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RÉSUMÉ

L’objectif principal de cette thèse est d’améliorer la précision des systèmes de détection de
piétons à partir d’image, basés sur l’apprentissage profond sans sacrifier à la vitesse de détection.
Pour ce faire, nous effectuons d’abord une analyse quantitative systématique des diverses
techniques de détection de piétons à partir d’image. Cette analyse nous permet d’identifier les
configurations optimales des différentes composantes d’un système de détection de piétons. Nous
examinons ensuite la question de la sélection des meilleures couches convolutionnelles pour
extraire les caractéristiques visuelles pour la détection des piétons et proposons un système appelé
Multiple-RPN, qui combine plusieurs couches convolutives simultanément. Nous proposons le
système Multiple-RPN en deux configurations - une fusion-tôt et une fusion-tardive; nous démon-
trons ensuite que la fusion-tôt est la plus performante, en particulier pour la détection de piétons
de petites tailles et les cas d’occultation de piétons. Cette étude fournit aussi une évaluation
quantitative de la sélection des couches convolutionnelles. Nous intégrons ensuite l’approche de la
fusion-tôt avec une étape de segmentation pseudo-sémantique pour réduire le cout de traitement.
Dans cette approche, la segmentation pseudo-sémantique permet de réduire les faux positifs et les
faux négatifs. Ceci, associé à un nombre réduit d’opérations, permet d’améliorer simultanément
les performances de détection et la vitesse de traitement ( 20 images/seconde) ; les pe.fo
rmances sont compétitives avec celles de l’état de l’art sur les bases de données caltech-raisonable
(3.79% de taux d’erreurs) et citypersons (7.19% de taux d’erreurs). La dernière contribution de
cette thèse est la proposition d’une couche de classification des détections potentielles, qui réduit
encore le nombre d’opérations de détection. Il en résulte une réduction de la vitesse de détection
( 40 images/seconde) avec une perte minime de performance de détection (3.99% et 8.12% de
taux d’erreurs dans les bases de donnéealtech-raisonable et citypersons respectivement) ce qui
reste compétitif avec l’état de l’art.

Mots clés: Vision par ordinateur, Détection de piétons.
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ABSTRACT

The main objective of this thesis is to improve the detection performance of deep learning
based pedestrian detection systems without sacrificing detection speed. Detection speed and accu-
racy are traditionally known to be at trade-off with one another. Thus, this thesis aims to handle
this trade-off in a way that amounts to faster and better pedestrian detection. To achieve this, we
first conduct a systematic quantitative analysis of various deep learning techniques with respect to
pedestrian detection. This analysis allows us to identify the optimal configuration of various deep
learning components of a pedestrian detection pipeline. We then consider the important question
of convolutional layer selection for pedestrian detection and propose a pedestrian detection sys-
tem called Multiple-RPN, which utilizes multiple convolutional layers simultaneously. We propose
Multiple-RPN in two configurations – early-fused and late-fused; and go on to demonstrate that
early fusion is a better approach than late fusion for detection across scales and occlusion levels
of pedestrians. This work furthermore, provides a quantitative demonstration of the selectivity of
various convolutional layers to pedestrian scale and occlusion levels. We next, integrate the early
fusion approach with that of pseudo-semantic segmentation to reduce the number of processing
operations. In this approach, pseudo-semantic segmentation is shown to reduce false positives and
false negatives. This coupled with reduced number of processing operations results in improved
detection performance and speed ( 20 fps) simultaneously; performing at state-of-art level on
caltech-reasonable (3.79% miss-rate) and citypersons (7.19% miss-rate) datasets. The final con-
tribution in this thesis is that of an anchor classification layer, which further reduces the number
of processing operations for detection. The result is doubling of detection speed ( 40 fps) with
a minimal loss in detection performance (3.79% and 8.12% miss-rate in caltech-reasonable and
citypersons datasets respectively) which is still at the state-of-art standard.

Keywords: Computer vision, Pedestrian Detection.
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1.1 Pedestrian Detection

Pedestrian detection refers to the determination of regions in an image (or in individual
frames of a video stream), such that each determined region contains one pedestrian. As

such, it is a specific instance of the more general problem of object detection in computer

vision – i.e limited only to pedestrians. Pedestrian detection is usually studied as a separate

problem owing to its several applications which were recognized quite early on – e.g.

video surveillance, person tracking and autonomous driving. Earliest works on pedestrian

detection [4, 11, 156, 125, 111, 173] have primarily centered on the aforementioned
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application domains. In the aforementioned applications like autonomous driving and

video surveillance, the performance of a pedestrian detection system has a major cost factor

in terms of safety concerns. For instance, failure of an autonomous driving system to detect

a pedestrian crossing a street can result in mishaps with a potential to damage human life.

Since late 1980’s, when the first experiments with prototypes for autonomous vehicles

[151] and automated video surveillance [62, 121] were carried out, these applications have

entered mainstream usage on a large scale. This has led to a corresponding escalation in

the safety concerns associated with the performance of pedestrian detection systems [78].

The large-scale adoption of these systems is expected to steadily increase in the future

[59, 26]. In [27], it is reported that in real-life scenarios, contemporary detectors’ ability

to detect pedestrians in advance of fatal collisions vary from < 30% to > 90% of fatalities.

This range needs to be bridged towards lower values to ensure the feasibility of self-driving
cars in real-life scenarios on a large-scale. Thus despite being worked upon since 1980’s,

pedestrian detection is still a relevant problem and plays a key role in ensuring the safety

of modern applications such as autonomous driving.

From the previous discussion we gather that, in real-life pedestrian detection systems,

simply detecting pedestrians is not important on its own; it has to be coupled with the

ability to detect pedestrians well in advance. The fundamental objective of this thesis

is to jointly address these coupled problems of detection accuracy and detection speed;

a fundamental practical problem in autonomous vehicles. From a technical perspective,

pedestrian detection and its parent problem of object detection are formulated as machine

learning problems. In the next section, we understand the nature of pedestrian detection

as a machine learning problem. This renders greater clarity to our understanding of the

technical challenges of pedestrian detection and hence recognizing the technical areas of

our contribution.

1.2 Pedestrian Detection as a Machine Learning Problem

Pedestrian detection is a localization problem. This means that a pedestrian detection

system needs to delineate locations in an image with pedestrians by drawing a rectangular

bounding box around the pedestrians This localization problem in machine learning terms

is a union of two problems – a) A two-class classification problem where every image-

region must be classified for the presence or absence of a pedestrian and, b) A regression
problem where given a set of features representing an image region, estimation of the 4

corner coordinates of the rectangle bounding a pedestrian at that location; if one exists;

must be made.

This is an appropriate stage to point out some technical differences between pedes-

trian detection and its parent problem of object detection. Firstly, object detection is a
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Figure 1.1: A plot of aspect ratio (width/height) distribution of “pedestrians” in 4 dif-
ferent datasets –2 general-category (MSCOCO and Pascal VOC) and 2 pedestrian-specific
(CityPersons and Caltech10x). It can be seen that while there is a clear peak in the distri-
bution for pedestrian datasets, the distribution for general-category datasets is relatively
uniform.

localization problem involving C + 1 classes, where C refers to different classes of ob-

jects (an addition of 1 is made to reflect the background class, that is image regions which
correspond to no object of interest among C classes). In contrast, pedestrian detection is

a 2 class problem. Secondly, pedestrians have a relatively rigid orientation (e.g:- upright
pose and small deformation due to walking stance), while in general-category datasets like

MSCOCO [99] and Pascal VOC [48], object categories exhibit a wider range of poses and

deformation. This is illustrated in figure 1.1, where it can be seen that the aspect ratio dis-

tribution of bounding boxes for pedestrians bears a major similarity amongst pedestrian

detection datasets and differs significantly from that in general object category datasets.

Pedestrian detection techniques have evolved to put special emphasis on these characteris-

tics (e.g.- techniques such as SDS-RCNN [14] and RPN-BF [177] utilize the mode of aspect

ratio distribution of pedestrians to demonstrate improved performance). This trend is not

observed in general category object detection systems.

As in any machine learning problem in computer vision, the quality of features ex-

tracted from images is of quintessential relevance in pedestrian detection. Most of the
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early pedestrian detection systems [31, 50] were dependent on manually specified func-

tions for feature extraction. For example the histogram of oriented gradients (HoG) feature

[31] can be modelled by a nonlinear function which computes gradients, divides its in-

put into grids and performs binning of gradients in each cell of a grid. The parameters

of this function (e.g:- number of orientations, number of cells etc) has to be set manually

and cannot not be learnt during the training process automatically. While these parame-

ters can be tuned for specific datasets through thorough experimentation, it is difficult to

tune them to perform well across different datasets. With the advent of deep learning in

computer vision, the trend has shifted towards utilizing a deep neural network (DNN) for

feature extraction. This is on account of the fact, that DNNs are trainable as against man-

ually specified functions whose parameters were generally non-trainable. This facilitates

the learning of task-specific features by DNNs, thereby leading to better performance by

DNNs in nearly all domains of computer vision including pedestrian detection. Follow-

ing this observation, we limit ourselves to deep learning based pedestrian detection

systems in this thesis.

