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French abstract

La vision commence dans la rétine, où la lumière est convertie en signaux élec-

triques par les photorécepteurs. Les signaux sont envoyés aux cellules bipolaires puis

aux cellules ganglionnaires, responsables de la formation des trains de potentiels d’action.

L’information visuelle est ensuite transmise au thalamus par le nerf optique, qui la

relaie au cortex visuel. La phototransduction seule nécessite du temps, jusqu’à 150

ms, auxquelles s’ajoutent les délais introduits par les transmissions synaptiques en-

tre les trois unités . Cela montre la nécessité d’avoir des mécanismes compensatoires

pour réduire les délais de traitement. Ces mécanismes sont connus sous le terme

d’anticipation.

L’anticipation se produit d’abord au niveau de la rétine et se poursuit ensuite

dans le cortex visuel primaire. Dans la rétine, elle se caractérise soit par un décalage

du pic de réponse des cellules ganglionnaires, soit par une onde d’activation à courte

portée. Dans le cortex, elle se caractérise par une onde d’activation à plus grande

portée.

La première contribution de cette thèse est le développement d’un modèle

d’anticipation dans la rétine, avec trois types de cellules ganglionnaires : les cellules

Fast OFF avec contrôle de gain, les cellules sélectives à la direction avec connectivité

via les synapses électriques et les cellules sensibles au mouvement différentiel cou-

plées via les cellules amacrines. La deuxième contribution consiste à utiliser notre

modèle comme entrée d’un modèle cortical capable de reproduire l’anticipation telle

qu’observée dans d’imagerie optique. Nous avons étudié en particulier les phénomènes

non linéaires impliqués dans l’anticipation, ainsi que la connectivité, tant au niveau de

la rétine que du cortex visuel primaire.

Le modèle intégré rétine-cortex nous a permis d’étudier les effets de l’anticipation

sur des stimuli en deux dimensions, et mettre en avant l’aspect collaboratif des méch-

anismes d’anticipation dans la rétine et dans le cortex.



Mots-clés : Rétine, cortex, connectivité, modélisation, anticipation.



English abstract

Vision is initiated in the retina, where light is converted into electrical signals

by photoreceptors, sent to bipolar cells then ganglion cells, generating spike trains.

Visual information is then transmitted to the thalamus via the optic nerve which in

turn transmits it to the visual cortex. The retinal processing alone takes time, up to 150

ms, not to mention the time lags introduced by synaptic transmissions between the

three processing units. This shows that the existence of compensatory mechanisms to

reduce processing delays is absolutely essential. These compensatory mechanisms are

known as anticipation.

Anticipation first occurs at the level of the retina and is further carried out by the

primary visual cortex. In its first occurrence, anticipation is either characterized by a

shift in the the peak response, or a short range wave of activation. In the second case,

it is characterized by a wider range wave of activation.

The first contribution of this thesis is the development of a generalized 2D model

of the retina, mimicking three types of ganglion cells : Fast OFF cells with gain control,

direction selective cells with gap junction connectivity, and differential motion cells

connected through an upstream amacrine circuit, able of anticipating different kind

of moving stimuli. The second contribution is to use our retina model as an input to

a mean field cortical model to reproduce motion anticipation as observed in voltage

sensitive dye imaging recordings. Throughout our work, we will study the effect of

non linear phenomena involved in anticipation, as well as connectivity, both at the

level of the retina and the primary visual cortex.

The integrated retinocortex model allowed us to study the effects of anticipation

on two-dimensional stimuli, and to highlight the collaborative aspect of anticipation

mechanisms in the retina and the cortex.

Keywords : Retina, cortex, connectivity, modeling, anticipation.
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French introduction

Le système visuel est une des machines d’encodage de l’information les plus

évoluées qui existent, de part son efficacité, à la fois en termes de traitement et de

consommation d’énergie. La vision commence au niveau de la rétine, récepteur qui est

improprement assimilé à une caméra, mais qui est en réalité capable d’effectuer des

opérations bien plus élaborées, notamment d’extraction et de compression des carac-

téristiques utiles de la scène visuelle, dans le but de coder l’information avec le plus

d’efficience. Contraste, orientation, mouvement, sont autant d’éléments que la rétine

est capable d’extraire. L’information ainsi codée par la rétine est ensuite transmise au

thalamus, relais central du système visuel, qui la transmet à son tour au cortex visuel,

la partie du cerveau spécialisé dans le décodage et le traitement de l’information vi-

suelle. Le traitement visuel requiert du temps cependant: une barre en mouvement

projetée sur la rétine génère une activité qui arrivera au moins 200 ms plus tard au

cortex, le temps pour une voiture roulant à 50 km/h de parcourir environ 3m. Il va

sans dire que de tels délais de traitement peuvent avoir de graves conséquences sur

la sécurité des personnes, notamment leur capacité à éviter des obstacles en mouve-

ment. Plus généralement, les délais introduits par le système visuel peuvent impacter

la survie des espèces qui ont besoin d’une représentation exacte des mouvements ayant

lieu dans le monde les entourant, pour avoir la capacité de fuir d’éventuels préda-

teurs ou de pourchasser leur proies. Comment les êtres vivants font-ils donc pour

compenser ces retards? Une des pistes de réponse consiste à considérer l’anticipation

et l’extrapolation du mouvement par la rétine puis par le cortex visuel primaire, V1.

C’est l’objet de cette thèse, effectuée dans le cadre du projet ANR «Trajectory», en col-

laboration avec F. Chavane et S. Chemla de l’Institut des Neurosciences de la Timone à

Marseille, Olivier Marre de l’Institut De la Vision à Paris, et Alain Destexhe et Matteo

Di Volo de l’Institut des Neurosciences de Paris Saclay.
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Dans un premier temps, nous nous sommes intéressés aux différents mécanismes

pouvant expliquer l’anticipation au niveau de la rétine. Nous choisissons dans la suite

de modéliser la sortie rétinienne en termes de fréquences de décharge, nombre moyen

d’impulsions électriques générés par les cellules ganglionnaires. Dans la rétine, nous

faisons la distinction entre deux types d’anticipation: le premier est marqué par un

maximum de fréquence de décharge en réponse à un objet en mouvement arrivant

en avance par rapport au pic obtenu lorsque le même objet est seulement "flashé".

Le second type d’anticipation consiste, quant à lui, en une montée de l’activité d’une

cellule ganglionnaire avant que l’objet n’arrive dans son champ récepteur. Berry et

al. [1] ont montré que le premier type d’anticipation peut être modélisé par un mod-

èle linéaire-non linéaire, implémentant un mécanisme de contrôle de gain au niveau

des cellules ganglionnaires, et qui a pour effet d’avancer le pic de réponse des cel-

lules. Ce modèle a été repris par Chen et al. [2], qui ont implémenté le même mécan-

isme au niveau des cellules bipolaires, pour reproduire deux effet supplémentaires:

la réponse à l’apparition d’une barre, ainsi qu’à la réponse au mouvement après un

temps d’immobilité. Le modèle original étant unidimensionel, nous avons dans un

premier temps étendu et implémenté le modèle à contrôle de gain en 2 dimensions,

et étudié comment le temps d’anticipation et le maximum de fréquence de décharge

dépendaient des caractéristiques du stimulus: contraste, taille et vitesse de la barre.

Notre modèle implémente également la sensibilité à l’orientation, en adaptant une

méthode de vision par ordinateur au filtrage spatio-temporel anisotrope du stimulus.

Les modèles à contrôle de gain reproduisent des effets locaux d’anticipation, qui trou-

vent leurs origine biophysique dans l’adaptation, expliquée par l’inactivation de canaux

ioniques. Néanmoins, l’anticipation peut également être étudiée du point de vue col-

lectif, en tenant compte des interactions entre les différentes cellules. Il est dans ce cas

nécessaire de comprendre comment les cellules rétiniennes sont connectées et commu-

niquent entre elles. Des études ont mis en évidence le couplage des cellules ganglion-

naires sensibles à la direction à travers les synapses électriques. Nous avons intégré

ce couplage, basé sur le sur le modèle développé par Trendholm et al. [3], dans notre

modèle et étudié en quoi il améliore l’anticipation. Puis nous nous sommes intéressés

à un circuit rétinien capable d’expliquer le mouvement différentiel: un objet ayant

un mouvement différent de celui de l’arrière-plan induit une activité plus saillante.

Ce circuit introduit une connectivité via les cellules amacrines agissant en amont des

cellules ganglionnaires. La mise en équations de ce circuit a permis de comprendre

3



le rôle des temps caractéristiques et des poids synaptiques dans le comportement du

système couplé, et de déterminer le régime de paramètres dans lequel cette connec-

tivité latérale permet d’améliorer l’anticipation. Enfin, dans les deux cas de connec-

tivité, nous avons mis en évidence l’existence d’une onde de propagation, à même

d’extrapoler différentes formes de trajectoires.

Afin d’ancrer notre modèle de connectivité dans la réalité biologique, nous avons

développé un modèle probabiliste de connectivité entre les cellules amacrines et bipo-

laires, s’inspirant de la forme de l’arbre dendritique des cellules amacrines. Nous ex-

plorons dans ce cas le changement des propriétés d’anticipation des cellules ganglion-

naires couplées par les cellules amacrines.

Le modèle 2D, implémentant le contrôle de gain, la sélectivité à l’orientation et les deux

formes de connectivité, nous permet d’étudier l’anticipation dans le cas de stimuli plus

complexes que le stimulus classique : une barre en translation rectiligne uniforme.

Pour cela, nous concevons des stimuli avec des trajectoires curvilignes, des mouve-

ments accélérés, et des objets plus complexes qu’une simple barre. Loin de faire une

étude exhaustive de l’anticipation dans le cas de ces stimuli complexes, nous extrayons

des propriétés qualitatives permettant d’évaluer l’anticipation rétinienne et ces effets.

Dans la deuxième partie de cette thèse, nous avons examiné les mécanismes

d’anticipation dans le cortex visuel primaire. Des études expérimentales se basant sur

l’imagerie optique ont mis en évidence un mécanisme d’anticipation dans le cortex.

Ce mécanisme peut être expliqué par la propagation de l’activité via la connectivité

latérale, qui a pour effet d’augmenter l’activité des colonnes corticales avant l’arrivée

de l’objet dans leurs champs récepteurs.

Comment la répartition des tâches se fait-elle donc entre la rétine et le cortex et en quoi

l’anticipation rétinienne impacte-t-elle l’anticipation corticale?Pour répondre à cette

question, nous partons d’un modèle de champs moyen du cortex primaire, développé

par M. Di Volo et A. Destexhe de l’Institut des Neurosciences de Paris Saclay, avec

lesquels nous avons collaboré. Ce modèle a initialement été proposé pour reproduire

les résultats de l’imagerie optique concernant le stimulus du mouvement apparent, en-

tre deux tâches gaussiennes spatialement distants, et apparaissant de façon successive.

Nous avons étendu la validité de ce modèle en montrant qu’il permet également de

reproduire partiellement l’anticipation corticale, en termes de latence et de temps au

pic, en accord avec les résultats obtenus expérimentalement.

4



Nous avons ensuite connecté le modèle de rétine que nous avons développé au mod-

èle cortical, en omettant le thalamus. Le but n’était pas d’avoir un modèle exhaustif

du système visuel, mais bien de considérer une entrée rétinienne réaliste au cortex,

en contraste avec les modèles communément développés qui prennent généralement

des entrées qui ne sont pas biologiquement réalistes (activité constante, bruit blanc).

C’est à notre connaissance le premier modèle de ce type, intégrant des mécanismes

sophistiqués à la fois au niveau de la rétine et du cortex. Pour connecter le modèle

rétinien au modèle cortical, nous avons utilisé des conversions spatiales et des densité

cellulaires spécifiques aux primates. Le modèle intégré rétine-cortex nous a permis

d’évaluer l’effet de l’anticipation dans la rétine sur l’anticipation corticale notamment

en termes de latence et de temps au pic, et de mettre en évidence l’aspect collaboratif

de ces deux effets.

Le modèle 2D intégré rétine-cortex nous permet également d’étudier l’anticipation de

stimuli plus complexes, et d’émettre des hypothèses quant à la coopération entre la

rétine et le cortex dans l’anticipation des trajectoires.

Enfin, dans un travail en cours, nous avons développé une méthode de calcul des

corrélations entre les trains de spikes dans le cas non stationnaire, et l’avons appliqué

à des données expérimentales de rétine de salamandre et de souris (avec la permission

d’Olivier Marre). Nous avons mis en évidence une variation des corrélations au cours

du mouvement, liées aux interactions entre les cellules. Ces interactions suggèrent

que le mouvement d’un objet peut être extrapolé, non seulement par les fréquences de

décharge, mais aussi par les corrélations des spikes qui reflètent les corrélations spatio-

temporelles dans la trajectoire d’un objet en mouvement.

Nos résultats peuvent à l’avenir être utilisé pour motiver des travaux théoriques

et expérimentaux qui auront pour but de mieux comprendre la prédiction au sens

large, à la fois au niveau de la rétine et du cortex.
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English introduction

The visual system is an incredibly efficient information encoding machinery, both

in terms of data processing and energy consumption. Vision begins in the retina, a re-

ceptor that is often and improperly thought of as a camera. However, it is actually able

to perform much more elaborate operations than a camera, such as extracting and com-

pressing useful features of the visual scene, in order to code information as efficiently

as possible. Contrast, orientation, movement, these are all elements the retina is able

to infer. The information encoded by the retina is then transmitted to the thalamus, the

central relay of the visual system, which in turn transmits it to the visual cortex, the

part of the brain specialized in decoding and processing visual information.

Visual processing requires time : a moving bar projected on the retina generates an

activity that will reach the cortex at least 200 ms later; a car traveling at 50 km/h can

cross about 3m during this time. It is evident that such processing times can have se-

rious consequences for the safety of people, including their ability to avoid moving

obstacles. More generally, the delays introduced by the visual system can impact the

survival of species that need an accurate representation of the movements taking place

in the surrounding world, in order to have the ability to escape predators or to hunt

their prey. So how do living beings compensate for these delays? One of the possible

responses consists in considering the anticipation and extrapolation of movement oc-

curring at the level of the retina and the primary visual cortex, V1. This is the purpose

of this thesis, carried out as part of the ANR (French Research Agency) project “Trajec-

tory”, in collaboration with F. Chavane and S. Chemla from Institut des Neurosciences

de la Timone Marseille, Olivier Marre from Institut De la Vision in Paris and Alain

Destexhe and Matteo di Volo from Institut des Neurosciences Paris Saclay.

First, we focused on the different mechanisms that can explain anticipation at the

retina level. We have modeled the retina output in terms of firing rate, the average
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number of spikes emitted by a ganglion cell. In the retina, we distinguish between two

types of anticipation: the first is denoted by a peak firing rate response to a moving

object occurring before the peak response to the same object when flashed. The second

type of anticipation consists in a rise in the cell’s activity before the object enters in its

receptive field. Berry et al. [1] have shown that the first type of anticipation can be

modeled by a linear-non-linear model, implementing a gain control mechanism at the

level of ganglion cells, and which has the effect of advancing the peak response of the

cells. This model was later used by Chen et al. [2] who implemented the same mech-

anism at the level of bipolar cells to reproduce two additional effects: the response

to the appearance of the bar, and to its motion onset. The original model being one-

demensional, we first extended the gain control model in 2 dimensions, and studied

how anticipation time and maximum firing rate depend on the characteristics of the

stimulus: contrast, bar size and speed. Our model also implements orientation selec-

tivity, by adapting a computer vision method to anisotropic spatial-temporal filtering

of the stimulus.

In the feed-forward pathways, gain control models reproduce local anticipatory ef-

fects, which can be biophysically explained by adaptation, which in turns is explained

by the inactivation of ion channels. Nevertheless, anticipation can also be studied from

the point of view of the population, taking into account the interactions between the

different cells. In this case, it is necessary to understand how retinal cells are connected

and communicate with each other. Studies have shown a class of ganglion cells, selec-

tive to directions, is coupled through gap junctions. We have integrated this coupling

into our model and studied how it improves anticipation. Then, we focused on a reti-

nal circuit capable of explaining differential motion: an object with a different motion

from its background induces more salient activity. This circuit introduces a connec-

tivity pathway involving amacrine cells, acting upstream of ganglion cells. In order

for our connectivity model to be biologically plausible, we developed a probabilistic

connectivity model between amacrine and bipolar cells, inspired by the shape of the

synaptic arbor of amacrine cells. The study of this circuit equations has made it pos-

sible to highlight and understand the role of characteristic times and synaptic weights

in the behavior of the coupled system, and to determine the parameters regime in

which amacrine connectivity outperform gain control, in terms of anticipation. We

also explored the change in the anticipation properties of the system, when using the

probabilistic connectivity. Finally, in both connectivity pathways, we have highlighted
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the existence of a propagation wave, able to extrapolate different trajectories.

The coupled 2D model allows us to study anticipation in the case of stimuli that are

more complex than a bar in smooth motion. To do this, we design stimuli with curved

trajectories, accelerated movements, and more complex objects. Far from making an

exhaustive study of anticipation in these complex stimuli, we extract qualitative prop-

erties to evaluate anticipation and its effects.

In the second part of this thesis, we examined anticipation mechanisms in the pri-

mary visual cortex. Experimental studies conducted by the laboratory of F. Chavane

and based on optical imaging have shown an anticipation mechanism in V1 that can

be explained by the propagation of activity via lateral connectivity. This propagation

has the effect of increasing the activity of cortical columns before the bar reaches their

receptive field.

How is the division of labor between the retina and the cortex organized and how does

retinal anticipation impact cortical anticipation? To answer this question, we have used

a mean field model of the primary cortex, developed by M. Di Volo and A. Destexhe

from Institut des Neurosciences de Paris Saclay, with whom we have collaborated.

Their model has initially been proposed to reproduce the results of optical imaging in

the case of the apparent motion stimulus : a motion illusion occurring between two

spatially distant Gaussian spots, which appear successively. We have extended the

validity of this model by showing that it is partially able to reproduce cortical antici-

pation, in terms of latency and time to peak, in accordance with the results obtained

experimentally.

We then connected the retina model we developed in the first part of the thesis to

the cortical model, omitting the thalamus. The goal here is not to have an exhaustive

model of the visual system, but to consider a realistic retinal entry to the cortex, in con-

trast to commonly developed cortical models which generally take non biologically

realistic entries. To the best of our knowledge, this is the first model of its kind, in-

tegrating advanced mechanisms in both the retina and the cortex. In order to connect

the retina model to the cortical one, we used spatial and density conversions specific to

primates. The integrated retino-cortical model allowed us to evaluate the effect of reti-

nal anticipation on cortical anticipation, particularly in terms of latency and peak time,

and to highlight their collaborative aspect. The integrated 2D retino-cortical model al-

lows us to study the anticipation of more complex stimuli, and to make hypotheses
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about the cooperation between the retina and the cortex in the anticipation of trajecto-

ries. In particular, we explored the changes in the cortical wave of activation proper-

ties, when V1 is driven by a retina output implementing the anticipation mechanisms

above-mentioned.

Finally, in an ongoing work, we developed a method for calculating correlations

between spike trains in the non-stationary case, and applied it to experimental data

from salamander and mice retina, then to Poissonian spike trains generated from our

retina model. We found a variation in correlations during movement, related to inter-

actions between cells. These interactions suggest that the motion of an object can be

extrapolated, not only through firing rates, but also by the spike trains correlations that

reflect the spatio-temporal correlations in its trajectory.

Our results can be used in the future to motivate theoretical and experimental

work aiming at a better understanding of prediction in a broader sense, both in the

retina and in the visual cortex.
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What is the thesis about ?

This thesis is first and foremost a computer science thesis, based on a computa-

tional development, implementation and study of an integrated retino-cortical model.

We will show throughout this thesis that the retina is a complex neural entity,

which does not only transform incoming light into a simple neural code, but also per-

forms complex processing tasks. We will also emphasize the role that lateral connec-

tivity, both at the level of the retina and the primary visual cortex, plays in motion

anticipation.

Chapters description

In the introductory chapters (I and II), we will review the characteristics of retinal

encoding and feature extraction capacity, as well as cortical processing, mainly in terms

of motion detection. We will then emphasize the anticipatory mechanisms occurring

at the level of the retina and the primary visual cortex, and review some models that

have been used to account for these effects.

In the modeling chapters (III and VI), we introduced the 2D phenomenological model

we have developed for retina anticipation, implementing gain control and lateral con-

nectivity through gap junctions and an amacrine cell circuit. The model also accounts

for orientation selectivity, through a method inspired from computer vision. We will

then introduce the mean field model we have used to reproduce cortical anticipation.

The novelty of our work lies in the use of the retina model output as an input to the

cortical model.

In the results chapters (IV, V and VII), we will discuss the mathematical and simulation

results of motion anticipation, and emphasize the role that lateral connectivity both in

the retina and V1 is likely playing. In particular, we will show how lateral connectivity
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can improve anticipation in the retina. We will also emphasize the existence of a prop-

agating wave with different characteristics, both in the retina and in the cortex, as an

outcome of this connectivity.

Finally, in the last chapter, we will introduce a method for correlation evaluation, and

test it on recordings of ganglion cells . We will also present the simulation platform

that is currently being developed within the Inria team Biovision, and discuss the per-

spective of implementing our work in the software.
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Chapter 1

Introduction to the visual system

Handling the conversion of light into visual concepts is a complex problem that

only a fully developed biological system can handle [4]. Vision tasks involve recog-

nizing objects, discriminating them from the backgrounds, interpreting spatial cues

such as orientation and contrast ... These tasks become all the more difficult to attend

to when dealing with moving objects. The neural computations underlying the pro-

cessing of moving visual scenes are still not fully understood. Beyond the utility of

expanding the global knowledge of biological vision, a better understanding of the

involved mechanisms would also allow bio-inspired vision systems to optimize their

visual information processing and improve their performance.

Vision starts when light passes through the cornea and the lens, and is then focused

on the retina, the first milestone of neural visual processing. As in a camera, the retinal

representation of the visual scene is reversed. The retina transforms incoming photons

into neural signals and transmits them to several brain regions, via the optic nerve.

The well functioning of the retina is therefore fundamental for seeing, and the loss of

information at this level could have dramatic consequences on vision. This explains

the growing interest to study how the retina encodes visual information, and under-

stand the specificities of its underlying circuitry. [4]

The output cells of the retina are retinal ganglion cells, whose axons gather to form

the the fibers of the optic nerve. Ganglion cells encode and extract relevant features of

the visual scene, and send them in parallel streams to the thalamus through the optic

nerve, in the form of spike trains. The thalamus relays the visual information to the

visual cortex, ultimately enabling us to see.
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Figure 1.1: General representation of the visual pathway. Vision starts at the level of
the eye, where the retina converts the incoming light to an electrical neural signal. This
signal is then transmitted to the LGN via the optic nerve which in turn sends it to the
primary visual cortex. [5] .

1.1 The retina

1.1.1 General organization of the retina

Photoreceptors

Light is first absorbed by the photoreceptors, located in the outer nuclear layer. These

cells that have the ability to perform phototransduction, i.e. the conversion of light into

electrical signal. Photoreceptors are divided into two types, rods and cones. Rods are

more sensitive to faint light, which makes them responsible for our night vision. They

are mostly located in the periphery of the retina. Cones on the other hand are concen-

trated in the central part of the retina, also known as the fovea, and are at the origin

of color vision. They can generally be differentiated into three subtypes, responding

to either red, green or blue light. Their combination allows us to perceive colors. Most

mammals and rodent retinas have however a preponderance of rods[6].

Photoreceptors hyperpolarize with light and depolarize in darkness, releasing gluta-

mate, an excitatory neurotransmitter. Their signals is then transmitted to downstream

cells, horizontal and bipolar cells.
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In the second cell layer, known as the inner nuclear layer, are located horizontal,

bipolar and amacrine cells.

Horizontal cells

Horizontal cells have AMPA and glutamate receptors, and consequently hyperpolarize

to light. Theses cells influence bipolar cells, but it is still unclear whether they do it

directly or through a feedback mechanism, via photoreceptors. As they release GABA,

an inhibitory neurotransmitter, horizontal cells are accountable for the antagonistic

center surround receptive field of bipolar cells.

Bipolar cells

Bipolar cells receive signals from the photoreceptors along with inhibitory feedback

from horizontal cells. They then transmit the visual information to ganglion cells,

which is also modulated by the activity of amacrine cells. Their intermediate position

makes them essential to understand how signals are transmitted from the photore-

ceptors to ganglion cells, but it also makes it more challenging to record their neural

activity. As a consequence, little is known about the response properties of bipolar

cells, whose activity is often modeled as a linear filter applied to the stimulus, fol-

lowed by a non-linearity. Bipolar cells don’t uniformly respond to the glutamate re-

lease of photoreceptors. According to the type of receptor they express, they are either

hyperpolarized or deporalized by light, which gives rise to two major classes of bipo-

lar cells, ON-center and OFF-center bipolar cells. Bipolar cells also receive GABAergic

inhibitory input from horizontal cells, shaping their center-surround receptive field.

[7]

Amacrine cells

Amacrine cells are the most diverse retinal cell class, they however remain very in-

sufficiently understood. This cell family consists of two major types, small-field and

wide-field cells, based on the size of their dendritic arbor. They are involved in both

feed-forward and lateral connectivity pathways [8].

Amacrine cells are activated through glutamatergic input from bipolar cells. They con-

versely release two types of inhibitory neurotransmitters : GABA and glycine, onto

bipolar cells and ganglion cells, and can also provide a feedback to other amacrine

cells. They are also connected to bipolar cells and ganglion cells via gap junctions.
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Ganglion cells

Ganglion cells, whose axons form the fibers of the optic nerve, are the output layer of

the retina. They integrate the visual information processed by the upstream layers and

transmits it to the brain, in the form of action potentials. They receive excitatory glu-

tamatergic input from bipolar cells, and inhibitory GABAergic and glycinergic inputs

from amacrine cells. Ganglion cells have a wide diversity of dentritic field morpholo-

gies, yielding different sizes of receptive fields. These receptive field are mainly char-

acterized by the receptive field’s configuration of upstream bipolar cells. According to

their retinal location, ganglion cells will either communicate with a small number of

photoreceptors (as few as five in the fovea), or a large number (up to many thousands

in the periphery)[6] [9]. Ganglion cells play an essential role in objects shape and mo-

tion detection.

A small number of ganglion cells is photosensitive, and contribute to circadian rhythms

and light reflex. These cells contain their own photopigment, melanopsin, which makes

them sensitive to light even when photoreceptors are not responding.

Figure 1.2: Simple retina representation. The photoreceptors transform the light into an
electrical signal transmitted to the bipolar cells. These neuronal signals are modified
by horizontal cells which also ensure the lateral connectivity of photoreceptors and
bipolar cells. Bipolar cells then forward the signal to ganglion cells, taking into account
the lateral interactions afforded by amacrine cells. [5] .
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1.1.2 Motion processing in the retina

While color vision and binocular vision are not shared between all the species,

motion detection is an essential visual capability common to all of them. As a conse-

quence, studying visual motion processing has been one of the fundamental challenges

facing systems neuroscience. Studies have revealed that sensitivity to motion starts al-

ready at the level of the retina, allowing different species to navigate the world, and

detect the possible presence of mates, predators or preys. We will review in this sec-

tion some aspects of the understanding of motion detection by the retina, giving as

examples direction selectivity, speed tuning and lag normalization.

1.1.2.1 Direction selectivity

There exists a wide range of theoretical and biological approches to studying reti-

nal processing of motion. Moving stimuli are generally considered as a spatiotemporal

pattern of light intensity projected on the retina, from which retina extracts relevant in-

formation, such as the direction of image motion. Detecting motion requires neural

networks able to process in a non-linear fashion moving stimuli, asymmetrically in

time. [10] [11] [12] [13]

Direction sensitivity is the first mechanism involved in motion sensitivity, achieved

through the interaction of On and Off pathways [14] (See Fig. 1.3).

Direction selective ganglion cells (DSGCs) are triggered differentially by the di-

rection of a visual stimulus, responding more strongly when the motion of the object

corresponds to their preferred direction. This feature is not dependent on the stimulus

shape, size or color. There exists three types of DS cells in the retina : ON/OFF DSGCs,

which respond both to the leading and the trailing edge of the stimulus, ON DSGCs,

which only respond to the leading edge, and OFF DSGCs, which only respond to the

trailing edge.

ON/OFF DCGCs are divided into 4 major types, according to their prefered di-

rection : ventral, dorsal, nasal or temporal. Cells of different types differ in their den-

dritic configuration and synaptic projections. For instance, nasal cells have a dentritic

arbor with an asymmetry toward the nasal direction.

From a mechanistic point of view, DSGCs receive their inputs from bipolar and star-

bust amacrine cells, responding to their directional preference with a large excitatory

postsynaptic potential followed by a small inhibition. Conversely, when stimulated by
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Figure 1.3: Schematic of the mammalian retina wiring, highlighting the rod and cone
pathways. Left, ON pathways. Right, OFF pathways. The cone circuitry is illustrated
using two cone photoreceptors : on the left hand side, the photoreceptor is connected
to the ON ganglion cell through an ON cone bipolar cell. On the right hand side,
the cone photoreceptor is connected to the OFF ganglion cell via an OFF cone bipolar
cell. The rod pathways are more diverse : they can be either direct (OFF3); connected
through a rod bipolar, an amcrine cell, and an ON or an OFF cone bipolar cell (ON1,
OFF1); or connected through a cone photoreceptor and an ON or an OFF cone bipolar
cell (ON2, OFF2).[14]. .

an object moving in their null direction (i.e the opposite of their preferred direction),

they respond with a small excitatory postsynaptic potential followed by a large inhibi-

tion. Starbust amacrine cells (SACs), whose dendrites emerge radially from the soma,

have been shown to express important direction selectivity properties. Optical calcium

imaging has specifically revealed that SACs respond strongly to centrifugal motion,

while they are inhibited by the centripetal motion. More generally, when SACs were

silenced with toxins, direction selectivity was strongly undermined.

SACs possess two types of neurotransmitters, acetylcholine, allowing excitation and

GABA, allowing inhibition. Studies have shown an uneven repartition of gabaergic

and cholinergic SACs synapses onto the dendritic arbor of DSGCs, providing direction

sensitivity. (See Fig. 1.4)

As stated before, direction selectivity could also be an intrinsic feature of DSGCs, due

to the asymmetry of their dendritic field. Trenholm [3] showed the existence of DS-

GCs that conserve their direction selectivity even in the presence of cholinergic and

GABAergic inhibitors. This property is further enhanced by the presence of gap junc-

tions between cells that are tuned to the same direction, increasing the response of

17



Figure 1.4: A) Distribution of the excitatory (cholinergic) synapses and inhibitory
(gabaergic) synapses along the motion axis. On the null side of the dendritic arbor
of SACs, more inhibitory synapses are present, reducing as a consequence the activity
of DSGCs along the non preferred axis. Conversely, on the preferred side of the den-
dritic tree, more cholinergic and glutamatergic synapses are present, facilitating the
emergence of action potentials at the level of DSGCs. B) Details of the neurotransmitter
exchanges between SACs, bipolar cells and DSGCs involved in the direction selectivity
pathway. Glutamate is represented in green, Acetylcholine in red and GABA in blue
[15]. .

downstream cells (cells that are located further in the connectivity graph) to an object

moving in their preferred direction.
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1.1.2.2 Speed processing

Speed tuning has been recently identified as a property inherent to a certain class

of ganglion cells. Ravello et al. [16] have studied speed selectivity of RGCs using mo-

tion cloud stimuli, artificial textures which conserve some of the properties of natural

images, mainly in terms of frequency bandwidths. These stimuli are characterized by

a spatial frequency, a spatial frequency bandwidth (equal to 0 for regular gratings) and

a temporal frequency, resulting in a broader and less binary distribution of contrast,

where low contrasts are more frequent.

Figure 1.5: RGC response to grating stimuli with different spatial and temporal fre-
quencies. (a) Example response (raster plot and firing rate) of a single cell at each com-
bination of spatial frequency and speed. (b) Fitting of response curves with skewed
Gaussians. (c) Distribution of speed responsiveness across cells show a preferred speed
that decreases with the spatial frequency. [16] .

