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“Life finds a way.”  

-Dr. Ian Malcolm, Jurassic Park, June 1993 
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Abstract 

Mosquito-borne arboviruses cause some of the world’s most devastating diseases and 

are responsible for recent dengue, chikungunya and Zika pandemics. The yellow-fever 

mosquito, Aedes aegypti, plays an important role in the transmission of all three viruses. The 

ineffectiveness of chemical control methods targeting Ae. aegypti makes urgent the need for 

novel vector-based approaches for controlling these diseases. Mosquitoes control arbovirus 

replication by triggering immune responses. RNAi machinery is the most significant pathway 

playing a role on antiviral immunity. Although the role of exogenous siRNA and piRNA 

pathways in mosquito antiviral immunity is increasingly better understood, there is still little 

knowledge regarding interactions between the mosquito cellular miRNA pathway and 

arboviruses. Thus further analysis of mechanisms by which miRNAs may regulate arbovirus 

replication in mosquitoes is pivotal. 

In the first part of the thesis, we carried out genomic analysis to identify Ae. aegypti 

miRNAs that potentially interact with various lineages and genotypes of chikungunya 

(CHIKV), dengue (DENV) and Zika viruses. By using prediction tools with distinct 

algorithms, several miRNA binding sites were commonly found within different 

genotypes/and or lineages of each arbovirus. We further analyzed the miRNAs that could 

target more than one arbovirus and required a low energy threshold to form miRNA-vRNA 

(viral RNA) complexes and predicted potential RNA structures using RNAhybrid software. 

Thus, we predicted miRNA candidates that might participate in regulating arboviral 

replication in Ae. aegypti. 

In the second part of the thesis, we developed a miRNA-based approach that results in 

a dual resistance phenotype in mosquitoes to dengue serotype 3 (DENV-3) and chikungunya 

(CHIKV) viruses for stopping arboviruses spreading within urban cycles. The target viruses 
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are from two distinct arboviral families and the antiviral mechanism is designed to function 

through the endogenous miRNA pathway in infected mosquitoes. Ten artificial antiviral 

miRNAs capable of targeting ~97% of all published strains were designed based on derived 

consensus sequences of CHIKV and DENV-3. The antiviral miRNA constructs were placed 

under control of either an Aedes PolyUbiquitin (PUb) or Carboxypeptidase A (AeCPA) gene 

promoter triggering respectively expression ubiquitously in the transgenic mosquitoes or more 

locally in the midgut epithelial cells following a blood meal. Challenge experiments using 

viruses added in blood meals showed subsequent reductions in viral transmission efficiency in 

the saliva of transgenic mosquitoes as a result of lowered infection rate and dissemination 

efficiency. Several components of mosquito fitness, including larval development time, 

larval/pupal mortality, adult lifespan, sex ratio, and male mating competitiveness, were 

examined: transgenic mosquitoes with the PUb promoter showed minor fitness costs at all 

developing stages whereas those based on AeCPA exhibited a high fitness cost. Further 

development of these strains with gene editing tools could make them candidates for releases 

in population replacement strategies for sustainable control of multiple arbovirus diseases. 
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Résumé 

Les arbovirus (virus transmis par des arthropodes) sont à l’origine de maladies 

humaines telles que la dengue, le chikungunya ou encore le Zika. Le moustique Aedes 

aegypti, est le vecteur majeur de ces trois arbovirus. La faible efficacité des méthodes de 

contrôle des populations de moustiques, principalement réalisées au moyen d’insecticides 

chimiques ouvre un champ de développement de nouvelles approches en lutte antivectorielle. 

Le moustique, hôte vecteur, contrôle la réplication virale en limitant les réponses 

immunitaires antivirales. La machinerie RNA interférence (RNAi) est la voie jouant un rôle 

majeur dans l'immunité antivirale chez le moustique. Alors que le rôle des deux voies, siRNA 

(« small interfering RNA ») et piRNA (« piwi-interfering RNA »), est de mieux en mieux 

compris dans les réactions antivirales du vecteur, peu de connaissances sont disponibles à ce 

jour en ce qui concernent les interactions entre la voie miRNA (« micro RNA ») et les 

arbovirus. Ainsi, nous proposons une analyse détaillée des mécanismes par lesquels les 

miARN tentent de réguler la réplication virale chez le moustique. 

Dans la première partie de la thèse, nous avons effectué une analyse génomique pour 

identifier les miRNAs pouvant interagir chez Ae. aegypti avec divers lignées/génotypes des 

virus chikungunya (CHIKV), de dengue (DENV) et de Zika. Avec l’aide d’outils de 

prédiction faisant appel à divers algorithmes, plusieurs sites de liaison de miARN avec 

différents lignées/génotypes de chaque arbovirus ont été identifiés. Nous avons ensuite 

sélectionné les miARN pouvant cibler plus d'un arbovirus et nécessitant un faible seuil 

d'énergie lors de la formation des complexes entre l’ARNm du moustique et l’ARN viral. 

Nous avons également prédit les structures des ARNs en utilisant le logiciel RNAhybrid. 

Ainsi, nous avons pu définir des candidats miARN pouvant participer à la régulation de la 

réplication virale chez le moustique Ae. aegypti. 
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Dans la deuxième partie de la thèse, nous avons développé une approche basée sur le 

miARN dans le but de produire un moustique présentant un phénotype de résistance pour la 

réplication virale de la dengue et du chikungunya. Les virus ciblés sont DENV-3 et CHIKV. 

Dix miARN antiviraux capables de cibler ~ 97% de souches virales ont été sélectionnés en se 

référant aux séquences consensus de DENV-3 et CHIKV. Les cassettes miARN ont été 

placées sous le contrôle du promoteur Aedes PolyUbiquitin (PUb) ou Carboxypeptidase A 

(AeCPA) qui déclenche respectivement une expression ubiquitaire de la réaction antivirale ou 

une expression localisée dans les cellules épithéliales de l'intestin moyen des moustiques 

après la prise d’un repas sanguin. Les infections expérimentales des moustiques par les virus 

proposés dans les repas sanguins ont montré une réduction significative de l'efficacité de la 

transmission virale avec peu ou pas de virus détectés dans la salive des moustiques 

transgéniques. Nous avons, par ailleurs, étudié l’impact de la transformation génétique sur les 

valeurs sélectives des moustiques en mesurant la durée du développement pré-imaginal, la 

mortalité larvaire/pupale, la durée de vie des adultes, le sexe ratio et la compétitivité des 

mâles. Nous avons ainsi mis en évidence que les moustiques transgéniques ayant le promoteur 

PUb étaient beaucoup moins compétitifs que les moustiques ayant le promoteur AeCPA. Le 

développement de ces souches de moustiques en ayant recours aux nouveaux outils d'édition 

de gènes pourrait améliorer les performances de ces candidats. Ces candidats pourraient être 

ainsi proposés dans les stratégies de remplacement des populations de moustiques vecteurs 

d’arbovirus. 
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GENERAL INTRODUCTION 

The global threat of arbovirus diseases 
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Unlike other human infectious diseases, the control of arbovirus diseases needs to 

consider three partners: the vertebrate host, mainly humans, the insect vector (e.g; mosquito) 

and the pathogen (e.g. the arbovirus). Because efficient vaccines and specific treatments are 

still lacking, main efforts should be focused on developing innovative control strategies 

against the vector. 

 

Vaccines can induce virus-cross-reactivity which is proven to drive antibody-

dependent enhancement of infection with other arboviruses limiting vaccines wide use (de 

Alwis et al., 2014; Dejnirattisai et al., 2016). Thus, increasing human antiviral immunity is 

not considered as a promising solution for controlling arboviral diseases spreading. 

 

In addition, owing to climate change, intensification of international commerce and 

travel, the distribution of arboviral diseases is no longer restricted to historical regions and 

conventional host populations (Rezza, 2014). More and more arboviral diseases are reported 

in temperate countries, accumulating evidence of adaptation between arbovirus and invasive 

mosquitoes in Europe (Medlock et al., 2012; Vega-Rua et al., 2013). Although arboviral 

diseases are mostly considered as non-lethal diseases, the tremendous societal costs and loss 

of productivity caused by these arboviral diseases represent significant health and economic 

burden for countries in financial difficulties (Stanaway et al., 2016). 

 

Considering all the factors described above, several conditions should be taken into 

consideration for a more comprehensive arboviral diseases control, notably, as the recent Zika 

outbreaks and the Yellow fever reemerging in South America have highlighted the limits of 

conventional vector control strategies: inefficient, costly, and unpredictable ecological 

impacts (McGraw and O'Neill, 2013). Therefore, seeking for an effective and environmental 
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friendly vector control strategy has become urgent. Many genetically-engineered or 

microbial-mediated alternatives were proposed to reduce the risk of disease transmission in 

recent years, including the reduction of insect populations by Wolbachia-harboring (McGraw 

and O'Neill, 2013) and genetically-modified mosquitoes (Alphey, 2014) or replacing the wild 

population by a genetically-modified refractory strain (Champer et al., 2016). Other 

approaches which consider the manipulation of the mosquito host-seeking behavior have also 

been developed to reduce the contacts between mosquitoes and hosts (DeGennaro et al., 2013; 

Liesch et al., 2013; McMeniman et al., 2014). 

 

1.  Dengue virus 

Dengue fever (DF)/dengue hemorrhagic fever (DHF) is one of the most important 

arbovirus disease circulating in tropical countries (Murray et al., 2012). It is believed to be an 

ancient disease and could be traced back to A.D. 992 in China (Gubler, 2006). Yet, until 1635 

and 1699, dengue-like illnesses were reported in French West Indies and Panama, 

respectively. One hundred years later, several DF-like cases were periodically reported in 

Batavia, Cairo, Philadelphia, Cadiz and Seville, and Spain during 1779-1788 (Vasilakis and 

Weaver, 2008). DF became a global epidemic from 1823 to 1916, as the consequence of 

international commerce and slave trade (Halstead, 2008). In the mid 20th century, the World 

War II (WWII) expedited the spreading of DF, as the importation of mosquito vectors and 

military troops deployed overseas increased the frequency of mosquito-human contacts and 

consequently, lead to DF outbreaks in East Africa and the Caribbean region. The entire 

Pacific became the theater of DF epidemics, from Australia to Hawaii and from Guinea to 

Japan (Gibbons et al., 2012). Since then, the number of countries with reported DF cases 

exponentially increased, although the DF epidemic could be controlled by successful 



 15 

mosquito vector eradication program in America (Gubler, 1997). However, 

recolonizations by mosquitoes and re-emergence of associated arboviral diseases have 

pronounced the failure of the program in the early 1970s as the consequence of program’s 

ending. 

 

1.1.      The burden of dengue 

Although only 9 countries had suffered this disease in early 1970s, today, more than 

125 countries are endemic with dengue, approximately 50-100 million infections and 20,000 

deaths annually (Bhatt et al., 2013). The four serotypes of DENV are currently circulating 

worldwide except the Antarctica (Huang et al., 2014; Messina et al., 2014). Among these 

countries, several areas had reported more than three serotypes of DENV, especially in Latin 

America and the Caribbean islands, Southeast Asia, the Indian subcontinent, Indonesia, 

Australia, and several neighboring areas had reported sequentially each serotype since 2000 

(Messina et al., 2014). 
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Figure 1. Global distribution of DENV. Cumulative number of DENV serotypes reported 

by decade since 1943. Adapted from (Messina et al., 2014).  

 

More than the number of DENV epidemic countries, the incidence of dengue has also 

increased greatly in the past two decades; the estimated dengue infections have increased 

from 8.3 million in 1993 to 58.4 million in 2013 (Stanaway et al., 2016). Although the 

mortality rate of dengue was decreased from 1.64 to 1.27 (95% UI; per million), the impacts 

of dengue on population health were increasing since 1993, especially for Latin America and 

Caribbean regions; the disability-adjusted life-years (DALYs) has approximately doubled in 

2013 since 1990, from 0.72 million (95% UI; 0.43-0.95 million) to 1.14 million (95% UI; 

0.73-1.98 million) (Stanaway et al., 2016). Furthermore, an estimation of 18% of 

symptomatic infections in 2013 were hospitalized whereas 48% were medically treated 

without hospitalization, 8% were not taking any medical treatment, and less than 1% were 

fatal cases (Shepard et al., 2016). Thus, a total of 8.9 billion USD was drained for dengue 

related medication treatments in 2013. In addition, it is remarkable that more than 58% of the 
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annual budget were used for the hospitalized or fatal cases which therefore caused a important 

economic burden on DENV-endemic countries. 

 

1.2.      Dengue epidemiology 

The repetitive DF outbreaks during WWII have alerted the scientific community. Main 

attention has been focused on dengue viruses with remarkable progress on understanding the 

biology of this virus. Four serotypes of dengue virus (DENV) were identified: DENV-1, -2, -

3, -4. The DENV-1 Mochizuki strain was first isolated in 1943 (Hotta, 1952). One year after, 

DENV-2 New Guinea C strain was identified (Sabin, 1952). The identification of DENV-3 

H87 strain and DENV-4 H241 strain were done in Philippine during late 1950s (Hammon et 

al., 1960a; Hammon et al., 1960b). The four serotypes of DENV share distinct phylogenic and 

antigenic features with only 60-80% in sequence homology (Green and Rothman, 2006). 

Long-term immunity could be induced when infected successively with the same serotype of 

DENV. However, severe DHF symptoms can be developed when people are infected with 

different dengue serotypes, even different subtypes within the same serotype (Nisalak et al., 

2003; Rico-Hesse, 2003). 

 

1.3.      DENV characteristics 

DENV belongs to the genus Flavivirus in the Family Flaviviridae. Similar to other 

flaviviruses, DENV is a 500 Å in diameter, spherical shape virus enveloped with lipids (Kuhn 

et al., 2002). When including the highly structured 5’ and 3’ untranslated regions (UTR) 

(Friebe and Harris, 2010; Gebhard et al., 2011; Ng et al., 2017), the RNA genome is 

approximately 10,700 nucleotides in length; it encodes a single open reading frame (ORF), 

which is translated as a polyprotein (Perera and Kuhn, 2008; Screaton et al., 2015). There are 



 18 

3 structural proteins and 7 non-structural proteins organized as follows: NH2-C-prM-E-NS1-

NS2A-NS2B-NS3-NS4A-NS4B-NS5-COOH, each protein can be cleaved by viral proteases 

NS3 except the structural proteins whose cleavage is carried out by a host protease signal 

peptidase (Arias et al., 1993). In addition, the viral particle maturation is processed by furin, a 

cellular serine protease that cleaves the precursor membrane protein (prM) (Stiasny and 

Heinz, 2006). 

 

Figure 2. The genome structure of dengue virus. 

 

Three structural proteins are the major components that form the capsid and the viral 

membrane during assembly whereas the 7 non-structural proteins are responsible for viral 

RNA replication. These latter are organized in a replication complex that facilitates viral 

replication. Among them, the hydrophilic NS1 protein participates in different steps during 

viral replication as a dimer that embedded in ER membrane. Along with other non-structural 

proteins and viral RNA, the NS1 protein anchors the viral replicase proteins to ER membrane 

and form a replication complex (Scaturro et al., 2015). The NS3 protein is composed by a N-

terminal serine protease and a C-terminal helicase domains (Li et al., 1999; Luo et al., 2008a). 

NS3 is responsible for viral polyprotein cleavage at the early stage of viral replication, with a 

cofactor, NS2B, the protease domain of NS3 protein which cleaves the viral polyprotein 

between NS proteins (Yusof et al., 2000). During viral RNA replication, the helicase and 5’-

RNA triphosphatase activity of NS3 helicase domain are required for unwinding the positive-

negative strands RNA intermediate duplex and 5’-RNA cap formation respectively (Luo et 

al., 2008b; Xu et al., 2005). NS5 is a widely studied and largest DENV non-structural protein, 
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which consists of a N-terminal methyltransferase (MTase) and a C-terminal RNA-dependent 

RNA polymerase (RdRp) domains (Zhou et al., 2007). The MTase domain of NS5 consists of 

a RNA guanylyltransferase and methyltransferase activities which are essential for 5’-RNA 

capping and cap methylation (Egloff et al., 2002; Issur et al., 2009), whereas the RdRp 

domain of NS5 carries out the positive and negative RNA synthesis in the replication 

complex. As the NS1 protein, the membrane protein NS2A by interacting with NS4A-NS4B 

forms the viral replication complex (Scaturro et al., 2015). In addition, several non-structural 

proteins of DENV such as NS2A, NS4A, NS4B, also regulate the host immunity by inhibiting 

the interferon (INF) signaling. The replication of INF-sensitive virus could be enhanced by 

the expression of dengue NS2A, NS4A, and NS4B proteins (Munoz-Jordan et al., 2003). 

Moreover, the INF-α signaling could be also inhibited by ectopic expression of NS5 in human 

cells (Mazzon et al., 2009). 

 

Except the viral proteins, DENV has several functional RNA elements at the 5’ and 

3’UTR of viral genome, involved in viral replication (Friebe and Harris, 2010; Gebhard et al., 

2011; Ng et al., 2017). The initiation of viral RNA replication starts with the engagement of 

NS5 protein mediated 5’-3’UTR interaction, which circularized the viral genome and primes 

the negative strand RNA synthesis (Alvarez et al., 2005; Friebe and Harris, 2010). The 

circularization is initiated by the highly structured 5’UTR containing a 5’ upstream AUG 

region (UAR) which is complementary to a 3’ UAR in 3’UTR (Friebe and Harris, 2010; 

Villordo and Gamarnik, 2009). There are two other functional RNA elements called stem-

loop A (SLA) and capsid-coding region hairpin (cHP) in the 5’UTR of dengue viral RNA 

(Gebhard et al., 2011). SLA with its stable stem-loop structure is involved as a promoter that 

interacts with NS5 protein for viral RNA synthesis (Filomatori et al., 2006; Lodeiro et al., 

2009). cHP structure acts as a barrier between the first and second start codon that facilitates 



 20 

the recognition of RdRp to the first start codon (Clyde and Harris, 2006). In contrast, the 

3’UTR of DENV has more complex RNA structures and could be divided into three regions: 

stem-loop region (SL), dumbbell region (DB), and a terminal structure small hairpin 3’ stem-

loop (sHP-3’SL) (Villordo et al., 2016). The structures in the 3’UTR of DENV is essential for 

viral RNA replication but also for protein translation. The deletion of each structure in the 

3’UTR results in abolishing viral RNA replication (Alvarez et al., 2005). Moreover, the sHP-

3’SL in the end of viral 3’UTR is essential for DENV replication in mosquito and mammalian 

cells, although some mutations in the stem or loop region are tolerable for mammalian but not 

mosquito cells (Villordo and Gamarnik, 2013). Although the mechanisms of functional 

structure regulating viral RNA replication in the 3’UTR are not clear, it is believed that the 

pseudoknot interactions in SL and DE structures play an important part in viral replication  

(Sztuba-Solinska et al., 2013). 
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Figure 3. Dengue life cycle. DENV infects an eukaryotic cell through receptor-mediated 

endocytosis mechanism. The viral RNA is released from the endosomal vesicle in the 

cytoplasm in response to pH change. The replication-required viral proteins are translated 

from the exposed viral RNA, and form replication complex in ER membrane for viral RNA 

synthesis. The newly synthesized viral RNA is then transported out of the replication complex 

and packed by viral proteins. After several modifications, the mature virion is released from 

the cell membrane. Adapted from (Guzman et al., 2016). 

 

Upon DENV infection, the virus fuses with the endosomal membrane and releases the 

viral RNA in the cytoplasm. The exposed viral RNA is translated into a polyprotein within the 

endoplasmic reticulum (ER) membrane, and remains associated with ER on the cytoplamic 

side or in the lumen after the polyprotein is cleaved into individual viral proteins 

(Mukhopadhyay et al., 2005; Screaton et al., 2015). For viral RNA synthesis, the membrane 

structure of ER is changed by the newly synthesized NS1 and forms a viral replication 

complex (RC), which comprised viral RNA, replication proteins, and certain cellular proteins 
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in a double–membrane vesicle, to avoid the viral RNA and replication proteins from 

triggering host immune responses (Klema et al., 2015; Welsch et al., 2009). In the replication 

complex, the negative and positive strand genomic RNA are synthesized by the RdRp activity 

of NS5. Newly synthesized positive strand of viral RNA is subsequently modified (capped 

and methylated) respectively with the helicase and MTase activity of NS3 and NS5 in the 

replication complex (Klema et al., 2015). After, the capped and methylated RNA genome is 

released from the necks open to the cytoplasm, the newly synthesized RNA genome then 

attaches to the Capsid protein on the cytoplasmic side of the ER, forms a Capsid-RNA 

complex (Welsch et al., 2009). On the contrary, the viral RNA that was not actively 

synthesized in replication complex is not encapsidated (Khromykh et al., 2001). The Capsid-

RNA complex is then incorporated into the budding particle and acquires the lipid bilayer, E, 

and prM proteins at the ER membrane (Byk and Gamarnik, 2016), followed by virus 

assembly with structural proteins to form an immature virus. The final step before release is 

the transport of immature particles to the Golgi apparatus for surface protein glycosylation 

and modification generating mature virons (Yap et al., 2017). 