At this point one can be described, the essential basic differences between the mul-

titude of deep learning based pedestrian systems. Understanding these key differences

is the key to understand the contemporary challenges in pedestrian detection followed

by the outline of technical contributions presented in this thesis. We enumerate these

essential differences below :

1. Selection of DNN : Many classes of DNNs are known today – restricted boltzmann
machines (RBMs), convolutional neural networks (CNNs) and recurrent neural net-
works (RNNs) to name a few. Within each of the above classes, there are many

variations available. Pedestrian detection techniques utilizing multiple such vari-

ations of DNNs are known today [14, 159, 105]. Different DNNs extract varying

features dependent upon their topology and the task-at-hand. Hence, this is one of

the prominent differences found amongst pedestrian detection systems.

When processing static RGB images, CNNs are the most commonly used DNNs owing

to their suitability in representing static spatial inputs. RNNs are difficult to use with

images because of the absence of a unique sequential structure in images (due to

their 2D structure). Even if, a convention is adopted (such as raster sequencing),

another problem related to the memory problem in RNNs [132]. Processing a large

image by modelling it as a sequence of pixels, results in a long RNN, which makes

learning difficult due to the vanishing gradient problem [132]. Natural images are

highly varying in appearance and this makes it difficult for RBMs to model the joint

probability density of images. Due to these reasons, in this thesis, we exclusively

work with CNNs for pedestrian detection.
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2. Training and Fine-tuning Strategy : The training of DNNs determines the nature

of features extracted by them. This training is an optimization task guided by an

objective function, more commonly known as a loss function. This is one of the most

significant ways in which different pedestrian detection techniques differ, thereby

being one of the most important technical differences amongst pedestrian detection

systems.

A previously trained DNN, can be retrained on a different dataset with a different

loss function, taking its previously trained (or pre-trained) state as the initialization

point for optimization. This process is known as fine-tuning the DNN. Fine-tuning

is known to lead to faster training and better results [136, 149] and hence is widely

practised in deep learning. For fine-tuning, various strategies are significant such as

selection of the pre-trained state (i.e dataset on which pre-training was done) [179,

85] and fine-tuning only specific layers while leaving other layers fixed to the pre-

trained state [76, 87]. Thus, when training or fine-tuning a DNN for pedestrian

detection, the specifics of training and fine-tuning strategies play a crucial role.

3. Feature Utilization : Features are extracted by DNNs for an entire image. For

the purpose of localization, features corresponding to different image regions are

then utilized. This is known as a feature handling mechanism. This is one of the

most important technical differences amongst pedestrian detection systems, since

this mechanism has a direct impact on the quality of final detections.

4. Post-Processing Approaches : The detections obtained from a DNN usually encap-

sulate multiple detections of the same pedestrian and have to be post-processed to

eliminate duplicate detections. There are many classes of post-processing techniques

such as non-maximal-suppression (NMS) and depending upon their usage, the qual-

ity of detections can vary, thereby forming it as an important point of difference

amongst pedestrian detection systems.

Having outlined a global outlook of the technical subtleties of pedestrian detection as a

machine learning problem, we now embark upon a description of the technical challenges

in pedestrian detection. However, we take a brief detour and settle the choice of the

nomenclature “pedestrian”.

1.3 A Linguistic Clarification of the term “Pedestrian”

The exact nature of the term “pedestrian” in our work needs some elaboration. This is

owing to the following reason.
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Annotation protocols followed for creating different public datasets for pedestrian de-

tection are different. For instance, in the caltech pedestrian dataset [33] and the BDD100K

dataset [174], bounding boxes around instances such as people riding a bicycle are anno-

tated as pedestrians. On the other hand, the citypersons dataset [179], there are separate

annotations for person and rider. In most applications, such as autonomous driving, all

humans need to be detected. Thus, the exact interpretation of “pedestrians” is dataset-

specific.

In this thesis, we consider all annotations of humans as “pedestrians”. This as-

sumption frees us from fine-grained specifics of different annotation protocols, while also

ensuring focus on detecting humans.

1.4 Challenges in Deep Learning based Pedestrian Detection

Pedestrian detection being a specific case of general-category object detection does not

make it an easy problem. However, What test cases and instances make it difficult and

why ? In this section, we highlight the challenges posed by pedestrian detection first,

followed by linking those challenges to deep learning techniques.

Scale : Detection of small-scale pedestrians is a major challenge; scale referring to the

height (H) of a pedestrian. For instance, in the complete caltch pedestrian dataset [33],

the detection quality for pedestrians with H < 80 pixels is ∼ 40% lower than that for

H > 80 pixels [183]. Pedestrian appearance varies significantly between large and small

scales. For instance, small-scale pedestrians are mainly delineated by their contour, while

large-scale pedestrians have more elaborate appearance with facial and body details. As a

result, it is difficult to distinguish small-scale pedestrians with background clutter (e.g:-
trees). Technically, the challenge is in learning features which decompose small-scale

pedestrians and background entities into 2 distinct clusters in the feature space; despite

their similar appearance in the image space. CNNs employ spatial pooling between a sub-

set of layers, thereby increasing the feature stride down the network. As a result, the

information of small-scale pedestrians gets restricted to a very small set of feature map

pixels. In contemporary detectors [130, 102], feature map regions are represented by

a fixed length feature vector for classification and regression. The construction of this

vector takes place through non-linear operations such as ROI-pooling [130] or opera-

tions resulting in interpolation errors [23]. This leads to a less reliable feature represent-

ing small-scale entities. In deep learning, scale has received significant attention in both

general-category [142] and pedestrian-specific techniques [183, 16] with an objective to

build scale-invariant systems. However despite several approaches such as upsampling of
input images, use of à trous convolutions and training of scale-specific classifiers and a more
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recently proposed method of scale normalization [142], there stands a significant gap to

be bridged.

Occlusion : A highly occluded pedestrian is difficult to detect. As in the case of scale, the

detection quality in the complete caltech dataset degrades with increasing occlusion levels

[183]. Depending upon the entity occluding a pedestrian and the contemporary pose of

the pedestrian, occlusion can arise in a wide range of configurations. Some datasets such

as caltech [33] and citypersons [179] come with with groundtruth bounding box annota-

tions encompassing both visible and full-body regions of pedestrians. However, especially

in the case of higher occlusion levels, the visible bounding box can be particularly small

and results in the same challenges as scale. Given a feature representing a region con-

taining a pedestrian, it is interesting to reliably decompose it into two separate feature

representations – one representing the visible pedestrian part and the other representing

the region occluding the pedestrian. This approach, often known as feature disentangle-

ment [155] is recent and popular, but has been applied to a select few problems such as

face recognition and pose estimation; both of which are non-localization problems.

Illumination variations and other Environmental Factors : Under low illumination

conditions, detecting pedestrians is particularly difficult. Low illumination conditions rob

off most of the information about edges and other basic low-level features from an im-

age. These low-level features are usually detected by the early CNN layers [86, 176], and

form the basis for feature decomposition by later layers. The lack of these features under

low illumination, changes the statistical properties of the input to a CNN. In addition, un-

der low-level illumination, other features such as image-noise become more prominent,

which further cause degradation of performance. Most existing public datasets are lim-

ited to daytime environment, where illumination variations are relatively milder. Lack of

any corresponding training data makes it difficult to train or tune a system to low illumi-

nation conditions. Other environmental factors such as weather, in a similar way cause

degradation of performance.

Cross dataset generalization : Generalization performance of a machine learning sys-

tem is a well known and fundamental problem. Generalization performance analysis of a

machine learning system involves studying its test-time performance on various datasets,

which can be potentially different from the dataset(s) used for training it. The source

of this issue of cross-dataset generalization lies in the distribution function modelling a

dataset. A machine learning problem is computing a mapping F : X −→ Y, where the do-

main X represents the input data and the co-domain Y represents the target (classification
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or regression). Each x ∈ X can be thought to be a random variable generated by a prob-

ability distribution function P. During training pre-specified x ∈ X and y ∈ Y are used

to model F . For different datasets, P could be different, thereby essentially changing the

domain of F . Thus F modeled during training might not fit a dataset with a different P.

This phenomenon is also known as dataset bias [154]. The most common approach to mit-

igate this phenomenon is to map the data to a different spaceRmodeled by a distribution

function PR, such that P and PR generate independent random variables. Deep learning

has proved to be more successful than handcrafted feature-based techniques in ensuring

better cross-dataset generalization; though far from perfect. Fine-tuning a deep learning

based pedestrian detection model on a new dataset (from the same problem domain) is of-

ten found to have better performance than the original model. However, fine-tuning is an

impractical technique when taken to real-world applications such as autonomuos driving,

where a system has to respond favorably in potentially unseen pedestrian instances. These

unseen instances may differ in scale, appearance or weather conditions as described be-

fore. This makes it pertinent to analyze pedestrian detection systems from the perspective

of cross-dataset performance.

1.5 Contributions of the Thesis

First we give a broad outline of the problem areas we have addressed in this thesis. We

then follow-up with a summary of different chapters in this thesis in terms of their content

and contributions.

