakawa et al., 

2017). Translocation was ATP dependent, persisted for very long distances (>10 kb), and showed an 

average velocity of ∼60 base pairs per second (Figure 11A) (Terakawa et al., 2017). Subsequent 

single-molecule experiments further demonstrated that the linear translocation observed for 

condensin could be converted into DNA loop extrusion. Addition of purified budding yeast condensin 

to DNA molecules, which had been tethered under low tension, allowed the real-time visualization of 

ATP-dependent formation and gradual expansion of DNA loops of several kbp in size. Condensin-

dependent loop extrusion was strictly asymmetric, suggesting that condensin may anchor onto DNA 

and reels it in from only one side (Figure 11B) (Ganji et al., 2018). The same group has recently 

published that under the same conditions, higher concentrations of budding yeast condensin result 

in multiple loop formation on the same DNA molecule (Kim et al., 2019). Surprisingly, they observed 

a structure containing three dsDNA stretches, connected in parallel. The in-depth study of these 

structures led them suggest that condensin complexes are able to traverse each other (Kim et al., 

2019). These observations challenge the posited model of single looping by condensin and open a 

new perspective in the mechanisms of chromosome organization. Condensin might create complex 

loops in which more than a single condensin molecule is implicated. Another very recent work using 

DNA-curtains and U-shaped DNA molecules (low tension) demonstrated that both human condensin 

I and II can translocate and extrude loops of DNA in an ATP-dependent manner, as yeast condensin 

(Kong et al., 2019). In contrast, human condensins DNA loops seem to form symmetrically. The  
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Figure 10: Models of SMC function. (A) The random cross-linking model. An SMC complex links DNA
together by trapping two DNA strands inside its ring. Looping can be accomplished either by a single SMC
complex or by two interacting SMC complexes. Adapted from van Ruiten & Rowland, 2018. (B) The
extrusion process involves SMC loading, DNA bending to form the initial loop, and extrusion. Extrusion could
be blocked by DNA-bound proteins (CTCF likely blocks cohesin sliding) or other SMC. A final step could
involve release of SMC.. Adapted from Rowley & Corces, 2018.

A B
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Figure 11: In vitro condensin activities that support the loop extrusion model. (A) ATP–dependent
translocation of condensin on dsDNA. DNA curtain assay in which dsDNA is tightly tethered at both ends.
Adapted from Terakawa et al, 2017. (B) Condensin extrudes loops of DNA asymmetrically. Double-tethered
DNA molecule in which the ends are attached at a distance much shorter than its contour length, in order to
keep it loose. Application of a flow allows the visualization of the loop. Adapted from Ganji et al, 2018.

A Condensin translocates on DNA

B Condensin extrudes loops of DNA



38 
 

authors also showed that both condensins proceed without stopping upon encountering 

nucleosomes on single-tethered DNA curtains, and compact DNA (Kong et al., 2019). However, they 

were only able to assemble 3-4 nucleosomes on a 48,5 kb DNA molecule, which is a much lower 

density than in vivo chromatin. 

Data about cohesin movement on naked DNA seem to be more controversial. Studies using 

DNA-curtains demonstrated diffusion of fission yeast and human cohesin on DNA but found no 

evidence for ATP-dependent translocation (Davidson et al., 2016; Stigler et al., 2016). Mobility of 

fission yeast cohesin can be restricted by nucleosomes, nucleosomes arrays, and DNA-bound 

proteins (Stigler et al., 2016). Human cohesin can pass over some DNA‐bound proteins and 

nucleosomes but is constrained in its movement by transcription and CTCF (Davidson et al., 2016). A 

third study probed the dynamics of Xenopus cohesin on flow-stretched DNA. In contrast to the above 

reports, these authors claim that cohesin diffusion is dependent on both ATP and the cohesin-loading 

complex Scc2–Scc4 (Kanke et al., 2016). 

In vitro data are very useful and informative to decipher the mechanism of function of SMC and 

to test the loop extrusion model, but they are performed on naked DNA, so they do not reflect the 

situation in vivo. Several questions remain to be addressed: How do SMC first contact DNA and 

associate with chromatin? Is DNA entrapment required for translocation? How do SMC catch the first 

loop of DNA? How do SMC behave in vivo when they encounter DNA bound proteins that could act 

as obstacles/roadblocks? 

 

F) How could cohesin and condensin in interphase and in mitosis form different types of 

chromatin loops? 

Chromatin loops are the structural unit of genome organization in interphase and in mitosis, 

however, their nature is different (see below section I.C) (Naumova et al., 2013). Short-range 

interphase loops depend on cohesin and long-range mitotic loops are dependent on condensin 

(Tanizawa et al., 2017). It is proposed that both machineries drive chromatin looping by extruding 

DNA (Fudenberg et al., 2016; Ganji et al., 2018). How can we explain the differences in loop sizes 

between interphase and mitosis?  

Cohesin and condensin share similar structures, however they have specific interactors that 

could differentially regulate their function in loop formation. Non-SMC regulatory proteins could 

provide specific DNA contacts that would influence SMC translocation. Differences in processivity 

(speed of loop extrusion and residence time on chromatin) of SMC complexes could be linked to the 

size of loops generated. For example, condensin I and II have different residence times, with 

condensin II being more stably bound to chromatin and condensin I more dynamic (Walther et al., 
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2018). And it was demonstrated (as mentioned in section II.D.iii) that condensin II mediates large 

interactions and condensin I form small loops (Gibcus et al., 2018). No comparative data is available 

for dynamics of cohesin and condensin association with chromatin.  

Different ATPase activities could also be an explanation for differences in loops mediated by 

cohesin and condensin. Stable association of condensin with DNA (Eeftens et al., 2017) and 

condensin translocation (Terakawa et al., 2017) require its ATPase activity. ATP binding to SMC heads 

of cohesin changes its conformation, creating different compartments within the ring (Chapard et al., 

2019). These evidences are consistent with the idea that regulation of SMC ATPase activity can 

directly impact their function. 

It is interesting to identify similarities and differences between cohesin and condensin structures 

and activities to better understand how these two machines shape different loops at different stages 

of the cell cycle. 

Interesting studies analysed in detail the transition from interphase genome organization to 

mitotic chromosomes. 

Single-cell Hi-C experiments in mouse embryonic stem cells allowed to phase thousands of 

single-cell maps, in silico, to study the cell cycle dynamics of genome organization (Nagano et al., 

2017). Their analysis showed that interphase compartmentalization and local looping are lost in 

mitosis and contact distances evolve from <1 Mb in interphase to 1-10 Mb in mitosis (Nagano et al., 

2017), consistent with other studies (Gibcus et al., 2018; Naumova et al., 2013). This work validated 

previous studies using single-cell experiments which do not need drugs or the use of modified cell 

lines for cell population synchronization, avoid the use of synchronized cell populations 

contaminated with interphase cells and allow the investigation of cell variability. 

A very recent study in Hela cells analysed the transition from mitosis to interphase using Hi-C, 

microscopy and chromatin fractionation (Abramo et al., 2019). Prometaphase-arrested cells showed 

as expected, long-range contacts and the absence of locus specific features. From prometaphase to 

G1, Hi-C maps revealed that TADs and loops form with fast kinetics and compartment identity is 

established relatively quickly, but development and strengthening of long-range interactions 

continues for several hours (Abramo et al., 2019). Interestingly, they described the existence of a 

transient intermediate folding state observed during the anaphase-telophase transition, in which 

condensin and cohesin association with chromosomes is low and no condensin-mediated loops and 

only a very low density of cohesin loops are observed (Figure 12) (Abramo et al., 2019). 

As condensin and cohesin mediate, respectively, large and small domain organization, cohesin-

dependent loops are eliminated when condensin-dependent loops form, a study in fission yeast 

investigated whether condensin and cohesin might inhibit each other. They observed that a 

condensin mutant did not facilitate small range interactions and a cohesin mutant did not enhance  
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Figure 12 : Chromatin loops at the mitosis-interphase transition. Cellular and chromosomal events as cells
exit mitosis and enter G1. Models of chromosome conformation during mitosis (condensin-dependent-
arrays of nested loops, helically arranged around a spiral central axis), telophase (intermediate folding state
with low levels of condensin and cohesin), and interphase (cohesin-dependent small loops). Green bar
indicates abundance of condensins I and II on the chromatin at the corresponding cell cycle stages. Yellow
bar indicates cohesin abundance on the chromatin at the corresponding cell cycle stages. Adapted from
Abramo et al, 2019.
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large domains. These observations suggest that condensin and cohesin independently organize large 

and small range interactions (Tanizawa et al., 2017). 

Finally, a recent study investigated whether the loss of TADs during mitosis is due to regulation 

of CTCF (Oomen et al., 2019). One possibility could be that in mitosis condensin is not blocked by 

CTCF, therefore, condensin forms larger loops compared to cohesin. The second possibility is that 

CTCF and cohesin dissociates from mitotic chromatin. The authors demonstrated that CTCF binding is 

lost in mitosis and they proposed that CTCF dissociation from chromatin together with the known 

loss of cohesin during prophase, could explain why TADs and CTCF loops are not observed in mitosis 

(Oomen et al., 2019). It would be interesting to test whether CTCF removal from chromatin depends 

on condensin. For example, translocation of condensin through a CTCF site could induce CTCF 

dissociation. One could deplete condensin in mitosis and assess CTCF binding. If condensin 

translocation is able to remove CTCF from its binding sites, CTCF would remain bound to its sites 

under depletion of condensin in mitosis. 

How cohesin and condensin form different loops is still not clear. The transition between 

cohesin-mediated interphase loops to condensin-mediated loops in mitosis is also unknown.  

 

During my PhD project I focused my research on condensin and its role in the reorganization of 

the genome during mitotic chromosome condensation. In the next section I analyse the function of 

condensin in the context of chromatin. I will discuss the mechanisms driving the loading and 

positioning of condensin on mitotic chromosomes. I will end this general introduction by defining my 

research aims. 

 

G) Condensin function in the context of chromatin 

When cells enter mitosis, the genome is dramatically reorganized, the hierarchical structure is 

lost, and chromatin fibres are arranged into large loops disposed consecutively around a central axis. 

These condensin-mediated loops are uniform and explain the linear and axial mitotic compaction of 

chromosomes (Abramo et al., 2019; Gibcus et al., 2018; Kakui et al., 2017; Nagano et al., 2017; 

Naumova et al., 2013; Tanizawa et al., 2017). To better understand how condensin binds and 

manipulates chromatin fibres, it is important to investigate the behaviour of condensin on 

chromatin.  

 

i. Genomic distribution of condensin on chromosomes 

Based on the consecutive arrays of uniform loops formed by condensin, one could predict that 

condensin association along chromosomes is homogenous, i.e. condensin would show enrichment 
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sites evenly spaced along chromosomes. Instead, genome-wide assays based on Chromatin 

Immunoprecipitation (ChIP) of condensin in mitosis in several organisms (from bacteria to human), 

have revealed that condensin is not evenly distributed on chromosomes. Condensin maps show a 

broad basal distribution of condensin along chromosomes, prominent peaks at centromeres and 

rDNA and discrete peaks along chromosome arms (Figure 13). These discrete peaks on chromosome 

arms correlate with highly expressed genes whatever the RNA polymerase involved (RNAPI, RNAPII 

or RNAPIII) (Table1) (D’Ambrosio et al., 2008; Dowen et al., 2013; Gruber and Errington, 2009; Kim et 

al., 2013, 2016; Kranz et al., 2013; Nakazawa et al., 2015; Sutani et al., 2015). Condensin recruitment 

at centromeres and rDNA has been already investigated. The recruitment of condensin to rDNA 

depends on the factor Fob1 (Johzuka and Horiuchi, 2009). Fob1 is a polar replication fork barrier in 

budding yeast. In fission yeast and in mammalian cells blockage of replication forks at rDNA is 

conserved but it relies on different proteins (Castán et al., 2017). Fission yeast monopolin associates 

with condensin and contributes to its localization at the kinetochore and rDNA repeats (Tada et al., 

2011).  

The conserved correlation between condensin enrichment and high rates of transcription 

suggests that transcription plays a role in determining condensin positioning on chromosomes. As 

mentioned in the preface, this is intriguing since in vertebrates, transcription is repressed in mitosis 

(Gottesfeld and Forbes, 1997) when condensin associates with chromosomes. However, it was 

shown recently that transcription remains active but at low levels in mitosis (Palozola et al., 2017), or 

even that transcription is activated at the onset of mitosis before mitotic transcription inhibition 

(Liang et al., 2015). These studies support the idea that transcription could contribute to determine 

condensin positioning on chromosomes. 

ChIP experiments do not allow to distinguish whether condensin peaks are loading or 

accumulation sites of condensin. Condensin peaks at highly expressed genes could indicate either 

recruitment sites or sites where condensin would be positioned after translocating from its loading 

sites.  

Two main questions emerge from these genome-wide studies: 1) Are condensin peaks at highly 

expressed genes loading or accumulation sites of condensin? 2) How does transcription specify these 

condensin accumulation sites? 

I will address these two questions in the following sections. I present data about loading and 

translocation of SMC. Then I introduce studies investigating the link between gene transcription and 

condensin positioning on chromosomes.  
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Figure 13: Genomic distribution of condensin-binding sites in fission yeast. FLAG‐tagged S. pombe
condensin subunit SMC2 (Cut14‐FLAG) enrichment profiles along S. pombe chromosomes 1, 2, and 3 by
ChIP‐seq. Mitotically arrested, cold‐sensitive (cs) beta‐tubulin mutant nda3‐KM311 at the restrictive
temperature 20 °C (shown in orange), and asynchronously grown wild type at 20 °C (shown in blue).
Representative genes are marked: cen, centromere; tR, tRNA gene; 5S, 5S rRNA gene; ncR, noncoding RNA
gene; snoRNA, small nucleolar RNA; rDNA, ribosomal DNA repeats. Only 2 and 1 rDNA repeats are shown on
the left and right ends of chromosome 3, respectively, because of its repetitive sequences. Condensin binds
to RNAPI, RNAPII and RNAPIII‐transcribed genes and centromeric regions. From Nakazawa et al, 2015.
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Table 1: High occupancy condensin binding sites across evolution. From Robellet et al, 2016.
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ii. Loading of condensin on chromosomes  

Do condensin peaks detected by ChIP at highly expressed genes represent loading sites? How is 

condensin recruited on chromosomes? 

Condensin binds to DNA in a sequence-independent manner. Our lab reported that in fission 

yeast, condensin accumulates in the vicinity of nucleosome depleted regions of highly expressed 

genes in mitosis (Toselli‐Mollereau et al., 2016). Nucleosome depleted regions facilitate also the 

loading of cohesin in budding yeast (Muñoz et al., 2019). Consistent with these observations, mitotic 

histone-free chromosomes can be efficiently reconstituted in vitro (Shintomi et al., 2017), suggesting 

that condensin association with DNA do not require histones. In agreement with this study, 

magnetic-tweezers, DNA-curtains and U-shaped DNA assays (introduced above) show that purified 

condensin directly binds naked DNA (Eeftens et al., 2017; Ganji et al., 2018; Strick et al., 2004). A 

recent study tested the binding of condensin I and II to nucleosomes. Condensins bound 

nucleosomes prepared with a 183 bp DNA substrate with an affinity similar to naked DNA but binding 

was impaired with a 147 bp DNA substrate, indicating that condensin complexes do not bind to core 

nucleosomes but prefer the flanking DNA (Kong et al., 2019). Together, these studies suggest that 

condensin binds naked DNA and its loading on chromosomes is facilitated at nucleosome free 

regions.  

In contrast to the direct binding of condensin with naked DNA, condensin has been shown to be 

recruited onto chromosomes by interaction with transcription factors. Two studies in budding and in 

fission yeasts have reported that the association of condensin with tRNA genes relies upon TFIIIC (a 

transcription factor that recognizes internal promoter sequences within tRNA genes and recruits 

RNAPIII) (D’Ambrosio et al., 2008; Iwasaki et al., 2010). In human cells, TFIIIC recruits specifically 

condensin II to tRNA genes (Yuen et al., 2017). A different study in fission yeast shows that condensin 

is recruited to tRNA genes and highly transcribed RNAPII genes by Tbp1 (the TATA-box binding 

protein) (Iwasaki et al., 2015). Another study in fission yeast revealed that the transcription factors 

Ams2 and Ace2 recruit condensin to their target genes (Kim et al., 2016). The studies in fission yeast, 

performed by the same group, show that different transcription factors could load condensin at 

different loci. Supporting the possibility that condensin could be recruited on chromosomes by 

physical interaction with a sequence-specific DNA-binding protein, in bacteria, the ParB protein is 

required to recruit Smc-ScpAB to parS sequences located at the origin of replication (Sullivan et al., 

2009) and cohesin interacts with the conserved NIPBL-MAU2 (name in human) loading complex that 

recruits cohesin on chromosomes (Ciosk et al., 2000; Watrin et al., 2006).  

This model of transcription factors (TF) as recruiters of condensin implies that a wide variety of 

TF would constantly interact with condensin to load it at specific sites. The finding that condensin is 

recruited to highly expressed genes transcribed by all classes of RNAP, in many different organisms, 
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suggests a conserved pathway for condensin recruitment through a chromatin structure rather than 

a dependency on several transcription factors for specific sites. There is no evidence for the moment 

of a conserved recruiter that could load condensin at all strong condensin binding sites.  

We could re-interpret the observations of TF-dependent recruitment of condensin and postulate 

that condensin is rather attracted to chromosomes by a chromatin structure and when it encounters 

a TF bound to its site, the TF stabilizes or maintain the association of condensin at this site. 

In conclusion, it is not yet clear how is condensin recruited on chromosomes. The observations 

that nucleosome free regions facilitate its binding, and the fact that no conserved loaders have been 

identified, suggest that condensin could directly recognize chromatin features.  

Current evidences do not allow to know whether genome-wide condensin peaks represent sites 

where condensin is loaded. I provide evidences in the next section about SMC relocation on 

chromosomes. 

 

iii. Translocation of condensin on chromosomes  

As mentioned above, it was shown in vitro that condensin can actively translocate on naked 

DNA. Little is known however about condensin translocation on chromatin. 

Cohesin translocation after loading has been well described. It has been shown in budding yeast 

by ChIP-chip that cohesin accumulates at sites of convergent transcription, suggesting that RNAPII is 

able to push cohesin through genes (Lengronne et al., 2004). The localization of cohesin at places of 

convergent transcription was also observed in fission yeast (Gullerova and Proudfoot, 2008; 

Lengronne et al., 2004; Mizuguchi et al., 2014). In mammals, it was shown that in the absence of 

both CTCF and Wapl, cohesin accumulates at the 3′ end of active genes and at sites of convergent 

transcription (Busslinger et al., 2017). This suggests that either that RNAPII can push cohesin along 

chromatin or, convergent genes represent an obstacle for the translocation of cohesin. These 

observations in vivo fits well with the finding that in vitro a motor protein (the FtsK translocase) can 

push cohesin along DNA (Stigler et al., 2016). Two studies, in budding yeast and in human cells, show 

that transcription elongation dissociates cohesin from chromosomes (Bausch et al., 2007; Heinz et 

al., 2018). These conclusions are slightly different, since RNAPII do not push, but remove cohesin.  

Work on bacterial SMC complexes shows that the transcriptional machinery slows down SMC 

translocation when it meets convergent transcription (Tran et al., 2017; Wang et al., 2017).  

Collectively these studies demonstrate that transcription play a role in positioning cohesin at 

convergent genes or at CTCF convergent sites by transcription, and in bacteria, transcription block 

the progression of SMC when they encounter head on.  
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If condensin can translocate along chromatin and creates loops, one could think that condensin 

peaks reflect loop boundaries where translocation stalls, and condensin accumulates. To test this 

possibility, one need to compare genome-wide ChIP with Hi-C data. In DT40 cells, around 16,000 

loops are detected by Hi-C (Gibcus et al., 2018), while ChIP data detected only 289 condensin sites 

with more than a fivefold enrichment, and 4617 sites where condensin is more than twofold 

enriched (Kim et al., 2013). A study in fission yeast shows that condensin binding sites determined by 

ChIP have more probability of engaging in intra-arm DNA interactions (determined by Hi-C) than sites 

not binding condensin (Kakui et al., 2017). However, condensin accumulation sites as well as sites not 

enriched on condensin engage specifically in mitotic long-range interactions. In the same study, the 

authors show that most of the mitotic boundaries contain a condensin accumulation site (Kakui et 

al., 2017). On the other hand, a ChIA-PET (chromatin interaction analysis by paired-end tag 

sequencing) study of condensin in fission yeast, in which site-specific looping between condensin-

binding sites have been determined, showed that condensin mediates the association of mitotically-

active genes (Kim et al., 2016). Another work in fission yeast compares these condensin ChIA-PET 

sites with Hi-C data. They found that strong condensin-accumulation sites tend to mediate long-

range contacts (Tanizawa et al., 2017). Collectively these data suggest that condensin accumulation 

sites are implicated in long-range mitotic loops. However, there seems to be more loops than 

condensin accumulation sites. One could speculate that different pools of condensin and different 

types of mitotic loops exist, some of the loops anchored at highly transcribed genes. It would be 

interesting to test whether condensin-mediated mitotic loops are dependent on transcription. In 

fission yeast, it has been shown that inhibiting transcription results in reduced condensin 

accumulation at highly expressed genes (Sutani et al., 2015). One could reduce transcription genome 

wide with the RNAP inhibitors phenanthroline or thiolutin used in the latter study, which would 

result in reduced condensin accumulation at highly expressed genes, and assess genome-wide 

interactions frequencies. If condensin accumulation sites at highly expressed genes are somehow 

related to condensin-mediated loops in mitosis, one could expect to observe a change in the pattern 

of mitotic interactions when transcription is inhibited. 

How transcription can position condensin on chromosomes is not clear. High rates of 

transcription could facilitate loading of condensin or, alternatively, block translocation. 

At the time I started my PhD, a substantial amount of publications addressing this point was 

available. I collected and confronted these data in the next section.  
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iv. How does gene transcription contribute to position condensin on mitotic 

chromosomes?  

The conserved localization of condensin at highly transcribed genes led to the proposal that 

transcription could somehow determine the position of condensin on chromosomes. Despite the 

well described links between transcription and cohesin and transcription and bacterial SMC, current 

data addressing the link between transcription and condensin are contradictory (Bernard and 

Vanoosthuyse, 2015; Robellet et al., 2016). 

On one hand, it has been shown in fission yeast that, in prometaphase arrested cells treated 

with transcription inhibitors, the accumulation of condensin at highly expressed genes is reduced 

(Sutani et al., 2015), as mentioned above. This observation suggests that condensin association with 

chromosomes depends on transcription. Consistent with this observation, the authors placed a 

reporter gene under the control of a mitotically active promoter and observed that transcription was 

induced and condensin association with chromatin was enhanced, suggesting that a mitotically active 

promoter is sufficient to cause an accumulation of condensin on chromosomes (Sutani et al., 2015). 

The authors then inhibited transcription in the thermosensitive cut14-208 mutant of condensin that 

shows segregation defects when grown at a restrictive temperature. Inhibition of transcription 

pharmacologically or genetically in this mutant resulted in the partial suppression of the 

chromosome segregation defects in anaphase, suggesting that when condensin function is impaired, 

active transcription impedes chromosome segregation (Sutani et al., 2015). The authors proposed 

that ssDNA forms at highly transcribed genes in mitosis, since they observed that Ssb1 (ssDNA 

binding protein 1) binds preferentially at condensin sites (Sutani et al., 2015). Based on the in vitro 

ssDNA reannealing activity of condensin (Akai et al., 2011), they posited that condensin could be 

targeted to highly transcribed genes to rewind transcription-dependent ssDNA and ensure proper 

chromosome segregation. Together, these results suggest that transcription is detrimental for 

chromosome segregation, likely because it produces ssDNA that needs to be removed from 

chromatin by condensin in order to achieve proper chromosome condensation.  

In line with this study, it has been recently shown in fission yeast that defective segregation of a 

strong condensin binding site (ecm33) in condensin mutants is suppressed when transcription is 

shut-off (Nakazawa et al., 2019).  What is missing in this experiment is to know whether condensin 

binding is reduced at ecm33 under transcription inhibition.  

Other works support this positive correlation between transcription and condensin. A work in 

fission yeast demonstrate that condensin accumulates at heat-shock protein genes when cells are 

shifted to 36°C to induce their expression (Nakazawa et al., 2015). Furthermore, a study in mouse 

embryonic stem cells analysed the localization of condensin II by microscopy at an inducible 
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transgene (Dowen et al., 2013). The authors demonstrated that upon transcription activation of the 

transgene, the condensin II signal was enhanced and colocalized with the active transgene (Dowen et 

al., 2013). These results are consistent with the idea that transcription generates a stress on 

chromatin that causes an accumulation of condensin. Condensin could be recruited to these sites or 

alternatively, these sites might represent obstacles for the translocation of condensin.  

It is important to note, however, that it is still unclear why left-over ssDNA or chromatin-

associated RNA would be harmful for chromosome condensation and segregation. As such, this 

model seems highly speculative at this stage. 

Strikingly, in human cells and in DT40 chicken cells, condensin I also accumulates at highly 

expressed genes in mitosis (Kim et al., 2013; Sutani et al., 2015), even if transcription is largely 

switched off in mitosis (Gottesfeld and Forbes, 1997). In humans cells, condensin I peaks in 

prometaphase cells were associated with strong RNAPII peaks in asynchronous cells, and the degree 

of condensin I binding at these peaks correlated with the expression level of the corresponding genes 

in interphase cells (Sutani et al., 2015). This observation strongly supports the idea that transcription 

deposits some sort of epigenetic or structural mark that facilitates the accumulation of condensin 

(reviewed in Bernard and Vanoosthuyse, 2015).  

 

On the other hand, several studies have reported an antagonism between transcription and 

condensin association with chromosomes. In budding yeast, the inhibition of RNAPI by the 

phosphatase Cdc14 during anaphase is necessary for the association of condensin with the rDNA 

(Clemente-Blanco et al., 2009; Wang et al., 2006). Similarly, transcription by RNAPII of sub-telomeric 

regions prevents the association of condensin (Clemente-Blanco et al., 2011). Contrary to the 

previous model, in these studies, transcription inhibition is required to facilitate the enrichment of 

condensin on chromosomes. 

 

To summarise, existing data on the functional links between transcription and condensin can be 

classified into two contradictory models:  

1) Transcription facilitates the loading of condensin. Transcription creates a structure on 

chromatin that is deleterious for chromosome segregation in mitosis; this structure, perhaps ssDNA, 

is recognized and disassembled by condensin, which accumulates where the structure forms; the 

removal of this toxic structure by condensin allows proper chromosome segregation in anaphase. 

Condensin therefore plays a specific and active role in correcting a mark left by transcription. 

Transcription and condensin accumulation are positively correlated.  
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2) Transcription opposes the loading of condensin. Inhibition of transcription in mitosis by 

dedicated mechanisms facilitates the function of condensin. Transcription and condensin 

accumulation are inversely correlated. 

 

To investigate the link between transcription and condensin, we use in our lab the fission yeast 

Schizosaccharomyces pombe. Fission yeast is a model of choice to study chromatin processes and cell 

cycle regulated mechanisms, as many different tools are available to manipulate the cell cycle. Its 

relatively small genome (13.8 Mb) is packed into 3 chromosomes and can be easily manipulated 

using genetic approaches. Finally, S. pombe only possess a single condensin isoform whose amino 

acid sequence is similar to condensin I. 

 

III. Genetic experiments indicate that the transcription-associated factors Sen1 and 

Swd22 act as negative regulators of condensin 

In order to decipher the functional links between transcription and condensin, the lab previously 

carried out genetic screens to identify components of the transcription machinery that either assist 

or negatively regulate the function of condensin. cut3-477 is a temperature-sensitive mutant of the 

Smc4/Cut3 condensin subunit that fails to grow when cells are incubated at the restrictive 

temperature of 34°C. This mutation weakens the association of condensin with chromatin, resulting 

in defective chromosome condensation and chromosome segregation defects (Figure 7) (Robellet et 

al., 2014; Saka et al., 1994; Tada et al., 2011).  

A group in the lab screened for mutations synthetically lethal with cut3-477 at 32°C, the semi 

permissive temperature at which condensin mutant cells continue to proliferate (Robellet et al., 2014). 

The gcn5-47 mutant was colethal with cut3-477 at 32°C, suggesting that Gcn5 collaborates with 

condensin. Gcn5 is the histone acetyl-transferase subunit of the SAGA complex, a conserved transcription 

coactivator that acetylates nucleosomes (Koutelou et al., 2010). Nucleosome eviction promoted by Gcn5 

was shown to be necessary for condensin accumulation to chromosomes in mitosis (Toselli‐Mollereau et 

al., 2016).  

