
HAL Id: tel-02415974
https://theses.hal.science/tel-02415974

Submitted on 17 Dec 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Contributions to the Design of Reconfigurable
Embedded Systems: from Modelling to Implementation

Jean-Christophe Prévotet

To cite this version:
Jean-Christophe Prévotet. Contributions to the Design of Reconfigurable Embedded Systems: from
Modelling to Implementation. Hardware Architecture [cs.AR]. Université de Rennes1, 2019. �tel-
02415974�

https://theses.hal.science/tel-02415974
https://hal.archives-ouvertes.fr

Mémoire

Habilitation à Diriger des Recherches

Contributions to the Design of Reconfigurable Embedded Systems:
from Modelling to Implementation

Jean-Christophe Prévotet

Maître de Conférences à l’INSA de Rennes
Laboratoire IETR / Équipe de recherche SYSCOM

A soutenir le 07/06/2019 devant le jury composé de

Rapporteurs
Diana Göhringer Professeure au TU, Dresden
Christophe Jégo Professeur à ENSEIRB-MATMECA, IMS, Bordeaux
Gilles Sassatelli Directeur de recherche CNRS, LIRMM, Montpellier

Examinateurs
Guy Gogniat Professeur à l’université de Bretagne-Sud, Lab-STICC
Christophe Moy Professeur à l’université de Rennes 1, IETR
Frédéric Pétrot Professeur à l’université de Grenoble, TIMA
Fabienne Nouvel Maître de conférences HDR, INSA de Rennes, IETR

SommaireSommaire

I 1 Synthesis of Research WorksIP
ar

t.

. 1

Preliminaries . 3

11 Introduction1C
ha

p.

. 4
1 Summary of studies . 4
1.1 OS Modelling . 4
1.2 Reconfiguration Management . 5
1.3 Power Modelling . 6
2 Historical Research Background . 7
2.1 PhD Studies . 7
2.2 ETIS 2002-2007 . 7
2.3 IETR 2007- Today . 7

22 From OS Modelling to Implementation2C
ha

p.

. 9
1 Context and Related Works . 9
2 A new Design Methodology for Operating Systems . 11
2.1 System Specifications . 12
2.2 The Dogme Tool . 14
3 OS Model Description . 14
3.1 Task Manager Service . 15
3.2 Scheduling Service . 16
3.3 The IRQ Manager Service . 16
3.4 The Communication Service . 16
3.5 The Intercommunication Service . 16
3.6 The Reconfiguration Management Model . 17

3.6.1 The HW Task Concept . 18
3.6.2 The Dispatcher . 18
3.6.3 The placer . 19
3.6.4 The Offloader . 19

4 Modelling Evaluation . 20
4.1 Description . 21
4.2 System Model . 22

4.2.1 Application Model . 22
4.2.2 Architecture Model . 23
4.2.3 Kernel Model . 23

4.3 Simulation and results . 24
5 OS Code Generation . 25
5.1 OS Meta-model . 26
5.2 Model to Model Transformation . 27
6 From the OS to the Hypervisor . 27
6.1 Is virtualization compatible with real time constraints? . 27
6.2 Virtualization Overhead . 29
6.3 Overhead aware schedulability analysis . 30
6.4 Proposal : Ker-ONE : A lighweight Micro-Hypervisor . 33

iii

Sommaire

6.4.1 Overview . 33
6.4.2 Resource Virtualization . 34
6.4.3 Event Management . 35

6.5 Performance Evaluation . 35
6.5.1 Basic Virtualization Functions Overhead . 35
6.5.2 RTOS Virtualization Evaluation . 38

7 Summary . 39

33 Reconfiguration Management3

C
ha

p.

. 40
1 Context and Related Works . 40
2 General Framework . 45
3 HW Level . 45
3.1 HW Task Model . 45
3.2 PRR HW Management . 47
3.3 The PRR Monitor . 48
4 OS Level . 48
4.1 The Configuration Controller (Virtual Device Manager) . 48
4.2 Other OS services to handle reconfiguration . 49

4.2.1 The Parameters Provider . 50
4.2.2 The HW Updater . 50

4.3 The particular case of Virtualization : Security Mechanisms . 50
5 Application level . 51
5.1 Context . 51
5.2 Case study : VHA for WI-FI and WiMax heterogeneous networks 52
5.3 The Adaptive Scoring System . 52
5.4 Towards a Smart Reconfiguration Management . 54

5.4.1 Overview . 54
5.4.2 Modules Description . 54

5.5 Results . 56
6 Performances Evaluation . 57
6.1 Overhead Analysis . 59
6.2 Experiments and Results . 60

6.2.1 Description . 60
6.2.2 Results . 61

7 Summary . 62

44 From Power Modeling to highly Energy-Efficient Devices4C
ha

p.

. 64
1 Context and Related Works . 64
2 The Classic Implementation Approach . 67
2.1 Studying New Waveforms . 68
2.2 Proposed Offline Hardware Platform . 69

2.2.1 System Description . 69
2.2.2 Studied configurations . 70
2.2.3 Results . 71

2.3 Studying the SW limitations . 73
2.4 The Receive Spatial Modulation scheme . 77

2.4.1 Prototype Description . 77
2.4.2 Results . 78

3 Evaluation of FPGA-Based Wireless Communications Systems 79
3.1 Proposed approach . 80

3.1.1 Scenario Definition . 80
3.1.2 IP Characterization . 81
3.1.3 Modeling and High Level Simulation . 82

iv

Sommaire

3.2 Use Case . 84
3.2.1 System Description . 84
3.2.2 Power Estimation . 85
3.2.3 Power Estimation Speed-Up . 86

4 Towards Fine grain Modeling . 86
4.1 Analytical Modeling . 86
4.2 Extension to other FPGA Devices . 87
4.3 Neural Networks based Modeling . 87

4.3.1 Model Definition . 89
4.3.2 Results . 90

5 Summary . 92

55 Research Perspectives5

C
ha

p.

. 93
1 Embedded Systems Virtualization . 93
1.1 Hypervisor structure . 93
1.2 Reconfigurable Hardware Resources Sharing . 94
1.3 VM Scheduling and Off-Loading Service . 94
2 End to End Reconfiguration Management . 94
2.1 Multi-standards Reconfiguration . 95
2.2 Machine Learning . 95
3 Towards Energy-Efficient Communicating Devices . 96
3.1 New Waveforms . 96
3.2 Hardware Power Models . 96
3.3 From Device to Protocol . 97

Bibliography . 99

v

Sommaire

vi

Partie I

Synthesis of Research Works

1

PA
R

C
O

U
R

S
P

R
O

F
E

S
S

IO
N

N
E

L
S

Y
N

T
H

E
S

IS
O

F
R

E
S

E
A

R
C

H
W

O
R

K
S

A
P

P
E

N
D

IX

PreliminariesPreliminaries

The second part of this document describes my research activities in details. Chapter 1 describes the
context of the different studies and the research tracks that have been followed. The subsequent chapters
describe the different topics that have been studied and provide the main contributions for each of them.

Chapter 1 : Introduction p.4

Chapter 2 : OS Modelling p.9

Chapter 3 : Reconfiguration Management p.40

Chapter 4 : From Power Modeling to highly Energy-Efficient Devices p.64

Chapter 5 : Research perspectives p.93

OutlineOutline

3

PA
R

C
O

U
R

S
P

R
O

F
E

S
S

IO
N

N
E

L
S

Y
N

T
H

E
S

IS
O

F
R

E
S

E
A

R
C

H
W

O
R

K
S

A
P

P
E

N
D

IX

Chap. 1Chap. 1Introduction

11 Summary of studies

Nowadays, algorithmic complexity keeps on increasing in many domains such as signal, image pro-
cessing, communications or control. Applications that implement these algorithms are often executed on
embedded systems that generally require a significant power of computation. As a response to this is-
sue, hardware architectures are now composed of numerous heterogeneous and optimized computation
units that operate in parallel. For example, devices such as SoC (System on Chip) may exhibit program-
mable computation units, reconfigurable units, or even dedicated data-paths to reach the highest level of
performance.

Such devices are extremely complex to design and manage and require a lot of expertise to be handled.
In this context, the use of an operating system (OS) is often considered since it allows users to obtain an
abstraction of the underlying hardware. Services such as communications, memory management, tasks’
scheduling, resources management are directly handled by the operating system, which considerably re-
lieve the systems’ management.

The first research subject that I have been focusing on has been to propose new methods that would
help designers in building their custom embedded Operating System(s) to manage heterogeneous plat-
forms. This work is presented in Section 1.1.

A second research axis deals with the specificity of the platform itself and particularly focuses on
reconfigurable architectures. The issues related to reconfiguration management have been studied tho-
roughly in my career and the challenges that I tried to tackle are summarized in Section 1.2.

Finally, for several years, I have also investigated the energy efficiency of reconfigurable embedded
systems from a design perspective. The privileged domain of study was wireless communications but it
can, of course, be extended to other domains. In this axis, I have proposed new exploration methods and
tools to help designers in choosing the right algorithms for a given platform. The research issues as well
as the proposed solutions are described in Section 1.3.

1.11.1 OS Modelling

Today embedded systems have become so complex that they are able to process applications with
various types of constraints. This diversity of constraints has a direct impact on the underlying manage-
ment of these applications and on operating systems specifically. For example, some applications may be
real-time constrained imposing a Real-Time Operating System (RTOS), with specific features, scheduling
properties, inter-blocking resolution, etc. Some other applications may be more general-purpose and have
other types of constraints (like in multimedia, consumer electronics, etc.). For the latter, General-Purpose
Operating Systems (GPOS) are more appropriate.

In modern embedded systems, it is not rare to find several operating systems with different purposes.
This is the case, for example, in mobile phones, where an OS is dedicated to the user-machine interface and
another one is hidden, which is responsible for managing communicating parts implemented in hardware.
In order to get an optimal use of resources, hardware virtualization can help, by enabling the concurrent
execution of an application OS (Linux, Windows, etc.) and of a real-time OS on the same processor.

Virtualization has a lot of interests. It makes the support of architectural abstraction possible since
a given application may migrate from several physical cores to a single virtual one. It also enables to
execute legacy applications without any modification since the underlying operating system may be easily

4

PA
R

C
O

U
R

S
P

R
O

F
E

S
S

IO
N

N
E

L
S

Y
N

T
H

E
S

IS
O

F
R

E
S

E
A

R
C

H
W

O
R

K
S

A
P

P
E

N
D

IX

1. Summary of studies

ported as a guest within a virtual machine. Another major aspect of virtualization is security since virtual
machines are fully isolated and each of them has its own encapsulated application code that cannot access
the rest of the system. Only the Virtual Machine Monitor (VMM) or hypervisor, that is significantly more
secure, may have specific rights to access resources.

Today, such systems have become so cumbersome that their design process is very elaborate and re-
quire huge skills and expertise. In order to help designers in their task and increase their productivity, it
seems very important to first raise the design abstraction level. Second it also seems important to provide
designers with dedicated tools that automate design tasks from a high-level model.

In this work, the privileged target has been Reconfigurable Systems-on-Chip (RSoC) or any device that
is composed of a processing core that is associated with a reconfigurable region. This, of course, includes
current System on Programmable Chip (SoPC) devices based on FPGA circuits. Here are some questions
we have tried to tackle :

— How to design the software architecture of an embedded OS that takes hardware specificity (e.g the
reconfigurable parts) into account ?

— How can designers simulate the OS behaviour, which are the obtained metrics, and what is the
degree of confidence that we can get from the results ?

— Is it possible to generate pieces of code corresponding to the software architecture from high-level
models ?

These questions have been first treated in a single-OS environment. With the advent of virtualization
in embedded systems, we have tried to adapt our research to take into account multi-OS environment.
This has, of course, raised specific issues :

— Is the methodology proposed for single-OS architectures compatible with more complex systems?

— Is it possible to evaluate the feasibility and performance of virtualization in the early stages of the
design flow ?

— What is the overhead that is due to the hypervisor on the application performance?

— How must the hypervisor be designed to abstract all hardware resources?

1.21.2 Reconfiguration Management

The second main axis of my research has always been devoted to reconfigurable systems and particu-
larly the management of such systems. Reconfiguration has always been a concept guaranteeing a system
to adapt to environmental changes in many technical or biological systems. In the domain of hardware
architectures, reconfiguration allows an architecture to adapt to a specific task by modifying its own func-
tionality. This is exactly the opposite of classical computing schemes in which variable tasks require to be
modified to adapt to a fixed architecture.

In this research axis, I have mostly focused on specific types of reconfigurable architectures. These ar-
chitectures are composed of one or several cores that are implemented in hardware as part of a SoC fabric.
Besides these cores, a reconfigurable fabric is available that makes it possible to implement reconfigurable
architectures with different granularity of configuration. These architectures may be seen as hardware ac-
celerators that aim to alleviate the processors’ tasks. In our studies, we have proposed several levels of
reconfiguration management : at physical level, at operating system level and at application level. For
each of these levels, specific issues have been met and my PhD students and myself have tried to tackle
them independently.

First, at physical level, we have mainly focused on all problems that are related to the hardware re-
configuration mechanisms and on the placement aspects of an abstract object that is a hardware task. The
main issues deal with the structure of a hardware task :

— How can it interact with the software environment?

— How may tasks communicate with each other to exchange data?

Other issues are related to the spatial dimension of these tasks :

5

PA
R

C
O

U
R

S
P

R
O

F
E

S
S

IO
N

N
E

L
S

Y
N

T
H

E
S

IS
O

F
R

E
S

E
A

R
C

H
W

O
R

K
S

A
P

P
E

N
D

IX
Chapitre 1. Introduction

— how can a task be configured and dynamically placed within the reconfigurable area ?

— Which type of management is required to handle the task processing in this area ?

Second, at OS level, we also identified several issues that need to be taken into consideration. For
example,

— what type of abstraction must have a given hardware task to make it easily manageable by an ope-
rating system?

— How is it possible to keep the management of these tasks as transparent as possible, from the appli-
cation point of view?

Some other issues are directly related to the structure of the OS and deal with the additional mecha-
nisms or services that are required to handle reconfiguration without too much overhead.

Finally, at application level, other issues may occur. These deal with the way an application may adapt
to the environment. Which are the mechanisms that are necessary to allow an application to take a good
decision regarding reconfiguration ? Can we imagine a common framework that make this decision trans-
parent ? What would be the overhead due to this framework in this case? Finally, is it possible to imagine
smart reconfiguration mechanisms that are based on machine learning processes to allow a platform to
reconfigure itself automatically ?

All these questions have been treated in our works and some answers have been proposed and explai-
ned in Chapter 3.

1.31.3 Power Modelling

Another significant aspect of my research studies has started dealing with energy efficiency of recon-
figurable systems. The fact is that energy consumption has a huge role in such systems since they are
often operated with limited energy resources like simple batteries. This is particularly the case of wireless
communications systems that constitute the main elements of the future IoT. These systems have been our
main target since they may represent a significant part of future devices that will have a real impact on
worldwide energy consumption [BBFH+08].

In our works, we have decided to deal with the design aspects of these devices. More specifically,
we have focused on the System Level, since most of the power optimization solutions intervene in the
early stages of the design flow. When designing an embedded communicating device, one of the first
questions designers have to answer deals with the functions to implement to perform processing and
communication tasks. This first study generally results in a trade-off between the performance or Quality
of Service (QoS) to achieve and the energy cost.

In this research axis, we have first concentrated on proposing efficient energy-aware communication
schemes that might be implemented in very small devices, while guaranteeing a high level of perfor-
mance. These types of solutions are classically studied by communication researchers or engineers using
dedicated tools such as Matlab. Today, designers may even have the possibility to implement their algo-
rithms on prototypes to get a first overview of their performance. Although very interesting in practice,
this approach remains limited since solutions are often implemented in software, which does not give
sufficient indications on the hardware complexity. This raises important questions :

— How can we exhibit the specificity of hardware in this case ?

— How is it possible to evaluate the hardware resources that will be necessary as well as the energetic
cost ?

— How can we efficiently and rapidly compare different solutions to find the best ?

These questions have led to us to propose new methodologies and power models that would help desi-
gners in exploring design choices at System Level. The main issues are related to the models themselves :

— What is the nature of these models ?

— What is the expected accuracy ?

— How can we generalize the approach to other types of devices ?

6

PA
R

C
O

U
R

S
P

R
O

F
E

S
S

IO
N

N
E

L
S

Y
N

T
H

E
S

IS
O

F
R

E
S

E
A

R
C

H
W

O
R

K
S

A
P

P
E

N
D

IX

2. Historical Research Background

All these questions have been addressed and some solutions are presented in this manuscript and
specifically in Chapter 4.

22 Historical Research Background

The purpose of this section is to provide an overview of my research work chronologically. It also
intends to explain the context and the strategic directions that have been followed according to the work
environment in which my work was led.

2.12.1 PhD Studies

After a "Diplôme d’Etudes Approfondies" (DEA) obtained at the Pierre et Marie Curie University
(UMPC), my first contact with research was during my PhD studies. My PhD started back in 1999 and was
led in the "Laboratoire des Instruments et Systèmes d’Ile de France" under the supervision of P. Garda, B.
Denby and B. Granado. The subject mainly dealt with the study of hardware architectures to implement
Neural Networks in real time. The application domain of my studies was physics in general, and particle
physics in particular.

During my first year of PhD, I had the opportunity to work in Munich, Germany in the "Max Planck
Institut Fuer Physik" to get familiar with the context study of my work. The study aimed at designing
a neural pre-processing circuit for on-line event triggering in a particle physics experiment. This expe-
riment, H1, in which many European researchers were involved, was located in Hamburg on the DESY
website. A second part of my thesis was dedicated to the hardware design of a very fast architecture des-
tined to process neural networks within very tight timing constraints i.e 500 ns. The targeted application
was again a high-performance particle recognition system as part of the ATLAS experiment, located on
the site of the LHC (Large Hadron Collider) at CERN.

2.22.2 ETIS 2002-2007

After my PhD studies, in 2002, I obtained an "Attaché Temporaire d’Enseignement et Recherche"
(ATER) and then an associate professor position at the university of Cergy-Pontoise. I joined the AR-
CHITECTURE team of the ETIS laboratory where my research interests have evolved towards the study
of reconfigurable architectures for images or signal processing applications. This research team was led by
Didier Demigny at that time and was composed of 5 people deeply involved in reconfiguration. It is in this
context that I had the opportunity to work with L. Kessal on the supervision of Sonia Khatchadourian’s
thesis.

Other works that have been initiated in the ETIS lab have demonstrated the interest of managing
dynamic reconfiguration efficiently. That is in this context that first research works started on operating
systems for reconfigurable devices. At this time, the OveRSoC project, in which I was involved as the main
leader has started.

2.32.3 IETR 2007- Today

The third part of my research career has started in 2007, time at which I joined the "INSA de Rennes"
and the IETR lab. I was integrated in the Communication System team that was composed of 7 researchers
mainly involved in the design of communications systems at the algorithmic level, which was quite far
from my first expertise domain. Only one colleague of mine (F. Nouvel) was more interested in hardware
architectures and communications prototyping.

7

PA
R

C
O

U
R

S
P

R
O

F
E

S
S

IO
N

N
E

L
S

Y
N

T
H

E
S

IS
O

F
R

E
S

E
A

R
C

H
W

O
R

K
S

A
P

P
E

N
D

IX
Chapitre 1. Introduction

When I first joined the SysCom team, I brought new skills related to operating systems, reconfigura-
tion and modeling. With the help of my colleagues, I continued leading the OveRSoC project and was able
to supervise PhD students as well as master students in this research area. Later, I developed the virtua-
lization research axis, which can be seen as an extension of the studies that have been led on operating
systems. Finally, M. Hélard and myself proposed a new research axis dealing with the study of energy
consumption in reconfigurable systems, which gave me the chance to supervise 3 PhD students on this
topic.

8

PA
R

C
O

U
R

S
P

R
O

F
E

S
S

IO
N

N
E

L
S

Y
N

T
H

E
S

IS
O

F
R

E
S

E
A

R
C

H
W

O
R

K
S

A
P

P
E

N
D

IX

Chap. 2Chap. 2From OS Modelling to
Implementation

11 Context and Related Works

Since the beginning of computing, it has always been envisaged to design efficient architectures ca-
pable of executing more and more complex applications. In parallel, new constraints have progressively
appeared such as the devices’ size, that led to the concept of embedded systems. Regarding the design
of such systems, one of the first issues has consisted in providing more computing power in smaller and
smaller devices. Other issues have also progressively appeared due to a new usage of these systems, such
as the the possibility to execute many applications at the same time, in a transparent manner.

For several decades, hardware devices such as SoCs have been an efficient solution to tackle these
issues. These circuits often feature processing cores as well as dedicated hardware, which makes it possible
to benefit from both software and hardware assets. Flexibility is guaranteed by the presence of software,
whereas performance is ensured by hardware parts. Some of these devices feature a reconfigurable area
that allows an hardware architecture to dynamically adapt during the execution of applications. These
circuits constitute the targeted architecture in the works that I led since my PhD studies.

The will to efficiently use embedded systems raises a lot of questions. One of the most interesting
relates to the capability of managing these systems in real-time. Today, most of them feature an Opera-
ting System (OS) that aims at virtualizing all hardware parts. This OS must, at least, manage memory,
schedule different tasks under specific constraints and ensure resource sharing. Furthermore, it must be
capable of offering new programming models that are completely independent of the underlying hard-
ware architecture. When an OS has to response to real-time constraints, it is denoted as a Real-Time OS
(RTOS).

Building a full embedded system based on an RTOS or several RTOSs is a delicate design process.
Designers basically have to make sure that tasks operate correctly during the execution of the application
while meeting the imposed constraints. Usually, the design of embedded systems is performed at high
level of abstraction in order to allow designers to explore various choices and finally retain the most
efficient one [JW05].

In the past, numerous methodologies and associated tools have been proposed to design complex em-
bedded systems at high level of abstraction. Languages or libraries such as SpeC [spe] or SystemC [Sysc]
have been used for years to build models. Unfortunately, a limited amount of studies only take into ac-
count RTOS modeling in their intrinsic design flow. A very complete survey in the area of RTOS modelling
is presented in [Yu10]. The author introduces three criteria to classify RTOS models : application scope,
software simulation method and functional accuracy. He also divides the different studies into two distinct
categories according to the modeling granularity.

Regarding coarse grain models, the modeling process has several objectives. First, the full system is
specified. It is then analyzed to perform hardware/software partitioning. This step intervenes very soon
in the design process and since the hardware platform is not known at this stage, it is very difficult to
obtain accurate results. At this level, an application is seen as a set of tasks with simple parameters such
as the execution time, period and deadline [HKH04]. Furthermore, resource sharing and synchronization
between tasks or with hardware parts are generally not taken into account in these models. The main
interest to work at this level of abstraction is the simulation time that is greatly reduced. On the other
hand, the main drawback is the lack of accuracy in the timing evaluation.

Authors in [GYG08] have presented an abstract RTOS model that is described in SpecC. Unfortuna-
tely, interrupts are not modelled in this work and interactions with hardware modules are not accurately
defined. In other works, Zabel [ZMG09] uses a SystemC model that is based on [GYG08]. The SW/HW

9

PA
R

C
O

U
R

S
P

R
O

F
E

S
S

IO
N

N
E

L
S

Y
N

T
H

E
S

IS
O

F
R

E
S

E
A

R
C

H
W

O
R

K
S

A
P

P
E

N
D

IX
Chapitre 2. From OS Modelling to Implementation

synchronization is resolved by using the wait-for-event() method that is available in SystemC. An early
work by [MVG] presents a SystemC-based abstract RTOS model. This model is a good basis for system ex-
ploration but has also some limitations. Service overhead is not included in the model and the task model
is very simple and cannot really mimic a real system. This limitation is also met in another work by Hessel
et al. [HRR+04]. In [LPC04], Le Moigne et al. describe a SystemC model of a multitask RTOS. This model
is a part of the Cofluent tool which allows timing parametrization and validation of the RTOS model by
configuring context load, context save, and scheduling duration. [HKRN08] present an abstract RTOS si-
mulation model that is included in their SystemC-based design flow. They model pieces of software on a
generic run-time system rather than directly modelling existing RTOS services.

After modelling and simulating high-level RTOS representation, another problem addressed by Gau-
thier et al. is the automatic generation of RTOS code. In [GYJ01], authors present a method of automatic
generation of operating systems for a target processor. This method determines the OS services that are
required in the code of the application and generates the corresponding code deduced from dependencies
between services in an OS service library.

A first observation that we have made when starting to work on the subject was that none of the current
works around RTOS modeling actually managed the dynamic creation of tasks. However, this particular
point seemed very important to us and that is the reason why we decided to tackle this problem in the
OveRSoC ANR project that is described in section 2 of the current chapter.

I From RTOS models to systems of OS

Another part of our studies has consisted in extending our RTOS modelling approach on more com-
plex systems. The systems that we were interested in are capable of running several operating systems on
the same platform. One very interesting configuration occurs when a RTOS executes concurrently with
other general-purpose OS (GPOS). Today, this configuration is not rare and is met in a lot of domains. For
example, in automotive, an AUTOSAR compliant RTOS and a Linux Genivi OS that supports in-vehicle
infotainment application, could be co-located on the same Electronic Control Unit (ECU) [Hei].

A Virtual Machine (VM) system is a concept intended to simultaneously host multiple operating sys-
tems on a single hardware platform. Each guest operating system is executed in a separate and secure
virtual machine. A virtual machine can be seen as an abstraction of the hardware resources provided to
the guest operating systems. It is managed by a low-complexity kernel referred to as a Virtual Machine
Monitor (VMM). This virtual machine monitor must ensure that a temporal or local fault in one virtual
machine (e.g., an infinite loop, out-of-bounds array access, exhaustion of assigned resources) does not af-
fect the operation of the other virtual machines. This feature is referred to as logical and temporal isolation
in the real-time community, and as space and time partitioning in the RTOS industry.

Virtualization can be implemented in different ways. The classic approach to design a virtual machine
system is to place the VMM on bare metal hardware whereas the virtual machine fits on top. The VMM
runs in the most highly privileged level 1, while all guest operating systems run with lower privileges, as
shown in Figure 2.1. Then, in a completely transparent way, the VMM can intercept and implement all
the guest OS’s actions that interact with the hardware resources. In this configuration, the VMM may also
be called hypervisor.

An alternative implementation builds the VMM on top of an existing host operating system, resul-
ting in what is called a hosted VM as shown in Figure 2.1c and Figure 2.1d. In this configuration, the
installation process is similar to installing a typical application program on the host OS.

I Virtualization Implementation

Researches on embedded virtualization have been focusing on several features or challenges including
security issue, virtualization overhead, software complexity, high-bandwidth VM inter-communication,
and real-time task capability.

In conventional para-virtualization approaches, a guest OS is normally equipped with a virtualization
patch to interact with the VMM, which requires the OS source code to be modified and must then be
available [PKR+13]. One possible para-virtualization solution is to use a micro-kernel, which is a small
Trust Computing Based (TCB) set of features defined as address space, threads and inter-process commu-
nication (see [Lie95]). Additional functionality is normally implemented at user level.

10

PA
R

C
O

U
R

S
P

R
O

F
E

S
S

IO
N

N
E

L
S

Y
N

T
H

E
S

IS
O

F
R

E
S

E
A

R
C

H
W

O
R

K
S

A
P

P
E

N
D

IX

2. A new Design Methodology for Operating Systems

fect the operation of other correct virtual machines. This requirement isreferred to aslogical and

temporal isolationin the real-time community, and asspaceand time partitioning in the RTOS

industry.

Virtualization can be implemented in different ways. The classic approach to design a virtual

machine system is to place the VMM on bare hardware whereas the virtual machine fits on top. The

VMM runs in the most highlyprivileged level1, while all guest operating systems run with lesser

privileges, as shown in Figure 2.2. Then, in a completely transparent way, the VMM can intercept

and implement all the guest OS’s actions that interact with the hardware resources.

An alternative implementation builds the VMM on top of an existing host operating system, re-

sulting in what is called ahosted VMas shown in Figure 2.2c and Figure 2.2d. In this configuration,

the installation process is similar to installing a typical application program.

Hardware Hardware Hardware Hardware

OS

Applications

VMM

Guest OS

Host OS

VMM

Host OS

VMM

Guest Apps

Guest Apps Guest Apps

Guest OS Guest OS

Non privileged
modes

Privileged
modes

a. Traditional
system

b. Native VM
system

c. User-mode
hosted VM
system

d. Hosted VM
system

Figure 2.2: Native and Hosted VM Systems.

Executing multiple guest operating systems by a VMM is similar to the execution of multiple

user processes by an operating system in a conventional time-sharing system. The VMM moves

the entire guest registers’ contents into the host’s registers after saving the registers of the previous

guest into memory. Then, the execution can proceed at the same speed rateas on a machine running

the guest natively. Once the VMM gives the resources to a guest virtualmachine, it is important

that the VMM could get them back so they can be later assigned to a different VM. Again, this step

1This level (reserved for the most privileged code, data, and stacks)is used for the segments containing the critical
software, usually the kernel of an operating system. The other privilege levels are used for less critical software. For
instance, the x86 Intel architecture has 4 privilege levels. Linux on the x86 architecture uses the highest privilege level,
and the applications use the lowest one, the other intermediate levels are notused.

8

FIGURE 2.1 – Native and hosted VM Systems.

Examples of such kernels are the L4 micro-kernels usually relying on Linux to support user-level
virtual machines. For example, in [GBL+09] and [XBG+10], EMUCO and Fiasco L4 were respectively used
in communication and mobile phone systems by leveraging L4Linux as a client server. Some successful
solutions are the OKL4 microvisor from Open Kernel Labs [HL10], or ARMvisor [DLC+12], based on KVM
for the ARM architecture.

22 A new Design Methodology for Operating Systems

The works that are presented in this section have been initiated as soon as I obtained my position of
associate professor at the IUT of Cergy Pontoise in 2003. They led to the elaboration of a national ANR
project named OveRSoC, in which I was the main leader. This project started in 2005 and ended in 2008.
The teams that were involved in the project were :

— the Architecture team of the ETIS laboratory (UMR CNRS 8051, Cergy-Pontoise)

— the R2D2 team of the IRISA laboratory (University of Rennes1, Lannion)

— the SYEL team of the LISIF laboratory (now LIP6) (University Pierre and Marie Curie, Paris)

The OveRSoC project has been proposed to not only take into account RTOS design but also define the
underlying hardware platform. Its purpose was to propose an efficient design space exploration methodo-
logy and an associated simulation tool as well. Today, the OverSoC methodology is based on 4 important
design concepts : exploration, separation of concerns, incremental refinement and re- usability.

We advocate the use of a high-level model of Reconfigurable SoCs (RSoC) in order to explore different
critical design choices. Among these important choices, two exploration issues have been distinguished :

— the exploration of the application partitioning onto the processing resources

— the exploration of the RTOS services distribution and their algorithms.

Each design strategy belonging to these exploration levels is manually performed by designers. Ho-
wever, the proposed method intends to help in easily and quickly building the executable specification of
the corresponding system. The underlying tools are used to evaluate performance in order to analyze and
compare design strategies. The design choices corresponding to the second exploration issue (RTOS) are
the architecture of the embedded RTOS (centralized or distributed, OS services organization, software, or
hardware implementation, etc.), the services algorithms (scheduling policies, etc.), the interactions bet-
ween OS service functions and underlying resources (reconfigurable areas, memories, interconnect type)
and the software programming model.

Second, once validated the candidate design solutions are incrementally refined towards lower levels
of abstraction down to the final implementation. The OveRSoC methodology permits the separation of
concerns during the modeling and refinement process. It also defines modeling rules that facilitate inde-
pendence and re-usability between components. For each design concern, specific and related refinement
steps are proposed.

11

PA
R

C
O

U
R

S
P

R
O

F
E

S
S

IO
N

N
E

L
S

Y
N

T
H

E
S

IS
O

F
R

E
S

E
A

R
C

H
W

O
R

K
S

A
P

P
E

N
D

IX
Chapitre 2. From OS Modelling to Implementation

Finally, the method imposes a functional approach at each level of abstraction, which validates the
application functionality and makes it possible to evaluate the performance. As depicted in Figure 2.2,
the main aspect of the framework consists of an iterative process of exploration. It means that this process
is repeated as many times as required, until the system constraints are met.

The exploration flow starts with the description of three different models : the application model, the
architecture model and the operating system model. In a second step, all these descriptions are combined
to create a global model representing the entire system. This model is generated in SystemC in order to
exploit the advantages offered by this library, namely the high-level description allowing high-speed simu-
lations. The global model is then simulated with the SystemC kernel. After this simulation step, metrics
are evaluated and designers have the possibility to analyze the generated results. If the obtained results
are not satisfactory, designers may restart a new iteration by modifying the corresponding attributes. Fi-
nally, the simulation normally ends up by showing no incoherence between the initial specifications and
the timing behaviour of the application.

FIGURE 2.2 – OveRSoC design methodology.

2.12.1 System Specifications

This first stage of the methodology consists in setting the specifications of the system. The functional
specifications define the algorithmic behaviour, i.e. the application, whereas the architecture specifica-
tions define the characteristics of the targeted hardware. Specifications also include the constraints which
must be respected by the system. For instance, it may refer to timing latency for an application, or to me-
mory size limitations for hardware elements. Moreover, it includes the operating system structure which
defines the required services and their localization.

I Application Model

The application model is one of the components of the system framework. It is composed of a directed
graph representing the set of tasks in which the application is split, and the precedence order among the
tasks. The graph is introduced to the system as an XML file as depicted in Figure 2.3.

12

PA
R

C
O

U
R

S
P

R
O

F
E

S
S

IO
N

N
E

L
S

Y
N

T
H

E
S

IS
O

F
R

E
S

E
A

R
C

H
W

O
R

K
S

A
P

P
E

N
D

IX

2. A new Design Methodology for Operating Systems

FIGURE 2.3 – XML description and the corresponding graph.

In addition, each task is related to a set of indispensable characteristics, e.g. the task’s functionality. In
our platform, such characteristics are called "attributes". These attributes are summarized in Table 2.1.

Attribute Description
Function Functional code written in C or C++.
Priority Order of execution for a fixed priority scheduling policy.
Deadline Maximum length of time to execute the task. It is related to the task’s start

time.
NbCycles Execution time on the target processor.

TABLE 2.1 – Attributes for each node of the application graph.

The Function attribute designates the set of instructions that will be executed by the task. The task
function may contain either a behavioural description written in C or C++, or just quantitative infor-
mation about the time overhead. In the latter case, the platform only provides system latencies, which
constitutes the primary objective. In any case, Function contains the Application Program Interface (API)
primitives that gives access to the operating system’s services.

I Architecture Model

The architectural specifications define the main components of the system’s hardware structure (e.g.
processors, buses etc.). Specifications include basic characteristics of such components, e.g. the proces-
sor’s frequency and bandwidth. With the help of the platform’s library, the architectural specifications
can be built from predefined blocks. Currently, the components are available in two categories : Proces-
sing Elements (PE) and Communication Elements (CE). In Processing Elements, different types of micro-
processors (e.g. GPP and DSP) can be found. The Communication Elements (CE) category is composed of
components that ensure communication between PEs (e.g. Bus, Crossbar, Network). Memories and Timer
peripherals can be also found. Table 2.2 lists example of elements that are currently implemented and
their corresponding attributes.

Component Attribute Description
Processors Clock frequency Processing speed in cycles per second.
Memory Size Capacity in number of bytes.
Timer Period Regulates the execution of the scheduler.

TABLE 2.2 – Attributes for the architecture components.

I RTOS Model

The RTOS model describes the characteristics that an operating system should implement for the tar-
geted system. For example, these characteristics ensure the right progress of the application tasks and the

13

PA
R

C
O

U
R

S
P

R
O

F
E

S
S

IO
N

N
E

L
S

Y
N

T
H

E
S

IS
O

F
R

E
S

E
A

R
C

H
W

O
R

K
S

A
P

P
E

N
D

IX
Chapitre 2. From OS Modelling to Implementation

handling of communication with other peripherals. In the proposed platform, designers also determine
the structure of the operating system that better fits their system. Like in the other models, the RTOS
model is also built from elements that are available in a library. Such elements are also characterized by
predefined attributes. The RTOS model is detailed in section 3 of this chapter.

2.22.2 The Dogme Tool

Due to the complexity of the exploration process, it has clearly appeared that HW/SW designers
should rely on tools to apply the OveRSoC methodology. The DOGME (Distributed Operating system
Graphical Modeling Environment) software provides an integrated graphical environment to model, si-
mulate, and validate the distribution of OS services on an RSoC. The goal of this tool is to ease the use of
the exploration methodology and to generate a complete executable model of the RSoC platform (hard-
ware and software), automatically. The automation is based on a flexible SystemC model of the RTOS that
consists of a package of modular services. To develop each service, an Object Oriented Approach has been
adopted and implemented using the SystemC 2.2 library. This tool allows an application-specific RTOS
to be built by assembling generic and custom OS basic blocks using a graphical editor. The application is
linked to the resulting OS thanks to a standard POSIX API. Finally, the entire platform is simulated using
the SystemC kernel.

Using the DOGME tool implies to follow several design stages, which are summarized as follows :

Platform Design : the design phase consists in choosing and instantiating toolbox components into the
graphical workspace editor in order to assemble the OS services and distribute them onto the RSoC
processing elements. At this step, designers successively, (and according to the separation of concerns
paradigm), take decisions about functions mapping into threads, perform hardware/software parti-
tioning, instantiate the required services and distribute the services onto the PEs.

SystemC source code generation : after interconnecting all components and verifying the bindings bet-
ween services, the structural source code of all objects being instantiated into the platform is auto-
matically generated.

Compilation and simulation of the platform : to complete the design of the platform, the parametrized
structural SystemC description is combined with the behavioral source code of the components
provided by the user. The global SystemC description is compiled and simulated.

Analysis of the simulation results : graphical diagrams are produced to visualize the evolution of the
system metrics during the simulated time. This step helps designers to evaluate the current design
quality. It acts as a decision guide for the exploration of the design solution space.

The DOGME tool has been designed during the OveRSoC project by Mehdi Aichouch in the ETIS
laboratory. A screen capture of the tool is illustrated in Figure 2.4.

33 OS Model Description

The works presented in this section have been led in the PhD studies of Yaset Oliva who joined the
OveRSoC project in 2008. In his thesis, he proposed a modular description of OS services as well as the
corresponding models.

A modular organization is one of the main assets of our RTOS model. The functions that implement
the RTOS mechanisms (e.g. multitasking, interrupt management) have been gathered into independent
services. A service is composed of functions sharing a common concern. For example, properties that are
related to a task, such as the creation or deletion are contained within the same service. This modularity is
very interesting as it favours the scalability of the model. In this context, new services can be incorporated
without requiring any modification of the entire system.

The Application Program Interface (API) ensures the communication between the application and
the operating system services. It contains a list of definitions representing the features that services may
provide to an application. Such definitions are known as "primitives" and constitute the only means by

14

PA
R

C
O

U
R

S
P

R
O

F
E

S
S

IO
N

N
E

L
S

Y
N

T
H

E
S

IS
O

F
R

E
S

E
A

R
C

H
W

O
R

K
S

A
P

P
E

N
D

IX

3. OS Model Description

Figure 5.2: OveRSoC development tool. In the hardware model, two Processing Elements (PEs) and
one reconfigurable hardware unit (named ”mysimpleardos1” in the figure) are instantiated. These
hardware components are needed to execute the software and hardware tasks of the application.
Also one communication element (”THEORB” in the figure) and one synchronization mechanism
(”SampleSemHWOS” in the figure) represent a communication medias and a locking mechanism.
Alongside the hardware part, the system designer deploys two operating systems (named ”Sample”
and ”SampleDuo” in the figure) on the two distinct processors (PEs).

109

FIGURE 2.4 – The OveRSoC DOGME tool.

which a program can communicate with the operating system. In the following, the services defined in
the OS model are described.

3.13.1 Task Manager Service

This service aims at managing the tasks’ structure (i.e TCB) within the OS. Table 2.3 describes the
primitives that are associated with this service.

Primitive Function
OSTaskCreate Creates an RTOS task object taking the task function as input parameter.
OSTaskDel Deletes a task so that it is no longer considered by the scheduler.
OSTaskSuspend Suspends a task for a given time or until it is implicitly resumed.
OSTaskResume Resumes a task that was previously suspended.
OSTaskExec Simulates execution times.

TABLE 2.3 – Primitives exported by the Task Manager.

15

PA
R

C
O

U
R

S
P

R
O

F
E

S
S

IO
N

N
E

L
S

Y
N

T
H

E
S

IS
O

F
R

E
S

E
A

R
C

H
W

O
R

K
S

A
P

P
E

N
D

IX
Chapitre 2. From OS Modelling to Implementation

3.23.2 Scheduling Service

The scheduling service is responsible for implementing the most important function of an operating
system, that is the schedule function. The goal of the scheduler is to establish the order in which tasks are
going to be implemented into the processing element.

Two types of scheduling processes are foreseen in the model. The first may be performed "off-line",
which corresponds to a static table in which the tasks’ order of execution has been previously stored. The
second is performed "on-line".

In general, the new task selection process is straightforward. It consists in assigning a priority to each
task, and then loading the context of the highest priority task that is in the ready state. How priorities are
assigned to tasks is designated by the scheduling policy. In the proposed scheduling model, the selection
process follows the same principle. First, the ready tasks are selected from a list of available tasks. Then,
the list of ready tasks is ordered according to a predefined criterion. The criterion that is used to order the
list may change from one design to another. Currently, Rate Monotonic (RM) and Earliest Deadline First
(EDF) have been implemented. The type of scheduling strategy constitutes an attribute of the Scheduling
service.

3.33.3 The IRQ Manager Service

The handling of interrupts is an indispensable mechanism for any operating system. Interrupts are
a means by which the peripherals communicate with the main processor, for example I/O controllers,
timers or other processing elements. If an interrupt can be serviced by the processor, a default action
may be performed. The action executed after an interrupt is called an interrupt routine, and the process
of reorienting the processor to the corresponding routine is called interrupt handling. Basically, when
an interrupt occurs, the interrupt handler is responsible for determining the source of this interrupt. As
mentioned before, several causes may interrupt a system, e.g. an event on an input port or a timer at
the end of a period. In our model, the interrupt handler has been defined as a separate service named
IRQManager service.

3.43.4 The Communication Service

Inter-tasks communication or synchronization mechanisms must also be ensured by the OS model.
In order to implement this functionality, the Communication Service implements three types of me-
chanisms : the mailbox, the mutex and the semaphore. Mailbox objects define memory locations where
to/from tasks can write/read data. Both the mutex and the semaphore provide exclusive access to a sha-
red resource. The difference between them is that the semaphore also allows multiple concurrent accesses.
Table 2.4 lists the primitives giving access to these objects.

3.53.5 The Intercommunication Service

It has been seen that services may need to communicate between them. For example the IRQMa-
nager calls the scheduling function from the interrupt routine. A similar situation occurs for the Task
Managerservice after a new task is created. Therefore, to facilitate the addition of new services and their
interconnections, a TLM based mechanism has been used. To that purpose, a special class named over-
soc_if has been defined. This class inherits from the sc_interface SystemC class and thus can be used as a
class template for the creation of ports. Every service inherits from this class and implements the transport
method.

The transport method is responsible for translating incoming transactions into calls to the correspon-

16

PA
R

C
O

U
R

S
P

R
O

F
E

S
S

IO
N

N
E

L
S

Y
N

T
H

E
S

IS
O

F
R

E
S

E
A

R
C

H
W

O
R

K
S

A
P

P
E

N
D

IX

3. OS Model Description

Primitive Function
OSMBoxCreate Creates a mailbox object with a maximum number of N-size messages.
OSMBoxPostMsg Writes a message into a mailbox. Blocks if the mailbox is full.
OSMBoxPendMsg Retrieves a message from the mailbox. Blocks if the mailbox is empty.
OSMutexCreate Creates a mutex.
OSMutexLock Locks a mutex.
OSMutexUnlock Unlocks a mutex.
OSSemCreate Creates a semaphore object with an initial value.
OSSemPost Increases the value of the semaphore.
OSSemPend Decreases the value of a semaphore. Blocks if the value is zero.

TABLE 2.4 – Primitives exported by the Communications service.

ding functions. In such a way, it is possible to have access to service functions by just defining a port of
the targeted service type and calling its transport method.

Additionally, since one port may be connected to only one interface, several ports would be required
to connect one service to several ones. Instead, we have defined another element that interconnects all
services between them. This element contains an array of n ports that are connected to the n services of
the system. It also inherits and implements the oversoc_if so that each service port can be connected to it.

The transport method implementation of this element differs from the implementation inside each
service. In this case, whenever a request arrives, the array of ports is examined looking for a service that
is able to process the request. To do this, each request was enlarged with an identifier and a compatible
method has been included to the oversoc_if class. With these two modifications, it is possible to determine
to which service the request must be redirected.

FIGURE 2.5 – Interconnection of several services.

Note that it is also possible to build a hierarchical structure which interconnects several groups of
services like those depicted in Figure 2.5. This can be useful for systems in which the operating system is
distributed between several processing elements. This is an aspect of the platform which has been studied
in another work [Huc11].

3.63.6 The Reconfiguration Management Model

Yaset Oliva’s proposed in its thesis an offloading mechanism that may be used to migrate computa-
tions at runtime in order to relieve the load of processors. It has naturally been applied to reconfigurable
architectures but more generally to multiprocessors systems. In order to implement this mechanism, the
concept of hardware tasks has first been introduced.

17

PA
R

C
O

U
R

S
P

R
O

F
E

S
S

IO
N

N
E

L
S

Y
N

T
H

E
S

IS
O

F
R

E
S

E
A

R
C

H
W

O
R

K
S

A
P

P
E

N
D

IX
Chapitre 2. From OS Modelling to Implementation

3.6.13.6.1 The HW Task Concept

A HwTask is a structure representing an off-loadable section. It contains the information that is requi-
red by the OS offloading mechanism. At present, it is assumed that a task can contain only one off-loadable
section. The structure is allocated at the creation of a task, and its reference is included into the corres-
ponding TCB (Task Control Block). Table 2.5 summarizes the most important members of the HwTask
structure.

Member Description
State Current state
OSTask A reference to the container TCB
NbCycles Duration in number of cycles
BinSize Size of the binary file in bytes
HwWidth Width in terms of reconfigurable resources
HwHeight Height in terms of reconfigurable resources
HwPosX Horizontal coordinate on the RH
HwPosY Vertical coordinate on the RH

TABLE 2.5 – Members of the HwTask structure.

We argue that the proposed offloading mechanisms can considerably improve the performances of
embedded systems. This statement lies on the premise that the application’s main computations can be
offloaded onto slave processors (including RH), while the master is dedicated to the execution of the OS
and other less demanding tasks (e.g. I/O operations).

In this work, an off-loadable section is defined as a part of the application code which does not contain
any primitive call, and that can be executed by any slave processor. Off-loadable sections can be seen
as HWTasks whose hardware and/or software implementations are stored in the system. The offloading
mechanism involves several actions from the arrival of the offloading request until the end of the slave
execution (in the successful case). These actions are listed below :

1. Acceptance of the offloading request.

2. Search for an available slave processor.

3. Transfer of the section’s code (optional).

4. Restitution of the original task.

The offloading algorithm has been decomposed into multiple SW modules, i.e. the Dispatcher and at
least the Offloader and Placer modules.

The Dispatcher module implements the OS primitive that is exported to the API. The Offloader is
the most important module. It implements the decision algorithm (which is described later), and is res-
ponsible for transferring the section’s code to the slave(s). The Placer module aims at finding the slave
processors that are able to implement the off-loadable section. A more representative scheme of the of-
floading mechanism is shown in Figure 2.6.

3.6.23.6.2 The Dispatcher

The Dispatcher module implements the primitive which allows the application to designate an off-
loadable section. Note the interest of changing the task’s state to offloading. This is especially profitable
in case where the Offloader module is configured as a separate hardware module. Since the processor
continues executing and calls the scheduler, a new task is going to be selected as the current task. By
modifying the old task’s state, it is ensured that the same task is not going to be selected by the scheduler.
Undetermined behaviour would result if this precaution is not taken into account.

18

PA
R

C
O

U
R

S
P

R
O

F
E

S
S

IO
N

N
E

L
S

Y
N

T
H

E
S

IS
O

F
R

E
S

E
A

R
C

H
W

O
R

K
S

A
P

P
E

N
D

IX

3. OS Model Description76 CHAPTER 5. MODELING A RUN TIME MANAGEMENT ALGORITHM

Figure 5.3: Offloading mechanism blocks

(Application Program Interface). From the application point of view, a function would
call the OSOffload primitive instead of the the OSExecuteTask primitive (cf. Section
5.4) in order to simulate the execution of an off-loadable section. The Listing 5.1 sum-
marizes the implementation of the OSOffload function.