To facilitate the outline of our focus areas, we refer to figure 1.2 showing the general

pipeline of a deep learning based object or pedestrian detection system. The input image

is first processed by a CNN to obtain a feature map. This is followed by a “region selection
strategy” which selects a set of locations in the feature map for further processing. Some

detection systems process all possible locations in the feature map. In general, the region

selection strategy can be encapsulated as a transformation which takes as input a feature

map and outputs a set of locations or regions inside the feature map which are processed

further. More details on this can be found in chapter 2. Given a location or region inside a

feature map, it is represented by a feature vector. The exact representation of a region us-

ing a feature vector varies from one method to other and the corresponding mechanism is

known as the “feature handling mechanism” (described in detail in chapter 2). The feature

vector representing a region is then classified and regressed. If classified as a pedestrian,

the bounding box obtained from the regression represents the bounding box coordinate

of the pedestrian.

From the above description emerges 3 important perspectives which we address in this

thesis.
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Figure 1.2: General pipeline of an anchor based object or pedestrian detection system.
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1. Training and Fine-tuning strategy : Training and fine-tuning of deep CNNs is a

non-trivial task involving non-linear optimization which is heavily influenced by the

selection of various hyperparameters and optimization techniques. In addition, var-

ious pedestrian detection techniques share some common elements such as anchors
which invoke additional hyperaparameters. Another interesting observation is the

selection and ordering of datasets used for training and fine-tuning detection sys-

tems. For instance, the paper proposing the CityPersons (CP) dataset [179] pro-

poses its use for initial training followed by fine-tuning on the caltech dataset [33]

for better results. With different datasets varying in their resolution and other char-

acteristics such as distribution of scales and occlusion of pedestrians, it is of interest to

explore if there is a general scheme of ordering which can be followed for achieving

better results. In addition, through existing works, the impact of all the aforemen-

tioned factors on detection across scales and occlusion levels is not clear.

This perspective hence, aims to set a basis for a more informed training and fine-

tuning of pedestrian detection systems. We take this perspective to conduct extensive

analysis of various pedestrian detection techniques for various pedestrian datasets,

leading to interesting insights into the impact of aforementioned factors on pedes-

trian detection. In addition, these insights set the foundations for understanding the

prominent research directions in pedestrian detection.

2. Feature Representation : During the training of CNNs, the computed gradients de-

termine the updates to the network weights. These gradients being computed; start-

ing from the loss value, using the chain rule of derivatives; are hence impacted by

the network structure. During testing, the learnt network weights determine the fea-

tures used for detection. Thus, the network structure is fundamental to the quality

of features; a phenomenon which differentiates various techniques from one another

and motivating us to explore ways to improve feature representation by making bet-

ter usage of CNNs. Some ways to improve feature representation explored in this

thesis include – early and late fusion of features from multiple CNN layers, usage of
visible and full-body bounding box annotations and use of semantic segmentation.

3. Minimizing False Positives by Feature Selection : Pedestrians occupy a small por-

tion of the image space compared to non-pedestrian entities. This leads to a class

imbalance problem in pedestrian detection leading to lower true positives. Setting

higher weights to the minority class usually improves true positive rate, but at the

expense of increased false positives [163]. To mitigate this problem and to select the

most relevant features, traditionally feature selection techniques such as bootstrap-

ping (often called hard negative mining) [143, 50] are employed. This approach has

dominated deep learning based methods as well [139, 150, 137], but is not without
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problems. For instance, [137] shows that foreground to background ratio of 1 : 3 is

a rather precarious ratio for most object detectors and deviating from it can cause

performance drop by as much as 3 mAP points.

This makes feature selection an important problem in pedestrian detection. We

explore this perspective in this thesis by eliminating potential background regions

early in the detection pipeline. Traditionally, this approach forms the motivation

for boosting based methods. We however take a simpler approach using semantic

segmentation, which impressively eliminates the majority of background samples,

and in addition offers an increased inference speed.

The following contributions are presented as a part of this thesis.

1. We conduct an extensive analysis of the contemporary pedestrian detectors over 3

large-scale publicly available pedestrian datasets – caltech pedestrians, citypersons

and BDD100K. This analysis considers the performance of contemporary detectors

for a wide range of driving environments which include weather and illumination
variations. Our analysis sheds a detailed light on the limitations of contemporary

pedestrian detectors. In addition, we report extensive experiments with varying

configurations of existing pedestrian detection frameworks. These experiments and

resulting analysis further provide a set of guidelines towards designing novel pedes-

trian detection frameworks. In connection with section 1.2, this analysis sheds light

on two major aspects namely, selection of DNN and training and fine-tuning strategy.

2. We propose “Multilayer-RPN”, a pedestrian detection framework – which explicitly

and simultaneously utilizes multiple convolutional layers to perform pedestrian de-

tection. We propose two strategies to utlize multiple convolutional layers, early
fusion and late fusion. Our experiments show that early fusion is a better coalescing

strategy for utilizing multiple convolutional layers than late fusion. We furthermore

show the effectiveness of individual convolutional layers in detecting pedestrians of

varying scales and occlusion levels. This contribution in particular, provides quan-

titative estimates of the effectiveness of individual layers in detecting pedestrians

of varying scales and aspect ratios. This quantitative analysis therefore provides a

very useful prior knowledge when designing a pedestrian detection system with the

objective of scale and occlusin invariance.

3. We propose a “semantic segmentation based” pedestrian detection system, which

performs early fusion of multiple convolutional layers followed by semantic segmen-

tation of pedestrian locations to aid pedestrian detection. Our proposed approach

selects a small set of relevant image locations for processing and is more effective

than the region proposal stage of Faster-RCNN [130]. As a result, our proposed
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approach performs fewer computations than other pedestrian detectors and is able

to introduce significant improvements in detection rates while not sacrificing detec-

tion speed. This proposed approach achieves state-of-art performance on the caltech

and citypersons dataset while operating at a detection speed of nearly 20 frames per

second.

4. We propose an improvement over the “semantic segmentation based” pedestrian

detector, by further reducing the number of computations while improving both de-

tection speed and detection accuracy. We introduce the concept of anchor selection

layer which uses anchor specific kernels to select a small set of anchors which over-

lap well with both visible and full body parts of a pedestrian. Owing to the anchor

selection layer, the number of image regions to be processed is reduced significantly

and this introduces a nearly 2 times improvement over our previous contribution

while still achieving state-of-art performance on the caltech and citypersons dataset.

The outline of chapters in our thesis is as given below.

Chapter 2: We discuss the existing literature on deep learning based pedestrian detec-

tion along with a synopsis of their technical summary.

Chapter 3: We present a detailed experimental analysis of various pedestrian detection

techniques with various network structures, loss functions and hyperparameters. We gain

useful insights from this – particularly the relative impact of various factors pertaining to

deep neural networks on the quality of pedestrian detection across scales and occlusion

levels.

Chapter 4: We propose and analyze a pedestrian detection system, which utilizes multi-

ple convolutional layers simultaneously and explicity to perform pedestrian detection. In

particular we study the role of feature fusion (early vs. late) on the quality and complexity

of detection. In addition we gain useful quantitative insights into the role of individual

layers in detecting pedestrians across scales and occlusion levels.

Chapter 5: We propose a semantic segmentation based approach to feature selection

for pedesetrian detection. We conduct detailed experiments and analysis, thereby exhibit-

ing the performance of the proposed approach on 3 public benchmark datasets – caltech,

citypersons and BDD100K. Our findings support our claim that the proposed approach re-

duces the false positive detections. We also present runtime performance of the proposed

approach which shows that the proposed approach has a high inference speed, which is

an additional advantage gained by it.
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Chapter 6: We propose a new anchor selection layer, which improves upon our prposed

approach in chapter 5. In particular we show improved detection accuracy and speed,

thereby making the proposed method a strong step towards achieving realtime perfor-

mance in pedestrian detection.
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2.1 Introduction

Pedestrian detection techniques are either based on handcrafted features [117, 168, 31,

124, 180, 88, 6] or deep learning based features [14, 177, 152, 17, 5, 100]. Over the re-

cent years, deep learning approaches have maintained their superiority over handcrafted

approaches. As stated in section 1.2, in view of this, we focus upon deep learning based

approaches in this chapter and the rest of the thesis. In this chapter, our particular em-

phasis is on creating a taxonomy of pedestrian detection techniques. A taxonomy is useful

in structuring the repertoire of pedestrian detection techniques to ensure their easy anal-

ysis and description. The major highlight of this chapter is in creating a firm technical

base for organizing the technical descriptions presented in subsequent chapters. We begin

this chapter by noting that nearly all contemporary deep learning based pedestrian de-

tection techniques are derived from general-category object detectors. Hence, the mecha-

nisms followed in different general-category object detectors have an impact on the design

and operation of various pedestrian detectors. With this viewpoint, we first categorize

general-category object detectors followed by describing them. We then describe various

pedestrian detectors as extensions and modifications of general-category object detectors.

2.2 Detection Systems – Single-Stage and Two-Stage

The term “stage” in object detection literature refers to a portion of an object detection

pipeline, such that it produces bounding boxes as output. All object detectors are single-
stage [102, 127] or two-stage [130]. Figure 2.1 outlines the major characteristics of one-

stage and two-stage object detectors.

Technically these two classes of detectors differ from each other in following two per-

spectives.

