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Abstract

Object-oriented code smells are well-known concepts in software engineering. They refer
to bad design and development practices commonly observed in software systems. With
the emergence of mobile apps, new classes of code smells have been identified to refer to
bad development practices that are specific to mobile platforms. These mobile-specific code
smells differ from object-oriented ones by pertaining to performance issues reported in the
documentation or developer guidelines. Since their identification, many research works studied
mobile-specific code smells to propose detection tools and study them. Most of these studies
focused on measuring the performance impact of such code smells and did not provide any
insights about their motives and potential solutions. In particular, we lack knowledge about
(i) the rationales behind the accrual of mobile code smells, (ii) the developers’ perception
of mobile code smells, and (iii) the generalizability of code smells across different mobile
platforms. These lacks hinder the understanding of mobile code smells and consequently
prevent the design of adequate solutions for them.

Therefore, in this thesis we conduct a series of empirical studies to better understand
mobile code smells. First, we study the prevalence of code smells in different mobile platforms.
Then, we conduct a large-scale study to analyze the change history of mobile apps and
discern the factors that favor the introduction and survival of code smells. To consolidate
these studies, we also perform a user study to investigate developers’ perception of code
smells and the adequacy of static analyzers as a solution for coping with them. Finally, we
perform a qualitative study to question the established foundation about the definition and
detection of mobile code smells. The results of these studies revealed important research
findings. Notably, we showed that pragmatism, prioritization, and individual attitudes are
not relevant factors for the accrual of mobile code smells. The problem is rather caused
by ignorance and oversight, which are prevalent among mobile developers. Furthermore,
we highlighted several flaws in the code smell definitions currently adopted by the research
community. These results allowed us to elaborate some recommendations for researchers and
tool makers to design detection and refactoring tools for mobile code smells. Our results
opened perspectives for research works about the identification of mobile code smells and
development practices in general.





Abstract

Au cours des dernières années, les applications mobiles sont devenues indispensables
dans notre vie quotidienne. Ces applications ont pour particularité de fonctionner sur des
téléphones mobiles, souvent limités en ressources (mémoire, puissance de calcul, batterie, etc).
Ainsi, il est impératif de surveiller leur code source afin de s’assurer de l’absence de défauts de
code, c.à.d., des pratiques de développement qui dégradent la performance. Plusieurs études
ont été menées pour analyser les défauts de code des applications mobile et évaluer leur
présence et leur impact sur la performance et l’efficience énergétique. Néanmoins, ces études
n’ont pas examiné les caractéristiques et les motifs de ces défauts alors que ces éléments sont
nécessaires pour la compréhension et la résolution de ce phénomène.

L’objectif de cette thèse est de répondre à ce besoin en apportant des connaissances
sur les défauts de code mobile. Pour cela, nous avons mené diverses études empiriques à
caractère quantitatif et qualitatif pour comprendre ce phénomène et ses possibles résolutions.
Les résultats de ces études montrent que les défauts de code mobile ne sont pas dus au
pragmatisme, à la priorisation, ou aux comportements individuels des développeurs. En effet,
l’essentielle raison derrière l’accumulation des défauts de code est l’ignorance générale de ces
pratiques parmi les développeurs. Nos études ont aussi montré que le linter peut être un outil
adéquat pour l’analyse des défauts de code et l’amélioration des performances. Cependant,
certaines défauts nécessitent une analyse dynamique pour une détection plus précise. Enfin,
nous avons montré qu’il existe un écart entre les défauts de code étudiés par la communauté
scientifique et les réelles mauvaises pratiques adoptées par les développeurs d’applications
mobiles. Pour remédier à cet écart, nous recommandons à la communauté d’impliquer les
développeurs dans le processus d’identification de défauts de code.
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Chapter 1

Introduction

1.1 Context

In 2007, the market of mobile phones was shaken by the unveiling of the original iPhone.
Smartphones already existed and detained a small share of the mobile phone market before
the iPhone. Examples of these smartphones are the BlackBerry, Nokia E62, and Motorola Q,
which were mainly intended for business professionals. However, the iPhone was considered
as a game-changer thanks to its revolutionary hardware and software features. In particular,
it replaced the physical hardware buttons and the stylus by a touchscreen and proposed
new built-in software, like a Safari browser and a YouTube client. These features allowed
smartphones to reach a wider market. Indeed, the original iPhone sold 6.1 million units and
launched an unprecedented growth in the market of mobile devices [202]. Tens of mobile
devices were launched afterwards to offer new capabilities and choices to end-users. Notably,
in 2008, the HTC Dream was announced as the first smartphone to feature an Android OS,
and in 2010, the first iPad was unveiled. These continuous improvements allowed mobile
devices to successfully conquer the market and retain the interest of end-users. During 2018
alone, 1.4 billion smartphones were sold and 173 million tablets were shipped [33].

This market expansion led to the development of a new software ecosystem to accompany
this new generation of mobile devices. In particular, several operating systems were developed
to run on mobile devices, notably, Android and iOS, but also other systems like Windows 10
Mobile, Fuchsia, and HarmonyOS. Android and iOS provided their own software development
kits (SDK) and app markets to facilitate the creation of mobile apps for their operating
systems. These SDKs provide the essential components to build a mobile app that meets the
needs of a mobile user. On top of classical software development tasks, these components
facilitate the management of the user interface (UI), user inputs, and sensors. The app
markets allow developers to easily commercialize their apps and reach end-users. Thanks to
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these facilities, Google Play Store and Apple App Store count today more than 4.4 million
apps and 245 billion app downloads [180–182].

These numbers offered a wide variety of choice for end users and also created a competitive
atmosphere among apps. Developers must constantly ship new and better apps or features
to gain users and keep them satisfied. Reports suggest that satisfying mobile users can
be challenging as 75% of the mobile apps are uninstalled within three months [62]. To
face this challenge, developers have to pay careful attention to the quality of their mobile
apps. In particular, as mobile apps run on mobile devices, they are constrained by hardware
specificities:

— Mobile devices have limited capacities in terms of memory, storage, and battery
compared to personal computers. Some aspects of this limitation are disappearing as
manufacturers keep improving their devices. The current flagship devices propose 32GB

RAM and 1TB storage [162, 163]. This advancement faces the increasing requirements
of mobile users who expect to use their devices for more sophisticated tasks all day
long;

— Another hardware particularity is the sensors integrated in the mobile device. These
sensors allow the system and apps to collect data about the environment of the device
like motion, orientation, and localization. Today, on average, a mobile device is equipped
with 14 sensors [68]. The use of these sensors can be very costly especially in terms of
battery.

These hardware specificities set the bar high for mobile apps in terms of performance.
Specifically, apps are expected to perform complex tasks on devices with limited capacities,
manage battery-draining sensors, and remain fluid and efficient to satisfy users. Hence,
performance can be considered as a key challenge of mobile development. Indeed, a user
survey showed that the second top reason of app uninstall is poor performance [6].

1.2 Problem Statement

The research community showed an increasing interest for the topic of performance in
mobile apps. Many studies focused on identifying the development practices that hinder
the app performance. These studies covered practices related to network operations, sensor
utilization, and UI management [126, 159, 169, 208]. They also followed different approaches
to identify bad practices. Some studies relied on the manual analysis of source code, while
others relied on the documentation and blogs. In this regard, the study of Reimann et
al. [169] stands out by its reliance on diverse data sources and its resulting catalog, which
included 30 bad practices. These practices were dedicated to the Android platform and were
qualified as mobile-specific code smells.

The concept of code smells is well-known in Object-oriented (OO) software systems.
Specifically, OO code smells describe poor design or coding practices that negatively impact
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software maintainability and cause long-term problems. These code smells were identified
by Fowler [69] in 1999, and since then the research community developed an important
knowledge about them. Specifically, studies investigated and quantified their presence in
the source code and proposed tools to detect them [26, 139]. Research works also inspected
their impact on different maintainability aspects, like change proneness, and showed that
they represent a real concern for software systems [2, 67, 116]. Furthermore, researchers
analyzed the evolution of code smells in the change history (project commits) to identify
the rationales behind their introduction and removal in the source code [161, 196]. This
inspection was complemented by qualitative studies that highlighted the developers’ stance
about code smells [155, 203]. These studies helped in improving our understanding of code
smells and highlighted notable facts, like developers’ lack of awareness about code smells.
This understanding allowed studies to design solutions and tools adequate for OO code
smells [193, 195].

Mobile-specific code smells are different from OO code smells, since they often refer
to a misuse of the mobile platform SDK and they are more performance-oriented [169].
According to the guidelines of mobile frameworks, they may hinder memory, CPU, and energy
performances [7, 9, 137, 143]. Hence, our existing knowledge about OO code smells may
not apply to mobile-specific code smells. Aware of this difference, research studies inspected
some aspects of mobile-specific code smells. In particular, different research and community
tools were proposed to detect these code smells in mobile apps [9, 109, 156, 169]. Using these
tools, researchers quantified the presence of mobile-specific code smells and showed that they
are very common in Android apps [108, 157]. Empirical studies also assessed the impact of
these code smells on app performance, demonstrating that their refactoring can significantly
improve performance and energy efficiency [40, 107, 140, 157].

Apart from performance, other aspects of mobile-specific code smells remained unad-
dressed. Specifically, we still lack knowledge about their motives—i.e., the rationales behind
their appearance and accrual in the source code. We also lack qualitative understanding
of code smells and insights from developers about mobile code smells. Similarly to OO
code smells, understanding these aspects is important for designing adequate solutions and
tools for mobile-specific code smells. Another aspect of mobile-specific code smells that
remains unaddressed is the platform impact. Mobile-specific code smells are tightly related to
mobile platforms and their SDK. Nevertheless, these platforms manifest several differences in
their development frameworks, documentations, and communities. Hence, it is important to
inspect multiple mobile platforms and study their relations with mobile-specific code smells.

In this thesis, we aim to address these lacks and build a better understanding of mobile-
specific code smells. We believe that this understanding is helpful for the research community
working on mobile apps and their performance, but also to the research community of
code smells and technical debt in general. Moreover, understanding the motives of code
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smells is necessary for tool makers who aspire to build tools that meet the needs of software
developers.

The objective of this thesis is to build an understanding of mobile-specific
code smells that helps in the design of adequate tools and solutions for them.

To build this understanding, we address in this thesis different research problems. We detail
in the following these problems and the motivation behind our focus on them.

1.2.1 Problem 1: Code Smells in Different Mobile Platforms

All the studies of mobile-specific code smells focused on the Android platform. This focus
may be justified as this platform is popular and easy to study compared to iOS. Nonetheless,
mobile platforms manifest important differences in their development frameworks and runtime
environments. These differences may impact the nature of code smells but also their extent
in the source code. Hence, comparative studies between different mobile platforms can be
helpful in understanding mobile code smells. On top of that, these studies can help in
identifying common code smells between multiple mobile platforms and therefore allow us to
generalize future studies and tools.

1.2.2 Problem 2: The Motives of Mobile-Specific Code Smells

The existing research studies did not explain the motives behind the accrual of mobile-
specific code smells. One of the objectives of this thesis is to provide this explanation. In this
regard, the literature of technical debt suggests that the potential motives behind code smells
are (i) internal and external factors like pragmatism and prioritization, (ii) development
processes, and (iii) developer motives like attitudes, ignorance, and oversight. We aim to
assess the relevance and impact of these motives in the case of mobile-specific code smells.
This assessment is important for all future approaches and tools to cope with these code
smells.

1.2.3 Problem 3: Developers’ Perception of Mobile-Specific Code Smells

Aware of the importance of developers in the topic of code smells, previous studies
captured developers’ perception of OO code smells. Notably, the survey of Palomba et
al. [155] showed that intuitive code smells that are related to complex or long source code
are generally perceived as an important threat by developers. On the other hand, code
smells that are related to OO concepts rather than explicit complexity are less perceived
by developers. Interestingly, mobile-specific code smells may not be intuitive, as they rely
on technical practices related to the SDK. Hence, mobile developers may be unaware of
these code smells and thus introduce them in their software systems. Nevertheless, research
studies about mobile-specific code smells did not investigate this hypothesis. Therefore, in
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this thesis we aim to understand how developers perceive code smells that are specific to
mobile platforms.

1.3 Contributions

To address the aforementioned problems, we conduct in this thesis multiple studies
that contribute to the research about mobile apps and code smells. We summarize these
contributions in the following subsections.

1.3.1 Contribution 1: Study of the iOS Platform

The first contribution of this thesis is a study of code smells in the iOS platform. In this
study, we propose six iOS-specific code smells that we identified from developers’ discussions
and the platform’s official documentation. We summarize these code smells in a structured
catalog and we emphasize the similarities between our iOS code smells and other Android-
specific smells. We also propose Sumac, the first code smell detector for iOS apps. Sumac
is able to detect seven code smells in apps written in Objective-C or Swift. This study
covers 279 iOS apps and 1,551 Android apps and highlights several findings. In particular, it
shows that some code smells can be generalized to both mobile platforms Android and iOS.
Moreover, it suggests that the presence of code smells is more related to the mobile platform
than the programming language.

1.3.2 Contribution 2: Discerning the Motives of Mobile-Specific Code
Smells

The second contribution of our thesis is a series of empirical studies that analyze the
change history to discern the motives behind mobile-specific code smells. To perform these
studies, we design and build Sniffer, a novel toolkit that tracks the full history of Android-
specific code smells. Our toolkit tackles many issues raised by the Git mining community,
like branch and renaming tracking [120]. Using Sniffer, we perform three empirical studies:

— Evolution study: This study analyzes the introductions and removals of mobile-
specific code smells aiming to understand how prioritization factors impact them. The
study also analyzes the actions leading to code smell removals to inspect motives like
pragmatism, ignorance, and oversight;

— Developers study: This study intends to understand the role played by developers
in the accrual of mobile-specific code smells. This study covers the three motives that
are developer-oriented, namely attitude, ignorance, and oversight;

— Survival study: This study investigates the survival of mobile-specific code smells in
the change history. In particular, it analyzes the impact of processes and prioritization
factors on the persistence of code smells in the codebase.
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These studies cover eight Android code smells, 324 Android apps, 255k commits, and
contributions from 4,525 developers. The results of these studies shed light on many potential
rationales behind the accrual of Android code smells. In particular, they show that:

— Pragmatism and prioritization choices are not relevant motives in the case of Android
code smells;

— Individual attitudes of Android developers are not the reason behind the prevalence of
code smells. The problem is rather caused by the ignorance and oversight, which seem
to be common among the studied developers;

— The processes adopted by development teams (e.g., the use of tools and their configura-
tion) can help in limiting the presence of code smells.

1.3.3 Contribution 3: Study of Developers Perception of Mobile-Specific
Code Smells

To address the lack of comprehension of developers’ perception of mobile-specific code
smells, we conduct a qualitative study about the usage of Android Lint by developers. We
focus on Android Lint because it is a widely adopted tool that can be considered as a medium
between developers and code smells. Indeed, it is the most used linter for Android, and
it detects a large set of mobile-specific code smells. Our study includes interviews with
14 experienced Android developers. The results of these interviews provide insights about
developers’ perception of Android code smells:

— There is a prevalent ignorance of mobile-specific code smells among developers;
— The mindset of managing performance reactively is very common. Hence, future studies

should adapt to this mindset and focus on reactive approaches and tools for dealing
with code smells like profilers;

— Some developers challenge the relevance and impact of performance bad practices.
Our results also provide many indications about the usage of linters for performance:

— Linters can be useful for anticipating and debugging performance bottlenecks and they
can also be used to raise performance culture among developers;

— Besides the intuitive proactive approach for using linters, developers can also use linters
reactively in performance sprints;

— Linters should be more clear and explicit about the categories of checks. Clarity is also
required in the explanations of the potential impact of performance checks.

1.3.4 Contribution 4: A Reevaluation of Mobile-Specific Code Smells

The last contribution of our thesis is an exploratory study inspecting the characteristics
of mobile-specific code smell instances. In this study, we rely on the well founded approach
of Grounded Theory [90], which allows us to build a theory about mobile-specific code smells.
This theory provides second thoughts about the established foundation about code smell
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definition and detection. Specifically, it highlights the following flaws in the definitions of
Android code smells:

— The code smell definitions for No Low Memory Resolver, UI Overdraw, and HashMap
Usage omit critical technical details and generate many false positives;

— The current definitions of Leaking Inner Class and Member Ignoring Method consider
prevalent practices related to prototyping and the usage of listeners as performance
issues. This leads to confusing code smell instances that may be hard to refactor for
developers;

— The definition of Unsupported Hardware Acceleration considers Path drawing, which
does not have exact alternatives in Android, as a bad practice. This generates confusing
code smell instances that may seem inevitable for developers.

The theory also shows that the techniques currently used by research tools for detecting UI
Overdraw and Unsupported Hardware Acceleration exhibit many flaws that can hinder the
study of these code smells.

1.4 Outline

The remainder of this dissertation is composed of five chapters as follows:

Chapter 2: State of the Art: This chapter presents the most relevant works for our
topic. This includes works about the identification, detection, and impact of mobile-specific
code smells. It covers studies related to the management of performance in software systems.

Chapter 3: Code Smells in iOS Apps: This chapter presents a study of code smells in
the iOS platform. This chapter is a revised version of the following paper:

— Sarra Habchi, Geoffrey Hecht, Romain Rouvoy, and Naouel Moha. Code smells in
iOS apps: How do they compare to Android? In Proceedings of the 4th IEEE/ACM
International Conference on Mobile Software Engineering and Systems, 2017.

Chapter 4: Code Smells in the Change History: This chapter synthesizes our inves-
tigation of mobile-specific code smells in the change history to understand their motives.
This chapter is a revised version of the following papers:

— Sarra Habchi, Romain Rouvoy, and Naouel Moha. Android Code Smells: From Birth
to Death, and Beyond. In Journal of Systems and Software, 2019—Under evaluation.

— Sarra Habchi, Naouel Moha, and Romain Rouvoy. The rise of Android code smells:
Who is to blame? In Proceedings of the 16th International Conference on Mining
Software Repositories, 2019.
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— Sarra Habchi, Romain Rouvoy, and Naouel Moha. On the survival of Android code
smells in the wild. In Proceedings of the 6th IEEE/ACM International Conference on
Mobile Software Engineering and Systems, 2019.

Chapter 5: Developers’ Perception of Mobile Code Smells: This chapter presents
a qualitative study about developers’ perception of code smells and the adequacy of linters
as a solution for them. This chapter is a revised version of the following paper:

— Sarra Habchi, Xavier Blanc, and Romain Rouvoy. On adopting linters to deal with
performance concerns in Android apps. In Proceedings of the 33rd IEEE/ACM Inter-
national Conference on Automated Software Engineering, 2018.

Chapter 6: A Second Thought About Mobile Code Smells: This chapter presents
an exploratory study that questions the established definitions and detection techniques for
mobile-specific code smells.

1.5 Publications

1.5.1 Published

— Sarra Habchi, Xavier Blanc, and Romain Rouvoy. On adopting linters to deal
with performance concerns in Android apps. In ASE18-Proceedings of the 33rd
IEEE/ACM International Conference on Automated Software Engineering, 2018.

— Sarra Habchi, Naouel Moha, and Romain Rouvoy. The rise of Android code smells:
Who is to blame? In MSR2019-Proceedings of the 16th International Conference on
Mining Software Repositories, 2019.

— Sarra Habchi, Romain Rouvoy, and Naouel Moha. On the survival of Android
code smells in the wild. In MOBILESoft19-Proceedings of the 6th IEEE/ACM
International Conference on Mobile Software Engineering and Systems, 2019.

— Sarra Habchi, Geoffrey Hecht, Romain Rouvoy, and Naouel Moha. Code smells in
iOS apps: How do they compare to Android? In MOBILESoft17-Proceedings
of the 4th IEEE/ACM International Conference on Mobile Software Engineering and
Systems, 2017.

1.5.2 Under Evaluation

— Sarra Habchi, Romain Rouvoy, and Naouel Moha. Android Code Smells: From
Birth to Death, and Beyond. In Journal of Systems and Software, 2019.



Chapter 2

State of the Art

In this chapter, we review the works that are closely related to our research topic. While
the field of mobile-specific code smells is relatively young—the first publication was in 2013,
we found many research works that can be insightful in our context. We synthesized the
topics of these research works in the diagram depicted in Figure 2.1. Based on this synthesis,
we organize our state of the art in two sections. Section 2.1 presents all topics related to
code smells in mobile apps, including the identification, detection, and empirical studies.
This section mainly focuses on mobile-specific code smells, but also presents some works
about mobile-specific issues that are not explicitly presented as code smells. Moreover, the
section covers studies about OO code smells in mobile apps, and other studies of OO code
smells that can serve our research purposes. Section 2.2 presents works related to the topic
of managing mobile-specific code smells in practice. This includes works about performance
management in mobile apps and other software systems. This section also covers the topic of
mobile-specific linters and studies about linters in general.

Mobile-Specific 
Code Smells

Identification

Detection

StudiesOO
Studies 

Mobile-Specific 
IssuesManagement

Performance 
Management

Mobile 
Linters

Linter Studies

Section 2.1Section 2.2

Figure 2.1 Structure of our state of the art.
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2.1 Code Smells in Mobile Apps

We present in this section research works related to the identification, detection, and
empirical study of mobile-specific code smells. We also briefly present some studies about
OO code smells in mobile apps and other software systems.

2.1.1 Identification of Mobile-Specific Code Smells

The works that identified mobile-specific code smells laid the foundation for all other
studies about mobile code smells. The main work in this category was conducted by
Reimann et al. [169], who proposed a catalog of mobile-specific code smells.

The Catalog of Reimann et al.

Reimann et al. identified 30 quality smells dedicated to Android based on the following
information providers:

— Documentation: including official ones, like Android Developer Documentation 1 and
semi-official ones like Google I/O talks; 2

— Blogs: this includes blogs from developers at Google or other companies who explain
development issues with Android;

— Discussions: this includes questions and answers forums, like the Stack Exchange
network, 3 bug tracker discussions, 4 and other developer discussion forums.

To identify code smells from these resources, Reimann et al. opted for a semi-automated
approach. First, they automatically crawled and queried (when possible) the information
providers and gathered their data into a local database. Afterwards, they filtered this data
using keywords like “energy efficiency”, “memory”, and “performance”, paired with issue
keywords like “slow”, “bad”, “leak”, and “overhead”. The results of this filtering were again
persisted in a database. Finally, the authors read the collected resources and extracted a
catalog of code smells dedicated to Android.

While the catalog included 30 different quality code smells, many of them were only
“descriptive and abstract”. That is, Reimann et al. only provided a detailed specification
for nine code smells. The other 21 were not characterized using a catalog schema and did
not have a precise definition. Interestingly, later studies provided detailed definitions for
some of these code smells to study them. We will present this in the upcoming sections.
Reimann et al. used the following schema to present the nine defined code smells:

— Name;
— Context: generally UI, implementation, or network;

1. https://developer.android.com/
2. https://events.google.com/io/
3. https://stackexchange.com/
4. https://source.android.com/setup/contribute/report-bugs

https://developer.android.com/
https://events.google.com/io/
https://stackexchange.com/
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— Affected qualities: the aspect of performance or user experience that may be affected
by the quality smell;

— Roles of Interest: the source code entity that hosts the code smell;
— Description;
— Refactorings;
— References;
— Related Quality Smells;

In Table 2.1, we present the nine detailed code smells with their affected qualities.

Code smell Affected qualities

Interruption from Background User Expectation, User Experience, User Conformance

Data Transmission Without Compression Energy Efficiency

Dropped Data User Experience, User Conformity

Durable WakeLock Energy Efficiency

Internal Use of Getters/Setters Performance

No Low Memory Resolver Memory Efficiency, Stability, User Experience

Rigid AlarmManager Energy Efficiency, Performance

Unclosed Closeable Memory Efficiency

Untouchable User Experience, Accessibility, User Expectation

Table 2.1 The code smells detailed by Reimann et al. [169].

From Table 2.1, we observe that even though the authors did not explicitly tag their code
smells as performance-oriented, most of them affect performance related issues. This is due
to the keywords initially used for filtering the data, which were mainly around performance
and energy issues.

The Identification of Other Mobile-Specific Issues

Many other works identified mobile-specific practices that hinder performance without
referring to them as code smells. In this category, the closest work to our topic is the one of
Afjehei et al. [4], which identified four performance anti-patterns that are specific to the iOS
platform. To identify these anti-patterns, the authors first collected performance-related issue
reports from the repositories of four iOS apps written in Swift. The reports were selected
based on keywords like “slow”, “performance”, “thread” and “memory”. Then, they manually
analyzed 225 reports to identify the root causes of performance issues. They found that the
redundant issues are inefficient UI design, memory issues, and inefficient thread handling.
Afterwards, they derived from the performance reports four anti-patterns that they presented
using the following schema: name, description, example of an instance, example of developer
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awareness, and possible solutions. It is worth noting that this study was conducted after our
work and publication about iOS-specific code smells.

Pathak et al. [159] proposed a taxonomy of mobile errors that cause high energy consump-
tion and identified them as ebugs. The ebugs can occur at any level of the mobile system—i.e.,
apps, operating system, hardware, firmware, external conditions, etc. Pathak et al. built
their taxonomy using a semi-automated approach. First, they collected 1.2 million posts
discussing energy issues from bug repositories and user discussion forums. Then, they filtered
and clustered these posts to build an initial classification of ebugs. Finally, they manually
analyzed the top groups to build a taxonomy. This taxonomy showed the origins of energy
issues faced by users, however it did not characterize the development practices that led
to these issues. The only bugs presented in this study that are relevant to our work are
No-Sleep, Loop, and Immortality. Interestingly, the No-Sleep bug is similar to the code smell
Durable Wakelock from the catalog of Reimann et al. [169].

Liu et al. [127] identified three anti-patterns from the performance bugs of Android apps.
Their identification started by collecting 70 performance-labeled issues from the bug-tracking
systems of 29 Android apps. Afterwards, they manually analyzed the bugs and their related
discussions to classify them according to their consequences. They found that performance
bugs can be attributed to three groups: GUI lagging, energy leaks, and memory bloat. To
identify the patterns that characterize the performance bugs, Liu et al. manually analyzed
the reports, patches, commit logs, and patch reviews looking for the root causes of the bugs.
They successfully identified the root causes of 52 performance bugs and found that for 21 of
them there were three common anti-patterns causing them. These anti-patterns are Lengthy
operations in main threads, Wasted computation for invisible GUI, and Frequently invoked
heavy-weight callbacks. Interestingly, the anti-pattern Lengthy operations in main threads
is related to the Heavy code smells, which are detected by Paprika [106]. Indeed, they all
describe heavy operations that block the main thread and degrade the user experience.

Guo et al. [92] characterized resource leaks in Android apps. First, they collected data
from Android discussion forums to identify three classes of Android resources: exclusive
resources, memory-consuming resources, and energy consuming resources. Then, they followed
a semi-automated approach where they relied on their tool Relda and on manual analysis
to identify resource leaks in 98 Android apps. They found that leaks generally occur for four
main reasons: (i) the resource release is in a handler, (ii) the resource release is forgotten,
(iii) the resource release is in a callback, or (iv) the Android app lifecycle is misunderstood.

Zhang et al. [208] identified four Android development practices that lead to energy leaks.
The authors profiled 15 Android apps and detected energy leaks caused by network activity.
Afterwards, they manually examined the apps looking for the root causes of these leaks. They
found that the root practices are API misuse, bad downloading scheme, repetitive downloads,
and aggressive prefetching.
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Linarez et al. [123] identified API calls and usages that lead to high energy consumption
in Android apps. They followed an approach that combined quantitative and qualitative
analyses. First, they automatically analyzed the API calls in 55 Android apps to measure
their energy consumption values. The measurement highlighted 131 API calls that consumed
significantly more energy than the average API calls. Then, they manually analyzed these
131 API calls to identify their patterns. They found that the energy greedy API calls are
mostly a manipulation of GUI and images or database calls.

Synthesis

Authors Platform Resources Process Focus #Smells

Reimann et al. [169] Android
documentation

blogs
discussions

data crawling
manual analysis performance 30

Afjehei et al. [4] iOS issue reports manual analysis performance 4

Pathak et al. [159] Android issue reports
discussions

data crawling
manual analysis performance 3

Liu et al. [127] Android issue reports manual analysis performance 3

Guo et al. [92] Android source code profiling
manual analysis

performance
(resource leaks) 4

Zhang et al. [208] Android source code profiling
manual analysis energy leaks 4

Linarez et al. [123] Android source code profiling
manual analysis energy efficiency -

Table 2.2 Identification of mobile-specific issues

We summarize the works that identified mobile-specific issues in Table 2.2. As highlighted
in the table, all these works focused on the performance-aspect and some of them were even
more specific by investigating narrower issues like resource leaks or energy efficiency. The
main difference between these works resides in the resources and processes leveraged in the
identification process. The works of Guo et al. [92], Zhang et al. [208], and Linarez et al. [123]
relied on the profiling of source code to detect performance bottlenecks and used manual anal-
ysis afterwards to identify the root causes of these bottlenecks. The works of Afjehei et al. [4]
and Liu et al. [127] relied only on manual analysis to directly extract bad practices from
reports of performance issues. The works that diversified their resources the most are the
ones of Reimann et al. [169] and Pathak et al. [159]. They both collected and filtered large
amounts of data from online discussions before manually analyzing it. Interestingly, in
addition to the discussions, Reimann et al. also collected data from documentation and
developer blogs. The work of Reimann et al. also stands out with the number of identified
issues (30), which tops all other identification studies. Later, this work became a reference in
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the field of mobile-specific code smells as many studies rely on it to build detection tools and
conduct studies.

2.1.2 Detection of Mobile-Specific Code Smells

In this section, we review the techniques and tools proposed for detecting mobile-specific
code smells. In this regard, there are two categories of works: (i) tools and techniques that
detect code smells from the catalog of Reimann et al. [169] and (ii) tools and techniques that
detect other mobile-specific issues.

Tools and Techniques Covering the Catalog of Reimann et al.

Refactory: A tool proposed by Reimann et al. [169] for the detection and correction of
code smells. The tool is implemented as a set of plugins extending the Eclipse platform. It
uses an Eclipse Modeling Framework (EMF) to detect the nine precisely characterized quality
smells from the catalog of Reimann et al.. Unfortunately, the source code of Refactory is
not currently available and we could not check its performance on Android apps.

Paprika: A tooled approach proposed by Hecht et al. [108] to detect OO and Android
code smells in Android apps. Paprika takes as input the Android packages (APK) and uses
Soot [199] and its Dexpler module [34] to convert the Dalvik bytecode into an abstract
model of the source code. This model is stored in a graph database, and the code smells are
expressed as queries that can be applied into this database to detect code smell instances.
Paprika initially detected four Android-specific and three OO code smells. Later, queries
were added for new code smells, and it currently detects 13 Android code smells. Paprika is
open-source [72] and we could apply it on multiple apps. Hecht et al. report that their tool
has an F1-score of 0.9 [106].

aDoctor: A tool designed by Palomba et al. [156] to detect Android code smells. aDoctor
takes the source code as input and relies on the Eclipse Java Development Toolkit (JDT) to
statically analyze it and detect code smells. aDoctor can detect 15 Android code smells
from the catalog of Reimann et al. [169]. We recall that the catalog of Reimann et al. initially
characterized only nine code smells. Hence, Palomba et al. had to provide precise definitions
for other six code smells to form their set of 15 code smells. It is possible to use aDoctor
via both CLI, for large scale analysis, and GUI. The source code of this tool is publicly
available, however we could not apply it on Android apps due to several crashes. Nonetheless,
Palomba et al. report that their tool has a 98% precision and a 98% recall.

MOGP technique: A Multi-Objective Genetic Programming technique proposed by
Kessentini and Ouni [115] to generate rules that detect Android code smells. MOGP
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takes as input examples of Android code smells and uses a multi-objective optimization
algorithm to generate a set of rules that maximize both precision and recall. The technique
was used to generate rules for six Android code smells from the catalog of Reimann et al. [169].
Kessentini and Ouni report that their technique has on average a 81% correctness and a 77%
relevance, based on the feedback of 27 developers. MOGP was proposed more as a technique
than a tool and its source code is, to the best of our knowledge, not publicly available.

Tools and Techniques Covering Other Mobile-Specific Issues

We present here tools that were proposed for detecting mobile-specific issues—other than
the ones present in the catalog of Reimann et al. [169]. Most of these tools focus on issues
identified by their very same authors and usually in the same studies.

iPerfDetector: A tool proposed by Afjehei et al. [4] to detect performance anti-patterns
in iOS apps. iPerfDetector takes as input the Swift source code and uses SwiftAST [205]
to parse it and generate an AST. Then, using visitors it analyzes the generated tree to detect
anti-patterns. iPerfDetector detects four anti-patterns that were identified by the same
authors and its source code is open-source.

Relda: A tool proposed by Guo et al. [92] to detect resource leaks in Android apps. Relda
takes as input the APK and applies reverse engineering on it to extract the Dalvik bytecode.
Afterwards, it explores the Dalvik bytecode in sequential order to build a modified Function
Control Graph (FCG). This modified FCG includes the Android framework callbacks in
order to handle the features of event-driven mobile programming. After building the FCG,
Relda performs a depth-first search on it to detect unreleased resources. To the best of our
knowledge, Relda is not currently open-source.

PerfChecker: A tool proposed by Liu et al. [127] for detecting performance anti-patterns
in Android apps. PerfChecker takes Java bytecode as input and relies on Soot to perform
static analysis on it. The main components of PerfChecker’s detection are class hierarchy,
call graph, and dependency graph analyses. PerfChecker detects two anti-patterns that
are identified by the same authors, namely Lengthy operations in main threads and Frequently
invoked heavy-weight callbacks. Currently, the source code of PerfChecker is not publicly
available.

GreenDroid: An approach proposed by Liu et al. [126] to detect two energy inefficiencies,
namely Sensor listener misusage and Sensory data underutilization. GreenDroid takes
as input the Java bytecode and the configuration files of the Android app (XML files). It
uses these files to execute the app on a Java virtual machine. Then, during the execution,
it monitors sensor operations—i.e., registration and unregistration, and feeds the app with
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mocked sensory data. Afterwards, it tracks the propagation of these data and compares its
utilization at different states. This comparison allows GreenDroid to identify app states
where sensory data are underutilized, and thus detect Sensory data underutilization. The
approach detects sensor listeners that have not been unregistered by the end of execution
and reports them as instances of Sensor listener misusage.

ADEL: For Automatic Detector of Energy Leaks, a tool proposed by Zhang et al. [208] to
help detecting energy leaks in network communications of Android apps. ADEL takes as
input Dalvik bytecode and performs dynamic taint-tracking analysis on it to detect energy
leaks. During the analysis, the tool labels all the downloaded data objects with a tag to
enable their propagation tracking. This tracking follows also all new data objects that are
derived from the originally labeled (tainted) ones. Hence, the tool can map the system inputs
with the downloaded objects. This mapping can provide developers with insights about
unnecessary network communications. Zhang et al. claim that these insights can ease the
identification of design flaws resulting in energy waste. ADEL was not designed to detect
specific energy issues, however, as explained in the previous section, its usage allowed the
authors to identify four causes of energy leaks.