In order to identify potential negative regulators of condensin, our group isolated deletions of 

non-essential components of the transcription machinery that could restore growth of cut3-477 

mutant cells at 34°C. Two of the regulators identified were Swd22 and Sen1 (Vanoosthuyse et al., 

2014). At 34°C, the single mutant cut3-477 failed to grow while the double mutant cut3-477 swd22Δ 

or cut3-477 sen1Δ did form colonies (Legros et al., 2014; Vanoosthuyse et al., 2014). This suppressor 

effect suggests that Swd22 and Sen1 are, directly or indirectly, negative regulators of condensin 

function.  
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The fact that Swd22 and Sen1 could act as negative regulators of condensin was considerably 

strengthened by the observation that the accumulation of condensin was specifically increased at 

least at a subset of RNAPIII-transcribed genes in the absence of both Swd22 and Sen1. This 

observation suggested that Swd22 and Sen1 act either directly or indirectly to limit the accumulation 

of condensin at RNAPIII-transcribed genes (Legros et al., 2014).  

Swd22 is a non-essential component of the Cleavage and Polyadenylation Factor (CPF), the 

protein complex that is responsible for the 3’end processing of RNA polymerase II transcripts in yeast 

(Richard and Manley, 2009). The best-characterized function of budding yeast Sen1 and of its human 

homologue Senataxin is in transcription termination of a subset of RNAPII transcripts (Mischo et al., 

2011; Porrua and Libri, 2013). Both Swd22 and Sen1 were therefore previously implicated in the 

process of transcription termination. I use the term transcription termination to refer to the step 

during transcription in which the RNAP reaches the termination site, the transcript is cleaved and 

released and the RNAP falls off the template, allowing it to restart a new cycle of transcription. 

Transcription termination mechanisms will be introduced in detail in Chapter 2. 

Of Swd22 and Sen1, only Sen1 was conclusively shown to associate with RNAPIII-transcribed 

genes. Sen1 was shown to form a stable complex with RNAPIII (Legros et al., 2014), suggesting that it 

could regulate condensin positioning by modulating RNAPIII transcription in –cis. This constitutes the 

founding hypothesis of my PhD project and I sought to use the sen1∆ mutant to better understand 

the links between transcription and the positioning of condensin.  

 

Why is the sen1∆ mutant a good model to study the impact of transcription on condensin 

positioning? Preliminary data indicated that Sen1 plays a role in RNAPIII transcription in fission yeast. 

RNAPIII transcription units are well studied and their promoter and terminator sequences are well 

characterized. Because they are present in multiple copies in the genome, deletions of most of 

RNAPIII-transcribed genes are viable. As a result, RNAPIII transcription units are relatively easy to 

manipulate and well-characterized mutations are known to modulate promoter and terminator 

functions. Moreover, RNAPIII-transcribed genes harbour features that were previously implicated in 

the positioning of condensin. For instance, specific RNAPIII transcription factors have been implicated 

in the regulation of condensin binding (D’Ambrosio et al., 2008; Iwasaki et al., 2010, 2015; Yuen et 

al., 2017). 

 

IV. Research aims 

During my PhD, my aim was to understand how transcription could influence the positioning of 

condensin in mitosis.  
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I used fission yeast strains deleted for the conserved DNA/RNA helicase Sen1 to try to elucidate 

the mechanism that explains the accumulation of condensin specifically at RNAPIII-transcribed genes 

in these strains. I tested a model in which Sen1 modulates condensin positioning by regulating 

RNAPIII transcription.  

To address the intriguing links between Sen1, RNAPIII transcription and condensin accumulation 

on chromosomes, I divided my project into three main research axes that constitute the three 

chapters of my manuscript: 

 

Chapter 1) The RNAPIII-associated factor Sen1 regulates the accumulation of condensin in the vicinity 

of RNAPIII-transcribed genes 

The first aim of my project was to improve the results previously obtained in the lab. ChIP 

experiments to monitor the binding of condensin at tRNA genes had been previously carried out in 

asynchronous cells and in the double mutant swd22Δ sen1Δ (Legros et al., 2014). Of both proteins, 

only Sen1 was shown to associate with RNAPIII, suggesting that only Sen1 could directly modulate 

transcription at RNAPIII-transcribed genes. Lack of such Sen1-dependent regulation of RNAPIII would 

somehow facilitate the accumulation of condensin in mitosis in –cis. It was therefore important to 

improve the published observations by investigating the distribution of condensin in the sole absence 

of Sen1 and in mitotic cells. 

In this first chapter, I demonstrate that the sole absence of Sen1 results in the accumulation of 

condensin at a subset of RNAPIII-transcribed genes in mitosis. To strengthen this observation, I used 

two different systems to synchronize the cells in mitosis. I show that the impact of Sen1 on the 

distribution of condensin is specific as lack of the related helicase Dbl8 or of Pso2, a physical 

interactor of Sen1 previously identified in the lab, failed to impact the distribution of condensin. In 

addition, I provide evidence that Sen1 acts in -cis on the distribution of condensin at RNAPIII-

transcribed genes. Moreover, I show that the impact of lack of Sen1 on the accumulation of 

condensin cannot be explained by an accumulation of the RNAPIII-transcription factors Tbp1 and 

TFIIIC. This shows that lack of Sen1 impacts the distribution of condensin by a novel pathway. Finally, 

I describe the efforts I put in to demonstrate that Sen1 regulates condensin accumulation in a 

transcription-dependent manner.  

Interestingly, I also demonstrate that Topoisomerase 1 (Top1) also accumulates at RNAPIII-

transcribed genes in the absence of Sen1, and this accumulation correlates with the accumulation of 

condensin. Note however that Top1 also accumulates in the vicinity of RNAPIII-transcribed genes in 

the absence of Sen1 when cells are in interphase and condensin is not on chromatin. This establishes 

that the accumulation of Top1 does not result from the accumulation of condensin. Our data are 

consistent with the following model: lack of Sen1 modulates RNAPIII transcription throughout the 
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cell-cycle, resulting in a Top1-senstitive DNA structure that enhances the accumulation of condensin 

at RNAPIII-transcribed genes in mitosis. 

 

Chapter 2) Sen1 is required for robust RNAPIII transcription termination. 

I then investigated how Sen1 could modulate RNAPIII transcription. Based on: 1) the known 

function of Sen1 in budding yeast and in human cells in the regulation of RNAPII transcription 

termination and on, 2) the observation that fission yeast Sen1 binds to RNAPIII-transcribed genes and 

associates with RNAPIII, we tested whether Sen1 could be important for RNAPIII transcription 

termination.  

In this second chapter, I show that Sen1 does indeed promote RNAPIII transcription termination. 

In the absence of Sen1, RNAPIII accumulates downstream of RNAPIII-transcribed genes and produces 

long exosome-sensitive 3’-extended transcripts. This establishes that, contrary to accepted models, 

RNAPIII requires a dedicated cofactor for efficient transcription termination. Our results were 

strengthened by genome-wide data from the Bachand lab and were successfully published in EMBO 

Journal. I include this manuscript on which I am the first author, in Chapter 2 of my manuscript. I also 

describe in Chapter 2 additional results that were not included in the article published in EMBO J. 

 

Chapter 3) The control of RNAPIII transcription termination by Sen1 determines condensin positioning 

in the vicinity of RNAPIII-transcribed genes. 

I show in Chapter 1 that Sen1 regulates the transcription-dependent positioning of condensin at 

RNAPIII-transcribed genes in mitosis and in Chapter 2 that Sen1 is required for robust RNAPIII 

transcription termination. In Chapter 3, we asked whether these two phenotypes are linked. 

By manipulating the sequences of the primary terminators of two different tRNA genes, we 

demonstrate that the RNAPIII transcription termination defects in the absence of Sen1 underlie the 

accumulation of condensin. We also provide evidence that the sole production of read-through 

transcripts is not sufficient to alter the positioning of condensin. I end this last chapter with a final 

discussion to confront my results to current models about transcription-dependent positioning of 

condensin on chromosomes. I propose a model in which lack of Sen1 interferes with RNAPIII removal 

from the DNA template, resulting in a wide and dense accumulation of RNAPIII that blocks the 

translocation of condensin in mitosis, thereby creating an accumulation of condensin at the 3’ of 

RNAPIII-transcribed genes. 
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Materials and Methods 

I. Fission yeast strains and culture 

All the strains used in this thesis are listed in Table 2. Yeast cultures were grown from fresh 

plates overnight in YES+A (Yeast Extract  + Supplements + Adenine) or in synthetic PMG (Pombe 

Minimal Glutamate) at 30°C (Forsburg and Rhind, 2006; Moreno et al., 1991). Cell concentration was 

determined by counting cells using Thoma chambers. Experiments were always carried out on 

exponentially-growing cells (concentration of 8.106 to 107 cells/ml).  

To synchronize cells in metaphase, cells expressing the gene slp1+ under a thiamine-repressible 

promoter (nmt41) (Maundrell, 1990) were incubated with 40μM of thiamine for 3 hours.  

To block cells in G2, cells carrying the analogue-sensitive cdc2asM17 allele (Aoi et al., 2014) 

were incubated for 3 hours with 2µM 3-BrB-PP1. 

The expression of the dis3 gene driven by the nmt81 promoter was repressed by the addition of 

60 µM of thiamine to the PMG medium. To induce the expression of E. coli RnhA from by the nmt1 

promoter, cells were grown in PMG minimal medium lacking thiamine for a minimum of 18h. 

 

II. Genetic methods 

A) Crosses 

Fission yeast has two mating types: h+ and h−, which are alleles of the mat1 locus (mat1-M for 

h−, mat1-P for h+) (Moreno et al., 1991). Mating between two haploid strains of interest are induced 

on SPA (Sporulation Agar), a solid medium poor in nitrogen. Equal amount of strains, h+ and h−, are 

mixed on SPA plates. Following conjugation, newly formed zygotes immediately enter meiosis and 

sporulate to produce four spores in a linear tetrad ascus. The presence of spores is checked under 

the microscope. The cross is treated with 0,5% v/v cytohelicase, which digest remaining cells and 

release the spores from the asci. Cell lysis is completed by the addition of SDS 0,1%. Spores are 

counted using Thoma chambers, and 500 and 1000 spores are plated. Replicate plating onto selective 

media plates allow to select for markers 

 

B) Tetrads dissection 

To test lethality of the double mutant sen1Δ X rpc37-V189D, tetrads from crosses on SPA plates 

were plated on YES+A plates. Spores were isolated using a microscope equipped with a 

micromanipulator. Phenotypes of the spores were then identified by replica plating on selective 

media. 
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III. Mutagenesis 

A) SPCTRNAARG.10 and SPCTRNATHR.10 mutants 

The arg10TATA-less and super-terminator mutants of SPCTRNAARG.10 and SPCTRNATHR.10 

were first synthesized (GeneCust Europe). The mutagenized SPCTRNAARG.10 and SPCTRNATHR.10 

genes were then transformed into fission yeast and its correct integration was selected by counter-

selecting on FOA (5-Fluoroorotic acid) the loss of the ura4 gene previously integrated at 

SPCTRNAARG.10 and SPCTRNATHR.10. The correct integration of the mutations were confirmed by 

sequencing. 

B) sen1-G1534D and rpc37-V189D mutants 

To obtain sen1-G1534D-gfp and rpc37-V189D-flag, the 3’ end of the corresponding gene was 

amplified by PCR using the primers listed below. The PCR product was cloned into pCR Blunt II-TOPO 

using the Zero Blunt TOPO PCR Cloning Kit (Life Technologies). Site-directed PCR mutagenesis was 

then carried out to mutate the codon corresponding to Glycine 1534 in Sen1 and to Valine 189 in 

Rrpc37, using the QuikChange II Site-Directed Mutagenesis Kit (Agilent Technologies) according to 

the manufacturer’s instructions. The presence of the point mutations was then verified by 

sequencing. Overlapping PCR was then used to add the sequence of an epitope tag (GFP to sen1-

G1534D and 3Flag to rpc37-V189D) and a selection marker (hygromycin (Hyg) to sen1-G1534D and 

nourseothricin (Nat) to rpc37-V189D) to the mutated sequence of the gene. The resulting PCR 

product was used to transform yeast using routine protocols. Proper integration of the construct at 

the endogenous locus was verified by PCR and sequenced to verify the presence of the mutations. 

 

Primers used for mutagenesis of Sen1 and Rpc37: 

Amplification of 

3’end of Sen1 

Sen1 4501 FW ctatgtccacgtataacctgg 

Sen1 STOP RV Bahler 
ttaattaacccggggatccgtgatcgTTGTCTGATTTCTTTAGAAGG 

 

Mutation of 3’end of 

Sen1 

Sen1 MUT FW 
gacgttaatttcaccgggcgaataGACgttattaccccatatcgatcccaa 

 

Sen1 MUT RV ttgggatcgatatggggtaataacGTCtattcgcccggtgaaattaacgtc 

Sequencing of Sen1 Sen1 4368 FW aagaagttctacgattcacg 

Amplification of 

3’end of Rpc37 

Rpc37 308 FW gacccaaacactttctgg 

Rpc37 STOP RV Bahler ttaattaacccggggatccgAATAAAGGAGTAATCTTCATCAACAGC 

Mutation of 3’end of 

Rpc37 

Rpc37 V189D FW acagaagcaccaaaaGACtccaccactcacata 

Rpc37 V189D RV tatgtgagtggtggaGTCttttggtgcttctgt 

Sequencing of Rpc37 Rpc37 213 FW actggctggatggaggtc 



57 
 

IV. Chromatin Immunoprecipitation (ChIP) 

1,5.108 cells were cross-linked with 1% formaldehyde (Sigma) at 18°C for 30 minutes. After 3 

washes with cold PBS, the cells were frozen in liquid nitrogen. Frozen cells were then lysed in cold 

lysis buffer (Hepes-KOH 50mM [pH 7.5], NaCl 140mM, EDTA 1mM, Triton 1%, Na-deoxycholate 0.1%, 

PMSF Phenylmethanesulfonyl fluoride 1 mM) with glass beads using a Precellys 24 mill (Bertin 

Technology). To fragment the chromatin, the lysates were sonicated at 4°C using a Covaris S220 

(200W 20% Duty factor for 15', or 140W 5% Duty factor for 15') or Diagenode Bioruptor sonicator (10 

cycles 30’’ON/30””OFF). Covaris sonication at these conditions, generate DNA fragments of around 

100-200 bp, which smaller than those produced when Diagenode is used (300-400 bp). Smaller 

fragments allow to reach a better resolution to be able to determine proteins enrichments at sites 

300 bp apart. Highest resolution was essential for the scanning of loci by ChIP.  Sonication efficiency 

was tested by migration of phenol-chloroform purified DNA on 1% or 2% agarose gels. (Figure 14). 

Immuno-precipitation was done overnight at 4°C using Protein A-coupled or Protein G-coupled 

Dynabeads previously incubated with anti-GFP A11122 antibody (Invitrogen), anti-Flag antibody (M2 

Sigma), anti-Myc 9E10 (Sigma) and anti-H3 1791 (Abcam). The immunoprecipitated complexes were 

washed for 5’ successively with: Wash I buffer (20mM Tris pH 8, 150 mM NaCl, 2mM EDTA, 1% 

Triton-X100, 0.1% SDS), Wash II buffer (20mM Tris pH 8, 500mM NaCl, 2 mM EDTA, 1% Triton-X100, 

0.1% SDS) and Wash III buffer (20mM Tris pH 8, 1mM EDTA, 0.5% Na-deoxycholate, 1% Igepal, 

250mM LiCl). After two additional washes in Tris EDTA pH 8, the beads were resuspended in 10% 

Chelex resin (Biorad) and incubated at 98°C for 10’. After addition of 2 μL of 10 mg/mL proteinase K, 

the mixture was incubated at 43°C for 1 hour, then for another 10’ at 98°C. After centrifugation, the 

supernatant was collected and analyzed by qPCR in a thermocycler Rotor Gene (Qiagen) using the 

primers listed in Table 3. 

 

V. Immunofluorescence (IF) 

5.107 cells were fixed with methanol. After centrifugation 2' at 6000 rpm, cells were 

resuspended in 1 ml of PEM (100mM PIPES; 1mM EGTA, 1mM MgSO4, pH6,9). Three consecutive 

washes on PEM were done before treatment with Zymoliase 100T at a final concentration of 

0,4mg/ml in PEMS, at 37°C. The cells were washed three times with PEMS (PEM, 1,2 Sorbitol). Cells 

were incubated in 1ml of 1% Triton X-100 in PEMS. After washing in PEM, cells were resuspended in 

PEMBAL (PEM, 1% BSA 100mM Lysine-HCl). Permeabilized cells were incubated in 100µl with the 

antibody TAT1 in a 1/200 dilution overnight at 4°C. After three washes in PEMBAL, cells were 

incubated with the secondary antibody 1/400 in 100 µl for 30 minutes. Cells were washed three time 

with PEM and resuspended PEM+DAPI. 
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Figure 14: Shearing of chromatin for ChIP. Sonication patterns of chromatin are verified on agarose gels 
after phenol-chloroform extraction, ethanol precipitation and RNase A digestion of DNA. (A) Chromatin 
sonication using Diagenode Bioruptor, 10 cycles 30’’ON/30’’OFF. Migration on agarose gel 1%. Note the size 
of DNA fragments approximately at 300-400 bp. (B) Chromatin sonication using Covaris S220 (200W, 20% 
duty factor, 15’). Migration on agarose gel 2%. Note the size of fragments around 100-200 bp. 
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VI. Western Blot 

Protein extraction was performed using the TCA (trichloroacetic acid)-glass beads method. 108 

cells were centrifuged 3’ at 3400 rpm, resuspended in 20% TCA and then lysed using glass beads in a 

Precellys 24 mill (Bertin Technology). After centrifugation (4’ at 13 krpm), the resulting pellets were 

resuspended in sample buffer (0,1M Tris-HCl pH 9.5, 20% Glycerol, 4% SDS (sodium dodecyl 

sulphate), 0.2% bromophenol blue, 715mM β-mercaptoethanol), incubated 5’ at 100°C and 

centrifugated again at 13 krpm for 4’. The resulting supernatants were separated using SDS-PAGE on 

7,5 % polyacrylamide gels and transferred onto nitrocellulose using a semi-dry transfer system. Anti-

GFP JL8 and anti-Flag (M2 Sigma) antibodies were used for immunodetection of proteins and 

revealed using ECL-based reagents. An anti-tubulin antibody (TAT1), courtesy of Prof. Keith Gull 

(Oxford) was used as loading control. 

 

VII. Strand specific and random hexamers RT-qPCR 

Total RNA was extracted from logarithmical growing cells (2.108) by the standard hot-phenol 

method. The remaining traces of genomic DNA digest were digested with DNAse I (Ambion) and the 

integrity of RNAs was verified by electrophoresis on 0,8% agarose gels. Total RNA was reverse-

transcribed using SuperScript III (Invitrogen) according to the manufacturer’s instructions using the 

strand-specific primers listed in Table 3. To quantify read-through transcripts at specific tRNA genes, 

two independent RT reactions were carried out in parallel: RT1 used a priming oligonucleotide placed 

downstream of the primary terminator and RT2 used a priming oligonucleotide placed in the gene 

body upstream of the primary terminator. For both RT1 and RT2, an act1-specific priming 

oligonucleotide was also used as internal control. The resulting cDNAs were quantified by 

quantitative PCR (qPCR) using a Rotor Gene machine (Qiagen) and primers specific for act1 and the 

gene body of the tRNA of interest. The proportion of read-through transcripts was expressed using 

the ratio RT1/RT2 and expressed as a percentage (read-through tRNA transcripts/total tRNA 

transcripts).  

 

VIII. Northern blot 

For Northern blots, 10 µg of total RNAs were separated on 10% polyacrylamide–8M urea gels 

and transferred onto a nylon membrane (GE Healthcare Amersham Hybond –N+). The membrane 

was then UV cross-linked and dried at 80°C for 30 minutes. After incubation with Church Buffer for 

30 minutes at 37°C, the membrane was hybridized overnight at 37°C with a 32P-labeled DNA oligo 
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antisense to the intron of SPATRNAPRO.02. The blot was then washed 4 times with 1X SSC + 0.1% 

SDS and scanned using a Phosphorimager Typhoon FLA 9500 - GE Healthcare. 

 

IX. Mapping of the 3’ end of read-through transcripts at SPATRNAPRO.02. 

20 µg of total RNA were separated on a 10% polyacrylamide–8M urea gel. The 200 to 600 bp-

long RNAs were extracted from the gel and purified, before a preadenylated RNA adaptor was ligated 

in 3’ as described previously (Heyer et al., 2015). This 3’ adaptor was used for retro-transcription as 

described (Heyer et al., 2015) and SPATRNAPRO.02-derived cDNAs were amplified by PCR using the 

primer Pro.02 qL1 (5’-ACATACCTCTTTCGGGTAATCC-3’). The PCR fragment obtained was cloned into 

pCR Blunt II TOPO using the Zero Blunt II TOPO PCR Cloning Kit (Invitrogen Life Technologies) and 

sequenced. 

 

X. Transcription termination assay 

Strains carrying the ade6-704 mutation and the DRT5T dimeric construct (see diagram of the 

DRT5T construct in Figure 5A in the publication) were obtained from the Maraia laboratory (Iben et 

al., 2011). Standard genetic crosses were employed to introduce these reporter constructs in the 

strains of interest. At least two independent strains for each genotype were then plated on YES 

medium depleted or not of adenine for 3 days at 30°C.  
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Table 2. Strains used in this thesis. 

Strain 
n° 

Mat. 
type 

Leu Ura Ade His Genotype Origin 

LY5 h+ leu1-32  lab stock 
LY6 h- leu1-32  lab stock 
LY11 h+ leu1-32 ura4D18  lab stock 
LY12 h- leu1-32 ura4D18  lab stock 
LY112 h+ leu1-32 ura4D18 ade6-210  lab stock 
LY113 h- leu1-32 ura4D18 ade6-210  lab stock 
LY1052 h- leu1-32 rrp6Δ::KanR lab stock 
LY1053 h+ leu1-32 rrp6Δ::KanR lab stock 
LY1334 h- leu1-32 sen1Δ::KanR  lab stock 
LY1613 h-  psm3-GFP-NatR lab stock 
LY2615 h- leu1-32 ura4- ade6-210 sen1-GFP-KanR lab stock 
LY2616 h+ leu1-32 ura4- ade6-210 sen1-GFP-KanR lab stock 
LY2528 h- leu1-32 ura? ade? rnh1D129N-GFP-KanR lab stock 
LY2529 h- leu1-32 ura? ade? rnh1D129N-GFP-KanR lab stock 
LY2544 h+ leu1-32 ura4- ade6-210 rnh1D129N-GFP-KanR ARS::nmt1-RnhA::LEU2+ lab stock 
LY2545 h- leu1-32 ura4- ade6-216 rnh1D129N-GFP-KanR ARS::nmt1-RnhA::LEU2+ lab stock 
LY2638 h+ leu1-32 ura4D18  sen1Δ::NatR lab stock 
LY2639 h- leu1-32 ura4D18 ade6-210 sen1Δ::NatR lab stock 
LY3159 h+ leu1-32 ura4D-  rpc25-13myc-KanR sen1Δ::NatR lab stock 
LY3160 h+ leu1-32 ura4D- ade6-210 rpc25-13myc-KanR sen1Δ::NatR lab stock 
LY3161 h+ leu1-32 ura4D- ade6-210 rpc25-13myc-KanR sen1Δ::NatR lab stock 
LY3681 h90? leu1-32 ura4D- ade6-216 rpc25-13myc-KanR rnh1Δ::HygroR rnh201Δ::KanR lab stock 
LY3747 h-? leu1-32 ura- ade6-216  rrp6Δ::KanR lab stock 
LY3790 h+ leu1-32 ura4- sen1Δ::NatR rrp6Δ::KanR lab stock 
LY3791 h- leu1-32 ura4- ade6-216 sen1Δ::NatR rrp6Δ::KanR lab stock 
LY3811 h- leu1-32 ura4- dbl8D::NatR this study 
LY3812 h+ leu1-32 ura4- dbl8D::NatR this study 
LY3815 h- leu1-32 ura4D18 ade6-210  dbl8-3flag-NatR this study 
LY3843 h- leu1-32 ura4- sen1Δ::KanR  lab stock 
LY3844 h+ leu1-32 ura4- sen1Δ::KanR  lab stock 
LY3859 h- leu1-32 ura4- ade6-210 sen1-GFP-KanR dbl8D::NatR  this study 
LY3860 h- leu1-32 ura4- ade6-210 sen1-GFP-KanR dbl8D::NatR  this study 
LY3861 h+ leu1-32 ura4- ade6-210 sen1-GFP-KanR dbl8D::NatR  this study 
LY3921 h+ leu1-32 ura4- ade6-210 rpa43-GFP-KanR this study 
LY3923 h- leu1-32 ura4- ade6-210 rpa43-GFP-KanR dbl8-3flag-NatR this study 
LY3929 h- leu1-32 ura4- ade6-210 sen1-3flag-NatR lab stock 
LY3930 h+ leu1-32 ura4- ade6-210 sen1-3flag-NatR lab stock 
LY3966 h- leu1-32 ura4D18 ade6? his3D1 P81nmt1-dis3::KanR F. Bachand 
LY4125 h-  ura4D18 ade6-704 leu1-32::[DRT6T::leu1+] R.Maraia 
LY4127 h- leu1-32 ura4D18 ade6-704  R. Maraia 
LY4130 h-  ura4D18 ade6-704 leu1-32::[DRT5T::leu1+] R. Maraia 
LY4156 h- leu1-32 ade6-704 sen1Δ::KanR  this study 
LY4157 h+ leu1-32 ade6-704 sen1Δ::KanR  this study 
LY4164 h+ ade6-704 sen1Δ::KanR leu1-32::[DRT5T::leu1+] this study 
LY4165 h- ade6-704 sen1Δ::KanR leu1-32::[DRT5T::leu1+] this study 
LY4166 h+ ura4- ade6-704 sen1Δ::KanR leu1-32::[DRT6T::leu1+] this study 
LY4167 h- ade6-704 sen1Δ::KanR leu1-32::[DRT6T::leu1+] this study 
LY4174 h- leu1-32 ura4- ade6-704 dbl8Δ::NatR this study 
LY4175 h+ leu1-32 ura4- ade6-704 dbl8Δ::NatR this study 
LY4183 h+ leu1-32 ura4- ade6-704 dbl8Δ::NatR leu1-32::[DRT5T::leu1+] this study 
LY4184 h- leu1-32 ura4- ade6-704 dbl8Δ::NatR leu1-32::[DRT5T::leu1+] this study 
LY4195 h+ ade6-704 ura4D- dbl8Δ::NatR leu1-32::[DRT6T::leu1+] this study 
LY4196 h- ade6-704 dbl8Δ::NatR leu1-32::[DRT6T::leu1+] this study 
LY4222 h+ leu1-32 sen1-G1534D-GFP-HygroR this study 
LY4223 h+ leu1-32 sen1-G1534D-GFP-HygroR this study 
LY4232 h-  KanR-Pnmt41-slp1+ this study 
LY4233 h-  KanR-Pnmt41-slp1+ sen1Δ::HygroR this study 
LY4234 h-  KanR-Pnmt41-slp1+ this study 
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LY4235 h+  KanR-Pnmt41-slp1+ this study 
LY4237 h+  KanR-Pnmt41-slp1+ sen1Δ::HygroR cnd2-GFP-LEU2 this study 
LY4238 h+  KanR-Pnmt41-slp1+ sen1Δ::HygroR cnd2-GFP-LEU2 this study 
LY4267 h+ leu1-32 ade6-704 sen1-G1534D-GFP-HygroR this study 
LY4268 h- leu1-32 ade6-704 sen1-G1534D-GFP-HygroR this study 
LY4285 h- leu1-32 ura4D18 ade6-704 rpc37-3flag-NatR this study 
LY4290 h- leu1-32 ura4D18 ade6-704 rpc37-V189D-3flag-NatR this study 
LY4294 h+ leu1-32 ura4D18 ade6-704  this study 
LY4315 h- leu1-32 ura4D18 ade6-704 rpc37-V189D-3flag-NatR this study 
LY4316 h+ leu1-32 ura4D18 ade6-704 rpc37-V189D-3flag-NatR this study 
LY4331 h+  ura4D18 ade6-704 rpc37-3flag-NatR leu1-32::[DRT5T::leu1+] this study 
LY4332 h+  ura4D18 ade6-704 rpc37-3flag-NatR leu1-32::[DRT5T::leu1+] this study 
LY4333 h+ ura4D18 ade6-704 rpc37-3flag-NatR sen1Δ::KanR leu1-32::[DRT5T::leu1+] this study 
LY4334 h+ ura4D18 ade6-704 rpc37-3flag-NatR sen1Δ::KanR leu1-32::[DRT5T::leu1+] this study 
LY4335 h+  ura4D18 ade6-704 rpc37-3flag-NatR leu1-32::[DRT6T::leu1+] this study 
LY4336 h+  ura4D18 ade6-704 rpc37-3flag-NatR leu1-32::[DRT6T::leu1+] this study 
LY4339 h-  KanR-Pnmt41-slp1+ cut3-GFP-ura4+ this study 
LY4341 h-  KanR-Pnmt41-slp1+ cut3-GFP-ura4+ this study 
LY4349 h+ leu1-32 ade6-704 rpc37-3flag-NatR this study 
LY4350 h- leu1-32 ade6-704 rpc37-3flag-NatR this study 
LY4355 h- ade6-704 rpc37-V189D-3flag-NatR leu1-32::[DRT5T::leu1+] this study 
LY4356 h- ade6-704 rpc37-V189D-3flag-NatR leu1-32::[DRT5T::leu1+] this study 
LY4357 h- ade6-704 rpc37-V189D-3flag-NatR leu1-32::[DRT6T::leu1+] this study 
LY4358 h+ ade6-704 rpc37-V189D-3flag-NatR leu1-32::[DRT6T::leu1+] this study 
LY4413 h-  KanR-Pnmt41-slp1+ cut3-GFP-ura4+ lab stock 
LY4414 h-  KanR-Pnmt41-slp1+ cut3-GFP-ura4+ sfc3-1 lab stock 
LY4415 h-  KanR-Pnmt41-slp1+ cut3-GFP-ura4+ sfc3-1 lab stock 
LY4416 h+  KanR-Pnmt41-slp1+ cut3-GFP-ura4+ sfc3-1 lab stock 
LY4417 h+  KanR-Pnmt41-slp1+ cut3-GFP-ura4+ sfc3-1 lab stock 
LY4443 h+ leu1-32 ura4D ade6-21? arg3D4 ura4-Pnmt41-slp1+ lab stock 
LY4444 h+ leu1-32 ura4D ade6-21? arg3D4 ura4-Pnmt41-slp1+ lab stock 
LY4483 h- leu1-32 ura4D  ura4-Pnmt41-slp1+ cnd2-GFP-LEU2 this study 
LY4484 h+ leu1-32 ura4D  ura4-Pnmt41-slp1+ cnd2-GFP-LEU2 this study 
LY4488 h?  KanR-Pnmt41-slp1+ cnd2-GFP-LEU2 sen1Δ::HygroR this study 
LY4523 h- leu1-32 ura4D  sen1Δ::NatR lab stock 
LY4524 h+ leu1-32 ura4D ade6-210 sen1Δ::NatR lab stock 
LY4547 h- leu1-32 ura4D ade6-210 ura4-Pnmt41-slp1+ sen1∆::KanR  this study 
LY4591 h? leu1-32 ura4D ade6- ura4-Pnmt41-slp1+ cnd2-GFP-LEU2 pso2∆::KanR lab stock 
LY4592 h? leu1-32 ura4D ade6- ura4-Pnmt41-slp1+ cnd2-GFP-LEU2 pso2∆::KanR lab stock 
LY4593 h? leu1-32 ura4D ade6- ura4-Pnmt41-slp1+ cnd2-GFP-LEU2 pso2∆::KanR lab stock 
LY4681 h+ leu1-32 ura4D18 cdc2asM17 I. Hagan 
LY4682 h- leu1-32 ura4D18 cdc2asM17 I. Hagan 
LY4684 h+ leu1-32 ura4D ura4-Pnmt41-slp1+ tbp1-GFP-KanR lab stock 
LY4685 h+ leu1-32 ura4D ura4-Pnmt41-slp1+ tbp1-GFP-KanR lab stock 
LY4687 h- leu1-32 ura4D ura4-Pnmt41-slp1+ tbp1-GFP-KanR sen1∆::KanR lab stock 
LY4757 h- ura4D- ade6-704 cdc2asM17 rpc37-3flag-NatR lab stock 
LY4768 h+ leu1-32 ura4D ura4-Pnmt41-slp1+ cnd2-GFP-LEU2 dbl8∆::NatR lab stock 
LY4769 h+ leu1-32 ura4D ura4-Pnmt41-slp1+ cnd2-GFP-LEU2 dbl8∆::NatR lab stock 
LY4781 h-  cdc2asM17 sen1Δ::KanR  lab stock 
LY4793 h+ leu1-32 ura4D18 ade6-210 arg10-2T this study 
LY4795 h+ leu1-32 ura4D18 ade6-210 arg10-2T this study 
LY4799 h? leu1-32 ura4D ura4-Pnmt41-slp1+ tbp1-GFP-KanR sen1∆::KanR this study 
LY4800 h+ leu1-32 ura4D ura4-Pnmt41-slp1+ tbp1-GFP-KanR sen1∆::KanR this study 
LY4801 h+ leu1-32 ura4D ura4-Pnmt41-slp1+ tbp1-GFP-KanR sen1∆::KanR this study 
LY4880 h+ leu1-32 ura4D18 ade6-210 sen1Δ::NatR arg10-2T this study 
LY4881 h+ leu1-32 ura4D18 ade6-210 sen1Δ::NatR arg10-2T this study 
LY4882 h- leu1-32 ura4D18 ade6-210 sen1Δ::NatR arg10-2T this study 
LY4894 h- leu1-32 ura4- ade6-210 cdc2asM17 top1-3flag-NatR cnd2-GFP-LEU2 this study 
LY4903 h+  cdc2asM17 top1-3flag-NatR cnd2-GFP-LEU2 sen1∆::KanR this study 
LY4938 h- leu1-32 ura4D18 ade6-704/210? rpc37-3flag-NatR arg10-2T this study 
LY4939 h+ leu1-32 ura4D18 ade6-704/210? rpc37-3flag-NatR arg10-2T this study 
LY4946 h- leu1-32 ura4- ade6-210 cdc2asM17 top1-3flag-NatR cnd2-GFP-LEU2 [Ser09 Arg10] 