2 void OSOffload ()
3 {
4 . . .
5 // Get the cur rent task
6 r eque s t . type req = MSGGET CURRENT TASK;
7 s t a tu s = BUS−>t ran spor t (&request , &response) ;
8 cur r ent ta sk−>s t a t e = o f f l o a d i n g ;

10 // Cal l the Of f l oade r module
11 r eque s t . type req = MSGOFFLOADHWTASK;
12 r eque s t . mydata = cur r ent ta sk−>HwTask ;
13 s t a tu s = BUS−>t ran spor t (&request , &response) ;

15 // Cal l the s chedu l e r i f the Of f l oade r module i s a remote block
16 #i f d e f REMOTEBLOCK
17 r eque s t . type req = MSG SCHEDULE;
18 s t a tu s = BUS−>t ran spor t (&request , &response) ;
19 wait () ;
20 #end i f
21 . . .
22 }

Listing 5.1: Extract of the OSOffload primitive implementation for the OS model

FIGURE 2.6 – Offloading mechanism blocks.

3.6.33.6.3 The placer

The placer is the module that is the closest to the hardware structure. In order to place a HwTask, the
Offloader must determine available processing elements from the Placer. To that purpose, the latter must
keep control of the slave processors’ status. The behaviour of this module partially depends on the type
of the slave processing elements contained in the architecture.

The Placer module’s model implements the PlaceHwTask() function. In this proposed service, two types
of algorithms are considered, one for reconfigurable hardware and one for a processor set. Moreover, in
the case of reconfigurable hardware, the algorithm can use two different strategies : BestFit and FirstFit.
Note that a mixed architecture comprising both types of slave elements is also possible. Since each algo-
rithm executes its own placement strategy, it incurs a different timing overhead which is accumulated and
simulated.

3.6.43.6.4 The Offloader

The Offloader module manages tasks’ off-loadable sections. To this purpose, it implements the Offloa-
dingAlgorithm function whose principle is simple. It basically consists in sending a request to the Placer,
and then updates the OS task and HwTask states according to the Placer’s response.

Currently, three levels of complexity have been proposed. The first level implements a direct response,
the HwTask is executed by the master processor itself. At the second level, the slaves’ status are analyzed.
If any slave has implemented a Hwtask that is finished, it is replaced by a new HwTask. Finally, at the third
level, if the previous solutions have failed, it means that all slaves are busy. In this case, a computation is
performed to approximate the time delay that is required to handle the task by the processor.

In order to give an example of a reconfiguration management model, we focus here on the mechanisms
that are implemented at level 3. The following algorithm computes an estimate of the time that is required
before resources are available. Then it determines whether it is worth delaying the HwTask. The decision
can be based on the HwTask’s deadline attribute. In short, if the computed delay does not cause the
HwTask to miss its deadline, it continues waiting for the required resources. Another alternative is to
compare estimates of the execution end time : if the estimation of the execution end time on the slave
is closer than the execution end time on the master, the task waiting for the slave is freed. In order to

19

PA
R

C
O

U
R

S
P

R
O

F
E

S
S

IO
N

N
E

L
S

Y
N

T
H

E
S

IS
O

F
R

E
S

E
A

R
C

H
W

O
R

K
S

A
P

P
E

N
D

IX
Chapitre 2. From OS Modelling to Implementation

compute the waiting time, estimates of the end times of each HwTask in running state are computed in a
specific function.

Therefore, if the HwTask to be transferred targets a given processor, then the waiting delay simply
corresponds to the estimated end time of the HwTask currently running in that processor. In the case
where the target processor is reconfigurable hardware, since several HwTasks may occupy the required
resources, the waiting time corresponds to the maximum end time of the HwTasks.

However, if a HwTask can be placed anywhere, the computation of the waiting time is a bit more com-
plex. In the set of processors’ case, it is required to find the earliest estimated end-time among all running
HwTasks. In case of reconfigurable hardware, the placement algorithm furnishes a list of areas in which
the new HwTask can be placed. Each area comprises a group of running HwTasks with their correspon-
ding estimated end times. The estimated end-time of a group, and thus of an area, is the latest estimated
end-time among all the contained HwTasks. Then the candidate area in which the new HwTask will be
placed, is the area (or group) with the earliest estimated end-time among all the areas. The behaviour of
the algorithm is represented in Figure 2.7.5.4. THE OFFLOADING MECHANISM MODEL 85

Figure 5.7: Scheme of the EstimateEndTimes algorithm.

In addition, if a HwTask is set to wait until the required resources are available, it
is necessary to alert the Offloader module about the changes of the running HWTasks
status. The objective of the updateWaitingHwTask function is precisely to trigger the
execution of the waiting HwTask whenever it is possible. Therefore, this function must
watch over the running HwTasks until their executions are done. An extract of the
model’s code is listed in 5.8.

The function starts by examining the list of HwTasks that will be replaced. Since
the placement of the new HwTask must wait until all executions are done, whenever a
HwTask from the list is still running the function returns. In the other case, if all the
running HwTasks have already finished, the waiting HwTask can be configured and then
started. Subsequently, all the previous HwTasks are destroyed, and the new configured
HwTask is appended to the HwTasks list. At the end, the waitingHwTask variable is
cleared.

FIGURE 2.7 – Scheme of the EstimateEndTimes algorithm.

44 Modelling Evaluation

The role of this section is to demonstrate the use of the OveRSoC methodology on a real use case.
The proposed system consists of a terminal whose mission is to decode the signals it receives through a
wireless channel (see Figure 2.8). This type of system is typical in the wireless communications domain.
This use-case has been studied in the context of the GDR-ISIS, young researcher project in collaboration
with Laura Conde-Canencia of the Lab-STICC Laboratory.

20

PA
R

C
O

U
R

S
P

R
O

F
E

S
S

IO
N

N
E

L
S

Y
N

T
H

E
S

IS
O

F
R

E
S

E
A

R
C

H
W

O
R

K
S

A
P

P
E

N
D

IX

4. Modelling Evaluation

4.14.1 Description

Chapter 6

Case study

6.1 Description of the target system

The goal of this chapter is to demonstrate the use of the OveRSoC methodology and
tools by simulating a real application onto a specific reconfigurable architecture. The
proposed system consists of a terminal whose mission is to decode the signals it receives
through a wireless channel (see Figure 6.1). This type of system is typical in the wireless
communications domain.

Figure 6.1: The target system

Most of these systems implement special techniques. On one hand, these techniques
are used to counteract the disturbances experienced by the signal passing through the
channel. On the other hand, they are used as a solution to the constant increase on the
market spectrum demands.

In this context, high-order modulation schemes and powerful error-correcting codes
are then associated to transmit more bits per Hz bandwidth and maximize performance.
However, as the radio signal often propagates in a hostile varying environment, the
transmission scheme should be able to adapt itself to the state of the channel in real-
time. A promising scheme is then Adaptive Coded Modulation (ACM) [80], where the
transmitter switches between signal constellations (of varying size) and code rates at
discrete time instants. In other words, at a given time, the transmitter chooses symbols
from the biggest constellation meeting the Bit Error Rate (BER) requirements and thus

95

FIGURE 2.8 – Target system.

In this application, high-order modulation schemes and error-correcting codes are jointly used to
transmit more bits per Hz bandwidth and maximize performance. However, as the radio signal often
propagates in a varying environment, the transmission scheme should be able to adapt itself to the state
of the channel in real-time. A promising scheme is the Adaptive Coded Modulation (ACM) [CCEPO12],
where the transmitter switches between signal constellations (of varying size) and code rates at discrete
time instants. In other words, at a given time, the transmitter chooses symbols from the biggest constel-
lation meeting the Bit Error Rate (BER) requirements and thus ensures maximum spectral efficiency for a
given acceptable BER.

The ACM technique consists in choosing the Modulation and Coding Scheme (MCS) pattern that maxi-
mizes the system throughput, while guaranteeing an acceptable BER. Each MCS is characterized by a mo-
dulation (of order M) and a coding rate (R). Besides, M and R are used to calculate the spectral efficiency
(η) of a communication, according to the equation :

η = R ∗ log2 M

where η is defined as the maximum throughput (in bits/s/Hz).
In this case study, we consider an application which is compatible with the WiMAX 802.16m standard

[CCEPO12]. In this standard, 12 MCSs are supported. These MCSs are detailed in Table 2.6, which is to
be read as : MCS1 corresponds to a QPSK modulation (M = 4) and (R = 1/2) or MCS7 corresponds to a
16-QAM (M = 16) and (R = 3/4).

MCS Modulation Code rate
1, 2, 3, 4 QPSK 1/2, 2/3, 3/4, 5/6
5, 6, 7, 8 16-QAM 1/2, 2/3, 3/4, 5/6

9, 10, 11, 12 64-QAM 1/2, 2/3, 3/4, 5/6

TABLE 2.6 – MCSs in the WiMAX 802.16m standard. Source [CCEPO12]

Regarding the channel (or error-correcting) coding, this work has considered COD codes [DM98]. A
Non Binary Low Density Parity Check (NB-LDPC) code is defined by an ultra-sparse matrix, characterized
by specific parameters such as the frame length (N) and the code rate (R). In the ACM context, the system
switches from one code rate to another depending on the channel state. Also, an NB-LDPC over GF(64)
coding has been considered, thus each symbol corresponds to 6 bits and a frame contains 192 symbols.

Figure 2.9 shows η as a function of SNR for two decoders and two types of channels using the ACM
technique. The decoders are the Convolutional Turbo Decoder (CTC) and NB-LDPC while the channels
are, the Additive White Gaussian Noise (AWGN) channel and the ITU Pedestrian B (at 3 km/h) using a
bandwidth of 20 MHz. The curve marked with the arrow indicates the behaviour considered in our case :
COD coding and AWGN channel.

For our case study, we defined a scenario where signals are constantly sent to the receiver. Also, at
given intervals, channel conditions are analyzed. As soon as the channel changes, the system must be
reconfigured without interrupting the transmission. Moreover, each signal is equivalent to a frame and a

21

PA
R

C
O

U
R

S
P

R
O

F
E

S
S

IO
N

N
E

L
S

Y
N

T
H

E
S

IS
O

F
R

E
S

E
A

R
C

H
W

O
R

K
S

A
P

P
E

N
D

IX
Chapitre 2. From OS Modelling to Implementation

6.1. DESCRIPTION OF THE TARGET SYSTEM 97

Figure 6.2: Spectral efficiency as a function of the SNR with ACM. Source [80]

Moreover, each signal is equivalent to a frame and in between the transmission of two
frames, a pause is required. This is due to side effects of the channel, e.g. multiple paths.
In our case, this pause last 10 µs, which is approximately 10% of the frame’s duration.

The behaviour of the receiver is represented in Figure 6.3. The correctness of the
system is guaranteed if it is able to continuously decode the received signals. In other
words, the system should not interrupt the operation despite the configuration changes.

Figure 6.3: State machine of the case study scenario.

The sensor task is responsible for inspecting the transmission channel and estimating
the SNR. Whenever the channel conditions change, sensor configures the MCS

FIGURE 2.9 – Spectral efficiency as a function of the SNR with ACM. Source [CCEPO12]

pause is required between the transmission of two frames. This is due to side effects of the channel, e.g.
multiple paths. In our case, this pause lasts 10 µs, which corresponds approximately to 10% of the frame’s
duration.

The tasks that constitute the system are the following :

The sensor task is responsible for inspecting the transmission channel and estimating the SNR. Whene-
ver the channel conditions change, sensor configures the MCS that is the most suitable for the next
transmission. Afterwards, sensor locks on a MUTEX until the next transmission is started.

The MCSc task represents the MCS scheme that is being used for the current transmission. At the end
of each frame, the task is suspended for the inter-frame time. After the pause, MCSc unlocks the
MUTEX that is required by sensor, to indicate that a new transmission is going to be started. Every
time a channel change has been indicated by sensor, the MCSc activates the next MCS scheme and
deletes itself.

The MCSn task represents the MCS scheme that has been configured by the sensor for a future trans-
mission. Whenever a change on the channel’s conditions is detected, this task becomes the current
MCS.

4.24.2 System Model

4.2.14.2.1 Application Model

Table 2.7 lists the attributes of each system task. The execution time of the sensor task has been
estimated according to the results of previous implementations of communication systems. Assuming a
basic channel estimation, the time of this task is negligible with respect to the frame processing time.
Regarding the MCS tasks, their execution times as well as their bitstream’s sizes have been extracted from
an implementation on a Virtex5 FPGA [CCLJ12]. Note that the Columns and Rows of the MCS tasks

22

PA
R

C
O

U
R

S
P

R
O

F
E

S
S

IO
N

N
E

L
S

Y
N

T
H

E
S

IS
O

F
R

E
S

E
A

R
C

H
W

O
R

K
S

A
P

P
E

N
D

IX

4. Modelling Evaluation

correspond to the number of columns and rows of the FPGA in terms of reconfigurable resources.

Task Type Mean cycles Columns Rows Bitstream
(resources) (resources) size (Mb)

SENSOR SW 1000 - - -
MCS1 to MCS12 HW 8750 to 18350 20 10 2.25

TABLE 2.7 – Task models and their attributes.

4.2.24.2.2 Architecture Model

The dynamic behaviour of the ACM-based terminal requires a flexible architecture, which is able to
adapt to new channel conditions. In addition, MCS operations require considerable computing power and
should ideally be implemented as dedicated hardware elements. Given these characteristics, an architec-
ture containing a reconfigurable part has been selected. Moreover, we have considered the use of two
processors, one master and one slave. The master is responsible for executing the kernel functions. The
slave processor executes the application tasks. The attributes of the architecture model are summarized
in Table 2.8.

Element Attribute Value
Timer Frequency 50 MHz
Processor Frequency 50 MHz
RH Width 200 columns

Height 200 rows
Frequency 50MHz

TABLE 2.8 – Architecture model attributes.

4.2.34.2.3 Kernel Model

Considering the target system, the model of the kernel is composed of the services that are listed in
Table 2.9. In this model, the Task Manager service has been parametrized to handle 13 tasks at most. In
a first model, since the target architecture contains two processors, the scheduler type has been chosen to
be Symmetric Multiprocessing (SMP) and the scheduling policy is classical rate-monotonic.

Service Attribute Value
Task Manager MAX_NB_TASKS 13
Scheduler Scheduling type SMP
IRQ Manager Sources IRQ_END_TASK

IRQ_TICK
Communications Mechanisms MUTEX
Offloading ALLOW_IRQ yes

OFF_LEVEL 1
PLACEMENT_POLICY BEST_FIT_ALGO
PROCESSORS_SET_SLAVE no
REMOTE_BLOCK no
RH_SLAVE yes
IRQ_TRANSFER no

TABLE 2.9 – Kernel model.

23

PA
R

C
O

U
R

S
P

R
O

F
E

S
S

IO
N

N
E

L
S

Y
N

T
H

E
S

IS
O

F
R

E
S

E
A

R
C

H
W

O
R

K
S

A
P

P
E

N
D

IX
Chapitre 2. From OS Modelling to Implementation

Moreover, since HW tasks are considered in this architecture, an IRQManager is required. This mana-
ger must handle interrupts coming from hardware elements. Additionally, a tick interrupt is also provided
to manage the tasks’ delay. According to the synchronization requirements, it has been decided to only im-
plement mutexes since they are simple and sufficient for this application. An offloading algorithm has also
been included since reconfigurable hardware must be managed. Initially, the algorithm has been parame-
trized with the first level of complexity. In this configuration, the offloading algorithm will be executed
only in software. Moreover, the configuration data transfer (IRQ_TRANSFER) is not preemptible. Finally,
the placement policy has been chosen to be a best-fit algorithm.

4.34.3 Simulation and results

After the SystemC code generation step, the initial model has been simulated. The Gantt diagram
displaying the tasks’ executions is shown in Figure 2.10. As can be seen in this figure, the system is unable
to run continuously since no more frames are decoded after the second configuration. Only MCS01 and
MCS02 can be executed. Note that no other MCSs are configured and executed and that the two processors
remain idle.

FIGURE 2.10 – Gantt diagram for 2 processors and the Level1-Offloader.

In this situation, it is then necessary to modify the initial model by considering different values of attri-
butes in the kernel, application and architecture models. In this scenario, among all available attributes,
it has been decided to modify the offloading algorithm complexity.

After the modification of the kernel model, the simulation has produced the results shown in Fi-

gure 2.11. Now, the system is working properly because the frames are decoded without interruption,
despite the changes in MCS. All MCS are periodically executed. Since the offloading is now parametrized
at level 2, the system behaves in such a way that, each time a new MCS cannot be configured, the offloader
checks whether there are other idle MCs whose resources can be taken. In this case, the old MCS is repla-
ced by the new one. For example, MCS03 uses the resources of the MCS01 which is not currently being
used.

However, taking a look at the processors’ usage (in Table 2.10), it can be seen that the processors
are not used efficiently. Therefore, it would be interesting to consider a single processor architecture in

24

PA
R

C
O

U
R

S
P

R
O

F
E

S
S

IO
N

N
E

L
S

Y
N

T
H

E
S

IS
O

F
R

E
S

E
A

R
C

H
W

O
R

K
S

A
P

P
E

N
D

IX

5. OS Code Generation

FIGURE 2.11 – Gantt diagram for 2 processors and the Level2-Offloader.

order to optimize the system. It has then been decided to modify the architecture model. In the new
configuration, only one processor and reconfigurable hardware have been considered. Figure 2.12 shows
the simulation of such model.

Processor Idle time Percentage of use
P0 (master) 97.121 51.44%
P1 56.619 71.7 %

TABLE 2.10 – Processor usage.

As shown in Figure 2.12, the system also works properly with one processor. However, it may be
noted that the overall latency has increased. In this new configuration, processing 80 frames is performed
in 37ms whereas in the previous configuration (in Figure 2.11), the same processing was executed in
28ms.

55 OS Code Generation

One of the goal of the OveRSoC methodology was to produce binary code that could be implemented
on real hardware. Regarding software aspects, simulation models have to be transformed into a source
code that could be compiled and executed on the specified target. The transformation mainly concerns
the conversion of the RTOS models into RTOS executable software models. Such a transformation im-
plies the complete re-writing of the software parts in order to make them executable on the platform.
Unfortunately, this operation is very difficult and requires a huge time-consuming engineering effort.

To simplify this operation, we have proposed a method based on model-driven engineering techniques.
Given that software simulation models are composed of structural and behavioral components, the idea
was to use a model-to-model transformation approach to automatically create an executable model re-
presenting the structural part of the simulation model. Thereafter, using the information extracted from
this structural executable model, and from an existing source code that can execute on real hardware, it is
possible to automatically generate executable programs. This work has been led during the PhD studies

25

PA
R

C
O

U
R

S
P

R
O

F
E

S
S

IO
N

N
E

L
S

Y
N

T
H

E
S

IS
O

F
R

E
S

E
A

R
C

H
W

O
R

K
S

A
P

P
E

N
D

IX
Chapitre 2. From OS Modelling to Implementation

FIGURE 2.12 – Gantt diagram for 1 processor and the Offloader level2.

of Mehdi Aichouch, who defined the OS meta-model that was required in this context.

5.15.1 OS Meta-model

The OS Meta-model has been implemented according to the MOF (MetaObject Facility) standard. The
OS model has been defined according to three classes : the "RTOSModel", "Service" and "Operation", and
two containment relationships between them. The ”RTOSModel” class has a list of ”Service” objects, and
the "Service" class contains a list of "Operation" objects as depicted in Figure 2.13. These three entities and
their relationships are sufficient to define the structure of an RTOS in its abstract form.

Figure 5.7: Meta Object Facility language.

To create a meta-model that define the structure of an RTOS, we were inspired by the con-

struction of an RTOS in its most abstract form. That is, if we observe an RTOS from an abstract

perspective, we may see that it is composed by a set of services, and each of these services provides

a set of operations.

So, an RTOS meta-model could be defined by three main classes: the ”RTOSModel”, ”Service”

and ”Operation”, and two containment relationships between them. The ”RTOSModel” class has a

list of ”Service” objects, and the ”Service” class contains a list of ”Operation” objects as depicted

in Figure 5.8. These three entities and their relationships are sufficient to define the structure of an

RTOS in its abstract form.

RTOSModel

Service

Operation

RTOSModel 1

operations *

service 1
services *

Figure 5.8: A meta-model reflecting an abstract RTOS structure.

To create our RTOS meta-model we used the Microsoft Visualization and Modeling framework,

the reason for this is simply due to the familiarity with the underlying programming language used

117

FIGURE 2.13 – Meta-model reflecting an abstract RTOS structure.

26

PA
R

C
O

U
R

S
P

R
O

F
E

S
S

IO
N

N
E

L
S

Y
N

T
H

E
S

IS
O

F
R

E
S

E
A

R
C

H
W

O
R

K
S

A
P

P
E

N
D

IX

6. From the OS to the Hypervisor

SoC simulation model into a structural RTOS model. This technique is called a model-to-model

transformation in the model-driven engineering discipline.

This technique relies on the fact that any meta-model is mandatory defined using the MetaOb-

ject Facility language. So, it is possible to create a mapping between each element from ameta-

model A and each element from ameta-model B as long as both meta-models are defined using

the MOF standard.

Concretely, we create a mapping between the ”Component” entity present in the OverSoC meta-

model and the ”Service” entity present in the structural RTOS meta-model. After that, this rule is

used by atransformation engineto convert a model instance of the OveRSoC meta-model into a

model instance of the structural RTOS meta-model, as illustrated in Figure 5.11.

OveRSoC RTOS model

OveRSoC RTOS

meta-model

M ta Object Facility

RTOS structure

meta-model

RTOS structure model

Transformation Engine

conforms to conforms to

c
o
n
fo

rm
s
 t

o

c
o
n
fo

rm
s
 t

o

mapping

transformation

conforms to

Figure 5.11: Model-to-Model transformation process.

This process could be automatically applied on any simulation model instance of the OveRSoC

meta-model. Giving this model as an input to thetransformation engine, produce as an output a

model instance of the structural RTOS meta-model. After that, it is possible to use the developed

code generatorto automatically produce the final executable programs.

5.4.6 Limitation of the Approach

One major limitation of the presented approach is related to the modification of the source code of

the existing RTOS (in our caseµcOS-II). This modification is necessary because the final source

122

FIGURE 2.14 – Model to model transformation process.

5.25.2 Model to Model Transformation

After creating a model representing the structure of an RTOS and generating the final source code
that is executable on a real hardware, a mechanism to transform an OveRSoC simulation model into a
structural RTOS model has been implemented. This technique is called a model-to-model transformation
in the model-driven engineering domain. This technique relies on the fact that any meta-model is manda-
tory defined using the MetaObject Facility language. So, it is possible to create a mapping between each
element from a meta-model A and each element from a meta-model B as long as both meta-models are
defined according to the MOF standard.

For example, we have created a mapping between the "Component" entity present in the OverSoC
metamodel and the ”Service” entity present in the structural RTOS meta-model. After that, this rule is
used by a transformation engine to convert a model instance of the OveRSoC meta-model into a model
instance of the structural RTOS meta-model, as illustrated in Figure 2.14.

66 From the OS to the Hypervisor

After having proposed a method of exploration dedicated to real-time OS in particular, we have ex-
tended this work to systems that may contain several heterogeneous operating systems. These systems are
generally based on an hypervisor that can also be seen as a particular instance of an operating system. This
hypervisor supports the execution of virtual machines that may execute other guest operating systems,
with different priority levels.

One of the first studies that we have led on virtualization was the evaluation of its impact on the
system’s performance. In particular, we wanted to determine if virtualization was compatible with real-
time constraints, and if yes, at which price.

6.16.1 Is virtualization compatible with real time constraints?

In his thesis, Mehdi Aichouch has studied the efficiency of virtual systems in terms of performance and
adequacy to real-time constraints [Aic14a]. The purpose was to determine the feasibility of co-locating a
real-time operating system and other general purpose OS on the same platform.

In other classic systems such as linux, the POSIX SCHED FIFO (fixed-priority First-in First out) algo-
rithm is used to schedule virtual machines. Whereas this policy is efficient in the case where there is only
one virtual machine that is running on a CPU, it could create a problematic situation in the case where
there are multiple virtual machines sharing the same CPU. In specific conditions, this situation can even

27

PA
R

C
O

U
R

S
P

R
O

F
E

S
S

IO
N

N
E

L
S

Y
N

T
H

E
S

IS
O

F
R

E
S

E
A

R
C

H
W

O
R

K
S

A
P

P
E

N
D

IX
Chapitre 2. From OS Modelling to Implementation

in theSCHED FIFO scheduling algorithm, that is, a process is allowed to execute until it explicitly

releases the CPU or be preempted by a higher priority process. This results in the situation where

the CPU is not allocated toVM1, and the periodic task is never executed.

As a side note from the observation of the scheduling diagram in Figure 4.4,we can better

understand the reason of the rare very high overhead and latency measured in the previous chapter.

If we assume that the guest OS running onVM1 was executing a routine such as the scheduling,

it is easy to see how this routine would be delayed by the execution of anotherworkload on the

host (in this caseVM2). While in this extreme situation the overhead would be extremely high, we

conjecture that what happened in the rare cases where we recorded avery high overhead and latency

the situation was similar but in which a process executed by the host OS would delay the execution

of the guest OS by a more reasonable amount of time.

This problem could be resolved by adopting a scheduling method that enforces the temporal

isolation between the virtual machines. Such a scheduling method defines foreach virtual machine

a tuple (Θ, Π), where thebudgetΘ and theperiodΠ together represent the CPU share that a VM

requests. The VM will receive at leastΘ units of time in each period of lengthΠ.

Figure 4.5 shows an example of the algorithm that shares the CPU between twovirtual ma-

chines. For example, by assigning(Θ = 2,Π = 4) to each virtual machine and setting a higher

priority to VM1 thanVM2, 50% of the CPU time is allocated toVM1 andVM2. Given these tempo-

ral parameters, the algorithm preventsVM1 from over utilizing the CPU resources after consuming

its budget and allocates toVM2 the remaining CPU time. Hence it allows the real-time taskT2 to

run and respect all its deadline.

0 5 10 15 20 25 30

T1

VM2

VM1

T2

scheduled on VM2

scheduled on VM1

release

time

not scheduled

completion

deadline

Figure 4.5: Scheduling of virtual machines according to theRM algorithm.

88

FIGURE 2.15 – Scheduling of virtual machines according to the RM algorithm.

prevent a real-time system from executing correctly.
This problem can be partially resolved by adopting a scheduling method that enforces the temporal

isolation between virtual machines. Such a scheduling method defines for each virtual machine a tuple
(Θ,Π), where the budget θ and the period Π together represent the CPU share that a VM requests. The
VM will receive at least Θ units of time in each period of length Π. Figure 2.15 shows an example of the
algorithm that shares the CPU between two virtual machines. For example, by assigning (Θ = 2,Π = 4) to
each virtual machine and setting a higher priority to VM1 than VM2, 50% of the CPU time is allocated to
VM1 and VM2. Given these timing parameters, the algorithm prevents VM1 from over-utilizing the CPU
resources after consuming its budget and allocates the remaining CPU time to VM2.

In [CPG+11], an analytical method to compute the efficient budget and period of a virtual machine is
presented. The intuition of the method may be described as follows. The execution length is the largest
amount of time that is taken by a virtual machine to execute its assigned budget. Its depends on the virtual
machines scheduling and impacts the schedulability of real-time tasks running on them. It is then the first
parameter to define in schedulability analysis.

Our study has been based on this previous work. First, we considered that the virtual machines are
scheduled according to the fixed-priority Rate Monotonic (RM) algorithm. Second, we assume that every
virtual machine Vl can finish executing its assigned budget θl within Πl time units from its release.

As it can be seen in Figure 2.16, the execution length of a VM depends on the interference from the
execution of the other higher-priority VMs. To determine the time at which the VM finish executing,
the worst-case response time analysis [LSD03], [ARW+10], may be used in this case. According to the
rate-monotonic algorithm, the VMs with shorter periods are the highest priority VMs. Using this policy,
VMs are sorted by decreasing priority. That is, the highest priority VMs are scheduled before the lowest
priority VMs. Thus, the second term at the right of equation 2.1 corresponds to all higher-priority VMs
in the system. This equation can be verified iteratively starting from t1 and until t(c+1) = tc is satisfied for
some c ≥ 1. The value of t(c+1) is equal to the Vl ’s worst-case response time, denoted by Ωl .

t(c+1) = θl +
l−1∑
j=1

⌈
t(c)

Πj

⌉
.Θj (2.1)

From Figure 2.16 we define the Vl ’s execution length by :

Ll =Πl −Θl +Ωl

We denote by dl,min = min|τl |i=1(di) the smallest deadline in the task set τl , where | τl | is the number of
tasks in τl . We also denote by el,min the worst-case execution time of the task with dl,min. The task with
dl,min is the highest priority task in Vl and its execution is not interrupted once Vl starts running.

We assume that Θl is at least equal to el,min :

el,min ≤Θl

Given the precedent two equations, we can derive a necessary condition to ensure that Vl guarantees
that all dl,min are respected, that is, the execution length Ll must be less than or equal to dl,min.

28

PA
R

C
O

U
R

S
P

R
O

F
E

S
S

IO
N

N
E

L
S

Y
N

T
H

E
S

IS
O

F
R

E
S

E
A

R
C

H
W

O
R

K
S

A
P

P
E

N
D

IX

6. From the OS to the Hypervisor

V 's execution length

t t + 2t + Π
t

V 's execution Higher-priority execution

Ω

Θ

Figure 4.6:Vl execution length.

t(c+1) = Θl +
l−1∑

j=1

⌈
t(c)

Πj

⌉
·Θj . (4.1)

According to the rate-monotonic algorithm, the VMs with shorter periods are thehighest pri-

ority VMs. Then, using this policy, the VMs are sorted by decreasing priority. That is, the highest

priority VMs are scheduled before the lowest priority VMs. Thus, the second term at the right of

Equation (4.1) corresponds to all higher-priority VMs in the system. This equation can be verified

iteratively starting fromt(1) = Θl and untilt(c+1) = t(c) is satisfied for somec ≥ 1. The value of

t(c+1) is equal to theVl’s worst-case response time, denoted byΩl. From Figure 4.6 we define the

Vl’s execution lengthLl by:

Ll = Πl −Θl +Ωl. (4.2)

We denote bydl,min = min
|τl|
i=1(di) the smallest deadline in the task setτl, where|τl| is the

number of tasks inτl. And we denote byel,min the worst-case execution time of the task with

dl,min. The task withdl,min is the highest priority task inVl and its execution is not interrupted

onceVl starts running.

We assume thatΘl is at least equal toel,min:

el,min ≤ Θl. (4.3)

Given the precedent two equations we can derive anecessary conditionto ensure thatVl guarantee

that alldl,min are respected, that is, the execution lengthLl must be less than or equal todl,min:

90

FIGURE 2.16 – Execution length.

Πl −Θl +Ωl ≤ dl,min (2.2)

I Schedulability condition on a VM

After defining the condition that allows a VM to meet all deadlines of the highest-priority task, we
analyze the schedulability of a real-time task set running in a VM. The worst-case execution demand of a
task Ti ∈ τl within di time units is denoted by ωi , and given by

ωi = ei +
i−1∑
j=1

⌈
di
pj

⌉
.ej (2.3)

If we assume that all tasks in τl are sorted by decreasing priority, which corresponds to increasing
period under RM algorithm, then, the second term at the right of Equation 2.3 determines the worst-case
execution demand of all the (i − 1) higher-priority tasks on Vl .

And if we assume that the worst-case execution demand within di time units of a task Ti ∈ τl is less
than or equal to di , that is wi ≤ di , then the necessary schedulability condition for a task Ti to meet its
deadline on Vl is :

kl,i .Θl +min(Θl ,αl(ti − kl,i .Πl)) ≥ ωi (2.4)

where ti is equal to di − (Πl −Θl) and kl,i is computed by
⌊
ti
Πl

⌋
.

The αl(t) function returns the amount of time that Vl is able to run in a time interval of length t. This
function takes into account that Vl is released together with all higher-priority VMs at the beginning of the
interval length t. According to equation 2.4, it is then possible to evaluate the value of the tuple (Θl ,Πl) to
make the VMs and their associated tasks schedulable on the system. The method is described in [Aic14a]
and illustrated in section 6.3 .

6.26.2 Virtualization Overhead

In order to obtain an idea of the virtualization overhead (compared with a native system), we consi-
dered the delay incurred by a real-time task when it is released in a virtual machine. We described also
how this delay could be divided into four steps. In the following list of overheads and latencies, we have
re-defined each step according to the overhead or latency that is specific to the operating system kernel.
We then measured each overhead and latency separately in order to observe where the bottleneck is.

The different delays that are involved in these steps are :

— Event Latency (∆event) is the delay from the raising of the interrupt signal by the hardware device
until the start of execution of the associated interrupt service routine (ISR).

29

PA
R

C
O

U
R

S
P

R
O

F
E

S
S

IO
N

N
E

L
S

Y
N

T
H

E
S

IS
O

F
R

E
S

E
A

R
C

H
W

O
R

K
S

A
P

P
E

N
D

IX
Chapitre 2. From OS Modelling to Implementation

— Release Overhead (∆release) is the delay to execute the release ISR. The release ISR determines that a
job Ji has been released and updates the process implementing a task Ti to reflect the parameters of
the newly-released job.

— Scheduling overhead (∆sched) is the time taken to perform a task selection.

— Context-switch overhead (∆cxs) is the time required to perform a context switch.

• Event Latency (∆event) is the delay from the raising of the interrupt signal by the hardware

device until the start of execution of the associated interrupt service routine (ISR).

• Release Overhead(∆release) is the delay to execute the release ISR. The release ISR deter-

mines that a jobJi has been released and updates the process implementing a taskTi to reflect

the parameters of the newly-released job.

• Scheduling overhead(∆sched) is the time taken to perform a process selection.

• Context-switch overhead(∆cxs) is the time required to perform a context switching.

Figure 3.10 illustrates how these overheads and latencies are ordered ona timeline.

t0

release

signal

release signal

handler
scheduler

invocked

context switched;

job start execution

t1 t2 t3 t4 t5

event latency release overhead process scheduling context switch

time

j
o
b

c
o
m
p
l
e
t
e

Figure 3.10: The delay from the raising of an interrupt by hardware untilthe associated task’s job
starts executing, detailed in terms of separated overheads and latencies internal to the RTOS kernel.

3.4.2 Hardware platform

Our evaluation compares two different configurations, the native and thevirtual configurations. In

the native configuration, we are more concerned about the native RTOS, and we used a dual-core

Intel 1.86 GHz as a hardware platform. On this platform we installed a real-time Linux, LITMUSRT

(Brandenburg et al., 2007) as a native RTOS that we configured with theP-FP (partitioned-fixed

priority) scheduler plug-in.

In the second configuration, we used the quad-core Intel 2.4GHz enabled with the VT-x feature

to support hardware virtualization. As a host operating system, we used areal-time Linux by con-

figuring a stock Linux kernel with the PREEMPTRT patch. We used thehosted VMsystemkvm.

We installed the LITMUSRT real-time operating system on a virtual machine.

63

FIGURE 2.17 – Real time task latency.

Figure 2.17 illustrates the overhead and latencies that are ordered on a timeline. We have evaluated
two different configurations : the native and virtual configurations. In the native configuration, we made
use of a dual core Intel 1.86 GHz as a hardware platform. Real-time Linux, LITMUSRT [BBC+07] was
used as a native RTOS and implemented on the platform. In the second configuration, a real time Linux
patched with PREEMPT_RT was employed as a host operating system. KVM was used to support the
LITMUSRT RTOS on a virtual machine.

The results show that the average-case overhead and latencies of a virtualized RTOS are similar to a
native RTOS, except for the event latency where a slight increase in the virtual case has been detected.
Figure 2.18 depicts the increase of the event latency in comparison to the native RTOS.

This evaluation also showed that the obtained worst-case overhead and latency were very far from the
average-case. The analysis of the probabilities of these worst-case values led us to conjecture that these
events are caused by two combined factors : 1) interference from the interrupts that occurred in the host
OS and 2) virtualization overhead, such as switching between two worlds (the virtual machine and the
virtual machine monitor), emulation of code, page-fault, cache miss, etc.

Given the average-case performance and the lower probability of the very high overheads and laten-
cies, we have concluded that a soft real-time application should present the same performance when it is
running on a virtual machine as it is running on a native RTOS.

6.36.3 Overhead aware schedulability analysis

In order to study the schedulability of a system, the theoretical method presented in section 6.1 has
some limitations. The major one is that it does not take into account the overhead observed in practice
that has been described in the previous section. The idea has then consisted in integrating this overhead
into a practical schedulability analysis. Since, the overhead may have different sources, a task’s execution
time has to be inflated as follows :

e′i = ei +∆relEv (2.5)

where ∆relEv = ∆event +∆rel +∆sched +∆cxs

This method is then used to re-compute the parameters of all the tasks in a workload τ = τ1,τ2, . . .τn
of each component C in the system. Using these inflated tasks’ parameters and the method presented
in the previous section, we can compute the periodic resource model γ = (Θ,Π) for each component C.

30

PA
R

C
O

U
R

S
P

R
O

F
E

S
S

IO
N

N
E

L
S

Y
N

T
H

E
S

IS
O

F
R

E
S

E
A

R
C

H
W

O
R

K
S

A
P

P
E

N
D

IX

6. From the OS to the Hypervisor

 0

 50

 100

 150

 200

 250

 300

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

ov
er

he
ad

 in
 m

ic
ro

se
co

nd
s

number of tasks per processor

measured event latency under P-FP scheduling

maximum
average

std. deviation

(a) Event latency in the native case

 0

 50

 100

 150

 200

 250

 300

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

ov
er

he
ad

 in
 m

ic
ro

se
co

nd
s

number of tasks per processor

measured event latency under P-FP scheduling

maximum
average

std. deviation

(b) Event latency in the virtual case

Figure 3.14: In the virtualized RTOS we observed an increase of the event latency in the average-
case in comparison to the native RTOS. Recall that the event latency is the delay from the raising
of the interrupt signal by a hardware device until the start execution of the associated ISR. This
difference is due to the fact that the event latency is related to the virtualization of a device interrupt
(in this case a timer) as we will explain in details in the next section.

69

FIGURE 2.18 – Event latency in both native and virtual cases.

To validate this overhead-aware schedulability analysis, we may use the following lemma taken from
[PXL+13].

A component C =< τ,A > is schedulable by a periodic resource model Γ in presence of inflatable
overhead if its inflated workload τ′ is schedulable by Γ under the algorithm A when there are
zero overhead.

Lemma

I Evaluation

An empirical evaluation has been performed to validate the periodic resource model (PRM). A first
experiment based on the Vsched user-level library [BD05] has been led. This library implements an EDF
realtime scheduling algorithm that co-exists with the default scheduling classes of Linux. The Vsched
library allows to attribute a PRM interface (Θ,Π) to each virtual machine.

In an experiment, we have tested two real-time applications. We designed the system to use two virtual
machines, VM1 executed task set 1 and VM2 executed task set 2, the parameters of the tasks are given in
Table 2.11. The experiment was led on an Intel core i7 2.6 GHz VT-X with 8GB of RAM. The VMM was
KVM and Qemu, whereas the host OS was Linux-3.14.rc6. Linux-3.4 PREEMPT_RT was used as a guest
RTOS.

The PRM parameters of each virtual machine were computed based on the necessary condition, defi-
ned by Equation 2.2 and the schedulability condition defined by Equation 2.4. The period of the virtual

31

PA
R

C
O

U
R

S
P

R
O

F
E

S
S

IO
N

N
E

L
S

Y
N

T
H

E
S

IS
O

F
R

E
S

E
A

R
C

H
W

O
R

K
S

A
P

P
E

N
D

IX
Chapitre 2. From OS Modelling to Implementation

Application Task Execution Time Period
Task set 1 T1 300 ms 1500 ms

T2 500 ms 2000 ms
Task set 2 T3 300 ms 1200 ms

T4 400 ms 2400 ms

TABLE 2.11 – Simple real-time experiment.

machines VM1 and VM2 was set according to the necessary condition using Equation 2.2 :

Πl ≤ di,min

Recall that di,min is the deadline of the highest priority task Ti executed on a virtual machine Vl . As in
our experiment, we used the period of a task as its deadline, so, di,min is 1500ms in the case of VM1, and
is 1200ms in the case of VM2 (see Table 2.11). So, we assigned Π1 = 200ms for VM1, and Π2 = 200ms for
VM2, in order to verify the necessary condition. The budget of VM1 and VM2 was set according to the
schedulability condition which is derived from Equation 2.2 :

kl,i .Θl ≥ ωi

where ωi is the worst-case execution demand of a task Ti executed on the virtual machine that we
determined using Equation 2.3, and kl,i is the number of times that the virtual machine Vl needs to execute
before the expiration of the deadline di of a task Ti , and calculated using :

kl,i =
⌊
di − (Πl +Θl)

Πl

⌋
The same budget was set to both virtual machines, VM1 (160ms, 200ms) and VM2 (160ms,200ms) and

this budget verifies the schedulability conditions for both cases.
After executing this workload for 10 one-minute runs, we used the Deadline Miss Ration (DMR) metric

to verify that no deadline was missed. The results show that we did not observe any deadline miss in both
task sets. The results are presented according to two different metrics in order to observe the behavior of
the system. The first metric is the job’s response time of a periodic task, which is the difference between
the job’s finish time minus the job’s dispatch time. The second metric is the job’s release delay, which is
the difference between the job’s actual dispatch time minus its ”theoretical” release time.

The average-case response time and release delay results are presented in Figure 2.19(a), Figure 2.19(b)
for VM1, and Figure 2.19(c), Figure 2.19(d) for VM2. Note that observing the response time alone is not
sufficient to see that a task did not miss its deadline. It is also necessary to observe the tasks’ release de-
lay to see at what time the jobs were actually dispatched. If a job is dispatched too late it could miss its
deadline even if its response time corresponds to its execution time.

Comparing the trend of the response time and the release delay with the deadline of all tasks demons-
trate that no deadline miss occurred. This proves the efficiency of the method to guarantee the respect of
the tasks’ deadlines even in the presence of virtualization overhead.

I Towards a custom system

In Mehdi Aichouch’s thesis, we first apprehended OS virtualization and identified its various advan-
tages in terms of performance and flexibility. We have also shown that virtualization may be compatible
with real-time constraints as soon as an efficient scheduling algorithm is considered.

After studying complex kernels and hypervisors such as Linux and KVM, we have rapidly felt the
need to propose our custom system of hypervision. The main reason was to build a very simple and
modular system that could be designed incrementally according to the users’ requirements. One of the
main interest of the approach is that we are fully aware of the design steps and features of the kernel. We
can then use it to test and validate new research ideas such as scheduling policies, protection mechanisms,
memory management, etc. A first kernel proposal has been elaborated at the end of Mehdi Aichouch’s
thesis and the works have been pursued in Tian Xia’s thesis. The features of our custom kernel, named
Ker-ONE, are explained in the following section.

32

PA
R

C
O

U
R

S
P

R
O

F
E

S
S

IO
N

N
E

L
S

Y
N

T
H

E
S

IS
O

F
R

E
S

E
A

R
C

H
W

O
R

K
S

A
P

P
E

N
D

IX

6. From the OS to the Hypervisor

instruction, which reads theTSC register (timestamp counter) and provides the number of cycles

since the boot of the machine.

After all tasks finished, we used the first job’s release time to calculate every job’s release

time and deadline, and compared each deadline with the corresponding job’sfinish time. Then we

calculated the deadline miss ratio (DMR) for each individual task. For data collection, we stored the

dispatch time and the finish time of every job in locked memory to avoid memory paging overhead.

Results.After executing this workload for 10 one-minute runs, we used theDMR metric to verify

that no deadline was missed. As in the first experiment we did not observedany deadline miss in

both task set, thus we present the results using two different metrics in order to observe the behavior

of the system. The first metric is the job’sresponse timeof a periodic task, which is the difference

between the job’s finish time minus the job’s dispatch time. The second metric is the job’s release

delay, which is the difference between the job’s actual dispatch time minus its ”theoretical” release

time.

We present the average-case response time and release delay results inFigure 4.12(a), Fig-

ure 4.12(b) forVM1, and Figure 4.12(c), Figure 4.12(d) forVM2.

 0

 500

 1000

 1500

 2000

 2500

 1 2 3 4 5 6 7 8 9 10

av
er

ag
e

re
sp

on
se

-t
im

e
in

 m
ill

es
ec

on
ds

Number of runs

Task set 1 executed on a Linux-PREEMPT_RT using one kvm VM
 VM1(160ms, 200ms), task1(300ms, 1500ms) & task2(500ms, 2000ms)

deadline task 1: 1500.0 ms

deadline task 2: 2000.0 ms

task 1 [dmr 0.0%]
task 2 [dmr 0.0%]

(a) Response Time

 0

 500

 1000

 1500

 2000

 2500

 1 2 3 4 5 6 7 8 9 10

av
er

ag
e

re
le

as
e-

de
la

y
in

 m
ill

es
ec

on
ds

Number of runs

Task set 1 tested on a Linux-PREEMPT_RT using kvm VM
 VM (160ms, 200ms), task1(30ms, 150ms) & task2(50ms, 200ms)

deadline task 1: 1500.0 ms

deadline task 2: 2000.0 ms

task 1 [dmr 0.0%]
task 2 [dmr 0.0%]

(b) Release delay

 0

 500

 1000

 1500

 2000

 2500

 1 2 3 4 5 6 7 8 9 10

av
er

ag
e

re
sp

on
se

-t
im

e
in

 m
ill

es
ec

on
ds

Number of runs

Task set 2 executed on a Linux-PREEMPT_RT using kvm VM
 VM(160, 200), task3(300ms, 1200ms) & task4(400ms, 2400ms)

deadline task 3: 120.0 ms

deadline task 4: 240.0 ms
task 3 [dmr 0.0%]
task 4 [dmr 0.0%]

(c) Response Time

 0

 500

 1000

 1500

 2000

 2500

 1 2 3 4 5 6 7 8 9 10

av
er

ag
e

re
le

as
e-

de
la

y
in

 m
ill

es
ec

on
ds

Number of runs

Task set 2 executed on a Linux-PREEMPT_RT using one kvm VM
 VM(160ms, 200ms), task3(300ms, 1200ms) & task4(400ms, 2400ms)

deadline task 3: 1200.0 ms

deadline task 4: 2400.0 ms
task 3 [dmr 10.0%]
task 4 [dmr 0.0 %]

(d) Release delay

Figure 4.12: Two tasks set of the the synthetic real-time application executed on two separate virtual
machines that were scheduled bySCHED DEADLINE.

103

FIGURE 2.19 – Two tasks sets of the synthetic real-time application are executed on two separate virtual
machines.

6.46.4 Proposal : Ker-ONE : A lighweight Micro-Hypervisor

The first version of the Ker-ONE kernel has been proposed in 2013 during the PhD of Tian Xia [Xia16].
Its simplicity makes it possible to implement this light kernel in very simple systems with only few hard-
ware resources. The typical application domain that we had in mind at that time was the IoT or sensor
networks. In these domains, lots of applications could benefit from the isolation of virtual machines to
provide security while guaranteeing a high level of performance. Moreover, two types of OS may be consi-
dered in such systems : an RTOS may be used to managed to most critical parts whereas a GPOS may deal
with other tasks that are definitely less crucial.

6.4.16.4.1 Overview

Ker-ONE makes use of para-virtualization and follows the principle of low complexity. A focus has
been made on critical virtualization functionality and non-mandatory features were eliminated. Ker-ONE
is composed of a micro-kernel providing a small TCB footprint, and proposes to support RTOS that are
capable of handling real-time constraints. Currently our research is based on few assumptions :

— In a first step, we only have considered single-core architectures, leaving multi-core systems to fu-
ture prospects.

— We mainly deal with virtualization of simple guest OSs, instead of complex systems such as Linux,
since para-virtualizing this type of OSs would be quite expensive and error prone.

— In order to implement real-time virtualization with low-complexity scheduling, we make sure that
all critical real-time tasks execute in one specific guest RTOS, whereas tasks with lower priorities
execute in General-Purpose OSs (GPOSs). Thus, Ker-ONE is designed to co-host a single RTOS guest
and one or multiple additional GPOSs guests.

Ker-ONE consists of a host micro-kernel and a user-level environment. In its virtualization frame-
work (see Figure 2.20), the micro-kernel is the only component that runs at the highest privilege level,
in the supervisor mode. Since the TCB has been kept as small as possible, only the basic features that

33

PA
R

C
O

U
R

S
P

R
O

F
E

S
S

IO
N

N
E

L
S

Y
N

T
H

E
S

IS
O

F
R

E
S

E
A

R
C

H
W

O
R

K
S

A
P

P
E

N
D

IX
Chapitre 2. From OS Modelling to Implementation

are security-critical have been implemented in the micro-kernel : the scheduler, memory management,
the inter-VM communication, and exceptions handling. The VMM is executed on top of the basic micro-
kernel to support the execution of guest operating systems in their associated virtual machine.