In their study, they studied the retinal activity of Octodon degus, rodents with a
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high density of RGCs. In particular, they showed that the speed selectivity property

is not inherent to a single type of RGCs, but rather shared between different classes.

They first recorded the RGC response to gratings with different spatial and temporal

frequencies. There is a trade-off between spatial and temporal frequencies, the higher

the spatial frequency, the more the response curve shift towards lower speeds. High

firing rate frequencies are reached for a combination of intermediate values of spatial

frequency and speed. (See Fig. 1.5)

When presenting the rodent with motion clouds, the response curves show a narrow-

ing effect around the preferred speed, i.e the response to low and high speeds is much

weaker for motion clouds than simple gratings. The higher the complexity of the mo-

tion cloud, the larger is its spatial frequency bandwidth and the narrower is the speed

response curve around the preferred speed. This shows a finer speed tuning of RGCs

in naturalistic conditions.

1.1.2.3 Lag normalization

Direction selective ganglion cells (DSGCs) in the mouse retina are selective to ob-

jects moving in the cardinal directions. There exists a class of DSGCs coupled through

gap junctions, eliciting spiking 106 +- 16 µm before the stimulus reaches their dendritic

field. Trenhlom & al. [3] have emphasized the role of coupling in these cells response

: uncoupled cells begin responding when a bar effectively enters their receptive field,

i.e, their dentritic field extension, whereas coupled cells start responding before the bar

reaches their dendritic field. The coupling considered here is towards the side from

which the stimulus is approaching.

This response property accounts for lag normalization : coupled cells far from onset

of the bar start responding when the bar reaches a constant distance from their soma,

whatever its velocity, while uncoupled cells detect the bar at a position which is further

shifted as the bar velocity increases.
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Figure 1.6: Lag normalization in an electrically coupled network of DSGCs. a)
Schematic of the model : the nth ganglion cell receive a total current which is the sum
of the bipolar input and the weighted pre-junctional input from the previous ganglion
cell. The strength of coupling is the only free parameter in their model, and is tuned to
best tune the data. b) Simulation results of the first and the sixth cell of the network, for
different stimulus speeds. Lag normalization is developed by cells far from the start of
motion. [3]

Partial conclusion

In this first section, we reviewed the physiological organization of the retina,

and gave examples of motion processing mechanisms and pathways, showing that

the retina is not a mere camera, but is rather able to perform complex computations.

In particular, we reviewed the role of connectivity (amacrine cells connectivity as well

as gap junction coupling) at the level of ganglion cells, in motion and speed processing.
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1.2 The visual cortex

1.2.1 General organisation of the visual cortex

The visual cortex is the part of the brain specialized in the processing of visual in-

formation. It receives the sensory inputs from the Lateral Geniculate Nucleus 1 located

at the level of the thalamus.

When cells in the visual cortex are stimulated within their receptive field, in a given

way, they emit action potentials. This defines their neuronal tuning, i.e the stimu-

lus properties to which they are sensitive. This tuning becomes all the more complex

when going towards higher visual areas. For instance, if the receptive fields of cells in

V1 correspond to simple stimulus feature such as orientation, some cells in the inferior

temporal cortex will only fire if a definite object appears in their receptive field [17].

There exists two primary visual streams, receiving inputs from the primary visual cor-

tex, the dorsal and the ventral stream. The dorsal pathway starts with V1, goes through

V2, the dorsomedial area, the medial temporal area and the posterior parietal cortex. It

is mainly involved in the processing of motion, and the coding of location. The ventral

stream begins as well with V1, goes across V2, V4 and the temporal cortex. It is mainly

associated with the shapes and objects recognition, and is also involved in long-term

memory. (See Fig. 1.7)

Figure 1.7: Organization of the visual cortex into two parallel streams.[18]

1The Lateral Geniculate Nucleus (LGN) is a central relay in the visual pathway. It transmits to the
primary visual cortex the visual information received from the retina, via the optic nerve. The LGN
lies in both the left and right brain hemispheres. It contains layers of parvocellular (small sized cells
receiving their inputs from midget ganglion cells) and magnocellular cells (larger cells receiving their
inputs from parasol ganglion cells).
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1.2.1.1 The primary visual cortex

The primary visual cortex is the most commonly studied area in the visual cortex.

Each brain hemisphere has a cortical area V1 receiving the visual signal from the con-

tralateral eye. It is essentially involved in the processing of static and moving stimuli,

and is specialized in pattern recognition. It is able to differentiate different features

such as orientations, colors, spatial frequencies, motion . . . V1 neurons can thus be

viewed as a set of specialized spatio-temporal filters able to selectively respond to each

of these features. Neurons with similar response properties are arranged in columns,

which are in turn assembled in larger structures called modules. Each module is able

to decode and analyze a small area of the visual field.

V1 is thus believed to implement a filter bank of 2D "Gabor filters" (See Fig. 1.8), which

reproduces the cortical cells responses to impulse stimuli. [19] [20] [21]

Figure 1.8: Image structures can be captured using a bank of oriented basis functions.
The set of basis functions has been obtained with a sparse coding algorithm. [21]

From an anatomical point of view, the multi-level processing of the primary vi-

sual cortex is based on the feed-forward pathway, i.e the activity coming from the

retina via the LGN, and extensive lateral connections between the cortical columns.

The direct feed-forward activity alongside the contribution of lateral connectivity are

then projected onto V2, V3, V5. V1 also receives feedback projections from V2, V3, V4

and V5.

Neurons in V1 are organized according to a retinotopic map. Indeed, the spatial posi-

tions of RGCs within the retina is conserved by their neuronal projections in the LGN,

and the same topology is also preserved at the level of V1. When measuring the loca-

tions of receptive fields along V1, one can see that adjacent RF centers from posterior
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to anterior correspond systematically to ganglion cells located from the fovea towards

the periphery.

As stated earlier, orientation and direction selectivity are strongly present at the level

of V1. The vast majority of V1 neurons are orientation selective to a certain extent, but

only approximately 30% of them show strong direction selectivity.

Cells in V1 have also been shown to be either monocular, i.e solely responding more

strongly to one eye, or binocular, i.e cells responding maximally to stimulation in both

eyes or with a weak bias to a given eye excitation. Their proportion vary according to

the area of V1 from which the cells are recorded. Binocular cells are involved in binoc-

ular disparity : the difference in the objects location between the left and right eyes,

used for depth perception.

Hubel and Wiesel [22], who won the Nobel prize for their studies of the physiolog-

ical and functional organization of neurons in V1 (orientation and direction selectiv-

ity, binocularity . . . ) , emphasized the existence of three types of neurons : simple

cells, complex cells, and hypercomplex cells. Each of these different types can be dis-

criminated based on how they respond to visual stimuli. Simple cells respond best

to elongated edges. They are orientation selective, and can be monocular or binocu-

lar. Their receptive fields has distinct ON and OFF subregions. Complex cells are also

orientation selective, but are mostly all binocular. Their receptive fields are homoge-

neous, responding to either ON or OFF stimuli. Finally, hypercomplex cells are similar

to complex cells, with the difference that they have an end-stopping property : they

maximally respond to a cell with a given length, and their response starts decrease

for higher lengths, while complex cells response increases with the bar length before

reaching a plateau. (See Fig. 1.9)

1.2.1.2 Higher order areas

Higher order areas in the visual cortex are responsible for the refinement of the

visual information pre-processed by V1. V2 improves the ability to discriminate lines

and edges, and enhance color interpretation. For instance, V2 is responsible for color

constancy, which accounts for a constant color perception, regardless of illumination

levels.

V3 is specialized in form processing but is poorly sensitive to color. Most of V3 cells

are orientation selective, and the activity of some is modulated by motion and depth.
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Figure 1.9: Complex cells response increases with the size of the bar before reaching
a constant value, while hypercomplex cell response is maximum for an intermediate
size [23].

They are also highly sensitive to contrast.

V4 is mainly responsible for color processing. Like V2, V4 is also selective to orienta-

tion and spatial frequency, but is however tuned to more complex object features such

as geometric shapes. Recent studies have emphasized the existence of long-term plas-

ticity 2at the level of V4, sensitivity to salient stimuli, and the ability of its receptive

fields to change over time, depending on attention levels.

Finally, V5, also known as the medial temporal area, is involved in motion processing.

Cells in V5 are largely tuned to stimuli speed and direction. More details on the role of

V5 and motion processing will be introduced in the next section.

An important feature at the level of higher order visual areas is that they are strongly

influenced by past experience based expectations. Though these expectations can lead

to misinterpretations or misperception of the external world, they enable the brain to

process visual information very quickly [24].

1.2.1.3 The retinotopic representation

Cells in V1 form together a topographic map of the retina input, known as the

retintopic representation. Each half of the visual field is displayed as a map on the

contralateral hemisphere, while the fovea is mirrored on the occipital pole. The fovea

refers to the center part of the visual representation, where cells have the highest reso-

2Synaptic plasticity is the property that connections between neurons, called synapses, have to
change their strength according to their activity. It encompasses the multiple mechanisms involved
in modifying synaptic transmissions over time. Long-term plasticity refers to phenomena that occur
over a longer time range, lasting minutes or more.

25



lution, i.e the smallest receptive fields. The mapping and identification of visual areas

has been achieved using magnetic resonance imaging (MRI). It has been mainly used

to investigate changes in cortical activity patterns when subjects are presented with

flashed checkerboard stimuli, with a changing position.

While the primary visual cortex is only split into to hemispheres, the retinotopic repre-

sentation of V2 and V3 is split into 4 quadrants. Nowadays, more than 20 visual areas

have been characterized, showing different levels of retinotopic representation.

Figure 1.10: The Retinotopy paradigm. In order to measure retinotopic maps in the
cortex, two stimuli are used, a ring expanding stimulus and a rotating wedge. Data
has been recorded on the left hemisphere. The figure shows how the eccentricity and
the polar angle are mapped into the retinotopic map of the visual cortex. [25]

1.2.2 Motion processing in the visual cortex

Motion perception is one of the most important tasks that the visual cortex at-

tends to, analyzing and processing the visual information by a large number of inter-

connected neurons and areas. The complexity of cells’ response increases from lower to

higher cortical areas, and this is also applicable to motion processing. The latter starts

at the level of V1 where there is a large proportion of direction selective cells. Mo-

tion processing is further pursued at the level of the medial temporal area (MT or V5),

where cells are selective to both direction and speed. The first motion detector model

has been proposed by Hassenstein and Reichardt [26](See Fig. 1.11). The model relies

on changes in contrast of two spatially distant locations, inside the receptive field of a

motion sensitive neuron. The neuron will only produce a response if contrast changes
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are temporally delayed, and is thus not only selective to direction, but also to motion

velocity. Several models have been developed based on Reichardt detectors, but they

all share the common feature of integrating spatio-temporal variations of the contrast,

constituting the motion sensor’s receptive field. Consequently, to perceive motion as

coherent and uninterrupted, an additional integration over motion detectors is hypoth-

esized to take place. This integration usually takes the form of a pooling mechanism,

over visual space and time.

Figure 1.11: The motion detector model is composed of two subunits. The input re-
ceived at the level of one unit is sent to the opposite unit, to be multiplied with the op-
posite unit’s input with a time delay. The output of the two units are then substracted
to form the output of the motion detector. Adapted from [27].

Studies [28] [29] have also shown the existence of a bias for centrifugal and cen-

tripetal motions. From a functional point of view, this could be due to the prevalence

of radial motion in self-locomotion situations. When walking forward for instance, the

visual scene moves centrifugally on the retina, and the opposite occurs when moving

backward.

Predictive coding The brain can be seen, from a probabilistic point of view, as an

engine that computes the probabilities of the most likely causes to a given neuronal

activity, assuming that the computations would converge to a single optimal solution.
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In order to understand how this solution is found, many studies have investigated pre-

dictive aspects of neuronal processing, directing the reconstruction of possible stimuli

towards the most likely scenarios [30] [31].

The term "predictive coding" refers to the role played by predictions in the shaping

of neural signals, decreasing neural activity when the stimulus does not contradict

the prediction, and giving rise to a strong response when the prediction is inaccurate.

There is a class of neurons, called object detectors, that respond only when the move-

ment of an object does not correspond to the predicted trajectory. This type of neurons

will have a particularly high response when an object that has not been predicted ap-

pears in the visual field. Conversely, these neurons are very strongly inhibited when

the movement of the object corresponds to the prediction.

Partial conclusion

In this section, we reviewed the physiological organization of the cortex, with

an emphasize on the primary visual cortex. We presented an example of motion pro-

cessing at the level of the cortex, and introduced the notion of predictive coding. This

notion is highly linked to anticipation. In the following, we will not focus on the prob-

abilistic aspect of predictive coding in the retina and the cortex, but rather on its mech-

anistic aspects.
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Chapter 2

Anticipation in the retina and the

primary visual cortex

Estimation of a moving object precise position is a non trivial problem that the

brain has to attend to, taking into account the time lags that are involved in neuronal

computations. Let’s consider a human subject, interacting with a moving object, that

he has to catch for instance. How does he compensate for the delays introduced by

his nervous system ? Some studies suggest that the origin of compensation is motor :

the subject performs a muscular action in response to a predicted cause [32] [33] [34].

This would explain why practice, mental or physical, not only improves the timing of

actions, but also the velocity at which they are realized [35] [36].

Other studies show that motion anticipation is in fact sensory : the visual system is

able to extrapolate the trajectory of a moving object, delivering an anticipated repre-

sentation of the object’s position, when its motion is deterministic. [1] [37] [38]. It has

been shown that such anticipatory mechanisms exist, first at the level of the retina, and

are further carried out by the primary visual cortex.

It is likely that anticipation is ultimately due to the cooperation of both compensation

mechanisms [39]. In that sense, Nijhawan et al. suggest that "compensation mech-

anisms [...] belong to a general principle of how the brain carries out computation

efficiently in the spatio-temporal domain".

In this chapter, we will focus on motion anticipation in the retina and primary

visual cortex. We will first present the psychophysical experiment known as the flash

lag effect that highlights anticipation from a perceptual point of view. We will then ex-
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plore the experimental findings concerning anticipation in the retina and visual cortex.

Finally, we will present, in each of the sub-parts, the models that have been developed

to reproduce anticipatory effects.

2.1 The flash lag effect

The flash lag effect is an optical illusion where a bar moving along a smooth tra-

jectory and a flashed bar are presented to the subject, and are perceived with a spatial

displacement, while they are actually aligned. A variation of this illusion consists of a

bar moving in rotation, a bar flashed in angular alignment, giving rise to a perceived

angular discrepancy. (See Fig. 2.1)

Neuroscience has explored many explanations for this illusion, including motion ex-

trapolation. The visual system being predictive, it processes differently a bar in smooth

motion, whose motion can be extrapolated, and a flashed bar which cannot be pre-

dicted by the system.

A second explanation is that the visual system, rather than extrapolating trajectories,

simply processes moving objects with a smaller latency than flashed objects [40]. In

the first conception, the actual position of the moving object is anticipated, while in the

second, both the moving and the flashed objects elicit delayed responses, with a delay

that is reduced in the case of motion.

A third explanation suggests that the flash lag effect is due to postdiction, in other

words, the perception of the flash is conditioned by events happening after its appear-

ance [41] [42]. This hypothesis is inspired by the the color phi illusion, where two dots

of different colors appearing at two discrete yet close positions, with a small latency,

will be perceived as a single moving dot which color has changed.

In the following, we will restrain our literature review to the first hypothesis, i.e

motion anticipation and trajectory extrapolation. These two phenomena have been

shown to occur at the level of the retina and the primary visual cortex for different

species : small animals such as the salamander and the rabbit in the case of retinal

anticipation, and bigger animals such as cats and monkeys in the case of cortical antic-

ipation.
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Figure 2.1: Representation of the flash lag effect. Arrows denote moving bars, versus
the bar flashed in alignment. In the case of translation, the flashed bar is perceived as
lagging behind the moving bar, while in the case of rotation, it is perceived with an
angular displacement.

2.2 Anticipation in the retina

When an object moves across the visual field, its motion elicits a series of neu-

ronal activities, at the level of the retina, transmitted to the LGN, that will eventually

be decoded at the level of the visual cortex. All this encoding and decoding processes

take time, and emphasize the necessity of having mechanisms which compensate for

the generated delays.

The general consensus nowadays among retina experts, it to consider that the retina

performs general features extraction, rather than just being a mere transmitter, for the

visual cortex to be able to process stimuli with more efficiency. The complexity of

retinal processing is achieved through a variety of cells mechanisms [6] and different

connectivity pathways [43], [44], [45]. One of the most interesting features that the

retina attends to is motion anticipation of moving objects. We will first present experi-

mental evidence showing motion anticipation of a moving bar at the level of the retina,

and we will then introduce the models that have been developed to account for it.

31



2.2.1 Experimental evidence

At the level of the retina, an object moving along a trajectory generates an activity

in advance to its future position. Berry et al. [1] have first shown that local gain control

mechanisms occurring at the level of bipolar and ganglion cells can explain the local

anticipation of a moving bar. These mechanisms explain the change in the shape of

response observed in experimental data, bringing the cells to their peak activity state

earlier than when they respond to a flashed bar, without modifying the time at which

the activity starts increasing, with respect to the size of the receptive field.

Figure 2.2: Ganglion cells firing rates in response to flashed and moving bars. a,c,e
Recording of Fast OFF salamander ganglion cells. b,d,f, recordings of brisk-sustained
OFF rabbit ganglion cells. The first row shows the response to a bar flashed for 15ms.
The second and third rows show the response to a bar moving at 0.44mms−1, in oppo-
site directions. Error bars are obtained from the repeated presentations of the stimulus.
The bar is the three configurations is 90% contrast, and 133 µm width. [1]

Berry et al. recorded the responses of OFF-type ganglion cells in salamander and

rabbit retinas, in response to two stimuli : a bar flashed in the centre of the individ-

ual cells receptive field, and bar moving at a constant speed across the receptive field.

Fig. 2.2 shows that the flashed bar generates a narrow response with a peak occurring
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after the flash, while the moving bar elicits a wider response, with a peak firing rate

that seemingly occurs ahead of the center of the bar, near its leading edge. This effect

doesn’t depend on the direction in which the bar moves, showing that this anticipatory

effect is not due to direction selectivity.

Another study by Johnston et al. [46] emphasized the role of inhibition at the level

of the retinal connectome in the existence of anticipatory mechanisms. Fig. 2.3 shows,

using an experimental setting similar to the one used by Berry et al., the existence of an-

ticipation, this time in the goldfish retina. Both studies show that motion anticipation

is velocity dependent (Fig. 2.4). However, this velocity tuning varies across species,

and according to the ganglion cell type. Similarly, the anticipation ability degrades at

low contrasts.

Figure 2.3: A) Goldfish ganglion cells firing rate when responding to a bar flashed for
100 ms. B) Ganglion cells firing rate when responding to a bar moving at 500µm/s. The
bar is 100% contrast and 160µm width. [46]

Johnston et al. have demonstrated that motion anticipation arises from the gen-

eral properties of the retina connectome, namely the excess of inhibitory connections

compared to excitatory ones. In particular, they show that bipolar gain control mecha-

nisms are not responsible for motion anticipation. They emphasize instead, through

pharmacological disruptive tests, the role played by feedforward inhibition, which

ganglion cells receive from amacrine cells. This inhibition could be at the origin of
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Figure 2.4: Dependence of motion anticipation on speed. A) Anticipation (the distance
between the the peak response and the leading edge of the bar) plotted as a function
of velocity, for salamander (SF: fast OFF, SO: other OFF) and rabbit (RT: brisk-transient
OFF, RS: brisk-sustained OFF, RE: local edge detectors, RDP: ON/OFF direction-
selective cells probed in preferred direction, RDN: ON/OFF direction-selective cells
probed in null direction) ganglion cells [1]. B) Anticipation for goldfish ganglion cells
[46].

ganglion cells gain control. Chen et al. [2], in their study of motion onset response in

the salamander retina, proposed a model where they proposed the cooperation of both

gain control mechanisms : while bipolar gain might not be enough to account for the

anticipatory properties of ganglion cells, it may still play a role.

Another key point that has been raised by Johnston et al., is the receptive field size de-

pendence of anticipation. They hypothesize that, given that the specialized ganglion

cells of the monkey have a smaller receptive than the goldfish receptive fields they

studied in their paper, monkeys and primates retina might not exhibit anticipation.

2.2.2 Anticipation models

In order to account for anticipation, Berry et al. [1] developed a cascade model

implementing gain control at the level of ganglion cells, through a feedback loop. The

retina receives a light stimulus function, which is convolved with a spatio-temporal

kernel, denoting the receptive field of the cell. If the stimulus is strong enough for a

given duration, it initiates a feedback loop which reduces the output firing rate. The

retinal output being negatively modulated, its peak response is shifted, which results

in motion anticipation. Fig. 2.5 summarizes the cascade model.

Johnston et al. [46] opted for a biophysical model, that takes into account the
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Figure 2.5: Retina model with gain control. The stimulus is multiplied by a gain factor,
integrated through a spatio-temporal receptive field, and transformed into firing rate
through a nonlinearity. The feedback loop computes an adaptation function which will
then decrease the gain factor, consequently shifting the peak response. [1].

morphology of cells dentritic arbors. They derived the equations of synaptic excitatory

and inhibitory conductances, as a function of the stimulus onset time and duration.

While their model is more biologically accurate, it remains very limited because it is

only adapted to the moving bar stimulus. A more phenomenological model, as the one

developed by Berry et al., can on the other hand be applied to different kind of stimuli.

Chen et al. [2] have further extended this model to account for the encoding of other

motion features, such as the response to the appearance of the bar, motion onset and

motion reversal. They added a second layer of gain control at the level of bipolar cells,

as well as bipolar cells pooling (see Fig. 2.6). This model has been the foundation stone

of our retina model.

Gain control based models have been often used to account for several features

processing at the level of the retina. It has namely been used by Leonardo and Meister

[47] to account for target tracking : when an object is moving along a 2D trajectory, and

abruptly changes its direction, ganglion cells are able to quickly adapt to this direction

change. Deny et al. [48] have also developed a gain control model to account for

ganglion cells non-linear response to objects speed when they are moving outside their

receptive field.
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Figure 2.6: Cascade model for alert response to motion onset. A) Schematic represen-
tation of the model. The gain control layers are similar to the one described in Fig. 2.5,
except for the static nonlinearity which is applied before the feedback loop. Ganglion
cells pool over many bipolar cells lying in their receptive field. B) The model is able to
reproduce the response to the appearance of the bar, to its motion onset, as well as the
response to smooth motion [2].

Finally, an interesting work we have come across during our literature review of

retina modeling is the one by Saglam and Hayashida [49], who developed a biophys-

ical model which account for several retinal computations, including motion antici-

pation. The spatial structure of their model is composed of two layers of hexagonal

sub-units, the first implementing photoreceptors, horizontal cells, bipolar cells and

amacrine cells, and a second layer implementing other types of amacrine cells and

ganglion cells. While their model is physiologically consistent and able to reproduce

many features (rapid neural coding, anticipation, and motion sensitivity), its complete-

ness and the number of parameters it involves would make it hard to only focus on

mechanisms involved in anticipation, and study them thoroughly.

2.3 Anticipation in the primary visual cortex

Classical studies have been conducted to assess motion integration in the visual

system of various species, but most of them share the classical feed-forward concep-

tion of both the retina and the primary visual cortex [50] [51]. However, the feed-

forward framework proves to be unfitting when it comes to integrating dynamic and

non-stationary stimuli. In contrast, lateral connectivity, at the level the primary visual

cortex, seems to play a crucial role [52] [53] [54], namely in terms of motion anticipa-

tion.
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2.3.1 Experimental evidence

Several studies have shown that the brain is not just a reactive encoder, but that

it is rather able to respond in a proactive way, and can thus be considered as predic-

tive, with regards to stimuli characteristics. In visual processing, predictions mean that

the brain is able to extrapolate and estimate what the visual stimulus is most likely to

be, given past information. This is of course based on the strong assumption that the

stimulus is predictable to some extent. In particular, some studies have suggested that

the predictability of stimuli can be learned from spatial and temporal regularities [55].

However, one can ask, where do these predictions start taking place ? Do they start at

the level of the early stages of the visual system, or in late-stage processors ?

Predictions is a rather large concept. If by prediction, one refers to motion extrapola-

tion , we have reported in the previous section that this already starts at the level of

the retina. It has also been shown that this task is further carried out at the level of the

primary visual cortex [56] [57] [58].

Jancke et al. [58] first demonstrated the existence of anticipatory mechanisms in the

cat primary visual cortex. They recorded cells in the central visual field of area 17 of

anesthetized cats, responding to small squares of light, either flashed or moving in

different directions, and with different speeds. When presented with the moving stim-

ulus, cells show a reduction of neural latencies, as compared to the flashed stimulus.

Fig. 2.7 shows the population response to the two stimuli. At time 0, the response to

the flash is null, due to neural delays. However, for the moving stimulus (which starts

its trajectory 3.2 ◦outside the population receptive field), propagating activity elicited

by the square motion through lateral connectivity is observed. This activity however

still lags behind the real spatial cortical representation of the square. This spatial lag

has been shown to increase with the speed of the moving stimulus.

Subramaniyan et al. [57] have reported the existence of similar anticipatory ef-

fects in the macaque primary visual cortex, showing that a moving bar is processed

faster than a flashed bar. They give two possible explanations to this phenomenon :

either a shift in the cells receptive fields induced by motion, or a faster propagation

of motion signals. Consistent with the study by Jancke et al., they reported a speed

dependence of the response latency (see Fig. 2.8), as well as a luminance dependence.
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Figure 2.7: Motion induces shorter latencies than flash. Upper row : A square of 0.4
◦is flashed at the population receptive field center, for 25 ms. Lower row : square at
the same spatial location in smooth motion. The square is presented 3.2 ◦outside the
population receptive field, and is moving at 38.4 ◦/s. Colored heat map denotes the
normalized activity level. Recordings are shown with a 10 ms temporal spacing. White
lines and square indicate the real spatial position of the stimulus. [58]

However, Subramaniyan et al. note that the motion representation delays are not re-

duced to zero, irrespective of the experimental setting of the flash lag effect. Moving

objects representation in V1 will still be mislocalized, as it has been shown by Jancke

et al.. This is in favor of collaborative work conducted on the one hand by the retina

and V1 to help reducing the latencies, and on the other hand by other specialized brain

regions which carry out predictive computations. Learning and training seem also

to play important roles in calibrating the response of the nervous system to a giving

moving object.

Partial conclusion

In this section, we reviewed the experimental occurrence of anticipation in the

retina of the salamander, the rabbit and the goldfish, and the primary visual cortex of

the cat and the monkey. While anticipation in the retina has often been modeled, the

mechanisms accounting for anticipation in the cortex are not fully understood yet, and

we could not find any model reproducing anticipation in V1.

In the rest of our work, we are going to make a highly speculative extrapolation, con-

sidering that there exist similar anticipation mechanisms in the monkey retina as the

ones that have been shown in smaller species. This extrapolation will enable us to use

our retina model as an input to a monkey cortical model.
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Figure 2.8: Speed dependence of the population response latencies. Figures A show
the anticipatory effect in time : the response to a moving bar is shifted as compared to
the response to a flashed bar. B. Response latency for the flashed bar (area F) and the
moving bar. Latency increases with speed. C. Latency difference between the flashed
and the moving bar. D. Spatial perceived offset computed from latencies shown in C
plotted as a function of speed. E. Spatial perceived offset plotted as a function of speed.
[57]
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Chapter 3

Developing a 2D retina model

In this chapter, we will introduce the model that we have developed for anticipa-

tion in the retina. In particular, the model includes anisotropic spatio-temporal filter-

ing at the level of bipolar cells, bipolar pooling at the level of ganglion cells and gain

control at both levels. It also features amacrine connectivity circuit specific to differ-

ential motion sensitive ganglion cells [59] [6], and gap junction connectivity specific to

direction selective ganglion cells [3].

Figure 3.1: Summary of the retina model. Colors denote different processing pathways.
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3.1 Retina organization

We assimilate the retina to a flat, two dimensional square of edge length L mm.

Therefore, we do not integrate the 3 dimensional structure of the retina in the model,

merely for mathematical convenience. Spatial coordinates are noted x, y.

Each cell population tiles the retina with a regular square lattice. The density of

cells is therefore uniform for convenience but the extension to non uniform density

is afforded by the model. For the population p we note δp the lattice spacing in mm,

and Np the total number of cells. Without loss of generality we assume that L, the

retina’s edge size, is a multiple of δp. We note Lp = L
δp

, the number of cells p per

row or column so that Np = L2
p. Each cell in the population p has thus Cartesian

coordinates (x, y) = (ixδp, iyδp), (ix, iy) ∈ { 1, . . . , Lp }2. To avoid multiples indices, we

will often associate to each pair (ix, iy) a unique index i = ix + (iy − 1)Lp. The cell of

population p, located at coordinates (ixδp, iyδp) is then denoted by pi. We note d
[
pi, p

′
j

]
the Euclidean distance between pi and p′j .

We use the notation Vpi for the membrane potential of cell pi. Cells are coupled.

The synaptic weight from cell p′j to cell pi reads W pj
pi . Thus, the pre-synaptic neuron is

expressed in the upper index; the post-synaptic, in the lower index.

3.2 Bipolar cells layer

The model consists first of a set of NB bipolar cells, regularly spaced by a dis-

tance δB, with spatial coordinates xi, yi, i = 1 . . . N coinciding with the center of their

receptive field (RF).

3.2.1 Stimulus integration

The receptive field of bipolar cells is classically modeled by a difference of isotropic

Gaussians. However, orientation selectivity, a mechanism first initiated at the level of

the retina, is computed by different types of neurons, including bipolar cells. Antin-

ucci et al. [60] have shown that a class of orientation selective amacrine cells, which

modulate the BC output, are also able generate orientation tuning in their presynaptic

terminals. A fraction of about 5% of bipolar cells is highly orientation selective. They

are mainly tuned to cardinal directions and diagonal axes. As orientation selectivity is

necessary to study the trajectories of objects in a two dimensional space, we consider
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therefore BCs with oriented center-surround RFs. The kernel KBi(x, y, t), mathemati-

cally representing the RF of the bipolar cell i, is thus modeled with a difference of (non

circular) Gaussians (DOG):

KBi,S(x, y) =
A1

2π
√

detC1

e−
1
2
X̃i.C

−1
1 .Xi − A2

2π
√

detC2

e−
1
2
X̃i.C

−1
2 .Xi , (3.1)

where Xi =

 x− xi
y − yi

,˜denotes the transpose, xi and yi are the coordinates of the

receptive field center which coincide with the coordinates of the cell, C1, C2 are positive

definite matrix whose main principal axis represent the preferred orientation.

The two Gaussians of the DOG are thus concentric and have the same principal axes.

Xi has the physical dimension of a length (mm) thus the entries of Ca, a = 1, 2 are

expressed in mm2, as well as its eigenvalues λ1,a, λ2,a. Aa, a = 1 . . . 2 are dimensionless

(so that the convolution (3.5) has the same dimension as S).

We model the temporal part with a difference of non concentric Gaussians whose

integral on the time domain is zero. This kernel well fits the shape of the temporal

projection of the bipolar RF observed in experiments (Fig. 3.2).

KT (t) =

(
K1√
2πσ1

e
− ( t−µ1 )2

2σ2
1 − K2√

2πσ2

e
− ( t−µ2 )2

2σ2
2

)
H(t) (3.2)

where H(t) is the Heaviside function. Note that µb, σb, b = 1, 2 have the dimension

of a time (s) whereas Kb are dimensionless. These quantities must meet the following

condition to ensure the continuity of KT (t) at zero:

K1

σ1

e
− µ2

1
2σ2

1 =
K2

σ2

e
− µ2

2
2σ2

2 . (3.3)

Thus, KBi(x, y, 0) = 0. In addition, we require that the integral of a constant stimulus

converges to zero, so that the cell is only reactive to changes. This reads:

K1 Π

(
µ1

σ1

)
= K2 Π

(
µ2

σ2

)
, (3.4)

where Π is the repartition function of the standard Gaussian.