 

2.  Chikungunya virus 

Chikungunya is currently the fastest expanding arbovirus disease worldwide, and the 

geographical distribution of chikungunya has reached a global distribution in the past decade, 

causing millions of cases over 50 countries (Nsoesie et al., 2016). Although chikungunya was 

not considered as a fatal disease, the long-term disabilities caused by the disease has largely 

increased the economic and health burdens. Therefore, chikungunya has become a major 

arboviral threat that transmitted by mosquitoes (Gerardin et al., 2011; Labeaud et al., 2011). 
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Chikungunya virus (CHIKV) is believed to originate in Africa, and has diverged into 

several genotypes and lineages in the subsequent years (Volk et al., 2010; Weaver et al., 

2012). Although the outbreaks were misdiagnosed and attributed to DENV as they cause very 

similar clinical symptoms, the earliest records of chikungunya epidemic could be traced 

during 1779-1785, started from Cairo, then followed by several outbreaks in Arabia, India, 

and Southeast Asia regions (Christie, 1881). However, the first recognized CHIKV was 

reported in 1952 in Tanzania (Ross, 1956). The genotypes of current circulating CHIKV 

strains had already diverged from the original lineage. The first branching was dated 500 

years ago while West African (WA) and East/Central/South African (ECSA) lineages were 

established in two distinct branches,. WA strains were mainly circulating in enzootic cycles 

and responsible for few small focal outbreaks in Western Africa (Powers and Logue, 2007). 

In contrast, the ECSA strains were mainly circulating outside of Africa in an urban cycle, and 

arrived in Asia 70 to 150 years ago; it subsequently evolved into the Asian genotype (Volk et 

al., 2010).  

 

2.1.    Chikungunya epidemiology 

The ECSA genotype has contributed to a major outbreak in 2004, enlarging the 

epidemic areas (Staples et al., 2009). The virus expanded to islands in the Indian Ocean 

region, India, and parts of Southeast Asia. Over 6 million cases of chikungunya could be 

estimated during the epidemic (Powers and Logue, 2007; Schwartz and Albert, 2010; Staples 

et al., 2009; Thiberville et al., 2013). An adaptive mutation (E1-A226V) was detected in 

strains of the ECSA genotype which gave the newly diverged Indian Ocean Lineage (IOL) 

(Volk et al., 2010). The E1-A226V mutation in CHIKV regulates the lipid and pH sensing, 

which alters the pH requirement and causes a higher dependence for cholesterol for infection 

and fusion (Kuo et al., 2012; Tsetsarkin et al., 2007; Tsetsarkin and Weaver, 2011). 
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Therefore, the mutation increases viral fitness in Aedes albopictus and consequently, 

facilitates the spreading of CHIKV (Tsetsarkin et al., 2007; Vazeille et al., 2007; Vega-Rua et 

al., 2014). The growth of international travels has greatly contributed to increase the 

geographic distribution of CHIKV (Tatem et al., 2012). Viremic travelers arriving in Europe 

became the source of contamination leading to detect autochthonous CHIKV cases in Italy 

(Rezza et al., 2007) and France (Grandadam et al., 2011).  

 

2.2.    The burden of chikungunya 

Although chikungunya is not considered as a fatal disease and the possibility of 

chikungunya associated lethality is still under investigation, the severe acute and chronic 

phases of infection still caused a significant societal burden (Dupuis-Maguiraga et al., 2012; 

Javelle et al., 2017; Yactayo et al., 2016). In 2014, chikungunya has caused an average of 

26.88 (95% UI; 25.45-28.31) DALYs per 100,000 population in Latin America, but the value 

varies greatly by region. The DALYs in Dominican Republic was 962.07 (UI; 911.04-

1013.10) per 100,000 population in the same year whereas it was 397.86 (UI; 376.78-418.99) 

in El Salvador, and 156.53 (UI; 148.23-164.83) in Puerto Rico (Cardona-Ospina et al., 2015). 

Nevertheless, data simulation indicated that more than 90% of DALYs and 95% of costs were 

attributed to chronic inflammatory rheumatism (Bloch, 2016), causing a important economic 

and society burden even though chikungunya incidence corresponded to only 20% of dengue 

incidence in Americas from 2012 to 2016 (Rodriguez-Morales et al., 2016). 

 

2.3.    Characteristics of Chikungunya virus 

CHIKV is an approximately 70-nm in diameter, enveloped virus which belongs to the 

genus Alphaviruses in the Family Togaviridae. The 12kb genome of CHIKV is consisting of a 
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single-stranded, positive-sense RNA which contains a 5’ cap and a 3’ polyadenylation. Unlike 

DENV, CHIKV genome could be divided into 49S genomic RNA and 26S subgenomic RNA, 

which are synthesized at different stages of infection. The non-structural viral proteins are 

encoded in the 49S genomic RNA, which could be translated into two polyproteins as 

follows: NH2-nsP1-nsP2-nsP3-COOH, or NH2-nsP1-nsP2-nsP3-nsP4-COOH as a result of 

translational readthrough (Li and Rice, 1993; Strauss et al., 1983). The cleavage of non-

structural polyprotein is carried out by the protease activity of viral nsP2, which acts in cis 

and trans to process a non-structural viral polyprotein into individual proteins (Karpe et al., 

2011; Pastorino et al., 2008). The production of subgenomic RNA is primed at the late 

infection stage by a RNA subgenomic promoter on the 5’ of subgenomic RNA (Strauss and 

Strauss, 1994). The structural proteins of CHIKV are encoded in the subgenomic RNA which 

could be translated as: NH2-CP-E3-E2-6k-E1-COOH, or NH2-CP-E3-E2-TF-COOH as a 

result of ribosomal frameshifting (Firth et al., 2008; Snyder et al., 2013). However, the 

cleavage of structural proteins is more complicated, except the CP-E3 cleavage which is 

carried out by the cis-acting protease activity of viral Capsid protein. The other proteins are 

cleaved by other host factors, for instance, a furin-like protease is responsible for E3-E2 

cleavage whereas E2-6k and 6k-E1 are cleaved by a Signal Peptidase (Leung et al., 2011). 

 

Figure 4. The genome structure of chikungunya virus. 

 

Like DENV, CHIKV enters mosquito cells via receptor-mediated endocytosis. By 

sensing the acidic environment of the endosome, the E1 protein containing viral envelop 

undergoes an irreversible conformational change, resulting in the fusion of virus-cell 
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membranes and subsequently, the release of the viral genome into the cytoplasm (Kielian and 

Rey, 2006; Marsh and Helenius, 2006). With the host translational machinery, the non-

structural proteins are translated and processed into proteins that are responsible for viral 

RNA synthesis. Presumably with host proteins, spherules containing viral RNA and replicase 

(nsP4) are formed on plasma membrane (Spuul et al., 2011; Thaa et al., 2015). In the early 

stage of infection, a negative strand of viral RNA is synthesized together with nsP4 and 

uncleaved nsP123 in the spherules (Kallio et al., 2015; Shirako and Strauss, 1994; Utt et al., 

2015). At the late infection stage, the non-structural proteins in the spherules are further 

processed into individual nsPs which transform the minus-strand replication complex into a 

stable positive-strand genomic and subgenomic RNA replication complex (Lemm et al., 1998; 

Raju and Huang, 1991). The newly synthesized subgenomic RNAs are translated into 

structural proteins by ribosomes. Before transporting the structural polyprotein to the ER, the 

self-cleaved viral capsids are formed, allowing the interaction with newly synthesized genome 

from spherules for oligomerization (Jose et al., 2017). The structural polyproteins E3-E2-6k-

E1 and E3-E2-TF are further processed in ER that undergo palmitoylation, N-linked 

glyscosylation, and followed by the release of E3 with furin modification (Jose et al., 2009). 

E1 and E2 are transported to plasma membrane to form mature spikes on plasma membrane. 

Viral assembly is initiated with the binding of the viral nucleocapsid to the viral RNA and the 

membrane-associated envelop glycoproteins (Jose et al., 2017). The mature viral particles 

acquire E1/E2 protein dimers by budding out of cell surface that is covered with viral spikes 

(Schwartz and Albert, 2010). 
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Figure 5. Alphavirus life cycle. CHIKV infects an eukaryotic cell through receptor-mediated 

endocytosis mechanism. The viral RNA is released from the endosomal vesicle in response to 

the change of pH in the cytoplasm. Non-structural proteins are first translated from the 49S 

genomic RNA. As DENV, the nsPs form a spherule for negative strand RNA synthesis 

without triggering host immune responses. At the late stage of infection, the nsPs were 

cleaved into individual nsPs and the spherule is then switched into a positive strand 

synthesizing complex, which is responsible for positive strand RNA synthesis. Including the 

49S genomic RNA and 26S subgenomic RNA, the newly synthesized viral RNA is 

transported out of the spherule, and the viral structure proteins are then translated from the 

26S subgenomic RNA and subsequently, transported onto the cell membrane after 

modifications in Golgi. The newly synthesized 49S genomic RNA is then packed by viral 

proteins. The nucleocapsid acquires a mature glycoprotein envelop upon budding out of the 

membrane as a mature virion. 
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3.  Co-infection of DENV and CHIKV 

As DENV and CHIKV cover the same geographical regions and are both transmitted 

by the same vectors Aedes spp., mosquitoes in the epidemic areas are potentially able to carry 

and transmit multiple viruses. Co-infection of DENV and CHIKV were frequently reported in 

Africa (Baba et al., 2013; Caron et al., 2012; Leroy et al., 2009), Southeast Asia (Neeraja et 

al., 2013; Schilling et al., 2009), Eastern Mediterranean (Rezza, 2012), and Western Pacific 

regions (Chang et al., 2010). Until now, Aedes mosquitoes were present in 154 countries, and 

local transmission of DENV and CHIKV were reported in 98 countries, among them, 13 

countries have reported DENV-CHKV co-infection (Furuya-Kanamori et al., 2016b). The 

first co-infection of DENV-CHIKV was reported in Thailand in 1962, and few co-infected 

cases were reported in the following years until 1964 (Nimmannitya et al., 1969). Since then, 

DENV-CHIKV co-infections were reported in several Africa and South-East Asia countries, 

causing a major epidemic between 2006 to 2012 (Furuya-Kanamori et al., 2016b). Especially 

in Madagascar (Ratsitorahina et al., 2008), Nigeria (Baba et al., 2013), and India (Taraphdar 

et al., 2012), high prevalence of DENV and CHIKV co-infections was reported in each 

country between 2006 to 2010, causing dozens of co-infected cases during the epidemic. 

Although chikungunya was not considered as a lethal disease, and only 0.5-3.5% mortality 

could be observed for dengue hemorrhagic fever (Guzman and Kouri, 2002; Suaya et al., 

2009), accumulating evidence have suggested the co-infection of CHIKV and DENV was 

associated to more severe clinical symptoms leading to death (Gandhi et al., 2015; Mercado et 

al., 2016), however, the mechanism that caused higher mortality is still not understood, as the 

mono-and co-infected patients were sharing very similar median age and gender distribution 
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(Gandhi et al., 2015). Therefore, eliminating both viruses from circulation is pivotal for 

reducing the burdens caused by DENV and CHIKV co-circulation. 

 

Figure 6. Co-infection of CHIKV and DENV  
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Chapter 1: AEDES MOSQUITOES AND 

ANTIVIRAL IMMUNITY



 0 

 Arboviruses are acquired by mosquitoes through a viremic blood meal from infected 

hosts. Through the foregut, the virus enters into the midgut and infects the epithelial cells, 

followed by virus replication before it escapes from the midgut barrier and disseminates to 

secondary tissues through tracheal or muscles (Girard et al., 2004; Romoser et al., 2004; 

Salazar et al., 2007). For Aedes mosquitoes, fat body, hemocytes, and nervous system are 

potential tissues for harboring the disseminated virus. Moreover, the infected hemocytes that 

circulate in the hemolymph could act as a media for salivary glands infection (Parikh et al., 

2009). The virus could enter the salivary glands in the distal lateral lobes that potentially 

contain receptors for medicating viral endocytosis (Salazar et al., 2007). The interval between 

the acquisition of a virus from a blood meal and the ability to transmit to other hosts by the 

mosquito vector is also known as the extrinsic incubation period (EIP), which can vary widely 

depending on mosquitoes and viruses. Several anatomical barriers have been identified 

affecting the EIP: the midgut infection barrier (MIB), midgut escape barrier (MEB), salivary 

gland infection barrier (SGIB), and salivary gland escape barrier (SGEB) (Franz et al., 2015). 

The viral pathogenesis could be obstructed by each barrier in a physical or immunological 

manner, for instance, the basal laminar that covers the midgut and the salivary glands can 

physically prevent the midgut dissemination and salivary gland infection. On the contrary, the 

antiviral immunity of midgut epithelia cells, hemocytes, and salivary gland cells is also 

critical for the midgut infection, the dissemination from midgut, and the transmission from 

salivary glands (Franz et al., 2015).    
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Figure 7. Schematic representation of arbovirus tropism in a mosquito vector. Virions 

are represented by blue hexagons. Mosquitoes acquire virus through a viremic blood meal 

from infected hosts. The virus enters the midgut and replicates before dissemination. The 

virus breakthrough the midgut barrier is able to infect the other organs such as salivary 

glands. Only the infected salivary glands are able to transmit the virus. 

 

1. Aedes mosquitoes 

Aedes aegypti and Aedes albopictus, are the primary vectors of the most important 

human arboviruses in the world. The wide range of temperature tolerance and the egg 

desiccation resistance features of Aedes mosquitoes have increased the ability of these species 

to survive in extreme conditions and long-distance transportation (Brady et al., 2013; 

Kobayashi et al., 2002), which also helped to establish a new population in non-native 

habitats (Juliano and Lounibos, 2005). With the transportation of a variety of goods, including 

used tires and lucky bamboo (Medlock et al., 2012; Scholte et al., 2010), Ae. albopictus were 

introduced in Europe from its original cradle, Southeast Asia (Paupy et al., 2009). In contrast, 

Ae. aegypti have a more complex origin, which includes two subspecies, Ae. aegypti aegypti 

and Ae. aegypti formosus. The forest form, formosus, is considered as the ancestor of the 

domestic form of Ae. aegypti, and both still exist in sub-Sahara Africa (Brown et al., 2014; 

Powell and Tabachnick, 2013). The forest form is darker and preferring non-human blood. It 

is still unclear whether the higher viral susceptibility of domestic form (Vazeille-Falcoz et al., 

1999), dated before it came to the New World, or became domesticated upon arrival (Powell 
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and Tabachnick, 2013). Later on, Ae. aegypti was introduced into Europe through the route of 

triangular slave trade between Europe, Africa, and America (Brown et al., 2011). Although 

there is still a lack of evidence, it is believed that Ae. aegypti was introduced into Asia 

through the eastern migration and trade between India and East Africa (Powell and 

Tabachnick, 2013). 

As an efficient vector of CHIKV, DENV, yellow fever virus (YFV), and Zika virus 

(ZIKV), the global distribution of these arboviral diseases are highly co-related with the 

distribution of Aedes mosquitoes (Charrel et al., 2014). Although the climate might influence 

mosquito development, mortality, behavior, and even the viral replication in Aedes 

mosquitoes (Morin et al., 2013), the rapid adaptation of arboviruses have caused unexpected 

autochthonous transmission in temperate areas, e.g. Italy, France, and Spain. Moreover, Ae. 

albopictus has already crossed the Channel extending its distribution to southern England, and 

it could potentially introduce some arboviral diseases (Medlock et al., 2017). Thus, knowing 

more on the mosquito antiviral responses against arboviruses is essential to better apprehend 

prevention and control of arboviral diseases. 

 

2. Mosquito immune pathways: Toll, Imd, and JAK/STAT 

Several immune pathways are involved in insect antiviral responses, including the 

Toll, Imd and Janus Kinase-signal transduction and activators of transcription (JAK-STAT) 

pathways (De Gregorio et al., 2002; Fragkoudis et al., 2009; Kingsolver et al., 2013). Toll and 

Imd pathways correspond to conserved innate immunity closely related to mammalian Toll-

like receptor (TLR) and tumor necrosis factor (TNF) pathways. Both immune pathways are 

primarily induced by microbial infection via pathogen associated molecular patterns (PAMPs) 

recognition (Royet et al., 2005; Werner et al., 2000). Although the viral pattern recognition 
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receptors in mosquitoes are still unknown, growing evidence has proved the role of Imd and 

Toll pathways in Ae. aegypti defenses against DENV (Xi et al., 2008). Through an unknown 

mechanism, the Toll receptor might be activated by virus direct interaction or through the 

ligand Spätzle (Weber et al., 2003), the activated Toll receptor recruits Myd88 for activating a 

NF-kB-like transcription factor Rel1 to initiate Toll-related gene expression (Horng and 

Medzhitov, 2001). For the initiation of Imd pathway, an unknown receptor that could be 

activated by viral infection recruits the Imd and FADD proteins, and these two proteins 

participate to the maturation of another NF-kB-like transcription factor, Rel2, to initiate Imd-

related gene expression (Valanne et al., 2011). 

Both Toll and Imd pathways trigger the expression of multiple anti-microbial peptides 

(AMPs) that restrict the replication of pathogens within infected cells. On the contrary, a 

systematic immunity mediated by JAK-STAT pathway is triggered by the recognition of 

unpaired ligand Upd through its receptor Domeless (Dome), which triggers the downstream 

signaling and phosphorylates, the Janus kinase (Hop) and Dome on the cytoplasmic end, 

leading to the phosphorylation and dimerization of STAT. The activated STATs act as 

transcription factor and is translocated into the nucleus for initiating the downstream AMPs 

and Vir-1 expression. 

In addition, the JAK-STAT pathway can also be activated by Vago as a result of 

double strand RNA (dsRNA) accumulation. The accumulated dsRNA (including viral RNA) 

is sensed by Dcr-2, which activates TNF receptor-associated factors (TRAF) and then triggers 

the maturation of Rel2, followed by induction of Vago expression (Cheng et al., 2016; 

Deddouche et al., 2008; Paradkar et al., 2014). This suggests that the JAK-STAT pathway can 

be also triggered by virus infection. 
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Figure 8. Mosquito antiviral mechanisms. Three major insect innate immunity pathways 

are described in mosquitoes for antiviral responses. Through different pattern recognition 

signaling, different immune pathways are triggered in response to microbial infection. The 

pattern recognition receptor for viruses in Toll- and Imd-mediated antiviral innunity is still 

unknown whereas it has been proven that the JAK-STAT signaling could be elicted by Vago, 

induced by sensing the viral dsRNA in the cytoplasm. (Cheng et al., 2016). 
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3.  Part I: Assessing the potential role of miRNAs in the antiviral 

response of vector mosquitoes 

In this chapter, we present an article submitted to the journal mSphere.  
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ABSTRACT 

Although the role of exogenous siRNA and piRNA pathways in mosquito antiviral 

immunity is increasingly better understood, there is still little knowledge regarding 

interactions between the mosquito cellular miRNA pathway and arboviruses. Thus further 

analysis of mechanisms by which miRNAs may regulate arbovirus replication in mosquitoes 

is pivotal. Here, we carried out genomic analysis to identify Aedes aegypti miRNAs that 

potentially interact with various lineages and genotypes of chikungunya, dengue and Zika 

viruses. By using prediction tools with distinct algorithms, several miRNA binding sites were 

commonly found within different genotypes/and or lineages of each arbovirus. We further 

analyzed those miRNAs that could target more than one arbovirus and required a low energy 

threshold to form miRNA-vRNA (viral RNA) complexes and predicted potential RNA 

structures using RNAhybrid software. In summary, we predicted miRNA candidates that 

might participate in regulating arboviral replication in Ae. aegypti, and this study can shed 

further light on the role of miRNA in mosquito innate immunity and targets for future studies. 