Drivers

Interrupt
Inter-VM

Communication
TimerScheduler

Memory
management

PL0

PL1Ker-ONE
Micro-kernel

Guest

VM Bootloader User services
Host

Virtual Machine Monitor

Ker-ONE
User environment

Virtual Machines Guest OS Guest OS Guest OS Guest OS

Figure 1: Ker-ONE consists of a micro-kernel and of a Virtual Machine Monitor running in a

privileged level. The User environment executes in a non-privileged level

The kernel is based on a virtual hardware layer, emulates sensitive instruc-

tions and has the possibility to handle virtual machines’ hyper-calls. The user

environment runs in user mode and is composed of additional system applica-

tions, such as device drivers, file systems, VM bootloaders and special-purpose125

services. One of these services is the Hardware Task Manager, the role of which

is to manage hardware accelerators in the partially reconfigurable FPGA area.

Each VM may run a para-virtualized OS or a software image of a user appli-

cation. It has its own independent address space and executes on the virtual

piece of hardware that is managed by the VMM.130

Whereas guest OS are de-privileged to the un-privileged level, the VMM is

in charge of virtualizing the CPU computing resources and provide virtual ma-

chines with a complete and virtual execution environment. In the next sections,

we present a detailed implementation of the VMM mechanisms in Ker-ONE.

3.2. Resource Virtualization135

3.2.1. CPU Virtualization

In Ker-ONE, a virtual machine is provided with a virtual CPU (vCPU) to

run on, which abstracts all processor resources. A virtual CPU mainly consists

in emulating the commonly used ARM registers, which include general purpose

registers (R0-R14), the state registers (PSR) and some co-processor registers140

(CP15). These registers are virtual in the vCPU, so that a VM executes on

6

FIGURE 2.20 – Ker-ONE consists of a micro-kernel and of a Virtual Machine Monitor running in a privi-
leged level. The User environment executes in a non-privileged level.

The kernel is based on a virtual hardware layer, emulates sensitive instructions and has the possibi-
lity to handle virtual machines’ hyper-calls. The user environment runs in user mode and is composed of
additional system applications, such as device drivers, file systems, VM bootloaders and special-purpose
services. One of these services is the Hardware Task Manager, the role of which is to manage hardware
accelerators in the partially reconfigurable FPGA area. Each VM may run a para-virtualized OS or a soft-
ware image of a user application. It has its own independent address space and executes on the virtual
piece of hardware that is managed by the VMM.

6.4.26.4.2 Resource Virtualization

I CPU Virtualization

In Ker-ONE, a virtual machine is provided with a virtual CPU (vCPU) to run on, which abstracts
all processor resources. A virtual CPU mainly consists in emulating the commonly used ARM registers,
which include general purpose registers (R0-R14), the state registers (PSR) and some co-processor regis-
ters (CP15). These registers are virtual in the vCPU, so that a VM executes on virtual resources instead
of physical ones. We should note that, in our system, physical memory and translation page tables are
managed by the micro-kernel and out of the vCPU’s range.

A vCPU aims at gathering all exceptions that may occur in a VM, and is responsible for identifying
and dispatching them. These exceptions include hyper-calls that are intended to be trapped or unexpected
errors that may occur during the VM’s execution. To speed up CPU emulation, all hyper-calls and traps are
first processed in the vCPU, in which exceptions are collected, before being handled locally or re-directed
to other VMM functions. Scheduling, virtual Generic Interrupt Control, inter-VM communications and
memory management are examples of such functions. As an example, when a data-abort exception is
trapped by a VM, the vCPU will analyze it and re-direct this exception to the memory manager for further
processing.

I Memory Management

In virtualization, memory management is essential to provide isolated virtual memory spaces for vir-
tual machines. Ker-ONE offers three memory privilege levels for host (for VMM), guest kernel (for guest
OS kernel) and guest user (for guest OS applications).

In the Memory Management Unit (MMU) translation table, the host space is configured to be only
accessible with privilege level 1 (PL1) and cannot be directly accessed by VMs. We leverage the Domain
Access Control Register (DACR) in the MMU to set different access permissions in order to control the
accesses between the guest kernel and the guest user. By changing the flags in the DACR, pieces of software

34

PA
R

C
O

U
R

S
P

R
O

F
E

S
S

IO
N

N
E

L
S

Y
N

T
H

E
S

IS
O

F
R

E
S

E
A

R
C

H
W

O
R

K
S

A
P

P
E

N
D

IX

6. From the OS to the Hypervisor

running in the guest user space are forbidden to access the OS kernel. This guarantees that a guest OS
kernel is protected from user applications.

For each VM, an independent page table is created by the VMM. A data structure of vMMU is associa-
ted with each VM and holds the address space information. Guest OSs can change the page table mapping
under the supervision of the VMM, by passing the request to the VMM via hyper-calls.

Some memory virtualization techniques, such as shadow mapping, also aim to support multiple user-
level independent address spaces (i.e. user-level processes with independent page tables) to host complex
general purpose OSs such as Linux. However Ker-ONE is intended to deal with very simple OSs. In this
case, supporting multiple user-level protections domains is not mandatory since guest OSs only have
single-domain page tables, e.g. uC/OS-ii, FreeRTOS, etc.

6.4.36.4.3 Event Management

I Interrupt Management

In Ker-ONE, the micro-kernel manages all hardware interrupts. When running in a virtual machine,
all interrupts are forwarded to the VMM. The VMM first handles a physical interrupt by acknowledging
it and by clearing its source. Then, the VMM sends a corresponding virtual interrupt to the target virtual
machine if necessary. In this case, the hardware interrupts is managed in the host space, so that the VMM
keeps complete control of the hardware resources. Meanwhile, the virtual machines receive and handle
the emulated interrupts as if they were native machines.

The ARMv7 architecture features a Generic Interrupt Controller (GIC) to control interrupts. This
controller is divided into an Interrupt Distributor module and one or more CPU Interrupt Interface mo-
dules. The role of these modules may be described as follows :

— The Interrupt Distributor manages interrupts’ priority and provides interrupts to the target CPU
Interrupt Interface blocks. The role of the distributor is to store the interrupt state as well as the
context (such as enable/disable, sensitive type, etc.).

— The CPU Interrupt Interface performs priority masking and manages the preemption of interrupts.
This interface delivers the highest priority interrupt to the processor. Interrupt handlers directly
communicate with the interface to handle interrupts properly.

For virtual machines, virtual interrupts are generated by the VMM. In order to keep the guest OS
IRQ handler, we have decided to maintain the guest OS original interrupts handling routine by simply
providing a virtual interface to the GIC. The virtual registers are similar to the physical GIC registers. In
our architecture, a custom virtual GIC (vGIC) has been designed to emulate the interrupts’ management.
The vGIC stores the state of virtual interrupts for each VM and emulates the GIC behavior by handling
virtual interrupt states. The flow described in Figure 2.21(b) illustrates the virtual interrupts processing
in guest OSs.

6.56.5 Performance Evaluation

In order to evaluate the performance of our proposed approach, several experiments have been per-
formed. Some of them are described in the next sections.

6.5.16.5.1 Basic Virtualization Functions Overhead

The first experiment has consisted in measuring the overhead of fundamental virtualization functions,
such as VMM scheduling, hyper-calls, interrupt management, etc. . Then the impact of virtualization on

35

PA
R

C
O

U
R

S
P

R
O

F
E

S
S

IO
N

N
E

L
S

Y
N

T
H

E
S

IS
O

F
R

E
S

E
A

R
C

H
W

O
R

K
S

A
P

P
E

N
D

IX
Chapitre 2. From OS Modelling to Implementation

Physical Interrupt

Exception
Vector

Interrupt
Handler

OS Kernel

IRQ

ACK

EOI

IRQ State

IAR

EOI

...

GIC

Physical Interrupt

IRQ

ACK

EOI

IRQ State

IAR

EOI

...

GIC

KER-ONE
Handler

VGIC

Virtual
IRQ Exception

Vector

Interrupt
Handler

OS Kernel

vIRQ

vACK

vEOI
VGIC

Interface

Shared Memory Region

(a) Native machine

(b) Virtual machine

Figure 5: Physical interrupts and virtualization through the Virtual GIC

When a physical interrupt is generated, the Ker-ONE exception vector for-

wards it to the VMM to be processed. The VMM handler processes the physical

IRQ and generates a corresponding virtual interrupt in the vGIC. The virtual

interrupt state is then updated by the vGIC and the VM is forced to jump to

its local exception vector. The guest OS communicates then with the vGIC to260

complete the handling. Thanks to this strategy, the original OS IRQ handler

only requires very light code modification to forward the GIC accesses and the

IRQ handler may easily adapt.

Regarding the vGIC, we may notice that the states of virtual interrupts are

consistent and independent in each VM. For example, a virtual interrupt can be265

disabled or masked by one VM, while the corresponding physical interrupt can

still be collected by other VMs. A vGIC can also be configured to directly send

virtual interrupts to a specific VM. The VMM generally uses this functionality

12

FIGURE 2.21 – Physical interrupts and virtualization through the virtual GIC.

the RTOS execution has been quantified by measuring the overhead that is due to the VM scheduling. This
study has been led using a standard RTOS benchmark. Finally, our platform has been used to implement
specific applications taken from standard benchmarks to demonstrate its feasibility.

In order to evaluate the performance of our platform, we have implemented multiple guest OSs (i.e.
µC/OS-II) on top of Ker-ONE. These guest OS had to execute specific applications on a huge number of
samples. Two main benchmarks have been considered, [thr] and MiBench [GRE+01].

In all our tests, the VMM scheduling period was set to 33 ms. Guest OSs used a 1 ms timer tick for
their own schedule. These values are quite common timing configurations in this context and especially
for µC/OS-II [YY14]. Guest OSs were either configured as GPOS or real-time OS according to the experi-
mental requirements.

The different measures that have been performed in the experiments allowed us to identify the most
critical VMM functions. The platform has been configured to host four similar µC/OS-II at the same
priority level. These were considered as general-purpose OSs and scheduled according to a round-robin
strategy. Tasks were implemented in the guest OSs and consisted in using hypercalls. The overhead of the
corresponding VMM services that were required to handle these hypercalls have then been recorded by a
background monitor during several hours. Figure 2.22 depicts the experiments results, where minimal,
average and maximum overhead are presented in microseconds.

The overhead latency that is required to generate an hyper-call, to process this hypercall in the VMM
and to return back to a virtual machine has been evaluated. This corresponds to the VM entry/exit latency
overhead. At this point, it is important to note that hyper-calls are generally implemented within the guest
OS and rarely in user tasks that are not sensitive. Since Ker-ONE is mapped to the VMs’ address space,
no switching between VM is required. Hyper-calls entries and exits are relatively low-cost processes since
they only involve the save/restore of the CPU context.

Another very important metric is the virtual IRQ emulation latency that represents the cost of emula-
ting a virtual interrupt for a VM. This functionality is critical for event-driven OSs and this latency has a
huge impact on the events’ response time. This metric is also closely related to the guest OS’ scheduling
overhead since a guest OS is driven by a virtual timer tick to handle virtual time.

This overhead is measured from the physical event’s arrival time until the time at which the virtual

36

PA
R

C
O

U
R

S
P

R
O

F
E

S
S

IO
N

N
E

L
S

Y
N

T
H

E
S

IS
O

F
R

E
S

E
A

R
C

H
W

O
R

K
S

A
P

P
E

N
D

IX

6. From the OS to the Hypervisor

�

����

����

����

����

����

����

��� ��� ��� ��� ��� ��� ��� ��	 ��

�
�

�
�
�
�
�
�
�

�
��

�������� �� !

"#$��%&�'' ()*�#+(,-* � .-)/����� 0 ���/����� 0 .�,/��	�� 0 �.$'�/	���� !

1�#$��&�'' �)*�#1

�

�����

�����

�����

�����

�����

�����

�����

��� ���� ��� ���� ��� ���� ��� ���� ���

	

�
�

�
�
�
�
�
�
�
�

�������� ����

 !�"��# $%& '(�#�"!)* � (!*+������, ���+������, (�-+���.��, ��(/#�+������ �

0!�1 �*"�20

�

����

����

����

����

�����

�����

��� ��� ��� ��� ��� ��� ��	 ��� ��
 �

�
�

�
�
�
�
�
�
�

�
��

�������� �� !

"#�$��% &�'�#(�)*#$'� � +#(,���	� - ���,����� - +�.,��
�� - �+/%�,������ !

0*1�%� *$0

Figure 15: Basic virtualization functions overhead in microseconds (µs) with minimum, aver-

age and maximum values.

to handle these hypercalls have then been recorded by a background monitor

during several hours. Figure 15 depicts the experiments results, where minimal,630

average and maximum overhead are presented in microseconds.

The overhead latency that is required to generate an hyper-call, to process

this hypercall in the VMM and to return back to a virtual machine has been

evaluated. This corresponds to the VM entry/exit latency overhead. At this

point, it is important to note that hyper-calls are generally implemented within635

the guest OS and rarely in user tasks that are not sensitive. Since Ker-ONE

is mapped to the VMs’ address space, no switching between VM is required.

Hyper-calls entries and exits are relatively low cost processes since they only

involve the save/restore of the CPU context.

Another very important metric is the virtual IRQ emulation latency that640

29

�

����

����

����

����

����

����

��� ��� ��� ��� ��� ��� ��� ��	 ��

�
�

�
�
�
�
�
�
�

�
��

�������� �� !

"#$��%&�'' ()*�#+(,-* � .-)/����� 0 ���/����� 0 .�,/��	�� 0 �.$'�/	���� !

1�#$��&�'' �)*�#1

�

�����

�����

�����

�����

�����

�����

�����

��� ���� ��� ���� ��� ���� ��� ���� ���

	

�
�

�
�
�
�
�
�
�
�

�������� ����

 !�"��# $%& '(�#�"!)* � (!*+������, ���+������, (�-+���.��, ��(/#�+������ �

0!�1 �*"�20

�

����

����

����

����

�����

�����

��� ��� ��� ��� ��� ��� ��	 ��� ��
 �

�
�

�
�
�
�
�
�
�

�
��

�������� �� !

"#�$��% &�'�#(�)*#$'� � +#(,���	� - ���,����� - +�.,��
�� - �+/%�,������ !

0*1�%� *$0

Figure 15: Basic virtualization functions overhead in microseconds (µs) with minimum, aver-

age and maximum values.

to handle these hypercalls have then been recorded by a background monitor

during several hours. Figure 15 depicts the experiments results, where minimal,630

average and maximum overhead are presented in microseconds.

The overhead latency that is required to generate an hyper-call, to process

this hypercall in the VMM and to return back to a virtual machine has been

evaluated. This corresponds to the VM entry/exit latency overhead. At this

point, it is important to note that hyper-calls are generally implemented within635

the guest OS and rarely in user tasks that are not sensitive. Since Ker-ONE

is mapped to the VMs’ address space, no switching between VM is required.

Hyper-calls entries and exits are relatively low cost processes since they only

involve the save/restore of the CPU context.

Another very important metric is the virtual IRQ emulation latency that640

29

�

����

����

����

����

����

����

��� ��� ��� ��� ��� ��� ��� ��	 ��

�
�

�
�
�
�
�
�
�

�
��

�������� �� !

"#$��%&�'' ()*�#+(,-* � .-)/����� 0 ���/����� 0 .�,/��	�� 0 �.$'�/	���� !

1�#$��&�'' �)*�#1

�

�����

�����

�����

�����

�����

�����

�����

��� ���� ��� ���� ��� ���� ��� ���� ���

	

�
�

�
�
�
�
�
�
�
�

�������� ����

 !�"��# $%& '(�#�"!)* � (!*+������, ���+������, (�-+���.��, ��(/#�+������ �

0!�1 �*"�20

�

����

����

����

����

�����

�����

��� ��� ��� ��� ��� ��� ��	 ��� ��
 �

�
�

�
�
�
�
�
�
�

�
��

�������� �� !

"#�$��% &�'�#(�)*#$'� � +#(,���	� - ���,����� - +�.,��
�� - �+/%�,������ !

0*1�%� *$0

Figure 15: Basic virtualization functions overhead in microseconds (µs) with minimum, aver-

age and maximum values.

to handle these hypercalls have then been recorded by a background monitor

during several hours. Figure 15 depicts the experiments results, where minimal,630

average and maximum overhead are presented in microseconds.

The overhead latency that is required to generate an hyper-call, to process

this hypercall in the VMM and to return back to a virtual machine has been

evaluated. This corresponds to the VM entry/exit latency overhead. At this

point, it is important to note that hyper-calls are generally implemented within635

the guest OS and rarely in user tasks that are not sensitive. Since Ker-ONE

is mapped to the VMs’ address space, no switching between VM is required.

Hyper-calls entries and exits are relatively low cost processes since they only

involve the save/restore of the CPU context.

Another very important metric is the virtual IRQ emulation latency that640

29

FIGURE 2.22 – Basic virtualization functions overhead in microseconds (µs) with minimum, average and
maximum values.

machine is forced to its local exception vector. This process involves the handling of physical IRQ and
the emulation of the virtual GIC interface registers. This latency is measured from the arrival time of a
physical event until the time at which the VM is forced to switch to its local exception vector.

Finally, the virtual machines switch latency represents the cost of switching from one virtual machine
to another and may be relatively heavy. The overhead of the virtual machine switch is one of the key metric
in most virtualization approaches, as it is usually quite cumbersome, and has a huge impact on the VMM
efficiency. In Ker-ONE, this switch is performed when a virtual machine consumes its time quantum and
moves to its successor, or when it suspends itself and the VMM resumes another virtual machine. This
switch includes several major procedures : (1) re-scheduling ; (2) vGIC context switch ; (3) timer state
update ; (4) address space (page table) switch ; and (5) CP15 registers update. Note that changing the
address space causes a higher TLB/Cache miss rate and thus increases the switch latency.

Usually, the VMM uses these functions for management and emulation purposes and they are of great
importance. Virtualization efficiency is closely related to the performance of these functions. In our case,
we can note that these functions exhibit a low overhead. As shown in the results, frequently-called func-
tions, i.e. hyper-calls and vIRQ emulation can be handled in less than 1 µs. Furthermore, the virtual
machine switch overhead, which constitutes the most expensive process could be limited to 1 µs.

37

PA
R

C
O

U
R

S
P

R
O

F
E

S
S

IO
N

N
E

L
S

Y
N

T
H

E
S

IS
O

F
R

E
S

E
A

R
C

H
W

O
R

K
S

A
P

P
E

N
D

IX
Chapitre 2. From OS Modelling to Implementation

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Calibration Test Preemptive
 Context

Switching

Message
Processing

Memory
 Allocation

Interrupt
Handling

Interrupt
Preemption

Synchronization
Processing

ThreadMetric Benchmarks Performance Ratio

KER-ONE ucos-ii Non-Opt KER-ONE ucos-ii Opt XEN-ARM ucosii

Figure 16: Comparison of Thread-Metric Performance Ratio (RP) for para-virtualized

µC/OS-II on Ker-ONE and XEN-ARM.

switch requires 2 or 3 calls only to manipulate PSR values. In the Preemptive

Context Switching benchmark, this function keeps being called, implying extra

overhead.

According to Figure 16, we may also note that Ker-ONE performs better775

then XEN-ARM when hosting the µC/OS-II guest OS. At this point, it is

important to notice that both kernels make use of a share memory region. The

difference in terms of performance is due to the fact that Ker-ONE provides

a simpler virtualization interface. All virtual resources are implemented with

smaller structures of smaller sizes.780

Regarding Interrupt Handling and Interrupt Preemption benchmarks, we

may also note that XEN-ARM also has a performance degradation compared to

our proposition. This may be explained because of the virtual interrupts that are

handled differently in XEN-ARM. In this hypervisor, these are manipulated as

event channels that separate physical IRQs from VM event ports. This strategy785

is efficient to ensure isolation between virtual machines but is also more complex.

In our approach, Ker-ONE implements a simple virtual IRQ management

that is oriented towards the GIC emulation. A simple function forwards the

physical interrupts to the virtual machines. Moreover, the different VMs keep

35

FIGURE 2.23 – Comparison of Thread-Metric Performance Ratio (RP) for para-virtualized µC/OS-II on
Ker-ONE and XEN-ARM.

6.5.26.5.2 RTOS Virtualization Evaluation

To estimate the impact of virtualization, two experiments have been performed. The first consists in
implementing a native RTOS on an ARM Cortex-A9 processor. In the second experiment the same RTOS
is implemented on top of Ker-ONE. Differences in terms of performance have been measured.

To perform the experiments, µC/OS-II has been implemented as an RTOS in a virtual machine. Three
other virtual machines were used to host another instances of µC/OS-II, which play the role of a GPOS.
Benchmarks have run as applications in the RTOS and for each test, a comparison between native execu-
tion and execution on a virtual machine has been performed.

This section provides the performance results of the virtual µC/OS executing the Thread-Metric bench-
mark suite. This suite is dedicated to RTOS performance measurement [Exp07]. Thread-Metric has been
developed by Express Logic in 2007 and has been applied to several researches to measure and compare
the performance of multiple RTOSs [Bes13]. In our experiment one RTOS and three GPOSs (all µC/OS-II)
run on Ker-ONE. The benchmark set is executed on the RTOS. In order to acquire the performance loss
due to virtualization , the benchmarks results on the native µC/OS-II has been used as a reference.

To provide an extensive evaluation, the XEN-ARM hypervisor has been employed to achieve a com-
parison with our micro-kernel. The XEN-ARM hypervisor Version-3.0 [HSH+08a] has been ported to our
platform that is based on a Zyng 7000 device. A para-virtualized version of µC/OS-II (denoted as xeno-
µC/OS), that is available on the XEN website has been used as reference. The Thread-Metric benchmark
has also been executed on this kernel.

Based on the experiments, the Performance Ratio metric has been defined and denoted as RP, which is
computed as :

RP =
Svm

Snative
× 100%, (2.6)

where Svm is the benchmark score obtained by the guest OS, and Snative concerns the native OS. RP mea-
sures the influence caused by virtualization. A better virtualization technology means less performance
loss and thus a higher RP value.

Figure 2.23 provides a comparison between three different systems that are implemented in the same
platform. The first is the non-optimized Ker-ONE kernel. The second is an optimized version of the same
kernel. The third is the Xen-ARM hypervisor. One may first note that the virtualization performance is
significantly improved in the optimized version.

38

PA
R

C
O

U
R

S
P

R
O

F
E

S
S

IO
N

N
E

L
S

Y
N

T
H

E
S

IS
O

F
R

E
S

E
A

R
C

H
W

O
R

K
S

A
P

P
E

N
D

IX

7. Summary

77 Summary

In this chapter, I have presented a modeling framework for the design of a complete reconfigurable
platform including processor(s) associated to reconfigurable resources. The proposed design flow is based
on a System Level modeling approach which facilitates the exploration of the RTOS services distribution
both onto processors and directly inside a reconfigurable region. The main contribution of this work has
consisted in proposing a unified modeling and refinement methodology for the software and the hardware
parts of a dynamically reconfigurable system.

We have also proposed specific services that are required for the management of the reconfigurable re-
sources of the architecture. Thanks to a modular and flexible modeling approach, we developed a library
of generic components for the description of RSoC platforms. Among them, we developed basic hardware
services such as hardware task management, hardware/software synchronization and bitstream manage-
ment at high level of abstraction. The global method and the SystemC models were validated on a real
application.

After dealing with RTOS modelling and implementation, we have studied more complex systems com-
posed of several heterogeneous operating systems capable of being executed on the same processors and
share the same resources. These systems rely on an hypervisor whose role is to virtualize underlying hard-
ware resources and make them transparent to the guest OS.

We also have studied the impact of virtualization on the execution of real time applications and eva-
luated the overhead due to virtualization. In this context, we have proposed a new scheduling strategy
based on the periodic resource model (PRM) that is compatible with real-time constraints. We have also
proposed a method to evaluate the optimal scheduling parameters to allocate efficiently the CPU resources
to the virtual machines.

Finally, we have proposed and designed an original hypervisor, named Ker-ONE, based on para-
virtualization, with a very small footprint. Its small size makes it a very interesting architecture to be
used in small embedded systems.

— Thesis Supervision : 4 PhD students :Yaset Oliva, Mehdi Aichouch, Tian Xia, Ye Tian

— 20 Related Publications

— 2 ANR Projects : OveRSoC, COMPA

Summary (PhD/Dissemination/Projects)Summary (PhD/Dissemination/Projects)

— Thesis Supervision : 4 PhD students :Yaset Oliva, Mehdi Aichouch, Tian Xia, Ye Tian

— 20 Related Publications

— 2 ANR Projects : OveRSoC, COMPA

39

PA
R

C
O

U
R

S
P

R
O

F
E

S
S

IO
N

N
E

L
S

Y
N

T
H

E
S

IS
O

F
R

E
S

E
A

R
C

H
W

O
R

K
S

A
P

P
E

N
D

IX

Chap. 3Chap. 3Reconfiguration
Management

This chapter presents a second research axis that I followed as soon as I obtained my position as
associate professor at the Cergy-Pontoise University, back in 2003. This axis deals with Reconfigurable
Computing (RC) and more particularly with the management of this reconfiguration. In my work, I have
proposed 3 levels of reconfiguration management that have been studied along the supervision of several
PhD thesis and students’ works.

The first level i.e Hardware Layer gathers the study of all mechanisms that can be imagined in order to
manage hardware reconfiguration in real-time. These mechanisms are implemented at very low level of
abstraction and generally only rely on some dedicated APIs that can be implemented in simple bare-metal
applications.

The second level provides reconfiguration abstraction by proposing new management mechanisms in
the Operating System layer. User applications may rely on these mechanisms to reconfigure hardware
parts in a transparent manner without requiring any implementation details.

Finally, a third reconfiguration level may be seen at the application layer in which user tasks may
decide to reconfigure a system functionality without knowing any details about the underlying hardware
or software architecture.

11 Context and Related Works

For several decades, Reconfigurable Computing (RC) has appeared as a solution to bridge the gap
between hardware performances and software flexibility. Systems based on RC, are basically composed of
Reconfigurable Hardware (RH) and at least one microprocessor. The RH’s mission is to efficiently execute
intensive computations, whereas the processor is responsible for controlling the RH configuration and
executing operations that cannot be performed in hardware, e.g. data-dependent computations [CLC+02].

A main feature of RC systems is the connection between the processor and the RH. In some early ar-
chitectures, the RH was designed as an independent element or a co-processor, e.g. the Splash 2 [Arn95]
consists of a Sun Sparc Station processor, an interface board, and from one to sixteen Splash array ele-
ments. Other similar configurations are the PRISM II [LAL+93], DISC [Wir95] and Reconfigurable Pipeli-
ned Datapaths [ECF96].

I FPGAs

Since their introduction in the mid 1980’s, Field Programmable Gate Arrays (FPGA) have been the
typical architecture that has allows RC systems to be implemented. This is clearly related to their intrinsic
nature that makes it possible to implement a rich variety of digital functions.

Initially, FPGAs may have be seen as a matrix of logic cells that are programmable by end-users at a
very fine grain (bit-level). Within these circuits, logic blocks can be configured to perform complex com-
binatorial and sequential functions. In most FPGAs, logic blocks also include memory elements, which
may be simple D flip-flops or more complete blocks of memory like Random Access Memory (RAM)s and
Look Up Tables (LUT)s.

Today, FPGAs are not only a simple collection of LUTs and programmable routing. They now feature
embedded multipliers, clock managers, Gigahertz-rate source-synchronous transceivers and bitstream
encryption modules to protect the Intellectual Property (IP) of the design [Tri15]. More recent devices
generalize the use of CPUs inside the chip to combine the flexibility of software and the performance of
hardware. One example of these CPU-FPGA hybrid platforms is the Zynq device. This device has been

40

PA
R

C
O

U
R

S
P

R
O

F
E

S
S

IO
N

N
E

L
S

Y
N

T
H

E
S

IS
O

F
R

E
S

E
A

R
C

H
W

O
R

K
S

A
P

P
E

N
D

IX

1. Context and Related Works

released by Xilinx and consists of a dual-core ARM Cortex-A9 processor which is integrated with a 7-
series FPGA fabric [Xil14c]. ARM processors have also been introduced in Cyclone-V and Arria-V FPGAs
Altera family [Alt15a]. Intel’s solution is the Intel Atom processor E600C Series, which pairs an Intel Atom
processor SoC with an Altera FPGA in a multichip package [Kon12]. In this approach, a single-core dual-
threaded Intel Atom processor SoC and an Altera mid-range FPGA, Arria-II, are bonded side-by-side and
linked over a PCI interface. This approach is the only CPU/FPGA hybrid processor supporting Intel x86
architecture.Figure 3.1 briefly depicts the general architecture of these platforms.

CPU-FPGA Hybrid Architecture 33

Multi-core Processor

On-chip resources

FPGA Fabric

Bus-based Interface

Custom IP Soft Core

Accelerator Peripherals

SoC

Figure 1.21 – The general architecture of CPU/FPGA hybrid processors, with CPU
and FPGA being implemented in independent packages.

In fact, FPGA devices continue to gain popularity as the cost of reprogrammable logic
gradually declines. However, what prevents FPGA to be widely employed as conventional
ASIC processors is that FPGA is unable to use legacy software stack. Most FPGA de-
vices meet this challenge by shipping synthesized CPU core to the programmable-logic
fabric as hard processors. In past years, Altera and Xilinx, the leading FPGA vendors,
have offered a few FPGAs with hard CPU cores baked into the chip, such as PowerPC
inside the Xilinx Virtex family [Fle05]. The variety of these hybrid devices is quite nar-
row, however, and the performance of hard processors is comparatively poor, even in the
fastest and most expensive FPGAs.

Nevertheless, to meet the demand for an ASIC substitute, companies keep striving
to find the convergence point of conventional CPU and FPGA computing. The latest
attempts are from Xilinx, Altera and Intel, who are crafting new ways to combine CPU
cores with programmable logic. Instead of using synthesized CPU core implemented in
FPGA fabric, these approaches provide System on Chip (SoC) architectures where CPU
and FPGA domains are independently implemented and tightly connected by on-chip bus
and inter-connections. CPUs dedicated for embedded system are chosen in these devices.
Xilinx released such CPU/FPGA hybrid platforms in the Zynq-7000 series, where a dual-
core ARM Cortex-A9 processor is integrated with 7-series FPGA fabric [Xil14c]. ARM
was also introduced in Altera family of Cyclone-V and Arria-V FPGAs [Alt15]. Intel’s
solution is the Intel Atom processor E600C Series, which pairs an Intel Atom processor
SoC with an Altera FPGA in a multichip package [Kon12]. In this approach, a single-core
dual-threaded Intel Atom processor SoC and an Altera midrange FPGA, Arria-II, are
bonded side-by-side and linked over a PCI interface. Recently, Intel has taken a further
step by releasing a Xeon/FPGA platform dedicated for the Data Center [Gup15]. In
Figure 1.21 we briefly depict the general architecture of these platforms.

CPU-FPGA hybrid processors inherit the advantages of both sides. On one hand,
the high-end general purpose processors are capable of establishing complex computer
systems, and existing software stack can be directly shipped without obstacle. On the
other hand, the adoption of FPGA accelerators offers a compelling improvement in per-
formance when performing intensive computations. Moreover, with the help of CPU pro-
cessing, FPGA accelerators can be managed much more efficiently with higher-complex

FIGURE 3.1 – General architecture of CPU/FPGA hybrid processors.

CPU-FPGA hybrid processors inherit the advantages of both sides. On one hand, the high-end gene-
ral purpose ARM and Intel processors are capable of proving complex computer systems, and existing
software stack can be directly shipped without obstacle. On the other hand, the adoption of FPGA ac-
celerators offers a compelling improvement in performance when performing intensive computations.
Moreover, with the help of CPU processing, FPGA accelerators can be managed much more efficiently
with higher-complex strategies, which will inevitably enhance the acceleration. Today, FPGAs are already
playing an important role in enterprise, cloud computing, datacenters, networks, and high performance
computing (HPC) markets. In the future, it can be easily foreseen that a significant portion of the work-
load in these domains will be shifted from CPUs to FPGAs over the coming years, which may result in a
performance jump.

While being considered as quite promising, CPU-FPGA systems also bring up new issues. One major
challenge is how to efficiently offload software tasks to the FPGA side. FPGA resources can either be
accessed as flexible input/output peripherals or be considered as co-processors with local workloads.
With different strategies, scheduling, sharing and security mechanisms should be carefully discussed.

I Dynamic Partial Reconfiguration

Dynamic Partial Reconfiguration (DPR) has been a trending topic during several decades [BHH+07b],
[Koc13] and has been included in the recent mainstream FPGA vendor devices, such as Xilinx Virtex
family and Altera Stratix family. This technology allows users to reconfigure particular areas of an FPGA
while the rest continues executing, as shown in Figure 3.2. After pre-compilation step, certain areas of
the FPGA fabric can be defined as reconfigurable. In other words, gate arrays in these areas can be re-
programmed by receiving commands and configuration information from other hardware or software
modules.

34 Concepts and Related Works

A2

Tr
an

sc
ei

ve
rs

A1 B1 C1

D1 E1 F1

FP
G

A
 F

ab
ri

c

C2 Dynamic Reconfiguration via
Downloading Config. Data

Tr
an

sc
ei

ve
rs

A2 B1 C2

D1 E1 F1

FP
G

A
 F

ab
ri

c

Figure 1.22 – Dynamic Partial Reconfiguration permits users to modify a given area of
FPGA circuit on-the-fly, while the rest fabric functions normally.

strategies, which will inevitably enhance the acceleration. Considering that FPGAs are
already playing important roles in enterprise, cloud computing, datacenter, network, and
high performance computing (HPC) markets, it can be foreseen that a significant portion
of CPU workload in these domains will be shifted from CPUs to FPGAs over the coming
years, which may result in a performance jump.

Furthermore, the software stacks for programming FPGAs have greatly evolved over
years to simplify the FPGA programming. For example, Altera in particularly has grafted
support for FPGAs onto the OpenCL development environment [OBDA11] to ease the
design flow, and Xilinx has also released Vivado High-Level Synthesis (HLS) for a faster
path to IP creation [Xil14b]. With these technologies, it is even easier for software work-
loads to be shipped to programmable logic for acceleration.

While being considered as quite promising, CPU-FPGA systems also bring up new
challenges. One major challenge is how to efficiently offload software tasks to the FPGA
side. FPGA resources can either be accessed as flexible input/output peripherals or be
considered as co-processors with local workloads. With different strategies, scheduling,
sharing and security mechanisms should be carefully discussed. There have been re-
searches attempting to extend the existing traditional CPU-only techniques to CPU/F-
PGA hybrid systems, to fully exploit the mainstream FPGA computing. In this section,
we will first introduce the main characteristic of current mainstream FPGAs, the dy-
namic partial reconfiguration (DPR) technology, and then we will discuss the possibility
of building virtual machine systems on this architecture.

1.4.1 Dynamic Partial Reconfiguration

The DPR technology has been a trending topic during the last decade [BHH+07],
which has been included in the recent mainstream FPGA vendor devices, such as Xilinx
Virtex family and Altera Stratix family. DPR is a technology breakthrough for FPGA
devices. For traditional FPGA reconfiguration computing, one of the major drawbacks is
the lack of flexibility, because the whole fabric is required to be reconfigured even when
modification is required for part of FPGA. As a consequence, even a partial update or
modification of hardware functionality ends up with enormous time overhead and power
consumption. As a solution, DPR permits users to reconfigure particular areas of an

FIGURE 3.2 – Dynamic partial reconfiguration.

41

PA
R

C
O

U
R

S
P

R
O

F
E

S
S

IO
N

N
E

L
S

Y
N

T
H

E
S

IS
O

F
R

E
S

E
A

R
C

H
W

O
R

K
S

A
P

P
E

N
D

IX
Chapitre 3. Reconfiguration Management

Compared to static fabric, DPR benefits from several advantages. One of the main advantages is dy-
namic resource allocation and re-use. Using this technique, users may implement complex architectures
breaking them down into smaller mutually exclusive modules. In this case, a lot of hardware resources
may be saved.

However, DPR technology still suffers from expensive reconfiguration overhead, which remains a cru-
cial issue in practice [McD08]. In modern high-end FPGAs, which may have tens of millions of confi-
guration points, one reconfiguration of a complex module may be very time-consuming. Especially in a
computing-intensive system, where several mutually exclusive components are sharing reconfigurable re-
sources, the time lost on reconfiguration severely degrades the overall performance [HD10]. Therefore, a
dedicated efficient management associated to a high data transfer bandwidth for configuration is essential
in such systems.

Exploitation of DPR has been under massive researches for the last decade. Though these researches
covered various topics e.g. software frameworks design [LKLJ09], [HGNB10], [KG16], power consumption
optimization, security [BGB06], a major effort has been made to provide efficient management of DPR
resources in computing systems. In the following part, we introduce the related works focusing on DPR
management in the context of CPU/FPGA architecture.

I Reconfiguration Management at OS Level

Due to the nature of heterogeneous architectures, one major challenge for CPU/FPGA systems is the
cooperation and coherency between software applications and hardware accelerators. With software/hardware
applications executing in parallel, the classical software issues such as task scheduling and resource sha-
ring are extended to the FPGA side. In fact, from the software developers’ viewpoint, these challenges can
be abstracted and consist in mapping reconfigurable resources to the software space. In Figure 3.3, we
have classified the model types of existing approaches according to their strategies, namely CPU/FPGA
offload model and CPU/FPGA unified model [BPS15].

36 Concepts and Related Works

OS

CPU

Ap
pl
ic
at
io
n C

C

C

C

(a) Processor-only model.

Ap
pl
ic
at
io
n

OS

CPU
FPGA

F FPGA

F

(b) Processor + FPGA (offload) model.

A
pp
lic
at
io
n

OS

CPU FPGA

F

FF

F

(c) Processor + FPGA (Unified OS) model.

Figure 1: Design approaches in hybrid CPU/FPGA Systems. (a) System with CPUs alone. Application is executed by multiple
processors having their own OS, without any accelerator. (b)CPU/FPGA hybrid system, where OS is hosted in CPU. Application
is executed on CPU cores and FPGA is used as an accelerator. (c) CPU/FPGA hybrid system, where the application is divided
in parts and mapped to CPU and FPGA. OS helps in seamless execution of application parts in the hybrid system.

migration between the two resources. Parts of the application
are isolated and mapped through well-defined interfaces into
the reconfigurable substrate as accelerators. With the help of
library calls, applications can make use of OS services. In
the hybrid CPU/FPGA systems the communication and syn-
chronization are generally handled in an application-specific
manner that is error-prone and not portable between different
computing systems, often limiting the productivity of the
designer [5]. The researchers have focused on automated com-
piler extraction of loop level parallelism and augmentations
to sequential programming languages to achieve parallelism.
To tap the full potential of CPU/FPGA hybrid systems we
need a computational model of a virtual machine with modern
operating system and middleware services that extend across
the CPU/FPGA boundary and hides the platform specific
CPU/FPGA distinctions from the programmer [4].

The following sections summarise the wide range of work
that has been done to alleviate this problem.

A. Programming Models and Hardware Compilation

Design description is the first step in the application map-
ping process. For heterogeneous systems, OpenCL [6] is an
initiative towards unifying the frontend programming support
for devices with diverse microarchitectures such as CPUs,
GPUs and many-core architectures [7]. Further, Altera’s ini-
tiative in using OpenCL as a frontend for its FPGA design
flow [8], is a first step of industry acceptance for the need of
a single unified platform for CPUs and FPGAs.

SOpenCL (Silicon OpenCL) [9] is one of the first ar-
chitectural synthesis tools that maps the OpenCL program’s
coarse and fine grained parallelism into the reconfigurable
fabric like FPGA. Mapping each of the parallel paths of a
program to a separate hardware accelerator is not feasible
due to lack of resources in the FPGA fabric. Therefore,

SOpenCL [9] performs source-to-source translation to coarsen
the granularity of the kernel function, such that the parallel
tasks are based on a per-work-group basis, rather than on a
per-logical-thread basis. The OpenCL code is converted to C
code, which represents the work to be executed by each work
group. Before generating HDL code the SOpenCL’s back-end
performs various compiler transformations and optimizations
such as predication, code slicing and modulo scheduling in
succession. The architectural template of SOpenCL [9] can
be instantiated to match the availability of FPGA resources,
the performance requirements set by the user and is specific
to target applications. To minimize the effect of memory
access latency, the architecture decouples and overlaps the data
accesses and computations. The experimental results show that
the prediction of clock frequency is not straightforward as
it does not always scale up according to the computational
bandwidth and the amount of available resources.

Prior to using OpenCL as a single source specification,
numerous efforts have explored the possibility of using a
common C-based frontend for static code compilation [10].
Code annotations in languages such as HandelC [11] and
Chimps [12] are a means of behavioural synthesis of C-based
code. Authors Todman et al [13] present the key features of
a wide range of static compilations techniques. Another effort
called LegUp [14] looks at C-based synthesis as a scheme for
generating a hybrid architecture comprising a soft processors
coupled to custom accelerators. In addition to these tools, a
survey and evaluation of the techniques employed have been
discussed by authors Meeus et al [15] and also by Coussy et
al [16].

B. OS and Run-time systems

The operating system support for CPU/FPGA-based sys-
tems has been explored in Hthreads (Hybrid Threads) [17],

Figure 1.23 – The concepts of two CPU/FPGA models : offload model and unified
model. In offload model,application is executed on CPU cores and FPGA is used as an
accelerator. In unified model the application is divided in parts and mapped to CPU and
FPGA. OS helps in seamless execution of application parts in the hybrid system.

namely offload model and unified model [BPS15].
In the offload model, OS or bare-metal software applications are executing in CPU

and DPR resources are used as accelerators. In this case, DPR resources can be fully
exploited since they are directly accessed and programmed by applications. However,
it also undermines the generality as the processing of DPR accelerators are exposed to
software users.

In the unified model, on the other hand, CPU and FPGA are unified via well-defined
interfaces. The OS is in charge of the workload allocation and migration between both
resources. In some cases, a middleware is implemented inside the OS. Thus, with the
help of library calls, applications can make use of both resources as OS services, with-
out knowing the actual implementation at the physical layer. This model abstracts the
CPU/FPGA platform so that user applications have better performance, but also require
complicated scheduling and allocation mechanism.

1.4.2.1 CPU/FPGA offload model

Offload model is often used for bare-metal applications or simple OS, whose usage
scenarios are relatively simple and single-purposed. These systems require applications
to fully control the behaviors of accelerators, including computation and reconfiguration.
Researches for these system focus on faster reconfiguration path [HGNB10] and efficient
partial reconfiguration controller, as they are critical for the overall performance. One
typical approach is ZyCAP [VF14] based on ARM/FPGA system, which was proposed as
an efficient partial reconfiguration controller. This controller provides to software users
an interface that permits the overlapping of software execution and hardware partial
reconfiguration. Furthermore, this approach proposed a high reconfiguration throughput,
by enhancing the ICAP interface with high-bandwidth Direct Memory Access (DMA).
The measured reconfiguration throughput turned out to be much higher than the default

FIGURE 3.3 – CPU/FPGA models (offload model on the left and unified model on the right).

In the Offload Model, OS or bare-metal software applications are executing in CPU and DPR resources
are used as accelerators. In this case, DPR resources can be fully exploited since they are directly acces-
sed and programmed by applications. However, it also undermines the generality as the processing of
DPR accelerators are exposed to software users. The Offload Model is often used for bare-metal appli-
cations or simple OS, whose usage scenarios are relatively simple and single-purposed. These systems
require applications to fully control the behaviors of accelerators, including computation and reconfigu-
ration. Researches for these system focus on faster reconfiguration path [HGNB10] and efficient partial
reconfiguration controller, as they are critical for the overall performance. One typical approach is Zy-
CAP [VF14] based on ARM/FPGA system, which was proposed as an efficient partial reconfiguration

42

PA
R

C
O

U
R

S
P

R
O

F
E

S
S

IO
N

N
E

L
S

Y
N

T
H

E
S

IS
O

F
R

E
S

E
A

R
C

H
W

O
R

K
S

A
P

P
E

N
D

IX

1. Context and Related Works

controller. This controller provides software users with an interface that permits the overlapping of soft-
ware execution and hardware partial reconfiguration. Furthermore, this approach proposed a high re-
configuration throughput, by enhancing the ICAP interface with high-bandwidth Direct Memory Access
(DMA). The measured reconfiguration throughput turned out to be much higher than the default Proces-
sor Configuration Access Port (PCAP).

In the Unified Model, on the other hand, CPU and FPGA are unified via well-defined interfaces. The
OS is in charge of the workload allocation and migration between the two resources. In some cases, midd-
leware is implemented inside the OS. Thus, with the help of library calls, applications can make use of
both resources as OS services, without knowing the actual implementation at the physical layer. This mo-
del abstracts the CPU/FPGA platform so that user applications may exploit it efficiently. Nevertheless this
approach also normally requires complicated scheduling and allocation mechanisms.

The Unified Model is based on the principle that in DPR systems, the programmable logic fabric can
be interpreted as several engine containers where multiple hardware accelerators can be hosted in a time-
multiplexed sharing strategy. In this case, the model of multi-kernel multi-threads [RVdlTR14] is often
used to study DPR architecture [PG11] [KBT08], which defines FPGA as a group of computing agencies
with multiple hardware threads, as shown in Figure 3.4. Based on this concept, CPU can treat hardware
computations as schedulable hardware tasks.38 Concepts and Related Works

Hardware Thread

CPU

Reconfigurable
Block

FPGA Fabric

OS Interface

Reconfigurable
Block

Hardware Thread Software Thread

Users

Figure 1.25 – Dynamic Partial Reconfiguration architecture modeling as a group of
computing agency with multiple hardware threads.

[JHE+13] and Hthreads [APA+06]. One well-known approach in this area is ReconOS
proposed in 2009 [LP09]. ReconOS was built as a revised version of the widely used
real-time OS eCos. In this approach, the functionality of an application is divided into
software threads on the CPU side and parallel hardware threads, which are mostly data
computation tasks. To provide symmetry between software and hardware tasks, for each
hardware thread, a new dedicated eCos thread, denoted as the delegate thread, is dy-
namically created and connected to the corresponding OS interface. Delegate thread is
hidden by ReconOS and provides hardware threads with equal access to OS services as
software threads, so that they can behave as software threads. For the user application,
there is no need to know whether its threads are implemented with software or hardware.
ReconOS was released on the Xilinx Virtex platform, which lacks partial reconfiguration.
Therefore, this work focused on the pre-defined static FPGA accelerators, which, though
undermines its value in context of the DPR management, still provides a classical solution
for modeling hardware threads in OSs.

The multi-thread hardware accelerator model is also suitable for parallel high perfor-
mance computing architectures, such as GPU, where concurrent multithread execution
is achieved. The DPR feature permits a dynamic resource management strategy to op-
timize resources usages while meeting other requirements, e.g. power budget or working
conditions. ARTICo3 proposed in [RVdlTR14] is an embedded architecture that is based
on the NVIDIA CUDA execution model. It is able to calculate the optimal hardware re-
source allocation according to real-time conditions. The multiprocessors in traditional
CUDA devices are substituted by hardware accelerators in dynamically reconfigurable
slots. A dedicated unit Resource Manager is in charge of allocating application compu-
tations with a changeable amount of DPR slots (or threads). The resource of DPR slots
used by one application can be modified on the fly. Figure 1.26 shows a possible resource
allocation schedule that serves for two parallel applications. Note that, since the work
is intended to migrate CUDA-like GPU execution model to ARTICo3, each DPR slot
corresponds to a CUDA microprocessor thread. The major advantage of using DPR in

FIGURE 3.4 – Dynamic partial reconfiguration architecture modelling as a group of computing agencies
with multiple hardware threads.

In the academic domain, embedded CPU-FPGA based systems have also been massively studied.
Numerous works have consisted in providing current reconfigurable FPGA devices with OS support
([JHE+13], [GHZB10], [GHZB11], [APA+06a], [VSS+15]). One successful approach in this domain is Re-
conOS [AHK+14], which is based on an open-source RTOS (eCos) that supports multithreaded hard-
ware/software tasks. ReconOS provides a classical solution for managing hardware accelerators in a hy-
brid system in a standard thread model. In [HH09], this concept is implemented by providing the OS4RS
framework in Linux. Virtual hardware allows the same devices and the same logic resources to be simul-
taneously shared between different applications. However, this approach is proposed for a single OS only,
without considering virtualization.

Another study is described in [WBP13]. This was one of the earliest researches in this domain. The
authors try to extend the Xen hypervisor to support FPGA accelerator sharing among several virtual ma-
chines. However, this research proposes an efficient CPU/FPGA data transfer method, with a relatively
simple FPGA scheduler that provides a FCFS (first-come, first served) sharing of the accelerator, without
including DPR technology.

Another interesting research [JPC+14] consists in proposing a framework dedicated to hardware task
virtualization on a hybrid ARM-FPGA platform. In this work, the authors modified the CODEZERO hy-
pervisor to manage reconfigurable accelerators.

