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6 Chapter 1. Introduction

1.1 Overview

In the last two decades, clinicians and researchers have focused on analyzing in

vivo human movement patterns using advanced technologies like dynamic imaging

techniques [18]. Dynamic magnetic resonance imaging (MRI) was originally de-

veloped for cardiovascular imaging to non-invasively quantify blood flow to study

heart valve functions towards the end of the 1980s [110]. Since then, MRI acquisi-

tion and reconstruction techniques have improved by leaps and bounds with current

sequences like cine phase-contrast MRI (cine-PC MRI) [129], fast phase-contrast

MRI (fast-PC MRI) [13], ultrafast MRI [33], and real-time Fast Field Echo FFE

sequences [120, 90]. Furthermore, dynamic MRI can be used to acquire high res-

olution static data (i.e. stationary data) and low resolution temporal images (i.e.

non-stationary data). However, spatial and temporal data should be combined to

provide the most comprehensive point of view to study joint motion.

This thesis aims to develop and create new frameworks to improve the diagnostic

power of MRI and to process spatio-temporal anatomical MRI data. Processing this

volumetric data can enable researchers to analytically track bones without having to

identify specific points or anatomical landmarks and thus can provide the ability to

track cartilage deformation as well as skeletal motion. These proposed frameworks

tend to reduce the human intervention as much as possible while guaranteeing the

measurement accuracies by combining spatial information of conventional static

MRI with temporal information provided by four-dimensional (3D+time) dynamic

MRI sequences.

1.2 Clinical context

1.2.1 Spastic Equinus deformity

Equinus is the most common deformity in children with cerebral palsy (CP) [48,

93]. Spastic equinus is typically defined as the inability to dorsi-flex the foot above

plantigrade, with the hindfoot in neutral position and the knee in extended posi-

tion [72, 132]. Approximately 90% of the deformities in CP occur in the ankle and

foot region alone [73] with the incidence of equinus being around 75% [11]. Spastic

equinus exhibits poor muscle control and muscle weakness around ankle and foot,

resulting in gait abnormalities and bone deformities during growth. Specifically, a

dynamic tightness or fixed contracture of the calf muscle disrupts the normal heel,

ankle and forefoot rockers and impairs the function of the foot [108, 109]. Equinus

deformity induces abnormal gait patterns decreasing the stability instance, causes

a loss of the smooth translation of the body over the foot and often leads to an

inadequate clearance of the foot during the swing phase of the gait [108, 109, 63].
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1.2.2 Anatomy of the ankle

The ankle joint is a complex anatomical structure that links the foot and the lower

leg. It is a synovial hinge joint and the main movements at this joint are: dorsiflexion

which is produced by muscles of the anterior leg and limited by triceps surae (e.g.

when bringing the toes up to its head); and plantar flexion which is produced by

muscles of posterior compartment of leg (e.g. when walking on tiptoes).

1.2.2.1 Bones of ankle joint

Bones of ankle joint are presented in Figure 1.1. The ankle joint consists of three

joints: the tibiofibular joint, the tibiotalar joint, and the subtalar joint: The

tibiofibular joint is the articulation between the tibia and the fibula, the tibiota-

lar joint occurs at the meeting point of the tibia and the talus, and the subtalar

joint is the articulation between the talus and the calcaneus. The "mortise" is the

concaved surface formed by the tibia and fibula. The surface is adjustable and is

controlled by the proximal and distal tibio-fibular joints. The talus articulates with

this surface and allows dorsiflexion and plantar flexion.

Figure 1.1: Bones of ankle joint. Source: https://www.howtorelief.com/

ankle-joint-anatomy-overview/

1.2.2.2 Ligaments and tendons of ankle joint

Ligaments maintain link between the two adjacent bones forming a joint and pre-

vent separation of the bones. The medial and lateral ligaments are presented in

Figures 1.2 and 1.3, respectively.

https://www.howtorelief.com/ankle-joint-anatomy-overview/
https://www.howtorelief.com/ankle-joint-anatomy-overview/
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Tendons are similar to ligaments; both are made of collagen. The only difference

between the two is that the ligaments join one bone to an adjacent bone, while the

tendons connect muscle to bone for a proper functioning of the joint.

Figure 1.2: Medial ligaments and tendons of ankle joint. Source: https://www.

memorangapp.com/flashcards/67023/012C+-+Lower+Limb/

1.2.2.3 Motion of the ankle joint

The key movements of the ankle joint complex are: dorsiflexion-plantarflexion, which

essentially occur in the sagittal plane; inversion-eversion which essentially occur in

the frontal plane; and abduction-adduction occuring in the transversal plane. Com-

binations of these motions across both the subtalar (talus+calcaneus) and tibiotalar

(tibia+talus) joints create 3D ankle motions called supination and pronation [23].

1.2.3 Gait analysis

For gait evaluation, each child will undergo a lower limb gait analysis in the motion

analysis laboratory at the CHRU Morvan, Brest, (Figure 1.4) equipped with 9 Vicon

Camera system and 4 AMTI force plates (Advanced Mechanical Technology Inc.,

Watertown, MA, USA). Sixteen reflective markers will be placed on the lower limbs

(Figure 1.4) as described in Davis et al. [38]. Each child will walk bare foot and

gait will be recorded during each of five 10-meter trials. A velocity of 1 m/s (+/-

10%) will be imposed using a stop watch in order to eliminate the influence of

velocity on gait kinematics and kinematics while comparing across subjects. Each

child will be allowed to walk for 5 minutes after attaching the reflective markers

and before recording the gait data. Three dimensional ankle, knee and hip joint

https://www.memorangapp.com/flashcards/67023/012C+-+Lower+Limb/
https://www.memorangapp.com/flashcards/67023/012C+-+Lower+Limb/
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Figure 1.3: Lateral ligaments and tendons of ankle joint. Source: https://www.

memorangapp.com/flashcards/67023/012C+-+Lower+Limb/.

kinematics will be computed using the VICON Plug-in Gait model [38]. In addition

to the joint kinematics, joint powers and moments will be computed using an inverse

dynamics method. In this thesis, we focused on a specific motion cycle: extracting

the ankle joint kinematics during dorsi-plantarflexion using dynamic MRI to study

the spastic equinus deformity since this pathology was defined as the inability to

dorsiflex the foot above plantigrade, with the hindfoot in neutral position and the

knee in extended position [72, 132].

1.2.4 Management of spastic equinus

Management of spastic equinus deformity has been a long studied problem [135].

There is a general agreement that surgical intervention is the most viable option for

fixed equinus deformity with the goal to stabilize the lower extremity, and efficiently

use available strength to allow the patient to walk as independently as possible [132,

55, 44]. However, non-operative conservative management of equinus is typically un-

dertaken up until 8 years in order to prevent recurrent equinus or overcorrection [21,

84] by avoiding high-growth phase of child’s development for surgical intervention.

Despite the large volume of published studies, there is an inconsistency in recom-

mendations for treatment and lack of evidence for best clinical practice [54, 75].

This is reflected in post-surgical statistics as the long term follow-up studies report

up to 48% of recurrence rate [44, 71, 32] and shows a general lack of understanding

of spastic equinus deformity in children. Recurrence surgery not only increases the

https://www.memorangapp.com/flashcards/67023/012C+-+Lower+Limb/
https://www.memorangapp.com/flashcards/67023/012C+-+Lower+Limb/
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Figure 1.4: Motion analysis laboratory at the CHRU Morvan and an example of a

typical set-up for reflective marker placements on a healthy child.

economic burden on the society but also has a debilitating impact on children and

their families.

1.2.5 Ankle biomechanics and spastic equinus

While deciphering the high prevalence of recurrence rates, researchers found that

age and type of limb involvement were the major risk factors associated with the re-

currence [21, 71]. However these risk factors have not been well-established as recent

studies reported controversial outcomes [32]. In the hindsight, previous literature

is focused on extrinsic risk factors such as CP type, demographic parameters, and

clinical gait parameters for surgical recurrence and none assessed the intrinsic risk

factors such as the internal ankle joint biomechanics, muscle mechanics or tendon

strains. Being a dynamic pathology, it is critical to understand the in vivo effect

of weak ankle joint musculature on joint mechanics and the resultant bone defor-

mity. A primary reason for this recurrence could be a lack of understanding of bone

deformity that might be forcing the child to adapt altered ankle joint and muscle

mechanics (bone kinematics, cartilage contact parameters, muscle strain) during dy-

namic activities. A secondary reason could be hidden in the surgical approach itself

that facilitates function rather than to stamp out deformity. This is further evident

by the fact that the surgical interventions for correcting fixed equinus do not consider

any bone corrections and focus on muscle release or lengthening only [132]. Con-

sequently, optimal recommendations in each of these categories would be possible

with a complete understanding of the functional intrinsic biomechanics of equinus

deformity.
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1.2.6 From conventional static to dynamic imaging techniques

Imaging methodologies have long played crucial role in helping surgeons and clin-

icians to guide or diagnose various disorders. Conventional static MRI techniques

have been used for accurate diagnosis of the ankle and foot disorders given the

complexity of their anatomy. However these techniques may not physiologically

represent the dynamic musculoskeletal system [129, 18] and thus may mislead the

treatment plans and strategies for children. In vivo imaging of moving articulated

structures could be performed using different dynamic imaging techniques such as:

computed tomography (CT) [137], ultrasonography (US) [56], single or bi-planar

fluoroscopy [80], and MRI [123]. However, US is limited to the evaluation of soft

tissues around the joint while CT and fluoroscopy are limited to quantifying bone

kinematics and expose patients to ionizing radiations. MRI, being a non-invasive

technique for the study of the musculoskeletal system, provides anatomical details

of bones and surrounding soft tissues in both static and dynamic settings.

1.2.7 Dynamic MRI

In the last decades, researchers have developed and validated dynamic MRI tech-

niques to analyze in vivo muscle and joint mechanics [128, 20, 19]. These techniques

have been proven accurate and precise (e.g., tracking error < 1mm) in order to use

them reliably as clinical diagnostic tools [13]. The dynamic MRI technique employs

sequences that acquire three dimensional anatomical data throughout a motion cy-

cle performed inside the magnet [131]. Furthermore, it remains non-ionizing, can

handle both healthy and pathological joint function, and can visualize and track soft

tissues as well. Thus, properties such as bone kinematics, cartilage contact mechan-

ics, musculo-tendon moment arms, muscle strain and tendon strain are available

from these analyses. Dynamic MRI techniques have been successfully employed to

evaluate joint pathologies such as anterior knee pain in cerebral palsy [126]. Re-

cently ankle joint kinematics, ankle instantaneous helical axes and Achilles tendon

moment arms in adult population have also been reported in dynamic in vivo move-

ments [129, 125, 124].

1.2.7.1 Fast-PC MRI

Sequences such as cine-PC MRI [106, 131] or fast-PC MRI [127, 116] can provide in

vivo joint velocity field measurements. However, these data require long acquisition

times with a high number of repeated cycles: During each cycle, the MR scanner

collects a single line of data in Fourier space over and over again. This process is

continued until all lines of data are collected. Once the data are collected each cycle

is interpolated to the desired number of time frames. Then all the lines representing

the first time are put together and an image for the first time is created. This is

repeated for all frames. The output of this process is a series of anatomical images

portraying the different phases of the movement cycle.
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The acquired fast-PC data typically consists of 30 temporal anatomic images

which when played in a movie loop visually demonstrate how the ankle is moving.

The 3D velocity vector for each pixel is basically a matrix of numbers defining

the velocity for each pixel. A major clinical limitation of these sequences is that

subjects with musculoskeletal disorders, who cannot complete a large number of

repeated motion cycles, cannot be studied with cine-PC or fast-PC MRI.

1.2.7.2 Ultrafast-MRI

Ultrafast 3-T MRI is a feasible alternative imaging technique which has been

employed to several clinical applications such as: prenatal diagnosis of congenital

anomalies [62], evaluation of abusive head trauma [76], and also for the deter-

mination of ankle joint kinematics and for measuring muscle moment arms in

vivo [33]. Contrary to fast-PC MRI technique, this imaging technique allows for

capturing the joint trajectory during a single range-of-motion cycle, by exploiting

spatio-temporal redundancy. Furthermore, it has the potential to be used under

either passive (relaxed) or active (voluntary) muscle conditions without the need to

control joint angular velocity or MRI gating.

Ultra-fast (turbo) gradient echo sequences have been used in the work of Clarcke

et al. [33] to obtain 20 time frames (with a resolution of 1 × 1 × 4mm) within

50 seconds. However, since these sequences are sensitive to motion artifacts, the

motion itself is reduced to almost static or quasi-static nature (i.e. mean rotation

speed of 1◦/sec) where no real functionality can be assessed.

Real-time T1 Fast Field Echo (T1-FFE) sequence is another valid and reliable

technique to evaluate joint motion [18] with a good contrast between structures at

the ankle [90], as illustrated in Figure 1.5. This imaging modality allows an in vivo

quantification of joint kinematics where the scanning time for acquiring a single

cycle of dorsi-plantar flexion is reduced to only 18s to acquire (15 time frames, with

a spatial resolution of 0.56 × 0.56 × 8mm). Using these sequences in the current

research, the rotation rate is 4 to 5 times higher than that of Ultra-fast (turbo)

gradient echo sequences (i.e. mean rotation speed of 4◦/sec). A detailed description

of the protocols used to acquire the dynamic MRI data is given in chapter 2.

To conclude, fast acquisition time, no need of repeated motions, and good soft

tissue contrast are the key features that makes this method suitable for real-time

evaluation of joint motion in vivo in normal and pathological conditions.

When compared to conventional static MRI, dynamic MRI comes with its own

set of challenges such as the low-resolution, the anisotropy and the motion-related

artifacts. Figure 1.6 illustrates the differences between static and dynamic data.
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Figure 1.5: T1-FFE images of ankle joint during motion. The sequence is composed

of 15 time frames, with a spatial resolution of 0.56× 0.56× 8mm.

1.2.8 In Vivo ankle joint biomechanics

As a starting point of this research, our co-investigators in CHRU of Brest

proposed to develop and implement the dynamic MRI techniques to quantify in

vivo biomechanics of ankle joint with the help of image post-processing techniques

later. This would provide original knowledge on the patho-physiology of equinus

and its related consequences on gait. Our medium term goal is to provide a subject

specific biomechanical assessment of equinus deformity to surgeons and clinicians.

Development of dynamic MRI techniques will enable investigations that require

functional assessment of joints and surrounding tissues. Furthermore, these tools

may be applicable to other joints and related musculoskeletal disorders.

In previous works [33], a mesh-based registration technique is proposed to track

bones across time. This method consists of registering the high-resolution bone

models from the static image to the low-resolution bone models established at each

time frame. However, their solution is limited as it requires the manual segmentation

of all dynamic data in addition to the manual segmentation of the static MR scan.

Moreover, this task is time consuming and prone to segmentation bias because of

image noise and motion artifacts. In this work, we present to derive the joint
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Figure 1.6: Static VS dynamic MRI: the left image corresponds to the dense high-

resolution static image, while the right image corresponds to a sparse low-resolution

time frame from a T1-FFE dynamic MRI sequence.

kinematics using an intensity-based registration tracking algorithm, which exploits

all the available volumetric information by tracking the 3D bone segmentations.

Using our method, the segmentation of dynamic data is performed automatically.

And the rotations and translations of each bone with respect to another one is

established from the estimated rigid transformations.

1.3 Image registration

Image registration [25, 102, 45] is the principal technique that we have used for

motion reconstruction and for spatio-temporal data reconstruction during this the-

sis. Image registration methods can be divided into two families: rigid (linear) and

non-rigid (non-linear).

1.3.1 Rigid image registration

Rigid registration is the basic formulation of image registration. Theoretically, it

aims to maximize a similarity measure (e.g. mutual information, correlation ra-

tio, etc.) between two images (conventionally named source and target images, or

floating and reference images in some documentations) in an intensity-based context

(iconic approaches) or to minimize the distance between two point sets (e.g. mean

squared error in point-wise distance between the source and target point sets) in a

shape-based context. Whereas the main goal always remains the same; finding the

optimal geometric transformation, that when applied to the source image or shape,

aligns it with the target image or shape, respectively. The mathematical formulation
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of this optimization problem is given by one of the two following equation:

Topt = argmax
T∈AT

S(I2, T (I1)) (1.1)

where: I1 is the source image; I2 is the target image; S is a similarity measure∗∗

while D is a distance or cost function; AT is the space of allowable transformations;

and Topt is the optimal geometric transformation that, when applied to I1, aligns

it with I2. Note that the estimation of the optimal transformation Topt can also

be done by minimizing a cost function like the mean least squared error between

image intensities before and after applying any allowable transformation to the

floating image I1.

∗∗Similarity measures: In the context of intensity-based registration, the ex-

isting similarity measures can be divided into three categories: statistical similarity

measures such as the correlation ratio (CR) or the normalized correlation (NC);

information theoretic similarity measures such as the mutual information (MI),

the normalized mutual information (NMI), and the entropy correlation coefficient

(ECC); and distance-based cost functions such as the least squares (LS). The most

commonly used intensity-based cost functions are defined mathematically as follows:

CR 1
Nσ2

Y

∑

iNiσ
2
Yi

∈ [0, 1]

NC
∑

(X.Y )√∑
X2

√∑
Y 2

∈ [−1, 1]

MI H(X,Y )−H(x)−H(Y ) ∈ [−∞, 0]

NMI H(X,Y )
H(x)+H(Y ) ∈ [0, 1]

LS
∑

(X − Y )2 ∈ [0,+∞]

where: X and Y denote the two images, both represented as a set of intensities;

σ2
Y is the variance of the set Y ; Yi is the ith iso-set of intensities of Y at positions

where the intensity in X is in the ith intensity bin; Ni is the cardinal of Yi; H(X)

and H(Y ) are the marginal entropies; and H(X,Y ) is the standard joint entropy

of X and Y .

The registration process is composed of the principal following steps:

• Optimization: Each registration algorithm searches for maximizing the simi-

larity measure in order to determine the optimal geometric transformation that

aligns the source and target images, through the space of allowable transfor-

mations. The optimization process consists of varying the parameters of the

transformation model to maximize the similarity measure.
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• Interpolation: Once the optimal geometric transformation is determined,

the alignment process requires the definition of the interpolation method. This

method defines how he floating image intensities will be mapped to new coor-

dinates in the target image space when applying the optimal transformation.

The methods most commonly used are nearest neighbor, trilinear, Fourier and

spline.

Rigid registration can be extended to include affine registration, which includes

additional parameters (scalings and shearings) and this kind is commonly used in

the context of brain registration for example.

1.3.2 Non-rigid image registration

Non-rigid or deformable registration is an important tool for assessing spatial and

temporal changes between images [133]. Deformable registration has long been used

in several fields such as: augmented reality during hepatic surgery [59], scanning mi-

croscope data [68], and medical imaging applications such as organ segmentation [25,

86, 95]. A review of the non-rigid registration is proposed in [37]. In general, non-

rigid registration aims to optimize an energy function and is usually characterized

by an additional regularization term (penalty term) during the optimization process

in order to ensure smoothness of the deformation field. So that the equation (1.1)

becomes as follows:

Topt = argmax
T∈AT

S(I2, T (I1)) +R(T ) (1.2)

where R(T ) is the regularization term. To regularize the resulting non-rigid transfor-

mation, there are two main methods according to [107]: either rely on regularization

theory, or rely on physical models (elastic and viscous fluid models). Although this

regularizer aims to smooth the estimated dense deformation field, this additional

term can affect the local similarities (e.g. this can affect bone shapes by affecting

sharp peaks in the context of articulated registration, which was the case in the work

of Abbas et al. [1] for estimating the non-linear deformations of the wrist joint).

According to Sotiras et al. [133], the deformable registration algorithms can be clas-

sified into four groups based on the transformation model that they use:

• Transformations derived from physical models [96], such as: elastic

body models relying on partial differential equations (PDEs) [24], curvature

registration where the deformation is modeled by an equilibrium equation [52],

viscous fluid flow models where the geometric transformation is governed by

the Navier-Stokes equation [31], and flows of diffeomorphisms such as the Large

Deformation Diffeomorphic Metric Mapping (LDDMM) Framework [12] which

determines correspondences between two images or two sets of points via the

geodesic distances.

• Transformations derived from interpolation theory and approxima-

tion theory, such as: interpolation of the deformation using the radial ba-

sis functions (RBFs) [144], elastic body splines [39], free-form deformations
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(FFDs) and their symmetric extension proposed by Noblet et al. under the

assumption that both source and target images will deform toward a com-

mon domain under the influence of two isomorphic grids [103], and finally

locally-affine models which guarantee the invertibility of transformations [5].

• Knowledge-based geometric transformations, such as: statistically-

constrained transformations for which the spatial constraints are established

based on a statistical information about deformation fields across a high num-

ber of subjects in order to reduce the number of DOFs and thus the complexity

of geometric transformations. These statistical models have been successfully

employed to study shape variability and to accelerate image alignment and

segmentation [36, 136]. The registration is constrained here by performing

principal component analysis (PCA) on point correspondences. A finite ele-

ment methods (FEMs) involving statistical priors on biomechanical properties

of tissues are also employed to estimate complex deformation fields with the

use of few DOFs, such as the biomechanical models of the breast [9], and the

biomechanical models of the prostate [97].

• Task-specific constraints: some methods are proposed with the goal of

preserving topologies, such as: the method proposed by Christensen et al. [30]

which consists of constraining the transformation by adding a penalty term

to the similarity function, that acts upon the Jacobian values (i.e. a term

that penalizes small and large Jacobian determinant values for both forward

and backward deformation fields). A similar method is proposed by Rueckert

et al. in which the authors proposed to add, a term penalizing the values of

the Jacobian that are close to zero, to the objective function [118]. A non-

rigid FFD registration method imposing local rigidity constraints is proposed

in [82]. In this work, the alignment is achieved by penalizing deviations of the

Jacobian from orthogonality.

.

Since we process volumetric static and dynamic MRI data in our study, we

proposed to divide the non-linear joint registration into two parts: first, the reg-

istrations of bones are constrained assuming their rigid nature, meaning the local

bone transformations are individually estimated using a robust intensity-based reg-

istration algorithm relying on local similarities. Second, a smooth deformation field

of the joint is obtained in a fast way by fusing the set of locally rigid transforma-

tions.

Contrary to rigid registration which can be determined in few seconds, most non-

rigid registration algorithms require minutes or hours in determining a large number

of parameters [37]. This is another reason which motivates our choice for the Log

Euclidean Polyrigid Framework (LEPF) for which the resulting polyrigid transfor-

mations (i.e. resulting from fusing a set of multiple rigid transformations, corre-

sponding to each bone of interest) are parametrized by a small number of intu-

itive parameters (i.e. only 6 parameters per rigid component and 12 parameters
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per affine component). Furthermore, the resulting log-euclidean polyrigid trans-

formations have the properties of a diffeomorphism, including invertibility and dif-

ferentiability. In the next sections, we detail this registration framework and the

mathematics behind.