 

IMPORTANCE 

The role of the siRNA and piRNA pathways in controlling virus infections in 

mosquitoes has been extensively studied and they are considered to be a major part of 

antiviral innate immune response. However, the potential role of miRNAs in mosquitoes 

antiviral immunity is still unclear. The cellular miRNAs of the mosquito Aedes aegypti, a 

vector for many arboviral diseases, may participate in regulating the replication of three major 

arboviruses: chikungunya, dengue, and Zika viruses. By using the miRanda and TargetSpy 

tools, several miRNAs were predicted to have potential binding sites that are common to 

multiple viral genotypes or lineages. Further analysis was carried out on miRNA-vRNA 
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interactions that required a low energy threshold to form a  complex. This revealed a broad 

picture of possible interactions between mosquito cellular miRNAs and different 

genotypes/lineages of arboviruses, which could shed further light on the role of miRNA in 

mosquito innate immunity and targets for future studies. 

 

 

KEYWORDS chikungunya, dengue, Zika, arboviruses, transmission, miRNA, Aedes aegypti 
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INTRODUCTION 

 

Emerging and reemerging arthropod-borne viruses (arboviruses) are spreading 

globally (Powers and Waterman, 2017). Arboviruses usually have RNA genomes, including 

positive-strand RNA alphaviruses (genus Alphavirus, family Togaviridae), and flaviviruses 

(genus Flavivirus, family Flaviviridae) (Weaver and Reisen, 2010) (see Fig. S1 for genomic 

organization). The evolution of mosquito-borne RNA viruses and the complex interplay 

between the vector, host and virus can shape arboviral emergence and re-emergence 

(Grubaugh et al., 2016; Jones et al., 2008). Contrary to many other viruses, arboviruses 

replicate in two hosts: vertebrate and arthropod (including mosquito species). Infection of the 

arthropod midgut epithelial cells occurs following ingestion of a viremic blood meal. The 

arbovirus must disseminate through internal tissues and organs before reaching the salivary 

glands. Thus the virus has to overcome a series of tissue barriers before being secreted in 

mosquito saliva when it takes its next blood meal (Kramer and Ebel, 2003). Each barrier has 

different tissue-specific immune properties which, once triggered by viral infection, may 

affect the mosquitoes’ overall vector competency (Franz et al., 2015). Immune responses to 

arboviruses are varied and involve different pathways but key roles are played by small RNA 

/ RNA interference (RNAi) pathways, which are further described below (Blair and Olson, 

2015; Merkling and van Rij, 2013; Olson and Blair, 2015; van Mierlo et al., 2011). The role 

of RNAi pathways as insect antiviral response mechanisms was initially characterized in 

Drosophila melanogaster (Galiana-Arnoux et al., 2006; van Rij et al., 2006; Wang et al., 2006; 

Zambon et al., 2006). RNAi has been shown to be a major innate antiviral immune response 

in mosquitoes (and other vectors) against arboviruses of all families (Donald et al., 2012; 

Miesen et al., 2016b). Mosquitoes have three major types of small RNA pathways and 

associated molecules: the small interfering RNA (siRNA), PIWI-interacting RNA (piRNA), 
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and microRNA (miRNA) pathways (Blair and Olson, 2015; Donald et al., 2012; Fragkoudis 

et al., 2009; Miesen et al., 2016b). 

The exogenous siRNA pathway in mosquitoes is triggered by exogenous long double-

stranded RNA (dsRNA) molecules, which are produced during viral replication. By analogy 

to D. melanogaster (Campbell et al., 2008), these dsRNAs are recognized by the RNAse III 

enzyme Dicer 2 (Dcr-2) and cleaved in mosquitoes into predominantly 21 nucleotides (nt) 

viral siRNAs (vsiRNA). These vsiRNAs are loaded into the multi-protein RNA-Induced 

Silencing Complex (RISC), which contains the endonuclease Argonaute-2 (Ago-2), a member 

of the Argonaute family. Ago-2 unwinds the siRNAs and retains one strand as a guide strand 

to target RNAs with complementary sequence (mRNAs, viral genomes, antigenomes), which 

triggers cleavage of the complementary RNA by Ago-2. These results have stressed the role 

of exogenous RNAi pathway in controlling viral replication (Campbell et al., 2008; Carissimo 

et al., 2015; Dietrich et al., 2017; Keene et al., 2004; Sanchez-Vargas et al., 2009). 

 Accumulating data suggest that the Piwi-interacting RNA (piRNA) pathway is also 

involved in mosquito RNAi antiviral immunity (Brackney et al., 2010; Hess et al., 2011; 

Miesen et al., 2016a; Miesen et al., 2016b; Morazzani et al., 2012; Schnettler et al., 2013). 

However, the effector and effector mechanism are unclear and the Piwi4 protein has been 

identified as a non-canonical effector (Varjak et al., 2017). piRNAs are 24-30 nt in size and 

produced in a Dicer-independent manner. piRNA molecules interact with Argonaute-3 (Ago-

3) and Piwi proteins in a so-called “ping-pong” mechanism which amplifies these small 

RNAs. During this amplification, a typical U1/A10 positional bias in the piRNA molecules is 

observed (Brennecke et al., 2007). Several studies have identified and characterized viral 

piRNA (vpiRNA) or piRNA-like small RNAs in mosquitoes or mosquito cells (Brackney et 

al., 2010; Hess et al., 2011; Miesen et al., 2016b; Morazzani et al., 2012; Schnettler et al., 

2013). Nonetheless, it remains unclear if  vpiRNAs exert any antiviral activity. 
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Finally, the miRNA pathway is a major endogenous gene expression regulation 

mechanism. Again it is presumed that the pathway in mosquitoes largely resembles that of D. 

melanogaster given close relationships of effector proteins (Campbell et al., 2008). This 

pathway shares some similarities with the siRNA pathway, but with important differences 

(Blair, 2011; Blair and Olson, 2015; Donald et al., 2012), such as it has both nuclear and 

cytoplasmic phases as the precursor RNAs are produced in the nucleus. From miRNA 

precursors to mature miRNAs, the biogenesis of miRNAs is a process involving several steps 

carried out by different proteins. The miRNA precursors (pri-miRNAs) originate from 

independent miRNA genes or mirtrons which are encoded as introns within RNA transcripts. 

The hairpin-structured pri-miRNAs are  processed by the RNase III type endonuclease Drosha 

into ~70bp hairpins, which are then cleaved into ~20bp miRNA duplexes by Dicer-1 after 

being exported from the nucleus into the cytoplasm by Exportin5 (Ha and Kim, 2014; Kim et 

al., 2009; Yi et al., 2003). The miRNA duplexes in the cytoplasm are loaded into Ago-1 or 

Ago-2 proteins in miRNA-induced silencing complexes (miRISCs) according to their 

different structures (Forstemann et al., 2007; Ghildiyal et al., 2010; Yang et al., 2014). Mainly 

using residues 2-8 at the 5’ end of mature miRNA (seed region), the miRISC uses the guide 

strand to find complementary RNA sequences which leads to RNA degradation (carried out 

by Ago-2), translational inhibition or both (mediated by other Ago proteins, not Ago-2) (Li 

and Rana, 2014; Wilczynska and Bushell, 2015). Commonly, animal miRNAs binding sites 

are mainly in the 3’UTR (Pillai et al., 2007); however miRNA binding sites in the 5’UTR or 

coding regions of mRNAs were also reported and are involved in post-transcriptional gene 

regulation (Brummer and Hausser, 2014; Hausser et al., 2013; Lee et al., 2009). 

 Only a few studies have shown direct evidence that mosquito miRNAs interfere with 

virus replication via complementarity with viral RNA genome or regulation of the immune 

genes in mosquitoes. A miRNA from Ae. aegypti, aae-miR-2940, was reported as a mosquito-
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specific antiviral miRNA which inhibits the replication of DENV and West Nile virus (WNV) 

in Ae. aegypti or Ae. albopictus cell lines respectively (Slonchak et al., 2014; Zhang et al., 

2013). The antiviral mechanism of aae-miR-2940 may involve a complex immune network, 

and could be regulated by endosymbionts or virus infection. One target of aae-miR-2940 in 

Aedes spp. is a metalloprotease, which is required by Wolbachia but also essential for WNV 

and DENV replication. However, by up-regulating aae-miR-2940 expression (which 

facilitates Wolbachia proliferation), the replication of WNV and DENV was consequently 

inhibited (Hussain et al., 2011; Zhang et al., 2013). Moreover, the same mechanism was 

observed in Ae. albopictus derived C6/36 cells, although instead of inducing metalloprotease 

expression, it was down-regulated by WNV infection thus limiting viral replication (Slonchak 

et al., 2014). Bioinformatic approaches suggest that the target site of aae-miR-2940 is in the 

3‘UTR of WNV; although, it has been experimentally demonstrated that this miRNA has no 

significant effect on viral replication (Slonchak et al., 2014). In addition, aal-miR-2940-5p 

and aal-miR-2940-3p were presumed to be involved in CHIKV replication in Ae. albopictus 

(Shrinet et al., 2014). Furthermore, genomic RNA levels of DENV and WNV were increased 

significantly in either Drosha, Ago-1 or Ago-2 knock-down Ae. aegypti derived Aag2 cells 

(Kakumani et al., 2013), and an increase in DENV titer could also be observed in either Dcr-1, 

Dcr-2, Ago-1, or Ago-2 deficient Drosophila S2 cells (Mukherjee and Hanley, 2010). 

Although silencing of Ago-1 in An. gambiae mosquitoes or Aag2 cells had no effect on either  

o’nyong-nyong virus (ONNV), Semliki Forest virus (SFV) or CHIKV (Keene et al., 2004; 

McFarlane et al., 2014b; Schnettler et al., 2013), some studies have shown that the miRNA 

could be loaded into Ago-2 under certain conditions (Fu et al., 2017; Hussain et al., 2013); 

thus the effects of miRNAs on the replication of alphaviruses needs to be carefully examined. 

Complementarity within the seed region is  critical for initiating interactions with potential 

targets. However, mismatches within this region could be compensated by pairing to the 3’ 
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region of miRNA in metazoans (Shin et al., 2010). In addition, an increasing number of 

studies have demonstrated that thermodynamic considerations in the seed region play an 

important role for seed region-dependent silencing (Hibio et al., 2012; Ui-Tei et al., 2008; Ui-

Tei et al., 2012). The relatively flexible thermodynamic rules of miRNA binding sites can 

potentially lead to the multiple targets of a single miRNA. Whereas the targets might also be 

regulated by multiple miRNAs, interactions between miRNAs and viral RNA could also 

contribute to antiviral innate immunity in the host.  

In mammals, more evidence is available on the role of virus replication regulated by 

direct miRNA-vRNA interaction (Scheel et al., 2016; Trobaugh and Klimstra, 2017). Host 

miRNAs may bind to the cytoplasmic viral RNA genome as regular mRNA in a seed region- 

dependent manner. However, binding does not necessarily lead to the inhibition of viral 

replication. For instance, the enhancement of viral replication has been demonstrated with the 

human liver specific miR-122 which targets the 5‘UTR of HCV and stabilizes the viral RNA, 

facilitating viral replication (Conrad et al., 2013; Jopling et al., 2005). In any case, the direct 

interaction between cellular miRNAs and RNA virus genomes could play a very important 

role in replication. In vertebrates, several studies have underlined the regulation of virus 

replication following the direct binding of miRNAs to the viral RNA genome. In addition to  

HCV, several other viral vertebrate pathogens have been  shown to be regulated in this 

manner. These include, amongst others,   Eastern equine encephalitis virus (EEEV) (Bai and 

Nicot, 2015; Huang et al., 2007; Lecellier et al., 2005; Nathans et al., 2009; Trobaugh et al., 

2014; Wen et al., 2013; Zheng et al., 2013). 

Importantly, EEEV is a mosquito-borne virus (closely related to CHIKV) and 

infections result in high mortality rates in humans and long-term neurological damage in 

surviving patients (Deresiewicz et al., 1997). Replication of the North American EEEV strain, 

FL93-939, was reduced by the human haematopoietic cell specific miR-142-3p that has four 
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binding sites in the 3‘UTR. Moreover, the replication of an EEEV strain depleted of miR-142-

3p binding sites was nearly 1,000-fold higher than wild-type EEEV (Trobaugh et al., 2014). 

This indicates viral replication is mediated by cellular miRNAs in humans and suggests a 

similar mechanism might be found in the mosquito vectors. 

There is still a remarkable lack of information about the interactions between mosquito 

miRNAs and arboviruses. However, miRNAs were identified by next generation sequencing 

(NGS) techniques in numerous studies and are now available in databases, while improved 

bioinformatics tools have been developed. To identify potential mosquito miRNA binding 

sites in the viral RNA, we compared published small RNA sequencing data from Ae. aegypti 

to virus sequence data from major arboviruses, e.g. CHIKV, DENV (serotypes 1-4), and Zika 

virus (ZIKV). We predicted and analyzed the potential target sites on each virus genome to 

reveal practicable miRNA-vRNA interactions by combining thermodynamics and miRNA 

expression profiles. This study can underpin future work on the role of miRNAs in regulating 

arbovirus replication in mosquito cells. 

 

RESULTS 

 

miRNA binding sites in the CHIKV genome 

CHIKV belongs to the family of Togaviridae and the genus Alphavirus, with three 

genotypes circulating worldwide: East/Central/South African (ECSA), West African (WA), 

and Asian. The CHIKV Indian Ocean lineage (IOL) emerged in 2004-5 from the ECSA 

phylogroup and has spread throughout many tropical regions (Powers & Logue, 2007). It is 

believed that the WA and ECSA lineages diverged from the ancestor lineage 500 years ago, 

and the Asian genotype evolved from the ECSA genotype an estimated 70 to 150 years ago 

(Volk et al., 2010). The IOL lineage predominates in regions where the vector Ae. albopictus 
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is present/dominant, in part due to selection of an Ae. albopictus-adaptive substitution in the 

CHIKV E1 envelope glycoprotein (E1-A226V). This substitution confers efficient infection 

and dissemination in Ae. albopictus for IOL of CHIKV (Tsetsarkin et al., 2007; Vazeille et al., 

2007).  

Four CHIKV genotypes were selected for this study: Asian (EU703762), ECSA 

(HM045811), IOL (AM258992), and WA (HM045816). Two analytical tools,miRanda and 

TargetSpy, were used to identify a total of 20, 25, 26, and 22 miRNAs binding sites that were 

commonly found for CHIKV of different genotypes and lineages (Asian, ECSA, IOL, and 

WA) (Fig. 1). 

When comparing the binding sites previously identified among all four genotypes, the 

highest number of shared binding sites was between ECSA and IOL genotypes (N=18), 

whereas WA and Asian genotypes were relatively independent to each other with no common 

binding sites  (Fig. 1). Therefore, for our analysis, WA and Asian sequences were considered 

in two separate groups comparing each to ECSA and IOL: (i) WA, ECSA, IOL, and (ii) Asian, 

ECSA, IOL. When comparing viruses of group (i) six miRNAs binding sites were common 

and could be targeted by aae-miR-263a-5p, aae-miR-279, aae-miR-305-5p, aae-miR-34-3p, 

and aae-miR-996 (Table 1). When examining group (ii) (WA, ECSA, IOL), three other 

miRNAs binding sites were detected, which potentially interacted with aae-miR-285, aae-

miR-989, and aae-miR-iab-4-5p (Table 1). 

The predicted miRNA binding sites shared between Asian, ECSA, and IOL viruses of 

group (i) were all located within non-structural protein coding regions. aae-miR-263a-5p is 

one of the most highly expressed miRNA in saliva of Ae. aegypti and could be detected 

throughout all mosquito developmental stages (Hu et al., 2015; Maharaj et al., 2015). miR-

279 is related to olfactory regulation, and miR-279 in D. melanogaster is involved in the 

formation of  the CO2 sensory neuron in maxillary palps (Cayirlioglu et al., 2008). In Ae. 
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aegypti, aae-miR-279 was present in embryos and was found to be induced in the midgut 

following a blood meal (Li et al., 2009). aae-miR-305-5p was predicted to target the nsP2 

region which encodes the RNA helicase, RNA triphosphatase and proteinase (Karpe et al., 

2011; Rupp et al., 2015) and was reported to be abundant during the mosquito pupal stage and 

in Ae. aegypti Aag2 cells (Hu et al., 2015), and could be upregulated in mosquito salivary 

glands after CHIKV infection (Maharaj et al.). Interestingly, the expression of aae-miR-305-

5p switched to aae-miR-305-3p in response to DENV-2 infection (Etebari et al., 2015). aae-

miR-34-3p was predicted to target the nsP1 region involved in the synthesis of the negative 

strand of viral genomic RNA (Rupp et al., 2015). This miRNA could be detected at all 

mosquito developmental stages but the expression level was relatively low during the pupal 

stage. Moreover, the expression of aae-miR-34-3p correlated with the nutritional status of 

adults and can be suppressed in the midgut when they are starved (Ray, 2013). aae-miR-996 

is the most abundant miRNA in embryos and was also found to be up-regulated in saliva 

during CHIKV infection (Akbari et al., 2013a; Maharaj et al., 2015). 

There are three potential miRNA binding sites that are common between WA, ECSA, 

and IOL genotypes of the group (ii). Two of them might potentially be targeted by the 

miRNA aae-miR-285 and aae-miR-989 in the E1 and nsP4 coding regions respectively. While 

the expression of aae-miR-285 could be detected in both male and female adults, it was rarely 

observed in the larval stage of Ae. aegypti (Hu et al., 2015). It was also reported to be up-

regulated in the cytoplasm of Wolbachia-transinfected Aag2 cells (Wolbachia induced 

miRNA). In contrast, aae-miR-989 was reported as an abundant miRNA expressed in Ae. 

aegypti females but relatively rare in male adult (Hu et al., 2015). The other potential miRNA 

binding site shared between WA, ECSA, and IOL genotypes may potentially be targeted by 

aae-miR-iab-4-5p in the 3’UTR. Notably, this miRNA might have additional binding sites on 

the 5’UTR of ECSA and IOL genotypes. Any activity of this miRNA might be increased by 
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multiple binding sites on the 5’- and 3’ UTR of CHIKV involved in initiating viral RNA 

replication (Rupp et al., 2015). 

 

miRNA binding sites in DENV genomes 

DENV has evolved independently into four serotypes from distinct sylvatic 

progenitors and then into several genotypes (Vasilakis and Weaver, 2008). They only share 

60-80% sequence similarity and need to be analyzed separately to find potential miRNA-

vRNA interactions. Several conserved miRNA binding sites could be found in each serotype 

which might participate in viral regulation, as outlined below.  

 

DENV-1 

Five genotypes of DENV-1 were selected for analysis: genotype I (AF298808), 

genotype II (JQ922547), genotype III (DQ285562), genotype IV (EF025110), and genotype V 

(JX669462). A total of 28, 30, 34, 33, and 26 potential binding sites were found in genotypes 

I, II, III, IV, and V respectively (Fig. 2). Among them, only two potential miRNA binding 

sites were common to all five genotypes of DENV-1, which could be targeted respectively by 

aae-miR-1 and aae-miR-282-5p on the capsid and NS3 protein coding regions respectively 

(Table 2). aae-miR-1 is a conserved miRNA which is upregulated 24 hours post blood meal in 

Ae. aegypti (Bryant et al., 2010). It was also identified in Wolbachia-infected cells (Mayoral 

et al., 2014b). These features are shared by aae-miR-282-5p (Mayoral et al., 2014a). 