Synthesis

Tool/Technique Platform #Issues Analysis Input Source

R
ei

m
an

n
et

al
. Refactory Android 9 static Java code private

Paprika Android 13 static APK public

aDoctor Android 15 static Java code public

MOGP Android 6 static Java code private

O
th

er
iss

ue
s

iPerfDetector iOS 4 static Swift code public

Relda Android - static APK private

PerfChecker Android 2 static Java bytecode private

GreenDroid Android 2 dynamic Java bytecode -

ADEL Android - dynamic Dalvik bytecode -

Table 2.3 Tools and techniques for detecting mobile-specific issues

We summarize in Table 2.3 the tools and techniques that were proposed for detecting
mobile-specific issues. The iPerfDetector tool stands out by targeting the iOS platform
while all other tools opted for Android. Also, we notice that GreenDroid and ADEL are
the only tools that relied on dynamic analysis, while the prevalent choice is static analysis.
The use of static analysis is reasonable in this case since mobile-specific issues are usually
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expressed as rules describing the source code. It is worth noting that we do not discuss in
this synthesis the validation and performance of these tools. Only few studies reported their
tool performances and unfortunately they followed different processes (manual validation,
developer validation, etc).

For the tools that addressed the catalog of Reimann et al. [169], only Paprika and
aDoctor are open-source. The two tools also detect more code smells than other tools,
13 and 15 respectively. They differ as Paprika detects code smells directly from the APK,
while aDoctor relies on the Java source code.

2.1.3 Studies About Mobile-Specific Code Smells

The studies of mobile-specific code smells fall into two categories: (i) quality studies and
(ii) performance studies.

Quality Studies

The closest study to our research topic is the one of Hecht et al. [108] in which they
used code smells as a metric to track the quality of Android apps. The study analyzed
four Android-specific and three OO code smells and covered 3,568 versions of 106 Android
apps. The four studied Android-specific code smells included two smells from the catalog of
Reimann et al. [169], namely Leaking Inner Class and Member Ignoring Method, and two
new code smells called UI Overdraw and Heavy Broadcast Receiver. The authors described
these code smells based on the Android documentation, but did not provide any details about
their identification process. The authors relied on Paprika to detect these code smells and
their results showed that the quality of Android apps generally follow five patterns: constant
decline, constant rise, stability, sudden decline, and sudden rise. Nevertheless, these patterns
were built by combining both OO and Android-specific code smells, thus they cannot provide
fine-grained insights about the evolution of Android-specific code smells. Interestingly, in
the results discussion, the authors suggested that the rise of the quality metric is due to
refactoring operations but they did not provide any elements to justify this hypothesis.

Another close study was conducted by Mateus and Martinez [134], who used OO and
Android-specific code smells as a metric to study the impact of the Kotlin programming
language on app quality. Their study included four OO and six Android-specific code smells
and covered 2,167 Android apps. They found that three of the studied OO smells and three
of the Android ones affected proportionally more apps with Kotlin code, but the differences
were generally small. They also found that the introduction of Kotlin in apps originally
written in Java produced an increase in the quality scores in at least 50% of the studied apps.

Another close study is the one of Gjoshevski and Schweighofer [87], which did not study
explicitly mobile-specific code smells but relied on Android Lint rules. The study included
140 Lint rules and 30 open-source Android apps. The aim of this study was to identify
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the most prevalent issues in Android apps. They found that the most common issues are
Visibility modifier, Avoid commented-out lines of code, and Magic number.

Performance Studies

Many studies focused on assessing the performance impact of mobile code smells [40,
107, 157]. For instance, Palomba et al. [157] studied the impact of Android-specific code
smells on energy consumption. The study is, to the best of our knowledge, the largest in
the category of performance assessment. Indeed, it considered nine Android-specific code
smells from the catalog of Reimann et al. [169] and 60 Android apps. By analyzing the most
energy-consuming methods, the authors found that 94% of them were affected by at least one
code smell type. The authors also compared smelly methods with refactored ones and showed
that methods that represent a co-occurrence of Internal Setter, Leaking Thread, Member
Ignoring Method, and Slow Loop, consume 87 times more energy than refactored methods.

Hecht et al. [107] conducted an empirical study about the individual and combined impact
of Android-specific code smells on performance. The study covered three code smells from
the catalog of Reimann et al. [169]: Internal Getter Setter, Member Ignoring Method, and
HashMap Usage. To assess the impact of these code smells, they measured the performance
of two apps with and without code smells using the following metrics: frame time, number of
delayed frames, memory usage, and number of garbage collection calls. The results of these
measurements did not always show an important impact of the studied code smells. The
most compelling observations suggested that in the SoundWaves app, refactoring HashMap
Usage reduced the number of garbage collection calls by 3.6% and the refactoring of Member
Ignoring Method reduced the number of delayed frames by 12.4%.

Carette et al. [40] studied the same code smells as Hecht et al., but focused on their
energy impact. They detected code smell instances in five open-source Android apps and
then derived four versions of them: three by refactoring each code smell type separately,
and one by refactoring all of them at once. Afterwards, they used user-based scenarios to
compare the energy impact of the five app versions. Depending on the app, the measurement
differences were not always significant. Moreover, in some cases, the refactoring of code
smells like Member Ignoring Method slightly increased energy consumption (max +0.29%).
The biggest observed impact was on the Todo app where refactoring the three code smells
reduced the global energy consumption by 4.83%.

Morales et al. [140] conducted a study to show the impact of code smells on the energy
efficiency of Android apps. The study included five OO and three Android-specific code smells
and covered 20 Android apps. The included Android code smells are Internal Getter Setter
and HashMap Usage, from the catalog of Reimann et al. [169], and Binding Resources Too
Early. The results of their analysis of Android code smells showed that refactoring Internal
Getter Setter and Binding Resources Too Early can reduce energy consumption in some
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cases. As for OO code smells, they found that two of them had a negative impact on energy
efficiency, while the others did not. Also, the authors reported that code smell refactoring did
not increase energy consumption. Morales et al. also proposed EARMO, for Energy-Aware
Refactoring approach for MObile apps. EARMO is a multi-objective approach that refactors
code smells in mobile apps while considering their impact on energy consumption.

Synthesis

We summarize in Table 2.4 the main research works that studied mobile-specific code
smells. We observe that most of these studies focused on assessing the impact of code smells
on performance aspects like memory, UI, and energy. From all these studies, the one of
Palomba et al. [157] stands out because it covers more apps and code smells and consequently
has more generalizable results. The other studies that did not focus on performance, namely
Hecht et al. [108], Mateus and Martinez [134], and Gjoshevski and Schweighofer [87], used
mobile-specific code smells as a metric to asses app quality and did not effectively study
them. Specifically, they did not investigate the grounds of these code smells and did not
provide any qualitative insights about them.

Authors Study focus #Apps #Smells

Hecht et al. [108] quality evolution 106 4

Mateus and Martinez [134] Kotlin quality 2167 6

Gjoshevski and Schweighofer [87] technical debt 30 140

Palomba et al. [157] energy efficiency 60 9

Hecht et al. [107] performance (memory & UI) 2 3

Carette et al. [40] energy efficiency 5 3

Morales et al. [140] energy efficiency 20 3

Table 2.4 Studies about mobile-specific code smells.

2.1.4 Studies About OO Code Smells

In this section, we present a few studies that did not address mobile-specific code smells
but investigated a close concern. This includes works on (i) OO code smells in mobile apps
and also (ii) studies of OO code smells in general.

OO Code Smells in Mobile Apps

Mannan et al. [129] compared the presence of well-known OO code smells in 500 Android
apps and 750 desktop apps written in Java. They did not observe significant differences
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between these two types of systems in terms of density of code smells. However, they observed
that the distribution of code smells for Android is more diversified than desktop applications.
Their study also showed that Internal and external duplications are the most common code
smells in desktop applications.

Linares-Vásquez et al. [124] used DECOR [139] to detect OO code smells in mobile apps
built using Java Mobile Edition (J2ME) [152]. The study included 1,343 apps and 18 different
OO code smells. Their results showed that the presence of code smells negatively impacts
software quality metrics, especially those related to fault-proneness. They also found that
some code smells are more common in certain categories of Java mobile apps.

Verloop [200] used popular Java refactoring tools, such as PMD [164] and Jdeodor-
ant [194] to detect code smells, like large class and long method in open-source Android apps.
They found that code smells tend to appear at different frequencies in core classes—i.e.,
classes that inherit from the Android framework—compared to non-core classes. For example,
long method was detected twice more in core classes than in non-core ones.

OO Software

In our review of OO code smells, we focused on studies that attempted to under-
stand code smells and their motives. In this regard, the closest study was conducted
by Palomba et al. [155] who inspected developers’ perception of OO code smells. The study
included instances of 12 different code smells, three open-source projects, and 34 developers.
First, they manually identified smelly and non-smelly code snippets and presented them to
the participants. Afterwards, they surveyed the participants to check if they perceived any
problems in the code snippets. The results of this survey showed that code smells that are
related to complex or long source code—e.g., Blob, Long Method, and Complex Class, are
generally perceived as an important threat by developers. On the other hand, code smells
that are related to OO practices, e.g., coupling, rather than explicit complexity are less
perceived by developers.

Other studies aiming to understand code smells opted for analyzing the evolution of code
smells through the change history. For instance, Tufano et al. [197] analyzed the change
history of 200 open-source projects to understand when and why code smells are introduced
and for how long they survive. They observed that most of code smell instances are introduced
when files are created and not due to evolution process. They also found that new features
and enhancement activities are responsible for most smell introductions, and newcomers are
not necessarily more prone to introducing new smells. Moreover, their manual analysis of
code smell removals showed that only 9% of code smells are removed with specific refactoring
operations.

Peters and Zaidman [161] conducted a case study on seven open-source systems to
investigate the lifespan of code smells and the refactoring behavior of developers. They found
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that, on average, code smell instances have a lifespan of approximately 50% of the examined
revisions. Moreover they noticed that usually one or two developers refactor more than the
others, however the difference is not large. Finally, they observed that the main refactoring
rationales are cleaning up dead or obsolete code, dedicated refactoring, and maintenance
activities.

2.1.5 Summary

We reviewed in this section research works related to the topic of code smells in mobile
apps. This review showed that many studies attempted to identify performance issues that are
specific to mobile platforms. For our topic, the most relevant study is the one of Reimann et
al. [169] that proposed a catalog of 30 Android-specific code smells. Many studies relied
on this catalog to propose detection tools and conduct empirical studies. The tools that
stand out are aDoctor and Paprika since they are open-source and detect a large set of
code smells. As for the studies, our review showed that they mainly focused on assessing
the performance impact of mobile-specific code smells. Moreover, studies that did not cover
performance used mobile-specific code smells as a metric to measure the quality of mobile
apps and did not study them specifically. By comparing the scope of these studies to the
existing works about OO code smells, we claim that we need more empirical studies to enable
understanding mobile-specific code smells.

After our analysis of studies about mobile-specific code smells, we review in the upcoming
section another facet of our topic, which is the management of mobile-specific code smells in
practice.

2.2 Management in Practice

As there are no studies about the management of mobile-specific code smells in practice,
we present in this section studies that addressed similar concerns. In this regard, the closest
studies are the ones investigating performance management in mobile apps and software
systems in general. Another relevant topic for this section is mobile-specific linters, which
represent the equivalents of code smell detection tools in practice. There are no studies
about the usage of linters for managing mobile-specific code smells or performance in general.
Therefore, we present other studies that provide qualitative insights about linters and can be
useful for our research.

2.2.1 Performance Management

There are two main works about performance management in mobile apps. First, the study
of Linarez et al. [125] that surveyed developers to identify the common practices and tools for
detecting and fixing performance issues in open-source Android apps. Based on 485 answers,
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they deducted that most of developers rely on reviews and manual testing for detecting
performance bottlenecks. When asked about tools, developers reported using profilers and
framework tools and only five of them mentioned using static analyzers. Developers were also
openly questioned about the targets of their performance improvement practices. From 72
answers, the study established the following categories: GUI lagging, memory bloats, energy
leaks, general performance, and unclear benefits.

Another study was conducted by Liu et al. [127] who investigated the management of
performance bugs in mobile apps. Specifically, they analyzed the issue reports and source
code of 29 Android apps to inspect, among other questions, the manifestation of performance
bugs and the efforts needed to fix them. They found that, contrarily to desktop apps, small
scale data is enough to manifest performance bugs in mobile apps. However, they observed
that more than one third of these performance bugs required user interaction to manifest.
We consider that this observation is reasonable since mobile apps are known to be very
event-driven. The study results also showed that some performance bugs require specific
software or hardware platforms to manifest. As for the efforts, the study suggested that fixing
performance bugs is more difficult as it requires more time and discussions and larger patches
than fixing non-performance bugs. By manually analyzing the discussions and patches,
the authors showed that during the debugging process, information provided by stacktrace
was less helpful than information provided by profilers and performance measurement tools.
Nonetheless, the study reports that these tools still need enhancement to visualize simplified
runtime profiles.

Performance management has also been addressed in the pre-mobile era through many
studies. Notably, Zaman et al. [207] manually analyzed a random sample of 400 performance
and non-performance bug reports from Mozilla Firefox and Google Chrome. The objective
was to understand the practices and shortcomings of reproducing, tracking, and fixing
performance bugs. Among other interesting findings, they realized that fixing performance
bugs is a more collaborative task than for non-performance bugs. However, performance
bugs show more regression proneness and they are not well tracked.

2.2.2 Linters

As Android and iOS are the most used mobile platforms, the available linters are mainly
focused on these two platforms.

Android: Android Lint [9] is the mainstream linter for Android, and the only one that
detects Android-specific issues. It is integrated in Android Studio, the official IDE for
Android. It can be run on Android projects from the command line or in Android Studio
interactively. It scans the code to identify structural code problems that can affect the quality
and performance of Android apps. Lint targets 339 issues related to correctness, security,
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performance, usability, accessibility, and internationalization. The category performance
includes 36 checks, 5 a.k.a. rules. As an example, we explain the rule HandlerLeak that checks
if a Handler is used as a non-static inner class or not. This situation is problematic because
the Handler holds a reference to the outer class. Thus, as long as the Handler is alive the
outer class cannot be garbage collected, thus causing memory leaks. A similar issue has been
addressed in research studies as a code smell named Leaking Inner Class [108]. Android Lint
reports each problem with a brief description message, a priority, and a severity level. The
priority is a number from 1 to 10, and the severity has three levels: ignore, warning, and
error. All the Android Lint checks have a default priority and severity. The severity is a
factor that can be configured by developers to classify the problems on which they want
to focus. Lint also offers the possibility of adding new rules, however the addition of rules
requires the user to develop the detection algorithms in Java.

Other linters like PMD [164], CheckStyle [45], Infer [112], and FindBugs [66] can
be used to analyze Android apps. Nonetheless, they only detect issues related to either Java
or Kotlin and they do not consider issues or practices specific to the Android SDK. For
instance, PMD detects programming flaws like dead code. CheckStyle checks that coding
conventions are respected and FindBugs analyzes the Java bytecode to detect potential
bugs.

For the programming language Kotlin, Detekt [28] is a linter that can be used to
compute source code complexity and identify some code smells, while Ktlint [175] is a linter
that focuses on checking code conventions.

iOS: With regard to iOS apps, there are only few tools that support the analysis of code
quality and to the best of our knowledge, none of them supports iOS-specific code smells.
For instance, OCLint [147] is a static analyzer that inspects C, C++ and Objective-C
code, searching for code smells and possible bugs. The detected issues are relevant for the
programming language and are not dedicated to the iOS platform. Another tool is Infer [112],
which uses static analysis to detect potential bugs in Objective-C, C, and Android programs.
Infer can detect possible memory leaks in iOS and null pointer exceptions and resource
leaks in Android. Other tools, like Clang [49], SonarQube [177] and Faux Pas [65] are
also static analyzers that can be used to detect potential bugs in Objective-C, but they do
not support iOS-specific smells.

As for the programming language Swift, the main code analyzers are Tailor [188],
Swift Lint [167] and Linter Swiftc [30]. Tailor is a static analyzer that checks styling
consistency and helps avoiding bugs. Swift Lint enforces Swift style and conventions, and
Linter Swiftc is a Linter plugin for syntax analysis.

5. As for September 2019.
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2.2.3 Linter Studies

The objective of this short section is not to provide an extensive literature review of linter
studies. Our aim is to rather highlight qualitative studies that investigated developers’ usage
of linters. These studies can be an inspiration for our inspection of the adequacy of linters
for managing mobile-specific code smells.

The first study that drew our attention is the one of Tómasdóttir et al. [192] who investi-
gated the benefits of using linters in a dynamic programming language. They interviewed 15
developers to understand why and how JavaScript developers use ESLint [64] in open-source
software. They found that linters can be used to (i) augment test suites, (ii) spare newcomers’
feelings when making their first contributions, and (iii) save time that goes into discussing
code styling.

Christakis and Bird [47] conducted an empirical study combining interviews and surveys
to investigate the needs of developers from static analysis. Among other results, they found
that performance issues are the second most severe code issues that require an immediate
intervention from developers. Performance issues were also in the top four needs of developers.

Johnson et al. [114] conducted 20 interviews to understand why developers do not use
static analysis tools, like FindBugs [66], to detect bugs. They found that all the participants
are convinced by the benefits of static analysis tools. However, false positives and warning
presentation are the main barriers to developers in adopting static analyzers.

2.2.4 Summary

In this section, we reviewed performance management studies and tools used for code smell
detection in practice. This review showed that many linters are available for mobile developers
in both platforms Android and iOS. These tools can be considered as the equivalents to
detectors of mobile-specific code smells like aDoctor and Paprika. Indeed, some of these
linters, e.g., Android Lint, can detect performance issues that are similar to the Android-
specific code smells studied by researchers. Our review also covered studies about the usage
of tools for mobile development. Moreover, as there are no studies about the management of
mobile-specific code smells in practice, we showed different empirical studies that can be a
source of inspiration for any qualitative inspection.

2.3 Conclusion

Based on our literature review, we observe that we still lack knowledge about various
aspects of mobile-specific code smells:

— Other mobile platforms: Most of the reviewed research works only studied the
Android platform. It is important to explore other mobile platforms and study their
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specific code smells to enable an effective discussion of generalized mobile-specific code
smells.

— Motives: The reviewed studies did not explain the reasons behind the accrual of
mobile-specific code smells. Some studies hypothesized that it is the result of releasing
pressure and developers’ incompetence [106, 108], however they did not provide elements
to support such hypothesis. It is necessary to analyze the history of code smells to
investigate the factors that impact their introduction and removal, and thus understand
their motives;

— Developers’ perception: Mobile-specific code smells are substantially different from
classical OO code smells. They are performance-oriented and more related to the
details of their development frameworks. Consequently, developers’ perception of these
smells can be different from what have been discussed in previous OO studies. Thus,
we need studies to capture developers’ knowledge and consideration of mobile-specific
code smells;

— Adequate tools for managing mobile-specific code smells: Our tool review
showed that many static analyzers are proposed to developers that aim to preserve the
performance of their mobile apps. However, the studies of performance management in
practice showed that mobile developers rely substantially on profilers and use rarely
static analyzers for performance concerns [125]. This observation highlights a gap
between the tools proposed by the research community for handling performance
concerns, which are mainly static analyzers, and the tools used in practice, which are
mainly profilers. This gap incites us to question the adequacy of static analyzers for
managing performance-related issues. Indeed, this adequacy and the management of
mobile-specific code smells in general, have never been investigated by research works.

In our thesis, we address these knowledge lacks and provide necessary elements to understand
mobile-specific code smells. We start by addressing the lack of studies about mobile platforms.
We present in the upcoming chapter an empirical study that explores mobile-specific code
smells in the iOS platform.





Chapter 3

Code Smells in iOS Apps

As demonstrated in the state of the art, the research community focused mainly on
Android in its study of code smells in mobile apps. This focus may be justified as (i)
Android is the most used mobile operating system, (ii) more Android apps are available
in open-source platforms, and (iii) Android apps are relatively easy to analyze (compared
to iOS). Nonetheless, the study of other mobile platforms is necessary as the latter have
different development frameworks and runtime environments. These differences may impact
the nature of code smells and also their prevalence in the source code. Hence, comparative
studies between different mobile platforms can be helpful in understanding mobile code smells
and their motives. It is also important to look for common code smells between different
mobile platforms to help generalizing future studies and tools.

For these reasons, we explore in this chapter code smells in the iOS platform. In particular,
we identify six new iOS-specific code smells from developers discussions and the platform
official documentation. We summarize these code smells in a catalog similar to the one of
Reimann et al. [169] and we emphasize the similarities between our iOS code smells and other
Android-specific smells. Afterwards, we propose Sumac, a tool that detects code smells from
our iOS-catalog and other OO catalogs. Sumac is open-source [97] and it supports iOS apps
written in Objective-C and Swift.

Using Sumac and our catalog of iOS-specific code smells, we conduct an empirical study
with the aim of answering the following research questions:

— RQ1: Are OO and iOS smells present in Swift and Objective-C with the same
proportion?

— RQ2: Are code smells present in iOS and Android with the same proportion?
In this study, we first assess the extent of code smells in iOS apps and investigate

the impact of programming languages on it. Then, we conduct a comparative analysis to
highlight the difference between iOS and Android in terms of code smells. Our study covers
103 Objective-C, 176 Swift, and 1,551 Android apps.
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Our study results show that, despite the programming language differences, code smells
tend to appear with the same proportions in iOS apps written in Objective-C and Swift. Our
results also show that for all code smells, at the exception of Swiss Army Knife, Android
apps tend to have significantly more code smells.

This chapter is organized as follows. Section 3.1 presents concepts related to the analysis
of iOS source code and binaries. Then, we introduce, in Section 3.2 our catalog of iOS-
specific smells, and in Section 3.3 our novel tool Sumac. Section 3.4 reports the results of
our empirical investigation for RQ1 and Section 3.5 presents our study for RQ2. Finally,
Section 3.6 summarizes our work and outlines further works to perform on this research topic.

This chapter is a revised version of a paper published in the proceedings of MOBILE-
Soft’17 [100].

3.1 Background on iOS Apps Analysis

This section reports on the ongoing state of the art in terms of static and dynamic
analyses for iOS apps.

3.1.1 Dynamic Analysis

Most of the existing dynamic analysis techniques work on applications and systems
running on x86 architectures. While this architecture is widely used for desktop operating
systems, mobile software systems rather use the ARM architecture, which is different [187].
Consequently, the existing dynamic analysis techniques cannot be used for analyzing iOS apps.
Another constraint for the dynamic analysis of iOS applications is the general adoption of
event-based graphic user interfaces, which makes app features depend on the events triggered
by the user. Studies showed that because of these constraints, a finite number of automatic
runs of an iOS app may be unable to cover all the execution paths [187]. Therefore, a relevant
dynamic analysis of iOS apps necessarily requires an interaction with the graphic interface.

3.1.2 Static Analysis of Binaries

Although Objective-C is a strict super set of the C language, its binaries differ from the
C/C++ ones by the use of messages to support the interactions between objects. All these
messages are routed by the routine objc_msgSend. This means that every method call from
an object to another goes through a call to the method objc_msgSend [63]. The routing and
the additional calls impact significantly the semantics of control flow graphs, and thus the
results of the static analysis. Hence, resolving the real method calls in this case requires
manipulations at the level of the CPU registers and type information tracking [63].
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3.1.3 Static Analysis of Source Code

iOS applications are made available in the App Store as IPA files (iOS App Store Package).
With the IPA extension, the code source files are encrypted with FairPlay, a technique for
numerical rights management adopted by Apple, and compressed with the ZIP format [149].
As a result, the access to the source code through these files requires decryption and reverse-
engineering, which is prohibited. This implies that source code analysis can only be applied
on open-source apps.

Synthesis: Regarding the current state of practices, constraints, and tools available in
the iOS ecosystem, we consider that the most relevant solution to study code smells in iOS
consists in analyzing the source code of apps published as open-source software.

3.2 Code Smells in iOS Apps

This section introduces our first contribution: a catalog of iOS-specific code smells. We
first explain the process we followed to identify these code smells, then we describe the
identified smells as a catalog, and finally we highlight the similarities between iOS and
Android code smells.

3.2.1 Code Smells Identification Process

As code smells in iOS have not been addressed by the state of the art, we relied on the
platform official documentation and the community’s knowledge to identify these smells. The
sources we considered relevant for our task are:

— The Apple developer guide [25],
— Well-known web references for iOS development: RayWenderlich [166] and Objc.io [146].

Using a grounded theory approach [185], we manually parsed the posts of these sources and
identified the problems raised by developers, as well as the critically recommended practices.
Thereafter, we selected the most relevant bad practices and detailed them from data of:

— Developers blogs,
— Q&A forums like Stack Overflow [179].

Lastly, we structured the problems using the mini-antipattern template proposed by
Brown et al. [38].

3.2.2 Catalog of iOS Code Smells

Name: Singleton Abuse (SA)
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Category: Design
Problem: Singleton is one of the design patterns recommended by Apple for the development
of iOS apps [23]. Developers interact often with this pattern through platform classes, like
UIApplication and NSFileManager. Moreover, the XCode IDE has a default code to easily
generate a Singleton instance. However, this tends to encourage the use of this pattern in
inappropriate situations.
Example: A recurrent example of abusive use of Singleton is when the singleton class is used
for storing global variables of the application—e.g., user data that are accessed by all the
app classes. Having a global data in the application makes it stateful, and thus difficult to
understand and debug [183].
References: [5, 53, 110, 122, 183]

Name: Massive View Controller (MaVC)
Category: Design
Problem: Most of the iOS apps are designed using MVC, a design/architectural pattern that
splits the application into three layers: model, view, and controller, and where the default
role of the controller is to link the two other layers [135]. However, in iOS, app controllers
tend to carry much more responsibilities than connecting the model to the views [135]. In
particular, the controller handles UI events, like clicks and swipes, because it is a part of
the response chain. It also receives the system warnings regarding the memory state and
it has to perform the necessary operations for managing the memory occupied by the app.
All these additional responsibilities make the controllers massive, complex, and difficult to
maintain [113].
References: [29, 46, 133, 135, 178, 165]

Name: Heavy Enter-Background Tasks (HEBT)
Category: Performance
Problem: Since version 4.0 of iOS, apps are allowed to execute tasks in the background. This
possibility requires from apps specific adjustments, like freeing the memory space or stopping
some tasks, to manage the transition from front to background. These adjustments must
be applied to the method applicationDidEnterBackground: from the AppDelegate class,
which is called when the app moves to the background [24]. However, a problem occurs when
the operations of this method last for a long time, thus exhausting the allocated execution
time, and causing the completion handler to be called in order to suspend the app.
References: [24]

Name: Ignoring Low-Memory Warning (ILMW)
Category: Performance
Problem: In iOS, when the system requires more memory to perform its tasks, it sends
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low-memory warnings to the apps holding important memory spaces via the method did-
ReceiveMemoryWarning: of the UIViewController class. Every view controller should
implement this method to free the unused memory space—e.g., view elements that are not
currently visible. However, when the method is not implemented, the view controller cannot
react to the system warnings, and if the application is holding an important memory space,
it will be killed by the system [21].
References: [21, 130]

Name: Blocking The Main Thread (BTMT)
Category: Performance
Problem: In iOS, the UIKit is directly tied to the main thread, so all the graphical user
interface interactions are in this thread and are impacted by the execution time of the other
operations sharing it [22]. Therefore, every heavy processing in the main thread makes the
UI completely unresponsive. The operations that often block the main thread are [131]:

— The synchronous access to the network,
— The access to the disk, especially for reading or writing large files,
— The execution of long tasks, like animations or complex data processing.

References: [22, 131]

Name: Download Abuse (DA)
Category: Performance
Problem: Mobile apps rely increasingly on online data storage to save their content without
impacting the user’s limited internal storage. Despite the positive impact of this practice
on user experience, it may also lead to performance problems if used inappropriately. The
Download Abuse code smell describes the case where the online data are downloaded with
abuse, the most explicit case of this may be downloading the same data repeatedly without
using the cache memory. Since the access to online data requires more energy than the access
to internal disk [41], this practice negatively impacts the battery autonomy. Furthermore,
depending on the network state it may also impact the execution time and it can be costly if
the user is connected to a GSM network.
References: [22, 91, 132]
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3.2.3 Similarities with Android Code Smells

After building our catalog, we noticed that some of the identified iOS-specific code smells
are similar to Android code smells studied in previous works [91, 106, 169]. We present in
this section the similar Android code smells and their commonalities with our catalog.

No Low Memory Resolver (NLMR): When the Android system is running low on
memory, the system calls the method onLowMemory() of every running activity. This method
is responsible of trimming the memory usage of the activity. If this method is not implemented
by the activity, the Android system automatically kills the process of the activity to free
memory, which may lead to an unexpected program termination [106, 169]. This smell is
analogous to Ignoring Low Memory Warning in iOS.

Heavy Main Thread Method (HEAVY): This code smell is a composition of three
similar Android smells: Heavy Service Start, Heavy BroadcastReceiver, and Heavy Async-
Task [106, 108, 169]. The three code smells are defined as Android methods that contain
heavy processing and are tied to the main-thread. Consequently, the three code smells lead
to freezing the UI and make the app unresponsive. The main concept of the three code smells
is analogous to Blocking the main-thread in iOS.

3.3 Sumac

To study code smells in iOS apps, we built Sumac, an open-source tool that analyzes
iOS apps and detects OO and iOS-specific code smells [97]. Sumac extends the existing
tool Paprika, which so far only supports Android apps written with the Java programming
language. We devote the following subsections to explain the changes thet we applied to
Paprika in order to build Sumac and support the iOS framework.

3.3.1 Code Analysis

From Parsing Android Apps

Paprika uses the Soot framework [199] and its Dexpler module [34] to analyze
APK artifacts. Soot converts the Dalvik bytecode of Android apps into a Soot internal
representation, which is similar to the Java language, and also generates the call graph of
the app. The representation and the graph are used by Paprika to build a model of the
code (including classes, methods, attributes) as a graph annotated with a set of raw quality
metrics. Paprika enriches this model with metadata extracted from the APK file (e.g., app
name, package) and the Google Play Store (e.g., rating, number of downloads).
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To Parsing iOS Apps

As Soot does not support Objective-C nor Swift, we had to find an alternative solution.
The analysis of iOS binaries is challenging due to the issues exposed in Section 3.1, thus
we opted for source code analysis. We built two parsers for Objective-C and Swift using
ANTLR4 grammars [189, 190] and the ANTLR parser generator. Reading the source code,
the parsers build an Abstract Syntax Tree (AST) of the analyzed program. We built a custom
visitor for each parser to extract from the AST all the necessary attributes and metrics to
feed Sumac and to build the associated graph model. Since we are retrieving apps from
open-source repositories (e.g., GitHub) instead of the official online stores, we cannot retrieve
the complementary metadata, but this does not impact the detection process and the results
we obtain.

3.3.2 Sumac Model for iOS

The model built from the code analysis phase is converted into a graph where the nodes
are entities, the edges are relationships, and the nodes attributes are properties or quality
metrics. The graph model was originally designed for Paprika to reflect the core components
of any Android app, and consequently it is based on the Java language elements. While
Objective-C and Swift share the same core concepts of Java (classes, methods and attributes),
they have also features of the procedural programming like functions and global variables.
Moreover, they introduce new concepts like extensions, structs, and protocols. To cope with
these particularities, we included in our Sumac model the new concepts of Objective-C and
Swift and we removed the ones that are only relevant for Java. The exhaustive list of entities
and metrics used for iOS is provided in Appendix A.

3.3.3 Storing the iOS Model

We store the Sumac model generated from the app analysis in a Neo4j database [142].
Neo4j is a flexible graph database that offers good performances on large-scale datasets
especially when combined with the Cypher [141] query language. We therefore reuse the
storage layer of Paprika as it is scalable and efficient and allows to easily store and query
the graph model.

3.3.4 Code Smell Queries

We use Cypher [141] queries for expressing the code smells. When applied on the graph
database, these queries detect code smell instances. We kept the Paprika original queries for
the OO smells and we only updated their metrics thresholds. The thresholds are computed
using the Boxplot technique [198] by considering all the dataset apps and thus, we have
different thresholds in Objective-C and Swift.



34 Code Smells in iOS Apps

As an example, we report below the Cypher query of the OO code smell Complex Class
(CC):

Listing 3.1 Complex Class detection query using Cypher.

MATCH (cl:Class)
WHERE

AND cl.class_ complexity > very_high_ complexity
RETURN cl

This query detects all classes with a complexity higher than the very high threshold of
complexity.

For iOS-specific smells, we followed the same process defined by Paprika for transforming
the literal definition of the code smell into a query. The following two examples illustrate the
queries for detecting ILMW and MaVC.

Listing 3.2 Ignoring Low-Memory Warning query.

MATCH (cl:Class)
WHERE HAS(cl.is_view_ controller )

AND NOT (cl:Class) -[: CLASS_OWNS_ METHOD ]->
(: Method {name:’ didReceiveMemoryWarning ’})

RETURN cl

The ILMW query looks for the view controllers missing an implementation of the method
didReceiveMemoryWarning, which is required to react to the system memory warnings.

Listing 3.3 Massive View Controller query.

MATCH (cl:Class)
WHERE HAS(cl.is_view_ controller )

AND cl. number _of_ methods > very_high_nom
AND cl. number _of_ attributes > very_high_noa
AND cl. number _of_lines > very_high_nol

RETURN cl

For the Massive View Controller query, classes are identified as smell instances whenever the
metrics number_of_methods (nom), numbers_of_attributes (noa), and number_of_lines (nol)
are very high.

It is worth noting that translating code smell definitions into queries is not always possible.
This can be due to the complexity of the code smell itself, as for Singleton Abuse, which is
contextual and requires some intelligence to spot it. Another obstacle for translating the
code smells is the limits of static analysis. For example, dynamic analysis is required to
measure the execution time to detect the Heavy Enter Background Task code smell. Also,
data flow analysis is needed to determine whether the downloaded data is being reused or
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not and detect the code smell Download Abuse. Therefore, we cannot include the code smells
Singleton Abuse, Heavy Enter Background Task, and Download Abuse in our tool Sumac.

Handling the Uncertainty

Many code smell detection tools rely on standard thresholds to identify outliers. However,
these approaches are limited as they can only report boolean values. In order to deliver
results that are closer to human reasoning, we adopt fuzzy logic [206]. In particular, Sumac
uses jFuzzyLogic [48] to compute the fuzzy value between the two extreme cases of truth (0
and 1). For each metric, the very high value is considered as an extreme case of truth. These
fuzzy values represent the degree of truth or certainty of the detected code smell instance.

3.4 Study of Code Smells in iOS

This section focuses on our first research question:

RQ1: Are OO and iOS smells present in Swift and Objective-C with the same proportions?

Using Sumac, we study the presence of OO and iOS code smells in a dataset of Objective-
C and Swift apps. The following subsections present the design of this study, its results
discussion, and its threats to validity.

3.4.1 Objects

The objects of our study are the iOS and OO smells detectable by Sumac. As mentioned
previously, Sumac can detect three iOS smells, namely Massive View Controller, Ignoring
Low Memory Warning, and Blocking the Main Thread. In addition to these iOS smells,
Sumac can also detect four well-known OO smells, Blob, Swiss Army Knife, Long Method, and
Complex Class [38, 69]. To clarify all the study objects, we present here a brief description of
these OO code smells. More detailed definitions can be found in previous works [38, 69].

Blob Class (BLOB): A Blob class, also known as God class, is a class with a large number
of attributes and/or methods [38]. The Blob class handles a lot of responsibilities compared
to other classes that only hold data or execute simple processes.

Swiss Army Knife (SAK): A Swiss Army Knife is a very complex class interface con-
taining a lot of methods. This interface is often designed to handle a wide diversity of
abstractions or to meet all possible needs in a single interface [38].