1.4 Mathematical tools for Dynamic MRI data post-

processing

In the sequel, we will present the developed mathematical tools that we have used

to perform non-rigid image registration during this thesis. This part will present

the different theories in relation with our work. The principal topics in focus are:

geometric flows and ODEs (Section 1.5.1), Lie algebra (Sections 1.5.2 and 1.5.3),

different methods for computing the matrix exponential, eigenvalue problems and

their usefulness for the parameterization of non-rigid geometrical deformations with

a small number of flexible DOF (Section 1.6.2), and geometric PDEs and their

usefulness for computing soft tissue thickness that we will describe later in chapter 4.

1.5 Temporal evolution of nonlinear dynamical systems

In this section, we introduce the use of the theory of ordinary differential equations

to handle the spatio-temporal evolution of nonlinear dynamical systems [105].

1.5.1 Ordinary differential equations ODEs

The trajectory of a point x, or more generally, of any vector field on a continuously

differentiable manifold T (x) between two instants (0 and 1) during a specific motion

cycle can be modeled by the following Ordinary Differential Equation (ODE):

ẋ = V (x, α) (1.3)

with the initial condition x(α0) = x0; where V is a non-linear function, called the

velocity vector field, and α ∈ [0, 1] is the time term. The key idea is to split V into

a set of N locally linear velocity vector fields vi(., α)i∈{1...N}.

Solving this ODE by varying α continuously from α0 = 0 to α1 = 1 will smoothly

integrate the entire trajectory of the point x (i.e. α-change of the infinitesimal dis-

placement of x), starting from the initial position x0, until reaching the final position

x(1) = T (x0) as illustrated in Figure 1.7.

For some cases, such as inter-subject registration for comparison purposes, it could

be just needed to estimate the deformation vector between the start and end posi-

tions (x0 and x(1) = T (x0)), so that V (x0, α) = V (x0, 1) does not depend on α. In

this case, the ODE is called stationary or autonomous.

The solution of this first order ODE that we note φ(x0, α) is called the flow, which

is dependent on the initial condition x0. More generally, the one-parameter family
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(a) (b)

Figure 1.7: ODE integration: (a) a synthetic deformation field (velocity vector field)

over a regular grid; example of a single clockwise rotation (rotation angle of −50

degrees around the origin), (b) infinitesimal displacement of one velocity vector ; in

particular we have zoomed a single point trajectory between the source and target

positions in order to show the temporal evolution of the associated velocity vector

(i.e. the elementary tangent vectors along the integral point trajectory).

of mappings (i.e. the one parameter subgroup of the group of diffeomorphisms),

φ(., α) : Rn −→ R
n satisfies Eqn. (1.4):

φ(., 0) = id,

φ(., α1) ◦ . . . ◦ φ(., αm) = φ(., α1 + . . .+ αm).
(1.4)

1.5.2 Lie groups

Starting from its algebraic sense, a Lie group is a first order group in which the

multiplication of elements is defined [74]. It is also a topological group (i.e. a

smooth manifold or C∞-manifold) with a set of properties like invertibility, multi-

plication, and differentiability. In particular, the group of 3D rigid transformations

SE(3) (linear transformations on homogeneous 4-vectors, as defined in Eq. (1.5) is

a Lie group (i.e. a continuous-transformation group) associated with the Lie alge-

bra so(3), where the composition of mappings corresponds to the multiplication of

elementary (i.e. infinitesimal) transformations.

1.5.3 Group of 3D homogeneous rigid transformations SE(3)

The Lie group of 3D homogeneous rigid transforms (i.e. the differentiable manifold

with structure so(3)×R
3) [17], also denoted as the special Euclidean group SE(3),
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is defined as follows:

SE(3) =

{

T |T =

[
R t

01×3 1

]

, R ∈ SO(3), t ∈ R
3, RTR = RRT = I, |R| = 1

}

(1.5)

Each element T in SE(3) possess six degrees of freedom (DOFs) of relative

movement as it is composed of two parts: a linear 3×3 bloc R ∈ SO(3) describing the

three spatial rotations and an additional 3×1 translation vector t ∈ R
3 that describes

the displacement with respect to the origin. The following Equation presents the

direct approach to apply a rigid transformation to a point x in order to obtain the

location of point y (see Fig 1.8):

y = Rx+ t (1.6)

The above defined Equation requires the vector addition. Hence, mixing the rotation

bloc and the translation vector allows for a direct matrix-vector multiplication (i.e.

ỹ = T.x̃). So that T can be written as 4× 4 matrix:

T =

(
R t

0 1

)

(1.7)

If x =





x0
x1
x2



, then x̃ is simply obtained by adding an extra ”1” to x, x̃ =







x0
x1
x2
1







.

It is also possible to interpolate a 3D rigid transformation after considering all

the allowed rotations and translations as a single bloc (see section 3.4.2).

Source

x

Target

y

Figure 1.8: Apply a synthetic rigid transformation T in SE(3), expressed in an

orthonormal basis (O,~i,~j,~k), to a point x. Transformation parameters are set as

follows: Ri = 0◦, Rj = 0◦, Rk = 45◦, ti = 0, tj = −1.5, and tk = 0. The result is

given by ỹ =

(
y

1

)

= T x̃.

Moreover, matrices in SE(3) satisfy:
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• Closure property: if T1 and T2 are two elements ∈ SE(3), then their matrix

product T1T2 ∈ SE(3).

• Associative property: if T1, T2 and T3 ∈ SE(3), then (T1T2)T3 = T1(T2T3).

• Neutral element: ∀T ∈ SE(3), T verifies T.I = T where I is the 4 × 4

identity matrix.

• Inverse: ∀T ∈ SE(3), T , there is an inverse T−1 ∈ SE(3), such that T−1 = I.

In addition, this algebraic group is a continuous group. Meaning the product of any

two matrices in SE(3) is a continuous function of the two matrices and the inverse

of any matrix in SE(3) is a continuous function of that matrix.

1.5.4 Diagonalizability of the 4 × 4 homogeneous transformation

matrices

In general, a 4×4 rigid transformation matrix is diagonalizable. With the exception

of screw transformations (i.e., when the motion consists of a rotation about an axis

and a translation along the same axis). If we take the example of screw motion

through the z − axis, the screw transformation will be:

Tθ =







cos(θ) −sin(θ) 0 ux
sin(θ) cos(θ) 0 uy

0 0 1 uz
0 0 0 1







(1.8)

where Tθ ∈ SE(3), U = (ux, uy, uz) is the translation vector, and θ is the rotation

angle about the z−axis. This matrix is diagonalizable if and only if the translation

along the z − axis, uz = 0 [51]. In fact, the eigenvalues of Tθ in the complex

domain are: {eiθ, e−iθ, 1, 1}. So that the eigenvectors corresponding to the repeated

eigenvalue 1 are linearly dependant, and thus the matrix Tθ is non-diagonalizable.

For example, the human bones may never be able to perform screw motions in

normal conditions due to the natural joint mechanical constraints. This suggests

that rigid bone transformations are always diagonalizable. An example of screw

motion through the z-axis is illustrated in Figure 1.9.

1.5.5 Linear interpolation on SE(3)

In this section, we adress the problem of finding a smooth continuous-time

trajectory that interpolates between two rigid body poses [121, 14]. We introduce

a matrix-diagonalization based approach thanks to the above algebraic properties,

involved in SE(3) :

Let T ∈ SE(3) be the transformation matrix coding the rigid movement of a three-

dimensional shape between two different poses. Assuming that this transformation

is diagonalizable (which is the case for most transformations in an orthonormal

basis, like the image coordinate system), then there exist an orthogonal matrix
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y

x

z

Figure 1.9: Example of screw motion through the z-axis.

P and a diagonal matrix D such that T = PDP−1. The non-zero elements of

D are the eigenvalues of T (λ1, λ2, λ3, and λ4 = 1), while the columns of P are

the corresponding eigenvectors. Based on this matrix eigendecomposition, one can

define T raised to its αth power as follows:

Tα = PDαP−1 = P







λα
1 0 0 0

0 λα
2 0 0

0 0 λα
3 0

0 0 0 1







P−1 (1.9)

Changing α continuously from 0 to 1 will change the matrix Tα from identity to the

matrix T. This allows for interpolating between two distinct rigid-body poses from

a realistic transformation matrix, expressed in homogeneous coordinates. Fig 1.10

illustrates the linear interpolation of one simulated rigid transformation (3 rota-

tions+3 translations).

1.5.6 Log Euclidean Polyrigid Framework

1.5.6.1 Original Polyrigid Transformations

In the context of medical image analysis, Arsigny et al. [7] have modeled the regis-

tration process as a temporal transformation of point coordinates from time α = 0

to time α = 1. This framework with ODEs is called polyrigid and polyaffine trans-

formations as it can deal with nonlinear geometric deformations. As we said in

Section 1.5.1, the goal is to divide the velocity vector field V into a set of N locally

linear velocity fields vi according to the following equation:

ẋ(α) = V (x, α) =

∑N
i=1wi(x)vi(x, α)
∑N

i=1wi(x)
; with x(t0) = x0 (1.10)

where wi(x) is a weighting function that reflects the local influence of the velocity

of the local transformation vi(x) associated to the region i at point x, on the final

velocity vector field V obtained when α is equal to 1. Let’s take the case of articu-

lated structures registration as an example: using this framework, one can estimate
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Figure 1.10: Interpolation of smooth motions on SE(3): consistent interpolation

of a simulated 3D rigid transformation T that maps the blue ellipsoid (initial pose)

to the red one (final pose), transformation parameters are: ti = 0mm, tj = 0mm,

and tk = 0mm; ri = 0◦, rj = 0◦, and rk = 30◦. 5 secondary rigid transformations

Tα were interpolated between the identity and T , giving a smooth trajectory of the

rigid body between two poses in function of α (α = {n/6}n∈{1...5} in Eq 3.7).

a dense deformation field from just a few parameters, 6N parameters if we have

to fuse N rigid components. Meaning we would like to define an average polyrigid

transformation as T (x0) = φ(x0, 1), where φ is the smooth geometric flow associated

to the ODE (1.10). Some shortcomings of this framework are:

• First, the proposed polyrigid fusion is not invariant with respect to a change

of coordinate system.

• Second, the inverse of a polyrigid transformation is not polyrigid in general.

1.5.6.2 Log Euclidean Polyrigid Transformations

To overcome the above-mentioned limitations of the original polyrigid fusion, Ar-

signy et al. [5] proposed a new framework called Log Euclidean Polyrigid Trans-
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formations. Since we have the relation exp(log(Tα)) = exp(α.log(T )), the flow

φ(x, α) which corresponds to the infinitesimal log Euclidean polyrigid transforma-

tion T (x, α), can be computed via the following non-stationary equation:

φ(x, α) = exp

(

α

N∑

i=1

w̃i(x) log
(
Ti
)

)

.x̃; with x(t0) = x0 (1.11)

where x is expressed in homogeneous coordinates; α ∈ [0, 1] is the time-term; N is

the total number of rigid components; Ti ∈ SE(3) is the rigid transform from the

source to the target image for the component i; and w̃i is a normalized weighting

function (i.e.
∑N

i=1 w̃
i(x) = 1, for all x in the source image.

Since φ(x, α) is a diffeomorphism, this mapping yields nice algebraic properties such

as invertibility and bijectivity, leading to a smooth mapping of one differentiable

manifold to an other.

From a computational point of view, it is possible to fastly compute this

mapping in regular grids thanks to the above-listed algebraic properties, defined

in the Lie groups of rigid transformations expressed in homogeneous coordinates

SE(3). The computation of the exponential mapping of (1.11) can be computed

using different techniques that we will discuss in the sequel (Section 1.6).

1.5.7 Some applications of the LEPF

This framework covers the fusion of affine transformations as well as rigid transfor-

mations. It is to be noticed that an affine transformation is a linear transformation

which encodes a geometrical deformation within 4 parameter vectors; rotations,

translations, scaling and shearing (e.g. 12 degrees of freedom DOFs in 3D). The

LEPF has been then used in several applications: in [104], the authors prove

that this type parameterization is well-adapted to the registration of articulated

structures such as the hip and knee joint for serial x-ray CT mouse images; in

[92], an extension of the Log Euclidean polyrigid registration was presented to

deal with human articulated structures from 2D radiographs. Recently, the LEPF

has been applied to surgical planning of fronto-orbital advancement. This work

aims to estimate the necessary bone piece repositioning for achieving the optimal

post-surgical cranial shapes [113]. In this thesis, we have extended these techniques

to estimate the spatio-temporal evolution of human joints (e.g. the ankle joint). To

do this, we have proposed an intensity based registration framework for combining

spatial information of conventional static MRI with temporal information of

dynamic MRI sequences [88, 90].
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1.6 Matrix exponential

Towards the end of the 1970s, Moler and Van Loan have synthetized a study to

present the different ways of computing the matrix exponential [99]. This famous

study has been revisited more than two decades later in [100] to take advantage of

the advances of computational resources and to classify the existing methods and

algorithms in terms of generality, accuracy, storage requirements, and efficiency.

This study has pointed out that the choice of the best method depends on the

application. For example, algorithms which avoid use of the eigenvalues are more

time-consuming for any particular problem. Moreover, they are prone to roundoff

errors especially where the matrix to be exponentiated has large elements.

In this work, we will only focus on two techniques that are more suitable for comput-

ing the matrix exponential in dense regular grids: the scaling and squaring method

and the eigen decomposition method [77]. These two methods, which are based on

factorizations or decompositions of the matrix, are likely to be most efficient for

problems involving homogeneous transformation matrices and repeated evaluation

of their exponentials.

The real exponential function is defined by this following power series:

ex =
∞∑

n=0

xn

n!
= 1 + x+

x2

2!
+

x3

3!
+ . . . (1.12)

This power series decomposition, also known as the Taylor series expansion of the

exponential function, is still available for expressing the exponential of a square real

or complex matrix. So that the matrix exponential of an m ×m matrix T can be

defined by the following convergent power series:

eT =
∞∑

n=0

Tn

n!
= Im + T +

T 2

2!
+

T 3

3!
+ . . . (1.13)

where Im is the m×m identity matrix.

To summarize, the matrix exponential can be approximated with a certain level

of accuracy by neglecting high-order terms under certain conditions using the scaling

and squaring method and it can be exactly computed using matrix eigen decompo-

sition.

1.6.1 The scaling and squaring method

The scaling and squaring method [98, 78] is a recursive technique that exploits

the fact that the matrix exponential can be easily estimated for matrices close to

zero (coming from the scaling step) using the Padé approximants, by neglecting

the high-order terms. This method is based on the relation eT = (e
T
2s )2

s
. The

first step (scaling step) consists of evaluating e
T
2s while the second step (squaring

step) consists of squaring the approximant s times to finally obtain an estimation

of eT . The accuracy of this technique involving approximation theory seems to be
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satisfactory under certain conditions as it depends on the input parameters which

are the total number of iterations N and the scaling factor s (note that N and s are

two integers). In fact, the rounding errors introduced during the repeated squaring

have a similar effect as that of a perturbation in the original matrix T itself. The

efficiency of this technique over a regular grid is somehow comparable to that of the

Fast Fourier Transform (FFT) according to Arsigny et al [5]. However, Moler et

Van Loan [100] have concluded that this method is efficient for computing eT , but

not so efficient for computing eαTx for a given vector x (which represents the point

components expressed in homogeneous coordinates in the registration context) and

many values of α (which is the case for non-stationary acquisitions like dynamic

MRI sequences).

1.6.2 The eigendecomposition method

1.6.2.1 Definition

The matrix eigendecomposition [149] is the factorization of the matrix (supposed to

be diagonalizable) into a canonical form. Let T to be a square m×m real or complex

matrix, then its distinct eigenvalues {λk}k∈{1...m} can be determined by solving the

characteristic equation det(T − λkIm) = 0 while the corresponding eigenvectors

{vk}k∈{1...m} satisfy the linear equation T vk = λkvk, also known as the eigenvalue

problem. Hence, a factorization of T can be expressed as: T = P.D.P−1, where

the columns of P contains the eigenvectors v = {vk}k∈{1...m} corresponding to the

eigenvalues of T , λ = {λ1, λ2, . . . , λm} which are the non-zero elements of D. So

that the exponential of T can be computed according to the following equation:

eT = PeDP−1 = P









eλ1 0 . . . 0

0 eλ2
...

...
. . . 0

0 . . . 0 eλm









P−1 (1.14)

where D is a diagonal matrix and P is an orthogonal matrix in general. eT is a

m×m invertible matrix where the inverse can be computed according to:

(eT )−1 = P−1e−DP = P−1









e−λ1 0 . . . 0

0 e−λ2
...

...
. . . 0

0 . . . 0 e−λm









P (1.15)

Explication:

According to Equation 1.13, if T is a diagonalizable square matrix then it can

be expanded into its power series as follows:

eT =

∞∑

n=0

(P.D.P−1)n

n!
(1.16)
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T raised to its nth power can be written as follows:

Tn = (P.D.P−1)n =

n−times
︷ ︸︸ ︷

P.D. P−1.P
︸ ︷︷ ︸

I

.D. P−1.P
︸ ︷︷ ︸

I

. . . . P−1.P
︸ ︷︷ ︸

I

.D.P−1 = P.Dn.P−1

(1.17)

where I is the identity matrix.

Combining (1.16) with (1.17) we have:

eT =
∞∑

n=0

P.Dn.P−1

n!
= P.

∞∑

n=0

Dn

n!
︸ ︷︷ ︸

=eD

.P−1 (1.18)

The advantage of the eigen decomposition method is that it automatically takes

into account all the terms (including the high-order terms in Equation 1.13). This

method leads to a more accurate computation of the matrix exponential when

compared to the scaling and squaring method.

It should be noticed that the matrix logarithm and the nthmatrix power can be

determined in the same way by computing the natural principal logarithm and

the nth power of the eigenvalues, respectively. Although it is obvious that the

matrix power can be computed using this matrix-diagonalization based method

according to Equation 1.17, the matrix logarithm can be computed similarly to the

matrix exponential, simply because the natural logarithm and the exponential are

two inverse functions (i.e. exp(log(T )) = log(exp(T )) = T , for all square matrix T ).

1.6.3 The principal matrix logarithm

Given a matrix T =

(
R t

0 1

)

∈ SE(3), a logarithm of T is defined as log(T ) =

(
L v

0 0

)

, where v = log(t) and L = log(R). L can be computed using the eigen-

decomposition technique previously described [29, 27]. However, this quantity is not

unique because of the rotational periodicity so that the matrix logarithm log(T ) is

also not unique. In the context dynamic MRI, this is not a problem in itself as the

local rotations are smaller in magnitude than π radians (i.e. the imaginary part

of the eigenvalues of R are smaller than π because there are no large deformations

between successive frames) so that the matrix logarithm is unique. This is called

the principal matrix logarithm [5].

1.6.4 Applications

The matrix exponential is widely used in non-linear computational problems

within dynamic systems like integrating first order Ordinary differential equations

(ODEs), describing the time-dependant N-dimensional deformation field along a
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diffeomorphic trajectory. This embedding of Lie algebra into a matrix algebra has

been successfully employed in the context of medical image registration, yielding

nice properties of the estimated deformations like smoothness and invertibility in

addition to the invariance with respect to a change of coordinate system. In this

context, Arsigny et al. [6] presented a general log euclidean polyaffine framework to

fuse multiple local affine transformations. As a particular case, a polyrigid fusion

can be performed using this framework if the local transformations are simply rigid

(e.g. bone transformations).

1.7 Rotations and quaternions

Quaternions are hyper-complex numbers invented by an Irish mathematician, Sir

William Rowan Hamilton [57] in 1843 as an extension of the classical complex num-

bers in C in order to provide a more compact representation of rotations in the space.

Quaternion algebra H is associative but non-commutative over R. Any quaternion

number q ∈ H can be written as: q = qa + iqb + jqc + kqd, where qa ∈ R is the

real part, (qb, qc, qd) ∈ R
3 are the three complex components of q, and {1, i, j, k} is

a basis of H.

i

kj

-1

-1 -1

(+)
From this oriented graph on the

left, one can verify

that the imaginary units

satisfy:

ij = k; jk = i; ki = j

ji = −k; kj = −i; ik = −j

i2 = j2 = k2 = ijk = −1

A quaternion q = qa + iqb + jqc + kqd is called unit quaternion or versor if

and only if its modulus |q| = √
qq∗ =

√

q2a + q2b + q2c + q2d verifies |q| = 1, where

q∗ = qa − iqb − jqc − kqd is the conjugate of q. Unit quaternions can represent a

rotation angle in R
3. In fact, a unit quaternion can be decomposed into a scalar real

part s = Re(q) = qa and a vector part V = Im(q) = iqb+ jqc+ kqd (also called pure

unit quaternion), so that q = s + V , with s2 + ||V ||2 = 1. Hence, q can be written

in the polar form:

q = cos(θ) + u.sin(θ) (1.19)

where θ ∈ [0, 2π] is the argument of q and u ∈ R
3 is the orientation vector.

Considering the following application:

H → H

P2 7→ qP1q
∗
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Then we obtain a rotation angle of 2θ and an axis u describing the orientation.

qP1q
∗ =

(
1 0T

0 R

)

·







p1
p2
p3
p4







(1.20)

where:

R =





q2a + q2b − q2c − q2d 2(qbqc − qaqd) 2(qbqd + qaqc)

2(qbqc + qaqd) q2a − q2b + q2c − q2d 2(qcqd − qaqb)

2(qbqd − qaqc) 2(qcqd − qaqb) q2a − q2b − q2c + q2d



 (1.21)

1.8 Contributions summary

In this thesis, we present the following contributions:

• Spatio-temporal resolution reconstruction of the ankle joint from

one high-resolution static scan and one low-resolution dynamic MRI

sequence: Chapter 2 will cover our recent developments on dynamic MRI and

particularly the proposed intensity-based registration algorithm for skeleton

tracking. The most challenging task is to find a link between static and dy-

namic MRI data. In fact, the required multi-resolution registration is prone to

errors since the optimization of the similarity measure is prone to local min-

ima problems. To tackle this problem, we decomposed the multi-resolution

registration into two steps (a global rigid registration, followed by a local rigid

registration) based on the fact that the registration process is much simpler

to converge for transformations close to the identity.

• Non-invasive quantification of contact kinematics by accurately measuring 4D

joint space width (JSW): our main contribution is the temporal tracking of the

joint space section from the low-resolution dynamic sequences, while all our

results are performed in the resolution of the static image. Furthermore, we

developed an Eulerian PDE approach which was first dedicated for measuring

the cortical thickness, characterized by its more complicated topology.