Note that we consider here only one family of bipolar cells. Thus, the constants

A1, A2, K1, K2, σ1, σ2, µ1, µ2 and the covariance matrix Ca, a = 1, 2 defininig the recep-

tive field do not depend on i. Only the center of the receptive field, with coordinates
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Figure 3.2: Bipolar receptive field of salamander retina obtained from Spike Triggered
Average on experimental data (courtesy O. Marre). A) Spatial kernel. Up 3 dimen-
sional view, bottom 2 dimensional projection in heat map. B) temporal kernel.

xi, yi, does.

Fig. 3.2 shows an example of the spatial and temporal projections of a receptive

field of salamander retina, courtesy of Olivier Marre, fitted by the introduced spatial

and temporal kernels.

3.2.1.1 Space-time convolution

The BCs’ response is based, at first stage, on the convolution of the visual stimulus

S(x, y, t) with the spatio-temporal receptive field:

[
KBi

S,t
∗ S

]
(t) ≡ Vidrive(t). (3.5)
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Note that the exponential decay of the spatial and temporal part at infinity ensures

the existence of the space-time integral. With choice of physical dimension for the

constants defining the receptive field, the convolution has the same dimension as S,

which here is a voltage (mV).

It results from (3.3) that:

dVidrive
dt

=

[
KBi

S,t
∗ dS
dt

]
(t) (3.6)

The spatial integral
∫
R2 KS(x, y)S(x, y, u) dx dy is numerically computed using er-

ror function in the case of circular RF, and a computer vision method from Geusenroek

et al. [61] in the case of anisotropic RF, allowing to integrate generalized Gaussians

with an efficient computational time.

3.2.1.2 Anisotropic filtering

For the sake of clarity we consider here the integration over a time interval where

the stimulus is constant, and we restrict the computation to one Gaussian. The exten-

sion to a time-dependent stimulus and to difference of Gaussians is straightforward.

In the following, we also consider a spatially discretized stimulus.

When dealing with a 2D stimulus, we have to integrate over two axis. In the case

where the eigenvectors of the 2D of Gaussians are the axis of integration, the spatial

filter is separable in the stimulus coordinate system. Considering the stimulus as a grid

of pixels, we can integrate using the following discretization : let Lx be the size of the

stimulus along the x axis in pixels, Ly its size along the y axis, and δ the pixel length.

We set Sij(t) ≡ S(iδ, jδ, u), with i = 0, . . . , Lx
δ

and j = 0, . . . , Ly
δ

. The spatial integration

becomes then :

I(t) =
1

2πσxσy

∫ ∫
R2

S(x, y, u)e
− (x−x0)2

2σ2
x
− (y−y0)2

2σ2
y dxdy

=
∑
i,j

Sij(t)

[
erf(

i+ δ − x0√
2σx

)− erf(
i− x0√

2σx
)

] [
erf(

j + δ − y0√
2σy

)− erf(
j − y0√

2σy
)

]

In the case where the eigenvectors of the 2D of Gaussians are the axes of integra-

tion, the spatial filter is not separable in the stimulus coordinates system.

There exists methods that perform the computation by making a linear combination
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of basis filters [62], others that use Fourier based deconvolution techniques [63], and

others using recursive filtering techniques [64]. However, these methods are of high

computational complexity. We choose instead to use a computer vision method from

Geusenroek et al. [61].

It is based on a projection in a non-orthogonal basis, where the first axis is x and the

second is parametrized by a angle φ (see Fig. 3.3).

The new standard deviations read :

σx′ =
σxσy√

σ2
x cos θ2 + σ2

y sin θ2

σφ =

√
σ2
y cos θ2 + σ2

x sin θ2

sinφ

with

tan(φ) =
σ2
y cos θ2 + σ2

x sin θ2

(σ2
x − σ2

y) cos θ sin θ

with σx 6= σy.

Figure 3.3: Filter transformation description. The integration domain is limited by
four lines, the equations of which we can write in the new system of axes through a
coordinate change..

We adapt the implementation to the spatially discretized stimulus, using an inte-

gration scheme similar to the one introduced earlier. The integral finally reads :

I = σx′

√
π

2

∑
(i;j)∈[0,sx]×[0,sy ]

∫ (y+1) δ
sin(φ)

y δ
sin(φ)

Cije

(y′−y′0)2

2σ2
φ
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[erf(
(− cos(φ)y′ + x+ 1)δ − x′0√

2σx′
)− erf(

(− cos(φ)y′ + x)δ − x′0√
2σx′

)]dy′

Examples of tuning curves computed using this method are shown in fig. 3.4.

Figure 3.4: Tuning curves of simulated anisotropic bipolar cells. The stimulus con-
sists of motionless bars with different orientations. Orange curve shows the maxi-
mum bipolar response to bars with different orientation, in the case of isotropic RF.
The maximum is constant for all orientations. The blue curves show the maximum
bipolar response in the case of anisotropic receptive field. Θ denotes the orientation of
the receptive field. The peak of response is reached when the bar is in the preferred
orientation.

3.2.2 Bipolar cells voltage

In our model, the bipolar cell voltage is the sum of the external drive (3.5) received

by the bipolar cell and of a post synaptic potential PBi induced by connected amacrine

cells:

VBi(t) = Vidrive(t) + PBi(t). (3.7)

The form of PBi is given by eq. (3.13) in the amacrine connectivity section.

PBi(t) = 0 in the gain control model where no amacrine cells are considered.
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BCs have voltage thresholding:

NB(VBi) =

 0, if VBi ≤ θB;

VBi − θB, else.
(3.8)

Values of parameters are given in appendix.

3.2.3 Gain control

Bipolar cells have gain control, a desensitization when activated by a steady il-

lumination. This desensitization is mediated by a rise in intracellular calcium Ca2+,

at the origin of a feedback inhibition preventing thus prolonged signalling of the ON

bipolar cell [65] [2]. Following Chen et al., we introduce the dimensionless activity

variable ABi obeying the differential equation:

dABi
dt

= −ABi
τa

+ hN (VBi(t)). (3.9)

Assuming an initial condition ABi(t0) = 0 at initial time t0 the solution is:

ABi(t) = h

∫ t

t0

e−
t−s
τa N (VBi(s)) ds.

The bipolar output to amacrine and ganglion cells is then characterized by a non

linear response to its voltage variation, given by :

RBi = NB (VBi ) GB (ABi ) . (3.10)

where :

GB(A) =

 0, if A ≤ 0;

1
1+A6 , else.

(3.11)

Note that RBi has the physical dimension of a voltage, whereas, from eq. 3.11, A is

dimensionless. As a consequence, the parameter h in eq. 3.9 must be expressed in

ms−1mV −1 . The form (3.11) and its 6-th power are based on experimental fits made by

Chen et al. Its form is shown in Fig. 4.1.
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3.3 Amacrine cells layer

Amacrine cells play a central role in motion processing [59] [66] [67] [68]. In

the model, we consider one family of amacrine cells involved in differential motion.

Amacrine cells tile the retina with a lattice spacing δA. We index them with j = 1 . . . NA.

3.3.0.1 Connections amacrines to bipolars

We consider here a simple model of amacrine cells. We assimilate them to passive

cells (no active ionic channels) acting as a simple relay between bipolar cells. The

amacrine cellAj , connected to the bipolar cellBi, induces on the latter the post synaptic

potential :

P
Aj
Bi

(t) = W
Aj
Bi

(t)

∫ t

−∞
γB(t− s)VAj(s)ds,

γB(t) = e
− t
τBH(t), (3.12)

where H is the Heaviside function that ensures causality. Thus, the post synaptic po-

tential is the mere convolution of the presynaptic amacrine cell voltage, with an expo-

nential α-profile [69]. In addition, we assume the propagation to be instantaneous.

Here, the synaptic weightWAj
Bi

< 0 mimics the inhibitory connection from amacrine

to bipolar (glycine or GABA) with the convention thatWAj
Bi

= 0 if there is no connection

from Aj to Bi.

In general, several amacrine cells input the bipolar cell Bi giving a total PSP:

PBi(t) =

NA∑
j=1

W
Aj
Bi

∫ t

−∞
γB(t− s)VAj(s)ds. (3.13)

3.3.1 Bipolar to amacrine cells connections

Conversely, the bipolar cell Bi connected to Aj induces on this cell a synaptic

response characterized by a post-synaptic potential PAj(t). We assume that amacrine

cells are passive elements so that their voltage VAj(t) is equal to this PSP. We have thus:

VAj(t) =

NA∑
i=1

WBi
Aj

∫ t

−∞
γA(t− s)RBi(s)ds, (3.14)

with γA(t) = e
− t
τAH(t). Here WBi

Aj
> 0 corresponding to the excitatory effect of bipolar

cells on amacrine cells, through a glutamate release. Note that the voltage of the bipolar

49



cell is rectified and gain-controlled.

3.3.2 Dynamics

The coupled dynamics of Bipolar and Amacrine cells can be described by a dy-

namical system that we derive now.

Bipolar voltage. Differentiating (3.13) with respect to time gives:

dPBi
dt

= − 1

τB
PBi +

NA∑
j=1

W
Aj
Bi
VAj ,

while differentiating (3.7) with respect to time gives:

dVBi
dt

=
dVidrive
dt

− 1

τB
PBi +

NA∑
j=1

W
Aj
Bi
VAj

=
dVidrive
dt

− 1

τB
(VBi − Vidrive ) +

NA∑
j=1

W
Aj
Bi
VAj .

Thus, introducing:

FBi(t) =

[
KBi

S,t
∗
(
S
τB

+
dS
dt

)]
(t) =

Vidrive
τB

+
dVidrive
dt

, (3.15)

we end up with the following equation for the bipolar voltage:

dVBi
dt

= − 1

τB
VBi +

NA∑
j=1

W
Aj
Bi
VAj + FBi(t). (3.16)

where we have used (3.6).

This is a differential equation driven by the time dependent term FBi containing

the stimulus and its time derivative. As an example let’s consider an object mov-

ing with a speed ~v depending on time, thus with a non zero acceleration ~γ = d~v
dt

.

This stimulus has the form S(t) = g
(
~X − ~v(t) t

)
, with ~X =

 x

y

, so that dS
dt

=

−~∇g
(
~X − ~v(t) t

)
. (~v + ~γt ) where ~∇ denotes the gradient. Therefore, thanks to the eq.

(3.16), bipolar cells are sensitive to changes in directions.

Note that this property is inherited from the simple, differential structure of the dy-
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namics, the term dVidrive
dt

resulting from the differentiation of VBi . This term does not

appear in the classical formulation (3.5) of the bipolar response, without amacrine con-

nectivity.

Amacrine voltage Likewise, differentiating (3.14) gives:

dVAj
dt

= − 1

τA
VAj(t) +

NA∑
i=1

WBi
Aj
RBi(t). (3.17)

Coupled dynamics. Eq. (3.9) (activity), (3.16) and (3.17) define a set of 2NB + NA

differential equations, ruling the behavior of coupled bipolar and amacrine cells, under

the drive of the stimulus, appearing in the term FBi(t). We summarize the differential

system here: 

dVBi
dt

= − 1
τB
VBi +

∑NA
j=1 W

Aj
Bi
VAj + FBi(t),

dVAj
dt

= − 1
τA
VAj(t) +

∑NA
i=1W

Bi
Aj
RBi(t),

dABi
dt

= −ABi
τa

+ hN (VBi(t)).

(3.18)

Note that bipolar cells act on amacrine cells via a rectified voltage (gain control

and piecewise linear rectification), in agreement with fig. 3.1, pathway III.

3.3.3 Probabilistic model of amacrine connectivity

We developed a geometric connectivity model defined as follows : each cell has

a given number of branches, each of which has a given length and angle. When two

branches of two different cells intersect (i.e one bipolar and one amacrine cell), the two

neurons are said to be connected. The lengths follow an exponential distribution:

fL(l) =
1

ξ
e
−l
ξ

with a spatial scale ξ, favoring thus short range connections. The number of branches

distribution is exponential too. The angle distribution is taken to be isotropic in the

plane, i.e. uniform on [0, 2π[. We derive the condition that two neurons are connected.

Let us consider two neurons each having one branch of respective length A and B,

forming respectively the angle α, β with the horizontal axis. (see Fig. 3.5) The distance
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dist between the two cells is computed using their Cartesian coordinates. Using the

sine rule, the cells are connected if and only if :

dist ≤ A
sin(β − α)

sin(β + θ − α)

dist ≤ B
sin(β − α)

sin(θ)

Given a random variable X, we note fX its probability distribution function and

FX its cumulative function. We note dist the Euclidean distance between neurons 1

and 2.

Figure 3.5: Geometrical description to compute the probability of connection between
2 neurons.

Let us first start by characterizing the probability distribution of β − α. Under

the assumption of convergence, the probability distribution of the sum of two random

variables is given by the convolution product of their probability density functions. It

follows that :
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fβ−α(x) =

∫ +∞

−∞
f−α(x)fβ(x− y)dy =

1

2π

∫ x+2π

x

fβ(u)du

=


0 ifx ∈ [−∞,−2π]orx ∈ [2π,∞],

1
(2π)2 (2π + x) if x ∈ [−2π, 0],

1
(2π)2 (2π − x) if x ∈ [0, 2π].

(3.19)

We now characterize the probability distribution of sin(β − α).

The variable X = β − α evolves in the interval [−2π, 2π]. If y ∈ [0, 1], the equation

sin(x) = y admits four solutions : x = −2π + arcsin(y), −π − arcsin(y), arcsin(y),

π − arcsin(y), and |dsin(x)/dx| = |cos(x)| = 1√
1−x2 , ∀x in the solution set. We use

variable change in the case of a non monotonous function Y = g(X). The probability

density function of Y as a function of the one of X is given by :

fY (y) =
∑

k,xk=g−1(y)

fX(xk)

|dg/dx|
(3.20)

Consequently, the probability density function of Y = sin(β − α) when y ∈ [0, 1]

reads :

fY (y) =
1√

1− x2
[fβ−α(−2π + arcsin y) + fβ−α(−π − arcsin y)+

fβ−α(arcsin y) + fβ−α(π − arcsin y)]

=
1

π
√

1− x2
(3.21)

If y ∈ [−1, 0], the equation sin(x) = y admits four solutions : x = −π − arcsin(y),

arcsin(y), π − arcsin(y), 2π + arcsin(y), and similarly, |dsin(x)/dx| = |cos(x)| = 1√
1−x2 ,

∀x in this solution set.

The probability density function of Y = sin(β−α), when y ∈ [−1, 0], is then given

by the same function as when y ∈ [0, 1].

Normalization check:

∫ 1

−1

1

π
√

1− x2
dx =

[
arcsin(x)

π

]1

−1

= 1
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Let’s now derive the probability distribution of β − α + θ, with θ a constant pa-

rameter defined by the position of neurons 1 and 2, in [0, π]. Through a simple change

of variable, the density function of β − α + θ is defined on [−2π + θ, 2π + θ] by :

fβ−α+θ(x) =


0 ifx ∈ [−∞,−2π + θ]orx ∈ [2π + θ,∞],

1
(2π)2 (2π + x− θ) if x ∈ [−2π + θ, 0],

1
(2π)2 (2π − x+ θ) if x ∈ [0, 2π + θ].

(3.22)

This function is non continuous in 0. However, given that its support has the

same size as the support of fβ−α (4π) , and given the periodicity of the sine function,

the probability density function of sin(β − α + θ) is identical to the one of sin(β − α).

Let Y = sin(β−α) and Z = sin(β−α+ θ). We want now to compute the density

function of Y
Z

. There is no straight forward way to compute the density of a ratio of two

random variables. We will hence use the cumulative function in order to characterize

this ratio. Let D the integration domain. We have then :

P (
Y

Z
≤ c) = P (Y ≤ cZ)

=

∫
D
fX(a)fZ(b)dadb

The evaluation of this integral depends on the value of c. When 0 ≤ c ≤ 1 :

P (
Y

Z
≤ c) =

1

π2

∫ 1

−1

1√
1− a2

(∫ 1

ca

1√
1− b2

db

)
da

=
1

π2

∫ 1

−1

1√
1− a2

(arcsin(ca) +
π

2
)da (3.23)

The function (arcsin(ca)√
1−a2π

is odd, its integral on [-1,1] is null. It follows that :

P (
Y

Z
≤ c) =

∫ 1

−1

π
2√

1− a2π
)da =

1

2
(3.24)

Similarly, when −1 ≤ c ≤ 0, the probability is given by :
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P (
Y

Z
≤ c) = 1− P (

Y

Z
≥ c)

= 1−
∫ 1

−1

1√
1− a2π

(∫ 1

ca

1√
1− b2π

db

)
da

=
1

2
(3.25)

When c ≥ 1 :

P (
Y

Z
≤ c) =

∫ 1

−1

π
2√

1− a2π
)da

= 1− 1

π2

∫ 1

−1

1√
1− a2

(arcsin(ca) +
π

2
)da (3.26)

We restrict the integration domain to [−1
c
, 1
c
], where arcsin(ca) is defined. There-

fore :

P (
Y

Z
≤ c) = 1− 1

π2

∫ 1
c

− 1
c

1√
1− a2

(arcsin(ca) +
π

2
)da

= 1− 1

π
asin(

1

c
) (3.27)

Similarly, when c ≤ −1 :

P (
Y

Z
≤ c) =

1

π2

∫ − 1
c

1
c

1√
1− a2

(arcsin(ca) +
π

2
)da

= − 1

π
asin(

1

c
) (3.28)

The probability density function describing Y
Z

reads :

fY
Z

(x) =

0 ifx ∈ [−1, 1]

1
π
√
x4−x2 if x ∈ [−∞,−1]or ∈ [1,+∞].

(3.29)

Normalisation check : we use the symmetry of the function, and the Gradshteyn

table of integrals in order to compute the following :
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∫ ∞
−∞

fY
Z

(x) = 2

∫ ∞
0

1

π
√
x4 − x2

= 1

We characterize the probability density function of A.X
Y

, using the derivation of

the probability distribution a product of two independent random variables. Hence,

in the case of our problem, we have :

fA.X
Y

(z) =

∫ ∞
−∞

fA(x)fX
Y

(z
x

) 1

|x|
dx

=

∫ −1

−∞

ξexp(−ξx)

|x|
1

π
√(

z
x

)4 −
(
z
x

)2
+

∫ ∞
dx

ξexp(−ξx)

|x|
dx

π
√(

z
x

)4 −
(
z
x

)2

=

∫ −1

−∞
− ξexp(−ξx)x

π
√
z4 − (z.x)2

dx+

∫ ∞
1

ξexp(−ξx)x

π
√
z4 − (z.x)2

dx (3.30)

If z ≥ 1, for to integrand to be defined, we need to restrict the integration limits

of the left integral to [−z,−1], and to [1, z] for the right integral. In this case :

fA.X
Y

(z) =

∫ −1

−z
−ξexp(−ξx)x

πz
√
z2 − x2

dx+

∫ z

1

ξexp(−ξx)x

πz
√
z2 − x2

dx (3.31)

Similarly, if z ≤ 1, the density function reads :

fA.X
Y

(z) =

∫ −1

z

ξexp(−ξx)x

πz
√
z2 − x2

dx+

∫ −z
1

−ξexp(−ξx)x

πz
√
z2 − x2

dx (3.32)

It is not straightforward to compute analytically these integrals. In the case the

integral has a positive support, it can be done using modified Bessel and Sturve func-

tions (from the Gradshteyn table). The left hand integral then reads :

∫ z

1

ξexp(−ξx)x

πz
√
z2 − x2

dx =
ξ

πz

[∫ z

0

exp(−ξx)x√
z2 − x2

dx−
∫ 1

0

exp(−ξx)x√
z2 − x2

dx

]
=

ξ

z2
(z − 1) [L1(ξz)− I1(ξz)] + z − 1 (3.33)

where L1 is the modified Sturve function of the first order, I1 is the modified

Bessel function of the first order.
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We were unsuccessful in computing the integral on the right hand side.

The last probability density function we need to compute is the one of B sin(β −

α) = B.X . Using the product rule we have :

fB.X(z) =

∫ ∞
−∞

fB(x)fX

(z
x

) 1

|x|
dx

=

∫ −1

−1

ξexp(−ξx)

|x|
1

π
√

1−
(
z
x

)
=

∫ −1

−1

ξexp(−ξx)

π
√
x2 − 1

(3.34)

Once again, we were unsuccessful in computing the explicit form of this integral.

Conclusion

Given the two conditions required to have a connection :

dist ≤ A
sin(β − α)

sin(β + θ − α)

distsin(θ) ≤ Bsin(β − α)

we wanted to characterize the probability distribution ofA sin(β−α)
sin(β+θ−α)

andBsin(β−

α), to speed up the process of generating the adjacency matrix : instead of drawing 4

random variables (A, B, α and β), we would only have to draw two random variables

(A sin(β−α)
sin(β+θ−α)

and Bsin(β − α)).

We were able to derive the integral form of these two probability distributions. How-

ever, we couldn’t compute the explicit result of this integral.

In terms of implementation, in order to draw random numbers from fB.X(x) and fA.X
Y

(x),

since FB.X and FA.X
Y

cannot be computed and neither can F−1
B.X and F−1

A.X
Y

, we cannot

use the inversion sampling1. We have then to implement rejection sampling which is

highly consuming in terms of computational time, and gives only approximate results.

Consequently, we choose in the following Chapter to implement the straightforward

way to compute the adjacency matrix, because it is more tractable computationally.

1Inversion sampling consists in drawing a random number u from the uniform distribution U [0, 1],
and get the corresponding number from the considered distribution F using x = F−1u
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3.4 Ganglion cells

There are many different types of ganglion cells in the retina, with different phys-

iologies and functions [9] [70]. In the present computational study we focus on specific

subtypes associated to the pathways I (Fast OFF cells), II (Direction selective cells),

III (Differential Motion Sensitive cells) in Fig. 3.1. All these have common features:

Bipolar cells pooling and Gain control.

3.4.1 Bipolar cells pooling

In the retina, ganglion cells of the same type cover with a constant density the

surface, forming a mosaic. The degree of overlap between ganglion cells indicates

the extent to which their dendritic arbors are intricated in one another. This overlap

remains however very limited between cells of the same type [71]. We note k the index

of the ganglion cells, k = 1 . . . NG and δG the spacing between two consecutive ganglion

cells lying on the grid.

In the model, ganglion cell k pools over the output of bipolar cells in its neigh-

bourhood. Its voltage, VGk , reads:

VGk =
∑
i

WBi
Gk
RBi (3.35)

where WBi
Gk

is Gaussian with amplitude a and standard deviation c :

WBi
Gk

= a e−
d2[Bi,Gk ]

2 c2 . (3.36)

where c has the dimension of a distance and a is dimensionless.

3.4.2 Ganglion cells response

The voltage VGk in eq. (3.35) is processed through a gain control loop similar to

the bipolar layer. As ganglion cells are spiking cells, a non-linearity is fixed so as to

impose an upper limit over the firing rate. Here, it is modeled by a piecewise linear
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function :

NG (V ) =


0, if V ≤ 0;

αG(V − θG), if θG ≤ V ≤ Nmax
G /αG + θG;

Nmax
G , else.

(3.37)

This function corresponds to a probability of firing in a time interval. Thus, it is ex-

pressed in (Hz). Consequently, αG is expressed in (Hzmv−1 and Nmax
G ) in (Hz). Param-

eters values can be found in the appendix.

Gain control is implemented with an activation function AGk , solving the follow-

ing differential equation:

dAGk
dt

= −AGk
τG

+ hGNG (VGk ) , (3.38)

and a gain function :

GG(A) =

 0, if A ≤ 0;

1
1+A

, else.
(3.39)

Note that the origin this gain control is different from the bipolar gain control

(3.11). Indeed, Chen et al. hypothesize that the biophysical mechanisms that could lie

behind ganglion gain control are spike-dependent inactivation of Na+ and K+ chan-

nels, while the study by Jacoby et al. [72] hypothesize that ganglion cells gain control

is mediated by feed-forward inhibition that they receive from amacrine cells.

Finally, the response function (firing rate) of this ganglion cell type is:

RG (VGk , AGk ) = NG(VGk)GG(AGk). (3.40)

3.4.3 Fast OFF cells

The model integrates a ganglion cell layer of fast OFF cells, that have been shown

to account for anticipatory effects in the retina [1][2]. They correspond to the pathway

I in Fig. 3.1 and they are not coupled. The firing rates of these cells show a shift in

the peak response in the case of smooth motion, as compared to a flashed bar response

(see Fig 3.6).

Fast OFF ganglion cells tile the retina with a mean distance of about δGF = 50µm; their

receptive field extend to ΣGF = 300µm, thus, each RF overlaps with about Σ2
g

δ2
GF

= 36

59



RFs of the same cell type [73].

Figure 3.6: Bipolar (left) and ganglion (right) cells layers responding to a bar in smooth
motion. The curves show the response of three cells lying on the trajectory, distanced
by 150 µm. Colors denote cells lying on the same coordinates. The bar spans over the
entire receptive fields of bipolar cells. The peak response is first shifted thanks to the
bipolar gain control, and is further shifted with the ganglion gain control. Anticipation
as it is defined in the text is the temporal delay between the red vertical line (peak of
the linear bipolar response of the green cell) and the orange line (firing rate peak of the
ganglion cell lying at the same coordinates).

3.4.3.1 Response of Fast OFF cells to motion onset

When the stimulus is a bar that appears, stays motionless and there starts trans-

lating, fast off ganglion cells demonstrate a salient activity to first the appearance and

then the start of motion. The level of this activity is generally higher that the response

elicited by smooth motion. The gain control model accounts for this effect, ranking

the level of activity from the highest to the lowest : object appearance, motion onset,

and smooth motion. This effect has an important functional purpose, denoting the

detection of a possible obstacle and alerting on the danger raised by its start of motion.

3.4.3.2 Response of Fast OFF cells to motion reversal

Ganglion cells of different type have been shown to be responsive to motion re-

versal, firing a transient burst of firing 2̃50 ms after reversal [74]. Chen et al. have

identified and classified ganglion cell populations responsive to reversal in the sala-

mander retina and they found that a significant proportion of cells belonged to the fast

OFF cell type (45% of fast OFF are reversal responsive, wheareas only 24% of medium
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Figure 3.7: Bipolar (left) and ganglion (right) cells layers responding to the appearance
of the bar and motion onset. The bar appears at t=100 ms and starts moving at t=500
ms. The curves show the response of three cells lying on the trajectory, distanced by 150
µm. Colors denote cells lying on the same coordinates. The response to the appearance
of the bar is more salient than the response to the motion onset, which in turn is more
salient than the response to the moving bar..

OFF and 20% of fast ON are). The stimulus type seems also to play a crucial role in

the reversal responsiveness, whether it is dark or bright, a translating bar or a moving

edge. Consistent with the results we showed and the structure of our model, we chose

to restrict our simulation to a moving dark bar, and to fast OFF ganglion cells. It should

be noted however, that in order for the gain control model to accurately reproduce mo-

tion reversal, one has also to add ON bipolar, which will generate the second peak of

activity when the bar changes its motion orientation.
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Figure 3.8: Simulation results of the bipolar (left) and the ganglion (right) cells layers
responding to motion reversal. The bar changes its motion orientation at t=500 ms. In
the bipolar layer, the purple curve is the response of an OFF bipolar cell, and the green
curve is the response a neighbouring ON bipolar cell. In the ganglion cell layer, the
curves show the response of two cells lying on the trajectory, distanced by 150 µm.

3.4.4 Direction selective ganglion cells and gap junctions connectiv-

ity

These cells correspond to the pathway II in Fig. 3.1. They are only coupled via

electric synapses (gap junctions). In several animals, like the mouse, this enables the

corresponding ganglion cells to be direction sensitive. Note that other mechanisms, in-

volving lateral inhibition via Starburst Amacrine Cells have also been widely reported

[15] [75] [76] [77] [67] [68] [78]. Here we focus on gap junctions direction sensitive cells,

responsible of lag normalization, following Tredholm et al.

There exist four major types of these DSGCs, each responding to edges moving

in one of the four cardinal directions. Trenhlom et al. [3] have emphasized the role

of these cells coupling in lag normalization: uncoupled cells begin responding when a

bar enters their receptive field, i.e, their dentritic field extension, whereas coupled cells

start responding before the bar reaches their dendritic field. This anticipated response

is due to the effective propagation of activity from neighboring cells through gap junc-

tions, and is particularly interesting when comparing the responses for different veloc-

ities of the bar. Trenhlom et al. have shown that the uncoupled DSGCs detect the bar at

a position which is further shifted as the velocity grows, while coupled cells respond

at an almost constant position, regardless of the velocity. In our work, we show that
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temporally, this spatial lag normalization induces a motion extrapolation that confers

to the retina more than just the ability to compensate for processing delays. Indeed,

the anticipated activity is all the more important because it has a predictive aspect to

it.

Note that there is one cell type per preferred direction. We consider here only one

such direction in the model description to avoid heavy notations. We note GD this cell

type (instead of GDd where d = 1, . . . 4 would be one of the cardinal direction). Along

this direction, there is a cell ordering denoted by an index kD = 1 . . . ND. The voltage

of ganglion cell VGDkD is now:

V in
Gk

(t) =
∑
i

WBi
Gk
RBi(t) (3.41)

Classical, symmetric bidirectional gap junctions coupling between neighbouring

cells would involve a current of the form−g(VGk−VGk−1
)−g(VGk−VGk+1

) where g is the

gap junction conductance. In contrast, here, the current takes the form−g(VGk−VGk−1
).

This is due to the specific asymmetric structure of the direction selective ganglion cell

dendritic tree [3]. This induces a strong difference in the propagation of a perturbation.

Indeed, consider the case VGk − VGk−1
= VGk − VGk+1

= δ. In the symmetric form the

total current vanishes whereas in the asymmetric form the current is −gδ. Still, the

current can have both direction depending on the sign of δ.

The main consequence in terms of propagation of a perturbation is that direction sensi-

tive gap junctions induces a ballistic motion (displacement is proportional to t) whereas

classical symmetric coupling induces a diffusive motion (displacement is proportional

to
√
t).

In our model ganglion cells are gain-controlled. Gain control can take place before

or after the effect of gap junctions. We were not able to find in the biophysical literature

which option is the more plausible so we considered the two of them. In the first case

the voltage of Gk obeys :

VGk(t) = V in
Gk
− g

C

∫ t

−∞
(VGk(s)− VGk−1

(s))ds

Deriving the previous equation, we get the following differential equation gov-
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erning the ganglion cell voltage :

dVGk
dt

=
dV in

Gk

dt
− wgap

[
VGk(t)− VGk−1

(t)
]

(3.42)

where wgap = g
C

, and the Vk voltage is then rectified by gain control.

In the second case the voltage of Gk obeys:

dVGk
dt

=
dV in

Gk

dt
− wgap

[
RG (VGk , AGk ) (t)−RG

(
VGk−1

, AGk−1

)
(t)
]

(3.43)

where RGk (VGk , AGk ) is given by (3.40).

Figure 3.9: Schematic of the gap junction connectivity. A ganglion cell is coupled to its
surrounding cells, in the direction of motion.

Note that these two equations takes a different from as Trendholm et. al (ex-

pressed in terms of currents), because we had to adapt it so as to match the voltage

form (3.41). Still, our model reproduces the main feature of Trendholm et. al: lag

normalization, as shown in Fig. 3.10 : Trendholm et. al have indeed developed a

current-based model of DSGCs, able to reproduce lag normalization : coupled cells

elicit an early response to a moving bar, resulting in a space normalization indepen-

dent of the speed of the bar. In other words, the response of cells near the start of

motion starts arising when the bar is at a given distance from their soma, which grows

with the speed of the bar, while the activity of cells sufficiently far from the start of

motion starts rising when the bar a quasi constant position from their soma.