Long Method (LM): Long Methods are implemented with much more lines of code than
the average. They are often very complex, and thus hard to understand and maintain. These
methods can usually be split into smaller methods to fix the problem [69].
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Complex Class (CC): A Complex Class is a class containing complex methods. Again,
these classes are hard to understand and maintain and need to be refactored [69]. The class
complexity can be estimated by summing the internal complexity of each of its methods.

3.4.2 iOS Dataset and Inclusion Criteria

Following the technical choices we adopted for Sumac, our code smell detection requires
the source code of the app. Thus, our dataset is exclusively composed of open-source apps.
We chose to consider a collaborative list of apps available from GitHub [57] that is, as far
as we know, the largest repository of open-source iOS apps. It gathers currently 605 apps
of diverse categories and authored by different developers. Almost 47% of these apps are
published in the App Store.

The repository apps are written with Objective-C, Swift, Xamarin, and other web
languages, such as HTML and JavaScript. We considered only the native apps written with
Objective-C and Swift. We also excluded demo and tutorial apps since they are very light
and not relevant for our study. As a result, we included 103 Objective-C apps and 176 Swift
apps within this study. The exhaustive list of apps used in our study is available online 1.

3.4.3 Hypotheses and Variables

Independent variable: The independent variable of this study is the programming language
of the app: Objective-C (ObjC ) or Swift.
Dependent variables: The dependent variables are the proportions of code smells in the
analyzed apps.
Hypothesis: To compare the presence of the different code smells (CS ∈
{Blob,LM,CC,SAK,MaV C,ILMW,BTMT}) in the two languages (L ∈ {ObjC,Swift}),
we formulate the following null hypothesis:

HRCS: There is no difference between the proportions of code smells for the apps written
with Objective-C or Swift.

3.4.4 Analysis Method

First, we analyze the Objective-C and Swift datasets with Sumac to detect the OO and
iOS code smells. Then, we compute, for each app, the ratio between the number of code
smells and the number of concerned entities—e.g. the ratio of ILMW is normalized with the
number of view controllers. Afterwards, we compute the median and the interquartile range
of the ratios. We also compute Cliff’s δ [170] effect size to quantify the importance of the
difference in proportions of the smells.

1. http://sofa.uqam.ca/paprika/paprika_ios.php

http://sofa.uqam.ca/paprika/paprika_ios.php
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Cliff’s δ is reported to be more robust and reliable than Cohen’s d [51]. It is a non-
parametric effect sizes measure—i.e., it makes no assumptions of a particular distribution—
which represents the degree of overlap between two sample distributions [170]. It ranges from
−1 (if all the selected values in the first group are larger than the ones of the second group)
to +1 (if all the selected values in the first group are smaller than the second group). It
evaluates to zero when two sample distributions are identical [50]:

Cliff’s δ=


+1, Group 1 > Group 2;

−1, Group 1 < Group 2;

0, Group 1 = Group 2.

Cohen’s d is mapped to Cliff’s δ via the percentage of non-overlap, as shown in Ta-
ble 3.1 [170]. Cohen [52] states that a medium effect size represents a difference likely to be
visible to a careful observer, while a large effect is noticeably larger than medium.

Cohen’s Standard Cohen’s d % of non-overlap Cliff’s δ

small 0.20 14.7 % 0.147

medium 0.50 33.0 % 0.330

large 0.80 47.4 % 0.474

Table 3.1 Mapping Cohen’s d to Cliff’s δ.

We chose to use the median and the interquartile range because our variables are not
normally distributed. Likewise, we opted for the Cliff’s δ test since it is suitable for non-
normal distributions. Moreover, this test is recommended for comparing samples of different
sizes [128].

3.4.5 Results

This section reports and discusses the results we obtained to answer our first research
question.

Overview of the Results

Table 3.2 summarizes the percentages of apps affected by each code smell for the two
datasets. For the iOS-specific code smells, we observe that ILMW affects most of the studies
apps (78% and 85%). MaVC is also relatively common, as it appears in more than 10% of
the apps in the two datasets. BTMT is the least recurrent code smell. It appears in only
6% of Objective-C apps, and it does not appear at all in Swift ones. Generally, we observe
that iOS code smells tend to be more present in the Objective-C apps than the Swift ones.
However, this insight needs to be consolidated with statistical tests.
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Lang BLOB LM CC SAK MaVC ILMW BTMT

Apps %
ObjC 58.82 96.08 76.47 24.51 33.33 85.29 6.86

Swift 40.34 87.50 69.32 14.77 10.23 78.41 0.00

Table 3.2 Percentage of apps affected by code smells.

Regarding the OO code smells, LM is the most recurrent one. It appears in approximately
90% of the apps in the two datasets. BLOB and CC are also very common with percentages
ranging from 40% to 76%. SAK is a less prevalent code smell, but its percentage is still
significant (14% and 24%). Similarly to iOS-specific code smells, the table shows that
Objective-C apps are more prone to OO code smells than Swift apps.

Discussion: The surprisingly high prevalence of ILMW shows that the method
applicationDidReceiveMemoryWarning: is not implemented in most of the view controllers.
Missing the implementation of this method can be justified when absolutely no resource can
be freed by the app. However, it is unlikely that such a large proportion of view controllers
belongs to this case. We therefore hypothesize that developers are not aware of the benefits
of implementing this method.

Comparison between Objective-C and Swift

Table 3.3 shows, for each code smell type and programming language, the median (med)
and interquartile range (IQR) of the code smell ratios. Also, it reports on the Cliff’s δ effect
size between the ratios in the two datasets.

For each application a, the ratio of a code smell type s is defined by:

ratios(a) = fuzzy_values(a)
number_of_entitiess(a)

where fuzzy_values(a) is the sum of the fuzzy values of the detected instances of the smell
s in the app a and number_of_entitiess(a) is the number of the entities concerned by the
smell s in the app a. As a reminder, for BLOB, CC and BTMT, the concerned entity is the
class, while for LM it is the method. For MaVC and ILMW, it is the view controller and for
SAK it is the interface.

Table 3.3 shows that the median ratio for SAK, MaVC and BTMT is null. This is
consistent with the results of Table 3.2, since these code smells appear in less than 35% of
the apps, which means that in more than 70% of the apps the ratio is null. Consequently,
the first quartile and the median for their ratios are null and the IQR is very small or almost
null.
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Smell Lang Med IQR Cliff’s δ

BLOB
ObjC 0.004 0.020

0.304(S)
Swift 0.000 0.004

LM
ObjC 0.060 0.055

0.135(I)
Swift 0.048 0.059

CC
ObjC 0.033 0.071

0.062(I)
Swift 0.026 0.074

SAK
ObjC 0.000 0.000

0.115(I)
Swift 0.000 0.000

MaVC
ObjC 0.000 0.015

0.181(S)
Swift 0.000 0.000

ILMW
ObjC 0.905 0.634

0.156(S)
Swift 0.583 0.833

BTMT
ObjC 0.000 0.000

0.069(I)
Swift 0.000 0.000

I: insignificant difference.
S: small difference.

Table 3.3 Ratios comparison between Objective-C and Swift.

We also observe that the IQR is very small for all code smells except ILMW. These weak
values show that these code smells are present in the apps with consistent ratios. As for
ILMW, the high IQR value indicates that this smell is abundant in some apps, but nearly
absent in others, and this strengthens our previous hypothesis about the ILMW origin. The
majority of developers are not aware of the memory warnings importance and the ILMW
ratio is high in their apps, while few other developers are aware of the issue and the ILMW
ratio is very low in their apps.

The cliff’s δ values show that the difference between the smell ratios in Objective-C and
Swift is insignificant for LM, CC, SAK, and BTMT. Moreover, the median and the IQR for
these smells are very close in the two datasets. Therefore, we deduct that these code smells
are present in the two datasets with the same proportions and we cannot reject the study
hypothesis HRCS for CS ∈ {LM,CC,SAK,BTMT}.
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For BLOB, MaVC and ILMW, there are small differences in the smell ratios in the two
languages. However, these differences are not large enough to reject the hypothesis HRCS for
CS ∈ {BLOB,MaV C,ILMW}.

Discussion: The similar proportions of ILMW, MaVC and BTMT between Objective-C
and Swift are quite expected, as these code smells are related to the platform concepts, which
are shared by the two datasets regardless of the used programming language. Concerning
OO smells, we expected significant differences between the two programming languages.
Indeed, the metrics used to detect OO code smells (e.g., complexity and number of lines)
are dependent of the language structure and features. Thus, we expected that programming
features that are present in Swift and not in Objective-C would result in a significant difference
in code smell presence. However, our results confirm the absence of such difference.

To further investigate this point, we compared the metrics related to OO code smells in
the two languages Objective-C and Swift. We computed for each metric the median, first
and third quartile, and the standard deviation. We also used the Wilcoxon–Mann–Whitney
test [174] to check if the distributions of our metrics in both datasets are identical, so that
there is a 50% probability that an observation from a value randomly selected from the
Objective-C dataset will be identical to an observation randomly selected from the Swift
dataset. To perform this comparison, we used a 99% confidence level—i.e., p-value < 0.01.
Table 3.4 depicts the computed values for the metrics: class complexity (CLC), number of
attributes (NOA), number of methods (NOM), number of lines in a method (NOL_M), number
of lines in a class (NOL_C), and number of methods in an interface (NOM_I).

For the Wilcoxon–Mann–Whitney test, since the p-values for all the metrics are less
than the threshold (p = 0.01), we can reject the hypothesis of similarity between the two
distributions. Moreover, the results indicate that the quartile values in Objective-C are
considerably higher than Swift, with also a much higher standard deviation. This means that
the metrics range is wider, but also that there are more outliers in Objective-C.

These results show that the apps written in Objective-C and Swift are different in terms
of OO metrics. Compared to Swift, Objective-C apps tend to have longer and more complex
methods and classes, with more attributes and methods in classes and interfaces. This is
likely due to the features introduced in Swift that help developers to better structure their
apps. As an example, the Extensions to existing types, the Structs, and the advanced Enums
are features that encourage developers to implement lighter classes in Swift.

Following this deduction, we can affirm that the presence of OO smells with the same
proportions in iOS apps is not due to the similarity between the languages Objective-C
and Swift. We rather hypothesize that it is due to the framework, which dictates the
architecture/design and the development practices. In fact, the development community is
almost the same for the two programming languages.
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Metric Lang Q1 MED Q3 SD p-value

CLC
ObjC 2 6 16 22.34

0
Swift 0 2 5 11.72

NOA
ObjC 0 3 6 6.84

0
Swift 0 0 1 2.58

NOM
ObjC 1 4 8 8.57

0
Swift 0 1 3 8.41

NOL_M
ObjC 3 6 13 20.70

1.7e-39
Swift 2 5 11 26.09

NOL_C
ObjC 12 39 108 153.84

2.6e-196
Swift 5 17 43 143.19

NOM_I
ObjC 1 1 3 2.87

1.1e-227
Swift 0 1 2 2.61

Table 3.4 Metrics comparison between Objective-C and Swift.

3.4.6 Threats to Validity

We discuss here the main issues that may have threatened the validity of the validation
study, by considering the classification of threats proposed in [54]:
Internal Validity: The threats to internal validity are relevant in those studies that attempt
to establish causal relationships. In this case, the internal validity might be affected by the
detection strategy of Sumac. We relied on a robust set of standard metrics to evaluate
the presence of well-defined code smells. However, for the threshold-based code smells, we
computed the thresholds from the analysis of the whole dataset, to avoid influencing the
detection results.
External Validity: This refers to the approximate truth of conclusions involving generaliza-
tions within different contexts. The main threat to external validity is the representativeness
of the results. We used sets of 103 and 176 open-source Objective-C and Swift apps. It would
have been preferable to consider proprietary apps to build a bigger and more diverse dataset.
However, this option was not possible as the analysis of iOS binaries is restricted. We believe
that our dataset still allows us to generalize our results to open-source iOS apps, but that
further studies are needed to extend our results to all iOS apps.
Construct Validity: The threats to construct validity concern the relation between theory
and observations. In this study, these threats could be due to errors during the analysis
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process. We were very careful when collecting and presenting the results and drawing
conclusions based on these results.
Conclusion Validity: This threat refers to the relation between the treatment and the
outcome. The main threat to the conclusion validity in this study is the validity of the
statistical tests applied. We alleviated this threat by applying a set of commonly accepted
tests employed in the empirical software engineering community [136]. We paid attention not
to make conclusions that cannot be validated with the presented results.

3.5 Comparative Study Between iOS and Android

In this section, we present our comparative study between iOS and Android apps. This
study aims to answer our second research question:

RQ2: Is there a difference between iOS and Android in terms of code smells presence?

3.5.1 Android Dataset and Inclusion Criteria

To compare iOS and Android apps, we used our iOS dataset described in Section 3.4.5
and we built a new dataset of Android apps. We created the dataset by first collecting all
apps available in the F-Droid repository 2 in April 2016. Afterwards, we excluded all the
apps that could not be analyzed by Paprika for bugs or crashes. This resulted in a set of
1,551 open-source Android apps. The full set can be found with our artifacts online. 3 Our
dataset apps differ both in internal attributes, such as their size, and external attributes from
the perspective of end users, such as user ranking and number of downloads.

3.5.2 Variables and Hypotheses

Independent variables: The nature of the app, Android or iOS, is the independent
variable of our study.
Dependent variable: The dependent variables correspond to:

— The average proportion of the OO smells: BLOB, LM, CC, SAK;
— The average proportion of the similar iOS and Android smells: NLMR/ILMW,

HEAVY/BTMT.
Hypotheses: To answer our second research question, we formulate the follow-
ing null hypothesis, which we applied to the iOS and Android datasets (CS ∈
{BLOB,LM,CC,SAK,NLMR/ILMW,HEAV Y/BTMT}):

HRCS: There is no difference between the proportions of code smells in Android and iOS
apps.

2. F-Droid: https://f-droid.org
3. http://sofa.uqam.ca/paprika/paprika_ios.php

https://f-droid.org
http://sofa.uqam.ca/paprika/paprika_ios.php
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3.5.3 Analysis Method

To compare our results, we used the median and the interquartile range. We also computed
the Cliff’s δ effect size to quantify the impact of the platform on code smells presence. Later,
to discuss and explain the obtained results we compare the metric values in the two platforms
using the Wilcoxon and Mann-Whitney test. As mentioned previously, Cliff’s δ and Mann-
Whitney make no assumption about the assessed variables distribution, and both of them
are suitable for comparing datasets of different sizes.

3.5.4 Results

This section reports and discusses the results of our comparative study.

Overview of Android Results

BLOB LM CC SAK HEAVY NLMR

Apps % 78.40 98.19 86.59 12.31 41.84 98.32

Table 3.5 Percentage of Android apps affected by smells.

We can observe in Table 3.5 that BLOB, LM and CC appear in most of the apps (more
than 75% in all cases). Indeed, most apps tend to contain at least one of these code smells.
On the other side, just like in iOS, SAK is uncommon and only appears in 12% of the
analyzed apps. Concerning Android-specific code smells, the HEAVY code smells appear
in almost half of the apps. After inspection, we observed that, usually, there is only one
instance of these code smells in each app. NLMR is our most common code smell with more
than 98% of the apps being affected by it. Here, we also notice that there is often only one
activity affected per app.

Comparison of Code Smell Proportions Between iOS and Android

We compared the ratio between the number of code smells and the number of concerned
entities for each code smell in every app. The medians, IQR and Cliff’s δ effect sizes of the
distributions obtained are presented in Table 3.6. The Cliff’s δ values column presents for each
smell the Cliff test for Android with Objective-C, then for Android and Swift, respectively.

Table 3.6 shows that we have a significant difference between the proportions of code
smells in Android compared to Objective-C and Swift for all code smells except SAK. For
OO smells, Cliff’s δ always gives a large difference for BLOB, CC and LM. Furthermore,
this is confirmed by the greater means in Android apps for these smells. Thus, we can reject
the hypothesis HRCS for all OO code smells BLOB, CC and LM. On the other hand, we
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Smell Lang Med IQR Cliff’s δ

BLOB
ObjC 0.004 0.020

0.495(L)
0.648(L)Android 0.052 0.129

Swift 0.000 0.004

LM
ObjC 0.060 0.055

0.710(L)
0.727(L)Android 0.156 0.289

Swift 0.048 0.059

CC
ObjC 0.033 0.071

0.509(L)
0.518(L)Android 0.122 0.317

Swift 0.026 0.074

SAK
ObjC 0.000 0.000

-0.121(I)
-0.015(I)Android 0.000 0.000

Swift 0.000 0.000

NLMR/ILMW
ObjC 0.905 0.634

0.397(M)
0.512(L)Android 1.000 0.000

Swift 0.583 0.833

HEAVY/BTMT
ObjC 0.000 0.000

0.261(S)
0.331(M)Android 0.000 0.007

Swift 0.000 0.000

I: insignificant difference.
S: small difference.
M: medium difference.
L: large difference.

Table 3.6 Ratios comparison between Android and iOS
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cannot reject HRSAK since Cliff’s δ shows no significant difference and its median and IQR
are almost the same in the two platforms. That is, SAK is uncommon in both Android and
iOS apps.

Concerning mobile code smells, we can reject the hypothesis HRNLMR. Regardless of the
programming language, Android apps have more instances of the code smell NLMR. Indeed,
NLMR appears in almost every Android app (cf. Table 3.5), while there are many iOS apps
without ILMW (cf. Table 3.2). We can also reject the hypothesis HRHEAV Y since Android
apps have bigger proportions of the HEAVY code smells compared to iOS apps written in
Objective-C and Swift (small and medium differences).

In summary, Android apps tend to host more code smells than iOS apps. The only
exception to this finding is the SAK code smell, which is equally present in both platforms.

Discussion: The comparison results indicate that Android apps generally have more code
smells than iOS apps. However, most of the compared code smells rely on numerical metrics.
NLMR/ILMW are the only code smells that rely on boolean metrics. Hence, our results can
be interpreted as Android apps having more (numerical) outliers than iOS apps. Hence, the
observation of more code smells in Android apps does not necessarily mean that Android
apps are globally worse in terms of quality.

To further investigate this point, we examined the quality metrics in the two platforms.
In particular, we compared the distributions of common metrics used to detect code smells in
Android and iOS apps. We only excluded the metrics related to the number of lines because
Sumac computes the number of lines, while Paprika accounts the number of instructions.
As the number of instructions does not always correspond to the number of lines, we cannot
compare the two metrics.

The results of this comparison are presented in Table 3.7. The p-values reported in
this table show a disparity between the metrics values in the different datasets. Except
for the complexity, the metrics in Android are different from both Objective-C and Swift.
Objective-C has the highest values in the median and the third quartile. Android has also
high metrics values, but less than Objective-C. This is quite expected since Android apps
are written with Java, a classic programming language known for being less verbose than
C++ and Objective-C. Last, for Swift it is clear that the modern features of the language
are efficient in making apps lighter, which implies lower metric values.

Discussion: These results show that Android apps do not have the highest metric values,
but they show the highest standard deviation. This means that in terms of OO metrics,
Android apps are not bigger than iOS apps. The high number of code smells in Android is
rather due to the high number of outliers. These outliers may be attributed to the platform
specificities, like the architecture and framework constraints, or to the lack of documentation
and code quality assessment tools.
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Metric Lang Q1 MED Q3 SD p-value

CLC
ObjC 2 6 16 22.34

0.71
0Android 3 5 13 35.92

Swift 0 2 5 11.72

NOA
ObjC 0 3 6 6.84

1e-48
0Android 1 2 4 22.25

Swift 0 0 1 2.58

NOM
ObjC 1 4 8 8.57

1.57-11
0Android 2 4 7 12.61

Swift 0 1 3 8.41

NOM_I
ObjC 1 1 3 2.87

0.26
2.9e-140Android 1 1 3 6.97

Swift 0 1 2 2.61

Table 3.7 Metrics comparison between iOS and Android.

3.5.5 Threats to Validity

In this subsection, we analyze the factors that may threaten the validity of this study
using the same classification applied in Section 3.4.6:
Internal Validity: Again, in this case, the internal validity might be affected by the
detection strategy of Paprika. For the Android dataset, we tried to rely on a robust set
of metrics to evaluate the presence of code smells. Moreover, for the threshold-based code
smells, we calculated the thresholds based on the analysis of the whole dataset, so as not to
influence the detection results.
External Validity: In this study, we analyzed a large, heterogeneous dataset of Android
open-source apps available on F-Droid. In a similar way, we tried to use as many open-source
iOS apps as possible, as mentioned in the previous study. Despite our efforts, the iOS datasets
are significantly smaller and thus probably less representative than the Android dataset.
However, our analysis remains meaningful as we were careful to only conclude on statistical
tests, which are suitable for samples of different sizes. We believe that our three datasets
provide a neutral and diverse set of apps, but we are focusing only on open-source apps and
thus we cannot generalize our results to proprietary apps. Further investigations are needed
to confirm that open-source and proprietary apps are similar in terms of code smells.
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Construct Validity: The construct validity can be threatened by the way we are computing
thresholds. Indeed, we could use the same thresholds for all detections (e.g., by using an
average threshold between Android and iOS). However, we believe that in this case the
thresholds will not be relevant regarding the contexts. Moreover, boxplots are commonly
used for assessing values in empirical studies [136].
Conclusion Validity: As before, the main threat to the conclusion validity in this study is
the validity of the statistical tests applied and we alleviated this threat by applying the same
tests.

3.6 Summary

In this chapter, we presented a study that explores code smells in the iOS mobile platform.
We proposed a novel catalog of six code smells that we identified from the documentation and
the developers’ feedback. These code smells are specific to iOS and have not been reported
in the literature before. We also proposed Sumac, an open-source tool [97] that detects code
smells in iOS apps written with Objective-C and Swift.

Based on the code smells catalog and our tool Sumac, we conducted an empirical study
to investigate the scope of code smells in mobile apps. We first analyzed 279 iOS apps and
compared the proportions of code smells in apps written with Objective-C and Swift. We
observed that Objective-C and Swift apps are very different in terms of quality metrics. In
particular, Swift apps tend to be lighter in terms of size and complexity. However, these
differences do not seem to impact the presence of code smells, since the two types of apps
exhibit OO and iOS code smells with no significant disparity. Then, we compared iOS apps
with Android apps in order to investigate the potential differences between the two platforms.
The comparison showed that Android apps tend to have more code smells than iOS ones.
Again, we demonstrated that this difference is not due to the programming language, but
rather potentially to the platform.

This work provided interesting insights for both developers and scientific community. It
highlighted some of the common code smells in iOS apps and provided relevant information
about the code quality in a mobile platform, which has not been addressed by the community
before. Moreover, we provided an open-source toolkit, Sumac, which is—to the best of our
knowledge—the first to support the detection of code smells in iOS apps. This facilitates
and encourages further studies on iOS apps.

Regarding our thesis plan, this work allowed us to fill in many gaps in the literature
about mobile-specific code smells and provided a first contribution towards understanding
them. Notably, our catalog showed that there are common code smells between iOS and
Android. This commonality can help future work to generalize their studies of code smells
to many mobile platforms. In our upcoming studies, we address the second gap identified
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in our literature review. In particular, we investigate the rationales behind the accrual of
mobile-specific code smells.



Chapter 4

Code Smells in the Change History

In our review of the state of the art, we showed that the existing studies did not explain
the rationales behind the accrual of mobile-specific code smells. Hence, our second objective
for this thesis was to understand the motives of these code smells—i.e., the reasons behind
their prevalence in mobile apps. To investigate this point, we refer to the existing literature
about technical debt, which reports many potential motives. This reference is justified as
mobile-specific code smells can be considered as a form of technical debt. Indeed, they
represent “a gap between the current state of a software system and some hypothesized ideal
state in which the system is optimally successful in a particular environment”, which is a
definition of technical debt [37].

Technical debt is a well founded concept in software engineering. Since its definition by
Cunningham et al. [58], researchers and practitioners have been investigating its rationales.
In particular, the study of Tom et al. [191] built a theoretical framework that explains, among
other aspects, the precedents of technical debt. The framework shows that the reasons behind
the presence of technical debt fall under six categories:

— Pragmatism: This refers to the internal choices made by stakeholders to focus on
some product aspects to the detriment of source code quality;

— Prioritization: This represents all external factors that push development teams to
prioritize some tasks above source code quality. According to developer interviews [191],
these factors are generally time, budget, and resource constraints;

— Processes: This precedent covers all the settings adopted by teams in their development
process—e.g., code review, communication, and collaboration settings;

— Attitudes: This represents the individual behaviors of developers that may lead to
unmanaged technical debt. These behaviors are usually the results of inexperience,
general apathy toward quality issues, and risk appetite;

— Ignorance: This refers to situations where developers are unaware of how to avoid
technical debt. Cast et al. [42] described this as “the inability of the developers to
develop high quality applications” ;
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— Oversight: This motive explains situations where developers do not apprehend the
issue of technical debt, which makes them unaware of its presence.

Our objective is to assess the relevance and impact of these motives in the case of mobile-
specific code smells. This assessment is important for all future approaches and tools that
intend to cope with these code smells. To realize this assessment, we opt in this chapter for
an investigation of the change history of mobile apps. The latter entails details about how
these code smells appear, evolve, and disappear from the source code. Hence, by analyzing
it we can measure how different motives impact the lifetime of code smells, and thus assess
their relevance.

As the motives of interest cover different development aspects, we adopted different
approaches to study them. Specifically, we perform three large-scale empirical studies:

1. Evolution study: This study analyzes the introductions and removals of mobile-
specific code smells aiming to understand how prioritization factors impact them. The
study analyzes also the actions leading to code smell removals to inspect motives like
pragmatism, ignorance, and oversight;

2. Developers study: This study intends to understand the role played by developers
in the accrual of mobile-specific code smells. This study covers the three motives that
are developer-oriented, namely attitude, ignorance, and oversight;

3. Survival study: This study investigates the survival of mobile-specific code smells in
the change history. In particular, it analyzes the impact of processes and prioritization
factors on the persistence of code smells in the codebase.

To perform these studies, we developed Sniffer [104], a novel toolkit that accurately
mines the change history of Android apps to track mobile-specific code smells. Sniffer
tackles many issues raised by the Git mining community like branch and renaming tracking.
We used Sniffer in our three studies to analyze eight Android code smells, 324 Android
apps, 255k commits, and contributions from 4,525 developers. We provide this collected data
in a database that includes 180.013 code smell histories [102]. This database can be used in
future studies that approach mobile-specific code smells.

The remainder of this chapter is organized as follows. Section 4.1 explains the design, which
is common to our three empirical studies. Section 4.2 presents the design and implementation
of our toolkit Sniffer. Section 4.3 reports the evolution study, while Section 4.4 reports
the developers study, and Section 4.5 presents the survival study. Section 4.6 highlights the
common threats to validity for our three studies, and finally, Section 4.7 concludes with our
main learned lessons.

This chapter includes a revised version of a paper under evaluation for JSS’19, and
materials published in the proceedings of MSR’19 [101] and MOBILESoft’19 [103].
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4.1 Study Design

We present in this section the relevant context for our research investigation and the
dataset leveraged in our three empirical studies.

4.1.1 Context Selection

The core of our studies is analyzing the change history of mobile apps to follow the
evolution of mobile-specific code smells. In this respect, the context selection entails the
choice of (i) the mobile platform to study, and (ii) the mobile-specific code smells with their
detection tool.

The Mobile Platform

We decided to focus our studies on the Android platform. With 85.9% of the market
share, Android is the most popular mobile operating system as of 2018. 1 Moreover, more
Android apps are available in open-source repositories compared to other mobile platforms,
like iOS [100]. On top of that, both developers and research communities proposed tools to
analyze the source code of Android apps and detect code smells [7, 109, 156].

Code Smells & Detection Tool

In the academic literature, the main reference to Android code smells is the catalog of
Reimann et al. [169]. It includes 30 code smells, which are mainly performance-oriented, and
covers various aspects, like user interface and data usage. Ideally, we would consider all the
30 code smells in our studies. However, for feasibility purpose, we could only consider code
smells that are already detectable by state-of-the-art tools. Hence, the choice of studied code
smells is determined by the adopted detection tool. In this regard, our detection relied on
Paprika, an open-source tooled approach that detects Android-specific code smells from
Android packages (APK). Paprika is able to detect 13 Android-specific code smells. However,
after examination, we found that the code smells Invalidate Without Rect and Internal Getter
Setter are now deprecated. Indeed, the method invalidate() was deprecated in API level 28,
which deprecates the code smell Invalidate Without Rect [8]. As for Internal Getter Setter,
since API level 10, internal getters are automatically optimized by Dalvik, thus the code smell
is not valid anymore [7]. To address these deprecations, we excluded these two code smells
from our analysis. Moreover, we wanted to focus our studies on objective code smells—i.e.,
smells that either exist in the code or not, and cannot be introduced or removed gradually.
Hence, we excluded Heavy AsyncTask, Heavy Service Start and Heavy BroadcastReceiver,

1. https://www.statista.com/statistics/266136/global-market-share-held-by-smartphone-operating-
systems
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which are subjective code smells [109]. We present in Table 4.1 the studied code smells with
a highlight on the affected source code entities and the main performance impact.

Leaking Inner Class (LIC): in Android, anonymous and non-static inner classes hold
a reference of the containing class. This can prevent the garbage collector from freeing
the memory space of the outer class even when it is not used anymore, and thus causing
memory leaks [7, 169].

Entity: Inner class.

Impact: Memory.

Member Ignoring Method (MIM ): this smell occurs when a method that is not a
constructor and does not access non-static attributes is not static. As the invocation of
static methods is 15%–20% faster than dynamic invocations, the framework recommends
making these methods static [108].

Entity: Method.

Impact: CPU.

No Low Memory Resolver (NLMR): this code smell occurs when an Activity does
not implement the method onLowMemory(). This method is called by the operating system
when running low on memory in order to free allocated and unused memory spaces. If it
is not implemented, the operating system may kill the process [169].

Entity: Activity.

Impact: Memory.

Hashmap Usage (HMU ): the usage of HashMap is inadvisable when managing small
sets in Android. Using Hashmaps entails the auto-boxing process where primitive types
are converted into generic objects. The issue is that generic objects are much larger than
primitive types, 16 and 4 bytes, respectively. Therefore, the framework recommends using
the SparseArray data structure that is more memory-efficient [7, 169].

Entity: Method.

Impact: Memory.

UI Overdraw (UIO): a UI Overdraw is a situation where a pixel of the screen is
drawn many times in the same frame. This happens when the UI design consists of
unneeded overlapping layers, e.g., hidden backgrounds. To avoid such situations, the
canvas.quickreject() API should be used to define the view boundaries that are draw-
able [7, 169].

Entity: View.



4.1 Study Design 53

Impact: GPU.

Unsupported Hardware Acceleration (UHA): in Android, most of the drawing
operations are executed in the GPU. Rare drawing operations that are executed in the
CPU, e.g., drawPath method in android.graphics.Canvas, should be avoided to reduce
CPU load [106, 143].

Entity: Method.

Impact: CPU.

Init OnDraw (IOD): a.k.a. DrawAllocation, this occurs when allocations are made
inside onDraw() routines. The onDraw() methods are responsible for drawing Views and
they are invoked 60 times per second. Therefore, allocations (init) should be avoided inside
them in order to avoid memory churn [7].

Entity: View.

Impact: Memory.

Unsuited LRU Cache Size (UCS): in Android, a cache can be used to store frequently
used objects with the Least Recently Used (LRU) API. The code smell occurs when the LRU
is initialized without checking the available memory via the method getMemoryClass().
The available memory may vary considerably according to the device so it is necessary to
adapt the cache size to the available memory [106, 137].

Entity: Method.

Impact: Memory.

Table 4.1 Studied code smells.

4.1.2 Dataset and Selection Criteria

To retrieve the apps and their change history, we rely on GitHub—the largest social
coding platform. In order to have a representative dataset, we only include real Android
apps—i.e., we exclude demo apps, libraries, etc. To this end, we need a criterion to distinguish
Android apps from projects of other frameworks. One option could be to use GitHub search
on repositories’ titles, descriptions, and topics. The issue with this option is that GitHub
repositories that satisfy this criterion could also be tests, templates, or even APIs. Thus,
it is not possible to rely only on the search option of GitHub. We therefore opted for the
apps published by the FDroid online repository 2 to create our dataset. We used a web

2. https://f-droid.org

https://f-droid.org
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Figure 4.1 Overview of the Sniffer toolkit.

crawler to collect the GitHub links of apps available on FDroid. Then using these links, we
fetched the repositories from GitHub. 3 For computational constraints and in order to focus
on repositories with communities, we only kept projects with at least two developers. This
filter resulted in 324 projects with 255,798 commits. The full list of projects can be found in
our artifacts [95].

4.2 Data Extraction: Sniffer

We propose in this section Sniffer, a novel tool for tracking code smells in Android
apps. Sniffer is an open-source [104], heavily tested, and documented toolkit that tracks
the full history of Android-specific code smells. It tackles many issues raised by the Git
mining community like branch and renaming tracking [120]. Figure 4.1 illustrates its main
steps of Sniffer. First, from the repository of the app under study, it extracts the commits
and other necessary metadata like branches, releases, commit authors, etc. In the second
step, it analyzes the source code of each commit separately to detect code smells instances.
Finally, based on the code smell instances and the repository metadata, it tracks the history
of each smell and records it in the output database. In the following subsections, we explain
the role of each step with a brief description of its implementation.

Step 1: Extract App Data

Input: Git link to an Android app.
Output: Commits and repository model.
Description: This step is performed by the sub-module CommitLooper [104]. First, Sniffer
clones the repository from Git and parses its log to obtain the list of commits. Afterwards, it
analyzes the repository to extract its model. This model consists of properties of different
repository elements. Table 4.2 describes the main properties of commits, developers, and
releases.

While most of the properties are directly extracted from Git, some others need more
processing to be retrieved. In particular, the SDK version is retrieved from the manifest.xml

3. http://ghtorrent.org

http://ghtorrent.org
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Element Property Description

Commit

size (int,int): the number of additions and deletions.
author The commit author.
date The commit authoring date.
message The commit message.
is_merge (boolean): true if it is a merge commit.
original_branch The branch in which the commit was first introduced.
parents The previous commits.
sdk_version The Android SDK version used in the commit.

Developer number_of_commits The number of commits authored by the developer.

Release

date The date of the release.
commit A reference to the commit pointed by the release.
message The release message.

Table 4.2 Repository metadata.

file, which describes the configuration of the Android app. Also, properties related to branches
are not directly available. Branches are a local concept in Git, thus information about them
are not recorded to be easily retrieved. Indeed, given a specific commit, Git cannot tell
what is its original branch. For this, Sniffer makes an additional analysis to attribute each
commit to its original branch.

Branch extraction: The distribution of commits among branches can only be retrieved
by navigating the repository commit tree. Figure 4.2 shows an example of a commit tree. In
the tree, every commit points towards one or multiple parents—i.e., precedent commits. If we
navigate the first parents, we will only get the commits of the master branch, G->D->C->B->A
in this example. Retrieving the full history of the repository, with all the branches, requires
navigating all the parents. Therefore, Sniffer navigates the commit tree by crossing all the
parents and extracts the repository branches. Then, it updates the branch-related properties.
For instance, commit D will have original_branch = master and parents = {C,F}. These
properties will allow us to track the smell history accurately in Step 3.

Step 2: Detect Code Smells

Input: Commits and repository model.
Output: Code smell instances per commit.
Description: This step is performed by the sub-module SmellDetector [104]. As explained
beforehand, Sniffer relies on Paprika [109] to detect Android code smells. Originally,



56 Code Smells in the Change History

D C B

EF Branch feature

Branch master

Merge 
Commit

A
First 

Commit

G
HEAD: Last 

Commit

first parentfirst parentfirst parent

first parent

Se
co

nd
 pa

ren
t first parent

first parent

Figure 4.2 An example of a commit tree.