• Enhancing the accuracy of the joint deformation fields, estimated via

the Log Euclidean Polyaffine (or polyrigid) Framework: the use of the

scaling and squaring method for computing the principal matrix logarithm or

the matrix exponential within the LEPF is prone to very small errors (rounding

errors) as this technique involves approximation theory. This accumulative

error may not be appreciated by the nacked eye but it exists anyway.
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Reducing this accumulative error can be appreciated for some sophisticated

applications especially where the ROIs are very fine structures like the human

brain cortex segmentation. For which it is always interesting to reduce the

partial volume error.

• We have also investigated the combination of the linear registration tool Fsl-

flirt [66, 67] with the LEPF to deal with non-linear dynamics of articulated

structures. Since this framework allows for estimating smooth deformation

fields by fusing a set of locally linear transforms. The main goal is to ben-

efit from this robust linear registration tool to track bones since the LEPF

generates smooth deformations independently of the way in which the local

bone rigid transforms are first estimated. This contribution is explained in

chapter 3.

Development of dynamic MRI techniques will enable investigations that require

functional assessment of joints and surrounding tissues. Furthermore, these tools

may be applicable to other joints and related musculoskeletal disorders.

1.9 Conclusion

In this chapter, we have introduced the mathematical tools that we have used for

dynamic MRI data post-processing. From a mathematical point of view, the reg-

istration process aims to perfectly align between two images. However, there are

some inevitable physical limitations like image resolution, motion artifacts and im-

age noise which make each registration algorithm prone to a certain bias even if it

works and sometimes prone to fail in the worst cases (e.g. local minima problem). In

other words, such algorithms are always exposed to small errors that can be related

to the optimization iterative process in it self or to the interpolation method. Un-

fortunately, these small errors will be mixed together making it difficult to separate

between their origins given the resulting or warped image.

Talking about small registration bias, the use of the scaling and squaring method

for computing the principal matrix logarithm or the matrix exponential within the

LEPF is also prone to very small errors (rounding errors) as this technique in-

volves approximation theory. This accumulative error may not be appreciated by

the nacked eye but it exists anyway.

Eliminating this accumulative error can be appreciated for some sophisticated ap-

plications especially where the ROIs are very fine structures like the human brain

cortex segmentation. For which it is always interesting to reduce the partial volume

error. FSL-flirt (FMRIB’s Linear Image Registration Tool) is a fully automated

robust and accurate tool for linear (affine/rigid) intra- and inter-modal brain image

registration [66]. In this work, we have extended this tool to deal with non-linear im-

age registration in the context of dynamical articulated structures. Although there

exist different tools for non-linear or diffeomorphic image registration such as ANTs

(Advanced Normalization Tools), they did not necessarily preserve bone shapes af-
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ter the alignment process [1]. So we have preferred to fuse the flirt transformations

by the log euclidean polyrigid framework.





Chapter 2

In vivo Ankle Joint Kinematics

from Dynamic Magnetic

Resonance Imaging using a

Registration-based Framework

Contents

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.2 In vivo ankle joint biomechanics . . . . . . . . . . . . . . . . 34

2.3 Materials and methods . . . . . . . . . . . . . . . . . . . . . . 35

2.3.1 Subject recruitment . . . . . . . . . . . . . . . . . . . . . . . 35

2.3.2 Data Acquisition . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.3.3 Motion estimation . . . . . . . . . . . . . . . . . . . . . . . . 37

2.3.4 FSL-FMRIB’s Linear Image Registration Tool: FSL-FLIRT . 38

2.3.5 Computation of temporal dense deformation fields . . . . . . 40

2.3.6 Determination of ankle joint biomechanics . . . . . . . . . . . 41

2.3.7 Method evaluation . . . . . . . . . . . . . . . . . . . . . . . . 42

2.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.1 Introduction

In this chapter, we propose a method for non-invasively measuring three-dimensional

in vivo kinematics of the ankle joint from a dynamic MRI acquisition of a single

range-of-motion cycle. The proposed approach relies on an intensity-based reg-

istration method to estimate motion from multi-plane dynamic MRI data. Our

approach recovers not only the movement of the skeleton, but also the possibly

non-rigid temporal deformation of the joint. First, the rigid motion of each ankle

bone is estimated. Second, a four-dimensional (3D+time) high-resolution dynamic

MRI sequence is estimated through the use of the log-euclidean framework for the

0This chapter is the subject of the publications [88] and [90] .
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computation of temporal dense deformation fields. This approach has been then ap-

plied and evaluated on in vivo dynamic MRI data acquired for a pilot study on six

healthy pediatric cohort in order to establish in vivo normative joint biomechanics.

Results demonstrate the robustness of the proposed pipeline and very promising

high resolution visualization of the ankle joint.

2.2 In vivo ankle joint biomechanics

Musculoskeletal disorders and injuries of the ankle joint occur with considerable

frequency in the pediatric population (such as equinus, ankle fractures). However,

surgical intervention is rarely straightforward due to a lack of knowledge of joint

and muscle biomechanics.

To better understand the biomechanics of the pediatric ankle joint, it is crucial to

establish in vivo normative joint biomechanics [18] before focusing on pathomechan-

ics studies. This approach would likely contribute to a better long-term follow-up

for childhood disabilities such as cerebral palsy.

Conventional MRI techniques have been used for accurate diagnosis of the ankle and

foot disorders given the complexity of their anatomy [10]. Dynamic MRI was origi-

nally developed to study cardiovascular functions towards the end of the 1980s [110].

Since then, MRI acquisition and reconstruction techniques have improved by leaps

and bounds with current sequences such as Fast-PC MRI, ultrafast MRI, and Fast

Field Echo FFE. These techniques have been successfully employed to quantify the

knee joint kinematics [126, 20], and to analyze in vivo 3D musculoskeletal dynam-

ics [13, 130], non-invasively. Sequences such as cine-PC MRI [106, 131] or fast-PC

MRI [127, 116] can provide in vivo joint velocity field measurements. However,

these data require long acquisition times with a high number of repeated cycles.

Sequences such as ultrafast MRI [33] allow faster scan speed by exploiting spatio-

temporal redundancy and can acquire images during a single cycle. However, they

require slow motion of the joint making the movement quasi-static where no real

functionality can be assessed. Thus, both these types of sequences are not appro-

priate to acquire dynamic in vivo data for children especially with musculoskeletal

disorders. In this work, we use real-time FFE sequences [120] which are less sensitive

to motion artifacts and which reduce the scanning time to 18 seconds to acquire the

dorsi-plantarflexion cycle.

Furthermore, post-processing of acquired dynamic images remains a challenging

task due to low resolution and motion artifacts. In [126], the displacement of spe-

cific points on each bone were quantified by integrating the velocity data using a

three-dimensional Fourier tracking method [150]. However, motion tracking based

on single-slice cine-PC data has limitations and the out of plane accuracy of the

bone motion remained a challenge.

Clarke et al. [33] determined in vivo muscle moment arms during ankle movement

using a 3D mesh-based registration method. They estimated bone motions by regis-

tering the high-resolution joint geometry from MRI scans of the stationary joint to
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low-resolution geometries from ultrafast MRI scans of the slowly moving joint. How-

ever, in addition to the segmentation of the high-resolution static scan, it was needed

to manually segment each low-resolution time-frame which was time-consuming and

prone to segmentation bias.

The combined use of high-resolution static data and low resolution dynamic data

is thus limited in the literature. In this study, the spatial information of the high-

âresolution static MRI data and the temporal information of the dynamic data were

combined using a log-euclidean polyrigid framework (LEPF ). The purpose of this

study was twofold: 1) to estimate bone motion, allowing to derive the 3D kinematics

of the joint, 2) to compute temporal dense deformation fields of the joint, allowing to

reconstruct a high-resolution dynamic MRI sequence from a low-resolution dynamic

MRI sequence and one high-resolution MR image.

The use of the LEPF proposed by Arsigny et al. [7, 6, 5] has been investigated for

registration of structures such as the hip and knee joint in mouse CT images [104],

human hands from 2D hand radiographs [92], bones in lower-abdomen area [35],

and also intra-subject mandible 3D datasets [122]. In this work, we adapted this

framework to deal with 4-dimensional MRI data by proposing a fast and accurate

algorithm to compute the dense deformation fields in regular grids. In fact, we

propose to compute the exponential mapping of the LEPF using matrix eigende-

composition instead of the scaling and squaring method used in the literature [5,

35].

2.3 Materials and methods

2.3.1 Subject recruitment

Six typically developing children with a mean age of 12 years and with a mean

weight of 35.8 kg participated in this study which was approved by the regional

ethics committee. Children were selected with no contraindications to MRI and

with no history of lower limb musculo-skeletal injury or surgery in the past six

months. MRI data were acquired in a single visit after parents signed informed

consent forms.

2.3.2 Data Acquisition

MRI data have been acquired using a 3T MR scanner (Achieva dStream, Philips

Medical Systems, Best, Netherlands). An MRI-compatible orthotic fixture was used

to perform dynamic movements inside the scanner (Figure 2.1). Individual range-of-

motion was checked by the cilnician outside the MRI scanner and stops were placed

on wire guides for controlling the range-of-motion inside the scanner. Each dy-

namic scan lasted for 18 seconds and ankle joint was moved (actively or passively)

through the range-of-motion for each subject within 18 seconds with a rotation

speed of 4
◦

/s to 5
◦

/s (depending on the range). Both passive and active acquisi-

tions were standardized for all subjects as detailed below. Dynamic images were
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acquired in the oblique axis of the ankle motion. This was done by acquiring axial

dynamic scans first and then obliquely orienting the scanning plane for images to

be acquired in sagittal plane. For passive acquisition, after placing the ankle joint

in the fixture, each child was asked to relax the lower-limb musculature and then

the fixture was cyclically moved by a technician. The technician was given a set

of headphones through which he/she could hear a metronome. Fixture was then

moved in a consistent passive plantar-dorsiflexion by the technician at the beat

of the metronome and using the guide wires attached to the fixture. For active

movement, no technician was present and children were asked to perform voluntary

plantar-dorsiflexion between the extreme positions on the beat of the metronome.

Meaning, the active motion was completely voluntary with all the muscles dynami-

cally taking part in the production of the plantar-dorsiflexion movement. Rotation

speed was kept approximately the same as for passive motion. The scanning proto-

col included one high-resolution static 3D scan of the ankle joint with a resolution

of 0.26 × 0.26 × 0.8mm (T1-weighted gradient-echo, flip angle 10, matrix 576576,

FOV 150mm150mm, TR/TE 7.81/2.75 ms, mean acquisition duration: 424.32 s),

and three low-resolution dynamic sequences per child: two passive sequences for

repeatability measures and one active sequence, all acquired with knee angle kept

at full extension (approximately between 0◦ to 10◦). Each sequence is composed of

15 time frames with a voxel size of 0.57×0.57×8mm (flip angle 15◦, matrix 352352,

FOV 200mm200mm, TR/TE 20.61/1.8 ms, acquisition duration: 18.98 s).

Figure 2.1: Orthotic fixture specially designed to acquire MRI data on pediatric

ankle joint. The entire fixture is made out of MRI-compatible material. Guide

wires helped the technician to control and operate the passive plantar-dorsi flexion

movements of the ankle joint while rest of the limb is fixed using straps at foot,

tibia and mid thigh locations. Position of the ankle rest can be adjusted based

on the limb length. Knee angle can be adjusted from full extension to 45◦ flexion.

Cushioned ankle rest supports the foot to be imaged.
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2.3.3 Motion estimation

Temporal tracking of the ankle bones is a challenging task because of nonlinearly

articulated joint motion. Image registration is an iterative process maximizing a

similarity measure or minimizing a distance between two images (source and target)

in order to find the optimal geometric transformation that best align them. In this

work, we used a locally-linear intensity-based registration method to estimate bone

motion, and then we fused these local transformations to compute temporal dense

deformation fields. The bones of interest were manually segmented in the high-

resolution static image (Figure 2.2) and then automatically propagated throughout

the dynamic low-resolution sequence using intensity-based registration.

Each high-resolution static image of the dataset was manually segmented to extract

accurate region of interest of the three bones considered in this work (see Figure 2.2).

In order to take into account the partial volume effect due to anisotropy of the im-

age resolution, a Gaussian blur with a standard deviation set to 2 voxels has been

applied onto each bone mask.

The proposed approach for motion estimation consisted in two steps: 1) estimating

a mapping for each bone between static MRI data and dynamic sequences, 2) esti-

mating the relative bone motions using the dynamic sequence.

step1: The first step was to compute the transformations from the static image to

the dynamic images. More precisely, we estimated a rigid transformation for each

bone between images that underwent non-rigid deformations. In order to make this

step robust, the multi-resolution registration was carried out in two steps: First, the

static image was globally (and rigidly) registered to each low-resolution time frame

{Dk}k∈1...K . This provided a set of rigid transforms {TS→Dk
}k∈1...K .

Second, initialized with the set of global rigid transforms {TS→Dk
}k∈1...K , the tem-

poral position of each bone was refined thanks to a local rigid registration using bone

masks. In this step, the static image is registered to each dynamic image {Dk}k∈1...K
using input weights on each of the bones separately. This provided another set of

rigid transforms {T i
S→Dk

}i=1,...,3
k=1,...,K .

However, although the fact that the alignment process was divided into two regis-

trations, it is not always guaranteed to avoid misregistration issues caused by local

minima in the similarity measure which frequently occured for time frames rep-

resenting big deformations of the joint (for bone-dependent registrations in most

of cases). To maximize the robustness of the algorithm, an image Dk∗ from the

dynamic sequence whose the content is the closest to the static image, was auto-

matically detected. The underlying assumption is that the registration process is

much simpler to converge for transformations close to the identity. To this end, the

image of the sequence for which the overlap between regions of interest before and

after bone-dependent registration was maximum, was selected as the reference im-

age which served as a starting point for the motion estimation within the dynamic

sequence.

step2: The second step focused on the estimation of bone motion during the

dynamic sequence. To do this, we proposed to take advantage of the temporal
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(a) (b) (c)

Figure 2.2: Bones of interest: calcaneus (red), talus (green) and tibia (cyan). (a):

Mid-sagittal image from the high-resolution static scan; (b): Mid-coronal image

from the high-resolution static scan ; (c): Three dimensional rendering of segmented

bones.

regularity of the data by propagating the bone masks in the dynamic sequence.

For each bone, a rigid transform was estimated between successive images. i.e.

local and rigid registrations were conducted from the reference image Dk∗ towards

first and last images of the sequence. To go forward and backward in time, only

one interpolation was needed to propagate segmentation from Dk∗ to each time

frame Dk by composing a set of successive rigid transforms in order to avoid

the propagation of interpolation errors as much as possible. Temporal bone

rotations were optimized based on their quaternion representations [101], making

the segmentation propagation more accurate and robust.

Bone transformations are estimated using the linear registration tool FSL-FLIRT

(described in section 2.3.4). The overall algorithm for bone motion estimation is

described in Algorithm 1, using the following notations: S is the high-resolution

static image, {Dk }k=1,...,K is the set of low resolution dynamic images, {M i}i=1,...,N

is the set of mask of bones of interest, TA→B is the rigid transform from image A

to image B, T i
A→B is the rigid transform from image A to image B for the bone i,

Dice(A,B) is the DICE coefficient which measures the overlap between segmented

regions (Dice(A,B) = 2|A∩B|
|A|+|B|).

2.3.4 FSL-FMRIB’s Linear Image Registration Tool: FSL-FLIRT

FSL-FLIRT is a robust linear registration tool proposed by Jenkinson et al. [66] in

the context of brain MRI registration (for estimating affine and rigid transforma-

tions). This tool is characterized by its lower sensitivity to local minima problems

during the optimization step. Avoiding the local minima is addressed in two princi-

pal ways:

• A general apodization of the cost function is proposed to eliminate small dis-
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Algorithm 1 Bone motion estimation

Input: segmentation of bones of interest in S.

Mapping estimation from S to {Dk}:
• Estimate rigid transforms {TS→Dk

}k=1,...,K

• Estimate rigid transform {T i
S→Dk

}k=1,...,K using bone mask M i, initialized

with {TS→Dk
}k=1,...,K

• Select Dk⋆ in {Dk}k=1,...,K such that

k⋆ = argmax
k

(
∏N

i=1Dice(TS→Dk
(M i), T i

S→Dk
(M i)))

Motion estimation:

• Estimate forward successive rigid transforms

{T i
Dk→Dk+1

}k = k⋆,...,K−1; i=1,...,N .

• Estimate backward successive rigid transforms

{T i
Dk→Dk−1

}k = k⋆,...,2; i=1,...,N .

Figure 2.3: Proposed pipeline for ankle motion estimation: Bones of interest are

segmented in the high-resolution static image. This high-resolution MR image is

globally (and rigidly) registered to each MR image of the dynamic sequence (1.),

and the position of each bone is refined thanks to a local rigid registration using

bone segmentations (2.). This allows to identify the dynamic MR image which is

closest to the high resolution image and which will serve as a starting point for the

motion estimation within the dynamic sequence. Last, local and rigid registrations

are conducted from the reference towards the sequence first and last images.

continuities of the number of voxels in the overlapping FOV , which occurs

when changing the parameters of the transformation model to maximize the

similarity measure.
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• An hybrid global-local optimization method is proposed where the initial

global search phase is based on a prior knowledge of the problem itself (e.g.

size of the brain).

Local minima problems occur frequently in multi-resolution registration, which is

the case for bone registration between static and dynamic MRI. Consequently, our

choice of FSL-FLIRT for performing bone registrations is motivated by the fact that

this tool is very efficient especially in the case of multi-resolution rigid registration.

Moreover, FSL-FLIRT uses a customised global optimisation technique that op-

erates over multiple resolutions, which makes it suitable for registering bones from

T1-weighted sequences with good contrast between structures.

2.3.5 Computation of temporal dense deformation fields

A dense deformation map of the joint from the static to each time frame was obtained

by fusing rigid transforms corresponding to the bones of interest. For each bone, a

non-negative weighting function was computed based on a distance to the mask [34].

Each weighting function reflects the local influence of the rigid transform of each

bone. For each voxel x, the weighting functions were computed as follows:

wi
Dk

(x) =
1

1 + dist2(x,M i
Dk

)
(2.1)

where: dist(x,M i
Dk

) is the Euclidean distance between the point x and the mask

of the bone i propagated onto the dynamic image Dk.

Given a point x in the high-resolution static image, the target location of this

point in the dynamic image Dk can be computed with the following equation [7]:

TS→Dk
(x) = exp

(
N∑

i=1

w̃i
Dk

(x) log
(
T i
S→Dk

)

)

.x (2.2)

where TS→Dk
is the dense invertible deformation field from the static image S to

the dynamic image Dk, w̃
i
Dk

is a normalized weighting function (i.e.
∑N

i=1 w̃
i
Dk

(x) =

1, ∀x ∈ Dk).

2.3.5.1 Fast computation of dense deformation fields

In this section, we describe an efficient algorithm to compute deformation fields in

dense regular grid based on the algebraic properties of the Log-Euclidean polyrigid

framework. In [6, 5], the matrix exponential was recursively approximated with

a certain level of accuracy using the scaling and squaring method by taking into

account that the matrix exponential is much simpler to compute for matrices close to

zero via the Pade approximant. In this work, we computed the exponential mapping

of equation 2.2 exactly using eigen decomposition. Assuming the log-euclidean mean

of linear transformations L(x) =
∑N

i=1 w̃
i
Dk

(x) log
(

T i
S→Dk

)

to be diagonalizable (i.e.

L(x) can be expressed in the Lie Algebra se(3) as: L(x) = P.D.P−1(x), where the
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columns of P contain the eigenvectors {vk(x)}k∈{1...4} corresponding to the complex

eigenvalues of L(x), {λ1(x), λ2(x), λ3(x), λ4(x) = log(1) = 0}), we broadcasted the

exponentiation of transformation eigenvalues over all grid points using the following

Equation:

eL(x) = PeDP−1(x) = P







eλ1 0 0 0

0 eλ2 0 0

0 0 eλ3 0

0 0 0 1







P−1(x) (2.3)

2.3.6 Determination of ankle joint biomechanics

2.3.6.1 Definition of anatomically based coordinate systems

Anatomical coordinate systems {Ri}i=1,...,N were defined on each bone in the high-

resolution image S following the same protocols used in [129] as illustrated in Fig-

ure 2.4, and then mapped into the neutral position Dn using the estimated local-rigid

transforms {T i
S→Dn

}i=1,...,N . The neutral dorsi-plantarflexion position was defined

at an ankle angle of 90◦ as recommended by the ISB standards committee [143].

However, the above defined neutral position cannot be always achieved during dy-

namic scanning. Therefore, the image in which the foot position was closest to a

dorsi-plantarflexion position of zero degrees was selected as the neutral position.

(a) (b) (c)

Figure 2.4: Anatomical coordinate systems for one subject’s calcaneus (a), talus

(b), and tibia(c) as per ISB.

2.3.6.2 Quantification of ankle joint kinematics

In this study, the kinematics were defined through the 3D registration of the entire

bone volume. More precisely, rotations and translations of each bone i were deter-

mined from estimated rigid transforms {T i
Dk→Dk+1

}i=1,...,N . Ranges of motion were

estimated using low-resolution image data on multiple dynamic images (15 ankle
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positions). Kinematics of talocrural joint, subtalar joint, and calcaneal-tibial com-

plex were then derived from {T i
Dk→Dk+1

}i=1,...,N .

Given the image coordinate system RI = (O, ~x, ~y, ~z), we defined the transforma-

tion, MRI→Rj
, that mapped RI to an anatomical bone-based coordinate system

Rj = (Oj , ~xj , ~yj , ~zj). This transformation changed a representation from the Rj

system to the RI system.

Individual bone transformation matrices expressed in RI were then converted into

the transformation matrices expressed in the new anatomical coordinate systems Rj

as follows:

T i
j (k) = (MRI→Rj

× T i
Dk→Dk+1

×M−1
RI→Rj

)k=1,...,K−1; i=1,...,N ; j=1,...,N where:

• T i
j (k): 4 × 4 rigid transformation matrix of the ith bone relative to the jth

local bone coordinate system at time k.

• MRI→Rj
: the change of basis matrix.

Example:

change of basis matrix to convert the ith coordinate system Ri = (Oi, ~U i, ~V i, ~W i)

to the image coordinate system RI = (O, ~x, ~y, ~z):

j
IM =








U j
x V j

x W j
x Ox −Oj

x

U j
y V j

y W j
y Oy −Oj

y

U j
z V j

z W j
z Oz −Oj

z

0 0 0 1








(2.4)

For more details about the definition of ~U j , ~V j and ~W j from MRI scans, the

reader is referred to [129]. For each subject, image origin O and bone origins

{Oj}j=1,...,N were expressed in mm.

Note that image and bone origins were expressed in mm.