I Reconfiguration at Application Level

43

PA
R

C
O

U
R

S
P

R
O

F
E

S
S

IO
N

N
E

L
S

Y
N

T
H

E
S

IS
O

F
R

E
S

E
A

R
C

H
W

O
R

K
S

A
P

P
E

N
D

IX
Chapitre 3. Reconfiguration Management

Another reconfiguration level that we were interested in is the application level.A wide range of appli-
cation exploiting DPR have been studied in the literature. They mainly deal with adaptability, overhead
reduction, reliability improvement and hardware computing [VF18].

In our works, we mainly focused on adaptability of hardware systems that can modify their behaviour
according to the environment changes. This is extremely important for applications that require a lot of
hardware resources to execute and that require huge computation efforts. One particular well-identified
class of applications that we have considered is the wireless communications systems in general and Soft-
ware Defined Radio (SDR) or cognitive radio in particular [MP15].

Numerous works dedicated to reconfigurable wireless communication systems have already taken
advantage of the partial reconfiguration technique in FPGAs [DPML07b], [WW09]. In [Has16], a re-
view of partial reconfiguration techniques in wireless communication systems is presented. In [Kum12]
and [Kum13a], the authors propose an M-Phase Shift Modulation (M-PSK), and M-Quadrature Amplitude
Modulation (M-QAM) modems implemented on FPGA with reconfigurable modulation and demodula-
tion modules based on the partial reconfiguration technique for Software Defined Radio (SDR) and CR
applications. In [Kum14], the authors propose a full reconfigurable OFDM transmitter, in which most of
the blocks (modulator, encoder, and FTT) of the OFDM are partially reconfigured using the PR technique.
However, they do not describe how the partial reconfiguration is managed and controlled in real-time,
and under which conditions the system decides to apply the PR process.

In [SABN14], a similar work based on the DPR concept is discussed. It consists in applying DPR on the
modulation and encoder blocks of the IEEE 802.11g physical layer. The OFDM physical layer is implemen-
ted with various encoding and modulation schemes to achieve different data rates using the PR technique.
The design has been implemented in Xilinx Virtex-5 board. Unfortunately, in this work, the authors do not
describe how they manage the partial reconfiguration process as well as the required real-time control.

The authors in [VSR+13] describe an adaptive reconfigurable transmitter for OFDM-based cognitive
radio. In this transmitter, the modulation block is adapted according to the Signal to Noise Ratio (SNR)
value. The authors implement a simple configuration controller but do not describe the bit-stream transfer
to the FPGA. The configuration controller is look-up table based. Moreover, it is not clear whether the
system can run multiple adaptive processes in parallel or not.

The authors in [DPML07a] and [DMN+08] benefit from the PR technique to propose a reconfigurable
radio system. In [DPML07a], PR is applied dynamically to reconfigure a convolution encoder, a constel-
lation mapper and a FIR filter. In [DMN+08], the PR concept is applied in a Network on Chip (NoC)
architecture for SDR applications. The authors propose to benefit from the PR technique to reconfigure
the communications blocks of a NoC-based SDR platform. Authors tested the proposed system with a
video demonstration implementing two Virtex 4 FPGAs. The code rate and constellation mapper are dy-
namically reconfigured and results are evaluated regarding the quality of the video at the receiver. The
partial reconfiguration management is controlled by a MicroBlaze soft processor implemented on FPGA
with an ICAP controller.

At the application level, a part of our works has also consisted in studying how a wireless system can
switch between several standards. This is known as vertical handover (VHA). In the context of vertical
handover in heterogeneous networks, several works can be mentioned. In [KJU+15], the authors proposed
an algorithm composed of two steps. In the first step, the handover is triggered according to the data
rate requested by the user. Before starting the handover, the system evaluates the speed of the node. If
the speed is higher than a certain predefined threshold that does not allow benefiting efficiently from
switching to another system, the handover is canceled and considered as unnecessary. Otherwise, if the
speed is appropriate, the available networks are compared according to five parameters : the bandwidth,
jitter, delay, cost and bit error. Then, the best standard is selected and the vertical handover is performed
if necessary.

Based on the SINR, the authors in [AMM12] propose a vertical handover between WIFI and WIMAX
standards. According to a custom mathematical function, the equivalent SINR value for each network is
computed and compared. The handover decision is based on the best equivalent SINR value.

The most promising proposed VHAs are those based on machine learning techniques [AA16]. They
can be categorized as intelligence based schemes defined in [ABG14] with the other fuzzy logic based
VHAs. VHAs usually detect available wireless standards and make a rough decision based on current
values of specific parameters. On the other hand, VHAs based on machine learning techniques have the

44

PA
R

C
O

U
R

S
P

R
O

F
E

S
S

IO
N

N
E

L
S

Y
N

T
H

E
S

IS
O

F
R

E
S

E
A

R
C

H
W

O
R

K
S

A
P

P
E

N
D

IX

2. General Framework

ability to study and learn from the environment to take efficient decisions.

22 General Framework

As part of our work, and through the supervision of several thesis works, we have started to set up a
system to virtualize computing resources. This system has been built incrementally while maintaining a
modular aspect in order to relieve the development time. This system is also generic in the sense that it is
not constrained by the definition of the underlying hardware platform.

In our approach, virtualization has been implemented at 3 different levels corresponding to the levels
that have been identified for the reconfiguration management. These levels are represented in Figure 3.5.
In this scheme, each level has the possibility to communicate with lower levels by using dedicated APIs.

The Hardware Level corresponds to the management of hardware components that are implemented
in the FPGA. This level features Partial Reconfiguration Regions (PRR) that are handled by specific hard-
ware components.These components handle bitstream manipulations to physically configure the device.
This can be performed by making use of dedicated vendor interfaces such as PCAP or ICAP for Xilinx
devices. These components also aim at facilitating hardware resources from upper levels.

The OS Level corresponds to the reconfiguration management from the different services that are
parts of the operating system. In our model, these services are implemented in a custom micro-kernel
that may be seen as an hypervisor capable of running several virtual machines. All these services allow
the different virtual machines to access hardware resources in a transparent manner. Two types of virtual
machines are considered in our approach : the real-time VM and non real-time VM. The first requires
specific mechanisms that may be implemented within dedicated services.

Finally, at the Application Level, different tasks may need to share the same reconfigurable resources
simultaneously or even take decisions regarding the configuration of the full system according to external
metrics. This is typically the place to implement "smart" algorithms to adapt the platform according to
environmental changes.

In the next sections, all these reconfiguration levels are described in details.

33 HW Level

In our model, reconfigurable modules are implemented in predetermined reconfiguration partitions,
by downloading the corresponding bitstream files via PCAP transfer. In our designation, a reconfiguration
partition is denoted as partial reconfiguration region (PRR) and a reconfigurable module is denoted as a
HW task.

HW tasks provide accelerators for various functions and algorithms. Each function or algorithm is
denoted as a virtual device (VD) and is completely isolated from the implementation details. Therefore,
one specific device can be implemented by different HW tasks in different PRRs.

3.13.1 HW Task Model

In Tian Xia’s thesis, we have proposed a new HW Task descriptor. This task descriptor contains the
relevant information that can help in making reconfiguration decisions at different levels. The fields that
are included in the HW descriptor are :

— HW task ID

— Bitstream Address

— Bitstream Size

— Reconfiguration latency

45

PA
R

C
O

U
R

S
P

R
O

F
E

S
S

IO
N

N
E

L
S

Y
N

T
H

E
S

IS
O

F
R

E
S

E
A

R
C

H
W

O
R

K
S

A
P

P
E

N
D

IX
Chapitre 3. Reconfiguration Management

micro-kernel

PRR Monitor

interface interface

Virtual Device
Manager

IPC Channel

Virtual
machine

Virtual
machine

Interconnection

user
task

app
task

app
task

app
task

Parameters
Provider

HW Updater

PRR#1 PRR#2

Configuration
Controller

user space

kernel space

HW

OS

App.

Ker-One

FIGURE 3.5 – Global scheme.

TABLE 3.1 – List and description of ports in PR accelerator interface.

Register Width Description

STAT 32-bit HW task status register

START 8-bit Start flag

OVER 8-bit Over flag

CMD 32-bit Command register

DATA_ADDR 32-bit Data buffer address register

DATA_SIZE 32-bit Data buffer size register

RESULT 64-bit Computation result register

INT_CTRL 32-bit Interrupt controller register

Custom Ports 8*32-bit Provide 8 IP-defined ports

To facilitate the communication between tasks, software (SW) tasks running on processors, access HW
tasks via interfaces. We have proposed a standard interface to facilitate the management of PR modules,
denoted as PR accelerator interface. The ports of PR accelerator interface are given in Table 3.1 and are
common to all hardware tasks.

From Figure 3.6, we may notice that a PR accelerator interface structure of registers is implemented in
the IF. When an accelerator is disconnected with a PRR, the states of virtual device execution (e.g. results,
status) are still stored in this structure in IF, so that the SW task can restart from the interrupt point of
the virtual device when it gets re-allocated. In this way, the consistency of the virtual device interface is
guaranteed.

46

PA
R

C
O

U
R

S
P

R
O

F
E

S
S

IO
N

N
E

L
S

Y
N

T
H

E
S

IS
O

F
R

E
S

E
A

R
C

H
W

O
R

K
S

A
P

P
E

N
D

IX

3. HW Level

DPR Management Framework 85

prr1_dev1 null null

prr1_dev2 prr2_dev2 null

prr1_dev3 prr2_dev3 prr3_dev3

prr1_dev4 prr2_dev4

PRR #1

Dev #1

Dev #2

Dev #3

Dev #4

PRR #2 PRR #3
HW task descriptor

Bitstream Address

Bitstream Size

HW task ID

Compatible Incompatible

prr3_dev4
Reconfig. Overhead

Figure 3.7 – HW task index table with HW task descriptors.

Device Interface
Address Page

PR
Accelerator

Ports
IF

Inter-
connection

PR accelerator interface

Figure 3.8 – Implementation of the PR accelerator interface for virtual devices.

case, a given PRR may not be compatible with some virtual device, if its area (i.e. re-
source amount) is insufficient to implement the corresponding function. Therefore, the
compatibility information of HW tasks must be initialized beforehand.

As listed in Figure 3.7, an HW task index table is created to provide a quick look-up
search for HW tasks. In this table the compatible virtual devices for each PRR are listed.
For each compatible virtual device, a HW task descriptor structure is given, which holds
the information of the corresponding bitstream file, including its ID, memory address
and file size. This information is used to correctly launch PCAP transfers and perform
reconfiguration. This table also holds the reconfiguration overheads of each HW task,
whose values can be precisely estimated via previous measurements.

Virtual machines access HW tasks via IFs. We proposed a standard interface to
facilitate the multiplexing of PR modules, denoted as PR accelerator interface. The im-
plementation of this interface is shown in Figure 3.8. It is included in both IFs and HW
tasks, and conveys the register values from the IF to HW tasks. Once the IF is connected
to an HW task, a virtual machine can write commands or configurations into the IF
registers to control the HW task behavior.

In Table 3.2 the structure of the PR accelerator interface is listed. Virtual machines
start the process by setting the START flag. When the required computation is over,
the OVER flag is set and the result is returned in the RESULT register. HW tasks can
be programmed to perform DMA data transfers via the AXI-HP interface to exchange
massive data with VM memory. PL Interrupts can also be generated to acknowledge

FIGURE 3.6 – PR accelerator interface.

The SW tasks that are currently using HW tasks are denoted as clients. HW tasks inherit the priorities
of these SW clients. We use a preemptive policy for HW tasks, meaning that the HW task corresponding
to the low-priority SW tasks can be forced to stop and get replaced by the desired HW task corresponding
to the VM of higher priority.

This raises another issue that is data integrity. A running HW task cannot be stopped or preempted at
any time, otherwise it may cause a loss of data consistency. For example, in some algorithms, unbreakable
execution paths may exist. Therefore, designers of HW tasks have to provide the points in the code where
their execution can be stopped. Moreover, these points must allow the HW task to be fully resumed from
the same point of interruption. These points are denoted as consistency points.

3.23.2 PRR HWManagement

At the HW level, it is required to store information about PRRs. This information is stored in a PRR
descriptor that contains the current state of the PRR, an identifier, the device that is currently implemen-
ted, a priority as well as a reconfiguration latency.

In our model, a PRR may be seen as a five states state machine. The state flow of this machine is
depicted in Figure 3.7 :

— Idle : The PRR is idle without any ongoing computation and is ready for allocation.

— Busy : The PRR is in the middle of a computation

— Preempt : The PRR is running, but the computation will be stopped (preempted) once it reaches a
consistency point.

— Hold : The PRR is allocated to a VM and is preserved for a certain amount of time

— Reconfig : The PRR is in the middle of a PCAP reconfiguration.

As depicted in Figure 3.7, a PRR can only be directly allocated to VMs when it is in Idle state and
requires no reconfiguration. In other situations, the allocation process requires extra overheads caused by
PCAP transfer or preemption. In the particular case of virtualization, this causes VM requests and PRR
allocations to be asynchronous.

As an example, let us imagine that we allocate PRR1 to VM1 via reconfiguration and that the PCAP
transfer is performed in parallel with software. Then, if VM1 gets scheduled before the PCAP transfer
completes, it can only start to use the allocated device when it gets scheduled again. In this case, there is
a risk for PRR1 to get re-allocated to another VM and that VM1 could never use the requested PRR1.

To solve this problem, we have introduced Hold as a special intermediate state. The PRRs that are
allocated to a VM will first enter this state. This indicates that the PRR is assigned to a certain VM client.
PRRs in the Hold state will block any re-assignment and will wait to be used by the VM. PRRs will be

47

PA
R

C
O

U
R

S
P

R
O

F
E

S
S

IO
N

N
E

L
S

Y
N

T
H

E
S

IS
O

F
R

E
S

E
A

R
C

H
W

O
R

K
S

A
P

P
E

N
D

IX
Chapitre 3. Reconfiguration Management

DPR Management Framework 87

Table 3.3 – Contents of the PRR descriptor data structure.

Contents Description

STAT Current state of PRR
VM_ID VM that is currently using PRR
DEV_ID Device that is currently implemented
PRIO Priority of the client VM
RCFG_DELAY Reconfiguration overhead

Idle

Reconfig.

Busy

Hold

Preempt
Start

Over

StartPCAP
Begin

PCAP Over

PCAP Begin

Stop

Reach
consistency points

Allocate
PRR

Client VM Scheduled
or Timeout

Figure 3.9 – The behavior of PRRs as a state machine.

The essential information of a PRR is stored in the PRR descriptor data structure,
which consists of the contents of Table 3.3. Note that, in the DPR technology, the
bitstreams size is strictly determined by the size of the reconfigurable area. Considering
that the PCAP bandwidth is fixed, the reconfiguration time overhead of HW tasks, i.e.
the download time, can be predicted. In our framework, the reconfiguration overheads
RCFG_DELAY are used to indicate the size of the PRR area in the FPGA.

In our system, PRRs run as a state machine with five states :

– Idle : The PRR is idle without any ongoing computation and is ready for allocation.

– Busy : The PRR is in the middle of a computation

– Preempt : The PRR is running, but the computation will be stopped (preempted)
once it reaches a consistency point.

– Hold : The PRR is allocated to a VM and is preserved for a certain amount of
time

– Reconfig : The PRR is in the middle of a PCAP reconfiguration.

The PRRs behaviour can be described according to the flow chart given in Figure
3.9. As depicted, a PRR can only be directly allocated to VMs when it is in Idle state
and requires no reconfiguration. In other situations, the allocation process requires extra
overheads caused by PCAP transfer or preemption. In virtualization, this will cause the
VM requests and PRR allocations to be asynchronous. Let us imagine that we allocate
PRR #1 to VM #1 via reconfiguration, and the PCAP transfer is performed in parallel

FIGURE 3.7 – PRR states.

released and return to the Idle state under two conditions : the target VM is scheduled in the CPU, or the
pre-set waiting time "Expire" runs out.

3.33.3 The PRR Monitor

The PRR Monitor aims to take a reconfiguration decision upon requests of the Virtual Device Manager
that is a software service at OS level. Each request has the following structure : Request (VM_id, dev_id,
prio), which is composed of the VM identifier, the virtual device identifier and a request priority. The
request priority is equal to the priority of the calling VM.

A complete solution is formatted as :

Solution{VM,dev,Method(prr_id),Reconf ig}, (3.1)

which includes the target VM, the required device, the actual allocation method and reconfiguration flag.
The different methods include :

— Assign (prr_id) : this solution directly allocates the returned PRR (i.e. prr_id) to the request VM. If
the requested device dev_id is not implemented in this PRR, a Reconfig flag will also be added.

— Preempt (prr_id) : this solution means that no PRR can be directly allocated, but the returned PRR
(i.e. prr_id) can be preempted and re-allocated. If the requested device dev_id is not implemented
in this PRR, a Reconfig flag will also be added.

— Unavailable : this state means that currently no PRR is available for Request (vm_id, dev_id, prio).

Figure 3.8 depicts the interaction between the PPR Monitor and the Virtual Device Manager. Nor-
mally, the selected solution is sent to the Virtual Device Manager for further handling. However, if there
is no valid solution (i.e. Unavailable), this unsolved request is added to the search list, which is a waiting
list of all unsolved requests. The PPR Monitor keeps searching solutions for requests in this list, and ack-
nowledges the Virtual Device Manager whenever a new solution is found. The searching runs in parallel
with VMs, following the priority-based FIFO principle, so that when a requests conflict occurs, the PRR
Monitor always chooses the highest priority request.

44 OS Level

4.14.1 The Configuration Controller (Virtual Device Manager)

The Virtual Device Manager is a special service provided by Ker-ONE, running in an independent
VM with the highest priority. Running in an isolated VM improves the security of its functioning. This

48

PA
R

C
O

U
R

S
P

R
O

F
E

S
S

IO
N

N
E

L
S

Y
N

T
H

E
S

IS
O

F
R

E
S

E
A

R
C

H
W

O
R

K
S

A
P

P
E

N
D

IX

4. OS Level90 Dynamically Management of Reconfigurable Accelerators on Ker-ONE

PRR Descriptor
Table

Search List

PRR Monitor

Search
Solution

Virtual Device Manager
Reschedule

Unavailable
Request

Valid Solution

Micro-kernel

IRQ (New Solution)

PR Regions

Request

HW Task index
Table

Figure 3.11 – The interaction between the PPR monitor and the Virtual Device Manager
to search for appropriate allocation solutions.

the PPR Monitor always chooses the highest priority request.

3.2.5 Virtual Device Manager

The Virtual Device Manager is a special service provided by Ker-ONE. As previously
described, this service runs in an independent VM and communicates with other VMs
through the IPC channel. It has a higher priority than guest OSs and can preempt them
once it gets scheduled (see Section 2.5.1). After its execution, it suspends itself and the
VMM resumes the interrupted VM immediately.

The Virtual Device Manager stores all the HW tasks in its memory and is the only
component that can launch PCAP reconfigurations. The main task of this manager is :
(1) to communicate with VMs and manage the virtual devices in their space ; (2) to
correctly allocate PR resources to VMs.

When a virtual device is unavailable, the corresponding IF is not connected to any
PRR and its address is set as read-only. Any writing operations on this address will trap
to a VMM as a page-fault exception. We assume that, in order to command a virtual
device, a VM always need to configure the device interface in the IF. In this case, any
VMs’ attempt to use unavailable virtual devices will be detected by the VMM, and then
passed to the Virtual Device Manager.

Since the virtual devices are pre-determined and identically mapped in all VM virtual
address spaces (see Figure 3.5), it is easy to identify the target device by simply checking
the page-fault address. Then this exception is translated into the Request (vm_id, dev_id,
prio) format and is used to search solutions. The Virtual Device Manager allocates PR
resource to VMs according to different solutions.

The allocation/ de-allocation of PR resources are realized by manipulating IF connec-
tions and VM page tables. In Figure 3.12, we have depicted the complete flow to allocate a
PRmodule to VM as a virtual device. In this example, after a givenRequest(vm01, dev01, prio01)},

FIGURE 3.8 – PRR monitor and Virtual Device Manager interaction.

service stores all the HW task bitstreams in its memory and is the only component that can launch PCAP
reconfigurations. The main task of this manager is : (1) to communicate with VMs and manage the virtual
devices in their space ; (2) to correctly allocate PR resources to VMs.

In Figure 3.9, the process of solution handling in the Virtual Device Manager is presented. The routine
is composed of one main function Run_Solution() and several interrupt handlers. Note that preemption
and reconfiguration solutions are performed in two stages : (1) the manager launches the reconfiguration
or preemption and then goes to sleep, (2) the manager is awakened by IRQs and completes the solution.
For the Preempt solution, the manager first stops the preempted accelerator, and then handles it as Assign
solutions.

94 Dynamically Management of Reconfigurable Accelerators on Ker-ONE

Run Solution

Launch
PCAP

Assign (prr_id)Preempt (prr_id) Unavailale

De-allocate PRR

Reconfig.
Flag?

Allocate PRR to VM

Suspend

IPC_WAIT
(dev_id)

Suspend

IRQ_PCAP_Over

Allocate PRR to VM

IPC_READY
(dev_id)

Suspend

Preempt PRR

IPC_WAIT
(dev_id)

Suspend

Change Solution as
Assign(prr_id)

IRQ_PRR_Stop
(vm, dev, prr)

IPC_WAIT
(dev_id)

Suspend

IRQ_New_Solution
(Solution)

Acknowlege
Preempted VM

IPC_PREEMPT
(dev_id)

Solution = {vm_id, dev_id, Solution (prr_id), Reconfig}

PL Interrupt
IPC to VMs
IRQ Handler

Preempting

Reconfiguration

Figure 3.13 – The process of Virtual Device Manager handling Solution {vm_id, dev_id,
Method (prr_id), Reconfig}.

3.2.6 Security Mechanisms

The strong isolation among virtual machines is one of the most essential features of
virtualization, which guarantees the security of each component. The sharing of DPR
accelerators may undermine the system isolation since it increases the attack surface of
a virtual machine. A compromised OS may try to use accelerators of another VM, or
try to leverage its accelerators to attack other VM domains. In this part we discuss the
potential security threats and propose our solutions.

To protect the isolated environment of a virtual machine, it is mandatory to follow
two principles : first, one accelerator can be shared by any VM, but should be exclusively
used once it is dispatched to a specific guest OS. Second, accelerators should only access
the memory region of the VM which is currently using it. Accessing a memory space
outside the specific section is forbidden.

The solution for the first challenge is addressed by the allocation mechanism we
described. During the allocation, the Virtual Device Manager manipulates the page tables
of VMs to guarantee that a VM and a PRR are exclusively connected, so that a VM is
only permitted to access the DPR resource that is allocated to it.

Meanwhile, the protection of memory space requires extra mechanisms. In classic

FIGURE 3.9 – Virtual Device Manager handling mechanism.

4.24.2 Other OS services to handle reconfiguration

Due to the modularity of the proposed system, it is very easy to add dedicated services to be handled
by the micro-kernel. Two of these services have been developed in Mohammad Rihani’s PhD thesis : the
Parameters Provider and the Hardware Updater.

49

PA
R

C
O

U
R

S
P

R
O

F
E

S
S

IO
N

N
E

L
S

Y
N

T
H

E
S

IS
O

F
R

E
S

E
A

R
C

H
W

O
R

K
S

A
P

P
E

N
D

IX
Chapitre 3. Reconfiguration Management

4.2.14.2.1 The Parameters Provider

The parameters provider is another important SW service running at OS Level, in the user space. It
is considered as an interface for all the parameters of the system. This module provides all the required
parameters to the user processes in order to take a decision regarding the configuration of a specific
module. The parameters may be collected from the HW itself (sensors, .) or from SW (task execution time,
deadline, etc.)

4.2.24.2.2 The HW Updater

This module also runs as a service that can be added to the kernel. In this module, we benefit from one
of the advantages of the PR that makes it possible to implement new versions of modules or even update
other available modules at runtime. In a partial reconfiguration system design, PRRs may be seen as black
boxes with predetermined input and output ports. The role of this service is to update a version of a given
hardware task from a distant client or from the cloud.

4.34.3 The particular case of Virtualization : Security Mechanisms

The strong isolation among virtual machines is one of the most essential features of virtualization,
which guarantees the security of each component. The sharing of DPR accelerators may undermine the
system isolation since it increases the attack surface of a virtual machine. A compromised OS may try to
use accelerators of another VM, or try to leverage its accelerators to attack other VM domains. In this part
we discuss the potential security threats and propose our solutions to tackle these issues.

To protect the isolated environment of a virtual machine, it is mandatory to follow two principles :
first, one accelerator can be shared by any VM, but should be exclusively used once it is dispatched to a
specific guest OS. Second, accelerators should only access the memory region of the VM which is currently
using it. Accessing a memory space outside the specific section is forbidden.

The solution for the first challenge is addressed by the allocation mechanism we described. During the
allocation, the Virtual Device Manager manipulates the page tables of VMs to guarantee that a VM and a
PRR are exclusively connected, so that a VM is only permitted to access the DPR resource that is allocated
to it.

Meanwhile, the protection of memory space requires extra mechanisms. In classic virtualization sys-
tems, the separate execution environment relies on the MMU, which automatically controls accesses from
different privilege levels and blocks illegal accesses. Isolated memory spaces are generally ensured by ma-
naging page tables. However, considering that the Zynq-7000 provides AXI-HP interfaces as bus master
on the PL side, the FPGA accelerators can directly access physical CPU memory without going through
MMU, which means that it is impossible to monitor and control the FPGA access via the page table mecha-
nism. In this case, there is a risk that the accelerator accesses other VM domains or even the micro-kernel
domain to attack the system.

Therefore, we created a custom unit, denoted as the hardware Memory Management Unit (hwMMU),
to monitor any access to the CPU memory. The hwMMU creates a memory region table to store the physi-
cal memory regions of each VM. This table is initialized during the start-up stage of the system. Whenever
a PR accelerator attempts to access the CPU memory via AXI-HP, the hwMMU checks the target address
according to the memory region table, and any access outside the current client VM domain is rejected.
This mechanism guarantees that DPR accelerators are strictly constrained in a determined VM domain,
and are isolated from other parts of the system.

50

PA
R

C
O

U
R

S
P

R
O

F
E

S
S

IO
N

N
E

L
S

Y
N

T
H

E
S

IS
O

F
R

E
S

E
A

R
C

H
W

O
R

K
S

A
P

P
E

N
D

IX

5. Application level

55 Application level

5.15.1 Context

Today, most applications require flexibility. In our model, reconfiguration at the application level aims
at taking reconfiguration decisions according to specific metrics that are sensed from the environment.
The main purpose of this approach consists in adapting the system according to environmental changes.
At this level, decisions are taken within user tasks and may have a big impact on the system behaviour. In
our approach, the main idea has always been to keep the lower layers (OS and Hardware) as transparent
as possible to facilitate the decision making at the application level. Once the decision is made, it is up to
the system to reconfigure itself at different levels.

The main application domain that we targeted in our works was wireless communications and to
some extend software or cognitive radio. In fact, increasing the performance of wireless communication
systems has always been one of the first objectives of designers. Today, due to the characteristics of wireless
channels (path loss, fading, shadowing ...), the multiplicity of standards, the frequency allocations, and
the mobility features of wireless devices, the operating environment is becoming more and more complex
to comprehend.

In Figure 3.10, the general four steps (sense, analyze, decide, and reconfigure) applied to reconfigu-
rable radio is presented. This concept aims to create smart radios which have the ability to reconfigure
themselves to adapt to channel conditions. The first step consists in sensing the environment continuously,
and then analyze and understand the environment. Upon the analysis, the system can decide whether to
reconfigure itself or not. If a reconfiguration decision is performed, reconfiguration is applied and the sys-
tem continues sensing the environment again. Each step of the four mentioned steps may be considered
as domain of research. For example, finding the right parameters to be sensed and analyzed is a real issue
to make an efficient decision. Another example deals with the decision making process itself, which can
be implemented by a lot of algorithms.

14 Concepts and Related Works

channel status. The �rst main step is to sense the environment continuously, and
then analyze and understand the new wireless channel status. Upon the analysis,
the system should decide whether to recon�gure itself or not. If the decision was
to recon�gure, recon�guration is applied and the system starts sensing the envi-
ronment again. In this case, it is necessary have multiple versions of the wireless
radio that are compatible with di�erent status of the wireless channel. The sys-
tem has the ability to identify the wireless channel status. This allows deciding
whether it is necessary to recon�gure the system to another version or not. Each
of the four mentioned steps raises new research issues. For example what parame-
ters must be sensed and analyzed to detect the new wireless channel state ? Also,
what is the optimal decision that can be made or how to apply fast and e�cient
recon�guration ?

Sense

Environment

Reconfigurable

Radio

Make

Decisions

Analyze and

learn

Reconfigure

Radio Chain

Figure 1.5 � Recon�gurable radio block diagram

In this context, researchers have proposed adaptive mechanisms to enable wi-
reless systems to adapt waveforms according to channel properties. Such systems
sense, learn, analyze, and decide to recon�gure part of the wireless system. Va-
rious low-level parameters such as the Received Signal Strength Indicator (RSSI),
Signal-to-Noise Ratio (SNR), Bit Error Rate (BER) have been used to guarantee
adaptability. Other high-level parameters, such as resource allocation, QoS, and
power consumption, have also been investigated to decide and appropriately adapt
the system to the environment in real time. One of the main goals of the adaptive
techniques consists in maximizing the channel capacity while minimizing the po-

FIGURE 3.10 – Reconfigurable radio block diagram.

In this section, we have defined and mentioned some of the adaptive techniques used to improve the
wireless communication and make an efficient decision to reconfigure the wireless chain. Some of these
techniques have been studied and modeled in Chapter 2. In the Mohammad Rihani’s thesis, we have
focused on proposing new algorithms destined to select the best available wireless standard according to
the channel conditions. This study deals with the Vertical Handover (VHA) concept, which is explained
more deeply in the next section.

51

PA
R

C
O

U
R

S
P

R
O

F
E

S
S

IO
N

N
E

L
S

Y
N

T
H

E
S

IS
O

F
R

E
S

E
A

R
C

H
W

O
R

K
S

A
P

P
E

N
D

IX
Chapitre 3. Reconfiguration Management

TABLE 3.2 – WiFi and WiMax networks comparison.

Characteristics WiMax WiFi

Range up to 40 Kms up to 100m

Scalability user scale 1 to 100 user scale 1 to 10

Bit Rate up to 100 Mbps in 20 MHz channel up to 54 Mbps in 20 MHz channel

QoS several levels no guarantee of QoS

Mobility support mobility fixed

5.25.2 Case study : VHA for WI-FI and WiMax heterogeneous networks

A wireless network composed of multiple wireless standards is called an heterogeneous network. In
this network, radios have the main purpose to sense the wireless spectrum continuously and detect the
available wireless standards. Some algorithms may evaluate different parameters to learn, study, and then
decide whether to perform a vertical handover or keep on communicating through the current standard.
The key of taking a good decision is driven by the parameters collected from the environment. These
parameters can be divided into four categories :

Wireless Channel Parameters These parameters are measured from the wireless channel and provide
information about the channel status. RSS, SNR, and BER are examples of such parameters.

Network Information Parameters These parameters inform the VHA about the network status. This ca-
tegory includes the number of connected nodes to the access point, data rate, delay, jitter and cost.

User Parameters These parameters implement user’s data requirements at the application layer such as
the required data rate and high priority data.

System Parameters Such parameters provide the algorithm with the device status. Examples of these
parameters are power consumption, battery level, and device speed.

In our work, and particularly in Mohammad Rihani’s thesis, we have studied how VHA could be
implemented in our reconfigurable platform. As a case-study, we have considered two heterogeneous
networks i.e the WiFi and WiMax standards. In these standards, each Radio Access Technology features
different specifications in terms of supported Uplink and DownLink data rate and coverage range. Both
WiFi and WiMax standards support the IP protocol that is widely used nowadays for voice, data, and
video streaming. The main features of both standards are given in Table 3.2.

5.35.3 The Adaptive Scoring System

The VHA that we have proposed for the WiMax-WiFi network is composed of three stages : an Han-
dover Trigger, an Initial Decision and a Final Decision. In a first version of the algorithm, the mechanisms
that have been implemented were quite simple.

As an example, let us assume that the system operates in WiMax by default. The Handover Trigger
is initiated as soon as the handover process detects that the WiFi RSS is greater than that of WiMax.
The trigger is based on the RSS because it is considered as the simplest and fastest way to detect the
availability of wireless standards. The Initial Decision state is used to make fast decisions and detect fake
handover. Fake handover is detected if the speed of the device is greater than a certain limit defined by
WIFI_max_speed_limit (similar to that defined in [JH09b]). In fact, if VHA was based on RSS only, the
system could have directly switched to WiFi : when a node is moving at high speed, it may leave the
WiFi Access Point (AP) area and the system may switch back to WiMax almost instantly. In this case, two
handovers may occur without any benefit but a waste of time and power. Our system is able to detect this
situation and avoid this type of fake handover.

If the Initial Decision is successfully done, the system goes into the a Final Decision state. In this
final state, an adaptive scoring system evaluates multiple parameters to decide which network is the best

52

PA
R

C
O

U
R

S
P

R
O

F
E

S
S

IO
N

N
E

L
S

Y
N

T
H

E
S

IS
O

F
R

E
S

E
A

R
C

H
W

O
R

K
S

A
P

P
E

N
D

IX

5. Application level

TABLE 3.3 – Example of scoring system.

Parameters WiFi WiMax

Data Rate (3) 3 -

Delay(4) - 4

Jitter(3) - 3

SNR(3) - 3

BER(3) - 3

Power Consumption(5) 5 -

Total Score 8 13

according to user preferences. If the scoring system decides that WiFi is better than WiMax, then vertical
handover occurs.

The general concept of the scoring system is based on assigning points to each selected parameter in
the VHA decision. Points that are assigned to parameters are different in each standard. They are added
within one standard to obtain a final score. The wireless standard with the highest score wins and the
VHA decides to switch to it. An example dealing with the operation of the proposed scoring system is
shown in Table 3.3, where each parameter is assigned different points.

Our proposed scoring system operates as follows : if a standard provides a better performance regar-
ding a given parameter (ex. SNR, BER), then the points related to this concerned parameter are added to
the score of the corresponding network. For example, if the Data Rate parameter is assigned 3 points, and
WiFi provides better throughput than WiMax, then 3 points are added to the WiFi score. On the other
hand, if the delay value in WiMax is less than that in WiFi, 4 points are added to WiMax. Finally, the
network with the highest score is selected.

Adding adaptivity to the scoring system improves the efficiency of the system. For example, we consi-
der the user preferences parameter to be the main parameter to take into account. In this case, it is possible
to adapt the weight of each parameter in the scoring system according to the type of application running
in the user space. As shown in Table 3.4, the points attributed to a given parameter may change according
to the type of the running application.

TABLE 3.4 – Scoring system example according to different applications.

Parameter VOIP Video Browsing Ideal
Data Rate 3 4 2 1

Delay 4 4 2 1
Jitter 4 4 1 1

In our example, applications can be divided into four categories. The first category includes the video
applications that demand high data rate and low delay and jitter. The second category is the VoIP applica-
tions. This type of applications requires less data rate than video applications but similar delay and jitter
specifications. The third category concerns browsing applications which do not require specific real-time
services. The ideal case, is when the node is only connected to the wireless network but without running
any application [CF04].

Although very flexible, this scoring system remains based on static weights, which is an important
limitation. In order to improve our system, we have proposed a more efficient approach based on machine
learning techniques. This work has also been led in Mohammad Rihani’s thesis. In section 5.4, a VHA
based on neural networks combined with reinforcement learning is proposed and analyzed.

53

PA
R

C
O

U
R

S
P

R
O

F
E

S
S

IO
N

N
E

L
S

Y
N

T
H

E
S

IS
O

F
R

E
S

E
A

R
C

H
W

O
R

K
S

A
P

P
E

N
D

IX
Chapitre 3. Reconfiguration Management

5.45.4 Towards a Smart Reconfiguration Management

5.4.15.4.1 Overview

In this part, we describe the works that have been led to propose a system that combines both super-
vised and unsupervised machine learning algorithms to switch between different standards. This system
is implemented in the End-Device. It is based on an improvement of the previously proposed adaptive
scoring system. The main idea is to benefit from this previous work in a first step to take a first decision.
During this step, records and rewards are collected to obtain information about the environment. The first
decisions that are taken are then classified based on the obtained rewards.

In a second step, only decisions leading to good rewards are considered and constitute a data set that
is used to train a neural network. This neural network is used to take a more efficient decision regarding
VHA. At a certain time and after collecting a large data set, the neural network is considered as sufficiently
trained to take a right decision. At this point, it may be adopted by the global system to take further
decisions. The system can repeat the procedure of training the neural system after updating the data set
in order to optimize its operation and improve its behavior. The proposed system consists of the modules
shown in Figure 3.11. These modules are described in the subsequent sections.

Proposed VHA based on Machine Learning 81

Parameter

Provider

Adaptive Scoring

System

Learning Agent

Neural Network

decision

Configuration

Controller

Final decision

Training

Deci

sion

Sel.

NN decision

decision

Param. :

Channel

Network

User Pref

Power Lev.

Reward

Provider

QoE

Power Consumption

Rewards

Learning

Validation

New state

Figure 4.3 � Proposed VHA design

ning applications, and also node status (location, power, speed). It is considered
as an interface for all the parameters of the system. The input of this block is the
parameters from di�erent layers.

4.4.1.2 The Neural Network

In this study, we consider basic MLP feed forward networks. They permit to
model complex behaviors and allow performing multi-dimensional functions ap-
proximation. Such networks have one or more hidden layers composed of neurons
with non linear transfer function. Also they provide an output layer that imple-
ments output neurons with a linear activation function. In a �rst learning phase,
the multiple layers with nonlinear activation functions allow the network to learn
the relationships between inputs and outputs. This is performed by modifying
the weights values between the di�erent neurons. In a second phase (the forward
phase), the network may estimate the correct output for any given input pattern.

In our models, three layers have been used. Each layer receives its inputs from

FIGURE 3.11 – Proposed VHA design.

5.4.25.4.2 Modules Description

I Parameters Provider

This module collects all parameters from different layers (physical, MAC, Network) to get information
about the status of the channel, networks, user applications. It also provides information related to the
node status i.e its location, power and speed. The parameters provider is considered as an interface for all
the parameters of the system. The input of this module is composed of all parameters coming from dif-
ferent layers. Note that, typically, this module is implemented as a service of our micro-kernel as described
in Figure 3.5.

I The Neural Network

54

PA
R

C
O

U
R

S
P

R
O

F
E

S
S

IO
N

N
E

L
S

Y
N

T
H

E
S

IS
O

F
R

E
S

E
A

R
C

H
W

O
R

K
S

A
P

P
E

N
D

IX

5. Application level

In this study, we consider basic Multi-Layer Perceptrons (MLP) feed forward networks. These types
of networks allow the modelling of complex behaviours and allow performing approximation of multi-
dimensional functions. Such networks are composed of one or more hidden layers that consist of neurons
with non linear transfer function. They also provide an output layer that implements output neurons with
a linear or non linear activation function.

In a first learning phase, the network learns the relationship between inputs and targeted outputs that
are available in a training set. This is generally performed by a back-propagation algorithm that optimizes
the weight values of the connections between the neurons of different layers.

In a second phase (the forward phase), the network estimates the correct output for any given input
pattern. In our models, three layers have been used. Each layer receives its inputs from the precedent layer
and forwards its outputs to the subsequent one. In the forward phase, the weight matrix of the hidden
layer is multiplied by the input vector X = (x1,x2,x3, . . . ,xn)T, to compute the layer output, as expressed in
equation 3.2.

yh,j = f

 Ni∑
i=1

wh,jixi −θj

 (3.2)

where wh,ji is the weight connecting input i to unit j in layer h. θj is an offset term or bias that is
also connected to each neuron j. f is the non-linear activation function. In order to train the network, the
classic back-propagation algorithm has been used.

I Adaptive Scoring System

As previously explained , we have proposed a VHA based on adaptive scoring system for WiFi-WiMax
networks. The proposed VHA is composed of an initial decision and a final one. The Initial Decision is
a direct function based on the speed and the power level of the node. The Final Decision is made by the
adaptive scoring system.

The trigger is initiated based on the RSS value of the available wireless networks. The Initial Decision
first provides a fast decision and avoid fake handover triggers. If Initial Decision is passed, the Final
Decision is based on the score of each network. The score of each network is the sum of the weights of the
parameters. The weights of the parameters are adapted according to the power level and user preferences.

The role of the adaptive scoring system consists in taking decisions at a time when the neural network
is not completely trained and not fully efficient. These decisions are saved as data records to progressively
train the neural network. Rewards are evaluated after each decision, and data with good rewards are
tagged whereas data with bad rewards are rejected. Only tagged data are used to train the neural network
to identify the best solutions to perform.

I Learning Agent

This module has an important role in the system. Its goal is to train the neural network with the best
records collected from the adaptive scoring system. The records are formed by parameters and decisions at
time t and rewards at time t + 1. The best records are tagged based on the received rewards. The learning
agent also changes the decision made by the adaptive scoring system for similar parameters to get a
different reward at time t + 1. In this case, the learning agent will tag the record with the best reward
to use it later in the training of the network. The role of the learning agent can be summarized by the
following points :

— Collect and save records : parameters, control signals, decisions, and rewards.

— Invert the decision for a given record with the same parameters and control signals to get a new
record.

— Select the best records to provide a new input for the NN training.

— Train the NN during runtime when new records are available.

— Validate and test the results from the NN to use them only when the NN provides efficient decisions.

I Reward Provider

55

PA
R

C
O

U
R

S
P

R
O

F
E

S
S

IO
N

N
E

L
S

Y
N

T
H

E
S

IS
O

F
R

E
S

E
A

R
C

H
W

O
R

K
S

A
P

P
E

N
D

IX
Chapitre 3. Reconfiguration Management

The reward provider gets and provides the learning agent with the rewards after taking a decision
to switch from a state to another. For example, if we consider a system including the QoS and power
consumption as input parameters, the system can study the effect of any decision based on these parame-
ters. The reward can be a numerical value for both power consumption and QoS. The QoS values reflect
the quality of communication (throughput, delay, jitter) that must be achieved for the running user ap-
plication. Power consumption is measured after each decision to switch from one standard to another. If
power consumption diminishes, the reward is considered as a good reward. In the other case, the reward
is negative.

I Decision Selector

This module receives the decision from the neural network and from the learning agent. When the
network is validated by the learning agent, the decision agent forwards the decisions made by the network
to the configuration controller and other modules are turned off. At this level, the system is considered
to have learned making good decisions based on the experience. The NN module is validated when it is
sufficiently trained by the minimum required number of tagged records. This is selected by experimental
results.

I The Configuration Controller

The goal of the configuration controller consists in transferring partial bit-streams to the FPGA. For
additional security reasons, the partial bit-streams memory locations are only accessible from the confi-
guration controller. This controller eliminates any conflict that may occur when several user processes
decide to access the FPGA fabric at the same time. In this case, it transfers the bit-streams consecutively.
Note that, in our model, this module is implemented as a kernel service.

5.55.5 Results

In order to demonstrate the feasibility of our approach and obtain performances, the proposed system
has been tested and all modules have been implemented. A simulation has been performed on a WiFi-
WiMax scenario using a Java simulator developed during Mohammad Rihani’s thesis. Based on the adap-
tive scoring system and a simple reward system, the simulator has been setup to generate the required
data (Input Parameters – Decisions – Rewards – and Learning Decisions). The Java simulator randomly
generates the input parameters : RSS, Network Load, User Preferences, Power Level and Status. Then,
decisions and related rewards for power and QoS can be selected according to a simple decision and a
reward engine. The engine operates based on the input parameters and previous decisions. The records
with good and bad rewards are tagged with different values to be discriminated during the training pro-
cess. Finally, generated data are mapped to numerical results and extracted to a file. This file may contain
typical values :

— RSS : High 2, Med 1, Low 0

— Network Load : High 2, Med 1, Low 0

— User Preferences : Video 3, Voip 2, Browsing 1, Idle 0

— Power Level : High 2, Med 1, Low 0

— Status : Wimax 0, WiFi 1

— Decision : No Handover 0, Handover 1

— Reward Power : Decreased 2, Increased 1, Stable 0

— Reward QoS : Increased 2, Decreased 1, Stable 0

— Learn NN : Yes 1, No 0

As an example, the 0-1-2-2-2-0-1-1-2-2-1 sequence of bits represents : WiFi_RSS : low -Wimax_RSS :
med -WiFi_Network Load : high -Wimax_Network Load : high -User Preferences : Voip -Power Level : low
-Status : Wifi –Decision : handover -Reward_Power Consumption : decreased -Reward_QoS : increased
-Learn_NN : Yes.

56

PA
R

C
O

U
R

S
P

R
O

F
E

S
S

IO
N

N
E

L
S

Y
N

T
H

E
S

IS
O

F
R

E
S

E
A

R
C

H
W

O
R

K
S

A
P

P
E

N
D

IX

6. Performances Evaluation

These generated data were used to train the neural network with 7 inputs only : RSS_WiFi, RSS_WiMax,
Nl_WiFi, Nl_WiMax, user preferences, power_level, status). Only one output was used : (Handover/ No
Handover) as a real value between 0 and 1.

In Table 3.5, we can notice that for records with similar parameters, the decision is inverted during
the next cycle to collect new rewards and to identify which decision is the best. Then, the good records
are tagged to be used later to train the neural network. This provides better performance compared to the
adaptive scoring system. In this example, only the first and last records are included in the training data
set.

As discussed before, the learning agent has the role to re-train the neural network every time enough
tagged records are available. It is then important to determine the best number of tagged records that are
necessary to provide good results. Table 3.6 provides the Mean Standard Error (MSE) for different number
of records used to train the NN system. As indicated, the more the number of used samples is considered,
the better the obtained MSE becomes. Hence, selecting large number of samples will give better results
but more time is required to collect these samples. A simple threshold-based decision can then be applied
according to the level of performance to be reached.

As an example, the proposed system was tested in terms of power consumption and QoS. Figure 3.12
presents the rate of successful decisions with respect to the number of handovers using tagged records
only.

Experimental Results 89

0 20 40 60 80 100 120 140 160 180
0

5

10

15

20

25

30

35

40

45

ra
te

 o
f s

uc
ce

ss
 d

ec
is

io
ns

number of handovers

Figure 4.6 � Rate of Successful Decisions using tagged records only for Power
Consumption.

0 50 100 150 200 250 300 350 400
−2

0

2

4

6

8

10

12

nu
m

be
r

of
 s

uc
ce

ss
 d

ec
is

io
ns

number of handovers

Figure 4.7 � Rate of Successful Decisions using all records (QoS)

FIGURE 3.12 – Rate of successful decisions using tagged records (power consumption).

66 Performances Evaluation

In this part, the work related to the modelling of our global system (see Figure 3.5) is presented.
This study has been performed in Tian Xia’s thesis in order to qualitatively evaluate the overhead of the
different elements that are involved in the reconfiguration process, from the application layer down to
the hardware layer. The model that has been envisaged consists of the Ker-ONE micro-kernel that hosts
several guest OS (at least 2), each of them, running several tasks. All guest OS have a different priority
and may access a reconfigurable part of an FPGA device.

57

PA
R

C
O

U
R

S
P

R
O

F
E

S
S

IO
N

N
E

L
S

Y
N

T
H

E
S

IS
O

F
R

E
S

E
A

R
C

H
W

O
R

K
S

A
P

P
E

N
D

IX
Chapitre 3. Reconfiguration Management

T
A

B
L

E
3.5

–
E

xam
p

le
show

ing
how

the
learning

agent
selects

the
best

record
s.

W
iFi-R

SS
W

im
ax-R

SS
W

ifi
-N

L
W

im
ax-N

L
U

ser
p

ref
P

W
L

State/
D

ecision
R

ew
-P

W
C

R
ew

-Q
oS

L
earn

N
N

H
igh

M
ed

H
igh

low
V

oip
m

ed
W

IFI/
H

and
.

Increased
Increased

Yes
H

igh
M

ed
H

igh
low

V
oip

m
ed

W
ifi

/
N

o-H
and

.
—

—
—

–
—

—
—

—
N

o
H

igh
low

H
igh

H
igh

B
row

sing
low

W
im

ax/
N

o-H
and

.
—

—
—

—
—

—
—

—
N

o
H

igh
low

H
igh

H
igh

B
row

sing
low

W
im

ax
/H

and
.

Increased
—

—
—

—
Yes

N
L

:N
etw

ork
L

oad
;U

P
:U

ser
P

reference
;P

W
L

:Pow
er

L
evel;P

W
C

:Pow
er

C
onsu

m
p

tion
;R

ew
:R

ew
ard

.

58

PA
R

C
O

U
R

S
P

R
O

F
E

S
S

IO
N

N
E

L
S

Y
N

T
H

E
S

IS
O

F
R

E
S

E
A

R
C

H
W

O
R

K
S

A
P

P
E

N
D

IX

6. Performances Evaluation

TABLE 3.6 – MSE on training and validation sets for different numbers of samples.