Paprika detects code smells from the APK, it does not analyze the source code. However,
we wanted to detect code smells directly from the source code of commits. Therefore, we
needed to integrate a static analyzer into Sniffer that feeds Paprika with the necessary
data. In such a way, before going through smell detection with Paprika, each commit goes
through the static analysis.

Static analysis: Sniffer performs static analysis using Spoon [160], a framework for
Java-based programs analysis and transformation. Sniffer launches Spoon 4 on the commit
source code to build an abstract syntax tree. Afterwards, it explores this tree to extract code
entities (e.g., classes and methods), properties (e.g., names, types), and metrics (e.g., number
of lines, complexity). Together, these elements constitute a usable model by Paprika.

Detection of code smell instances: Fed with the model built by the static analyzer,
Paprika detects the code smell instances. To this point, commits are still processed separately.
Thus, this step produces a separate list of code smell instances for each commit.

Step 3: Analyze Change History

Input: Code smell instances per commit and the repository model.
Output: Full code smell history.
Description: This step is performed by the sub-module SmellTracker [104]. In this step,
Sniffer tracks the full history of every code smell. As our studies focus on objective Android
code smells, we only have to look at the current and previous commits to detect smell
introductions and removals. If a code smell instance appears in a commit while absent from
the previous, a smell introduction is detected. In the same way, if a commit does not exhibit

4. http://spoon.gforge.inria.fr/

http://spoon.gforge.inria.fr/
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an instance of a smell that appeared previously, a smell removal is detected. In order for this
process to work, Sniffer needs to (a) retrieve the previous commits accurately and (b) track
renamings.
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Figure 4.3 Commits ordered in different settings.

Retrieve the previous commits accurately: Retrieving the previous commits requires
an order in the commit history. In this regard, Git log provides two main commit orders:

— Chronological order, by date or authoring date,
— Topological order.

The chronological order aligns commits relying only on the date, but it does not consider
their branches. As for the topological order, it aligns the commits of all the branches to
make sure that children commits are always shown before their parents. These two orders
flatten the commit tree into one branch and this implies a loss of accuracy. This loss affects
the detection of code smell introductions and removals. To illustrate this effect, we depict
in Figure 4.3 an example of a commit tree with two branches. The branch order presents
the real commit history where the commit D introduced smell_x and commit B removed
smell_y. With the chronological order, commit B is placed between commits D and E. With
the topological order, commits D and E are placed between B and C. Moreover, in both
orders the commit C has only one previous commit instead of two. As shown in Figure 4.3,
these placements caused many false code smell introductions and removals. This shows that
these orders are suitable for repositories with a single branch. However, for multiple branches,
we need to follow a branch-aware order. For this purpose, Sniffer considers the branches
extracted in Step 1 to retrieve previous commits. Specifically, it uses the commit properties
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RegistrationSocket.java GcmSocket.java 

Commit 303d1ac: File renaming

Leaking Inner Class 
RegistrationSocket$Verification   

Leaking Inner Class 
GcmSocket$Verification   

renamed_from

Figure 4.4 Tracking code smell renamings.

original_branch and parents to get one or multiple previous commits. This allows to stay
faithful to the real order of commits and accurately detect code smell introductions and
removals.

Track renamings: In the process of development, files and folders can be renamed. These
renamings hinder the tracking of code smells. For instance, Figure 4.4 depicts an example of
a file renaming that happens in the application Silence [176].

If we do not detect this renaming, we would consider GcmSocket$Verification as a
new instance of the code smells Leaking Inner Class (LIC), and we will lose track of the
instance RegistrationSocket$Verification. On top of that, the commit 303d1ac will be
attributed with wrong smell introduction and removal. To prevent these mistakes, Sniffer
relies on Git to detect all the renamings happening in the repository. Git tracks files with
their contents instead of their names or paths. Hence, if a file or a folder is renamed and
the content is not drastically changed, Git is able to keep track of the file. Git uses a
similarity algorithm [86] to compute a similarity index between two files. By default, if the
similarity index is above 50%, the two files are considered the same. Sniffer uses this
feature via the command git log –find-renames –summary, which shows all the renamings
that happened in the repository. Sniffer uses these detected renamings to link the files
and code smells in the output database. In this way, Sniffer detects in the example
of Figure 4.4 that the code smell RegistrationSocket$Verification is a new name for
RegistrationSocket$Verification. It links the two code smells with the relationship
renamed_from and stores this information in the output database. Consequently, no new
code smell introductions or removals are detected, and the history of code smells is accurately
tracked.

The generated history is saved in a PostgreSQL database that can be queried to analyze
different aspects of mobile apps and code smells [95].
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4.2.1 Validation

In order to ensure the relevance of our studies, we validated the performance of our data
extraction by assessing the accuracy of Sniffer and its underlying tool Paprika on our
dataset. The validation samples are available in our companion artifacts [95].

Paprika

Hecht et al. [106] have already validated Paprika with a F1-score of 0.9 in previous
studies. They validated the accuracy of the used code smell definitions and the performance
of the detection. The objective of our validation of Paprika is to check that its detection is
also accurate on our dataset. Therefore, we randomly selected a sample of 599 code smell
instances. We used a stratified sample to make sure to consider a statistically significant
sample for each code smell. This represents a 95% statistically significant stratified sample
with a 10% confidence interval of the 180,013 code smell instances detected in our dataset.
The stratum of the sample is represented by the eight studied code smells. After the selection,
one author manually analyzed the instances to check their correctness. We found that all the
sample instances are conform to the adopted definitions of code smells. Hence, we can affirm
that the Paprika code smell detection is effective in our dataset.

Sniffer

We aimed to validate the accuracy of the code smell history generated by Sniffer. For
this, we randomly selected a sample of 384 commits from our dataset. This represents a
95% statistically significant stratified sample with a 5% confidence interval of the 255,798
commits in our dataset. After the selection, one author analyzed every commit to check that
the detected code smell introductions and removals are correct, and Sniffer did not miss
any code smell introduction or removal. Based on these results, we computed the number
of true positives (TP), false positives (FP), and false negatives (FN). These numbers are
reported in Table 4.3.

TP FP FN Precision Recall F1-score

Introductions 151 7 0 0.95 1 0.97

Removals 85 7 0 0.92 1 0.96

Table 4.3 Validation of Sniffer.

We did not find any case of missed code smell introductions or removals, FN = 0. However,
we found cases where false code smell introductions and removals are detected: FP = 7
for both of them. These false positives are all due to a commit from the Shopping List
app [82], which renamed 12 Java files. Three of these renamings were accompanied with
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major modifications in the source code. Thus, the similarity between the files was above 50%
and Git could not detect the renaming. Consequently, Sniffer could not track the code
smells of these files and detected seven false code smell introductions and removals.

Using the results of the manual analysis, we computed the following performance measures.

Precision = TP

TP +FP
Recall = TP

TP +FN

F1-score = 2× Recall×Precision
Recall+Precision

The values of these measures are reported in Table 4.3. According to these values, Sniffer
is effective for detecting both code smell introductions and removals.

4.3 Evolution Study

In this study, we analyze the introductions and removals of Android code smells to identify
the motives that favor the presence of code smells. In particular, we aim to answer the
following research questions:

— RQ 1: How frequent are code smell introductions?
This question allows us to quantify the extent of code smells in the change history.

— RQ 2: How do releases impact code smell introductions and removals?
We focus on releases, as they are usually considered as the main prioritization factor that
leads to technical debt [191]. Moreover, mobile apps are known for having more frequent
releases and updates [138], which may be another favorable factor for mobile-specific
code smells.

— RQ 3: How are code smells removed?
This question allows us to:

— Check whether code smells are removed intentionally or not. This check is
important to inspect developers’ awareness about code smells and thus assess
motives like pragmatism, ignorance, and oversight;

— Learn removal fashions from developer actions and aliment future studies about
code smell refactoring.

In the following subsections, we will explain how we leveraged the data extracted by
Sniffer to answer these research questions. Afterwards, we report and discuss the study
results, then we conclude with a study summary that highlights the main findings.

4.3.1 Data Analysis

In this subsection, we describe our approach for analyzing the collected data in order to
answer our research questions. Table 4.4 reports on the list of metrics that we defined for the
data analysis.
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Metric Description

C
od
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#introductions The number of instances introduced in the dataset.
%affected-apps The percentage of apps affected by the code smell.
%diffuseness The diffuseness of the code smell instances in the source code of an

app.
#removals The number of instances removed in the dataset.
%removals The percentage of instances removed—i.e., #removals

#introductions .
#code-removed The number of instances removed with source code removal.
%code-removed The percentage of instances removed with source code removal—i.e.,

#code−removed
#removals .

C
om

m
it

#commit-introductions The number of code smell instances introduced by the commit.
#commit-removals The number of code smell instances removed by the commit.
distance-to-release The distance between the commit and the next release in terms of

number of commits.
time-to-release The distance between the commit and the next release in terms of

number of days.

Table 4.4 Study metrics.

As shown in Table 4.1, every code smell type affects a specific entity of the source code.
Therefore, to compute the metric %diffuseness, we only focus on these entities. For instance,
the code smell Init OnDraw affects only the entity View, thus we compute the percentage of
views affected. This allows us to focus on the relevant parts of the source code and have a
precise vision about the code smell diffuseness. For each app a, the diffuseness of a type of
code smells t that affects an entity e is defined by:

%diffuseness(a,t) = #affected-entities(a,t)
#available-entities(a,e)

For the metrics #code-removed and %code-removed, we analyzed the code smell history
built by Sniffer to detect the source code modifications that accompanied code smell
removals. In particular, we counted every code smell removal where the host entity of the
code smell was also removed. For instance, when an instance of the code smell No Low Mem-
ory Resolver is removed, the removal can be counted in #code-removed only if the host
Activity has been removed in the same commit.

RQ1: How Frequent Are Code Smell Introductions?

To inspect the prevalence of code smells, we first computed the following metrics for each
code smell type: #introductions and %affected-apps. These metrics allow us to compare the
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prevalence of different code smell types. Then, to have a precise assessment of this prevalence,
we also used the metric: %diffuseness. We computed the diffuseness of each code smell type
in every app of our dataset. Finally, we plotted the distribution to show how diffuse are code
smells compared to their host entities.

RQ2: How Do Releases Impact Code Smell Introductions and Removals?

This research question investigates the impact of releases on code smell evolution. To
ensure the relevance of this investigation, we paid careful attention to the suitability of the
studied apps for a release inspection. In particular, we manually checked the timeline of each
app to verify that it publishes releases through all the change history. We excluded apps
that did not use releases at all, and apps that used them only at some stage. For instance,
the Chanu app [145] only started using releases in the last 100 commits, while the first 1,337
commits do not have any release. Hence, this app is, to a large extent, release-free and thus
irrelevant for this research question. Out of the 324 studied apps, we found 156 that used
releases during all the change history. The list of these apps can be found in our study
artifacts [96]. It is also worth noting that as Android apps are known for continuous delivery
and releasing [10, 138], we considered in this analysis both minor and major releases. This
allows us to perform a fine-grained study with more releases to analyze.

After selecting relevant apps, we evaluated the impact of releases on code smell introduc-
tions and removals. First, we visualized for each project the evolution of source code and
code smells along with releases. The objective of this visualization is not to evaluate the
impact of releases on code smells, but it rather gives us insights about it. To actually measure
this impact, we needed to analyze the impact of approaching releases on the numbers of
introductions and removals in the commit. Therefore, we used the metrics distance-to-release
and time-to-release.

Distance to release: We aimed to assess the relationship between the distance to release
and the numbers of code smells introduced and removed per commit. For this, we computed
the correlation between the distance-to-release and both #commit-introductions and #commit-
removals using Spearman’s rank coefficient. Spearman is a non-parametric measure that
assesses how well the relationship between two variables can be described using a monotonic
function. This measure is adequate for our analysis as it does not require the variables
normality and does not assess the linearity.

Time to release: Using the metric time-to-release, we extracted three commit sets:
— Commits authored one day before a release,
— Commits authored one week before a release,
— Commits authored one month before a release.
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Then, we compared the #commit-introductions and #commit-removals in the three sets
using Mann-Whitney U and Cliff’s δ. We used the two-tailed Mann-Whitney U test [174]
with a 99% confidence level, to check if the distributions of introductions and removals are
identical in the three sets. To quantify the effect size of the presumed difference between the
sets, we used Cliff’s δ [170].

RQ3: How Are Android Code Smells Removed?

Quantitative analysis: First, to assess how frequently are code smells removed, we
computed for each type of code smells the following metrics: #removals and %removals.
Then, to have insights about the actions that lead to code smell removals, we computed:
#code-removed and %code-removed. The metric %code-removed reports on the percentage
of code smell instances that were removed with a source code deletion. Code smells being
removed because the source code is deleted may be a sign that the removal is accidental and
does not originate from an intended refactoring. However, this sign is not enough to conclude
about the removal nature, hence the need for a thorough qualitative analysis of code smell
removals.

Qualitative analysis: The objective of the qualitative analysis is to inspect code smell
removal fashions and check whether these removals manifest any intentional refactoring
behavior. For this, we manually analyzed a sample of smell-removing commits. We used
a stratified sample to make sure to consider a statistically significant sample for each code
smell. In particular, we randomly selected a set of 561 code smell removals from our dataset.
This represents a 95% statistically significant stratified sample with a 10% confidence interval
of the 143,995 removals detected in our dataset. The stratum of the sample is represented by
the eight studied code smells. After sampling, we analyzed every smell-removing commit to
inspect two aspects:

— Commit actions: The source code modifications that led to the removal of the code
smell instance. In this aspect, every code smell type has different theoretical ways
to remove it. We inspect the commits to investigate the ways used in practice for
concretely removing code smells from the codebase.

— The commit message: we looked for any mention of the code smell removal. In
this regard, we were aware that developers could refer to the smell without explicitly
mentioning it in the commit message. Therefore, we thoroughly read the commit
messages to look for implicit mentions of the code smell removal. For this aspect of
the analysis, there are no analytical categories. We rather tagged the commit with a
boolean to show whether its message mentions the code smell removal or not.

For both aspects, one author analyzed the sample to build the analytical categories and
tag every commit. Thereafter, the other authors discussed and double-checked the coding
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and assignments. The double-check allows us to verify the relevance of the categories, and
reorganize (refine or merge) them, if needed.

4.3.2 Study Results

This section reports on the results of our evolution study.

RQ1: How Frequent Are Code Smell Introductions?

Table 4.6 reports on the number of code smells introduced and the percentage of apps
affected.

Code smell LIC MIM NLMR HMU UIO UHA IOD UCS All

#introductions 98,751 72,228 4,198 3,944 514 267 93 18 180,013

%affected-apps 96 85 99 60 36 20 15 2 99

Table 4.6 Numbers of code smell introductions.

The table shows that, in the 324 apps, 180,013 code smell instances were introduced.
This number reflects the widespread of code smells in Android apps. However, it is worth
noting that not all code smells are frequently introduced. Indeed, the table shows a significant
disparity between the different code smell types. The code smells LIC and MIM were
introduced tens of thousands of times, while UCS and IOD were only introduced less than
100 times. These results highlight two interesting observations:

— The most frequently introduced code smells (LIC and MIM ) are both about source
code entities that should be static for performance optimization.

— The UI-related code smells (UIO, UHA, and IOD) are among the least frequently
introduced code smells.

Regarding affected apps, Table 4.6 shows that 99% of apps had at least one code smell
introduction in their change history, which again highlights the widespread of the phenomenon.
The table also shows that the disparity in introduction frequency is reflected in the percentage
of affected apps as frequent code smells tend to affect more apps. However, we observe that
having more instances does not always imply affecting more apps. In particular, the code
smell NLMR is much less present than the code smells LIC and MIM, 4,198 vs. 98,751 and
72,228, respectively. However, it affected more apps, 99% vs. 96% and 85%.

To have a clearer vision about these disparities, we reported in Figure 4.5 the diffuseness
of code smells within their source code host entities in the studied apps. The figure shows
that NLMR is the most diffuse code smell. At least 50% of the dataset apps had this code
smell in all their activities, median = 100%. LIC is also very diffuse. In most of the apps, it
affected more than 80% of the inner classes. Code smells that are hosted by views are less
diffuse. On average, 15% of the views are infected with UIO. As for IOD, generally it only
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infected less than 10% of the views. Finally, code smells hosted by methods are the least
diffuse. MIM, HMU, UHA, and UCS are present in less than 3% of the methods. This low
diffuseness is not surprising as the number of methods is very high.

Figure 4.5 Distribution of code smell %diffuseness in studied apps.

These results show that some frequent code smells, like MIM, are actually not very
diffuse, they only impact a low percentage of their potential host entities. Yet, code smells
that seem less frequent like UIO and IOD are actually more diffuse and affect a higher
percentage of entities.

Android code smells are not introduced and diffused equally. No Low Mem-
ory Resolver and Leaking Inner Class are the most diffuse, on average they
impact more than 80% of the activities and inner classes, respectively.

RQ2: How Do Releases Impact Code Smell Introductions and Removals?

We generated code smell evolution curves for all the studied apps. These curves can be
found in our artifacts [95]. Figure 4.6 shows an example of the generated evolution curves
that represents the Seadroid app. The figure highlights the releases in order to show the
changes in code smell numbers when approaching releases. From our manual examination of
all the evolution curves, we did not observe any tendency of code smell increase or decline
immediately before or after releases.

In the remainder of this section, we will further investigate this observation using the
metrics distance to release and time before release.
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Figure 4.6 The evolution of code smells in the Seafile Android client app.

Distance to release: Figure 4.7 presents two scatter plots that reports on the relationship
between the distance from releasing and the number of code smell introductions and removals
per commit. The first thing that leaps to the eye is the similarity between the two plots.
Code smell introductions and removals are similarly distributed regarding the distance from
releasing. We do not notice any time window where the code smell introductions and
removals are negatively correlated. We also do not visually observe any correlation between
the distance from release and code smell introductions and removals. Indeed, the Spearman’s
rank correlation coefficients confirm the absence of such correlations.

Spearman(distance-to-release,#commit-introductions)

 ρ = 0.04

p-value < 0.05

Spearman(distance-to-release,#commit-removals)

 ρ = 0.01

p-value < 0.05

The results show that, for both correlations, the p-value is below the threshold. Hence, we can
consider the computed coefficients as statistically significant. As these correlation coefficients are
negligible, we can conclude that there is no monotonic relationship between the distance from releasing
and the numbers of introductions and removals per commit.

Time to release: After analyzing the impact of the distance to release, we investigate the impact
of the time to release on code smell introductions and removals.

Figure 4.8 depicts the density function of code smell introductions and removals in different
timings. First, we observe that code smell introductions and removals are distributed similarly. For
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Figure 4.7 The number of code smell introductions and removals per commit in the last 100
commits before release.

Figure 4.8 The density function of code smell introductions and removals one day, one week,
and one month before releasing.
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each timing, the density function of code smell introductions and removals are analogous. As for the
comparison between code smell introductions performed at different times, we observe that commits
performed one day before releasing have a higher probability to only have one code smell introduction.
Commits performed one week or one month before release tend also to have around one code smell
introduction, but they also have chances to introduce more code smells. This means that code smells
authored one day before the release do not necessarily have more code smell introductions. Code
smell removals follow exactly the same distribution for every timing. Thus, we can infer that time to
release has no visible impact on code smell introductions and removals. To confirm this observation,
we compare in Table 4.7 the code smell introductions performed one day, one week, and one month
before the release.

LIC MIM NLMR HMU UIO IOD UHA UCS All

Day p > 0.01 p > 0.01 p > 0.01 p > 0.01 p > 0.01 p > 0.01 p > 0.01 − p > 0.01

Week 0.01(N) 0.05(N) 0.08(N) 0.20(S) 0.18(S) 0.10(S) − − 0.00(N)

Day p > 0.01 p > 0.01 p > 0.01 p > 0.01 − − − − p > 0.01

Month 0.02(N) 0.04(N) 0.08(N) 0.02(N) − − − − 0.01(N)

Week p > 0.01 p > 0.01 p > 0.01 p > 0.01 − − − − p > 0.01

Month 0.04(N) 0.00(N) 0.00(N) 0.04(N) − − − − 0.01(N)

Table 4.7 Compare #commit-introductions in commits authored one day, one week, and one
month before releasing.

The table results show that for all code smells, there is no significant difference between code
smell introductions occurring in different dates before the release (p−value > 0.01). The effect size
values confirm the results, all the quantified differences are small or negligible.

Similarly, Table 4.7 compares code smell removals in commits authored one day, one week, and
one month before the release. The results are similar to the ones observed for code smell introductions.
The differences between different commits sets are insignificant (p-value > 0.01) and effect sizes are
small or negligible regardless of the code smell type.

These observations suggest that there is no difference between the introduction and removal
tendencies in commits authored just before release and those written days or weeks before. It is worth

LIC MIM NLMR HMU UIO IOD UHA UCS All

Day p > 0.01 p > 0.01 p > 0.01 p > 0.01 p > 0.01 p > 0.01 p > 0.01 − p > 0.01

Week 0.05(N) 0.03(N) 0.02(N) 0.05(N) 0.29(S) − − − 0.01(N)

Day p > 0.01 p > 0.01 p > 0.01 p > 0.01 − − − − p > 0.01

Month 0.02(N) 0.07(N) 0.30(S) 0.01(N) − − − − 0.03(N)

Week p > 0.01 p > 0.01 p > 0.01 p > 0.01 − − − − p > 0.01

Month 0.02(N) 0.04(N) 0.30(S) 0.04(N) − − − − 0.01(N)

Table 4.8 Compare #commit-removals in commits authored one day, one week, and one month
before releasing.
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noting that for code smells UIO, IOD, UHA, and UCS, the number of instances was in some cases
insufficient for performing the statistical tests. Hence, these results are only valid for the most present
code smells: LIC, MIM, NLMR, and HMU.

Releases do not have an impact on the introductions and removals of Android code
smells.

RQ3: How Are Code Smells Removed?

Quantitative analysis: Table 4.9 reports on the number and percentage of removals. The table
shows that, on average, 79% of the code smell instances are removed. Looking at every code smell
type separately, the removal rate varies between 35% and 93%. MIM is the most removed code smell
with 93% of its instances were removed along the change history. On the other hand, UHA is the least
removed code smell with only 35% of its instances removed. The other code smells have a coherent
removal percentage: they all had from 60% to 70% of their instances removed.

Code smell LIC MIM NLMR HMU UIO IOD UHA UCS All

#removals 70,654 67,777 2,526 2,509 305 147 66 11 143,995

%removals 71 93 60 63 59 35 70 61 79

#code-removed 67,169 13,809 1,625 1,824 273 123 33 8 84,864

%code-removed 95 20 64 73 90 84 50 73 59

Table 4.9 Number and percentage of code smell removals.

The table also reports on the number and percentage of code smell instances removed within
source code removal—i.e., code-removed. The table shows that, overall, 59% of the code smell removals
are source code removals. Indeed, for all code smell types except MIM, more than 50% of code smell
removals are accompanied with the removal of their host entities. MIM is the only code smell that is
rarely removed with source code removals— %code-removed=20%.

Overall, 79% of code smell instances are removed through the change history. Except
for Member Ignoring Method, code smell removal generally occurs because of source
code removal.

Qualitative analysis: We report on the results of our manual analysis of 561 code smell removals.
It is worth noting that, to leverage the replication of this study, all the results of this qualitative
analysis are included in our companion artifacts [95]. We found that, for some code smells, the removal
fashions were similar, thus we reported them together. Also, for the sake of clarification, we remind
for each code smell all the possible ways to remove it from the source code before reporting the ways
found in the analyzed sample.

Code smell: Leaking Inner Class (LIC)
Sample size: 96 LIC removing commits.
Possible removals: LIC can be removed by:

— Making the affected inner class static,
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— Removing the affected inner class.
Commit actions: We found that in 98% of the cases, the LIC instances are removed because of
source code deletion. Specifically, we found that the code smell disappears as the inner classes are
removed as a side effect of source code evolution. For instance, a commit from the Seadroid app
that fixes bugs also removes unused code that contained a non-static inner class [80]. Hence, the
commit has removed a LIC instance as a side effect of the bug fixing. This finding explains the high
percentage of code-removed found for LIC in the quantitative analysis (95%).
We only found one case of a LIC removal that was not caused by source code removal. It was a
commit that refactored a feature and made an inner class private and static, thus removing a code
smell instance [75]. As this commit made diverse other modifications, we could not affirm that the
action was an intended code smell refactoring.
Commit message: We did not find any explicit or implicit mention of LIC in the messages of
the smell-removing commits. Moreover, the messages did not refer specifically to the inner classes
removal. Even the unique commit that removed the LIC instance with a modification did not mention
anything about the matter in its message [75].

Code smell: Member Ignoring Method (MIM)
Sample size: 96 MIM removing commits.
Possible removals: MIM can be removed by:

— Making the affected method static,
— Introducing code that accesses non-static attributes to the affected method,
— Removing the affected method.

Commit actions: We found that only 15% of MIM removals are due to the deletion of the host
methods. In most of the cases, MIM was rather removed with the introduction of source code.
Specifically, when empty and primitive methods are developed—with instructions added inside—they
do not correspond to the MIM definition anymore, and thus the code smell instances are removed.
Also other instances are removed from full methods with the introduction of new instructions that
access non-static attributes and methods. Finally, we did not find any case of MIM removal that was
performed by only making the method static.
Commit message: We did not find any commit message that referred to the removal of MIM
instances.

Code smell: No Low Memory Resolver (NLMR)
Sample size:93 NLMR removing commits.
Possible removals: NLMR can be removed by:

— Introducing the method onLowMemory() to the activity,
— Removing the affected activity.

Commit actions: We found that 65% of NLMR instances are removed with source code deletion.
This deletion is caused by major modifications in the code base, like major migrations and important
features. For instance, a commit from the Silence app refactored the whole app to start using Fragment
components [76]. One consequence of these modifications is the deletion of the SecureSMS activity,
which used to be an instance of NLMR.
As for the remainder 35% instances, the removal was due to the conversion of host activities into
other components. For example, a commit from the K-9 app converts an activity that was an instance
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of NLMR into a fragment [77]. As the code smell NLMR is about activities, the class as fragment
does not correspond to the definition anymore and thus the code smell instance is removed. Other
than these two actions, we did not find any other ways of removing NLMR instances. In particular,
we did not find any case where the method onLowMemory() is introduced to refactor the code smell.
Commit message: We did not find any commit message that mentioned the removal of NLMR
instances. We found one message that mentions that the commit performs memory improvement in
two classes [74]. Nonetheless, these improvements were not related to the NLMR code smell.

Code smells: Hashmap Usage (HMU), Unsupported Hardware Acceleration
(UHA) & Init OnDraw (IOD)
Sample size: 93 instances of HMU, 59 instances of UHA, and 40 instances of IOD.
Possible removals: These code smells can be removed by:

— Removing the instruction that introduced them,
— Removing their host entities.

Commit actions: In the manual analysis of these code smells, we inspected whether the removal
was due to the deletion of large code chunks or only the removal of the specific instructions that
caused the instance. We found that the instances of HMU and UHA are in 70% of the cases removed
with the deletion of big chunks of code. As for IOD, there are equally instances removed with big
code deletions as instances removed with only instructions removals. Looking for potential intended
refactorings, we carefully examined the cases where the code smells instances are removed at a low
granularity level—i.e., instructions. In all the HMU and UHA instances, we did not find a code smell
removal that could represent an intended refactoring. All the instances are removed as a side effect of
modifications inside methods that do not specifically target the code smell instruction. Surprisingly,
we found that that 22% of IOD instances are removed with precise modifications that sound like
proper refactoring. Indeed, there are nine IOD instances that specifically removed the allocation
instruction or extracted it out of the onDraw() method. Another element that incites us to describe
these modifications as intended is that they removed the Android Lint of DrawAllocation. This shows
that the developers were aware of removing a code smell instance.
Commit message: Out of the nine potential proper refactorings of IOD, we found six commit
messages that mentioned the code smell removal. This confirms that the operations are intended
refactorings. As for HMU and UHA, none of the analyzed commit messages mentioned their removal.

Code smells: UI Overdraw (UIO) & Unsuited LRU Cache Size (UCS)
Sample size: 74 instances of UIO and 10 instances of UCS.
Possible removals: These code smells can be removed by:

— Adding method calls: clipRect() or quickReject() for UIO, and getMemoryClass() for
UCS,

— Removing the instruction that introduced them,
— Removing their host methods.

Commit actions: We found that in more than 70% of the cases, both code smells are mainly
removed with big code deletions. The remainder instances were mainly modifications inside methods
that implied the deletion of the instructions causing UIO and UCS. The only exception was one
UIO instance, which was removed with the introduction of a call to the method clipRect(). This
modification was the only case that sounded like a proper refactoring.
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Commit message: None of the analyzed commit messages mentioned the code smells UIO and
UCS.

Android code smells are mainly removed as a side effect of source code evolution
activities. Init OnDraw and UI Overdraw are the only code smells that were subject
to apparent refactoring.

4.3.3 Discussion & Threats
We discuss in this section our results in light of the previous works on code smells and mobile

apps. Then, based on this discussion, we highlight the implications of our study. Finally, we present
the threats to validity that are specific to our evolution study. Other threats that are common to our
three studies will be discussed later in a dedicated section.

Discussion

RQ1: How frequent are code smell introductions?
The results of RQ1 showed that LIC and MIM are the most frequently introduced code smells.
Interestingly, these two code smells can be simply avoided by making inner classes and methods static.
That is, their refactoring does not require costly operations and there is no effort needed to avoid
them. Hence, their prevalence in the codebase can hardly be explained by time or effort trade-offs.
The only explanation to the frequency of such easily avoided code smells would be the developers’
ignorance about the issue. This ignorance can be due to the lack of knowledge about the framework
and performance aspects or to the developers’ disbelief in code smells.

Another interesting observation of RQ1 is that LIC and NLMR are the most diffuse code smells
with a median diffuseness of 90%. This means that, every time a developer builds an activity or an
inner class, there is a 90% chance a code smell is introduced. This shows that these code smells must
be studied and questioned in depth to understand what are the rationales behind their prevalence
and how do developers perceive them.

RQ2: How do releases impact code smell introductions and removals?
The results of RQ2 showed that the pressure of releases do not have an impact on code smell
introductions and removals. This shows that code smells are not introduced as a result of rapid coding
and time trade-offs. Hence, we can exclude the time pressure from the potential factors causing code
smell prevalence in mobile apps. Excluding the time factor strengthens the chances of other factors
like developers’ ignorance, which aligns with our aforementioned hypothesis.

RQ3: How are code smells removed?
The quantitative and qualitative findings of RQ3 showed that code smells are mainly removed with
source code deletion as a side effect of other maintenance activities. Even for MIM instances, which
are removed with source code introduction, we found that they are removed because the empty and
primitive methods are developed with new instructions. While we cannot judge the intentions of a
source code modification, most of the observed commits did not reveal signs of intended refactoring.
On top of that, the analyzed commit messages did not mention anything about code smell removals.
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This again strengthens the hypothesis that developers lack awareness and consideration for mobile
code smells. The only exception to this observation was the proper refactoring of IOD and UIO,
which are detected by Android Lint [7]. Interestingly, some of these refactorings explicitly deleted
Android Lint suppressions. This shows that developers considered the linter warnings and responded
with an intended refactoring. This demonstrates the importance of integrating code smells in built-in
tools, like Android Lint.

Implications

Based on the results and this discussion, the implications of our study are the following:
1. Our findings suggest that developers ignore mobile-specific code smells. This leads us to

hypothesize that ignorance and oversight are important motives behind the accrual of Android
code smells. Hence, we encourage researchers and tool makers should put more efforts in the
communication about these code smells and their impact;

2. Our results show that releases do not impact the introductions and removals of Android code
smells. This finding shows that releasing pressure, which is the main prioritization aspect, is
not a motive of Android code smells;

3. Our findings show that code smell removals that occur in mobile apps are mostly accidental. The
modifications that lead to code smell removals are only source code deletions and do not present
proper refactorings. Unfortunately, this means that we cannot learn refactoring approaches
from the removals of the studied code smells. Hence, future studies that intend to learn from
the change history to build automated refactoring tools cannot rely on the removals of these
code smells as learning examples;

4. The absence of intended code smell removals shows that the motives of code smells are probably
ignorance and oversight rather than pragmatism. Indeed, in the case of pragmatism we would
expect some documented code smells or mentions of the refactoring in the removal commits;

5. The refactorings observed for IOD instances highlight the importance of static analyzers
like Android Lint in the improvement of source code quality. These observations encourage
researchers and tool makers to invest in the creation and integration of static analyzers with
more code smell coverage;

6. Our findings show that some mobile code smells, like LIC and NLMR, are diffuse to the point
where they are introduced nearly every time their host entities are created. This surprisingly
high diffuseness should encourage future studies to study developers’ perception of these code
smells and question their definitions.

Threats to Validity

One possible threat to the assessment of our results could be the accuracy of qualitative analysis
and particularly the coding step in RQ3. We used a consensual coding to alleviate this threat and
strengthen the reliability of our conclusions. Each code smell instance has been encoded by at least
two authors. Initially, every author coded the instance independently to avoid influencing the analysis
of other authors. Afterwards, the authors discussed and compared their classifications. To support the
credibility of our study, we inductively built our theory from large representative stratified samples of
code smell instances—561 for RQ2.
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4.3.4 Study Summary
We presented in this section a large-scale empirical study that leverages quantitative and qualita-

tive analyzes to understand the evolution of Android-specific code smells. The main findings of our
evolution study are:
Finding 1: Android-specific code smells are not introduced and diffused equally. No Low Mem-
ory Resolver and Leaking Inner Class are the most diffuse, they impact 90% of the activities and
inner classes. This surprisingly high diffuseness should encourage future studies to study developers’
perception of these code smells and question their definitions.
Finding 2: Releases do not have any impact on the intensity of Android code smell introductions or
removals. This finding challenges the common belief about technical debt and shows that code smells
are not introduced as a result of rapid coding and time trade-offs.
Finding 3: Android code smells are mainly removed as a side effect of source code evolution activities.
Init OnDraw and UI Overdraw are the only code smells that were subject to apparent refactorings. This
finding suggests that future studies that intend to learn from the change history to build automated
refactoring tools cannot rely on the removals of the studied Android code smells as learning examples.
Finding 4: Together our results suggest that ignorance and oversight are important motives of
Android code smells. On the other hand, other motives such as prioritization and pragmatism do not
seem to have a relevant impact on the studied code smells.

4.4 Developers Study
The objective of this study is to analyze the role played by developers in the accrual of Android

code smells. This analysis will allow us to assess the importance of developer-oriented motives—i.e.,
attitudes, ignorance and oversight, in the context of mobile code smells. To conduct this study, we
built on the existing studies about mobile-specific code smells. However, none of these studies has
analyzed the developers angle. They only approached this topic in their explanatory hypotheses when
discussing the possible factors of mobile code smells accumulation. In particular, they hypothesized
that some mobile developers who lack experience and knowledge about the framework, are responsible
for the accrual of mobile code smells [106]. Our study builds on these hypotheses and addresses the
developers role with a large scale analysis. Specifically, we aim at answering the following research
questions:
RQ1: How do developers contribute in code smell introductions and removals?
This question is important for quantifying developers interest and awareness about Android code
smells. If developers who introduce and remove code smells are isolated and distinct, this would show
that the unawareness about code smells is not prevalent and only restrained to some developers and
vice versa. In this topic, the literature and the common understanding of code smells provide three
main hypotheses.