TERM∆ 
this study 
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LY4975 h+ leu1-32 ade6-704 cdc2asM17 rpc37-3flag-NatR this study 
LY4976 h- leu1-32 ade6-704 cdc2asM17 rpc37-3flag-NatR this study 
LY4977 h- leu1-32 ade6-704 cdc2asM17 rpc37-3flag-NatR sen1Δ::KanR  this study 
LY4978 h- leu1-32 ade6-704 cdc2asM17 rpc37-3flag-NatR sen1Δ::KanR  this study 
LY4980 h- leu1-32 ade6-704 cdc2asM17 cnd2-GFP-LEU2 rpc37-3flag-NatR this study 
LY4981 h+ leu1-32 ade6-704 cdc2asM17 cnd2-GFP-LEU2 rpc37-3flag-NatR sen1∆::KanR this study 
LY4982 h- leu1-32 ade6-704 cdc2asM17 cnd2-GFP-LEU2 rpc37-3flag-NatR sen1∆::KanR this study 
LY5034 h? leu1-32 ura4- ade6- ura4-Pnmt41-slp1+ his7::LacI-GFP this study 
LY5035 h- leu1-32 ura4- ade6- ura4-Pnmt41-slp1+ his7::LacI-GFP sen1∆::KanR this study 
LY5036 h? leu1-32 ura4- ade6- ura4-Pnmt41-slp1+ nda3-KM311 his7::LacI-GFP this study 
LY5037 h? leu1-32 ura4- ade6- ura4-Pnmt41-slp1+ nda3-KM311 his7::LacI-GFP this study 
LY5051 h+ leu1-32 ura4- ade? cdc2asM17 cnd2-GFP-LEU2 rpc37-3flag-NatR 

arg10∆::ura4+  
this study 

LY5052 h- leu1-32 ura4- ade? cdc2asM17 cnd2-GFP-LEU2 rpc37-3flag-NatR 
arg10∆::ura4+  

this study 

LY5053 h- leu1-32 ura4- ade? cdc2asM17 cnd2-GFP-LEU2 rpc37-3flag-NatR 
arg10∆::ura4+  sen1∆::KanR 

this study 

LY5218 h+ leu1-32 ura4D- rpc25-13myc-KanR sen1Δ::NatR ARS::nmt1-RnhA::LEU2+ this study 
LY5219 h+ leu1-32 ura4D- rpc25-13myc-KanR sen1Δ::NatR ARS::nmt1-RnhA::LEU2+ this study 
LY5220 h- leu1-32 ura4D- ade6-210 rpc25-13myc-KanR sen1Δ::NatR ARS::nmt1-RnhA::LEU2+ this study 
LY5221 h+ leu1-32 ura4D- ade6-210 rpc25-13myc-KanR sen1Δ::NatR ARS::nmt1-RnhA::LEU2+ this study 
LY5242 h- leu1-32 ura4D- ade6-210 his2-

Mat1M 
rpc25-13myc-KanR K. Noma 

LY5271 h+ leu1-32 psm3-GFP-NatR sen1∆::KanR lab stock 
LY5272 h-  psm3-GFP-NatR sen1∆::KanR lab stock 
LY5277 h+ leu1-32 ura4D- rpc25-13myc-KanR ARS::nmt1-RnhA::LEU2+ this study 
LY5278 h- leu1-32 ura4D- his2-Mat1M rpc25-13myc-KanR ARS::nmt1-RnhA::LEU2+ this study 
LY5357 h- leu1-32 ura4D- ade6-210/216? rnh1-D129N-GFP-KanR sen1Δ::NatR this study 
LY5358 h- leu1-32 ura4D- ade6-210/216? rnh1-D129N-GFP-KanR sen1Δ::NatR this study 
LY5359 h+ leu1-32 ura4D- ade6-210/216? rnh1-D129N-GFP-KanR sen1Δ::NatR this study 
LY5360 h+ leu1-32 ura4D- ade6-210/216? rnh1-D129N-GFP-KanR sen1Δ::NatR ARS::nmt1-

RnhA::LEU2+ 
this study 

LY5361 h- leu1-32 ura4D- ade6-210/216? rnh1-D129N-GFP-KanR sen1Δ::NatR ARS::nmt1-
RnhA::LEU2+ 

this study 

LY5362 h+ leu1-32 ura4D- ade6-210/216? rnh1-D129N-GFP-KanR sen1Δ::NatR ARS::nmt1-
RnhA::LEU2+ 

this study 

LY5465 h- leu1-32 ura4D- ade6-210/704? rpc37-3flag-NatR sen1Δ::KanR arg10-2T this study 
LY5466 h+ leu1-32 ura4D- ade6-210/704? rpc37-3flag-NatR sen1Δ::KanR arg10-2T this study 
LY5467 h- leu1-32 ura4D- ade6-210/704? rpc37-3flag-NatR sen1Δ::KanR arg10-2T this study 
LY5521 h- leu1-32 ura4D- ade6-? his3D1 sen1Δ::NatR P81nmt1-dis3::KanR this study 
LY5522 h+ leu1-32 ura4D- ade6-?  sen1Δ::NatR P81nmt1-dis3::KanR this study 
LY5524 h- leu1-32 ura4D- ade6-? his3D1 sen1Δ::NatR P81nmt1-dis3::KanR this study 
LY5533 h- leu1-32 ura4D ade6-?  KanR-Pnmt41-slp1+ cnd2-GFP-LEU2 sen1∆::NatR sfc3-1 this study 
LY5534 h- leu1-32 ura4D ade6-?  KanR-Pnmt41-slp1+ cnd2-GFP-LEU2 sen1∆::NatR sfc3-1 this study 
LY5609 h- leu1-32 KanR-Pnmt41-slp1+ this study 
LY5610 h- leu1-32 KanR-Pnmt41-slp1+ sen1∆::HygroR this study 
LY5615 h+ leu1-32 KanR-Pnmt41-slp1+ sfc6-13myc-KanR this study 
LY5616 h+ leu1-32 KanR-Pnmt41-slp1+ sfc6-13myc-KanR this study 
LY5617 h+ leu1-32 KanR-Pnmt41-slp1+ sfc6-13myc-KanR sen1∆::HygroR this study 
LY5618 h+ leu1-32 KanR-Pnmt41-slp1+ sfc6-13myc-KanR sen1∆::HygroR this study 
LY5681 h- leu? ura4D18 ade6-210 cdc2-asM17 cnd2-GFP-LEU2 arg10-10xReb1 this study 
LY5724 h+ leu1-32 ura4D18 ade6-210 arg10-23T this study 
LY5756 h+ leu1-32 ura4D ade6-210/704? cdc2-asM17 cnd2-GFP-LEU2 rpc37-3flag-NatR arg10-

TATAless sen1∆::KanR 
this study 

LY5757 h- leu1-32 ura4D ade6-210/704? cdc2-asM17 cnd2-GFP-LEU2 rpc37-3flag-NatR arg10-
TATAless sen1∆::KanR 

this study 

LY5762 h- leu1-32 ura4D- ade6-210/704? cdc2asM17 rpc37-3flag-NatR sen1Δ::KanR arg10-23T this study 
LY5763 h+ leu1-32 ura4D- ade6-210/704? cdc2asM17 rpc37-3flag-NatR sen1Δ::KanR arg10-23T this study 
LY5764 h+ leu1-32 ura4D ade6-210/704? cdc2-asM17 cnd2-GFP-LEU2 rpc37-3flag-NatR arg10-23T 

sen1∆::KanR 
this study 

LY5765 h- leu1-32 ura4D ade6-210/704? cdc2-asM17 cnd2-GFP-LEU2 rpc37-3flag-NatR arg10-23T 
sen1∆::KanR 

this study 

LY5766 h- leu1-32 ura4D- ade6-210/704? cdc2asM17 rpc37-3flag-NatR arg10-23T this study 
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LY5767 h+ leu1-32 ura4D- ade6-210/704? cdc2asM17 rpc37-3flag-NatR arg10-23T this study 
LY5768 h- leu1-32 ura4D ade6-210/704? cdc2-asM17 cnd2-GFP-LEU2 rpc37-3flag-NatR arg10-23T this study 
LY5955 h+ leu1-32 ura4D- ade6-210 sen1-3flag-NatR arg10-TATAless this study 
LY5956 h- leu1-32 ura4D- ade6-210 sen1-3flag-NatR arg10-TATAless this study 
LY5961 h- leu1-32 ura4D- ade6-210 sen1Δ::NatR arg10-23T this study 
LY5962 h- leu1-32 ura4D- ade6-210 sen1Δ::NatR arg10-23T this study 
LY5965 h- leu1-32 ura4D- ade6- rpc37-3flag-NatR arg10-TATAless  this study 
LY5966 h- leu1-32 ura4D- ade6- rpc37-3flag-NatR arg10-TATAless  this study 
LY6095 h- leu1-32 ura4D ade6-210/704 cdc2-asM17 cnd2-GFP-LEU2 rpc37-3flag-NatR 

thr10∆::ura4+ 
this study 

LY6097 h+ leu1-32 ura4D ade6-210/704 cdc2-asM17 cnd2-GFP-LEU2 rpc37-3flag-NatR 
thr10∆::ura4+ 

this study 

LY6180 h+ leu1-32 ura4D ade6-210/704? rpc37-3flag-NatR sen1D::KanR thr10-20T this study 
LY6201 h- leu1-32 ura4D ade6-210/704 cdc2-asM17 cnd2-GFP-LEU2 rpc37-3flag-NatR thr10-20T 

sen1∆::KanR 
this study 

LY6202 h+ leu1-32 ura4D ade6-210/704 cdc2-asM17 cnd2-GFP-LEU2 rpc37-3flag-NatR thr10-20T 
sen1∆::KanR 

this study 

LY6203 h+ leu1-32 ura4D ade6-210/704 cdc2-asM17 cnd2-GFP-LEU2 rpc37-3flag-NatR thr10-20T 
sen1∆::KanR 

this study 

LY6211 h+ leu1-32 ura4D ade6-210/704? sen1D::KanR thr10-20T  this study 
LY6233 h+ leu1-32 ura4D ade6-210/704 cdc2-asM17 cnd2-GFP-LEU2 rpc37-3flag-NatR arg10 

TATAless 
this study 

LY6234 h- leu1-32 ura4D ade6-210? cdc2-asM17 cnd2-GFP-LEU2 rpc37-3flag-NatR arg10 
TATAless 

this study 
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Table 3. Primers used in this thesis. 

Chromosome site Name  Experiment Primer name Primer sequence 

5S ribosomal RNA 5S ChIP 
5SqL1 TAGGCGAAAACACCAGTTCC 

5SqR1 TTCCCATGTTGTCTCCAACC 

SPRRNA.20 5S20 ChIP 
5S20qL2 CATGGCTAAATTGTTCAAATCC 

5S20qR2 GTGGTAATTCGCCCATTGTC 

18S ribosomal RNA 18S ChIP 
18SqL1 tttctaggaccgccgtaatg 

18SqR1 tgctttcgcagtagttcgtc 

28S ribosomal RNA 28S ChIP 
28sqL1 cccttgtcgcttaattggac 

28sqR1 tacattccggcaccttaacc 

act1 act1 RTqPCR 
act1qL0 aacgctcgtttccgatagtg 

act1qR0 acgtcgctttggactttgag 

adh1 adh1 ChIP 
adh1ORFqL1 tcaccatggtcactgtttc 

adh1ORFqR1 cgggaaacgtattcaagagc 

aes1 aes1 ChIP 
aes1 qL2 GCCGACAATCGATAAAGCAG 

aes1 qR2 CGATCCAATTGTTGGGTGAC 

SPBTRNAARG.04 arg04 ChIP 
arg4qL1 cattaatccgccgtggatag 

arg4qR1 ttcacctaatagttgccaaacg 

SPBTRNAARG.05 arg05 RTqPCR 
arg05qL2 ATGGTAGCGCATCTCATTCC 

arg05qR2 ACAATCTTACACGACGGGACTC 

SPCTRNAARG.09 arg09 ChIP 
arg9qL2 aattcgagtgcaaaaaggatg 

arg9qR2 ggaatgtaaatcccgctcag 

SPBTRNAARG.05 arg05 RTqPCR arg05RTT2 CATGAGCAAAACAAAATACCACA 

SPCTRNAARG.10 arg10.1 ChIP/RTqPCR 
arg10qL1 GGTGTGTAGCCTAATGGTTAAGG 

arg10qR1 GAGTGTGACAGGACTCGAACC 

SPCTRNAARG.10 arg10.2 ChIP 
arg10qL2 GGAAGGATACAATATCCACAACG 

arg10qR2 GCTGTTATCCATCCACTTACGG 

SPCTRNAARG.10 arg10.3 ChIP 
arg10 -300 FW TGCGACTCAGCATAAAGGTG 

arg10qR3 GGCATTCGTCGATTTTGC 

SPCTRNAARG.10 arg10.4 ChIP 
arg10qL4 AAGCCGCCTTTCGTTAACAC 

arg10qR4 CTGCTTGACCAGCTTTTGTG 

SPCTRNAARG.10 arg10.5 ChIP 
arg10qL5 ACCAAACTGCCCGATACAAC 

arg10qR5 GCAAACAGAGTCCAATTGAGG 

SPCTRNAARG.10 arg10 RTqPCR arg10RTT1 CAATATTTCTATTGCATGTTGACAG 

cnt cnt1 ChIP 
cnt1qL1 accgttgcaacttacatcagc 

cnt1qR1 ggtcgccaaatagcaatgag 

Chromosome-
Organizing Clamp 3* 

COC3 ChIP 
COC3qL CGAATCGCCCTTATGGATTC 

COC3qR ATGCTACATCCCGATGATCC 

Chromosome-
Organizing Clamp 4* 

COC4 ChIP 
COC4qL TGTCGATATTAGACCGAGCAAC 

COC4qR TTCGAACCCACAGACTTTGC 

Chromosome-
Organizing Clamp 5* 

COC5 ChIP 
COC5qL CCGAATTGACGCTAGTCTCC 

COC5qR TTGTTGCTACCAGCGTATCC 

ecm33 ecm33 ChIP 
ecm33qL4 TTGGCAAAGATGAGACATAAGG 

ecm33qR4 AATAAACTCGGTAGTCTTGCAATC 

fba1 fba1 ChIP 
fba1qL1 tcaagaccaccaacgacaag 

fba1qR1 aggcgaattgggtatcagtg 

gas1 gas1 ChIP 
gas1qL3 AATAGCATGTCGAGGTTGTATGG 

gas1qR3 TGTCATCGCGAAACCTTACC 

gdh2 gdh2 ChIP 
gdh2 qL1 GCCGTTTGTCAACATTAGCC 

gdh2 qR1 CGCACGATGTAAATGAGGTG 

SPCTRNAMET.07 
met07/c
417 

ChIP 
c417qL1 AGGTTCAAATCCTGCTGGTG 

c417qR1 TGGGACCTACGGGTTATGAG 

SPCTRNAPRO.09 pro09 ChIP 
pro9 qL2 GCCGTTTGGTCTAGTGGTATG 

pro9 qR2 TTGGGCTGTTGTGGGAATC 
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rds1 rds1 ChIP 
rds1s-2qL1 tctggctcctcgtcattttc 

rds1s-2qR1 tcatcgcttccaacccttac 

SPCTRNASER.13 ser13 ChIP 
ser13 qL2 CGAGTGGTTTTAAGGCGTTC 

ser13 qR2 TCGACAACGGCAGGATTC 

SPCTRNATHR.10 thr10.1 ChIP 
thr10qL1 CAATCAACGTTGCCCCTATG 

thr10qR1 ATACAAATTGCCCCCACTCG 

SPCTRNATHR.10 thr10.2 ChIP 

thr10qL2 ATTAGGAGGAGCATCGTACAGC 

thr10qR2 
CACATAAAAGTGATATGCAAAAAC
G 

SPCTRNATHR.10 thr10.4 ChIP 
thr10qL4 AGTCACGGACTTGGTCTTTACC 

thr10qR4 TTCTTTGCACCCCATAGCAC 

SPCTRNATHR.10 thr10.5 ChIP 
thr10qL5 AATGAGATTCATCCAGCGTTC 

thr10qR5 GCAGGTACCGTAATTAGCCTTC 

SPCTRNATHR.10 thr10.6 ChIP 
thr10qL6 GTGGGATGTACTAAACCACGTC 

thr10qR6 ACGGATGACAGTAAAAGGAATG 

SPBTRNATYR.04 tyr04 ChIP/RTqPCR 
tyr04FW TGGTGTAGTTGGTTATCACATCC 

tyr04RV AATCTCCTGAGCCAGAATCG 

SPBTRNATYR.04 lys09 ChIP 
lys09qL1 GCTTTATGAGCGGCGTAAAC 

lys09qR1 GAGCATTAGGTTTTTGGCGTAG 

SPBTRNATYR.04 tyr04.2 ChIP 
tyr04qL2 ttgcccttgcatcctatctc 

tyr04qR2 tgaatttagcacgtttctctcaa 

SPBTRNATYR.04 tyr04.3 ChIP 
tyr04qL3 TCCTTTCACGCCCCTTTC 

tyr04qR3 ACAAATCCTGTTCAAAATTAGCC 

SPBTRNATYR.04 tyr04 RTqPCR tyr04RTT2 TACCACAAGTAGCCAGGGTG 

SPATRNAPRO.02 pro02 ChIP/RTqPCR 
pro02qL1 ACATACCTCTTTCGGGTAATCC 

pro02qR1 GGGCCTAACCAGGATTCG 

SPATRNAPRO.02 pro02 RTqPCR pro02RTT1 GGTAATCAAGCAAGGTGTAAGG 

SPATRNAPRO.02 pro02 Northern pro02qR3 TCTAAACTCAGCATACAAGTGGGG 

snu6 snu6 ChIP 
snu6qL1 GATCTTCGGATCACTTTGGTC 

snu6qR1 ATGTCGCAGTGTCATCCTTG  

srp7 srp7 ChIP 
srp7 qL1 TACCGATGGAGGTTGGAAAC 

srp7 qR1 ACATCCTGCGAAGGTGAATC 
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Chapter 1: The RNAPIII-associated factor Sen1 regulates the 

accumulation of condensin in the vicinity of RNAPIII-transcribed genes. 

 

1.1. Introduction 

 

1.1.1. Identification of negative regulators of condensin that function in transcription 

termination 

In order to investigate the link between gene transcription and condensin, our group previously 

carried out a targeted suppressor screen in fission yeast to identify factors associated with 

transcription that could negatively regulate condensin function (Vanoosthuyse et al., 2014). For this, 

our group used the thermo-sensitive hypomorphic allele cut3-477 of the cut3 subunit of condensin 

(SMC4 in human) in which chromosome condensation is defective (Robellet et al., 2014; Saka et al., 

1994; Tada et al., 2011). Cells carrying this mutation fail to grow at the restrictive temperature of 

34°C (Saka et al., 1994). Among others, single deletions of Swd22, Ppn1, Ssu72 and Sen1 were shown 

to partially rescue the growth defects of cut3-477 mutant cells at 34°C (Legros et al., 2014; 

Vanoosthuyse et al., 2014). This observation suggested that these proteins, either directly or 

indirectly, could act as negative regulators of condensin. It is striking that these proteins have all 

been implicated in the 3’ end processing of RNAPII transcripts. Swd22 and Ppn1, together with the 

Protein Phosphatase 1 PP1Dis2 form a sub-complex of the Cleavage and Polyadenylation Factor (CPF) 

complex that is responsible for the 3′ end maturation of RNAPII transcripts (Vanoosthuyse et al., 

2014). Ssu72 is another phosphatase associated with the CPF. Sen1 is a highly conserved ATP-

dependent DNA&RNA helicase, whose homologues in Saccharomyces cerevisiae (budding yeast 

Sen1) and in vertebrate cells (Senataxin) have been implicated in transcription termination of at least 

a subset of RNAPII-transcribed RNAs (Grzechnik et al., 2015; Mischo et al., 2011; Porrua and Libri, 

2013; Skourti-Stathaki et al., 2011; Steinmetz et al., 2001). In budding yeast, Sen1 participates in 

transcription termination of non-coding RNAs such as snRNA and snoRNAs as part of the NNS 

complex (Nrd1-Nab3-Sen1) (Porrua and Libri, 2013; Steinmetz et al., 2001). In human cells, Senataxin 

is implicated in transcription termination of genes that carry G-rich terminator sequences (Skourti-

Stathaki et al., 2011). Strikingly, condensin is particularly enriched in the vicinity of transcription 

termination sites of mitotically-expressed RNAPII genes in fission yeast (Sutani et al., 2015; Toselli‐

Mollereau et al., 2016), suggesting a possible co-localization with the transcription termination 

factors that are enriched at the 3’ end of genes. Taken together, these observations strengthened 

the possibility of functional links between transcription termination mechanisms and condensin 
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function and/or localization. I have investigated this possibility throughout my PhD, focusing 

particularly on the genes transcribed by RNA Polymerase III (RNAPIII) for the reasons explained 

below. 

 

1.1.2. The concomitant deletions of Sen1 (sen1∆) and Swd22 (swd22∆) result in the increased 

accumulation of condensin around some RNAPIII-transcribed genes 

The idea that Sen1 and Swd22 could actually modulate the function of condensin was 

considerably strengthened by the observation that the concomitant absence of Swd22 and Sen1 

resulted in the increased accumulation of condensin on chromatin, specifically around RNAPIII-

transcribed genes (Legros et al., 2014). This was a striking observation as it described for the first 

time a situation where the levels of condensin would increase in a site-specific manner. It was 

however also a surprising observation because the literature suggested that both Swd22 and Sen1 

should function predominantly at RNAPII-transcribed genes and not at RNAPIII-transcribed genes. 

But our group obtained evidence that in fission yeast Sen1 actually associates predominantly with 

RNAPIII-transcribed genes and forms a stable complex with RNAPIII. This suggested that Sen1 could 

act in –cis at RNAPIII-transcribed genes to modulate the association of condensin. The team also 

showed previously that, in the concomitant absence of Swd22 and Sen1, the amount of RNAPIII 

increased on chromatin specifically on its target genes, suggesting that Swd22 and Sen1 might indeed 

modulate RNAPIII transcription in -cis (Legros et al., 2014). As Sen1 but not Swd22 associates 

physically with RNAPIII, we postulated that Sen1 could directly regulate the transcription cycle of 

RNAPIII, thereby contributing to modulate the enrichment of condensin at RNAPIII-transcribed genes. 

We reasoned that the Sen1 deletion mutant could therefore provide an interesting model to study 

the impact of transcription on the distribution of condensin.  