Furthermore, other potential miRNA binding sites were commonly found between four of the 

five genotypes (Table 2). The NS5 region of genotypes I, II, III and V could potentially be 

targeted by aae-miR-316, aae-miR-92a-3p, and aae-miR-92b-3p. aae-miR-316 has not been 

extensively studied miRNA in mosquitoes, however it is known that its expression was 

induced at 24 hours post blood meal (Li et al., 2009). In addition, this miRNA might have an 
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further potential binding site within the capsid region (genotypes I, III, and V). This may 

increase the probability of miRNA-vRNA interactions. Both aae-miR-92a-3p and aae-miR-

92b-3p are present in the cytoplasm and nucleus of Ae. aegypti Aag-2 cells. A decrease in 

their expression levels was observed when cells were infected with Wolbachia (Wolbachia-

suppressed miRNA) (Mayoral et al., 2014a). aae-miR-11-5p is the only miRNA with a 

common binding site in genotypes I, II, IV and V within NS4B (Table 2). In mosquitoes, the 

expression of aae-miR-11-5p was detected at all developmental stages and is induced in the 

midgut after blood meal (Hu et al., 2015; Li et al., 2009). Nevertheless, it is also reported as a 

Wolbachia-suppressed miRNA (Mayoral et al., 2014a). Two potential miRNA binding sites 

for aae-miR-263a-3p and aae-miR-998 were found conserved on the 3’UTR of genotypes I, 

III, and V (Table 2). However, although aae-miR-263a-3p is detectable in mosquito cells, the 

in vivo expression profile is still unclear. It has been shown that its byproduct, aae-miR-263a-

5p, is increased in the saliva of CHIKV-infected mosquitoes at 10 days post infection 

(Maharaj et al., 2015). This suggests that virus infection could be involved in the regulation of 

aae-miR-263a-5p, at least in some tissues. In contrast, aae-miR-998 is a widely expressed 

miRNA which is abundant in embryos and decreases during development. Although its 

expression is lower in adults, it could be triggered in the adult midgut after a blood meal (Li et 

al., 2009). Interestingly, the location of aae-miR-998 is close to aae-miR-11 (-3p or -5p) in the 

mosquito genome (less than 300 bp apart) suggesting that their regulation might be correlated. 

 

DENV-2 

Five genotypes of DENV-2 were selected for our analysis: Asian I (DQ181799), Asian 

II (AJ968413), Asian American (DQ181801), American (AY702040) and Cosmopolitan 

(AB189122). We found a total of 28, 31, 21, 22, and 28 potential binding sites on each 

genotype respectively (Fig. 3). Among them, binding sites for aae-miR-2944a-3p, aae-miR-
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316, and aae-miR-9c-5p were common to all five genotypes (Table 3). 

aae-miR-316 has a potential binding site on the capsid region of viral RNA. It could be 

detected in both male and female adults and is induced after a blood meal (Hu et al., 2015; Li 

et al., 2009). Little is known about the expression profile of aae-miR-9c-5p, which was 

predicted to have a binding site within the NS5 region. It can be detected in Ae. aegypti 

embryos and at low levels in DENV-2 infected adults (Campbell et al., 2014). Furthermore, 

three other miRNA binding sites were shared between at least four genotypes. Two binding 

sites were common between Asian I, Asian II, Asian American, and Cosmopolitan genotypes: 

aae-miR-281-3p within  NS2B, and aae-miR-998 within  the 3’UTR region of DENV-2. aae-

miR-281-3p was described in Ae. aegypti Aag2 cells (Mayoral et al., 2014a), and its 

expression in mosquito midgut was triggered by a blood meal (Li et al., 2009). Moreover, its 

byproduct, aae-miR-281-5p, was reported to be an abundant midgut-specific miRNA that 

enhances DENV-2 infection in Ae. albopictus (Zhou et al., 2014). The only miRNA predicted 

to target Asian I, Asian American and Cosmopolitan genotypes of DENV-2 is aae-miR-263a-

3p which has a potential binding site on the 3’UTR. Its presence was detected in Ae. aegypti 

embryos and Aag2 cells (Hu et al., 2015; Hussain et al., 2011). Interestingly, the same 

miRNA binding site within the 3’UTR of DENV-2 was also found within that region of  

DENV-1. aae-miR-315-5p is abundant in embryos, but decreases during development, 

although it is reported to remain detectable in both male and female adult (Hu et al., 2015; 

Mayoral et al., 2014a). The possible target sites were predicted to be located in the 3’UTR of 

the Ae. aegypti JHA15 (juvenile hormone regulated serine protease) (Lucas et al., 2015) and 

AaArgM3 (arginine methyltransferase 3) (Zhang et al., 2014). 

 

DENV-3 

Four genotypes of DENV-3 were selected for our analysis: genotype I (AY744677), genotype 
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II (AY676352), genotype III (AY099336), and genotype V (AF317645). Again, 25, 38, 41 

and 29 potential binding sites were identified in genotypes I, II, III, and V respectively (Fig. 

4). Among these, five were shared between all four genotypes. 

The capsid, prM, NS4A and 3’UTR regions of DENV-3 are potentially targeted by 

miRNAs aae-miR-124, aae-miR-281-3p, aae-miR-316, aae-miR-79-3p, and aae-miR-998, 

respectively (Table 4). The capsid region of DENV-3 has two potential binding sites that 

could interact with aae-miR-316 and aae-miR-79-3p. aae-miR-316, which also potentially 

interacts with DENV-1 and DENV-2, has been described above. The prM region of DENV-3 

contains a potential binding site for aae-miR-281-3p, which is detected in the cytoplasm of Ae. 

aegypti Aag2 cells and is upregulated in response to Wolbachia infection (Hussain et al., 

2011). aae-miR-124 potentially targets NS4B, and its expression levels peak during the  larval 

stage (Hu et al., 2015). aae-miR-998 could potentially interact with the 3’UTR of DENV-3, 

but also has  an additional binding site within the NS3 region, which is conserved between 

genotypes II, III, and V of DENV-3. 

 

DENV-4 

Three genotypes of DENV-4 were selected for our analysis: genotype I (AY618992), 

genotype II (FJ639737), and genotype III (AY618988). We identified 32, 37, and 21 potential 

miRNA binding sites for genotypes I, II, and III of DENV-4 respectively (Fig. 5). Among 

them, three potential miRNA binding sites were common to all three genotypes and may be 

targeted by aae-miR-1, aae-miR-219, and aae-miR-281-3p (Table 5). 

Most of the miRNAs that were predicted to interact with DENV-4 sequences have 

been mentioned above. Among them, aae-miR-281-3p is predicted to target  NS2A and  aae-

miR-1 and aae-miR-219 target a region of NS5. aae-miR-219 is a Wolbachia-induced miRNA 

in Aag2 cells and is expressed continuously from the larval to adult developmental stages (Hu 



 20 

et al., 2015; Mayoral et al., 2014a). 

 

miRNA targeting the ZIKV genome 

ZIKV was first isolated from Aedes africanus mosquitoes in 1948 (Dick, 1952) 

although serological evidence has shown a broader geographic distribution of human 

infections including North/East Africa, and South/Southeast Asia (Dick, 1953; Hammon et al., 

1958; Macnamara, 1954; Pond, 1963; Smithburn, 1952, 1954; Smithburn et al., 1954a; 

Smithburn et al., 1954b). Since the first human case reported in Nigeria in 1952 (Macnamara, 

1954), only 13 cases of mild, febrile illness were reported until the outbreak in the State of 

Yap ( Federated States of Micronesia) in 2007 (Fagbami, 1979; Moore et al., 1975; Olson et 

al., 1981; Simpson, 1964), where more than 70% of the population were infected (Duffy et al., 

2009). Later, cases of ZIKV related Guillain-Barré syndrome were notified during the 

outbreak in French Polynesia in 2013-2014 (Cao-Lormeau et al., 2014; Oehler et al., 2014). 

The first ZIKV case reported in America was in 2015 in Bahia (Brazil) (Campos et al., 2015; 

Zanluca et al., 2015). ZIKV caused a total of 51473 suspected cases and more than 4300 cases 

of microcephaly in Brazil by March 2016 (Victora et al., 2016; WHO, 2016), and the virus 

spread to at least in 33 countries or areas in the Americas (Hennessey et al., 2016; WHO, 

2016). Related to DENV, ZIKV belongs to the Flaviviridae family and the genus Flavivirus. 

The three distinct genotypes East Africa (EA), West Africa (WA), and Asian were likely to be 

originated in East Africa (Faye et al., 2014; Petersen et al., 2016). ZIKV has a conserved 

genome with less than 12% divergence at nucleotide level among all virus strains, and even 

with 99% nucleotide similarity for the strains from the Americas (Haddow et al., 2012). Thus, 

the interactions between mosquito miRNA and viral RNA could be more relevant than 

between highly divergent viruses, and might provide a new insight for evaluating the antiviral 

immunity of mosquitoes against newly emergent viruses. Three genotypes of ZIKV were 
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selected for analysis: EA (KF268949), WA (JU955592), and Asian (KU365778). According 

to our results, 30, 22 and 27 potential binding sites were found in EA, WA, and Asian 

genotypes respectively (Fig. 6). 

Five potential miRNA binding sites within the 5’UTR, NS2A, NS5 and 3’UTR were 

common among all three genotypes (Table 6). aae-miR-286a has two potential binding sites 

within the 5’UTR and NS5 regions, while aae-miR-286b could potentially target the 5’UTR. 

Both miRNAs have been detected in mosquito embryos (Li et al., 2009), although were less 

abundant in adults (Hussain et al., 2011). aae-miR-new-8 is a novel miRNA that has been 

recently discovered. Its expression could be detected in the very early stages of embryo 

development and decreases during embryogenesis (Hu et al., 2015). No information is 

available for the other miRNAs. aae-miR-34-3p (mentioned previously) is predicted to target 

to the 3’UTR region and NS2A region (involves in virus assembly) of ZIKV respectively. 

 

Selection of miRNAs and thermodynamic analysis 

Several miRNAs were predicted to have a low minimum free energy (MFE) indicating 

a relatively high affinity to form miRNA-vRNA complexes. In Ae. aegypti, we set up a MFE 

cut-off with -20 kcal/mol for evaluating miRNA-vRNA affinity (Etebari et al., 2016; Hu et al., 

2015; Hussain and Asgari, 2014; Su et al., 2017). According to this prediction data, we 

identified eight miRNAs - namely aae-miR-10, aae-miR-11-5p, aar-miR-278-3p, aae-miR-

282-5p, aae-miR-286a, aae-miR-286b, aae-miR-316, and aae-miR-34-3p. These could 

potentially target more than one genotype of each virus species with a MFE below -20 

kcal/mol for each miRNA-vRNA complex (Fig. S1). The possible structures formed by 

miRNA-vRNA interactions were predicted using RNAhybrid. We found that aae-miR11-5p 

and aae-miR-316 were forecasted to have binding sites within all the virus genomes we 

choose in this study. Thus, we suggest that these two miRNAs might play a critical role for 
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viral replication in Ae. aegypti. 

 

DISCUSSION 

miRanda and TargetSpy are powerful algorithms for predicting the miRNA potential 

binding sites on target sequences. miRanda is one of the most extensively used miRNA target 

prediction tools and was applied originally for identifying miRNA binding sites in Drosophila. 

The miRanda algorithm works in three phases. Firstly, the complementarity matches between 

the input miRNAs and RNA sequences were identified based on dynamic programming 

algorithm alignment. Secondly, a thermodynamic calculation was made to rule out the 

matches with a MFE value above the threshold. Finally, the remaining results were filtered by 

checking the sequence conservation with D. pseudoobscura and An. gambiae. In addition, 

miRanda can also weigh the matches between the 2nd to the 8th nucleotide from the 5’ arm of 

miRNA (seed-region), to evaluate the potential for miRNA-vRNA interaction to form 

(Enright et al., 2003). For a more stringent selection, the same database was analyzed with 

another algorithm, TargetSpy. Unlike miRanda, TargetSpy is an algorithm based on machine 

learning and automatic feature selection with a broad spectrum of compositional, structural, 

and base pairing of each miRNA to the targeting sequence (Sturm et al., 2010). Using a 

combination of miRanda and TargetSpy, we obtained consensus results which should be more 

robust for detecting miRNAs involved in viral replication. Moreover, a more reliable miRNA-

vRNA interaction was examined by comparing these results with the structure information 

predicted by RNAhybrid. 

Several potential miRNA binding sites were found for all three arboviruses, with 

conservation within each genotypes/lineage or even serotype for DENV (Fig. 7). Although 

many of the miRNA-vRNA complexes can be identified based on the relatively low MFE 

value, it remains necessary to evaluate the role of each potential miRNA on virus replication, 
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and the subsequent reduction or facilitation of virus replication has to be demonstrated 

experimentally. Although there is still a lack of miRNA targetome information available for 

Ae. aegypti, the critical roles of cellular miRNAs in host viral immunity have received more 

attention elsewhere with conformation of mammalian host miRNA-vRNA interactions 

c(Scheel et al., 2016; Trobaugh and Klimstra, 2017). The miRNA-vRNA interactions could 

regulate virus replication through different effects and thus lead to distinct outcomes, such as  

an inhibition caused by miRNA mediated gene silencing, or through enhancing the virus 

replication as a consequence of miRNA mediated viral RNA stabilization. Inhibitor studies 

should shed  light on individual miRNA-vRNA interactions. However, miRNA-vRNA 

interactions can also be proved by techniques such as Argonaute-crosslinking 

immunoprecipitation (AGO-CLIP) and mutagenic analysis of virus genomes is possible for 

many of the arboviruses investigated here. This study provides an analysis and rationale for 

selecting miRNAs and miRNA target sequences in genomes and should underpin such studies.  

 

 

 

METHODS 

Identification strategies for miRNA and v-RNA interactions 

Key, human pathogenic arboviruses (flaviviruses, DENV1-4 and ZIKV, and the 

alphavirus, CHIKV) were chosen for analyzing the relationship between miRNAs and viral 

genomes (vRNA). The genome sequences for each virus were collected from the virus 

database Virus Pathogen Resource (ViPR, www.ViPRbrc.org) (Pickett et al., 2012a; Pickett et 

al., 2012b), while the miRNA sequences of Ae. aegypti were retrieved from the miRNA 

database, miRbase, and published results of small RNA sequencing (Hu et al., 2015). 

Predictions of miRNA-vRNA interactions were carried out mainly using miRanda software 
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(Enright et al., 2003) and coordination with TargetSpy (Sturm et al., 2010) via the online tool 

sRNAtoolbox (Rueda et al., 2015) with default settings (http://bioinfo5.ugr.es/srnatoolbox). 

The consensus binding sites predicted by both software were extracted by BEDtools (Quinlan 

and Hall, 2010). Only the prediction sites shared by the two prediction algorithms were 

chosen for further case study (see below) and evaluation of the affinity of each miRNA-

vRNA complex. In addition, the structures of these complexes were predicted using the tool 

RNAhybrid (Kruger and Rehmsmeier, 2006) via BiBiServ2 (https://bibiserv2.cebitec.uni-

bielefeld.de) (Fig. 8). 

 

Flowchart validation 

 A mosquito endogenous mRNA-miRNA interaction was used to validate the workflow 

for predicting miRNA binding sites we have adopted in this study. The transcript of Ae. 

aegypti glutamate semialdehyde dehydrogenase (GSD, AAEL006834) was shown to be 

regulated by aae-miR-275-3p in the 3’UTR (Zhang et al., 2017). The GDS transcript and the 

miRNA database of Ae. aegypti were used as input data. Using  the default setting, a total of 

two binding sites were predicted by the software miRanda at the position 362-381 and 2682-

2700 in the coding sequence and 3’UTR, respectively. However, only one binding site on the 

3’UTR was filtered by TargetSpy which matches with aae-miR-275-3p identified earlier 

(Zhang et al., 2017). 
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Table 1 List of the nine most common miRNA binding sites in the CHIKV genome. 

Groups  

Number of 

prediction binding 

sites 

miRNAs 
Predicted binding 

sites 

(i) 

Asian 

ECSA 

IOL 

6 

aae-miR-263a-5p 

aae-miR-279 

aae-miR-305-5p 

aae-miR-34-3p 

aae-miR-34-3p 

aae-miR-996 

nsP4 

E1 

nsP3 

nsP1 

nsP1 

E1 

(ii) 

WA 

ECSA 

IOL 

3 

aae-miR-285 

aae-miR-989 

aae-miR-iab-4-5p 

 

E1 

capsid 

3'UTR 

 

 

Table 2 List of the nine most common miRNA binding sites in the DENV-1 genome. 

Genotypes 

Number of 

prediction binding 

sites 

miRNAs 
Predicted binding 

sites 

I 

II 

III 

IV 

V 

2 
aae-miR-1 

aae-miR-282-5p 

NS3 

Capsid 

I 

II 

III 

V 

3 
aae-miR-316-2 

aae-miR-92a-3p 

aae-miR-92b-3p 

NS5 

NS5 

NS5 

I 

II 

IV 

V 

1 aae-miR-11-5p NS4B 

I 

III 

IV 

V 

3 
aae-miR-263a-3p 

aae-miR-316 

aae-miR-998 

3'UTR 

Capsid 

3'UTR 

 

Table 3 List of the six most common miRNA binding sites in then DENV-2 genome. 

Genotypes Number of 

prediction binding 

sites 

miRNAs Predicted binding 

sites 
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Asian-I 

Asian-II 

Asian American 

American 

Cosmopolitan 

2 
aae-miR-316 

aae-miR-9c-5p 

Capsid 

NS5 

Asian-I 

Asian-II 

Asian American 

Cosmopolitan 

2 
aae-miR-281-3p 

aae-miR-998 

NS2B 

3’UTR 

Asian-I 

Asian American 

American 

Cosmopolitan 

1 aae-miR-263a-3p 3’UTR 

Asian-II 

Asian American 

American 

Cosmopolitan 

1 aae-miR-315-5p NS5 

 

Table 4 List of the five most common miRNA binding sites in the DENV-3 genome. 

Genotypes Number of 

prediction binding 

sites 

miRNAs Predicted binding 

sites 

I 

II 

III 

V 
5 

aae-miR-124 

aae-miR-281-3p 

aae-miR-316 

aae-miR-79-3p 

aae-miR-998 

NS4A 

prM 

capsid 

capsid 

3’UTR 
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Table 5 List of the three most common miRNA binding sites in the DENV-4 genome. 

Genotypes 

Number of 

prediction binding 

sites 

miRNAs 
Predicted binding 

sites 

I 

II 

III 

3 

aae-miR-1 

aae-miR-281-3p 

aae-miR-219 

NS5 

NS2A 

NS5 
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Table 6 List of the five most common miRNA binding sites in ZIKV sequences. 

Genotypes 

Number of 

prediction binding 

sites 

miRNAs 
Predicted binding 

sites 

East African 

West African 

Asian 

5 

aae-miR-286a 

aae-miR-286a 

aae-miR-286b 

aae-miR-34-3p 

aae-miR-new8 

5’UTR 

NS5 

5’UTR 

3’UTR 

NS2A 
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FIG 1 Venn-diagram presentation of common prediction binding sites on four genotypes of 

CHIKV for Ae. aegypti miRNAs. AM258992, Indian Ocean Lineage, IOL; HM045816, West 

African, WA; EU703762, Asian; HM045811, East/Central/South African, ECSA. The six 

miRNAs binding sites common to the group Asian/ECSA/ IOL and the group WA/ECSA/IOL 

were listed in Table 1. 

 

 

FIG 2 Venn-diagram of the predicted common binding sites on five genotypes of DENV-1 

for Ae. aegypti miRNAs. AF298808, genotype I; JQ922547, genotype II; DQ285562, 

genotype III; EF025110, genotype IV; JX669462, genotype V. The nine miRNAs binding 

sites that are common to at least four genotypes of DENV-1 were listed in Table 2. 
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FIG 3 Venn-diagram of the predicted common binding sites for five genotypes of DENV-2 

for Ae. aegypti miRNAs. DQ181799, Asian-I; AJ968413, Asian-II; DQ181801, Asian 

American; AY702040, American; AB189122, Cosmopolitan. The nine miRNAs binding sites 

common to at least four genotypes of DENV-2 were listed in Table 3. 

 

 

FIG 4 Venn-diagram of the predicted common binding sites in four genotypes of DENV-3 for 

Ae. aegypti miRNAs. AY744677, genotype I; AY676352, genotype II; AY099336, genotype 

III; AF317645, genotype V. The five miRNAs binding sites that are common to all four 

genotypes of DENV-3 were listed in Table 4. 
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FIG 5 Venn-diagram of the predicted common binding sites in three genotypes of DENV-4 

for Ae. aegypti miRNAs. AY618992, genotype I; FJ639737, genotype II; AY618988, 

genotype III. The five miRNAs binding sites that are common to all three genotypes of 

DENV-4 were listed in Table 5. 