Number of Samples MSE Training MSE Validation
175 3.9 e-2 3.8 e-2
688 2.7 e-2 2.9 e-2

5500 2.04 e-2 2.03 e-2

6.16.1 Overhead Analysis

Our evaluation first focused on the allocation latency, i.e. the delay that occurs before the accelerator is
properly allocated and ready to start. This latency may be seen as the response time of an HW accelerator,
which has a significant impact on OS timing. The additional latency that is due to allocation have two
main sources : the allocation mechanism itself and the Ker-ONE micro-kernel. Additional overhead is to
be deplored if the allocated accelerator requires reconfiguration. Besides, the virtualization mechanism
takes up extra time. For example, the page-table faults handling, IPCs and VM scheduling noticeably
contribute to the total allocation latency.

Based on the allocation mechanism that we have proposed, the execution path is determined by the
different solutions defined in section 3.3, which leads to 4 execution paths :

— Path 1 (i.e. Solution {assign}) : Allocates an Idle accelerator to a virtual machine without reconfi-
guration, which is also called immediate allocation, since the virtual machine can start using the
virtual device immediately.

— Path 2 (i.e. Solution {assign with reconfig.}) : Reconfigures an Idle partial reconfiguration region
(PRR) with the desired accelerator and allocates it to a virtual machine.

— Path 3 (i.e. Solution {preempt}) : Preempts a running accelerator and allocates it to a virtual machine
without reconfiguration.

— Path 4 (i.e. Solution {preempt with reconfig.}) : Preempts a running accelerator, which will then be
reconfigured with the desired accelerator and gets allocated to a virtual machine.118 Implementation and Evaluation

Ttrap TSearch TSolution(1)

Path1: Assignment w/o reconfiguration

TPL_irqTRCFG Tirq_PCAP

TResume

Ttrap TSearch TSolution(2) TResume TResume

TPL_irqTpreempt Tirq_STOPTtrap TSearch TSolution(3) TResume TResumeTSolution(1)

Path2: Assignment with reconfiguration

Path3: Preemption w/o reconfiguration

Path4: Preemption with reconfiguration

TPL_irqTpreempt Tirq_STOPTtrap TSearch TSolution(3) TResume

Assignment with
reconfiguration

Guest OS

KER-ONE Microkernel

Virtual Device Manager

Wait for IRQ

Figure 4.6 – The execution paths of DPR resource allocation.

the analysis. Based on the allocation mechanism we proposed, the execution path is only
determined by the state of solutions (see Section 3.2.4), which can be characterized as 4
execution paths :

– Path 1 (i.e. Solution {assign}) : Allocate an Idle accelerator to virtual machine
without reconfiguration, which is also called immediate allocation, since the virtual
machine can start using the virtual device immediately.

– Path 2 (i.e. Solution {assign with reconfig.}) : Reconfigure an Idle partial re-
configuration region (PRR) with the desired accelerator and allocate it to virtual
machine.

– Path 3 (i.e. Solution {preempt}) : Preempt a running accelerator and allocate it
to virtual machine without reconfiguration.

– Path 4 (i.e. Solution {preempt with reconfig.}) : Preempt a running accelerator,
which will then be reconfigured with the desired accelerator and get allocated to
virtual machine.

The model of these execution paths can be calculated according to the diagrams
displayed in Figure 4.6. Except for Path 1, other paths are divided into several steps by
the events of preemption or reconfiguration. Note that the execution path 4 is equivalent
to a combination of preemption (as in path 3) and assignment with reconfiguration (as
in path 2), because after the accelerator is successfully preempted, the Virtual Device
Manager re-runs the solution as normal assignment with reconfiguration, i.e. the process
of path 2. This execution is also described in the Figure 3.13 in Section 3.2.5.

In this model, each allocation path is decomposed into smaller atomic executions.
Note that any specific atomic execution has almost identical path in different paths, and
thus is with determined overhead. For example, the execution path of detecting a virtual
machine trap and redirecting it to the Virtual Device Manager is determined for each
path, and is represented as an atomic execution Ttrap. The detailed description of this
execution path model is listed in the following :

FIGURE 3.13 – Execution paths of DPR resource allocation.

The models of execution paths for different solutions have been determined and displayed in Fi-

gure 3.13. In these models, the allocations consist of four different solution paths that can be decomposed
into smaller atomic execution overheads :

— Ttrap : Time required by Ker-ONE to detect a page-table exception in VM domain and to invoke the
Virtual Device Manager.

59

PA
R

C
O

U
R

S
P

R
O

F
E

S
S

IO
N

N
E

L
S

Y
N

T
H

E
S

IS
O

F
R

E
S

E
A

R
C

H
W

O
R

K
S

A
P

P
E

N
D

IX
Chapitre 3. Reconfiguration Management

— Tresume : Time required by Ker-ONE to schedule back to a VM.

— TPL_irq : Time required by Ker-ONE to receive IRQs from the PRR Monitor and to redirect them to
the Virtual Device Manager.

— TSearch : Time required by the Virtual Device Manager to receive the VM requests and to search for
solutions.

— TSolution(1)(2)(3) : Execution time to handle different solutions : (1) direct assignment, (2) assignment
with reconfiguration, (3) preemption.

— Tirq_pcap, Tirq_stop : Time required by the Virtual Device Manager to handle the following IRQs (i.e.
IRQ_PCAP_Over, IRQ_PRR_Stop).

— Tpreempt : Overhead of waiting for a preemption.

Therefore, the total allocation latency for the different allocation execution models can be calculated
as :

TPath1 = Ttrap + TSearch + TSolution(1) + Tresume,

TPath2 = Ttrap + TSearch + TSolution(2) + 2 ∗Tresume

+ TPL_irq + Tirq_pcap + TRFCG,

TPath3 = Ttrap + TSearch + TSolution(3) + 2 ∗Tresume

+ TPL_irq + Tirq_stop + TSolution(1) + Tpreempt ,

TPath4 = TPath3 + TPath2 −Ttrap −TSearch −Tresume −TSolution(1)

(3.3)

After having qualitatively determined the different steps involved in the reconfiguration of a system,
it has also seemed necessary to evaluate the impact of each of these steps. This is the object of the next
section, in which a real case study has been considered.

6.26.2 Experiments and Results

6.2.16.2.1 Description

Our experiments were performed on a Xilinx ZedBoard, which provides a dual-core ARM Cortex-A9
processor and a partially reconfigurable FPGA fabric. The CPU operating frequency has been set to 667
MHz and the FPGA logic was driven by a 100 MHz clock. The architecture of the experiment is shown in
Figure 3.14.

The FPGA PL part has been initially implemented with three PRRs of different sizes. Four hardware
accelerators, i.e. QAM16, QAM64, FFT512, FFT1024, have been implemented and stored into bitstream
files. During the initialization stage of Ker-ONE, these files have been loaded into the RAM and are only
accessible from the Virtual Device Manager.

This experiment is based on the example of an OFDM receiver that is intended to be very flexible by
considering several configurations of modulators and mappers according to the channel conditions. QAM
blocks aim to take a complete frame of incoming bits into account and generate 16-bits width I and Q
symbols. FFT blocks work on the QAM I and Q symbols to perform demodulation. The data frame is set
to be 18,800 bits, according to actual OFDM requirements.

Regarding the guest OSs running in virtual machines, we have modified the µC/OS-II RTOS to execute
on top of Ker-ONE. In our experiment, two µC/OS-II guests are hosted with different priority levels. For
each guest OS, four available virtual devices have been implemented. Two and three tasks run respectively
in both guest OSs to periodically command virtual devices to process data frames containing 18,800 bits,
which causes requests for allocations during the experiment. Accelerators are then allocated at run-time.

60

PA
R

C
O

U
R

S
P

R
O

F
E

S
S

IO
N

N
E

L
S

Y
N

T
H

E
S

IS
O

F
R

E
S

E
A

R
C

H
W

O
R

K
S

A
P

P
E

N
D

IX

6. Performances Evaluation

120 Implementation and Evaluation

µC/OS-II instances are hosted in virtual machines as guest OSs. The operating frequency
of the CPU and FPGA logic are 667 MHz and 100 MHz respectively.

To fairly measure the allocation performance of DPR accelerators, it requires dedi-
cated experiments which can be close to real-case scenarios. However, currently to out
best knowledge, there is no standard benchmark suite that evaluates the performance of
reconfigurable accelerator management in a virtual machine system. It is also difficult for
us to establish and implement a real-world reconfigurable computing framework. There-
fore, we intend to create an evaluation experiment which is able to emulate the common
situation of DPR accelerator usage by following the principles below :

1. Partial reconfiguration regions are implemented with different sizes. For each PRR,
different accelerators can be implemented. All DPR accelerators are mapped into
virtual machine space as virtual devices.

2. The data frame processed by accelerators should have determined structure, with
determined size. Accelerator should respect the completion of the data it processes.

3. Virtual machines are totally independent from each other. Tasks on top of guest
OSs access to different virtual devices randomly. In other words, the request for
DPR accelerators are predictable, and may come from any virtual machine.

4. Guest OSs have different priority levels, so that preemptions may occur randomly.

Bitstream

PRR
#1

T1

PRR #1 #2 T1: Start FFT512 every 1 s

T2: Start QAM64 every 500 ms

High Priority

T2 T3 T4 T5

PRR
#2

PRR
#3

Virtual Device
Manager

Bitstream
Bitstream

FFT1024

FFT512

QAM16

QAM64

FFT1024

FFT512

QAM16

QAM64

Low Priority

PS

PL

3

QAM16 ■ ■ ■

QAM64 ■ ■ ■

FFT512 ■ ■

FFT1024 ■

Compatibility Table

T3: Start FFT512 every 2 s

T4: Start FFT1024 every 1 s

T5: Start QAM16 every 500 ms

PRR Monitor

Figure 4.7 – Experimental architecture for performance evaluation.

According to the principles above, the FPGA fabric is initially implemented with three
PRRs, with different sizes. Four accelerators, i.e. QAM16, QAM64, FFT512, FFT1024,
have been synthesized into bitstream files. During the initialization stage of Ker-ONE,

FIGURE 3.14 – Experimental architecture for performance evaluation.

TABLE 3.7 – Overhead measurement during DPR allocation .

Micro-kernel Virtual Device Manager

Operation Overhead (µs) Operation Overhead (µs)

Ttrap 0,76 TSearch 0.50

Tresume 0,64 TSolution(1) 1.13

TPL_irq 0.81 TSolution(2) 2.77

TSolution(3) 0.34

Tirq_pcap 0.64

Tirq_stop 0.28

6.2.26.2.2 Results

According to the model that has been described in section 6, the obtained measurement results are
given in Table 3.7. One may notice that Ker-ONE guarantees high performance in virtualization. Virtual
machine scheduling as well as virtual interrupt emulation are performed with a low overhead that is less
than 1 µs.

According to the performed measurements, the different allocation overhead values may be modeled
as :

TPath1 = 3.03µs,

TPath2 = 6.76µs+ TRFCG,

TPath3 = 5.10µs+ Tpreempt ,

TPath4 = 9.96µs+ Tpreempt + TRFCG.

(3.4)

Latencies that are provided in Equation 3.4 are related to the OS with the highest priority. We may
notice that a 3 µs latency is obtained for a direct allocation. Other solutions have additional latencies due
to preemption or reconfiguration time.

61

PA
R

C
O

U
R

S
P

R
O

F
E

S
S

IO
N

N
E

L
S

Y
N

T
H

E
S

IS
O

F
R

E
S

E
A

R
C

H
W

O
R

K
S

A
P

P
E

N
D

IX
Chapitre 3. Reconfiguration Management

TABLE 3.8 – Reconfiguration and preemption delays .

Virtual
Device

Tpreempt(µs)
(WCET)

TRCFG(µs)
PRR#1 PRR#2 PRR#3

QAM16 47.0 231 810 1,206

QAM64 31.0 231 810 1,206

FFT512 24.1 - 810 1,206

FFT1024 33.6 - - 1,206

TABLE 3.9 – Comparisons between SW and HW implementation.

Algorithm
THW(µs)

(per frame)

TSW(µs)

(per frame)

FPGA Resource
Usage

QAM-16 47.0 1,513 2%

QAM-64 31.0 1,174 2%

FFT-512 71.1 6,582 8%

FFT-1024 90.6 12,784 13%

The costs of preemption (Tpreempt) and reconfiguration (TRCFG) are mostly depending on the imple-
mentation and application of accelerators. In Table 3.8, the value of these costs are provided. TRCFG is
determined by the size of the bitstream, and therefore corresponds to three PRR areas. The worst-case
preemption time Tpreempt is determined by the computation granularity. In our case, in order to respect
the integrity of the OFDM process, QAM and FFT modules are set to be preemptive only when their
determined data frame is completely processed. Note that, since the implementation of the PRRs and
accelerators are fixed beforehand, these costs can then be predicted and considered for guest OS tasks
schedulability. In Table 3.8, for the accelerators used in our experiment, Tpreempt is significantly lower
than TRCFG. For a system in which preemptions occur frequently, it is possible that a low priority virtual
machine may never get access to hardware resources.

Choosing between preemption and consistency is not a simple task. In our work, we have made the
assumption that allocating Idle PRRs is always better than preempting them. The reason is that we wanted
to make sure that low priority task can always be executed. The PRR Monitor has been designed accor-
dingly. In a system that manages critical tasks, a new policy may be followed that gives more importance
to preemption. In this case, high priority tasks could always be executed first.

In Table 3.9, HW acceleration approach is compared with software. The results show that the accele-
rator performance of heavy computation (i.e. FFT512/1024) significantly surpasses software implemen-
tation. Even though these accelerators suffer from allocation latency that may increase the execution time,
their benefit is still considerable. On the other hand, for relatively light computation(e.g QAM), although
hardware accelerators are still faster, this advantage gets undermined when taking TRCFG into account.
These results also indicate that DPR technology is more suitable for large complex computation algo-
rithms. Furthermore, in this example, the FPGA only implements 3 PRR areas, taking around 23% of the
available resources. Compared to static circuits with accelerators for both VMs, which may take up to 50%
resources, the usage of FPGA is greatly reduced.

77 Summary

In this chapter, the various works that we have performed on reconfiguration management have been
presented. Three levels of management have been proposed, i.e Hardware Level, OS Level and Application
Level.

At the Hardware Level, our contribution has consisted in proposing a structure of HW task as well as
dedicated hardware and software mechanisms. The mechanisms aims at handling hardware resources and
at managing the execution of hardware accelerators in a reconfigurable context. Hardware task preemp-

62

PA
R

C
O

U
R

S
P

R
O

F
E

S
S

IO
N

N
E

L
S

Y
N

T
H

E
S

IS
O

F
R

E
S

E
A

R
C

H
W

O
R

K
S

A
P

P
E

N
D

IX

7. Summary

tion solutions have also been proposed to be compatible with real-time constraints that may be imposed
by applications. Finally, memory isolation strategies have also been described to ensure security in the
accelerators’ access.

At the OS level, we have described our custom micro-kernel that intends to be kept as simple as pos-
sible by taking advantage of modularity. Specific services have been proposed to handle reconfigurability
and abstract hardware reconfiguration management for the user tasks.

At the application level, we have proposed several management mechanisms to adapt a full system to
environmental changes. These mechanisms are based on a complex decision process that combines both
machine learning and re-inforcement learning.

The complete system has then be modelled and implemented in a real platform in order to evaluate
its feasibility and performance.

— 3 PhD students : Yaset Oliva, Tian Xia, Mohammad el Fadl Rihani

— Related publications : 19

Summary (PhD/Dissemination/Projects)Summary (PhD/Dissemination/Projects)

— 3 PhD students : Yaset Oliva, Tian Xia, Mohammad el Fadl Rihani

— Related publications : 19

63

PA
R

C
O

U
R

S
P

R
O

F
E

S
S

IO
N

N
E

L
S

Y
N

T
H

E
S

IS
O

F
R

E
S

E
A

R
C

H
W

O
R

K
S

A
P

P
E

N
D

IX

Chap. 4Chap. 4
From Power Modeling to

highly Energy-Efficient
Devices

11 Context and Related Works

This chapter describes another research axis that I have followed since 2007, when I first joined the
IETR lab. This study deals with the energy efficiency of embedded systems and particularly focuses on
their design. The application field which is described here concerns the wireless communicating devices
since it constitutes the main domain of expertise of the SYSCOM team, in which all these works have
been led. However, most of the works presented in this chapter may be easily adapted to other domains
of applications without significant efforts.

Nowadays, energy efficiency has become a major concern all over the world and particularly for new
5G communicating devices [BCLK+16]. These devices aims at providing ubiquitous connectivity as well
as innovative services and will be massively used in a near future. It is forecast that by 2020, there will be
more than 50 billion connected devices, meaning that each person will own at least 6 connected devices
[Dav18].

This energy efficiency concern is also shared by mobile networks operators, who have recently stated
that future 5th Generation (5G) of mobile networks “should support a 1,000 times traffic increase in the
next 10 years timeframe, with an energy consumption by the whole network of only half that typically
consumed by today’s networks. This leads to the requirement of an energy efficiency increase of x2000 in
the next 10 years timeframe” [All15b]. In this context, it becomes mandatory to design these communica-
ting devices by taking the new energy dimension into account and not only focus on classic metrics such
as performance and throughput.

Most of these wireless systems are composed of two parts. The first deals with RF circuitry as well
as power amplifiers and are used to transmit the information over the air. The second part concerns
the base-band circuits in which all processing modules are implemented. These modules are generally
based on digital circuits. From a study performed in [ear], it appears clearly that the energy consumed
by the processing part (base-band) of a device has an increasing contribution as the device gets smaller.
For example, in femto-cells, which have a very small size, the base-band power reaches 47% of the total
consumed energy.

With the multiplicity of these communicating devices, it seems reasonable to consider that the energy
required by the processing part of a device will be as much important or even more than the energy
required by the amplifier. This assumption is especially true if we consider that a lot of devices will
probably have small communication ranges with small power requirements and that the complexity of
processing will continue to increase. This situation opens the way to new research studies dealing with
power optimization of digital processing in such devices.

Classically, most of the circuits that are used in communicating devices are low-cost ASICs. Since
several years, FPGAs have become an interesting alternative since they exhibit a high level of performance
while being low-cost and low-power. Furthermore, due to their intrinsic technology, these circuits are
much easier and faster to design than their ASICs counterparts. Today, as designers want to implement a
full system into an FPGA device, they usually follow a generic top-down approach which is divided into
several well-identified levels (see Figure 4.1).

At System Level, the system is modelled using dedicated tools such as Matlab, which is widely used
in the community, or programming languages such as C/C++. The system behaviour is usually valida-
ted using simulation tools such as simulink. Then, FPGA design implementation is performed in three

64

PA
R

C
O

U
R

S
P

R
O

F
E

S
S

IO
N

N
E

L
S

Y
N

T
H

E
S

IS
O

F
R

E
S

E
A

R
C

H
W

O
R

K
S

A
P

P
E

N
D

IX

1. Context and Related Works

J. Lorandel et al.: Fast Power and Performance Evaluation of FPGA-Based Wireless Communication Systems

underlying hardware. On the other hand, power can only
be accurately evaluated using low-level simulations or by
performing real measurements.

Another important assumption that is made in the wireless
communication domain is that the power that is consumed
by a circuit is usually neglected. Only the power allocated
for data transmission over the channel is taken into account
during the system analysis. The power consumption that is
related to the Power Amplifier (PA) is usually considered as
the most important contributor in a wireless communication
system. However, such systems are also composed of
Base-Band (BB) processing blocks and RF stages. In a recent
study, it has been demonstrated that all power consumption
sources of a wireless communication system have to be
taken into account, especially the power consumption of
the base-band processing when low transmission powers are
involved [2]. Although the power consumption related to the
BB processing is generally neglected, it may represent 47%
of the overall power consumption for a base station of a
femto/home cell-environment in LTE context [2].

In this paper, we present a new methodology that
makes it possible to rapidly and efficiently compare
several wireless applications in terms of performance
and power consumption. The main contributions are as
follows:
• low-level components’ implementation details are taken
into account and efficiently fed back at high-level to
build a complete wireless communication system

• an environment, based on SystemC, makes it possible
to model and simulate any wireless application that is
built from the library modules. Although, simulations
are performed at high level, provided results are very
accurate.

• the proposed approach enables faster estimation of
power compared to classic approaches. This makes
it possible to explore multiples configurations and
facilitates design space exploration.

The remainder of this paper is organized as follows: a
review of the related works on FPGA power estimation
is discussed in Section II with a focus on tools and
methodologies performed at system level. Then, the proposed
power estimation methodology is described in Section III.
Section IV details the benefits of the proposed approach
through typical examples in the wireless communication
domain. Finally, conclusion and prospects are given in
Section V.

II. RELATED WORKS
Today, as designers target at the implementation of a
complete system into an FPGA device, they usually
follow a generic top-down approach which is divided
into several well-identified levels. Fig. 1 describes these
levels for a hardware implementation, without any software
considerations.

At system level, the system is modelled using dedicated
languages such as Matlab, which is widely used in

FIGURE 1. Typical FPGA design flow and abstraction levels.

the community, or programming languages such as C/C++.
The system behaviour is usually validated using simulation
tools such as Simulink. Then, FPGA design implementation
is performed in three steps: first, system level synthesis
enables the translation of system level architectures
into a HDL description. Then, hardware synthesis takes
this description as an input to generate a supported
netlist compatible with FPGA vendors’ implementation
tools. Finally, a bitstream file is generated after these
implementation steps. Note that these levels are common
to all hardware design flows and are therefore adapted to
wireless communication design which is the main application
domain that is studied in this paper.

The following paragraphs identify the various methodolo-
gies and tools that are commonly considered in the wireless
communication domain, starting from the gate-level to the
system-level. The same classification is usually employed in
literature. In this paper, a special focus is made on power
estimation solutions at system level.

At gate level, two types of power estimation techniques
are defined, which are based either on statistics/simulations
or probabilities. Simulation-based methods consist in
simulating a circuit several times in order to obtain
information such as the switching activity or the supplied
current. However, the accuracy of the estimation highly
depends on the data input patterns that are provided [3], [4].
To circumvent this pattern-dependency, Monte-Carlo based
approaches have been proposed to reduce the number of
simulations [5], [6]. Random patterns are applied to the
system and power is evaluated until a given criterion is
satisfied. As compared to statistical models, probabilistic
techniques only require one simulation to estimate power

2006 VOLUME 4, 2016

FIGURE 4.1 – Typical FPGA design flow and abstraction levels.

65

PA
R

C
O

U
R

S
P

R
O

F
E

S
S

IO
N

N
E

L
S

Y
N

T
H

E
S

IS
O

F
R

E
S

E
A

R
C

H
W

O
R

K
S

A
P

P
E

N
D

IX
Chapitre 4. From Power Modeling to highly Energy-Efficient Devices

TABLE 4.1 – Main examples of system-level tools used in the wireless communication domain which do
not support power estimation basically.

Name Academic or
Commercial
(A/C)

Additional Description

Matlab - Simulink [Mat15] C Graphical system modelling and simulation tool
System Development Suite
[Cad11]

C Based on a set of 4 platforms, it enables system-level hardware/software
development, virtual prototyping using transaction-level models, func-
tional verification, system analysis and optimization before any imple-
mentation

SystemVue ESL soft-
ware [KT15]

C EDA environment that enables automatic simulation and test for wire-
less communication systems (Base-band, RF)

LabVIEW FPGA [NIC15] C Based on LabVIEW graphical development platform, it enables FPGA
design simulation, verification and deployment

Ptolemy [Dep15] A Open-source software framework for modelling and simulating of actor-
oriented based design

System Studio [Syn15] C Model-based signal processing algorithm design and analysis tool based
on C data-flow modelling paradigm

Vista [Sha15] C Tool for architectural design exploration, verification, and virtual pro-
totyping based on TLM 2.0

steps : first, System Level synthesis enables the translation of System Level architectures into a Hardware
Description Language (HDL) model. Then, hardware synthesis takes this model as an input to generate a
supported netlist compatible with FPGA vendors’ implementation tools. Finally, a bitstream file is gene-
rated after these implementation steps. Note that these levels are common to all hardware design flows
and are therefore adapted to wireless communication design which is the main application domain that
is studied in this work.

In our studies, we mainly considered the System Level since it corresponds to the level of abstraction
to which most of communication engineers are habituated. Furthermore, our motivation relied on the fact
that design decisions that are taken at this level have the most impact on the final system performances.

I The first approach : the classic implementation flow

In an ideal case, designers generally start working at System Level and rely on software tools to auto-
mate most of the subsequent design steps. The main idea is to rapidly get an evaluation of their algorithms
on a real hardware prototype without requiring costly design stages. Using this approach, designers may
explore the design space very rapidly by simply evaluating specific metrics that may be collected on a real
hardware target. This make it possible to compare several solutions and retain the most performing ones
for a given platform.

Today, at System Level, a lot of software tools exist that easily connect to hardware boards. Matlab
from MathWorks [Mat15] is one of the famous tools used by engineers. Other examples of tools and
methodologies are listed in Table4.1. Basically, such tools do not support power estimation and designers
have to integrate additional information in order to take power estimation into account. As an example,
Matlab allows users to develop and to test their algorithms in a user friendly environment and with
a common language. However, it requires additional tools to complete the design. For FPGA devices,
System Generator [Xil12a] and DSP builder [Alt15b], respectively from Xilinx and Altera, are tools that
have been integrated in the Matlab environment in order to enable HDL code generation, directly from
a Simulink graphical description. The generated HDL code may be translated into a netlist or even a
bitstream, according to the FPGA classic design flow. At this point, power consumption can be estimated
by low-level simulations or by real on-board measurements. However, this approach can be really time
consuming for large designs and design space exploration becomes limited due to the prohibitive number
of required implementations. The flow has to be re-run from scratch, for each system configuration.

I Towards High-Level Modelling and Faster Simulation

To circumvent the issues that are due to hardware implementation, another solution consists in elabo-
rating generic hardware models and perform fast simulations at System-Level without considering lower

66

PA
R

C
O

U
R

S
P

R
O

F
E

S
S

IO
N

N
E

L
S

Y
N

T
H

E
S

IS
O

F
R

E
S

E
A

R
C

H
W

O
R

K
S

A
P

P
E

N
D

IX

2. The Classic Implementation Approach

design levels. This approach generally allows designers to rapidly get an idea about the system perfor-
mance to the detriment of the accuracy.

Regarding energy estimation, at System Level, design functionality is modelled and theoretical per-
formance can be easily evaluated. In general, as designers desire to get a first estimation of the po-
wer consumption of their systems, they often make use of general power models or even spreadsheets.
In [DDG+12, ARFB10, DDVJM12], analytic power models have been proposed for every sub-component
of a wireless system, which can include base-band processing, Radio Frequency (RF) stages, power am-
plifiers, microprocessors, etc. In all these works, power models are derived from data-sheet values, real
measurements or are possibly based on other works presented in literature. The accuracy of power esti-
mation is not the primary objective but rather used to draw general guidelines.

Power information can also be integrated in power models. In [HLF+11], an approach that is based
on the development of power models in a SoC is presented. For IP cores, power models are built from a
transistor-level simulation and linear regressions. Moreover, key signals are identified to determine the
different states of the cores. An Instruction level technique is used for processor modelling. After the
modelling step, a tool called PowerDepot, which is a set of C++ classes implemented in SystemC, realizes
the transformation of the power models into a power monitor block used to estimate power during the
SystemC simulation. Finally, the authors show that their methodology can achieve less than 2% error for
power estimation. This is mainly due to the fairly accurate power models made at layout level. Power
models can also be developed for IP components and processors using different modelling techniques
such as FLPA or ILPA [EJH06, CA07, RBAN+11, SRH+11]. In [JC12], FPGA-based power models for DSP-
oriented designs have been presented. In all these works, the application behaviour is not considered,
which can lead to important error when estimating power consumption. Such a problem is discussed
in [DS07] in which macro-modelling is combined with a SystemC-TLM modelling approach. Despite a
simulation speed-up, it is mainly used when small designs are considered.

I Towards 5G New Communication Schemes

As previously mentioned, the targeted area of our studies is the new communications schemes that
may be used in 5G or in close domains such as IoT. In these domains, a lot of studies has been led that
identify efficient algorithms that may be used in the physical layer [GBB+17]. Among all these waveforms,
we have first focused on Time Reversal (TR) that has been studied in the TRIMARAN ANR project. After
the success of the Time Reversal techniques that were applied to acoustic communications, the Time
Reversal concept has progressively been envisaged in the telecommunication domain [BPZ02]. It has been
first studied in a (Single Input Single Output (SISO) context [DCH10], then in MISO [HYW+12] and finally
on massive MIMO [PML15].

Regarding the benefits that are offered by this communication scheme when it is coupled with other
types of modulations, it has recently being proposed as a good candidate for future 5G networks [CWH+16]
and for the Internet of Things [CHY+14a] as well. The interest of TR relies in the fact that the propaga-
tion channel acts as an adapted filter on the transmitted signal. The received energy is then focused in
time and space, which drastically reduces Inter Symbols Interference (ISI). This is particularly interesting
since it permits to reduce the symbol duration and then makes it possible to increase the throughput. It
also permits to decrease the transmitting power since the signal directly focuses on the receiver position.
Finally, it allows designers to conceive very simple receivers, with few resources, that do not consume a
lot of energy.

22 The Classic Implementation Approach

In this axis, a significant part of my research has consisted in proposing solutions to implement energy
efficient algorithms while maintaining a high-level of performance. In this section, a focus is made on
Time-Reversal based algorithms. The results that are presented here come from the TRIMARAN ANR
project, in which I was responsible for the Work-Package dedicated to the implementation of the proof of
concept (PoC).

The first purpose of the TRIMARAN project was to identify the mechanisms that make it possible
to implement Time Reversal in the wireless communications domain, and more particularly in the IoT

67

PA
R

C
O

U
R

S
P

R
O

F
E

S
S

IO
N

N
E

L
S

Y
N

T
H

E
S

IS
O

F
R

E
S

E
A

R
C

H
W

O
R

K
S

A
P

P
E

N
D

IX
Chapitre 4. From Power Modeling to highly Energy-Efficient Devices1.5. COMBINAISON DE RETOURNEMENT TEMPOREL ET D’OFDM 25

X
bits Tx S/P IFFT P/S

h∗
P1→U (−t)

QAM

conv.

PC
x(t)

conv.

h∗
PNt→U (−t)

xRT
P1

(t)

xRT
PNt

(t)

Figure 1.8 – Architecture temporelle d’un modulateur MISO RT-OFDM

Le signal reçu par l’utilisateur lors de la transmission simultanée par les antennes du point
d’accès en présence d’un bruit blanc additif gaussien b(t) est alors donné par :

y(t) = x(t)⊗
Nt∑

i=1

h∗Pi→U ⊗ hPi→U + b(t)

= x(t)⊗
Nt∑

i=1

Chi(t) + b(t)

= x(t)⊗ heq(t) + b(t)

(1.13)

Nous pouvons remarquer que le canal équivalent de la transmission heq(t) est égal à la somme
des autocorrélations des réponses impulsionnelles Chi(t).
En l’absence d’ISI et d’ICI, le signal obtenu après l’opération de FFT s’exprime par :

Y (f) = X(f)

Nt∑

i=1

H∗Pi→U (f)HPi→U (f) +B(f)

= X(f)

Nt∑

i=1

‖HPi→U (f)‖2 +B(f)

= X(f)Heq(f) +B(f),

(1.14)

où B(f) désigne la transformée de Fourier du bruit blanc b(t). Dans le domaine fréquentiel,
nous pouvons voir que que le canal équivalent Heq(f) correspond à la somme constructive des
canaux HPi→U (f). On s’aperçoit donc qu’en plus de la diversité fréquentielle obtenue grâce
à l’OFDM, le RT permet de bénéficier d’une diversité spatiale. De plus, le canal équivalent
étant purement réel, aucun déphasage n’est introduit par celui-ci. Sous conditions idéales, un
simple détecteur à seuil devient alors suffisant pour les modulations de phase de type BPSK
(Binary Phase Shift Keying) ou QPSK (Quadrature Phase Shift Keying).
En pratique, le filtre de RT peut être réalisé à partir d’un filtre FIR dont les coefficients
correspondent à la réponse impulsionnelle échantillonnée. Par rapport à un système SISO
OFDM, Nt filtres FIR supplémentaires sont donc nécessaires pour réaliser un système MISO
RT-OFDM dans le domaine temporel. Chaque filtre FIR nécessite Lh multiplications com-
plexes, où Lh désigne la longueur de la réponse impulsionnelle du canal.
Les modèles de canaux fournis par les recommandations de l’Union International des Télé-
communications (UIT) spécifient un retard maximum pouvant aller jusqu’à 310 ns pour les

FIGURE 4.2 – Architecture of a MISO RT-OFDM transmitter.

domain. The second objective of the project was to evaluate the performance of Time-Reversal algorithms
and compare them with classic wireless techniques. In order to ease the design of the prototype, we made
extensive use of existing High-Level tools to explore the design space very easily and compare several
algorithmic solutions.

One major issue that we have faced in our projects is that, in some cases, there is a huge difference
between theoretical studies and practical implementation. In these cases, following all design steps of the
flow until a real implementation on the hardware platform is mandatory. This makes it possible to take
into account the hardware specificity.

The TRIMARAN ANT project gave rise to the supervision of the PhD Thesis of Yvan Kokar, who
participated in the work-package. The main objective of the thesis was to evaluate the hardware feasibility
of the Time-Reversal algorithms for wireless communications. It mainly focused on studying the hardware
specific features that are generally unknown in the first design stages.

2.12.1 Studying New Waveforms

The first algorithms that are described in this part deals with Time-Reversal coupled with classic
OFDM techniques in a multi antenna scheme. The implementation scheme of a MISO RT-OFDM system
with Nt antennas on the access point is depicted in Figure 4.2.

One may notice that this scheme has a strong resemblance with an OFDM-based design. The first part
of the RT-OFDM modulator corresponding exactly to an OFDM modulator, the difference with the latter
comes from a TR filter that is placed before each antenna of the access point. The role of these Nt TR
filters is to perform, for each of the Nt antennas of the access point, a linear convolution between the
OFDM signal x(t) and the impulse response of the conjugated channel, returned in time h∗Pi→U(−t), where

h∗Pi→U(−t) corresponds to the channel impulse response between the ith antenna of the access point and
the user antenna.

The transmitted signal from the antenna i of the access point is then given by

xTR
Pi

(t) = x(t)⊗ h∗Pi→U(−t) (4.1)

The signal received by the user during the simultaneous transmission by the antennas, in the presence
of a Gaussian Additive White Noise b(t) is then given by :

68

PA
R

C
O

U
R

S
P

R
O

F
E

S
S

IO
N

N
E

L
S

Y
N

T
H

E
S

IS
O

F
R

E
S

E
A

R
C

H
W

O
R

K
S

A
P

P
E

N
D

IX

2. The Classic Implementation Approach

y(t) =
Nt∑
i=1

xTR
Pi

(t)⊗ hPi→U(t) + b(t)

= x(t)⊗
Nt∑
i=1

h∗Pi→U(−t)⊗ hPi→U(t) + b(t)

= x(t)⊗
Nt∑
i=1

Γhi (t) + b(t)

= x(t)⊗ heq(t) + b(t)

(4.2)

where Γhi (t) is the auto-correlation function of the impulse response hPi→U(t). Equation 4.2 shows that
the signal x(t) is transmitted through an equivalent channel heq(t) that corresponds to the sum of the Nt

auto-correlation functions Γhi (t).
For OFDM systems, it has been shown that TR can be applied in either time and frequency domain

and exhibit the same level of performance. In the frequency domain and in a MISO OFDM scheme, the
received symbol can be expressed as expressed in [PKHC14] :

Rm,n =
1
√

Nt

Nt∑
k=1

∣∣∣Hm,k

∣∣∣2Dm,n + Nm,n (4.3)

where Nt is the number of transmit antennas, Hm,k is the complex channel coefficient on the mth

subcarrier of the ODFM symbol for the kth transmit antenna. D(m,n) is the data symbol and N(m,n) is the
noise term associated to the mth subcarrier of the nth OFDM symbol.

2.22.2 Proposed Offline Hardware Platform

2.2.12.2.1 System Description

In order to demonstrate the feasibility of Time Reversal techniques, we first proposed on offline hard-
ware platform. The prototype consists of one transmitter (Tx) and one receiver (Rx) implemented on sepa-
rate WARP FPGA-based motherboards [Con]. Figure 4.3 depicts the overall architecture of the prototype
including the interfaces and cables between the boards. The transmitter is composed of 3 RF modules
connected to 3 transmitting antennas. On the receiver side, 1 target antenna and 1 spy antenna are res-
pectively connected to RF boards.An additional clock board is also connected to each mother board. This
board provides the various clock signals used throughout the system.

Both transmitter (Tx) and receiver boards (Rx) are connected to a dedicated cable in order to ensure
a perfect frame synchronization between them and to clearly identify in which time slot each board has
to send/receive data. A RF synchronization is also required to precisely have the same clock frequency
for all RF boards. In the proposed system, one clock source is generated on the Tx board and is directly
transmitted to the Rx board via a dedicated cable.

Finally, a global sampling clock is provided by an external clock generator and connected to both Tx
and Rx boards in order to drive all DAC (Digital to Analog Converters) with an identical input signal (in
frequency and phase). This clock source has a 40 MHz frequency. Note that all cables that connect the
external generator to the DACs must have exactly the same length in order to make sure that all DACs
share the same clock phase.

The proposed architecture has been designed to be as flexible as possible. Table 4.2 indicates the para-
meters that cannot be modified in the hardware platform whereas Table 4.3 summarizes the parameters
that may be modified as well as their default values.

69

PA
R

C
O

U
R

S
P

R
O

F
E

S
S

IO
N

N
E

L
S

Y
N

T
H

E
S

IS
O

F
R

E
S

E
A

R
C

H
W

O
R

K
S

A
P

P
E

N
D

IX
Chapitre 4. From Power Modeling to highly Energy-Efficient Devices

>REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT)<

2

Fig. 1 depicts the overall architecture of the prototype

including the interfaces and cables between the boards. The

transmitter is composed of 3 RF modules connected to 3

transmitting antennas. On the receiver side, 1 target antenna

and 1 spy antenna are respectively connected to RF boards.

Fig. 1. System Description

An additional clock board is also connected to each mother

board. This board provides the various clock signals used

throughout the system.
Both transmitter (Tx) and receiver boards (Rx) are

connected to a dedicated cable in order to ensure a perfect

frame synchronization between them and to clearly identify

in which time slot each board has to send/receive data.

A RF synchronization is also required to precisely have the

same clock frequency for all RF boards. In the proposed

system, one clock source is generated on the Tx board and is

directly transmitted to the Rx board via a dedicated cable.

Finally, a global sampling clock is provided by an external

clock generator and connected to both Tx and Rx boards in

order to drive all DAC (Digital to Analogue Converters)

with an identical input signal (in frequency and phase). This

clock source has a 40 MHz frequency. Note that all cables

that connect the external generator to the DACs must have

exactly the same length in order to make sure that all DACs

share the same clock phase.

Fig. 2. Picture of the Platform Prototype

The FPGA programming file is identical for both

motherboards. It makes it possible to configure and drive the

radio daughter boards from the personal computer. It also

enables the PC to transmit/receive data from/to the

motherboards (see Fig. 3).

B. Architecture Parameters

The proposed architecture has been designed to be as

flexible as possible. Table I indicates the parameters that

cannot been modified in the hardware platform whereas

Table II summarizes the parameters that may be modified as

well as their default values.

TABLE I

FIXED ARCHITECTURAL PARAMETERS

Carrier Frequency 2.4 GHz

Sampling frequency 40 MHz

TABLE II

VARIABLE ARCHITECTURAL PARAMETERS

Number of transmitted bits 19012

Modulation QPSK and BPSK for pilots

CP size 1 to 256 (64 by default)

Number of pilot symbols in an

uplink frame

1,2,4,8 (8 by default)

Number of pilot symbols in a

downlink frame

1,2,4 or 8 (8 by default)

Number of OFDM symbols in a

downlink frame

1 to 65535 (1000 by default)

FFT/IFFT size 256

Number of active sub-carriers 1 to 256 (190 by default)

C. Software Structure

In the proposed prototype, the complete baseband elements

are provided in software and run on an external laptop. The

FPGAs localized in the hardware boards only implement

data buffers and appropriate interfaces enabling the

connection between the laptop and the RF stages of the

daughter boards for on-air transmission (at 2.4 GHz, 40

MHz bandwidth).

The following sequence describes the steps that are followed

by the transmitter and receiver. These steps are controlled

by software.

1. AGC sequence transmission from Rx to Tx

2. Estimation and update of the Tx receiver’s gain

3. Transmission of the pilots frame on the uplink (Rx

to Tx)

4. Channel estimation on the Tx antennas

5. RT-AGC sequence generation

6. RT-AGC sequence transmission (Tx to Rx)

7. Estimation and update of the Rx receiver’s gain

8. Downlink Data frame generation

9. Data frame transmission (Tx to Rx)

10. Data demodulation (Rx side)

D. Software Processing Steps

Fig. 3. Architecture of the FPGA Program

FIGURE 4.3 – Prototype description.

TABLE 4.2 – Fixed architectural parameters.

Carrier Frequency 2.4 GHz
Sampling Frequency 40 MHz

2.2.22.2.2 Studied configurations

I Classic OFDM

The first studied configuration is a simple OFDM chain without data pre-coding at the transmitter
side. Several parameters may be modified such as the FFT size, number of OFDM symbols, number of
pilot symbols, Cyclic Prefix size, etc.

I Time Division Duplex Time Reversal (TDD TR)

This second configuration stands for the simple Time Reversal strategy in which data are pre-coded
with the following factor :

Vm,k =
H∗m,k√

Nt
(4.4)

where H∗m,k is the conjugate of the channel coefficient on the m-th subcarrier for the k-th transmit
antenna and Nt is the number of transmitting antennas. Considering perfect synchronization and a well-
dimensioned guard interval, the received symbol is then :

TABLE 4.3 – Variable architectural parameters.

Number of transmitted bits 19012
Modulation QPSK and BPSK for pilots

CP size 1 to 256 (64 by default)
Number of pilot symbols in an uplink frame 1,2,4,8 (8 by default)

Number of pilot symbols in a downlink frame 1,2,4 or 8 (8 by default)
Number of OFDM symbols in a downlink frame 1 to 65535 (1000 by default)

FFT/IFFT size 256
Number of active sub-carriers 1 to 256 (190 by default)

70

PA
R

C
O

U
R

S
P

R
O

F
E

S
S

IO
N

N
E

L
S

Y
N

T
H

E
S

IS
O

F
R

E
S

E
A

R
C

H
W

O
R

K
S

A
P

P
E

N
D

IX

2. The Classic Implementation Approach

Rm,n =
Nt∑
k=1

Hm,k

H∗m,k√
Nt

Dm,n + Nm,n (4.5)

=
1
√

Nt

Nt∑
k=1

∣∣∣Hm,k

∣∣∣2Dm,n + Nm,n (4.6)

I Equal Gain Transmission (EGT)

EGT aims at maximizing the SNR at the receiver side. This technique consists in modifying the phase
of the complex symbols before their transmission on every subcarrier of the system. In the MISO-OFDM
context, the pre-coding vector is :

Vm,k =
e−jφHm,k

√
Nt

(4.7)

whereVm,k represents the pre-coding function associated to sub-carrier m, and Hm,k the channel coeffi-
cient on the mth sub-carrier for the kth transmit antenna, φ is the argument of the channel coefficient and
Nt is the number of transmitting antennas. In this configuration, the symbol received on each sub-carrier
is then expressed as :

Rm,n =
Nt∑
k=1

Hm,k
e−jφHm,k

√
Nt

Dm,n + Nm,n (4.8)

=
1
√

Nt

Nt∑
k=1

∣∣∣Hm,k

∣∣∣Dm,n + Nm,n (4.9)

2.2.32.2.3 Results

In a simple OFDM MISO 3x1 configuration (see Figure 4.4), it may be noted a phase difference among
all subcarriers that makes it difficult to retrieve initial data without effective equalization.

In the Time Reversal configuration, it may be seen that the results are better than the OFDM case. It
can be observed that the resulting phase is close to zero which will make it possible to retrieve the initial
signal without an equalization step (cf. Figure 4.5). We can also notice a magnitude degradation since the
received signal varies according to the power of 2 of the channel coefficients’ module.

In the EGT configuration, only the phase is modified which has no incidence on the magnitude of
the signal. In this configuration, the phase is also close to zero which makes it possible to get rid of the
equalization step (cf. Figure 4.6). Regarding the signal magnitude, we can see that the weakening is less
noticeable in compliance with theory (magnitude variation in H instead of H2)

The measures that have been performed on the developed prototype confirm the results that have
been previously described in theory in [DHCG13]. The expression of the received signal for EGT differs
from the received signal in the TR case by the power of the modulus of the channel coefficients. This
may be observed on the downlink channel magnitude in Figure 4.5 and Figure 4.6 respectively. In both
cases, the resulting phase is close to zero. Concerning the computation complexity which is of interest in
terms of power consumption, it may be noticed that compared to TR, EGT requires an additional phase
computation which can be easily computed. Both strategies exhibit the same level of complexity in a
hardware point of view.

71

PA
R

C
O

U
R

S
P

R
O

F
E

S
S

IO
N

N
E

L
S

Y
N

T
H

E
S

IS
O

F
R

E
S

E
A

R
C

H
W

O
R

K
S

A
P

P
E

N
D

IX
Chapitre 4. From Power Modeling to highly Energy-Efficient Devices

>REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT)<

4

C. Equal Gain Transmission (EGT)

EGT aims at maximizing the SNR at the receiver side. This

technique consists in modifying the phase of the complex

symbols before their transmission on every subcarrier of the

system. In the MISO-OFDM context, the pre-coding vector

is:

√

where represents the pre-coding function associated to

subcarrier m, and the channel coefficient on the m-th

subcarrier for the k-th transmit antenna, is the argument of

the channel coefficient and Nt is the number of transmitting

antennas. In this configuration, the symbol received on each

subcarrier is then expressed as:

 ∑

√

√
∑| |

V. MEASUREMENTS AND COMPARISONS

A. Classic OFDM configuration

In this simple OFDM MISO 3x1 configuration (see

Fig. 8), it may be noted a phase difference among all

subcarriers that makes it difficult to retrieve initial data

without effective equalization.

Fig. 8. MISO OFDM 3x1

B. TDD Time Reversal

In this configuration, Time Reversal is implemented. It may

be seen that the results obtained in this configuration are

better than the OFDM case. It can be observed that the

resulting phase is close to zero which will make it possible

to retrieve the initial signal without an equalization step (cf.

Fig. 9). We can also notice a magnitude degradation since

the received signal varies according to the power of 2 of the

channel coefficients’ module.

Fig. 9. TDD TR

C. TDD EGT

In the EGT configuration, only the phase is modified which

has no incidence on the magnitude of the signal. In this

configuration, the phase is also close to zero which makes it

possible to get rid of the equalization step (cf. Fig. 10).

Regarding the signal magnitude, we can see that the

weakening is less noticeable in compliance with theory

(magnitude variation in H instead of)

Fig. 10. TDD EGT

D. Discussion

The measures that have been performed on the developed

prototype confirm the results that have been previously

described in theory in [3].

The expression of the received signal for EGT differs from

the received signal in the TR case by the power of the

modulus of the channel coefficients. This may be observed

on the downlink channel magnitude in Fig. 9 and Fig. 10

respectively. In both cases, the resulting phase is close to

zero.

Concerning the computation complexity which is of interest

for future hardware development, it may be noticed that

compared to TR, EGT requires an additional phase

computation which can be easily computed. Both strategies

exhibit the same level of complexity in a hardware point of

view.

VI. CONCLUSION

In this paper, we have presented a flexible hardware test bed

capable of implementing Time Reversal OFDM MISO

FIGURE 4.4 – MISO OFDM 3x1.

>REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT)<

4

C. Equal Gain Transmission (EGT)

EGT aims at maximizing the SNR at the receiver side. This

technique consists in modifying the phase of the complex

symbols before their transmission on every subcarrier of the

system. In the MISO-OFDM context, the pre-coding vector

is:

√

where represents the pre-coding function associated to

subcarrier m, and the channel coefficient on the m-th

subcarrier for the k-th transmit antenna, is the argument of

the channel coefficient and Nt is the number of transmitting

antennas. In this configuration, the symbol received on each

subcarrier is then expressed as:

 ∑

√

√
∑| |

V. MEASUREMENTS AND COMPARISONS

A. Classic OFDM configuration

In this simple OFDM MISO 3x1 configuration (see

Fig. 8), it may be noted a phase difference among all

subcarriers that makes it difficult to retrieve initial data

without effective equalization.