It is important to note that this hypothesis was very different from the model accepted at the 

time to explain the accumulation of condensin at RNAPIII-transcribed genes (see below). 

 

1.1.3. The accepted model to explain the accumulation of condensin at RNAPIII-transcribed 

genes: direct recruitment by the transcription factors TFIIIC and Tbp1. 

There are currently two models in the literature to explain the accumulation of condensin at 

highly expressed genes: 1) condensin may directly recognize one or more transcription-dependent 

chromatin features (Legros et al., 2014; Nakazawa et al., 2019; Sutani et al., 2015; Toselli‐Mollereau 

et al., 2016), or 2) transcription factors (TF) could be responsible for anchoring condensin onto DNA 
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(D’Ambrosio et al., 2008; Iwasaki et al., 2010, 2015; Kim et al., 2016). In the case of RNAPIII-

transcribed genes, published data argue that TF help to anchor condensin in -cis.  

RNAPIII is specialized for transcription of short, abundant nonprotein-coding RNA transcripts 

(Dieci et al., 2013). In fission yeast, RNAPIII transcribes tRNA genes, 5S rRNA genes, the U6 small 

nucleolar RNA (snu6) and the 7SL component of signal recognition particle (srp7). The transcription 

cycle by RNAPIII is well described and relies on dedicated transcription factors (Schramm and 

Hernandez, 2002). The promoter elements of RNAPIII-transcribed genes lie within the transcribed 

region (Figure 15A). tRNA genes have two conserved internal elements, termed the A box and B box. 

The transcription factor TFIIIA (Sfc2) is specific for transcription of 5S rRNA genes and recognizes a 

specific internal C box (Camier et al., 1995). TFIIIC (consisting of Sfc1, Sfc3, Sfc4, Sfc6 and Sfc9 

subunits) recognizes and binds the internal promoter elements and subsequently recruits TFIIIB 

upstream of the transcription start site (Baker et al., 1987; Brun et al., 1997; Deprez et al., 1999). 

TFIIIB contains 3 subunits: TATA-binding protein (Tbp1), TFIIB-related factor 1 (Brf1) and B double 

prime 1 (Bdp1). In fission yeast, an upstream TATA box assists TFIIIC in recruiting TFIIIB and is 

essential for the proper recruitment of RNAPIII (Figure 15A) (Hamada et al., 2001). The transcription 

termination signal for RNAPIII consists of a tract of T on the non-template strand (A residues on the 

template DNA strand) (Figure 15B) (Arimbasseri and Maraia, 2015; Mishra and Maraia, 2018; 

Turowski et al., 2016). In fission yeast the minimal length for efficient termination of RNAPIII is 5T 

(Hamada et al., 2000).  

Models explaining how condensin accumulates in the vicinity of tRNA genes present some 

contradictions but they all envisage direct recruitment of condensin by TF anchoring. D’Ambrosio et 

al. first showed in budding yeast that condensin co-localizes with TFIIIC at RNAPIII-transcribed genes 

and that an isolated B-box sequence element is sufficient to trigger the accumulation of condensin in 

-cis. Consistent with this, the association of condensin was reduced in a mutant of TFIIIC that shows 

reduced TFIIIC binding on chromatin (D’Ambrosio et al., 2008). It was also proposed that budding 

yeast condensin associates with and clusters tRNA genes through an interaction with TFIIIC (Haeusler 

et al., 2008). In fission yeast, the Noma group engineered the same TFIIIC mutation as the one 

described by D’Ambrosio et al. but they argued that the mutation had an opposite effect on both 

TFIIIC and condensin: they presented evidence that the TFIIIC mutant sfc3-1 stabilizes both the 

binding of the TFIIIC subunit Sfc6 and the binding of condensin but they only looked at one RNAPIII-

transcribed region (Iwasaki et al., 2010). Nevertheless, the authors reached the same conclusion as 

D’Ambrosio et al. and suggested that TFIIIC binds to condensin and facilitates its association with 

RNAPIII-transcribed genes (Iwasaki et al., 2010). In human cells, TFIIIC recruits specifically condensin 

II to tRNA genes (Yuen et al., 2017). Together, these data in yeast and human cells suggested that  



70 
 

   

Figure 15: The RNAPIII transcription cycle. (A) (i) and (ii) Transcription initiation on tRNA genes. The internal
A box and B box elements present within tRNA genes (tDNA) are bound by the multiprotein TFIIIC complex.
(iii) This recruits the TFIIB complex. In fission yeast, a TATA box is located ~30 bp upstream of the
transcription unit (iv) RNAPIII is recruited and transcription initiates. (B) RNAPIII transcription cycle on tRNA
genes. (i) Transcription elongation (ii and iii) TFIIIC remains associated with the tDNA, possibly because it is
not simultaneously displaced from both the A and B boxes. (iv) In canonical termination, RNAPIII terminates
following transcription of an oligo(U) tract.
Adapted from Turowski & Tollervey, 2016.
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TFIIIC might play a role in recruiting condensin to RNAPIII-transcribed genes by direct protein-protein 

interactions. It is important to note however that our lab could not reproduce the data published by 

the Noma lab (Iwasaki et al., 2010): in our hands, the recruitment of TFIIIC was in fact considerably 

reduced in the TFIIIC mutant sfc3-1  (Vanoosthuyse et al., 2014) and we could not detect an impact of 

the sfc3-1 mutation on the accumulation of condensin (see below). 

Another study from the Noma team brought some more complexity into the picture: they 

showed that Tbp1 interacts with condensin through the C-terminus of the kleisin subunit and recruits 

condensin to RNAPIII- and also to highly expressed RNAPII-transcribed genes. Disrupting the Tbp1-

Cnd2 interaction reduced the association of condensin with chromosomes (Iwasaki et al., 2015). Note 

however that in human cells the mitotic depletion of TBP did not alter condensin I binding (Sutani et 

al., 2015). Taken together, these observations suggest that the TBP-dependent recruitment of 

condensin is unlikely to be a conserved mechanism. 

 

1.1.4. An alternative model: condensin recognizes one or more transcription-associated 

chromatin feature(s) 

The fact that condensin accumulates in the vicinity of highly-expressed genes in every organism 

where it has been looked at suggested to us that condensin might be attracted primarily by a physical 

feature associated with transcription rather than by protein-protein interactions with dedicated 

transcription factors. In addition, the model proposed by Noma that such condensin-anchoring 

transcription factors are locus-specific (Iwasaki et al., 2010, 2015) seemed over complicated. 

Nevertheless, it is conceivable that protein-protein interactions with locally-enriched proteins might 

stabilize condensin locally. 

What transcription-associated feature(s) might help to recruit/stabilize condensin? Because the 

hinge domain of condensin displays significant affinity for single-stranded DNA (ssDNA) in vitro (Akai 

et al., 2011; Piazza et al., 2014), my supervisor first made the hypothesis that ssDNA produced by 

transcription could be a receptor for condensin. There are at least two ways by which transcription 

might produce ssDNA: through DNA melting associated with negative topological stress or through 

the formation of R-loops. R-loops are conserved chromatin structures that result from the 

hybridization of the nascent RNA to its DNA template (reviewed in Aguilera and García-Muse, 2012). 

Interestingly, fission yeast Sen1 was shown to disassemble DNA-RNA hybrids at least in vitro (Kim et 

al., 1999) and R-loops are considered as key substrates of budding yeast Sen1 and human Senataxin  

in vivo (Mischo et al., 2011; Skourti-Stathaki et al., 2011). Based on these observations, the team first 

speculated that R-loops might be stabilized at RNAPIII-transcribed genes in the absence of Sen1, 

thereby attracting/stabilizing condensin. Although the team demonstrated that R-loops do indeed 
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form at RNAPIII-transcribed genes (Hartono et al., 2018; Legros et al., 2014), the idea that R-loops 

could recruit condensin was quickly dismissed when it was shown that the strong expression of 

RNase H1 in vivo was sufficient to disassemble R-loops at RNAPIII-transcribed genes but had no effect 

on the accumulation of condensin, whether or not Sen1 and Swd22 were present (Legros et al., 

2014). This showed that R-Loops play no part in recruiting/positioning condensin (Legros et al., 

2014). 

To explain the accumulation of condensin in the vicinity of RNAPIII-transcribed genes in the 

concomitant absence of Swd22 and Sen1, the team proposed instead that transcription-induced 

topological stress might contribute to the accumulation of condensin in –cis. To support this 

hypothesis, it was shown that both Topoisomerase 1 and 2 (Top1 and Top2) accumulate at RNAPIII-

transcribed genes in the absence of Swd22 and Sen1, suggesting that lack of Swd22 and Sen1 results 

in greater topological stress at RNAPIII-transcribed genes. Moreover, deletion of Top1 further 

enhanced both the suppressor effect of swd22∆sen1∆ on the condensin-defective cut3-477 and the 

accumulation of condensin around RNAPIII-transcribed genes in swd22∆sen1∆ cells (Legros et al., 

2014). Taken together, these observations suggested that in the concomitant absence of Swd22 and 

Sen1, a Top1-sensitive chromatin structure would form in the vicinity of RNAPIII-transcribed genes  

and contribute to the enrichment of condensin in -cis.  

Although potentially attractive, this hypothesis would need to be substantiated further 

however. In particular, it would be very important to demonstrate that Top1 is actually active in 

these conditions (i.e that it genuinely cleaves the DNA) and that short-term and mitotic-specific 

inhibition of Top1 (i.e at the time when condensin is loaded on chromosomes) could indeed 

stimulate the accumulation of condensin in the absence of Swd22 and Sen1. In addition, the data 

described in Legros et al (2014) were obtained on asynchronous cells, primarily because swd22∆ 

mutants proved difficult to synchronize in mitosis. My first aim in my PhD was to improve these data 

by working on mitotically-arrested cells.  

 

The founding hypothesis of my PhD project was that Sen1, by associating with RNAPIII, impacts 

RNAPIII transcription directly, and that the transcription defects associated with lack of Sen1 create a 

chromatin environment that facilitate the local accumulation of condensin. This local enrichment 

could either reflect enhanced loading in –cis, or the accumulation of condensin molecules loaded 

elsewhere on the chromosome. With this hypothesis in mind, we decided that it was important: 1) to 

identify how RNAPIII transcription was affected in the absence of Sen1 and, 2) to evaluate whether 

these transcription defects could somehow be corrected. If possible, this would indeed help to 

establish whether or not the transcription changes observed in the absence of Sen1 were directly 

responsible for the changes in the localization pattern of condensin. The great advantage of working 



73 
 

with RNAPIII-transcribed genes is that RNAPIII transcription can easily be manipulated by introducing 

dedicated mutations in well-identified regulatory sequences.  

 

In this first chapter, we asked two main questions: 

1. Could the accumulation of condensin and Top1 around RNAPIII-transcribed genes that was 

previously observed in asynchronous swd22∆ sen1∆ cells be reproduced in single sen1∆ mutant 

cells synchronized in mitosis?  

2. Is this accumulation due to an accumulation of either TFIIIC or Tbp1 or is it more likely to be due 

to a change in RNAPIII transcription associated with lack of Sen1?  

 

1.2. Results 

 

1.2.1. Synchronization methods 

To synchronize cells in mitosis, we used two different methods: 

1. To synchronize cells in metaphase, we depleted Slp1, the activator of the anaphase-

promoting complex (APC/C) in mitosis in fission yeast. Upon depletion of Slp1, cells are unable to 

enter anaphase and therefore remain blocked at the metaphase to anaphase transition. The 

expression of slp1 is placed under the control of a promoter (Pnmt41) that can be repressed by the 

addition of thiamine (Maundrell, 1990). Cells were grown in PMG (Pombe Minimal Glutamate), to 

maintain the Pnmt41 promoter active. Addition of thiamine 40 µM during one cell-cycle (3h) results 

in a cell population almost exclusively composed of metaphase cells. As condensin localizes in the 

nucleus in metaphase, mitotic indexes were measured as the percentage of mitotic cells showing 

nuclear localization of the GFP-tagged version of the Cnd2 subunit of condensin (Cnd2-GFP). 

Alternatively, IF (Immunofluorescence) using anti-Tubulin antibodies was used to label mitotic 

spindles and thereby quantify the percentage of cells in mitosis (Figure 16A). 

 

2. Alternatively, we used an analogue-sensitive (as) mutant of the cyclin-dependent kinase cdc2 

(Cdk1 in humans) to block cells at the G2/M transition. The allele is called cdc2-asM17 (Aoi et al., 

2014). Substitution of a single amino acid in the ATP-binding pocket of this kinase renders the mutant 

kinase sensitive to ATP-analogue molecules (3-BrB-PP1). This confers specificity to the inhibitor, as 

genetically unmodified kinases are unaffected by ATP-analogues. Cells are cultured in rich medium, 

YES+A (Yeast Extract with Supplements + Adenine). Addition of 3-BrB-PP1 2 µM during one cell-cycle 

(3h) results in blocking of cell population in G2. Filtration and recovery of cells in YES+A induce the  
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Figure 16: Mitotic synchronization methods. (A) Pnmt41-slp1 system: the activator of the anaphase
promoter complex, Slp1 is under the expression of a thiamine repressible promoter. Cells are grown in
PMG. Addition of thiamine for 3h blocks cells in metaphase. Methanol (MeOH) fixation of cells is used to
observe the localization of Cnd2-GFP. Cnd2 localizes in the nucleus in metaphase. (B) cdc2as-M17 system:
analogue sensitive mutant of Cdc2. Cells are grown in YES+A. Addition of BrPP1 for 3h blocks cells in G2.
After filtration and recovery of cells in YES+A, cells are released into mitosis. At 28°C, cells reach metaphase
10’ post-release and anaphase 15’ post-release. IF (Immunofluorescence) using anti-Tubulin antibody show
the characteristic short metaphase and elongated anaphase mitotic spindles.
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release of cells into the cell cycle. We set up the cdc2-asM17 synchronization at 28°C. At this 

temperature, we showed that cell population reached metaphase within 10 minutes after release 

and anaphase at 15 minutes after release (Figure 16B).  

 

1.2.2. Sen1 antagonizes the accumulation of condensin specifically at RNAPIII-transcribed 

genes in mitosis. 

We tested whether the sole absence of Sen1 could impact the accumulation of condensin and 

Top1 at RNAPIII-transcribed genes in mitosis. First, sen1+ and sen1Δ cells were synchronized in 

metaphase by addition of thiamine and processed to carry out Chromatin Immunoprecipitation 

(ChIP) analysis of the GFP-tagged Cnd2 subunit of condensin (Cnd2-GFP) to assess the distribution of 

condensin. Note that the percentage of metaphase-arrested cells was always slightly lower in the 

absence of Sen1 (86,6% ± 0,63% for sen1Δ and 91,3% ± 1,32% for sen1+). We do not have an 

explanation for this observation, but we think that the difference is too small to have a significant 

impact on the results of the ChIP experiments. In the absence of Sen1, the accumulation of 

condensin was significantly increased at a subset of RNAPIII-transcribed genes (tRNA genes: arg10, 

thr10, arg04, tyr04, pro02; and the RNAPIII-transcribed gene srp7) but remained unchanged at other 

RNAPIII-transcribed genes (5S rRNA gene: 5S20; and the RNAPIII-transcribed gene U6 snRNA snu6) 

and at RNAPI-transcribed or RNAPII-transcribed genes (Figure 17A). Interestingly, the levels of 

condensin were not affected at COC sites (Chromosome-Organizing Clamps) which recruit TFIIIC but 

not RNAPIII (Noma et al., 2006). The observation that condensin accumulates at a subset of tRNA 

genes but not at COC sites in the absence of Sen1 is consistent with the fact that Sen1 interacts with 

RNAPIII but not with TFIIIC (Legros et al., 2014).  

It has been reported that highly expressed genes are “hyper-ChIPable” sites. Nonspecific and 

meaningless enrichment of proteins are detected at these regions by ChIP, likely caused by high 

levels of RNAPII and RNAPIII transcription (Teytelman et al., 2013). To rule out that the accumulation 

of condensin at specific RNAPIII-transcribed genes in the absence of Sen1 was simply due to an 

increased “hyper-ChIPability” of these loci, we used a GFP-tagged and nuclear version of the 

unrelated LacI protein from Escherichia coli as control. The levels of LacI-GFP did not increase at 

RNAPIII-transcribed genes in the absence of Sen1, establishing that the enhanced binding of 

condensin in the absence of Sen1 is specific and not due to hyper-ChIPability (Figure 17B).  

Importantly, the significant accumulation of condensin at RNAPIII-transcribed genes in the 

absence of Sen1 was also observed when cells were synchronized using the cdc2-asM17 allele. With 

this synchronization protocol, cells do not arrest at a specific mitotic stage but instead go through 

metaphase and anaphase in a synchronous manner with a normal timing. As a result, this method is  
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Figure 17: Sen1 regulates condensin binding specifically at RNAPIII genes in mitosis. (A) ChIP-qPCR analysis
of GFP-tagged Cnd2 and LacI at the indicated loci in a population of metaphase arrested cells by depletion
of Slp1 (mean ± standard deviation from 4 biological replicates). (B) ChIP-qPCR analysis of GFP-tagged Cnd2
at the indicated loci in a population of metaphase cells obtained after BrPP1 block and release in mitosis.
One biological replicate. (C) Same ChIP experiment as in (B) in which cells were collected in anaphase. MI:
Mitotic index. RNAPI: RNA polymerase I-transcribed genes. RNAPII: RNA polymerase II-transcribed genes.
RNAPII: RNA polymerase II-transcribed genes. COC: Chromosome-Organizing Clamps. *p-value<0,05
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more likely to represent a more physiological mitotic state. Interestingly, both in metaphase (Figure 

17C) and in anaphase (Figure 17D), condensin accumulated at RNAPIII-transcribed genes in the 

absence of Sen1.   

Together these results establish that, whatever the synchronization method or the medium 

used (poor or rich), condensin accumulates at least at a subset of RNAPIII-transcribed genes in 

mitosis in the sole absence of Sen1.  

 

1.2.3. Lack of other proteins related to Sen1 function does not impact the distribution of 

condensin 

We have shown above that the impact of lack of Sen1 on the distribution pattern of condensin 

was specific, as the association of the unrelated GFP-tagged LacI protein was not altered in the 

absence of Sen1 (Figure 17A). Here we tested whether the deletion of other proteins related to Sen1 

function had a similar impact on the distribution of condensin.  

Fission yeast expresses two non-essential homologues of Senataxin, Sen1 and Dbl8. While Sen1 

interacts with RNAPIII and associates with RNAPIII-transcribed genes, Dbl8 interacts instead with 

RNAPI and is particularly enriched at the rDNA but not at RNAPIII-transcribed genes (Rivosecchi et al., 

2019). To establish whether Dbl8, like Sen1, could impinge on the distribution pattern of condensin, 

we used ChIP to assess the association of condensin with chromatin in metaphase arrested cells 

lacking Dbl8 (dbl8∆). Condensin levels were not affected in dbl8Δ (Figure 18A), suggesting that Sen1 

function in regulating condensin is not shared with its close homologue Dbl8. This is consistent with 

the idea that Sen1 acts locally at RNAPIII-transcribed genes to modulate the association of condensin, 

either directly or indirectly, possibly through an interaction with RNAPIII. 

The team published previously that Sen1, in addition to interacting with RNAPIII, interacts 

physically with the DNA 5’ exonuclease Pso2 (Legros et al., 2014). Pso2 has been implicated in the 

repair of interstrand cross-links (Lambert et al., 2003). To test whether the Sen1-Pso2 interaction 

could underlie the Sen1-mediated regulation of condensin accumulation at RNAPIII-transcribed 

genes, we analyzed the distribution pattern of condensin in metaphase arrested cells lacking Pso2 

(pso2∆). Note that this experiment was performed by my colleague Amélie Malapert. No changes in 

condensin levels were detected in the absence of Pso2 at RNAPIII-transcribed genes (Figure 18B), 

suggesting that the role of Sen1 in regulating condensin at RNAPIII-transcribed genes is unlikely to 

rely on its interaction with Pso2.  
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Figure 18: The function of Sen1 on condensin binding is specific. (A) ChIP-qPCR analysis of Cnd2 in the
presence or absence of Sen1 or Dbl8 at the indicated loci in a population of metaphase arrested cells by
depletion of Slp1 (mean ± standard deviation from 1 or 2 biological replicates). (B) ChIP-qPCR analysis of
Cnd2 in the presence or absence of Sen1 or Pso2 at the indicated loci in a population of metaphase arrested
cells by depletion of Slp1 (mean ± standard deviation from 3 biological replicates). This last experiment was
performed by my colleague Amélie Malapert. Mitotic indexes are expressed in percentage between
brackets. RNAPI: RNA polymerase I-transcribed genes. RNAPII: RNA polymerase II-transcribed genes. RNAPII:
RNA polymerase II-transcribed genes.
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1.2.4. Condensin accumulation at RNAPIII-transcribed genes cannot be explained by increased 

TFIIIC or Tbp1-dependent recruitment 

Published data indicate that condensin accumulates at tRNA genes in fission yeast through a 

physical interaction with two different transcription factors: TFIIIC (Iwasaki et al., 2010) and Tbp1 

(Iwasaki et al., 2015). We asked whether the accumulation of condensin at RNAPIII-transcribed genes 

in the absence of Sen1 could be explained by these pathways. Cells were arrested in metaphase and 

mitotic indexes were assessed using immuno-fluorescence experiments (IF) directed against 

αTubulin. ChIP enrichments showed that there is no increase in the levels of TFIIIC (Sfc6 subunit) 

(Figure 19A) or Tbp1 (Figure 19B) in the absence of Sen1, suggesting that enhanced condensin 

association with RNAPIII-transcribed genes in the absence of Sen1 cannot be explained by enhanced 

accumulation of TFIIIC or Tbp1. 

sfc3-1 is a thermosensitive mutant of the TFIIIC subunit Sfc3 that was proposed to share several 

phenotypes with the deletion of Sen1 (sen1∆). sfc3-1, like sen1∆, was shown previously to rescue the 

thermosensitive growth defects of the condensin-defective cut3-477 mutant (Iwasaki et al., 2010; 

Tada et al., 2011). In addition, it was suggested that in this mutant, both TFIIIC and condensin 

accumulate at a region of chromosome III (c417: 1689713-1691075) containing 2 tRNA genes 

(SPCTRNASER.11 and SPCTRNAMET.07), and a 5SrRNA (SPRRNA.05) (Iwasaki et al., 2010). This again 

was reminiscent of our observations made on the sen1∆ mutant. To try to confirm these 

observations, we assessed the accumulation of condensin in the sfc3-1 mutant, using the same 

experimental conditions described in the original publication, where cells were cultured at 36°C for 

2h to inactivate sfc3-1. We failed however to reproduce the published data, as we did not detect an 

increase in the accumulation of condensin at the c417 locus or other RNAPIII-transcribed genes 

(Figure 19C). As mentioned above, neither TFIIIC nor condensin accumulates at RNAPIII-transcribed 

genes in the sfc3-1 mutant in our hands (this data and Vanoosthuyse et al., 2014)). This suggests that, 

even if sfc3-1 and sen1Δ mutants are both deletions of factors related to the RNAPIII transcription 

machinery in fission yeast and both are suppressors of condensin mutant, they facilitate the function 

of condensin by different mechanisms. 

If condensin accumulation at RNAPIII-transcribed genes in the absence of Sen1 is not due to 

enhanced recruitment by TFIIIC or Tbp1, it is likely that chromatin around RNAPIII-transcribed genes 

is modified creating an accumulation of condensin. The lab has published that nucleosome free 

regions facilitate the binding of condensin at highly expressed RNAPII genes (Toselli‐Mollereau et al., 

2016). We tested the occupancy of nucleosomes by ChIP of histone H3 in the absence of Sen1, to see 

whether in our case condensin accumulation also correlates with reduced nucleosome occupancy.  
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Figure 19: The function of Sen1 on condensin binding does not rely on Tbp1 and TFIIIC dependent
pathways. ChIP-qPCR analysis in cells arrested in metaphase by depletion of Slp1, except for cohesin (e)
which was performed in cycling cells. (A) ChIP-qPCR analysis of Sfc6 (subunit of TFIIIC) in the presence or
absence of Sen1 at the indicated (mean ± standard deviation from 5 biological replicates). Mitotic indexes
were not assessed. (B) ChIP-qPCR analysis of Tbp1 (subunit of TFIIIB) in the presence or absence of Sen1 at
the indicated loci (mean ± standard deviation from 7 [sen1+] and 11 [sen1∆] biological replicates). (C) ChIP-
qPCR analysis of Cut3 (Condensin subunit) in the presence or absence of the sfc3-1 mutation at the
indicated loci. The 3h incubation with thiamine to arrest cells in metaphase was done at 36°C to inactivate
the Sfc3 mutation. (mean ± standard deviation from 3 [sfc3+] and 6 [sfc3-1] biological replicates). (D) ChIP-
qPCR analysis of histone H3, using the antibody ab1791, in the presence or absence of Sen1 at the indicated
loci (mean ± standard deviation from 6 [sen1+] and 4 [sen1∆] biological replicates).
Mitotic indexes are expressed in percentage between brackets. RNAPI: RNA polymerase I-transcribed
genes. RNAPII: RNA polymerase II-transcribed genes. RNAPII: RNA polymerase II-transcribed genes. *p-
value<0,05, **p-value<0,01
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Interestingly, we observed that histone H3 association with RNAPIII-transcribed genes is reduced in 

mitosis in the absence of Sen1 (Figure 19D).  

 

1.2.5. Sen1 acts in –cis at RNAPIII-transcribed genes to regulate the positioning of condensin  

Because Sen1 associates physically with RNAPIII and is particularly enriched on chromatin at RNAPIII-

transcribed genes, we postulated that Sen1 acts locally at RNAPIII-transcribed genes to regulate the 

distribution of condensin. To test this, we engineered strains in which tRNA genes were replaced by a 

gene transcribed by RNAPII. We chose two tRNA genes where the levels of condensin are significantly 

increased in the absence of Sen1: arg10 (SPCTRNAARG.10) (Figure 20A) and thr10 (SPCTRNATHR.10) 

(Figure 20B). We replaced those genes by the RNAPII-transcribed ura4 gene, making sure that we 

were preserving intact the loci at which we detected high condensin enrichment. We then assessed 

the association of RNAPIII (Rpc37 subunit) and condensin (Cnd2) in these strains after synchronizing 

cells in metaphase cells using the cdc2-asM17 system. Deletion of tRNA genes in both sen1+ and 

sen1∆ cells resulted in dramatically reduced RNAPIII occupancy (Figure 20AB). In the case of arg10Δ, 

we speculate that the remaining RNAPIII molecules that we detected had initiated transcription at 

the neighbouring ser09 gene. Interestingly, the levels of condensin were also sharply reduced (Figure 

20AB) and decreased to the basal level of condensin accumulation detected all along chromosome 

arms as described by ChIP-seq experiments. These experiments confirmed that lack of Sen1 only 

impacts the accumulation of condensin if a RNAPIII transcription unit is present and suggested that 

Sen1 might act in –cis at tRNA genes to modulate the accumulation of condensin.  

These results do not formally demonstrate that the impact of sen1∆ on the accumulation of 

condensin requires RNAPIII transcription. To investigate the role of RNAPIII transcription on the 

accumulation of condensin when Sen1 is missing, one would need to impair specifically RNAPIII 

transcription without replacing the transcription unit. The simplest way to inhibit RNAPIII 

transcription would be pharmacological. Iwasaki et al. treated fission yeast cells with the RNAPIII 

transcription inhibitor ML-60218 (Iwasaki et al., 2010). However, we and others failed to successfully 

inhibit RNAPIII using this drug. Instead, we decided to try and prevent the loading of RNAPIII by 

mutating the TATA box of the tRNA gene SPCTRNAARG.10 (thereafter referred simply as arg10). To 

mutate the TATA box would prevent the binding of Tbp1 locally and thereby interfere with the 

recruitment of RNAPIII. As we had shown previously that deleting the entire tRNA gene was viable, 

we did not anticipate any particular problems with the deletion of the TATA box. 