Hypothesis 1 (H1): Code smell introductions and removals are isolated practices.

This hypothesis is supported by studies that suggested that the presence of code smells is the result
of the actions of only some developers [106].

Hypothesis 2 (H2): There is an inverse correlation between code smell introductions and removals
among developers.
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This hypothesis is motivated by the reasoning that some bad developers, who are unaware about code
smells, will tend to introduce and never remove them and vice versa [106, 109].

Hypothesis 3 (H3): For each code smell type, there is an inverse correlation between code smell
introductions and removals among developers.

This hypothesis aligns with the previous one, but goes deeper by considering the knowledge about
every code smell separately.

RQ2: How does seniority impact developers contribution?
This question allows us to investigate whether code smell unawareness is caused by inexperience. This
information is necessary to identify the developers who should be targeted in priority when designing
tools and documentations about code smells. The suggested hypotheses for this question are the
following.

Hypothesis 4 (H4): Newcomers tend to introduce more and remove less code smells.

This hypothesis relies on the conventional wisdom that inexperienced developers who are new to the
project are bad contributors.

Hypothesis 5 (H5): Reputable developers tend to introduce less and remove more code smells.

Reputable developers have a status in the community and they are considered as good contributors [60].
This hypothesis suggests that, as good developers, they should introduce less and remove more code
smells.

In the following subsections, we will explain how we leveraged the data extracted by Sniffer
to answer these research questions. Afterwards, we report and discuss the study results, then we
conclude with a study summary that highlights the main findings.

4.4.1 Data Analysis
Table 4.10 reports on a list of metrics that we defined for the data analysis. We defined the

rate metrics, namely %introductions and %removals, to compare the developers’ role in terms of code
smells regardless of the size of their contributions. Indeed, comparing the number of code smells
introduced by a developer who has 100 commits and another who has only 10 commits can be biased.
The developer with more commits has more chances to introduce and remove code smells. Similarly,
the metric %contribution allows to relate the number of commits to the project size. For instance,
a contribution of 10 commits in a project of 20 commits is totally different from a contribution of
10 commits in a project of 100 commits. For the definition of the metrics newcomer and regular, we
followed the approaches proposed in previous studies. As a matter of fact, Tufano et al. [197] used
the threshold of three commits to distinguish newcomers from regular developers. We present in the
following how we used these metrics in order to answer our research questions.

RQ1: How Do Developers Contribute in Code Smell Introductions and Re-
movals?

The analysis of this research question consisted in testing its three hypotheses.
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Metric Description
#commits (int): the number of authored commits.
#introductions (int): the number of code smells introduced.
#removals (int): the number of code smells removed.
%introductions (float): introduction rate, i.e., the average number of smells introduced per

commit: #introductions/#commits.
%removals (float): removal rate, i.e., the average number of smells removed per commit:

#removals/#commits.
%contribution (float): the size of the developer’s contribution compared to the project size:

#commits/#project size.
#followers (int): the number of followers.
introducer (boolean): true if the developer introduced at least one code smell.
remover (boolean): true if the developer removed at least one code smell.
neutral (boolean): true if the developer did not introduce or remove any code smell.
newcomer (boolean): true if the developer has less than three commits in the project.
regular (boolean): true if the developer has more than three commits in the project.
infamous (boolean): true if the developer has less followers than 75% of the population.
famous (boolean): true if the developer has more followers than 75% of the population.

Table 4.10 Developer metrics.
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H1: Code smell introductions and removals are isolated practices.
This hypothesis suggests that only an isolated part of Android developers are responsible for code
smell introductions and removals. To test this hypothesis, we investigated the distribution of
developers regarding code smell introductions and removals. Specifically, we computed the numbers
and percentages of developers that have the attributes introducer, remover, and neutral. This allowed
us to split the developers into different groups and have an insight about the general tendency of code
smell introductions and removals among Android developers.

H2: There is an inverse correlation between code smell introductions and removals among
developers.
We took a two-step approach to test this hypothesis. First, we measured the relationship between
the metrics #introductions and #removals using Spearman’s rank correlation coefficient. Spearman
is a non-parametric measure that assesses how well the relationship between two variables can be
described using a monotonic function. This measure is adequate for our analysis as it does not require
the normality of the variables and does not assess the linearity.
As the metrics #introductions and #removals can be biased by the number of commits, we proceeded
to the second step with different metrics. Specifically, we used Spearman to measure the correlation
between %introductions and %removals.

H3: For each code smell type, there is an inverse correlation between code smell introductions
and removals among developers.
This hypothesis states that at the code smell level, the introduction and removal are inversely
correlated. This means that developers who are unaware about a specific type of code smells, will
tend to introduce it and never remove it. Similarly, developers who are aware about the code
smell type will tend to remove it and never introduce it. To test this hypothesis, we computed
the metrics %introductions and %removals for each type of code smell, e.g., %introductions_LIC,
%removals_LIC for the LIC code smell. As we study eight code smells, this process gave us 16 metrics.
Afterwards, we computed the correlation between the two metrics of each code smell type, e.g.,
correlation(%introductions_MIM,%removals_MIM). The correlation coefficient used is again
Spearman’s rank.

RQ2: How Does Seniority Impact Developers Contribution?

The objective of this research question is to assess the impact of the developer’s seniority on
code smell introductions and removals. We measured the seniority with (i) the experience in the
development project and (ii) the reputation in the community.

H4: Newcomers tend to introduce more and remove less code smells.
To assess this hypothesis, we followed two approaches. First, we split the developers into two
groups using the metrics newcomer and regular. Then, we compared the distribution of the metrics
%introductions and %removals in the two groups. In particular, we used a two-tailed Mann-Whitney U
test [174], with a 99% confidence level, to check if the distributions of introductions and removals are
identical in the two sets. To quantify the effect size of the presumed difference, we used Cliff’s δ [170],
which is suitable for ordinal data and it makes no assumptions of a particular distribution [170].

In the second approach, we relied on the metric %contribution, which reflects the involvement of
a developer in a project. We assessed the impact of this involvement on code smell introductions
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and removals. Concretely, we computed the Spearman’s rank of the metric %contribution with
%introductions and %removals respectively.

H5: Reputable developers tend to introduce less and remove more code smells.
In this hypothesis, we opted for the number of followers as an estimation of the developer’s reputation.
The number of followers is a signal of status in the community, developers with many followers are
treated as celebrities [60].

To assess the hypothesis, we first used the metrics famous and infamous to split the developers
into two groups. Then, we compared the tendency of code smell introductions and removals in the
two groups using the metrics %introductions and %removals. To perform this comparison we relied on
the quartiles, Mann-Whitney U, and Cliff’s δ.

As a second approach, we measured directly the correlation between the reputation and code
smell introductions and removals. For this, we computed the Spearman’s rank of the metric #followers
with %introductions and %removals, respectively.

4.4.2 Study Results
In this section, we report and analyze the results of our experiments with the aim of answering

our research questions.

RQ1: How Do Developers Contribute in Code Smell Introductions and Re-
movals?

H1: Table 4.12 reports on the distribution of developers in terms of code smell introductions and
removals. We observe that only 35% of the developers are implicated in code smell introductions.
The remaining 65% did not introduce any code smell instances. The distribution in terms of code
smell removals is similar. Only 31% of the developers participated in code smell removals. We also
observe that 28% of the developers are implicated in both code smell introductions and removals.
This intersection between introducers and removers is highlighted in Figure 4.9. The figure shows
that there is an important intersection between developers that introduce and remove code smells.
This means that developers who introduce and remove code smells are mainly the same. Another
interesting observation from Table 4.12 is that 61% of developers are neutral, they did not introduce
or remove any code smell instances.

introducer remover introducer and remover neutral All

# developers 1590 1414 1269 2790 4525

% developers 35 31 28 61 100

Table 4.12 Distribution of developers according to code smell introductions and removals.

To further investigate the nature of these groups, we compare in Figure 4.10 the distribution of
their number of commits. The distribution is illustrated with a density function, which allows to
highlight how many commits are authored by the developers in the three groups.

The first thing that leaps to the eye is that neutral developers are concentrated around a low
number of commits. Most of them have only authored less than 5 commits. This means that developers
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Removers
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Figure 4.9 Intersection between introducers and removers.

Figure 4.10 The distribution of the number of commits among the studied developers.
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who did not introduce or remove any code smells are developers who did not commit regularly. On
the other side, introducers and removers are less concentrated around the low values. Developers in
these two groups have authored more commits. It is also worth noting that introducer and remover
groups are similarly distributed which aligns with Figure 4.9 where they manifested a considerable
intersection.

To sum up, even if Table 4.12 shows that introducers and removers are only one third of the
total contributors. They actually represent most of the regular developers. Developers who did not
participate in code smell introductions and removals have very few commits. Based on these findings,
we can assert that code smell introduction and removal are not isolated practices. Thus, we can reject
Hypothesis 1.

Developers who introduce and remove code smells are mainly the same. Developers
who did not introduce or remove code smells are not regular contributors.

H2: The results of the correlation between the numbers of code smell introductions and removals
among developers are the following.

Spearman(#introductions,#removals)

 r = 0.94

p-value < 0.01

The p−value shows that the computed r coefficient is statistically significant. The coefficient
value, 0.94, shows that there is a strong positive relationship between the numbers of
introductions and removals performed by a developer. That is, the more a developer tends
to introduce code smells, the more she will remove. To further investigate this finding, we
evaluated the relationship with other measures. The results of the correlation between the
introduction and removal rates are the following.

Spearman(%introductions,%removals)

 r = 0.77

p-value < 0.01

As the p − value is lower than the threshold 0.01, the computed coefficient is statistically
significant. The coefficient value, 0.77, shows that the introduction and removal rates are
positively correlated. This means that the more a developer introduces code smells per
commit, the more she removes as well. Hence, even independently of the number of commits,
code smell introduction and removal are positively correlated among developers. Based on
these results, we can reject Hypothesis 2.

The more a developer introduces code smells, the more she tends to remove
them.

H3: Table 4.13 reports the correlation coefficients between the %introductions and %removals
per code smell type. For the eight code smells, the p−values are under the threshold, thus the
results are statistically significant. The correlation coefficients depict that the introduction



4.4 Developers Study 81

Smell LIC MIM NLMR HMU UIO UHA IOD UCS

Correlation 0.9 1.0 0.8 0.6 0.6 0.8 0.5 1.0

p-value < 0.01

Table 4.13 Correlation between introductions and removals per code smell type.

and removal rates are positively correlated. Indeed, for LIC, MIM, NLMR, UHA and UCS,
the introduction and removal rates are strongly correlated with a coefficient over 0.8. This
means that developers who introduced these types of code smells also removed them and vice
versa. For HMU, UIO, and IOD, the correlation is between 0.5 and 0.6. This means that
there is an average positive correlation between the introduction and removal rates of these
code smells among developers. These findings show that developers remove the same type
of code smells that they introduce. There is no code smell where developers who removed
instances did not tend to introduce new ones. Hence, we can affirm that there is no inverse
correlation between introductions and removals at the code smell level. Thus, we can reject
Hypothesis 3.

The more a developer introduces a type of code smells, the more she removes
it.

RQ2: How Does Seniority Impact Developers Contribution?

H4: Table 4.14 compares the introduction and removal rates among newcomers and regular
contributors. First, we observe that, using the criterion defined in the study design, our
dataset contains 3375 newcomers and 1793 regular contributors. It is worth noting that the
sum of these two groups is above the total number of developers: 4,525. This due to the
involvement of many of developers in several studied projects. Thus, these developers did
not have one global contribution in this context, but multiple contributions.

size Q1 Med Q3 p-value Cliff

%introductions
newcomer 3375 0 0 0

< 0.01 0.46(M) ↓
regular 1793 0 0.21 0.76

%removals
newcomer 3375 0 0 0

< 0.01 0.44(M) ↓
regular 1793 0 0.11 0.50

Table 4.14 Comparison between newcomers and regular developers in terms of introduction
and removal rates.

Regarding introductions, we observe that newcomers tend to introduce very few code smells
per commit, Q1, Median, and Q3 are null. This means that at least 75% of the newcomers
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did not introduce any code smell per commit. On the other side, regular contributors tend
to introduce more code smells. Indeed, 50% of them introduce more than 0.21 code smells
per commit and 25% of them are above 0.76 introductions. This superiority is confirmed
by the significant p-value computed by Mann-Whitney U and the Cliff’s δ value 0.46. The
latter shows that there is a medium difference in the introduction rates in favor of regular
contributors.

As for removals, the table shows that newcomers do not tend to remove code smells. Q1,
Median, and Q3 values are null. Regular contributors tend to remove more code smells. 50%
of them remove more than 0.11 code smells per commit and 75% of them have a removal
rate above 0.50. Mann-Whitney U and Cliff’s δ values confirm this observation. Removal
rates among regular contributors are superior to the rates of newcomers.

To push forward this analysis, we computed the correlation between the experience in
the project and code smell introductions and removals. The results are the following:

Spearman(%contribution,%introductions)

 r = 0.27

p-value < 0.01

Spearman(%contribution,%removals)

 r = 0.24

p-value < 0.01

In both correlations, the p−value indicates that the results are statistically significant.
For the introduction, the r value, 0.27 shows that there is a weak positive correlation between
the experience in the project and the introduction rate. Likewise for code smell removals, the
r value, 0.24, indicates that the correlation between experience and removals is positive and
weak. This means that experience does not have an impact on the developer’s role in terms
of code smells. Developers with few contributions, like newcomers, do not forcibly introduce
more or remove less code smells. Hence, based on the comparison and correlation results, we
can reject Hypothesis 4.

Newcomers are not particularly bad contributors. They do not introduce or
remove more code smells than regular developers.

H5: Figure 4.11 and Table 4.15 summarize the distribution of the number of followers
among the studied developers.

Q1 Median Q3 IQR

#followers 1 8 25 24

Table 4.15 The numbers of followers among the studied developers.
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Figure 4.11 The distribution of the number of followers among studied developers.

We observe that the majority of the studied developers have less than 25 followers. Based
on the values of Table 4.15, we defined our thresholds for splitting developers into two groups:

— infamous: developers with ≤ 1 followers,
— famous: developers with ≥ 25 followers.
Table 4.16 compares the code smell introduction and removal rates among infamous and

famous developers.

size Q1 Med Q3 p-value Cliff

%introductions
infamous 945 0 0 0

< 0.01 0.18(S) ↓
famous 906 0 0 0.47

%removals
infamous 945 0 0 0

< 0.01 0.19(S) ↓
famous 906 0 0 0.29

Table 4.16 Comparison between infamous and famous developers in term of code smell
introduction and removal rates.

For the introduction rate, we observe that in both groups, the introduction per commit
is around zero for most of the developers. Indeed, Q1 and Median values are null for both
infamous and famous developers. The difference arises in the third quartile values, Q3. The
latter shows that, while 25% of famous developers introduce more than 0.47 code smells per
commit, infamous developers are mostly around 0 introductions per commit. This difference
is confirmed by the Mann-Whitney U results, as the p-value is below the confidence threshold.
The Cliff’s δ value, 0.18, shows that there is a small difference between the two groups in favor
of famous developers. This means that famous developers have a slightly higher introduction
rate than the infamous ones.
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We observe similar results for removal rates. For both groups, 50% of the developers
remove 0 code smells per commit—Median=0. However, the Q3 value shows that 25% of
famous developers introduce more than 0.29 code smells per commit while the infamous
ones are mostly around 0 introductions. Mann-Whitney U and Cliff’s δ results confirm this
observation. The p-value is below the threshold, which means that there is a statistically
significant difference between the removal rates in both groups. The Cliff’s δ shows that,
while small 0.19, this difference is in favor of famous developers. This means that famous
developers tend to remove slightly more code smells than infamous ones.

To consolidate this analysis, we computed the correlation between the developer’s reputa-
tion and her code smell introductions and removals. The results are the following:

Spearman(#followers,%introductions)

 r = 0.14

p-value < 0.01

Spearman(#followers,%removals)

 r = 0.15

p-value < 0.01

As the p−values are below the threshold, we can consider the computed coefficients as
statistically significant. The correlation coefficient between the number of followers and the
introduction rate, 0.14, suggests that there is a very weak positive correlation between them.
Likewise, the correlation between the number of followers and the removal rates is weak,
r = 0.15. This means that the reputation does not have an impact on the code smell activity.
That is, famous developers are not significantly better contributors in terms of code smells.
Based on these findings, we can reject Hypothesis 5.

Reputable developers are not particularly good contributors in terms of code
smells.

4.4.3 Discussion

We conducted this study with the hypothesis that some developers are responsible
for the accrual of mobile code smells. In light of our results, we were able to reject this
hypothesis [106]. Even if the numbers show that 61% of the developers are neutral, this
percentage is biased by the huge number of developers who had very few commits. Indeed,
developers who committed regularly are more present and had more chances to introduce or
remove code smells. This means that the phenomenon of code smells is not limited to a small
group of developers. The results of RQ2 pushed this idea forward. Besides not being a small
isolated group, developers who contributed to code smells are not necessarily newcomers
or infamous in their communities. This implies that there is no isolated group of junior
developers to blame for code smells, the responsibility is rather shared among all regular
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contributors. Our analysis also showed that developers who introduce and remove code smells
are not distinct, they are mainly the same group. On top of that, among these developers,
the introduction and removal tendencies are correlated, even at the smell level. This implies
that code smell removals are not intended. Indeed, a developer who consciously removes
a code smell, would not tend to introduce it elsewhere. This behavior appears more like
accidental introductions and removals of code smells. Therefore, we challenge the suggestion
that Android developers “perform refactorings to improve the code structure and enforce
solid programming principles" [109]. In fact, similar observations were previously made about
the refactoring of OO code smells. Studies showed that, sometimes, code smells refactoring
is due to maintenance activities and cannot be considered as a proper refactoring [161, 197].

Based on this analysis, we suggest that the studied mobile code smells are mainly driven
by ignorance and oversight instead of individual attitudes. The results also suggest that
the introductions of Android code smells are not strategic or tactic choices [191]. That
is, developers do not deliberately accept this technical debt in favor of other objectives,
like productivity. Rather, they introduce the debt with no leverage—i.e., they do not gain
anything in return. To refine and further explore this hypothesis, we encourage future research
works to study the self-admittance [59] of Android code smells.

The observed oversight also incites us to question the importance of mobile code smells
and the efficiency of the communication channels used by framework builders. Effectively,
the unawareness of most developers may be due to the unimportance of these code smells in
practice. This questioning is particularly relevant as the code smells are performance-oriented.
If these code smells effectively impacted apps in practice, the performance degradation would
have attracted developers awareness. This hypothesis has the following implications on
researchers:

— Studies should reevaluate the importance and impact of mobile code smells in practice.
We highly encourage future works to perform empirical studies on real life scenarios
and real mobile apps to assess the effective impact of these code smells on performance;

— The definition of code smells should not only be a top-down process. That is, mobile
code smells, which are for now only based on documentation, should also consider the
viewpoint of developers. We invite researchers to involve developers in the evaluation
of these code smells and the definition of future ones. The developers’ opinion would
allow us to better evaluate the importance and severity of these code smells in practice.

The other possible explanation of the prevalent unawareness towards mobile code smells is
the vague communication about them. It is unlikely that all developers carelessly consider
the framework documentation, especially when it comes to performance. Hence, we suggest
for framework builders to:

— Highlight and stress the importance and impact of code smells;
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— Use more pervasive channels to raise developers awareness about code smells. In
particular, framework built-in tools, like linters, should emphasize the importance and
impact of code smells;

— Researchers and tool makers should work on just-in-time detection and refactoring
tools that run as soon as the change is committed to prevent the accumulation of code
smells.

4.4.4 Study Summary

We presented in this section an empirical investigation of the role played by developers
in the accrual of mobile-specific code smells. This study resulted in several findings that
challenge the conventional wisdom:
Finding 1: The accrual of Android code smells is not the responsibility of an isolated group
of developers. Most regular developers participated in the introduction of code smells.
Finding 2: There are no distinct groups of code smell introducers and removers. Developers
who introduce and remove code smells are mostly the same.
Finding 3: While newcomers are not to blame for the accrual of mobile code smells, reputable
developers are not necessarily good contributors.
Finding 4: Together our results suggest that Android code smells are driven by developers
ignorance and oversight rather than individual attitudes.

4.5 Survival Study

This study investigates the impact of processes and prioritization on the survival of
Android code smells. Besides identifying code smell motives, this investigation is important
for understanding the extent and importance of Android code smells. Indeed, a code smell
that persists in the software history for long periods can be more critical than code smells
that disappear in only a few commits. To address this study, we formulated the following
research questions:

— RQ1: For how long do Android-specific code smells survive in the codebase?
— RQ2: What are the factors that impact the survival of Android-specific code smells?

We investigate in this question the impact of project size, releasing practices, and code
smell properties on the survival chances of code smell instances. The effect of the
project size interests us as the common sense suggests that code smells persist longer
in big and complex projects. Regarding releases, Android apps are known for having
more frequent releases and updates [138]. Our aim is to investigate the impact of this
particularity on code smell survival. As for code smell properties, we are particularly
interested in the impact of Android Lint [9]. Android Lint is the mainstream linter—i.e.,
static analyzer, for Android. It is integrated and activated by default in the official



4.5 Survival Study 87

IDE Android Studio. Our objective is to inspect whether the code smells detected and
prioritized by Android Lint are removed faster from the codebase.

In the following subsections, we will explain how we leveraged the data extracted by
Sniffer to answer these research questions. Afterwards, we report and discuss the study
results, then we conclude with a study summary that highlights the main findings.

4.5.1 Data Analysis

Element Metric Description

Project size
#Commits (int): the number of commits in the project.
#Developers (int): the number of developers contributing to the project.
#Classes (int): the number of classes in the project.

Release
#Releases (int): the number of releases in the project.
Cycle (int): the average number of days between the project releases.

Code smell

Linted (boolean): true if the code smell is detectable by Android Lint.
Priority [1-10]: this metric is only valid for Linted code smells. It presents the

priority given to the code smell in Android Lint.
Granularity (categories): the level of granularity of the code smell’s host entity, namely:

inner class, method, or class level.

Table 4.17 Metrics for RQ2.

We explain in this sub-section our data analysis approach for answering our two research
questions.

RQ1: For How Long Do Android-Specific Code Smells Survive in the Codebase?

To answer this research question, we relied on the statistical technique of survival analysis,
a.k.a. time-to-event analysis [118]. The technique analyzes the expected duration of time until
one or more events happen (e.g., a death in biological organisms or a failure in mechanical
systems). This technique suits well our study since we are interested in the duration of time
until a code smell is removed from the codebase. Hence, in the context of our study, the
subjects are code smell instances and the event of interest is their removal from the codebase.
As for the time-to-event, it refers to the lifetime between the instance introduction and its
removal.
The survival function S(t) is defined as:

S(t) = Probability(T > t)
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Where T is a random lifetime from the population under study. That is, the survival function
defines the probability for a subject (a code smell in our case) for surviving past time t. The
survival function has the following properties [61]:

1. 0 ≤ S(t) ≤ 1;
2. S(t) is a non-increasing function of t;
3. S(0) = 1 and limt→∞ S(t) → 0.

Interestingly, survival analysis models take into account two data types:
— Complete data: this represents subjects where the event of interest was already

observed. In our study, this refers to code smells that were removed from the codebase;
— Censored data: this represents subjects that left during the observation period and

the event of interest was not observed for them. In our case, this refers to code smells
that were not removed during the analyzed commits.

To measure the lifetime of code smell instances, we relied on two metrics:
— #Days: The number of days between the commit that introduces the code smell and

the one that removes it;
— #Effective commits: The number of commits between the code smell introduction and

removal. For this metric, we only counted commits that performed modifications in the
file of the code smell. This fine-grained-analysis allows us to exclude irrelevant commits
that did not effectively impact the code smell host file.

Using these metrics as a lifetime measure, we built the survival function for each code smell
type. Specifically, we used the non-parametric estimator Kaplan Meier [36] to generate
survival models as a function of #Days and #Effective commits, respectively.

To push forward the analysis, we report on the survival curves per code smell type. This
allows us to compare the survival of the eight studied Android code smells and investigate their
differences. Moreover, we checked the statistical significance of these differences using the Log
Rank test [105]. This non-parametric test is appropriate for comparing survival distributions
when the population includes censored data. We used a 95% confidence interval—i.e.,
α = 0.95, with a null hypothesis assuming that the survival curves are the same.

For implementing this analysis, we respected the outline defined by Syer et al. [186].
We used the Python package Lifelines [61]. We used KaplanMeierFitter with the
option ci_show=False to omit confidence interval in the curves. Also, we used
pairwise_logrank_test with use_bonferroni=True to apply the Bonferroni [201] cor-
rection and counteract the problem of multiple comparisons.
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RQ2: What Are the Factors That Impact the Survival of Android-Specific Code
Smells?

In this research question, we investigated the impact of project size, releasing practices,
and code smell properties on the survival chances of code smell instances. For this purpose,
we defined the metrics presented in Table 4.17.

Project size: We specifically analyzed the size in terms of #Commits, #Developers, and
#Classes.

Releasing practices: We analyzed the impact of the metrics #Releases and Cycle on the
survival rates. To assure the relevance of the studied apps for a release inspection, we used
the same set of apps used for release analysis in Section 4.3. We recall that this set contains
156 that use releases during all their change history.

Code smell: Unlike project and release metrics, the values of code smell metrics are
determined by the code smell type. Specifically, the values of Linted and Priority are defined
by Android Lint [9]. Android Lint is able to detect four of our code smells: namely LIC,
HMU, UIO, and IOD. It attributes a priority level from 1 to 10 that describes the importance
of these code smells, where 1 is the least important and 10 is the most important. As for
Granularity, it is determined by the code smell host entities that are presented in Table 4.1.
In this respect, the entities Activity and View both represent the granularity level of class.
For more clarification, we report in Table 4.19 the values of these three metrics per code
smell type.

Code smell Linted Priority Granularity

LIC True 6 Inner Class
MIM False − Method

NLMR False − Class
HMU True 4 Method
UIO True 3 Class
UHA False − Class
IOD True 9 Class
UCS False − Method

Table 4.19 The values of Linted, Popularity, and Granularity per code smell type.

To investigate the impact of the defined metrics on code smells survival, we used survival
regression and stratified survival analysis.
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Survival regression: We used this approach to analyze the impact of numerical metrics—
i.e., #Commits, #Developers, #Classes, #Releases, and Cycle. The survival regression
allows us to regress different covariates against the lifetime variable. The most popular
regression technique is Cox’s proportional hazard model [55]. Cox’s model has three statistical
assumptions:

1. proportional hazards: the effects of covariates upon survival are constant over time;
2. linear relationship: the covariates make a linear contribution to the model;
3. independence: the covariates are independent variables.

We assessed these assumptions on our dataset and found that our metrics do not respect the
proportional hazard assumption. That is, the impact of our numerical metrics on survival are
not constant and evolve over time. Thus, we opted for the alternative technique of Aalen’s
additive model, which allows time-varying covariate effects [1]. The Aalen’s model defines
the hazard function by:

λ(t|x) = b0(t)+ b1(t)∗x1 + ...+ bn(t)∗xn

Where xi refers to the studied covariates and bi(t) is a function that defines the regression
coefficient over time. In our study, the covariates are the numerical metrics and the regression
coefficients describe their impact on the survival of code smell instances. For the interpretation
of these coefficients, we should note that the hazard function can also be defined as λ(t) =
1 − S(t). This means that an increase in the hazard function implies a decrease in the
survival one. Consequently, the metrics that have a positive hazard regression coefficient,
systematically decrease the survival chances of the studied code smells and vice versa.

For implementation, we used AalenAdditiveFitter from Lifelines package [61]. This im-
plementation estimates

∫
b(t)dt instead of b(t). We used the function smoothed_hazards_()

with the parameter bandwidth = 100 to get the actual hazard coefficients (b(t)).

Stratified survival analysis: We followed this approach to analyze the impact of categor-
ical metrics, namely Linted, Priority, and Granularity. To assess the impact of these metrics,
we relied on the same technique used for RQ1, Kaplan Meier. Specifically, we computed
the survival function for each metric and category. Then, we compared the survivals among
the different categories of each metric using the Log Rank test. For instance, we computed
two survival curves for the metric Linted, one for Linted=True and another for Linted=False.
Then, we compared the two curves using the Log Rank test.

4.5.2 Study Results

RQ1: For How Long Do Android-Specific Code Smells Survive in the Codebase?
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Figure 4.12 Survival curves in days.

Figure 4.13 Code smell lifetime in terms of days.
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Survival in days: Figures 4.12 and 4.13 show the results of Kaplan Meier analysis. To
explicit our results, we also present the survival distribution in Table 4.20. Figure 4.12
illustrates the survival curves of the eight studied code smells in terms of days. The figure
indicates that the survival probabilities differ considerably depending on the code smell type.
Indeed, 3,000 days after introduction, code smells like LIC and MIM have almost no chances
to be alive, whereas code smells—like UHA and UIO—still have 40% chances to be alive.
This disparity is confirmed by Figure 4.13 and Table 4.20. We can observe that, on average,

LIC MIM NLMR HMU UIO IOD UHA UCS All

Q1 41 117 136 111 400 300 60 16 52

Med 370 602 765 625 1,007 1,516 347 395 441

Q3 1,536 1,978 ∞ ∞ ∞ ∞ 1,422 ∞ 1,691

Table 4.20 Kaplan Meier survival in days.

after 441 days, 50% of all the code smells are still present in the codebase. However, this
median value increases significantly among the code smells MIM, NLMR, HMU, UIO, and
UHA. 50% of these code smells are still alive after more than 600 days. We assessed the
statistical significance of these differences with the Log Rank test. While we only report the
significant results, the full summary of the pairwise Log Rank test between the 8 code smells
is available with our artifacts [96]. Overall, the results allowed to reject the null hypothesis
assuming that the survival curves of the 8 code smells are the same—i.e., p−value < 0.05.
We confirmed that the survival order shown in Table 4.20 is significant. More specifically, we
found the following:

— UIO and UHA are the code smells that survive the longest. It takes around three years
to remove 50% of their instances (median > 1000 days);

— NLMR, HMU, and MIM also have a high survival tendency with an average of two
years (median > 600 days);

— The least surviving code smells are IOD, LIC, and UCS. 50% of their instances are
removed after only one year (median > 300 days).

50% of the instances of Android-specific code smells stay alive in the codebase
for more than 441 days.

Survival in effective commits: Figures 4.14 and 4.15 reports on the results of Kaplan
Meier analysis with effective commits. The figures show that in the 100 effective commits
that follow the code smell introduction, most of the instances are removed. We also observe
that there are slight differences between the survival tendencies of the eight code smells.
Indeed, Table 4.21 and the Log Rank test results show the following:
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Figure 4.14 Survival curves in effective commits.

Figure 4.15 Code smell lifetime in terms of effective commits.

LIC MIM NLMR HMU UIO IOD UHA UCS All

Q1 3 1 3 1 2 3 2 3 3

Med 10 6 11 8 7 16 3 11 9

Q3 34 33 38 50 44 64 7 11 34

Table 4.21 Kaplan Meier survival in effective commits.
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— UHA is the longest surviving code smell. It takes 16 effective commits to remove 50%
of its instances and even after 64 effective commits 25% of its instances are still alive
(median = 16 and Q3 = 64);

— IOD is the least surviving code smell. 75% of its instances are removed after only seven
commits on the host file (Q3 = 7);

— The other code smell types only have slight survival differences. On average, their
instances survive for nine effective commits and 75% of them disappear after 30 commits.

75% of the instances of Android-specific code smells are removed after 34
commits on the host file.

RQ2: What Are the Factors That Impact the Survival of Android-Specific Code
Smells?

Survival regression: Figure 4.16 shows the results of Aalen’s additive analysis for the
project metrics #Commits, #Developers, and #Classes. It is worth noting that the three
metrics are not statistically independent in our dataset. Thus, we measured their regression
coefficients separately to avoid the correlation bias. From the figure, the first thing that
leaps to the eye is that the three metrics have a positive impact on the hazard of code smells.
Indeed, the curve values are positive during all the code smell lifetime. Thus, the project size
negatively impacts the survival possibility, which means the bigger the project is, the less
the code smells survive in the codebase. Overall, the positive impact on the hazard is more
present in the first days after the code smell introduction. Indeed, the curves of the three
metrics have their highest values in the first 500 days. In the days after, the hazard rates
drop significantly to stabilize after 1,500 days. This aligns with the survival curves observed
in RQ1 where the average survival was less than 500 days.

Figure 4.17 shows the results of Aalen’s additive analysis for the release metrics #Releases
and Cycle. These two metrics are not highly correlated in our dataset |r| < 0.3. Hence, we
can analyze their impact simultaneously with a multivariate regression.

We observe from Figure 4.17 that the hazard coefficients for the two variables are positive
along the code smell lifetime. This shows that the two metrics have a positive impact on the
hazard function. That is, increasing the number of releases and the releasing cycle tend to
shorten the code smell lifetimes. Interestingly, Figure 4.17 also indicates that the cycle has
more impact on the survival rates than the number of releases. Accordingly with the units,
this means that adding one day to the average releasing cycle has more impact on survival
rates than adding one release to the whole project.
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Figure 4.16 The estimated hazard coefficients for #Commits, #Developers, and #Classes.
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Figure 4.17 The hazard coefficient of #Releases and Cycle.

Code smells disappear faster in projects that are bigger in terms of commits,
developers, and classes. Projects with longer releasing cycles and more
releases also manifest shorter code smell lifetimes.

Figure 4.18 The impact of the presence in the linter on survival.

Stratified survival analysis: Figure 4.18 compares the survival curves for code smells
based on the metric Linted. The figure shows that the survival curve of Linted code smells is
always under the curve of other code smells. This means that code smells that are present in
Android Lint have less survival chances than other code smells. The Log Rank test confirmed
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the statistical significance of this observation with p−value < 0.05. This allows us to reject
the null hypothesis assuming that the two curves are the same.

Code smells detected by Android Lint are removed from the codebase faster
than other types of code smells.

Figure 4.19 The impact of linter priority on code smell survival.

Figure 4.19 shows the results of Kaplan Meier analysis stratified with the metric Priority.
It compares the survival curves for code smells depending on their priority on Android Lint.
Overall, we observe that code smells with higher priorities have less survival chances. Indeed,
the code smells with the highest priority—nine—have the lowest survival chances. Their
survival curve is always below other curves. On the other hand, code smells with the lowest
priority—three—survive longer than other code smells. The Log Rank test results showed
that all these differences are statistically significant with a 95% confidence interval. Hence,
we can confirm that the more a code smell is prioritized, the less its survival chances are.

Code smells that are prioritized by Android Lint have less survival chances.
They are removed faster than other code smells.

Figure 4.20 compares the survival curves of code smells depending on their granularity.
The figure shows that code smells hosted by inner classes have the least survival chances, they
disappear before other code smells. We also observe that code smells hosted by classes survive
way more than code smells hosted by methods or inner classes. The Log Rank resulted in
p−values < 0.005 for all the pairwise comparisons between the three curves. As a result, we
can reject the hypotheses assuming that the survival curves of different granularities are the
same.
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Figure 4.20 The impact of granularity on code smell survival.

The code smell granularity has an important impact on its survival chances.
Code smells hosted by classes survive significantly more than smells hosted
by methods and inner classes.