 

 

FIG 6 Venn-diagram of the predicted common binding sites in three genotypes of ZIKV for 

Ae. aegypti miRNAs. KF268949, East African, EA; KU955592, West African, WA; 

KU365778, Asian. The five miRNAs binding sites common to all genotypes of ZIKV were 

listed in Table 6. 
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FIG 7 The interactome of Ae. aegypti miRNAs with DENV, ZIKV and CHIKV genomes 

as predicted by miRanda and TargetSpy. (A) miRNAs of Ae. aegypti; (B) miRNA and its 

seed region (seed region in red); (C), links between miRNAs and potential binding regions on 

the viruses; (D) genomes of arboviruses; (E) dark and light areas represent the protein coding 

regions in each virus; (F) conservation scores of virus among all the genotypes; green links, 

the miRNA binding site that shared among most of genotypes discussed in this study; orange 

links, the miRNA-vRNA with low energy; blue links, the miRNA-vRNA with low energy and 

is shared among most arboviruses; black links, remaining miRNA-vRNA interactions. 
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FIG 8 Flowchart for the detection of Ae. aegypti miRNA binding sites in arbovirus genomes. 

The flowchart comprises four major steps: data input, miRNA binding site prediction, data 

sorting, and result analysis. 
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FIG S1 Potentially true miRNA-vRNA interaction predicted in this study. The scheme 

shows the most influence miRNA-vRNA interactions predicted in this study. Each miRNA 

could targets to multiple viruses and has a relatively low MFE (around -20 kcal/mol). 
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FIG S2 The possible structures of each low MFE miRNA-vRNA interaction that 

predicted by RNAhybrid. The structures of seven low MFE miRNAs of Ae. aegypti were 

potentially interact with CHIKV, DENV, and ZIKV. Among them, the possible binding sites 

for aae-miR-316 and aae-34-3p, and aae-miR-282-5p could be commonly found on both 

DENV and ZIKV. 
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CHAPTER 2: ALTERNATIVES FOR 

ARBOVIRAL DISEASES CONTROL 
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1. Arboviral diseases and burdens 

As the consequence of climate change and growing human activities, the impacts 

caused by mosquito-borne arbovirus diseases have become a global issue. Newly and re-

emergent arboviral diseases cause millions of infections and billions of costs annually for 

prevention and control (Fredericks and Fernandez-Sesma, 2014; Shepard et al., 2016). 

Consequently to the climate change and globalized exchanges (travelers and goods), the 

mosquito-borne diseases have been introduced into areas considered as non-endemic (Rezza, 

2014), e.g. DENV and CHIKV in Europe (Tomasello and Schlagenhauf, 2013) and the recent 

Zika pandemic (Petersen et al., 2016), causing millions of infections and significant health 

and economic burden for countries in financial difficulties (Stanaway et al., 2016) 

 

2. Using of insecticide for arboviral diseases control 

Mosquitoes are the site where is constituted a collection of different viral variants 

(Coffey et al., 2014; Stapleford et al., 2014). Until now, no positive treatment or more 

broadly, effective vaccines are available. Thus, controlling the mosquito vector is essential for 

mosquito-borne diseases control. The most extensively used approach is the application of 

insecticides. The first widely used insecticide, dichlorodiphenyltrichloroethane (DDT) was 

synthesized in 1874, although the insecticide activity was only discovered in 1939 and 

commercialized shortly after in 1943 for agriculture and health usages. During WWII, 

soldiers started using DDT to prevent typhus fever and malaria (U.S.E.P.A., 1975). 

Meanwhile, a WHO leading malaria eradication program has achieved a great success by 

using DDT in 1955, thereby, DDT has become a major insecticide for pest control. However, 

the resurgences of malaria and the environmental damages caused by DDT were raised later 

in 1960s (Najera et al., 2011). The insecticide affects the avian calcium metabolism which 

causes thinning of the eggshell and high rates of breakage during development (Hamlin and 
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Guillette, 2010). Most organochlorine compounds were then banned after the 1970s. Since 

then, more and more compounds with insecticidal properties were synthesized. Until present, 

the major insecticides could be divided into several groups: organochlorines, 

organophosphates, carbamates, pyrethroid,s and neonicotinoid insecticides (Isman, 2008). 

 

However, insecticide resistance still remains an issue; the increasing cost for control 

and decreasing efficiency as a consequence of insecticide resistance lead to a vicious cycle 

(Vontas et al., 2012). Besides, accumulating evidence showed the effects of insecticides on 

the non-target species leading to unpredictable ecological or even economical impacts. For 

instance, neonicotinoid insecticides (NNIs) were proved to be involved in honeybee 

population decline. Even though neonicotinoids are systemic insecticides for agricultural 

application, the pollen from non-target plants was suggested to be source of exposure to NNIs 

(Iwasa et al., 2004; Tsvetkov et al., 2017). Therefore, a controllable, species-specific and 

environmental friendly biological alternatives for mosquito vectors control has become an 

emergency. 

 

3. Genetically modified-based control strategy-population reduction and 

replacement 

With the increasing availability of mosquito genomic information, various genetic 

tools are available for mosquito genome manipulations. Many genetically-engineered 

mosquitoes have been developed in the past two decades. Genetic control strategies could be 

roughly divided into two categories: (i) reducing the population size of vector mosquitoes and 

(ii) replacing the wild mosquitoes by a refractory population to reduce the probably of 
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transmission. Both approaches are highly species-specific, relatively predictable, and 

environmental friendly compared to insecticides (Alphey, 2014). 

 

3.1  Sterile Insect Technique 

The sterile insect technique (SIT) was the first genetic control strategy which relies 

on the release of large amount of radio-sterilized male mosquitoes to reduce the reproductive 

ability of wild population through mating with wild females (Benedict and Robinson, 2003). 

However, attempts of large field releases for mosquito control revealed the drawbacks of SIT 

(Alphey et al., 2010). The poor mating performance of irradiated male mosquitoes (Oliva et 

al., 2012), the high mortality during transportation between the site of irradiated males 

production and the target areas for releasing (Bellini et al., 2013) and the high demands of 

human power for mosquito sexing to discard female mosquitoes, largely increase the cost of 

mosquito SIT program (Papathanos et al., 2009).  

Mosquitoes sexing is a major issue for releasing sterile mosquitoes, although the 

sterile female mosquitoes would not significantly affect the reduction efficiency of the 

mosquito population size, the biting nature of female mosquitoes can potentially increase the 

risk of pathogen transmission. Thus, the genetic sexing of mosquitoes is developed with 

genetically engineering technique, for example, a selective lethality to eliminate female 

mosquitoes from the population or a sex-specific expression of an appropriate marker, e.g. 

fluorescent proteins or pigments, to distinguish the mosquito sex and facilitate sex separation 

(Smith et al., 2007). 
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3.2  Release of insects carrying a dominant lethal 

Based on SIT, a genetically-engineered self-limiting approach, the releasing of 

insects carrying a dominant lethal (RIDL) was developed to overcome the disadvantages 

resulted by mosquitoes irradiation (Gabrieli et al., 2014; Phuc et al., 2007). Compared to SIT, 

RIDL strategy decreased the costs by reducing the damage and mortality during radiation 

(Alphey et al., 2010). The expression of a repressible lethal phenotype of RIDL mosquitoes 

reduces the population size after mating with wild-type mosquitoes (Thomas et al., 2000). The 

lethal gene is regulated under the tetracycline operator (tetO) system which initiates the 

expression of tetracycline-repressible transactivator fusion protein (tTA). Under regular 

conditions, the expression of tTA that also acts as a toxin is initiated by the tetO, and a 

positive feedback loop is formed as a result of tTA expression. As tTA accumulates, the 

progeny is killed due to tTA toxicity (Gabrieli et al., 2014). In laboratory conditions, the 

expression of tTA is neutralized by tetracycline provided, and subsequently abolishes tTA 

expression (Lewandoski, 2001). For mass rearing, the tetracycline could be added in the diet 

to maintain a normal metabolism and development (Heinrich and Scott, 2000). The supply of 

tetracycline is interrupted after the mosquitoes are released and the positive feedback loop is 

initiated leading to kill the progeny in the field. 

 

The control mechanism of RIDL mosquitoes is very similar to traditional SIT with the 

progeny killing and the lethality of non-transmitting male mosquitoes that still able to pass the 

genetic traits to next generation. Therefore, multiple releases if RIDL mosquitoes are essential 

to reach population reduction. 

 

To improve the population reduction efficiency of RIDL mosquitoes, a female-sterile 

RIDL (fsRIDL) system was developed by replacing the tetO with a female-specific promoter 
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for tTA expression. It results in female-specific lethality and consequently, reduces the cost of 

RIDL mosquitoes control strategy. Moreover, the fsRIDL traits could be passed to next 

generation by the male mosquitoes even without the presence of tetracycline (Alphey, 2014; 

Harris et al., 2012; Harris et al., 2011). The subsistence of fsRIDL male mosquitoes provide a 

notable advantage for mosquitoes population control. 

 

A variant of fsRIDL, female flightless mosquitoes were also developed to ensure the 

inability of female mosquitoes for transmission. The flightless mosquito shares all the 

advantages of the RIDL system, but could be released at any life stages during development 

(Fu et al., 2010; Labbe et al., 2012). Combining with AeAct-4 promoter (which activates in 

the indirect flight muscles) and a female-specific alternative splicing intron, a mature tTA is 

expressed in female muscle cells without tetracycline. The muscle cells are subsequently 

disrupted and lead to the loss of flight ability. This phenotype is potentially lethal, as flight is 

essential for host seeking and mating ability. Whereas male mosquitoes have no significant 

impact on flight ability due to the insufficient activity of female-specific alternative intron, the 

female flightless traits could be sustained among the target population (Wise de Valdez et al., 

2011). 

 

3.3  Field trials of RIDL mosquitoes 

Caged and semi-field trials of RIDL mosquitoes have demonstrated the efficiency 

and potential of RIDL for controlling wild populations (Phuc et al., 2007; Wise de Valdez et 

al., 2011). Thereby, the RIDL mosquito strain, OX513A was further subjected to open field 

testing in the Cayman Island (Harris et al., 2012; Harris et al., 2011), Malaysia (Lacroix et al., 

2012), Brazil (Carvalho et al., 2015), and Panama (Gorman et al., 2016). A permission for a 
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trial in Key West, Florida, US, was under reviewing by the Food and Drug Administration 

(FDA). Except the trial in Malaysia that released six thousands of OX513A males in two 

weeks and ended before any outcome could be determined (Lacroix et al., 2012), the other 

trials have shown a great success for suppressing Ae. aegypti population. In Cayman, a 82% 

of suppression was achieved after releasing of approximately 3.3 million OX513A males in 

23 weeks whereas mosquito suppression rate was more than 90% in Brazil; a total of 17.4 

millions of OX513A males were released in 17 months (Carvalho et al., 2015). More than 

90% of mosquito population size was reduced in Panama with a total of 4.3 million of 

releases in 27 weeks (Gorman et al., 2016). 

 

The RIDL mosquito control strategy was strongly encouraged by the successful trials 

undergone in countries or areas submitted to the threat of arboviral diseases transmitted by 

Ae. aegypti or Ae. albopictus. It also helps local communities in understanding this alternative 

arboviral diseases control strategy. Thus, following the dengue outbreak in Florida, US in 

2010 (Graham et al., 2011; Radke et al., 2012), the local administration, Florida Keys 

Mosquito Control District has considered more carefully the RIDL mosquitoes, and obtained 

the approval after a final finding of no significant impact (FONSI) and a final environmental 

assessment (EA) on March 2017. According to the survey in June 2012 examining the 

community awareness and support for releasing the genetically-modified mosquitoes to 

suppress the wild population, more than half of the 400 residents in Monroe County (51.1%) 

have heard of the proposed releasing project before the survey. Among them, 57% were in 

favor, 25.1% neutral and only 17.9% tending to oppose (Ernst et al., 2015), indicating that the 

GM-based mosquitoes control strategy has become more acceptable after the successful trials 

obtained in other countries. 
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3.4  Others mosquito population reduction approaches 

Except the RIDL-based population reduction strategy, a similar outcome could be 

obtained by modifying the sexual phenotype of mosquitoes that leads to a mechanical 

isolation and subsequently, to a reduction of target population size. For Ae. aegypti, the male 

sexual phenotype is controlled by a dominant male-determining factor (M factor) located on 

the Y chromosome (Glichrist and Haldane, 1947; Hall et al., 2014), which was proven to be a 

master factor in Ae. aegypti male determination, however the detailed mechanism was not 

clear. Nevertheless, a M factor related gene, Nix, was recently shown to exhibit a male 

determining activity in Ae. aegypti (Hall et al., 2015). By continual ectopic expression of Nix 

in female genital organs, females develop sexually dimorphic traits with male testes and 

accessory glands (Hall et al., 2015). Thus, the mating ability is abolished due to the 

mechanical isolation between the modified and the wild-type population, leading to a 

reduction of population size. 

 

Moreover, the orthologue of Drosophila sex behavior genes, Fruitless (fru) and 

Doublesex (dsx) were also identified in Ae. aegypti (Salvemini et al., 2013; Salvemini et al., 

2011). The female isoform of both genes could be detected in Nix knockout male mosquitoes 

although the dsx knockdown experiment has shown no blood feeding or mating defects. In 

dsx-deficient female mosquitoes, the reproduction abilities were decreased; the size of ovaries 

and ovarioles and the ovariole number were lower (Mysore et al., 2015). In addition, the 

olfactory system was also disrupted in dsx-deficient female mosquitoes which exhibited a 

reduced length and sensilla of female antenna and maxillary palps. This leads to an odorant 

receptor expression in the antenna (Mysore et al., 2015) without demonstrating any 

consequences on the host seeking ability of mosquitoes. Converting the female mosquitoes 
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into harmless males by Nix related genes in Ae. aegypti is considered a potential tool that 

could be applied for population reduction of mosquitoes. 

 

4. Effector gene and population replacement 

Although the population reduction is the most widely used strategy for mosquito 

control, a concern is raised by eliminating certain species from the environment. It can cause 

ecological imbalance (food chain), and subsequently; facilitate the secondary pest re-

emergence (Beech et al., 2009). For instance, in nature, Ae. aegypti and Ae. albopictus share 

the same larval habitats, and their co-existence was frequently reported (Braks et al., 2004; 

Juliano et al., 2004; Simard et al., 2005). The oscillation of both population size in the same 

habitat have been observed in many countries after the introduction of Ae. albopictus. In some 

cases, Ae. albopictus has a better population growth rate which was likely to be the dominant 

species in competitive interactions with Ae. aegypti (Barrera, 1996; Braks et al., 2004; Juliano 

et al., 2004). This suggests that if one species is eliminated, the other might take over the 

ecological niche, and become a re-emerging secondary pest. 

 

Besides, Aedes spp. are considered important pollinators for many subarctic plants 

(Dryas integrifolia) (Kevan, 1972), even the only pollinators for Platanthera obtusata (Foster, 

1995). Thus, instead of eliminating the entire population, replacing the wild population by 

refractory mosquitoes could minimize the ecological impacts. It keeps the mosquito 

population in its ecological niche while reducing the risk of transmission. The population 

replacement strategy combining a gene drive system and a pathogen effector gene was rapidly 

developed in the past decade. Several gene drive systems, including medea, toxin-antidote 

underdominant, and homing based gene drive system were developed and showed high 
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efficiencies of population replacement. Whereas the development of effector genes against 

abroviruses were mainly focused on RNAi systems, few strategies were related to immune 

genes and antiviral ribozymes. 

 

4.1  Gene drive systems 

To facilitate the introduction of the desired traits into the target population, synthetic 

gene drive systems that increase the inheritance, were rapidly developed in the past decade 

(Champer et al., 2016; Sinkins and Gould, 2006). Gene drive systems are not following the 

Mendelian’s rule and significantly, increase the inheritance probability of desired traits among 

the target population (Hammond et al., 2016). According to the outcomes of different gene 

drive systems, it could be classified into: (i) a modification drive that spreads the desired traits 

through target duplication or ii) a suppression drive which reduces or eliminates the target 

population (Champer et al., 2016). Medea, toxin-antidote underdominance, and homing-based 

gene drive system belong to the modification drive. Except the homing-based gene drive 

system, the modification drive is composed by an independent killing and rescuing system, 

the progeny without rescuing system will be killed, whereas the progeny that are able to 

produce the antidote could survive and pass the traits to the next generation. By using a 

maternal promoter to express the toxin, medea (maternal effect dominant embryonic arrest) 

kills the naïve progeny at embryo stage and rescues the progeny that inherited with the same 

medea element to replace the target population in few generations (Akbari et al., 2014; Akbari 

et al., 2013b; Chen et al., 2007). In contrast, the underdominance system uses two different 

alleles for toxin and antidote expression. The progeny is killed in the absence of the 

corresponding allele responsible for antidote expression and is able to spread the desired traits 

within the target population (Champer et al., 2016; Edgington and Alphey, 2017). The 

population replacement could be achieved by killing the progeny that has not inherited the 
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same gene drive element. Through the kill-and-rescue based population replacement 

approach, only a moderate rate of spread could be expected due to the population reduction 

phase caused by the killing at the initial step of replacement (Akbari et al., 2013b). 

 

On the contrary, the homing-based gene drive system is able to spread the gene drive 

element without killing the progeny, through a CRISPR/Cas9-mediated cut-and-copy 

machinery (Champer et al., 2016; Gantz and Bier, 2015; Gantz et al., 2015; Hammond et al., 

2016). The site-specific endonuclease activity and DNA homology-directed repair (HDR) 

mechanism have provided a novel approach to rapidly increase the gene frequency among the 

target population. By encoding the CRISPR/Cas9 system that target to the flanking sequence 

of the gene drive system in the chromosome, the flanking sequence-specific Cas9 

endonuclease breaks the target chromosome upon initiation. The HDR DNA repairing 

mechanism is triggered in response to DNA damage which uses the gene drive element 

containing sequence as the template for DNA repairing. Thus, a repaired sequence containing 

the homing-based gene drive element is synthesized and the frequency of desired traits in the 

target population is therefore rapidly increased (Gantz and Bier, 2015; Hammond et al., 

2016). Although concerns of off-target effect and Cas9 immune to drive (ITD) allele were 

raised (Cho et al., 2014; Drury et al., 2017), CRISPR/Cas9-based gene drive is currently the 

most effective gene drive system for population replacement pest control strategy. 

 

4.2 Antiviral effector genes 

Combined with gene drive system, the effector gene that triggers the mosquito 

antiviral immunity is another essential element to inhibit virus transmission among the target 

population. Several components involved in mosquito innate immunity were used as an anti-

pathogen effector gene for suppressing arbovirus replication in genetically-engineered 
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mosquitoes (Jupatanakul et al., 2017; Kokoza et al., 2000; Kokoza et al., 2010). Under the 

control of Aedes vitellogenin promoter, two antimicrobial peptide (AMP) of the Toll pathway, 

Cecropin A and Defensin A have shown to exhibit an antimicrobial activity that suppresses 

the proliferation of Gram-positive bacteria Staphylococcus aureus and Staphylococcus 

epidermidis, Gram-negative bacteria Pseudomonas aeruginosa, and the parasite Plasmodium 

in genetically-engineered Ae. aegypti (Kokoza et al., 2010). Moreover, the antiviral activity of 

the two AMPs was demonstrated later in DENV-2 challenged mosquitoes; the viral load in 

the midgut and fat body of genetically-engineered mosquitoes were significant lower than in 

wild-type Ae. aegypti (Pan et al., 2012). 

 

4.3 Genes that trigger anti-microbial immune responses 

Except the components from Toll and Imd pathways, the components of JAK/STAT 

pathway in Ae. aegypti were also involved as an antiviral effector in genetically-engineered 

mosquitoes (Jupatanakul et al., 2017). Through the recognition of unpaired ligand Upd, the 

receptor of JAK/STAT Domeless (Dome) and the Janus kinase (Hop), activate the 

downstream signaling and expression of immune genes (Cheng et al., 2016). The two 

receptor-related components are used as the antiviral effector to reduce arbovirus replication 

in genetically-engineered mosquitoes. Under the regulation of a blood meal-inducible and fat 

body-specific vitellogenin in Ae. aegypti, the genetically-engineered mosquitoes have shown 

an increased resistance to DENV-2 and DENV-4 infection in the midgut and salivary glands 

(Jupatanakul et al., 2017).  