We constructed a mutant tRNA gene arg10 that lacks the TATA box and synchronized TATA+ and 

TATA- cells in mitosis using the cdc2-asM17 system. ChIP enrichments of the Rpc37 RNAPIII subunit 

showed a significant reduction of RNAPIII levels at arg10 in TATA- cells (Figure 20C). Similarly, the  
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Figure 20: Sen1 acts in –cis at RNAPIII genes to modulate condensin binding. (A) Diagram showing the replacement of

the tRNA gene arg10 by the ura gene (arg10∆). The red bar shows the qPCR primer site. ChIP-qPCR analysis of Rpc37
(RNAPIII subunit) and Cnd2 in cells tagged for both proteins , arrested in metaphase by depletion of Slp1, in the
indicated strains, at the indicated loci (mean ± standard deviation from 2 biological replicates). (B) Diagram showing the
replacement of the tRNA gene thr10 by the ura gene (thr10∆). The red bar shows the qPCR primer site. ChIP-qPCR
analysis of Rpc37 and Cnd2 in cells tagged for both proteins , arrested in metaphase by depletion of Slp1, in the
indicated strains , at the indicated loci (1 biological replicate). (C) ChIP-qPCR analysis of Rpc37 and Cnd2 in cells tagged
for both proteins , synchronized in metaphase by the Cdc2 mutation, in the indicated strains . The ser09-arg10 loci was
scanned. Condensin enrichment is also shown at the centromere (cnt1) (mean ± standard deviation from 4 biological

replicates for condensin and 2 for RNAPIII). (D) Two different ChIP-qPCR experiments of Rpc25 (subunit of RNAPIII) and
Cnd2 in cells synchronized in metaphase by depletion of Slp1, in the indicated strains, at the indicated loci . Cells in both
experiments were shi fted 3h at 36°C and then 3h more at 36°C once thiamine was added. (ChIP RNAPIII : mean ±
standard deviation from 1 [sen1∆] and 2 [sen1∆ sfc3-1] biological replicates . ChIP Condensin: mean ± standard deviation
from 3 [sen1∆] and 2 [sen1∆ sfc3-1]biological replicates). Mitotic indexes are shown in brackets.
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accumulation of condensin in the absence of Sen1 was also suppressed in the TATA-less mutant 

(Figure 20C). Unfortunately, we could not synchronize this strain in mitosis efficiently. 10 minutes 

after release from the G2 block, we only obtained 55% of metaphase cells in TATA- cells compared to 

92% in the TATA+ cells. Consistent with this, the association of condensin with centromeres was also 

strongly reduced in the TATA- mutant. We do not yet have an explanation for this observation. But as 

this experiment currently stands, we cannot rigorously conclude that active RNAPIII transcription is 

required to promote the accumulation of condensin in the absence of Sen1.  

To circumvent this issue, we sought another way of reducing specifically RNAPIII transcription. 

We turned to the sfc3-1 mutant. Previous observations showed that the accumulation of RNAPIII is 

reduced in the sfc3-1 mutant, probably reflecting diminished loading of RNAPIII at tRNA genes 

(Iwasaki et al., 2010; Vanoosthuyse et al., 2014). We therefore generated a double mutant sen1∆ 

sfc3-1 in order to reduce the loading of RNAPIII in mitotic sen1∆ cells. We synchronized the cells in 

metaphase using the depletion of Slp1: we first inactivated sfc3-1 during 3h at 36°C and then we 

added thiamine for 3 more hours at 36°C to synchronize cells in metaphase. This treatment reduced 

both RNAPIII and condensin loading (Figure 20D), suggesting that there is a correlation between the 

accumulation of RNAPIII and the accumulation of condensin in the absence of Sen1. 

 

1.2.6. Topological stress accumulates around RNAPIII-transcribed genes in the absence of 

Sen1 in G2 and in mitosis 

Previous data suggested the accumulation of topological stress around tRNA genes in the 

concomitant absence of both Sen1 and Swd22 (Legros et al., 2014). To confirm these observations, 

we monitored the enrichment of both condensin and Top1 in mitotic cells deleted only of Sen1. We 

synchronized cells using the cdc2-asM17 system and we ChIPed condensin and Top1 from the same 

extracts. In metaphase, Top1 significantly accumulates in the absence of Sen1 at RNAPIII-transcribed 

genes but not at RNAPI or RNAPII genes (Figure 21A). When we looked in details at three different 

tRNA loci (ser29-arg10; thr10; lys09-tyr04) we observed that condensin and Top1 accumulate at the 

same loci (Figure 21A). This strong correlation between Top1 and condensin accumulation is 

consistent with the hypothesis that in the absence of Sen1, a Top1-sensitive structure facilitates 

condensin accumulation. It is interesting to note that the scanning of three loci showed that 

condensin does not significantly accumulate in WT cells at the three RNAPIII-transcribed genes tested 

(Figure 21A). It is important to remark also that in the absence of Sen1, condensin accumulates 3’ of 

RNAPIII-transcribed genes (Figure 21A). 

The accumulation of Top1 could be due to the accumulation of condensin. This hypothesis could 

be discarded if we could show that in the absence of Sen1, Top1 also accumulates around RNAPIII- 
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Figure 21: Topological stress accumulates in the absence of Sen1 in G2 and in mitosis at RNAPIII genes. (A)
ChIP-qPCR analysis of Top1 and Cnd2 in cells tagged for both proteins, in metaphase cells synchronized by
the cdcas-M17 system, in the presence or absence of Sen1, at the indicated loci. Scanning of three tRNA
loci. (1 biological replicate). (B) ChIP-qPCR analysis of Top1 in cells blocked in G2 by the cdc2as-M17 system
and cells collected 10’ after release into mitosis, in the presence or absence of Sen1, at the indicated loci (1
biological replicate). (C) ChIP-qPCR analysis of Top1 and Cnd2 in metaphase cells synchronized by the
cdc2as-M17 system in which Camptothecin (CPT) 50 µM was added 2’ after release in mitosis (1 biological
replicate).
Mitotic indexes are expressed in percentage between brackets. RNAPI: RNA polymerase I-transcribed
genes. RNAPII: RNA polymerase II-transcribed genes. RNAPII: RNA polymerase II-transcribed genes.
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transcribed genes in interphase, i.e when condensin is not in the nucleus. To investigate this 

possibility, we monitored the accumulation of Top1 in the absence of Sen1 in G2 cells using cdc2-

asM17 cells blocked in G2 after addition of BrPP1 2 µM for 3h or in metaphase (10 minutes after 

release into mitosis). Surprisingly, we observed that Top1 binding was already enhanced in G2 cells 

when condensin was not yet bound to chromatin (Figure 21B), suggesting that the accumulation of 

Top1 around RNAPIII-transcribed genes in the absence of Sen1 is not due to the accumulation of 

condensin. These observations are consistent with the idea that the deletion of Sen1 affects RNAPIII 

transcription in a way that generates topological stress.  

To rigorously confirm the presence of topological stress however, it was important to show that 

the accumulated Top1 was actively cutting DNA strands. Camptothecin (CPT) is a topoisomerase 1 

inhibitor that binds to the Top1-DNA covalent complex and blocks the rejoining step of the catalytic 

reaction. To demonstrate that CPT treatment increases the accumulation of Top1 in mitosis would 

therefore strongly suggest that Top1 actively cuts the DNA in that region and conclusively support 

the idea that topological stress accumulates around RNAPIII-transcribed genes in mitotic cells 

deleted of Sen1. We synchronized cells in G2 using the cdc2as system and released the cells in 

mitosis. 2 minutes after release in mitosis, we added 50 µM of CPT and collected metaphase cells 10 

minutes after release. Importantly, we showed that the amount of Top1 was further increased by 

CPT treatment in cells lacking Sen1 (Figure 21C), suggesting that Top1 was active.  

Note that all the experiments presented in the last section need to be repeated. Taken together 

however, they are consistent with the idea that lack of Sen1 introduces Top1-sensitive topological 

stress around RNAPIII-transcribed genes. 

 

1.3. Discussion  

In this chapter, we provided evidence that Sen1 acts in –cis to regulate the accumulation of 

condensin at RNAPIII-transcribed genes in mitosis. Our results show that the accumulation of 

condensin around RNAPIII-transcribed genes in the absence of Sen1 is not due to a stoichiometric 

accumulation of either Tbp1 or TFIIIC. Our results are more consistent with the idea that the 

positioning of condensin around RNAPIII-transcribed genes in the absence of Sen1 results from 

changes to the RNAPIII transcription cycle.  

 

1.3.1. Is the regulation of condensin by Sen1 dependent on RNAPIII transcription?  

The observation that condensin accumulation at RNAPIII-transcribed genes occurs in poor and 

rich media, made us think that global changes to transcription rates do not alter the effect of Sen1 on 

condensin. So, it is not likely that changes in rate of transcription could explain the accumulation of 
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condensin at RNAPIII-transcribed genes, but instead some precise regulation of the RNAPIII 

transcription cycle by Sen1. 

Our data is consistent with a new pathway of condensin accumulation at RNAPIII-transcribed 

genes in the Sen1 mutant, that cannot be explained by increased TFIIIC (Sfc6) or Tbp1 recruitment. 

However, the observation that reducing RNAPIII loading (by mutating TFIIIC) diminishes condensin 

peaks in the absence of Sen1, suggest that the effect of Sen1 on condensin needs the loading of 

RNAPIII by TFIIIC. So, our data conclusively demonstrate that Sen1 needs an RNAPIII transcription 

unit and TFIIIC-dependent RNAPIII loading to modulate condensin. Abolishing RNAPIII loading by the 

TATA box deleted mutant would demonstrate that RNAPIII transcription is required for the effect of 

Sen1 on condensin. Another way of inhibiting RNAPIII would be to use a degron system to induce a 

rapid degradation of RNAPIII.  

Another way to definitely demonstrate this is to find a mutant of Sen1 that does not interact 

with RNAPIII, and test whether this mutant is able to create strong condensin accumulation sites at 

RNAPIII-transcribed genes. 

We demonstrated that topological stress accumulates together with condensin at RNAPIII-

transcribed genes in the absence of Sen1, and condensin and Top1 peaks strongly correlate. The 

observation that Top1 already accumulates in G2 suggests that deletion of Sen1 changes chromatin 

around tRNA genes already in interphase, creating topological stress, and then in mitosis condensin is 

attracted (recruited) or blocked (if condensin translocates through tRNA genes) at these loci. 

However, how is topological stress created in the absence of Sen1 at RNAPIII-transcribed genes, is 

not clear. Reduction of nucleosome occupancy and cohesin accumulation in the Sen1 mutant, are 

consistent with specific formation of chromatin structures around tRNA genes that could recruit SMC 

or block SMC movement. 

 

1.3.2. Could the accumulation of condensin specifically at RNAPIII-transcribed genes in the 

absence of Sen1 explain the suppressor effect?  

We detect a significant accumulation of condensin specifically at RNAPIII-transcribed genes 

when Sen1 is missing. However, condensin seems to be enriched at different extent over tRNA genes. 

The fission yeast genome contains 171 tRNA genes but using ChIP-qPCR we only analysed a few loci. 

We identified some tRNA loci in which condensin is strongly accumulated in the absence of Sen1, 

such as arg10, thr10, arg04 and tyr04. Other tRNA genes show a mild increase such as pro02, srp7 

and cys03 (not shown). We think that in most cases we are not able to detect the main peak of 

condensin around these loci, because qPCR primers are maybe not located at exact positions where 

condensin accumulates. To identify all the chromosomal loci where the association of condensin is 
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affected in the absence of Sen1, and the exact position of condensin peaks around RNAPIII-

transcribed genes, we should use perform ChIP-seq. ChIP-seq would allow us to investigate whether 

condensin accumulates at most tRNA and 5S rDNA genes in the absence of Sen1 or whether it is 

rather a specific accumulation at some RNAPIII-transcribed genes. On the other hand, we cannot rule 

out the possibility that condensin enrichment at tRNA genes in the absence of Sen1 depends also on 

the genomic context of tRNA genes. This argument will be developed in Chapter 3. 

Another way to answer this question is to investigate whether condensin peaks in the absence 

of Sen1 play a physiological role in condensation, contributing to condensin function and thus, 

improving growth of condensin mutant cells. For example, it would be interesting to test whether 

tRNA loci are better condensed (by using condensation assays) (Petrova et al., 2013), or if their 

frequency of interaction change by Hi-C. The problem with these methods is that tRNA genes are 

very small transcription units (around 70 bp), so it would be difficult to reach the sensitivity to detect 

changes in condensation or frequency of interaction at this scale. In the case of condensation assays, 

they measure the distances between two fluorescently labelled loci. The two loci are separated by 

0.5 or 1.0 Mb, so to detect differences in condensation, one would need to enrich the region within 

the two loci with several tRNA genes in which condensin accumulation is enhanced in the absence of 

Sen1. Yet, it is not sure that differences in condensation could be detected. 

We can not exclude the possibility that the suppressor effect of Sen1 deletion on condensin 

mutants is due to indirect mechanisms. 

sfc3-1 is also a suppressor of condensin mutants. The suppressor effect of sfc3-1, has been 

attributed to enhanced TFIIIC-mediated condensin binding. We failed to recapitulate these data. We 

detect reduced TFIIIC and no changes in condensin levels in sfc3-1. So, we cannot provide another 

explanation for the suppressor effect of sfc3-1. Our data show that sfc3-1 and sen1∆ impact 

condensin in different ways. 

In any case, even if we cannot answer the question whether condensin accumulation at RNAPIII-

transcribed genes explains the suppressor effect of Sen1 deletion, what is important in our model is 

that we have concrete increase of condensin at specific sites. We can manipulate these sites in order 

to modulate condensin peaks and better understand the causes of the accumulation. 

 

1.3.3. Condensin does not accumulate in WT cells at RNAPIII-transcribed genes in fission yeast 

Scanning of condensin accumulation at three tRNA different loci (SPCTRNAARG.10; 

SPCTRNATHR.10; SPBTRNATYR.04) showed that condensin is not significantly accumulated in WT 

cells. This is surprising, as genome-wide data in fission yeast claim that condensin strongly 

accumulates at tRNA genes in mitosis (Nakazawa et al., 2015; Sutani et al., 2015). We do not have an 
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explanation yet for this incongruity, but we hypothesized that sequencing analysis do not consider 

the multiple copies of tRNA genes distributed on the genome. When reads are aligned to the 

genome, they could match to several copies of tRNA genes, which would result in artificial condensin 

peaks.  

 

 

Together our data suggest that Sen1 modulates RNAPIII transcription, changes the topological 

state of chromatin, and thereby impacts condensin. To follow our investigation we asked how is 

RNAPIII transcription affected in the absence of Sen1. We addressed this question in Chapter 2. 
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Chapter 2: Sen1 is required for robust RNAPIII transcription termination  

 

2.1. Introduction 

We have shown in Chapter 1 that Sen1, a DNA/RNA helicase that interacts with RNAPIII in S. 

pombe, regulates in –cis the accumulation of condensin in the vicinity of RNAPIII-transcribed genes. 

In addition, we presented evidence that the loading of RNAPIII on its target genes is required for lack 

of Sen1 to impact the accumulation of condensin around RNAPIII-transcribed genes. Our hypothesis 

is that Sen1 affects condensin positioning at RNAPIII-transcribed genes by controlling the RNAPIII 

transcription cycle. In the following, we asked how Sen1 impacts RNAPIII transcription. 

 

In the following introduction, I will explain briefly the role of Sen1 in RNAPII transcription 

termination in budding yeast and human cells. As Sen1 binds to the RNAPIII in fission yeast, I will 

introduce current models of RNAPIII transcription termination and the arguments suggesting that 

Sen1 could participate in this process. 

 

2.1.1. Function of Senataxin/Sen1 in RNAPII transcription termination in human and in S. 

cerevisiae  

Transcription consists of three main steps: initiation, elongation, and termination. Transcription 

initiation occurs when the RNA polymerase is loaded on the template at gene promoters. During 

elongation, the polymerase runs along the template strand and creates an RNA copy. When it 

reaches the termination site, the transcript is cleaved and released and the RNAP falls off the 

template. Transcription termination is a crucial step: proper transcription termination is essential for 

the release of RNAP from its template, it is important to avoid interference with the transcription of 

downstream genes, and also to ensure that a pool of RNAPs is available for reinitiation of 

transcription (reviewed in Richard and Manley, 2009)).  

At protein-coding genes, transcription of a poly(A) site at the 3’end of genes is followed by 

pausing of RNAPII transcription and endoribonucleolytic cleavage of the nascent transcript by the 

cleavage and polyadenylation factor (CPF in yeast, CPSF [cleavage and polyadenylation specific 

factor] in metazoans) machinery (Figure 22A). After the release of the mRNA, RNAPII continues to 

transcribe. Efficient release of RNAPII requires the 5′–3′ exoribonuclease Xrn2 that degrades the 

nascent transcript from its 5′ end. When this molecular torpedo catches up with RNAPII, then 

conformational shockwaves are transmitted into its active site, which releases RNAPII from the DNA  
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Figure 22: Transcription termination of RNAPII-transcribed genes. (A) Transcription termination at protein-
coding genes is triggered by cleavage and polyadenylation specificity factor (CPSF), cleavage stimulatory
factor (CstF), cleavage factor I (CFI) and CFII, which contain homologues of components of the yeast
cleavage and polyadenylation factor (CPF) complex. Multiple interactions underlie the recruitment of the
termination complex and the triggering of termination: CPSF directly binds to the body of the polymerase;
CstF and CFI–CFII bind to the Ser2-phosphorylated form of the RNA polymerase II (Pol II) carboxy-terminal
domain (CTD); and specific motifs (including the polyadenylation signal (PAS)) are recognized in the 3′
untranslated region of the nascent RNA by CPSF and CstF. The RNA is cleaved and polyadenylated at the 3′
end. Transcription pausing is thought to be required for termination. Senataxin (SETX), has been suggested
to participate in termination of some mRNA genes, possibly by resolving R-loops to allow the entry of the
5′–3′ exoribonuclease XRN2, the homologue of Rat1. Degradation of the 3′ end fragment of the nascent
transcript is thought to subsequently elicit transcription termination (the torpedo model). (B) During
termination at non-coding RNA (ncRNA) genes, the Nrd1–Nab3–Sen1 (NNS) complex is recruited to the
elongation complex through the recognition of specific motifs on the nascent RNA by Nrd1 and Nab3, and
the interaction of the Nrd1 CID with the Ser5-phosphorylated form of the CTD. The RNA and DNA helicase
Sen1 is then loaded onto the RNA, where it uses the energy of ATP hydrolysis to 'catch up' with Pol II and
elicit termination. Adapted from Porrua & Libri, 2015.
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template (Figure 22A) (Porrua and Libri, 2015; Proudfoot, 2016). It was shown in HeLa cells that 

RNAi-mediated knockdown of Senataxin causes an increase in readthrough RNA and RNAPII density 

downstream of the poly(A) site, specifically at G-rich pause elements (G-rich sequences immediately 

downstream of the poly(A) signal), implying the involvement of Senataxin in transcriptional 

termination (Skourti-Stathaki et al., 2011). As the function of yeast Sen1 in transcription has been 

associated to the resolution of R-loops (Mischo et al., 2011), the authors tested whether the function 

of human Senataxin was linked to R-loops removal. R-loops were assessed by DNA 

immunoprecipitation (DIP) using the S9.6 antibody which recognizes RNA/DNA hybrids. The authors 

showed that R-loops form at these specific G-rich termination elements, and that upon depletion of 

Senataxin, R-loops increase downstream of the poly(A) signal. However, in this experiment, they do 

not demonstrate that the hybrids detected by DIP are RNase H-sensitive. In addition, the authors 

show that overexpression of RNase H1 (an enzyme that disassembles R-loops) induces transcriptional 

readthrough. These data seem contradictory since stabilization (by Senataxin depletion) and removal 

(by overexpression of RNase H1) of R-loops generate both readthrough transcription. The authors 

conclude that R-loops form over pause elements, but once they are formed their removal by 

Senataxin is required for efficient transcriptional termination. A model is proposed in which the 

formation of R-loops at transcriptional pause regions causes RNAPII pausing downstream of the 

poly(A) site prior to termination, these R-loops have to be subsequently resolved by Senataxin to 

release the nascent RNA and so allow its Xrn2-mediated degradation, which ultimately results in 

efficient RNAPII transcriptional termination (Figure 22A) (Skourti-Stathaki et al., 2011). 

In budding yeast, short non-coding RNA genes, on the other hand, employ a poly(A)-

independent pathway. The Nrd1–Nab3–Sen1 (NNS) complex is involved in the poly(A)-independent 

transcription termination of short non-coding genes including snoRNAs, snRNAs, and cryptic unstable 

transcripts (Figure 22B). Within the NNS complex, nuclear pre-mRNA downregulation (Nrd) 1 and 

nuclear polyadenylated RNA-binding (Nab) 3 proteins form a heterodimer, which binds specific 

sequences on the RNA, while Sen1 is proposed to provide the helicase activity needed to destabilize 

RNAPII and allow its dissociation from the DNA template (Figure 22B) (Carroll et al., 2007; Porrua and 

Libri, 2015; Steinmetz et al., 2001). As Senataxin in human cells, it has been proposed that removal of 

R-loops by budding yeast Sen1, underlies its role in transcription termination. Several studies show 

that the sen1-1 mutant (helicase domain mutant) accumulate R-loops 3’ of specific genes (Grzechnik 

et al., 2015; Mischo et al., 2011) and genome-wide (Chan et al., 2014). The same mutant shows 

defects in transcription termination (Grzechnik et al., 2015; Ursic et al., 1997), suggesting that the 

function of Sen1 in transcription termination may be associated with the resolution of R-loops. 

However, current data do not firmly demonstrate this link. In vitro studies using a highly purified 

system (transcription-termination assay containing only purified RNAPII and Sen1) suggest that 
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budding yeast Sen1 interacts with the nascent RNA, may translocate along the transcript and induces 

RNAPII transcription termination (Porrua and Libri, 2013). Additionally, the authors show that Sen1 

uses its ATPase activity to dissociate the elongation complex. Interestingly, RNase H treatment in the 

in vitro reaction did not affect the efficiency of Sen1-mediated termination, suggesting that in this 

termination assay R-loops are not required for transcription termination (Porrua and Libri, 2013). 

Together these evidences strongly indicate that human Senataxin and budding yeast Sen1 are 

implicated in RNAPII transcription termination at a subset of RNAPII-transcribed genes. However, 

whether R-loops removal is involved in Sen1/Senataxin-mediated termination is not clear.  

 

2.1.2. Function of Sen1 in RNAPIII transcription termination in S. pombe 

Two Senataxin helicases exist in S. pombe Sen1 and Dbl8. Fission yeast Sen1 was shown to  

translocate 5′ to 3′ and unwind both DNA and RNA duplexes and also RNA/DNA hybrids in vitro (Kim 

et al., 1999). Regarding a role in RNAPII transcription, neither Sen1 nor Dbl8 does interact with 

RNAPII in S. pombe (Rivosecchi et al., 2019), and deletion of neither Sen1 nor Dbl8 results in 

readthrough transcription at mRNA and snoRNA genes (Larochelle et al., 2018). These findings are 

consistent with the observation that Seb1 (Nrd1 homolog), Nab3, Sen1, and Dbl8 do not to form a 

stable complex in fission yeast (Larochelle et al., 2018; Legros et al., 2014; Lemay et al., 2016). 

Together, these observations tend to rule out the possibility that Sen1 could play a role in RNAPII 

transcription. 

Previous published data from our group revealed an unexpected interaction of Sen1 with 

RNAPIII. In addition, Sen1 mainly localizes at RNAPIII-transcribed genes (Legros et al., 2014). These 

observations opened a new possibility in which Sen1 could act on RNAPIII transcription. Consistent 

with this, the team also previously showed that, in the concomitant absence of Swd22 and Sen1, the 

amount of RNAPIII increased on chromatin specifically on its target genes, suggesting that Sen1 

might indeed modulate RNAPIII transcription in -cis (Legros et al., 2014). 

Considering that Sen1 has been implicated in transcription termination in other model systems, 

albeit at another class of genes (RNAPII genes), we speculated that Sen1 could be involved in 

transcription termination of RNAPIII-transcribed genes in fission yeast. 

In fission yeast, RNAPIII transcribes tRNA genes, 5S rRNA genes, the U6 small nucleolar RNA 

(snu6) and the 7SL component of signal recognition particle (srp7), as mentioned in Chapter 1. It is 

claimed that RNAPIII transcription termination occurs efficiently on a simple oligo(dT) tract (a 

minimum of 5T in fission yeast) (Figure 15) (Hamada et al., 2000) independent of other cis-elements 

or trans-factors, at least in vitro (Arimbasseri and Maraia, 2015; Mishra and Maraia, 2018). Of the 17 

RNAPIII subunits, C37/53/C11 have been shown to be required for termination (Arimbasseri and 
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Maraia, 2015; Mishra and Maraia, 2018). We challenged this autonomous model of RNAPIII 

transcription termination, speculating that Sen1 could participate in this process, at least in vivo. 

The team already showed that R-loops form at tRNA genes in fission yeast (Hartono et al., 2018; 

Legros et al., 2014). We tested, therefore, whether the processing of R-loops might be implicated in a 

role of Sen1 in RNAPIII transcription termination.   

We recently published in EMBO Journal compelling results demonstrating that Sen1 is required 

for robust RNAPIII transcription termination, independently of a putative role of Sen1 in R-loop 

disassembly. The conclusions of this work are presented in the next subsection (2.2.1), and the 

publication is attached at the end of the thesis. 

In addition to the results that we published in EMBO Journal, I will include in this section 

unpublished results that reinforce our conclusions. In particular, we explored whether the ATPase 

activity of Sen1 is required for its function in RNAPIII termination. We also engineered two additional 

mutants that display readthrough RNAPIII transcripts and I will discuss how these additional mutants 

contribute to a better understanding of Sen1-mediated RNAPIII transcription termination.  

 

2.2. Results 

 

2.2.1. Publication: Senataxin homologue Sen1 is required for efficient termination of RNA 

polymerase III transcription 

Using a wide variety of assays (ChIP-seq, ChIP-qPCR, a transcription termination colour assay, 

RT-qPCR and northern blot), we were able to show that RNAPIII accumulates downstream of RNAPIII-

transcribed genes and produces exosome-sensitive readthrough transcripts in the absence of Sen1. 

These observations were consistent with a function of Sen1 in transcription termination. Interestingly 

our data show that this function of Sen1 is not shared with its homologue Dbl8. 

We showed that the insertion of a strong terminator could overcome the need for Sen1 in 

RNAPIII transcription termination, suggesting that Sen1 acts in complement to the intrinsic RNAPIII 

transcription termination mechanisms. 

Overexpression of RnhA to remove R-loops in the absence of Sen1 did not alter either RNAPIII 

accumulation or the formation of read-through transcripts, suggesting that Sen1 is required for 

RNAPIII termination in an R-loop-independent manner. 

Our results show that Sen1 is the first known RNAPIII cofactor implicated in transcription 

termination, contrary to what is currently claimed, and we propose that the ancestral function of 

Sen1 is to destabilize elongating RNAP.  
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I performed all the experiments shown in the publication except: 

1) the ChIP-seq experiments that were performed by the team of François Bachand at 

Sherbrooke University (Figure 1A-E; Figure 4A-D; Appendix Figure S2; Appendix Figure S4); 

2) the mass spectrometry analysis of the binding partners of Sen1 and Dbl8 that was previously 

performed by Amélie Malapert (Appendix Table S1); 

3) the ChIP-qPCR analysis of Rpc37 and Sen1 in the arg10-TATAless mutant that was performed 

by Camille Teste (Figure 1G); 

4) the co-immunoprecipitation experiment (Co-IP) to demonstrate that Flag-tagged Dbl8 

interacts with the GFP-tagged RNAP1 subunit Rpa43 that was performed by Amélie Malapert 

(Figure EV1); 

5)  the ChIP-qPCR analysis of GFP-tagged Sen1 in dbl8∆ strains that was performed by Amélie 

Malapert (Appendix Figure S3); 

6) for the analysis by Northern blot and 3’ RACE of read-through transcription at 

SPACTRNAPRO.02 (Figure 5DE), I received significant help from Emiliano Ricci. 

 

The publication is available at the following link: 

 

https://doi.org/10.15252/embj.2019101955 

 

Rivosecchi, J., Larochelle, M., Teste, C., Grenier, F., Malapert, A., Ricci, E.P., Bernard, P., Bachand, 

F., and Vanoosthuyse, V. (2019). Senataxin homologue Sen1 is required for efficient termination of 

RNA polymerase III transcription. EMBO J. 0, e101955. 

 

DOI 10.15252/embj.2019101955  
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2.2.2. The helicase activity of Sen1 is required for efficient RNAPIII transcription termination 

The C-terminal of Sen1 contains an ATP-dependent helicase domain (Kim et al., 1999). We asked 

whether the helicase domain is required for transcription termination at RNAPIII-transcribed genes. 

As ATP hydrolysis is essential for the helicase activity, we performed a site-directed mutagenesis at a 

conserved glycine in the ATPase domain that abolishes the ATPase activity. This mutation was shown 

to induce transcription termination defects at specific RNAPII transcribed genes in vivo in budding 

yeast (sen1-1) (Grzechnik et al., 2015; Ursic et al., 1997) and in vitro (Porrua and Libri, 2013). 