4.5.3 Discussion

Compared to the code smell longevity reported in previous studies [27, 117, 161, 197],
Android code smells have a significantly shorter lifespan. Effectively, the study of Tu-
fano et al. [197] reported that the median survival of OO code smells in Android apps is
over 1,000 days and 1,000 effective commits. In our study, the only Android code smells
that reach this average longevity are UIO and UHA. All other Android code smells have a
median survival of 400 days. This shows that Android code smells are by far less persistent
than OO code smells. This can be due to the nature of Android code smells, which lead
them to be introduced and removed faster. Indeed, Android code smells are rather low
granularity instances and they can be removed accidentally in general. For instance, a code
smell like HashMap Usage is caused by the instantiation of a HashMap collection. Therefore,
any instance of this code smell can be accidentally introduced or removed by only modifying
one instruction. On the other side, OO code smells tend to be more sophisticated and may
require extensive modifications to refactor them. Interestingly, our results of the granularity
analysis align with this hypothesis. Indeed, the comparison demonstrated that code smells
that are hosted by entities of higher granularity (class) remain longer in the source code.
This confirms that, when the code smell is at a low granularity level, it becomes easier to
remove and thus disappear faster from the source code.

Another surprising finding is that Android code smells have a very short lifespan in terms
of effective commits. This finding highlights a huge gap between the number of days and
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effective commits needed to remove the code smell instances, 400 days vs. nine effective
commits. This contrast can be due to the size and complexity of Android apps. Indeed, in
large software systems, the modifications are diffused across different software components.
Hence, a code smell can survive in such systems for years if its host entity is not frequently
modified. In this way, the survival in terms of days becomes much higher than the survival
in terms of effective commits.

Our survival regression analysis showed that Android code smells disappear faster in
projects that are bigger in terms of commits, developers, and classes. This observation can
be due to the activity and dynamic of these projects. Indeed, bigger projects that have more
contributors are potentially more active and thus are subject to more modifications. This
dynamism makes these projects more prone to code smell removals. As for releases, our
results showed that code smells survive less in projects that adopt more releases and longer
releasing cycles. The two observations may seem contradictory as we would expect a high
number of releases to imply shorter cycles. However, in practice our results showed that the
two variables do not have a strong negative correlation. This means that to fasten code smell
removals, developers should release frequently without going as far as to shrink releasing
cycles.

Finally, our results showed that code smells detected and prioritized by Android Lint are
removed faster than other code smells. This can be a direct or an indirect effect of Android
Lint. Indeed, when the linter is adopted in the development process, it directly detects code
smells from the source code and encourages developers to remove them. Moreover, the linter
can also make developers aware of the code smells by means of communication. In this way,
even developers who disabled the linter in their Integrated Development Environment (IDE)
may still be aware about these code smells.

To sum up, our work takes a step forward in the study of mobile code smells and opens
up perspectives for new research directions. Concretely, it has the following implications:

— Our results showed that Android code smells survive less in projects with more releases.
This means that the high releasing frequency in the mobile ecosystem [138] does not
necessarily promote bad development practices. Hence, we can exclude the releasing
prioritization from the potential motives of Android code smells;

— The short lifespans of Android code smells incite us to hypothesize that their removal is
not intended and rather accidental. We invite future works to investigate this hypothesis
and inspect the actions leading to the removal of Android code smells;

— We showed that linters can help in improving the quality of mobile apps. We encourage
the community to work on approaches and tools that allow the detection and refactoring
of larger sets of mobile code smells;

— Our results align with previous findings about the efficiency of integrating software
quality tools in the development workflow [47, 114, 171]. We invite future works to
invest in the integration of tools like aDoctor and Paprika in the IDE;
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— We confirm the importance of priority and severity indicators in static analysis tools [35,
47, 114]. We encourage tool makers to adopt such measures in their software quality
tools;

— The observed importance of the linter and its configuration suggest that the processes
have an impact on the presence of Android code smells, and thus they can be considered
as a relevant motive.

4.5.4 Study Summary

We presented in this section an empirical study that investigated the lifespan of Android-
specific code smells in the change history. By analyzing 180k instances of code smells, we
found that:
Finding 1: While in terms of time Android code smells can remain in the codebase for years
before being removed, it only takes 34 effective commits to remove 75% of them.
Finding 2: Android code smells disappear faster in bigger projects with more commits,
developers, and classes.
Finding 3: The high releasing frequency in the mobile ecosystem does not necessarily
promote long code smell lifespans.
Finding 4: Android code smells that are detected and prioritized by Android Lint tend to
disappear before other code smell types.
Finding 5: Together our findings suggest that releasing prioritization is not a relevant
technical debt motive in the case of Android code smells. On the other hand, processes
such as adopted tools and their configuration show an important impact on the studied code
smells.

4.6 Common Threats to Validity

Internal Validity: The main threat to our internal validity could be an imprecise detection
of code smell introductions and removals. This imprecision is relevant in situations where code
smells are introduced and removed gradually, or when the change history is not accurately
tracked. However, this study only considered objective code smells that can be introduced
or removed in a single commit. As for the history tracking, we relied on Sniffer, which
considers both branches and renamings. On top of that, the validation showed that Sniffer
accurately tracks code smell introductions and removals (F1-score = {0.97,0.96}).

External Validity: The main threat to external validity is the representativeness of the
results. We used a sample of 324 open-source Android apps with 255k commits and 180k code
smell instances. It would have been preferable to consider also closed-source apps to build a
more diverse dataset. However, we did not have access to any proprietary software that can
serve this study. We also encourage future studies to consider other datasets of open-source
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apps to extend this study [71, 121]. Another possible threat is that our study only concerns
eight Android-specific code smells. Without a further investigation, these results should not
be generalized to other code smells or development frameworks. We therefore encourage
future studies to replicate our work on other datasets and with different code smells and
mobile platforms.

Construct Validity: In our case, the construct validity might be affected by the gap
between the concept of code smells in theory and the detection performed by Paprika.
However, the definitions adopted by Paprika have been validated by Android developers
with a precision of (0.88) and a recall of (0.93) [106, 108]. On top of that, our validation
showed that Paprika is also effective in the dataset under study.

Conclusion Validity: The main threat to the conclusion validity in this study is the
validity of the statistical tests applied. We alleviated this threat by applying a set of
commonly-accepted tests employed in the empirical software engineering community [136].
We paid attention not to violate the assumptions of the performed statistical tests. We are
also using non-parametric tests that do not require making assumptions about the distribution
of the data. Finally, we did not make conclusions that cannot be validated with the presented
results.

4.7 Summary

We presented in this chapter four main contributions of our thesis. First, we proposed
Sniffer, a novel toolkit that tracks the full history of Android-specific code smells. Our
toolkit tackles many issues raised by the Git mining community, like branch and renam-
ing tracking [120]. Hence, we encourage future mining studies to use Sniffer, which is
open-source and heavily tested and documented [104]. We also provided a comprehensible
replication packages that can be reused in future studies [93, 95, 96]. These packages include
the artifacts of our study, the results of our qualitative analysis, and a database storing the
history of 180k mobile-specific code smell instances.

We presented three empirical studies about Android-specific code smells in the change
history. These studies covered eight Android code smells, 324 Android apps, 255k commits,
and contributions from 4,525 developers. The results of these studies shed the light on many
potential rationales behind the accrual of Android code smells. In particular, we showed that:

— Pragmatism and prioritization choices are not relevant motives of technical debt in the
case of Android code smells;

— Individual attitudes of Android developers are not the reason behind the prevalence of
code smells. The problem is rather caused by ignorance and oversight, which seem to
be common among developers;
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— The processes adopted by development teams—e.g., the use of tools and their configu-
ration can help in limiting the presence of code smells.

These findings suggest that the main reason behind Android code smells are related to the
developers knowledge and the processes that they adopt. For these reasons, we dedicate our
next study to:

— an investigation of developers’ understanding of Android code smells,
— and an analysis of the role of linting tools in coping with Android code smells.



Chapter 5

Developers’ Perception of Mobile
Code Smells

Following our study of the change history, we suggested that the main reason behind
the accrual of code smells is developers’ ignorance and oversight. To further investigate
this hypothesis, we decided to follow a qualitative method and ask developers about their
perception of mobile code smells. The most intuitive way to implement this method would
be to design surveys and interviews to get the desired information from developers. However,
asking developers directly about mobile-specific code smells may have the following flaws:

— If developers are completely unaware about code smells, we will need to introduce them
to the topic before surveying them. However, our introduction may lead to biases in
the qualitative study;

— If developers have some knowledge about code smells, the latter may be an abstract
concept for them. Indeed, developers may read about code smells and have theoretical
insights about it without binding it to the practices that they follow when coding.
Hence, it could be difficult for them to give faithful and practical judgment of code
smells.

To avoid these threats, we needed a study design where we could catch developers’
perception of code smells without asking them direct questions about code smells. In this
regard, one possible proxy between developers and code smells could be a linter— a.k.a.
static analyzer. The linter is the tool that detects bad development practices and presents
them to the developer. It is generally integrated in the IDE so developers can interact with it
and fix the flagged issues. Hence, linters can be considered as a proxy between bad practices
(code smells in our case) and developers. Besides, as developers actively use linters during
the development process, they can have genuine and clear thoughts about them. Thus, if we
ask developers about a mobile-specific linter, we can get insights about mobile code smells
while avoiding the aforementioned threats.
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Surveying developers about a mobile-specific linter is also important since one of our
conclusions in the previous chapter was that tools like the linter can have a significant
impact on code smells. Moreover, as shown in our literature review, linters have always
been proposed as a solution for detecting code smells and limiting their presence. This
applies to both research and development communities. For instance, Android Studio, the
official IDE for Android development, integrates a linter—called Android Lint—that detects
performance bad practices, which are the equivalent of our studied code smells. However,
despite the availability of these linters, Android developers do not rely heavily on linters
to deal with performance concerns. A survey conducted by Linarez et al. [125] with 485
Android developers showed that, when using tools to manage performance, most developers
rely on profilers and framework tools, and only five participants reported using a linter. In
order to confirm this phenomenon and lay the foundation for our study, we published an
online survey and asked Android developers about their linter usage. All the details of this
survey and its results are available in Appendix B. The results of this survey reported that
only 51% of Android Lint users rely on it for performance purposes. Given that performance
checks are enabled by default in Android Lint, it is important to question how Android
developers perceive the usefulness of linters when it comes to performance. It is also important
to highlight the benefits of adopting linters for performance issues in order to encourage
developers to use them.

To address the two aforementioned issues, (i) developers perception of code smells and
(ii) the usage of linters for performance, we conduct a qualitative study about the usage
of Android Lint by developers. We focus on Android Lint since it is the most used linter
for Android, and it detects a large set of performance bad practices. Our study aims to
specifically answer the following research questions:

— RQ 1: Why do Android developers use linters for performance purposes?
— RQ 2: What are the constraints of using linters for performance purposes?

On top of that, our study design gives us the opportunity to investigate other aspects about
the fashions that allow mobile developers to achieve the eventual benefits of linters for
performance. Thus, we also investigate the question:

— RQ 3: How do Android developers use linters for performance purposes?
The remainder of this chapter is organized as follows. We start with a description of our

methodology in Section 5.1. Section 5.2 reports and discusses the results of our qualitative
study. We identify in Section 5.3 the implications of our results, and in Section 5.4 its
limitations, before concluding in Section 5.5.

This chapter is a revised version of a paper published in the proceedings of ASE’18 [98].
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5.1 Methodology

Our objective is to investigate with an open mind the benefits and limitations of using
a linter for performance purposes in Android. Therefore, we follow a qualitative research
approach [56] based on classic Grounded Theory concepts [3]. With this approach, we aim to
discover new ideas from data instead of testing pre-designed research questions. Specifically,
we conducted interviews with 14 experienced Android developers. The interview design and
the selected participants are presented in Sections 5.1.1 and 5.1.2, respectively. Afterwards,
we transcribed and analyzed the interviews, as explained in Section 5.1.3.

5.1.1 Interviews

As commonly done in empirical software engineering research, we designed semi-structured
interviews. This kind of interview consists of a list of starter questions with potential follow
up questions. We followed the advice given by Hove and Anda et al. [111] to design and
conduct the interviews. In particular, we paid careful attention to explaining the objectives
of the interviews. We explained that interviews are not judgmental and we incited the
participants to talk freely. We asked open-questions, such as: “Why do you think that Lint is
useful for performance purposes?”, and we asked for details whenever possible. We designed
the interview with basically 12 questions, and depending on participants’ replies, we asked
additional questions to explore interesting topics. The main questions are the following:

1. Why do you use the linter to deal with performance concerns?
2. What are the benefits that you perceived with this usage?
3. How do you use the linter to deal with performance concerns?
4. How do you configure the linter?
5. Do you use it individually or in a team?
6. In a collaborative project, how do you configure the linter to optimize the app perfor-

mance?
7. Do you integrate the linter in the build or CI? Why?
8. Do you change the priority or severity of performance checks? Why?
9. Do you ignore or suppress performance checks sometimes? Why?

10. Are there any performance checks that you consider irrelevant? Why?
11. Do you write your own performance checks? Why?
12. In your opinion, what are the constraints of using the linter for performance purposes?

With the permission of interviewees, the interviews were recorded and they lasted from
18 to 47 minutes, with an average duration of 30 minutes. We performed two interviews
face-to-face, and the 12 others were performed with an online call. One participant was not
able to participate in the call and instead received a list of questions via email and gave
written answers.
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5.1.2 Participants

Our objective was to select experienced Android developers who use the linter for
performance. We did not want to exclude open-source software (OSS) developers, nor
developers working on commercial projects. For that purpose, we relied on many channels to
contact potential participants.

GitHub: First, we selected the most popular Android apps on GitHub relying on the
number of stars. Afterwards, we selected the projects that use the linter by looking for
configuration files—e.g., lint.xml, or configurations in Gradle files. Then, we manually
analyzed the Top-100 projects to identify the developers who actively work with the linter.
We only found 41 developers who contributed to the linter configuration. As it is complex to
guess if developers are motivated to use the linter for performance only from the configuration
files, we contacted these developers to ask them if they use the linter for performance or not.
Out of 41 mails sent, we received 18 answers—i.e., a response rate of 43%. 13 developers
answered that they use the linter for performance, and five others answered negatively. We
replied to the 13 developers to explain the objectives of our interview and invite them to
participate. We received six acceptances and two rejects, the other developers did not answer.

Forums and meetups: To select commercial Android developers, we sent forms in de-
veloper forums [168]. In the forms, we explicitly explained that we are looking for Android
developers who use the linter for performance. We received six answers from forums, one of
them was irrelevant because the developer did not have a real experience with Android Lint.
We also communicated the same message in Android development meetups. From meetups,
we selected three persons who satisfied our criteria.

Overall, this selection process resulted in 14 participants. After conducting 14 interviews,
we considered that the collected information was enough to provide us with theoretical
saturation [88]—i.e., all concepts in the theory are well-developed. Thus, we did not perform
a second batch of selection and interviews.

To keep the anonymity of the 14 selected participants, we refer to them with code names.
We also omit all the personal information like company or project names. Table 5.1 shows
the participants’ codes, their experience in Android and Android Lint in terms of years of
professional development, and the types of projects they work on. It is worth mentioning
that, with the term “commercial”, we refer to projects that are developed in an industrial
environment and are not based on an open-source community. Also, we found that all
the developers selected from GitHub were also involved in commercial projects, and two
developers spotted from forums were involved in both commercial and OSS projects.

Table 5.1 shows that, out of 14 participants, 11 have more than 5 years of experience in
Android. Compared to the age of the Android framework (8 years), this experience is quite
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Participant Android experience Lint experience Project type

P1 8 5 OSS & Commercial

P2 8 4 OSS & Commercial

P3 8 4 Commercial

P4 8 5 OSS & Commercial

P5 8 4 OSS & Commercial

P6 8 5 OSS & Commercial

P7 6 4 OSS & Commercial

P8 5 3 OSS & Commercial

P9 4 4 Commercial

P10 5 3 Commercial

P11 2 2 Commercial

P12 5 4 Commercial

P13 4 1 Commercial

P14 8 4 OSS & Commercial

Table 5.1 Partcipants’ code name, years of experience in Android and Android Lint, and the
type of projects they work on
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strong. As for Android Lint, which has been introduced with Android Studio in 2013, 10 of
our participants have more than four years of experience in using it.

5.1.3 Analysis

We carefully followed the analytical strategy presented by Schmidt et al. [173], which is
well adapted for semi-structured interviews. This strategy has proved itself in the context of
research approaches that postulate an open kind of theoretical prior understanding, but do not
reject explicit pre-assumptions [173]. Before proceeding to the analysis, we transcribed the
interviews recordings into texts using a denaturalism approach. The denaturalism approach
allows us to focus on informational content, while still working for a “full and faithful
transcription” [148]. In what follows, we show how we adopted the analytical strategy steps.

Form Material-Oriented Analytical Categories

In this step, we define the semantic categories that interest us. In our case, we investigate
the motivation and arguments of Android developers who use the linter for performance
purposes, and the constraints of such usage. Therefore, our categories are initially the
following two topics:

— Why do Android developers use linters for performance purposes?
— What are the constraints of using linters for performance purposes?
After our discussions with participants, we noticed that an additional category is high-

lighted by developers, namely:
— How do Android developers use linters for performance purposes?

We found this additional topic enlightening, thus we included it in our analytical categories.
Once the categories are set, we read and analyzed each interview to determine which categories
it includes. In the analysis, we do not only consider answers to our questions, but also how
developers use the terms and which aspects they supplement or omit. After this analysis, we
can supplement or correct our analytical categories again.

Assemble the Analytical Categories into a Guide for Coding

We assemble the categories into an analytical guide, and for each category different
versions are formulated. The versions stand for different subcategories identified in the
interviews in reference to one of the categories. In the following steps, the analytical guide
can be tested and validated. Indeed, the categories and their versions may be refined, made
more distinctive or completely omitted from the coding guide.
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Code the Material

At this stage, we read the interviews and try to relate each passage to a category and a
variant formulation. As we focus on labeling the passages, we may omit special features and
individual details of each interview. Yet, these details will be analyzed and highlighted in
the last step. To strengthen the reliability of our conclusions, we use a consensual coding.
Therefore, each interview is coded by at least two authors. Initially every author codes the
interview independently, afterwards, the authors discuss and compare their classification. In
case of discrepancies, the authors attempt to negotiate a consensual solution.
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5.2 Results

We present in Table 5.2 the results of the coding process in order to contribute to the
transparency and verifiability of our study.

5.2.1 Why Do Android Developers Use Linters for Performance Pur-
poses?

Linter Helps Developers to Learn about the Framework

As the Android framework is relatively young, developers are eager to learn about its
underlying performance constraints. Half of the participants stated that the linter is very
instructive in that respect (P1, P2, P3, P7, P9, P10, P11). “Lint will actually help you become
a better Android programmer” (P3). Indeed, the performance checks of the linter mentor
the developers to use the framework efficiently: “I see the performance checks as a guide
of the Android framework” (P7). Other participants mentioned that their understanding of
performance, and their programming habits evolved thanks to the linter: “Everytime I learn
a new thing about performance, and then it becomes a habit” (P11). As an example of these
cases, participant P9 mentioned DrawAllocation, a bad practice that consists of allocating new
memory spaces in the onDraw() method: “I was creating a new object in a paint method so
Lint gave me a warning. That was the first and last time I see it, because now I pay attention
to this” (P9).

Some participants emphasized that junior Android developers should particularly use the
linter for performance: “Lint checks are extremely useful for helping out beginner Android
developers or junior members of my team to enforce better code performance” (P2). Indeed,
junior Android developers, even if they have a prior experience in desktop development, may
lack understanding of mobile framework specificities. Thus, they are prone to performance-
related bad practices and they need the linter to learn how to keep their mobile apps
efficient.

Discussion: Participants from previous studies have also reported that learning is one of
the main benefits of using linters [47, 192]. Specifically, the developers learned with the linter
about the syntax of the programming language, idioms, or libraries. In the case of our study,
the participants showed that even important concepts about the Android framework can
be learned through the linter. This can be a great incentive for Android developers to use
linters with performance and other framework related checks.

Linter Can Anticipate Some Performance Bottlenecks

Many participants reported that the linter supports them in detecting bad practices
that can cause performance bottlenecks (P1, P2, P5, P6, P10, P13). “Lint is very useful to
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tell in advance what is going wrong” (P1). The participants stated that the linter is very
efficient in detecting code-level performance issues, “Lint is very good at finding patterned
issues that follow a specific rule and can be solved very simply” (P2). When asked why they
want to anticipate performance problems, the participants reported that performance issues
should not be noticed by users, “it is always better to detect eventual problems before they
are reported by end-users or managers.”(P10). In fact, when end-users notice performance
issues, they can uninstall the app or give bad reviews, and from there it can be hard to
gain back users confidence. Moreover, the participants explained that once bottlenecks are
reported by users, it can be complex to identify their root cause and fix them. “by using
Lint, we try to detect performance issues as soon as possible, because when they occur, they
are generally very diffuse so it is hard to detect them with the profiler” (P5). For instance,
“when I have 8 threads with cross-thread method calls, locating a problem with the profiler
becomes very difficult” (P5). In that respect, anticipating performance bottlenecks saves also
time for developers.

Discussion: Previous studies have shown that developers prefer to manage performance
reactively, and hence to wait the problems to occur before handling them, with the objective
to gain time [125]. Here, our participants express a different point of view. They explain
that when performance bottlenecks occur, they require so much time and effort to be fixed.
They are hence in favor of a more proactive approach that aims to detect and fix bottlenecks
before they occur. It is important to transmit this information to developers community,
and especially novice Android developers. The latter may be unaware of the complexity of
locating and fixing performance bottlenecks, thus they can make wrong strategic choices. As
there should be a trade-off between reactive and proactive approaches, we also encourage
future works to make real world comparisons between them.

Linter Is Easy to Use

Many developers said that they use the performance checks of Android Lint because they
found it simple and easy to use (P2, P4, P6, P8, P11, P14). Indeed, Android Lint is already
integrated in the IDE and all the checks, including performance, are enabled by default:
“it is built into Android studio, the checks performed by the linter appear automatically so
we get those benefits just kind of immediately through the syntax highlighting” (P2). Hence,
the usage of the linter is seamless and effortless: “it is just built into the tooling so well
and so seamlessly, and it does not really cost me anything to have Lint running” (P2). The
participants also appreciated the integration in other development tools: “we can easily
integrate it in the Gradle and continuous integration, so we can ensure that performance and
other Lint checks are respected” (P6).
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Discussion: This benefit is more related to the use of the linter itself rather than to
performance concerns. Previous studies showed that static analyzers should be easy and
seamless to encourage developers to use them [114]. Our findings confirm this, as participants
stated clearly that they use the linter because it does not cost them anything. Now, Android
Lint has an additional privilege by being integrated in the official IDE, Android Studio, and
activated by default and this motivated developers to adopt it. This fact aligns with previous
works [47, 114, 172] where researchers suggested that the integration in the development
workflow helps static analyzers to accumulate the trust of developers.

Linter Can Develop the Performance Culture

In development teams, developers can have different perceptions and levels of interest
regarding performance. Thus, it sounds important to rely on a linter for enforcing performance
good practices (P1, P5, P7, P10). The use of a linter ensures that all team members follow
the same performance guidelines: “we have to make sure that everyone respects the rules and
understands why we are using the performance checks of Lint” (P10). On top of that, the
performance checks that will occur will certainly be the source of discussions among team
members: “ the objective is to share and level our knowledge on performance. When Lint
reports on performance problems, we can disagree with each other on whether to consider it
or not, so we will discuss and understand the problem, then make a wise decision about it”
(P5). That being said, the usage of the linter at a team level is fruitful in many ways. On
one side, it allows to keep all the team members at the same page about performance choices.
Besides, it arises discussions about performance, and thus enriches the performance culture
in the team.

Discussion: Previous study showed that developers use the linter to have an objective tool
that avoids endless discussions about code style [192]. The statements of our participants
show that the linter itself can trigger discussions in the context of performance. Unlike code
style, performance is an important aspect that requires a deep thinking from developers
especially in the context of mobile apps. Hence, it is normal that developers appreciate the
discussions triggered by the linter about it.

Linter Can Save the Developer’s Time

Some participants explained that they use the linter to automate time-consuming tasks
(P2, P3, P9). In particular, the linter can fill in for repetitive tasks: “Lint helps you to save
time in a lot of ways. One that comes to my mind is the identification of unused resources.
The linter saves me a lot of time as I don’t have to cross-check all resources manually” (P2).
Indeed, keeping unused resources is a performance bad practice that increases the APK size.
Developers used to manually check and remove all the useless resources, which can be tedious
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and error prone when there are many resources and when the app is built with many flavors.
Using Android Lint to detect unused resources then helps developers and saves their time.
Another task where the usage of linter helps saving time is code review: “it is a quick and
easy code review. It gives you a bunch of information. Now, whether I want to implement
those messages or not, that is another decision” (P3). Code review is an important repetitive
task in software development that can be very time consuming, especially at team level. As
stated by the participants, the linter can partially automate this task, so that developers do
not have to review trivial performance issues and can therefore focus on important aspects.

Discussion: Linters are also known for saving time in contexts where eventual issues can
be automatically detected, e.g., bug detection [114]. The particularity of the cases reported
by our participants is that on top of saving time by detecting eventual issues, the linter
automates repetitive tasks. As these tasks are concrete and concern all types of Android
apps, this can be more appealing for developers to adopt the linter.

Linter Contributes to Increase Credibility and Reputation

Developers always want to maintain a good reputation among their peers, and the linter
can help them to do that (P1, P6, P7). First, developers need to keep their credibility among
colleagues: “I have to use Lint before making a release to make sure that my work meets
the expectations of my superiors and colleagues” (P6). Another context where reputation
is important is open-source projects: “before releasing code to open-source, I am required
to check that all the warnings are away and that my code has a high quality” (P1). (P7)
added: “I work on a company where we do some open-source projects. Before publishing code,
I always have to run the linter to make sure of not making obvious performance mistakes.
This impacts not only my credibility, but also the image of the company” (P7).

Discussion: Since performance is critical in Android apps, making obvious mistakes can
seriously affect the credibility of the developer among her peers. Hence, the linter performance
rules can give a valuable support for Android developers to maintain their reputation.

Linter Raises the Awareness of the App Performance

Android apps are nowadays very complex software systems, and it is hard for developers
to be aware of the implications of their development choices in terms of performance. Some
participants stated that they use the linter to always be aware of their app performance (P3,
P5). “Sometimes Lint will catch performance aspects that I did not really think about, and so
it will give me a time or a moment to think about and decide” (P3). This shows that the
linter messages incite developers to carefully think and give more attention to performance.
This awareness can be particularly important when developers are working alone on the
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project, “if I am the only developer, for me this thinking is critical and Lint is a must-have”
(P3). This applies also to the cases where the issues reported by the linter are not applicable:
“in some cases I am not able to apply the changes requested by Lint. But still I need to have
a good and valid reason for this. So I am aware of the trade-off I made” (P5).

Discussion: It is important to distinguish the awareness of app performance with the
learning of performance good practices. Here, the linter incites the developers to think and
understand their app performance. When developers understand their apps, they can make
decisions or solve eventual problems more easily.

Linter Eases Performance Debugging

Some participants did not only use the linter to directly improve performance, but they
also obeyed non-performance rules to ensure high code quality, and consequently ease eventual
performance profiling and debugging (P9). “By using Lint and other static analyzers like
Sonar, I ensure that my code is well designed and readable. So when a performance issue is
reported, debugging and profiling becomes easier. I also can easily and quickly apply the fixes”
(P9). The linter then also helps to build clean and maintainable apps that further developers
can easily debug and refactor for improving performance.

Discussion: This represents a benefit of using the linter in general, and not related to the
usage of performance checks. However, it is still interesting to observe that some developers
have a deep understanding of the software development process. Linters cannot prevent all
performance bottlenecks, bugs or other issues. Therefore, developers should always keep their
code clean and maintainable, because it makes further maintenance operations easier.

5.2.2 How Do Android Developers Use Linters for Performance Purposes?

Linter Integrates along the Project Life Cycle

The participants reported different strategies to use the linter through the project life
cycle in order to keep their apps effective. In the remainder, we report on the strategies they
identified.

Integrating from scratch: Many participants reported that they prefer using the linter
from the project startup (P2, P5, P9, P10, P11, P13). Participant P5 explained that, when
starting a project from scratch, she tries to keep the code very clean by considering all the
Lint checks. When asked about the configuration adopted in this case, the participants said
that they keep the default configuration provided by the linter, “in this situation I do not need
any additional setting, Lint is configured by default” (P9). We also asked these participants
about the motivation behind this strategy. They explained that, when the project advances
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without the linter, it is more difficult to control performance a posteriori. For instance: “we
had a case where we retrieved a project that was built by another team without Lint. We have
got thousands of errors and warnings. So we were less motivated to put back Lint and recover
the app performance” (P7). Indeed, it is easy with this strategy to motivate developers to
respect performance checks because the code base is clean and there is no existing debt to
tackle.

Targeting milestones: Five participants mentioned that they extensively use the linter
at the end of features or for releases (P1, P5, P6, P7). “I never use Lint in the beginning of
the project or while prototyping. I use it for releases to make sure that my code meets the
expectations” (P6). As for features: “towards the end of adding a new feature, I will run
through Lint then I will go through all of them and I determine whether or not I want to
spend the time to do it” (P3). When asked about the configuration used for this strategy,
participant P5 stated: “we have different Lint profiles, in the release profile we activate
additional rules”. This strategy allows developers to go fast while producing new features or
prototyping without hindering the final app performance.

Adopting performance sprints: Two participants reported that they dedicate sprints
for improving the app performance (P5, P12). Participant P12 stated: “while working, we do
not have concrete performance objectives. But when we notice that the app starts lagging, we
decide to dedicate time for this and improve the app performance”. As for participant P5:
“generally while coding, we try to respect the performance checks just as other Lint checks.
Then, we regularly program performance sprints and there we will be specifically interested in
performance rules”. While the strategy reported by participant P12 is purely reactive, the
strategy of participant P5 is still proactive.

Improving performance incrementally: One participant explained how she deals with
legacy code where the linter was not used before (P9). “I configure Lint to incrementally
increase the app performance. I define a baseline, then I work to decrease this baseline
progressively. I also try to ensure that the new code is always more effective than the old one”
(P9). Android Lint allows to define a baseline file—i.e., a snapshot of the current warnings
of the project. The baseline allows to use Lint without addressing old issues. When asked
about how the incremental improvement happens, the participant P9 replied “I change the
severity of some checks, for example I configure some rules to block the compilation”.

Discussion: Integrating the linter from project start-up is commonly advised [192]. More-
over, previous studies show that developers are less likely to fix the linter warnings on
legacy code [31]. The statements of some participants are aligned with this common wisdom.
However, the strategies (b) and (c) show that developers can adopt the linter differently
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according to their work style. In particular, developers who are prototyping or are in rush to
release can adopt strategy (b) and apply the linter after finishing their core development.
Interestingly, developers who prefer to manage performance reactively can also leverage the
linter by following strategy (c). Finally, strategy (d) shows that the configurability of the
linter maximizes its chances to be adopted.

Linter Can Be Used under Different Settings

Some participants reported using the linter individually, while others explained how they
use it with their team.

Supporting individual development: Half of the participants reported that the usage
of the linter was a personal choice (P1, P3, P5, P8, P9, P11, P13). “I only run Lint as myself
as part of a review that I want to do” (P3). These participants usually use it from the IDE
interactively: “It is through Android studio interactively” (P13).

Checking performance rules in a team: Other participants reported that the usage of
the linter for performance purposes was required on a team level (P2, P4, P6, P7, P9, P10,
P12, P14). “In the team, Lint avoids accumulating problems. We have a defined set of rules
and every team member must respect them” (P10). In this cases, the linter is generally a step
in the continuous integration chain: “it is set up with continuous integration, so Lint runs
after every commit and you will get a report. Then, you can choose to look at it or not” (P2).

Discussion: The reported settings of using the linter do not apply exclusively for perfor-
mance. The participants explanations underline the importance of the linter interactivity
and integration in the development workflow.

Linter Prioritizes Performance Aspects

Many participants said that while they use the linter, they prioritize performance related
issues (P2, P3, P5, P6, P9, P13). For instance: “there are so many different checks but I
would say performance usually catches my eye” (P2). Some participants gave also distinct
priorities to different performance aspects: “if it is anything about threading, I will take a look
at it and review it before deciding if I want to fix it or not” (P3), “I give so much importance
to UI performance and all memory-related issues” (P13). Some participants expressed these
priorities with a configuration: “I changed the severity of rules that interest me, so they block
the compilation” (P9).

Discussion: Each app can have different specificities and needs in terms of performance.
Thanks to configurability, the linter can help developers to focus on performance aspects that
sound relevant and critical for them.
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5.2.3 What Are the Constraints of Using Linters for Performance Pur-
poses?

The constraints reported by participants were structured around two main topics: (i)
social challenges and (ii) tool limitations.

Linter Faces Social Challenges

The participants reported cultural elements that make the use of linter for performance
challenging. The participants encountered these issues in their work environment, with
colleagues or superiors.

Static analysis is not suitable for performance: Many participants described that
developers generally think that static analysis is not suitable for improving performance (P1,
P2, P3, P4, P7, P12). Participant P1 stated: “I think that there is a gap in understanding
why static analysis is useful for performance”. Participants explained that this mindset is due
to the nature of static analysis: “because Lint is only looking at the code. Some developers
feel that there should be a better tool that analyzes the app while running” (P3). Other
participants thought this gap is due to the complexity of performance issues: “for the actual
real-world bottlenecks that most apps face, it is not the Lint that will help you. Performance
issues are very complicated or have multiple causes that cannot be pinpointed to a one line of
Java code” (P2). Participant P4 stated that this gap may be due to the confusion of the term
“performance issue”: “For each performance issue, there is a root cause and an observation.
The term performance issue is often used to refer to both. But, it is necessary to distinguish
them. The default Lint rules contain some basic and trivial root causes, which could statically
be identified. But, in some cases, you have an observation and you cannot guess the root
cause. So here Lint cannot help you. To sump up, Lint requires you to define in advance
what you are looking for, it is hard to use it to match the observation and the cause”.

Nobody complained: Many participants reported that they regularly deal with colleagues
and superiors who believe that performance should be managed reactively (P1, P3, P4, P5,
P8, P9, P12). For example, participant P5 stated that the common rule in her environment
is “only when the superiors or the end-users complain that the app is lagging or not smooth,
we say ok we have to care about performance”. Participant P5 highlighted a case where this
pressure came from a superior: “performance refactoring is a back-office task that the product
owner cannot see. It is hard to negotiate these tasks”. Some participants underlined that
this mindset is particularly tied to performance more than any other software quality aspect:
“with performance you do not want to do a lot, you want to make sure that you are really
looking at the issue and not trying to over optimize the code” (P3).
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We do not have time: This mindset is very related to the previous one. However, we
observed cases where the developers explain that the performance checks of the linter are not
considered only for time constraints without any explicit agreement on the management of
performance reactively (P1, P6, P7). Participant P1 reports observing this mindset in many
companies: “why waste time on performance rules? Let us move ahead and we will figure
about this later. Unfortunately that later never happens, or comes only when the problem is
big enough”.

Performance is not important in our case: Some participants reported working in
contexts where performance was considered irrelevant (P1, P8, P12). Participant P1 reports
experiencing this situation in young projects: “when you build a small app and do not know
whether it will scale or not, it does not seem useful to spend time in making sure that static
analysis of performance is done right”. Participant P8 described a case where performance
was considered irrelevant for a type of apps: “we did very basic app development and not
particularly hardware-based development. We developed Uber clones, and all those apps did
not require any specific performance from the device”.