We test the ability of our voltage-based approach to reproduce lag normalization re-
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sults from the same ranges of speed. In our simulation setting, we don’t include gain

control, both at the level of bipolar and ganglion cells. The aim at this point is to find

the range of coupling strength values where we are able to reproduce lag normaliza-

tion results without gain control. It should be noted here that the coupling strength of

our voltage based model and the α parameter of Trendholm model are not equivalent,

the latter is unit-less while wgap is in ms−1.

Figure 3.10: Reproducing lag normalization with our gap junction coupling model :
Simulation results of the first (left) and the last (right) cell of the network, for different
stimulus speeds, with wgap = 0.9ms−1.

Partial conclusion

In this chapter, we introduced our retina model which implements three anticipa-

tory mechanisms : gain control, amacrine cells connectivity at the level of bipolar cells

and gap junction coupling of ganglion cell. The mathematical formalism developed

here enables us to conduct a mathematical study of anticipation, further emphasized

through numerical simulations. While the coupling part of the model starts from bio-

logically plausible circuits, the study conducted hereafter is purely computational.
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Chapter 4

Mathematical results

In this chapter, we will present mathematical results concerning the analytical

formulation of anticipation time in the case of gain control. We will then conduct a

mathematical study of the gap junction coupling and show that this connectivity type

induces a propagating wave of activity. Finally, we will study the amacrine cell con-

nectivity circuit as a dynamical system, focusing on the nearest neighbor graph type.

The case of the probabilistic graph being hard to handle analytically, we will study it

from a numerical point of view in the next chapter.

4.1 Anticipation time in the gain control model

We define the anticipation time as :

∆ = tB − tG, (4.1)

where tB is the peak in the bipolar pool response without gain control (eq. (4.7) below)

and tG is the peak in the response of the corresponding ganglion cell. In the absence

of gain control and lateral connectivity ∆ = 0. Anticipation corresponds to a positive

∆. Note that we observe another form of anticipation, the raise of activity before the

stimulus enters in the receptive field of the ganglion cell. We comment this below. Here

we stick at the analysis of the anticipation time defined by (4.1).

For explanations purposes, we will often use the approximation of Vidrive by a

Gaussian pulse, with width σ, propagating at constant speed v along the direction ~ex:

Vidrive(t) =
1√

2π σ
e−

1
2

( x−vt )2

σ2 , (4.2)
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Figure 4.1: Gain function (3.11). l(x), in dashed line, is a piecewise linear approxima-
tion from which region I, II and III are defined.

where x = k δB is the horizontal coordinate of Bipolar cell i.

When VBi(s) has the form (4.2) this gives (for a very low threshold θB such that

N (VBi(s)) = VBi(s)) :

ABi(t) =
h

v
e

1
2

σ2

τ2
a v

2 e
1
τav

(x−v t )

[
1− Π

(
x− v t
σ

+
σ

τa v

)]
, (4.3)

where Π(x) = 1
2

[
1 + erf

(
x√
2

) ]
is the repartition function of the Gaussian. This re-

sults holds mutantis mutandis for the activity of gain controlled ganglion cells (eq.

(3.39)).

In the course of this mathematical study, we will use the following piecewise

linear approximation for the bipolar gain control also represented in Fig. 4.1:

GB(A) =


0, if A ∈]−∞, 0[∪ [4

3
,+∞[, region I;

1, if A ∈ [0, 2
3
], region II;

−3
2
A+ 2, if A ∈ [2

3
, 4

3
], region III.

(4.4)

Thanks to this approximation we roughly distinguish 3 regions for the gain function

GG(A). In region I, the gain is essentially 0; in region II it is equal to 1. Finally, in

region III it decays very fast. This shape is useful to understand the mechanism of

anticipation.
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4.1.1 Peak times in the ganglion cell activity

In the presence of a moving stimulus the firing rate of the ganglion cell G in-

creases up to a maximum, reached at a time tm. Note that this maximum might not be

unique so tm is the time to reach the first maximum. In general, tm depends on gain

control, lateral connectivity, as well as characteristics of the stimulus such as speed and

contrast. Finally, it also depends on the preferred orientation of the bipolar cells recep-

tive field. We derive here a general equation for our model. We give here the main

conclusions allowing to interpret the numerical results presented in the next chapter.

To avoid trivialities we will consider that the firing rate function of G is a smooth,

monotonously increasing sigmoid function so thatN ′G(V ) > 0. In this case the extrema

in the firing rate of the ganglion cell Gk are given by dVGk
dt

= 0, or, using the pooling

equation (3.35) ,
∑

iW
Bi
Gk

dRBi
dt

= 0, where from the definition (3.10) of RBi :

dRBi

dt
= GB (ABi )

dNB(VBi)

dt
+NB(VBi)G ′B (ABi )

dABi
dt

.

There are two types of bipolar cells. The inactive ones where VBi ≤ ΘB andNB(VBi) = 0

and dRBi
dt

= 0 so they do not contribute to the activity. The active bipolar cells, VBi > ΘB

obey NB (VBi ) = VBi .

For those cells, the equation for the times of extrema in the firing rate of Gk is

given by :

∑
i

WBi
Gk
GB (ABi )

(
− 1

τB
VBi +

NA∑
j=1

W
Aj
Bi
VAj + FBi(t)

)
= −

∑
i

WBi
Gk
G ′B (ABi ) VBi(t)

dABi
dt

,

(4.5)

where the sum holds on active bipolar cells in the pool of Gk.

We analyse now this equation in specific cases.

4.1.2 Anticipation time in a simple example

To illustrate how gain control induces anticipation we consider first the case of a

bipolar cell B connected to a ganglion cell (no pooling) where the drive has the form

(4.2) so that the bipolar activity has the form (4.3). The voltage VBi , activity ABi , gain

G (VBi ) and rectified voltage RBi of the cell Bi are shown in Fig. 4.2. One can easily

see the role of gain control in anticipating the peak of the rectified voltage.

In this case an explicit equation for tG can be written. The maximum of RBi is
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Figure 4.2: The mechanism of gain control when the drive is the Gaussian pulse (4.2)
for different values of h. First line: voltage VBi ; second line, activity ABi ; third line,
gain G (ABi ) and fourth line, rectified voltage RBi . The black dashed line indicates the
peak in Vidrive(t) (time tB). The purple dashed line is the time tG for h = 1mV −1ms−1.
The green dashed line is the time tG for h = 2mV −1ms−1.

reached when 1
VBi

dVBi
dt

= − 1

GB(ABi )
dGB(ABi )

dt
, with 1

VBi

dVBi
dt

= v
σ2u, u = x− v t. Using the

piecewise linear form (4.4) of GB and assuming that the solution if reached when ABi

is in region III this gives:
v

σ2
u =

3

4− 3ABi

dABi
dt

(4.6)

It can be solved numerically using the form (4.3)

ABi(t) = h
v
e

1
2

σ2

τ2
a v

2 e
u
τav

[
1− Π

(
u
σ

+ σ
τa v

) ]
.

The fast rising in activity is mainly due to the term 1 − Π
(
u
σ

+ σ
τa v

)
so we may

assume that e
u
τav ∼ 1 near the peak time.

In fig. 4.3 we show how anticipation time depends, in this case, on the stimulus

size (here the mean-square deviation σ of the Gaussian peak), the bar speed, and the

activity parameter h. The values of h, v has been chosen in agreement with the figures

reporting the anticipation time for a moving bar (Fig 5.1).
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Figure 4.3: Anticipation time ∆ for a Gaussian pulse. Red points correspond to the
numerical simulations and blue line to the analytic approximation (4.6). Left: ∆ as
function of h (v = 3 mm/s; σ = 0.162 mm). Right: ∆ as function of v (σ = 0.162 mm;
h = 6.1 s−1).

4.1.3 Peak time without bipolar gain control and without lateral con-

nectivity

The case without gain control corresponds to taking GB (ABi ) = 1 so that G ′B (ABi ) =

0. The absence of connectivity implies that WAj
Bi

= 0. From eq. (3.7) it also implies that

VBi(t) = Vidrive(t) so that the peak in ganglion cell Gk is given by:

∑
i

WBi
Gk

dVidrive
dt

= 0 (4.7)

We call tB the solution of (4.7) giving the maximal peak. This is the time appearing in

the definition (4.1) of the anticipation time. As the pooling weights WBi
Gk

are positive,

we remark that (4.7) has solution only of some cells have a derivative dVidrive
dt

< 0. More

precisely, when the bar enters the receptive field of bipolar cell i, the derivative dVidrive
dt

is

first positive, then become negative after the peak in the bipolar linear response Vidrive .

Thus, eq. (4.7) requires that some bipolar cells - the leftmost for a bar moving from the

left to the right - in the pool are beyond their activity peak.

The general solution of this equation depends on the form of the stimulus and

its time derivative. In the case of a moving bar sweeping at a constant speed one can

write an explicit equation for the time peak, given in the appendix. We have not been

able to find an analytic solution though, except in the case where the response is very

fast. In general, the maximum of the peak is NOT reached when the bar enters the center of the

receptive field, as usually believed.
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4.1.4 Peak time with bipolar gain control and without lateral connec-

tivity

We now explain why the time tG solving equation 9.2 and corresponding to the

maximum of the ganglion cell’s peak is in advance to the time tB defined in the previ-

ous section, so that ∆ > 0 in the presence of gain control. To simplify the description,

but without loss of generality, we use the piecewise linear approximation of GB.

Inactive cells (VBi < θB) do not contribute to the equation. For active cells we have 3

cases. Cells in region I of fig. 4.1 do not contribute as well (actually, a cell is in region

I when its activity is negative, a situation which is not physically realistic). Cells in

region II have GB (ABi ) = 1 and G ′B (ABi ) = 0. Actually, the case considered in the

previous section (no gain control) corresponds to having all cells in region II when the

peak of GCell’s activity is reached. Finally, cells in region III have a fast gain decay

with G ′B (ABi ) < 0 ∼ −3
2
.

In this case, equation (9.2) reads:

∑
i∈II

WBi
Gk

dVidrive
dt

+
∑
i∈III

WBi
Gk
GB (ABi )

dVidrive
dt

= −
∑
i∈III

WBi
Gk
G ′B (ABi ) Vidrive(t)

dABi
dt

,

(4.8)

With our choice of parameters, the right-hand side is positive. Likewise, the left-hand

side term corresponding to region III is positive. Finally, the left-hand side term corre-

sponding to region II is a sum of terms than can be either positive or negative (when

the corresponding bipolar cell has gone beyond its maximal response). Thus, this term

is positive, increasing for short times, and starts to decrease after a sufficiently long

time, until it vanishes and becomes negative. Now, in contrast to the no-gain control

case, where, to have a solution, eq. (4.7) required some of the derivative dVidrive
dt

to be

negative to achieve a zero sum, here, this condition is not necessary because the right

hand side is positive. Thus, the solution of 4.9 is reached at a time tG < tB. The time tG

depends though on parameters such as the bar speed, the contrast, and the size of the

object, as illustrated in section 5.1.

As the decay in gain is very fast, a possible approximation to obtain tG is obtained

by setting GB (ABi ) = 0 in region III, giving:

∑
i∈II

WBi
Gk

dVidrive
dt

=
3

2

∑
i∈III

WBi
Gk
Vidrive(t)

dABi
dt

, (4.9)
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4.2 The role of gap junctions

4.2.1 Propagating wave of activity

In order to better understand the role that gap junctions can have on motion an-

ticipation we first analyse the motion of a propagating pulse of the form (4.2). We show

that eq. (3.42) is associated with a transport equation of ballistic type. For this, we con-

sider a continuous spatio-temporal field V (x, t), x ∈ R, such that VGk ≡ V (kδG, t). We

assume likewise that V in
Gk
≡ V in(kδG, t) for some continuous function V in(x, t) corre-

sponding to the GCells input. We set ∂V in(x,t)
∂t

≡ f(x, t). Finally, we note C(x) the initial

profile so that V (x, t0) = C(x).

In the limit where δG is small eq. (3.42) becomes:

∂VG
∂t

= f(x, t)− vgap
∂VG
∂x

+O(δ2
G), (4.10)

where vgap ≡ wgap δG has the dimension of a speed.

The general solution of (4.10) is:

VG(x, t) = C(x− vgap(t− t0)) +

∫ t

t0

f(x− vgap(t− u), u)du.

Indeed :

∂VG(x, t)

∂t
= −vgapC ′ (x− vgap(t− t0) ) + f(x, t) +

∫ t

t0

∂

∂t
f (x− vgap(t− u), u ) du

= −vgapC ′ (x− vgap(t− t0) ) + f(x, t)− vgap
∫ t

t0

∂

∂x
f (x− vgap(t− u), u ) du

∂VG(x, t)

∂x
= C ′ (x− vgap(t− t0) ) +

∫ t

t0

∂

∂x
f (x− vgap(t− u), u ) du.

so that :
∂VG
∂t

= f(x, t)− vgap
∂VG
∂x

We consider now a stimulation of type V in(x, t) = h(x − v t), propagating from

the left to the right, with speed v. We have f(x, t) = ∂V in(x,t)
∂t

= −vh′(x− v t) so that:

VG(x, t) = C(x− vgap(t− t0)) − v
∫ t

t0

h′(x− vgapt− (v − vgap)u)du.
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Setting z = x− vgapt− (v − vgap)u this gives:

= C(x− vgap(t− t0)) +
v

v − vgap

∫ x−vt

x−vgapt−(v−vgap)t0

h′(z)dz

= C(x− vgap(t− t0)) +
v

v − vgap
[h (x− vt )− h (x− vgapt− (v − vgap)t0 ) ]

In order to compare the cases with and without gap, we set C(x) = V in(x, t0) =

h (x− v t0 ), so that:

VG(x, t) =
v

v − vgap
h (x− vt )︸ ︷︷ ︸

πstim

− vgap
v − vgap

h (x− vgapt− (v − vgap) t0 )︸ ︷︷ ︸
πgap

. (4.11)

When vgap = 0 the ganglion cells voltage follows the stimulation i.e. VG(x, t) =

h (x− vt ). In the presence of gap junctions there are two pulses: the first one, πstim

with amplitude v
v−vgap following the stimulation; the second one, πgap, with amplitude

− vgap
v−vgap , propagating at speed vgap.

For vgap < v the amplitude of πstim growths has vgap approaches v whereas πgap

travels at speed vgap and hyperpolarizes the neurons (Fig. 4.4 a).

At v = vgap, VG(x, t) = h (x− vgapt )+vgap(t− t0)h′ (x− vgapt ) which diverges like

t when t→∞ and x→ +∞ (Fig. 4.4 b).

Finally for vgap > v the amplitude of πstim follows the stimulation with a negative

sign (hyperpolarization) whereas πstim is ahead of the stimulation, with a positive sign,

travelling at speed vgap (Fig. 4.4 c).

We illustrate this behaviour in Fig. 4.4.

4.2.2 Effect of gain control after gap junctions

When the piecewise non linearity NG (3.37) and the gain control GG(A) (3.39)

are applied to VG(x, t) there are two effects: (i) the hyperpolarized peak is cut by NG;

(ii) the positive pulse induces a raise in activity, which, in turn, triggers the ganglion

gain control GG(A) inducing a peak in the response of the ganglion cell, similar to what

happens with bipolar cells, with a different form for the gain control though. Moreover,

in contrast to pathway I where only gain control generates anticipation in pathway II

the wave of activity generated by gap junctions increases anticipation by two distinct
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Figure 4.4: Solutions of (4.10). The stimulation V in(x, t) is plotted in black. Here this is a Gaussian
pulse 1√

2π σ
e−

1
2

( x−v t )
2σ2 with σ = 0.1, v = 0.2. Note that the units are arbitrary here. The numerical

solution of (4.10) is plotted in red. Finally, the theoretical solution (4.11) is shown in dashed blue. The
agreement between numerics and theory is perfect. a) vgap < v; b) vgap = v; c) vgap > v

.

effects.

If vgap < v the cell’s response propagates at the same speed as the stimulus, but its

amplitude is larger than the case with no gap junction (term πstim). From eq. (4.3) this

results in an increase of h with an effective h = h v
v−vgap . From fig.4.3a this induces an

increase in the anticipation time (with a saturation of the effect, though, as vgap → v).

If vgap > v the cell’s response propagates at a larger speed than the stimulus (term

πgap), so that the cell responds before the time of response without gaps. From fig.4.3b

this induces an increase in the anticipation time, but of a different nature than the case

vgap < v.

Finally, vgap = v there is a singularity in the continuous space approximation,

which does not appear in a discrete lattice (δG > 0).

As for the approximate value of vgap, considering gap junction Cx36, we have the

following parameters :

dx ∼ 75µm

g ∼ 1− 15ns

C ∼ 20pF

vgap =
gdx

c
∼ [0.1175, 15]mm/s
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4.2.3 Effect of gain control before gap junctions

We now briefly consider the solutions of (3.43) when gain control is applied before

the gap junction. The corresponding continuous space equation is:

∂VG
∂t

= f(x, t)− vgap
∂RG

∂x
+O(δ2

G), (4.12)

where RG is now a non linear function of the activity A(x, t) obeying the continuous

space version of (3.38):

∂AG
∂t

= −AG
τG

+ hGNG (VG ) , (4.13)

This gives a coupled set of partial differential equations that we have not been

able to solve analytically. We have therefore focused on numerical simulations (see the

following chapter). Qualitatively, the effect of gain control is to saturate the effects of

gap junctions thereby limiting the anticipation time.

Partial conclusion

In the case of gap junction connectivity, results show the emergence of a propa-

gating wave of activity, similar to what is happening in the cortex. One should note here,

however, that the propagation is considered instantaneous, since we assimilate gan-

glion cells to points and we don’t take into account the axons lengths.
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4.3 Differential motion sensitive ganglion cells : Amacrine

connectivity

In this section we study the potential effect of amacrine cells (pathway III of Fig.

3.1) on motion anticipation. We consider the case where there are as many bipolar cells

as amacrines (NB = NA ≡ N ) so that the matrices WA
B and WB

A are square matrices.

4.3.1 General mechanisms

4.3.1.1 Vector equation

We first study mathematically the system (4.15) that we write in a more conve-

nient form. For this study we will assume thatNB (VBi ) = VBi i.e. VBi ≥ θB, i = 1 . . . N ,

thus RBi = GB (ABi ).

We note ~VA ≡
(
VAj

)N
j=1

the vector of voltages for amacrine cells, ~VB ≡
(
VBi

)N
i=1

the vector of voltages for bipolar cells, ~A ≡
(
ABi

)N
i=1

the vector of activities for

ganglion cells, and ~F ≡
(
FBi

)N
i=1

. We introduce the vectors ~X =


~VB

~VA

~A

, ~F =


~F

0N

0N

where 0N =
(

0
)N
i=1

, and the diagonalN×N matrix ω
(
~A
)

= diag (GB(ABi) )Ni=1.

Finally, we use the 3N × 3N matrix:

L( ~X ) =


− IN
τB

WA
B 0

WB
A .ω

(
~A
)

− IN
τA

0

h IN 0 − IN
τa

 (4.14)

where IN is the N ×N identity matrix, so that the dynamical system (5.1) reads:

d ~X
dt

= L( ~X ). ~X + ~F(t). (4.15)
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We introduce the Greek indices α, β, γ = 1 . . . 3N such that ~X has entries:

~Xα =


VBi , α = i, i = 1 . . . N ;

VAi , α = N + i, i = 1 . . . N ;

Ai, α = 2N + i, i = 1 . . . N ;

Likewise ~Fα = FBi , if α = i, i = 1 . . . N and ~Fα = 0 otherwise.

4.3.1.2 No gain control

General solution. When GB(ABi) = 1, i = 1 . . . N , in a low activity state, the system

(4.15) is linear. In this case, the activity variables does not play any role in the dynamics

of ~VB, ~VA. The general solution is:

~X (t) = eL(t−t0). ~X (t0) +

∫ t

t0

eL(t−s). ~F(s) ds, (4.16)

where t0 is the initial time. The behaviour of the solution, in the long time limit, de-

pends on the spectrum of L. In particular, when there are unstable modes (eigenvalues

with positive real part) the amplitude of ~X projected on the unstable modes increases

thereby triggering the gain control mechanisms, which, in turn stabilizes the dynamics.

We illustrate this in the specific case of Laplacian connectivity 4.3.2.

We assume that a bipolar cell connects only one amacrine cell, with a weight

w+ uniform for all bipolar cells, so that WB
A = w+ IN , w+ > 0. We also assume that

amacrine connect to bipolar with a connectivity matrixW , not necessarily, symmetric,

with a uniform weight −w−, w− > 0, so that WA
B = −w−W . In the case with no gain

control it is enough to consider the join dynamics of ~VB, ~VA without taking into account

the activity ~A. The projection of L on the subspace spanned by ~VB, ~VA reads:

M =

 − IN
τB

−w−W

w+ IN − IN
τA

 . (4.17)

Eigenvalues and eigenvectors. We note κn, n = 1 . . . N , the eigenvalues ofW ordered

as |κ1 | ≤ |κ2 | ≤ · · · ≤ |κn | and ~ψn is the corresponding eigenvector. We normalize ~ψn

so that ~ψ†n. ~ψn = 1 where † is the adjoint. (Note that, asW is not symmetric in general,

eigenvectors are complex).
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For each n, there is a pair of eigenvalues λ±n and eigenvectors

 ~ψn

ρ±n
~ψn

 ofMwith:

ρ±n =


1

2 τ w− κn

(
1 ±

√
1− 4µκn

)
, κn 6= 0, 1

τ
6= 0;

w+ τ, κn = 0, 1
τ
6= 0;

±
√
−w+

w−
1
κn
, 1

τ
= 0.

(4.18)

where:
1

τ
=

(
1

τA
− 1

τB

)
. (4.19)

and:
1

τAB
=

(
1

τA
+

1

τB

)
. (4.20)

When 1
τ

= 0, (τA = τB) eigenvalues are given by:

λ±n =

 − 1
2 τAB

∓ 1
2 τ

√
1− 4µκn,

1
τ
6= 0;

− 1
τA
∓
√
−w−w+κn,

1
τ

= 0.
(4.21)

with:

µ = w−w+ τ 2 ≥ 0, (4.22)

Thus µ summarizes the effect of bipolar cells on amacrine cells (w+), and amacrine cells

on bipolar cells (w−), and the time scales τA and tauB. It’s the mean parameter of the

problem, and it is dimensionless.

Proof of eigenvectors and eigenvalues Indeed, assume that ~φm is of the form ~φm = ~ψn

ρ~ψn

, then we have:

M.~φm =

 − I
τB

−w−W

w+ I − I
τA

 .

 ~ψn

ρ~ψn

 =

 (
− 1
τB
− w− ρ κn

)
. ~ψn(

− ρ
τA

+ w+
)
. ~ψn

 = λm

 ~ψn

ρ~ψn

 ,

which gives: 
(
− 1
τB
− w− ρ κn

)
= λm(

− ρ
τA

+ w+
)

= λmρ,

ρ

(
− 1

τB
− w− ρ κn

)
= − ρ

τA
+ w+
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−w− κn ρ2 +

(
1

τA
− 1

τB

)
ρ− w+ = 0

w− κn ρ
2 − 1

τ
ρ+ w+ = 0,

where:
1

τ
=

(
1

τA
− 1

τB

)
.

This gives, if κn 6= 0 and 1
τ
6= 0:

ρ±n =
1

2w− κn

(
1

τ
±
√

1

τ 2
− 4w−w+ κn

)

ρ±n =
1

2 τ w− κn

(
1 ±

√
1− 4µκn

)
,

where:

µ = w−w+ τ 2 ≥ 0.

Thus, for each n, there are two eigenvalues:

λ±n = − 1

2 τAB
∓ 1

2 τ

√
1− 4µκn,

with:
1

τAB
=

(
1

τA
+

1

τB

)
.

If κn = 0, 1
τ
6= 0, ρ±n = w+ τ . Then:

λm = − 1

τB
− w− ρ κn

Finally, if κn 6= 0, 1
τ

= 0, (τA = τB), ρ±n = −w+

w−
1
κn

and λ±n = − 1
τB
±
√
−w−w+κn. If

κn = 0, 1
τ

= 0 there is no solution for ρ.

Note that 1
τAB
≥ 1

τ
.

Remarks.

1. When µ = 0,M is diagonal: the N first eigenvalues are− 1
τB

, the N next eigenval-

ues are − 1
τA

. We have, in this case: λ+
n = − 1

τB
and λ−n = − 1

τA
. Therefore, in order

to be coherent with this diagonal form of L when µ = 0 we order eigenvalues

and eigenvectors ofM such that the N first eigenvalues are λ+
n , n = 1 . . . N , and

the N next are λ−n , n = N + 1 . . . 2N.
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2. Returning back to L the pairs eigenvalues, eigenvectors have the form:

λβ = λ+
n ,Pβ =


~ψn

ρ+
n
~ψn

σ+
n
~ψn

 , β = n = 1 . . . N,

λβ = λ−n ,Pβ =


~ψn

ρ−n
~ψn

σ−n
~ψn

 , β = N + 1 . . . 2N, n = 1 . . . N,

λβ = − 1
τa
,Pβ = ~eβ, β = 2N + 1 . . . 3N,

(4.23)

where σn± = h
1
τa

+λn±
and ~eβ is the canonical basis vector in direction β.

3. The eigenvectors Pβ are the column of the matrix P transforming L in the diago-

nal form Λ = P−1LP where Λ = Diag {λβ, β = 1 . . . 3N }.

Pαβ =



ψαβ, α = 1 . . . N, β = 1 . . . N ;

ρ+
αψαβ, α = N + 1 . . . 2N, β = 1 . . . N ;

σ+
α ψαβ, α = 2N + 1 . . . 3N, β = 1 . . . N ;

ψαβ, α = 1 . . . N, β = N + 1 . . . 2N ;

ρ−α ψαβ, α = N + 1 . . . 2N, β = N + 1 . . . 2N ;

σ−α ψαβ, α = 2N + 1 . . . 3N, β = N + 1 . . . 2N ;

δαβ, α = 1 . . . 3N, β = 2N + 1 . . . 3N

(4.24)

Stability. If W is symmetric, its eigenvalues κn are real, but λβ , β = 1 . . . 2N can be

real or complex, depending on κn, as µ is positive. We have four cases:

• κn < 0. Then λβ are real and there are two cases. If 1
τ
> 0 the mode Pβ , β = 1 . . . N

can become unstable while Pβ , β = N + 1 . . . 2N is always stable; for 1
τ
< 0 the

situation is inverted. In both case, the mode is unstable for:

µ > − 1

κn

τAτB

( τB − τA )2 ≡ µn,u, (4.25)

Thus, τA, τB play a symmetric role. If 1
τ

= 0 (τA = τB), all eigenvalues are real.

Eigenvalues λ−n all stable. The eigenvalue λ+
n becomes unstable if:

w−w+ >
1

τ 2
A

1

κ2
n

. (4.26)
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Proof There are two cases.

– 1
τ
> 0⇔ τA < τB.

− 1

2 τAB
± 1

2 τ

√
1− 4µκn > 0

±
√

1− 4µκn >
τ

τAB

Only + is possible.

1− 4µκn >
τ 2

τ 2
AB

1− τ 2

τ 2
AB

= −4
τAτB

( τB − τA )2 > 4µκn

which is possible because κn < 0. Thus, n is unstable if:

µ > − 1

κn

τAτB

( τB − τA )2 ≡ µn,u.

– 1
τ
< 0⇔ τA > τB.

− 1

2 τAB
± 1

2 τ

√
1− 4µκn > 0

±
√

1− 4µκn <
τ

τAB

Only − is possible.

1− 4µκn >
τ 2

τ 2
AB

Same as before.

– If 1
τ

= 0, λ±n = − 1
τA
∓
√
−w−w+κn so that eigenvalues are real. The eigen-

value λ−n are all stable. The eigenvalue λ+
n becomes unstable if:

w−w+ >
1

τ 2
A

1

κ2
n

.

• κn > 0. Then λβ , β = 1 . . . 2N are real or complex. If 1
τ
6= 0 they are complex if:

µ >
1

4κn
≡ µn,c. (4.27)

In this case the real part is − 1
2 τAB

, the imaginary part is ± 1
2 τ

√
1− 4µκn, and all

the modes Pβ are stable. If µ ≤ µn,c eigenvalues λβ are real and all modes are

stable as well. If 1
τ

= 0, all eigenvalues are stable and complex.
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– 1
τ
> 0⇔ τA < τB.

− 1

2 τAB
± 1

2 τ

√
1− 4µκn > 0

±
√

1− 4µκn >
τ

τAB

which is not possible because τ
τAB

> 1 whereas
√

1− 4µκn < 1.

– 1
τ
< 0⇔ τA > τB.

− 1

2 τAB
± 1

2 τ

√
1− 4µκn > 0

±
√

1− 4µκn <
τ

τAB

Only − is possible.

1− 4µκn >
τ 2

τ 2
AB

which is not possible because τ
τAB

> 1 whereas
√

1− 4µκn < 1.

– If 1
τ

= 0, λ±n = − 1
τA
∓
√
−w−w+κn so that eigenvalues are stable, complex.

If W is asymmetric, eigenvalues κn are complex, κn = κn,r + i κn,i. We write

λβ = λβ,r + i λβ,i, β = 1 . . . 2N with:
λβ,r = − 1

2 τAB
± 1

2 τ
1√
2

√
1 +

√
1 + µ2

κ2
n,i

κ2
n,r

√
1− 4µκn,r;

λβ,i =
κn,i√

2
1√√√√1 +

√
1+µ2

κ2
n,i

κ2
n,r

√
1−4µκn,r

.
(4.28)

Due to the imaginary part, unstable modes can appear when µ becomes large

enough (depending on n).

4.3.1.3 The role of gain control

For simplicity we use the approximate form (4.4) of GB. The linear form (4.17)

is valid if ABi <
2
3
, i = 1 . . . N (region II). What happens if a set of bipolar cells S

has an activity which exceeds the activity threshold ? Even with the simplified form

(4.4) we have not been able to answer the question in full generality (numerical ex-

amples are given in the next chapter). However, a qualitative explanation can be

done by simplifying further the form (4.4) by assuming that GB is 1 in region II and

is 0 in region III (ABi ≥ 2
3
). In this case the matrix ω

(
~A
)

becomes a binary matrix

ω
(
~A
)

= diag (χII(ABi) )Ni=1 where χII is the indicator function of region II. Then, the
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matrix WB
A .ω

(
~A
)

has vanishing columns at indices i ∈ S. With this approximation

the system (4.15) becomes piecewise linear. It is linear in each partition element PS of

R
3N defined by PS =

{
~X ∈ R3N |ABi ≥ 2

3
, i ∈ S

}
. In PS , L( ~X ) ≡ LS with:

LS =



− I
τB

 IN−K 0N−K,K

0K,N−K IK

 WA
B 0N,N

w+

 IN−K 0N−K,K

0K,N−K 0K

 − IN
τA

0N,N

h IN 0N,N − IN
τa


where K is the number of elements of S, IK the K ×K identity matrix and 0N−K,K the

N−K×K 0 matrix. It is easy to see thatLS hasN eigenvalues− 1
τa

, corresponding to the

subspace generated by bipolar cells activities Ai. Projecting LS on the complementary

subspace one easily sees that the K cells in S generate K eigenvalues. Thus, in this

approximation of GB, the (expected) effect of gain control is to stabilize the unstable

modes. Using the piecewise linear approximation one can formally extend the solution

(4.16) of the linear system, by using a product of evolution operators LS1 , . . . ,LSr . . .

where Sr is the r-th domain encountered by the dynamical system along its trajectory.

We shall not pursue along these lines here though, focusing on numerical simulations

in two examples. Note that this analysis holds mutandis mutandis for the case where

N (V ) is a linear rectifier.