Object Proposal Extraction : An object proposal is a set of bounding boxes which rep-

resent the regions of interest (ROIs) which might be potential target objects. The devel-

opment of object proposal techniques are motivated by the computational complexity of

traditional sliding window-based approaches to object detection. In the lack of proposal

detection schemes, all possible regions tiled by a sliding window need to be processed

for determining if an object spans them. Since usually objects of interest span a limited

portion of the image, exhaustive scanning is computationally inefficient. Object proposal

techniques serve the purpose of reducing the search space for detection of objects, thereby

enabling faster object detection.

Object proposal detection schemes have been proposed for quite some time, even be-

fore the advent of deep learning [185, 157, 3, 24, 123, 107]. Early object proposal de-
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tection schemes were based on handcrafted features [185, 157, 3]. These were taken up

by the first deep learning based object detection systems such as Fast-RCNN [55] (which
used selective search [157] as the object proposal detection method. This however re-

quired a two-step training process – i) training the selective search and, ii) training the
Fast-RCNN detector. Selective search is a non-deep learning based approach. Therefore,

usage of selective search cannot be used for an end-to-end learning pipeline. Moreover,

selective search can be slow, thereby affecting the inference speed in speed-critical appli-

cations like self-driving cars. As part of Faster-RCNN [130], a deep learning based object

proposal scheme known as region proposal network (RPN) was proposed. Faster-RCNN

couples RPN with RCNN (coming from Fast-RCNN) and performs an end-to-end training

for jointly learning object proposals and final bounding box detections. RPN has since

then been consistently used in all two-stage pedestrian detection approaches based on

Faster-RCNN, such as RPN-BF [177], MSCNN [16], SDS-RCNN [14], Multiple-RPN [159]

and many others.

The use of object proposal detection schemes is one of the most fundamental differ-

ences between two-stage and one-stage detection systems. One-stage detectors as against

two-stage detectors do not utilize object proposal detection. Object proposal detection is

the focus of the first stage of all two-stage detectors. The second stage of two-stage de-

tectors then conducts classification and bounding box regression over the proposals from

the first-stage to determine the final detections. In two-stage detectors, the second stage

utilizes another concept of “feature pooling” which is not followed in one-stage detectors

and is described in the next paragraph.

Feature Pooling : Feature pooling refers to isolating a portion of a feature map and

conducting subsequent operations on it. On an implementation level, this involves making

a copy of a portion of a feature map by first allocating a portion of memory for storing the

values to be copied followed by the actual operation of copying the values at the allocated

memory location. Thus large number of feature pooling operations is a slow operation

due to large number of copy operations. Feature pooling is also limited by the available

GPU memory (when conducted on GPU).

So, why is featuer pooling necessary ? The object proposals from the first-stage of two-

stage detectors need to process each proposal region for final detections. The proposal

regions can be of varying scales and aspect ratios. A classifier such as fully connected

layer or even a support vector machine (SVM) requires a feature vector of fixed length for

classification. Therefore, it becomes necessary to resize each proposal region to extract

a fixed length feature vector for further processing. Since, resizing is a lossy operation

(owing to interpolation artifacts), it is necessary to make a copy of each proposal region

in a feature map.
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Figure 2.1: Major characteristics of one-stage and two-stage object detectors.

Feature pooling is not employed in one-stage detectors. Instead, one-stage detectors,

process all feature map locations, by considering the feature vector at any feature map

location to be representative of all anchors centered at that location. For a more detailed

explanation of classification and bounding box regression in one-stage detectors, we refer

the reader to section 2.2.2.

We now turn to our description of the detailed working of one-stage and two-stage

detectors in deep learning. Two-stage detectors are based on Faster-RCNN [130] and one-

stage detectors are based on SSD [102]. Thus, we highlight the working of one-stage and

two-stage detectors with Faster-RCNN and SSD as template examples.

2.2.1 Two-stage detectors

A two-stage detector computes the final detections in the following sequential steps – a)

object proposal extraction and, b) refining the object proposals to obtain the final detec-

tions.

All the two-stage detectors are derived from Faster-RCNN. Hence, they share a com-

mon mechanism for handling feature maps. This mechanism results in high detection

accuracy alongwith lower detection speed. We exhibit this mechanism in figure 2.2. As

shown in figure 2.2, first, a minibatch B of images is fed to a CNN (known as base network
or base head). The resulting feature map may be processed by a set Caddn of additional

convolutional layers to obtain a feature map fB. A set of hypothetical bounding boxes (an-
chors) are tiled over fB. Anchors serve the same purpose as sliding windows [50]. Usually

multiple anchors of varying scales and aspect ratios are centered at each location in fB.

Each location P in fB encodes a vector v, whose length is determined by the specifics of the

network architecture. Two parallel branches of 1 × 1 convolutional layers (ccls and creg)
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Figure 2.2: Feature handling mechanism of Faster-RCNN and other two-stage detectors.

perform a 2-class classification and bounding box regression respectively for v. The two

classes correspond to object and non-object respectively. During training, the intersection-
over-union (IoU) between an anchor and groundtruth bounding box determines the target

class of the anchor. This 2-class classification and bounding box regression results in a

set of object proposals. This pipeline from generating fB to obtaining object proposals is

known as the region proposal network (RPN).

Quite importantly, in this first stage all confocal anchors share the same feature vector

for proposal classification. Figure 2.3 illustrates this situation. Figure 2.3 (top) illustrates

different sliding positions of a convolutional kernel sliding over a feature map. In figure

2.3 (bottom), the overlap of the kernel with the anchors for a specific location in the fea-

ture map is illustrated. From the figure 2.3 (bottom), although, all 4 confocal anchors are

of different scales and aspect ratios, them sharing the same feature vector is an inaccurate

feature handling situation. This feature handling situation is inaccurate because confocal

anchors have different shapes and hence varying receptive fields thereby encoding varying

information about the input image. Thus, the assumption of one feature vector represent-

ing multiple confocal anchors is an imprecise modelling of the information contained in

them. In the case of a large discrepancy between the shape of an anchor and that of the

filter kernel such as that in the 2nd and 4th columns of figure 2.3 (bottom), the output fea-

ture vector represents information which significantly differs from the information inside

the anchors. In spite of this, this approach for proposal detection is preferred on account

of its high speed. On parallel computing devices such as GPUs, the convolutions can be
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Figure 2.3: (Top):- Different positions of a convolutional kernel sliding over a feature
map. (Bottom):- The location of a filter kernel for 4 confocal anchors. The dark red pixel
is a specific location on the feature map. The pink region depicts the convolutional kernel.
The unfilled dark red rectangles are the anchors. Since for each of the 4 confocal anchors,
the location of the filter kernel is fixed, the convolutional output value is the same and for
all 4 confocal anchors.



2.2. Detection Systems – Single-Stage and Two-Stage 21

computed in parallel across many sliding locations of a convolutional kernel. The heavy

work of more accurate classification and bounding box regression of resulting proposals is

deferred to the second stage as described below.

Figure 2.4: Intra anchor feature pooling vis-à-vis feature probing. Top: Feature probing
at a feature map location indicated by a dark red pixel. The pink region shows a 3 × 3
kernel at the location, while the unfilled dark red rectangles are the anchors centered
at that location. Each of those anchors share the same feature vector vvv. vvv is the result
of convolution of the kernel with the feature map at the feature map location. Bottom:
Intra-anchor feature pooling for the same scenario as in Top. Each anchor has a different
feature vector, which is obtained by extracting features from inside the anchor and then
using ROI-Pooling [130], ROI-Align [63] or resizing [23] followed by flattening. It is
evident that intra-anchor feature pooling produces more anchor-specific features.

In the second stage (RCNN), features from inside the proposals are extracted and

transformed into a fixed length vector, subsequently used for classification and bounding

box regression. This operation is known as intra-anchor feature pooling. Compared to

the operation of feature vector creation in the first stage (we call it feature probing), it is

more effective as the features are extracted from inside the anchors, thereby collecting the

information specific to each anchor. In this case, the multiple proposals/anchors centered

at the same location do not share the same feature vector. Figure 2.4 exhibits the differ-

ence between feature probing and feature pooling. There are many approaches to perform

intra-anchor feature pooling such as ROI pooling [130], ROI align [63] and crop_and_align

[23]. In the original Faster-RCNN work [130], ROI-Pooling is used to achieve this transfor-

mation. Given a feature map and a rectangular sub-region corresponding to a proposal or

anchor, ROI pooling folows the steps as outlined in figure 2.5(top). First, the coordinates
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of the subregion are approximated by rounding them off to the nearest integer. Then, as-

suming that a n×n feature map is to be obtained, the subregion is divided into n×n grids.

Within each grid, max-pooling is performed to obtain the final n×n feature map which is

flattened to get a feature vector. The value of n therefore is a hyperparameter which needs

to be defined apriori. In Faster-RCNN [130], n = 14. The feature map from ROI-pooling

is maxpooled by a kernel of size 2× 2 with a stride of 2, to obtain the final feature vector.

In Mask-RCNN [63], an improvement over ROI-pooling, called ROI-Align was proposed.