The linter rules are irrelevant: Two participants described that some performance checks
are considered irrelevant (P2, P12). Participant P12 gave examples of Lint performance rules
that do not really have an impact: “OverDraw is a rule that used to be relevant a long time
ago, but now with powerful smartphones it is not anymore. Moreover, the Android system
detects all these trivial issues and fixes them automatically. Developers are obsessed with
Overdraw, it became a cult actually, but this is not what really hinders the performance of
your app”. The problem OverDraw occurs when a background drawable is set on a root view.
This is problematic because the theme background will be painted in vain as the drawable
will completely cover it.

Discussion: Calcagno et al. [39] have already referred to the social challenge while de-
scribing their experience in integrating a static analyzer into the software development cycle
at Facebook. Some of the reported challenges, e.g., we do not have time, apply to linters
in general. However, the other mindsets are particularly resistant to the use of linters for
performance. The belief that static analysis is not suitable for performance seems to be
prevalent, six participants mentioned it explicitly. Developers are using linters as tools that
report minor issues like styling violations and deprecations. They are not aware enough of the
capabilities of static analysis in detecting performance issues. Tool makers should put more
efforts on communicating about linters as tools that can accompany developers in different
development aspects. The mindset that performance should be managed reactively confirms
previous observations about Android apps development [125]. This finding shows that An-
droid developers still lack understanding about the implications of performance bottlenecks.
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As for linter rules that are considered irrelevant, this incites the research community to dig
deeper into the impact of these practices. For many bad practices, like OverDraw, we still
lack precise measurements of their penalties on performance in real world contexts.

Linter Suffers from Limitations

The participants reported several linter limitations that make it complicated to use it for
performance purposes.

Not well presented: Several participants mentioned that the linter rules are not well
organized or explained (P1, P4, P6, P11, P13, P14). Interestingly, three participants said
explicitly that, for a long time, they did not even know that Android Lint had performance
related checks (P1, P11, P14), “I did not know there are different categories in Lint. For
me it is just Lint, I do not distinguish between them” (P1). Furthermore, participant P14
explained that in the beginning she did not know that some rules are related to performance,
and thus she treated them as other checks like typography. Other participants complained
about the unclarity of the messages, “it is not always clear, for example performance checks
about graphics, I cannot really understand them at all”. On top of that, some participants
found that rules are not well organized: “there is a hierarchy with levels of importance, but I
find it useless, it does not help me. So if I want to focus only on performance aspects, I have
to search everywhere” (P6). The same participant underlined the unclarity of the priorities
given by the linter to the checks: “I try to obey, but I do not really understand the logic
behind the priority and severity”. Indeed, Android Lint does not give explanations about the
priority and severity attributed to each check, so we cannot understand the rationales behind
them.

Imprecision: Some participants complained about the imprecision of the detection per-
formed by the linter for performance checks (P9, P10, P13). Participant P9 described
situations where the code contained a performance bad practice, but the corresponding linter
check was unable to detect it: “in some drawing methods, I was calling a method that called
another one that made an intensive computing with memory allocations. Lint did not detect
this as DrawAllocation, it actually does not look so deep into the code”. Other participants
reported false positives in performance checks. Participant P13 said: “I regularly have false
warnings about unused resources when the resource is used via a library”, and participant P10
stated: “Lint indicates an unused resource but the image is actually used with a variable”.

Poverty: Some participants mentioned that the linter is not very rich with performance
checks (P5, P6, P9). Participant P5 stated: “I do not see so many performance-related Lint
checks. And the existing ones are so generic”. In the same vein, participant P9 said: “I rarely
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see suggestions or important warnings about performance aspects. Very few!”. Furthermore,
the participants complained about the absence of linter checks for Kotlin (P6, P9).

The difficulty of writing new rules: Participant P2 described her trial to write a linter
check and the difficulties she faced: “I wanted to write specific Lint rules and after a few
trials I ended up discovering that it is difficult to define something general enough to warrant
a Lint check. Also, the effort put in to build a custom Lint check is pretty high. That is
why it is not a common tactic for development teams especially on a per project basis”. The
participant pointed also the complexity of using the created rule in a team: “to build a Lint
check, then distribute it to the team, then have the whole team use it, is difficult”.

Discussion: The fact that at least three participants reported that for a long time they
used the linter without noticing these performance checks was striking. Tool makers have
to work more on showcasing different checks categories. Also, the linter messages should
highlight more the impact of performance practices to motivate developers to consider them
seriously. The imprecision is a common limitation of linters [114], and performance checks
are no different in that respect. Similarly, the participants statements about the difficulty
to write linter rules align with previous works [47]. As many other tools, Android Lint
provides the possibility to write new rules but this task is complex and time-consuming.
Thus, developers are not motivated to write their own rules.

5.3 Implications

We summarize in this section the several implications of our results for developers,
researchers, and tools creators. Our findings are based on the usage of linters for performance
purposes in Android. Nevertheless, they can also apply to other development platforms.

5.3.1 For Developers

Our results provide motivations for developers to use linters for performance and show
them how to maximize their benefits.

Benefits

Developers can find several benefits in using the linter for performance. In particular,
developers can use the linter with performance checks to:

— Learn about the mobile framework and its performance constraints,
— Anticipate performance bottlenecks that can be arduous to identify and fix,
— Develop the performance culture in the team,
— Save time by automating concrete repetitive tasks,
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— Save their reputation among peers,
— Increase their awareness and understanding of their apps performance.
Developers should also be aware that the usage of the linter is seamless and can be

integrated in along the development workflow.

Usage Fashions

Our participants recommend to use the linter for performance in the following ways:
— From project startup to motivate developers to keep the code clean,
— Only before releases to dedicate the early development stages only for prototyping and

making the important features,
— In performance sprints: developers can configure the linter to focus only on performance

in some sprints. This approach works also for developers who prefer to manage the
performance reactively,

— Improve performance incrementally: developers should configure the linter carefully on
legacy code to avoid chaos and developers discouragement,

— Individually in an interactive way in the IDE or in a team with the continuous integra-
tion,

— Prioritizing performance aspects: developers can configure the linter to focus on
performance aspect that interest them and fit with their app needs.

5.3.2 For Researchers

Our findings confirm hypotheses from several previous works and open up perspectives
for new research directions:

— We confirm that the mindset of managing performance reactively is prevalent [125]. As
there should be a trade-off between reactive and proactive approaches, we encourage
future works to make real world comparisons between them;

— Our study confirms that some Android developers are unaware of code smells and their
importance;

— Some developers challenge the relevance and impact of performance bad practices. We
therefore encourage future works to investigate and provide precise evidences about the
impact of such practices;

— Some developers are eager to consider more performance-related checks. This should
incite researchers to identify and characterize more practices that can hinder the
performance of mobile apps.

5.3.3 For Tool Creators

Our findings confirm the importance of some linter features and highlight new needs and
challenges:
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— Our findings align with previous works that suggest that simplicity and integration in the
development workflow help static analyzers to increase the trust of developers [47, 114,
172]. We encourage tool creators to ease the integration of their linters in development
tools;

— Our findings show that linters should be more clear and explicit about the categories
of checks. Clarity is also required in the explanations of the potential impacts of
performance checks. We cannot expect from developers to seriously consider the rules
if we do not provide enough information about their nature and impacts;

— Providing the possibility to write linter rules is not enough. Writing a linter rule should
be simple and less time-consuming to motivate developers to do it;

— Tool makers should put more efforts in communicating about the capabilities of static
analysis in detecting performance bad practices;

— Given the benefits reported by participants, we invite more tool makers to include
performance-related checks in their linters.

5.4 Threats To Validity

We discuss in this section the main issues that may threaten the validity of our study.

Transferability: One limitation to the generalizability of our study is the sample size.
The sample size is not large and thus it may not be representative of all Android developers.
To alleviate this fact, we interviewed highly-experienced Android developers. Nonetheless,
this selection may also introduce a new bias to the study. As a matter of fact, the benefits
and constraints reported by junior Android developers can be different. We would have liked
more participants. However, transcribing interviews is a manual and time-consuming task.
Hence, having more interviews may involve more workload and would affect the accuracy and
quality of the analysis. We found our results valuable and enough for theoretical saturation.
The study conducted by Tómasdóttir et al. [192], which we discuss in our related works,
approaches a similar topic with a similar sample size (15 participants). Another possible
threat is that we only interviewed Android developers who use the linter for performance
purposes. Android developers who use the linter without performance checks may also
have their word to say about the limitations of using a linter for performance. Thus, more
studies should be conducted to understand why some Android developers use the linter and
disable performance checks. As we focused our study on Android Lint, our results cannot
be generalizable to other Android linters. However, we believe that the choice of Android
Lint was sound for two reasons. First, it is a built-in tool of Android Studio and is activated
by default, thus a large proportion of Android developers should be using it. This fact was
confirmed in our preliminary online survey, where 97 % of the participants who used the linters
were actually relying on Android Lint, cf. Appendix B and our companion artifacts [99].
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Secondly, it is the only linter that has performance checks specific to the Android platform,
and this detail is the core of our study.

Credibility: One possible threat to our study results could be the credibility of participants
answers. We interviewed developers who have a strong knowledge about the topic. However,
we cannot be sure that their answers were based on real experience or knowledge acquired
from external resources. To alleviate this issue, we tried always to ask for details and relate
to developers project and working environment. Also, we emphasized before the interviews
that the process is not judgmental.

Confirmability: One possible threat could be the accuracy of the interviews analysis and
particularly the coding step. We use a consensual coding to alleviate this threat and strengthen
the reliability of our conclusions. Each interview has been encoded by at least two authors.
Initially, every author coded the interview independently to avoid influencing the analysis of
other authors. Afterwards, the authors discussed and compared their classifications.

5.5 Summary

We investigated in this study the benefits and the usage of linters for performance concerns
in Android apps. Specifically, we conducted a qualitative study based on interviews with
experienced Android developers. The results of our study provided many indications about
the usage of linters for performance:

— Finding 1: Linters can be useful for anticipating and debugging performance bottle-
necks and they can also be used to raise performance culture among developers;

— Finding 2: Besides the intuitive proactive approach for using linters, developers can
also use linters reactively in performance sprints;

— Finding 3: Linters should be more clear and explicit about the categories of checks.
Clarity is also required in the explanations of the potential impacts of performance
checks.

Based on these findings, we encourage future studies and tool makers to aliment their
static analyzers with more performance code smells. We also, suggest that these tools should
be more explicit about code smell definitions and categories.

Our results also provided important insights about developers’ perception of Android
code smells:

— Finding 4: There is a prevalent ignorance of mobile-specific code smells among
developers;

— Finding 5: The mindset of managing performance reactively is common [125]. Future
studies should adapt to this mindset and focus on reactive approaches and tools for
dealing with code smells like profilers;
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— Finding 6: Some developers challenge the relevance and impact of performance bad
practices. We therefore encourage future works to question code smell definitions and
provide precise evidences about the importance of such practices.

The finding about code smell irrelevance from the viewpoint of certain developers drew
our attention and incited us to question the foundation of mobile-specific code smells. Hence,
we decided to dedicate our next study to an inspection of code smell definitions.





Chapter 6

A Second Thought About Mobile
Code Smells

Our previous chapter highlighted several complaints from developers towards the instances
of mobile-specific code smells. These complaints concerned false positives, irrelevant instances,
and instances that did not show a real impact on performance. To understand the rationales
behind these complaints, we dedicate this study to an investigation of instances from mobile-
specific code smells. To frame this investigation, we formulate the research question:

RQ: What are the instances of mobile-specific code smells?
Our objective with this open question is to inspect the instances of code smells without a

prior hypothesis about their characteristics. Therefore, we adopt in this study an exploratory
approach that aims, with an open-mind, to build a theory about mobile-specific code smells.
This theory describes the characteristics of code smell instances and allows us to check
the presence of the flaws reported by developers. Moreover, as code smell instances are
the product of the adopted definitions and the detection techniques, this theory can also
provide insights about the flaws of the definitions and detection techniques. These insights
are important because they provide second thoughts about the established foundation about
code smell definition and detection. As a matter fact, mobile-specific code smells were defined
from the official framework documentation and other online resources, like blogs and forums.
Contrarily to OO code smells, mobile code smells were not defined from an analysis of the
state of practice. Hence, it is important to question these definitions and check their relevance
in practice. As for the detection techniques, the insights are important to verify the relevance
of the approach followed by code smell detection tools. While all the tools that targeted
the catalog of Reimann et al. [169] relied on static analysis, we still lack knowledge about
the adequacy of such technique for detecting mobile code smells. This questioning aligns
with the concerns raised by developers about the suitability of static analysis for detecting
performance-oriented practices.
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The remainder of this chapter is organized as follows. Section 6.1 explains the study
design, while Section 6.2 reports on the results. Section 6.3 discusses the implications and
threats to validity and Section 6.4 concludes with our main findings.

6.1 Study Design

In this section, we explain the process that we followed to answer our research question.
First, we describe the selection of code smell instances for our study. Then, we define our
approach for analyzing these instances and building the desired theory.

6.1.1 Data Selection

The selection of code smell instances is determined by the choice of (i) the mobile platform,
(ii) the definitions, (iii) the detection tool, and (iv) the dataset of mobile apps to analyze.

Mobile Platform

The motivation behind this study lays in the concerns raised by Android developers about
the linter. These concerns were intended for Android-specific code smells and we do not know
if they are generalizable to other mobile code smells. Thus, we chose to keep the focus of this
investigation on the Android platform.

Definitions

As shown in our literature review in Chapter 2, studies of Android-specific code smells
adopted definitions from the catalog of Reimann et al. [169]. These definitions are inspired
from the Android documentation and they resembled to the definitions adopted by tools like
Android Lint [9]. Hence, we adopted these definitions in our process for generating code smell
instances. We recall these definitions in our qualitative analysis in the upcoming sections.

Detection Tool

There are different tools that allow the detection of mobile-specific code smells. In this
study, we chose to use Paprika because it relies on explicit code smell definitions. Paprika
isolates code smell definitions in a querying layer, which is independent from the rest of the
detection process. This isolation allows us to tune the code smell definitions when needed.
Hence, we can ensure that the resulting instances are faithful to the code smell definitions
that are commonly adopted by the research community. Paprika relies on the technique of
static analysis, which is also used by other tools like Android Lint [9] and aDoctor [158].
Consequently, observations about detection flaws from Paprika can be—with necessary
precautions—generalized to other detection tools for mobile-specific code smells.
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The choice of the study code smells is determined by the tool choice. We included in
this study all the objective code smells that are detectable by Paprika. Subjective code
smells rely on subjective numerical thresholds. For instance, the detection of the code
smell Heavy Service Start in Paprika uses the rule number_of_instructions>17 to determine
whether the method onStartCommand() is heavy or not. These thresholds, 17 in our example,
can be defined by researchers, developers, or from dataset statistics, and thus they vary
depending on the tool and the study. Therefore, we excluded subjective code smells to ensure
that our studied instances are not altered by subjective choices.

After excluding the subjective and deprecated code smells, Paprika can detect eight
Android-specific code smells. We present in Table 6.1 these eight code smells and their host
entities—i.e., the type of source code structures that can host them.

Code Smell Host entity

No Low Memory Resolver (NLMR) Activity
Init OnDraw (IOD) View
UI Overdraw (UIO) View
Leaking Inner Class (LIC) Inner class
Member Ignoring Method (MIM) Method
Hashmap Usage (HMU) Method
Unsupported Hardware Acceleration (UHA) Method
Unsuited LRU Cache Size (UCS) Method

Table 6.1 Studied code smells.

Dataset

We relied on the dataset that we built in our change history studies, cf. Chapter 4. The
dataset included 324 Android apps with contributions from 4,525 developers. Applying
Paprika on this dataset resulted in 180.013 code smell instances. As our study relies on
manual qualitative analysis, we could not analyze all the detected instances. Therefore, we
selected from our dataset a sample of code smells to analyze. We used a stratified sample
of 599 instances to make sure to consider a statistically significant sample for each code
smell. This represents a 95% statistically significant stratified sample with a 10% confidence
interval of the 180,013 code smell instances detected in our dataset. The stratum of the
sample is represented by the eight studied code smells.

6.1.2 Data Analysis

In this subsection, we describe our approach for analyzing the collected data in order to
answer our research questions.
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Figure 6.1 Design of the qualitative analysis.

Our objective is to explore with an open-mind the characteristics of Android-specific
code smell instances. Therefore, we relied on Grounded Theory [90], a well-established
methodology that allows to generate a theory from qualitative data. The literature contains
different schools about the design and implementation of Grounded Theory [44, 89, 184].
In our analysis, we followed Charmaz’s approach [44], which combines Glaser’s inductive
school with constructivist epistemology. This approach has been adopted in several software
engineering studies to build theories [32]. We considered in this study the feedback of these
works and we carefully followed their recommendations in our research design. Figure 6.1
depicts the design of our qualitative analysis with its three main steps.

Step 1: Extract Relevant Context

Input: Code smell definition and sample instances.
Output: Relevant context for instance analysis.
In this step, we defined for each code smell type the relevant context for its qualitative
analysis. This context consists of the source code elements that should be considered in the
manual analysis to be able to understand every code smell instance. Initially, we defined
this context based on the code smell definition and the code smell instances available in the
sample. Afterwards, if the analysis step requires the inspection of other parts of the software
system, we augment the context with additional source code elements.

Step 2: Extract a Description for the Instances

Input: Relevant context and sample instances.
Output: Instances description.
In this step, we manually analyzed every instance of the sample based on the extracted
relevant context. In this analysis, we explored the common characteristics of code smell
instances without a predefined topic in mind. For most of the analyzed code smells, this
exploratory approach led to a coding process.



6.1 Study Design 131

Coding process: We followed this process in the cases where code smell instances showed
interesting analytical categories that can be used to describe the dataset. The coding process
follows two steps:

1. Build a coding guide: We analyzed each instance to identify the categories included
in it. Then, we assembled the categories into an analytical guide and we formulated for
each category different versions. The versions stand for different subcategories identified
in the instances in reference to one of the categories. Once the coding guide is built, it
can be tested and validated during the open-coding. Indeed, the categories and their
versions may be refined, made more distinctive or completely omitted from the coding
guide;

2. Open-code the instances: We analyzed each code smell instance in order to assign
it to a category and a sub-category. We performed these assignments with a constant
comparison to iteratively and continuously compare categories and aggregate them
into higher levels of abstraction and therefore update our coding-guide. To strengthen
the reliability of our assignments, we also used a consensual coding. That is, each
instance is coded by at least two authors. Initially every author coded the instances
independently, afterwards, the authors discussed and compared their categorization. In
case of discrepancies, the authors attempted to negotiate a consensual solution.

The result of the coding process is a structured description of code smell instances. For
some code smell types, we did not identify any analytical categories and we did not follow a
coding process. Hence, their description consisted in unstructured insights about the code
smell instances.

Step 3: Build a Theory

Input: Instances description and the relevant literature.
Output: A theory about mobile-specific code smells.
In this step, we analyzed for each code smell type the instances description in light of the
existing literature. This literature includes all resources that can help us to interpret the
instances description and generate new concepts. Indeed, depending on the code smell type,
the literature can include research works or resources about the Android framework and the
Java programming language. The analysis in this step follows two phases:

1. Analyze the descriptions: We inductively analyzed the descriptions of each code
smell type separately and discussed them in light of the relevant literature. The
objective of this induction is to highlight interesting topics and generate new concepts
and relationships that can later serve in our common theory;

2. Assemble a common theory: Based on the discussions of the eight code smells, we
built a common theory that describes all the studied mobile-specific code smells. In
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particular, we identified the recurrent concepts and relationships from the discussions
and assembled them to formulate one common theory for all studied code smells.

The analysis process from Step 1 to Step 3.1 were performed on each code smell type,
separately. It is only at Step 3.2 that we consider all the code smell types together.

6.2 Study Results

This section reports the results of our qualitative analysis by following the steps depicted
in our design, cf. Figure 6.1. For each code smell type, we remind the commonly adopted
definition, then we present the relevant context that we extracted for the manual analysis. We
present the results of this manual analysis as a description of the instances. Afterwards, we
discuss and analyze this description in light of the related literature. Finally, we assemble our
results in a theory that describes the eight studied code smells. To leverage the replication of
this study, all the presented results are included in our companion artifacts [94].

6.2.1 Leaking Inner Class (LIC)

Sample

The LIC sample included 96 instances.

Definition

In Android, a leaking inner class is a non-static anonymous or nested class. These classes
are considered as “leaking" because they hold a reference to the containing class. This
reference can prevent the garbage collector from freeing the memory space of the outer class
even when it is not used anymore, thus causing memory leaks [9, 169].

Relevant Context

Based on the definition and instances of LIC, the manual analysis must cover the inner
class, which hosts the code smell, and its outer class. During the analysis and coding
process, we did not encounter cases where the inspection required analyzing other source
code elements.

Instances Description

Our manual analysis of LIC showed that the instances can be categorized based on their
(i) anonymity and (ii) class type. Hence, we built an analytical guide to analyze the instances.
The categories of this coding guide are:

— Anonymity: the subcategories are anonymous classes and nested classes,
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Figure 6.2 A sunburst of LIC instances in practice.

— Class type: the subcategories are Listeners, Runnables & Threads, Receivers, and other
classes.

Based on this analytical guide, we performed an open-coding of the sample instances.
The results of this coding are summarized in the the sunburst of Figure 6.2.

Anonymity: We observed that the code smell LIC manifests in:
— Anonymous classes (73 instances): this represents Java local classes that do not have a

name. These classes are generally used to keep the code concise and only used once;
— Nested classes (23 instances): this represents non-static nested classes, which are also

called inner classes.
This categorization shows that 76% of the analyzed LIC instances are anonymous classes

and only 23% of them are nested classes.

Class type: Based on the class type, we found that LIC instances fall under the following
categories:

— Action Listeners (50 instances): This represents classes that are commonly used by
developers to handle UI-related events. They define the behavior of the app in case of
certain user actions;

— Runnables & Threads (11 instances): This represents classes used to implement con-
currency. In our sample, these classes were used as anonymous inner classes to easily
launch parallel tasks;
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— Receivers (six instances): This represents the Android framework classes that are used
for receiving and handling Intents;

— Other classes (29 instances): This included Android framework classes like ViewHolder
and Adapter, but also other types of classes.

Apart from the class anonymity and type, we also noticed that some instances of LIC
accessed non-static attributes and methods of the outer class. Listing 6.1 shows a minified
example of these instances that we found in the app Open Android Event [43]. In this
example, the instance is an anonymous listener that updates an image view based on the
user input in a dialog interface. To perform this, the listener accesses mapImageView, which
is a non-static attribute of the outer class. Because of this non-static access, it is impossible
to make the listener static.

Listing 6.1 A LIC instance accessing non-static attributes.

pub l i c c l a s s MapFragment extends Fragment {
TouchImageView mapImageView ;
p r i v a t e void se l ectDay ( ) {

Ale r tDia log . Bui lder b = new Aler tDia log . Bui lder ( g e t A c t i v i t y ( ) ) ;
b . s e t I t ems ( types , new D i a l o g I n t e r f a c e . OnCl ickListener ( ) {

@Override
pub l i c void onCl ick ( D i a l o g I n t e r f a c e d ia log , i n t which ) {

switch ( which ) {
case 0 :
mapImageView . setImageResource (R. drawable . eventmap_tues_wed) ;
break ;
. . . . .

}
}

}) ;
}

}

Relevant Literature

Based on the open-coding results, the relevant literature for our analysis is:
— The Java documentation of nested, inner, and anonymous classes [150, 153];
— Resources about event handling in Android [12].

Discussion

The description shows that, in practice, LIC instances are mainly anonymous classes
(76%). The LIC definition suggests that these classes should be static to avoid memory leaks.
However, the Java documentation affirms that anonymous classes cannot be static [150].
Thus, according to the LIC definition, every anonymous class in Android is an instance
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of LIC. The problem with this generalization is that the usage of anonymous classes is a
recommended programming fashion in Android as they simplify the management of UI events
with listeners [12]. Our categorization based on the class type confirmed this fashion by
showing that most of the anonymous classes were listeners. Hence, avoiding anonymous
classes can can complex the management of UI-related event. Moreover, as it is impossible
to make anonymous classes static, the only possible refactoring for these LIC instances
would imply their replacement by other structures like static nested classes. Nevertheless,
implementing listeners with nested classes can be counter-intuitive for developers.

Our observations also showed that some LIC instances are legitimately non-static because
they access non-static attributes of outer classes. As a result, considering these classes as
code smell instances is inaccurate. This shows that the current LIC definition is flawed, as it
misses the cases where inner classes need to access their outer classes.

The current definition of LIC considers all anonymous classes as bad prac-
tices and leads to many confusing instances that are hard to avoid and refac-
tor.

6.2.2 Member Ignoring Method (MIM)

Sample

The MIM sample included 96 instances.

Definition

This code smell occurs when a method, which is not a constructor and does not access
non-static attributes, is not static. As the invocation of static methods is 15%–20% faster
than dynamic invocations, the framework recommends making these methods static [108].

Relevant Context

Based on the code smell definition and sample instances, the analysis should cover the
method, which is affected by the code smells, and its container class. However, after the
analysis of some MIM instances, we realized that the documentation and comments of the
container class should also be included in the analysis to allow an accurate judgment of the
instances.

Instances Description

In our manual analysis, we observed that MIM instances can be categorized based on the
content of their host methods. The method content interested us because it revealed insights
about the method purposes. Hence, we built an analytical guide with the following category:
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— Method content: the subcategories are empty, primitive, and full methods.
We adopted this guide to perform an open-coding of the sample instances.

Content Empty Primitive Full
#Instances 46 27 23
%Instances 48% 28% 24%

Table 6.2 Distribution of MIM instances according to the method content.

We report in Table 6.2 the results of this coding and we detail in the following these
subcategories:

— Empty methods (46 instances): This represents methods that have an empty body—i.e.,
without instructions. As these methods are empty, they do not access any non-static
attributes or methods. Hence, the code smell definition considers them as instances
of MIM. By analyzing these methods, we found that they can be introduced for the
following reasons:

— Prototyping: In the early stages of development, developers can create prototype
code that does not include all the functioning details. This code generally includes
minimal classes and interfaces with empty methods. An example of this case is
the method parseText(), which is introduced empty in the app Transistor [79]
only for prototyping purposes;

— Semantic interfaces: We found many classes that are semantically abstract even
though they are not annotated as such in the source code. For instance, the class
MessagingListener does not use the keyword interface, but it is presented by
the comments and documentation [73] as an interface. This practice is used by
developers to allow overriding some methods of the interface without the obligation
of entirely implementing it. This kind of classes contained many empty methods
that consequently represent instances of MIM ;

— Abstract classes: An example of this case is the abstract class AsyncTask [78] that
contains many non-abstract methods with empty bodies, like onPreExecute();

— Primitive methods (27 instances): This represents methods that only define a minimal
behavior—generally a return statement. Some of these methods are also introduced
during the prototyping stage and are intended to have a more sophisticated body in the
future. For instance, a commit from the Anuto app [85] introduces an initial version of
the method initStatic() that, instead of initializing an object, only returns null;

— Full methods (23 instances): Other recurring instances of MIM are methods with a full
body that do not use any non-static attributes or methods. The method getImage()
introduced in the TTRSS-Reader app [144] illustrates well these instances. This method
only manages the Android resources and does not use any non-static elements, thus it
should be static to fasten its execution.
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Relevant Literature

Based on the open-coding results, the relevant literature for our analysis is the resources
about the MIM code smell [108, 156].

Discussion

The manual analysis showed that only 24% of MIM instances are fully developed methods.
Most of the MIM instances are empty or primitive methods (76%). These methods are used
as part of several programming fashions like prototyping and semantic interfaces. Since these
methods are not fully developed, they are not semantically faithful to the definition of MIM.
Indeed, the MIM definition promotes static methods to gain execution time. Nonetheless,
empty and primitive methods are unlikely to be executed in their current state. Indeed,
empty and primitive methods that are used for prototyping are never released and shipped
before being developed with more content. The same goes for empty methods that are used in
semantic interfaces and abstract classes. These methods are semantically similar to abstract
methods as they are defined only for design purposes and they will never be executed. Hence
suggesting these empty and primitive methods to the developers as code smell instances may
be inaccurate.

The current definition of MIM considers empty and primitive methods,
which are used for prototyping and other design purposes, as bad practices.

6.2.3 No Low Memory Resolver (NLMR)

Sample

The NLMR sample included 94 instances.

Definition

This code smell occurs when an Activity does not implement the onLowMemory() method,
which is called by the system when running low on memory to free allocated and unused
memory. If not implemented, the system may kill the process [169].

Relevant Context

Based on the definition and sample instances, the manual analysis should consider the
affected activities with their methods and attributes.
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Instances Description

As this code smell covers a memory issue, we considered in our analysis memory-related
aspects. In particular, we inspected the (i) data structures possessed by the activity (ii) and
the mechanisms used by the activity to manage this data.

Data structures: We observed that some NLMR instances were activities that hold
important memory structures requiring management. Specifically, we found three cases where
the activities possessed a memory cache that could be released upon request to free memory.
However, despite the cache presence, these activities did not implement a memory release
mechanism.

Mechanisms: Besides the onLowMemory() method, which is already considered in the
definition of NLMR, activities can use other mechanisms to free unused memory. In particular:

— The method onTrimMemory() can be used to respond to the Android system memory
warnings [15];

— Developers can develop their own mechanisms to handle and free unused memory.
From our manual analysis, we found that activities affected by NLMR did not follow any
alternative approaches for freeing memory.

Relevant Literature

Based on the open-coding results, the relevant literature for our analysis is the documen-
tation of memory management in Android [14, 15].

Discussion

The description showed that NLMR instances are activities that did not handle memory
usage even when it is severely needed because of cache usage. Cache usage is one of the main
reasons why memory release mechanism is provided by the Android SDK [14]. Consequently,
instances of NLMR in practice represent a real concern as developers manifest technical
unawareness about the importance of memory management. Our analysis of memory release
in Android also highlighted the presence of other mechanisms like the framework method
onTrimMemory(). The current definition of NLMR only includes the onLowMemory() method
and does not consider other alternatives. Hence, with the current definition, we may detect
activities that implement the method onTrimMemory() as an instance of NLMR, which is
inaccurate.

Instances of NLMR in practice can be real performance concerns. However,
the current NLMR definition may cause false positives because of its focus
on only one memory management mechanism.
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6.2.4 HashMap Usage (HMU)

Sample

The HMU sample included 96 instances.

Definition

The usage of HashMap is inadvisable when managing small sets in Android. Using
HashMaps entails the auto-boxing process where primitive types are converted into generic
objects. The issue is that generic objects are much larger than primitive types, 16 vs. 4 bytes
respectively. Therefore, the framework recommends using the SparseArray data structure,
which is more memory-efficient [7, 169].

Relevant Context

According to the definition and sample instances, the manual analysis of HMU should
cover the instruction that uses the HashMap and also the host method.

Instances Description

Key type Wrapper Non-Wrapper Undefined
#Instances 13 72 11
%Instances 14% 75% 11%

Table 6.3 Distribution of HMU instances according to HashMap key type.

From our manual analysis, we found that an interesting insight may emerge from the
type of the HashMap key in code smell instances. Hence, we built an analytical guide with
the following category:

— Key type: the subcategories are Wrapper keys, Non-Wrapper keys, and undefined keys.
Following this guide, we open-coded the HMU instances. Table 6.3 reports the results of this
open-coding. As shown in Table 6.3, the HMU instances have the following key types:

— Wrapper Keys (13 instances): This represents situations where the HashMap has a key
of a wrapper class—i.e., Boolean, Byte, Short, Character, Integer, Long, Float, or
Double. In our sample, only 14% of the HMU instances have wrapper keys.

— Non-wrapper keys (72 instances): In this case, the keys of the HashMap containers were
not of a wrapper class. 75% of the HMU instances of our sample have non-wrapper
keys.

— Undefined Keys (11 instances): In these instances the HashMap containers were instan-
tiated without defining the key type. This case includes 11% of the instances that we
analyzed.
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Relevant Literature

Based on the open-coding results, the relevant literature for our analysis is:
— The documentation of auto-boxing and its performance cost [151];
— Resources about the difference between SparseArray and HashMap [17].

Discussion

The essence of the HMU code smell is that HashMaps are inadvisable to avoid auto-boxing.
In Java, the auto-boxing is the process of converting a primitive type, e.g., int, into their
corresponding object wrapper class, e.g., Integer. When using HashMaps, the auto-boxing
only happens when the used key is of a wrapper type. Our manual analysis showed that 75%
of HMU instances do not have a wrapper key, thus they are not a real concern. This shows
that the currently adopted definition of HMU is inaccurate and it should be reviewed to
focus on wrapper keys.

The current definition of HMU is inaccurate because of its inclusion of
HashMaps with non-wrapper keys. As a result of this inaccuracy, 75% of
the instances in the analyzed sample were false positives.

6.2.5 UI Overdraw (UIO)

Sample

The UIO sample included 81 instances.

Definition

A UI Overdraw is a situation where a pixel of the screen is drawn many times in the
same frame. This happens when the UI design consists of unneeded overlapping layers, e.g.,
hiding backgrounds. To avoid such situations the method clipRect() or quickReject()
should be called to define the view boundaries that are drawable [7, 169].

Relevant Context

Based on the definition and sample instances, the analysis should cover all the drawing
operations in which the boundaries were omitted. This includes the Java source code of the
view and the XML file which defines it.

Instances Description

From our manual analysis, we observed that UIO instances manifest in specific apps
where customized views are drawn. We found that these drawings did not use clipRect()
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and quickReject(), but adopted other means to avoid unnecessary drawing. Hence, we
built an analytical guide with the following category:

— The mean for avoiding overdrawing: the subcategories are get{width,height},
onSizeChanged, getMeasured{width,height}, getClipBounds, and None.

We open-coded the instances using this analytical guide. Table 6.4 reports on the results of
this open-coding.

Mean get{width,height} onSizeChanged getMeasured{width,height} getClipBounds None

#Instances 43 26 3 2 7

%Instances 53% 32% 4% 2% 9%

Table 6.4 Alternative means used in UIO instances to avoid unnecessary drawings.

As shown in Table 6.4, UIO instances used the following alternative means to avoid
overdrawing:

— get{width,height}(): These methods return, respectively, the real width and height
of the view after drawing at runtime. These dimensions can be used to avoid drawing
over other UI elements and thus avoid overdrawing.

— onSizeChanged(): In Android, the real size of the view is not predefined, it is calculated
at runtime. This method is called when this calculation is done to allow developers,
inter alia, to define their drawing boundaries.

— getMeasured{width,height}: These methods return, respectively, the theoretical
width and height of the view, which can be used to limit the drawing area.

— getClipBounds(): This method returns the boundaries of the current clip in local
coordinates. Similarly to the aforementioned methods, these boundaries can be used to
avoid overdrawing.

— None: This represents UIO instances where no alternative means are used to avoid
overdrawing.

During our manual analysis, we also observed the absence of layers in the views of the
analyzed instances. Indeed, we did not find in the analyzed views a case where the UI is
composed of layered views where overdrawing can be critical. We observed that in five
instances, clipRect() is indirectly used via another method call but the tool did not detect
the call and considered the case as a code smell instance.