2.3.7 Method evaluation

To evaluate the proposed registration approach for bone motion estimation, the

propagated mask of each bone through the dynamic sequence was compared with

a manually delineated bone on each time frame. The accuracy of the estimations

of the successive rigid transforms was assessed by computing the DICE coefficient

Dice(Bi
k, B

i
mk

) and the RMS error RMSE(Bi
k, B

i
mk

) where Bi
k was the propagated

mask of the bone i on dynamic image Dk and Bi
mk

was a manually delineated mask

of the same bone on the dynamic image Dk. A DICE value close to one indicates

that the bone masks have been well propagated through the entire dynamic se-

quence. RMS error was computed as follows:

RMSE(Bi
k, B

i
mk

) =
√

1/nc.
∑nc

xc=1 dist
2(xc, ζBi

k
) where nc is the total number of

voxels of ground-truth contours (i.e. contours of Bi
mk

) and dist(xc, ζBi
k
) is the Eu-

clidean distance between xc and the contour of Bi
k.
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2.4 Results

Results on bone motion estimation were reported in Figures 2.9-2.10 for the six

subjects of the pilot study. Results for passive and active motion were separated.

In most of the cases, the DICE coefficient was greater than 0.8 and the RMSE was

smaller than 0.6 indicating accurate propagations of bone masks over the dynamic

sequence, for both passive and active motions.

From the set of rigid transforms of each bone over the dynamic sequence, it was

then possible to compute temporal dense deformation fields to synthesize a high-

resolution dynamic MRI sequence. Using the fast computation technique described

in Section 2.3.5.1, a dense deformation field was computed in 3min on an Intel R©

Xeon R© Processor E3-1271 v3 3.60 GHz on a 576×576×90 regular grid and in 15min

on a very high dimensional space (576×576×202 ≃ 67 million deformation vectors)

which required a high capacity RAM because computations were performed in the

complex domain for the purpose of enhancing the accuracy. Figure 2.11 illustrates,

for one subject (A6), such high-resolution reconstructed data.

Three-dimensional kinematics of the joint under both active and passive ankle

dorsi-plantarflexion movement using the current 3D dynamic MRI method were

presented in Figures 2.6 to 2.8.

Kinematics of all ankles (expect A5) were derived from the estimated temporal

rigid transforms of each bone of interest, converted into the matrices of the calcaneus

relative to the tibia, the talus relative to the tibia, and the calcaneus relative to the

talus. The talus mistracking for the ankle A5 was caused by the considerable missing

portion from the bone in intermediate time frames due to the inappropriate initial

placement of the flex coils.

The mean rotation about the Inferior-Superior and about the Posterior-Anterior

axes (averaged across time for all subjects) was close to 0 degrees for both active

and passive motion. The mean range of passive rotation about the Medial- Lateral

axis for talocrural an calcaneal-tibial joints was between −11 degrees of maximal

dorsiflexion and +32 degrees of maximum plantarflexion with full extended knee.

This demonstrates excellent correspondance with the mean range of passive rotation

reported in [3] and validated for 245 healthy children between 7 and 14 years old.

2.5 Discussion

In this study, we have presented a method to determine full 3D-kinematics of the

ankle joint from dynamic anatomical MRI data. An intensity-based registration

pipeline has been proposed to estimate bone motion through the dynamic sequence.

The robustness of this approach for both passive and active motion has been

evaluated on in vivo data acquired for a pilot control cohort study. Although based

on a successive estimation of transformations, the proposed approach demonstrates

advantages in efficiency, reliability and robustness for all subjects.

The proposed algorithm is robust enough to image quality as well as motion
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Figure 2.5: Tracking of the tibia for one subject using Algorithm 1, only one out of

two slices has been segmented in the static image (i.e., spatial resolution reduction).

artefacts in a way that it can determine kinematics even for unconstrained motion.

This was evaluated by changing the delta-time ∆k separating each couple of

source/target images during the successive rigid registrations and the algorithm

is still robust even for ∆k = 5. Furthermore, the proposed motion estimation

algorithm works well even if only one out of two slices is segmented in the

high-resolution static image as shown in Figure 2.5.

It can be noticed that the proposed approach can be used for both passive and

active motion of the ankle joint. Normative passive kinematics show that the

subjects maintained a consistent movement trajectory. This is an expected conse-

quence knowing that the joint was moved in a consistent plantar-dorsiflexion cycle.

Three-dimensional kinematics of the joint under passive ankle movement using

the proposed method (Figures 2.6 to 2.8) were similar to ankle joint kinematics

reported in other studies using velocity data [129]. Normative active kinematics

show that the subjects were able to perform voluntary plantar-dorsiflexion between

the extreme positions with the same temporal regularity as for passive motion. The
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comparison between passive and active kinematics shows closest temporal averages

despite some temporal fluctuation of the standard deviation across subjects.

Consequently, it appears that the range of motion of ankle in healthy children

is extremely variable in terms of rotation and translation. Ankle dorsiflexion is

restricted by a contracted gastrocnemius muscle with the knee extended [60] (−11

degrees of maximal dorsiflexion). The proposed workflow is a brute force registra-

tion approach, with the static image rigidly registered to all dynamic (globally then

locally refined). And the best registration selected (based on minimal local bone

change). This then provides bone labels for all the dynamic scans. Then given

the segmentations, the spatial-temporal model is built based on the log-euclidean

fusion of rigid transformations.

Although the fact that both our method and other motion methods tend toward

the same goal which is bone motion tracking, there are some technical differences

making it difficult to perform an objective comparison based on a common error

parameter.

In [33], the authors were more interested in the Achilles tendon moment arms and

the accuracy and precision of bone motion tracking were not reported. Clarke et

al. [33] have discussed some limitations in their methods which can be particularly

useful in adults. They have explicitly mentioned that their protocols require some

modifications to be useful in the smaller joints of children. To satisfy the mesh

density requirements for using the ICP algorithm, they have recommended the

reduction of the slice gap for the dynamic scanning protocol while increasing the

number of slices per time frame so that the slices span the joint width. However,

assuming that they have used ultrafast MRI sequences (with 8 sagittal slices/time

frame compared to 6 slices in our work, and taking around 2 min to acquire 10 to

20 time frames compared to only 18 sec to acquire 15 time frames in our work),

increasing the number of slices will increase the scanning time of dynamic data

to more than 2 min which will be uncomfortable especially for the pathological

subjects. The authors have also notified that the rotation speed for their study

was slow (mean 1/s compared to 4.2/s in our work) in order to reduce the effects

of motion artifacts, so the motion itself is reduced to almost static or quasi-static

nature where no real functionality can be assessed. Our choice for FFE sequences

for dynamic data acquisition was motivated by the fact that these techniques are

less sensitive to motion artifacts [134] and more than 5 times faster than ultrafast

MRI.

In the work of Sheehan et al. [129], the displacements of three to five points on

each bone were calculated through Fourier integration and then converted into

three-dimensional orientation angles. As part of the tracking process, they identified

a series of vertices, defining regions on each bone of interest in the first time frame

(i.e. three to five vertices per bone). The distance between these vertices in the

first time frame was considered the absolute distance under the assumption that it

should remain fixed throughout the movement because bones are rigid. Thus, for

each bone, the difference in distance between vertices in each time frame relative

to the absolute distance was defined as the tracking error. A potential limitation
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of this study [129] was the out of plane accuracy of the bone motion because the

accuracy of cine-PC MRI is independent of the shape of the bone being tracked [13].

Another clinical limitation is that subjects with musculoskeletal disease who cannot

complete a large number of repeated motions cannot be studied with cine-PC MRI

techniques. Although the vertices were well-defined from 3D high-resolution adult

data in previous work of Sheehan et al. [129], it was hard to reproduce their exact

locations from developing children data for comparison purposes because of the

differences in bone size and topology between children and adults. From another

point of view, it was not sufficient to consider the distance between only some

vertices as system bias and thus we have considered all the bone segmentations

(i.e. all the volumetric information) for method evaluation.

The proposed method remains robust as long as the field-of-view (FOV) is well

adjusted (i.e. when the FOV covers either the full or nearly-full anatomy of the

ankle bones throughout the entire joint trajectory).

We have also extended the log-euclidean framework to estimate temporal dense

deformation fields from multiple rigid transforms. The polyrigid approach provides

a way to combine high resolution spatial information with temporal dynamics of

joints. The output of this process is a series of high-resolution anatomical images

portraying the different phases of the movement cycle. In this context, we proposed

to compute the exponential mapping of the LEPF in an efficient and elegant

way using matrix diagonalization-based techniques rather than using techniques

involving approximation theory. The preservations of the bone shapes after the

polyrigid fusion were checked by computing the Jacobian maps associated to the

estimated deformation fields (as shown in figure 3.5).

To conclude, we strongly believe that our work is the first effort to track ankle

joint motion and deformation from volumetric image data using intensity-based non-

rigid image registration rather than using explicit mechanistic models. It therefore

achieves its goals without having to perform time-consuming manual segmentations.

In immediate future, the proposed approach will be applied to compare the ankle

joint dynamics of children with spastic equinus with age-matched healthy children.

Since spastic equinus was typically defined as the inability to dorsiflex the foot

above plantigrade, with the hindfoot in neutral position and the knee in extended

position [72], the foot was constrained to a specific path using the fixture. However,

this set-up is problem-specific and can be changed or removed while evaluating the

pathomechanics of other joint(s). We will also explore this method to extract fine

biomechanical parameters of tendon, and cartilage contact mechanics (e.g. temporal

joint space width) of the tibio-talar joint which is the primary joint responsible for

plantarflexion and dorsiflexion of the ankle. Furthermore, these techniques can be

applied to other joints and related musculoskeletal disorders. This suggests that

anatomical dynamic MRI and dedicated image processing techniques can open a

new way to study in vivo human joints.
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Figure 2.6: 3D normative kinematics of the calcaneal-tibial complex using the pro-

posed image processing method. The kinematics of the calcaneus are represented

relative to the tibial coordinate system defined in neutral position. Average rotation

and translation were computed for both passive and active motion for the studied

ankles. Standard deviation above and below the average line are shown (dotted

shaded area for passive motion and green shaded area for active motion).
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Figure 2.7: 3D normative kinematics of the talocrural (talar-tibial) joint using the

proposed image processing method. The kinematics of the talus are represented

relative to the tibial coordinate system in neutral position. Average rotation and

translation were computed for both passive and active motion for the studied ankles.

Standard deviation above and below the average line are shown (dotted shaded area

for passive motion and green shaded area for active motion).
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Figure 2.8: 3D normative kinematics of the subtalar joint using the proposed image

processing method. The kinematics of the calcaneus are represented relative to

the talar coordinate system in neutral position. Average rotation and translation

were computed for both passive and active motion for the studied ankles. Standard

deviation above and below the average line are shown (dotted shaded area for passive

motion and green shaded area for active motion).
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Figure 2.9: 3D DICE coefficients between manual and automatic bone segmentation

maps for the six subjects of the pilot study taking account of the whole set of bone

trajectories. Results for passive (left column) and active motion (right column)

are separated. A dice value of 1 indicates perfect geometric alignment between

automatic and ground truth segmentations.
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Figure 2.10: Temporal evolution of the root-mean-square error (RMSE in voxels)

between manual and automatic bone segmentations for studied ankles. Errors are

represented using error bars. The average is shown with a dotted line with one

standard deviation above and below this line. Results for passive (left column) and

active motion (right column) are separated.
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Figure 2.11: High-resolution temporal reconstruction of the ankle joint for one sub-

ject (subject 6: passive motion). First row: original dynamic images, second row:

corresponding high-resolution reconstructed images, downsampled to resemble to

the original low-resolution images in order to validate the reconstruction accuracy.

Each column corresponds to one time frame. Contours of the first time frame show

the reconstruction accuracy (column 1) and the joint motion (columns 2 to 4).
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Figure 2.12: Jacobian map of the joint deformation field that maps D1 to D2 for

subject 4. The Jacobian determinant J(x) at a voxel x measures how the voxel

volume changes after the diffeomorphic registration. It indicates a volume increase

if > 1, and a volume decrease if < 1. The Jacobian determinant is equal to 1 inside

bone segmentations (indicating no voxel volume changes) as bones only perform

linear rigid transformations (rotations and translations).
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3.1 Introduction

Dynamic MRI has made it possible to non-invasively capture the moving human

joints in vivo. Real-time Fast Field Echo (FFE) sequences have the potential to re-

duce the effect of motion artifacts by acquiring the image data within a few millisec-

onds [120]. However, the short acquisition times affect the temporal resolution of the

acquired sequences (i.e. the scanning duration is short relative to the joint motion in

order to optimally balance the trade-off between resolution, contrast and acquisition

times). In fact, the existing real-time algorithms for spatio-temporal resolution en-

hancement of dynamic MRI sequences use three k -space sampling schemes [112, 43,

111]. However, this sampling scheme remains limited and suffers from low temporal

0This chapter is the subject of the publication [89].
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resolution [81]. In this chapter, we propose a post-processing technique to recon-

struct the missing frames of the sequence given the reduced amount of acquired

data, which leads to recover the entire joint trajectory outside the MR scanner. To

do this, we generalize the Log-Euclidean polyrigid registration framework to deal

with dynamic three-dimensional articulated structures by adding the time as fourth

dimension: we first estimate the rigid motion of each bone from the acquired data

using linear intensity-based registration. Then, we fuse these local transformations

to compute the non-linear joint deformations between successive images using a

spatio-temporal log-euclidean polyrigid framework. The idea is to reconstruct the

missing time frames by interpolating the realistic joint deformation fields in the do-

main of matrix logarithms assuming the motion to be consistent over a short period

of time. The algorithm has been applied and validated using dynamic data from

five children performing passive ankle dorsi-plantar flexion.

3.2 State of the art

Dynamic MRI techniques have been successfully employed to quantify in vivo mus-

culoskeletal biomechanics such as the ankle kinematics during dorsi-plantar flexion.

Sequences such as Cine-PC MRI or Fast-PC MRI [13] can provide velocity changes

in the three directions of the space. However, these sequences require repeatable

motions of the joint for up to two minutes (e.g. motion rate = 30 cycles/minute for

one dorsi plantarflexion cycle) and the dynamic data are built using these repeat-

able motions. Hence, subjects with musculoskeletal disease who cannot complete a

large number of repeated motions cannot be studied with cine-PC MRI techniques.

Furthermore, motion tracking based on cine-PC data using a Fourier tracking algo-

rithm [13] has limitations and the out of plane accuracy of the bone motion remained

a challenge. Ultrafast Contrast-Enhanced MRI is another dynamic imaging tech-

nique which allows faster scanning speed by exploiting spatio-temporal redundancy

and can acquire images during a single dorsi-plantar flexion cycle within 50 sec-

onds [33]. However, these sequences require slow motion of the joint (mean rotation

speed of 1◦/s) as they are sensitive to motion artifacts so the motion itself is reduced

to almost static or quasi-static nature where no real functionality can be assessed.

Real-time FFE sequences [120] are less sensitive to motion artifacts and they can

reduce the scanning time to only 18 seconds to acquire a single cycle of dorsi-plantar

flexion. However, the scanning duration is short relative to the joint motion cycle,

thus making it difficult to acquire the entire or nearly the entire joint trajectory

inside the MR scanner.

To resume, balancing the trade-off between acquisition speed and temporal res-

olution of dynamic sequences is still a challenging task.

Most existing real-time algorithms for accelerating the acquisition of dynamic MRI

sequences have attempted to exploit the temporal correlations of the sequence [139]

in order to reduce the effect of motion artifacts, leading to a challenging ill-posed

inverse problem. However, it is hard to fastly acquire the entire or nearly the entire
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joint trajectory inside the MR scanner because of the encountered hardware limita-

tions (e.g. problems related to the surface coils) as well as the difficulty to satisfy

the Nyquist sampling rate in the frequency space which introduces aliasing artifacts

in the image space. This motivates researchers to tackle this inverse problem us-

ing deep learning methods by proposing a convolutional recurrent neural network

architecture which exploits the temporal redundancy of sequences and the iterative

nature of traditional reconstruction algorithms [114].

In this work, we propose to use FFE sequences, allowing the assessment of real func-

tionalities (of muscles and tendon for example) with more comfortable and rapid

acquisitions. The idea is to fastly acquire a reduced amount of data and then to

estimate the missing amount with the help of image post-processing techniques. To

this end, we propose to recover the missing data by continuously interpolating the

temporal deformation field of the joint which can be estimated using diffeomorphic

registrations from the acquired data assuming the motion to be continuous and

consistent during scanning. In this context, we have extended the Log-euclidean

polyrigid framework proposed by Arsigny et al. [7] to deal with spatio-temporal

joint deformations with a small number of parameters (i.e. a small number of affine

or rigid components) by adding the time dimension into the existing 3D stationary

framework. In another work, Arsigny et al [6] presented a Log-Euclidean interpola-

tion of tensors which are 3 × 3 symmetric-positive-definite matrices. In this work,

we propose to interpolate 4× 4 rigid transformation matrices (i.e. in the Lie group

SE(3)). In the literature [5, 35], the exponential mapping for solving the polyrigid

Ordinary Differential Equation (ODE) is recursively computed using the scaling and

squaring method involving approximation theory for which the accuracy always re-

mains debatable. In the work of Moler et al. [100], the authors have synthesized

a study to compare the different existing techniques for calculating the matrix ex-

ponential (like methods involving approximation theory, differential equations, or

matrix eigenvalues) and they ended up with concluding that one can not decide

which of the methods is the best ever and that this depends on the application.

Hence, we propose to use matrix eigendecomposition for exactly computing the ex-

ponential mapping since computations are performed in non-dense regular grids due

to the low-resolution of dynamic data, so that all the matrices can be stored in the

main computer memory without the need of high-capacity RAM. The idea behind

is to balance the trade-off between Furthermore, the scaling and squaring algorithm

is prone to roundoff errors.

3.3 Motion artifacts in dynamic MRI sequences

The acquisition protocols and the data used in this work are exactly the same as

the dynamic MRI sequences described in chapter 2.

As a feasibility study, two kind of acquisitions have been tested in order to select

the best one for data post-processing: Sequences called "sInteractive" can enhance

the image contrast but they are very sensitive to motion artifacts (Figure 3.1). On
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the other hand, sequences called "Movie clear" are more prone to noise but are less

sensitive to motion artifacts (Figure 3.2). Which motivates our use of Movie clear

sequences during this thesis.

The global aim of this work is to provide high-temporal resolution dynamic MRI

data while keeping the acquisition protocol described in chapter 2 intact. This allows

the subjects with muskuloskeletal disorders, who cannot repeat comfortably a high

number of repeated motion cycles to be studied using the same protocol.

Figure 3.1: sInteractive sequences: these sequences are very sensitive to motion

artifacts which may lead to misregistration when using intensity-based algorithms.

3.4 Methods

This chapter presents a method to provide a dynamic time sequence for MRI imag-

ing of joints. The methodology is not specific to MRI necessarily, it involves in-

terpolation of time frames in between measured or captured "static" frames using

poly-rigid registration. Individual bones are treated rigidly and individually (Sec-

tions 3.4.1 and 3.4.2), and then a temporal deformation field is estimated by fusing

these local rigid transformations (Section 3.4.3).
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Figure 3.2: Movie clear sequences: these sequences are less sensitive to motion

artifacts and thus are more suitable for intensity-based methods despite the presence

of noise.

3.4.1 Skeleton-tracking algorithm

In this section, we present a robust skeleton-tracking algorithm employing intensity-

based registration. For a given joint trajectory, each data-sequence was first splitted

to K three-dimensional time frames (of 352 x 352 x 6 voxels, each one). Bones of

interest (calcaneus, talus, and tibia) are manually segmented in the first or last

time-frame and then automatically tracked throughout the sequence, forward or

backward, using rigid registration. Our tracking method within the dynamic se-

quence is composed of two distinct steps:

1) Estimating bone rigid transforms by locally maximizing the correlation ratio

between neighbouring time frames using voxel-wise weighting based on the segmen-

tation masks (i.e. frame-to-frame registration).

2) Propagating the bone segmentations forward or backward by applying the esti-

mated rigid transforms using nearest neighbor interpolation (i.e. reference-to-frame

propagation).

The use of nearest neighbor interpolation allows for preservation of bone shapes

contrary to other interpolation methods like trilinear which induces smoothing of

the bone mask which affects sharp peaks particularly.

To go forward in time for example, only one image interpolation is needed to
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propagate segmentations from the first time frame into each other time frame in

the sequence. Since the composition of mappings in the Lie group SE(3) corre-

sponds to the multiplication of elementary transformations, the direct path be-

tween images is computed by composing a set of estimated successive rigid trans-

forms which gives a temporal manifold in the Lie Group SE(3) × . . . × SE(3) in

order to avoid the propagation of interpolation errors as much as possible (e.g.

T i
D1→D4

= T i
D3→D4

× T i
D2→D3

× T i
D1→D2

). The same for backward propagation for

which the last time frame becomes the starting point for the tracking process.

To improve the robustness of the algorithm, rotations are estimated based on their

quaternion representations (i.e. using the unit quaternion representation of SE(3)).

Unit quaternions or versors are the most widely used in computer graphics and

robotics, more precisely in tracking and motion interpolation algorithms regarding

their compact representation of rotation angles in the space [101, 50]. Meaning rota-

tions are represented by a rotation and an axis describing the orientation. Transfor-

mations are first splitted into two blocks: a rotation block and a translation vector.

And these blocks are then mixed into a 4 × 4 bloc that represents transformation

matrix. In this work, we have used versors for representing bone rotations in order

to tackle the problem of out-of-plane rotations that may occur during successive

local registrations, even if the motion (i.e. ankle dorsi-plantar flexion) has been

performed in sagittal plane because of the low-resolution of dynamic sequences.

Algorithm 2 describes the segmentation propagation for N bones of interest

throughout the acquired K time frames (case of forward tracking).

Algorithm 2 Bone motion estimation: forward tracking

Input: segmentation of each bone of interest i in the first time frame D1.

Motion estimation:

a: Estimate forward successive rigid transforms from Dk to Dk+1:

{T i
Dk→Dk+1

}k = 1,...,K−1; i = 1,...,N .

b: Propagate bone segmentations from Dk to Dk+1 using

{T i
Dk→Dk+1

}k = 1,...,K−1; i = 1,...,N .

Note that the bones of interest can be backward tracked by first segment-

ing DK and then estimating successive rigid transforms from Dk to Dk−1:

{T i
Dk→Dk−1

}k = K,...,2; i = 1,...,N . The results on bone motion tracking are presented

for one subject in Figure 3.3.

3.4.2 Smooth interpolation on SE(3): interpolation methods based

on the exponential map

Smooth linear interpolation of rigid body displacements is a classical problem in

robotics and computer graphics [146, 148, 147]. These methods have been employed

for simulating human motion in computer graphics, more precisely for establishing
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Figure 3.3: Joint forward-tracking. From up to down, from left to right: D1, D4, D6,

D9, D12, and D14. Individual bone segmentation have been propagated separately.

a mathematical model to predict multi-joint arm movements [46]. In this section,

we describe two principal interpolation methods which are based on the exponential

map from the Lie Algebra se(3) to the associated Lie group SE(3), involving a left

invariant Riemannian metric on SE(3). Then we propose to fastly compute this map

via matrix eigendcomposition, allowing for computing the matrix exponential and

for interpolating the rigid body motion in function of eigenvalues simultaneously.