Fig. 8. MISO OFDM 3x1

B. TDD Time Reversal

In this configuration, Time Reversal is implemented. It may

be seen that the results obtained in this configuration are

better than the OFDM case. It can be observed that the

resulting phase is close to zero which will make it possible

to retrieve the initial signal without an equalization step (cf.

Fig. 9). We can also notice a magnitude degradation since

the received signal varies according to the power of 2 of the

channel coefficients’ module.

Fig. 9. TDD TR

C. TDD EGT

In the EGT configuration, only the phase is modified which

has no incidence on the magnitude of the signal. In this

configuration, the phase is also close to zero which makes it

possible to get rid of the equalization step (cf. Fig. 10).

Regarding the signal magnitude, we can see that the

weakening is less noticeable in compliance with theory

(magnitude variation in H instead of)

Fig. 10. TDD EGT

D. Discussion

The measures that have been performed on the developed

prototype confirm the results that have been previously

described in theory in [3].

The expression of the received signal for EGT differs from

the received signal in the TR case by the power of the

modulus of the channel coefficients. This may be observed

on the downlink channel magnitude in Fig. 9 and Fig. 10

respectively. In both cases, the resulting phase is close to

zero.

Concerning the computation complexity which is of interest

for future hardware development, it may be noticed that

compared to TR, EGT requires an additional phase

computation which can be easily computed. Both strategies

exhibit the same level of complexity in a hardware point of

view.

VI. CONCLUSION

In this paper, we have presented a flexible hardware test bed

capable of implementing Time Reversal OFDM MISO

FIGURE 4.5 – TDD TR.

72

PA
R

C
O

U
R

S
P

R
O

F
E

S
S

IO
N

N
E

L
S

Y
N

T
H

E
S

IS
O

F
R

E
S

E
A

R
C

H
W

O
R

K
S

A
P

P
E

N
D

IX

2. The Classic Implementation Approach

>REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT)<

4

C. Equal Gain Transmission (EGT)

EGT aims at maximizing the SNR at the receiver side. This

technique consists in modifying the phase of the complex

symbols before their transmission on every subcarrier of the

system. In the MISO-OFDM context, the pre-coding vector

is:

√

where represents the pre-coding function associated to

subcarrier m, and the channel coefficient on the m-th

subcarrier for the k-th transmit antenna, is the argument of

the channel coefficient and Nt is the number of transmitting

antennas. In this configuration, the symbol received on each

subcarrier is then expressed as:

 ∑

√

√
∑| |

V. MEASUREMENTS AND COMPARISONS

A. Classic OFDM configuration

In this simple OFDM MISO 3x1 configuration (see

Fig. 8), it may be noted a phase difference among all

subcarriers that makes it difficult to retrieve initial data

without effective equalization.

Fig. 8. MISO OFDM 3x1

B. TDD Time Reversal

In this configuration, Time Reversal is implemented. It may

be seen that the results obtained in this configuration are

better than the OFDM case. It can be observed that the

resulting phase is close to zero which will make it possible

to retrieve the initial signal without an equalization step (cf.

Fig. 9). We can also notice a magnitude degradation since

the received signal varies according to the power of 2 of the

channel coefficients’ module.

Fig. 9. TDD TR

C. TDD EGT

In the EGT configuration, only the phase is modified which

has no incidence on the magnitude of the signal. In this

configuration, the phase is also close to zero which makes it

possible to get rid of the equalization step (cf. Fig. 10).

Regarding the signal magnitude, we can see that the

weakening is less noticeable in compliance with theory

(magnitude variation in H instead of)

Fig. 10. TDD EGT

D. Discussion

The measures that have been performed on the developed

prototype confirm the results that have been previously

described in theory in [3].

The expression of the received signal for EGT differs from

the received signal in the TR case by the power of the

modulus of the channel coefficients. This may be observed

on the downlink channel magnitude in Fig. 9 and Fig. 10

respectively. In both cases, the resulting phase is close to

zero.

Concerning the computation complexity which is of interest

for future hardware development, it may be noticed that

compared to TR, EGT requires an additional phase

computation which can be easily computed. Both strategies

exhibit the same level of complexity in a hardware point of

view.

VI. CONCLUSION

In this paper, we have presented a flexible hardware test bed

capable of implementing Time Reversal OFDM MISO

FIGURE 4.6 – TDD EGT.

Access Point
Baseband

User
Baseband

FIGURE 4.7 – BB channel representation.

2.32.3 Studying the SW limitations

The property of channel reciprocity may be applied when the transmission channel exclusively consists
of the radio channel. This property may not be directly applicable in a real platform where the commu-
nication channel also includes digital circuits. In Figure 4.7, Hpi→U represents the RF channel frequency
response of the ith antenna from the access point to the user and HU→pi the RF channel frequency response
from the user to the access point. EPi is the RF transmitter stage frequency response and RPi is the RF re-
ceiver frequency response. Similarly, EU and RU corresponds respectively to the transmitter and receiver
RF stages from the user side. The RF transmitter stages include DACs, baseband filters, RF modulation,
power amplifier, RF filter and the transmitting antenna. Receiver stages are composed of the antenna, RF
filter, Low noise amplifier, RF demodulation, baseband filters and ADC converters. The Base-Band (BB)
channel frequency response corresponds to the contribution of both the channel itself and the hardware
modules that are implemented in the digital circuits.

The BB channel frequency response, of the uplink H̃U→Pi may be expressed as :

H̃U→Pi = EUHU→Pi RPi (4.10)

73

PA
R

C
O

U
R

S
P

R
O

F
E

S
S

IO
N

N
E

L
S

Y
N

T
H

E
S

IS
O

F
R

E
S

E
A

R
C

H
W

O
R

K
S

A
P

P
E

N
D

IX
Chapitre 4. From Power Modeling to highly Energy-Efficient Devices

The BB channel frequency response of the downlink H̃Pi→U may be expressed as

H̃Pi→U = EPi HPi→URU (4.11)

Then, during a Time Reversal transmission, and if we consider a perfect channel estimation, the esti-
mated channel Ĥi by the antenna i of the access point is given by :

Ĥi = H̃U→Pi (4.12)

During a downlink transmission, the transmitted signal by the antenna i of the access point may then
be written in the frequency domain :

XTR
i = XĤ∗i (4.13)

The received signal by the user after a transmission over the BB channel H̃Pi→U is then given by

Y = X
∑
i

Ĥ∗i H̃Pi→U + B

= X
∑
i

(EUHU→Pi RPi)
∗EPi HPi→URU + B

(4.14)

where B is the Fourier transform of an AWGN.
The property of the uplink and downlink channel reciprocity allows to write

HU→Pi = HPi→U (4.15)

then

Y = X
Nt∑
i=1

∥∥∥HPi→U

∥∥∥2
(EURPi)

∗EPi RU + B

= X
Nt∑
i=1

∥∥∥HPi→U

∥∥∥2 ∥∥∥EPi RU

∥∥∥2
(EURPi

EPi RU

)∗
+ B

= X
Nt∑
i=1

∥∥∥H̃Pi→U

∥∥∥2
Γi︸ ︷︷ ︸

Heq

+B

(4.16)

with Γi ∈C and equals
(

EURPi
EPi RU

)∗
From Equation 4.16, we can verify that the equivalent channel is equal to the sum of module squares,

weighted by Γi terms. The constructive sum of BB channel cannot be guaranteed anymore, which leads to
a degradation in performance in terms of spatial or timing focus, depending on the Γi values. In order to
evaluate the impact of Γi on the global performances, measurements of RF transfer functions have been
performed. EPi ,RPi ,EU and RU have been determined. The obtained results are depicted in Figure 4.8.
From this figure, it may be clearly seen that a reduction of performances occurs when RF stages are not
reciprocal. The exploited diversity is 1 (10 dB) by decade instead of 2 for a perfect reciprocity.

In his thesis, Yvan Kokar has identified two main causes for the non-reciprocity of channels. The first
is the Carrier Phase Offest (CPO) and the second is the Sampling Phase Offset (SPO).

I Carrier Phase Offset

CPO comes from the fact that the 4 antenna ports have their own frequency synthesizer with a Phase-
Locked Loop (PLL) fed by a unique oscillator of 20 MHz. This PLLs make sure that the carrier frequency
is exactly the same for all 4 RF modulators and demodulators. Nevertheless, these PLLs may lock at

74

PA
R

C
O

U
R

S
P

R
O

F
E

S
S

IO
N

N
E

L
S

Y
N

T
H

E
S

IS
O

F
R

E
S

E
A

R
C

H
W

O
R

K
S

A
P

P
E

N
D

IX

2. The Classic Implementation Approach

B
ER

Total CPO
Partial CPO

Perfect Reciprocity

FIGURE 4.8 – BER in function of Eb/N0.

different times when powered on, which lead to a phase difference between the 4 carriers. This constant
phase difference is the source of CPO. Figure 4.9a depicts the QPSK symbols that are received after a
SISO RT-OFDM transmission with CPO as well as the phase of the equivalent channel (Figure 4.9b). The
rotation of the constellation which is observed is a direct consequence of CPO which introduces a phase
shift for a all sub-carriers.

I Sampling Phase Offset

The SPO, which is the second source of channel non-reciprocity comes from the size of wires that
connect the oscillator and the ADC/DAC ports. Due to hardware constraints, these sizes are different and
imply a phase shift in the sampling clock. Figure 4.10a depicts the received QPSK symbols during a SISO
TR-OFDM transmission with SPO. The SPO introduces a linear phase shift on all sub-carriers. Note that
this shift is directly proportional to τs which is the timing difference between two edges of the clocks
connected to DAC and ADC respectively.

I (phase)

Q
 (

Q
u

ad
ra

tu
re

)

(a) Received QPSK symbols before equalization.

Subcarrier index

P
h

as
e

[r
ad

]

(b) Equivalent channel phase.

FIGURE 4.9 – SISO RT-OFDM with CPO.

75

PA
R

C
O

U
R

S
P

R
O

F
E

S
S

IO
N

N
E

L
S

Y
N

T
H

E
S

IS
O

F
R

E
S

E
A

R
C

H
W

O
R

K
S

A
P

P
E

N
D

IX
Chapitre 4. From Power Modeling to highly Energy-Efficient Devices

I (phase)

Q
 (

Q
u

ad
ra

tu
re

)

(a) Received QPSK symbols before equalization.

Subcarrier index

(b) Equivalent Channel Phase

FIGURE 4.10 – SISO RT-OFDM with both CPO and SPO.

I Proposed Solutions

In his thesis, Y. Kokar has demonstrated that performing a SISO TR-OFDM transmission between two
antennas of the access point makes it possible to estimate the CPO and SPO from the equivalent channel
phase. By considering one antenna i = 1 as reference, CPOs and SPOs may be evaluated for each antenna
(i = 2, . . . ,Nt) of the access point. To do so, a calibration phase has been proposed and consists in :

1. sending a pilot symbol between the reference antenna and antenna i

2. estimating the BB channel H̃P1→Pi

3. sending a precoded pilot symbol XT
p R = XPH̃∗Pi→P1

4. estimating the equivalent channel H̃eqi = H̃∗P1→P1
H̃Pi→P1

5. estimating the equivalent phase channel : Φeqi = arg(H̃eqi)

In our study, calibration coefficients can be directly obtained from the phase of the equivalent channel.

CPi (k) = Φeqi (k) = e−j2

2xCPOPi→P1︷ ︸︸ ︷
(φPi

c −φ
P1
c)ej

k
NFFT

2xSPOPi→P1︷ ︸︸ ︷
2(φPi

s −φ
P1
s) (4.17)

By applying the calibration coefficients CPi on the uplink RF channels H̃U→Pi , the transmitted signal
by the antenna i of the access point is :

XTR
i (k) = X(k)(CPi (k)H̃U→Pi (k))∗ (4.18)

After transmitting XTR
i on the BB H̃Pi→U the signal that is received by the user is :

Y(k) = X(k)Ψ (k)
∑
i

∥∥∥HU→Pi (k)
∥∥∥2

+ B(k) (4.19)

with

Ψ (k) = ej2(φ
P1
c −φU

c)ej
k

NFFT
2(φ

P1
s −φU

s)

From equation 4.19, it can be seen that the sum of RF channels is constructive. We can also note that
Ψ (k) is only a multiplicative term which is only composed of a phase term. Its module is unitary and does
not affect spatial focusing.

76

PA
R

C
O

U
R

S
P

R
O

F
E

S
S

IO
N

N
E

L
S

Y
N

T
H

E
S

IS
O

F
R

E
S

E
A

R
C

H
W

O
R

K
S

A
P

P
E

N
D

IX

2. The Classic Implementation Approach

Spatial Constellation

FIGURE 4.11 – RASK modulation scheme.

2.42.4 The Receive Spatial Modulation scheme

Among the different techniques that have been used to improve the Energy Efficiency of fifth ge-
neration (5G) cellular networks, one technique consists in using Spatial Modulation (SM) [CY01]. This
technique has already provided significant performances and consists in improving spectral efficiency by
using an additional spatial dimension.

In this section, a part of the work that has been carried out in the Spatial Modulation ANR project is
presented. In this project, I was responsible for the the Work-Package related to the implementation of a
proof of concept in order to demonstrate the feasibility of the approach, in the IoT context. This work has
also mainly been performed during the PhD study of Yvan Kokar.

One of the main purpose of this work was to implement the close loop modulation scheme. In this
scheme, which is also denoted as Receive Antenna Shift Keying modulation (RASK), the information is
carried by the index of the antenna that receives a signal [PHH12a], [MH16]. Note that in this type mo-
dulation, the sent signal does not carry any useful information. Accordingly, a very simple demodulation,
based on maximizing the real part of the received signal [PHH12a], is performed at the receiver side which
makes this technique very promising for future wireless devices. Moreover, RASK modulation can be used
simultaneously with another classical modulation (single carrier or multi-carrier) in order to increase the
spectral efficiency [SYM+13].

An example of RASK modulation for Nr = 4 is depicted in Figure 4.11. This type of modulation im-
plies that an access point is capable of focusing a signal towards one antenna at the user side. It could be
naturally associated with Time Reversal techniques that we have previously studied. At the user side, the
RASK demodulation consists in detecting the index of the targeted antenna to retrieve the sent informa-
tion.

2.4.12.4.1 Prototype Description

In this work, we have used the already developed MISO TR-OFDM prototype used in the previous TRI-
MARAN ANR project. Here, OFDM has only been used as a support for the RASK modulation although
RASK could be used with single carrier modulations. In our platform, when an antenna is targeted, a full
OFDM symbol will focus on it. In the following, only RASK is considered.

I Uplink Processing : Channel Estimation stage

The purpose of uplink channel estimation is to evaluate the channel between each antenna of the user
and every antenna on the access point. The parameters to be determined are HUj→Pi with 1 ≤ i ≤ Nt and
1 ≤ j ≤ Nr . To do so, the same procedure used in Section 2.3 has been implemented. The uplink baseband

77

PA
R

C
O

U
R

S
P

R
O

F
E

S
S

IO
N

N
E

L
S

Y
N

T
H

E
S

IS
O

F
R

E
S

E
A

R
C

H
W

O
R

K
S

A
P

P
E

N
D

IX
Chapitre 4. From Power Modeling to highly Energy-Efficient Devices

PN
Sequence
Generator

OFDM
Modulator

BPSK
Modulator

Frame
detection

LS
Estimator

OFDM
Demodulator

Average

Frame
detection

LS
Estimator

OFDM
Demodulator

Average

Frame
detection

LS
Estimator

OFDM
Demodulator

Average

matrix (np(NFFT+LCP) x NT)

from Tx Board

vector (np(NFFT+LCP) x 1)

to Rx Board

Ĥ1j

1 ≤ j ≤ NT

Baseband Rx

Baseband Tx

Fig. 2: Uplink Baseband processing

In the following sections, the required BB processing that
aims to implement the combination of OFDM and RASK
modulation will be detailed.

A. UL transmission : Channel estimation

During the UL transmission, the transmitter has to estimate
the UL propagation channel H which can be modeled as a
complex Nr × Nt matrix for each sub-carrier. Let denote Ĥ
the estimate of H . Note that, for dynamic channels, Ĥ is valid
only on a time duration shorter than the coherence time Tc of
the channel. Therefore the total frame duration (UL and DL
frame) must occur within a duration smaller than Tc.

For UL transmission, BB Rx has to generate a pilot frame
which will be used by BB Tx to evaluate Ĥ as illustrated in
Fig. 2.

1) BB Rx processing: The channel estimation is performed
in frequency domain, therefore the pilot symbol is also built
in this domain. The pilot symbol generation follows several
steps. First, a pseudo-noise (PN) sequence is generated and
passed through a binary phase shift keying (BPSK) modulator
to build frequency symbols. These symbols are then applied
to an OFDM modulator to generate the pilot symbol in time
domain. Note that, in order to evaluate Ĥ for all sub-carriers
of the OFDM spectrum, the PN sequence length is equal to
the IFFT size (NFFT).

In order to evaluate Ĥ , we have applied the method
proposed in [14]. This method consists in sending np pilot
symbols per pilot frame and in calculating the average of the
np least square (LS) estimates. Using this technique, authors
have shown that the estimation noise decreases proportionally
to np. In our work, we have chosen np = 5.

In order to evaluate the full matrix Ĥ , each antenna of
the Rx board successively sends the generated pilot frame.
Therefore, the UL frame is composed of Nr pilot frame, and
5.Nr pilot symbols.

2) BB Tx processing: UL channel estimation is performed
simultaneously at each Tx board’s antenna and successively
for each Rx board’s antenna. As previously mentioned, the
LS estimation technique, which consists in dividing the re-
ceived symbol by the pilot symbol, is used. This operation is
performed for each sub-carrier.

As soon as a pilot frame from the first Rx board’s antenna
(Rx1) is received, the OFDM demodulation is applied in
parallel on the Nt antennas of the Tx board. An LS estimation

matrix (Nsamp x NT)

to Tx Board

Select
precoding

coeff

TR
Precoder

OFDM
Modulator

X

In

BPSK
Modulator

bin to int
 + 1

Select
precoding

coeff

OFDM
Modulator

Tx RASK bits

Tx OFDM bits

TR
Precoder

Frame
detection

Frame
detection

OFDM
Symb

average

OFDM
Symb

average

Power
Alignment

Power
Alignment

Power
comparator

Rx RASK bits

P1In

PNTIn

matrix (Nsamp x NR)

from Rx Board

Baseband Tx

Baseband Rx

P1In
 . X

PNTIn
 . X

Fig. 3: Downlink Baseband processing

is then performed before averaging the 5 LS estimates to
obtain Ĥ1j for j = 1, . . . , Nt.

By applying the same estimation on the next Nr−1 received
pilot frames, the full Ĥ matrix is obtained and will be used
to compute the precoding matrix P (P = ĤH where ĤH is
the transpose conjugate of Ĥ).

B. DL transmission : Data transmission

The architecture of the DL BB processing is given in Fig.
3. It is composed of both BB Tx and Rx.

1) BB Tx processing: For each OFDM symbol, the bit
stream to transmit is divided into two sets containing log2(Nr)
bits and NFFT bits respectively. The first set of log2(Nr) bits
constitutes the RASK bits and determines the Rx antenna on
which the current OFDM symbol will be focused. The index n
of the target antenna is obtained by converting the RASK bits
to an integer and add one. To focus on the target antenna, the
appropriate precoding vector Pjn{j=1,...,Nt} is selected. The
second set of NFFT bits, which corresponds to the OFDM bits
to be transmitted, passes through a BPSK modulator, the TR
filter and finally the OFDM modulator. The resulting signal
of the BB Tx is a complex matrix of NsampNT values that
will be sent to the Tx board. Nsamp is the number of samples
transmitted per frame and per Tx antenna and is given by
Nsamp = (NFFT +LCP)(Nr +Nsym) where Nsym and LCP

denote the number of OFDM symbols per DL data frame and
the cyclic prefix length, respectively.

Before sending a DL data frame, a DL pilot frame is
transmitted in order to calibrate the received power on the
Nr Rx antennas. This frame is composed of Nr subsequent
OFDM symbols. The first symbol aims to focus on Rx1, the
second on Rx2, etc. .

2) BB Rx processing: Since our main purpose is to evaluate
the performance of RASK modulation, we have only limited
our study to the RASK demodulation without considering
OFDM demodulation at the receiver side. In our work, RASK
demodulation is based on the level of the received power at
each antenna, by selecting the index n of the antenna with
the maximum received power. n is then used for RASK de-
mapping.

One of the first goals of BB Rx consists in detecting the
incoming frame for all Rx antennas simultaneously. This is
performed by recording the incoming frames at the Rx board

FIGURE 4.12 – Uplink baseband processing.

PN
Sequence
Generator

OFDM
Modulator

BPSK
Modulator

Frame
detection

LS
Estimator

OFDM
Demodulator

Average

Frame
detection

LS
Estimator

OFDM
Demodulator

Average

Frame
detection

LS
Estimator

OFDM
Demodulator

Average

matrix (np(NFFT+LCP) x NT)

from Tx Board

vector (np(NFFT+LCP) x 1)

to Rx Board

Ĥ1j

1 ≤ j ≤ NT

Baseband Rx

Baseband Tx

Fig. 2: Uplink Baseband processing

In the following sections, the required BB processing that
aims to implement the combination of OFDM and RASK
modulation will be detailed.

A. UL transmission : Channel estimation

During the UL transmission, the transmitter has to estimate
the UL propagation channel H which can be modeled as a
complex Nr × Nt matrix for each sub-carrier. Let denote Ĥ
the estimate of H . Note that, for dynamic channels, Ĥ is valid
only on a time duration shorter than the coherence time Tc of
the channel. Therefore the total frame duration (UL and DL
frame) must occur within a duration smaller than Tc.

For UL transmission, BB Rx has to generate a pilot frame
which will be used by BB Tx to evaluate Ĥ as illustrated in
Fig. 2.

1) BB Rx processing: The channel estimation is performed
in frequency domain, therefore the pilot symbol is also built
in this domain. The pilot symbol generation follows several
steps. First, a pseudo-noise (PN) sequence is generated and
passed through a binary phase shift keying (BPSK) modulator
to build frequency symbols. These symbols are then applied
to an OFDM modulator to generate the pilot symbol in time
domain. Note that, in order to evaluate Ĥ for all sub-carriers
of the OFDM spectrum, the PN sequence length is equal to
the IFFT size (NFFT).

In order to evaluate Ĥ , we have applied the method
proposed in [14]. This method consists in sending np pilot
symbols per pilot frame and in calculating the average of the
np least square (LS) estimates. Using this technique, authors
have shown that the estimation noise decreases proportionally
to np. In our work, we have chosen np = 5.

In order to evaluate the full matrix Ĥ , each antenna of
the Rx board successively sends the generated pilot frame.
Therefore, the UL frame is composed of Nr pilot frame, and
5.Nr pilot symbols.

2) BB Tx processing: UL channel estimation is performed
simultaneously at each Tx board’s antenna and successively
for each Rx board’s antenna. As previously mentioned, the
LS estimation technique, which consists in dividing the re-
ceived symbol by the pilot symbol, is used. This operation is
performed for each sub-carrier.

As soon as a pilot frame from the first Rx board’s antenna
(Rx1) is received, the OFDM demodulation is applied in
parallel on the Nt antennas of the Tx board. An LS estimation

matrix (Nsamp x NT)

to Tx Board

Select
precoding

coeff

TR
Precoder

OFDM
Modulator

X

In

BPSK
Modulator

bin to int
 + 1

Select
precoding

coeff

OFDM
Modulator

Tx RASK bits

Tx OFDM bits

TR
Precoder

Frame
detection

Frame
detection

OFDM
Symb

average

OFDM
Symb

average

Power
Alignment

Power
Alignment

Power
comparator

Rx RASK bits

P1In

PNTIn

matrix (Nsamp x NR)

from Rx Board

Baseband Tx

Baseband Rx

P1In
 . X

PNTIn
 . X

Fig. 3: Downlink Baseband processing

is then performed before averaging the 5 LS estimates to
obtain Ĥ1j for j = 1, . . . , Nt.

By applying the same estimation on the next Nr−1 received
pilot frames, the full Ĥ matrix is obtained and will be used
to compute the precoding matrix P (P = ĤH where ĤH is
the transpose conjugate of Ĥ).

B. DL transmission : Data transmission

The architecture of the DL BB processing is given in Fig.
3. It is composed of both BB Tx and Rx.

1) BB Tx processing: For each OFDM symbol, the bit
stream to transmit is divided into two sets containing log2(Nr)
bits and NFFT bits respectively. The first set of log2(Nr) bits
constitutes the RASK bits and determines the Rx antenna on
which the current OFDM symbol will be focused. The index n
of the target antenna is obtained by converting the RASK bits
to an integer and add one. To focus on the target antenna, the
appropriate precoding vector Pjn{j=1,...,Nt} is selected. The
second set of NFFT bits, which corresponds to the OFDM bits
to be transmitted, passes through a BPSK modulator, the TR
filter and finally the OFDM modulator. The resulting signal
of the BB Tx is a complex matrix of NsampNT values that
will be sent to the Tx board. Nsamp is the number of samples
transmitted per frame and per Tx antenna and is given by
Nsamp = (NFFT +LCP)(Nr +Nsym) where Nsym and LCP

denote the number of OFDM symbols per DL data frame and
the cyclic prefix length, respectively.

Before sending a DL data frame, a DL pilot frame is
transmitted in order to calibrate the received power on the
Nr Rx antennas. This frame is composed of Nr subsequent
OFDM symbols. The first symbol aims to focus on Rx1, the
second on Rx2, etc. .

2) BB Rx processing: Since our main purpose is to evaluate
the performance of RASK modulation, we have only limited
our study to the RASK demodulation without considering
OFDM demodulation at the receiver side. In our work, RASK
demodulation is based on the level of the received power at
each antenna, by selecting the index n of the antenna with
the maximum received power. n is then used for RASK de-
mapping.

One of the first goals of BB Rx consists in detecting the
incoming frame for all Rx antennas simultaneously. This is
performed by recording the incoming frames at the Rx board

FIGURE 4.13 – Downlink baseband processing.

processing is depicted in Figure 4.12.

I Downlink Processing : Data Transmission Phase

The downlink architecture is depicted in Figure 4.13. For each OFDM symbol, the bit stream to trans-
mit is divided into two sets containing log2(Nr) bits and NFFT bits respectively. The first set of log2(Nr)
bits constitutes the RASK bits and determines the Rx antenna on which the current OFDM symbol will be
focused. The index n of the target antenna is obtained by converting the RASK bits to an integer and add
one. To focus on the target antenna, the appropriate precoding vector Pjn with j = 1, . . . ,Nt is selected. The
second set of NFFT bits, which corresponds to the OFDM bits to be transmitted, passes through a BPSK
modulator, the TR filter and finally the OFDM modulator. The resulting signal of the BB Tx is a complex
matrix of values that are sent to the Tx board.

At the receiver side, since our main purpose was to evaluate the performance of the RASK modulation,
we have only limited our study to the RASK demodulation without considering OFDM demodulation. In
our work, RASK demodulation is based on the level of the received power at each antenna, by selecting
the n index of the antenna with the maximum received power. n is then used for RASK demapping.

2.4.22.4.2 Results

A lot of experiments have been performed using the developed prototype and most of them are des-
cribed in [Kok18]. As an example, we provide here a Line of Sight (LOS) experiment, in which 2 antennas
are used at the transmitter side and 4 receive antennas are implemented at the receiver side. A space of
20 cm between Rx antennas has been respected and the distance between Rx and Tx antennas are 1.7 m.

Figure 4.14 depicts the average power of the received OFDM symbols that have been obtained on each
antennas according to the target antenna. On the 4 cases, we can notice that the maximum received power
always corresponds to the target antenna and that it is quite simple to retrieve the transmitted data. A very

78

PA
R

C
O

U
R

S
P

R
O

F
E

S
S

IO
N

N
E

L
S

Y
N

T
H

E
S

IS
O

F
R

E
S

E
A

R
C

H
W

O
R

K
S

A
P

P
E

N
D

IX

3. Evaluation of FPGA-Based Wireless Communications Systems

simple detector (threshold comparator) could be considered to recover the incoming sequence of bits. The
BER has been measured in this context and is equal to zero. Note that the same results have been obtained
in a Non Line of Sight (NLOS) configuration for different distances between the receive antennas.

Finally, in order to evaluate the efficiency and robustness of the proposed approach, we have introdu-
ced a focus performance gain ∆f . This gain corresponds to the average power margin between the target
antenna and the antenna with maximum received power among the non target antennas. According to
this metric, it is then obvious that the bigger ∆f is, the easier the demodulation will be performed and the
more robust the system will be.

0 50 100 150 200
−62

−60

−58

−56

−54

−52

−50

OFDM Symbol Index

R
e
c
e
iv

e
d
 P

o
w

e
r

[d
B

m
]

Rx1

Rx2

Rx3

Rx4

∆f
1

(a) OFDM symbol focused toward Rx1

0 50 100 150 200 250
−64

−62

−60

−58

−56

−54

−52

OFDM Symbol Index

R
e
c
e
iv

e
d
 P

o
w

e
r

[d
B

m
]

Rx1

Rx2

Rx3

Rx4

∆f
2

(b) OFDM symbol focused toward Rx2

0 50 100 150 200 250
−62

−61

−60

−59

−58

−57

−56

−55

−54

−53

OFDM Symbol Index

R
e
c
e
iv

e
d
 P

o
w

e
r

[d
B

m
]

Rx1

Rx2

Rx3

Rx4

∆f
3

(c) OFDM symbol focused toward Rx3

0 50 100 150 200 250
−64

−62

−60

−58

−56

−54

−52

OFDM Symbol Index

R
e
c
e
iv

e
d
 P

o
w

e
r

[d
B

m
]

Rx1

Rx2

Rx3

Rx4

∆f
4

(d) OFDM symbol focused toward Rx4

Fig. 6: measured power on the 4 receive antennas in a 4x4 LOS configuration

Tx

Pos_1

Pos_2

Pos_3

Pos_4

Fig. 7: Realistic scenario deployment

[2] S. Ganesan, R. Mesleh, H. Ho, C. W. Ahn, and S. Yun, “On the
performance of spatial modulation OFDM,” in Signals, Systems and
Computers, 2006. ACSSC ’06. Fortieth Asilomar Conference on, Oct
2006, pp. 1825–1829.

[3] M. A. I. F. Heliot and R. Tafazolli, “On the energy efficiency-spectral ef-
ficiency trade-off over the MIMO rayleigh fading channel,” p. 13451356,
2012.

[4] A. Younis, N. Serafimovski, R. Mesleh, and H. Haas, “Generalised
spatial modulation,” in Signals, Systems and Computers (ASILOMAR),
2010 Conference Record of the Forty Fourth Asilomar Conference on,
Nov 2010, pp. 1498–1502.

[5] N. Serafimovski, A. Younis, R. Mesleh, P. Chambers, M. D. Renzo, C. X.

Wang, P. M. Grant, M. A. Beach, and H. Haas, “Practical implementation
of spatial modulation,” IEEE Transactions on Vehicular Technology,
vol. 62, no. 9, pp. 4511–4523, Nov 2013.

[6] D. T. Phan-Huy and M. Hélard, “Receive antenna shift keying for
time reversal wireless communications,” in Communications (ICC), 2012
IEEE International Conference on, June 2012, pp. 4852–4856.

[7] C. Masouros and L. Hanzo, “Dual layered MIMO transmission for
increased bandwidth efficiency,” IEEE Transactions on Vehicular Tech-
nology, vol. PP, no. 99, pp. 1–1, 2015.

[8] A. Derode, P. Roux, and M. Fink, “Robust acoustic time reversal with
high-order multiple scattering,” Physical review letters, vol. 75, no. 23,
p. 4206, 1995.

[9] H. El-Sallabi, P. Kyritsi, A. Paulraj, and G. Papanicolaou, “Experimental
investigation on time reversal precoding for space and time focusing in
wireless communications,” IEEE Transactions on Instrumentation and
Measurement, vol. 59, no. 6, pp. 1537–1543, June 2010.

[10] C. Zhou, N. Guo, and R. C. Qiu, “Time-reversed ultra-wideband (UWB)
multiple input multiple output (MIMO) based on measured spatial
channels,” Vehicular Technology, IEEE Transactions on, vol. 58, no. 6,
pp. 2884–2898, 2009.

[11] “Warp project.” [Online]. Available: http://warpproject.org
[12] T. Dubois, M. Hélard, and M. Crussière, “Time reversal in a MISO

OFDMsystem: Guard interval design, dimensioning and synchronisation
aspects,” in WirelessWorld Research Forum, WWRF-29), oct 2012.

[13] G. S. Smith, “A direct derivation of a single-antenna reciprocity relation
for the time domain,” IEEE Transactions on Antennas and Propagation,
vol. 52, no. 6, pp. 1568–1577, June 2004.

[14] T. Dubois, M. Hélard, M. Crussière, and I. Maaz, “Time reversal
applied to large MISO-OFDM systems,” in 2013 IEEE 24th Annual
International Symposium on Personal, Indoor, and Mobile Radio Com-
munications (PIMRC), sept 2013, pp. 896–901.

FIGURE 4.14 – Measured power on the 4 receive antennas in a 4x4 LOS configuration.

The results that have been obtained in these studies are very promising and suggest that the algorithms
used to implement Spatial Modulation are very relevant in the field of the Iot or future 5G. Furthermore,
since the receivers may have a very simple architecture, it can envisaged to drastically reduce the amount
of resources, which considerably diminishes the energy required by the receiver.

33 Evaluation of FPGA-Based Wireless Communications Systems

This part of the chapter describes all the studies that we have led in order to propose a new me-
thodology allowing designers to estimate the energy consumed in their communicating systems. This
methodology makes use of high-level models destined to be used very early in the design process. Using
these models, designers may rapidly explore design choices for a target FPGA device without entering
the classic development flow that is often time consuming and error prone. With this approach, designers
can easily compare various algorithms and validate hardware choices prior to their final implementation.
The privileged hardware targets are FPGA devices but the proposed methodology may also be applied to

79

PA
R

C
O

U
R

S
P

R
O

F
E

S
S

IO
N

N
E

L
S

Y
N

T
H

E
S

IS
O

F
R

E
S

E
A

R
C

H
W

O
R

K
S

A
P

P
E

N
D

IX
Chapitre 4. From Power Modeling to highly Energy-Efficient Devices

other types of devices such as ASICs, for example. The studies presented in this part have been initiated
during Jordane Lorandel’s PhD thesis and have been followed in Yehya Nasser’s PhD works.

In FPGAs, the total power consumption has two main contributors i.e static power and dynamic po-
wer. Static power is directly related to the transistors leakage current and thus completely technology-
dependent. Dynamic power is the power consumed in the logic design due to the charging and dischar-
ging capacitors when transistors are switching, in addition to the short circuit power. Dynamic power is
proportional to the switching activity per clock cycle and is highly data and design dependent. Switching
activity has a significant impact on this dynamic power [HDL+16]. The expression of the total power
consumption is given in Equation 4.20

PTotal = PDyn + PStat = αCV2
ddf + Vdd Ileakage (4.20)

where PDyn is the dynamic power that depends on the switching activity factor α (average number of
gate transitions per clock cycle), the node capacitance C, the supply voltage Vdd , and the clock frequency
f . The static power PStat is estimated as Vdd Ileakage, where Ileakage represents the leakage currents. C and
Ileakage are technology dependent.

3.13.1 Proposed approach

The proposed methodology is based on the assumption that any hardware system can be represen-
ted by a set of hardware IP blocks that are dedicated to a specific function (e.g. Fast Fourier Transform
(FFT), encoders, mappers, etc.). The main idea consists in estimating the consumption of a global wire-
less system, based on an accurate power estimation of its sub-elements. Each sub-element has been fully
characterized earlier and is available in a dedicated library. This methodology aims at preventing long
development time and at reducing costs by encouraging models re-use. In this work, an important deci-
sion was not to focus on static power. This can be easily explained by the fact that this type of power is
only related to the type of device and not on the design itself. Therefore, only dynamic power has been
considered in the following.

The proposed approach consists of 3 steps :

— Definition of a scenario by the user,

— IP characterization,

— High-Level simulations.

Each step is detailed in the following subsections.

3.1.13.1.1 Scenario Definition

To perform an efficient comparison of FPGA-based wireless communication systems, the concept of
scenario has been introduced in [Lor15]. This term had already been defined in [GPH+09,ZPR+13,VSP10]
but referred to a different concept. In our case, a scenario refers to a set of parameters that are common to
several applications within the same domain. It is composed of system and hardware-oriented parameters
having an impact over power and/or performance (throughput, latency, etc.). As illustrated in Figure 4.15,
the definition of the scenario is the critical entry point of our approach. This concept, that can be seen as a
meta-model, has been thought to facilitate the comparison of applications in the wireless communication
domain, in terms of performance and power consumption. The methodology requires the development of
specific library components that will be detailed in Section 3.1.2.

80

PA
R

C
O

U
R

S
P

R
O

F
E

S
S

IO
N

N
E

L
S

Y
N

T
H

E
S

IS
O

F
R

E
S

E
A

R
C

H
W

O
R

K
S

A
P

P
E

N
D

IX

3. Evaluation of FPGA-Based Wireless Communications Systems

J. Lorandel et al.: Fast Power and Performance Evaluation of FPGA-Based Wireless Communication Systems

to the design of large and complex systems since available
studies are generally performed on specific targets and are not
easily scalable. Also, functionality cannot be jointly validated
with power estimation, which is relatively important in order
to evaluate both power and performance.

Several approaches require specific tools to implement
entire systems before estimating power consumption
accurately. This generally prevents a fast and efficient design
space exploration.

III. PROPOSED APPROACH
In our approach, we have tried to circumvent the
main limitations of the existing methods. The proposed
methodology is based on the assumption that any hardware
system can be represented by a set of hardware IP blocks
that are dedicated to a specific function (e.g. Fast Fourier
Transform (FFT), encoders, mappers, etc.). The main idea
consists in estimating the consumption of a global wireless
system, based on an accurate power estimation of its
sub-elements. Each sub-element has been fully characterized
and is available in a dedicated library. This methodology aims
at preventing long development time and at reducing costs by
encouraging models re-use.

The proposed approach consists of 3 steps:

• definition of the scenario by the user,
• IP characterization,
• high-level simulations.

Each step is detailed in the following subsections.

A. SCENARIO DEFINITION
To perform an efficient comparison of FPGA-based wireless
communication systems, the concept of scenario has been
introduced. This term has already been defined in [39]–[41]
but refers to a different concept. In our case, a scenario
refers to a set of parameters which are common to several
applications in the same domain. It is composed of system and
hardware-oriented parameters having an impact over power
and/or performance (throughput, latency, etc.). As illustrated
in Fig. 2, the definition of the scenario is the critical entry
point of our approach. This concept, that can be seen as a
meta-model, has been thought to facilitate the comparison of

FIGURE 2. The scenario concept.

applications in the wireless communication domain, in terms
of performance and power consumption. Since it constitutes
one of the first steps in the design flow, designers may rapidly
explore design choices for a target FPGA device without
entering the classic development flow that is often time
consuming and error prone. With this approach, designers
can easily compare various algorithms and validate hardware
choices prior to their final implementation. However, the
methodology requires the development of specific libraries
that will be detailed in the next subsection.

An example of scenario and corresponding applications
implementing a typical OFDM-based wireless communica-
tion chain are proposed in Table 2. In this example, the
scenario not only considers algorithmic parameters like
frequency bandwidth and OFDM symbol size but also
hardware-oriented (technological-dependent) parameters like
the type of FPGA and the clock frequency.

TABLE 2. Description of two applications for a basic wireless
communication chain.

Each application refers to an instance of a given scenario
and is evaluated in terms of performance and power
consumption. Furthermore, designers can modify the number
of applications depending on the number of parameters of
interest. Once the scenario has been defined, each application
is modelled using high-level models available in a dedicated
library that has been created using a characterization
step.

B. IP CHARACTERIZATION AND MODELLING
The library consists of high-level models of hardware IPs
whose behaviour is completely described in SystemC. The
library also contains the corresponding RTL codes of the
hardware IPs. All these models consist of components
that constitute a wireless communication chain such as
encoders, modulators, Fast Fourier Transforms (FFT),
channel estimator, equalizers, etc. Each model in the
library may refer to several hardware IP configurations (Ci)
(i from 1 to n) corresponding to a given combination of
these parameters (data width, clock frequency, etc.). For each
configuration Ci of a high-level model, the library holds
the corresponding RTL description whereas the high-level
model implements its behaviour. The RTL description may
be expressed using a HDL such a VHDL or VERILOG
or directly taken from a vendor library. In the latter case,

VOLUME 4, 2016 2009

FIGURE 4.15 – The scenario concept.

3.1.23.1.2 IP Characterization

A library consists of high-level models of hardware IPs whose behaviour is completely described in
SystemC. The library may also contain the corresponding RTL code of the hardware IPs. In our work, all
models have been built on components that constitute wireless communication parts such as encoders,
modulators, Fast Fourier Transforms (FFT), channel estimators, equalizers, etc.

Each associated model in the library may refer to several hardware IP configurations : (Ci) (i from
1 to n) corresponding to a given combination of identified parameters. These parameters characterize
a given IP : input data width, clock frequency, number of outputs, etc. .For each Ci configuration of a
high-level model, a library contains the corresponding RTL description whereas another model mimics
its behaviour. The RTL description may be expressed using HDLs such a VHDL or Verilog or directly
taken from a vendor library.

As depicted in Figure 4.16, each hardware IP corresponding to a specific configuration of its high-
level model, is then fully characterized by following the different steps of the design process. Design
implementation is performed throughout the synthesis, mapping, place and route steps. Note that these
steps are performed for a specific FPGA device that exhibits a given number of resources and specific
timing properties.

After the IP design implementation, a post Place-And-Route (PAR) VHDL simulation model is genera-
ted. This file provides accurate information about delays and timing, based on a final netlist. Furthermore,
glitches can also be recorded during this type of simulation. These glitches are transient faults that occur
on a signal before it settles to its intended value. They have a significant impact of the signal switching
activity. In our work, the ModelSim simulator has been used to capture all internal signals’ activity. Test-
benches were elaborated according to the users’ constraints and generated appropriate input signals. This
was very important to record the IP internal activity in two configurations :

— when the IP is active during all the simulation time,

— when the IP is idle, and there is no signal activity.

During the characterization process, power analysis tools such as XPower Analyzer (XPA) [Xil12c] or
PowerPlay [Alt14b] from Xilinx and Altera respectively, can be used to deliver average power consump-
tion estimations based on the simulation results and implementation files. The first simulation allows to
evaluate the average power when the IP is active whereas the second simulation evaluates the power that
is consumed when the IP is idle. The second configuration is usually obtained when control signals such
as clock enable, valid signals, etc. are disabled. Note that XPA delivers a complete report on the average
power used by clocks, logic elements, signals, memories, DSP blocks, etc. The XPA tool also delivers an
average power consumption estimation that is composed of several terms described in Equation 4.21.

81

PA
R

C
O

U
R

S
P

R
O

F
E

S
S

IO
N

N
E

L
S

Y
N

T
H

E
S

IS
O

F
R

E
S

E
A

R
C

H
W

O
R

K
S

A
P

P
E

N
D

IX
Chapitre 4. From Power Modeling to highly Energy-Efficient Devices

J. Lorandel et al.: Fast Power and Performance Evaluation of FPGA-Based Wireless Communication Systems

FIGURE 3. IP characterization process.

the IP requires an additional controller in order to configure
and manage it.

As depicted in Fig. 3, each hardware IP, which corresponds
to a specific configuration of its high-level model, is then
fully characterized through the different steps of the design
process. Design implementation is performed throughout the
synthesis, mapping, place, and route steps. Note that these
steps are performed for a specific FPGA device that has a
given number of resources and specific timing properties.
In this study, we make use of the Xilinx ISE 14.4 [42]
tool. Implementation settings, that can have a significant
impact regarding the power consumption, have been set to a
standard-level and default values have been retained to limit
software optimizations [43]. All these remarks ensure the
genericity of our approach.

After the IP design implementation, a post Place-And-
Route (PAR) VHDL simulation model is generated. This file
provides accurate information about delays and timing, based
on the final netlist. Furthermore, glitches can be recorded
during this simulation. At this step, a low level power analyzer
can be used such as XPower Analyzer (XPA) from Xilinx.

ModelSim 10.1c is used as a simulator and captures
all internal signal activity. It also generates corresponding
activity files. Test-benches are configured according to the
user-defined applications and generate appropriate input
signals to record the internal activity in two configurations:

• when the IP is active during all the simulation time,
• when the IP is idle, and there is no signal activity.

During the characterization process, power analysis tools
such as XPower Analyzer (XPA) [27] or PowerPlay [28] from
Xilinx and Altera respectively, can be used to deliver average
power consumption estimations based on the simulation
results and implementation files.

The first simulation allows to evaluate the average power
when the IP is active whereas the second simulation evaluates
the power that is consumedwhen the IP is idle. The latter state
is usually obtained when control signals such as clock enable,

are disabled. Note that XPA delivers a complete report on
the average power used by clocks, logic elements, signals,
memories, DSP blocks, etc. The XPA tool delivers an average
power consumption estimation that is composed of several
terms described in equation 1:

PDynamicIP = PClockIP + PLogicIP + PSignalIP
+PI/OsIP + PBRAMIP + PDSPIP (1)

with

• PClockIP the average power consumed by the clock
network including buffer and routing resources,

• PLogicIP the average power consumed by all Configur-
able Logic Blocks (CLBs) including look-up-tables and
flip-flops,

• PSignalIP the average power consumed by the
interconnect,

• PI/OsIP the average power consumed by input/output
pins,

• PBRAMIP the average power consumed by specific
memories,

• PDSPIP the average power consumed by Digital Signal
Processing (DSP) blocks.

Note that the characterization phase has to be performed
ideally for each configuration of an IP and for a specific
device. In practice, only a set of configurations is actually
available in the library that already contains tenths of cores.
For a designer, if a specific IP is not available in the library
or if the desired configuration has not been evaluated yet
(frequency, FPGA family), there are two possibilities. First,
if the RTL code of the IP is not in the library yet, the
characterization process has to be realized. Second, if the RTL
code is known and only a different configuration needs to be
evaluated, analytical power models or scaling factors can be
used to avoid the realization of the characterization process
and save time. Once the library will contain many cores and
models, the overhead due to the characterization phase will
be negligible. A non-exhaustive list of the cores that are
currently stored in the library is provided in Table 3. To reduce
the number of configurations to analyse, a current work aims
to extrapolate the results from specific IP configurations to
build a more global model by studying the trend of the
power consumption according to several criteria (data size,
frequency, IP specific parameters, etc.). Such approach is
discussed in Section III-D. In this way, designers will have
the possibility to explore a large design space based on a
minimum set of tests. This first stage is quite tedious but
has been relieved by the use of automated scripts that also
spare time and reduce the number of errors. Designers can
easily use the proposed scripts to characterize their own IPs.
Note that a lot of works described in Section II are also based
on a characterization process. After obtaining the power
metrics for each IP configuration, this information is added
to SystemC models that have been developed according to
a particular implementation model. As described in Fig. 4,

2010 VOLUME 4, 2016

FIGURE 4.16 – IP characterization process.

PDynamicIP
= PIP

Clock + PIP
Logic + PIP

Signal

+PIP
I/Os + PIP

BRAM + PIP
DSP (4.21)

with

— PIP
Clock , the average power consumed by the clock network including buffer and routing resources,

— PIP
Logic, the average power consumed by all Configurable Logic Blocks (CLBs) including look-up-

tables and flip-flops,

— PIP
Signal , the average power consumed by the interconnect,

— PIP
I/Os, the average power consumed by input/output pins,

— PIP
BRAM, the average power consumed by specific memories,

— PIP
DSP, the average power consumed by Digital Signal Processing (DSP) blocks.

3.1.33.1.3 Modeling and High Level Simulation

After obtaining the power metrics for each IP configuration, this information is added to SystemC
models that have been developed according to a particular implementation model. As described in Fi-

gure 4.17, all SystemC models share the same implementation model that consists of a data path and a
control path.

Regarding the data path, the IP functionality is basically described using SystemC. When designers
have no implementation details, this description only relies on an high-level behavioural representation.
However, some IP vendors provide bit-accurate C models of their hardware IPs. These can be easily inte-
grated into the high-level model in order to provide bit-accurate results of the IP functionality. Further-
more, SystemC supports both floating-point and fixed point data representation that allows designers to
evaluate the impact of data quantization in simulations.

Control paths are modelled as Finite State Machines (FSM). FSM states evolve according to both input
control signals and IP configuration parameters. The latter are defined by the application. Output control

82

PA
R

C
O

U
R

S
P

R
O

F
E

S
S

IO
N

N
E

L
S

Y
N

T
H

E
S

IS
O

F
R

E
S

E
A

R
C

H
W

O
R

K
S

A
P

P
E

N
D

IX

3. Evaluation of FPGA-Based Wireless Communications Systems

J. Lorandel et al.: Fast Power and Performance Evaluation of FPGA-Based Wireless Communication Systems

TABLE 3. Non exhaustive list of the cores in the library.