Therefore, the overall picture is the following. Without loss of generality we may

assume that ~X(t0) = 0 in (4.16) so that dynamics are driven by ~F . In the presence

of a stimulus ~F the voltage of bipolar raises and eventually affects the behaviour of

connected cells via the amacrine connectivity. Below threshold, this interaction is de-

scribed by the linear operator L. Then, some bipolar cell can cross the threshold of

gain control due to two possible reasons, not exclusive: (i) The intensity of ~F , when it

is large enough; (ii) The effects of amacrine lateral connectivity. This arises for example

when there are a positive eigenvalues, but this is not necessary. In the next examples

we show that the effect of amacrine lateral connectivity is to enlarge the width of the

response wave triggered by the stimulus, thereby enhancing the anticipation.
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4.3.1.4 Network response to a stimulus

We consider here the situation where eigenvalues of L are negative. This could

correspond to the evolution of the network, under the influence of a stimulus, before

gain control takes place, so that L has the form (4.14) with ω
(
~A
)

= I . The goal of

this section is to show that, in this situation, the lateral amacrine cells connectivity,

although inhibitory, can enhance the response of bipolar cells, thereby increasing the

anticipation time.

For simplicity, we will assume that taking the limit t0 → −∞ in (4.14) is a good

approximation, so that we may write:

~X (t) =

∫ t

−∞
eL(t−s). ~F(s) ds,

where the integral is finite because eigenvalues of L are assumed to be negative.

We have:

~Xα(t) =
3N∑
β=1

3N∑
γ=1

PαβP−1
βγ

∫ t

−∞
eλβ(t−s). ~Fγ(s) ds.

We recall that, from (3.15), FBi(t) =
Vidrive
τB

+
dVγdrive

dt
, so that:

∫ t

−∞
eλβ(t−s). ~Fγ(s) ds =

1

τB

∫ t

−∞
eλβ(t−s).Vidrive(s) ds+

∫ t

−∞
eλβ(t−s).

dVγdrive
ds

(s) ds.

∫ t

−∞
eλβ(t−s).

dVγdrive
ds

(s) ds =
[
eλβ(t−s). Vγdrive(s)

]t
−∞ + λβ

∫ t

−∞
eλβ(t−s).Vγdrive(s) ds

= Vγdrive(t) + λβ

∫ t

−∞
eλβ(t−s).Vγdrive(s) ds

and:

~Xα(t) =
3N∑
β=1

3N∑
γ=1

PαβP−1
βγ Vγdrive(t) +

3N∑
β=1

(
1

τB
+ λβ

) 3N∑
γ=1

PαβP−1
βγ

∫ t

−∞
eλβ(t−s).Vγdrive(s) ds

We have:

3N∑
β=1

3N∑
γ=1

PαβP−1
βγ Vγdrive(t) =

3N∑
γ=1

Vγdrive(t)

(
3N∑
β=1

PαβP−1
βγ

)
=

3N∑
γ=1

Vγdrive(t)δαγ = Vαdrive(t).

84



Thus, finally:

~Xα(t) = Vαdrive(t) +
3N∑
β=1

(
1

τB
+ λβ

) 3N∑
γ=1

PαβP−1
βγ

∫ t

−∞
eλβ(t−s).Vγdrive(s) ds, α = 1 . . . 3N.

(4.29)

4.3.1.5 Interpretation

Let us interpret this result. The first term is the direct effect of the drive, while

the second term contains network effects. Note that this equation gives the effect of the

drive on bipolar voltages (α = 1 . . . N ), as well as amacrine voltages (α = N + 1 . . . 2N )

and bipolar activities (α = 2N + 1 . . . 3N ). For these two last Vαdrive(t) = 0 so that the

effect is mediated by the network. Note that Vγdrive(s) = 0 for γ = N + 1 . . . 3N . We can

thus write the second term as EBB + EBA + EBa where:

EBB =
N∑
β=1

(
1

τB
+ λβ

) N∑
γ=1

PαβP−1
βγ

∫ t

−∞
eλβ(t−s).Vγdrive(s) ds

EBA =
2N∑

β=N+1

(
1

τB
+ λβ

) N∑
γ=1

PαβP−1
βγ

∫ t

−∞
eλβ(t−s).Vγdrive(s) ds

EBa =
3N∑

β=2N+1

(
1

τB
+ λβ

) N∑
γ=1

PαβP−1
βγ

∫ t

−∞
eλβ(t−s).Vγdrive(s) ds.

These terms cant be interpreted as follows. The drive (index γ = 1 . . . N ) excites the

eigenmodes β = 1 . . . 3N , with a weight proportional to P−1
βγ . The mode β, in turn ex-

cites the index α = 1 . . . 3N with a weight proportional to Pαβ . Thus, EBB corresponds

to the effect of bipolar drive on bipolar voltages, EBA corresponds to the effect of bipolar

drive on amacrine voltages, and EBa corresponds to the effect of bipolar drive on bipo-

lar activities.

In the absence of network (WA
B = WB

A = 0) L is diagonal thus Pαβ = δαβ . For

β = 1 . . . N , λβ = − 1
τB

so that EBB = 0. For β = N + 1 . . . 2N , λβ = − 1
τA

thus:

EBA =

(
1

τB
− 1

τA

) 2N∑
β=N+1

N∑
γ=1

δαβδβγ

∫ t

−∞
e
− 1
τA

(t−s)
.Vγdrive(s) ds = 0

because of δβγ . The same holds for EBa . Therefore, ~Xα(t) = Vαdrive(t) as expected.
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4.3.1.6 Response to the simple stimulus

In order to go further in the interpretation, we consider the case when the stim-

ulus has the Gaussian form (4.2). We consider a one dimensional motion along the x

direction. Cells are spaced with a distance δ so that:

Vγdrive(t) =
1√

2 π σ
e−

1
2

( γ δ−vt )2

σ2 ,

It is then easy to compute the integral:

∫ t

−∞
eλβ(t−s)Vγdrive(s) ds = e

1
2

σ2 λ2
β

v2 e−
λβ
v

( γ δ− v t ) Π

[
λβσ

v
− 1

σ
( γ δ − v t )

]
. (4.30)

Indeed : ∫ t

−∞
eλβ(t−s)Vγdrive(s) ds =

1√
2π σ

∫ t

−∞
eλβ(t−s)e−

1
2

( γ δ−vt )2

σ2 ds

=
eλβ t√
2 π σ

e−
γ2 δ2

2σ2 e
1
2

σ2 r2βγ

v2

∫ t

−∞
e−

1
2 [ vsσ −

rβγ σ

v ]
2

ds

with rβγ = −λβ + γ δ v
σ2

= e
1
2

σ2 λ2
β

v2 e−
λβ
v

( γ δ− v t ) Π

[
λβσ

v
− 1

σ
( γ δ − v t )

]
.

Note that this tends to zero as t → ±∞ (as t → −∞, Π(z) ∼ e−
1
2
z2 . The term

Π
[
λβσ

v
− 1

σ
( γ δ − v t )

]
corresponds to a front propagating at speed v with a sharp

rising (controlled by the function Π and 1
σ

) and an exponential decay e−
λβ
v

( γ δ− v t ), for

t > γ δ
v

with a time scale λ−1
β (see Fig. 4.5).
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Figure 4.5: Activation mode (4.30) for different values of β (Purple). In blue is plotted
the same equation when Π is a step function (σ = 0). All figures are drawn with v = 0.2
mm/s; σ = 0.1 mm. Up: λβ = 0.5 ms−1; Middle : λβ = 1 ms−1; Bottom : λβ = 2 ms−1

In order to further develop the consequences of this result we consider two ex-

amples. In the next sections, for simplicity, we consider the case w− = w+ = w and

τA = τB so that 1
τ

= 0. In this case, from (4.21), λ±n = − 1
τA
± w

√
−κn. Thus, when

κn > 0 eigenvalues are stable, complex, whereas, when κn < 0 they are real and desta-

bilize if:

w >
1

τA

1√
−κn

≡ wnc. (4.31)

In the simulations we avoid cases when κn = 0.

4.3.2 Nearest neighbours interactions

We consider here the case where the matrix W connecting amacrines to bipolar

is a matrix of nearest neighbours symmetric connections. In this case, it can be written

in terms of the discrete Laplacian ∆ on a d dimensional regular lattice, d = 1, 2 with

lattice spacing δA = δB, set here equal to 1:

W = 2d I + ∆. (4.32)

As WA
B = −w−W , the coefficient D = w− δ2, in mm2/s is a diffusion coefficient.

Thus, in contrast to gap junctions, we expect here a diffusive effect.
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We also assume that dynamics holds on a square lattice with null boundary con-

ditions. That is, amacrine and bipolar cells are located on d-dimensional grid with

indices ix, iy = 0 . . . L + 1 where, the voltage and activity of cells with indices ix = 0,

ix = L+ 1, iy = 0 or iy = L+ 1, vanishe.

We note ~ψn the eigenvectors of ∆ with eigenvalue sn, ∆~ψn = sn ~ψn where n = nx

in one dimension and n = (nx, ny ), in two dimensions nx, ny ∈ { 1 . . . L }. The eigen-

values of W are then κn = ( 2d+ sn ). Using the Greek indices notation introduced

above we define α = ix ∈ { 1 . . . L = N } in one dimension and α = ix + (iy − 1)L ∈

{ 1 . . . L2 = N } in two dimensions. Likewise, we set β = nx ∈ { 1 . . . L = N } in one di-

mension and β = nx+(ny−1)L ∈ { 1 . . . L2 = N } in two dimensions. The eigenvectors

and eigenvalues ofW have the form:

ψαβ =
(

2
L+1

) d
2
∏

l sin
(
nlπ
L+1

il
)
,

κn = 2
∑

l

[
cos
(
nlπ
L+1

) ]
;

(4.33)

with l = x for d = 1 and l = x, y for d = 2. Especially, in one dimension:

ψαβ =

√
2

L+ 1
sin

(
απ

L+ 1
β

)
,

The quantum numbers n = (nx, ny ) define a wave vector ~kn =
(

nxπ
L+1

, nyπ
L+1

)
cor-

responding to wave length
(
L+1
nx
, L+1
ny

)
. Hence the first eigenmode (1, 1) corresponds

to the largest space scale (scale of the lattice) with the smallest eigenvalue (in absolute

value) s(1,1) = 2
(

cos
(

π
L+1

)
+ cos

(
π

L+1

)
− 2

)
. In a diffusion equation:

dX

dt
= D∆X, (4.34)

the projection on the eigenmode ~ψn reads Xn(t) = Xn(0)eD snt − 1
D sn

[
1− eD snt

]
with sn < 0. Thus D sn is the inverse of a characteristic time scale, the time required for

the projection on eigenmode n to relax to equilibrium. In particular, the slowest time

scale is τ1,1 = 1
D| s1,1 | corresponding to the largest time scale.

Likewise, w− κn has the dimension of an inverse characteristic time τn. As n in-

creases κn increases so that τn decreases. The slowest mode is the mode ( 1, 1 ) Note

that, if L is large cos
(

π
L+1

)
∼ 1−

(
π

L+1

)2 so that s1,1 ∼ − 4π2

(L+1)2 and τ1,1 ∼ (L+1)2

4π2 . Thus,

the characteristic time goes like the square of the distance (diffusion).

Therefore, in contrast to gap junctions where the network effect induced by the

network was a ballistic propagation, at a speed depending on the gap junction con-
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ductance, here, the expected effect of the stimulus is a diffusive propagation. Thus, the

only effect that could enhance anticipation here would be an enlargement of the drive

response.

Eigenvalues κn can be positive or negative. From section 4.3.1.2 we have therefore

several situations entailing the stability of the eigenmodes. For simplicity, we restrict

here to 1 dimension, where κn = 2 cos
(
nlπ
L+1

)
. We choose L even to avoid having a zero

eigenvalue κL
2

.

Eigenvalues κn, n = 1 . . . L
2

are positive, thus the corresponding eigenvalues λ±n of L

are complex, and stable. The modes with the largest space scale L
n

are therefore stable,

with oscillations. Eigenvalues κn, n = L
2

+ 1 . . . L are negative, thus the corresponding

eigenvalues λ±n of L are real. From (4.31) the mode n becomes unstable when w >

wnc = 1
τA

1√
−2 cos( nπ

L+1 )
.

Therefore, the first mode to become unstable is the mode L with the smallest space

scale 1 (lattice spacing) (See 4.6). For large L, this happens for w = w1c ∼ 1√
2

1
τA

. This

instability induces spatial oscillations at the scale of the lattice spacing (). When w

further increases the next modes becomes unstable. This instability results in a wave

packet following the drive. The width of this wave packet is controlled by the unstable

modes. The gain control prevents the unstable modes to give rise to a divergence of

the response (compare Fig. 4.6 left, and Fig. 4.7).

We illustrate these effects in Fig. 4.6 and 4.7.

We now discuss the network effects on anticipation. In Fig. 4.8 we show the

activity variable RBi ((3.10)) for the bipolar cell N/2 located in the middle of lattice, in

the same conditions as fig. 4.6. Finally, figure 4.9 show the same results in time. In

particular, the more the peak response of RBi(t) is in advance, the lower it is.
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Figure 4.6: . Effect of a Gaussian drive (in black) propagating in one dimension, on
the bipolar cells voltage (red) and on the amacrine cells voltage (blue). There are 100
cells, spaced by 0.1 mm. The Gaussian drive (4.2) travels at a speed 1mm/s. Other
parameters are fixed as in the Appendix. We illustrate the effects on increasing the
coupling w, where w+ = w, w− = −w, with 1

τ
= 0. Left. Weak coupling. w = 1 s−1.

Middle. Moderate coupling wherew = 3 s−1. Herew is smaller than the first instability
threshold (here w99,c = 3.53639 s−1) given by (4.31). Right. Strong coupling, w = 5,
above the instability threshold w67,c = 3.53639 s−1. That is the modes n = 67, . . . , 99 are
linearly unstable here, but gain control and the non linearity stabilize the divergence.
Compare with fig. 4.7 below.
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Figure 4.7: . Same as 4.6, without gain control and the non linearity, for w = 4, thus
above the threshold w79,c. That is, modes 79 to 99 are unstable. One sees an exponential
growth and a diffusion of the wave packet induced by the initial drive (Note the change
in scale on the vertical axis).
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Figure 4.8: . Spatial profil of RBi(t) ((3.10)) , for different times, under a Gaussian
drive, in the same conditions as in Fig. 4.6. The blue vertical line gives the location of
the peak in the Gaussian drive. On the left (w = 1 s−1) the lattice effects on anticipation
are negligible. In the middle, (w = 3 s−1) the excitation of fast modes leads to a spatial
pattern, propagating without deformation at the same speed as the drive. The peak
response of RBi(t) is slightly ahead of the drive peak. On the right (w = 5 s−1). The
peak in RBi(t) is more in advance than for w = 3, with a lower amplitude. One ca see
(bottom line) small oscillations due to the unstable modes.
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Figure 4.9: . Temporal profil of a gain control RBi(t) ((3.10)) , for different values of
w, under a Gaussian drive, in the same conditions as in Fig. 4.6. The peak in RBi(t) is
more in advance larger values of w, with a lower amplitude. Rmax denotes the analytic
peak position.

91



Partial conclusion

In this section, we have shown the role played by gain control and the non lin-

earity in the stability of the system. Using a Gaussian drive, we have also been able to

show, in the case of a Laplacian graph of connectivity, an anticipatory effect which in-

creases with the coupling weight. The case of the random graph being hard to handle

analytically, we shall study it through numerical simulations in the following chapter.
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Chapter 5

Simulations results of the retina model

In this chapter, we will study, through numerical simulation, how anticipation

time depends on the stimulus features, for the three anticipatory mechanisms we in-

troduced earlier (gain control, amacrine connectivity and gap junction connectivity).

Then we study the amacrine connectivity (resp. gap junction connectivity) model, and

assess the role of intrinsic parameters of the model (mainly the connectivity weights),

in anticipation.

Finally, we present 2D responses to different kind of stimuli in order to assess qualita-

tively anticipatory effects for stimuli more complex than a simple moving bar.

5.1 Anticipation variability with bar’s characteristics

In this section we illustrate how anticipation varies when varying stimulus char-

acteristics: contrast, size and speed. This calibration is later used to compare to effects

induced by lateral connectivity. The results are presented in Fig. 5.1.

We first observe that anticipation increases with contrast, as is has experimentally been

observed. Indeed, increasing the contrast increases Vidrive(t) thereby accelerates the

growth of Ai so that gain control takes place earlier. Fig 5.1 a).

We also notice that anticipation increases with the size of the object until a maximum

(Fig 5.1 b).

The model shows a decrease in anticipation as a function of velocity, as it was evi-

denced experimentally (Fig 5.1 c). Indeed, when the velocity increases, Vdrive varies

faster, and with τa being constant, the adaptation peak value is lower. Consequently,

gain control has a weaker effect and the peak activity is less shifted than when the bar
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is slow.

Finally, the maximum firing rate increases with the velocity, the contrast and the size.

Figure 5.1: Maximum firing rate and anticipation time variability with stimulus parameters in the
gain control layer of the model. a) contrast; b) size; c) speed.

5.2 Amacrine connectivity

In the following, we only study bipolar cells contribution to anticipation, via the

amacrine connectivity circuit. We recall here the diffentential system governing the

behavior of bipolar and amacrine cells when responding to a stimulus:



dVBi
dt

= − 1
τB
VBi +

∑NA
j=1 W

Aj
Bi
VAj + FBi(t),

dABi
dt

= −ABi
τa

+ hN (VBi(t)),

dVAj
dt

= − 1
τA
VAj(t) +

∑NA
i=1W

Bi
Aj
RBi(t).

(5.1)

τa and h being adaptation constants that have been fitted on experimental data,

our aim here is to identify the range of the remaining parameters (τA, τB, WAj
Bi

and

WBi
Aj

) which allow this circuit to significantly improve anticipation, as compared to

gain control alone.

5.2.1 Anticipation variability : Laplacian connectivity

Under the assumption that the characteristic time of the bipolar voltage and the

amacrine voltage are within the same order of magnitude as the characteristic time of

adaptation, we set τB = τA = 100ms τa = 100.5ms, and we vary the value of weight.

For the sake of simplicity, we also choose w+ = −w−.

We run several simulations to identify the range of values where the effect of
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Figure 5.2: Schematic of the amacrine connectivity. Green points denote an excitatory
connection while red points denote an inhibitory one. This figure shows the case of
Laplacian connectivity

amacrine connectivity outperforms gain control. We show in the following the re-

sponse of bipolar cells to a moving bar, with a width = 200µm, moving at 2mm/s.

The bipolar cells are placed on a 1D horizontal grid, with a spacing of 20µm between

to consecutive cells. The first cell lies at 100µm from the leading edge of the moving

bar. Cells are connected according to a nearest neighbor graph : one amacrine cell re-

ceives activity from the downstream bipolar cell, and is connected to the 2 surrounding

bipolar cells (4 in case of a 2D grid).

Fig. 5.3 shows the reference response of bipolar cells without amacrine connectiv-

ity. The response of bipolar cells in this reference case will be reported in dashed lines

on the following figures for comparison.
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Figure 5.3: Response of bipolar cells without amacrine connectivity shows that the
peak of the gain control response Ri(t) occurs prior to the linear non-linear response
Ni(t). The curves correspond to three cells spaced by 200µm.The first line shows the
stimulus time course, which is equal to 1 when the location of the cell is dark and 0
otherwise. The second line shows the linear filtering of the stimulus, corresponding to
a spatio-temporal convolution with a kernel. The 3rd line corresponds to a thresholding
non-linearity applied to the linear response, the 4th to the adaptation function (see 5.1,
the 5th line to the gain control. Finally, the last line corresponds to the response of the
cells.

Fig. 5.4 shows the response of bipolar cells when plugging the amacrine connec-

tivity, setting w+ = −w− = 0.03ms−1. For consistancy, we show in the first of this

figure the spatio-temporal filtering prior to the dynamical system, which is identical

to the filtering of the reference figure. In this case, the inhibitory effect of amacrines

changes the shape of the the bipolar voltage curve, however not strongly enough to

completely cancel out the effect of gain control. Indeed, the peak of Ri(t) occurs before

the peak of N i(t), while it lags behind the reference peak. In this regime, amacrine
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connectivity has a negative effect on anticipation.

Figure 5.4: Response of bipolar cells with amacrine connectivity, with W
Aj
Bi

= -WBi
Aj

=

0.03ms−1. The peak of the gain control response Ri(t) occurs before the linear non-
linear response Ni(t) reaches its maximum, indicating that in this regime, gain control
still plays a role. The peak of activity with amacrine connectivity is reached slightly
after the gain control peak.

Fig. 5.5 shows the response of bipolar cells when setting w+ = −w− = 0.05ms−1.

In this case, the inhibitory effect of amacrines strongly alters the shape of the the bipolar

voltage curve, and the gain control effect becomes negligible. The peak of Ri(t) occurs

at the exact same time as the peak of N i(t), and before the reference peak. In this

regime, amacrine connectivity has a positive effect on anticipation.
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Figure 5.5: Response of bipolar cells with amacrine connectivity, with W
Aj
Bi

= -WBi
Aj

=

0.05ms−1. The peak of the gain control response Ri(t) occurs at the same time as the
linear non-linear responseNi(t), indicating that bipolar gain control has a negligible ef-
fect when cells are coupled, within this intermediate regime. The peak of activity with
amacrine connectivity is reached before the gain control peak, showing that amacrine
connectivity improves anticipation.

Fig. 5.6 shows the response of bipolar cells when setting w+ = −w− = 0.1ms−1.

In this case, amacrine connectivity has a heterogeneous effect on bipolar cells : the

further we move from the bar, the weaker is the effect of inhibition. However, over all

positions, the peak ofRi(t) occurs before the peak ofN i(t), and after the reference peak,

similarly to the weak coupling. In this regime, amacrine connectivity has a negative

effect on anticipation. It should also be noted that within this range of parameters and

given the Laplacian connectivity, the effect on cells is not homogeneous, with regards

to the parity of the cell’s index.
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Figure 5.6: Response of bipolar cells with amacrine connectivity, with W
Aj
Bi

= -WBi
Aj

=

0.1ms−1. The peak of the gain control responseRi(t) occurs before the linear non-linear
response Ni(t) reaches its maximum, indicating that in this regime, gain control plays
a role again in anticipation. The peak of activity with amacrine connectivity is reached
after the gain control peak for cells with even indexes and the response is negligible
for cells with odd indexes.

Finally, Fig. 5.7 shows the response of bipolar cells when setting w+ = −w− =

0.15ms−1. Similarly to the previous case, the effect on cells depends on the parity of

their index. In this case, the response of bipolar cells is either completely suppressed or

identical to the response of the reference case (with gain control alone). In this regime,

amacrine connectivity doesn’t have any effect on anticipation.
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Figure 5.7: Response of bipolar cells with amacrine connectivity, with W
Aj
Bi

= -WBi
Aj

=

0.15ms−1. Cells with even indexes are completely suppressed while cells with odd
indexes have a response which is identical to the reference case.

It would appear, through these test figures, that there is an intermediate interval

in which amacrine connectivity is advantageous for anticipation, with a marginal role

played by gain control. To verify this hypothesis, we plot the anticipation time and

the maximum firing rate as a function of the coupling strength. Fig. 5.8 shows the

existence of three areas of interest: the first corresponds to the two regimes where

amacrine connectivity has a relatively negative effect on anticipation, and where gain

control has a significant effect (curves with and without gain control do not match in

these zones). The second zone corresponds to the interval over which the two curves

coincide, which means that gain control plays there a negligible role. Furthermore,

anticipation time is higher than the one of the circuit without amacrines (the point

corresponding to a null weight). Finally, the third zone corresponds to the steady state
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where only the presence or absence of gain control plays a role.

We then vary the value of τB and τA and plot the same curves. When τB = τA =

50ms, the intermediate zone where the curves with and without gain control coincide

is inexistant, and the amacrine connectivity doesn’t improve anticipation. When τB =

τA = 200ms, the intermediate zone is larger than the one of when τB = τA = 100ms,

with a higher maximum of the anticipation curve. This shows that the increase of τB

and τA plays a positive role in anticipation. Regarding the maximum firing rate, its

value decreases within the intermediate interval, showing that amacrine connectivity

increases the coding efficiency.
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(a) τ = 50 ms

(b) τ = 100 ms

(c) τ = 200 ms

(d) τ = 300 ms

Figure 5.8: Anticipation time (left) and maximum firing rate (right) with respect to
the strength of the amacrine coupling. The results correspond to the plugging and
unplugging of bipolar gain control on the amacrine connected circuit.
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5.2.1.1 The role of non linearity

We want now to understand the role played by the non linearity in the system.

For that we compare anticipation time and maximum firing rate switching on and off

the non linear function N (V ).

(a) τ = 50 ms (b) τ = 100 ms

(c) τ = 200 ms (d) τ = 300 ms

Figure 5.9: Anticipation time with respect to the strength of the amacrine coupling.
The results correspond to the on and off switching of the bipolar non linearity on the
amacrine connected circuit, while keeping gain control.

Fig. 5.9 shows the behavior of the system in terms of anticipation time when

turning off the non linearity, while keeping gain control. There are three major intervals

: the first where the anticipation functions (with and without non linearity) are quasi

constant, and where the absence of the non linearity outperforms its presence. The

last interval, where the system reaches its steady state, corresponds to the interval

where amacrine connectivity doesn’t play a role anymore (see Fig. 5.8). In this region,

the presence of the non linearity outperforms its absence. Finally, in the intermediate

interval where both the curves are varying, the non linearity generally improves the
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anticipation capacity of the system, except for the case where τ = 300ms. As for the

maximum firing rate (Fig. 5.10) , the curves roughly coincide for week coupling (up

to WAj
Bi

= -WBi
Aj
≈ 0.05ms−1), and the curve without non linearity branches off after this

point, which shows that the non linearity has a shunting effect on the system.

(a) τ = 50 ms (b) τ = 100 ms

(c) τ = 200 ms (d) τ = 300 ms

Figure 5.10: Maximum firing rate with respect to the strength of the amacrine coupling.
The results correspond to the on and off switching of the bipolar non linearity on the
amacrine connected circuit, while keeping gain control.
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5.2.2 Probabilistic connectivity

5.2.2.1 The effect of symmetry

In this section, we will study the behavior of the system using the probabilistic

model of connectivity. Within this framework, a given amacrine cellAi receives the up-

stream activity from the bipolar lying at the same position, Bi, with a constant weight

w. The same amacrine cell inhibits bipolar cells with which it is coupled through the

random adjacency matrix, generated by the probabilistic model of connectivity. We

recall that the model has two parameters : the maximum length of branches and the

maximum number of branches, which are drawn according to an exponential distribu-

tion. The angle of each branch is drawn according to a uniform distribution U [0 : 2π].

The weight matrix WB
A will then consist of the adjacency matrix multiplied by a con-

stant weight w.

(a) Symmetric connectivity (b) Asymmetric connectivity

(c) Anticipation time (d) Maximum firing rate

Figure 5.11: a) and b) Symmetric and asymmetric Adjacency matrices drawn using the
probabilistic model of connectivity. c) The effect of symmetry on anticipation time, d)
on maximum firing rate.

We first investigate how the symmetry of this matrix affects anticipation. A sym-
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metric matrix means that connectivity is position driven : if the amacrine cell Ai is

connected to the bipolar cell Bj then the amacrine cell Aj is connected to the bipolar

cell Bi. Using the same parameters, we draw two adjacency matrices, symmetric and

asymmetric, and compute anticipation time and maximum firing rate in each case.

Fig. 5.11 shows that for low values of weights, both symetric and asymetric connectiv-

ity perform similarly. Above a certain value of weight (around 0.04ms−1), the asym-

metric connectivity outperforms the symmetric one : the anticipation time is higher

while the maximum firing rate is lower.

5.2.2.2 Random connectivity and gain control

We study how the system anticipates when random connectivity is coupled with

gain control. In contrast with the laplacian connectivity, in this framework, we were

not able to identify a regime of connectivity weights where the effect of gain control

can be neglected : for all values of weights, gain control improves the anticipatory

effect and decreases firing rate.

Figure 5.12: The joint effect of the random amacrine connectivity and gain control,
showing

5.2.2.3 The role of the maximum number of branches

Throughout our simulation experiments, we observed a dependence of antici-

patory effects on the connectivity parameters. We investigate in this subsection how

anticipation and maximum firing rate evolve with the maximum number of branches.

Keeping the maximum length of branches constant, we draw three adjacency matri-

ces with different values of the maximum number of branches, giving rise to a denser

106



connectivity graph. For small values of weights, networks with dense connectivity per-

form generally better than the ones with a sparse connectivity in terms of anticipation

time, whereas for large values weights, there is no clear tendency in the anticipation

time ranking with respect to the maximum number of branches. As for the maximum

firing rate, it decreases with the number of branches, due the fact that denser graphs

increase the overall amount of inhibition in the system.

Figure 5.13: Variability of anticipation time and maximum firing rate with the maxi-
mum number of branches.

5.2.2.4 The role of the maximum length of branches

We investigate in this subsection how anticipations and maximum firing rate

evolve with the maximum length of branches. Keeping the maximum number of

branches constant, we draw three adjacency matrices with different values of the max-

imum length of branches, giving rise to adjacency matrices that are wider around the

diagonal. For small values of weights, there is no significant different between the var-

ious lengths values. However, for large values of weights, graphs with small branch
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lengths perform better in terms of anticipation time. The maximum firing rate de-

creases with the length of branches, and this can be explained using the same argu-

ment as in the previous subsection : the increase the overall amount of inhibition in

the system.

Figure 5.14: Variability of anticipation time and maximum firing rate with the maxi-
mum length of branches.
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5.3 Gap junction connectivity

5.3.1 The model equations

As introduced in chapter IV, the ganglion cell voltage is governed by the follow-

ing equation:
dVGk
dt

=
dV in

Gk

dt
− g

C
(VGk(t)− VGk−1

(t))

Figure 5.15: Schematic of the gap junction connectivity. A ganglion cell is coupled to
its surrounding cells, in the direction of motion.

In the following, we will set g
C

= wgap, the strength of gap junction coupling. Tak-

ing into account the gain control mechanism occurring at the level of ganglion cells,

one could speculate on the order at which the two phenomena (gain control and gap

junction coupling) occur. Should gain control happen prior to gap junction coupling,

gain control would appear in the computation of VGk−1
, in the previous equation. Al-

ternatively, gain control can occur after gap junction connectivity, making the coupling

independent of single cell adaptation mechanisms.

5.3.2 Anticipation variability

In this section, we want to study the network ability to improve anticipation in

the presence of gap junction coupling, alongside gain control at the level of ganglion

cells. As in the previous section, we omit again gain control mechanisms occurring at

the level of the uncoupled layer (here bipolar cells).

In Fig 5.18 we compare the anticipation time and maximum firing rate when apply-
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ing gain control before and after gap junction coupling, as a function of the coupling

weight. It is important here to find the right range of pooling strength (from bipolar

cells to ganglion cells, defined as the amplitude of the Gaussian poolingwmaxpool ) and cou-

pling weights to avoid non linearity saturation effects, when the latter is applied before

gap junction coupling. For a given range of coupling weights, the pooling strength has

to be high enough for the gap junction coupling to have an effect when it occurs prior

to gain control, and low enough for gain control not to rapidly saturate.

When the value of wmaxpool is such that the non linearity doesn’t have a saturating effect,

the system behave similarly whether the gain control precedes the gap junction cou-

pling or not (Fig 5.16. When the value of wmaxpool is large enough, the non linearity has

a strong effect and the system performs better in terms of anticipation time when gain

control is applied after gap junction coupling. Fig 5.18 shows however that in both

cases, the coupling improves anticipation time as compared to the non coupled case

(point with wgap = 0ms−1.
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(a) Gain control is applied after gap junction coupling.

(b) Gain control is applied before gap junction coupling.

Figure 5.16: Ganglion cell response with weak pooling strength. The order of gain con-
trol and gap junction coupling doesn’t play a significant role. The response of ganglion
cells when gain control is applied after gap junction connectivity is reported in dashed
lines.
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(a) Gain control is applied after gap junction coupling.

(b) Gain control is applied before gap junction coupling.

Figure 5.17: Ganglion cell response with strong pooling strength. The order of gain
control and gap junction coupling plays a role for cells far from the start of motion.
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(a) Weak pooling weight (wpool = 0.05). (b) Strong pooling weight (wpool = 0.5).