3.4.2.1 Method 1:

In the work of Zefran et al. [147], the interpolation problem is formulated as follows:

Given a sequence {Tδk}nδk=1 of elements of the special Euclidean group SE(3),

where T1 encodes the initial position and orientation of a rigid body with respect to a

fixed referential (F ), while Tn encodes its final position and orientation with respect

to F : find a smooth curve γ(δk) such that γ(δk) = Tδk is the matrix which encodes

the position and orientation of the rigid body at time δk.

For a given homogeneous transformation matrix T ∈ SE(3) describing a rigid

body displacement, we can rewrite T in a unique way as follows:

T = exp(a1L1 + a2L2 + a3L3 + a4L4 + a5L5 + a6L6) (3.1)

where Li composes the basis of the associated Lie Algebra se(3), this standard basis

for se(3) is well defined in Equation (3.2). This exponential map is a diffeomorphism
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for transformations close to the identity, while A = {a1, . . . , a6} defines the canonical

coordinates for SE(3) so that the vector A represents a twist (for more details, we

refer the reader to the work of Zefran et al. [146]). Finally, the interpolation is

performed on a matrix representation of the vector A in the Euclidean space.

L1 =







0 0 0 0

0 0−1 0

0 1 0 0

0 0 0 0






;L2 =







0 0 1 0

0 0 0 0

−1 0 0 0

0 0 0 0






;L3 =







0−1 0 0

1 0 0 0

0 0 0 0

0 0 0 0







L4 =







0 0 0 1

0 0 0 0

0 0 0 0

0 0 0 0






;L5 =







0 0 0 0

0 0 0 1

0 0 0 0

0 0 0 0






;L6 =







0 0 0 0

0 0 0 0

0 0 0 1

0 0 0 0







(3.2)

3.4.2.2 Method 2:

Recently [140], the authors presented a similar technique for interpolating on the

Lie Group SE(3) in order to obtain a continuous trajectory from a discrete set

of rigid-body poses. This technique also consists of mapping the elementary rigid

transformations of a given rigid-body trajectory from the Lie Group SE(3) to the

corresponding tangent plane se(3). This allowed for performing temporal modeling

in this Lie Algebra according to the following continuous curve:

γk(δk) = Tk.exp(δk.log(T
−1
k Tk+1)) for δk ∈ [0, 1] (3.3)

where: T1, T2, . . . TK ∈ SE(3) are the elementary transformations composing the

entire trajectory; k = 1, 2, . . . ,K − 1; and Tk is the rigid-body transformation

between the two time instances k and k + 1. The main limitation of this method

is that it imposes additional matrix multiplications, and thus it is not suitable

for a voxel-wise computation scheme for which the primary challenges are the

computational time and the memory requirements.

3.4.2.3 Method 3:

In the work of Belta and Kumar [14], the authors presented another technique for

smooth interpolation of rigid body motion which is also based on the exponential

map.

Let T ∈ SE(3) be the rigid transformation between two time instances k and k+1, so

that log(T ) = L is an element of the Lie algebra se(3). Let γL : R 7→ SE(3) denotes

the integral curve of the left invariant vector field L, with the initial condition

γL(0) = id, then the trajectory of the rigid body can be described by the following

ODE:

γ̇L(δk) = γL(δk).L (3.4)
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The solution of this ODE maps the interpolation from the Lie Algebra se(3) into

the corresponding Lie Group SE(3):

exp(δk.L) = γL(δk) for δk ∈ [0, 1] (3.5)

The Equation (3.5) shows that the exponential map takes the line δk.L ∈ se(3),

into a one parameter subgroup of SE(3).

Based on Equations (3.3) and (3.5), it is clear that the first method exhibits

greater complexity than the second one as it imposes additional matrix multiplica-

tions.

This second method for generating smooth rigid body trajectories is simple to

implement as the matrix exponential can be easily computed using eigendecompo-

sition. Furthermore, it is possible to control the motion amount by controlling the

rate of the eigenvalues of δk.L. Another advantage of this second method is that

it can be easily extended from a simple log-euclidean rigid interpolation to a more

general log-euclidean polyrigid interpolation by fusing multiple rigid transformations

according to weight functions, and thereby allows for interpolating the non-linear

joint deformations.

3.4.2.4 Bone motion interpolation from 3D+t MRI data

In this work, we present an eigenvalue-based method for interpolation on SE(3).

And then the map from the Lie Group to the Lie Algebra (and vice versa) is

performed thanks to the use of the Log Euclidean polyrigid framework for fusing

multiple rigid transforms (section 3.4.3).

Let Ti,k ∈ SE(3) be the rigid transform from time frame Dk to time frame

Dk+1 for the bone i. Assuming that this matrix is diagonalizable (which is the case

for most transformations in an orthonormal basis, such as the image coordinate

system), then there exist an orthogonal matrix P and a diagonal matrix D such

that Ti,k = PDP−1. The non-zero elements of D are the eigenvalues of Ti,k (λ1,

λ2, λ3, and λ4 = 1), while the columns of P are the corresponding eigenvectors.

Based on this matrix eigendecomposition, one can define the bone trajectory with

respect to Equation (3.5) as follows:

Ti,k(δk) = exp(δk.log(Ti,k)) = P.diag(eδk.log(λ1), eδk.log(λ2), eδk.log(λ3), 1).P−1 (3.6)

In our context, the amount of local rotation of each bone is strictly below π

radians, so that the matrix logarithm of Ti,k exists and always corresponds to the

principal matrix logarithm. This suggests that the property exp(δk.log(T )) = T δk,

is verified for all bone transformations (i.e., during the motion cycle) and for δk ∈
[0, 1].

Thanks to this property, one can reformulate the interpolation problem as follows:

γik(δk) = Ti,k(δk) = Tδk
i,k = PDδkP−1 = P.diag(λδk

1 , λδk
2 , λδk

3 , 1).P−1 (3.7)
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Changing δk continuously from 0 to 1 will infinitesimally change the matrix Tδk
i,k

from the identity to the matrix Ti,k. This allows for interpolating between two bone

poses from a realistic transformation matrix, expressed in homogeneous coordinates

(i.e. in the special Euclidean group SE(3)). This technique, if repeated for each

bone transformation between each two successive time frames, have the potential to

enhance the temporal resolution of the dynamic MRI sequence by a factor superior

or equal to 1
δk

(by inserting ( 1
δk

− 1) time frames in between Dk and Dk+1 assuming
1
δk

to be an integer). For example, in the case where δk = 0.5 (see Figure 3.9),

the proposed pipeline will enhance the sequence temporal resolution by a factor of 2.

Figure 3.4 illustrates the application of this method to a synthetic data: in this

experience, we have first synthetized an ellipsoid on a regular grid of 128×128×128

with a voxel spacing of 0.28 × 0.28 × 0.5mm according to the following implicit

equation:

E(x, y, z) =

{

1, if (x− 64)2 + (y − 64)2 + (z − 64)2 ≤ 52

0, otherwise.
(3.8)

Note that Equation (3.8) corresponds to the equation of a sphere centered at

(64, 64, 64) and with a radius R = 5 in the case of isotropic resolution (e.g., voxel

size of k × k × kmm).

Second, we have simulated a rigid transformation matrix T with the following

parameters: rotations of (ri, rj ,rk) = (0, 0, 30◦);; and translations of (ti, tj ,tk) =

(0, 0, 0mm), where RI = (O,~i,~j,~k) represents the image coordinate system.

Finally, a smooth trajectory of the ellipsoid is recovered by continuously inter-

polating the matrix T according to the equation (3.7). Idem for the interpolation of

affine transformations, where the parameters of the simulated affine transformation,

applied to the ellipsoid, are detailed in Figure 3.12.

3.4.3 Spatio-temporal Log-euclidean polyrigid framework:

The LEPF provides an efficient way to synthesize joint deformation fields with dif-

feomorphic properties like invertibility, differentiability, and smoothness, indepen-

dently of the way local bone rigid transformations are first estimated. Since the

LEPF relies on the computationally heavy solution of an ODE, the efficient compu-

tation of the exponential map over a regular grid requires the implementation of a

fast algorithm to deal with the high-number of point trajectories to be estimated.

In this context Arsigny et al. have proposed to use a fast algorithm to parame-

terize the polyrigid transformations based on the scaling and squaring method [5].

However, this method have a high memory requirement to store all matrices in the

main computer memory during the repeated squarings. In fact, this technique is

essentially based on the relation eT = (e
T
2s )2

s
. The first step (scaling step) consists

of evaluating e
T
2s while the second step (squaring step) consists of squaring the ap-

proximant s times to finally obtain an estimation of eT . For example, for a scaling
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Figure 3.4: Interpolation of smooth motions on SE(3): Consistent interpolation

between two rigid-body poses (blue and red ellipsoides, respectively), transformation

parameters are: ti = 0mm, tj = 0mm, and tk = 0mm; ri = 0◦, rj = 0◦, and

rk = 30◦. 3 secondary rigid transformations Tα were interpolated between the

identity and T , giving a smooth trajectory of the rigid body between two poses in

function of α (α = {n/4}n∈{1...3} in Eq 3.7).

factor of 5, 32 matrix multiplications are needed to compute the exponential map

at each voxel:

T (., 1) = T (.,
1

32
)32 = T (.,

1

32
) ◦ . . . ◦ T (., 1

32
)

︸ ︷︷ ︸

32 times.

and 16 matrix multiplications to compute the transformation half way between

source and target positions:

T (., 0.5) = T (.,
1

32
)16 = T (.,

1

32
) ◦ . . . ◦ T (., 1

32
)

︸ ︷︷ ︸

16 times.

Based on the fact that the bone transformations are diagonalizable as demonstrated
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in Section 1.5.4, it is then possible to use the diagonalization method to parameterize

the continuous bone trajectories by varying the time-scale factor from 0 to 1. Given a

point x in the kth time frame Dk, the target location of this point in the interpolated

time frame Dk+δk (located between Dk and Dk+1) can be computed thanks to the

property log(Tα) = α.log(T ) with the following equation:

ΦDk→Dk+δk
(x, δk) = exp

(

δk

N∑

i=1

w̃i
Dk

(x) log(Ti,k)

)

.x (3.9)

where Φ(x, 0) = x; δk ∈ [0, 1] is the time-term added to the stationary polyrigid

fusion formula; Ti,k is an element of the Lie group SE(3); N is the total number

of rigid components; ΦDk→Dk+δk
is the infinitesimal deformation field from Dk to

the time frame to be interpolated Dk+δk (the flow Φ(., δk) of an autonomous ODE

is a one-parameter subgroup of the group of diffeomorphisms); w̃i
Dk

is a normalized

weight function (i.e.,
∑N

i=1 w̃
i
Dk

(x) = 1, ∀x ∈ Dk) which defines the local influence

of the ith bone displacement on the voxel x deformation (section 3.4.4).

In the literature, the exponential mapping of Eq (??) is approximated using the

scaling and squaring method [61] which is prone to rounding errors [100]. In this

work, this exponential mapping is computed exactly using eigendecomposition or

spectral decomposition. Similarly to the matrix power defined in Eq(3.7), the matrix

exponential is obtained by exponentiating a δk amount of the associated eigenvalues

(i.e. non-zero elements of the diagonal matrix D, as per Eq (3.10)). Thus, we just

needed to cast the exponentiation of the complex eigenvalues of the transformation

matrices in regular grids (Figure 3.5) leading to smooth dynamic deformation fields

that preserve the topology of the bones.

eδk.L(x) = Peδk.DP−1 = P







eδk.λ1 0 0 0

0 eδk.λ2 0 0

0 0 eδk.λ3 0

0 0 0 1







P−1(x) (3.10)

where L(x) =
∑N

i=1 w̃
i
Dk

(x) log(Ti,k); {λk}k∈{1...4} are the eigenvalues of L(x) and

the columns of P are the corresponding eigenvectors.

Since L(x) is a real transformation matrix in the domain of matrix logarithms,

complex eigenvalues occur in complex-conjugate pairs: The real part of λi gives

the contraction rate (if Re[λi(x)] < 0) or the expansion rate (if Re[λi(x)] > 0) of

the voxel x in the ith-direction; while the imaginary part of each eigenvalue is the

frequency of voxel rotation. The Eigen decomposition is performed in python using

the LAPACK (Linear Algebra PACKage) routines [4], and this takes approximately

3 seconds to compute the exponential map.

Finally, the floating image intensities are mapped to new coordinates in the

target image space by spline interpolation.

Technically, This method can be considered as an application of the linear Koopman

operator K that capture the evolution of a nonlinear dynamical system (the joint).
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eL(x,y,n): (4 ∗ 4 matrices)

eL(x0,y0,n+1)

slice n

slice n+ 1

Figure 3.5: Repeated evaluation of matrix exponential over a three dimensional grid.

This figure shows that the trajectories of all the points of the grid are computed

simultaneously.

Where K =
(

δk
∑N

i=1 w̃
i
Dk

(x) log(Ti,k)
)

; the eigenvectors of K are equivalent to the

eigenfunctions of the Koopman operator; and the eigenvalues of K give information

about the spatial dynamics of the joint deformation field. [83].

3.4.4 Redefinition of weighting functions

In the context of articulated structures registration, the choice of weight functions

is very important as the main goal is to accurately estimate non-linear deformations

of the joint without affecting bone shapes. It should be noticed that the Gaussian

weight functions are more suitable for polyaffine fusion [122] than the polyrigid fu-

sion, as they do not guarantee the rigidity and accuracy of the transformations in the

bonny skeleton (by affecting sharp peaks particularly while smoothing). In [35, 34],

Commowick et al. proposed an inverse-distance weighting function that preserves

bone shapes after registration (Eq (3.11)). However, such a weighting function yields

inaccurate deformation outside the segmented bones.

wi
Dk

(x) =
1

1 + αdist(x,Bi
Dk

)β
(3.11)

where Bi
Dk

is the binary mask of bone i in time frame Dk, dist(x,Bi
Dk

) is the

Euclidean distance between x and Bi
Dk

(see Figure 3.6), and α and β are two

adjustable parameters. Figure 3.7 illustrates the normalized weighting functions for

the three bones of interest of the ankle joint. As an example, these functions have

been calculated using Eq (3.11) with α = 0.5 and β = 2. Each bone normalized

weighting function is equal to 1 inside the bone mask Bi (i.e. for each point x

satisfying dist(x,Bi) = 0) and it decreases progressively (i.e. tends toward zero) as
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the point moves away from the bone mask.

Experiments show that an increase in β leads to an increase in the deformation

accuracy for non-rigid structures (see Figures 3.10 and 3.8). Thus, we propose new

weighting functions suited for articulated registration. These new weight functions,

which are inversely proportional to a rate of the distance exponential can be used

within the log-euclidean framework in order to obtain more realistic deformations

outside the segmented bones:

wi
Dk

(x) =
2

1 + exp
(

γdist(x,Bi
Dk

)
) (3.12)

Note that these new weight functions yield more accurate transformations espe-

cially in the case of non-large deformations, which is always the case between two

successive frames. With γ ∈ [0.4, 0.8], to ensure a smooth interpolation.

Figure 3.6: Euclidean distance map, from left to right: binary mask of the calcaneus;

associated Euclidean distance map.

3.4.5 Jacobian of the estimated deformation fields

In order to analyze the joint deformations, we have computed the Jacobian maps

associated to the estimated deformation fields. As shown in figure 3.11, the Jacobian

value is equal to 1 for all bone voxels which confirms the conservation of bone shapes

after image registrations. The Jacobian maps will be also used to detect volumetric

changes of soft tissues and deformable structures such as the muscles and the Achilles

tendon. The Jacobian is defined in three-dimensional space as follows:

JΦ(x) =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

∂φ1(x)
∂x1

∂φ1(x)
∂x2

∂φ1(x)
∂x3

∂φ2(x)
∂x1

∂φ2(x)
∂x2

∂φ2(x)
∂x3

∂φ3(x)
∂x1

∂φ3(x)
∂x2

∂φ3(x)
∂x3

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

(3.13)
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The Jacobian maps of the estimated 3D deformation fields can be computed

fastly on a regular grid using the rule of Sarrus for the computation of the determi-

nant of 3× 3 matrices.

Figure 3.7: Normalized weighting functions: from up to down, from left to right:

for the calcaneus; for the talus; for the tibia; and the associated high-resolution

static image.

3.4.6 Combining the LEPF with the FSL registration tool

FSL flirt is a robust linear registration tool. However, it only provides a way to apply

a unique geometric transformation to all image voxels. So since there is a need to

treat voxels individually (i.e. each voxel has its own polyrigid transformation), one

must understand how to apply a flirt transform to a single point.

Once the deformation field is computed using the LEPF by fusing a set of

FSL-flirt transformations, the new coordinates in the target image space are

computed based on the qform/sform matrix stored in the NIFTI file header

simply because the flirt matrices do not use the NIFTI-defined mm coordinate

system. In fact, FSL pre-dates NIFTI and so it uses (internally) a world co-

ordinate system which is the voxel coordinates multiplied by the voxel spacing

values according to each direction in the space (dx, dy, dz). So everything is in

mm where the (0mm, 0mm, 0mm) coordinate is the centre of the grid point (0, 0, 0).
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To determine the new coordinates of a voxel p = (x, y, z) in the target image,

one needs to:

• take the initial voxel coordinates.

• flip p if necessary (based on the sign of the sform or qform determinant):

if (det(qform) > 0):

x′ = Nx − 1− x; y′ = Ny − 1− y; and z′ = Nz − 1− z,

where (Nx, Ny, Nz) represents the image size.

• scale the values by multiplying by the corresponding voxel spacing (in mm)

• apply the FLIRT matrix to map to the target image space

• divide by the corresponding voxel spacing (in mm, of the target image this

time)

• flip p (based on the sign of the sform or qform determinant, of the target image

this time)

Finally, this computation scheme is performed simultaneously over all grid points

to determine the voxel coordinates of the estimated deformation field in the image

space.

3.5 Results

The proposed pipeline has been applied on five dynamic MRI sequences. The expo-

nential mapping of Eq (3.9) was computed within 3 s on an Intel R© Xeon R© Processor

E3-1271 v3 3.60 GHz on a 352 × 352 × 6 regular grid using the proposed eigende-

composition method. Our code is implemented in PythonTM using the LAPACK

(Linear Algebra Package) routines for computing eigenvalues and eigenvectors. The

RMSE (Root Mean Square Error) between Achilles tendon contours was around

2mm when using the weigthing functions defined in in Eq (3.11) with β < 3. This

error is computed as follows:

1) Detection of ground truth contour voxels: first, the manually-segmented mask of

tendon is eroded by one voxel in each dimension. Second, the ground-truth contours

are obtained by subtracting the eroded mask from the original tendon mask.

2) Computation of the Euclidean distance map from contour of propagated Achilles

tendon segmentation. This gives the distance between each image voxel and the

tendon contours.

3) Finally, the RMS error is computed based on the distance map values at ground-

truth contour voxels. RMSE(Ak, A
m
k ) =

√

1/nc.
∑nc

x=1 dist
2(x, ζAk

) where: Ak is

the propagated mask of the tendon on dynamic image Dk ; Am
k is a manually de-

lineated mask of the tendon on the dynamic image Dk; nc is the total number of

voxels of ground-truth contours (i.e. contours of Am
k ); ζAk

is the contour of Ak; and

dist(x, ζAk
) is the Euclidean distance between x and ζAk

.
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The RMS error defined above has the potential to quantify the registration and

interpolation errors mixed together. However, there is no evidence to separate be-

tween the two error origins. Which will be unfortunately the case for other error

metrics such as the Hausdorff distance.

The redefinition of weighting functions played a crucial role in the enhancement of

deformation accuracy outside the segmented bones while protecting skeleton edges,

as shown in Figure 3.8 and as reported in Tab 3.1.

Figure 3.8: Temporal evolution of the mean RMSE across the five sequences for

A.tendon tracking using different weight functions. Orange curve: when using the

weight functions defined in Equation (3.11) with α = 0.5 and β = 1; green curve:

when using the weight functions defined in Equation (3.11) with α = 0.5 and β = 2;

green curve: when using our weight functions defined in Equation (3.12) with γ =

0.4.

Figure 3.9 illustrates, for one subject, such high-temporal-resolution recon-

structed data. Decreasing the value of δk increases the temporal resolution

and makes the reconstruction more realistic outside the segmented bones as the

interpolated transformations are close to the identity in this case. This leads to

consistent interpolation of ( 1
δk

− 1) time frames between Dk and Dk+1 assuming
1
δk

to be an integer. Figure illustrates the Jacobian maps of the joint deformation

fields between successive image.

The robustness of the method and the accuracy of the results have been evaluated

using a local leave-one-out cross-validation technique. This was done by recon-

structing each acquired time frame Dk based on the deformation field halfway
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between Dk−1 and Dk+1 for k ∈ {2 . . .K − 1}. Meaning each image Dk has been

reconstructed from the image-intensities of Dk−1, where Ti,k is the rigid transfor-

mation from time frame Dk−1 to time frame Dk+1 for the bone i and δk is set to

0.5 in Eq (2.2) (in the case of forward tracking). This gives a set of reconstructed

time frames {D′
k}k∈2...K−1. Results on bone motion interpolation are reported

in Tab 3.1. The accuracy of estimated deformation fields was then validated by

computing the DICE overlap between the manually delineated masks of bones of

interest on each acquired time frame Dk and the bone segmentations, automatically

propagated onto each reconstructed time frame D′
k. For all sequences, the DICE

coefficient was greater than 0.82 indicating accurate propagations of bone masks

over each dynamic sequence. In order to provide a meaningful information about

the accuracy of estimated deformation fields outside the segmented bones, we have

computed the RMSE between contour-points of Achilles tendon on each acquired

time frame Dk and on each reconstructed time frameD
′

k. In all cases, the mean error

was less than 1mm (using the new weighting functions), indicating the accuracy of

the estimated deformation fields for the non-rigid structures. Fig 3.10 illustrates

the importance of the weighting functions when estimating and interpolating the

temporal joint deformation field.

The proposed design for bone motion tracking is still robust in either direction

(i.e. when going forward or backward in time) and the proposed method is robust

to noise as well as to motion artefacts. Note that this interpolation technique is still

available in the case of polyaffine transformations, inwhere local transformations

to be fused are affine (i.e. include additional degrees of freedom like the scaling

and shearing parameters). Figure 3.12 illustrates the consistent interpolation of a

simulated affine transformation using matrix eigendecomposition.

Table 3.1: 3D DICE scores (for bones) and RMSE (for Achilles tendon contours)

between manual segmentations of each structure of interest from the acquired data

and segmentations of the same structures automatically-propagated onto the recon-

structed data. Results are presented for several time frames across all subjects.