Sequence alignment showed that G1747 of S. cerevisiae corresponds to G1534 of S. pombe. Site-

directed PCR mutagenesis was used to produce the sen1-G1534D mutant. The mutant protein was 

integrated in the yeast genome at the endogenous locus under the control of the endogenous 

promoter and fused to a GFP epitope tag. In these strains, no wild-type version of the protein is 

expressed. Western blot analysis showed that the overall levels of the mutant protein were reduced 

compared to the wild type protein (Figure 23A). Steady-state RNA levels were measured by RT-qPCR 

and no significant changes were detected between sen1-G1534D-gfp and sen1-gfp (Figure 23B). We 

conclude from these results that the mutation interferes slightly with the stability of the protein. 

To evaluate the impact of the mutation on the association of sen1-G1534D with chromatin, we 

used ChIP to monitor the distribution of Sen1 along chromosomes. These experiments indicated that 

the enrichment of the mutant protein at RNAPIII-transcribed genes is very similar to the wild-type 

protein (Figure 23C). Taken together, these data showed that the ATPase mutant of Sen1 is less 

stable but localizes at RNAPIII-transcribed genes with the same efficiency as the wild-type protein.  

To evaluate the impact of the helicase activity of Sen1 on transcription termination at RNAPIII-

transcribed genes, we used a genetic assay that translates a transcription termination defect at the 

synthetic tRNA DRT5T dimeric construct into a change of colour of yeast colonies from red to white 

(see diagram of the DRT5T construct in Figure 5A of the publication) (Iben et al., 2011). A 

transcription termination defect allows the synthesis of a suppressor tRNA that suppresses the 

accumulation of a red pigment caused by the ade6-704 mutation, resulting in white colonies in 

adenine-poor medium. On an adenine-poor medium, the sen1-G1534D mutant showed white 

colonies like the deletion of Sen1 (data shown also in the publication), indicative of transcription 

termination defects (Figure 23D). Note that the tagged version of Sen1 (sen1-gfp) already confers a 

small change of colour, reflecting some degree of defective transcription termination (Figure 23D). 

These observations suggest that Sen1 utilizes its helicase activity to facilitate transcription 

termination at synthetic RNAPIII-transcribed genes. 

To assess with this method whether stabilization of R-loops could interfere with transcription 

termination at RNAPIII-transcribed genes, we analyzed the effect of deleting Rnh1 (rnh1Δ) on the 

dimeric construct. Cells remained red on an adenine-poor medium in the absence of Rnh1,  
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Figure 23: The helicase activity of Sen1 is required for transcription termination at synthetic RNAPIII
genes. (A) Western Blot analysis of the stability of sen1-G1534D-gfp. Tubulin is used as loading control. This
experiment has been carried out twice. (B) Expression levels of the indicated strains analysed by RT-qPCR.
The values are normalized to the expression levels of the house-keeping gene act1. One biological replicate
was analysed for sen1-gfp and 2 for sen1-G1534D-gfp. (C) ChIP-qPCR analysis of Sen1 at different loci.
(mean± standard deviation from 4 (sen1-gfp) and 6 (sen1-G1534D-gfp) biological replicates). (D)
Transcription termination assay of the indicated strains in the presence of the DRT5T dimeric construct. (see
diagram of the DRT5T construct in Figure 5A of the publication).Two different strain of each genotype are
plated. All strains were grown in a medium rich in adenine as control. RNAPI: RNA polymerase I-transcribed
genes. RNAPII: RNA polymerase II-transcribed genes. RNAPIII: RNA polymerase III-transcribed genes.
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suggesting that R-Loop stabilization at RNAPIII-transcribed genes does not result in a transcription 

termination defect (Figure 23D). This suggests that it is not by unwinding R-loops that Sen1 

participates in transcription termination of RNAPIII transcripts and that the helicase activity of Sen1 

must have another substrate at RNAPIII-transcribed genes. 

 

2.2.3. Sen1 dissociates RNAPIII molecules that override the primary terminator  

Our published data did not indicate whether Sen1 only facilitates the release of RNAPIII at the 

primary terminator sequence or whether Sen1 could more generally destabilize elongating RNAPIII 

molecules that failed to terminate at the primary terminator. If Sen1 acts primarily at the canonical 

termination sequence, the level of read-through transcripts produced after inactivating this 

terminator sequence should not be affected further by lack of Sen1. To test this possibility, we 

inactivated the terminator sequence of SPCTRNAARG.10 by reducing the stretch of 5 thymine 

residues to a terminator-inactivating 2 thymine residues (arg10-2T mutant) as described previously 

(Hamada et al., 2000) and monitored both the accumulation of RNAPIII past the terminator and the 

production of readthrough transcripts. Weakening the terminator resulted in accumulation of 

readthrough tRNA arg10 in a lower level compared to sen1∆ (Figure 24A) and surprisingly, RNAPIII 

did not accumulated at arg10 in the arg10-2T mutant (Figure 24B). Strikingly, the combination of 

sen1∆ and arg10-2T resulted in a synergistic accumulation of readthrough transcripts (Figure 24A) 

and an even greater accumulation of RNAPIII downstream of the terminator (Figure 24B). These 

observations established that Sen1 facilitates the release of RNAPIII, whether or not it is paused at 

the primary transcription termination signal. A corollary to these observations is that the 

accumulation of RNAPIII that occurs on tRNA genes in the absence of Sen1 does not result from the 

pile-up of RNAPIII molecules stalled at the primary terminator. 

 

2.2.4. Investigating the transcription termination defects in the RNAPIII mutant rpc37-V189D 

As a positive control for transcription termination defects, we generated a mutant of the C37 

subunit of RNAPIII (Rpc37). We mutagenized the valine residue at position 189 into an aspartate 

residue (rpc37-V189D) by PCR-based site-directed mutagenesis. Overexpression of this mutant was 

shown to interfere with transcription termination in a dominant-negative manner (Rijal and Maraia, 

2013). In the experiments described in the later publication, the wild type copy of the gene is 

expressed together with the mutant copy. We decided to introduce the mutation at the endogenous 

locus to obtain cells that express only the mutated copy of the gene. Western Blot analysis revealed 

that the mutant protein is as stable as the wild-type protein (Figure 25A). We analysed the impact of 

the mutation rpc37-V189D on transcription termination at synthetic RNAPIII-transcribed genes using  
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the genetic assay. rpc37-V189D mutant cells grew white on an adenine-poor medium (Figure 23D), 

suggesting that this mutation was able to induce a transcription termination defect at synthetic 

RNAPIII-transcribed genes (this result is already shown in the publication). We found a synthetic 

lethal interaction between rpc37-V189D and sen1∆ (see Figure 5B of the publication), consistent with 

a role of Sen1 in transcription termination of RNAPIII-transcribed genes. Using strand specific RT-

qPCR, we observed that readthrough transcripts accumulate in rpc37V189D cells (Figure 25B). ChIP-

qPCR of the Rpc37 subunit of RNAPIII showed, however, no accumulation of RNAPIII at tRNA genes 

(Figure 25C). These results were surprising and suggests that the RNAPIII termination mutant and the 

Sen1 mutant do not behave completely the same way. 

As proposed above for the arg10-2T mutant, we speculate that in rpc37V189D cells, Sen1 

dissociates the RNAPIII molecules that overrode the terminator.  

 

2.3. Discussion  

We investigated how Sen1 could impact RNAPIII transcription and we demonstrated that Sen1 

but not Dbl8, is required for robust RNAPIII transcription termination in an R-loop independent 

manner, and that the helicase activity of Sen1 is essential for this function. 

 

2.3.1. The role of Sen1 in transcription termination is conserved 

Sen1 in budding yeast and Senataxin in human cells are involved in transcription termination of 

RNAPII (Porrua and Libri, 2013; Skourti-Stathaki et al., 2011; Steinmetz et al., 2001; Ursic et al., 1997). 

Here, we showed that the role of Sen1 in transcription termination is conserved in fission yeast but at 

RNAPIII. It is intriguing that RNAP require the action of Sen1/Senataxin for efficient termination at 

only a subset of genes. In human cells, Senataxin acts to destabilize RNAPII paused specifically at 

genes containing G-rich sequences downstream of the poly(A) signal (Skourti-Stathaki et al., 2011). In 

budding yeast the NNS complex terminates transcription of short non-coding RNAs, such as snRNAs, 

snoRNAs and cryptic unstable transcripts (Porrua and Libri, 2013; Steinmetz et al., 2006; Ursic et al., 

1997). In fission yeast, the requirement of Sen1 for RNAPIII transcription termination seems to vary 

between tRNA genes. Weak terminators (≤5T) need Sen1 for efficient RNAPIII termination, while 

strong terminators can overcome the requirement of Sen1 for RNAPIII transcription termination. This 

is well illustrated at SPATRNAPRO.02 (Figure 5D of the publication). However, an extensive genome-

wide analysis should be done to confirm the correlation between the strength of the terminator and 

the defect in termination.  

The implication of R-loops in transcription termination is not conserved between the three 

organisms. In human cells, R-loops first form at G-rich pause elements to recruit Senataxin which  
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Figure 25: Inducing tRNA readthrough by mutating the Rpc37 subunit of RNAPIII do not result in RNAPIII
accumulation. (A) Western Blot analysis of the stability of rpc37V189D-flag. Tubulin is used as loading
control. (B) Strand specific RT-qPCR of three tRNAs in the indicated strains (mean± standard deviation from
2 biological replicates). (C) ChIP-qPCR analysis of Rpc37 at different loci and scanning of the ser09-arg10
locus. (1 biological replicate). RNAPI: RNA polymerase I-transcribed genes. RNAPIII: RNA polymerase III-
transcribed genes.
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then removes the hybrids to promote transcription termination (Skourti-Stathaki et al., 2011). In 

budding yeast in vivo data suggest that R-loop disassembly is involved in transcription termination 

(Mischo et al., 2011), but in vitro data opposes this model (Porrua and Libri, 2013). Our results show 

that in fission yeast, RNAPIII transcription termination mediated by Sen1 is independent of R-loops. 

In conclusion, Senataxin homologues have a conserved function in destabilizing RNAP at termination 

regions, at a subset of genes, and its substrate might differ between organisms.  

 

2.3.2. Does Sen1 act on both RNAPIII termination and RNAPIII elongation? 

Our data show that in the absence of Sen1, RNAPIII accumulates in the body of tRNA genes and 

downstream of terminators. However, this enhanced amount of RNAPIII is not accompanied by 

increased tRNA but instead our data suggest that there could be reduced tRNA transcripts, 

suggesting that lack of Sen1 impairs RNAPIII transcription and that RNAPIII are maybe paused at tRNA 

genes. As discussed in the publication, these results could reflect reduced recycling due to the 

termination defect or an independent elongation defect. The observation that the super terminator 

mutant at arg10 (arg10-23T) suppresses the accumulation of RNAPIII downstream of the terminator 

but not in the body of arg10 in the absence of Sen1 (Figure 6B of the publication), is consistent with 

an elongation defect. The thr10-20T mutant behaves differently (Figure EV4B of the publication), as it 

is not clear whether in the presence of the strong terminator, RNAPIII is reduced over thr10 in the 

absence of Sen1. I should repeat the experiment to improve the data and their statistics. 

Sen1 mutants seem to present two deficiencies, in termination and in elongation, however, the 

molecular basis for these defects is still unclear.  

The two different termination mutants, rpc37V189D and arg10-2T act in different ways: the 

RNAPIII mutant is not able to recognize the oligo(dT) terminator, and the arg10-2T lacks the oligo(dT) 

signal that pauses RNAPIII (Arimbasseri and Maraia, 2015). Both show very interesting phenotypes. 

By RT-qPCR we detected readthrough transcripts accumulation, however RNAPIII did not accumulate 

in these mutants, contrary to what we observe in the sen1∆. One possible explanation for the lack of 

RNAPIII accumulation downstream of rpc37V189D and arg10-2T is that in these strains Sen1 acts to 

detach those RNAPIII that readthrough the terminator. This implies that Sen1 is able to remove 

RNAPIII from sequences downstream of the terminator, suggesting that Sen1 affects RNAPIII 

independently of the terminator sequence.  

Another argument in favour of the existence of elongation defects in the Sen1 mutant, is the 

RNAPIII distribution observed in the double sen1∆ arg10-2T mutant. If RNAPIII accumulated at the 

body of arg10 came from RNAPIII stalled at the terminator of arg10 (as a result of termination 

defects), weakening the terminator in the absence of Sen1 should displace the entire RNAPIII peak 



102 
 

downstream of the 2T weak terminator. However, RNAPIII still accumulates at the body of arg10 in 

the double mutant, suggesting that RNAPIII accumulated at arg10 do not come from stalled RNAPIII 

at the terminator. This is consistent with an elongation defect in the absence of Sen1, independent of 

the termination defect. 

A counter argument for a role of Sen1 in RNAPIII termination and elongation is that kinetic 

models of RNAPIII termination suggests that elongation rate is inversely related to termination 

efficiency. This means that RNAPIII mutants with readthrough phenotypes present increased 

elongation rates (Rijal and Maraia, 2016). The idea is that RNAPIII elongation slows down at the 

terminator, which helps the C37 subunit to recognize T residues and promote termination (Rijal and 

Maraia, 2016). The phenotypes we observe in sen1∆ are consistent with termination and elongation 

defects, which is contrary to current models. If RNAPIII elongation is reduced, this should facilitate 

RNAPIII transcription termination. We still do not have an explanation for this contradiction. We 

could speculate that if the function of Sen1 is to induce a conformational change in RNAPIII to 

promote its detachment from the template, even if elongation is reduced and the terminator is 

recognized by C37, RNAPIII will remain strongly bound to DNA in the absence of Sen1. 

To better characterize the elongation and termination defects, we should perform CRAC (UV 

crosslinking and analysis of cDNA) or NET-seq (Native elongating transcript sequencing) of RNAPIII in 

the Sen1 mutant. This would map the location of active RNAPIII at the nucleotide resolution, relative 

to nascent transcription. We could, therefore, obtain information about transcription rates and the 

exact position of RNAPIII accumulated in sen1∆. CRAC of RNAPIII was already performed in budding 

yeast (Turowski et al., 2016). Two peaks of RNAPIII were observed at 5’ and 3’ of tRNA genes, where 

the A box and B box are located. The authors suggested that TFIIIC could constitute a transient 

barrier for RNAPIII (Turowski et al., 2016). Similarly, in the absence of Sen1, RNAPIII accumulation in 

the body of tRNA genes could be specifically localized at TFIIIC-binding sites. If it is the case, Sen1 

would be important for RNAPIII to overcome TFIIIC bound to tRNA genes. Another possibility is to 

find RNAPIII accumulated at terminators or downstream of terminators in the absence of Sen1. 

Based on our results, we expect to observe RNAPIII accumulated both at terminators and 

downstream of terminators when Sen1 is missing.  

On the other hand, CRAC of Sen1 would establish exactly where Sen1 binds on the tRNA and this 

would give a better idea of the mechanism of Sen1-mediated RNAPIII termination. For example, at 

snu6, we observe the accumulation of Sen1 at 5’ and 3’ of the gene (Figure 1B of the publication). 

These two peaks could represent the accumulation of Sen1 at A and B boxes, likely mediated by 

RNAPIII. 
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To definitively demonstrate that Sen1 possess two independent functions in RNAPIII termination 

and elongation one would have to identify mutants of Sen1 that separate termination and elongation 

functions. 

 

2.3.3. What is the mechanism of Sen1-mediated RNAPIII transcription termination? 

Our data do not allow us to understand in details the mechanism of Sen1-mediated RNAPIII 

transcription termination. The observation that weakening the terminator in the absence of Sen1 

(sen1∆ arg10-2T mutant) results in increased RNAPIII downstream of the terminator and enhanced 

readthrough transcripts, suggests that RNAPIII does not accumulate at the primary terminator in the 

absence of Sen1. It is more likely that Sen1 could displace RNAPIII elongation complexes 

independently of the terminator, for example those that already read through the terminator. This 

result is consistent with the model proposed in the publication for the role of Sen1 in RNAPIII 

transcription, based on the release and catch-up mechanism described for the Mfd translocase in E. 

Coli (Le et al., 2018).  Sen1 could push RNAPIII molecules that are weakly paused at tRNA and thereby 

facilitate transcription elongation, or release RNAPIII molecules that are stalled at canonical 

terminator sequences to promote transcription termination.  

 

In Chapter 1 I showed that deletion of Sen1 introduces transcription-driven changes in 

condensin distribution at RNAPIII-transcribed genes. Based on our results we postulated that Sen1 

could regulate condensin by modulating RNAPIII transcription. The results of Chapter 2 demonstrate 

that Sen1 is a cofactor of RNAPIII required for robust transcription termination. The next step is to 

test whether the transcription termination defects observed in the absence of Sen1 could underlie 

the accumulation of condensin at RNAPIII-transcribed genes. It is worth noting that all the data 

presented in this chapter were obtained from cycling cells and not from mitotic cells. As a result, in 

order to link the function of Sen1 in transcription termination with the regulation of condensin 

accumulation, we should verify that Sen1 acts on RNAPIII transcription termination in mitosis, when 

condensin binds to chromatin.  

Could transcription termination defects explain the mitotic accumulation of condensin in the 

absence of Sen1? This is addressed in Chapter 3. 
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Chapter 3: The control of RNAPIII transcription termination by Sen1 

determines condensin positioning in the vicinity of RNAPIII-transcribed 

genes  

 

3.1. Introduction 

In Chapter 1 we demonstrated that Sen1 regulates the positioning of condensin at RNAPIII-

transcribed genes. ChIP-qPCR scanning of three different tRNA gene loci (SPCTRNAARG.10; 

SPCTRNATHR.10; SPBTRNATYR.04) show that condensin is predominantly enriched at 3’ of tRNA 

genes (Figure 20C and 21A) in the absence of Sen1. In Chapter 2 we have established that Sen1 is 

required for efficient termination of RNAPIII transcription. Consistent with this, we detected an 

accumulation of RNAPIII 3’ of tRNA genes when Sen1 is missing. These results show an overlap 

between RNAPIII and condensin accumulation downstream of tRNA gene terminators in sen1∆, 

suggesting that defective transcription termination could underlie condensin accumulation. In this 

last chapter we tested whether transcription termination defects at RNAPIII-transcribed genes could 

be responsible for the accumulation of condensin in the absence of Sen1. As mentioned at the end of 

Chapter 2, it is important to first confirm that Sen1 does indeed control RNAPIII transcription 

termination in mitosis also, at the time when condensin accumulates on chromosomes. 

 

3.1.1. Transcription as a positioning factor for cohesin 

In yeast (Lengronne et al., 2004; Mizuguchi et al., 2014) and in mammalian cells (Busslinger et 

al., 2017) cohesin is enriched at sites of convergent transcription. In vitro experiments  showed that 

active RNAPII could push cohesin along DNA (Davidson et al., 2016). An interesting study shows that 

the NS1 protein from influenza A produces a global inhibition of transcription termination that 

causes readthrough transcription (Heinz et al., 2018). In these readthrough regions, elongating 

RNAPII disrupts chromatin interactions by inducing cohesin displacement from CTCF sites. In this 

study RNAPII that readthrough terminators induce cohesin clearance rather than translocation 

downstream of genes. Furthermore, they show that in general,  elongating RNAPII is able to displace 

cohesin (Heinz et al., 2018).  

From these evidences we can conclude that RNAPII can either push cohesin or clear cohesin 

from chromatin, as it has also been observed in S. cerevisiae (Bausch et al., 2007).  
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3.1.2. Transcription interferes with translocation of bacterial SMC 

Bacteria emerged as an interesting model to address transcription-SMC interactions. Bacterial 

SMC activity is easy to study since it possesses a unique loading site and translocates unidirectionally. 

In B. subtilis and C. crescentus, ParB loads SMC onto the chromosome at the ori-proximal parS sites. 

Loaded SMC then translocates from parS to distal parts of the chromosome aligning progressively the 

two chromosome arms from ori to ter (Tran et al., 2017; Wang et al., 2017). It has been 

demonstrated that head-on transcription slows down condensin translocation (Tran et al., 2017; 

Wang et al., 2017). These observations point out the importance of the relative orientation between 

gene transcription and SMC translocation for SMC loop extrusion. 

 

3.1.3. Which feature of RNAPIII transcription controlled by Sen1 could impact condensin?  

Our results reveal that Sen1 modulates RNAPIII transcription in several ways. We showed that it 

is required for transcription termination and that it might also impinge on transcription elongation. In 

the absence of Sen1, we observed the following phenotypes: reduced overall RNAPIII transcription, 

accumulation of readthrough tRNA transcripts and accumulation of RNAPIII over and 3’ of tRNA 

genes. Is there a link between any of these phenotypes and the accumulation of condensin at 

RNAPIII-transcribed genes? The first possibility is that reduced RNAPIII elongation rates in the 

absence of Sen1 might facilitate the function of condensin. This hypothesis would be in agreement 

with the model proposed by L. Aragon claiming that condensin cannot access chromatin until 

transcription is significantly reduced. In this model, Cdc14-dependent inhibition of RNAPI allows 

condensin loading at rDNA (Clemente-Blanco et al., 2009; Wang et al., 2006), and Cdc14-dependent 

inhibition of RNAPII promotes condensin loading at subtelomeric repetitive regions (Clemente-Blanco 

et al., 2011). We think that reduced RNAPIII elongation in the absence of Sen1 is unlikely to explain 

the enhanced accumulation of condensin at RNAPIII-transcribed genes, since impairing the TFIIIC-

dependent loading of RNAPIII onto tRNA genes in sen1∆ cells resulted in a reduction rather than an 

increase in the accumulation of condensin (Figure 20D), as might have been predicted from the 

Aragon model. We therefore ruled out the possibility that reduced nascent transcription in the 

absence of Sen1 could explain the accumulation of condensin. To test whether readthrough tRNAs 

and/or RNAPIII accumulation could be responsible for condensin accumulation in the absence of 

Sen1, we made use of the tRNA gene terminator mutants showed in chapter 2: arg10-2T, arg10-23T 

and thr10-20T.  
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3.2. Results 

 

3.2.1. RNAPIII accumulates on its target genes in the absence of Sen1 in mitosis 

In Chapter 2, we demonstrated that Sen1 is required for RNAPIII transcription termination. All 

these experiments were performed on cycling cells (a population of cycling cells in fission yeast is 

composed of around 80% of cells in G2, 10% of cells in S-phase and 10% of mitotic cells). We showed 

that RNAPIII accumulates over and downstream of tRNA genes when Sen1 is missing (Figure 4 -

publication). Here we tested whether RNAPIII also occupies a wider domain around tRNA genes in 

the absence of Sen1 in cells synchronized in metaphase. 

We analysed Rpc37 occupancy in cells synchronized in metaphase using the cdc2as-M17 system 

in the presence or absence of Sen1. Using ChIP-qPCR, we detected an accumulation of RNAPIII at 

tRNA genes and 3’ of tRNA genes in the absence of Sen1, at two different loci (the same tested in 

cycling cells; see Figure 4E of the publication) (Figure 26AB), consistent with transcription 

termination defects. Note however that the experiments were not carried out in a way that would 

allow us to determine whether RNAPIII accumulates to the same extent in cycling and in mitotic cells 

when Sen1 is missing. Such a comparison is not possible because the sonication protocols 

(fragmentation of chromatin) that we used were different between experiments. Differences in 

power and time of sonication impacts the resolution (size of DNA fragments) and the stability of the 

protein-DNA binding, thus affecting enrichment percentages.  

These results suggest that Sen1 is required for RNAPIII transcription termination in G2 and in 

mitosis. We therefore asked whether RNAPIII accumulation in mitosis when Sen1 is missing could 

explain the accumulation of condensin at tRNA genes in mitosis. 

 

3.2.2. The accumulation site of condensin coincides with the peak of the RNAPIII domain in 

sen1∆ 

An interesting observation we made is that condensin tends to accumulate where the 

accumulation of RNAPIII is maximum (Figure 26AB). This overlap between RNAPIII and condensin 

downstream of tRNA gene terminators suggest that transcription termination defects might be 

responsible for condensin accumulation in the absence of Sen1. We already showed in Chapter 2 that 

RNAPIII at 3’ of tRNA genes correspond to those RNAPIII that readthrough the terminator in the 

absence of Sen1. We demonstrated that introducing strong terminators at arg10 (arg10-23T) and 

thr10 (thr10-20T) was sufficient to suppress the accumulation of RNAPIII downstream of the  
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Figure 26: Condensin peak correlates with the 3’ flank of the RNAPIII domain in the absence of Sen1. ChIP-
qPCR analysis of Rpc37 and Cnd2 in cells synchronized in metaphase using the cdc2as-M17 system, in the
presence or absence of Sen1. (A) Scanning of the ser09-arg10 locus. ChIP-qPCR Rpc37: 1 biological replicate
(No tag and WT) and mean ± standard deviation from 2 biological replicates (No tag sen1∆ and sen1∆). ChIP-
qPCR Cnd2: 1 biological replicate (No tag and WT) and mean ± standard deviation from 4 biological
replicates (No tag sen1∆ and sen1∆). (B) Scanning of the thr10 locus. Mean± standard deviation from 2
biological replicates (No tag and WT) and 3 biological replicates (No tag sen1∆ and sen1∆). Mitotic indexes
are expressed in percentage between brackets. Results shown Figure 27 and 28 come from the same
experiments, they were split to differentiate the messages.
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terminator in the absence of Sen1 and readthrough transcripts (Figure 6 of the publication). Note 

that these experiments were performed in cycling cells. 

We asked therefore whether RNAPIII transcription termination defects could underlie the 

accumulation of condensin in the absence of Sen1. 

 

3.2.3. RNAPIII that readthrough the primary terminator in the absence of Sen1 are responsible 

for positioning condensin 3’ of RNAPIII-transcribed genes  

Based on our results, we hypothesized that in the absence of Sen1 RNAPIII that override tRNA 

gene terminators and accumulate downstream of terminators determine the positioning of 

condensin 3’ of tRNA genes. We used the super terminator mutants (arg10-23T and thr10-20T) to 

test whether suppressing the termination defect in the absence of Sen1 could be sufficient to 

suppress also the accumulation of condensin.   

We introduced the arg10-23T and thr10-20T mutations in tagged Rpc37-FLAG and Cnd2-GFP 

sen1∆ cells. We synchronized cells in metaphase using the cdc2as-M17 method. The presence of 

strong terminators at arg10 and thr10 suppressed the accumulation of RNAPIII downstream of 

terminators in mitosis (Figure 27AB). At arg10, the reduction of the size of the RNAPIII peak in arg10-

23T sen1∆ cells was sufficient to abolish the accumulation of condensin (Figure 27A). At thr10, the 

complete suppression of RNAPIII accumulation also abolished the accumulation of condensin in 

thr10-20T sen1∆ cells (Figure 27B). Compare violet (sen1∆) and orange (arg10-23T sen1∆ or thr10-

20T sen1∆) lines. Graphs shown in Figures 26 and 27 come from the same experiment. I split the data 

in two figures to simplify the presentation of the different observations. 

These results show that we managed to alter the positioning of condensin (accumulation or not) 

simply by changing the size of the domain occupied by RNAPIII. These results confirm that it is not 

the rate of transcription or the fact that RNAPIII transcribes a longer tRNA that explains the 

accumulation of condensin in the vicinity of RNAPIII-transcribed genes in the absence of Sen1. 

Instead, our results indicate that the size of the region occupied by RNAPIII is a key determinant in 

the positioning of condensin in this mutant. Finally, these observations confirm the conclusions that 

we had inferred from our results in Chapter 1 that lack of Sen1 directly impacts the positioning of 

condensin by impacting RNAPIII transcription.  

It is interesting to note that at arg10, RNAPIII still accumulates over the arg10 transcription unit 

in the presence of the strong terminator when Sen1 is missing (see Discussion of the publication). 