 

The use of components in mosquito innate immune pathway to induce a systemic 

antiviral response, could potentially achieve a stronger or more extensively effective antiviral 

activity. However, not only immunity, several components involved in mosquito immune 
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pathways have proven to participate in maintaining mosquito homeostasis, cell proliferation, 

and development (Halfon and Keshishian, 1998; Hoffmann and Reichhart, 2002); the ectopic 

expression of immune related genes could be a fitness burden for mosquitoes. Besides, the 

enhanced innate immunity might also alter the mosquito microbiome that plays a critical role 

for antiviral immunity, especially in certain tissue, e.g. midgut and salivary glands (Ramirez 

et al., 2012). 

 

4.4 Antiviral RNAi 

To minimize the non-intended impacts on mosquito microbiome and biological 

processes while maintaining the high antiviral efficiency, the highly efficient and specific 

RNAi machinery has been applied as a reliable system against RNA arboviruses in 

genetically-engineered mosquitoes. Until present, several attempts in using long dsRNA 

(ldsRNA) as an effector to induce the antiviral responses were done with tissue specific or 

ubiquitious expression systems (Adelman et al., 2002b; Franz et al., 2006; Khoo et al., 2013; 

Mathur et al., 2010). The mosquitoes or drosophila Ubiquitious promoter and 

Carboxypeptidase promoter that respectively activate ubiquitiously or tissue-specifically, 

were applied to demonstrate the antiviral efficiency in genetically-engineered Ae. aegypti. 

Later on, a female salivary gland specific promoter was developed for expressing the antiviral 

ldsRNA, to suppress the virus replication in the salivary glands and attempt to reduce the risk 

of transmission (Mathur et al., 2010). Although only a weak antiviral phenotype was observed 

in the mosquitoes mentioned above, a genetically-engineered Ae. aegypti with a strong viral 

suppression phenotype was constructed in 2006. An anti-DENV-2 ldsRNA was driven by 

Carboxypeptidase A promoter, and the viral load in the midgut and salivary glands were 

significantly reduced in the genetically-engineered mosquitoes with subsequent blockage of 

transmission (Franz et al., 2006). However, a total suppression of viral infection in 
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mosquitoes has not been achieved yet. The highly efficient and relatively low fitness impact 

of RNAi-based genetically-engineered mosquitoes could serve as a-proof-of-concept for 

using the potential of mosquito RNAi machinery to increase resistance to arboviruses. 

 

4.5 Antiviral ribozymes 

In addition to RNAi-based control approaches, a ribozyme-based antiviral effector for 

reducing arbovirus virus replication was developed (Mishra et al., 2016; Nawtaisong et al., 

2009). The catalytic activity of ribozymes is capable of guiding and cleaving target viral RNA 

spontaneously. Therefore, the viral replication could be reduced in mosquitoes. With a 

different silencing mechanism than antiviral siRNA, the antiviral ribozymes are able to target 

multiple sites which are short sequences (15-16 nt) necessary for RNA cleavage. No host 

factors are needed and non temperature sensitive features are requested making antiviral 

ribozyme a powerful effector against viruses. A hammerhead ribozyme has been 

demonstrated to inhibit CHIKV replication in genetically-engineered Ae. aegypti. The 

antiviral ribozymes were expressed under the Ae. aegypti t-RNAval Pol III promoter. The 

ubiquitously expressing antiviral ribozymes significantly reduced infection, dissemination, 

and transmission efficiencies in genetically-engineered mosquitoes. Therefore it provides the 

proof that the antiviral hammerhead ribozymes are potential effectors for population 

replacement strategies. 

 

4.6 Behavior alteration 

Instead of enhancing the antiviral immunity, knocking-out mosquito genes which are 

related to the sensory system, can reduce the virus transmission. Until now, 14 genes that are 

strongly correlated with a preference for humans were identified by analyzing the 
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transcriptomes in the antennae between the domestic and forest forms of Ae. aegypti 

(McBride et al., 2014). By receiving the human odorous molecules, mosquito host seeking 

and blood feeding behavior were elicited through the activation of odorant receptors (ORs), 

gustatory receptors (GRs), and ionotropic receptors (IRs) (Sparks et al., 2015). Ae. aegypti 

ORs were found in the antenna, maxillary palps, proboscis, and even on tarsi. They sense 

various odorant molecules as ligand binding (Bohbot et al., 2007; Bohbot et al., 2014; Sparks 

et al., 2014), whereas GRs were found in the labella and tarsi of Ae. aegypti, involved in 

detecting the presence of CO2 in the environment (Erdelyan et al., 2012; Sparks et al., 2013). 

Although there is still a lack of functional study on mosquito IRs, the presence of IRs were 

found on the lactic acid-sensitive cells (Melo et al., 2004), suggesting that the IRs of Ae. 

aegypti could detect acid and amine with similar functions than for Drosophila IRs (Abuin et 

al., 2011). 

 

Several attempts have demonstrated that the knock-out of AaegGr3 (GR), Orco (OR), 

and npylr (IR), can interrupt the signal transduction in mosquito sensory neuron system, and 

subsequently, suppress the host-seeking behavior in female mosquitoes. AaegGr3 is a subunit 

of the CO2 receptor of Ae. aegypti as its CO2  sensitivity can be suppressed by knock-down 

experiments (Erdelyan et al., 2012). The zinc-finger nuclease (ZFN) mediated AaeGr3 

knocking-out mosquitoes successfully inhibits CO2 sensing ability. However, attraction to 

humans is reduced but not abolished in semi-field experiments (McMeniman et al., 2014), 

suggesting that a heat and odor dependent sensory can also participate in host sensing of Ae. 

aegypti. Thus, a multimodal integration approach is essential to reduce the mosquito attraction 

to human. The odorant receptor (orco) and neuropeptide Y-like receptors (npylr1) were 

knocked-out in Ae. aegypti, however, only a weak reduction of preference for humans was 
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observed in orco knocked-out mosquitoes (DeGennaro et al., 2013), whereas no effect for 

host-seeking inhibition was observed for npylr1 mutant mosquitoes (Liesch et al., 2013). 

 

Although the olfactory-deficient mosquitoes are not yet fully developed for arboviral 

diseases control due to the inefficient inhibition of female mosquito attraction to humans, 

many factors involved in mosquito blood-feeding behavior were gradually revealed in those 

studies. The ultimate goal of this mosquito control strategy is knocking-out the essential 

component that switches the mosquito attraction from human to other animal host, so that the 

mosquito population could be preserved in their natural habitat and stay at a relatively stable 

ecological balance. Combining with a gene drive system, the olfactory-deficient phenotype 

could be introduced into the target population; the risk of disease transmission will be 

therefore reduced while the mosquito natural ecological niche is not disturbed. 
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4.7 Part II: Synthetic miRNAs induce dual arboviral-resistance phenotypes in the vector 

mosquito, Aedes aegypti 

In this chapter, we present an article was accepted by the journal Communications 

Biology. 
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Abstract 

 

Mosquito-borne arboviruses are responsible for recent dengue, chikungunya and Zika pandemics. 

The yellow-fever mosquito, Aedes aegypti, plays an important role in the transmission of all three viruses. 

We developed a miRNA-based approach that results in a dual resistance phenotype in mosquitoes to dengue 

serotype 3 (DENV-3) and chikungunya (CHIKV) viruses. The target viruses are from two distinct arboviral 

families and the antiviral mechanism is designed to function through the endogenous miRNA pathway in 

infected mosquitoes. Challenge experiments showed reductions in viral transmission efficiency of transgenic 

mosquitoes. Several components of mosquito fitness were examined, and transgenic mosquitoes with the 

PUb promoter showed minor fitness costs at all developing stages. Further development of these strains with 

gene editing tools could make them candidates for releases in population replacement strategies for 

sustainable control of multiple arbovirus diseases.
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Introduction 

 

Dengue and chikungunya are two major arboviral diseases that have emerged as global 

threats in the past decades. Approximately 390 million people are infected annually with dengue 

and over 50% of the world’s population live under the risk of infection, draining annually an 

estimated $40 billion for health-care spending and lost productivity in affected countries (Selck et 

al., 2014). Compared to dengue, chikungunya has a lesser impact on public health and had been a 

neglected tropical disease until the 2005 outbreak in La Réunion Island when one-third of the 

population was affected. Since then, there have been several chikungunya outbreaks worldwide 

including in Southeast and East Asia, Central Africa, South Pacific Islands, and lately in Latin 

America and the Caribbean (Zouache and Failloux, 2015). Many imported cases have been reported 

in Europe and North America raising the risk of local transmission. Autochthonous cases of dengue 

were recorded in Croatia (Gjenero-Margan et al., 2011), France (Marchand et al., 2013; Succo et 

al., 2016), and Madeira (Lourenco and Recker, 2014), while chikungunya has appeared in Italy 

(Angelini et al., 2007) and France (Delisle et al., 2015; Grandadam et al., 2011). 

 

Dengue virus (DENV) and chikungunya virus (CHIKV) co-circulate in several tropical 

areas and co-infections in human are frequently reported (Chahar et al., 2009; Chang et al., 2010; 

Chipwaza et al., 2014; Hapuarachchi et al., 2008; Laoprasopwattana et al., 2012; Nayar et al., 2007; 

Omarjee et al., 2014; Parreira et al., 2014; Ratsitorahina et al., 2008; Raut et al., 2015; Rezza et al., 

2014; Schilling et al., 2009; Tun et al., 2014). The viruses belong to two distinct families but share 

the same mosquito vectors, Aedes species. Mosquitoes can acquire DENV and CHIKV 

simultaneously after feeding on a co-infected patient or after two consecutive blood meals on 

viremic hosts (Furuya-Kanamori et al., 2016a). Co-infected mosquitoes can transmit concomitantly 
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DENV and CHIKV to subsequent hosts (Vazeille et al., 2010), and this is likely to cause more 

severe symptoms than mono-infections (Chahar et al., 2009; Mercado et al., 2016). 

 

DENV-3 is the fastest spreading DENV serotype in the past two decades (Messina et al., 

2014). Because a licensed tetravalent dengue vaccine is still not available (Capeding et al., 2014; 

Villar et al., 2015), novel vector control strategies are needed to prevent virus transmission between 

mosquitoes and hosts. Furthermore, while vaccination would greatly reduce urban transmission, 

enzootic circulation of arboviruses carries the risk of mutation accumulation and spillover 

infections that would not be impeded (Sun et al., 2006; Thiboutot et al., 2010; Wolfe et al., 2001). 

Eliminating both CHIKV and DENV-3 viruses in mosquito vectors would reduce the burden on 

population health, particularly for countries already under stress in their health-care system. 

 

While most arboviruses can induce significant morbidity and/or mortality in some vertebrate 

hosts, infections of mosquito vectors are generally considered non-pathogenic (Martin et al., 2010). 

However, interactions between the replicating virus and the mosquito immune defense system may 

influence subsequent viral dissemination and transmission. Considerable progress has been 

achieved in understanding the innate defenses of the mosquito against arboviruses. Among them, 

RNA interference (RNAi) has been shown to be a major innate response of mosquitoes against 

arboviruses. Knock-down experiments targeting RNAi components such as Dcr2, R2D2 and Ago2 

in Aedes show increased viral loads or decreased extrinsic incubation periods in mosquitoes 

(Sanchez-Vargas et al., 2009). Furthermore, virus replication is suppressible in cultured mosquito 

cell lines expressing long double-stranded RNA (dsRNA) molecules designed to target the viral 

genome (Adelman et al., 2002a). RNAi-based, virus-resistant mosquitoes were developed in which 

transgenes comprising long dsRNAs targeting DENV-2 under the control of a blood meal-inducible 

gene promoter were able to confer a strong serotype-specific, virus- resistance phenotype (Franz et 

al., 2006; Mathur et al., 2010; Travanty et al., 2004). According to the species-conserved miRNA 
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processing pathway, the miRNA precursors (pri-miRNA) were processed into ~70 nt hairpins by 

Drosha in the nucleus, which was followed by exporting into the cytoplasm by Exportin5. In the 

cytoplasm, the hairpins are cleaved into ~22 nt miRNA duplexes by Dicer-1, which are then loaded 

into Ago-1 or Ago-2 proteins in miRNA-induced silencing complexes (miRISCs) according to their 

different structure properties (Forstemann et al., 2007; Ghildiyal et al., 2010; Yang et al., 2014). By 

recognizing the complementary sequence of the target RNA, miRISCs are executing the silencing 

through RNA degradation, translational inhibition or both (Li and Rana, 2014; Wilczynska and 

Bushell, 2015). 

Here we report the first miRNA-based genetically-engineered mosquitoes that are refractory 

to DENV-3 and CHIKV simultaneously. In addition, we show some fitness costs resulting from the 

transgenes, but anticipate that could be mitigated with additional modifications to the transgenes 

and their insertion sites. 

 

Results 

 

Constructing the artificial antiviral miRNA 

 Two consensus sequences of DENV-3 and CHIKV are defined from 356 and 32 isolates, 

respectively, of each virus (Supplementary Data 1). Four regions from DENV-3 and six from 

CHIKV are selected as the targets of antiviral miRNAs on the basis of their sequence coverage and 

targeted regions (Fig. 1). Corresponding miRNAs are designed and cloned in tandem to make 

compound anti-viral effector genes. The sequence coverages of the anti-DENV-3 miRNAs to the 

viruses used to generate the consensus sequence range from 96.6%-98.6%, and the targeted genes 

encode the non-structural proteins, NS2B, NS3, and NS5. The anti-CHIKV miRNAs have 96.9%-

100% coverages to the viruses used to generate the consensus sequence, and the targeted genes 

encode the non-structural proteins, NSP1, NSP2, NSP3-4, NSP4, and the structural proteins E2, and 

E1 (Supplementary Table 1). In addition, to verify if any miRNA off-target effect might be caused 
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by the synthetic antiviral miRNAs, all the sequences of each antiviral miRNA are examined by the 

miRNA off-target effect prediction software Genome-wide Enrichment of Seed Sequence matches 

(GESS) (Sigoillot et al., 2012), including the passenger strands of each antiviral miRNA; no 

statistically significant interaction is reported against any transcript of Ae. aegypti. All antiviral 

miRNA clusters are constructed to place them under either the Aedes PolyUbiquitin or Aedes 

Carboxypeptidase A gene promoters to elicit constitutive or blood meal-inducible, midgut-specific 

expression of the effector molecules (Fig. 1). 

 

Generation of transgenic mosquitoes 

 A Class II TE mariner MosI system (Lobo et al., 2006) is used to generate transgenic 

mosquito lines by microinjection in four separate experiments mixtures of the donor plasmids, 

pMosI_AePUb>4miR:D3 (4miR:D3), pMosI_AePUb>6miR:CHIKV (6miR:Chik), 

pMosI_AePUb>10miR:D3+CHIKV (AePUb>10miR), and pMosI_AeCPA>10miR:D3+CHIKV 

(AeCPA>10miR), with the transposase expressing helper plasmid pKhsp82MOS. A total of 432, 

595, 310 and 355 embryos are injected with each donor plasmid, and of these, 151, 153, 141 and 

62, developed into adults. Following outcrossing of G1 adults, a total of 1, 5, 3 and 5 lines, 

respectively, are obtained from each crossing family (Supplementary Table 2). Homozygous lines 

are generated by screening inter-crossed families in which progeny are 100% reporter-positive for 

two generations. The copy number of transgenic cassettes in mosquito chromosomes is confirmed 

by Southern blot analyses using restriction enzymes that have no or only a single cutting site within 

the transgene and 32P-labeled probes complementary to the 10 miRNA cluster region. The results 

indicate that both mosquito lines contain only a single copy of the transgene cassette in a different 

locus in the genome (Supplementary Figure 1). 

 

Expression of artificial miRNAs 
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 Signals confirming the expression of anti-CHIKV-4 and anti-DENV3-1 are detected by 

miRNA qPCR analyses of female midguts and carcasses prepared from tissues harvested 0 and 24 

hours post blood meal (PBM; Fig. 2a, Supplementary Figure 2). The mature miRNAs are 

polyadenylated, followed by reverse transcription with poly(A)-adaptor primer for synthesizing an 

adaptor-linked miRNA complementary DNA (miRNA cDNA). With the miRNA-specific and 

adaptor primers (Supplementary Table 3), the mature miRNA can be detected by qPCR analysis. 

The antiviral miRNAs of AePUb>10miR mosquitoes are detectable in the midgut and carcass, and 

a slightly increased expression level can be observed 24hPBM. As the AeCPA promoter is reported 

to be active in the midgut and salivary glands (Edwards et al., 2000), the antiviral miRNAs are 

detected in the midgut and carcass of AeCPA>10miR mosquitoes, and the expression levels are 

increased 24hPBM. The two antiviral miRNAs can be also detected from the samples of female 

salivary glands at day 0, 1, and 6 after receiving a viremic blood meal; the results show that both 

antiviral miRNAs remain detectable in the salivary glands even at day 6 after virus challenge (Fig. 

2b, Supplementary Figure 2). We interpret these data to indicate that the expression of the antiviral 

miRNAs in the midgut, carcass and salivary glands, remains inducible after receiving a blood meal. 

 

Impacts of transgene on life-table parameters 

A number of life-table parameters that might be expected to affect fitness are evaluated. 

These include larval development time, larval/pupal mortality, adult lifespan, sex ratio, and male 

mating competitiveness (Table 1). 

 

In our rearing conditions, wild-type (Orlando) mosquitoes need an average of 6.43±0.03 

(males) and 7.02±0.05 (females) days for development from first instar larvae to pupae, while 

AePUb>10miR mosquitoes have development times of 6.12±0.03 (males) and 6.29±0.03 (females) 

days, and AeCPA>10miR had 6.7±0.04 and 6.87±0.05 days for males and females, respectively 

(Kruskal-Wallis test: p < 10-4 (males), p < 10-4 (females)). The larval mortality rate is 4.40±0.86% 
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and 16.90±2.02% for AePUb>10miR and AeCPA>10miR mosquitoes, respectively, and these latter 

are significantly higher than wild-type Orlando mosquitoes at 1.88±0.56% (Fisher’s exact test: p < 

10-4). As for the pupal mortality, AeCPA>10miR mosquitoes have a significantly higher (Fisher’s 

exact test: p < 10-4) pupal mortality rate, 7.75%, than AePUb>10miR and wild-type Orlando, 2.0 

and 2.83%, respectively. The adult life spans are also analyzed, the mean survival times of 

AePUb>10miR male and female adults are respectively 36.9±11.75 and 41.78±14.91 days, which 

are not significantly different than 39.51±11.58 and 44.32±14.23 days for wild-type Orlando 

mosquitoes (Kruskal-Wallis test: p = 0.07). However, AeCPA>10miR mosquitoes have shorter 

survival times with means of 23.61±10.00 and 28.15±12.83 days for males and females, 

respectively, significantly shorter than wild-type Orlando mosquitoes (Kruskal-Wallis test: p < 10-

4). AeCPA>10miR mosquitoes have a significantly lower survival rate than the two other strains 

(log rank test: p < 10-4 (males), p < 10-4 (females)) (Fig. 3). Among these adult mosquitoes, the 

percent of female AeCPA>10miR mosquitoes is 40.35±2.91%, which is lower than 46.32±2.08 % 

of wild-type Orlando and 46.77±2.14% of AePUb>10miR mosquitoes, there is no significant 

difference among the three lines (Fisher’s exact test: p = 0.17). We conclude that the high larval and 

pupal mortality rate of AeCPA>10miR mosquitoes is not sex-dependent. Male mating 

competitiveness of both transgenic lines is determined by mating competition with the same number 

of wild-type males. Results show that the mating competitiveness of AePUb>10miR male is 

58.5±7.8%, indicating an advantage when compared with wild-type mosquitoes. For 

AeCPA>10miR mosquitoes, the proportion of reporter-positive mosquitoes is 26.3±7.2%, 

supporting the conclusion that they are less competitive in the presence of wild-type mosquitoes. 

Mating competitiveness of AePUb>10miR males is significantly higher compared to 

AeCPA>10miR males in the presence of wild-type males (Fisher’s exact test: p = 0.004). 

 

Virus suppression test of transgenic mosquitoes 
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The antiviral efficiency of artificial miRNAs for each virus is confirmed separately for 

AePUb>4miR:DENV3 and AePUb>6miR:CHIKV mosquitoes (Fig. 4, Supplementary Figure 3). 