Time k = 2 k = 4 k = 6 k = 8

Calcaneus 0.88± 0.3 0.83± 0.4 0.84± 0.3 0.84± 0.2

Talus 0.84± 0.2 0.84± 0.4 0.83± 0.2 0.85± 0.4

Tibia 0.9± 0.3 0.85± 0.2 0.88± 0.5 0.84± 0.3

A. tendon 0.45± 0.04mm 0.7± 0.12mm 0.56± 0.08mm 0.6± 0.1mm
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Time k = 10 k = 12 k = 14

Calcaneus 0.88± 0.5 0.85± 0.3 0.82± 0.1

Talus 0.83± 0.3 0.84± 0.3 0.82± 0.2

Tibia 0.88± 0.2 0.91± 0.3 0.92± 0.2

A. tendon 0.7± 0.07mm 0.8± 0.18mm 0.6± 0.1mm

Figure 3.9: Interpolation of missing time frames using the proposed forward tracking

method: Dk is the kth acquired time frame; while Dk.k+1 is the time frame half way

between Dk and Dk+1 (i.e. δk = 0.5 in Eq (3.9)). for k = 1...3.

3.6 Discussion

FLIRT (FMRIB’s Linear Image Registration Tool) [66] is a fully automated robust

and accurate tool for linear (affine/rigid) intra- and inter-modal brain image reg-

istration. In this work, we have extended this tool to deal with non-linear image

registration in the context of articulated structures. Although there exist different
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Figure 3.10: Effects of weighting functions on estimated deformation fields: (a) Tar-

get image; (b) Reconstruted image using the weighting functions defined in Equa-

tion (3.11) with α = 0.5 and β = 1; (c) Reconstruted image using the weighting

functions defined in Equation (3.11) with α = 0.5 and β = 2; (d) Reconstruted

image using our weighting functions defined in Equation (3.12) with γ = 0.4. The

contours of bones (magenta) and of Achilles tendon (white) have been drawn in

the target image to show the reconstruction accuracies when changing the weight-

ing functions. Despite the fact that all the used weighting functions conserve bone

topologies (this was validated by checking that the Jacobian of the deformation field

is equal to 1 over bone segmentations), the reconstructed image is more accurate for

non-rigid structures such as the Achilles tendon when using our proposed weighting

functions (d).

Figure 3.11: Jacobian maps of the joint deformation fields. From left to right: the

deformation field that maps D1 to D1.2; and the deformation field that maps D1 to

D2 where: D1 is the 1st acquired time frame while D1.2 is the time frame half way

between D1 and D2. these maps estimate the local volume percentage difference of

the targets with respect to the source time frame. A positive Jacobian determinant

values reflect that there is no folding in the deformation field.
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Figure 3.12: Consistent interpolation of a simulated affine map (i.e., the transfor-

mation that maps the blue ellipsoid to the red one), transformation parameters are:

Translations: ti = 0mm, tj = 0mm, and tk = 0mm; Rotations: ri = 0◦, rj = 0◦,

and rk = 10◦; Shearings: gi = 0, gj = 0, and gk = 0; Scalings: si = 1.5, sj = 1.5,

and sk = 1.5. 4 secondary transformations Tα were interpolated between the iden-

tity and T , giving a smooth affine trajectory of the ellipsoid between two instants

in function of α (α = {n/5}n∈{1...4} in Eq 3.7).

tools for non-linear or diffeomorphic image registration such as FNIRT or ANTs

(Advanced Normalization Tools) [8], they did not necessarily preserve bone shapes

after the alignment process [1]. So we have preferred to fuse the flirt transforma-

tions by the log euclidean polyrigid framework. If n is the number of intermediate

points chosen to discretize the continuous trajectory of each point x, the scaling and

squaring method is the most commonly used technique for computing the matrix

exponential in previous works [5]. However, this method only provides an approx-

imation of the matrix exponential (with a certain level of accuracy). So since it

is important to compute the matrix exponential efficiently and accurately, we have

proposed to compute the matrix exponential using matrix eigendecomposition in

the complex domain (by computing the eigenvalues and right eigenvectors of 4× 4
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transformation matrices), provided that the trajectories of all the points of the

regular grid are computed simultaneously as the grid is interpreted as a stack of

dim0 × dim1 × dim3 matrices, each of size 4× 4. In fact, for all real transformation

matrices expressed in homogeneous coordinates, the associated complex eigenvalues

occur in complex-conjugate pairs: The real part of λj(x) gives the rate of expansion

(if Re[λj(x)] > 0) or contraction (if Re[λj(x)] < 0) of the voxel x; the imaginary

part of the eigenvalue is the frequency of voxel rotation about each direction in the

3D space.

Remarkably, the novel fusion in the domain of matrix logarithm is very close to the

direct fusion in regions without singularities, independently of the way local rigid

deformations are first estimated.

Finally, by the same qualitative discussion one could argue that such a design could

walk in either direction (forward or backward in time), just as a human can walk

forwards and backwards.

3.7 Conclusion

The global aim of this work is to provide high-temporal resolution dynamic MRI

data while keeping the acquisition protocol described above intact. This allows

the subjects with muskuloskeletal disorders, who cannot comfortably repeat a high

number of motion cycles to be studied using the same protocol. In this chapter,

we have presented a motion-interpolation-based method on the Lie group SE(3) for

increasing the temporal resolution of acquired dynamic MRI sequences. The intu-

ition behind is that the joint motion is cyclic and pseudo-consistent in nature. We

have generalized the Log-Euclidean polyrigid registration framework to dynamic ar-

ticulated structures and we have also proposed new weight functions which are well

adapted to our context. The exponential map from polyrigid body velocities (i.e. el-

ements of the Lie algebra se(3)) to the Lie Group of rigid body displacements SE(3)

is computed in an efficient and elegant way using matrix diagonalization-based tech-

niques so that the infinitesimal joint deformations are obtained by exponentiating

the infinitesimal eigenvalues averaged in the logarithmic domain. The matrix eigen-

decomposition lends itself well to modeling temporal dynamics of rigid bodies. To

conclude, the proposed post processing technique aims to overcome the physical

limitations (both hardware and physiological constraints) related to real-time dy-

namic MR imaging algorithms which are generally based on compressed sensing

theory [49], for which it is hard to fastly acquire the entire or nearly the entire joint

trajectory inside the MR scanner because of the limited k -space sampling [69] (i.e.

the difficulty to satisfy the Nyquist sampling rate in the frequency domain).

A b-spline motion interpolation is possible [15] and this will be targeted in future

works.
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4.1 Introduction

Spatio-temporal evolution of joint space width (JSW) during motion is of great im-

portance to help with making early treatment plans for degenerative joint diseases

like osteoarthritis (OA), by identifying the critical phases of movement. These dis-

eases can affect people of all ages leading to an acceleration of joint degeneration

and to limitations in the activities of daily living. 4D in vivo quantification of JSW

can also be used to investigate the impact of musculoskeletal deformities on the

0This chapter is the subject of the publication [87].
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dynamic cartilage contact mechanics, such as the the equinus deformity of the foot

and its direct impact on the dynamic tibiotalar contact area. However, only a few

in vivo studies have attempted to quantify the JSW from moving joints due to the

lack of in vivo, dynamic cartilage contact mechanics data [19]. In this chapter, we

present a generic pipeline to accurately determine the changes of the JSW during

the joint motion cycle where the bone kinematics are derived using the motion es-

timation algorithm presented in chapter 2. The main goal is to identify the spatial

location of each bone and of the joint space section at each time frame, but in the

HR domain of the static scan (i.e. image resolution of 0.26 × 0.26 × 0.8mm). So

that the temporal JSW measures are performed in this HR domain using an Eu-

lerian approach for solving partial differential equations (PDE) inside a deforming

inter-bone area where the HR reconstructed bone segmentations are considered as

temporal Dirichlet boundaries.. The proposed approach has been applied and eval-

uated on in vivo MRI data of five healthy children to non-invasively quantify the

spatio-temporal evolution of the JSW of the ankle (tibiotalar joint) during the entire

dorsi-plantar flexion motion cycle. Promising results were obtained, showing that

this pipeline can be useful to perform large-scale studies containing children with

spastic equinus deformity for the ankle joint.

4.2 State of the art

Providing accurate spatial-temporal information on the JSW can help researchers

and clinicians in identifying the critical phases of movement and making early treat-

ment plans for degenerative joint diseases like OA [40]. The normal tibiotalar JSW

in the neutral position varies in thickness from 1 to 4mm [65], reflecting the mor-

phology of contact cartilage sublayers. In this work, we present a methodology to

quantify the JSW during the entire joint trajectory.

4.2.1 From stationary to non-stationary data

In the literature, most studies were based on stationary acquisitions from different

joints to evaluate intra-subject (i.e. over a large period of time to assimilate the pro-

gression of joint damage) [64] or inter-subject variability of the JSW [26]. In [53],

Goker et al. quantified the tibiotalar JSW using 2D radiographic examinations.

However, 2D measures are typically less informative than 3D measures simply be-

cause the human joints are complex 3D structures. In [26], the authors proposed to

quantify 3D JSW of the metacarpophalangeal joint using high-resolution peripheral

quantitative CT, by segmenting the joint section using binary morphological oper-

ations (i.e. dilation and erosion of bone segmentations). However, the behaviour of

those morphological operations is hard to predict, and thus the resulting segmenta-

tions are not necessarily anatomically accurate. In [65], the authors evaluated the

JSW of the tibiotalar joint using 3D reconstruction of CT images. However, their

study reports only results at three specific locations (neutral position, maximum

dorsiflexion, and maximum plantar flexion of the ankle joint). Furthermore, CT
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scans expose subjects to harmful radiation in addition to the static nature of ac-

quired data, making it hard to assess real functionalities and to perform large-scale

in vivo studies.

Dynamic MRI is a non-invasive imaging technique which can be useful for perform-

ing large scale in vivo studies. However, this technique comes with its own set of

challenges such as low-resolution, anisotropy, and motion artifacts.

4.2.2 Related works

Recently, Borotikar et al. [20] proposed a methodology to non-invasively quantify

patellofemoral cartilage contact kinematics from non-stationary MRI acquisitions

based on the overlap between the two contact cartilage layers under the assumption

that each cartilage layer should undergo the same rigid transform as that of the

attached subchondral bone. However, the bone motions are estimated by integrat-

ing velocity data in the Fourier domain (i.e. by integrating the trajectory of some

landmarks defined on each bone). A major limitation is the out of plane accuracy of

the bone motion because the accuracy of cine-PC MRI is independent of the shape

of the bone being tracked [13]. To tackle this problem, Borotikar et al. [19] proposed

another method to quantify patellofemoral cartilage contact kinematics using all the

volumetric information provided by anatomical dynamic MRI data to estimate bone

motions using mesh-based registration:

Cartilage contact mechanics are quantified by creating rigid models of knee bones,

defining the transformations from static to dynamic pose, and then applying an-

kle kinematics to these models. Briefly, static and sparse dynamic 3D patellar and

femoral bone models are created and the optimal transformation of the static model

to its dynamic pose is determined (Geomagic Inc., Research Triangle Park, NC). It

is assumed that cartilage is rigidly attached to the subchondral bone and thus this

3D transformation is directly applied to its cartilage surface as well.

Patellar and femoral cartilage surfaces are reconstructed from static images using a

thin-plate spline (TPS) mathematical surface [19, 22] and subsequently transformed

to dynamic neutral position. A kinematics driven contact mechanics algorithm is

employed using TPS surfaces and Talocrural and subtalar joint kinematics. At

each time frame, contact between the two surfaces are determined by evaluating the

amount of overlap between the stationary and moving cartilage surfaces. Contact

area is determined by summing the area of each overlap using either Bretschnei-

derâs formula or Heronâs formula [16]. Contact area centroid is determined as the

weighted average of each contact grid patch’s location with weighting based on the

patch area [19]. Peak strain location are defined as the single point on the contact

grid that corresponds with the maximum overlap value [19].

However, in addition to the manual segmentation of the static scan, it was needed

to manually segment the dynamic data as they have used mesh-based registration

for reconstructing HR temporal bone models by finding the rigid transformation of

each bone geometry from static to each dynamic image. Moreover, this manual in-

tervention is time consuming and prone to segmentation bias because of image noise
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and low-resolution of dynamic data. These techniques have been used later in the

work of Vignos et al. [141] to quantify tibio-femoral cartilage contact kinematics.

4.2.3 Computation of soft tissue thickness

To quantify the cartilage thickness distribution in the tibiofemoral joint [79], the au-

thors have proposed to compute the thickness map of each cartilage layer separately.

Their technique for finding cartilage thickness consists of: for each sampling point

on the articular surface, a sphere was centered at this point and expanded until

it was tangent to the opposite surface (i.e., subcondral bone surface). The radius

of this sphere, representing the shortest distance between the two surfaces, gives

then the cartilage thickness. This method has been reproduced in [142] to quantify

cartilage contact deformation of ankle joint. One limitation of this approach is that

the thickness measures could be underestimated in the case of steep curvatures and

complex surface structures (as in the case of the human brain cortex because of its

complex topology). Figure 4.1 illustrates a thickness misestimation when using this

method.

Figure 4.1: Problems related to thickness estimation: the actual thickness

(green); and the calculated thickness using the method proposed in [142]

(red).

In the context of soft-tissue thickness visualization and quantification, other

techniques for computing anatomical thickness have been proposed, such as: the

coupled-surface methods [85] which define the thickness between two boundaries as

the distance between point pairs uniquely associated between the two boundaries;

or the uncoupled-surface methods [94] which define the thickness as the nearest

distance (from each point on a given boundary to the closest point on the oppos-

ing boundary). The limitations of these methods in terms of accuracy are then

highlighted in the work of Yezzi et al. [145].
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To overcome these limitations, Yezzi et al. [145] presented an efficient and compu-

tationally fast and stable voxel-based approach that can deal with highly convoluted

objects, inspired by the work of Jones et al. [70]. This method can be applicable

to any arbitrary topology as it does not require explicit construction of any cor-

respondence trajectories. This consists on an Eulerian framework for computing

the thickness of tissues based on the solution of the Laplace equation between two

simply connected boundaries. The employment of Laplace’s equation provides a

one-to-one correspondence between the two boundaries. Furthermore, the corre-

spondence trajectories may never intersect as they are always perpendicular to the

equipotential layers they derived from. Consequently, they terminate perpendicu-

larly to each of the two boundary surfaces. The Laplace equation has been also

employed to model contact cartilage layers [47], and to model cortical layers from

high-resolution functional MRI [151]. The Eulerian PDE approach has been success-

fully employed to measure the cortical thickness by taking into account the partial

volume effect [41, 2], to segment the articular cartilages from conventional MRI of

the knee joint [47], and to compute the myocardial wall thickness from computed

tomography images [28]. To summarize, this voxel-based approach is suitable for

large data sets (e.g. the high-resolution reconstructed dynamic MRI sequences) of

population studies.

4.2.4 Proposed pipeline

In this chapter, we extend the Eulerian approach to the measurement of the JSW

during the entire joint motion cycle using dynamic MRI sequences, which will cer-

tainly provide new temporal motion features. In our previous work [88], we have

proposed a motion-based algorithm for estimating HR dynamic MRI sequences via

a log-euclidean polyrigid framework (LEPF) [5] using both static and dynamic MRI.

In the current work, we use the associated motion estimation algorithm to track the

tibiotalar joint with high accuracy and without the need for manual segmentation

of dynamic data. To summarize, we present a complete pipeline for: 1) estimating

spatio-temporal bone rigid transformations, 2) computing spatio-temporal non-rigid

deformations of the joint space area using the LEPF (Section 4.4.1), 3) measuring

dynamic, in vivo JSW via an iterative relaxation method using the high-resolution-

reconstructed bone segmentations as Dirichlet boundaries (Section ??).

4.3 A computational method: Eulerian framework for

measuring soft tissue thickness

After determination of the skeleton kinematics during a single dorsi-plantar flexion

motion cycle, we evaluated the contact mechanics of the ankle joint during motion

based on the estimated bone rigid transformations from static to dynamic sparse

data. To do this, we evaluated the spatio-temporal joint space width (JSW) of the

tibio-talar joint, which is the primary joint responsible for plantarflexion and dorsi-
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flexion of the ankle. The developed mathematical tools for evaluating 4D tibiotalar

JSW are described in the sequel of this chapter.

4.3.1 Fast Eulerian PDE approach

4.3.1.1 The Laplace equation

Measuring thickness of deformable tissues, bounded by two non-intersecting sur-

faces, has been approached by applying Laplace’s Equation from mathematical

physics [70]. Solving this computational problem is based on the solution of the

following three-dimensional Laplace’s Equation between the inner and outer sur-

faces, that we will call Bin and Bout, respectively:

∆u =
∂2u

∂x2
+

∂2u

∂y2
+

∂2u

∂z2
= 0 (4.1)

where u : R3 −→ R is a scalar field, also called harmonic interpolant or harmonic

function which is a twice continuously differentiable function that satisfies Laplace’s

equation. This second-order partial differential equation (PDE), also known as the

heat equation or the equilibrium equation, has been employed for handling many

classical physical phenomenons such as incompressible fluid flow, electrostatic fields

for particle acceleration, and thermodynamic flows [70].

In electromagnetic theory for example, the electric field E satisfies the equation

−∇φ = E where φ represents the electric potential. Then according to Gauss’s law

(first Maxwell’s equation), E satisfies ∇.E = ρ
ε0

for a particular charge density ρ

(ε0 is the electric constant) so that φ satisfies ∇2φ = ρ
ε0

. Consequently, φ satisfies

the Laplace equation ∇2φ = ∆φ = 0 in a charge-free surface area (i.e. when

ρ = 0). In this case, the electric potential φ corresponds to the harmonic function

u, previously mentioned.

4.3.1.2 Numerical solution of Laplace’s equation

The solution of Equation (4.1) can be approximated inside an area R, bounded by

Bin and Bout, using standard numerical methods like the finite difference method,

involving low order Taylor series expansions [119].

In this thesis, we have used an iterative relaxation method (also called the Jacobi

iterative method) which is simple to implement and numerically robust:

ui+1(x, y, z) =
1
6 [ui(x+ dx, y, z) + ui(x− dx, y, z) + ui(x, y + dy, z) + ui(x,

y − dy, z) + ui(x, y, z + dz) + ui(x, y, z − dz)]

(4.2)

where ui(x, y, z) is the value of the scalar field u at point (x, y, z) during the ith

iteration; dx, dy, and dz are the voxel spacing values in the x, y and z directions,
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respectively. Each iteration is quite fast as the computations are performed simul-

taneously at all points and only inside R. The initial Dirichlet boundary conditions

are u(Bin) = 0 and u(Bout) = n, n ∈ N
∗
+ (e.g. n = 100).

Convergence criterion: Jones et al. [70] proposed a convergence criterion

based on the total field energy over all grid voxels:

εi =
∑

voxels

√

((
∆ui
dx

)2 + (
∆ui
dy

)2 + (
∆ui
dz

)2) (4.3)

where: ∆ui

dx
= 1

2 [u− i(x+ dx, yz)− ui(x− dx, y, z)]. And then the Jacobi iterative

method converges when the ratio εi−εi+1

εi
becomes smaller than a user-defined thresh-

old (typically about 10−5). The main limitation of this convergence criterion is that

it requires a repeated evaluation of Equation (4.3) in each iteration which increases

the computation times. As an example, Jones et al. suggested that 200 iterations

are sufficient to calculate the cortical thickness using MRI data with a resolution of

0.5× 0.5× 0.5mm. In this work, we preferred to keep the number of iterations as a

user-defined parameter in order to optimize the computation schemes. By default,

the total number of iterations is set to 200 for solving the Laplace Equation, and to

100 iterations for solving the pair of PDEs according to Equations (4.7) and (4.8)

(i.e. via the iterative Gauss-Seidel method).

4.3.1.3 Normalized gradient vector flow field

The normalized gradient vector flow field ~N is then computed from u with 3D

finite differences, this coincides with the tangent vector field of the correspondence

trajectories:

~N =
∇u

‖∇u‖2
=










Nx

Ny

Nz










(4.4)

where: ∇u =










∂u
∂x

∂u
∂y

∂u
∂z










is the gradient vector; and ‖∇u‖2 =
√

(∂u
∂x

)2 + (∂u
∂y
)2 + (∂u

∂z
)2

is the gradient Euclidean norm.

4.3.1.4 PDE formulation

Once the normalized gradient vector flow is computed, it is then possible to compute

the two correspondence trajectories at each point p = (x, y, z) inside R: L0 between
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Figure 4.2: Overestimation of the thickness W = L0 + L1 when initializing the

boundary conditions for computing L0 and L1 at 0. The real thickness value is

equal to 6 while the estimated thickness value is 7.

p and the inner boundary Bin, and L1 between p and the outer boundary Bout.

This step consists of solving the following pair of PDEs (Eq 4.5 and Eq 4.6):

∇L0. ~N = 1 ; initialized with L0 = L1 = −(dx+ dy + dz)

6
(4.5)

−∇L1. ~N = 1 ; initialized with L0 = L1 = −(dx+ dy + dz)

6
(4.6)

where: ~v1. ~v2 is the usual dot product or the Euclidean inner product between ~v1 and

~v2. Note that this setting of boundary conditions [2] gives more accurate thickness

values when compared to the one used by Yezzi et al. [145], in which L0 and L1 are

both fixed to 0 at all grid points before solving PDEs (4.5) and (4.6) over R, under

the assumption that the boundaries coincide with the center of the grid points,

which leads to an overestimation of the thickness as illustrated in Figure 4.2. To

reduce this estimation bias, Diep et al. [41] proposed this new initialization of L0

and L1 (as in Eqs (4.5) and (4.6) in such a way that the boundaries coincide with

voxel borders. Note that this new initialization yields more accurate results and

it can produce the exact thickness in the ideal cases (i.e., for isotropic images as

illustrated in Figure 4.3).

A parallel iterative relaxation method is used for solving this pair of PDEs, so

that L0 and L1 are updated simultaneously inside R using Gauss-Seidel method [145],

which is one of the most sophisticated relaxation methods as it converges twice as
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Figure 4.3: Estimation of the thickness W = L0 + L1, in the case of isotropic

resolution (voxel size of 1 × 1 × 1mm), when initializing the boundary conditions

for computing L0 and L1 according to [41].

fast as Jacobi [58], according to Equations (4.7) and (4.8):

Li+1
0 [x, y, z] =

1 + |Nx|Li
0[x∓ 1, y, z] + |Ny|Li

0[x, y ∓ 1, z] + |Nz|Li
0[x, y, z ∓ 1]

|Nx|+ |Ny|+ |Nz|
(4.7)

Li+1
1 [x, y, z] =

1 + |Nx|Li
1[x± 1, y, z] + |Ny|Li

1[x, y ± 1, z] + |Nz|Li
1[x, y, z ± 1]

|Nx|+ |Ny|+ |Nz|
(4.8)

where:







x± 1 = x+ sgn(Nx) ; x∓ 1 = x− sgn(Nx)

y ± 1 = y + sgn(Ny) ; y ∓ 1 = y − sgn(Ny)

z ± 1 = z + sgn(Nz) ; z ∓ 1 = z − sgn(Nz)

with: sgn(a) is the sign function in R
∗. sgn(a) =







+1 if a > 0

−1 if a < 0

, and i is the

iteration index.