The difference between ROI-pooling and ROI-Align is that, the latter does not perform

any rounding off of the coordinates of the subregion. Instead, the entire subregion is ap-

proximated by bilinear interpolation, followed by the remaining operations which are the

same as ROI-pooling. ROI-Align is better than ROI-pooling in that, lack of any rounding

off better preserves the information inside the subregion. In a later technical report [23],

a “crop and resize” operation was proposed as an alternative to ROI-pooling. This op-

eration involves cropping the subregion features and resizing them to a fixed dimension

followed by flattening. During this cropping, the non-integer coordinates of the subregion

are handled in the same way as ROI-pooling, i.e by rounding them off to the nearest inte-

ger. Experiments [74, 23] have suggested that “crop and resize” results in a more stable

training compared to ROI-pooling. “Crop and resize” operation is similar in performance

and efficiency to ROI-align operation when working on object detection problems. In the

case of applications requiring higher localization precision, such as image segmentation,

ROI-Align performs better than ROI-pooling and crop_and_resize operator.

The fixed length feature vector is further classified and regressed by another set of

parallel branches of 1× 1 convolution (similar to RPN), to obtain the final detections.

2.2.2 One-Stage detectors

One-stage detectors bypass the object proposal stage and perform final detection by di-

rectly operating on the anchor boxes. Figure 2.6 shows the general feature handling

mechanism for one-stage detectors like SSD [102] and YOLOv2 [127]. Compared to the

feature handling mechanism of two-stage detectors (figure 2.2), one-stage detectors do

not perform any feature pooling. In addition, for a N -class detection problem, a N + 1-

class classification is done by ccls (+1 for background). Bounding box regression can be

performed for each class separately (N -way regression) or class agnostic. During training,

as in the RPN stage, the target class for an anchor box is determined by its IoU with the

groundtruth. Since no feature pooling is involved in one-stage detectors, they are faster

during inference. However, lack of feature pooling also implies imperfect feature extrac-

tion as illustrated in figure 2.3, since as in RPN, v represents all the concentric anchors

at a location. This often resonates in the detection performance of one-stage detectors,



2.2. Detection Systems – Single-Stage and Two-Stage 23

Fi
gu

re
2.

5:
D

if
fe

re
nc

e
be

tw
ee

n
R

O
I-

Po
ol

in
g

[1
30

]
an

d
R

O
I-

A
lig

n
[6

3]
m

ec
ha

ni
sm

s
fo

r
in

tr
a-

an
ch

or
fe

at
ur

e
po

ol
in

g



24 Chapter 2. Pedestrian Detection Approaches in Deep Learning

Figure 2.6: Feature handling mechanism of one-stage detectors.

which generally perform worse than two-stage detectors.

One-stage detectors such as SSD [102] and YOLO [127] compensate for the lack of

high quality feature pooling by utilizing multi-scale training and testing. Features from

various layers of a CNN are extracted and are processed ultimately leading to their late

fusion i.e coalescing of their detections.

2.3 Pedestrian detectors as extensions of general-category de-

tectors

Table 2.1 lists some well known pedestrian detection techniques along with a short sum-

mary of their main contributions and their performance on the caltech-reasonable testing

dataset. It can be gathered from table 2.1 that with deep learning, the performance of

modern pedestrian detection systems has indeed improved by a large margin. DLSP [153],

though not the first deep learning based technique for pedestrian detection, was the first to

report a major performance improvement on the caltech-reasonable test set. Since DLSP

[153], the trend has been consistently moving towards deep learning based systems. His-

torically, the incorporation of deep learning techniques in pedestrian detection began with

restricted boltzmann machines (RBMs) [105, 106]. The success of RBMs in learning good

quality features from image pixels [68] such as in the MNIST dataset [91] was the pri-

mary source of motivation for these early works. The emphasis therefore in these early

works was on improving feature representation. Localization of pedestrians was mainly
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Method Year
Miss-Rate

(Caltech Reasonable)
(Test Set)

Main Features

DDM [165] 2012 Not Available
a) Focus on occlusion handling.
b) Inspired from DPM.
c) Use of Restricted Boltzmann Machines (RBMs).

UMFL [135] 2013 Not Available

a) 2-Stage system
b) Unsupervised sparse coding in stage 1.
c) Supervised training in stage 2.
d) Evaluation protocol different from other approaches.

JDL [118] 2013 39%

a) Inspired from DPM
b) Joint learning of
i) Pedestrian parts.
ii) Occlusion handling.
iii) Deformation handling.

DLSP [153] 2015 11.89%
a) Computationally expensive.
b) Inspired from DPM.
c) Training of multiple CNNs.

FRCNN [55] 2015 14%

a) Combines
i) Region proposal,
ii) Classification and
iii)Bounding box estimation
in one end-to-end network.
b) Generalizable to multiple object classes.

SSD [102] 2016 11%
a) Uses a multibox loss function.
b) Uses features from multiple layers.
c) Merges region proposal and classification in one step.

RPN-BF [177] 2016 9.8%
a) Use of Boosted Forests for classification
b) Use of caltech-specific aspect ratio for anchors.

SDS-RCNN [14] 2017 7.6%
a) Use of pseudo-segmentation mask as a prior.
b) Use of a second network for bounding box refinement.

YOLO-V2 [128] (As reported in [114]) 2017 20.83%
a) Use of anchors.
b) Multi-scale training at 3 scales.

MSCNN [15] 2018 8.8%
a) Use of multiple layers.
b) Each layer processes a specific scale of pedestrians.

Table 2.1: A brief summary of some popular deep learning approaches to pedestrian de-
tection.

accomplished in a manner similar to sliding windows or spatial pooling [105]. Sliding

windows and spatial pooling to determine localization of objects often lead to inaccurate

localization, thereby causing ensemble metrics such as mean-averaged-precision (mAP) or

log-averaged-miss-rate (LAMR) to be compromised. These early works highlighted the

need for new detectors for joint classification and bounding box estimation.

All pedestrian detectors in use today, are built on convolutional neural networks. These

contemporary pedestrian detectors stem from the aforementioned feature mechanisms of

either one-stage or two-stage object detectors. These contemporary detectors extend the

ideas of general-category object detectors such as Faster-RCNN, SSD or YOLO and spe-

cialize them for pedestrian detection using one or more refinements such as loss function,

network architecture and multi-task learning. The key to understanding the evolution of

modern pedestrian detectors is to understand the relative merits of their individual refine-

ments. We hence take the position of describing contemporary pedestrian detectors by

their individual refinements. Table 2.2 summarizes some principal pedestrian detection

systems with their corresponding enhancements over their general-category counterparts.
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Method Number of stages Primary Contribution Area
RPN-BF [177] 2 Classifier

Multiple-RPN [159] 2 Classifier + Late Fusion
ALF-Net [103] 1 Late Fusion + Focal Loss
MSCNN [16] 2 Late Fusion + Surrounding information

Rep-Loss [166] 2 Repulsion Loss
SDS-RCNN [14] 2 Pseudo semantic segmentation

M-Net [108] 2 Early Fusion

Table 2.2: Enhancements introduced by some contemporary pedestrian detection systems.

2.3.1 Architectural Refinements

The architecture of a CNN refers to the topology of its layers including the hyperparame-

ters specifying each layer. The fundamental purpose of a CNN architecture is to perform

feature extraction. During training, a loss function (otherwise also known as objective
function) guides the weights of the CNN architecture to suit feature extraction for a spe-

cific task such as image classification. A large body of work exists on CNN architectures

and their theoretical analysis [86, 140, 67, 147, 73, 71, 25, 19, 101, 148, 104, 144]. How-

ever much of the theoretical analysis of CNN architectures is still in its infancy and does

not offer a direct insight into practical matters such as selection of hyperparameters and

specification of depth of a network to achieve optimal performance. As a result most of the

insights about the utility of various CNN architectures for specific applications are based

on experiments. Generally, rather than designing a new CNN architecture from grounds

up, most methods focus on harnessing the power of existing CNN architectures. One of

the most common motivations in this regard is to introduce scale and occlusion-invariant

detection.

CNNs being hierarchical and cascaded systems interspersed with pooling layers, causes

the resolution of feature maps to decrease as the layers are traversed. Given the input

image size (SIin × SIin) and output feature map size (SO × SO), the network stride (SN)

is defined as :

SN ,

√
SO
SIin

(2.1)

SN can be substantial such as 16 in VGG16 [140]. In the inception class of networks

[147], SN is even more drastic (∼ 37), if no global average pooling is done and 299, if

global average pooling is performed. Let us assume that SN = α. Therefore every pixel

in the output feature map covers a spatial area of size α × α in the input image. Thus,

the output feature map does not encode discriminative information about any pedestrian

covered by a spatial area smaller than α × α. SN can be computed for any convolutional

layer by considering it to be the output layer. Generally, if there are P pooling layers in a
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network, there exist P + 1 different feature strides in a network.

To overcome the limitations imposed by SN , the most common architectural refine-

ment followed by most pedestrian detection approaches for scale-invariant detection is to

utilize multiple CNN layers [103, 159, 16, 94]. Apart from overcoming the limitations

imposed by SN , use of multiple layers also allows for greater feature diversity. ALF-Net

[103], Multiple-RPN [159], SAF-RCNN [94] and MS-CNN [16] are some prominent tech-

niques utilizing architectural refinements motivated by the above idea. Use of multiple

layers has been well known in general-category object detection for quite some time such

as feature pyramid networks (FPN) [44], RetinaNet [97], Hypernet [83] and inside outside
net (IONet) [8]. The use of multiple layers was primarily motivated by the success of

image pyramid techniques in object detection such as deformable parts model (DPM) [50].