FIGURE 4. Implementation model.

all SystemC models share the same implementation model
that is made of a data path and a control path.

Regarding the data path, the IP functionality is basically
described using SystemC. When designers have no
implementation details, this description only relies on an
high-level behavioural representation. However, some IP
vendors provide bit-accurate C models of their hardware IPs.
They can be easily integrated into the high-level model in
order to provide bit-accurate results of the IP functionality.
Furthermore, SystemC supports both floating-point and fixed
point data representation that allows designers to evaluate the
impact of data quantization in simulations.

Control paths are modelled as Finite State
Machines (FSM). FSM states evolve according to both
input control signals and IP configuration parameters. The
latter are defined by the application. Output control signals
are propagated to the inputs of the subsequent FSMs,
throughout the system. Note that, few implementation details
are required because we only focus on the IP behaviour
which is generally governed by few key signals (clock enable,
input/output data valid signals, etc.). Basically, such details
are available directly in IP data-sheets. Using key signals, a
cycle accurate behaviour can be modelled, depending on the
user-knowledge.

For interoperability reasons, SystemC models share the
same generic interface based on the Advanced eXtensible
Interface (AXI) [44] that is widely used by IP providers.
As illustrated in Fig. 5, models that are based on this generic
interface can be easily added, modified or removed. It can be
noted that the master and slave interfaces of each model have
their own configuration, control and data signals.

FIGURE 5. Interface of the SystemC model based on AXI generic
standard.

An innovative point of our approach consists in monitoring
controls signals in order to determine the time-activity of
a block during system-level simulation. To this purpose,
an additional SystemC model called ‘Power Monitor’ has
been devised, which aims at evaluating the time-activity
coefficients of every IP in the system. These coefficients
represent the percentage of time during which the IPs are
processing data or are in the idle state. They are computed
based on the evolution of the control signals during the
behavioural simulation.

FIGURE 6. IPs time-activity in 2 applications.

Moreover, it is of particular importance to consider
dynamic behaviours that have a direct impact on power
consumption. This is illustrated in Fig. 6. Indeed, two
applications that share the same IPs can lead to different
power consumption estimations. In fact, power consumptions

VOLUME 4, 2016 2011

FIGURE 4.17 – Implementation model.

J. Lorandel et al.: Fast Power and Performance Evaluation of FPGA-Based Wireless Communication Systems

TABLE 3. Non exhaustive list of the cores in the library.

FIGURE 4. Implementation model.

all SystemC models share the same implementation model
that is made of a data path and a control path.

Regarding the data path, the IP functionality is basically
described using SystemC. When designers have no
implementation details, this description only relies on an
high-level behavioural representation. However, some IP
vendors provide bit-accurate C models of their hardware IPs.
They can be easily integrated into the high-level model in
order to provide bit-accurate results of the IP functionality.
Furthermore, SystemC supports both floating-point and fixed
point data representation that allows designers to evaluate the
impact of data quantization in simulations.

Control paths are modelled as Finite State
Machines (FSM). FSM states evolve according to both
input control signals and IP configuration parameters. The
latter are defined by the application. Output control signals
are propagated to the inputs of the subsequent FSMs,
throughout the system. Note that, few implementation details
are required because we only focus on the IP behaviour
which is generally governed by few key signals (clock enable,
input/output data valid signals, etc.). Basically, such details
are available directly in IP data-sheets. Using key signals, a
cycle accurate behaviour can be modelled, depending on the
user-knowledge.

For interoperability reasons, SystemC models share the
same generic interface based on the Advanced eXtensible
Interface (AXI) [44] that is widely used by IP providers.
As illustrated in Fig. 5, models that are based on this generic
interface can be easily added, modified or removed. It can be
noted that the master and slave interfaces of each model have
their own configuration, control and data signals.

FIGURE 5. Interface of the SystemC model based on AXI generic
standard.

An innovative point of our approach consists in monitoring
controls signals in order to determine the time-activity of
a block during system-level simulation. To this purpose,
an additional SystemC model called ‘Power Monitor’ has
been devised, which aims at evaluating the time-activity
coefficients of every IP in the system. These coefficients
represent the percentage of time during which the IPs are
processing data or are in the idle state. They are computed
based on the evolution of the control signals during the
behavioural simulation.

FIGURE 6. IPs time-activity in 2 applications.

Moreover, it is of particular importance to consider
dynamic behaviours that have a direct impact on power
consumption. This is illustrated in Fig. 6. Indeed, two
applications that share the same IPs can lead to different
power consumption estimations. In fact, power consumptions

VOLUME 4, 2016 2011

FIGURE 4.18 – IPs time-activity in 2 applications.

signals are propagated to the inputs of the subsequent FSMs, throughout the system. Note that, few im-
plementation details are required because we only focus on the IP behaviour which is generally governed
by few key signals (clock enable, input/output data valid signals, etc.). Basically, such details are available
directly in IP data-sheets. Using key signals, a cycle accurate behaviour can be modelled, depending on
the user-knowledge.

An innovative point of our approach consists in monitoring controls signals in order to determine the
time-activity of a block during system-level simulation. To this purpose, an additional SystemC model
called "Power Monitor" has been devised, which aims at evaluating the time-activity coefficients of every
IP in the system. These coefficients represent the percentage of time during which the IPs are processing
data or are in the idle state. They are computed based on the evolution of the control signals during the
behavioural simulation.

Moreover, it is of particular importance to consider dynamic behaviours that have a direct impact on
power consumption. This is illustrated in Figure 4.18. Indeed, two applications that share the same IPs
can lead to different power consumption estimations.

The final step of the proposed approach consists in developing the global system model by connecting
the different sub-models that have been stored in the library. For example, a complete system may consist
of an IFFT block, an LTE encoder and a QAM modulator.

During system-level simulations, many applications can be easily evaluated according to the defined
scenario. Designers only have to modify the system parameters and (re)run simulations in order to eva-
luate the performance of a new application. The stopping criterion of the simulation can also be defined
by the user. For example, this criterion can be a simulation duration, a number of data to transmit, a
maximum number of errors that are detected at the receiver, etc.

83

PA
R

C
O

U
R

S
P

R
O

F
E

S
S

IO
N

N
E

L
S

Y
N

T
H

E
S

IS
O

F
R

E
S

E
A

R
C

H
W

O
R

K
S

A
P

P
E

N
D

IX
Chapitre 4. From Power Modeling to highly Energy-Efficient Devices

J. Lorandel et al.: Fast Power and Performance Evaluation of FPGA-Based Wireless Communication Systems

TABLE 5. Dynamic Power Scaling factor for different FPGA families and hardware IPs.

FIGURE 8. SISO-OFDM communication chain diagram.

SISO-OFDMwireless communication system in VHDL. The
architecture of both transmitter and receiver architecture
is depicted in Fig. 8. This system is a typical wireless
communication chain based on an OFDM modulation,
a widely used modulation technique for transmitting data
over wireless channels. For example, OFDM is currently
used in LTE or WiMAX technologies. Its principle relies on
the fact that information is spread over several orthogonal
sub-carriers, at low data rate, which makes transmission very
robust to multipath fading [45].

A. SISO-OFDM SYSTEM
The transmitter consists of a source which provides the
binary data to send. These data can be sent to the channel
encoder, if there is any, or immediately processed by the
QAM modulator that delivers complex I/Q QAM symbols
according to the input binary symbols. The modulator
supports QPSK, 16QAM and 64QAM modulations. The
Carrier Mapper module aims to allocate modulated

symbols to the corresponding sub-carriers. Moreover,
as in real systems, all sub-carriers may not be used. Some
of them can be cancelled in order to avoid degradations at the
border of the band.

An OFDM modulation is then performed using an IFFT
block and a cyclic prefix (CP) is added. OFDM symbols
coming from the IFFT can be scaled by the DAC-Scaling
module according to the Digital-to-Analogue converter
resolution. The last block of the transmitter realizes the
time pilot insertion, which enables channel estimation at the
receiver side.

The receiver performs the dual operations, starting
with removing the CP and ADC data scaling. Then, the
FFT is computed and carrier un-mapping only keeps the
useful sub-carriers. A channel estimation is performed on
every dedicated OFDM pilot symbol. Finally, received
signals are equalized according to the channel coefficients
and a QAM demodulation is performed to retrieve
the binary data. Turbo decoding is used for channel
decoding.

VOLUME 4, 2016 2013

FIGURE 4.19 – SISO-OFDM communication chain diagram.

3.23.2 Use Case

In order to demonstrate the efficiency of the proposed methodology, a SISO-OFDM wireless communi-
cation systems has been described in VHDL in [Lor15]. The architecture of both transmitter and receiver
is depicted in Figure 4.19.

3.2.13.2.1 System Description

The transmitter consists of a source which provides the binary data to send. These data can be sent to
the channel encoder, if there is any, or immediately processed by the QAM modulator that delivers com-
plex I/Q QAM symbols according to the input binary symbols. The modulator supports QPSK, 16 QAM
and 64 QAM modulations. The Carrier Mapper module aims to allocate modulated symbols to the corres-
ponding sub-carriers. Moreover, as in real systems, all sub-carriers may not be used. Some of them can be
cancelled in order to avoid degradation at the border of the band.

An OFDM modulation is then performed using an IFFT block and a cyclic prefix (CP) is added. OFDM
symbols coming from the IFFT can be scaled by the DAC-Scaling module according to the Digital-to-
Analogue converter resolution. The last block of the transmitter realizes the time pilot insertion, which
enables channel estimation at the receiver side. The receiver performs the dual operations, starting with
removing the CP and ADC data scaling. Then, the FFT is computed and carrier un-mapping only keeps
the useful sub-carriers. A channel estimation is performed on every dedicated OFDM pilot symbol. Fi-
nally, received signals are equalized according to the channel coefficients and a QAM demodulation is
performed to retrieve the binary data. In this example, turbo decoding is used for channel decoding.

The global communication chain has been completely described in VHDL and some IP cores from
Xilinx have been used. The architecture is highly configurable according to user-defined scenarios. Some
parameters that can be chosen are :

— data quantization (number of bits to represent the QAM complex symbols) of every module,

— Fast Fourier transforms size [256 :2048],

— Length of the cyclic prefix,

— Modulation orders [QPSK, 16QAM, 64QAM],

— Number of used sub-carriers,

— Frame structure i.e. the number of OFDM data symbols between each OFDM pilot symbol (for chan-
nel estimation),

— Code block size for channel encoding,

— ...

84

PA
R

C
O

U
R

S
P

R
O

F
E

S
S

IO
N

N
E

L
S

Y
N

T
H

E
S

IS
O

F
R

E
S

E
A

R
C

H
W

O
R

K
S

A
P

P
E

N
D

IX

3. Evaluation of FPGA-Based Wireless Communications Systems

TABLE 4.4 – Considered scenarios and applications in the SISO-OFDM model.

Scenario Appli. 1 Appli. 2 Appli. 3 Appli. 4

Channel Coding
None

R=1/3
Block size = 1024 bits

Channel Decoding Turbo Decoder (1 iteration)
Modulation QPSK
(I)FFT size 256 2048 256 2048

Cyclic Prefix Length
32 256 32 256

(in QAM Symbols)
Number of used subcarriers 256/256 2048/2048 256/256 2048/2048

Quantification 10 bits 14 bits

Frame
1 OFDM pilot symbol every

10 OFDM data symbols
FPGA Xilinx Virtex-6 LX240T

Clock Frequency 50 MHz

TABLE 4.5 – Power estimation results according to 4 SISO-OFDM applications.

XPower Proposed Relative Spread- Relative
(ref) Methodology Error sheet Error

(mW) (mW) (%)1 (mW) (%)2

Appli. 1 TX 55.36 58.19 5.11 92.33 66.8

Appli. 2
TX 84.58 80.7 -4.81 120.93 43
RX 244.26 245.7 0.59 358.55 46.8

Appli. 3
TX 65.48 68.76 5 107.6 57.1
RX 263.52 266.84 1.26 406.11 54.1

Appli. 4
TX 98.73 100.04 1.32 145.21 47
RX 308.38 308.11 -0.01 477.36 54.8

1 : Relative Error between XPower and the proposed methodology
2 : Relative Error between XPower and the spreadsheet approach

3.2.23.2.2 Power Estimation

First, one scenario has been defined and 4 applications were tested as summarized in Table 4.4. After
applying the proposed methodology, average dynamic power consumption results have been obtained for
these 4 applications. Estimations from our methodology have been compared with XPower estimations for
the entire design i.e. all systems have been developed in VHDL to validate our methodology. Results are
given in Table 4.5 and correspond to the average power estimations without considering I/Os dynamic
power. The simulation duration has been set to 5 ms.

Regarding Table 4.5, power estimations in the proposed methodology are close to the overall power
consumption measured by the XPA tool. With a maximal power estimation error of 5% only, this demons-
trates the effectiveness of our methodology according to the 4 user-defined applications. The error that is
introduced is mainly due to software optimization during Mapping and Place & Route steps. It can be no-
ticed that the error introduced by the Place & Route step can be reduced using a black-box approach and
incremental synthesis. Such techniques can force the tool to map a specific core into a dedicated region of
the FPGA. For a given IP, the hardware resources and the interconnections between them will be identical
as in the final system. Our approach can then deliver an upper bound of power consumption. Moreover,
time-activity coefficients, that are evaluated using a high-level model of the system, are approximated
values. This also constitutes another source of error.

According to the results, it can be noted that, between Applications 3 and 4, the average power
consumption only increases of 33 mW whereas the IFFT and the CP sizes are multiplied by a factor of
8. Channel decoding that is performed using a turbo-decoder, obviously consumes a significant part of
the energy due to its high algorithm complexity. However, it enables the significant improvement of the
level of performance i.e. the reduction of the BER (Bit-Error Rate) for a given SNR (Signal-to-Noise ratio).

A comparison between our approach and the power estimation using spreadsheets has been perfor-
med. In the spreadsheet approach, the sum of the average dynamic powers is computed when IPs are
active, without considering time-activity coefficients. As indicated in Table 4.5, power consumption va-
lues that are estimated using the spreadsheet approach give an important relative error, ranging from 43%
to 57.3% and from 46.8% to 122% for transmitters and receivers respectively. Note that the relative error

85

PA
R

C
O

U
R

S
P

R
O

F
E

S
S

IO
N

N
E

L
S

Y
N

T
H

E
S

IS
O

F
R

E
S

E
A

R
C

H
W

O
R

K
S

A
P

P
E

N
D

IX
Chapitre 4. From Power Modeling to highly Energy-Efficient Devices

TABLE 4.6 – Simulation speed-up.

Proposed XPower
Methodology (s) Analyzer (h)

Appli. 1 TX 1.27s 12h09

Appli. 2
TX

2s
19h51

RX 35h07

Appli. 3
TX

1.9s
15h46

RX 30h15

Appli. 4
TX

2s
22h

RX 50h56

has been computed as follows :

RelativeError =
(Value −Ref erence)

Ref erence
∗ 100 (4.22)

where Ref erence is the power consumption given by XPower and Value is the power consumption obtai-
ned using our methodology or by using the spreadsheet approach.

3.2.33.2.3 Power Estimation Speed-Up

Another key advantage of the proposed approach is to provide very fast power estimations. As indi-
cated in Table 4.6, gate-level simulations using XPower Analyzer can take several hours or even days to
simulate few milliseconds of a SISO-OFDM communication chain. As an example, for 4 applications, the
low-level simulation duration ranges from 12h09 to 50h56, which is quite significant to compare perfor-
mance. Moreover, such duration corresponds to the time needed for only one configuration. Therefore, it
prevents an efficient exploration and the test of many configurations.

Using our approach, it only takes few seconds (ranging from 1.27s to 2s in average) to simulate a
complete system (using floating point data representation). The gain is even more important during design
space exploration since it allows designers to test a huge number of configurations very rapidly. At high-
level, only C++ files need to be modified and compiled between two explorations whereas the entire
design flow has to be rerun from scratch using a typical design flow.

44 Towards Fine grain Modeling

Although providing very promising results in terms of accuracy, the methodology presented in the
previous section has still a major issue, which is its lack of genericity. This section describes an attempt to
improve the energy consumption estimation while drastically reducing the number of components to be
developed in the library.

4.14.1 Analytical Modeling

An approach based on analytic modelling have been proposed by Jordane Lorandel to improve the
proposed methodology by reducing the number of configurations that need to be stored in the library.
Such techniques have been widely studied in the past and aim at extrapolating power as a function of
parameters of interest [EJH06, CA07, RBAN+11, SRH+11, JC12]. In our case, analytic power models have
first been developed using curve fitting and linear regressions. These models have been elaborated for
different hardware IPs of the wireless base-band processing. Examples of results are detailed in Table 4.7
for a Virtex-6 LX240T FPGA. As indicated in this table, the dynamic power of hardware IPs can be eva-
luated regarding specific parameters. For example, designers only have to give each parameter a value in

86

PA
R

C
O

U
R

S
P

R
O

F
E

S
S

IO
N

N
E

L
S

Y
N

T
H

E
S

IS
O

F
R

E
S

E
A

R
C

H
W

O
R

K
S

A
P

P
E

N
D

IX

4. Towards Fine grain Modeling

order to estimate the power of a configuration. Using the proposed analytic models, a maximal error lower
than 16% is observed as compared with low-level estimations. However, accuracy can be improved using
high-level simulation and the evaluation of the IP’s time-activity coefficients. In this case, a maximal error
lower than 7% is obtained as compared to low-level estimations.

TABLE 4.7 – Examples of analytic power models.

Hardware IP Analytic Power model
Channel Encoder Pdynamic (mW) = 0.052 + 0.1785 ∗ f + 1.835e − 5 ∗

CBS
QAM Modulator Pdynamic (mW) = q1(mod1(0.0424 ∗ f − 0.0053) +

mod2(0.04425 ∗ f − 0.004) + mod3(0.0514 ∗ f −
0.00133)) + q2(mod1(0.04515 ∗ f − 0.002) +
mod2(0.0479 ∗ f + 0.00067) + mod3(0.0591 ∗ f −
0.0013))

Carrier Mapper Pdynamic (mW) = q1(0.0853 ∗ f − 0.0027) +
q2(0.106 ∗ f − 0.0027)

IFFT Pdynamic (mW) = q1(8.053 − 2.626log(NFFT) −
0.3537∗f +0.21∗log(NFFT)2+0.2432∗log(NFFT)∗
f) + q2(−4.613 + 1.531 ∗ log(NFFT)− 0.3551 ∗ f −
0.1225 ∗ log(NFFT)2 + 0.2863 ∗ log(NFFT) ∗ f)

[q1 = 1, q2 = 0] for 10 bits of quantization
[q1 = 0, q2 = 1] for 14 bits of quantization
Clock frequency f = [10− 100]MHz
IFFT Size NFFT = [128− 2048]pts
Modulation : QPSK = [mod1 = 1,mod2 = 0,mod3 = 0]
16QAM=[mod1 = 0,mod2 = 1,mod3 = 0]
64-QAM=[mod1 = 0,mod2 = 1,mod3 = 0]

4.24.2 Extension to other FPGA Devices

One major drawback of the previous approach is that it is specific to an FPGA device and models have
to be developed several times when other FPGA families are considered. To circumvent this limitation,
scaling factors for each IP have been proposed to extrapolate power consumption values depending on
the FPGA family.

In Figure 4.20, dynamic power values have been obtained on a simple FIR filter for different types
of FPGAs. The size of the filter varies from N = 2 taps to N = 112 taps. As indicated in the figure, the
dynamic power does not vary much within a family. It may also be noticed that the best situation occurs
for the most recent technology (i.e Virtex-6 in our example). According to these results, it can be clearly
seen that scaling factors may be found to obtain a power estimation for all FPGAs families. Examples of
such scaling factors are summarized in Table 4.8.

4.34.3 Neural Networks based Modeling

After studying the modeling of hardware IP blocks in FPGA circuits in Jordane Lorandel’s thesis, we
have been interested in generalizing the approach in order to deal with a reduced set of models. The
underlying idea was to overcome the fact that all the components had to be characterized as soon as a
simple configuration modification had to be made.

We therefore decided to reduce the granularity of the models by making the assumption that an IP
can be seen as a set of basic operators exchanging data. Unfortunately, reducing the granularity of models
poses a problem. In this case, it becomes mandatory to build a full system based on these small operators,
which is much more complex than the first presented approach. However, we have considered that current
high-level synthesis tools are efficient enough to rapidly generate a circuit based on such operators. We
could then benefit from these tools to use our models.

We have then proposed a new hardware exploration methodology that aimed at combining both ac-
curacy and fast power estimation. This is achieved by estimating the power of specific operators after the

87

PA
R

C
O

U
R

S
P

R
O

F
E

S
S

IO
N

N
E

L
S

Y
N

T
H

E
S

IS
O

F
R

E
S

E
A

R
C

H
W

O
R

K
S

A
P

P
E

N
D

IX
Chapitre 4. From Power Modeling to highly Energy-Efficient Devices

A
ve

ra
ge

D
yn

am
ic

Po
w

er
 (

m
W

)

FIGURE 4.20 – Average dynamic power (mW) of a FIR filter according to different FPGAs families.

TABLE 4.8 – Dynamic power scaling factor for different FPGA families and hardware IPs.

Scaling factors Power estimations (mW)

IP name FPGA Virtex-4 (ref) Virtex-5 Virtex-6 Virtex-4 Virtex-5 Virtex-6

FIR Filter

2 Taps 1 0.479 0.225 54.67 26.19 12.285

32 Taps 1 0.399 0.1015 1087 433.79 110.41

62 Taps 1 0.391 0.104 1611 630.72 167.58

112 Taps 1 0.414 0.1261 1850 767.14 233.42

QAM Modulator

QPSK 1 0.415 0.263 8.33 3.47 2.19

16QAM 1 0.306 0.304 8.02 2.46 2.44

64QAM 1 0.317 0.23 12.44 3.94 2.88

QAM Demodulator

QPSK 1 0.368 0.266 7.15 2.63 1.9

16QAM 1 0.259 0.212 13.56 3.51 2.88

64QAM 1 0.395 0.21 17.09 6.75 3.58

IFFT

128pts 1 0.465 0.332 697 324 231

256pts 1 0.438 0.303 846.7 370.6 256.52

512pts 1 0.393 0.277 1159 456 321

1024pts 1 0.363 0.258 1407 511 364

2048pts 1 1 0.478 0.293 1143 546.5 335.6
1 Lower power due to the automatic implementation of BRAMS by the design tool

hardware implementation on a real platform and by exploiting this information in new models. These
pre-characterized models can be easily integrated and simulated to estimate the power consumption of
an overall design. This work has been led in Yehya Nasser’s thesis that aimed at proposing new efficient
models based on artificial intelligence.

Some previous works have already introduced artificial intelligence based on neural networks for po-

88

PA
R

C
O

U
R

S
P

R
O

F
E

S
S

IO
N

N
E

L
S

Y
N

T
H

E
S

IS
O

F
R

E
S

E
A

R
C

H
W

O
R

K
S

A
P

P
E

N
D

IX

4. Towards Fine grain Modeling

wer estimation. Some of them are described in [CYG05], [Roy07]. In [CYG05], a neural network is used to
estimate the output statistics and the power consumption of complementary metal-oxide-semiconductor
(CMOS) circuits. The average absolute relative error of the proposed method is about 5.0%, at circuit le-
vel. Unfortunately, using this method, a lot of circuits have to be simulated to cover most applications,
leading to a lack of generality. In [Roy07], macro-modeling based on neural networks has been applied to
different components such as multipliers. A comparison of different models shows that neural networks
are the most accurate method over linear equations and LUT-based power estimation models.

4.3.14.3.1 Model Definition

In our approach, the purpose of the characterization phase is to develop a power model of a component
by extracting the relevant information that has a direct impact on power. An example of such operator
can be a simple component such as an adder, multiplexer, multiplier, decoder, etc. Each operator has its
own size and a defined number of inputs and outputs. In order to evaluate the power consumption of a
given circuit, we have proposed to provide each operator with a power model that depends on the activity
rate of its inputs. Each operator model consists actually of two sub-models M1 and M2 that are described
in Figure 4.21.

M1 constitutes a first model that predicts the power consumption for given Signal Rates (SR) (or α)
and Percentage Logic High (PLH) (or p) of all inputs. The signal activity of the inputs is expressed in terms
of millions of transitions per second (Mtr/sec). For every input, p refers to the percentage of time during
which the signal is at HIGH level, within a period of 1 s. The global model then provides an average of
the energy consumed during this period.

The second sub-model (M2) makes it possible to estimate the signal activity of the outputs as well as
the Percentage Logic High according to the operator’s inputs. This second model is particularly useful
when designers want to propagate the signals’ rates as well as the PLH among all connected operators in
their design.

In order to obtain a global power estimation for the entire design, it is then possible to sum-up the
power contribution of each operator, at high level. With an accurate estimation of signals’ activity, these
models allow designers to obtain accurate results without spending a lot of time in simulation processes.

Power Modeling on FPGA: A Neural Model for RT-Level Power Estimation CF ’18, May 8–10, 2018, Ischia, Italy

useful when designers want to propagate the signals’ activity as
well as the PLH among all connected operators in their design.

In order to obtain a global power estimation for the entire design,
it is then possible to sum-up the power contribution of each opera-
tor, at high level. With an accurate estimation of signals activity,
these models allow designers to obtain accurate results without
spending a lot of time in simulation processes.

As an example, let us consider a system composed of N opera-
tors, and let us assume that the switching activity rate is αi , and
that pi is the percentage logic high at the input opi of the opera-
tor. Therefore, (βi ,hi) constitutes the output feature vector of the
operator.M1,i andM2,i corresponds to the two models for the opi
input. By propagating this information to the subsequent operators,
a global power value can be computed according to eq. 2.

PGlobal = M1,1(α1,p1) +
N−1∑
i=2

M1,i (βi−1,hi−1). (2)

Figure 1: Operator Model

3.3 Characterization Process
In order to obtain pertinent information regarding the power that
is consumed by a specific operator, a characterization phase has to
be performed. It consists in implementing the operator on a given
FPGA target and in obtaining power results after applying various
configurations of SR and PLH values at the operator inputs. This
process is performed at low-level of abstraction in order to get as
much technical details as possible and to obtain the best accuracy
in terms of power estimation. Tools such as XPA may be used to
build a huge database that takes into consideration all ranges of
signal rates and Percentage Logic High for every inputs. The power
characterization process at low-level is described in Fig. 2.

3.4 Neural Network Models
BothM1 andM2 sub-models have been implemented using neural
networks that are classical tools that have shown their efficiency in
lots of domains. They especially perform very well in classification
and also in non-linear regression problems.

Neural networks consist of processing units called neurons that
operate in parallel to solve computational problems. In this study,
we consider basic multi-layer perceptrons (MLP) feed forward net-
works, that permit to model complex behaviors and may perform
multi-dimensional functions approximation. Such networks have
one or more hidden layers composed of neurons with non linear
transfer function, and provide an output layer that implements

Hardware Description Language
(HDL) of Digital Operators

Functional
Simulation

Working?

No

Implementation on
FPGA

Yes

10000 Samples of
Random

Generated Signal
Rates (SR) &

Percentage Logic
High (PLH)

Tool Command Language (TCL)
scripts to control & automate the

characterization process

XPower Analyzer

Arithmetic Operators Implemented
on FPGA

Power values extracted from
XPower Analyzer (10000 samples)

Samples corresponding to the
10000 x (SR, PLH)

Figure 2: Power characterization Process Description

output neurons with a linear activation function. Fig. 3 shows a
typical architecture of an MLP neural network.

In a first learning phase, the multiple layers with nonlinear ac-
tivation functions allow the network to learn the relationships
between inputs and outputs. This is performed by modifying the
weights value between different neurons. In a second phase (the
forward phase), the network may estimate the correct output for
any given input pattern.

In our models, three layers have been used. Each layer receives
its inputs from the precedent layer and forwards its outputs to the
subsequent. In the forward phase, the hidden layer weight matrix is
multiplied by the input vectorX = (x1,x2,x3, . . . ,xn)T , to compute
the hidden layer output, as expressed in equation 3.

yh, j = f

(Ni∑
i=1

wh, jixi − θ

)
(3)

where wh, ji is the weight connecting input i to unit j in the
hidden neuron layer. θ is an offset termed bias that is also connected
to each neuron. In order to train the networks, the well known back-
propagation algorithm has been used.

Figure 3: MLP Neural Network Architecture

4 EXPERIMENTS AND RESULTS
In order to demonstrate the feasibility of our approach and to quan-
tify the models accuracy, case studies have been performed on

FIGURE 4.21 – Operator model.

Both M1 and M2 sub-models have been implemented using neural networks that are classical tools that
have shown their efficiency in lots of domains. They especially perform very well in classification and also
in non-linear regression problems. In this study, we have considered basic Multi-Layer Perceptrons (MLP)
feed forward networks, that permit to model complex behaviors and may perform multi-dimensional
functions approximation. Recall from Chapter 3 that such networks have one or more hidden layers com-
posed of neurons with non linear activation functions and provide an output layer that implements out-
put neurons with a linear activation function. Figure 4.22 shows a typical architecture of an MLP neural
network.

89

PA
R

C
O

U
R

S
P

R
O

F
E

S
S

IO
N

N
E

L
S

Y
N

T
H

E
S

IS
O

F
R

E
S

E
A

R
C

H
W

O
R

K
S

A
P

P
E

N
D

IX
Chapitre 4. From Power Modeling to highly Energy-Efficient Devices

Power Modeling on FPGA: A Neural Model for RT-Level Power Estimation CF ’18, May 8–10, 2018, Ischia, Italy

useful when designers want to propagate the signals’ activity as
well as the PLH among all connected operators in their design.

In order to obtain a global power estimation for the entire design,
it is then possible to sum-up the power contribution of each opera-
tor, at high level. With an accurate estimation of signals activity,
these models allow designers to obtain accurate results without
spending a lot of time in simulation processes.

As an example, let us consider a system composed of N opera-
tors, and let us assume that the switching activity rate is αi , and
that pi is the percentage logic high at the input opi of the opera-
tor. Therefore, (βi ,hi) constitutes the output feature vector of the
operator.M1,i andM2,i corresponds to the two models for the opi
input. By propagating this information to the subsequent operators,
a global power value can be computed according to eq. 2.

PGlobal = M1,1(α1,p1) +
N−1∑
i=2

M1,i (βi−1,hi−1). (2)

Figure 1: Operator Model

3.3 Characterization Process
In order to obtain pertinent information regarding the power that
is consumed by a specific operator, a characterization phase has to
be performed. It consists in implementing the operator on a given
FPGA target and in obtaining power results after applying various
configurations of SR and PLH values at the operator inputs. This
process is performed at low-level of abstraction in order to get as
much technical details as possible and to obtain the best accuracy
in terms of power estimation. Tools such as XPA may be used to
build a huge database that takes into consideration all ranges of
signal rates and Percentage Logic High for every inputs. The power
characterization process at low-level is described in Fig. 2.

3.4 Neural Network Models
BothM1 andM2 sub-models have been implemented using neural
networks that are classical tools that have shown their efficiency in
lots of domains. They especially perform very well in classification
and also in non-linear regression problems.

Neural networks consist of processing units called neurons that
operate in parallel to solve computational problems. In this study,
we consider basic multi-layer perceptrons (MLP) feed forward net-
works, that permit to model complex behaviors and may perform
multi-dimensional functions approximation. Such networks have
one or more hidden layers composed of neurons with non linear
transfer function, and provide an output layer that implements

Hardware Description Language
(HDL) of Digital Operators

Functional
Simulation

Working?

No

Implementation on
FPGA

Yes

10000 Samples of
Random

Generated Signal
Rates (SR) &

Percentage Logic
High (PLH)

Tool Command Language (TCL)
scripts to control & automate the

characterization process

XPower Analyzer

Arithmetic Operators Implemented
on FPGA

Power values extracted from
XPower Analyzer (10000 samples)

Samples corresponding to the
10000 x (SR, PLH)

Figure 2: Power characterization Process Description

output neurons with a linear activation function. Fig. 3 shows a
typical architecture of an MLP neural network.

In a first learning phase, the multiple layers with nonlinear ac-
tivation functions allow the network to learn the relationships
between inputs and outputs. This is performed by modifying the
weights value between different neurons. In a second phase (the
forward phase), the network may estimate the correct output for
any given input pattern.

In our models, three layers have been used. Each layer receives
its inputs from the precedent layer and forwards its outputs to the
subsequent. In the forward phase, the hidden layer weight matrix is
multiplied by the input vectorX = (x1,x2,x3, . . . ,xn)T , to compute
the hidden layer output, as expressed in equation 3.

yh, j = f

(Ni∑
i=1

wh, jixi − θ

)
(3)

where wh, ji is the weight connecting input i to unit j in the
hidden neuron layer. θ is an offset termed bias that is also connected
to each neuron. In order to train the networks, the well known back-
propagation algorithm has been used.

Figure 3: MLP Neural Network Architecture

4 EXPERIMENTS AND RESULTS
In order to demonstrate the feasibility of our approach and to quan-
tify the models accuracy, case studies have been performed on

FIGURE 4.22 – MLP neural network architecture.

4.3.24.3.2 Results

At operator-level, a verification phase is performed to calculate the accuracy of the proposed models.
As shown in Figure 4.23, XPA has been used to estimate the power consumption of a 16-bits adder and a
16-bits multiplier. For the same operators, the MATLAB tool has then been used to estimate the dynamic
power consumption using the neural approach.

By providing the 16-bits adder / 16-bits multiplier with 10000 samples of Signal Rates and PLH,
samples of dynamic power have been extracted from XPA. The exact same inputs given to XPA were also
provided to the neural models to evaluate both power consumption and the Signal Rate and PLH. Both
M1 and M2 neural networks have then 16 (bits) x 2 (inputs) x 2 (Signal Rates + PLH) = 64 inputs.

Both models respectively contain 100 and 150 nodes in their hidden layer. The training set of each
neural network consists of 64x10000 data-samples (80% for training, 10% for validation and 10% for
testing) with different combinations of Signal Rates and PLH. At the output of the M1 Neural Network,
only one power value is provided. The M2 Neural Network provides 16 (bits)x 2 (signal rates + PLH) = 32
outputs to propagate the signal activity to other subsequent models. Both M1 and M2 models are grouped
in a single block that is described in Figure 4.23. Table 4.9 shows the relative error at operator-level in
terms of power estimation. This error has been computed on 10000 data samples.

CF ’18, May 8–10, 2018, Ischia, Italy Yehya Nasser, Jean-Christophe Prévotet and Maryline Hélard

different arithmetic operators. A full design composed of basic arith-
metic operators (adders and multipliers) has been implemented on
a xc7z045ffg900 FPGA device.

Two types of power estimation have been performed. The first
corresponds to the classic power estimation that is achieved in the
last steps of an FPGA design flow (after place and route). Regarding
Xilinx FPGAs, this step is implemented using XPA. The second
power estimation has been performed using our neural networks
models. In this case, simulation is implemented in Matlab and takes
place at high-level. The idea is to guarantee a fair comparison
between the results obtained with our models and XPA.

Both power estimation types have been achieved on two types of
designs. The first consists of a single operator (adder or multiplier)
in our case, and the second consists of a more complex combination
of these operators i.e an arithmetic function. This aims to demon-
strate the use and propagation of signal rates throughout a full
design. The results are described in the following sections.

4.1 Per-operator Verification
At operator-level, a verification phase is performed to calculate the
accuracy of the proposed models. As shown in Fig. 4, XPA has been
used to estimate the power consumption of a 16 bit adder and a 16
bit multiplier. For the same operators, the MATLAB tool has then
been used to estimate the dynamic power consumption using the
neural approach.

By providing the 16 bit adder / 16 bit multiplier with 10000 sam-
ples of signal rates and PLH, then 10000 data-samples of dynamic
power have been extracted from XPA. The exact same inputs given
to XPA are also provided to the neural models to evaluate both
power consumption and the signal rate and PLH. BothM1 andM2
neural networks have thus 16 (bits) x 2 (inputs) x 2 (signal rates +
PLH) = 64 inputs. Both models respectively contains 100 and 150
nodes in their hidden layer. The training set of each neural network
consists of 64x10000 data-samples (80% for training, 10% for valida-
tion and 10% for testing) with different combinations of signal rates
and PLH. At the output of theM1 Neural Network, only one power
value is provided. The M2 Neural Network provides 16 (bits)x 2
(signal rates + PLH) = 32 outputs to propagate the signal activity to
other subsequent models. BothM1 andM2 models are grouped in
a single block that is described in Fig. 4.

Op

X1

X2

Data_out Neural Network
Operator Model

Data_in_16-bit
32xSR_in

32xPLH_in

Estimated Power

16xSR_out

16xPLH_out

Figure 4: Neural network accuracy measurements

Table 1 shows the relative error at operator-level in terms of
power estimation. The relative error has been calculated according
to 10000 data samples.

The results shown in this table indicate a relative error that is
very small (around 0.01%). This shows that neural networks have
learned the behavior of XPA and are able to model it very accurately.

Operators Real Power Modeled Power Relative Error
(mW) (mW) (%)

Adder 1.7879 1.7881 0.0112
Multiplier 27.4147 27.4136 0.0040
Table 1: Power accuracy for the considered models

4.2 Per-system Verification
At system-level, verification of several scenarios have been per-
formed. Figure 5 describes a function composed of single operators.
As in the per-operator approach, XPA has been used to evaluate the
power of the global system as well as the SR and PLH parameters.
In parallel, another global model has been built under Matlab and
consists in interconnecting bothM1 andM2 models for each oper-
ator and perform an high-Level simulation. This simulation aims
to propagate the parameters throughout all operators and provides
an overall power estimation.

F=(x1+x2)op(x3+x4)

X1

X2

X3

X4

Op F

Neural
Network Box
Adder Model

Neural
Network Box
Adder Model

Neural
Network Box

Operator
Model

P_system=ΣPi=p1+p2+p3P1

P2

P3

16xPLH_out

16xPLH_out

16xSR_out32xSR_in

32xPLH_in

32xSR_in

32xPLH_in

16xSR_out

32xSR_in

32xPLH_in

Figure 5: System level power estimation XPA vs NN

For both simulations, the same inputs, signal rates and PLH
combinations of 5000 data-samples have been provided to both XPA
and neural models. 5000 data-samples of dynamic power values
have been extracted from XPA and from the global neural power
models. Note that two functions have been implemented : Fi = (a
op b) op (c op d), where op can either be an adder or a multiplier.

As in eq. 4, a mean absolute percentage error is calculated over
5000 data samples at system-level to evaluate the accuracy of the
approach. PXPA is the power consumption calculated using the
XPA tool and PNN is the power consumption estimated by the
power model.

%MAPESystem−level =
100
n

n∑
i=1

|PXPA − PNN |
PXPA

(4)

Arithmetic Function Neural models (MAPE %)
F1(op1=+, op2=+, op3=+) 7.3699
F2(op1=*, op2=*, op3=*) 3.5158
Table 2: Models Accuracy for Different Functions

According to the results given in Table 2, it can be seen that our
method provides a good accuracy at system-level with an error that
is less than 8%.

Table 3 shows the initial estimates that are based on the sum of
the total average power of each operator. These estimates exhibit

FIGURE 4.23 – Neural network accuracy measurements.

Operators Real Power Modeled Power Relative Error
(mW) (mW) (%)

Adder 1.7879 1.7881 0.0112
Multiplier 27.4147 27.4136 0.0040

TABLE 4.9 – Power accuracy for the considered models.

At System-Level, a verification of several scenarios have been performed. Figure 4.24 describes a func-
tion composed of single operators. As in the per-operator approach, XPA has been used to evaluate the

90

PA
R

C
O

U
R

S
P

R
O

F
E

S
S

IO
N

N
E

L
S

Y
N

T
H

E
S

IS
O

F
R

E
S

E
A

R
C

H
W

O
R

K
S

A
P

P
E

N
D

IX

4. Towards Fine grain Modeling

power of the global system as well as the SR and PLH parameters. In parallel, another global model has
been built under Matlab and has consisted in interconnecting both M1 and M2 models for each operator
and perform a high-Level simulation. This simulation aimed to propagate the parameters throughout all
operators and to provide an overall power estimation.

CF ’18, May 8–10, 2018, Ischia, Italy Yehya Nasser, Jean-Christophe Prévotet and Maryline Hélard

different arithmetic operators. A full design composed of basic arith-
metic operators (adders and multipliers) has been implemented on
a xc7z045ffg900 FPGA device.

Two types of power estimation have been performed. The first
corresponds to the classic power estimation that is achieved in the
last steps of an FPGA design flow (after place and route). Regarding
Xilinx FPGAs, this step is implemented using XPA. The second
power estimation has been performed using our neural networks
models. In this case, simulation is implemented in Matlab and takes
place at high-level. The idea is to guarantee a fair comparison
between the results obtained with our models and XPA.

Both power estimation types have been achieved on two types of
designs. The first consists of a single operator (adder or multiplier)
in our case, and the second consists of a more complex combination
of these operators i.e an arithmetic function. This aims to demon-
strate the use and propagation of signal rates throughout a full
design. The results are described in the following sections.

4.1 Per-operator Verification
At operator-level, a verification phase is performed to calculate the
accuracy of the proposed models. As shown in Fig. 4, XPA has been
used to estimate the power consumption of a 16 bit adder and a 16
bit multiplier. For the same operators, the MATLAB tool has then
been used to estimate the dynamic power consumption using the
neural approach.

By providing the 16 bit adder / 16 bit multiplier with 10000 sam-
ples of signal rates and PLH, then 10000 data-samples of dynamic
power have been extracted from XPA. The exact same inputs given
to XPA are also provided to the neural models to evaluate both
power consumption and the signal rate and PLH. BothM1 andM2
neural networks have thus 16 (bits) x 2 (inputs) x 2 (signal rates +
PLH) = 64 inputs. Both models respectively contains 100 and 150
nodes in their hidden layer. The training set of each neural network
consists of 64x10000 data-samples (80% for training, 10% for valida-
tion and 10% for testing) with different combinations of signal rates
and PLH. At the output of theM1 Neural Network, only one power
value is provided. The M2 Neural Network provides 16 (bits)x 2
(signal rates + PLH) = 32 outputs to propagate the signal activity to
other subsequent models. BothM1 andM2 models are grouped in
a single block that is described in Fig. 4.

Op

X1

X2

Data_out Neural Network
Operator Model

Data_in_16-bit
32xSR_in

32xPLH_in

Estimated Power

16xSR_out

16xPLH_out

Figure 4: Neural network accuracy measurements

Table 1 shows the relative error at operator-level in terms of
power estimation. The relative error has been calculated according
to 10000 data samples.

The results shown in this table indicate a relative error that is
very small (around 0.01%). This shows that neural networks have
learned the behavior of XPA and are able to model it very accurately.

Operators Real Power Modeled Power Relative Error
(mW) (mW) (%)

Adder 1.7879 1.7881 0.0112
Multiplier 27.4147 27.4136 0.0040
Table 1: Power accuracy for the considered models

4.2 Per-system Verification
At system-level, verification of several scenarios have been per-
formed. Figure 5 describes a function composed of single operators.
As in the per-operator approach, XPA has been used to evaluate the
power of the global system as well as the SR and PLH parameters.
In parallel, another global model has been built under Matlab and
consists in interconnecting bothM1 andM2 models for each oper-
ator and perform an high-Level simulation. This simulation aims
to propagate the parameters throughout all operators and provides
an overall power estimation.

F=(x1+x2)op(x3+x4)

X1

X2

X3

X4

Op F

Neural
Network Box
Adder Model

Neural
Network Box
Adder Model

Neural
Network Box

Operator
Model

P_system=ΣPi=p1+p2+p3P1

P2

P3

16xPLH_out

16xPLH_out

16xSR_out32xSR_in

32xPLH_in

32xSR_in

32xPLH_in

16xSR_out

32xSR_in

32xPLH_in

Figure 5: System level power estimation XPA vs NN

For both simulations, the same inputs, signal rates and PLH
combinations of 5000 data-samples have been provided to both XPA
and neural models. 5000 data-samples of dynamic power values
have been extracted from XPA and from the global neural power
models. Note that two functions have been implemented : Fi = (a
op b) op (c op d), where op can either be an adder or a multiplier.

As in eq. 4, a mean absolute percentage error is calculated over
5000 data samples at system-level to evaluate the accuracy of the
approach. PXPA is the power consumption calculated using the
XPA tool and PNN is the power consumption estimated by the
power model.

%MAPESystem−level =
100
n

n∑
i=1

|PXPA − PNN |
PXPA

(4)

Arithmetic Function Neural models (MAPE %)
F1(op1=+, op2=+, op3=+) 7.3699
F2(op1=*, op2=*, op3=*) 3.5158
Table 2: Models Accuracy for Different Functions

According to the results given in Table 2, it can be seen that our
method provides a good accuracy at system-level with an error that
is less than 8%.

Table 3 shows the initial estimates that are based on the sum of
the total average power of each operator. These estimates exhibit

FIGURE 4.24 – System Level power estimation : XPA vs NN

For both simulations, the same inputs, signal rates and PLH combinations of 5000 data-samples have
been provided to both XPA and neural models. 5000 data-samples of dynamic power values have been
extracted from XPA and from the global neural power models. Note that two functions have been imple-
mented : Fi = (a op b) op (c op d), where op can either be an adder or a multiplier.

As in Equation 4, a Mean Absolute Percentage Error (MAPE) has been calculated at System Level to
evaluate the accuracy of the approach. PXPA is the power consumption computed by XPA and PNN is the
power consumption estimated by our approach.

%MAPESystem−level =
100
n

n∑
i=1

|PXPA − PNN |
PXPA

(4)

Arithmetic Function Neural models (MAPE %)
F1(op1=+, op2=+, op3=+) 7.3699
F2(op1=*, op2=*, op3=*) 3.5158

TABLE 4.10 – Models accuracy for different functions.

According to the results given in Table 4.10, it can be seen that the proposed method provides a good
accuracy at System Level with an error that is less than 8%. Two sources of errors can be identified : first,
the SR modeling errors propagate and accumulate through the full design. Second, in XPA, the fact that
operators are connected to several neighbors has a direct impact on the impedance and thus on the power
consumption. Note that power consumption of the intra-connections (within an operator) is taken into
consideration in each neural model

Arithmetic XPA-based Initial Relative Error
Function (mW) Estimates (mW) (%)

F1 4.6282 5.3637 15.8965
F2 70.2986 82.2441 16.9925

TABLE 4.11 – The effect of signal activity propagation versus initial estimates.

Table 4.11 shows the initial estimates that are only based on the sum of the total average power of each
operator (without propagation of signal’s activities). These estimates exhibit low accurate results, with a
relative error that is greater than 15%, compared with Table 4.10. This is due to the fact that propagation
is not taken into consideration in this first approach, which demonstrates the significance of signal activity
propagation.

91

PA
R

C
O

U
R

S
P

R
O

F
E

S
S

IO
N

N
E

L
S

Y
N

T
H

E
S

IS
O

F
R

E
S

E
A

R
C

H
W

O
R

K
S

A
P

P
E

N
D

IX
Chapitre 4. From Power Modeling to highly Energy-Efficient Devices

55 Summary

This chapter has described different approaches to design energy-efficient communicating systems in
an FPGA target. In a first part of the chapter, I have presented the studies that have been led to propose
new original waveforms. I have also highlighted the interest of prototyping in order to take the specificity
of hardware components into account. The proposed waveforms that have been studied are based on the
Time-Reversal techniques and allow designers to build more simple communicating systems with less
hardware resources. These waveforms are particularly well suited for the IoT or 5G domains.

In a second part of the chapter, I have presented a new methodology to explore the design space of
FPGA devices by focusing on the energetic aspects. The main objective of this methodology is to allow
designers to rapidly simulate their algorithms at high-level. This provides a first estimate of the power
consumed by their architecture in the first steps of the design flow.

The methodology has been first applied on IP components. Then our approach has moved towards
smaller entities to generalize the approach. Analytic models have been proposed to significantly simplify
the characterization phase and extend to several FPGA families. Finally, new models based on neural
networks have been elaborated to be used at high level, which considerably reduces the simulation time.
The obtained results are promising in terms of accuracy and exploration time.

— 3 PhD students : Jordane Lorandel, Yvan Kokar, Yehya Nasser

— Related publications : 21

— National Projects : ANR Trimaran Project, ANR Spatial Modulation Project

— Regional Projects : Labex RELIASIC

Summary (PhD/Dissemination/Projects)Summary (PhD/Dissemination/Projects)

— 3 PhD students : Jordane Lorandel, Yvan Kokar, Yehya Nasser

— Related publications : 21

— National Projects : ANR Trimaran Project, ANR Spatial Modulation Project

— Regional Projects : Labex RELIASIC

92

PA
R

C
O

U
R

S
P

R
O

F
E

S
S

IO
N

N
E

L
S

Y
N

T
H

E
S

IS
O

F
R

E
S

E
A

R
C

H
W

O
R

K
S

A
P

P
E

N
D

IX

Chap. 5Chap. 5Research Perspectives

In the previous chapters, I have tried to give an overview of research works that have been led thanks
to some of the PhD students that I had the chance to supervise. These chapters have identified three main
topics that share a common target : reconfigurable devices. In this chapter, I expose the different research
directions that I intend to follow in the next years and explain my motivation.