Relevant Literature

Based on the open-coding results, the relevant literature for our analysis is the Android
documentation about drawing operations and overdrawing [7, 19].
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Discussion

The manual analysis showed that developers use different framework methods to define
the view size and boundaries. While these methods do not perform exactly the same actions
as the methods clipRect() and quickReject(), they still can be used to avoid useless
drawing. This means that omitting clipRect() and quickReject() does not necessarily
mean that the app has an overdrawing. This shows that the current definition of UIO is
inaccurate and should consider possible alternatives. On top of that, the observations of
the absence of layers and the undetected clipRect() calls show that the current detection
technique of Paprika is limited.

The current definition of UIO omits the possibility of avoiding overdrawing
with other framework methods. Thus, many instances of UIO are not real
overdrawing cases.

6.2.6 Unsupported Hardware Acceleration (UHA)

Sample

The UHA sample included 74 instances.

Definition

In Android, most of the drawing operations are executed by the GPU. Drawing operations
that are executed by the CPU (e.g., drawPath() of android.graphics.Canvas) should be
avoided to reduce CPU load [106, 143].

Relevant Context

According to the definition and sample instances, the analysis should cover all the drawing
operations in which the hardware acceleration was not supported.

Instances Description

In our manual analysis, we noticed that there is a very little variation in the methods
causing UHA instances. Indeed, we found that the unsupported hardware acceleration is
mainly caused by Path drawing. Specifically, we found that 69 of the analyzed instances—i.e.,
93%, were caused by the methods drawPath(), setPathEffect(), and drawTextOnPath().
These methods are all related to the Path class, which allows to draw compound geometric
shapes based on straight segments or curves.
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Relevant Literature

Based on the open-coding results, the relevant literature for our analysis is the Android
documentation about Path drawing [11, 16, 154].

Discussion

The analysis showed that UHA instances are mainly caused by path drawing. The problem
is that methods like drawPath() has no alternatives in Android [154]. Thus, in case of need,
developers cannot avoid these methods. Moreover, the impact of these methods on CPU
performance depends heavily on the use case and the path size [16]. Hence, defining the
simple usage of methods, like drawPath(), as a code smell instance can be exaggerating.

93% of UHA instances are caused by drawings of the Path class, which does
not have any alternatives in the Android framework.

6.2.7 Init OnDraw (IOD)

Sample

The IOD sample included 51 instances.

Definition

This code smell is also known as DrawAllocation. It occurs when allocations are made
inside onDraw() routines. The onDraw() methods are responsible for drawing Views and
they are invoked 60 times per second. Therefore, allocations (init) should be avoided inside
them to avoid memory churn [7, 106].

Relevant Context

Based on the definition and sample instances, the analysis should cover the instruction
that performed the initialization and the onDraw() method hosting it.

Instances Description

We found that the major aspect that differentiates the instances is the nature of the
allocated or initialized object. Hence, we considered this aspect in our analytical guide:

— The nature of the allocated object: the subcategories are drawing objects and other
objects.

Based on this guide, we open-coded the sample instances. The results of this coding showed
that in IOD instances, the allocated objects are of two types:
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— Drawing objects (36 instances): We found that 71% of the instances were allocations
of Paint and Rect objects. These classes are the basic components for any drawing
in Android. They should be instantiated outside of the method onDraw() to avoid
recreating them in every frame;

— Different objects (15 instances): We found that the remainder 29% instances were
other objects of varying sizes. Indeed, we found cases where developers had a complex
processing inside the onDraw() method. For instance, an instance in the Muzei app
was a an onDraw() method with loops including objects creation [83]. This instance
represents a severe case of IOD as it implies multiple allocations at each call of the
onDraw() method. Another example is an instance in the Overchan app, which created
a runnable inside the onDraw() method [84]. This means that the app is creating 60
runnables per second when the concerned view is visible. Beyond the memory impact,
this practice heavily affects the CPU consumption and the app responsiveness.

Interestingly, we also found five instances of IOD where developers knew that they are
violating the framework guidelines. As shown in this instance [81], the developers included an
annotation to stop Android Lint from reporting the code smell. This shows that they were
notified by the tool about the code smell but they decided to keep it in the codebase anyway.

Relevant Literature

Based on the open-coding results, the relevant literature for our analysis is the Android
documentation about drawing and frames [20, 18].

Discussion

Our results showed that the severity of IOD instances can heavily vary depending on
the allocated object. Indeed, creating drawing objects, e.g., Paint and Rect, inside the
onDraw() method can be a simplistic development design for developers. As the drawing
occurs in the onDraw() method, developers may find it intuitive to allocate the drawing
objects inside it. On the other hand, creating runnables and multiple objects inside the
onDraw() method seems more severe as a practice. Indeed, this bad practice shows that
developers were unaware of the drawing process and its performance implications.

The instances of IOD vary from allocations of simple drawing objects to
massive allocations of heavy memory objects.

6.2.8 Unsuited LRU Cache Size (UCS)

Sample

The UCS sample included 18 instances.
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Definition

This code smell occurs when an LRU cache is initialized without checking the available
memory via the method getMemoryClass(). The available memory may vary considerably
according to the device so it is necessary to adapt the cache size to the available memory [106,
137].

Relevant Context

Based on the definition and the sample instances, the analysis of UCS should cover the
cache creation and the cached object.

Instances Description

For this code smell instances, we did not find any categorization criteria. However, we
observed the following:

— In 50% of UCS instances, the cache was used for storing Bitmap objects;
— In 39% of the UCS instances, the developers tried to check the available memory using

the runtime method maxMemory(). This method returns the maximum amount of
memory that can be used. However, considering the system constraints, this amount
may differ from the amount of memory that the app should use. The latter is rather
available through the method getMemoryClass().

Relevant Literature

Based on the open-coding results, the relevant literature for our analysis is the Android
documentation about LRU caches [13].

Discussion

Our manual analysis showed that the code smell UCS relies on a complex technical detail
that makes it hard to guess and avoid. It can be introduced even in cases where developers
pay attention to performance concerns. Indeed, 50% of the code smell instances where caches
of bitmap images. Using caches for bitmaps was initially a good performance practice, as
bitmaps are large objects that can be heavy to load from disk or network. However, as the
cache is created without checking the available memory, the practice becomes a code smell
instance. This observation is confirmed by the cases where the method maxMemory() was
used. Developers tried to define the cache size correctly but a technical difference between
the two methods led to a code smell introduction.

The code smell UCS relies on a technical detail of the Android framework,
which makes it hard to guess for developers.
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6.2.9 Common Theory

In our discussion of the coding results of each code smell instances, we observed that the
inaccuracy of code smell definitions is the most recurrent problem. Indeed, six of the eight
studies code smells manifested in their instances flaws related to the adopted definition. We
synthesize in Table 6.5 these flaws and their impact on code smell instances.

Code Smell The definition omits The definition leads to

No Low Memory Resolver Alternative means
to avoid the code smell False positivesUI Overdraw

Hashmap Usage Technical details
Leaking Inner Class Prevalent programming

designs and fashions
Instances that are:

• inevitable and/or
• hard to refactor

Member Ignoring Method
Unsupported Hardware Acceleration The absence of alternatives

Table 6.5 Common flaws in code smell definitions.

As shown in Table 6.5, the definition flaws lead to two kinds of improper code smell
instances:

— False positives: This represents instances that are generated by the code smell
definition but do not represent a real performance concern. These false positives occur
in two cases:

— When the definition does not cover all the possible means to avoid the performance
issue.
— This flaw is present in the definition of NLMR, which does not account for

other methods that can release unused memory, e.g., onTrimMemory();
— This flaw also affects the definition of UIO as it does not consider the

other framework methods that can be used to avoid overdrawing, e.g.,
getClipBounds();

— When the definition is very generalized so it omits important technical details.
This is the case of the definition of HMU, which considers all the usages of HashMap
as performance issues and ignores that these structures are harmless when used
with non-wrapper keys;

— Confusing instances: This represents situations where the code smell instance is
inevitable and hard to refactor. These instances occur in two cases:

— When the definition considers a prevalent programming deign or fashion as a
performance issue.
— This flaw is present in the LIC definition, which considers all anonymous

classes as a memory leak;
— This flaw also impacts the MIM definition, which considers that all empty

and primitive methods must be static;
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— When the definition considers an inevitable practice, which does not have alter-
natives, as a code smell instance. This is the case of the UHA definition, which
considers any drawing of the Path class as a hardware acceleration despite the
absence of alternatives to this class.

Six of the studied code smells manifest flaws in their definitions. These flaws
lead to false positives and confusing instances that are difficult to avoid and
refactor.

6.3 Discussion

We discuss in this section the implications of our study and the potential threats to its
validity.

6.3.1 Implications

Based on our findings, the implications of our study are the following.
— Our results show that the currently adopted code smell definitions are flawed. Future

studies of mobile-specific code smells must rectify the current definitions and adopt
more precise ones.

— Our study shows that a common flaw in code smell definitions is the omission of
programming fashions that are common among developers. This finding demonstrates
the importance of involving developers in the process of defining code smells. We
encourage future research works to validate their definitions and detection tools by
developers.

— The flaws in the definitions of NLMR, HMU, and UIO lead to many false positives.
This aligns with the complaints raised by developers in our linter study. Hence, we
encourage researchers and tool makers to put more efforts into identifying false positives
and avoiding them.

— Most of the identified flaws originated from the definitions of Reimann et al. [169].
This suggests that the semi-automated process of identifying code smells can lead to
many inaccuracies. Hence, we encourage future studies to explore new approaches for
identifying and precisely defining code smells.

— Our study shows that the techniques currently used by research tools for detecting
UIO and UHA exhibit some inaccuracies that can hinder the study of these code smells.
We invite future works to propose novel techniques and tools that perform a more
accurate detection. In particular, the detection of UIO should take the UI design into
consideration. Also, the detection of UHA should be more context-aware and consider
the path size and execution time.
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6.3.2 Threats to Validity

Transferability: One limitation to the generalizability of our study is the sample size. It
would have been preferable to consider more code smell instances. However, the process of
manual analysis is time and effort consuming, thus we had to limit the sample size. To limit
the impact of this threat, we inductively built our theory from a representative sample of
599 code smell instances. This represents a 95% statistically significant stratified sample
with a 10% confidence interval of the 180,013 code smell instances detected in a dataset
of 324 Android apps. Another threat to generalizability is that our study only concerns
eight Android-specific code smells. Without further investigation, these results should not
be generalized to other code smells or mobile platforms. Another possible threat is that
our study only inspected code smell instances in Android apps written in Java. Other
programming languages are available for Android development, notably Kotlin, and it would
be preferable to include instances from these languages. We therefore encourage future studies
to replicate our work on other datasets and with different code smells, mobile platforms, and
programming languages.

Confirmability: One possible threat to the assessment of our results could be the accuracy
of our qualitative analysis and particularly the coding step. We used a consensual coding
to alleviate this threat and strengthen the reliability of our conclusions. Indeed, each code
smell instance was encoded by at least two authors. Initially, every author coded the instance
independently to avoid influencing the analysis of other authors. Afterwards, the authors
discussed and compared their coding results.

6.4 Summary

We presented in this chapter an exploratory study inspecting the characteristics of code
smell instances. The results of this study revealed flaws in the established definitions for
Android-specific code smells. In particular, we showed that:

— Finding 1: The code smell definitions for No Low Memory Resolver, UI Overdraw,
and HashMap Usage omit critical technical details and generate many false positives;

— Finding 2: The current definitions of Leaking Inner Class and Member Ignoring
Method consider prevalent practices related to prototyping and the usage of listeners as
performance issues. This leads to confusing code smell instances that may be hard to
refactor for developers;

— Finding 3: The definition of Unsupported Hardware Acceleration considers Path
drawing, which does not have exact alternatives in Android, as a bad practice. This
generates confusing code smell instances that may see inevitable for developers.

Our study also provided insights about flaws in code smell detection:
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— Finding 4: The techniques currently used by research tools for detecting UI Overdraw
and Unsupported Hardware Acceleration exhibit many flaws that can hinder the study
of these code smells.

These findings have several implications on the research about Android code smells and
performance in general. We highly encourage future works to consider these implications
and propose novel catalogs and approaches for a better analysis of mobile apps. We provide
all the data of this study in a comprehensible package [94] that can be leveraged in future
studies.





Chapter 7

Conclusion and Perspectives

In this chapter, we summarize the contributions of our thesis and we discuss our short-
and long-term perspectives.

7.1 Summary of Contributions

We presented in this thesis four contributions to the research in the field of code smells
and mobile apps. These contributions provide actionable recommendations for researchers
and tools makers who aim to propose solutions that limit code smells and improve the
performance of mobile apps.

In Chapter 3, we presented an empirical study that explored code smells in the iOS
platform. This study was the first to focus on mobile-specific code smells in a mobile platform
other than Android. The first contribution of this study is a novel catalog of six iOS-specific
code smells that we identified from developers discussions and the platform documentation.
The study also proposed Sumac, the first code smell detector for iOS apps. Sumac is
open-source and it detects seven code smells in apps written in Objective-C and Swift [97].
Using Sumac and our catalog of iOS-specific code smells, we conducted an empirical study
to explore code smells in the iOS platform. This empirical study, which covered 279 iOS
apps and 1,551 Android apps, showed that some code smells can be generalized to both
mobile platforms Android and iOS. Also, it showed that Android apps tend to have more OO
and mobile-specific code smells than iOS ones. Furthermore, the discussion of these results
suggested that the presence of code smells is more related to the mobile platform than the
programming language.

In Chapter 4, we presented our novel tool Sniffer and three empirical studies about
the presence of mobile-specific code smells in the change history. Sniffer is a toolkit that
precisely tracks the history of Android-specific code smells. It tackles many issues raised
by the Git mining community like branch and renaming tracking [120]. Using Sniffer, we
performed three studies, (i) an evolution study, (ii) a developers study, and (iii) a survival
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study. These large-scale studies covered eight Android code smells, 324 Android apps, 255k

commits, and contributions from 4,525 developers. The results of these studies allowed us to
discern the motives behind the accrual of Android code smells. In particular, they showed
that pragmatism and prioritization choices are not relevant motives of technical debt in
the case of Android code smells. Moreover our findings suggest that individual attitudes of
Android developers are not the reason behind the prevalence of code smells. The problem is
rather caused by the ignorance and oversight, which seem to be common among developers.
Finally, we found that the processes adopted by development teams—e.g., the use of tools
and their configuration can help in limiting the presence of code smells.

In Chapter 5, we presented a qualitative study about the usage of linters by Android
developers. This study, which relied on interviews with 14 experienced Android developers,
provided important insights about developers’ perception of Android code smells. Specifically,
it showed that there is a prevalent ignorance of mobile-specific code smells among developers.
Moreover, developers affirmed that they prefer managing performance reactively instead of
taking preventive measures. These developers also challenged some bad performance practices,
qualifying them as irrelevant and insignificant performance-wise. The results of this study
also provided indications about the usage of linters for performance concerns. In particular,
we showed that linters can be used to anticipate and debug performance bottlenecks and
they are also useful for raising performance culture among developers. Moreover, we showed
that besides the intuitive proactive approach for using linters, developers can also use linters
reactively in performance sprints. Finally, our analysis showed that the unclarity of categories
and severity criteria can dissuade developers from using linters for performance concerns.

In Chapter 6, we presented a study inspecting the characteristics of mobile-specific
code smell instances. Contrarily to our previous contributions, this study does not tackle
one of the identified lacks in the literature. It was rather motivated by our findings in
the qualitative study where developers questioned the relevance of some established bad
practices. To address this questioning, we conducted an exploratory study relying on the
well-founded approach Grounded Theory [90]. This approach allowed us to build a theory
that provided second thoughts about the established foundation about code smell definition
and detection. Specifically, it showed that many code smell instances are false positives
or confusing instances that are hard to avoid and refactor. These instances are prevalent
because the current definitions omit (i) critical technical details about the platform and (ii)
programming fashions that are common among developers. The theory also showed that the
techniques currently adopted by research tools for detecting code smells exhibit many flaws
that can threaten the validity of the related research studies.
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7.2 Short-Term Perspectives

In this section we present the short term perspectives of our thesis. We mentioned many
perspectives throughout our presentation of the contributions and their implications. The
objective of this section is to develop these perspectives and aggregate them.

7.2.1 Rectify Code Smell Definitions

In our linter study, we observed that many developers are dissatisfied with the current
code smell definitions. Our evaluation of the code smell instances confirmed this observation
and revealed that the currently adopted code smell definitions are flawed. Moreover, these
flaws impacted six of the eight studied Android code smells. In our future studies, we aim to
rectify these definitions by:

— Adding details that make the definitions more precise,
— Considering the absence of alternatives in the case of some code smells,
— Taking into account the prevalent development fashions among mobile developers.
This perspective is important for the research community since these definitions are

adopted by different research studies. Hence, the rectification of these definitions and their
original catalog are necessary to assure the validity of future studies about mobile-specific
code smells.

7.2.2 Improve Code Smell Detection

Our study showed that the current code smell detection techniques are inaccurate for
cases like UI Overdraw and Unsupported Hardware Acceleration. In our future works, we
intend to propose novel techniques for code smell detection. In particular, we aim to augment
the current detectors, which are mainly static analyzers, with dynamic analysis. Dynamic
analysis can be a better option for code smells that describe execution scenarios. For instance,
the detection of the code smell Unsupported Hardware Acceleration would be more accurate
if it considers the path size, which is generally determined at runtime. This improvement
also aligns with the complaints raised by developers about the inadequacy of static analyzers
for some performance concerns.

Furthermore, dynamic analysis allows to overcome constraints that we commonly faced in
our studies. Specifically, in our different code smell studies, we were always restricted by the
available open-source apps. The implementation of dynamic analysis allows to analyze the
binaries of mobile apps. Hence, we would be able to cover proprietary software and therefore
include more apps in our datasets.
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7.2.3 Reevaluate the Impact of Code Smells

A recurrent concern raised by our studies is the real impact of mobile-specific code
smells. Many developers claimed that some mobile-specific code smells are insignificant
performance-wise. Also, the unawareness observed in our developers study incited us to
question the impact of these code smells. Indeed, if these code smells effectively impacted
apps in practice, the performance degradation would have attracted developers awareness.
For these reasons, we intend in our future works to inspect the impact of mobile-specific code
smells on the perceived app performance. Previous studies already assessed the impact of
these code smells on performance and energy consumption [40, 107, 157]. Nonetheless, the
studies of Carette et al. [40] and Palomba et al. [157] based most of their claims on cases
of combined code smell instances. Also, the study of Hecht et al. [107] did not always show
important performance impact. Finally, all these studies relied on technical metrics without
interpreting the relationship between these metrics and the perceived app performance and
the user experience. Our objective is to complement these studies by adopting user-based
scenarios and evaluating the impact of mobile-specific code smells on diverse metrics including
user experience.

7.2.4 Integrate a Code Smell Detector in the Development Environment

In our future works, we aim to work on the integration of a code smell detector in the
development environments commonly used by developers, e.g., Android Studio. In this
integration, we intend to carefully follow the recommendations proposed in our linter study.
Indeed, our qualitative study proposed the following actionable recommendations:

— Linters must be easy to use and they should blend in the development workflow
seamlessly;

— Linters should be more clear and explicit about the categories of checks, the descriptions,
and the performance impact of the issues;

— Linters should provide the possibility to write new detection rules. The writing and
integration of the new rules should be simple to motivate developers.

Our objective from the integration and these recommendations is to reach developers and
help them improve the quality of their mobile apps. In addition, the integration of a code
smell detector can help us in communicating about code smells and their impact.

7.2.5 Communicate About Code Smells

A common result of our studies is that there is a prevalent ignorance of mobile-specific
code smells among developers. This ignorance implies that the current communication
channels about code smells are ineffective. Hence, we suggest that platform and tool makers
should communicate more about good and bad development practices. Also, as researchers,
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we should put more efforts into communicating the results of our studies to developers. This
communication should be less formal and more simplified to successfully reach developers.

In addition, we aim to investigate the impact of channels like documentation and tool
descriptions on the perception of code smells. The objective of this investigation is to identify
the needed improvements for these channels to enable a better communication about different
development issues.

7.3 Long-Term Perspectives

One of the main findings of our thesis is that the current code smell definitions are flawed.
In our short-term perspectives, we proposed to rectify the definitions as a first step for
alleviating these flaws. However, the rectification does not address the root cause of the issue,
which is the identification of code smells. In the following, we present our perspectives for
improving the process of identifying code smells in particular, and development practices in
general.

7.3.1 Involve Developers in Code Smell Identification

As shown in our literature review, studies relied on different resources to identify bad
practices for mobile development. In particular, they relied on:

— documentation,
— developer blogs,
— developer discussions,
— issue reports,
— and source code.
The developer blogs and discussions allowed the identification studies to include the

developers’ feedback in their code smells. However, this inclusion was limited by the focus on
data available online like blogs and discussions. Specifically, none of these studies opted for
qualitative approaches to gather data directly from developers.

In our future studies, we intend to involve developers actively in the process of code smell
identification. This involvement is important to gather data that may not be available in
online discussions and blogs. Moreover, involved developers can incrementally validate the
results of the identification process to ensure that the defined code smells are conform to the
community needs. We also believe that the expertise of developers can help substantially in
improving the quality of the identified code smells. For instance, developers can highlight
more abstract practices that reflect their feedback about the development experience. These
abstract practices can be a better option than the current code smell definitions. The
current code smells are framework-specific and thus they sometimes change or become
deprecated with framework updates and upgrades. For instance, we found that the code
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smells Invalidate Without Rect and Internal Getter Setter, which are used in different research
studies [40, 107, 156, 157], are now deprecated. The method invalidate() was deprecated
in API level 28 implying the deprecation of the code smell Invalidate Without Rect [8]. Also,
since API level 10, internal getters are automatically optimized by Dalvik and thus the code
smell Internal Getter Setter is not valid anymore [7]. By favoring more abstract code smells,
the research community can avoid these deprecations. Hence, we can conduct studies that
are more generalizable within the studied platform and also across different development
frameworks. Finally, developers can help in defining the severity and priority of the identified
code smells. This would allow tool makers to adjust their tools to the perception and needs
of developers.

7.3.2 Leverage Big Code in Code Smell Identification

Most of the studies that identified mobile-specific code smells followed a top-down approach.
That is, they defined their code smells based on external resources like documentation,
discussions, and blogs to build their catalogs and analyze the source code. An alternative
to this process is the bottom-up approach in which code smells are defined from the source
code itself. The studies of Guo et al. [92] and Zhang et al. [208] followed this approach, as
they profiled and manually analyzed the source code of mobile apps to identify bad practices.
However, these studies did not rely on large software repositories, only 98 and 15 apps,
respectively. In our future studies, we aim to leverage the source code of the thousands of
mobile apps, which are available in the app stores, to learn new development practices. In
particular, we aim to combine machine learning techniques and crowd-sourcing to identify
new development practices. This perspective entails three main challenges:

— Define a representation for mobile apps: Our objective is to define a data structure
that represents the source code of mobile apps and that is suitable for unsupervised
learning techniques. The literature proposes a few representations for mobile-specific
code smells. Notably, Paprika adopts a graph representation where nodes are the source
code entities (e.g., classes, methods, variables) and edges are the different relationships
between them (e.g., ownership, coupling, etc). We conducted some experiments on
these graphs and our initial results showed that these representations are not adequate
for learning techniques. Specifically, the algorithms generally expect mono-type nodes
and edges, which is not the case of the Paprika graph. In our future works, we intend
to explore other representations that fit with the learning algorithms and also express
the different specificities of mobile apps;

— Design a detection technique: We aim to build a technique that unsupervisedly
identifies patterns from the source code of mobile apps. We have already conducted
experiments with Graph Edit Distance [70] and identified redundant patterns in the
source code. Graph Edit Distance is a pure pattern recognition method. In the next
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steps, we aim to experiment with impure and extreme pattern recognition techniques,
like Learning Vector Quantization [119] and Graph Embedding [204];

— Design an assessment oracle: Our aim is to build an oracle that evaluates the
relevance and the quality of the identified patterns. For this purpose, we intend
to rely on a multi-objective approach that considers the performance impact, the
software quality metrics, and the usefulness of the pattern in practice. To define the
performance and quality metrics, we will build on previous works about mobile and
software systems in general. As for the usefulness, we will adopt a crowd-sourcing
approach where developers will assess the practicality of the patterns and their usefulness
in development.

7.4 Final Words

This thesis summarizes the research works that we conducted during three years in
order to build an understanding of mobile-specific code smells. We believe that our works
contributes effectively in developing this understanding and helps in designing adequate
solutions for mobile-specific code smells. Our work also opens many perspectives for both
researchers and tool makers. We summarize in Table 7.1 these perspectives.

# Perspectives

A Rectify code smell definitions

B Improve code smell detection

C Reevaluate the impact of code smells

D Integrate a code smell detector in the development environment

E Communicate about code smells

F Involve developers in code smell identification

G Leverage big code in code smell identification

Table 7.1 The short and long-term perspectives of our thesis
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Appendix A

Sumac: A Code Smell Detector for
iOS Apps

We present in this appendix the details of our tool Sumac. Table A.1 describes the
entities used to build the app model in Sumac.

Entity Description

App An application

Class A class of the app

ExternalClass A library class

Method A method of a class

ExternalMethod A method of library class

Argument A method parameter

ExternalArgument A parameter of an external method

Variable An attribute of a class

Function A function of an app

GlobalVariable A global variable of an app

Table A.1 The entities used by Sumac

Table A.2 summarizes the metrics used to describe Objective-C apps in Sumac.
Table A.3 summarizes the metrics used to describe Swift apps in Sumac.
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Metric Concerned entities

NumberOfClasses App

NumberOfVariables App, Class

NumberOfMethods App, Class

NumberOfChildren Class

ClassComplexity Class

IsStatic Method

NumberOfArguments Method

NumberOfDirectCalls Method

NumberOfCallers Method

CyclomaticComplexity Method

NumberOfLines Class, Method

CAMC (Cohesion Among Methods in A Class ) Class

IsProtocol Class

IsCategory Class

NumberOfProtocols App

NumberOfViewControllers App

IsViewController Class

IsInteractor Class

IsRouter Class

IsPresenter Class

IsView Class

Table A.2 The metrics used by Sumac for analyzing Objective-C apps.
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Metric Concerned entities

NumberOfClasses App

NumberOfVariables App, Class

NumberOfMethods App, Class

NumberOfChildren Class

ClassComplexity Class

IsStatic Method

NumberOfArguments Method

NumberOfDirectCalls Method

NumberOfCallers Method

CyclomaticComplexity Method

NumberOfLines Class, Method

IsProtocol Class

IsCategory Class

NumberOfProtocols App

NumberOfViewControllers App

IsViewController Class

IsInteractor Class

IsRouter Class

IsPresenter Class

IsView Class

NumberOfExtensions App

NumberOfStructs App

NumberOfEnums App

IsExtension Class

IsStruct Class

IsEnum Class

Table A.3 The metrics used by Sumac for analyzing Swift apps.





Appendix B

A Preliminary Survey for the
Linter Study

In order to lay the foundation for our linter study, we conducted a short survey to ask
developers about their linter usage for Android. Figures B.1 and B.2 present the questions of
this survey. The questions of this survey go under three categories:

— The usage of Android linters: This represents the main questions of our survey. Their
objective is to:

— Check if the respondents use a linter specific to the Android platform or not;
— Identify the main Android linters used by the respondents;
— Identify the purposes/reasons for which the respondents used Android linters.

— The experience and expertise: The objective of these questions is to describe the
background of the respondents. In particular, they identify:

— The number of years of experience in Android development;
— The level of expertise in Android development;
— The context surrounding their development activity.

— Feedback: This represents a final question about potential comments regarding linters
and the conducted survey.

We published this survey in a mobile development forum [168] to focus on developers
specialized in mobile frameworks. We also selected this widely used forum to reach mobile
developers with different backgrounds. The publication of the form allowed us to collect
anonymous answers from 94 Android developers.

Figure B.3 shows developers’ answers regarding the use of linters. The chart shows that
72% of the respondents used a linter specific to the Android platform.

Figure B.4 shows the developers’ answers regarding the adopted linters. The chart shows
that 97% of the respondents used Android Lint. Other linters like Infer and ktlint were also
mentioned by developers, but only in low proportions.
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Android linters
This survey is conducted by Sarra Habchi from Inria Lille. 
 
A lint or linter is a program that analyzes source code to identify potential 
problems. Lints usually target a specific programming language or platform. This 
short survey focuses on Android-specific lints to identify the most-used ones and 
their applications. 
 
For more information, feel free to contact us at sarra.habchi@inria.fr 
Thanks in advance for participating!

* Required

1. Do you use a lint in your Android developments? *
Mark only one oval.

 Yes

 No Skip to question 4.

Android Lints

2. Which lints do you use for Android ? *
Check all that apply.

 Android Studio Lint

 Infer

 Other: 

3. For what reasons do you generally use it? *
Check all that apply.

 Check correctness

 Ensure coding conventions

 Improve performance (energy, responsiveness, memory, network)

 Improve security

 Find potential bugs

 Other: 

Experience and expertise
These will help us with classification. Completely anonymous.

Figure B.1 The form used to prepare the linter study (Part 1).
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4. For how many years have you been developing with Android? *
Mark only one oval.

 <1

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

5. How do you evaluate your expertise in Android? *
Mark only one oval.

1 2 3 4 5

Beginner Expert

6. What is the context of your Android development activity? *
Check all that apply.

 Open source projects

 Commercial projects

 Personal projects

 Other: 

7. Any comments about Android lints, this survey or the research study?
 

 

 

 

 

Figure B.2 The form used to prepare the linter study (Part 2).
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Figure B.3 Responses about the linter usage.

Figure B.4 Responses about the adopted used Android linters.
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Figure B.5 shows the developers’ answers regarding the reasons behind their linter usage.
The chart shows that the respondents used linters mainly for checking the correctness of their
code and finding bugs. In addition, the chart shows that only 51% of the respondents used
linters for performance purposes.

Figure B.5 Responses about the reasons for using an Android linter.

Figure B.6 describes the experience of the respondents in the field of Android development.
We observe that most of the surveyed developers have more than one year experience in
Android.

Figure B.6 The respondents’ experience in Android.
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Figure B.6 describes the expertise of the respondents in the field of Android development.
The chart shows that 69% of the respondents consider that they have a higher than average
expertise in Android.

Figure B.7 The respondents’ expertise in Android.

Figure B.6 describes the context surrounding the app development among respondents.
The chart shows that 88% of the respondents developed apps for commercial projects.

Figure B.8 The context of app development.

Figure B.6 shows the respondents’ comments about Android linters.
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Figure B.9 Comments about the linter.




	Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Context
	1.2 Problem Statement
	1.2.1 Problem 1: Code Smells in Different Mobile Platforms
	1.2.2 Problem 2: The Motives of Mobile-Specific Code Smells
	1.2.3 Problem 3: Developers' Perception of Mobile-Specific Code Smells

	1.3 Contributions
	1.3.1 Contribution 1: Study of the iOS Platform
	1.3.2 Contribution 2: Discerning the Motives of Mobile-Specific Code Smells
	1.3.3 Contribution 3: Study of Developers Perception of Mobile-Specific Code Smells
	1.3.4 Contribution 4: A Reevaluation of Mobile-Specific Code Smells

	1.4 Outline
	1.5 Publications
	1.5.1 Published
	1.5.2 Under Evaluation


	2 State of the Art
	2.1 Code Smells in Mobile Apps
	2.1.1 Identification of Mobile-Specific Code Smells
	2.1.2 Detection of Mobile-Specific Code Smells
	2.1.3 Studies About Mobile-Specific Code Smells
	2.1.4 Studies About OO Code Smells
	2.1.5 Summary

	2.2 Management in Practice
	2.2.1 Performance Management
	2.2.2 Linters
	2.2.3 Linter Studies
	2.2.4 Summary

	2.3 Conclusion

	3 Code Smells in iOS Apps
	3.1 Background on iOS Apps Analysis
	3.1.1 Dynamic Analysis
	3.1.2 Static Analysis of Binaries
	3.1.3 Static Analysis of Source Code

	3.2 Code Smells in iOS Apps
	3.2.1 Code Smells Identification Process
	3.2.2 Catalog of iOS Code Smells
	3.2.3 Similarities with Android Code Smells

	3.3 Sumac
	3.3.1 Code Analysis
	3.3.2 Sumac Model for iOS
	3.3.3 Storing the iOS Model
	3.3.4 Code Smell Queries

	3.4 Study of Code Smells in iOS
	3.4.1 Objects
	3.4.2 iOS Dataset and Inclusion Criteria
	3.4.3 Hypotheses and Variables
	3.4.4 Analysis Method
	3.4.5 Results
	3.4.6 Threats to Validity

	3.5 Comparative Study Between iOS and Android
	3.5.1 Android Dataset and Inclusion Criteria
	3.5.2 Variables and Hypotheses
	3.5.3 Analysis Method
	3.5.4 Results
	3.5.5 Threats to Validity

	3.6 Summary

	4 Code Smells in the Change History
	4.1 Study Design
	4.1.1 Context Selection
	4.1.2 Dataset and Selection Criteria

	4.2 Data Extraction: Sniffer
	4.2.1 Validation

	4.3 Evolution Study
	4.3.1 Data Analysis
	4.3.2 Study Results
	4.3.3 Discussion & Threats
	4.3.4 Study Summary

	4.4 Developers Study
	4.4.1 Data Analysis
	4.4.2 Study Results
	4.4.3 Discussion
	4.4.4 Study Summary

	4.5 Survival Study
	4.5.1 Data Analysis
	4.5.2 Study Results
	4.5.3 Discussion
	4.5.4 Study Summary

	4.6 Common Threats to Validity
	4.7 Summary

	5 Developers' Perception of Mobile Code Smells
	5.1 Methodology
	5.1.1 Interviews
	5.1.2 Participants
	5.1.3 Analysis

	5.2 Results
	5.2.1 Why Do Android Developers Use Linters for Performance Purposes?
	5.2.2 How Do Android Developers Use Linters for Performance Purposes?
	5.2.3 What Are the Constraints of Using Linters for Performance Purposes?

	5.3 Implications
	5.3.1 For Developers
	5.3.2 For Researchers
	5.3.3 For Tool Creators

	5.4 Threats To Validity
	5.5 Summary

	6 A Second Thought About Mobile Code Smells 
	6.1 Study Design
	6.1.1 Data Selection
	6.1.2 Data Analysis

	6.2 Study Results
	6.2.1 Leaking Inner Class (LIC)
	6.2.2 Member Ignoring Method (MIM)
	6.2.3 No Low Memory Resolver (NLMR)
	6.2.4 HashMap Usage (HMU)
	6.2.5 UI Overdraw (UIO)
	6.2.6 Unsupported Hardware Acceleration (UHA)
	6.2.7 Init OnDraw (IOD)
	6.2.8 Unsuited LRU Cache Size (UCS)
	6.2.9 Common Theory

	6.3 Discussion
	6.3.1 Implications
	6.3.2 Threats to Validity

	6.4 Summary

	7 Conclusion and Perspectives
	7.1 Summary of Contributions
	7.2 Short-Term Perspectives
	7.2.1 Rectify Code Smell Definitions
	7.2.2 Improve Code Smell Detection
	7.2.3 Reevaluate the Impact of Code Smells
	7.2.4 Integrate a Code Smell Detector in the Development Environment
	7.2.5 Communicate About Code Smells

	7.3 Long-Term Perspectives
	7.3.1 Involve Developers in Code Smell Identification
	7.3.2 Leverage Big Code in Code Smell Identification

	7.4 Final Words

	Bibliography
	Appendix A Sumac: A Code Smell Detector for iOS Apps
	Appendix B A Preliminary Survey for the Linter Study