However, our results indicate that this accumulation of RNAPIII over a smaller distance is not 

sufficient to impact the positioning of condensin. This could be explained by two different 

hypotheses: 1) only RNAPIII molecules that traverse the arg10 terminator acquire a feature that  
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Figure 27: Strengthening the terminator in the absence of Sen1 suppress the termination defect and the

accumulation of condensin. (A) Scheme showing the arg10-23T mutant in which the primary terminator 5T was
replaced by 23T. ChIP-qPCR of Rpc37 and Cnd2 in cells tagged for both proteins, synchronized in metaphase using the
cdc2as-M17 system. ChIP-qPCR Rpc37: 1 biological replicate (No tag, WT and WT arg10-23T) and mean ± standard
deviation from 2 biological replicates (No tag sen1∆, sen1∆ and sen1∆ arg10-23T). ChIP-qPCR Cnd2: 1 biological
replicate (No tag, WT and WT arg10-23T), mean ± standard deviation from 4 biological replicates (No tag sen1∆ and
sen1∆) and 3 biological replicates (sen1∆ arg10-23T). (B) Diagram showing the thr10-20T mutant in which the primary
terminator (T-rich region) was replaced by consecutive 20T. ChIP-qPCR of Rpc37 and Cnd2 in cells tagged for both
proteins , synchronized in metaphase using the cdc2as-M17 system. ChIP-qPCR Rpc37: mean ± standard deviation from

2 biological replicate (No tag, WT and WT thr10-20T), 3 biological replicates (No tag sen1∆ and sen1∆) and 4 biological
replicates (sen1∆ thr10-20T). ChIP-qPCR Cnd2: mean ± standard deviation from 2 biological replicate (No tag, WT and

WT thr10-20T), 3 biological replicates (No tag sen1∆ and sen1∆) and 4 biological replicates (sen1∆ thr10-20T). Mitotic
indexes are expressed in percentage between brackets . Resul ts shown Figure 27 and 28 come from the same
experiments, they were split to differentiate the messages.
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allow them to impact condensin, or 2) a small peak of RNAPIII accumulated over arg10 is not 

sufficient to impact condensin. I rather favour the latter, based on my results and current models of 

condensin blockage by large domains of DNA-bound proteins. At thr10 it is not clear whether in the 

presence of the strong terminator RNAPIII still accumulates over thr10 in the absence of Sen1. I 

should repeat the experiment to improve the data and their statistics. In the Discussion of this 

chapter, I will discuss in greater depth the impact of the size of the domain occupied by RNAPIII on 

the accumulation of condensin. 

 

 

3.2.4. Readthrough transcription at RNAPIII-transcribed genes is not sufficient to impact 

condensin  

We asked whether termination readthrough is sufficient to create the accumulation of 

condensin. 

We recreated RNAPIII readthrough transcription by another mean to test whether it was 

sufficient to trigger the accumulation of condensin. We used the mutant of the tRNA gene arg10 

already presented in Chapter 2, named arg10-2T, in which the primary terminator (5T) has been 

mutated into a weak terminator (2T) (Figure 28). We showed previously that this mutant 

accumulates readthrough transcripts, in interphase at least (Figure 24A). However, we showed that 

RNAPIII does not accumulate either on the gene or downstream in this mutant (Figure 24A). If the 

production of readthrough transcripts in the absence of Sen1 explains the accumulation of condensin 

at a subset of tRNA genes, re-creating readthrough transcription with the arg10-2T mutant should 

generate an accumulation of condensin. Contrary to this hypothesis, the levels of condensin 

observed by ChIP-qPCR in mitotic cells remained unchanged in the arg10-2T mutant (Figure 28B). 

This suggests that RNAPIII readthrough transcripts are not sufficient to trigger the accumulation of 

condensin. 

At the time we engineered the arg10-2T mutant, we expected all transcribing RNAPIII 

readthrough the weak 2T terminator. However, we obtained a modest accumulation of readthrough 

tRNA transcripts. To explain this situation, we thought at that time that RNAPIII downstream of the 

2T terminator could encounter other alternative terminators that may promote its detachment from 

chromatin, resulting in low levels of readthrough transcripts. For example, 16 bp downstream of the 

primary terminator of arg10 there is a T-rich sequence (TTTATTT) that could likely promote 

termination of RNAPIII that already bypassed the 2T terminator. We therefore decided to mutate all 

putative sequences that could potentially act as secondary terminators for RNAPIII initiating at both 

arg10 and ser09. In total we mutated the primary terminators of ser09 and arg10 genes as well as 3  
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Figure 28: Readthrough transcription at tRNA genes is not sufficient to impact condensin binding. (A)
Diagram showing the two terminator mutants of the tRNA gene arg10. In the arg10-2T mutant, the primary
5T (TTTTT) terminator (red box) of arg10 was replaced by 2T (TT) (green box). In the ser09-arg10∆TERM
strain the primary 5T terminators and the alternative terminators of ser09 and arg10 (8 in total shown as
green bars) have been mutated. The red bar designs the location of the qPCR site tested in (b). (B) ChIP-
qPCR analysis of Cnd2 at arg10 in the indicated strains (1 biological replicate). (C) ChIP-qPCR analysis of
Cnd2 and Top1 in cells tagged for both proteins in the indicated strains. Scanning of the ser09-arg10 locus (1
biological replicate). ChIP-qPCR experiments in (a) and (b) have been performed in metaphase cells
synchronized using the cdcas-M17 system. Mitotic indexes are expressed in percentage between brackets.
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alternative terminators on both strands (i.e 8 putative terminators in total) to generate the ser09-

arg10∆TERM mutant. We synchronized cells in mitosis and assessed condensin and Top1 binding in 

this mutant using ChIP-qPCR but observed no change in the amount of condensin or Top1 in the 

vicinity of the arg10-ser09 locus (Figure 28C). Because condensin was not impacted, we did not 

pursue further the analysis of the ser09arg10∆TERM mutant and as a result we do not know whether 

the accumulation of readthrough transcripts or RNAPIII was indeed greater in this mutant compared 

to the arg10-2T mutant. This result suggests that the production of readthrough transcripts at 

RNAPIII-transcribed genes does not explain in itself the accumulation of condensin observed in the 

absence of Sen1.  

 Based on our results shown in Chapter 2, we now think that in both mutants (arg10-2T and 

ser09arg10∆TERM), Sen1 is destabilizing the RNAPIII molecules that readthrough weak terminators 

and promote their termination and detachment from the template. Consistent with this, RNAPIII 

does not accumulate in the arg10-2T mutant (Figure 24B).  

 

3.2.5. Cohesin accumulates at RNAPIII-transcribed genes in the absence of Sen1 

Together our results suggest that Sen1, by modulating the quality of RNAPIII transcription 

termination can regulate the positioning of condensin in the vicinity of RNAPIII-transcribed genes. 

We assessed whether the function of Sen1 in RNAPIII transcription impacts specifically 

condensin or whether it could also regulate the positioning of the other SMC complex cohesin. We 

assessed the binding of cohesin in the absence of Sen1 in asynchronous cells and we observed a 

specific enrichment of the subunit Psm3/Smc3 at RNAPIII-transcribed genes (Figure 29). This suggest 

that Sen1 could also regulate cohesin binding and its effect is not specific to condensin.  

 

3.2.6. Introducing 10 Reb1 sites downstream of a tRNA gene is not sufficient to impact 

condensin 

We reasoned that if RNAPIII accumulated 3’ of tRNA genes in the absence of Sen1 is sufficient to 

regulate the positioning of condensin, then re-creating the RNAPIII accumulation by another mean 

should also impact condensin.  

Reb1 is a DNA binding protein that was shown to act as a roadblock for RNAPI and RNAPII to 

trigger termination (Colin et al., 2014; Zhao et al., 1997). In vitro RNAPII accumulates at a Reb1 site in 

a Reb1-dependent manner (Colin et al., 2014). NET-seq of RNAPII in S. Cerevisiae revealed that 

RNAPII pauses in a Reb1-dependent manner at natural termination sites containing a unique Reb1 

site (Colin et al., 2014). We wondered whether Reb1 could also pause RNAPIII in fission yeast. To test 

this, we introduced 10 Reb1-binding sites between arg10 and its 5T terminator (Figure 30). The Reb1  
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Figure 29: The SMC cohesin accumulates in the absence of Sen1 at RNAPIII transcribed genes. ChIP-qPCR
analysis of Psm3 (Smc3 subunit of cohesin) in the presence or absence of Sen1 at the indicated loci in
cycling cells (mean ± standard deviation from 3 biological replicates). RNAPI: RNA polymerase I-transcribed
genes. RNAPII: RNA polymerase II-transcribed genes. RNAPIII: RNA polymerase III-transcribed genes.

Figure 30: Introducing 10 Reb1 binding sites downstream of the tRNA gene arg10 does not impact
condensin binding. Scheme showing the locus ser09-arg10. In the strain arg10-10XReb1, 10 Reb1 binding
sites (170 bp) have been inserted between the arg10 transcription unit and its terminator. The red bar
indicates the qPCR primer. ChIP-qPCR analysis of Cnd2 in cells synchronized using the cdc2as-M17 system,
in the indicated strains (1 biological replicate). Mitotic indexes are shown in brackets.
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consensus binding sequence in fission yeast contains 17 nucleotides (GTGCATTACCCTTACCT) (Zhao et 

al., 1997). We named this strain arg10-10XReb1. 

We measured condensin accumulation in metaphase cells in this strain but did not detect any 

change. There again, we did not pursue the analysis of this strain further and we did not check 

whether Reb1 actually binds to its binding sites or whether Reb1 binding is indeed sufficient to 

trigger the accumulation of RNAPIII. Several explanations could account for this negative result. It 

may be that Reb1 is hardly expressed in fission yeast, so Reb1-bindng sites are maybe not fully 

occupied by Reb1. In this case we could overexpress Reb1 under a thiamine-inducible promoter. 

Another possibility is that RNAPIII is blocked by Reb1, and in turn, Sen1 acts to terminate RNAPIII 

transcription at these artificial pausing sites. In this case, we could try to delete Sen1 and test 

whether in the absence of Sen1, RNAPIII accumulation is further increased by Reb1 or whether the 

position of the domain occupied by RNAPIII changes. An alternative explanation is that RNAPIII 

pauses over arg10 when it encounters Reb1, in this case the domain occupied by the RNAPIII would 

be around 100 bp (the size of the arg10 transcription unit). When we scan RNAPIII occupancy at loci 

where condensin accumulates (arg10, thr10, tyr4) in sen1∆, we observe that RNAPIII accumulation 

extends up to 350-400 bp. So, it might be that 100 bp of RNAPIII accumulation is not sufficient to 

create an accumulation of condensin. To improve this situation, we could move further downstream 

the Reb1 sites or increase the number of Reb1-binding sites.  

 

3.3. Discussion 

Understanding condensin distribution and positioning on chromosomes is key to decipher the 

chromosome organizing function of this motor protein. Increasing amount of evidence reveals a 

striking but poorly understood link between high transcription rates and condensin positioning. 

Throughout this manuscript, we investigated how the RNAPIII factor Sen1 could regulate 

condensin positioning at RNAPIII-transcribed genes. In the first chapter we described how Sen1 

regulates condensin binding in mitosis specifically at RNAPIII-transcribed genes. In the second 

chapter, we provided evidence that Sen1 is required for efficient RNAPIII transcription termination. 

Finally, we showed in this last chapter that strong terminator sequences compensate the 

transcription termination defects in the absence of Sen1 and this is sufficient to supress the 

accumulation of condensin. Our results therefore demonstrate that Sen1 regulates the distribution of 

condensin around RNAPIII-transcribed genes by controlling RNAPIII transcription termination.  

In this section I propose a model in which RNAPIII act as an obstacle for condensin translocation, 

provided that RNAPIII occupies a sufficiently large domain with a sufficiently high density. I will 

discuss current models that consider DNA-bound proteins as barriers for SMC translocation. Finally, I 
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will propose experiments in which we could use our tRNA genes as positioning device to address 

unsolved questions about the function and dynamics of condensin. 

 

3.3.1. Speculative model: High RNAPIII density over tRNA loci in the absence of Sen1 creates a 

barrier for condensin 

We showed in this chapter that strengthening the RNAPIII terminator in the absence of Sen1 

suppressed the accumulation of RNAPIII downstream of tRNA gene terminators and that this is 

sufficient to prevent the accumulation of condensin locally. This is a striking result that suggests that 

RNAPIII occupancy (i.e. the abundance and the length of the domain occupied by RNAPIII) on 

chromatin does determine the local positioning of condensin to some extent .We propose a model in 

which RNAPIII could constitute a steric barrier for condensin translocation (Figure 31A). This model 

predicts also that the translocation of condensin at a given locus is defined and predominantly 

unidirectional, as explained below. 

To analyse whether RNAPIII accumulation could constitute a block for condensin, I would like to 

study why tRNA genes are not highly enriched condensin sites in WT cells but they become strong 

condensin sites in the absence of Sen1. As in WT cells we fail to detect significant condensin 

enrichments around tRNA genes (Figure 21A and Figure 26), we speculate that even if tRNA genes 

are highly transcribed, the abundance and the length of the region occupied by RNAPIII is not enough 

to create a condensin peak. The length of the tRNA gene arg10 from the TATA box to the terminator 

comprises 120 bp; thr10, 133 bp and tyr04, 126 bp. RNAPIII density in ∼130 bp in WT cells is 

therefore not enough to act as an obstacle for condensin. We can conclude that at least in our 

system, high rates of RNAPIII transcription are not sufficient to block condensin in the vicinity of tRNA 

genes. However, when Sen1 is deleted, RNAPIII occupancy increases and occupies a wider domain 

that is sufficient to explain the emergence of the condensin peak. In the absence of Sen1, the domain 

occupied by RNAPIII is around 350-400 bp in length (Figure 4E of the publication and Figure 26). We 

demonstrated at arg10 and thr10 that reducing the size of the RNAPIII domain is sufficient to abolish 

the accumulation of condensin. Our results are therefore consistent with the idea that the 

abundance of RNAPIII and the length of the domain it occupies in the absence of Sen1 determine 

whether or not RNAPIII can act as a barrier for condensin translocation (Figure 31A). However, it is 

important to note that these two parameters are not enough to explain condensin accumulation. We 

did indeed find examples of tRNA genes for which lack of Sen1 hardly impacted the accumulation of 

condensin, even if the domain occupied by RNAPIII was both dense and large (for example pro02 see 

Figure 2A and 5D of the publication and 17A). This suggests that RNAPIII accumulation over large  
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Figure 31: Speculative model for condensin blockage by RNAPIII accumulation in the absence of Sen1. (a) In WT cells,
Sen1 assists RNAPIII transcription termination, RNAPIII detaches from the template at the terminator, allowing
condensin translocation through the RNAPIII transcription unit. In the absence of Sen1 (sen1∆), RNAPIII fails to
terminate and accumulates at tRNA genes and downstream, this dense and large RNAPIII accumulation impede
condensin translocation, that accumulates 3’ of the RNAPIII transcription unit. Condensin is shown in light blue, the gray
box represents an RNAPIII transcription unit, RNA polymerase III (RNAPIII) is shown in green and the helicase Sen1 in
orange. (b) Proposed experiments to test the influence of directionality on the stalling of condensin by RNAPIII in sen1∆.
Schematic RNAPIIII and condensin curves are represented at two different loci (ser09-arg10 and pro02). The graphs on
the left schematize RNAPIII and condensin accumulation observed in the absence of Sen1. On the right, arg10 and pro02
transcription units have been turned and we ask whether these inversion of gene orientation in one case supress the
accumulation of condensin (at arg10, gene transcription and condensin translocation would be codirectional) or create
an accumulation of condensin (at pro02, gene transcription would encounter condensin translocation in a head-on
conformation).
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domains was not sufficient to impact the distribution of condensin and that additional features must 

contribute.  

We speculate that the orientation of tRNA transcription relative to the direction of condensin 

translocation could be an important parameter to take into account. In particular, we speculate that 

if RNAPIII transcription is codirectional with condensin translocation, then condensin would be able 

to overtake the RNAPIII obstacle and reach the 3’ of the tRNA gene. However, if the tRNA gene and 

the translocation of condensin are in a head-on conformation, RNAPIII blocked over and downstream 

of the tRNA gene are constantly hindering the advance of condensin through the tRNA transcription 

unit. 

To sum up, we propose a model in which RNAPIII density, size of RNAPIII accumulation domain 

and transcription directionality could determine condensin positioning. 

Other works have suggested that tight DNA-bound proteins could act as blocks for SMC sliding. 

In these cases (discussed individually below), condensin peaks would reflect sites where condensin 

accumulates after being blocked or slowed down by obstacles. In other words, condensin ‘passively’ 

accumulates as a side effect of translocation through crowded chromatin. This view opposes the 

models of Sutani (Sutani et al., 2015) and Yanagida (Nakazawa et al., 2019), which claim that 

transcription is detrimental for chromosome condensation, as it produces ssDNA or RNA that needs 

to be removed by condensin in order to faithfully achieve condensation. However, why ssDNA or 

chromatin-associated RNA would be harmful for chromosome condensation and segregation is not 

clear from these models.  In these models, the peaks of condensin at highly-expressed genes would 

reflect sites that require condensin to correct a defect. Said differently, condensin would be ‘actively’ 

recruited to these sites. Our results agree with the obstacle model for condensin translocation.  

In the following sections, I will discuss different cases where DNA-bound proteins act as blocks 

for SMC sliding. I will confront our model to these examples and finally propose experiments that 

could help to test our model and gain further insights into the mechanism of condensin action. 

 

3.3.2. Nucleosomes as barriers for SMC loading 

In yeast, nucleosomes have been shown to oppose the recruitment of both condensin and 

cohesin. It was shown that chromatin remodelling is required to generate a nucleosome-free region 

at RNAPII-transcribed genes to facilitate condensin and cohesin loading (Muñoz et al., 2019; Toselli‐

Mollereau et al., 2016). Similarly, our data are consistent with the idea that RNAPIII constitutes a 

barrier for condensin, and Sen1 is required for RNAPIII removal to facilitate the function of 

condensin. What is contrasting is that nucleosome occupancy and condensin enrichment are 

inversely correlated, but in our model RNAPIII and condensin accumulation are positively correlated. 
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An explanation for this divergence could be that in the case of nucleosomes acting as barriers, they 

impede the recruitment of SMC, whilst in our system RNAPIII would block SMC translocation, thereby 

hindering the function of SMC but not its loading. A way to test whether the translocation but not 

the loading of SMC is impacted in the sen1∆ mutant would be to generate a mutant of condensin 

that is able to load but not to translocate along chromatin. If this condensin mutant unable to 

translocate were not able to accumulate in front of the RNAPIII barrier in the absence of Sen1, then 

we could attribute the accumulation of condensin in the vicinity of RNAPIII to an impediment of 

translocation. If the condensin mutant unable to translocate still accumulates at RNAPIII-transcribed 

genes in the absence of Sen1 we could conclude that the accumulation of condensin at RNAPIII-

transcribed genes is due to increased loading locally. In this case, we should revisit our model of 

RNAPIII as a barrier for condensin and think about RNAPIII accumulation as a situation in which 

chromatin is more accessible for condensin recruitment. In conclusion, in our model RNAPIII 

constitute a barrier for condensin, as nucleosomes for SMC, and Sen1 and chromatin remodellers are 

required to remove these barriers to facilitate the function of condensin.  

 

3.3.3. CTCF as directional barriers to cohesin 

The function of CTCF as a directional barrier for cohesin movement is the best described case in 

which a tightly DNA-bound protein is able to block SMC sliding (Busslinger et al., 2017). It has been 

proposed that cohesin acts by extruding loops of DNA until it encounters convergently-oriented CTCF 

sites (Rao et al., 2014). Interesting experiments showed that inverting or deleting CTCF-binding sites 

results in decrease cohesin binding and reduced DNA-looping interactions (de Wit et al., 2015; Guo et 

al., 2015). The CTCF binding site contains 20 bp (Kim et al., 2007).  

In our model, we could test these aspects deduced from CTCF/cohesin interactions: 

directionality of the block and requirement for two convergent loci. To test whether directionality is 

important for RNAPIII to block condensin, we could reorient the tRNA gene arg10 and place it 

codirectional to ser09 (Figure 31B). In this strain, we would still expect to see an accumulation of 

RNAPIII due to defective termination in the absence of Sen1. However, if directionality of 

transcription is an important parameter to explain the accumulation of condensin, we would expect 

RNAPIII accumulation not to block condensin translocation or to just generate a mild slowing down of 

its progress, reflected by no condensin accumulation or a small peak (Figure 31B). Alternatively, we 

could take a tRNA gene that exhibits a strong RNAPIII transcription termination defect (such as 

pro02) and reverse its orientation to test whether it becomes able to block condensin translocation 

(Figure 31B). 



120 
 

Regarding the need for one or two RNAPIII-transcribed genes to block condensin in the absence 

of Sen1, we could imagine that condensin extrudes loops of DNA the same way than cohesin, i.e. two 

DNA strands slide through the condensin ring. In this case, translocation would stop when condensin 

encounters two tRNA genes, distantly separated, in which RNAPIII are densely accumulated. We 

could test this possibility by performing chromosome conformation capture techniques in the Sen1 

mutant. We expect to detect increased frequency of interactions between tRNA gene loci that 

become strong condensin binding sites in the absence of Sen1. The ChIA-PET technique would be 

even more informative, since it would allow us to detect interactions between sites that are bound, 

in this case, by condensin. It would be important to reach enough resolution to detect changes in 

frequency interactions between tRNA genes. Using ChIA-PET, one could expect to observe that two 

tRNA genes in which condensin accumulates in the absence of Sen1 interact (in this case one could 

think on two strands of DNA sliding inside the condensin ring) or in the contrary one could observe 

that an isolated tRNA gene can block condensin, but it does not interact with another tRNA gene (in 

this case, one could imagine that a single DNA strand slides inside the condensin ring).  

Our observation that cohesin accumulates in the absence of Sen1 at RNAPIII transcribed genes 

(Figure 12), suggest that RNAPIII could constitute a block for the sliding of SMC in general. Since CTCF 

is not present in S. pombe, cohesin accumulates predominantly at convergent genes (Lengronne et 

al., 2004; Mizuguchi et al., 2014). The fact that RNAPII could push cohesin to 3’ end of genes supports 

the idea that RNAPIII could also constitute a steric block for cohesin. We could analyse whether 

cohesin accumulation is also correlated with RNAPIII accumulation in the Sen1 mutant. To do this, we 

could test cohesin enrichment in the mutants in which we modulate RNAPIII transcription: the arg10 

TATA-less mutant in which Tbp1-dependent recruitment of RNAPIII is strongly reduced, the sen1∆ 

sfc3-1 mutant in which TFCIII-dependent recruitment of RNAPIII is reduced, sen1∆ arg10-23T and 

sen1∆ thr10-20T in which RNAPIII accumulated downstream of terminators are suppressed. 

 

3.3.4. The telomere-binding factor Rap1 as a condensin stalling factor 

An interesting work in budding yeast reveals a role for condensin in folding dicentric 

chromosomes, that contributes to favour break at telomere fusions upon cytokinesis (Guérin et al., 

2019). Abnormal dicentric chromosomes form when telomeres fuse and it has been shown in 

budding yeast that they break at the fusion to restore a normal karyotype. This study shows that 

introducing arrays of at least 6 binding sites for the telomere-binding factor Rap1 within dicentrics is 

sufficient to create a breakage hotspot in a mechanism dependent on condensin. Under Smc2 

depletion the breakage frequency at Rap1 sites diminishes, and chromosomes break instead in the 

middle part of the intercentromeric region (Guérin et al., 2019). The authors propose a model in 
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which condensin folds dicentric chromosomes and it is stalled at kinetochores on one extreme and at 

telomeres on the other. The tight Rap1-DNA interaction would create a roadblock for condensin at 

telomeres and promote the location of Rap1 covered telomere fusions at abscission sites. 

Interestingly, the authors show that inserting LacO arrays within a dicentric establishes also a 

breakage hotspot, suggesting that LacI like Rap1 is able to stall condensin. In order to better study 

the action of Rap1 as a roadblock for condensin, the authors manipulated Rap1 and LacO sites. An 

elegant experiment shows that a Rap1 bound array containing 16 binding sites (300 bp/100 nm) 

creates a breakage hotspot, however when 35 bp LacO arrays are inserted in between Rap1 sites, 

breakage does not occur. Strikingly, the expression of LacO-bound LacI transformed the same array 

into a strong breakage hotspot. These experiments suggest that a close spacing of tightly bound 

proteins is crucial to favour breakage, likely by blocking condensin. This model is very reminiscent of 

the model we proposed to explain the impact of RNAPIII transcription termination defects on the 

accumulation of condensin.  

These experiments also demonstrated that the minimal size of the Rap1-bound array that would 

block condensin is 300 bp. This is in agreement with our estimated RNAPIII domain (between 350-

400 bp) required to block condensin in the Sen1 mutant. On the other hand, in our experiment in 

which we added 10 Reb1 binding sites to try to block RNAPIII progression, one could imagine that 

Reb1 could directly block condensin. However, 10 Reb1 binding sites constitute 170 bp, which it 

might not be enough to create a steric hindrance for condensin. We could test whether inserting 20 

Reb1 binding sites is able to directly block condensin. 

Based on this work, many experiments could be done to test our model. For instance, inserting 

Rap1 or LacO sites at different distances downstream of tRNA genes and check whether they can 

directly stall condensin or to indirectly stall condensin by blocking RNAPIII. As proposed for Reb1-

binding sites experiments, it may be necessary to perform these experiments in Sen1 deleted strains.  

 

3.3.5. The permeable moving barrier model from bacterial SMC to explain RNAPIII/condensin 

interactions in the Sen1 mutant  

Our results suggest that RNAPIII constitute a barrier for condensin (Figure 31A) and the current 

model that best fits with our observations is the recently proposed permeable moving barrier model 

in B. subtilis (Brandao et al., 2019). It suggests that by increasing the density of transcribing RNAP 

beyond a critical value, actively transcribed loci will become directionally impermeable to condensin 

translocation. Condensin translocation through a locus would depend on gene orientation, transcript 

length and RNAP density. Thus, while individual RNAP have little effect on the progress of condensin 

translocation, long, highly transcribed genes could significantly impede the extrusion process. Our 
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comparison between RNAPIII accumulation in WT and sen1∆ cells already agree with the bacterial 

model in that the amount and the size of the RNAPIII accumulation domain are determinant to 

generate an accumulation of condensin (see above section 3.3.1). In addition, in our tRNA genes 

model we showed that reducing RNAPIII loading with the sfc3-1 mutant (Figure 4d) results in reduced 

condensin accumulation in the absence of Sen1. This is in good agreement with the moving barrier 

model, since reducing RNAPIII density reduces the impact on condensin. To properly confirm this, we 

should check in the sen1∆ sfc3-1 mutant that RNAPIII still accumulates in the same length (around 

350-400 bp) and that only the abundance is decreased. To test whether gene orientation is also 

important in our model, we previously proposed (see above section 3.3.3) to change the orientation 

of candidate tRNA genes and check the effect of the directionality on condensin accumulation in the 

sen1∆ mutant (Figure 31B). Finally, to test the influence of transcript length we could play with the 

strong terminator mutants. We could move further downstream the 23T terminator at arg10 in the 

Sen1 mutant and check whether changing the length of the RNAPIII accumulation domain impacts 

condensin positioning. We could expect, based on our previous results (Figure 27AB), that a larger 

RNAPIII accumulation domain would create a stronger accumulation of condensin.  

The authors of the study in bacterial SMC, developed a quantitative model in which they take 

into account the mentioned parameters and, interestingly, they consider that RNAP behave as 

permeable moving barriers (Brandao et al., 2019). This new parameter (permeability) helps to better 

fit their model to the experimental observations. Permeability means that translocating condensin 

can bypass transcribing RNAP. They speculate that condensin could overcome large steric barriers 

either by large opening of the ring or by transient disengagement of the topological embrace of DNA. 

Permeability of RNAP to loop extrusion also suggests that SMC should be able to effectively bypass 

other large steric barriers and that they may have different permeabilities. For instance, cohesin 

seems to be strongly blocked by CTCF. In the case of TADs formation by loop extrusion, the 

observations suggest that CTCF has very low permeability to cohesin sliding. In our tRNA genes model 

in the absence of Sen1, we could hypothesize that what determines the permeability of RNAPIII to 

condensin is the strength of RNAPIII-DNA binding. We could imagine two different situations: 1) in 

the absence of Sen1, defective elongation and termination creates an accumulation of RNAPIII that 

remain paused at the tRNA gene and hardly move 3’ of the tRNA gene. In this case, RNAPIII 

abnormally and tightly bound to the DNA template could constitute a high impermeable barrier for 

condensin; 2) in the absence of Sen1 increased number of RNAPIII are bound to tRNA genes, but 

RNAPIII-DNA binding remains dynamic and RNAPIII progress through tRNA genes at a normal speed, 

representing a more permeable barrier for condensin. Our finding that tRNA levels are reduced in the 

absence of Sen1, even if we detect enhanced RNAPIII at tRNA genes (Figure 2-publication), favours 

the first scenario. To test the hypothesis that RNAPIII are paused at tRNA genes in sen1∆ (and could 
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represent a low permeable barrier for condensin), we tried to measure the strength of the RNAPIII-

DNA interaction at the tRNA gene arg10 in WT and sen1∆ cells, to try to see whether the strength of 

RNAPIII binding to arg10 is increased in the absence of Sen1. I performed one experiment in which I 

immunoprecipitated Rpc37-Flag from non-crosslinked whole-cell protein extracts and quantified the 

amount of the tRNA gene bound by Rpc37 by qPCR. After immunoprecipitation, I washed the 

precipitated fraction with increasing salt concentration buffers to compare the salt resistance of the 

Rpc37-arg10 binding in sen1+ and sen1∆ cells. Unfortunately, this experiment did not work the first 

time due to high background levels and abnormal qPCR values and I haven’t had time to repeat it. 