Figure 5.18: Ganglion cell anticipation time and maximum firing rate as a function of
the coupling weight wgap. (a) In this case, the non linearity doesn’t play a role because
V in
Gk

is below its threshold. The system performs slightly better when gain control is
applied after gap junction coupling. (b) In this case, V in

Gk
is above threshold and the

non linearity saturates. The system performs better in terms of anticipation time when
gain control is applied after gap coupling, at the cost of a higher firing rate.
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5.4 Response to 2D stimuli

In this section, we will present 2D reconstructions of retinal responses to 2D stim-

uli. The aim here is not to do an exhaustive study of anticipation in 2D but rather to

assess qualitatively the anticipatory effects first in the case of the flash lag effect stimu-

lus, and then in the case of more complex stimuli.

5.4.1 Flash lag effect

In all the following simulations, we use the CImg Library, an open-source C++

toolkit for image processing, in order to reconstruct the retina activity.

Fig. 5.19 shows the response to a bar moving in smooth motion, with a second bar

flashed in alignment for one frame. In the case of the gain control response, the peak

of response is shifted by the flashed bar elicits a low response.

We choose amacrine connectivity parameters which improve anticipation. In this case,

the response to the flashed bar is also more salient. However given the response is

strongly suppressed, the bar representation is significantly shrunk as compared to its

original size.

Finally, gap junction connectivity displays a wave propagating ahead of the bar. In this

case, the flashed bar only increases the central blop, which is much larger than the size

of the bar in the stimulus

Figure 5.19: Reproducing the flash lag effect with different anticipatory mechanisms.
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5.4.2 Gain control accounts for angular anticipation

Fig. 5.21, shows the gain controlled retina response to a rotating bar. The response

around the center of the bar is suppressed due to the spatio-temporal filtering and gain

control. We fit the response with an ellipsoid. The main axis of this ellipsoid defines

the orientation of the retinal representation of the bar. Note that the fitting procedure

is robust to the suppression of activity in the response center.

We plot the orientation of the bar along with the orientation of its reconstruction, at the

different stages of the model. Fig. 5.21 shows an angular anticipation during the first

complete rotation of the bar, which vanishes during the second rotation. This is due to

a persistent effect of the activation function, both at the bipolar and the ganglion level,

which in turns is due to the time scale of its dynamics.

Figure 5.20: Retina response to a rotating bar. A) Stimulus and response frames are
displayed every 100 ms. B) and C) Fitting the response with an ellipsoid.
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Figure 5.21: Orientation curves of the stimulus and its reconstruction show angular
anticipation.

5.4.3 Retina response to a parabolic trajectory

Fig. 5.22 shows the response to a dot moving along a parabolic trajectory, using

the same size of the bipolar receptive field.

The results display the sensitivity of the amacrine connectivity model to the stimulus

derivative. Not only does the flow of activity follow more accurately the stimulus, but

the elicited response is also more localized, as compared to the gain control response.

Finally, the gap junction connectivity model performs worse in this case, since the tra-

jectory of the bar is not parallel to the direction ganglion cells to which are sensitive.

Unlike the smooth motion case, we don’t have the emergence of a wave propagating

ahead of the stimulus. Instead, the response is slightly delayed.

The amacrine model is also more sensitive to the appearance of the dot than the gain

control, which in turn performs slightly better than the gap junction model.

The figure also shows that these effects are persistent with the size of the ganglion cell

pooling.

Partial conclusion

We have been able to show in this chapter, though numerical simulations, that

lateral connectivity can indeed improve anticipation. In the case of amacrine connec-
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Figure 5.22: Assessing the effect of anticipatory mechanisms on a parabolic trajectory.
Top : results with a small ganglion cell pooling. Bottom : results with a large ganglion
cell pooling.

tivity, anticipation can be improved as compared to the gain control alone when the

network effect is such that the adaptation function increases faster. We have tried to

understand whether this type on connectivity can have an interesting effect on antici-

pation when the bar is moving on a noisy background, but this is still work in progress.

In the case of gap junction connectivity, anticipation is improved only when the trajec-

tory of the bar is parallel to the preferred direction of ganglion cells. However, in this

case, the blur around the retinal representation of the bar is increased. In general, there

seems to be a trade-off between anticipation and object recognition.
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Chapter 6

Primary visual cortex model

In this chapter, we introduce the cortical basis of our retino-cortical model : a

mean field model that has been developed by Zerlaut et. al [79] to reproduce VSDI ac-

tivity as recorded in V1. This model has later been used by Chemla et al. [80] in order to

account for the cortical representation of apparent motion, a visual illusion where two

dots are flashed close in space and with a small time delay, giving rise to motion per-

ception. We first introduce the mean field model equations derivation, a method that

can be applied using different single cell models (Adaptive Exponential IF, Hodgkin

Huxley and Morris Lecar), and show examples of response properties in the case of the

Adaptive Exponential IF and Hodgkin Huxley models. We then modify the Adaptive

Exponential IF implementation to link it to our retina model. In order to validate our

implementation, we reproduce V1 activity in response to apparent motion. Finally, we

study the ability of the cortical model to anticipate a trajectory, using synthetic external

drives, and assess the role of cortical connectivity parameters in anticipation.

6.1 General introduction to the mean field model

Cortical dynamics during awake states display asynchronous spiking activity,

characterized by irregular spike trains at the level of single neurons. In this context,

network correlations decrease sufficiently fast in time, giving the possibility to apply a

Makovian formalism to obtain mean field equations of the average activity of neurons

[81]. El Boustani et al. [82] have derived differential equations describing the average

rate as well as higher order moments of populations of spiking neurons. However, the

function that links the input and output of these populations is generally not a simple
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sigmoid, but rather a complex function that takes into account realistic properties of

the neurons, such us conductance-based interactions.

Zerlaut et al. [79] have developed a general semi-analytic approach to determine the

transfer function applied to Adaptive Exponential IF models, which allows a mean

field description of the population dynamics. In particular, they were able to study a

network of regular-spiking excitatory neurons, and fast-spiking inhibitory neurons, re-

producing VSDI spatio-temporal patterns of the network spontaneous activity, as well

as the network response to a time-varying external drive.

Figure 6.1: Mean Field modeling of the cortex dynamics. (A) A local network accounts
for the complex assembly of cortical neurons measured in experiments (here VSDI). (B)
Excitatory-inhibitory network structure. Parameters are described in the text and their
values are given in the Appendix. [79]

During the spring school organized at the EITN 1 in 2018 and 2019, two groups of

students have worked on the application of the transfer function approach to Hodgkin

Huxley [83] and Morris Lecar [84] models, under the supervision of Matteo Di Volo.

I took part in this work which was concretized in a journal paper, currently under re-

view. Being part of the first group who worked on the Hodgkin Huxley model, we

briefly present here the formalism as it has been applied to the Adaptive Exponential

IF and Hodgkin Huxley models, and show the major results in terms of transfer func-

tion computation and population dynamics.

The mean field model which is later used in our simulations consists of a spatially

1European Institute of Theoretical Neuroscience, Paris.
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extended ring where each node shows the network activity of a large population of

excitatory regular spiking and inhibitory fast spiking cells, based on the Adaptive Ex-

ponential IF model.

6.1.1 Mean field equations

Under the hypothesis that the neural network is in an asynchronous irregular

regime, we can describe the first and second order dynamics using the master equa-

tion formalism developed by El Boustani et al. [82]. The main argument used in this

derivation is to consider the network dynamics as Markovian at a given time scale,

typically 20 ms. The differential system reads :

T
dνµ
dt

= (Fµ − νµ) +
1

2
cλη

∂2Fµ
∂νλ∂νµ

, (6.1)

T
dcλη
dt

= δλη
Fλ(1/T − Fλ)

Nλ

+ (Fλ − νλ)(Fµ − νµ)

+
∂Fµ
∂νλ

cλµ +
∂Fµ
∂νη

cµη − 2cλµ, (6.2)

where µ = {E, I} is the population index (excitatory or inhibitory), νµ the population

firing rate and cλη the covariance between population λ and η. The function Fµ={E,I} ≡

Fµ={E,I}(νE, νI) is the transfer function which describes the firing rate of population µ

in function of excitatory and inhibitory inputs (with rates νE and νI).

At the first order, i.e. neglecting the dynamics of the covariances cλη, the model

reduces to :


T∂νE(x,t)

dt
= −νE(x, t) + FE(νaffE (x, t) + νinputE (x, t), νinputI (x, t))

T∂νI(x,t)
dt

= −νI(x, t) + FI(ν
input
E (x, t), νinputI (x, t))

(6.3)

where νinputE (x, t) (resp. νinputI (x, t)) is the population rate at column with spatial lo-

cation x, at time t, of excitatory cells (resp. inhibitory). νdriveE denotes the constant

external drive and νaffE the retino-thalamic input. The function FE (resp. FI) is the

transfer functions of excitatory (resp. inhibitory) neurons.

Let NE(x) (resp. NI) denote the spatial connectivity at the level of the excitatory pop-

ulation (resp. inhibitory), and vc is the speed of axonal conduction. The excitatory

input νinputE (x, t) (resp. inhibitory νinputI (x, t)) adds up the constant excitatory constant

drive νdriveE (resp. 0) and incoming excitatory (resp. inhibitory) activity from the con-

121



nected columns, with a delay that depends on the distance between the columns and

the axonal conduction speed. For two columns at positions x and y, the delay reads :

τ = ||y − x||/vc

Integrating the connectivity input over all the spatial locations, νinputE and νinputI

read :

 νinputE (x, t) = νdriveE +
∫
R dyNE(x− y)νE(y, t− ||y − x||/vc)

νinputI (x, t) =
∫
R dyNI(x− y)νI(y, t− ||y − x||/vc)

(6.4)

6.1.2 Transfer function

The transfer function links the output firing rate of a neuron to its input presy-

naptic excitatory and inhibitory activities, which consequently describes the dynamics

of the neuronal activity. Finding the analytic formulation of the transfer function for

complex models such as the Adaptive Exponential IF or Hodgkin Huxley is a non triv-

ial problem. Zerlaut et al. [79] have developed a semi-analytic method which fits a

phenomenological threshold, using numerical simulations of a given neuron model.

This method assumes that the phenomenological threshold depends on mean values

describing the statistics of the subthreshold membrane voltage dynamics.

The transfer function reads :

F =
1

τV
erfc(

νeffthr − µV
σV

) (6.5)

where νeffthr is a phenomenological threshold expressed as a first order expansion of µV ,

σV and τV . These mean values are calculated from shot-noise theory [85] :

µGE = νEKEτEQE

σGE = QE

√
νEKEτE

2

µGI = νIKIτIQI

σGI = QI

√
νIKIτI

2

where, KE (resp. KI) is the number of excitatory synapses (resp. inhibitory), QE
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(resp. QI) the excitatory conductance (resp. inhibitory), and τE (resp. τI) the excitatory

decay (resp. inhibitory). The parameter values are given in the Appendix.

The total input of the neuron µG and its effective membrane time constant τ eff
m are

controlled by the mean conductances as follows:

µG(νe, νi) = µGe + µGi + gL,

τ eff
m (νe, νi) =

cm
µG

.
(6.6)

Therefore, we can write the equation for the mean subthreshold voltage:

µV (νe, νI) =
µGeEe + µGiEi + gLEL

µG
. (6.7)

where Ee (resp. Ei) are the Nernt potentials of excitatory (resp. inhibitory) neurons,

and EL the leak Nernst potential.

The final formulae for σV and τV follow from calculations introduced in [79] they

read:

σV (νe, νi) =

√∑
s

Ks νs
(Us · τs)2

2 (τ eff
m + τs)

, (6.8)

τV (νe, νi) =
( ∑

s

(
Ks νs (Us · τs)2

)∑
s

(
Ks νs (Us · τs)2/(τ eff

m + τs)
)), (6.9)

where we defined Us = Qs
µG

(Es − µV ) and s = (e, i).

The quantities µV , σV and τV can now be reported into Eq. 6.5.

Using experimental considerations, Zerlaut et al. have shown that the phenomeno-

logical threshold can be expressed as a function of (µV , σV , τV ), as a second order poly-

nomial :

V eff
thre(µV , σV , τ

N
V ) = P0 +

∑
x∈{µV ,σV ,τNV }

Px ·
(x− x0

δx0

)
+

∑
x,y∈{µV ,σV ,τNV }2

Pxy ·
(x− x0

δx0

)(y − y0

δy0

)
,

(6.10)

where τNV = τVGl/cm is an unitless parameter. The fitting procedure consists then of

finding the values of the P parameters for each of the considered models.
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6.1.3 Application to the Adaptive Exponential IF model

The Adaptive Exponential integrate and fire model is described by the following

differential equations :

cm
dv

dt
= gl(El − v) + ∆e

v−vth
∆ − w + Isyn (6.11)

dw

dt
= − w

τw
+ a(v − EL) + b

∑
k

δ(t− tk) (6.12)

where cm is the membrane capacity, v the voltage of the neuron, gL the leak conduc-

tance, and EL the leak reversal potential. When v is above the threshold vth, it is reset

to its resting value vrest. The second equation denotes an adaptive dynamics for ex-

citatory neurons (a=b=0 for inhibitory cellls). Finally, the synaptic current is given by

:

Isyn = QE(EE − v)SE +QI(EI − v)SI

where EE and EI are the reversal potentials of excitatory and inhibitory neurons, QE

and QI the quantal conductances. SE (resp. SI) is the postsynaptic activity due to the

spiking of presynaptic excitatory neurons (resp. inhibitory) at time tpre given by :

SE/I(t) =
∑
pre

Θ(t− tpre,E/I)e
t−tpre,E/I

τE/I

with Θ the Heaviside function and τE/I the synaptic decays (resp. for excitatory and

inhibitory cells).

6.1.4 Application to the Hodgkin Huxley model

The dynamics of the Hodgkin Huxley model are given by the following differen-

tial system [86] :
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cm
dvi

dt
= gL(EL − vi) + gNam

3h(ENa − vi)+

+ gKn
4(EK − vi) + gMpi(EK − vi) + Isyn,

(6.13)

dni
dt

= αn(vi)(1− ni)− βm(vi)ni, (6.14)

dmi

dt
= αm(vi)(1−mi)− βm(vi)mi, (6.15)

dhi
dt

= αh(vi)(1− hi)− βh(vi)hi, (6.16)

dpi
dt

= (p∞(vi)− pi)/τp(vi), (6.17)

with the gating functions,

αn(vi) =
−0.032(vi − VT − 15)

exp[−(vi − VT − 15)/5]− 1
, βn(vi) = 0.5 exp[

−(vi − VT − 10)

40
],

αm(vi) =
−0.32(vi − VT − 13)

exp[−(vi − VT − 13)/4]− 1
, βm(vi) =

0.28(V − VT − 40)

exp[(V − VT − 40)/5]− 1
,

αh(vi) = 0.128 exp[−(V − VT − 17)/18], βh(vi) =
4

1 + exp[−(V − VT − 40)/5]
,

p∞(vi) =
1

1 + exp[−(V + 35)/10]
, τp(vi) =

τmax

3.3 exp[(V + 35)/20] + exp[−(V + 35)/20]
,

(6.18)

where vi is the membrane voltage and (ni,mi, hi, pi) are the corresponding gating

variables of the ith neuron. The membrane capacity cm = 200pF, the maximal leak

conductance (per unit of surface) gL = 10mS/cm2, the sodium conductance (per unit

of surface) gNa = 20mS/cm2, the delayed-rectifier potassium conductance (per unit

of surface) gK = 6mS/cm2, the slow non-inactivating potassium conductance of the

excitatory regular spiking neurons (per unit of surface) gM = 0.003mS/cm2 and of the

inhibitory fast spiking neurons gM = 0mS/cm2, with corresponding reversal potentials

EL = −65mV, ENa = 50mV, EK = −90mV.

The spiking voltage threshold VT = −53.5mV and τmax = 4s are the fixed parameter

values in Eqs.(6.13)-(6.18). When v > vthr = 10 mV a spike is emitted at time tsp(k).

6.1.4.1 Mean field results

When seeking an existing plausible model of the cortex accepting firing rates

retino-thalamic input, the model developed by ElBoustani et al. [82] was the most

adapted choice. It remained then to find the right underlying neuron model. It is in

this spirit that we show here the application of the semi-analytic approach to fit the nu-
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merical transfer function when applied to Adaptive Exponential as well as Hodgkin-

Huxley models. The evaluated effective threshold encodes the specificities of neu-

rons microscopic and mesoscopic activity, which present, as we show it in the fol-

lowing, similarities in terms of spontaneous activity and response to external stimuli.

We choose therefore the Adaptive Exponential implementation in our study of cortical

anticipation, the single cell model being simpler. The main problem with the Hodgkin-

Huxley in this approach being it has many parameters and regimes, each requiring a

new fit.

All together, by comparing the theoretical prediction with numerical simulations

we observe that, for both the Adaptive Exponential model and the more complex

Hodgkin Huxley model, the transfer function is correctly estimated both for inhibitory

and excitatory neurons, showing the efficiency of this approach.

We now assess the mean field predictions of the dynamics that emerge from net-

works of Adaptive Exponential IF and Hodgkin Huxley neurons. A sparse network

of RS and FS cells coupled through conductance-based interactions is simulated, using

the same connectivity parameters. As the transfer functions of RS and FS cells are sim-

ilar we expect the regime of population dynamics to be analogous. This comes from

the assumption that the population dynamics depend on cellular details only through

the transfer function.

Fig. 6.3 shows that the dynamics reach an asynchronous regime, characterized

by irregular microscopic dynamics. Inhibitory FS cells fire at a higher frequency with

respect to RS cells. The discrepancy we observe for the Hodgkin Huxley model, in the

case of FS cells, is related to a higher mismatch of the transfer function linked to the

higher complexity of the model.

Finally, we compare the mean field and network activity when the system is re-

sponding to an external stimulus. The drive is a time-varying frequency targeting both

excitatory and inhibitory cells, defined by the following function :

ν(t) = A
(

Θ(t0 − t)e
−(t−t0)2

T2
1 + Θ(t− t0)e

−(t−t0)2

T2
2

)
, (6.19)

where Θ is the Heaviside function, and T1 and T2 are the rise and decay time

constants, respectively.

Fig. 6.4 shows the comparison between the mean field prediction and the network

dynamics.
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AdExp Model Hodgkin-Huxley Model

Figure 6.2: Transfer function for Regular Spiking (RS) and Fast Spiking (FS) cells, for
Adapative Exponential IF and Hodgkin Huxley We report the output firing rate for
excitatory RS (green) and inhibitory FS (red) cells obtained from numerical simulation
(dots) and from the semi-analytic approach for the transfer function (continuous line).
The inhibitory Poissonian spike train has a fixed rate, rI = 8Hz. The bottom panel
shows the trace in time of the membrane voltage of an RS cell for an excitatory input
equal to 4Hz. Left columns is obtained for Adapative Exponential IF model and right
column for Hodgkin Huxley.
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AdExp Model Hodgkin-Huxley Model

Figure 6.3: Mean Field predictions and spontaneous activity, for Adapative Expo-
nential IF and Hodgkin Huxley Top subfigures show the raster plot for excitatory
(green dots) and inhibitory (red dots) neurons. Similarly, the lower subfigures show
the populations PSTH. The Gaussian distribution has been drawn with mean field pre-
dictions giving access to average firing rate and its variance. Left column is obtained
for Adapative Exponential IF model and right column for Hodgkin Huxley.

128



AdExp Model Hodgkin-Huxley Model

Figure 6.4: Population response to external stimuli, for Adapative Exponential IF
and Hodgkin Huxley Same as Fig. 6.3. The system is driven by an external excitatory
stimulus with A = 2Hz, T1 = 100ms, T2 = 150ms and t0 = 2000ms (eq. 6.19).
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6.2 Cortical representation of apparent motion

6.2.1 Experimental and modeling results

In 1912, Wertheimer introduced a visual illusion known as apparent motion :

when two stationary stimuli appear at two spatially distinct yet close positions, with a

given delay, it generates a motion percept. This illusion has been well studied from a

psychophysics point of view [87], and has been shown to widely depend on the spatio-

temporal characteristics of the stimulus. Indeed, the larger the spatio-temporal sepa-

ration, the more challenging it is for the visual system to preserve the object identity

along the path. Chemla et al. [80] used VSDI recordings in the primary visual cortex

of the awake monkey in order to study the role played by intra-cortical connections in

the cortical representation of apparent motion. In particular, they have emphasized the

existence of a suppressive wave propagating in the opposite direction of the apparent

motion.

Figure 6.5: Experimental protocol and time-sequence of the cortical response to the
long-range apparent motion . A: Two-step apparent motion stimuli are presented to
two awake fixating monkeys in their bottom left visual field, while recording in their
right visual cortex using VSDI. B: Spatio-temporal characteristics of the stimuli, i.e.
duration, interstimulus interval and spatial interval, were varied to cover a [5-66.6]◦/s
range of speed. C-E: Cortical representation of evoked VSDI activity as a function of
time, in response to respectively, a 100 ms local stimulus in the down position, another
one in the up position, and the sequence of these two stimuli. F: Activity pattern pre-
dicted by the linear combination in space and time of the response to stimulus 1 (row
C) and the response to stimulus 2 (row D). G: Suppression pattern obtained by sub-
tracting the observed apparent motion response (row E) and the linear prediction (row
F). From Chemla et al. [80]

Fig. 6.5 summarizes the results of the above-mentioned paper : it shows the wave

of cortical activation that propagates from the first stimulus representation to the sec-

ond one, as well the suppressive wave that emerges when subtracting the linear com-
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bination of responses to single stimuli from the response to the apparent motion stim-

ulus.

6.2.2 Reproducing apparent motion results

We use apparent motion to calibrate our implementation of the mean field cortical

model. In particular, we want to study whether anticipation in the primary visual

cortex involves a lateral propagation similar to the one involved in apparent motion.

We rewrite the original implementation of the mean field model, coded in Python [80]

, in C++. In addition to linking the retina model to the cortical one, this translation

allows more modularity in the code, and offers the possibility to parallelize it and thus

reduce computational time. The control case that has been used to test the accuracy of

the new implementation is the response to the apparent motion stimulus [80].

In response to a localized stimulus with a diameter of 0.25◦, presented at two positions

separated by 1◦ to 2◦, for a stimulus duration of 100 ms, and with a latency of 50 ms, we

observe an increase in the activity of the retinotopic representations of the two stimuli

which then spreads laterally over millimeters of cortical surface.

Figure 6.6: Python implementation of the model : A) Model response to the first stimu-
lus. B) Response to the second stimulus. C) Response to the apparent motion sequence.
D) Response to the apparent motion stimulus subtracted from the sum of responses to
the two stimuli, showing suppression [80].
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Fig. 6.6 and 6.7 show the response of the model, first with the python implemen-

tation and then with our C++ implementation, to two distant stimuli S1 and S2, and the

response to the temporal succession of S1 and S2. This temporal sequence generates a

propagation of activity from the cortical response to the first stimulus moving towards

the cortical response of the second one, giving rise to the illusion phenomenon of ap-

parent motion. In agreement with experimental results, when subtracting the response

to the apparent motion from the linear summation of the individual responses, a sup-

pression wave emerges, propagating from the spatial onset of the second stimulus S2

towards the onset of S1.
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Figure 6.7: C++ implementation of the model.A), B), C) and D) are the same as Fig. 6.6.
Unlike Fig. 6.6, sub-figure D) is not normalized, showing only the activity instead of
the ratio of suppression and facilitation.

The obtained results and their validation enable us to use our implementation to

conduct new computational experiments regarding motion anticipation in V1.
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6.3 Studying anticipation in V1

6.3.1 Experimental measures (Courtesy of F. Chavane)

The experimental data provided by the lab of F. Chavane are VSDI recordings of

cortical columns spanning over a cortical area of 2 to 3 degrees, responding to a bar

moving at 6.6◦/s.

In order to analyze these experimental data, we form clusters of cortical columns that

are spatially close and have similar responses. We use the time of the peak of response

as a clustering criterion : columns whose temporal peak of activity is close up to a

threshold (5ms) belong to the same cluster. We compute the mean and standard de-

viation of these clusters, which provide a synthetic view of the population’s activity.

We then determine the width at the 2/3 of the height for the different clusters. This

measure decreases with distance from the start of motion, giving responses that are

narrower and narrower.

Figure 6.8: A)Cortical columns have been divided into five clusters, ranked as a func-
tion of distance from the start of motion. B) The width at 2/3 height decreases with
distance. C) Fitting the decreasing part of the response with an exponential. D) The
characteristic time of decay decreases with distance. The data has been provided by F.
Chavane’s Lab.
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As shown in Fig. (6.8 A), the peak response is almost constant for all clusters. To

estimate the time decay, we fit the curve with a decaying exponential, and then plot

the characteristic times of decay for the different clusters. The characteristic time of the

decay decreases with distance, which could mean that the anticipatory increase in the

activity could be compensated by a faster decay.

Finally, for cells that are far enough from the onset of motion (yellow, purple, and green

clusters in Fig. 6.8), there is an emergence of we will call in the following the "Shoulder"

effect. This effect denotes an increase in the VSDI activity to an intermediate steady

state prior to the incoming excitatory drive, due to lateral connectivity, and possibly to

feedback.

6.3.2 Studying anticipation with the mean field cortical model

6.3.2.1 Gaussian external drive

As a first step, the retino-thalamic input is replaced by a moving stimulus with a

Gaussian shape, to study the ability of the model to reproduce anticipation. We use for

all the following simulations the same parameters as for the apparent motion stimulus:

• Number of cortical columns = 40

• Length of cortical space = 25 mm

• Extent of excitatory connections : 5 mm

• Extent of inhibitory connections : 1 mm

• Conduction velocity : 300 mm/s

The moving Gaussian has a velocity of 1.4mm/s (equivalent to 4.2◦/s). In this

framework, anticipation depends on the width of the Gaussian, appearing for smaller

values of the standard deviation. The built-up anticipatory "shoulder" effect doesn’t

arise in this setting though.

Fig. 6.9 shows the VSDI activity of a one dimensional cortical area of 25 mm

of three cortical columns with a spacing of 6 mm, responding to a moving Gaussian

with a standard deviation σ = 3.5mm. Though the increase in the activity is faster

as we move further from the start of activity (the distance between the VSDI purple

and green curves is smaller than the distance between their respective external drive),
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Figure 6.9: Mean field response to Gaussian with a standard deviation σ = 3.5mm
moving at 1.4mm/s. From up to bottom : the external drive, mimicking three ganglion
cells spaced by 0.1 mm, the VSDI activity, the excitatory firing rate and the inhibitory
firing rate of three cortical columns spaced by 1 mm. The red dashed lines show the
onset of motion in the external drive.

anticipation doesn’t occur in this configuration since the response always lags behind

the external drive.

Fig. 6.10 shows the VSDI response to a Gaussian with a standard deviation σ =

0.7mm. The further the cortical column from the start of motion, the earlier its activity

starts increasing as compared to its external drive, showing here an anticipatory effect.

However, after the curves reach their peak, a sustained activity appears which doesn’t

correspond to the shape of response observed in the experimental data. This might be

indicating that either the speed of the bar is very low as compared to the conduction

speed, giving a large accumulation of the propagating activity after the peak response,

or that the Gaussian shape of the external drive is not realistic.

In the setting that allowed us to reproduce anticipation, we want to suppress the

post-peak sustained activity. We test our first hypothesis by increasing the value of the

velocity to 2.8mm/s (equivalent to 8.4◦/s). While the sustained activity doesn’t die out,

this velocity increase suppresses the anticipatory effect. (Fig. 6.11)
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Figure 6.10: Same as Fig. 4. The Gaussian has a standard deviation σ = 0.7mm. An-
ticipation arises in this configuration : the onset of cortical VSDI activity occurs before
the onset of the external drive, denoted by the red dashed line.

Figure 6.11: Same as Fig. 4. The Gaussian has a standard deviation σ = 0.7mm, and a
velocity of 2.8mm/s. Anticipation is suppressed by the increase in the velocity. How-
ever, the sustained post-peak activity doesn’t depend on the speed. After the peak in
the VSDI activity, there is an emergence of a sustained activity.
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6.3.2.2 Alpha profile external drive

All in the same configuration, we now test the possibility to suppress of the sus-

tained activity without affecting the anticipatory effect, by changing the shape of the

external drive.

We set it as a moving alpha profile, with the same initial velocity of the form :

f(t) = exp(− t
τ

)tH(t)

Figure 6.12: The external drive is taken here as an alpha profile in space with τ = 2mm,
and a velocity of 1.4mm/s. The sustained post-peak activity fades away while the
anticipatory effect is preserved, with a VSDI activity that starts increasing before the
onset of the external drive.

With an alpha profile moving at 1.4mm/s, we manage to get a VSDI response

showing anticipation, while suppressing the sustained activity. One should note here

that the amplitude and speed of the alpha profile is equal to the Gaussian drive we used in the

previous subsection, meaning that the mean field model is sensitive to the external drive shape.

It’s all the more interesting as the different external drives that we will be using in the

future chapter, coming from our retina model, generally have an asymmetric shape
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close from the alpha profile, with a fast increase and a slow decay.

6.3.3 Understanding the origin of the "shoulder" effect

We now want to investigate the emergence of the "shoulder" effect (the rise of an

activity plateau prior to the peak that we observe in experimental data). For that, we

use, as an external drive, a moving alpha profile that stops at the middle of the cortical

area. Thus, the cortical columns located in the second half of the cortical field only

receive the activity coming from lateral connectivity. This propagating activity under-

goes an attenuation as a function of distance. In order to have the "shoulder" effect,

the propagating activity should accumulate in a way to give a plateau, meaning that

the activity coming from different columns should get to the considered column with

more or less the same amplitude. It is therefore unlikely to get a shoulder effect with

the mean field model, unless the external drive is designed in a way to compensate

this spatial attenuation.

Figure 6.13: Mean field response to an external drive consisting of alpha profile moving
at 1.4mm/s . The stimulus stops when it gets to the middle of the cortical columns line.
Hence, the columns shown in the figure don’t receive any external drive. Their activity
is only due to lateral propagation. The figure shows the attenuation of the propagating
activity as a function of distance.

As stated earlier, the shape of the VSDI response highly depends on the shape of

the afferent external drive, but also on its amplitude. Using an alpha profile with the

same velocity but with a higher amplitude, we were able to find a regime where the
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VSDI activity a steady state for time span of 50 ms before starting to decrease again.

We were unfortunately not successful in finding a regime where the activity increases

more saliently when the cortical column effectively receives the stimulus.

Figure 6.14: Mean field response to an external drive consisting of a translating alpha
profile with a velocity of 1.4mm/s . We set the amplitude of the stimulus to 15 mV. The
VSDI shows a sustained activity prior to the the peak of the external drive. However
the activity doesn’t increase further, in contrast to the experimental data.
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6.3.4 Studying the latency and time to peak

In this subsection, the external drive of the cortical model consists of an alpha

profile moving at 6◦/s (equivalent to 18 mm/s of the cortex). The simulated cortical

space is 8◦ long and two consecutive cortical columns have a spacing of 0.225◦. We

discard the last degree in the latency and time to peak figures to avoid edge effects,

giving thus a cortical space of 7◦. The bar starts its motion at 2◦.

We keep the same parameters as the ones used for the apparent motion stimulus.

Figure 6.15: Top : Experimental setting and results (courtesy of F. Chavane lab) . Bot-
tom : Simulation results. A) Stimulus description. B) Experimental response of cortical
columns centered around their peak. C) Latency (circles) and time to peak (triangles)
as a function of cortical space. The speed of the peak follows the speed of the bar
(hence 6.7 deg/s) whereas the latency increases faster than the speed of the bar (hence
8.3 deg/s). D) Response of cortical columns to an alpha drive. The curves are centered
around the peak response of there corresponding drive. E) Latency and time to peak as
a function of cortical space. The lighter the color, the further the cell is from the onset
of motion.

Fig. 6.15 shows the response of cortical columns to a bar spanning over their

entire receptive field. While as in the data, the time to peak function is constant, the la-
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tency function increases linearly with space, and in contrast with experimental results

where the latency slope decreases, the latency function becomes constant starting from

approximately 4.5 ◦. This is due to the fact that the cortical mean field model doesn’t

implement a feedback mechanism.