Spatial pyramid pooling [65] was the first deep learning based object detection technique

incorporating the use of image pyramids. The difference between earlier approaches such

as spatial pyramid pooling [65] and more recent ones such as [44, 159, 103, 16] is that

unlike [65] which feeds a spatial pyramid of images to a network, the new approaches

feed a single spatial resolution image and consider feature maps generated by various

layers as pyramid. These recent approaches have both computational and performance

superiority over directly using an image pyramid as input. Efficient processing of image

pyramid requires multiple passes through a CNN and is hence computationally less effi-

cient during training and testing. In addition, it has been known through experiments

such as those conducted in [58] and [169] that CNN features are not invariant over large

variations in scale. Therefore, processing of images of different sizes (due to pyramidal
structure) is bound to result in features which are hardly optimal for objects of all possible

sizes due to limited scale-invariance of CNNs. While, this could be answered by the use of

multiple different CNNs, it is still inefficient due to a larger memory footprint required in

such a case.

There are generally 2 approaches to utilize multiple CNN layers – early fusion and

late fusion. Late fusion is more common and refers to coalescing the detection outputs of

multiple CNN layers to generate final detections [159, 44, 103, 16]. In contrast, early fu-
sion is where a single detection output is obtained by combining multiple layers’ features

early on in the pipeline. Pedestrian detection techniques utilizing early fusion include

HyperLearner [108] and MCF-Net [20]. Generally late fusion approaches are slower and

less accurate compared to early fusion approaches. Late fusion implies multiple detec-

tion computations and generally it means more computations. Due to large number of

detections generated by late fusion approaches (due to detections available at multiple

feature layers), a rather more aggressive application of post-processing techniques such as

non-maximal suppression is required which often leads to lower detection accuracy.

In chapter 4, we reflect upon the relevance of early and late fusion and show their
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relative relevance towards detection pedestrians across scales and occlusions.

2.3.2 Loss Function

Loss function is one of the most fundamental ingredients of deep learning systems. It is

the loss function which guides the training of a CNN. A loss function basically expresses

the final objective that is desired of a CNN. Pedestrian detection is a 2-task problem –

classification and bounding box regression. Hence, the loss function in pedestrian detection

consists of 2 complementary terms – one for classification and the other one for bounding

box regression. The classification term is usually the standard cross-entropy term [86].

The regression term is usually the smooth-L1 loss [130]. While these loss terms have

been used in a large number of detection systems spanning both general-category [130,

102, 44, 94] and pedestrian-specific techniques [159, 108, 16], over time their limitations

have come about to be recognized. Recently pedestrian detectors have been proposed

[166, 103] which report improved performance on pedestrian detection datasets primarily

by virtue of their loss terms’ formulation.

Cross entropy often does not fair well in the presence of class imbalance. In detec-

tion problems there is generally a heavy imbalance between positive (i.e potential object

samples) and negative (i.e potential background samples). In the case of both single-stage
and two-stage detectors, there are far too many negative anchors compared to positive

anchors for classification. This class imbalance problem has typically been handled by us-

ing a weighted cross entropy term. While this may help in mitigating the class imbalance

problem, it does not differentiate between hard and negative examples. For instance, very

small-scale pedestrians are known to be much harder to correctly classify than large-scale

pedestrians. As a network trains, it successively learns to classify large-scale pedestrians

quite well, but continues to struggle for classifying small-scale pedestrians correctly. This

often leads to a flat loss value evolution causing the network performance to plateau. Fo-

cal loss term introduced in [44] introduces a weighing factor which is dependent upon

the probability of classification of a sample.

CE(st) , −yst log(pst) (2.2)

FL(st) , −(1− pst)γlog(pst) (2.3)

Equations 2.2 and 2.3 represent the standard cross entropy and focal loss for a sample

st respectively. The term (1 − pγst) is known as the modulating factor of focal loss. The

factor γ in equation 2.3 is known as the focus parameter. Assuming that st is classified

correctly and pst is large, it implies that the modulating factor is close to 0. Therefore less

weightage is given to such a sample, as the network can already classify it fairly well. In
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Figure 2.7: A comparison of L1, L2 and smooth-L1 loss functions.

the converse situation, where st is misclassified and pst is small, the modulating factor is

close to 1.0 and hence higher weight is applied to such a sample.

This simple approach has been adopted in a number of pedestrian detection techniques

such as in [108, 20] and [103]. Generally this simple modification has been shown to

impart ∼ 2− 3% of performance improvements.

Regression losses have typically been formulated in terms of the smooth-L1 loss as used

in Faster-RCNN [130]. The standard L1-loss (L1) imposes a linear penalty on bounding

boxes dependent upon their deviation from the groundtruth bounding box. From a vi-

sual perspective, very small deviations from the groundtruth bounding box is not a matter

of great concern. Smooth-L1 loss which imposes a large penalty on boxes with a large

deviation but imposes small penalty to those with small deviations is easier to optimize.

Smooth-L1 loss is a piecewise combination of L1 and L2 loss terms and is quadratic in

nature near the zero point deviation which corresponds to a bounding box which is in per-

fect agreement with the groundtruth bounding box. The quadratic nature makes it convex

and gets rid of the saddle point which exists in the standard L1 loss. Figure 2.7 illustrates

the comparative visual difference in the bahavior of L1, L2 and smooth-L1 losses.

Recently a regression loss function called repulsion loss [166] has been proposed.

Repulsion loss is built over the smooth-L1 regression loss. However instead of using the

smooth-L1 loss directly, it uses a linear combination of three smooth-L1 loss functions as

follows :

LRep , LAttr + αLRepGT + βLRepBB (2.4)

In equation 2.4, the first term LAttr is meant to ensure the close proximity of bounding

boxes estimated for the same groundtruth bounding box. The second term LRepGT ensures

far away separation of a bounding boxe from different groundtruth bounding boxes. The
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last term LRepBB is aimed at far away separation of bounding boxes predicted for different

groundtruth bounding boxes. The scalar factors α and β balance the last two terms.

Determining α and β is crucial but non-intuitive. When a large group of people are closely

huddled together, minimization of equation 2.4 is difficult with a high value of α and β.

However, in a sparse environment, these values can be high. Experiments conducted in

[103, 166] shows that choosing α and β is crucial to obtaining the optimal performance.

In view of this [103] adopts the standard smooth-L1 loss for regression.

In chapter 3 we have undertaken an analysis of the impact of some loss functions on

the performance of pedestrian detection systems.

2.3.3 Classifier Selection

Most pedestrian and object detection systems utilize fully connected layers for classifica-

tion. However, other classfiers have been tried. One of the earliest attempts to perform

pedestrian detection using other classifiers has been through the use of boosted forests

as in [177]. In [177], the output features of a VGG network are fed to a boosted forest

with 5 stages, each with different number of trees. The number of trees in each stage is

determined as hyperparameters. This choice seems to be motivated by the large variance

in the appearance of pedestrians. The adoption of boosted forests in [177] improves the

performance on caltech reasonable dataset by ∼ 5%. The downside of this approach is

the lack of an end-to-end training. Online training of boosted forests though possible is

complicated. The complication primarily results from the fact, that as the CNN features

evolve in the course of training, the feature splits which determine the tree structure in

boosted forests also need to be varied. Attempts have been made to integrate forest based

classifiers like random forests with CNNs as in [84]. However, these attempts have pro-

duced rather small improvements. In another work [159], gradient boosted trees have

been utilized in conjunction with late fusion.

In chapter 4, we outline a proposal for using gradient boosted trees and demonstrate

its effectiveness in detecting pedestrians across scales and occlusion levels.

2.3.4 Semantic Segmentation

Segmentation is a powerful indicator of localization than bounding boxes. While a bound-

ing box contains portions of non-pedestrian instances, a segmentation mask is able to

encode the specifics of a pedestrian. However, obtaining groundtruth information for seg-

mentation is time-consuming and significantly more costly compared to obtaining bound-

ing box information. Lately, public datasets with segmentation information have been

released such as [179]. However, it contains a small number of pedestrians (5000) com-

pared to other much larger datasets such as caltech which come without any segmentation
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information. Semantic segmentation information has been used in pedestrian detection

since SDS-RCNN [14], which utilizes the pseudo-segmentation mask of a pedestrian. The

pseudo segmentation mask refers to the entirety of a bounding box considered as a seg-

mentation mask.

As will be seen in chapter 3, semantic segmentation is an important piece of informa-

tion whose incorporation frees one from using more refinements such as a dense set of

anchor scales and aspect ratios. In this thesis in chapters 5 and 6 we have utilized seman-

tic segmentation in a novel way, not only to improve the feature representation as done in

SDS-RCNN [14], but also to limit the number of anchors to be processed which delivers

high detection accuracy simultaneously with high detection speed.