Explication of the PDE formulation:

Let’s take the first equation ∇L0. ~N = 1 as example, this PDE suggests that

the elementary displacement of the optimal path between each point p ∈ R and

the outer boundary coincides with the normalized tangent vector to the harmonic
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interpolant at this point.

Let ~u and ~v be two Euclidean vectors, then their dot product that we note ~u · ~v
is defined by:

~u · ~v = ‖u‖ · ‖v‖ · cos(θ) (4.9)

where θ is the angle between ~u and ~v.

if







~u · ~v = 1

θ = 0 then ~u = ~v

‖v‖ = 1

If we replace now ~u with ∇L0 and ~v with ~N , we can directly prove the coincidence

between ∇L0 and ~N (i.e. ∇L0 = ~N), if ∇L0. ~N = 1.

Idem for integrating the optimal path between each point p ∈ R and the inner

boundary: ∇L1. ~N = −1 is satisfied if θ = π in Eq (4.9).

Since L0 and L1 may never intersect (as they start from opposite endpoints

in opposite boundaries), the thickness W (p) inside R can be computed from the

tangent field ~N by adding these two correspondence trajectories yielding a unique

value at each voxel p inside R as follows:

W (p) = L0(p) + L1(p) (4.10)

As an extension of this described Eulerian Framework, Rocha et al. have

presented an hybrid Eulerian-Lagrangian approach [117] for measuring soft tissue

thickness in which the speed of the Eulerian PDE approach is complemented by

the accuracy of the Lagrangian approach.

4.3.2 Experiments

We have implemented the Eulerian PDE approach and then we have applied it to

different applications, including both simulated synthetic and real MR images as

entries. Satisfactory results are achieved in terms of accuracies and computation

times across applications:

• Simulation 1: Measuring thickness inside a synthetic circular annulus.

• Simulation 2: Measuring thickness inside a synthetic 3D sphere.

• Application 1: Estimation of 3D bone width.

• Application 2: Computation of joint space width (JSW) by combining static

MRI with dynamic MRI (main application in this thesis, section 4.4.2).
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• Application 3: Estimation of 3D cortical thickness from MRI scans (Ap-

pendix A).

Simulation 1: In this experience, we have simulated a circular annulus Ca with

inner radius of 50 voxels, and outer radius of 65 voxels. Inner and outer boundaries

are fixed to 104 and 0, respectively. Figure 4.4 shows the obtained thickness results

between the two boundaries. This setting is motivated by the fact that normal

tibiotalar joint space area varies from 10 to 17 voxels in the static MRI image.

The obtained thickness values using the Eulerian computational framework are

around 15.2±0.4 voxels (after only 100 iterations for the Jacobi iterative relaxation

method and 50 iterations for the Gauss-Seidel relaxation method). Compared to

15.1 ± 0.2 voxels (after 200 iterations for the Jacobi iterative relaxation method

and 100 iterations for the Gauss-Seidel relaxation method).

Figure 4.4: Computation of thickness for a circular annulus Ca (white region in the

top left) with inner radius of 50 voxels, and outer radius of 65 voxels. The theoretical

thickness value should be equal to 15 inside Ca (i.e. the difference between the

two radius). The obtained values using the Eulerian computational framework are

effectively around 15.1± 0.2 voxels.

Simulation 2: The aim of this experience is to test our algorithm on three

dimensional synthetic data. Let’s consider a sphere S with center c at (x0, x1, x2)

and a radius r voxels, then the general equation of S is: (x−x0)
2+(y− y0)

2+(z−
z0)

2 = r2. The underlying assumption is that the thickness values should be equal
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to the radius over the sphere voxels.

We propose, then, to measure the sphere thickness using the Eulerian approach by

first solving the Laplace equation between the sphere center c (inner boundary) and

the sphere edges (i.e. by considering S̄ as outer boundary). To do this, we have

generated a sphere S with center c = (64, 64, 64) and radius r = 50 in a regular grid

of 128×128×128 voxels and with an isotropic resolution (voxel size of 1×1×1mm),

according to:

S(x, y, z) =

{

1, if (x− 64)2 + (y − 64)2 + (z − 64)2 ≤ 502

0, otherwise.
(4.11)

Figure 4.5 shows that the solution of Laplace’s equation ∆u = 0 inside S divides

the sphere into a set of equivalued sub-layer volumes; while Figure 4.6 shows the

corresponding tangent vector field; and Figure 4.7 shows the resulting thickness

map inside the simulated sphere. The obtained thickness values inside S using our

implementation are effectively around 49 ± 1mm (as shown in Figure 4.7) because

the inner boundary (i.e., the sphere center) is dilated by one voxel in each direction.

Furthermore, the thickness map can be smoothed (by smoothing the simulated

sphere shape). However, we preferred to estimate the thickness map under realistic

conditions since the smoothing of bone masks can affect the bone shapes in the

context of our main application which is the estimation of JSW.

Application 1: Quantification of bone width: this application can be helpful in

studying bone development and growth during a large period of time (in developing

children MRI data), or for performing statistical analysis of bone shape across sub-

jects by taking into account this interesting morphological feature. In this context,

we represent the 3D bone width as the distance map between its center of mass G

(i.e. the centroid of bone shape) and each surface point (i.e. the bone edges). G

is defined as the arithmetic mean of all the points p1 . . . pn in the bone shape, then

the bone centroid is given by:

G =
1

n

n∑

i=1

pi (4.12)

To do this, we consider the center G as inner Dirichlet boundary and the comple-

mentary binary mask B = max{B}−B (with B is the binary mask of the bone) as

outer Dirichlet boundary. And then we compute the thickness using the proposed

Eulerian Framework. The resulting distance map is presented in Figure 4.8. Note

that the quantification of bone width is beyond the scope of this work but it can be

targeted in future works to detect the morphological deformities for children with

spastic equinus.

4.4 Spatio-temporal evolution of the JSW

The proposed approach for measuring JSW consists in three steps which are de-

scribed in the next sections: 1) estimating spatio-temporal bone rigid transforma-



4.4. Spatio-temporal evolution of the JSW 89

Figure 4.5: Three-dimensional solution of Laplace’s equation (that gives the har-

monic interpolant) inside the synthetic sphere S ( i.e. between its center c and its

surfaces) using the Jacobi iterative method (1000 iterations within 37sec). The ini-

tial Dirichlet boundary conditions are set as follows: u(c) = 0 and u(S̄) = 100. This

experience aims to verify later, that the thickness value at each point p = (xp, yp, zp)

inside the sphere is exactly equal to the sphere radius r. Seven cross slices (between

15 and 111) are presented in this figure showing the solution of the Laplace equation

inside S.

tions (this step is detailed in our previous works [88, 90]), 2) computing spatio-

temporal non-rigid deformations of the entire joint space area, localized between

the two bones composing the joint of interest (Section 4.4.1), 3) computing the

JSW using the above-described Eulerian PDE approach where bones are considered

as Dirichlet boundaries (Section 4.4.2). Steps 2 and 3 are repeated for each time

frame to quantify the temporal JSW in the high-resolution space.

4.4.1 Temporal tracking of joint space area

Since articular cartilages undergo non-linear deformations during motion, we pro-

pose to smoothly track the entire joint space area using diffeomorphic registration,

instead of rigidly track each of the two cartilage layers separately.

Following previous works [53, 65], we define the tibiotalar joint space (the area in-

side which the thickness will be measured) in healthy feet as the space between the

upper surface of the talus and the inferior articular surface of the tibia. The joint

space area is manually segmented in the static image and then automatically tracked

throughout the dynamic sequence using non-rigid registration. Tracking the joint

space area throughout the ankle trajectory is a challenging task because articular

cartilages are soft tissues that undergo non-linear deformations contrary to the rigid
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Figure 4.6: The harmonic function u and the corresponding smooth tangent field
~N = ▽u

‖∇u‖ inside a synthetic sphere. The harmonic function is obtained by solv-

ing the Laplace equation inside the sphere. Note that we have inverted the two

boundaries here. So that the initial Dirichlet boundary conditions are set as follows:

u(c) = 100 and u(S̄) = 0. This experience shows the heat propagation from the

sphere center or nucleus to its external surfaces.
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Figure 4.7: 3D thickness map inside the simulated sphere (in mm).

bones. In this work, we propose to compute the local spatio-temporal deformations

of this area using the LEPF. The segmentations of the two bones, composing the

joint of interest, are used to compute the spatial weighting functions {wi(x)}i∈{1,2}.

4.4.2 Computation of temporal joint space width

Given the position of each bone and each joint space area (Rk)k∈{1...K} at each

time frame Dk, the time-dependent width of the entire joint space separating

two neighboring bones can be computed with high accuracy using the presented

Eulerian framework [145]. The JSW is computed by first solving the Laplace’s

equation (∆uk = 0) inside the surface between two bones (Rk) using the Jacobi

iterative method. Bones are considered as Dirichlet boundaries so that they are

set to fixed potentials (uk = 0V for the inner boundary and uk = 100V for the

outer boundary). The potential is set to zero at all grid points outside the joint

segmentation (including the joint space area) to connect the two boundaries as

shown in Figure 4.10.a in such a way that these values will serve as inner boundary

condition. Solving this second order PDE gives the harmonic interpolant uk which

divides the joint space area into a set of equipotential sub-layers as illustrated in

Figure 4.10.a.

In this application, L0 and L1 are first initialized to − (dx+dy+dz)
6 at all grid

points and then iteratively updated only over Rk using the Gauss-Seidel method [145]

according to Equations (4.7) and (4.8):

Since L0 and L1 may never intersect (as they start from opposite endpoints in
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Figure 4.8: Talar width in voxels

opposite bones), the thickness Wk(p) inside Rk is computed from the tangent field

by adding these two correspondence trajectories yielding a unique value at each

voxel p inside Rk as follows:

Wk(p) = L0(p) + L1(p) (4.13)

The width computation scheme is detailed in Algorithm 3, with the following

notations: B1
k and B2

k are the two neighboring bones composing the joint of interest

(the inner and outer boundaries) at time frame Dk; ~Nk is the normalized gradient

of the Laplace solution uk; L0k gives the arclength of the correspondence trajectory

between the bone B1
k and p, while L1k gives the arclength of the correspondence

trajectory between the bone B2
k and p, for each voxel p inside the joint space area

(Rk); dx, dy and dz are the voxel spacing values in the x, y and z directions,

respectively.

4.5 Validation

The accuracies of bone motion estimation have been presented in [90] using DICE

score. In this work, we have also quantified the accuracy of joint space area tracking.

To do this, we have computed the overlap between automatic (or propagated) and

ground-truth (or manual) segmentations of the joint space section at each time frame

using the Dice coefficient. The temporal Dice scores across all subjects was around

0.9± 0.03, indicating that the joint space area is accurately tracked over the entire

ankle trajectory.

1The source code is available on GitHub: https://github.com/rousseau/dynMRI.

https://github.com/rousseau/dynMRI
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(a) (b)

Figure 4.9: Segmentation of the tibiotalar joint. Regions of interest are: tibia

(green), talus (red), tibiotalar joint space (cyan). (a): Mid-coronal image from the

high-resolution static image; (b) Three dimensional rendering of the joint.

4.6 Results

The volume of the tracked joint space area increased in the order of maximum

dorsiflexion (183 ± 10cm3), neutral position (190 ± 12cm3), and maximum plantar

flexion (196 ± 13cm3 ). The tibiotalar JSW is computed in 22sec on an Intel R©

.Xeon R© Processor E3-1271 v3 3.60 GHz on a 576×576×210 grid (where the tracked

joint space section contains 12.104 points) using our optimized implementation

of the Eulerian framework (figure 4.10). Figure 4.12 shows the estimated JSW

values projected on bone contact surfaces (the second column corresponds to the

tibial plafond while the third column corresponds to the talar superior contact

surface) for several time frames for one healthy subject. It illustrates the temporal

evolution of the three-dimensional JSW during passive motion for this subject.

This Eulerian framework yields width values in a bijective way, as illustrated in

columns 2 and 3 in Figure 4.12 and this is also illustrated in Figure 4.3, showing

two mirror-symmetric temporal width maps which confirms the uniqueness of

width value at each voxel between the two bones. From these temporal maps, we

can extract temporal features for each subject to provide an average behavior of

the JSW. Assuming the central area to be the center of rotation for the tibiotalar

joint in healthy feet [65], we define the landmark P1 shown in figure 4.11 as the

centroid of the joint-space-mesh. For each time-frame for each subject, we then

compute the mean average of the JSW inside a sphere centered at P1 (with radius

r = 20voxels ≃ 5mm and by taking into account only the voxels inside the joint

space area).

All subjects followed consistent patterns of displacement (continuous passive

motion). The medial JSW was around 2.7 ± 0.60mm across all healthy ankles
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Figure 4.10: Calculation of 3-D width of the tibiotalar joint space. (a) Harmonic

function u1. (b) Length L0. (c) Length L1. (d) width (L0 + L1): expressed in mm

from one sagittal slice of the first reconstructed time frame (i.e. for k = 1).

throughout the whole motion cycle. The lateral JSW was around 3 ± 0.60mm.

Obtained measures demonstrate correspondance with the JSW measures presented

in [65] for 10 healthy adults from stationary scans. In this work, the authors did

not provide any details about the techniques they have used to measure the JSW

making it difficult to perform objective comparisons in terms of measurement

errors. Figure 4.11 shows the temporal mean feature of the JSW for all children

during the whole ankle trajectory. Results demonstrate that the temporal evolution

of contact area volume and the JSW around the centroid of the joint space section

are highly correlated.

In our study, the JSW in the central part (area centred around point P1) was

not significantly different in any of the positions of the ankle joint while the normal

ankle is moving (see Figure 4.12, thinner orange-yellow areas). In accordance with

these results, the ankle moves in this middle position as a centre of rotation for the

tibiotalar joint in healthy subjects. This also confirms the results of Imai et al. [65]

for healthy adults, after dividing the tibial plafond into nine areas.

Furthermore, previous works of Borotikar et al. [20, 19] were concentrated to only the

highest stressed regions from the moving joint space section (i.e., only overlapped
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Algorithm 3 Joint space width1

1: Inputs:

• Bone segmentations B1
k and B2

k.

• Joint space area segmentation Rk.

2: Iteratively solve the Laplace equation (∆uk = 0) over (Rk), using Equa-

tion 4.2: with the Dirichlet boundary conditions: uk(B
1
k) = 0 and uk(B

2
k) = m,

where m ∈ N
∗.

3: Compute the normalized gradient vector flow field: ~Nk = ∇uk

||∇uk||2
.

4: Set L0k = L1k = − (dx+dy+dz)
6 at all grid points (values outside Rk will

serve as boundary conditions).

5: Iteratively update L0k and L1k via a parallel Iterative Relaxation

method, according to Equations (4.7) and (4.8).

6: Compute the joint space width ∀p inside (Rk) :Wk(p) = L0k(p)+L1k(p).

regions are highlighted). Hence, we propose a more complete framework in which

the width information is provided over the entire joint space section (i.e. we propose

a framework with enhanced spatio-temporal information).

4.7 Conclusion

In this chapter, we have presented a complete pipeline for measuring spatio-

temporal JSW, providing qualitative visual supports and allowing quantitative data

analysis. As shown in Figure 1.6, dynamic MRI comes with its own challenges such

as low spatial resolution and anisotropy. This is the reason why we have combined

spatial information provided by static MRI with temporal resolution of dynamic

MRI sequences. The proposed approach relying on HR reconstructed dynamic

sequences can provide 3D+t morphometric information throughout the whole

motion. This work is the first attempt to track the entire joint space area and to

evaluate JSWs without having to perform time-consuming manual segmentations.

The proposed method provides a fast way to combine high-resolution spatial

information with temporal dynamics of joints in order to establish normative

contact mechanics. The Eulerian PDE approach provides an efficient and fast

solution for quantifying widths of segmented areas, bounded by two bone masks.

The results of this study are consistent with previous works reporting discrete data

at specific locations of the tibiotalar joint, which is the primary joint responsible

for dorsi-plantar flexion of the ankle. In future works, the proposed approach will

be applied to a larger dataset to compare spatio-temporal evolution of the JSW of

children with CP with age-matched healthy children.
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(a)
(b)

Figure 4.11: Temporal evolution of the JSW: (a) Location of the centroid of the

joint space mesh points (P1); (b) temporal evolution of the JSW around P1. The

average across healthy subjects is shown as a solid line with one standard deviation

above and below this line (grey shaded area).
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Figure 4.12: Spatio-temporal evolution of the tibiotalar JSW during motion. The

first row is composed of a set of dynamic anatomical images from one healthy subject:

bone contours in neutral position show the joint motion across time. Width values

were projected on each bone contact surface (the second row corresponds to the

tibial plafond while the third row corresponds to the talar superior contact surface).





Chapter 5

Conclusions & Perspectives

Conclusions

Fast acquisition time, no need of repeated motions, and good soft tissue contrast are

the key features that makes the proposed methods suitable for real-time evaluation

of joint motion in vivo in normal and pathological conditions.

In the context of dynamic imaging, designing robust tracking methods is still an

open issue. The principal difficulty encountered in the current work was the misreg-

istrations happend when mapping estimation from the High-resolution static image

to the dynamic sequence within a multi-resolution framework. this step is very

important and it aims to find a link between the high-resolution static image and

at least one low-resolution time frame from the corresponding dynamic sequence.

The straightforward approach for doing that is to directly register the static image

against each time frame using bone segmentations as weights. Unfortunately, this

simple multi-resolution approach was not always sufficient for avoiding misregistra-

tions caused by local minima in the cost function. For more technical details about

the local minima problems, the reader is referred to Jenkinson’s paper [66].

To overcome this difficulty, these multi-resolution registrations were carried out in

two steps as detailed in Chapter 2.

The proposed method is robust to motion artifacts as well as image noise (see Fig-

ure 5.1).

One advantage of using FFE sequences is that they are more robust against

motion artifacts. Contrary to the ICP algorithm proposed in [33], our algorithm is

still robust despite reduced number of sagittal slices (only 6 compared to more than

8 in [33]).

One advantage of the log-euclidean polyrigid framework is that it ensures the invert-

ibility of the final transformations, allowing us to go both forward and backward in

time.

FLIRT (FMRIB’s Linear Image Registration Tool) is a fully automated robust

and accurate tool for linear (affine/rigid) intra- and inter-modal brain image reg-

istration. In this work, we have extended this tool to deal with non-linear image

registration in the context of articulated structures. Although there exist different

tools for non-linear or diffeomorphic image registration such as ANTs (Advanced

Normalization Tools), they did not necessarily preserve bone shapes after the align-

ment process. So we have preferred to fuse the flirt transformations by the log
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Figure 5.1: High-resolution reconstruction of one time frame using the proposed

method. From up to down, from left to right: low-resolution time frame; recon-

structed time frame; jacobian map of the deformation field from the static image to

the acquired time frame.

euclidean polyrigid framework. As detailed in previous chapters, we proposed to

compute a dense deformation field using matrix eigendecomposition. This tech-

nique is different from the scaling and squaring method used in previous works of

Arsigny et al. [5] and Commowick et al [35]. The advantage of this technique is that

it allows an exact computation of the matrix exponential contrary to the scaling

and squaring method which approximates the matrix exponential with a certain

level of accuracy. The algorithm that we propose in the current work improves both

the speed and the accuracy of the log-euclidean fusion of multiple rigid transforms.

The main limitation of our method is the mis-registration of the bone when it

is not wholly contained within the image FOV.

Perspectives

This study provides crucial data for future studies of spastic equinus and cerebral

palsy. Since spastic equinus was typically defined as the inability to dorsiflex

the foot above plantigrade with the hindfoot in neutral position and the knee

in extended position [72], we are interested in ankle joint kinematics during the

dorsi-plantar flexion motion cycle and this is the reason why we constrain the foot
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to a specific path using the fixture. The proposed approach will be further applied

to a larger dataset to compare ankle joint kinematics of children with CP with

age-matched healthy children.

We will also the method to other joints (shoulder/finger). Real-time dynamic

MRI is a valid and reliable technique to evaluate joint motion with a good

contrast between structures for T1-FFE sequence at the finger as shown in

figure 5.2. This imaging modality allows an in vivo quantification of joint kine-

matics and an estimation of flexor digitorum profundus (FDP) tendon moment arm.

Figure 5.2: T1-FFE sequence of the finger joint during motion.

Another perspective will consist in automatically segmenting the bones of inter-

est in the static data with the help of deep learning.

For better understanding of the joint mechanics and the interactions and depen-

dencies between rigid and non rigid structures. A quantification of the temporal

evolution of non rigid structures such as muscles and tendons is envisageable. A

parametric diffeomorphic mapping between deformable shapes (points, curves, sur-

faces) is possible using the registration approach proposed in [42], which outputs: a

set of control points near the most variable regions of the tracked organ, with a set

of attached vectors parameterizing the deformations of the ambient space. These

diffeomorphic mappings has been successfully employed to study the high morpho-

logical variability of organs such as those of the pelvic floor from 2D+t MRI se-

quences [115]. Similarly to the bones for which a continuous trajectory is estimated,

a continuous-time trajectories for muscles and tendons can be also estimated.
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Appendix A

Cortical thickness estimation

A.1 Computation of neonatal cortical thickness

In the context of developing neonatal brain MRI segmentation, researchers pro-

posed some robust algorithms such as the Expectation-maximization (EM) which is

a statistic-based algorithm [91], and the iterative multi-atlas patch-based approach

(IMAPA) [138]. However, the accuracy of the obtained cortical segmentations is

limited due to the lower SNR, the partial volume effects, in addition to the large

changes in brain shape in developing infants. In order to correct the MR brain

image segmentation, a deformable model is presented in [schuh2017deformable].

Therefore, accurate cortical thickness estimation may help for segmentation correc-

tion with the use of this prior knowledge to constrain the deformation.

The computation of thickness inside the cortex (CX) is performed using the Eule-

rian PDE approach presented in chapter 4 ; white matter (WM) segmentation is

considered as inner boundary while the complementary segmentation (CX +WM)

is considered as outer Dirichlet boundary. Figure A.1 illustrates the definition of

regions of interest (tissue region and Dirichlet boundaries) in a T2w axial MRI slice.

The corresponding cortical thickness map is presented in Figure A.2.