6.3.4.1 Assessing the role of excitatory and inhibitory connections

We first change the ratio of excitatory and inhibitory connections by taking the

extent of inhibitory connections equal to 3 mm.

Fig. 6.16 shows that there is no significant change in the latency and time to peak

curves, but only an increase in the min and max values of the cortical activity.

Figure 6.16: Simulation results, changing the ratio of excitatory and inhibitory connec-
tion extents (excitatory extent = 5mm and inhibitory extent = from 1mm to 3 mm). Left
and right figures are the same as in figure 6.15. The ratio of connection extents doesn’t
change the latency and time to peak curves. .

We now change the connection extents while keeping the initial ratio :

• Extent of excitatory connections : (a) 3 mm, (b) 2 mm and (c) 1 mm

• Extent of inhibitory connections : (a) 0.6 mm, (b) 0.4 mm and (c) 0.2 mm

Fig. 6.17 shows that the lowest the connectivity extents are, the faster the la-

tency function saturates, denoting a steady state of the network where all the cortical

columns start anticipating equally. The time to peak function is always constant, irre-

spective of the value of the connectivity extents.
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(a)

(b)

(c)

Figure 6.17: The effect of connection extents. Time course of responses and latency-
time to peak curves, for an excitatory connectivity extent (resp. inhibitory) of (a) 3 mm
(resp. 0.6) (b) 2 mm (resp. 0.4) and (c) 1 mm (resp. 0.2). The lower the connection
extents, the faster the latency curve saturates. .

6.3.4.2 Assessing the role of conduction velocity

Keeping the connectivity extents equal to the reference parameters, we vary the

conduction velocity : (a) 50 mm/s (b) 100 mm/s and (c) 400 mm/s.
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(a)

(b)

(c)

Figure 6.18: The effect of conduction velocity. Time course of responses and latency-
time to peak curves, for a conduction of (a) 50 mm/s (b) 100 mm/s and (c) 400 mm/s.

Fig. 6.18 shows that, as it could be expected, the latency slope is correlated with

the value of conduction. The higher the conduction, the higher the slope (in algebraic

value). The function linking the latency slope to the conduction velocity can be fitted

by the function f(x) = a.e
b
x , with a = −18.5 ± −0.7467 and b = 31.3 ± −2.805. The

results of the fit are shown in the following figure :
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Figure 6.19: Fit of latency slope as a function of conduction velocity. .

The function suggests the existence of a limit value of the latency slope (here

equal to -18.5 ms), showing the bounded nature of the network ability to anticipated.

6.3.5 Concluding remarks

In this chapter, we presented the mean field model that we use for cortical simu-

lation of anticipation. We studied the ability of the model to anticipate, replacing the

retino-thalamic input by ad-hoc Gaussian and alpha function (thus without a retinal

drive). We showed that the cortical response features are highly driven by the shape

of the external drive, with the alpha drive given more realistic results. We also demon-

strated that the anticipatory effect decreases with speed.

We then computed the latency and time to peak function in different simulation set-

tings. We demonstrated that the latency depends on the values of the connectivity

extent, as well as the conduction velocity. In particular, the latency saturates for low

values of connectivity extent. Additionally, the slope of the latency increases with the

conduction velocity before also saturating. Finally, the time to peak function, except

for border effects due to the start of motion, is constant throughout the cortical space.

144



Chapter 7

Results of the retino-cortical model

In this chapter, we report the results of the integrated retino-cortical model. We

first explain how the retina and the cortex models are connected. Then, we focus on the

effect of the anticipatory mechanisms occurring in the retina and studied in Chapters

3 and 4 on cortical anticipation. Our aim here is to emphasize the collaborative aspect

of retinal and cortical anticipation.

7.1 Connecting the retina and the cortex models

In the monkey, 1 degree of visual angle corresponds to approximately 0.3mm of

the retina. While the size of the cortical degree is not sharply determined in the liter-

ature, values range from 3mm to a maximum of 15mm [88]. In order to be consistent

with the conversions used in [80], we will choose the value of 3mm for the cortical de-

gree.

As a first approximation, we neglect the anisotropic effects involved in visual retino-

topy, and we consider that retinal ganglion cells project linearly on cortical neurons

with a magnifying factor (Fig. 7.1). The average distance between two neighbor-

ing ganglion cells is about 50 µm [89], which gives a retinal linear density %r of 20

neurons/mm. The density %c of neurons in V1 is taken equal to 104 neurons/mm2

which boils down to 102 neurons/mm. Each ganglion cell projects then on 50 neurons

in 1D, and 2500 in 2D.
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Figure 7.1: Schematic description of the retino-cortical conversion.

7.2 Latency and time to peak using a retinal drive

7.2.1 LN retina drive

We simulate a 1D grid of 120 bipolar cells spaced by 20 µm, pooled by 40 gan-

glion cells spaced by 62.5 µm, such that the total length of the retinal grid is 2.5 mm.

The grid projects on a cortical field with a length of 25 mm. Each ganglion cell projects

on a single ganglion column, with the strength of connectivity as a free parameter.

At t = 100 ms, a bar enters from the left edge of the grid, mimicking the gradual appear-

ance of the bar in the visual field, and starts moving with a speed of 6 ◦/s (equivalent

to 1.8 mm/s in the retina).

We first simulate a linear non linear retina response, with a spatio-temporal filtering

of the stimulus followed by a non linearity at the level of bipolar cells, and a Gaussian

pooling followed by a non linearity at the level of ganglion cells.

In the figures of this subsection, we will distinguish between two definitions of latency

and time to peak : the first taking as a reference time the onset of the stimulus for a

given cell position, and the second taking as a reference time the onset of the retina

drive. The first quantities enable us to study the compound anticipatory effect of the

retina and V1, while the second show what the cortex adds to retina anticipation.

Fig. 7.2 shows the responses of 40 cortical cells receiving the LN model output. The

difference in amplitudes is due to the retinal drive : cells whose receptive field center is

located near the onset of the bar have a higher response since the bar doesn’t span their

entire receptive field, and thus doesn’t activate first the inhibitory part of the receptive

field.
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The latency with respect to the retina input is null in the beginning of motion. This can

be explained by the sharp increase in ganglion cells firing rates at the onset of motion.

In this regime, the onset of cortical activity is entirely driven by the onset of retinal

activity, thus resulting in a null latency. Within this same regime, the time to the peak

with respect to the retina drive increases. After this initial phase, the latency starts

increasing (in absolute value) linearly as a function of the cortical space, and the time

to peak becomes constant. On the other hand, the latency with respect to the stimulus

is uniformly increasing across cortical space, and the time to peak with respect to the

stimulus becomes constant after a transient. This shows that the compound effect of

the retina and the cortex in this case reproduces the behavior of the cortex alone, when

fed with a translating alpha profile.

Figure 7.2: The response of the cortical model, latency and time to peak, with LN retinal
drive. a) Retina responses to a moving bar, centered around the start of the stimulus.
b) Cortical responses centered around their peak, driven by the retina inputs shown in
a). c) Latency and time to peak taking as a reference the onset of the retina drive. d)
Latency and time to peak taking as a reference the onset time of the stimulus at a given
position. As in the previous chapter, the lighter the color, the further the cell is from
the onset of motion.
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7.2.2 Gain control retina drive

We now consider the effect of gain control in the retina on cortical anticipation.

Fig. 7.3 shows the responses of 40 cortical cells receiving a retina drive with gain

control. Gain control narrows the response, but doesn’t affect its onset time. Con-

sequently, compared to the response with the LN drive, only the curves of the time to

peak change.

Figure 7.3: The response of the cortical model, latency and time to peak, receiving a
retinal drive with gain control. a), b), c) and d) same as in the figure 7.2.

Cells near the onset of the trajectory show an increase in their firing rates which

is sharper than in the previous case, due to gain control, as well as a higher peak re-

sponse. Their corresponding cortical columns peaks of response are mainly driven by

the retinal input peak. Consequently, in this regime, the time to peak with respect to

the retinal drive is constant, while the time to peak with respect to the stimulus is de-

creasing, only driven by the retinal anticipation. After this transient regime, the time to

peak becomes constant, but in contrast to its positive value in the LN case, the constant

value of the time to peak here is negative. This is entirely due to the retina anticipation
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in the case of gain control, which is characterized by a shift in the peak response, fur-

ther affecting the overall retino-cortical response.

The transient spatial regime corresponds to the ganglion cells extent where the tem-

poral response is not stationary. Fig. 7.4 show the temporal courses of ganglion cells

responses and their corresponding cortical responses. Until the 15th cell/column ap-

proximately, the peak of cortical activity is due to the cortical propagation of the large

peaks near the stimulus onset. Afterwards, the peak of the corresponding ganglion cell

takes over, giving thus a constant time to peak. The 1515 cell/column corresponds to

3◦, which explains the jump in the time to peak curve around this value.

Figure 7.4: Temporal courses of ganglion cells responses and cortical activities.
Columns near motion onset have two competing peaks, the first coming from activity
propagation and the second from the retina input. This explains the nonlinear evolu-
tion of the time to peak curve.

7.2.3 Amacrine connectivity retina drive

In the following simulations, we add amacrine connectivity at the level of bipolar

cells. In Chapter 5 a regime of parameters for the amacrine connectivity model where
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it performs better than gain control in terms of retinal anticipation : the peak activity

is reached earlier than with gain control alone. In this setting, we assess the effect of

amacrine connectivity on the cortical anticipation. The cortical model parameters and

the connectivity strength are identical to the one used in the LN model and gain con-

trol simulations.

Figure 7.5: The response of the cortical model, latency and time to peak, receiving a
retinal drive with gain control, and amacrine connectivity at the level of bipolar cells.
a), b), c) and d) same as in the figure 7.2.

Fig. 7.5 shows that in this configuration, amacrine connectivity doesn’t bring any

significant change in latency and time to peak curves as compared to the gain control

drive. The change appears in the level of cortical activities (see Fig. 7.6). One has

to notice here that despite a significant change in the shape of the retinal drive, the

cortical response shape itself doesn’t substantially change, except for the amplitude,

which means that more than its dependence on the external drive, the cortical model

dynamics are first and foremost driven by its own network properties.
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Figure 7.6: Comparison of retinal drive with amacrine connectivity and its corre-
sponding cortical response (plain lines), and their counterparts with gain control only
(dashed lines). In this regime, the ganglion cell activity with amacrine connectivity is
in advanced with respect to gain control alone.

7.2.4 Gap junction connectivity retina drive

We start from the gain control model and we add gap junction connectivity at

the level of ganglion cells. We have previously studied how gap junctions improve

anticipation in the retina, focusing on two cases, when ganglion gain control is applied

before the gap junction coupling and when it is applied after. The latter case perform-

ing better, it’s the one we will use in the following simulation.

Gap junction connectivity, in contrast with gain control and amacrine connectivity, in-

troduces an effect similar to the connectivity at the level of the cortex : the activity

starts increasing before the bar reaches the receptive field.
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Figure 7.7: The response of the cortical model, latency and time to peak, receiving a
retinal drive with gain control, and gap junction connectivity at the level of ganglion
cells. a), b), c) and d) same as in the figure 7.2.

Fig. 7.7 shows that in this configuration, the cortex doesn’t anticipate in terms of

latency : the latency curve with respect to the retina drive is null. As for the time to

peak with respect to the drive, it is first constant on the transient where the drive is not

stationary, and decreases afterward, showing that the cortex delays the peak response.

As for the latency and the time to peak with respect to the stimulus, the curves are

similar to the gain control curves, with a slightly larger slope of latency, and a slightly

more negative constant value of the time to peak.

Fig. 7.8 compares the gain control retina drive, with and without gap junctions. The

figure shows in particular that the difference in the onset time at the level of the retina

is much larger than in the cortex, showing that in this setting the cortex anticipated less

than the retina. This result is particularly enlightening on the collaborative nature of

anticipation in the retina and V1.
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Figure 7.8: Comparison of retinal drive with gap junction connectivity and its corre-
sponding cortical response (plain lines), and their counterparts with gain control only
(dashed lines).

7.2.5 Removing edge effects

In order to be in the same conditions as in the experimental setting, we reduce the

size of the ganglion cells receptive fields (the receptive fields of the monkey retina are

smaller than the salamander retina). We also remove the non stationary response of

the retina to the appearance of the bar, and consider only cortical columns in the center

of the trajectory in order to remove cortical edge effects due to the ring connectivity.

We also reduce the connectivity extent parameter to 3mm, in order to reproduce the

latency slope change that is observed in experimental data.

Fig. 7.9, 7.10, 7.11 and 7.12 show the responses of the retina and the cortex the time

the stimulus reaches the RF of the cell. They also display the latency and time to peak

response in the aforementioned configuration, first for the retina alone with the stimu-

lus as a reference, then for the cortex with the same reference, and finally for the cortex

with the retina as a reference, in order to emphasize the the contribution of the retina
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to cortical anticipation. Note that the stimulus reference is taken when the center of

the bar reaches the center of the receptive field.

Figure 7.9: Removing edge effects for the cortical response to an LN retinal drive. a)
(resp. b) Retina (Cortex) responses to a moving bar, centered around the time the
stimulus reaches the RF of the cell. c) Latency and time to peak of the retina with
respect to the stimulus. d) Latency and time to peak of the cortex with respect to the
stimulus. e) Latency and time to peak of the cortex with respect to the retina. As before,
the lighter the color, the further the cell is from the onset of motion.

When the cortex is driven by the linear non linear drive (Fig. 7.9), the latency

and time to peak curves of the retina are constant, given the stationary response to the
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moving bar stimulus for ganglion cells which have the bar spanning over their entire

receptive field. In this case, the latency of the cortex is driven only by its own dynamics,

and saturates for a given cortical length, because of the reduced connectivity. The peak

response is not further displaced by the cortex.

Figure 7.10: Removing edge effects for the cortical response to a retinal drive with gain
control. a), b), c), d) and e) same as in the figure 7.9.

When the cortex responds to the gain control drive (Fig. 7.10), the latency and the

time to peak curves of the retina are again constant, with a latency that has the same

value as the LN case (the gain control mechanism doesn’t change the onset of activity),

and a time to peak curve which is shifted to a negative value. In this case again, the
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latency curve of the cortex is entirely driven by its own dynamics. Again, the peak

response is not further shifted by the cortex.

Figure 7.11: Removing edge effects for the cortical response to a retinal drive with gain
control and amacrine connectivity. a), b), c), d) and e) same as in the figure 7.9.

When the cortex is responding to a retina drive with an amacrine connectivity

(Fig. 7.11), the behavior of the retino-cortical model is similar to gain control case,

with the following difference : the time to peak of the retina increases (in absolute

value) since in this case the retina anticipates more, and the cortex delays the peak as

compared to the retina.
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Figure 7.12: Removing edge effects for the cortical response to a retinal drive with gain
control and gap junction connectivity connectivity. a), b), c), d) and e) same as in the
figure 7.9.

Finally, when the cortex is driven by a retina drive with gap junction connectivity

(Fig. 7.12), the latency of the retina increases linearly, given the lateral propagation oc-

curring at its level. The cortex in the case delays the retina response in terms of latency,

over the cortical area where the cortical latency saturates while the retina latency is still

increasing.
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7.2.6 Synthetic view of the spatio-temporal

Figure 7.13: Comparing the spatio-temporal activity with the different drives. Left
column figures display the spatio-temporal retinal activity with different anticipatory
mechanisms, and the right column displays the corresponding spatio-temporal cortical
activity. The red dashed lines denote the start and the end times of the LN retinal and
cortical activities, as a reference base.

Figure Fig. 7.13 shows a spatio-temporal representation of the retinal and cortical

activities, in different retinal settings. We first observe that the variation in the firing

rate amplitude at the level of the retina model doesn’t have any impact whatsoever on

the amplitude of the VSDI activity.

The figure shows a clear shift in the wave of activation at the level of the retina and V1

first from the LN model to the gain control model, and then from the amacrine model

to the gap junction model, without however any change in the wave velocity.

In these settings, the peak activity of the amacrine drive is more shifted as compared

to the gain control drive, without any effect on the cortical activity peak.
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Finally the wave of activation in the case of the gap junction drive is wider at the level

of the retina giving rise to a wider wave of activation at the level of the cortex.

7.2.7 The effect of velocity

Figure 7.14: Latency of the cortex with respect to the stimulus for different values of
velocity. a) Using LN retina drive. b) Using gain control retina drive. c) Using amacrine
connectivity retina drive. d) Using gap junction connectivity retina drive.

Figure Fig. 7.14 displays the cortical latency, taking the stimulus as a reference for

different values of velocity. The results show a decrease in both the latency onset value

and slope, with the increase of velocity. This result is persistent across the different

retinal anticipatory mechanisms.

The three retinal anticipatory mechanisms have a stronger effect for the intermediate

value of speed, where the latency curve is more shifted and has a steeper slope as com-

pared to the LN model.

For a low value of speed, the latency in the gap junction driven simulation saturates

faster than the gain control and amacrine connectivity driven simulations, which in

turn saturate faster than the LN driven simulation.

For a high value of speed, only the gap junction connectivity has a significant effect on

the latency.
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One can observe a jump in the latency of the gap junction driven simulation, which

increases for lower values of speed. Numerically, this can be explained by the appear-

ance of a small peak at the onset of activity, for small velocities, which decreases with

cortical distance. Since the latency is computed over the derivative of the activity, the

decrease of this small peak has a non linear effect on the latency curve.

Figure Fig. 7.15 shows the onset activity of 12 cortical columns, where we can see

the vanishing of the small peak that emerges in the gap junction driven simulation.

Figure 7.15: Onset activity of 12 cortical columns shows the evolution of the small
peak of activity that emerges in the gap junction driven simulation. The speed here is
3 degrees/s.

Partial conclusion

In this chapter, we presented the results obtained after connecting our retinal

model to the cortical model. One has to note that in the two chapters describing antic-

ipation results after cortical processing, there has been a major paradigm shift. In our

study of anticipation in the retina, our main focus was on the shift of the peak response,

while in our study of anticipation in the cortex, our main focus was of the increase in

the latency of the response. We also remind the reader here that our retino-cortical

model is a bit of a "Frankenstein" model, linking a mouse (or salamander) retina model

to a monkey cortical model, and neglecting the processing done by the thalamus. The

aim being, ultimately, to understand computationally the effect of retinal anticipation

on the cortical one.
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As for the role of velocity, the cortical latency onset value and slope decreases with

speed, irrespective of the retinal anticipatory mechanism, denoting a decrease in the

ability to extrapolate motion at the cortical level.

To conclude, retina anticipation effects on the cortical one are two-fold : the shift in the

peak response doesn’t have a significant effect on the role played by the cortex in the

latency increase, but changes the constant value of the time to peak curve. The propa-

gating wave of activity in the retina (due to gap junctions), on the other hand, reduces

the role played by the cortex in the latency increase. This may lead us to ask whether

anticipation in the retina, beyond its role in compensating phototransduction delays,

also allows to anticipate trajectories in the same way and at the same temporal scales

as the cortex.
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Chapter 8

Perspectives

In the first part of this chapter, we will introduce an algorithm for pairwise corre-

lations measurement. We will first test it on synthetic data, and then we will apply it to

recorded data from salamander retina (courtesy of O. Marre). Our aim is to understand

if pairwise correlations can give us hints on the role played by connectivity in motion

anticipation.

In the second part of this chapter, we will present Macular, a software that is currently

being developed in the Biovision team. This software can, in the future, implement our

work on retino-cortical anticipation.

8.1 On spike train correlations

It has been hypothesized that connectivity in the retina enables accurate responses

to complex motion features such as brownian motion [48]. This connectivity could be

assessed a posteriori through pairwise correlations computation, showing to which

extent the activity of one neuron affects the other.

8.1.1 Pairwise correlations algorithm

When the retina is presented with motion stimuli, transient and non stationary

changes in the firing rates can occur, measuring Pearson correlations becomes then ir-

relevant. We develop a method to measure time varying correlations in the case of non

stationary point processes, and apply our method to spike trains to unravel the possi-

ble role played by connectivity in anticipation of a moving bar.
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Given two spike trains, either two trials of the same neuron or two neuron record-

ings within the same trial, we compute noise correlation in the first case and pairwise

correlation in the second. The central assumption in our approach is to consider spike

trains as non homogeneous Poisson processes. We first compute the probability that

a neuron spikes within a 5 ms time bin (average time for an action potential) using a

moving window algorithm. Let r(t) be the firing rate of the neuron, then, given that

the rate varies slowly enough, the mean and the variance of the Poisson process are

given by :

µ(t) = r(t)δt and σ2(t) = r(t)δt

Let φ(t) the probability of coincidence over the same δt between two spike trains, which

is equivalent to the join probability of the two Poisson processes. This probability is

computed either :

• without delay

• with a constant delay

• or with a window delay
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The correlation is then given by :

Corr(t) =
φ(t)− µ1(t)µ2(t)

σ1(t)σ2(t)

Testing In order to test our correlation algorithm, we generate two correlated Pois-

son processes using the following method :

• X, Y and Z are three independent Poisson variables of rates λ1, λ2 and λ12.

• Π1 Π2 are then correlated Poisson processes with rates λ and λ′ such as :

Π1 = X ∪ Z and Π2 = Z ∪ Z

• The rates of Π1 and Π2 are then given by:

λ = λ1 + λ12 − λ1λ12

λ′ = λ2 + λ12 − λ2λ12

• We compute the joint probability of Π1 and Π2 :

P = λ1λ2 + λ12 − λ1λ2λ12

• And finally get the normalized correlation as follows :

ρ =
P − λλ′√

λλ′

We generate two rasters of spike from Π1 and Π2 and we compute their empirical

means and the empirical correlation over 100 trials. The empirical measures perfectly

follows the theoretical ones. (See Fig. 8.1 )
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Figure 8.1: Theoretical and empirical moments of two correlated Poisson processes :
the blue curves are the theoretical values of the parameters λ, λ′ and ρ, and the red
curves are their empirical estimation over 100 trials. Poisson processes X, Y and Z
are generated using sinusoidal functions, giving non trivial rates for Π1, Π2 and the
correlation function (See text).

We then reconstruct the firing rates and the correlation using our moving algo-

rithm and find that they follow quite well the variation of the empirical measures.(See

Fig. 8.2 ) The coincidence probability is computed without delay. The width of the

moving window for both computations is taken equal to 30 ms, it should indeed not

be too small nor too big in order to get significant statistics.
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Figure 8.2: Reconstructing the firing rates and the correlation between two correlated
Poisson processes : the green curves are the empirical firing rates and correlation, and
the red curves are their computation through the moving window algorithm. The
probability of coincidence is computed without delay.

8.1.1.1 Choosing the firing rate and correlation window size

We tried using different window widths for firing rate computation and coinci-

dence computation, and found out that the error between the empirical correlation and

the reconstructed correlation is minimum when the two widths are equal. (See Fig. 8.3)

Figure 8.3: Mean square error of the correlation as a function of the firing rate and the
correlation windows size.
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8.1.1.2 The role of firing rates amplitudes

We assess the role of the firing rate amplitude in the moving window algorithm

performance, when computing the probability of coincidence without delay. We com-

pute the mean square error between the empirical correlation and the reconstructed

correlation. One should note here here that there are two ways to compute the mean

correlation for a given number of samples, either by computing the correlation for each

sample and averaging over the total number of samples N, or computing a final cor-

relation using the average rates. We call the first quantity the mean correlation cN and

the second quantity the correlation of means CN . Let rAi (t) (resp. rBi (t)) be the proba-

bility of spiking of neuron A (resp. B) in the sample i at time t, rABi the joint probability

of spiking of neurons A and B in the sample i at time t. cN and CN are then given by :

cN(t) =
N∑
i=1

rABi (t)− rAi (t).rBi (t)√
rAi (t).rBi (t)

CN(t) =
(
∑N

i=1 r
AB
i (t))− (

∑N
i=1 r

A
i (t)).(

∑N
i=1 r

B
i (t))√

(
∑N

i=1 r
A
i (t)).(

∑N
i=1 r

B
i (t))

Fig. 8.4 shows how the firing amplitude biases the correlation results for small

values. Fig. 8.4 (c) shows that the correlations of means CN performs generally better

than the mean correlation cN .
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(a) (b)

(c)

Figure 8.4: Mean square error of the correlation between two correlated Poisson pro-
cesses X and Y, for different rate values. The error decreases as a function of the am-
plitude. Amplitudes are in logscale.(a) MSE of the mean correlation cN . (b) MSE of the
correlation of means CN . (c) Relative error between CN and cN .

8.1.1.3 Does using an interval delay for joint probability computations improve

the results ?

The low rate of neurons and consequently their limited number of spikes causes

a discrepancy in the evaluation of their spiking probability as well as their joint proba-

bility, which could drive an underestimation of the correlation function. As introduced

in 8.1.1, the probability of coincidence can be computed using an interval delay, with

a width τ . In this case, the joint probability is overestimated, and we wanted to in-

vestigate whether this can help to increase the accuracy of the correlation function, in

the case of low firing rates. One should note here that the value of τ should remain

small enough not to bias the computation. Indeed, for large values of τ , the correlation

can become larger than 1, due to the overestimation of the joint probability (See Fig.
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8.5). Unfortunately, we instead that the increase of τ plays a negative role in the corre-

lation estimation. Fig. 8.6 also show the existence of an optimal value of the moving

window (around 200 ms) for which the error is minimal. Finally, as shown before, the

correlations of means CN performs generally better than the mean correlation cN .

Figure 8.5: Theoretical and reconstructed firing rates and correlation for low activity
levels for different values of τ . Increasing τ causes an overestimation of correlation.
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(a) (b)

(c)

Figure 8.6: Mean square error of the correlation for different values of τ and different
window sizes. (a), (b) and (c) are the same as in Fig. 8.4.

8.1.2 Correlations results on experimental recordings

8.1.2.1 Single cell correlations

The retinal recordings contain 280 cells (courtesy of O. Marre). In order to have

a good estimate of correlation we needed to sort out neurons with a high number

of spikes. This brought us to analyse only 5 neurons out of the 280. We don’t have

access to the distance between the recorded cells, hence from the their firing rate we

classify them into two classes of neighbouring cells : cell 1 has a similar response to

the response of cell 5, and cells 2, 3 and 4 have also a similar response. Note that the

response shape of cell 2 is however different from the response of the two other cells.

(See Fig. 8.7)

We first compute the correlation between several trials of the same cell, as a ref-

erence for comparison with pairwise correlations between different cells. Indeed, we
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Figure 8.7: Firing rate of 5 recorded ganglion cells responding to a moving bar, with a
window of 200 ms.

want to understand whether correlations are mainly driven by firing rates, or if there

exist hidden synchronisation mechanisms occurring during the moving bar stimulus.

In the previous section, we have shown the role played by the window size in the cor-

relation estimate accuracy, namely the existence of an intermediate value for which the

result is optimal. This optimal value of course depends on the firing rates levels and

fluctuations, and is very hard to evaluate precisely. We try here to make a qualitative

assessment of this optimal value, computing the firing rates and correlations estimate

of the 5 cells using window sizes ranging from 50 ms to 400 ms, given a raster length

of 3000 ms.

Fig. 8.8 shows the spiking probability of cells as well as their correlation, for different

values of window size. When the size increases, the firing rate is flatten up, to a point

where the variations of firing rate that seem to be intrinsic to the neuron is cancelled

out, as it is the case for Cell 2 with widths higher than 200 ms. For small values of

width however, there are big fluctuations in the firing rate estimate, which could in-

troduce artefacts in the evaluation of the correlation (cell 1 and cell 5). It is therefore

important to choose a value low enough to keep the response specifities of the cells,

and high enough to reduce irrelevant fluctuations in the correlation. For the next of the

study, we choose a window width of 200 ms.
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Figure 8.8: Reconstructed firing rates and correlation for single cells. Different colours
denote different sizes of the sliding window.

8.1.2.2 Pairwise correlations

In this last part, we study pairwise correlations between the studied cells, aver-

aged over 200 trials, with a window width of 200 ms.

Fig. 8.9 shows the evolution of pairwise correlation as compared to the cells firing rate.

When cells have similar response shapes (Cells 1 and 5, Cells 3 and 4), and according
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to the simplified classification are neighbours, their pairwise correlation increases very

saliently near the onset of their firing rate curve, and peaks to a value higher than the peak

of the spiking probability of the cells. The correlation then drops fast. This could suggest

that the onset activity of the second responding cell is driven by the cell responding

first to the bar, thus synchronicity, while the statistics of the cell response afterwards

are driven by the cell’s intrinsic dynamics. Conversely, cells with different response

shapes are either anti-correlated (Cells 1 and 4) or correlated with a correlation coeffi-

cient that is at most equal to the peak spiking probability (Cells 3 and 5). In this case

again, cells seem to start to be correlated when the activity of the second responding

cell starts increasing.

(a)

(b)

Figure 8.9: Theoretical and reconstructed firing rates and correlation for low activity
levels.
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Partial conclusion

The correlation study we conducted here aimed at assessing the correlation level

between cells responding to a moving bar. Starting from the observation that the stim-

ulus of a moving bar contains correlations, we wanted to investigate whether these

correlations are transposed into the spiking activity of cells, through lateral connec-

tivity, and whether these correlations have an effect on anticipation. We reported an

increase in the correlation level between neighbouring cells near the onset of their ac-

tivity, which shows a synchronicity enhancement that could be due to lateral connec-

tivity.

While this work remains quite preliminary, it paves the way for a more in-depth study

on the effect of stimulus correlations on the neural code, and outlines the possibility of

understanding anticipatory phenomena from a correlation point of view.
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8.2 Macular : a simulation platform of the retina and V1

8.2.1 General presentation

Macular is platform for retina and primary visual cortex simulations that is cur-

rently being developed within the Inria team Biovision. It aims at reproducing the

retina response to visual input as well as electric stimulation, is normal and patho-

logical settings. The objective is to develop a tool that can be used by neuroscientists

to reproduce experimental findings, or, more importantly, to guide their experiments

through hypotheses that can be tested with the simulator. This can save a considerable

amount of resources that are required to conduct in vivo experiments.

Macular is build around the central idea that its utilization and visual interface evolve

with the the user’s purpose. It can be used for several scenarios, such us simulating

retinal waves, simulating the retinal an cortical responses to prostheses electric stimu-

lation, investigating how specific classes of retinal neurons contribute to the encoding

of visual scenes . . .

Macular is not the first simulation tool that the Biovision team has developed. A.

Wohrer and P. Kornprobst have developed VirtualRetina [90], a large scale simulator of

the retina, implementing gain control. B. Cessac et al. [91] have developed Enas, a plat-

form for statistical analysis of simulated and experimental spike trains. Finally, both

these software have been merged into Pranas [92]. The Macular project has then been

started to extend Pranas, and overcome its technological limitations. Mainly, Macular

will allow a modular architecture, which makes it more flexible to fit different simu-

lation scenarios. It will also feature a scripting option, where the user can design his

own model, with a given set of equations, variables and parameters. Finally, through

a highly parallelized architecture, Macular will afford mimicking a large number of

cells, of different classes. (See Fig. 8.10)

8.2.2 Development process

Inria provides technological support to research teams with the help of a team of

engineers, which is subject to a call for applications. The Macular project was accepted

in this context. The work with engineers from INRIA’s development and experimenta-

tion center is organized in coding sprints, that are regularly held to allow the Biovision

team to work in collaboration with the engineers on the development of the platform. I
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had the opportunity to participate to two coding sprints at the beginning of the project,

during which we laid the cornerstones of the software. These coding sprints were very

formative in the sense that the engineers taught us the best coding practices, as well as

the agile method. During these two sprints, we laid the groundwork for the develop-

ment of the software, in terms of architecture, user experience and GUI.

Figure 8.10: Architecture of the retina simulator embedded in Macular. Left : Different
cells are represented by C++ classes, featuring their inputs, position, dynamics, vari-
ables and parameters. These cells are connected within a 2 dimensional graph. Right
: Simulation setting. Different cell types arranged in layers receive a visual or an elec-
trical input. These cells interact through inter-type connectivity. Through an adequate
tuning of parameters, and a sampling of relevant variables, the user can study the re-
sponse of the retina to its input.