2.3.5 Boosting

Boosting [51] is a well-studied area of machine learning. Boosting involves training an

ensemble of weak classifiers. Weak classifiers are defined as classifiers which have an

average classification accuracy of < 50%. Boosting is a meta-algorithm, meaning that is

independent of the choice of classifiers and features as long as each classifier matches the

criterion defined before for weak classifiers. Boosting involves iterative training of weak

classifiers using reweighing of features. This means that features which are classified

well by previous weak learners are given lesser weightage, while those which are not

well classified are given a large weightage. There are many boosting algorithms such as

AdaBoost and gradient boosting.

Boosting in deep learning is a costly undertaking. Deep learning architectures such as

CNNs consist of large number of parameters and hence iteratively training a large number

of them is therefore deemed difficult. Nevertheless, this approach has been used in some

approaches such as in CFM3 [72]. This approach to utilizing boosting involves training a

number of different CNN based detectors and training them in the same iterative fashion

as in AdaBoost. The downside of this approach is the substantial increase in the bulk of

the overall system. In contrast, the corresponding improvement in performance is small

(∼ 1%).

Usually instead of boosting a more ensemble approach is followed in pedestrian detec-

tion literature such as in cascade-rcnn [18]. In cascade-rcnn, a cascade of detection heads

are setup. Each detection head consists of sibling layers for classification and bounding

box regression respectively. For cascade-rcnn with N stages, the ith stage (1 < i < N), is

trained to detect pedestrians during training with an IoU (IoU(i)) such that

IoU(i−1) ≤ IoU(i) ≤ IoU(i+1) (2.5)

The fundamental motivation behind cascade-rcnn is to make detection quality consistent
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across IoU overlaps. However, cascade-rcnn is a costly approach due to two principal

reasons – a) stages of cascade-rcnn are trained sequentially and, b) for large number of

stages, cascade-rcnn is slow to train and test. Use of large number of cascade stages also

leads to a large memory footprint. This is a limitation in deployment scenarios where large

memory devices might not be favored due to cost, bulk or power consumption restraints.

2.4 Datasets

In this section we look at some public datasets for pedestrian detection used for our work.

A summary of the basic statistics of these datasets is detailed in table 2.3. While a number

of other datasets exist and have been popular such as INRIA [31], KITTI [53], ETH-Zurich

[39] and TUD-Brussels [168], in this thesis we focus primarily upon caltech, citypersons

and BDD100K datasets. Our choice stems from a couple of following considerations :

• Caltech, CityPersons and BDD100K come from the same domain of autonomous driv-
ing. Hence, they belong to the same environment of driving, and cross-dataset stud-

ies are more disciplined.

• These datasets are large and becoming popular with the pedestrian detection com-

munity.

• These datasets taken together, cover a diverse gamut of resolution (table 2.3) and

dataset size.

Resolution Number of Images Number of pedestrians
Training Testing Training Testing

Caltech [33] 480× 640 128422 121468 188184 146807
CityPersons [179] 1024× 2048 2975 1575 19654 11424
BDD100K [174] 720× 1280 70000 20000 86047 43215

Table 2.3: A summary of 3 public datasets used in our work.

2.4.1 Caltech Pedestrian Dataset

The caltech dataset [33] is one of the oldest large-scale public datasets for pedestrian

detection. It is available in the form of a set of videos, alongwith a predefined train-
ing/testing split. These videos are taken with a temporal frequency of 30 Hz. Hence,

subsequent frames are quite similar for this dataset. Hence, frames taken with a prede-

fined interval are normally used for the evaluation of this dataset. This often brings down

the number of images from the figures appearing in table 2.3.
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Frames within the testing subset taken at intervals of 30 frames are used for evaluation,

while for the training subset the frame interval is reduced to 3 frames. These subsets are

commonly known as caltech1x-test and caltech10x-train sets.

The original annotations for the caltech dataset were obtained through interpolating

manual annotations over a subset of frames. This has led to original annotations suffer

from alignment problems. A set of new and improved annotations were released in [47]

to address these problems. These annotations were made available only for caltech10x-
train and caltech1x-test subsets. Due to this, most modern works Most modern works

such as RPN-BF [177], SDS-RCNN [14], MSCNN [16] and our own proposed approaches

make use of the caltech10x-train and caltech1x-test subsets when working with the caltech

dataset.

Most evaluations further refine caltech10x-train and caltech1x-test on the basis of

pedestrian height and level of occlusion. The most commonly used subset on this basis

is known as the caltech-reasonable subset. This contains all pedestrians with a minimum

height of 50 pixels and an occlusion of less than 35%. Most current techniques strive for

an improved performance on this subset.

2.4.2 CityPersons

The citypersons dataset [179] has been assembled from the cityscapes dataset [28]. For

the citypersons dataset, the pedestrians in the cityscapes dataset have been manually an-

notated with bounding boxes, while maintaining an aspect ratio (width/height) as 0.41.

In addition, the visible and full body bounding boxes have been made available. In con-

trast with the caltech dataset, it has been gathered from 27 different cities in Germany

and surrounding areas. It also involves a significantly high pedestrian density (pedestri-
ans/image) of 7.0 compared to other datasets like caltech (≈ 1.4) and BDD100K [174]

(≈ 1.2). In the paper proposing this dataset [179], benchmark evaluations confirm that

Faster-RCNN [130] trained on citypersons generalizes better on the caltech-reasonable

test set compared to other datasets such as KITTI [52].

2.4.3 BDD100K

BDD100K is a recently released dataset [174]. The salient feature of this dataset is its

diversity of illumination and weather conditions. BDD100K apart from annotations for

pedestrian detection, also contains annotations for detection of 9 other entities commonly

found on streets. It also contains annotations for lane markings and drivable areas along

with full-frame fine instance segmentations over a subset of 10K images. Compared to

the other two datasets (caltech and citypersons), BDD100K comes with only full-body

bounding boxes.
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2.5 Evaluation Metrics

In the object detection literature, mean averaged precision (mAP) is the most commonly

used evaluation metric. In contrast, log-Averaged Miss Rate (abbreviated here as LAMR)

is the most common evaluation metric for pedestrian detection. The reason for a more

widespread adoption of LAMR compared to mAP, is the fact that in most practical applica-

tions of pedestrian detection, there is a high cost associated with the failure to correctly de-

tect a pedestrian. LAMR measures the miss-rate of a pedestrian detection system, thereby

being suitable as an evaluation metric for pedestrian detection. This metric is computed

using a miss rate curve. A miss-rate curve is a plot of miss-rate (MR) vs. false-positives per
image (FPPI). The miss-rate curve is a log-log plot; both its axes having represented in the

log-space. LAMR is obtained by selecting 9 equidistant points on the x-axis between 10−2

and 100, and the MR values at those points averaged together (MR−2). Some evaluation

also do this averaging between 10−4 and 100 (MR−4). Since, the threshold of a classifier

can only be varied in discrete steps which do not bear a 1-to-1 mapping to FPPI, at some or

all of those 9 points MR values may require interpolation from other points for estimation.

It has been stated in [34] that miss rate curves are preferred over traditional precision-

recall curves because in practical instances, there is an upper limit on FPPI and this is

communicated directly by the miss rate curve. However this evaluation protocol is not

suitable for instances where – a) Setting an upper limit on FPPI is not informative or, b)

Where a holistic performance over multiple object categories is desired. The rising field of

self-driving vehicles is such an example. Self-driving vehicles need a holistic understand-

ing of the environment which includes but is not limited to buildings, vehicles, lanes and

traffic signs. Furthermore, setting an upper limit on FPPI may be difficult in uncontrolled

environments where pedestrian density can vary over time.

This indicates a need to possibly shift from the LAMR metric to mean averaged preci-

sion (mAP). Such a shift could allow a more exhaustive evaluation of pedestrian detection

vis-à-vis generic object detectors.

2.6 Conclusions

In this chapter we gave an overview of pedestrian detection systems and how they were

derived from general object detector. We characterized the single stage and two stage deep

learning detectors, and showed the relevance of feature handling in pedestrian detection.

This characterization is helpful to understand the landscape of pedestrian detection re-

search in deep learning. We also looked at various refinements and modifications intro-

duced to the general category object detectors for building pedestrian detection systems.

These specializations indicate two major trends in pedestrian detection today – moving
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towards more expressive architectures and, utilizing more semantic information in contem-
porary pedestrian detection systems. We take cue from these observations, and hence set

the tone for the next chapter where we conduct an exhaustive quantitative analysis of

different refinements which describe the majority of pedestrian detection systems in use

today.
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3.1 Introduction

The construction and training of deep learning pipelines for pedestrian detection is a chal-

lenging task. These challenges can be categorized as – computational challenges and design
challenges. Computational challenges refer to constructing and training a deep learning

pipeline under a constrained set of computational resources such as CPU/GPU memory.