In Section 1, I describe the scientific issues and challenges that are related to the virtualization of re-
sources in a reconfigurable system and the directions I intend to follow to tackle some of them. Section
2 presents the main problems that are related to reconfiguration management and provides some pros-
pects in this domain. Finally, Section 3 deals with energy-efficient devices and discusses the new research
opportunities that are going to emerge in a near future.

11 Embedded Systems Virtualization

Although virtualization has been studied a lot in domains such as servers, data centers, personal com-
puters, this topic is much more recent in embedded systems. In our work, we have proposed and develo-
ped our custom solution targeting very simple systems. Several thesis that I supervised have contributed
to build and improve the proposed system which is now ready to be fully exploited. In future prospects,
I really would like to take benefit from all the work that has been done on this system to exploit new
research ideas.

A lot of issues have been identified during the implementation of the Ker-ONE custom micro-kernel.
Some of them are directly related to the design itself. Although methodologies like OveRSoC have consi-
derably helped in defining and building the system, there are still a lot of considerations to take into
account in order to obtain a final product. Designing an operating system to be executed on recent de-
vices remains very challenging and tricky. These devices have become so complex that it is necessary to
take into account all their architectures and features, which is almost impossible in practise.

One possible solution might be modular design. Instead of considering monolithic kernels, the idea is
to separate most of the functions into isolated entities communicating with each other. The design effort of
such systems may then significantly be reduced. Moreover, high-level software approaches are much more
convenient in this case, focusing on the framework and the organization of these entities. Code generation
is also much more efficient in this case. Nevertheless, modular approach has severe drawbacks in terms
of performance since a huge overhead has to be deplored compared to monolithic solutions. Most of the
overhead comes from the communication between entities. Generally, Inter-Process Communication (IPC)
mechanisms have to be considered, which drastically increases the whole latency of the system. However,
we decided to follow the modular approach in our kernel design and we hope having shown that the
communication overhead can be very low and compatible with most applications constraints.

Other specific challenges have been identified during our studies on hardware virtualization. They are
described in the next sections and will be part of our main concerns in a near future.

1.11.1 Hypervisor structure

The first research challenge that I would like to tackle in the future consists in improving the hypervi-
sor structure and performance. Today, most of recent devices are equipped with virtualization extension
mechanisms which allow guest OS to access hardware resources such as memory and peripherals very
easily. This is, of course, a very promising approach that definitely increases virtualization performance.

93

PA
R

C
O

U
R

S
P

R
O

F
E

S
S

IO
N

N
E

L
S

Y
N

T
H

E
S

IS
O

F
R

E
S

E
A

R
C

H
W

O
R

K
S

A
P

P
E

N
D

IX
Chapitre 5. Research Perspectives

For this reason, I would like to continue investigating new virtualization mechanisms that can be
easily implemented, while guaranteeing a small overhead on the execution time of the applications. The
virtualization approach that we followed in Ker-ONE was based on para-virtualization, and I still believe
that this type of virtualization is interesting and can be very efficient in small systems. Nevertheless, I
would also like to implement Ker-ONE on devices that benefit from hardware virtualization extension in
order to compare both approaches in terms of performances. This could be done in a very near future.

Another interesting point dealing with the hypervisor structure is to study the possibility of migrating
most of the kernel’s services into the user-space in order to reduce the kernel’s critical part to a minimum.
This consists in seeing the kernel as a set of user services with no privilege and reduced rights. The reason
behind that is to protect the system from being attacked by reducing the surface of code that has access to
critical hardware parts.

Finally, in the case of reconfigurable devices, I would like to take benefit from hardware resources to
propose new virtualization acceleration mechanisms. These mechanisms include memory and peripherals
management, reconfigurable resources and may provide dedicated hardware services to isolate applica-
tion tasks from critical hardware parts. This work has already been initiated in Tian Xia’s thesis and
continued in Ye Tian’s thesis.

1.21.2 Reconfigurable Hardware Resources Sharing

Another interesting challenge in embedded virtualization is the particular context of reconfigurable
devices such as FPGAs. This document has described parts of our works in this domain and has illustrated
different services to handle hardware accelerators. In our work, we have assumed that software tasks
running on different guest OS could access reconfigurable resources in a transparent manner. We have
also described a basic preemption mechanism, leaving the management of this preemption to the designer
itself. As a future prospect, I would like to investigate hardware tasks’ preemption more deeply so that
this process could be completely transparent to users. Preemption of hardware tasks generally requires to
store the state of all flip-flops in the accelerator, and perform a context switch. This is usually performed
by reading the partial bitstream corresponding to the reconfigurable area, which is very time-consuming.
I would like to propose an original dedicated hardware service that is capable of storing/restoring the
internal state of registers without any bitstream manipulation. This work has just started in Ye Tian’s
thesis.

1.31.3 VM Scheduling and Off-Loading Service

Another research axis dealing with embedded virtualization concerns the schedulability of virtual
machines and software tasks in general. In our previous works, we have studied and proposed some
scheduling algorithms that may be compatible with real-time constraints. The proposed policies are based
on a hierarchical scheduler that provides promising results. In future works, I would like to investigate
new scheduling policies and also focus on the software/hardware tasks interactions. This problem is quite
difficult and has already been partially treated in Yaset Oliva’s thesis with the off-loading concept. I would
like to carry on these previous works and finally implement them on a real hardware platform.

22 End to End Reconfiguration Management

This second research prospect consists in studying the reconfiguration of a system globally. In our
current work, we already have proposed a 3-layers model (Application, OS, Hardware) to manage recon-
figuration, that has been presented in this document. We have proposed a set of hardware and software
services that allow to abstract the underlying hardware architecture. In this model, a layer N abstracts the
services of layer N − 1 in a classic approach and APIs make the communication between different layers
possible.

94

PA
R

C
O

U
R

S
P

R
O

F
E

S
S

IO
N

N
E

L
S

Y
N

T
H

E
S

IS
O

F
R

E
S

E
A

R
C

H
W

O
R

K
S

A
P

P
E

N
D

IX

2. End to End Reconfiguration Management

In the future, I want to continue refining and extending this model and use it as a framework for the
new researches that are going to be led in the laboratory. The main purpose of this approach is to make the
management of reconfiguration as transparent as possible for end-users, while guaranteeing the respect
of the application constraints.

If we continue considering the wireless communications domain, an ideal system, for me, would be
composed of different applications running on several Operating Systems that run on top of our hyper-
visor. Every application could be seen as a set of tasks with different levels of criticity and run either on
an RTOS or a GPOS. An application, for example, could be in charge of executing all protocol layers of a
given communication standard. Another one could be dedicated to the implementation of another com-
munication standard. Finally, other applications could execute non-critical applications such as Graphical
User Interfaces (GUI). In this ideal scenario, all applications could share a set of hardware resources that
are available on a reconfigurable device like an FPGA. The final purpose would be to have a system ca-
pable of switching transparently and seamlessly from a standard to another without being perceivable by
end-users.

2.12.1 Multi-standards Reconfiguration

In the presented works, we already have presented the concept of Vertical Handover (VHA), that may
decide to switch from one communication standard to another according to the environment. This concept
is very interesting and very promising and we have only started to glimpse its complexity. In our ideal sce-
nario, it would correspond to an application running on a transmitter that would like to transmit data e.g a
video to a receiver, independently of the standard and without disrupting the communication. Until now,
our studies have focused on the physical layer configuration since it corresponds to our level of expertise.
Nevertheless, switching from one standard to another is much more complex than simply considering this
layer. According to the OSI model, all communication layers have to be taken into account, which makes
it very difficult to handle.

In more recent works, we have started to address this issue in Wael Ayoub’s thesis, in collaboration
with the Lebanese University. The domain that is considered in this thesis is IoT and we investigate the
use of IPv6 over 3 Low Power Area Networks (LPWANNs) i.e. LoRaWAN, DASH7 and NB-IoT. The idea
here is to study the mechanisms that could be handled or adapted in IPv6 to run on top of other IoT
protocols. The main objective remains to switch seamlessly from one standard to another and especially
in the context of mobility. This work is only as its beginnings but should lead to very interesting results.

2.22.2 Machine Learning

Another prospect that I really would like to study in a near future is the use of Machine Learning
techniques in the context of reconfiguration management. I have shown in this document, that we have
started to use this type of technique in VHA. According to the obtained results and due to the fact that I
made intensive use of neural networks in the past, I am really convinced about their relevance. Using ma-
chine learning as a decision process in reconfiguration management seems very promising although quite
tricky. The main problem with such systems has always been to obtain enough pertinent data to be able
to train the network correctly. In our current systems, this issue could be circumvented by continuously
acquiring data to sense the environment and to improve our knowledge of the problem. Coupled with
re-inforcement techniques, I am convinced that neural-based solutions could be used very efficiently.

Finally, using machine learning could lead to "smart" systems that are able to learn by themselves and
adapt very easily to different situations. It is today conceivable to design reconfigurable systems that can
automatically adapt their hardware resources according to the applications requirements.

95

PA
R

C
O

U
R

S
P

R
O

F
E

S
S

IO
N

N
E

L
S

Y
N

T
H

E
S

IS
O

F
R

E
S

E
A

R
C

H
W

O
R

K
S

A
P

P
E

N
D

IX
Chapitre 5. Research Perspectives

33 Towards Energy-Efficient Communicating Devices

In this section, the last research axis to which I would like to contribute is described. This prospect
deals with low-power communicating embedded systems, which will keep on constituting a hot topic in
the near future. It is clear that there is today a huge need in terms of energy consumption management
for this type of devices and solutions must be found to preserve energetic resources.

In our works, we have tried to tackle this challenge by considering the design process of embedded
systems. A first research axis has consisted in proposing new waveforms at the physical layer to drastically
reduce transmitting power. Another axis has focused on the elaboration of high-level models to facilitate
the exploration of the design space and thus find the best suitable architecture for communication. Section
3.1, describes the first axis and the associated prospects, whereas section 3.2 details the second axis.

3.13.1 New Waveforms

In this part of our research, we have sought to propose new waveforms that can efficiently reduce the
power that is required to transmit data. In this context, we have studied Time Reversal techniques and
spatial modulation schemes that have been described in this document. These studies have been led in the
context of 2 ANR projects in which I was responsible for the proof of concept implementation.

Today, our research team has the opportunity to benefit from the developed hardware platforms to
test new algorithms and to get a clear vision on consumption and performance. Having acquired some
expertise in the field, I would like to continue contributing in the platform improvement to propose and
evaluate new algorithms in new case studies.

One of the envisaged case-study deals with 60 GHz communicating systems. These new systems are
probably going to be used extensively in IoT and will require a lot of computing power to be used in a
massive MIMO context. We would like to propose new efficient communications schemes to reduce power,
while guaranteeing the best performance.

3.23.2 Hardware Power Models

Concerning the elaboration of new power models, several works have already been led, in particular
in Jordane Lorandel and Yehya Nasser’s thesis which have provided very promising results. Power models
have been developed and used in our methodology to perform high-level simulations in SystemC. Some
models have been described at the IP level, and others at the operator level to obtain more flexibility and
genericity. Although very interesting, this approach has an important limitation that comes from the fact
that power estimations are performed by vendors’ software tools and may be very far from the actual
consumed power.

One research track that I would like to follow would consist in elaborating power models coming from
real measurements. Our research team has just invested in a power measurement platform that could help
in measuring the power consumed in function of input stimuli. This type of platform could be used to
obtain a lot of data that could constitute a huge database. The next step would be to exploit our neural
models on this database to get even more accuracy. In a first approach, new data pre-processing and post-
processing could be proposed to reduce the complexity of the problem. Then, other techniques coming
from deep learning could be envisaged due to the massive number of input data that we could get to train
the network.

96

PA
R

C
O

U
R

S
P

R
O

F
E

S
S

IO
N

N
E

L
S

Y
N

T
H

E
S

IS
O

F
R

E
S

E
A

R
C

H
W

O
R

K
S

A
P

P
E

N
D

IX

3. Towards Energy-Efficient Communicating Devices

3.33.3 From Device to Protocol

A last axis of research consists in extending the existing models that have been developed at IP level or
at operators’ level to the different elements that compose a communication device. At the physical layer,
agile RF front-end, reconfigurable antennas, cognitive capabilities, flexible digital processing are possible
solutions to improve system autonomy and QoS. In addition, new communication strategies at other layers
(MAC, IP, etc.) could be imagined and modeled to optimize the overall efficiency of transmissions in
terms of energy and performance. Today, many communication protocols are available such as LPWAN
(Sigfox, Lora), BLE, Z-wave, Zigbee, IEEE 802.15.4, that may be jointly implemented on a same device. It
could be interesting to study these different protocols in terms of power consumption and performance,
at different layers. Finally, another solution to reduce power in IoT devices could consist in optimizing the
processing load. HW/SW partitioning, computation overload, distribution of the processing load among
several heterogeneous communicating objects are examples of methods that can be implemented to reduce
the overall power.

While these methods can be easily considered in the design process, it is challenging to evaluate their
impact in a global context. In the IoT context for example, as far as we know, there is no study that
takes into account all possible sources of power reduction at a high level of abstraction, within a single
simulation environment. This could be a very interesting prospect to handle.

97

PA
R

C
O

U
R

S
P

R
O

F
E

S
S

IO
N

N
E

L
S

Y
N

T
H

E
S

IS
O

F
R

E
S

E
A

R
C

H
W

O
R

K
S

A
P

P
E

N
D

IX

BibliographyBibliography

[AA16] Nasser M. Alotaibi and Sami S. Alwakeel. A neural network based handover management
strategy for heterogeneous networks. In Proceedings - 2015 IEEE 14th International Confe-
rence on Machine Learning and Applications, ICMLA 2015, 2016.

[ABG14] A. Ahmed, L.M. Boulahia, and D. Gaiti. Enabling vertical handover decisions in hetero-
geneous wireless networks : A state-of-the-art and a classification. IEEE Communications
Surveys & Tutorials, 16(2) :776–811, 2014.

[AHK+14] Andreas Agne, Markus Happe, Andreas Keller, Enno Lubbers, Bernhard Plattner, Marco
Platzner, and Christian Plessl. Reconos : An operating system approach for reconfigurable
computing. Micro, IEEE, 34(1) :60–71, 2014.

[Aic14a] Mohamed El Mehdi Aichouch. Evaluation of a multiple criticality real-time virtual ma-
chine system and configuration of an RTOS’s resources allocation techniques. Theses, INSA
de Rennes, May 2014.

[All15b] NGMN Alliance. 5g white paper. 2015.

[Alt14b] Altera Incorporation. Powerplay early power estimator user guide, July 2014. User Guide
UG-01070.

[Alt15a] Altera. Cyclone V Device Overview. Altera Corporation, 2015.

[Alt15b] Altera Inc. Dsp builder introduction, May. 4 2015. Handbook.

[AMM12] B. Ammar A., D. B. Mohd, and I. Muhammad. Ieee 802.21 based vertical handover in
wifi and wimax networks. In 2012 IEEE Symposium on Computers Informatics (ISCI), pages
140–144, March 2012.

[APA+06a] Jason Agron, Wesley Peck, Erik Anderson, David Andrews, Ed Komp, Ron Sass, Fabrice
Baijot, and Jim Stevens. Run-time services for hybrid cpu/fpga systems on chip. In Real-
Time Systems Symposium, 2006. RTSS’06. 27th IEEE International, pages 3–12. IEEE, 2006.

[ARFB10] O. Arnold, F. Richter, G. Fettweis, and O. Blume. Power consumption modeling of dif-
ferent base station types in heterogeneous cellular networks. In Future Network and Mobile
Summit, 2010, pages 1–8, June 2010.

[Arn95] Jeffrey M. Arnold. The splash 2 software environment. J. Supercomput., 9 :277–290, May
1995.

[ARW+10] N. Audsley, M. Richardson, A.J. Wellings, K. Tindell, and A. Burns. Applying new schedu-
ling theory to static priority pre-emptive scheduling. Software Engineering Journal, 2010.

[BBC+07] Björn B. Brandenburg, Aaron D. Block, John M. Calandrino, UmaMaheswari Devi, Henna-
diy Leontyev, and James H. Anderson. Litmus rt : A status report, 2007.

[BBFH+08] H. Breuil, D. Burette, B. Flüry-Hérard, J. Cueugniet, D. Vignolles, and H. Boisson. Tic et
développement durable, Déc. 2008. Rapport du Conseil Général de l’Environnement et du
Développement Durable et le Conseil Général des Technologies de l’Information.

[BCLK+16] Stefano Buzzi, I. Chih-Lin, Thierry E. Klein, H. Vincent Poor, Chenyang Yang, and Alessio
Zappone. A survey of energy-efficient techniques for 5G networks and challenges ahead.
IEEE Journal on Selected Areas in Communications, 2016.

[BD05] Bin Lin and P.A. Dinda. VSched : Mixing Batch And Interactive Virtual Machines Using
Periodic Real-time Scheduling. 2005.

[Bes13] Joel Best. Real-Time Operating System Hardware Extension Core for System-on-Chip Designs.
PhD thesis, School of Engineering,University of Guelph, 2013.

[BGB06] Lilian Bossuet, Guy Gogniat, and Wayne Burleson. Dynamically configurable security for
SRAM FPGA bitstreams. International Journal of Embedded Systems, 2006.

99

PA
R

C
O

U
R

S
P

R
O

F
E

S
S

IO
N

N
E

L
S

Y
N

T
H

E
S

IS
O

F
R

E
S

E
A

R
C

H
W

O
R

K
S

A
P

P
E

N
D

IX
Bibliographie

[BHH+07b] Jürgen Becker, Michael Huebner, Gerhard Hettich, Rainer Constapel, Joachim Eisenmann,
and Jürgen Luka. Dynamic and partial fpga exploitation. Proceedings of the IEEE,
95(2) :438–452, 2007.

[BPS15] Meena Belwal, Madhura Purnaprajna, and TSB Sudarshan. Enabling seamless execution
on hybrid cpu/fpga systems : Challenges & directions. In Field Programmable Logic and
Applications (FPL), 2015 25th International Conference on, pages 1–8. IEEE, 2015.

[BPZ02] Peter Blomgren, George Papanicolaou, and Hongkai Zhao. Super-resolution in time-
reversal acoustics. The Journal of the Acoustical Society of America, 111(1) :230–248, 2002.

[CA07] S. Chandrasekaran and A. Amira. A new behavioural power modelling approach for fpga
based custom cores. In Adaptive Hardware and Systems, 2007. AHS 2007. Second NASA/ESA
Conference on, pages 350–357, Aug 2007.

[Cad11] Cadence. Cadence system development suite, 2011.

[CCEPO12] Laura Conde-Canencia, Yvan Eustache, J-C Prévotet, and Yaset Oliva. Modeling adaptive
coded modulation in real time partially reconfigurable mobile terminals. In Signal Proces-
sing Conference (EUSIPCO), 2012 Proceedings of the 20th European, pages 1049–1053. IEEE,
2012.

[CCLJ12] Oliva Y. Conde-Canencia L., Eustache Y. and Pr?votet J.C. Implementing adaptive coded
modulation in real time partially reconfigurable mobile terminals : A modelling approach.
European Signal Processing Conference (EUSIPCO-2012), 2012.

[CF04] Yan Chen and Toni Farley. QoS requirements of network applications on the Internet.
Information Knowledge Systems Management, 2004.

[CHY+14a] Y. Chen, F. Han, Y. H. Yang, H. Ma, Y. Han, C. Jiang, H. Q. Lai, D. Claffey, Z. Safar, and
K. J. R. Liu. Time-reversal wireless paradigm for green internet of things : An overview.
IEEE Internet of Things Journal, 1(1) :81–98, Feb 2014.

[CLC+02] Katherine Compton, Zhiyuan Li, James Cooley, Stephen Knol, and Scott Hauck. Configu-
ration relocation and defragmentation for run-time reconfigurable computing. IEEE Trans.
Very Large Scale Integr. Syst., 10 :209–220, June 2002.

[Con] Warp project. "http ://warpproject.org".

[CPG+11] Samarjit Chakraborty, Thomas Pfeuffer, Martin Geier, Alejandro Masrur, and Sebastian
Drössler. Designing VM schedulers for embedded real-time applications. 2011.

[CWH+16] Y. Chen, B. Wang, Y. Han, H. Q. Lai, Z. Safar, and K. J. R. Liu. Why time reversal for future
5g wireless ? [perspectives]. IEEE Signal Processing Magazine, 33(2) :17–26, March 2016.

[CY01] Yawgeng A. Chau and Shi Hong Yu. Space modulation on wireless fading channels. IEEE
Vehicular Technology Conference, 2001.

[CYG05] W. Q. Y. Cao, Yuanyuan Yan, and Xun Gao. Neural network macromodel for high-level
power estimation of cmos circuits. In 2005 International Conference on Neural Networks and
Brain, volume 2, pages 1009–1014, Oct 2005.

[Dav18] G. Davis. 2020 : Life with 50 billion connected devices. In 2018 IEEE International Confe-
rence on Consumer Electronics (ICCE), pages 1–1, Jan 2018.

[DCH10] T. Dubois, M. Crussière, and M. Hélard. On the use of time reversal for digital commu-
nications with non-impulsive waveforms. In 2010 4th International Conference on Signal
Processing and Communication Systems, pages 1–6, Dec 2010.

[DDG+12] C. Desset, B. Debaillie, V. Giannini, A. Fehske, G. Auer, H. Holtkamp, W. Wajda, D. Sabella,
F. Richter, M.J. Gonzalez, H. Klessig, I. Godor, M. Olsson, M.A. Imran, A. Ambrosy, and
O. Blume. Flexible power modeling of lte base stations. In Wireless Communications and
Networking Conference (WCNC), 2012 IEEE, pages 2858–2862, April 2012.

[DDVJM12] M. Deruyck, D. De Vulder, W. Joseph, and L. Martens. Modelling the power consumption
in femtocell networks. In Wireless Communications and Networking Conference Workshops
(WCNCW), 2012 IEEE, pages 30–35, April 2012.

100

PA
R

C
O

U
R

S
P

R
O

F
E

S
S

IO
N

N
E

L
S

Y
N

T
H

E
S

IS
O

F
R

E
S

E
A

R
C

H
W

O
R

K
S

A
P

P
E

N
D

IX

Bibliographie

[Dep15] UC Berkeley EECS Department. The ptolemy project, 2015. Website.

[DHCG13] Thierry Dubois, Maryline Hélard, Matthieu Crussière, and Cécile Germond. Performance
of time reversal precoding technique for miso-ofdm systems. EURASIP Journal on Wireless
Communications and Networking, 2013(1) :260, Nov 2013.

[DLC+12] Jiun-Hung Ding, Chang-Jung Lin, Ping-Hao Chang, Chieh-Hao Tsang, Wei-Chung Hsu,
and Yeh-Ching Chung. Armvisor : System virtualization for arm. In Proceedings of the
Ottawa Linux Symposium (OLS), pages 93–107, 2012.

[DM98] M. C. Davey and D. J. C. MacKay. Low density parity check codes over gf(q). In 1998
Information Theory Workshop (Cat. No.98EX131), pages 70–71, Jun 1998.

[DMN+08] J. Delorme, J. Martin, A. Nafkha, C. Moy, F. Clermidy, P. Leray, and J. Palicot. A fpga
partial reconfiguration design approach for cognitive radio based on noc architecture. In
2008 Joint 6th International IEEE Northeast Workshop on Circuits and Systems and TAISA
Conference, pages 355–358, June 2008.

[DPML07a] J. P. Delahaye, J. Palicot, C. Moy, and P. Leray. Partial reconfiguration of fpgas for dyna-
mical reconfiguration of a software radio platform. In 2007 16th IST Mobile and Wireless
Communications Summit, pages 1–5, July 2007.

[DPML07b] Jean Philippe Delahaye, Jacques Palicot, Christophe Moy, and Pierre Leray. Partial recon-
figuration of FPGAs for dynamical reconfiguration of a software radio platform. In 2007
16th IST Mobile and Wireless Communications Summit, 2007.

[DS07] R. Damasevicius and V Stuikys. Estimation of power consumption at behavioral modeling
level using systemc. In EURASIP Journal on Embedded Systems, 2007. Hindawi Publishing
Corporation, May 2007.

[ear] Earth project infso-ict-247733 earth deliverable d2.3.

[ECF96] Carl Ebeling, Darren C. Cronquist, and Paul Franklin. Rapid - reconfigurable pipelined da-
tapath. In Proceedings of the 6th International Workshop on Field-Programmable Logic, Smart
Applications, New Paradigms and Compilers, pages 126–135, London, UK, 1996. Springer-
Verlag.

[EJH06] D. Elleouet, N. Julien, and D. Houzet. A high level soc power estimation based on ip mode-
ling. In Parallel and Distributed Processing Symposium, 2006. IPDPS 2006. 20th International,
pages 4 pp.–, April 2006.

[Exp07] ExpressLogic. Measuring Real-Time Performance Of An RTOS, 2007.

[GBB+17] Robin Gerzaguet, Nikolaos Bartzoudis, Leonardo Gomes Baltar, Vincent Berg, Jean Baptiste
Doré, Dimitri Kténas, Oriol Font-Bach, Xavier Mestre, Miquel Payaró, Michael Färber, and
Kilian Roth. The 5G candidate waveform race : a comparison of complexity and perfor-
mance. Eurasip Journal on Wireless Communications and Networking, 2017.

[GBL+09] Maria E Gonzalez, Attila Bilgic, Adam Lackorzynski, Dacian Tudor, Emil Matus, and Irv
Badr. Ict-emuco. an innovative solution for future smart phones. In Multimedia and Expo,
2009. ICME 2009. IEEE International Conference on, pages 1821–1824. IEEE, 2009.

[GHZB10] Diana Göhringer, Michael Hübner, Etienne Nguepi Zeutebouo, and Jürgen Becker. Cap-
os : Operating system for runtime scheduling, task mapping and resource management on
reconfigurable multiprocessor architectures. In Parallel & Distributed Processing, Workshops
and Phd Forum (IPDPSW), 2010 IEEE International Symposium on, pages 1–8. IEEE, 2010.

[GHZB11] Diana Göhringer, Michael Hübner, Etienne Nguepi Zeutebouo, and Jürgen Becker. Opera-
ting system for runtime reconfigurable multiprocessor systems. Int. J. Reconfig. Comput.,
2011 :3 :1–3 :16, January 2011.

[GPH+09] Stefan Valentin Gheorghita, Martin Palkovic, Juan Hamers, Arnout Vandecappelle, Stelios
Mamagkakis, Twan Basten, Lieven Eeckhout, Henk Corporaal, Francky Catthoor, Frederik
Vandeputte, et al. System-scenario-based design of dynamic embedded systems. ACM
Transactions on Design Automation of Electronic Systems (TODAES), 14(1) :3, 2009.

101

PA
R

C
O

U
R

S
P

R
O

F
E

S
S

IO
N

N
E

L
S

Y
N

T
H

E
S

IS
O

F
R

E
S

E
A

R
C

H
W

O
R

K
S

A
P

P
E

N
D

IX
Bibliographie

[GRE+01] Matthew R Guthaus, Jeffrey S Ringenberg, Dan Ernst, Todd M Austin, Trevor Mudge, and
Richard B Brown. Mibench : A free, commercially representative embedded benchmark
suite. In Workload Characterization, 2001. WWC-4. 2001 IEEE International Workshop on,
pages 3–14. IEEE, 2001.

[GYG08] Andreas Gerstlauer, Haobo Yu, and Daniel D. Gajski. RTOS modeling for system level
design. In Design, Automation, and Test in Europe : The Most Influential Papers of 10 Years
Date. 2008.

[GYJ01] Lovic Gauthier, Sungjoo Yoo, and Ahmed Amine Jerraya. Automatic Generation and Tar-
geting of Application-Specific Operating Systems and Embedded Systems Software. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2001.

[Has16] Performance evaluation of dynamic partial reconfiguration techniques for software defi-
ned radio implementation on FPGA. In Proceedings of the IEEE International Conference on
Electronics, Circuits, and Systems, 2016.

[HD10] Scott Hauck and Andre DeHon. Reconfigurable computing : the theory and practice of FPGA-
based computation. Morgan Kaufmann, 2010.

[HDL+16] E. Hung, J. J. Davis, J. M. Levine, E. A. Stott, P. Y. K. Cheung, and G. A. Constantinides.
Kapow : A system identification approach to online per-module power estimation in fpga
designs. In 2016 IEEE 24th Annual International Symposium on Field-Programmable Custom
Computing Machines (FCCM), pages 56–63, May 2016.

[Hei] Gernot Heiser. Virtualizing embedded systems : why bother ? In Proceedings of the 48th
Design Automation Conference, pages 901–905. ACM.

[HGNB10] Michael Hübner, Diana Göhringer, Juanjo Noguera, and Jürgen Becker. Fast dynamic and
partial reconfiguration data path with low hardware overhead on xilinx fpgas. In Paral-
lel & Distributed Processing, Workshops and Phd Forum (IPDPSW), 2010 IEEE International
Symposium on, pages 1–8. IEEE, 2010.

[HH09] Chun-Hsian Huang and Pao-Ann Hsiung. Hardware resource virtualization for dynami-
cally partially reconfigurable systems. Embedded Systems Letters, IEEE, 1(1) :19–23, 2009.

[HKH04] Prih Hastono, Stephan Klaus, and S.A. Huss. Real-time operating system services for rea-
listic SystemC simulation models of embedded systems. Proceedings of the International
Forum on Specification & Design Languages (FDL’04), 2004.

[HKRN08] Philipp A. Hartmann, Henning Kleen, Philipp Reinkemeier, and Wolfgang Nebel. Efficient
modelling and simulation of embedded software multi-tasking using SystemC and OSSS.
In Proceedings - 2008 Forum on Specification, Verification and Design Languages, FDL’08,
2008.

[HL10] Gernot Heiser and Ben Leslie. The okl4 microvisor : convergence point of microkernels and
hypervisors. In Proceedings of the first ACM asia-pacific workshop on Workshop on systems,
pages 19–24. ACM, 2010.

[HLF+11] Chen-Wei Hsu, Jia-Lu Liao, Shan-Chien Fang, Chia-Chien Weng, Shi-Yu Huang, Wen-Tsan
Hsieh, and Jen-Chieh Yeh. Powerdepot : Integrating ip-based power modeling with esl
power analysis for multi-core soc designs. In Design Automation Conference (DAC), 2011
48th ACM/EDAC/IEEE, pages 47–52, June 2011.

[HRR+04] Fabiano Hessel, Vitor M Rosa, Igor M Reis, Av Ipiranga, Porto Alegre, César A M Marcon,
Altamiro A Susin, and Av B Gonçalves. Abstract RTOS Modeling for Embedded Systems
Faculdade de Informática Universidade Federal do Rio Grande do Sul. 2004.

[HSH+08a] J. Y. Hwang, S. B. Suh, S. K. Heo, C. J. Park, J. M. Ryu, S. Y. Park, and C. R. Kim. Xen on arm :
System virtualization using xen hypervisor for arm-based secure mobile phones. In 2008
5th IEEE Consumer Communications and Networking Conference, pages 257–261, Jan 2008.

[Huc11] Emmanuel Huck. High-level simulation of distributed real-time operating systems for design
space exploration in heterogeneous MPSoC architectures. Theses, Université de Cergy Pon-
toise, November 2011.

102

PA
R

C
O

U
R

S
P

R
O

F
E

S
S

IO
N

N
E

L
S

Y
N

T
H

E
S

IS
O

F
R

E
S

E
A

R
C

H
W

O
R

K
S

A
P

P
E

N
D

IX

Bibliographie

[HYW+12] F. Han, Y. H. Yang, B. Wang, Y. Wu, and K. J. R. Liu. Time-reversal division multiple access
over multi-path channels. IEEE Transactions on Communications, 60(7) :1953–1965, July
2012.

[JC12] Ruzica Jevtic and Carlos Carreras. A complete dynamic power estimation model for data-
paths in fpga dsp designs. Integration, the VLSI Journal, 45(2) :172 – 185, 2012.

[JH09b] Inwhee Joe and Seokjoon Hong. An adaptive network scanning algorithm in hybrid wire-
less networks. In Proceedings of the 4th International Conference on Ubiquitous Information
Technologies and Applications, ICUT 2009, 2009.

[JHE+13] Krzysztof Jozwik, Shinya Honda, Masato Edahiro, Hiroyuki Tomiyama, and Hiroaki Ta-
kada. Rainbow : An operating system for software-hardware multitasking on dynamically
partially reconfigurable fpgas. International Journal of Reconfigurable Computing, 2013 :5,
2013.

[JPC+14] Abhishek Kumar Jain, Khoa Dang Pham, Jin Cui, Suhaib A Fahmy, and Douglas L Maskell.
Virtualized execution and management of hardware tasks on a hybrid arm-fpga platform.
Journal of Signal Processing Systems, 77(1-2) :61–76, 2014.

[JW05] Ahmed Amine Jerraya and Wayne Wolf. The What, Why, and How of MPSoCs. In Multi-
processor Systems-on-Chips. 2005.

[KBT08] Dirk Koch, Christian Beckhoff, and Jürgen Teich. Recobus-builder-a novel tool and tech-
nique to build statically and dynamically reconfigurable systems for fpgas. In Field Pro-
grammable Logic and Applications, 2008. FPL 2008. International Conference on, pages 119–
124. IEEE, 2008.

[KG16] Tobias Kalb and Diana Gohringer. Enabling dynamic and partial reconfiguration in Xilinx
SDSoC. In 2016 International Conference on Reconfigurable Computing and FPGAs, ReConFig
2016, 2016.

[KJU+15] M. Khan, C. Jung, P. C. Uzoh, C. Zhenbo, J. Kim, Y. Yoon, A. Nadeem, and K. Han. En-
abling vertical handover management based on decision making in heterogeneous wireless
networks. In 2015 International Wireless Communications and Mobile Computing Conference
(IWCMC), pages 952–957, Aug 2015.

[Koc13] Dirk Koch. Partial reconfiguration on FPGAs. Lecture Notes in Electrical Engineering, 153
LNEE :1–295, 2013.

[Kok18] Yvan Kokar. Etude de la mise en œuvre matérielle d’une transmission sans fil combinant re-
tournement temporel et OFDM. PhD thesis, 2018. Thèse de doctorat dirigée par Hélard,
Maryline Electronique et Télécommunications Rennes, INSA 2018.

[Kon12] Kontron. No end to the possibilities : x86 meets FPGA whitepaper. Kontron, 2012.

[KT15] Keysight-Technologies. Systemvue electronic system-level (esl) design software, 2015.
Website.

[Kum12] K. A. Arun Kumar. Fpga implementation of psk modems using partial re-configuration for
sdr and cr applications. In 2012 Annual IEEE India Conference (INDICON), pages 205–209,
Dec 2012.

[Kum13a] K. A. Arun Kumar. Fpga implementation of qam modems using pr for reconfigurable
wireless radios. In 2013 Annual International Conference on Emerging Research Areas and
2013 International Conference on Microelectronics, Communications and Renewable Energy,
pages 1–6, June 2013.

[Kum14] K. A. A. Kumar. An ofdm transmitter implementation using cordic based partially recon-
figurable ifft module. In 2014 3rd International Conference on Eco-friendly Computing and
Communication Systems, pages 266–270, Dec 2014.

[LAL+93] Wazlowski Agarwal Lee, L. Agarwal, T. Lee, A. Smith, E. Lam, P. Athanas, and S. Ghosh.
Prism-ii compiler and architecture, 1993.

[Lie95] Jochen Liedtke. On micro-kernel construction, volume 29. ACM, 1995.

103

PA
R

C
O

U
R

S
P

R
O

F
E

S
S

IO
N

N
E

L
S

Y
N

T
H

E
S

IS
O

F
R

E
S

E
A

R
C

H
W

O
R

K
S

A
P

P
E

N
D

IX
Bibliographie

[LKLJ09] Ming Liu, Wolfgang Kuehn, Zhonghai Lu, and Axel Jantsch. Run-time partial reconfigura-
tion speed investigation and architectural design space exploration. In Field Programmable
Logic and Applications, 2009. FPL 2009. International Conference on, pages 498–502. IEEE,
2009.

[Lor15] Jordane Lorandel. Etude de la consommation énergétique de systèmes de communications nu-
mériques sans fil implantés sur cible FPGA. PhD thesis, 2015. Thèse de doctorat dirigée par
Hélard, Maryline Electronique et Télécommunications Rennes, INSA 2015.

[LPC04] R. Le Moigne, O. Pasquier, and J. P. Calvez. A generic RTOS model for real-time systems
simulation with systemC. In Proceedings -Design, Automation and Test in Europe, DATE,
2004.

[LSD03] J. Lehoczky, L. Sha, and Y. Ding. The rate monotonic scheduling algorithm : exact charac-
terization and average case behavior. 2003.

[Mat15] MathWorks. www.mathworks.com, 2015.

[McD08] Eric J McDonald. Runtime fpga partial reconfiguration. In Aerospace Conference, 2008 IEEE,
pages 1–7. IEEE, 2008.

[MH16] Christos Masouros and Lajos Hanzo. Dual-Layered MIMO Transmission for Increased
Bandwidth Efficiency. IEEE Transactions on Vehicular Technology, 2016.

[MP15] C. Moy and J. Palicot. Software radio : a catalyst for wireless innovation. IEEE Communica-
tions Magazine, 53(9) :24–30, Sep. 2015.

[MVG] Jan Madsen, Kashif Virk, and Mercury Gonzales. Abstract RTOS Modelling for Multipro-
cessor System-on-Chip*. Technical report.

[NIC15] National-Instruments-Corporation. Labview system design software.
www.ni.com/labview/, 2015.

[PG11] François Philipp and Manfred Glesner. Mechanisms and architecture for the dynamic re-
configuration of an advanced wireless sensor node. In 2011 21st International Conference
on Field Programmable Logic and Applications, pages 396–398. IEEE, 2011.

[PHH12a] Dinh Thuy Phan-Huy and Maryline Helard. Receive antenna shift keying for time reversal
wireless communications. In IEEE International Conference on Communications, 2012.

[PKHC14] JC Prévotet, Y Kokar, M Hélard, and M Crussière. Implementation of a time-reversal miso
ofdm test-bed. In European Workshop on Testbed based wireless research, 2014.

[PKR+13] Niels Penneman, Danielius Kudinskas, Alasdair Rawsthorne, Bjorn De Sutter, and Koen
De Bosschere. Formal virtualization requirements for the arm architecture. Journal of
Systems Architecture, 59(3) :144–154, 2013.

[PML15] A. Pitarokoilis, S. K. Mohammed, and E. G. Larsson. Uplink performance of time-reversal
mrc in massive mimo systems subject to phase noise. IEEE Transactions on Wireless Com-
munications, 14(2) :711–723, Feb 2015.

[PXL+13] Linh T.X. Phan, Meng Xu, Jaewoo Lee, Insup Lee, and Oleg Sokolsky. Overhead-aware
compositional analysis of real-time systems. In Real-Time Technology and Applications -
Proceedings, 2013.

[RBAN+11] S.K. Rethinagiri, R. Ben Atitallah, S. Niar, E. Senn, and J. Dekeyser. Hybrid system level
power consumption estimation for fpga-based mpsoc. In Computer Design (ICCD), 2011
IEEE 29th International Conference on, pages 239–246, Oct 2011.

[Roy07] K. Roy. Neural network based macromodels for high level power estimation. In Interna-
tional Conference on Computational Intelligence and Multimedia Applications (ICCIMA 2007),
volume 2, pages 159–163, Dec 2007.

[RVdlTR14] Alex Rodriguez, Juan Valverde, Eduardo de la Torre, and Teresa Riesgo. Dynamic mana-
gement of multikernel multithread accelerators using dynamic partial reconfiguration. In
Reconfigurable and Communication-Centric Systems-on-Chip (ReCoSoC), 2014 9th Internatio-
nal Symposium on, pages 1–7. IEEE, 2014.

104

PA
R

C
O

U
R

S
P

R
O

F
E

S
S

IO
N

N
E

L
S

Y
N

T
H

E
S

IS
O

F
R

E
S

E
A

R
C

H
W

O
R

K
S

A
P

P
E

N
D

IX

Bibliographie

[SABN14] S. Sivanantham, R. Adarsh, S. Bhargav, and K. J. Naidu. Partial reconfigurable implemen-
tation of ieee802.11g ofdm. Indian Journal of Science and Technology, 2014.

[Sha15] Shashi Bhutada. A scalable approach for tlm across systemc and systemverilog, 2015. Men-
tor Graphics, White Paper.

[spe] Specc system. http://www.cecs.uci.edu/~specc/. Accessed : 2019-02-26.

[SRH+11] M. Streubuhr, R. Rosales, R. Hasholzner, C. Haubelt, and J. Teich. Esl power and perfor-
mance estimation for heterogeneous mpsocs using systemc. In Specification and Design
Languages (FDL), 2011 Forum on, pages 1–8, Sept 2011.

[SYM+13] Nikola Serafimovski, Abdelhamid Younis, Raed Mesleh, P. Chambers, Marco Di Renzo,
Cheng Xiang Wang, Peter M. Grant, Mark A. Beach, and Harald Haas. Practical imple-
mentation of spatial modulation. IEEE Transactions on Vehicular Technology, 2013.

[Syn15] Synopsys. System studio, 2015. Website.

[Sysc] Systemc. https://accellera.org/downloads/standards/systemc. Accessed : 2019-02-
26.

[thr] https://rtos.com/support/extra-tools/.

[Tri15] Stephen M. Trimberger. Three ages of FPGAs : A retrospective on the first thirty years of
FPGA technology. Proceedings of the IEEE, 2015.

[VF14] Kizheppatt Vipin and Suhaib A Fahmy. Zycap : Efficient partial reconfiguration manage-
ment on the xilinx zynq. Embedded Systems Letters, IEEE, 6(3) :41–44, 2014.

[VF18] Kizheppatt Vipin and Suhaib A. Fahmy. FPGA Dynamic and Partial Reconfiguration : A
Survey of Architectures, Methods, and Applications. ACM Computing Surveys, 2018.

[VSP10] Peter Van Stralen and Andy Pimentel. Scenario-based design space exploration of mpsocs.
In Computer Design (ICCD), 2010 IEEE International Conference on, pages 305–312. IEEE,
2010.

[VSR+13] C. Vennila, K. Suresh, R. Rather, G. Lakshminarayanan, and Seok-Bum Ko. Dynamic partial
reconfigurable adaptive transceiver for ofdm based cognitive radio. In 2013 26th IEEE
Canadian Conference on Electrical and Computer Engineering (CCECE), pages 1–4, May 2013.

[VSS+15] D. Viet Vu, O. Sander, T. Sandmann, J. Heidelberger, S. Baehr, and J. Becker. On-demand
reconfiguration for coprocessors in mixed criticality multicore systems. In High Performance
Computing Simulation (HPCS), 2015 International Conference on, pages 569–576, July 2015.

[WBP13] Wei Wang, Miodrag Bolic, and Jonathan Parri. pvfpga : accessing an fpga-based hardware
accelerator in a paravirtualized environment. In Hardware/Software Codesign and System
Synthesis (CODES+ ISSS), 2013 International Conference on, pages 1–9. IEEE, 2013.

[Wir95] M. J. Wirthlin. A dynamic instruction set computer. In Proceedings of the IEEE Symposium
on FPGA’s for Custom Computing Machines, FCCM ’95, pages 99–, Washington, DC, USA,
1995. IEEE Computer Society.

[WW09] Lie Wang and Feng Yan Wu. Dynamic partial reconfiguration on cognitive radio platform.
In Proceedings - 2009 IEEE International Conference on Intelligent Computing and Intelligent
Systems, ICIS 2009, 2009.

[XBG+10] Yang Xu, Felix Bruns, Elizabeth Gonzalez, Shadi Traboulsi, Klaus Mott, and Attila Bilgic.
Performance evaluation of para-virtualization on modern mobile phone platform. In Pro-
ceedings of the International Conference on Computer, Electrical, and Systems Science, and En-
gineering, 2010.

[Xia16] Tian Xia. Research on virtualisation technlogy for real-time reconfigurable systems. Theses,
INSA de Rennes, July 2016.

[Xil12a] Xilinx Inc. System generator for dsp, Oct. 16 2012. User Guide UG640 (v 14.3).

[Xil12c] Xilinx Incorporation. Xpower estimator user guide, Jan 2012. User Guide UG440 (v13.4).

[Xil14c] Xilinx. Zynq-7000 All Programmable SoC Technical Reference Manual (UG585), 2014.

105

http://www.cecs.uci.edu/~specc/
https://accellera.org/downloads/standards/systemc
https://rtos.com/support/extra-tools/

PA
R

C
O

U
R

S
P

R
O

F
E

S
S

IO
N

N
E

L
S

Y
N

T
H

E
S

IS
O

F
R

E
S

E
A

R
C

H
W

O
R

K
S

A
P

P
E

N
D

IX
Bibliographie

[Yu10] Ke Yu. Real-Time Operating System Modelling and Simulation Using SystemC. PhD thesis,
University of York, 2010.

[YY14] Seehwan Yoo and Chuck Yoo. Real-time scheduling for xen-arm virtual machines. IEEE
Transactions on Mobile Computing, 13(8) :1857–1867, 2014.

[ZMG09] Henning Zabel, Wolfgang Müller, and Andreas Gerstlauer. Accurate RTOS modeling and
analysis with SystemC. In Hardware-dependent Software : Principles and Practice. 2009.

[ZPR+13] Nikolaos Zompakis, Antonis Papanikolaou, Praveen Raghavan, Dimitrios Soudris, and
Francky Catthoor. Enabling efficient system configurations for dynamic wireless ap-
plications using system scenarios. International journal of wireless information networks,
20(2) :140–156, 2013.

106

	1 Synthesis of Research Works
	Preliminaries
	Introduction
	Summary of studies
	OS Modelling
	Reconfiguration Management
	Power Modelling

	Historical Research Background
	PhD Studies
	ETIS 2002-2007
	IETR 2007- Today

	From OS Modelling to Implementation
	Context and Related Works
	A new Design Methodology for Operating Systems
	System Specifications
	The Dogme Tool

	OS Model Description
	Task Manager Service
	Scheduling Service
	The IRQ Manager Service
	The Communication Service
	The Intercommunication Service
	The Reconfiguration Management Model
	The HW Task Concept
	The Dispatcher
	The placer
	The Offloader

	Modelling Evaluation
	Description
	System Model
	Application Model
	Architecture Model
	Kernel Model

	Simulation and results

	OS Code Generation
	OS Meta-model
	Model to Model Transformation

	From the OS to the Hypervisor
	Is virtualization compatible with real time constraints ?
	Virtualization Overhead
	Overhead aware schedulability analysis
	Proposal : Ker-ONE: A lighweight Micro-Hypervisor
	Overview
	Resource Virtualization
	Event Management

	Performance Evaluation
	Basic Virtualization Functions Overhead
	RTOS Virtualization Evaluation

	Summary

	Reconfiguration Management
	Context and Related Works
	General Framework
	HW Level
	HW Task Model
	PRR HW Management
	The PRR Monitor

	OS Level
	The Configuration Controller (Virtual Device Manager)
	Other OS services to handle reconfiguration
	The Parameters Provider
	The HW Updater

	The particular case of Virtualization : Security Mechanisms

	Application level
	Context
	Case study: VHA for WI-FI and WiMax heterogeneous networks
	The Adaptive Scoring System
	Towards a Smart Reconfiguration Management
	Overview
	Modules Description

	Results

	Performances Evaluation
	Overhead Analysis
	Experiments and Results
	Description
	Results

	Summary

	From Power Modeling to highly Energy-Efficient Devices
	Context and Related Works
	The Classic Implementation Approach
	Studying New Waveforms
	Proposed Offline Hardware Platform
	System Description
	Studied configurations
	Results

	Studying the SW limitations
	The Receive Spatial Modulation scheme
	Prototype Description
	Results

	Evaluation of FPGA-Based Wireless Communications Systems
	Proposed approach
	Scenario Definition
	IP Characterization
	Modeling and High Level Simulation

	Use Case
	System Description
	Power Estimation
	Power Estimation Speed-Up

	Towards Fine grain Modeling
	Analytical Modeling
	Extension to other FPGA Devices
	Neural Networks based Modeling
	Model Definition
	Results

	Summary

	Research Perspectives
	Embedded Systems Virtualization
	Hypervisor structure
	Reconfigurable Hardware Resources Sharing
	VM Scheduling and Off-Loading Service

	End to End Reconfiguration Management
	Multi-standards Reconfiguration
	Machine Learning

	Towards Energy-Efficient Communicating Devices
	New Waveforms
	Hardware Power Models
	From Device to Protocol

	Bibliography