The software has made however a long way since then, implementing a more

extensive GUI, several use cases (retinal waves, simulating cortical responses to pros-

thetic stimulations),and improving the 3D display of the connectivity graph that shows

the different retina layers, as well as synaptic connections.
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Figure 8.11: Macular : response to a moving bar. Left : 3D layered graph of retina with
bipolar amacrine and ganglion cells. Right : four panels displaying the stimulus and
the response it elicits at earlier stages of retinal processing. Bottom view : The 3D view
only displays the activity of ganglion cells. (Version of the software at the sprints I took
part in)

Partial conclusion

Future work will consist of integrating our retino-cortical model for motion an-

ticipation in Macular, to emulate its response to different moving stimuli, and possibly
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Figure 8.12: 3D layered graph of retina with bipolar cells (blue) amacrine cells (red) and
ganglion cells (green). Synaptic connections are displayed in black. (Current version
of the software)

suggest new experiments. Thanks to the modularity of Macular and its scripting fea-

ture, we expect it to become an essential tool in retina and cortex simulation.
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English conclusion

This thesis allowed us to carry out a neuroscience modeling study, based on

mathematical analysis and numerical simulation. Beyond understanding the mech-

anisms involved in retinal and cortical anticipation, we have tried to understand the

division of labor between these two processing units. More specifically, this work was

guided by a central hypothesis, that lateral connectivity plays a major role in both reti-

nal and cotical anticipation.

At the retina level, we were able to test the anticipatory effect of two retinal circuits im-

plementing lateral connectivity. In particular, we were able to highlight the existence

of regimes of connectivity parameters that can improve anticipation at the retina level.

We tested our retina model on stimuli with trajectories more complex than a simple

translation (rotation and parabolic motion).

We then linked our retina model to a cortical mean field model with lateral connectiv-

ity. Through two anticipation metrics (latency and time to peak), we assessed the effect

of each of the retinal mechanisms on cortical anticipation. Our results suggest that the

retina could possibly be doing more than just compensating for its own processing de-

lays, further assisting the cortex in the motion extrapolation task.

Applications of our work

The current implementation of our retino-cortical model takes as an input a set

of images, processes them through the layered retina model in order to produce firing

rates, which are then fed to the cortical model. It is hence possible to study the response

of the model to different kind of 2D stimuli, and assess whether the mechanisms we

have implemented for motion anticipation can also account for other visual effects.
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Future work

Extending the retina model

The retina model could be extended through an implementation of other ganglion

cell types. It could also implement other neural pathways and connectivity schemes,

and assess their role in motion processing and anticipation. In particular, we stud-

ied the connectivity pathways we implemented in the retina model (gap junctions and

amacrine connectivity) independently. It would be interesting to study the combined

effect of both, and assess whether their collaboration can improve anticipation.

Our model only accounts for gray scale inputs. It would be very interesting to imple-

ment color-coded cells, by adding a photoreceptor layer, in order to study perceptual

illusions combining motion and color vision, such us the color phi phenomenon.

Improving the retino-cortical transformation

Our model connects the retina to the cortex in a linear fashion, ignoring the visual

processing occurring at the level of the thalamus. A crucial improvement of our model

would be to add a thalamic transformation between the retina and the cortex. A second

improvement would be to account for the retionotopic mapping of the visual space at

the level of V1.

Spike trains correlations

The moving window algorithm proves to be efficient to account for correlations

fluctuations in non stationary Poisson processes. However, the size of the window

plays a fundamental role in the correlation estimate accuracy. The choice of this pa-

rameter has thus to be made more systematically, through a given criterion that has

still to be determined.

Finally, it would be interesting to implement a plausible spike train generator at the

level of the retina, and compare the correlations in artificial retinal output to correla-

tions in real data.
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Personal conclusion

On a personal level, this thesis has allowed me to expand my knowledge in com-

putational neuroscience, and also to develop my skills in programming, dynamical

systems analysis, and probability. It also allowed me to improve my scientific commu-

nication skills, both written and oral. Finally, during these three years, I was able to

learn the research methodology, and a more systematic approach to problem solving.
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French conclusion

Cette thèse nous a permis de réaliser une étude en neurosciences computation-

nelles, basée sur l’analyse mathématique et la simulation numérique. Au-delà de la

compréhension des mécanismes impliqués dans l’anticipation rétinienne et corticale,

nous avons essayé de comprendre la répartition des tâches entre ces deux unités de

traitement. Plus particulièrement, ce travail a été guidé par une hypothèse centrale, à

savoir que la connectivité latérale joue un rôle à la fois dans l’anticipation rétinienne et

l’anticipation coticale.

Au niveau de la rétine, nous avons pu tester les effets d’anticipation de deux circuits

rétiniens implémentant la connectivité latérale. En particulier, nous avons pu mettre en

évidence l’existence de régimes de paramètres de connectivité qui peuvent améliorer

l’anticipation au niveau de la rétine. Nous avons testé notre modèle rétinien sur des

stimuli en 2D avec des trajectoires plus complexes qu’un simple mouvement rectiligne

(rotation et mouvement parabolique).

Nous avons ensuite relié notre modèle de rétine à un modèle champ moyen du cortex,

avec de la connectivité latérale. A travers deux métriques d’anticipation (latence et

temps de pic), nous avons évalué l’effet de chacun des mécanismes d’anticipation ré-

tinienne sur l’anticipation corticale. Nos résultats suggèrent que la rétine ne compense

peut-être pas seulement ses propres délais de traitement, mais qu’elle aide également

le cortex dans l’extrapolation du mouvement.
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Applications de notre travail

L’implémentation actuelle de notre modèle rétino-cortical prend en entrée un en-

semble d’images, les traite à travers le modèle stratifié de la rétine, afin de produire des

fréquences de décharge, qui sont ensuite transmises au modèle cortical. Il est donc pos-

sible d’étudier la réponse du modèle à différents types de stimuli 2D et d’évaluer si les

mécanismes que nous avons implémentés pour l’anticipation du mouvement peuvent

également reproduire d’autres effets visuels.

Travaux futurs

Extension du modèle de la rétine

Le modèle de la rétine pourrait être étendu par la prise en compte d’autres types

de cellules ganglionnaires. Il pourrait également implémenter d’autres schémas neu-

raux et d’autres types de connectivité, afin d’évaluer leur rôle potential dans le traite-

ment et l’anticipation du mouvement. En particulier, nous avons étudié les deux types

de connectivité que nous avons implémentées dans le modèle de la rétine de façon

indépendante. Il serait intéressant d’étudier l’effet combiné des deux et si leur collab-

oration peut améliorer l’anticipation.

Notre modèle ne tient compte que des niveaux de gris. Il serait très intéressant de

développer des cellules sensibles à couleur, en ajoutant une couche de photorécep-

teurs, afin d’étudier des illusions optiques combinant le mouvement et la vision des

couleurs, comme le phénomène "Color Phi".

Améliorer la transformation rétino-corticale

Notre modèle connecte la rétine au cortex de façon linéaire, ignorant le traite-

ment visuel qui se produit au niveau du thalamus. Une amélioration essentielle de

notre modèle serait de tenir compte des transformations thalamiques entre la rétine et

le cortex. Une deuxième amélioration consisterait à considérer la cartographie retiono-

topique de l’espace visuel au niveau de V1.
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Corrélations des trains de spikes

L’algorithme de la fenêtre glissante se révèle efficace pour tenir compte des fluc-

tuations des corrélations dans les processus de Poisson non stationnaires. Cependant,

la taille de la fenêtre joue un rôle fondamental dans la précision de l’estimation de cette

corrélation. Le choix de ce paramètre devrait donc être fait de manière plus systéma-

tique, à travers un critère qui reste à déterminer.

Enfin, il serait intéressant de mettre en place un générateur de train de spikes plausible

au niveau de la rétine, et de comparer les corrélations de la sortie du modèle rétinien

avec les corrélations des données réelles.

Conclusion personnelle

D’un point de vue personnel, cette thèse m’a permis d’étendre mes connaissances

en neurosciences computationnelles, mais également de développer mes aptitudes en

programmation, en analyse des systèmes dynamiques, et en probabilités. Elle m’a

également permis de m’améliorer en communication scientifique, à l’oral et à l’écrit.

Enfin, au cours de ces trois années, j’ai pu assimiler la méthodologique de recherche et

adopter une approche plus systématique dans la résolution des problèmes.
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Chapter 9

Appendix

9.1 Parameters of the retina model

In the following, BSK denotes the spatial kernel of the bipolar receptive field and

BTK the temporal kernel. A stands for the BSK amplitude and K for the BTK ampli-

tude.

BL denotes the bipolar cell layer, including amacrine cells connectivity. GL denotes the

ganglion cell layer, including gap junction connectivity.

Parameter Value Unit

BSK σcenter 90 µm

BSK σsurround 290 µm

BSK Acenter 1.2 unitless

BSK Asurround 0.2 unitless

BTK µ1 60 ms

BTK µ2 180 ms

BTK σ1 20 ms

BTK σ2 44 ms

BSK K1 0.22 unitless

BSK K2 0.1 unitless

BL τa 100 ms

BL h 6.11e−3 ms−1mv−1

BL θB 5.32 mV

BL τA 200 ms

BL τB 200 ms
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GL σpooling 90 µm

GL τG 189.5 ms

GL h 3.59e−4 dimensionless

GL α 1110 Hz/mV

GL θG 0 mV

9.2 Parameters of the cortical model

The transfer function fit parameters are given in the following table :

Table 9.1: Fit Parameters AdEx Neurons (in mV )

Cell Type P0 PµV PσV Pτ V Pµ
2
V Pσ

2
V Pτ

2
V PµV σV PµV τV PσV τV

RS-Cell -49.8 5.06 -23.4 2.3 -0.41 10.5 -36.6 7.4 1.2 -40.7
FS-Cell -51.5 4.0 -8.35 0.24 -0.50 1.43 -14.7 4.5 2.8 -15.3

Table 9.2: Fit Parameters Hodgkins-Huxley Neurons (in mV )

Cell Type P0 PµV PσV Pτ V Pµ
2
V Pσ

2
V Pτ

2
V PµV σV PµV τV PσV τV

RS-Cell -48.1 3.2 10.9 -0.32 0.98 1.1 -1.2e-3 -1.4 3.9 -0.11
FS-Cell -51.2 1.8 -6.1 -0.86 1.6 -0.70 -11 -0.18 1.2 -1.2

Parameter Value Unit

Excitatory reversal potential Ee 0 mV

Inhibitory reversal potential Ei -80 mV

Excitatory quantal conductance Qe 290 nS

Inhibitory quantal conductance Qi 1.2 nS

Excitatory decay τe 0.2 ms

Inhibitory decay τi 60 ms

Number of cells 10000 unitless

Connectivity probability 0.05 unitless

Fraction of inhibitory cells 0.2 unitless

External drive 4 Hz
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9.3 Anticipation time

We compute here analytically the anticipation time ∆ in the absence of lateral

connectivity. The goal is to have an analytic expression showing, in particular, that

the peak of response does not correspond to the time where the bar reaches the center

of the RF. The general computation in the presence of gap junctions or amacrine cells

deserves longer developments that will be the subject of further work.

We therefore consider only one GGell, noted G without index.

9.3.1 Kernel form

The kernel KBi reads:

KBi(x, y, t) =
2∑

a,b=1

(−1)a+bKi,a,b(x, y, t) (9.1)

with:

Ki,a,b(x, y, t) =
AaKb

( 2π )
3
2
√

detCa σb
e−

1
2
X̃i.C

−1
a .Xi e

− ( t−µb )2

2σ2
b H(t),

with Xi =

 x− xi
y − yi

where xi, yi are the coordinates of the BCs RF center.

KBi(x, y, t) =

(
A1

2π
√

detC1

e−
1
2
X̃i.C

−1
1 .Xi − A2

2π
√

detC2

e−
1
2
X̃i.C

−1
2 .Xi

)
(

K1√
2πσ1

e
− ( t−µ1 )2

2σ2
1 − K2√

2πσ2

e
− ( t−µ2 )2

2σ2
2

)
H(t)

=


A1K1

( 2π )
3
2
√

detC1 σ1

e−
1
2
X̃i.C

−1
1 .Xi e

− ( t−µ1 )2

2σ2
1 − A1K2

( 2π )
3
2
√

detC1 σ2

e−
1
2
X̃i.C

−1
1 .Xi e

− ( t−µ2 )2

2σ2
2

− A2K1

( 2π )
3
2
√

detC2 σ1

e−
1
2
X̃i.C

−1
2 .Xi e

− ( t−µ1 )2

2σ2
1 + A2K2

( 2π )
3
2
√

detC2 σ2

e−
1
2
X̃i.C

−1
2 .Xi e

− ( t−µ2 )2

2σ2
2

 H(t)

9.3.2 General equation for the anticipation time

In the presence of a moving stimulus, the firing rate of the ganglion cell G in-

creases up to a maximum, reached at a time tm. Note that this maximum might not

be unique so tm is the time to reach the first maximum. We want to compute how tm

depends on the gain control, speed and contrast as well as other parameters such as
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orientation of the receptive field. As the firing rate of G is a monotonously increasing

sigmoid function, the extrema in the firing rate are given by dVG
dt

= 0.

Following what has been introduced in Chapter 4, the general equation for the

times of extrema in the firing rate of G are given by :

∑
i

WBi
G GB (ABi )

dVBi
dt

=
∑
i

WBi
G G

′
B (ABi ) VBi(t)

(
1

τa
ABi − hVBi(t)

)
. (9.2)

We were not able to solve (9.2) in full generality, so that we consider specific cases.

• No gain control. In this case GB (ABi ) = 1 , G ′B (ABi ) = 0 so that, eq. (9.2)

reduces to: [
KG

S,t
∗ dS
dt

]
(t = tm) = 0 (9.3)

where:

KG =
∑
i

WBi
G KBi , (9.4)

is the pooled kernel.

• Fast gain control. We make the approximation that, in the region of Ai values

where (9.2) is satisfied,
G′B(ABi )
GB(ABi )

� 1 so that we may neglect the left hand side in

eq. (9.2) and look for the solutions of:

∑
i

WBi
G G

′
B (ABi ) VBi(t)

(
1

τa
ABi − hVBi(t)

)
= 0. (9.5)

We are going to consider these two cases, for a moving bar.

9.3.3 Moving bar

9.3.3.1 Definition

We consider a bar, of width 2d and infinite height, propagating with a constant

speed vx from the left to the right in the direction x, i.e.

S(x, y, t) =
L

2 d
[H(x− d− vx t)−H(x+ d− vx t) ] (9.6)

where H is the Heaviside function. L, the stimulus intensity induced by the photore-

ceptors response can be here positive (white bar) or negative (dark bar). We have
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normalized so that the integral of the stimulus over space is equal to L. As S is ex-

pressed in mV , L is expressed in mV mm. The motion in the x direction is not a loss of

generality as we consider orientation selective cells where the preferred orientation is

arbitrary.

9.3.3.2 Spatial integration

It is useful to compute the spatial integral of the bar, for an orientation sensitive

kernel (3.1). We note λa,1 ≥ λa,2 the eigenvalues of Ca, a = 1 . . . 2. As the two parts

of the DOG have the same orientation, the external part of the receptive field (index 2)

satisfies λ1,2 = ρλ1,1;λ2,2 = ρλ2,1 with ρ > 1, the aspect ratio between the center and the

surround.

We introduce the function Π(x) = 1√
2π

∫ x
−∞ e

− 1
2
u2
du, the repartition function of

the standard Gaussian, and:

ra(θ) =
√
λ1,a cos2 θ + λ2,a sin2 θ, (9.7)

a = 1, 2. In the rest of this section, we will omit θ to alleviate the notations. ra is a

pure characteristic of the receptive field. This is the entry C11a of the correlation ma-

trix Ca. It is thus the variance of Gaussian projection on the first eigenmode. Note

that C11a ≥ C22a. Thus, ra which has the dimension of a length somewhat characterize

the extension of the Gaussian a = 1, 2 on the preferred orientation direction. We have

r2(θ) = ρ r1(θ), ρ > 1.

We show that this spatial integration takes the form:

[
KBi,S

S∗ S
]

(s) =
L

2 d

 A1

(
Π
(
xi−d−vx s

r1

)
− Π

(
xi+d−vx s

r1

))
− A2

(
Π
(
xi−d−vx s

ρ r1

)
− Π

(
xi+d−vx s

ρ r1

)
,
)
 . (9.8)

The shape of this response depends on the parameters of the model and the char-

acteristics of the bar. In general, this is a pulse propagating at speed vx, with a maxi-

mum at s = xi
vx

. There can be several extrema in the shape though.
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Proof. We write:

Ni,a(x, y) =
1

2π
√

detCa
e−

1
2
X̃i.C

−1
a .Xi , (9.9)

with a = 1, 2, so that the spatial receptive field (3.1) reads:

Ki,S(x, y) = A1Ni,1(x, y)− A2Ni,2(x, y).

We have: [
Ki,S

S∗ S
]

(s) =

L

2 d

( [
Ki,S

S∗ H(x− d− vx s)
]

(s)−
[
Ki,S

S∗ H(x+ d− vx s)
]

(s)
)

=
L

2 d



A1

[
Ni,1

S∗ H(x− d− vx s)
]

(t)

−A2

[
Ni,2

S∗ H(x− d− vx s)
]

(t)

−A1

[
Ni,1

S∗ H(x+ d− vx s)
]

(t)

+A2

[
Ni,2

S∗ H(x+ d− vx s)
]

(t)


=

L

2 d

2∑
a,b=1

(−1 )a+b Aa Ia,b(s),

where:

Ia,b(s) ≡
1

2π
√

detCa

∫
x,y∈R2

e−
1
2
X̃i.C

−1
a .Xi H(x+ db − vx s) dx dy, (9.10)

a = 1, 2, d1 = −d, d2 = d.

The matricesC1, C2 have the same eigenvectors ~v1, ~v2. We note θ the angle (~ex, ~v1 ).

This is the preferred orientation of the cell. The rotation R =

 cos θ − sin θ

sin θ cos θ


maps the initial orthonormal basis (~ex, ~ey ) to the orthonormal basis (~v1, ~v2) where

Ca becomes diagonal, R̃.Ca.R = Λa. We set U ′i ≡

 u′

v′

 = R̃Xi, Xi = RU ′i so

that X̃i.C
−1
a .Xi = Ũ ′i .R̃.C

−1
a .R.U ′i = Ũ ′i .Λ

−1
a .U ′i . We have

 x

y

 = RU ′i +

 xi

yi
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=

 cos θ − sin θ

sin θ cos θ

 .

 u′

v′

+

 xi

yi

 =

 u′ cos θ − v′ sin θ + xi

u′ sin θ + v′ cos θ + yi

.

Thus,

Ia,b(s) ≡
1

2π
√

detCa

∫
x,y∈R2

e−
1
2
X̃i.C

−1
a .Xi H(x+ db − vx s) dx dy

=
1

2π
√

detCa

∫
u′,v′∈R2

e
− 1

2

(
u′2
λ1,a

+ v′2
λ2,a

)
H(u′ cos θ − v′ sin θ + xi + db − vx s) du′ dv′

Then, a new variable change u = u′√
λ1,a

, v = v′√
λ2,a

with du′dv′ =
√
λ1,a λ2,adu dv =

√
detCa du dv gives:

Ia,b(s) =
1

2π

∫
u,v∈R2

e−
1
2 (u2+v2 )H(u

√
λ1,a cos θ−v

√
λ2,a sin θ+xi+db−vx s) du dv. (9.11)

We first consider the case θ ∈ ]0, π
2
[ so that sin θ > 0, cos θ > 0. The Heaviside

function imposes that u
√
λ1,a cos θ − v

√
λ2,a sin θ + xi + db − vx s ≥ 0⇔

v ≤
√
λ1,a cos θ√
λ2,a sin θ

u+
xi + db − vxs√

λ2,a sin θ

⇔

v ≤ 1

a(θ)

(√
V (θ)u+ U(s))

)
with a(θ) =

√
λ2,a sin θ, V (θ) = λ1,a cos2 θ, U(s) = xi + db − vx s. Therefore:

Ia,b(s) =
1

2π

∫ +∞

u=−∞
e−

1
2
u2

[∫ 1
a(θ)

(√
V (θ)u+U(s)

)
v=−∞

e−
1
2
v2

dv

]
du

=
1√
2π

∫ +∞

u=−∞
e−

1
2
u2

Π

(
1

a(θ)

(√
V (θ)u+ U(s)

))
.

We use (eq. (21) of [93]):

1√
2π

∫ +∞

−∞
Π

(
1

a

(√
V x+ U

))
e−

x2

2 dx = Π

(
U√

a2 + V

)
, (9.12)

to obtain:

I = Π

(
xi + db − vx s

ra

)
. (9.13)
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Now, when θ = 0, (9.11) reads:

Ia,b(s) =
1

2π

∫
u,v∈R2

e−
1
2 (u2+v2 )H(u

√
λ1,a + xi + db − vx s) du dv

=
1

2π

∫ +∞

v=−∞
e−

v2

2 dv

∫ xi+db−vx s√
λ1,a

u=−∞
e−

u2

2 du = Π

(
xi + db − vx s√

λ1,a

)
,

which matches (9.13).

Therefore,
[
KS

S∗ S
]

(s) = L
2 d

∑2
a,b=1 (−1 )a+b Aa Π

(
xi+db−vx s

ra

)
which is (9.8).

9.3.4 Time of the response peak without gain control

We solve eq. (9.3). We first show that:

[
KBi

S,t
∗ dS
dt

]
(t) =

L

2 d

2∑
a,b,c=1

(−1)a+bIa,b,c(t) (9.14)

where:

Ii,a,b,c(t) = − AaKbvx√
2π ( v2

xσ
2
b + r2

a )
e
− 1

2

( xi+dc−vx( t−µb ) )2

v2
xσ

2
b

+r2a Π

(
µb r

2
a − σ2

b vx (xi + dc − vxt )

ra σb
√
r2
a + σ2

b v
2
x

)
.

(9.15)

Proof. We start from (9.1) to obtain the sum decomposition (9.14). It remains then

to compute the integrals Ia,b,c(t). This can be done in two ways. Either we start from:

dS

dt
= − vx

L

2 d
[ δ(x− dc − vx t)− δ(x+ dc − vx t) ] ,

c = 1, 2 where d1 = d, d2 = −d, so that:

Ia,b,c(t) = −vx
[
Ki,a,b

S,t
∗ δ(x+ dc − vx t)

]
.

This way is a bit long, in fact. Another faster, method consists, instead, of computing

d

dt

[
KBi

S,t
∗ S

]
=

2∑
a,b=1

(−1)a+b d

dt

[
Ki,a,b

S,t
∗ S

]
=

L

2d

2∑
a,b=1

(−1)a+b d

dt
Ji,a,b,c.
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where, using (9.8)

Ji,a,b,c = Aa

[
KT

T∗ Π

(
xi + db − vx s

ra

)]
(t)

=
AaKb√
2π σb

∫ t

s=−∞
e
− ( t−s−µb )2

2σ2
b Π

(
xi + dc − vx s

ra

)
ds.

Thus:

Ii,a,b,c =
d

dt
Ji,a,b,c =

AaKb√
2π σb

d

dt

∫ t

s=−∞
e
− ( t−s−µb )2

2σ2
b Π

(
xi + dc − vx s

ra

)
ds

=
AaKb√
2π σb

[
Π

(
xi + dc − vx t

ra

)
e
− µ2

b
2σ2
b − 1

σ2
b

∫ t

s=−∞
( t− s− µb ) e

− ( t−s−µb )2

2σ2
b Π

(
xi + dc − vx s

ra

)
ds

]

=
AaKb√
2π σb

[
Π

(
xi + dc − vx t

ra

)
e
− µ2

b
2σ2
b −

∫ t

s=−∞
Π

(
xi + dc − vx s

ra

)
d

ds
e
− ( t−s−µb )2

2σ2
b ds

]

=
AaKb√
2π σb


Π

(
xi + dc − vx t

ra

)
e
− µ2

b
2σ2
b −

[
Π

(
xi + dc − vx s

ra

)
e
− ( t−s−µb )2

2σ2
b

]t
−∞

+

∫ t

s=−∞

d

ds

(
Π

(
xi + dc − vx s

ra

))
e
− ( t−s−µb )2

2σ2
b ds


= −vx

AaKb√
2π ra

1√
2π σb

∫ t

s=−∞
e−

1
2( xi+dc−vx s

ra
)

2

e
− ( t−s−µb )2

2σ2
b ds.

= −AaKb

∫ t

s=−∞

1√
2π ra

vx

e
− 1

2

(
xi+dc
vx

−s
ra
vx

)2

1√
2π σb

e
− ( t−s−µb )2

2σ2
b ds

Setting:

µf =
xi + dc
vx

;σf =
ra
vx

;µg = t− µb;σg = σb,

we simplify the product of the two Gaussians N (µf , σf ) N (µg, σg ) by using the fol-

lowing result [94]:

N (µf , σf ) N (µg, σg ) =
Sfg√
2πσfg

e
−

( s−µfg )
2

2σ2
fg , (9.16)
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with:

1

σ2
fg

=
1

σ2
f

+
1

σ2
g

=
v2
xσ

2
b + r2

a

r2
a σ

2
b

;

σfg =
ra σb√
r2
a + σ2

b v
2
x

µfg =

(
µf
σ2
f

+
µg
σ2
g

)
σ2
fg =

σ2
b vx (xi + dc ) + r2

a ( t− µb )

v2
xσ

2
b + r2

a

;

Sfg =
1√

2π
σ2
f σ

2
g

σ2
fg

e
− 1

2

(µf−µg )
2

σ2
f
σ2
g

σ2
fg

=
vx√

2π ( v2
xσ

2
b + r2

a )
e
− 1

2

( xi+dc−vx( t−µb ) )2

v2
xσ

2
b

+r2a

(9.17)

Thus:

Ii,a,b,c = −AaKb
Sfg√
2πσfg

∫ t

s=−∞
e
−

( s−µfg )
2

2σ2
fg ds = −AaKb

Sfg√
2π

∫ t−µfg
σfg

s=−∞
e−

v2

2 dv

= −AaKb Sfg Π

(
t− µfg
σfg

)
We finally make explicit the dependence of this function in all its arguments, giving:

Ii,a,b,c = − AaKbvx√
2π ( v2

xσ
2
b + r2

a )
e
− 1

2

( xi+dc−vx( t−µb ) )2

v2
xσ

2
b

+r2a Π

(
µb r

2
a − σ2

b vx (xi + dc − vxt )

ra σb
√
r2
a + σ2

b v
2
x

)
,

which is (9.15).

End of proof.

The shape of this function is interesting. This is the product of a Gaussian wave,

propagating at a speed vx, maximum at xi + dc, at time µb + xi+dc
vx

, with a variance

v2
xσ

2
b + r2

a, multiplied by a front (Π), moving at speed vx, with the inflexion point,

reached at t = xi+dc
vx
− µ2

br
2
a

σ2
b v

2
x

with slope σb v
2
x

ra
√
r2
a+σ2

b v
2
x

. This slope is always positive so the

front is growing as time goes on, up to saturation. The multiplication by the Gaussian

gives a spatial extenstion of order
√
r2
a + σ2

b v
2
x. In first approximation the Π function

can be neglected.

Eq. (9.3) for the extremal time of the peak in the ganglion cell’s response reads
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now: ∑
i

WBi
Gk

∑
a,b,c

(−1)a+b Ii,a,b,c(t = tm) = 0.

Here, we can exploit the symmetry of the Gaussian pooling (3.36). The center

of the pool corresponds to a bipolar cell Bi0 with x index l0. As we are considering

a one dimensional problem where the integration over the y axis is constant (infinite

bar) one can replace the two dimensional Gaussian weight WBi
Gk

given by (3.36) by a

one dimensional Gaussian pooling WBi
Gk

= a e−
l2 δ2B
2 c2 , where the bipolar cell i is such that

xi = (l0 + l) δB. Without loss of generality we take l0 = 0. Thus, the time of peak is

given by: ∑
l∈Z

e−
l2 δ2B
2 c2

∑
a,b,c

(−1)a+b AaKb√
2π ( v2

xσ
2
b + r2

a )
e
− 1

2

( l δB+dc−vx( t−µb ) )2

v2
xσ

2
b

+r2a

Π

(
µb r

2
a − σ2

b vx ( l δB + dc − vxt )

ra σb
√
r2
a + σ2

b v
2
x

)
= 0.
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A1K1√
2π( v2

xσ
2
1+r2

1 )

 e
− 1

2
(−d−vx( t−µ1 ) )2

v2
xσ

2
1+r21 Π

(
µ1 r2

1−σ2
1 vx(−d−vx t )

r1 σ1

√
r2
1+σ2

1 v
2
x

)
+e
− 1

2
( d−vx( t−µ1 ) )2

v2
xσ

2
1+r21 Π

(
µ1 r2

1−σ2
1 vx( d−vx t )

r1 σ1

√
r2
1+σ2

1 v
2
x

)


− A1K2√
2π( v2

xσ
2
2+r2

1 )

 e
− 1

2
(−d−vx( t−µ2 ) )2

v2
xσ

2
2+r21 Π

(
µ2 r2

1−σ2
2 vx(−d−vx t )

r1 σ2

√
r2
1+σ2

2 v
2
x

)
+e
− 1

2
( d−vx( t−µ2 ) )2

v2
xσ

2
2+r21 Π

(
µ2 r2

1−σ2
2 vx( d−vx t )

r1 σ2

√
r2
1+σ2

2 v
2
x

)


+

. . .

+
∑+∞

l=1 e
− l

2 δ2B
2 c2



A1K1√
2π( v2

xσ
2
1+r2

1 )



e
− 1

2

( l δB−d−vx( t−µ1 ) )2

v2
xσ

2
1+r21 Π

(
µ1 r2

1−σ2
1 vx( l δB−d−vx t )

r1 σ1

√
r2
1+σ2

1 v
2
x

)
+e
− 1

2

( l δB+d−vx( t−µ1 ) )2

v2
xσ

2
1+r21 Π

(
µ1 r2

1−σ2
1 vx( l δB+d−vx t )

r1 σ1

√
r2
1+σ2

1 v
2
x

)
+e
− 1

2

(−l δB−d−vx( t−µ1 ) )2

v2
xσ

2
1+r21 Π

(
µ1 r2

1−σ2
1 vx(−l δB−d−vx t )

r1 σ1

√
r2
1+σ2

1 v
2
x

)
+e
− 1

2

(−l δB+d−vx( t−µ1 ) )2

v2
xσ

2
1+r21 Π

(
µ1 r2

1−σ2
1 vx(−l δB+d−vx t )

r1 σ1

√
r2
1+σ2

1 v
2
x

)



− A1K2√
2π( v2

xσ
2
2+r2

1 )



e
− 1

2

( l δB−d−vx( t−µ2 ) )2
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+

. . .


= 0

There is no evident solution to this equation. In particular the time t = 0 where the bar

reaches the center of the ganglion cell receptive field (x = 0) is NOT a solution.

A specific case holds when the time integration is instantaneous (σ1, σ2 → 0). In

this case, 1√
2πσ1

e
− ( t−µ1 )2

2σ2
1 → δ ( t− µ1 ) (weak convergence). In this limit we lose the

continuity at 0 (condition (3.3) is not fulfilled). In addition, as µ1, µ2 > 0 Π
(
µ1

σ1

)
=

Π
(
µ2

σ2

)
= 1 so that condition (3.4) gives K1 = K2. More generally, the contribution of
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the term Π(. . . ) = 1 is equal to 1 and this equation reduces to:
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Then, for t = µ1+µ2

2
such that t− µ1 = −(t− µ2) we have, for the left hand side:
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As K1 = K2 this gives:
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= 0.

Thus, in this specific case the extremum time is tm = µ1+µ2

2
. This is a reliable

approximation if σ1, σ2 are small.
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Muratore, S. Souihel, C. Capone, Y. Zerlaut, A. Destexhe M. di Volo (submitted).
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