(a) Cortex (CX) (b) White matter (WM) (c) (CX +WM)

Figure A.1: Computation of 3D neonatal cortical thickness: (a) cortical gray matter

segment (orange label, inside which the thickness will be computed); (b) white

matter segment (green label, which will be considered as Dirichlet inner boundary);

(b) complementary segment (purple label, which will be considered as Dirichlet outer

boundary). Segmentations of cortex and white matter are performed using a fully

automated processing pipeline [91], from a T2-weighted neonatal brain MRI. The

voxel size of the image is 0.5× 0.5× 0.5mm.
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Figure A.2: Three-dimensional cortical thickness estimation. Thickness values are

expressed in mm. As recommended in [70] for data with 0.5×0.5×0.5mm resolution,

the total number of iterations for solving Laplace’s equation is set to 200 (performed

within 36sec on a regular grid of 290 × 290 × 203), giving very accurate thickness

values inside the cortex in a bijective fashion. Three axial slices are shown to display

the hidden information.

As a perspective, we can use this method to investigate the differences in cortical

thickness between children with and without cerebral palsy using MRI data.
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Abstract:

Cerebral Palsy (CP) is a common birth pathology in children leading to ankle

joint deformity, also known as the Spastic Equinus (SE) deformity, and thus leads

to abnormal function of the joint. While the management of ankle disorders focuses

on restoring the joint functions, the underlying pathomechanics is not clearly un-

derstood yet. To better understand the biomechanics of the pediatric ankle joint, it

is crucial to establish in vivo normative joint biomechanics before focusing on path-

omechanics studies. Dynamic MRI has made it possible to non-invasively capture

the ankle joint during a complete motion cycle. However, dynamic MRI comes with

its own set of unique challenges such as low resolution, anisotropy, and motion arti-

facts. This motivates our choice for combining spatial information of conventional

static MRI with temporal information of dynamic MRI sequences. The global aim

of this research work is to build computational frameworks and to develop robust

intensity-based approaches for estimating the joint motion and deformations from

3D+t MRI data, and thus for deriving the joint kinematics and the joint contact

mechanics during a single cycle of dorsi-plantarflexion. Due to a lack of sufficient

imaging data in the pediatric cohort, the proposed algorithms are applied on dy-

namic MRI data (portraying both passive and active ankle motions) from 6 healthy

children.

Keywords:

Dynamic MRI, motion estimation, motion interpolation, contact mechanics,

PDE(s), diffeomorphic registration, intensity-based registration.

Résumé:

La paralysie cérébrale (PC) est la premiére cause de l’handicap moteur de

l’enfant en France (2 naissances pour 1000). Il s’agit d’une pathologie causée par des

atteintes non progressives survenues lors du développement du cerveau chez le fœ-

tus ou le nourrisson. L’équin de la cheville est la déformation musculo-squelettique

la plus fréquente chez les enfants atteints par la PC. Malgré des thérapies médico-

chirurgicales multiples, le taux de récidive post-opératoire demeure très élevé (48%).

Une des principales raisons des échecs des thérapies est le manque de connaissance

de la biomécanique articulaire et musculaire. Les techniques d’imagerie en IRM dy-

namique permettent aujourd’hui d’explorer l’appareil musculosquelettique au cours

du mouvement dans les 3 dimensions de l’espace avec une grande précision (<1mm).

Cependant, ces techniques viennent avec leur propre liste de problèmes tels que la ré-

solution réduite, l’anisotropie et les artefacts de mouvement. Dans cette thèse, nous

abordons ces problèmes en combinant l’information spatiale de l’IRM conventionnel

avec l’information temporelle fournie par les séquences IRM dynamique. Nous avons

réussi à atteindre l’objectif principal de ces travaux de recherche en développant des

algorithmes robustes combinant des aspects informatiques et mathématiques (dont

le recalage d’images basé sur l’intensité était le facteur clé) qui nous ont permis

de reconstruire les mouvements articulaires et donc d’établir une analyse biomé-

canique de la cheville en plus de la reconstrucion spatio-temporelle de la séquence

dynamique en utilisant une approche log-euclidienne. Les algorithmes proposés ont



Résumé étendu

Résumé

La paralysie cérébrale (PC) est la premiére cause de l’handicap moteur de
l’enfant en France (2 naissances pour 1000). Il s’agit d’une pathologie causée
par des atteintes non progressives survenues lors du développement du cer-
veau chez le fœtus ou le nourrisson. L’équin de la cheville est la déformation
musculo-squelettique la plus fréquente chez les enfants atteints par la PC.
Malgré des thérapies médico-chirurgicales multiples, le taux de récidive post-
opératoire demeure très élevé (48%). Une des principales raisons des échecs
des thérapies est le manque de connaissance de la biomécanique articulaire
et musculaire. Les techniques d’imagerie en IRM dynamique permettent au-
jourd’hui d’explorer l’appareil musculosquelettique au cours du mouvement
dans les 3 dimensions de l’espace avec une grande précision (< 1mm). Ce-
pendant, ces techniques viennent avec leur propre liste de problèmes tels
que la résolution réduite, l’anisotropie et les artefacts de mouvement. Dans
cette thèse, nous abordons ces problèmes en combinant l’information spa-
tiale de l’IRM conventionnel avec l’information temporelle fournie par les
séquences IRM dynamique. Nous avons réussi à atteindre l’objectif principal
de ces travaux de recherche en développant des algorithmes robustes combi-
nant des aspects informatiques et mathématiques (dont le recalage d’images
basé sur l’intensité était le facteur clé) qui nous ont permis de reconstruire
les mouvements articulaires et donc d’établir une analyse biomécanique de
la cheville en plus de la reconstrucion spatio-temporelle de la séquence dy-
namique en utilisant une approche log-euclidienne. Les algorithmes proposés
ont été appliqués sur la base de données actuellement disponible (contenant
6 sujets normaux) et devraient être également appliqués sur une base plus
large contenant des sujets pathologiques de la même tranche d’âges afin de
comparer les deux populations et de caractériser la pathologie.

Mots-clés : IRM dynamique, estimation de mouvement, interpolation
de mouvement, biomécanique du cartilage articulaire, équations aux dérivées
partielles EDP(s), recalage difféomorphique, recalage basé-intensité.



1. Description générale

Ce travail est une contribution à l’étude de l’appareil musculo-squelettique
en mouvement et prend son origine clinique dans le traitement de l’équin de
cheville chez les enfants entre 7 et 14 ans. Le manque de consensus sur le
traitement de ces pathologies et les échecs relativement fréquents des trai-
tements sont dus dans une large mesure au manque de connaissances sur la
biomécanique articulaire et musculaire de l’articulation lésée.
Face à une pathologie dynamique, il est essentiel de comprendre l’effet in vivo
de la faiblesse des muscles de la cheville sur les paramètres biomécaniques
articulaires et sur la déformation osseuse qui en résulte. Cependant, cela n’a
pas été fait à ce jour dans la littérature.
Les travaux proposés dans cette thèse visent donc à développer l’usage de
l’IRM dynamique, connue comme technique non-invasive, pour l’étude de la
cheville en particulier, et plus généralement de l’appareil musculo-squelettique
en mouvement, et à fournir des outils permettant l’analyse spatio-temporelle
de ces données.
Ce rapport, écrit en anglais, se présente sous la forme d’un document de plus
d’une centaine de pages organisé en quatre chapitres décrits par la suite.

2. Acquisition de données IRM

Toutes les acquisitions IRM ont été faites au CHRU de Brest (centre de
radiologie de la cavale blanche). L’enregistrement IRM(3T Philips Achieva
scanner) est composé d’un premier temps dynamique, et d’un second temps
statique, selon un protocole identique pour les deux cohortes (sains et pa-
thologiques). Le côté étudié correspond au côté non dominant pour l’enfant
sain, et au coté pathologique pour l’enfant avec équin. Concernant la première
partie, dynamique, le sujet est placé en décubitus dorsal dans l’IRM, avec la
cheville placée dans une orthèse en plastique articulée spécialement conçue
pour l’étude et IRM compatible. Deux antennes circulaires de détection en
réseau phasé (dS Flex M, Philips Achieva) sont placées de part et d’autre de
l’orthèse de cheville. Le genou est en extension complète et l’arrière pied est
en position neutre dans le plan frontal. Cette orthèse permet des mouvements
passifs, à l’aide de cordelettes tirées par l’examinateur, puis des mouvements
actifs de flexions plantaire et dorsale. Le sujet effectue donc des séquences de
mouvements passifs, puis de mouvements actifs. Tous les mouvements sont
standardisés, partant de la position de flexion plantaire maximale, puis un
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mouvement de flexion dorsale lent et régulier pendant 9 secondes jusqu’à at-
teindre la position de flexion dorsale maximale, avant de revenir sans arrêt
vers la position initiale de flexion plantaire maximale en 9 secondes. Concer-
nant la partie passive, les cordelettes de l’orthèse sont tirées alternativement
pour chaque mouvement, dans une direction strictement parallèle à celle de
l’orthèse et avec la même force de traction afin de minimiser les différences
entre les mouvements et les sujets, et d’homogénéiser la direction des forces
extérieures s’appliquant au pied en mouvement. Concernant la partie ac-
tive, le temps est décompté auprès de l’enfant, lui permettant de réaliser
un mouvement suffisamment ample et progressif pour réduire les artefacts
d’acquisition.

3. Chapitre introductif

Un premier chapitre introductif regroupe un ensemble d’éléments cli-
niques, bibliographiques et méthodologiques. Le contexte clinique des tra-
vaux est d’abord présenté avec des rappels anatomiques sur l’articulation de
la cheville et une revue des traitements actuels de l’équin de cheville. Cette
étude met en évidence le manque de consensus sur les traitements à mener
en raison notament d’un déficit de connaissances fonctionnelles sur l’articu-
lation en mouvement. Une revue des méthodes permettant l’acquisition de
données IRM dynamique est ensuite proposée.
Si les méthodes utilisant l’acquisition basée sur la répétition d’un grand
nombre de cycles de mouvement sont exclues dans le cas de la cheville dans un
contexte pédiatrique, les séquences de type T1 fast field echo (FFE) peuvent
être utilisés mais présentent toutefois une résolution faible avec la présence
d’artefacts de mouvement. L’objectif de cette thèse est donc d’utiliser d’une
part une image statique à très haute résolution, et d’autre part des séquences
IRM dynamiques, pour obtenir une reconstruction spatio-temporelle haute
résolution permettant de quantifier in vivo la biomécanique de la cheville
par des méthodes de suivi. A ce jour et à notre connaissance, on est les pre-
miers à produire cette reconstruction haute résolution des séquences IRM
dynamiques.

Un état de l’art sur le recalage est ensuite proposé. Le fait d’avoir des
structures rigides et des structures molles dans l’articulation nous a amené
à privilégier un recalage de type poly-rigide fusionnant de multiple transfor-
mations rigide correspondant à chaque os.
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Ce shéma polyrigide, initialement défini par Arsigny en 2006 [1], vise
à définir une transformation inversible avec un comportement rigide local.
Ceci va permettre d’estimer un champ dense de déformation de l’articula-
tion avec les propriètes d’un difféomorphisme tels que l’inversibilité et la
différentiabilité. Plutôt que de moyenner les déplacements, ce qui conduit
généralement à une transformation non-inversible, l’idée de la méthode Log
Euclidinenne est de moyenner le champ de vitesse, construit à partir du loga-
rithme des transformations, la solution globale fusionnant les diverses com-
posantes étant obtenue par résolution d’une équation différentielle ordinaire
(EDO). De plus, la solution d’une EDO permet d’estimer une trajectoire lisse
et continue de chaque os et puis de toute l’articulation dans l’espace tangent
(le champ de vitesse). En d’autres, il s’agit d’une approche paramètrique(dont
le temps est le paramètre) qui permet à la fois de suivre l’évolution temporelle
d’un système articulaire et de réduire le nombre de paramètres géomètriques
nécessaires pour l’estimation des transformations non-rigides.
La fin du chapitre introductif est consacrée à la description de méthodes
mathématiques intervenant dans la méthode Log-Euclidienne (équations dif-
férentielles ordinaires, logarithme et exponentielle des matrices, etc...).

4. Contribution biomécanique à l’analyse cinématique in vivo des

mouvements de la cheville

Le second chapitre propose une méthode pour mesurer la cinématique de
l’articulation de la cheville en combinant l’information spatiale d’une acqui-
sition statique haute résolution avec l’information temporelle de la séquence
dynamique. Ceci a permis de suivre le mouvement de tout l’os au lieu de
suivre des points sur ses contours [2], dont la reproductibilité n’est pas néces-
sairement garantie vu les variations morphologiques des formes osseuses d’un
sujet à l’autre. La méthode que nous proposons nécessite le détourage de trois
os dans l’IRM haute résolution (calcaneus, talus, et tibia), comme initialisa-
tion. La segmentation est ensuite propagée dans les images basse résolution,
d’abord via un recalage rigide global, puis par un recalage rigide propre à
chaque os en utilisant les segmentations pour contraindre l’optimisation de
la fonction coût durant le processus de recalage. Les déplacements relatifs
rigides de chaque os dans la séquence temporelle en sont ensuite déduits. Le
choix automatique d’une image de référence la plus proche de l’image sta-
tique comme point de départ de la propagation dans la séquence dynamique
permet a priori de diminuer les erreurs de recalage. En effet, un algorithme
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de recalage est basé sur un processus d’optimisation qui converge plus faci-
lement pour des transformations géométriques qui sont proches de l’identité.
Dans un second temps, un champ dense de déformation est calculé entre
l’IRM statique et chaque image basse résolution en fusionnant les transfor-
mations rigides des os grâce à la méthode Log Euclidienne, permettant ainsi
d’estimer des déformations non-rigides de la cheville.

La méthode a été évaluée sur 6 patients sains avec des mouvements pas-
sifs ou actifs. Les évaluations portent essentiellement sur la cinématique 3D
de chacun des 3 os. La précision des transformations rigides est évaluée sur
la base d’un détourage manuel des os dans la séquence dynamique et me-
surée via le coefficient de DICE (mesurant le recouvrement entre masques
binaires), et l’erreur RMSE sur les contours. Ces résultats montrent un reca-
lage satisfaisant avec un coefficient de DICE 3D supérieur à 0.8 et une erreur
RMSE inférieure à 0.6 voxels. L’utilisation de la diagonalisation de la matrice
de transformation dans les calculs des exponentielles, en lieu et place de la
méthode scaling and squaring est mise en avant dans le document à la fois
pour accèlerer le calcul et en améliorer la précision avec les moindres coûts.

5. Estimation d’une trajectoire continue de l’articulation à partir

d’une séquence discrète d’images IRM

Le troisième chapitre a pour objectif d’améliorer la résolution temporelle
de la séquence dynamique via la conception d’un algorithme Log-Eucuclideen
polyrigide spatio-temporel fonctionnant en mode hors ligne. Ici encore, les os
sont traités indépendamment et la transformation globale est obtenue en-
suite par fusion. Deux méthodes d’interpolation des déplacements rigides
sont proposées, toutes les deux basées sur une représentation exponentielle
des rotations, celle retenue garantie une complexité moindre.

La pondération permettant la fusion est usuellement définie comme une
fonction inversement proportionnelle à la distance entre chaque voxel et l’os.
Le choix de ces fonctions est connu pour avoir un impact notable sur la trans-
formation globale, obtenue après fusion. Une nouvelle fonction est proposée
dans ce travail avec l’idée d’avoir des fonctions plus piquées lorsque plusieurs
os sont présents au voisinage d’un point d’une part, et de favoriser l’impact
direct de la transformation de l’os sur son voisinage quand on s’éloigne des
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Figure 1: Reconstruction haute résolution de la cheville pour un sujet (sujet 6 : mouve-
ment passif). Première ligne : images dynamiques acquises, Deuxième ligne : les reconstruc-
tions correspendantes, sous-échantillonnées à la résolution basse des images dynamiques
afin de valider la précision de la reconstruction. Chaque colonne correspond à une image
dans la séquence. Les contours ont été détourés manuellement sur la première image de
la séquence pour montrer à la fois la précision de reconstruction (première colonne), et le
mouvement en fonction du temps (colonnes de 2 à 4).

régions articulaires d’autre part, soit donc d’obtenir un comportement phy-
siquement plausible en dehors de la squelette. La méthode est validée par
exemple sur le suivi des mouvements du tendon d’Achille ainsi que par une
méthode de validation croisée visant à reconstruire chacune des images ac-
quises par interpolation des images l’encadrants. Ces nouvelles fonctions de
pondération améliorent fortement les le recalage par rapport aux poids clas-
siques.
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Figure 2: Amélioration de la résolution temporelle d’une séquence IRM dynamique en
utilisant l’iterpolation temporelle basée sur la diagonalisation des matrices de transforma-
tions. Les images acquises {Dk} sont indexées en blanc tandis que les images interpolées
sont indexées en jaune {Dk.k+1}.

6. Quantification de l’inconfort articulaire lors du mouvement de

la cheville

Le chapitre 4 aborde le problème de l’évaluation spatio-temporelle de
la largeur de l’interligne articulaire et donc de quantifier la mécanique de
contact pendant un cycle de mouvement continu. En permettant d’identifier
les phases critiques d’un cycle de mouvement.L’automatisation de ce pro-
cessus aurait un impact clinique important pour le traitement des maladies
dégénératives du cartilage pour évaluer l’impact des déformations musculo-
squelettiques sur les cartilages. Aucune correspondance ne pouvant être établie
entre deux surfaces lisses et exposées à des fortes déformations durant le mou-
vement, le calcul de l’épaisseur s’appuie assez classiquement sur un shéma
Eulérien maintenant éprouvé visant à déterminer des trajectoires de corres-
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pondance solutions de l’équation Laplacienne, l’épaisseur étant définie comme
la somme de largeur des deux trajectoires [3]. Cette technique est utilisée pour
calculer la largeur de l’interligne tibio-talienne (surface 3D entre tibia et ta-
lus). Les mesures étant effectuées sur les images dynamiques haute résolution
produites à l’issue du chapitre 2. Les carilages subissent des une déformation
non-linéaire durant le mouvement, le suivi de l’espace articulaire utilise la
méthode difféomorphique Log Euclidienne. Pour valider les résultats de ce
chapitre, une confrontation est réalisée entre les segmentation produites au-
tomatiquement avec l’espace intra-articulaire segmenté à la main sur chaque
image dans la séquence dynamique, ave un indice de recouvrement de l’ordre
de 0.9.

Figure 3: Évaluation spatio-temporelle (4D) de la largeur de l’interligne articulaire.
Première ligne : images IRM anatomiques. Deuxième ligne : Les valeurs de la largeur
de l’interligne articulaire projetées sur la suface de contact du tibia.

7. Conclusion

Cette thèse propose un ensemble de méthodes visant à étendre les tech-
niques d’IRM pour permettre l’analyse dynamique de la cheville et plus
généralement de l’appareil musculo-squelettique en mouvement. Ce travail
développe des méthodes de vision par ordinateur couplant IRM convention-
nelle (statique) et séquences dynamiques utlisées en clinique pour obtenir
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des séquences haute résolution et les utiliser pour la détermination de ca-
ractéristiques dynamiques de l’articulation. L’obtention de caractéristiques
temporelles est un des points forts de cette thèse tout comme l’est la vo-
lanté de mettre oeuvre des procédés d’acquisition minimisant les contraintes
pour le patient, en ne nécessitant aucune répétition de mouvement. L’obten-
tion automatisée de ces indicateurs dynamiques va impacter sans aucune
doute dans le futur la compréhension, le diagnostic et le traitement des
déformations musculo-squelettiques. Des travaux supplémentaires de valida-
tion sont évidemment nécessaires, notamment sur des sujets pathologiques
non intégrés dans cette étude, afin de mieux cerner le potentiel de ces travaux.
Finalemnt, l’objectif clinique de ses travaux consite à améliorer la fonctionna-
lité de l’articulation par rééducation ou correction chirurgicale avec prédiction
du résultat moteur à partir de ces nouvelles informations 3D+t.
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Résumé : La paralysie cérébrale (PC) est la 
première cause de l’handicap moteur de l’enfant en 
France (2 naissances pour 1000). Il s’agit d’une 
pathologie causée par des atteintes non progressives 
survenues lors du développement du cerveau chez le 
fœtus ou le nourrisson. L’équin de la cheville est la 
déformation musculo-squelettique la plus fréquente 
chez les enfants atteints par la PC. Malgré des 
thérapies médico-chirurgicales multiples, le taux de 
récidive post-opératoire demeure très élevé 
(48%).Une des principales raisons des échecs des 
thérapies est le manque de connaissance de la 
biomécanique articulaire et musculaire. Les 
techniques d’imagerie en IRM dynamique permettent 
aujourd’hui d’explorer l’appareil musculo-squelettique 
au cours du mouvement dans les 3 dimensions de 
l’espace avec une grande précision (<1mm). 
Cependant, ces techniques viennent avec leur propre 
liste de problèmes tels que la résolution réduite, 
l’anisotropie et les artefacts de mouvement.  

Dans cette thèse, nous abordons ces problèmes en 
combinant l’information spatiale de l’IRM 
conventionnel avec l’information temporelle fournie 
par les séquences IRM dynamique. Nous avons 
réussi à atteindre l’objectif principal de ces travaux 
de recherche en développant des algorithmes 
robustes combinant des aspects informatiques et 
mathématiques (dont le recalage d’images basé sur 
l’intensité était le facteur clé) qui nous ont permis de 
reconstruire les mouvements articulaires et donc 
d’établir une analyse biomécanique de la cheville en 
plus de la reconstruction spatio-temporelle de la 
séquence dynamique en utilisant une approche log-
euclidienne. Les algorithmes proposés ont été 
appliqués sur la base de données actuellement 
disponible (contenant 6 sujets normaux) et devraient 
être également appliqués sur une base plus large 
contenant des sujets pathologiques de la même 
tranche d’âges afin de comparer les deux 
populations et de caractériser la pathologie. 

 

Title : Development of dynamic MRI to study the musculoskeletal system during motion. 
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Abstract :  Cerebral Palsy (CP) is a common birth 
pathology in children leading to ankle joint deformity, 
also known as the Spastic Equinus (SE) deformity, 
which causes abnormal function of the joint. While the 
management of ankle disorders focuses on restoring 
the joint functions, the underlying pathomechanics is 
not clearly understood yet. To better understand the 
biomechanics of the pediatric ankle joint, it is crucial 
to establish in vivo normative joint biomechanics 
before focusing on pathomechanics studies. Dynamic 
MRI has made it possible to non-invasively capture 
the ankle joint during a complete motion cycle. 
However, dynamic MRI comes with its own set of 
unique challenges such as low resolution, anisotropy, 
and motion artifacts. 

This motivates our choice for combining spatial 
information of conventional static MRI with temporal 
information of dynamic MRI sequences. The global 
aim of this research work is to build computational 
frameworks and to develop robust intensity-based 
approaches for estimating the joint motion and 
deformations from3D+t MRI data, and thus for 
deriving the joint kinematics and the joint contact 
mechanics during a single cycle of dorsi-
plantarflexion. Due to a lack of sufficient imaging 
data in the pediatric cohort, the proposed algorithms 
are applied on dynamic MRI data (portraying both 
passive and active ankle motions) from 6 healthy 
children. 
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