These mosquitoes are less capable of transmitting CHIKV at 6 days post-infection (dpi) (Orlando 

(mean±SE): 27.08±6.4, AePUb>4miR:DENV3: 10.41±4.45, AePUb>6miR:CHIKV: 8.33±4.03) 

and DENV-3 at 21 dpi (Orlando: 27.08±6.48, AePUb>4miR:DENV3: 0, AePUb>6miR:CHIKV: 

2.08±2.06). 

 

Then we co-challenge two selected strains from AePUb>10miR and AeCPA>10miR 

mosquito lines with DENV-3 at 107 ffu/ml and CHIKV at 106 ffu/ml. Whole bodies, heads, and 

saliva are collected for analyzing viral titers. Among three groups of saliva collected from 24 

AePUb>10miR and AeCPA>10miR mosquitoes, CHIKV transmission efficiency has respectively 

an average of 11.11% and 6.94% at 6 dpi, whereas the wild-type Orlando mosquitoes average 

41.67% (Fig. 5, Supplementary Figure 4). 

 

 CHIKV infection and dissemination barriers are assayed by recovering virus 

particles from bodies and heads, and both AePUb>10miR and AeCPA>10miR mosquitoes 

show lower but not significant infection and dissemination rates (Fig. 5). The CHIKV 

transmission-reducing phenotypes of the transgenic mosquitoes also are confirmed by a 

salivary glands immunofluorescence assay. Salivary glands dissected at 6 dpi, reacted 

with antibodies and visualized under fluorescent microscope, show qualitatively lower 

signals in samples from each transgenic line than wild-type Orlando mosquitoes 

(Supplementary Figure 5). Anti-DENV-3 phenotypes tested at 21 dpi show that the 

infection rate, dissemination and transmission efficiencies of the transgenic lines are 

significantly lower than wild-type mosquitoes (Fisher’s exact test: P < 10-4) (Fig. 5). 

 

Discussion 
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Against arboviruses, exogenous RNAi induced by long dsRNA molecules is an effective 

mechanism to interrupt viral infection and transmission (Frantz, 2006). Several studies have 

demonstrated the highly effective antiviral siRNAs in genetically-engineered mosquitoes, i.e. long 

dsRNAs (>500 bp in length) derived from DENV-2, were processed into several siRNAs targeting 

the viral genome and suppressing the viral replication (Franz et al., 2006; Mathur et al., 2010). The 

high coverage of the antiviral siRNAs on the viral genome provides a high level of resistance 

against DENV-2 and reduces the risk of generating siRNA escape variants. However, owing to the 

large diversity of antiviral siRNAs produced, it is difficult to predict regions targeted in the 

mosquito transcriptome (Joga et al., 2016). The effects of RNAi machinery employing siRNA to 

suppress viral replication can be transient as some viruses replicate so quickly that they overcome 

the RNAi response (McFarlane et al., 2014a). These limitations can be surmounted using 

hammerhead ribozymes. In cells and genetically-engineered mosquitoes experiments, the small 

catalytic hammerhead ribozymes mediate a 15-16 nt sequence-specific cleavage and are efficiently 

used as an antiviral effector against CHIKV, which increased the range of possible target sites 

(Mishra et al., 2016). However, the error-prone activities of RNA polymerase generate 

opportunities for arboviruses to escape from ribozyme catalysis, which is only triggered in high 

sequence specificity (Ohmichi and Kool, 2000; Scherer and Rossi, 2003). This deficiency could be 

overcome by using antiviral group-I introns (Carter et al., 2014; Carter et al., 2015) and by targeting 

the conserved DENV and CHIKV sequences, which then could lead to viral RNA trans-splicing and 

cell apoptosis. So the resistance to arboviruses could be triggered by incomplete viral RNA 

synthesis and cell death. Targeting the conserved viral sequences successfully increased the 

coverage of the four serotypes of DENV and CHIKV, without inducing significant fitness impacts 

in naïve C6/36 cells. The antiviral activities of group-I introns were initiated after recognition of 

several components mediating RNA splicing, including internal guide sequence (IGS), external 

guide sequence (EGS), and a helix forming sequences (P10) on both viruses. However, the 

unknown mismatch tolerance of antiviral group-I introns might favor escape variants due to the 
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quasispecies nature of viral populations. The cell-based experiments might not reflect the 

complexity of a mosquito organism, so the fitness impact needs to be examined carefully in 

mosquitoes. Besides, the antiviral apoptotic cell death that is triggered upon virus infection, might 

result in different outcomes depending on the virus; cell apoptosis can suppress DENV replication 

but not SINV in mosquitoes (Clem, 2016; Wang et al., 2012). Nevertheless, if a few mismatches 

between the guide sequence and the target virus could be tolerated, the antiviral group-I introns 

system in mosquitoes is potentially an applicable molecular effector against arboviruses.  

 

In this study, we generated several miRNA-based genetically-engineered mosquito lines 

with resistance to DENV-3 and CHIKV triggered either ubiquitously or midgut specifically in 

responding to a blood meal. The synthetic miRNAs we used were 22-nt in length, which are 

capable of targeting broad range strains of virus. Additionally, the predictable off-target effect of 

antiviral miRNA provides tolerable features with mutant variants that reduce the risk for the virus to 

escape from miRNA-mediated silencing. Besides, the small sized synthetic miRNAs with distinct 

targets could be easily assembled and transcribed as a miRNA cluster, then processed into mature 

miRNAs through endogenous miRNA pathway, without eliciting the unintended silencing resulted 

by the siRNA that derived from long dsRNA. 

 

Although the recipient mosquito strain Orlando was reported as a weakly susceptible to 

DENV-2 (Sim et al., 2013), its vector competence depends on the virus (Bonizzoni et al., 2012). 

Orlando mosquitoes are still susceptible to DENV-3 when provided at a viral titer of 1x107 ffu/mL. 

 

Insertions of transgenes and their subsequent expression may impose a load on the 

mosquitoes carrying them. This load could result in a fitness cost for the transgenic lines and may 

impair their ability to be used in control strategies. There are several previous reports of exogenous 

gene expression causing a variety of effects on transgenic mosquitoes (Franz et al., 2014; Irvin et 
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al., 2004). We observed a significant effect in AeCPA>10miR compared to wild-type mosquitoes at 

immature and adult stages: longer larval development time, higher larval and pupal mortalities, 

lower adult survival, lower proportion of females at emergence and lower male mating 

competitiveness. These effects may be caused by the strongly expressed reporter DsRed in the 

AeCPA>10miR mosquito line. Nevertheless, AePUb>10miR mosquitoes does not share the same 

effects. On the contrary, they had a shorter larval development time, lower larval and pupal 

mortalities, higher adult survival, higher proportion of females at emergence and higher male 

mating competitiveness, which could facilitate vector control (Irvin et al., 2004). Although a 

distinct result was observed between both mosquito lines, we are not able to conclude that the 

AePUb>10miR construct has a lower fitness impact to mosquitoes than AeCPA>10miR construct, 

as they are not sharing the same insertion site which caused some bias. The fitness tests in this study 

could only provide additional information for the two selected lines carrying their distinct antiviral 

construct. 

 

For testing the viral reduction phenotype under AePUb and AeCPA induction strategies, we 

examined co-infected mosquitoes with CHIKV at 6 dpi and DENV-3 at 21 dpi during the plateau 

phase of viral replication in Ae. aegypti (Dubrulle et al., 2009). Saliva titers of DENV-3 and CHIKV 

were reduced in both transgenic mosquito lines, however, viral infection and dissemination were 

not impaired compared to wild-type mosquitoes. For CHIKV, although transmission efficiencies 

were reduced in both transgenic lines, AePUb>10miR and AeCPA>10miR mosquitoes showed 

lower but not significant difference in infection rate and dissemination efficiency suggesting that 

only salivary glands but not midgut behave as an efficient barrier to the release of the virus in 

saliva. In contrast, the transgenic mosquitoes showed more promising results on DENV-3 

suppression than CHIKV when examining infection, even though only four regions on DENV-3 

were targeted by our anti-DENV-3 miRNAs. 
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It is likely that the anti-DENV-3 miRNAs have higher silencing efficiency than anti-CHIKV 

miRNAs, or the expression levels of anti-CHIKV miRNAs were not sufficient to suppress CHIKV 

characterized by a shorter extrinsic incubation period (Arvey et al., 2010; Dubrulle et al., 2009; Ye 

et al., 2015). To overcome this issue, replacing the miRNA targeting regions or substituting the 

promoter with other high-activity promoters would be a solution for optimizing the miRNA-based 

mosquitoes (Chen et al., 2008; Lam et al., 2012). In addition, the different expression patterns of 

antiviral miRNAs might cause different viral reduction phenotype for each mosquito line. Although 

the characteristics of Aedes PolyUbiquitin and Carboxypeptidase A gene promoters are well studied 

(Anderson et al., 2010; Moreira et al., 2000), the position of transgene integration also could be 

important in determining antiviral potential (Wilson et al., 1990). 

 

In summary, we successfully demonstrated the feasibility of using artificial antiviral 

miRNAs to reduce the transmission of two major arboviruses in transgenic Ae. aegypti. Although 

most of the genetically-engineered mosquito lines are still able to transmit DENV-3 and CHIKV, 

the DENV-3 transmission rates were reduced of 94.16% in AePUb>10miR mosquitoes (from 

23.61% to 1.38%), and the CHIKV transmission rates were reduced of 77.33% (from 41.67% to 

11.11%) and 83.35% (from 41.67% to 6.94%) in AePUb>10miR and AeCPA>10miR mosquitoes, 

respectively. These reductions would greatly limit the virus circulation. However, the effector has 

to be optimized to approach 100% of viral suppression at midgut infection level, eliminating the 

risk of virus dissemination. To apply these genes in a population replacement strategy, they should 

be combined with a gene-drive system, such as Cas9-mediated or toxin-antidote underdominance 

gene drive system, by introgressing the homozygous antiviral effector gene into target wild 

populations to reduce disease transmission (Champer et al., 2016; Gantz et al., 2015). Therefore, 

maintaining high viral suppression efficiency with low fitness impacts after combining with 

mosquito gene drive system is needed. Thus, the mosquitoes that we presented in this study, are not 

yet applicable in the field and viral suppression at infection level should be improved. Besides, for 
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the mosquitoes that are released in the field, a “localized” transgenic line for control program is 

needed. A local mosquito strain must be used for mosquito transgenesis, to reduce the alteration of 

the population’s gene pool. Therefore, the fitness issue of released mosquitoes should be analyzed 

again for determining the replacement efficiency in the target population. In this study, we have 

shown the potential of using synthetic antiviral miRNAs as effector genes to combat multiple 

arboviruses simultaneously. As the proof-of-concept has been validated, we can extend our strategy 

to other Aedes mosquito-borne arboviruses such as YFV and ZIKV. 
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Materials and methods 

Plasmid DNA constructions 

 All the plasmids in this study were generated based on the backbone of pMOS1_nanos-

mimyd88_3xp3-CFP originated from Dr. Bruce A. Hay (Caltech, CA), and re-modified by 

replacing the BglII site upstream of tub 3’ UTR with BamHI/XhoI sites (underlined) using PCR 

primers tub-3’UTR_ BamHI/XhoI-F and SV40-3’UTR_ NotI-R (Supplementary Table 4), 

generating pMOS1_nanos-mimyd88_3xp3-CFP’. The anti-DENV-3 and anti-CHIKV miRNA 

stem-loop backbones containing 5’-EcoRI/BglII and 3’-XhoI/BamHI were generated by oligo 

synthesis, and subcloned into pMOS1_nanos-mimyd88_3xp3-CFP with EcoRI and XhoI sites, 

generating pMOS1_nanos-Den3-4miR_3xp3-CFP and pMOS1_nanos-CHIKV-6miR_3xp3-CFP. 

The AePUb promoter was amplified from Ae. aegypti genomic DNA by PCR primers 

pMOS1_fusion_FseI/PstIAePUb-pr-F and pMOS1_fusion_BglII/EcoRIAePUb-pr-R, and 

subcloned into FseI and EcoRI double digested pMOS1_nanos-Den3-4miR_3xp3-CFP and 

pMOS1_nanos-CHIKV-6miR_3xp3-CFP with In-Fusion® HD Cloning technology (Clontech), 

generating pMOS1_AePUb-Den3-4miR_3xp3-eGFP (GenBank accession: MG603748)and 

pMOS1_AePUb-CHIKV-6miR_3xp3-eGFP (GenBank accession: MG603749). 

  

 DENV-4miR was extracted from EcoRI and BamHI double digested pMOS1_AePUb-Den3-

4miR_3xp3-CFP, and CHIKV-6miR was extracted from BglII and XhoI double digested 

pMOS1_AePUb-CHIKV-6miR_3xp3-CFP. The two antiviral miRNA clusters were then subcloned 

into BglII and XhoII double digested pMOS1_AePUb-Den3-4miR_3xp3-CFP, generating 

pMOS1_AePUb-Den3-CHIKV-10miR_3xp3-eGFP (GenBank accession: MG603750). AeCPA 

promoter was amplified from Ae. aegypti genomic DNA by PCR primers 

pMOS1_fusion_FseI/PstIAeCPA-pr-F and pMOS1_fusion_BglII/EcoRIAeCPA-pr-R, and then 
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subcloned into FseI and EcoRI double digested pMOS1_AePUb-Den3-CHIKV-10miR_3xp3-CFP, 

generating pMOS1_AeCPA-Den3-CHIKV-10miR_3xp3-GFP. This plasmid was then re-modified 

by replacing the reporter 3xp3-CFP with BglII and XhoI sites (bolded) disrupted Hr5IE1-DsRed 

which carried out by In-Fusion® HD Cloning technology with mutation primers 

Oxitec_#4573_BglII-mutate-F and Oxitec_#4573_XhoI-mutate-R. By using In-Fusion® HD 

Cloning technology with PCR primers pMOS1_fusion_Hr5IE1-DsRed_marker_NotI-F and 

pMOS1_fusion_Hr5IE1-DsRed_marker_XmaI-R, the Hr5IE1_DsRed was subcloned into NotI and 

XmaI double digested pMOS1_AeCPA-Den3-CHIKV-10miR_3xp3-CFP, generating 

pMOS1_AeCPA-Den3-CHIKV-10miR_Hr5IE1-DsRed (GenBank accession: MG603751). 

 

miRNA off-target effect examination 

 The off-target effect of synthetic antiviral miRNAs was predicted by using GESS (version 

1.2) with the input parameters as followed, 7 nt of siRNA seed sequence to test; Minimum 1 of seed 

matches to consider an siRNA Seed Matching; Guide and Passenger strands were used for analysis; 

P1C-seeds of active siRNAs as inactive siRNA seeds were used; All siRNA seed sequences were 

scrambled as GESS control; No siRNA exclusion was allowed; p-value 0.05 was set as significance 

threshold parameter; Benjamini & Hochberg False Discovery Rate was selected for testing 

correction. 

 

Generation of transgenic mosquitoes 

 Ae. aegypti Orlando strain was used as the recipient for germ-line transformation; the 

preblastoderm embryos were injected with the mixture of donor and helper plasmids at a ratio of 

300:500 ng/цL in injection buffer (5 mM KCl and 0.1mM NaH2PO4, pH 6.8). Mosquitoes were 
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reared at 28°C, 70% relative humidity, and a 12:12 light/dark regime and fed ad libitum with a 10% 

sucrose solution. 

 Embryo microinjection was carried out as described in (Lobo et al., 2006). Each surviving 

G0 male adult was outcrossed with 3 wild-type females, G0 females were pooled together and 

crossed with wild-type males at a male/female ratio 1:3. All the eggs collection and G1 larvae 

screening were carried out individually. G1 larvae were screening for reporter gene expression 

under a fluorescent microscope (LeicaMZ12.5, Wetzlar, Germany). The transgenic G1 mosquitoes 

were then outcrossed with wild-type mosquitoes for one generation to confirm the Mendelian 

inheritance in progenies. To establish homozygous lines, the transgenic mosquitoes were inter-

crossed individually and the homozygous candidates were screened for two generations. 

 

Mosquito experimental infections 

Seven-day-old female adults were fed on artificial infectious blood meal containing 1.4 mL 

of washed rabbit red blood cells and 0.7 mL of virus infected C6/36 cells suspension. The blood 

meal was supplemented with ATP as a phagostimulant at a final concentration of 1 mM and 

provided to mosquitoes using a Hemotek membrane feeding system. Virus titers of the artificial 

infectious blood meal were at 106 and 107 ffu/mL for CHIKV and DENV respectively. Engorged 

mosquitoes were transferred into cardboard containers and maintained with 10% sucrose under a 

photoperiod of 12:12, at 28°C. Mosquito saliva was collected using the forced salivation technique 

described in Dubrulle et al. (2009) (Dubrulle et al., 2009). After removing mosquito wings and legs, 

the proboscis was inserted into P20 tips filled with 5 µL of fetal bovine serum (FBS). After 30 min, 

saliva was expelled from the tip to 45 µL of L-15 medium. After salivation, mosquito head and 

body were collected and grounded individually in 300 µL of L-15 medium supplemented with 2% 

FBS. 200 µL of homogenates were collected for titration after centrifugation at 10,000 g for 5 min. 
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Mosquitoes were examined at 6 dpi when infected with CHIKV and 21 dpi with DENV-3. 

Infection rate (IR) refers to the proportion of mosquitoes with infected body among engorged 

mosquitoes. Dissemination efficiency (DE) corresponds to the proportion of mosquitoes with 

infected head among mosquitoes with infected body. Transmission efficiency (TE) represents the 

proportion of mosquitoes with infectious saliva among mosquitoes examined. 

 

Mosquitoes screening test 

To avoid the bias caused by the position effect of integration on the antiviral efficiency, 

mosquito screening test was conducted with three independent lines of AePUb>10miR and five 

independent lines of AeCPA>10miR mosquitoes (Supplementary Table 2), and the virus 

transmission efficiency was analyzed to select the mosquito lines that exhibit the strongest antiviral 

phenotype for each construct (Supplementary Figure 6). Mosquitoes were co-challenged with both 

DENV-3 and CHIKV as previously described, and the saliva were collected at 6 and 14 dpi for 

analyzing the virus transmission efficiency. The two selected lines for each antiviral construct were 

used for further analysis. 

 

Southern blot analysis 

 20 µg of genomic DNA were produced and digested with restriction enzymes BglII or ScaI, 

followed by DNA separation on 0.8% agarose gel. The separated DNA were then transferred onto 

nylon membrane and hybridized with random-primed [α32P] dCTP-labeled DNA probes 

complementary to the 10miRNA clusters at 42°C for 16h. No restriction enzyme site of ScaI was 

contained in the transgene and only one BglII site was in the upstream of miRNA cluster, which 

make the expected size of hybridization patterns>>6698 bp and >>7591 bp for ScaI; >>4927 bp and 

>>6079 bp for BglII digested AePUb>10miR and AeCPA>10miR mosquitoes, respectively. 
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Virus detection in salivary glands 

 The viral particles of CHIKV were detected in mosquito salivary glands by 

immunofluorescence assay. Salivary glands were dissected in PBS and fixed with 4% 

paraformadehyde at 6 and 21 dpi, followed by hybridization with anti-CHIKV antibodies 

respectively. After exposing to secondary antibodies, tissues were transferred on a slide with 

mounting solution (ProLong® Gold Antifade Mountant). The infection patterns were visualized 

under fluorescent microscope. DAPI were used for cell localization. 

 

Life-table parameters of transgenic mosquitoes 

 Seven-day old eggs were vacuum hatched to synchronize the rearing process. Newly 

hatched larvae were counted and reared in daily renewed 1 L of water with 1 yeast tablet. Larvae 

were daily checked until pupation and adult emergence. 50 adults of each sex from the same batch 

of mosquitoes were pooled together and maintained on 10% sucrose for adult lifespan analysis. For 

mating competitiveness test, 20 virgin females of wild-type mosquitoes were grouped with 10 wild-

type males and 10 transgenic males. Mosquitoes were fed on blood meal at 7 days after grouped up, 

and eggs were collected from each female on 4 days after blood meal. All mosquitoes were reared 

at 28°C and 70% in relative humidity with a photoperiod of 12:12. 