We should set up the right conditions for this experiment as it would be helpful to understand 

whether RNAPIII binds its DNA template more tightly in the Sen1 mutant and how this could affect 

condensin translocation.  

In conclusion, our model of RNAPIII acting as a condensin barrier in sen1∆ is strongly supported 

by the permeable moving barrier model in B. subtilis. In this model RNAP density, transcript length 

and gene orientation could determine the blockage of condensin translocation. This model 

contributes to the debate about the link transcription-condensin. It favours a view in which the 

conserved pattern of condensin localization at highly expressed genes could result from a 

combination of recruiting factors that enrich condensin at specific sites, and the positioning of 

condensin by RNAP.  

 

Across this discussion I proposed some experiments that could help us to test our speculative 

model in which RNAPIII accumulation in the absence of Sen1 behave as a barrier for condensin 

translocation (Figure 31A). I give here a detailed list of the experiments suggested throughout this 

discussion: 

1) Generate a condensin mutant able to load but not to translocate to test whether RNAPIII 

accumulation in the absence of Sen1 facilitates de novo condensin recruitment or impacts 

condensin translocation. 

2) Reverse tRNA gene orientations to test whether directionality is an important factor for the 

stalling of condensin by RNAPIII accumulation in the absence of Sen1. This experiment 

would also reveal whether condensin translocation is unidirectional or not at these sites. 

3) Insert different binding sites for proteins (such as Reb1, Rap1 or LacI) around tRNA genes, 

that could potentially block RNAPIII or directly block condensin. Playing with different 

number of binding sites and different locations of insertion could give a better overview of 

the stalling of condensin by DNA-bound proteins.  
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4) Playing with the position of strong terminators in the Sen1 mutant to change the size of the 

RNAPIII accumulation domain and check the impact on condensin accumulation. 

5) Measure the strength of the RNAPIII-tRNA genes binding in the Sen1 mutant to better 

describe the state of accumulated RNAPIIII and better understand the role of RNAPIII 

accumulation in determining condensin positioning. 

6) To perform ChIA-PET in the Sen1 mutant to test whether condensin accumulation at 

RNAPIII-trancribed genes reflects the link between distant tRNA genes or not. This 

experiment would help us also to gain insights into the loop extrusion mechanism of 

condensin. 

 

3.3.6. Can we gain insights into condensin function from condensin positioning? 

An issue of our tRNA genes model in sen1∆ cells is that we have no evidence that condensin 

accumulation in the absence of Sen1 could have a biological impact in these cells. However, we 

focused our research on a very concrete and significant observation that is the ‘emergence’ of 

condensin accumulation at specific sites. We demonstrated that by manipulating tRNA genes and 

RNAPIII transcription we gained insights into a transcription-dependent pathway of condensin 

positioning on chromosomes. Our model is indeed appropriate to study the link between gene 

transcription and condensin localization. Understanding how condensin is positioned on 

chromosomes by transcription contributes to better understand the chromosome-organizing 

activities of condensin.  

 

The next step in my project would be to validate our model at RNAPII-transcribed genes. Does 

the control of RNAPII transcription termination impact condensin positioning? We created strains to 

deplete Seb1 (Nrd1), Dhp1 (Rat1/XRN2) and Rna14, to create a defect in RNAPII transcription 

termination and monitor condensin accumulation 3’ of affected genes. The experiments are ongoing. 
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Conclusion 

How condensin complexes form highly compact and individualized chromosomes efficiently and 

rapidly in mitosis is a fascinating unsolved question. In the last years genome-wide experiments in 

different organisms showed a conserved link between gene transcription and condensin binding on 

chromosomes. Several works addressed this functional link between transcription and condensin, 

however, there is no current model that could explain how gene transcription contributes to position 

condensin on chromosomes.  

We identified the helicase Sen1 as a transcription-associated factor that regulates condensin at 

RNAPIII-transcribed genes. During my PhD project I addressed two main questions: 1) What is the 

role of Sen1 in RNAPIII transcription? 2) How does Sen1 regulate condensin binding at RNAPIII-

transcribed genes?  

We conclude that: 1) Sen1 is required for RNAPIII transcription termination. Our observations 

challenged the current models of RNAPIII transcription termination and were published in the EMBO 

Journal; 2) Sen1 regulates condensin positioning at RNAPIII-transcribed genes by modulating the 

quality of RNAPIII transcription termination. Based on our results we proposed a model in which lack 

of Sen1 interferes with RNAPIII removal from the DNA template, resulting in a wide and dense 

accumulation of RNAPIII that blocks the translocation of condensin in mitosis, thereby creating 

condensin peaks 3’ of RNAPIII-transcribed genes. 
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L'hélicase Sen1 contrôle le positionnement de condensine sur 

les chromosomes en régulant la terminaison de la 

transcription par l'ARN polymérase III 

 

Résumé 

Le complexe condensine est le moteur de la condensation mitotique des chromosomes, un 

processus essentiel à la stabilité du génome au cours de la division cellulaire. De nombreuses 

données publiées indiquent qu’il existe des liens fonctionnels étroits entre le processus de 

transcription des gènes et le processus d’organisation des chromosomes par condensine. Ces 

données sont toutefois souvent contradictoires et aucun modèle ne fait actuellement consensus 

pour expliquer les liens entre transcription et condensine. Au cours de cette thèse, nous avons 

montré chez la levure Schizosaccharomyces pombe qu’en l’absence de l’hélicase à ADN/ARN Sen1, 

condensine s’accumule spécifiquement à proximité des gènes transcrits par l’ARN Polymérase III. 

Nous avons utilisé ces observations pour mieux comprendre les liens entre transcription par l’ARN 

polymérase III et le positionnement de condensine. Nos données montrent que Sen1 est un 

cofacteur de l’ARN Polymérase III impliqué dans la terminaison de la transcription. Ce résultat est 

important car il démontre que les modèles existants qui affirment que l’ARN polymérase III termine 

de transcrire de façon autonome sont erronés. Nous avons ensuite démontré que les défauts de 

terminaison de l’ARN polymérase III observés en l’absence de Sen1 suffisent entièrement à expliquer 

l’accumulation de condensine en ces sites. Cette observation importante démontre que le contrôle 

de qualité de la transcription est directement impliqué dans le positionnement de condensine sur les 

chromosomes en mitose. Nos résultats nous permettent de proposer qu’au-delà d’un certain seuil, la 

densité en ARN polymérases est un obstacle à la translocation de condensine sur les chromosomes. 

 

Introduction 

L’organisation du génome dans le noyau cellulaire influence de nombreuses fonctions liées au 

métabolisme de l’ADN, comme par exemple l’expression des gènes (Fraser and Bickmore, 2007). Les 

perturbations de l’architecture du génome peuvent conduire à des mutations, des réarrangements 

chromosomiques, de l’aneuploïdie et à l’apparition de cancers (Corces and Corces, 2016; Fudenberg 

et al., 2011). Il est donc essentiel de comprendre les mécanismes qui régulent l’organisation du 

génome au cours de la vie de la cellule.   



Depuis une vingtaine d'années, notre compréhension de l’organisation du génome a été 

grandement facilitée par l'apparition de nouvelles techniques de microscopie comme l'hybridation in 

situ fluorescente (FISH pour ‘Fluorescent In Situ Hybridization’) et de nouvelles techniques 

moléculaires de cartographie de la conformation des chromosomes (3C pour ‘Chromosome 

Conformation Capture’). Ces nouvelles techniques ont permis de décrire avec grande précision la 

réorganisation massive des fibres de chromatine dans le noyau au long du cycle cellulaire (pour revue 

voir Fraser et al., 2015). 

En interphase, les chromosomes sont organisés à plusieurs niveaux. A l’échelle du mégabase 

(Mb), les chromosomes sont organisés en deux types principaux de domaines structuraux, appelés 

compartiments A et B (Nagano et al., 2017; Rao et al., 2014). Le compartiment A regroupe des 

domaines de chromatine accessible où la transcription est active, alors que le compartiment B est 

associé à une chromatine réprimée. A l’échelle plus locale, les chromosomes s’arrangent en 

domaines, au sein desquels les interactions sont plus fréquentes qu’avec les régions adjacentes. Ces 

domaines sont appelés TADs (pour ‘Topologically Associated Domains’) et ont été décrits dans 

plusieurs organismes (Dekker and Heard, 2015; Lieberman-Aiden et al., 2009). Aux échelles plus 

petites, entre 10-100 kilobases (kb), la chromatine forme des boucles qui rapprochent des régions 

distantes. L’une des fonctions les mieux caractérisées de ces boucles est de regrouper dans l’espace 

promoteurs et enhancers distants (Szalaj and Plewczynski, 2018). En conclusion, les boucles de 

chromatine constituent l’unité structurelle de l’organisation du génome en interphase. Ces boucles 

sont soumises à une régulation complexe contrôlant les processus cellulaires essentiels comme la 

transcription. 

Au cours du cycle cellulaire et de la différenciation, les chromosomes subissent de profonds 

changements morphologiques. A l’entrée en mitose en particulier, les chromosomes sont 

rapidement et efficacement individualisés et compactés afin de permettre leur mobilisation par le 

fuseau de microtubules et leur transmission correcte aux deux cellules filles au cours de l’anaphase. 

Lorsque les cellules progressent de l’interphase à la mitose, l’organisation en compartiments et 

en TADs est effacée pour être remplacée par une organisation en grandes boucles de chromatine de 

l’ordre de 1-10 Mb disposée en hélice autour d’un axe central  (Gibcus et al., 2018; Naumova et al., 

2013). Chez la levure à fission , il a également été montré que des interactions à courte portée (<100 

kb) en interphase sont remplacées par des interactions à longue portée (∼1 Mb) en mitose (Kakui et 

al., 2017; Tanizawa et al., 2017). Les chromosomes mitotiques présentent donc une organisation très 

uniforme dans laquelle de larges boucles de chromatine constituent l’unité structurelle.  

Pour conclure, la boucle de chromatine est l’unité structurelle du chromosome, mais la nature 

et la taille de ces boucles de chromatine diffèrent significativement entre l’interphase et la mitose.  

 



La réorganisation drastique de l’architecture du génome à chaque division cellulaire nécessite 

l’action de machineries dédiées. Des expériences biochimiques et génétiques ont conduit à la 

découverte des complexes SMC (pour ‘Structural Maintenance of Chromosomes’) en tant que 

composants majeurs des chromosomes. De nombreuses études ont démontré que le complexe SMC 

condensine est crucial à la formation des boucles de chromatine pendant la mitose, alors que le 

complexe SMC cohésine contrôle la formation de boucles de chromatine en interphase (Gibcus et al., 

2018; Naumova et al., 2013; Rao et al., 2014, 2017). 

Les SMC sont des complexes protéiques conservés depuis les bactéries jusqu’à l’Homme, qui 

jouent des rôles fondamentaux dans l’organisation, la réplication, la transmission et la préservation 

de l’intégrité structurale et fonctionnelle des génomes (Hirano, 2012). Ils sont caractérisés : 1) par 

leur structure en anneau capable d’encercler l’ADN, et 2) par leur activité ATPase (Uhlmann, 2016). 

Les complexes condensines sont essentiels à la condensation et à la ségrégation des chromosomes 

au cours de la mitose. L’inactivation de condensine entraîne un défaut de compaction et de 

résolution des chromosomes. En conséquence, les chromosomes restent emmêlés pendant leur 

séparation, ce qui conduit à la formation de pont chromatiniens en anaphase (Cuylen et al., 2013; 

Hirano and Mitchison, 1994; Hirano et al., 1997; Saka et al., 1994; Tada et al., 2011; Woodward et al., 

2016). Les complexes cohésines ont été découverts pour leur rôle essentiel dans la cohésion des 

chromatides sœurs depuis la réplication et jusqu’au début de l’anaphase, afin d’assurer une correcte 

ségrégation des chromosomes (Michaelis et al., 1997). Des travaux plus récents ont par la suite 

attribué un rôle important aux cohésines dans l’organisation 3D du génome en interphase (Gibcus et 

al., 2018; Naumova et al., 2013; Rao et al., 2014, 2017). 

Il a été proposé que cohésine et condensine auraient une activité d’extrusion de boucles de 

chromatine dépendant de l’ATP. Ces complexes seraient capables de capturer une petite boucle 

d’ADN et de l’élargir progressivement (Fudenberg et al., 2016; Ganji et al., 2018; Goloborodko et al., 

2016; Rowley and Corces, 2018; Stigler et al., 2016; Terakawa et al., 2017). La question reste de 

savoir comment cohésine et condensine peuvent former des boucles de chromatine de tailles si 

différentes alors que ces complexes sont structurellement très similaires. Les modèles actuels 

proposent que ces complexes interagissent avec différentes sous-unités régulatrices qui pourraient 

expliquer leurs différences fonctionnelles (Abramo et al., 2019; Baxter et al., 2019).  

 

Pendant ma thèse je me suis essentiellement intéressée au complexe condensine et à sa 

fonction dans la condensation des chromosomes mitotiques. 

La liaison de condensine à la chromatine est essentielle pour accomplir ses fonctions dans la 

compaction des chromosomes mitotiques. Des mutants thermosensibles de condensine chez la 

levure à fission, dans lesquels l’association de condensine aux chromosomes est réduite, ne 



parviennent pas à séparer correctement les chromosomes en anaphase (Nakazawa et al., 2015; 

Sutani et al., 2015; Tada et al., 2011). Il a été montré dans plusieurs organismes que condensine est 

particulièrement enrichie à proximité des gènes fortement transcrits, quelle que soit l’ARN 

polymérase impliquée (D’Ambrosio et al., 2008; Dowen et al., 2013; Gruber and Errington, 2009; Kim 

et al., 2013, 2016; Kranz et al., 2013; Nakazawa et al., 2015; Sutani et al., 2015). Le fait que ce patron 

de localisation soit très conservé suggère qu’il existe un lien fort entre la transcription et le 

chargement et/ou le positionnement de condensine. Ce lien semble toutefois paradoxal, puisque 

chez les vertébrés au moins, la transcription est globalement éteinte en mitose (Gottesfeld and 

Forbes, 1997). Néanmoins, des études récents suggèrent qu’il pourrait exister un niveau basal de 

transcription en mitose (Palozola et al., 2017). Comment la transcription participe au 

chargement/positionnement de condensine sur les chromosomes reste à éclaircir. 

 

Au début de mon projet de thèse, la littérature était assez controversée sur ce sujet. Certaines 

publications décrivaient un rôle positif de la transcription dans la détermination du positionnement 

de condensine, alors que d’autres études affirmaient qu’au contraire la transcription est un obstacle 

au chargement de condensine. Par exemple, certaines études envisagent que la transcription génère 

une structure qui interfère avec l’organisation des chromosomes en mitose et que condensine est 

capable de repérer et d’éliminer cette structure (Nakazawa et al., 2019; Sutani et al., 2015). Cette 

fonction dédiée de condensine expliquerait qu’elle soit enrichie à proximité des gènes fortement 

transcrits. D’autres études au contraire ont montré que l’inhibition de la transcription est nécessaire 

à l’association de condensine avec les gènes codants pour les ARN ribosomaux et avec les régions 

répétées des télomères (Clemente-Blanco et al., 2009, 2011; Wang et al., 2006).  

Au cours de mon projet de thèse, j’ai cherché à mieux comprendre ce lien entre transcription et 

condensine. Avant mon arrivée, l’équipe avait utilisé des cribles génétiques chez 

Schizosaccharomyces pombe pour identifier des facteurs associés à la transcription qui impactent la 

fonction de condensine (Vanoosthuyse et al., 2014). Au cours de ma thèse, j’ai étudié en particulier 

un des régulateurs identifiés par ces cribles : l’hélicase à ADN/ARN Sen1, une enzyme très conservée. 

Mon équipe avait montré précédemment que la délétion de Sen1 supprimait partiellement les 

défauts de croissance d'un mutant de condensine (Legros et al., 2014), suggérant que Sen1 pourrait 

être un régulateur négatif de condensine.   

Au cours de mes 4 années au laboratoire (M2 + Doctorat), j’ai caractérisé Sen1 comme un 

facteur qui empêche l’accumulation de condensine spécifiquement autour des gènes transcrits par 

l'ARN polymérase III (RNAPIII) (chapitre 1). J’ai démontré que Sen1 est un cofacteur de la RNAPIII qui 

est important pour la terminaison de la transcription (chapitre 2). Finalement, j’ai décrit comment la 



fonction de Sen1 dans la terminaison de la transcription de la RNAPIII explique son rôle dans le 

positionnement de condensine autour des gènes transcrits par la RNAPIII (chapitre 3). 

 

Chapitre 1 : Le facteur Sen1 associé à l’ARN polymérase III régule 

l’accumulation de condensine à proximité des gènes transcrits par l’ARN 

polymérase III 

Le premier objectif de mon projet était d’améliorer les résultats obtenus précédemment dans 

l’équipe. Des expériences d’immunoprécipitation de la chromatine (ChIP pour ‘Chromatin 

Immunoprecipitation’) avaient montré que condensine s’accumule à proximité des gènes transcrits 

par la RNAPIII en l’absence concomitante des protéines Sen1 et Swd22 (Legros et al., 2014). Sen1 est 

une hélicase à ADN/ARN et Swd22 est un composant non essentiel du complexe CPF (pour ‘Cleavage 

and Polyadenylation Factor’). Ces expériences avaient toutefois été menées sur des cellules 

asynchrones alors qu’il aurait été préférable de synchroniser les cellules en mitose pour mieux suivre 

la localisation de condensine. Par ailleurs, des deux protéines Sen1 et Swd22, seule Sen1 s’associe à 

la RNAPIII (Legros et al., 2014), suggérant que Sen1 seule pourrait moduler directement 

l’accumulation de condensine à proximité des gènes transcrits par RNAPIII.  

Dans ce premier chapitre, nous avons montré que la seule absence de Sen1 entraîne 

l’accumulation de condensine à proximité d’un sous-groupe de gènes transcrits par la RNAPIII en 

mitose. De façon intéressante, nous avons observé que condensin s’accumule en 3’ et non sur les 

gènes codant pour les tRNAs (transcrits par l’ARN polymérase III). Nos résultats montrent que 

l’impact de Sen1 sur la distribution de condensine est spécifique puisque les délétions de l’hélicase 

Dbl8 ou de Pso2 (un interacteur de Sen1 précédemment identifié dans le laboratoire) n’ont pas 

d’impact sur la distribution de condensine. Des travaux chez la levure S. cerevisiae et chez l’homme 

ont montré que Tbp1 (pour ‘TATA-binding protein’) et TFIIIC (pour ‘Transcription Factor III C’) 

interagissent physiquement avec condensine pour la recruter aux gènes transcrits par la RNAPIII 

(D’Ambrosio et al., 2008; Iwasaki et al., 2010, 2015; Yuen et al., 2017). Nous avons montré qu’en 

l’absence de Sen1, l’accumulation de condensine ne peut pas être expliquée par une accumulation 

de Tbp1 ou TFIIIC. Cela montre que l'absence de Sen1 a un impact sur le positionnement de 

condensine par une voie qui n’a pas encore été caractérisée. Finalement, nous avons remplacé un 

gène tRNA (transcrit par la RNAPIII) par un gène transcrit par l’ARN polymérase II (RNAPII) (ura4). 

Dans ce mutant, l’association de la RNAPIII est fortement réduite à proximité d’ura4 et il n’y a pas 

d’accumulation de condensine en l’absence de Sen1. Ceci suggère fortement que l’effet de Sen1 est 

spécifique des gènes transcrits par la RNAPIII et que Sen1 pourrait impacter le positionnement de 



condensine via son interaction avec RNAPIII. En accord avec ce résultat, nous avons montré que 

réduire le chargement de RNAPIII sur les gènes tRNA (en utilisant un mutant de TFIIIC) a pour 

conséquence de réduire l’accumulation de condensine en l’absence de Sen1. Ces résultats suggèrent 

que Sen1 régule l’accumulation de condensine aux gènes transcrits par la RNAPIII par un mécanisme 

dépendant de la transcription. 

Par ailleurs, nous avons démontré que la topoisomérase 1 (Top1) s’accumule également autour 

des gènes transcrits par la RNAPIII en l’absence de Sen1, et que cette accumulation est corrélée avec 

l’accumulation de condensine. De façon importante, nos données montrent que Top1 s’accumule 

également lorsque les cellules sont en interphase, ce qui montre que l'accumulation de Top1 ne 

résulte pas de l'accumulation de condensine (qui n’est recrutée sur les chromosomes qu’en mitose). 

Par ailleurs, en l’absence de Sen1, l’inhibition de Top1 spécifiquement en mitose induit une 

accumulation accrue de condensine. Nos données nous permettent donc de proposer que l’absence 

de Sen1 impacte la transcription de la RNAPIII tout au long du cycle cellulaire, ce qui conduit à la 

formation d’une structure d’ADN qui est reconnue par Top1 et qui induit une accumulation de 

condensine à proximité des gènes transcrits par la RNAPIII en mitose.  

Dans le chapitre 2, nous avons abordé la question du rôle de Sen1 dans la transcription par la 

RNAPIII. Ensuite, dans le chapitre 3, nous avons étudié comment Sen1 régule le positionnement de 

condensine à proximité des gènes transcrits par la RNAPIII en régulant leur transcription.  

 

Chapitre 2 : Sen1 est nécessaire à la terminaison de la transcription par l’ARN 

polymérase III  

Nous avons cherché à comprendre comment Sen1 pourrait moduler la transcription par la 

RNAPIII. Chez la levure bourgeonnante et chez l’homme, Sen1 agit sur la terminaison de la 

transcription d’un sous-groupe de gènes transcrits par la RNAPII (Grzechnik et al., 2015; Mischo et al., 

2011; Porrua and Libri, 2013; Skourti-Stathaki et al., 2011; Steinmetz et al., 2001; Ursic et al., 1997). 

De plus, il a été montré que Sen1 peut désassembler les hybrides ADN/ARN in vitro (Kim et al., 1999) 

et il a été proposé que cette activité de Sen1 pourrait être impliquée dans son rôle dans la 

terminaison des gènes transcrits par la RNAPII (Grzechnik et al., 2015; Mischo et al., 2011; Skourti-

Stathaki et al., 2011). Etant donné que Sen1 se lie à la RNAPIII chez la levure à fission et que les gènes 

transcrits par la RNAPIII accumulent des hybrides ADN/ARN (Legros et al., 2014), nous avons cherché 

à savoir si Sen1 pourrait moduler la terminaison de la transcription par la RNAPIII via le 

désassemblage des hybrides ADN/ARN. 



En utilisant un vaste répertoire méthodologique (ChIP-qPCR, ChIP-seq, tests génétiques, RT-

qPCR et Northern blot), nous avons montré qu’en l’absence de Sen1, la RNAPIII s’accumule en 3’ des 

séquences terminatrices de la transcription. Nous avons également détecté la production de 

transcrits allongés en 3’ sensibles à l’exosome. Ces observations démontrent que Sen1 est impliqué 

dans la terminaison de la transcription des ARNs transcrits par la RNAPIII. Nos données montrent que 

cette fonction de Sen1 n'est pas partagée avec son homologue Dbl8. Grâce à un mutant de Sen1 dans 

le domaine ATPase, nous avons également montré que l’activité ATPase de Sen1 est nécessaire à sa 

fonction dans la terminaison de la transcription. En revanche, nos données révèlent que le 

désassemblage des hybrides ADN/ARN n’est pas impliqué dans cette fonction de Sen1 dans la 

terminaison la transcription par la RNAPIII. Pour finir, nous avons montré que l’insertion d’un 

terminateur fort était suffisante pour supprimer l’accumulation de RNAPIII en aval des séquences 

terminatrices et la production de transcrits étendus en 3’ en l’absence de Sen1. Ces résultats 

suggèrent que Sen1 agit en complément du mécanisme intrinsèque de terminaison de la 

transcription par la RNAPIII. 

Nos résultats identifient pour la première fois en Sen1 un cofacteur de la RNAPIII impliqué dans 

la terminaison de la transcription, et nous proposons que la fonction ancestrale de Sen1 est de 

déstabiliser des ARN polymérases en pause. 

Ces résultats importants, qui ont été obtenus en partie en collaboration avec le laboratoire de 

François Bachand (Université de Sherbrooke, Canada) ont été publiés dans EMBO Journal (Rivosecchi 

et al., 2019). 

 

Chapitre 3 : Sen1 régule le positionnement de condensine à proximité des 

gènes transcrits par la RNAPIII en contrôlant la terminaison de la transcription de 

la RNAPIII 

Dans le chapitre 1 nous avons montré que Sen1 régule le positionnement de condensine 

spécifiquement à proximité des gènes transcrits par la RNAPIII. Dans le chapitre 2 nous avons montré 

que Sen1 est un cofacteur important pour la terminaison de la transcription des gènes transcrits par 

la RNAPIII. Nous avons ensuite voulu déterminer si ces deux phénomènes étaient liés. 

Nous avons d’abord confirmé que les défauts de terminaison de la transcription RNAPIII 

existaient également dans des cellules synchronisées en mitose en l’absence de Sen1. Ensuite, en 

manipulant les séquences des terminateurs primaires de deux gènes différents, nous avons 

démontré que les défauts de terminaison de la transcription de la RNAPIII sont directement 



responsables de l’accumulation de condensine à proximité des gènes transcrits par RNAPIII en 

l’absence de Sen1.  

En nous basant sur toutes nos données, nous proposons le modèle suivant : l'absence de Sen1 

interfère avec l'élimination de la RNAPIII sur ses gènes cibles, ce qui entraîne une accumulation large 

et dense de RNAPIII. Au-delà d’un certain seuil, cette accumulation pourrait bloquer la translocation 

de condensine sur la chromatine, créant ainsi une accumulation de condensine en 3’ des gènes 

transcrits par la RNAPIII. Ce modèle est en accord avec le modèle qui prédit que la transcription est 

une barrière directionnelle à la translocation des protéines SMC chez B. subtilis (Brandao et al., 

2019). En particulier, nos données sont en parfaite adéquation avec l’idée que des paramètres 

comme la densité de l’ARN polymérase, la longueur et l'orientation des gènes influencent la nature 

de l’obstacle qu’offre la transcription à la translocation de condensine sur la chromatine. Ce modèle 

est en accord avec l’idée que la transcription mitotique pourrait interférer avec la fonction de 

condensine.   

 

Conclusion 

Un des défis de la biologie cellulaire est de comprendre comment les complexes condensines 

assurent de façon extrêmement rapide et efficace la formation de chromosomes individualisés et 

compacts en début de mitose.  

Au cours des dernières années, des études menées dans différents organismes ont montré un 

lien conservé entre la transcription des gènes et le positionnement de condensine sur les 

chromosomes. Mais les conclusions de ces études sont souvent contradictoires et aucun modèle 

crédible ne suffit à expliquer ce lien. 

Nous avons identifié l'hélicase Sen1 comme un facteur associé à la RNAPIII qui empêche 

l’accumulation de condensine à proximité des gènes transcrits par la RNAPIII. Au cours de ma thèse, 

j’ai abordé deux questions principales: 1) Quel est le rôle de Sen1 dans la transcription de la RNAPIII 

?; 2) Comment Sen1 régule le positionnement de condensine autour de gènes transcrits par la 

RNAPIII ? 

Nous avons conclu que:  

1) Sen1 est nécessaire à la terminaison de la transcription de la RNAPIII. Nos observations 

s’opposent aux modèles actuels de terminaison de la transcription par la RNAPIII, qui prédisent que 

RNAPIII termine de transcrire d’une façon autonome. Ces données ont été publiées dans EMBO 

Journal; 

2) Sen1, en assurant la terminaison correcte de la transcription RNAPIII, empêche l’accumulation 

de condensine à proximité des gènes transcrits par la RNAPIII.  



Ce travail suggère que la transcription régule le positionnement de condensine, mais que ce 

n’est pas le taux de transcription en tant que tel qui est le facteur le plus déterminant dans le 

positionnement de condensin. Nous proposons qu’au-delà d’un certain seuil, la taille et la densité du 

domaine occupé par RNAPIII représente un obstacle directionnel à la translocation de condensine sur 

la chromatine. 
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