 

Artificial miRNA expression analysis 

 Mosquito small RNA was extracted from the midguts and carcasses of sugar fed and 

24hPBM. Tissues were lysed in Trizol solution and the total RNA were precipitated with 75% 

ethanol (v/v). Total RNA were applied for miRNA cDNA synthesis by using MystiCqTM 

microRNA cDNA Synthesis Mix (Sigma-Aldrich), whereas qPCRs were conducted using 
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MystiCq®microRNA®SYBR® Green qPCR Ready MixTM (Sigma-Aldrich) on Applied Biosystems 

7500 Fast. Primer sequences were included in Supplementary Table 3. aae-miR-1 is one of the most 

highly and relatively stable expressed miRNA in Ae. aegypti and was used as an internal control for 

detecting miRNAs expression in this study. Because artificial miRNAs were not expressed in wild-

type mosquitoes, data were normalized twice to each aae-miR-1 and wild-type aae-miR-1 

presenting the relative expression profile. 

 

Statistical analysis 

All statistical tests were conducted using the STATA software (StataCorp LP, Texas, USA). 

Proportions were compared using Fisher’s exact test and sample distributions with the Kruskal-

Wallis test. P-values>0.05 were considered non-significant. 
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Table 1. Life-table parameters of transgenic mosquitoes.1 

Mosquito lines Larval development 

time (days) 

Larval 

mortality 

rate (%) 

Pupal 

mortality 

rate (%) 
Adult lifespan (days) 

Sex ratio 

(%) 

Male mating 

competitiveness 

(%) 

Male Female Male Female 

Orlando 
6.43±0.03 

(307) 
7.02±0.05 

(265) 
1.88±0.56 

(583) 
2.83±0.67 

(600) 
39.51±11.58 

(150) 
44.32±14.23 

(150) 
46.32±2.08 

(572) 
ND 

AePUb>10miR 
6.12±0.03 

(289) 
6.29±0.03 

(254) 
4.40±0.86 

(568) 
2.0±0.57 

(600) 
36.9±11.75 

(150) 
41.87±14.91 

(150) 
46.77±2.14 

(543) 
58.5±15.8 

(41) 

AeCPA>10miR 
6.7±0.04 

(170) 
6.87±0.05 

(115) 
16.90±2.02 

(343) 
7.75±1.33 

(400) 
23.61±10.0 

(150) 
28.15±12.83 

(150) 
40.35±2.91 

(285) 
26.3±14.7 

(38) 

 

1Mosquito larval development time, larval/pupal mortality, adult lifespan analysis, sex ratio, and test of male 

mating competitiveness were conducted at 28℃. Larval developmental time was determined by the period from 

the first instar larva to pupal stage; Larval mortality corresponds to the number of emerged adults among 

analyzed larvae; Pupal mortality corresponds to the number of pupae among emerged adults; Adult life spans 

were recorded daily by counting the number of dead mosquitoes and separated by sex; Proportion of females was 

determined by the number of females among all adults; Male mating competitiveness was defined as the 

proportion of reporter positive individuals compared to negative individuals in the same experimental cage. In 

brackets, the number of mosquitoes tested is given. 

ND: not determined. 
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Figures  

 

Figure 1. Scheme of the artificial antiviral miRNA. a target genes. b expression cassettes. 

Based on mariner transposon system, the ubiquitous and midgut-specific induction promoters 

were applied for expressing the downstream synthetic miRNAs. AeCPA/PUb promoter, Ae. 

aegypti carboxypeptidase A/PolyUbiquitin promoter; 4miR:DENV-3, anti DENV-3 miRNA 

cluster for four anti-DENV-3 miRNAs; 6miR:CHIKV, anti CHIKV miRNA cluster for six 

anti-CHIKV miRNAs; 10miR:DENV-3+CHIKV, anti DENV-3/CHIKV miRNA cluster for 

four for DENV-3 and six for CHIKV. 

 

(B) 

(A) 
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Figure 2. Detection of artificial antiviral miRNAs. a in midgut and carcass. b in salivary 

glands. Total RNA were isolated from mosquito midguts and carcasses dissected at 0 and 24h 

post blood meal, whereas the RNA of salivary glands were extracted from the mosquitoes co-

challenged with CHIKV and DENV-3 at 0, 1, and 6 days after infection. Reverse transcription 

and qPCR were conducted as described in materials and methods. anti-CHIKV_6-4, the 4th 

anti-CHIKV miRNA; anti-DENV-3_4-1, the 1st anti-DENV-3 miRNA. Data were normalized 

to normalized values of aae-miR-1, and presented in relative expression levels to aae-miR-1. 

Each sample corresponds to 2 replicates (2x12 mosquitoes). The error bars correspond to the 

standard error of the mean. 
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Figure 3. Survival of transgenic mosquitoes. a males. b females. Survival curves were 

compared between AePUb>10miR, AeCPA>10miR and wild-type Orlando mosquitoes. In 

brackets, the number of mosquitoes is given. 
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Figure 4. Anti-DENV-3/CHIKV phenotype of transgenic 4miR:D3 and 6miR:Chik 

mosquitoes. a infection rate. b dissemination rate. c transmission efficiency. Mosquitoes were 

co-challenged with DENV-3 Cambodia and CHIKV 0621 strain at titer 107 and 106 ffu/ml, 

respectively. Samples were collected and titrated at 6 and 21 dpi on C6/36 cells. The infection 

rate was defined as number of positive midgut samples of the total number tested; 

dissemination efficiency was defined as number of positive head samples of the total number 
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tested; transmission efficiency defined as number of positive saliva among number of tested. 

Saliva samples were collected via salivation by inserting the proboscis of leg- and wing-less 

mosquito into a P20 tip containing 5 microliter of FBS, then expelled into 45 microliter of L-

15 media after 30 min for analysis. Each sample corresponds to 2 replicates (2x24 

mosquitoes) or 3 replicates (3x24 mosquitoes). The error bars correspond to the confidence 

intervals (95%). Significant p values are indicated by an asterix: * p<0.05, **<0.01, *** 

p<0.001. 
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Figure 5. Anti-DENV-3/CHIKV phenotype of transgenic AePUb>10miR and 

AeCPA>10miR mosquitoes. a infection rate. b dissemination rate. c transmission efficiency. 

Mosquitoes were co-challenged with DENV-3 Cambodia (Supporting information) and 

CHIKV 06.21 (Vazeille et al., 2007) strains at titers of 107 and 106 ffu/mL, respectively. 

Samples were collected and titrated at 6 and 21 dpi on C6/36 cells. Infection rate was defined 

as number of positive body samples among tested ones; dissemination efficiency refers to the 
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number of positive head samples (i.e. successful viral dissemination after passing the midgut 

barrier) among tested ones; transmission efficiency was defined as the number of positive 

saliva (i.e. successful transmission) among tested ones. Saliva samples were collected after 30 

min in a P20 tip containing 5 µL of FBS and then expelled into 45 µl of L-15 media for 

analysis. Each sample corresponds to 3 replicates (3x24 mosquitoes). The error bars 

correspond to the confidence intervals (95%). Significant p values are indicated by an asterix: 

**<0.01, *** p<0.001. 
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Supplementary Table 1. Details on artificial antiviral miRNAs 

 

miRNA 

name 
Sequence (5’ – 3’) 

Targeting 

virus 

Targeting 

region 

Coverage 

(%) 

Anti-

CHIKV-1 

AGTCAGTTCTGCTTCTCGTTCT 

CHIKV 

NSP1 96.9 

Anti-

CHIKV-2 

ACTCATTCGTAGTGCGCATTTT NSP2 96.9 

Anti-

CHIKV-3 

TATATACCCACCTGCCCTGTCT NSP3-NSP4 96.9 

Anti-

CHIKV-4 

TCTATGATCTTCACTTCCATGT NSP4 100 

Anti-

CHIKV-5 

ACTCTTCTTGATAGTTTGGTTC E2 96.9 

Anti-

CHIKV-6 

GTTTTGCATGATTCGGACTTCT E2 96.9 

Anti-

DENV3-1 

TCTCATTGTTCCATCATCATCA 

DENV-3 

NS2B 96.6 

Anti-

DENV3-2 

CCTGTGTGTTCAGATTTTGTTG NS3 96.9 

Anti-

DENV3-3 

AATATGACCAGCCTCCTCTTCC NS3 98.6 

Anti-

DENV3-4 

CATTTATCATGGAGGAGGCTGA NS5 97.2 
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Supplementary Table 2. Performances of Aedes aegypti microinjections 

 

Construct 
Eggs 

injected 

Survival 

to larval 

stage 

G0 adults 
Integration 

events Male Female 

PUb>4miR:DENV-3 432 187 81 70 1 

PUb>6miR:CHIKV 595 153 85 68 5 

PUb>10miR 310 153 76 60 3 

CPA>10miR 185 85 11 12 5 
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Supplementary Table 3. Primers used for miRNA qPCR in this study 

 

aae-miR-1:  5’-TGGAATGTAAAGAAGTATGGAG-3’ 

10miR_DENV-3: 5’-TCTCATTGTTCCATCATCATCA-3’ 

10miR_CHIKV: 5’-TCTATGATCTTCACTTCCATGT-3’ 
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Supplementary Table 4. Details on primers used for constructing synthetic antiviral 

miRNA cassettes 
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Supplementary Figure 1. Southern blot analyses of transgenic mosquitoes. Genomic 

DNAs were digested with restriction enzyme BglII or ScaI, and hybridized at 42°C with 

random primed alpha [32P]-labeled DNA probes complementary to the sequence of the 

antiviral miRNA cluster. 
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Supplementary Figure 2. Detection of artificial antiviral miRNAs. a in midgut and 

carcass. b in salivary glands. Information on replicates is provided and details are described in 

the legend of the figure 2. 
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Supplementary Figure 3. Anti-DENV-3/CHIKV phenotype of transgenic 4miR:D3 and 

6miR:Chik mosquitoes. a All samples. b Day 6 post CHIKV-infection. c Day 14 post 

DENV-3 infection. d Day 21 post DENV-3 infection. Information on replicates is provided 

and details are described in the legend of the figure 4. R1, replicate 1. R2, replicate 2 
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Supplementary Figure 4. Anti-DENV-3/CHIKV phenotype of transgenic AePUb>10miR 

and AeCPA>10miR mosquitoes. a All samples. b CHIKV. c DENV-3. Information on 

replicates is provided and details are described in the legend of the figure 5. R1, replicate 1. 

R2, replicate 2. R3, replicate 3. 
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Supplementary Figure 5. Antiviral phenotype in salivary glands. Mosquito salivary 

glands were dissected in PBS and fixed with 4% paraformadehyde at 6 days post-infection, 

followed by detection with anti-CHIKV antibody. The viral infection patterns were visualized 

under fluorescent microscopy.  
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Supplementary Figure 6. Antiviral phenotypic screenings for AePUb>10miR and 

AeCPA>10miR mosquito lines. The mosquito lines AePUb>10miR and AeCPA>10miR 

were co-challenged with DENV-3 at 10^7 ffu/ml and CHIKV at 10^6 ffu/ml. The viral 

suppression efficiency was determined by the transmission efficiency at 6 and 14 dpi for 

CHIKV and DENV-3 respectively. AeCPA>10miR-3 (AeCPA>10miR) and AePUb>10miR-

1 (AePUb>10miR) were analyzed in this study. Numbers above are the transmission 

efficiency and sample size. 
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CONCLUSION AND DISCUSSION 
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Introducing an antiviral effector gene into target population with gene drive system in 

order to replace the naive wild population with a virus refractory strain for reducing the risk 

of arboviral diseases transmission, is an alternative that can be considered as a truly 

environment-friendly arboviral diseases control strategy. Compared to the current control 

with insecticides, the accumulating resistance of mosquitoes have increased the cost and 

reduced the control efficiency (van den Berg et al., 2012). Besides, the selective pressure of 

insecticides can potentially affect the vector competence, so the risk of diseases spreading as 

well (Beerntsen et al., 2000). The unpredictable outcomes of insecticide-based control 

strategy have raised the uncertain risk of newly re-emergence of mosquito-borne diseases. 

A relatively environment-friendly mosquito control strategy based on genetically-

engineering technology, RIDL has been proposed and become the most current applied 

control strategy (Alphey, 2014). By releasing the self-limiting gene carrying by male 

mosquitoes to reproduce with wild-type females, the size of target population is reduced due 

to the progeny lethality. The great success of trials in America (Carvalho et al., 2015; Gorman 

et al., 2016; Harris et al., 2012; Harris et al., 2011) with a drastic decrease of mosquito 

populations has gained better acceptance by people living under the risk of infection (Ernst et 

al., 2015). This RIDL-based mosquitoes control strategy is now under the consideration of 

other governmental authorities in America and Asia. 

However, the total elimination of target species has increased the risk of ecological 

impacts and reemergence of secondary pests, especially Ae. aegypti who is sharing the same 

ecological niche than Ae. albopictus (Braks et al., 2004; Juliano et al., 2004; Simard et al., 

2005), both being vectors of major arboviruses, e.g. CHIKV, DENV, YFV, and ZIKV. 
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As the synthetic gene drive systems have gained interest in recent years (Champer et 

al., 2016), the control strategy combining an antiviral effector gene with a gene drive system 

provides another solution for arboviral diseases control. It can reduce the risk of diseases 

transmission while keeping the mosquitoes at their natural ecological niche to avoid the 

reemergence of secondary pests. Homing-based gene drive systems were well developed and 

proved their replacing efficiency in mosquitoes (Gantz et al., 2015; Hammond et al., 2016). 

However, the appropriate effector genes able to block replication and transmission of 

arboviruses in mosquitoes are still a field to explore. An appropriate effector gene has to be 

efficient and broadly effective, to suppress the virus replication efficiently while remaining a 

low fitness cost to compete with wild population. Moreover, the specificity of effector gene 

should be also taken into consideration due to the possible unintended toxicity of effector 

released into the environment. Therefore, a RNAi-based approach is an ideal effector gene for 

controlling the arboviruses which are mostly single stranded RNA viruses. 

In this thesis, we have investigated the potential antiviral ability of cellular miRNAs of 

Ae. aegypti, and demonstrated the possibility of using a set of synthetic miRNAs to induce an 

antiviral immunity to CHIKV and DENV-3.  

Although the RNAi machinery is considered as a major antiviral innate immunity in 

mosquitoes, and the virus-induced siRNA and piRNA pathways are extensively studied (Blair, 

2011; Miesen et al., 2016b), very limited information were reported regarding the potential 

antiviral activity of miRNAs. Even though a complete complementarity between genome 

sequences of arboviruses and known miRNAs of Ae. aegypti is not found, the seed region-

dependent silencing feature of miRNAs has suggested a possible interaction between 

arboviruses and mosquito cellular miRNAs, proposing a new insight for miRNA antiviral 

immunity research. 
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According to the prediction results, several miRNAs binding sites were found in 

CHIKV, DENV, and ZIKV, which are common among different genotypes/lineages of each 

virus. However, these miRNA-virus interactions were associated with low expression level, 

which are less likely to form an effective miRNA-vRNA duplex and intervene in virus 

replication. On the other hand, the potential binding sites for miRNAs that are abundantly 

expressed in mosquitoes usually have a high minimum free energy. For example, aae-miR-1 

is an abundant miRNA expressed ubiquitously in Ae. aegypti, which has a potential binding 

site in the Capsid region of DENV-1 with a MFE of -17.3 kcal/mol for genotype III and IV, 

whereas for genotype I, the MFE of the same binding site shifts to -17.2 kcal/mol with one 

nucleotide change, decreasing the probability of interaction. Interestingly, a simulation was 

proposed with a single nucleotide mutation within the same binding site, and the result 

showed a MFE reduced to -19.8 kcal/mol that largely increased the probability of miRNA-

vRNA, and possibly participated in virus replication. A similar example could also be found 

for aae-miR-1 in the NS3 region of DENV-1; a conserved interaction with high MFE was 

predicted between miR-1 and NS3 region in genotype I-V of DENV-1. Few nucleotide 

mutations within the binding site might reduce the MFE and consequently, increase the 

probability of miRNA-vRNA interaction, suggesting that the cellular miRNAs might act as an 

important evolutionary force for shaping arbovirus-mosquito co-evolution. 

On the other hand, a synthetic miRNA with low MFE when matched with the target 

virus might increase the antiviral efficiency. Synthetic antiviral miRNAs are considered as an 

ideal effector gene in this study due to its high specificity, capacity, and broad efficiency. 

Compared to the RNAi-based genetically-engineered mosquito control strategy (Franz et al., 

2006), the siRNA that are generated from the viral genome encoded long dsRNA, has shown 

a very effective antiviral efficiency to DENV-2 at infection and transmission levels. The 

uncertain selection of siRNA sequence provides an extra advantage for reducing the virus 
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replication, however, the unpredictable off-target effects of siRNA can potentially increase 

the fitness impacts by unintended targeting the essential mRNAs in genetically-engineered 

mosquitoes. In contrast, the miRNA off-target effects are predictable with certain sequences 

of miRNA; the potential targets on mosquito mRNA could be avoided using various miRNA 

off-target prediction tools. Interestingly, the mismatch tolerance on target sequence of 

miRNA is an advantage for regulating arboviruses replication because the quasispecies of 

arboviruses generated by the error prone feature of viral RdRp, generate different sequences 

in the target sites of antiviral miRNAs in an infected mosquito (Vazeille et al., 2016). In 

addition, the very short sequence of each synthetic miRNA could increase the capacity of 

expression cassette, and express a miRNA cluster that could target multiple arboviruses after 

processing. 

In this thesis, we have demonstrated the possibility of using synthetic miRNA to 

trigger mosquitoes antiviral RNAi immunity for reducing the transmission of CHIKV 

(Alphavirus) and DENV-3 (Flavivirus) simultaneously. Some fitness damages might have 

been caused in AeCPA>10miR mosquitoes, including a shorter life span, higher mortality 

before maturation, and lower male mating competitiveness compared to wild-type mosquitoes. 

In contrast, AePUb>10miR mosquitoes show a minor (if any) fitness cost for all parameters 

measured, and even have a shorter developmental period and higher male mating 

competitiveness. 

Both genetically-engineered mosquitoes show a great reduction on viral transmission 

efficiency for CHIKV and DENV-3. However, both mosquito lines are still susceptible for 

CHIKV and DENV-3, especially for CHIKV; there were no significant differences at the 

infection and dissemination levels. This provides an opportunity for viruses to develop into a 

antiviral miRNAs insensitive variant escaping the anatomical barriers and to be transmitted. 
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Although a relatively better viral resistance phenotype could be observed for DENV-3 in both 

mosquito lines, the antiviral efficiency should be carefully analyzed due to the low efficiency 

for DENV reported for the Orlando mosquito strain used as the recipient strain (Sim et al., 

2013). 

Environmental temperature is also a major concern for using synthetic miRNA as an 

effector gene to suppress arboviral replication in genetically-engineered mosquitoes. As a 

poikilothermic animal, the body temperature of a mosquito varies with the ambient 

temperature, and potentially affects the stability of miRNA-vRNA interactions and the 

activity of miRNA components (Carmel et al., 2012). It is therefore difficult to estimate the 

antiviral efficiency of each miRNA in field conditions, particularly with the average 

temperatures in epidemic areas usually higher than 28 °C in summer, this temperature being 

used in our experiments. Although the probability of high temperature-induced inactivity is 

reduced with the highly complementarity of synthetic antiviral miRNAs increasing the 

strength for each miRNA-vRNA interaction (Carmel et al., 2012; Hibio et al., 2012), the 

antiviral miRNAs activity should be tested under semi-field conditions to test this hypothesis. 

Although the miRNAs could be detected in salivary glands, the critical organ for viral 

transmission, even at day 6 post infection, however, the relatively low expression levels of 

each synthetic antiviral miRNA might be the reason for the insufficient resistance against the 

virus in the midgut in both AePUb>10miR and AeCPA>10miR mosquitoes.  

With effector genes and population replacement control strategy, a 100% resistance 

against arboviruses is essential to reduce the probability of viruses to escape and develop into 

a resistance quasispecies within infected mosquitoes. Therefore, in a next step, a more 
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powerful or delicate promoter to initiate the expression of synthetic miRNA cluster 

should be envisaged to optimize the antiviral activity in genetically-engineered mosquitoes. 

Besides, the antiviral efficiency of each synthetic miRNA could be further optimized 

according to the results of prediction of miRNA-vRNA interactions discussed previously. 

Especially for the interaction involving an abundantly expressed miRNA and a conserved 

binding site that could be commonly found among each genotype, e.g. aae-miR-1 vs. Capsid 

or NS3 regions in DENV-1, a synthetic miRNA with a lower MFE (which is more likely to 

form) designed based on the viral sequences of these interactions, might provide a more 

promising and stronger resistance against arboviruses. 
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