Design challenges refer to designing various components of a deep learning pipeline and

training them in an effective manner. An example of design challenge is the selection of

hyperparameters such as depth of a network and learning rates. There is very limited

body of work on the analytical study of the behavior of deep learning systems under a
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given set of hyperparameters. Most of such studies are conducted under simplified sce-

narios such as in the case of fully connected layers. Modern pedestrian detection systems

are built using various components such as very deep CNNs with convolutional, pooling

and fully connected layers put together and involve millions of parameters. For example,

a pedestrian detector such as SDS-RCNN [14] built using the VGG16 architecture [140]

has in excess of 15 million parameters. At the same time, the largest publicly available

pedestrian detection dataset (in terms of number of images with pedestrian(s) in them) –

the EuroCityPersons dataset [13] has slightly more than 40K images in its training set. This

exhibits a huge disparity between the number of training samples and the number of pa-

rameters to optimize, and this makes achieving the global minimum during optimization

substantially difficult. To add to this misery, a large number of design choices are available

to anyone willing to design a new pedestrian detector. These design choices include but

are not limited to – selection of a CNN architecture, selection of an optimizer, selection of a
loss function and selection of a dataset for initial training. In the lack of tractable analytical

studies which shed light on the impact of any specific combination of the aforementioned

and other choices, to the performance of the detector on a dataset (training or testing),

effective design and training of pedestrian detectors is a formidable undertaking.

In this chapter we conduct a systematic study of the design choices in 4 deep learning

based systems popular for pedestrian detection – Faster-RCNN [45], SSD [102], SDS-

RCNN [14] and RPN-BF [177]. Of these, Faster-RCNN and SSD were proposed for general
object detection, while SDS-RCNN and RPN-BF were proposed specifically for pedestrian

detection. Our analysis makes use of 3 large and popular public datasets for pedestrian

detection – Caltech [33], CityPersons [179] and BDD100K [174]. The objective at the

root of this study is to elicit a common set of guidelines which enable one to start off

making design choices on a less than random basis. To stress the relevance of this study,

we allude to the relevance of various schemes of initialization of deep neural networks,

where it is well known that certain initialization schemes such as xavier initialization [57]

are better than others such as zero initialization. It is therefore very pertinent to conduct

such systematic analysis as we present in this chapter.

Our choice of the aforementioned 4 deep learning systems is based on a combina-

tion of two bases – a) Popularity : Faster-RCNN [130] and SSD [102] have served as

the basis for a large number of pedestrian detection approaches as outlined in chapter 2.

Therefore, their analysis serves to provide invaluable insights into the guidelines to follow

when training and finetuning other pedestrian detection approaches and b) Diversity :

SDS-RCNN [14] and RPN-BF [177] introduce major specializations for pedestrian detec-

tion. RPN-BF [177] utilizes a combination of CNN (for feature extraction) and Gradient

Boosted Trees (GBT, for classification). It is a remarkably different approach since with the

advent of deep learning, most classification approaches have utilized fully connected lay-



3.2. Related Work 39

ers for classification. SDS-RCNN [14] introduced the concept of a pseudo-segmentation

mask which is the first approach of its kind in pedestrian detection for improved feature

representation. The idea that the bounding box of a pedestrian can be utilized as a seg-

mentation mask and incorporated in the training process for better feature representation

of pedestrians is a major enhancement, thereby leading to our choice of it.

3.2 Related Work

There is a general lack of available literature conducting a focused and elaborate analysis

of the design choices and training strategies for pedestrian detection systems. While there

have been several papers conducting a systematic review of pedestrian detection [10, 34,

54, 37, 93, 178], most of them such as [10, 34, 54, 37, 93] having been written before

the advent of deep learning, thus provide little insights into the potential design choices

for deep learning systems. The most recent review on pedestrian detection [178] focuses

primarily on data annotation quality and its impact on detection performance. While

annotation quality is of fundamental importance, it is rarely within the control of system

designers. Reviewing large volumes of previously annotated data is desirable, although

usually not a preferred practice due to its costly nature. Therefore, it is also important to

take discussion closer to the underlying techniques of detection and review their impact

on detection performance.

Designing a deep learning system for pedestrian detection based on existing methods,

involves a selection of wide array of parameters that may affect the performance. As an

example, a seemingly simple operation such as convolution comes in a number of flavors

such as à trous convolution [21] and depthwise separable convolution [25]. To the best

of our knowledge, there exists no systematic analysis of how these design choices affect

performance when incorporated in existing frameworks such as Faster-RCNN [45]. Often

when designing a system for a custom dataset, it is not possible to re-annotate the com-

plete dataset, despite some potential imperfections such as misalignments. A systematic

understanding of design factors can aid in getting the best out of a deep learning sys-

tem design. We therefore propose this chapter not as an exhaustive survey, but rather as

an analysis of how different design choices in different frameworks relate to their corre-

sponding performance. We also make observations on the cross-dataset generalization of

different frameworks.
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3.3 Common Experimental Settings

In this section we setup the basis for our subsequent analysis. We describe the settings

which were common across all our experiments. We also outline the basis for these set-

tings. We look at each experimental settings in the subsequent subsections.

3.3.1 Selection of Optimizer

Optimizers used in deep learning can be categorized into – a) Adaptive (e.g :- Adam [81]

and AdaDelta [175]) and b) Non-Adaptive (Stochastic Gradient Descent (SGD)). Adaptive

optimizers internally adjust the learning rate while non-adaptive optimizers do not.

Adaptive optimizers generally lead to faster convergence but poorer generalization

compared to non-adaptive optimizers as outlined in [126, 80]. Considering that general-

ization performance is of major practical relevance, we take cue and decide against using

adaptive optimizers for our analysis. Some recent techniques such as Regularized Non-

linear Accelaration (RNA) [133] have been developed to boost the convergence rate of

non-adaptive optimizers. Their performance has been validated on image classification

problems [134]. These accelaration techniques however are memory intensive, as they

keep in memory the gradient history of the network upto a fixed number of past training

steps. Our experiments with using the RNA algorithm (by storing the gradient history of
past 20 steps) with Faster-RCNN (on VGG16 network) led to around 15% better conver-

gence speed, but at the cost of significant increase in memory usage which made its usage

untenable with GPUs with a memory less than 12GB. Thus, although proven effective in

our experiments, we decide against using RNA algorithm for pedestrian detection analysis.

Other methods for accelarating SGD which do not require the storing of gradients are also

known such as Predictive Variance Reduction (PVR) [79]. However PVR is not meant for

use when SGD is used with the momentum term. SGD with momentum term remembers

the update δWt at each iteration t, and determines the next update (at t + 1) as a linear

combination of the gradient at that iteration (i.e t + 1) and the previous update (δWt).

The coefficient µ of δWt in this linear combination is known as the momentum term. The

momentum term eases the escape of the optimizer from local minima and saddle points

[175].

We employ SGD with momentum term for all our experiments. The prime reason

guiding our choice is the analytical proof presented in [61] and [167] stating that models

trained using SGD are capable of attaining a vanishing generalization error.

One recently proposed technique [80] known as the Switches from Adam to SGD

(SWATS) uses a combination of SGD and Adam. The training starts with the Adam opti-

mizer and on the fulfillment of certain condition (known in [80] as the triggering condition)
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switches to SGD, with little memory overhead. We have not experimented with this opti-

mization technique but it could be an important part of future experiments.

One downside of using SGD is the need to carefully choose the learning rate and

momentum during training. We next describe our choice of learning rate and momentum

in our experiments.

3.3.2 Learning Rate Schedule and Momentum

Our choice of momentum (µ) is 0.9, as it is the most common value used in most of

the literature [14, 177]. One probable reason for this value is that, the loss function

landscape can be very undulating and a large value of µ is helpful in escaping local valleys

and saddle points. Too large a value of µ (e.g:- > 1) however, upsets the contribution of

the gradient at that step and gives a much larger weightage to the previous update, and

hence is undesirable.

The learning rate (η) is the single most important parameter of an optimizer (adaptive
as well as non-adaptive). The learning rate determines the contribution of the current

gradients towards the weight update. A very large value of η is usually the most recognized

cultprit behind the non-convergence of a deep network. A too low value of η causes

very slow convergence and may also result in oscillations around a local minima region.

Generally a constant value of η is not found suitable for training deep networks. As a

network begins to converge, the standard practice is to lower the learning rate. Failure

to do this could result in the optimizer moving out of the global minima region, thereby

upsetting the training process. Generally a warmup phase of training is preferred where

the learning rate is set at a high value for the first few thousand steps and then gradually

lowered. This practice has been followed in several papers on object detection such as

[172]. The initial warmup phase is helpful when training a network from a randomly

initialized state. It is not a good practice to follow when finetuning a network, as a high

initial learning rate can upset the weights learnt from the pre-training. Moreover, the

initial high learning rate during the warmup phase is primarily a mechanism or trick

employed for faster convergence. There is no analytical study confirming the superiority

of using a warmup phase as against not using one.

In this chapter for all our experiments, the learning rate was set initially at 0.001 and

then decreased by 10 times after every 20K steps. Due to the highly uneven and undulat-

ing nature of the loss function landscape, it is indeed possible for the gradients to blow up

suddenly to a very large value. This phenomenon known as exploding gradients is usually

seen in the early stages of training a network. While, it is not a regular occourance, it

is best practice to safeguard against it by utilizing gradient clipping. Gradient clipping

is a process, where before applying the update rule of an optimizer, the computed gradi-
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ents are clipped i.e, gradients above a pre-specified threshold are set to the value of that

threshold. Thus if Gu is the value of unclipped gradient then the clipped gradient value

Gc is determined as follows

Gc =

τ Gu ≥ τ

Gu otherwise
(3.1)

An approximate value of τ can be guessed empirically by initially running a few iterations

of training without using gradient clipping and observing the minimum and maximum

values of gradients over the iterations. Based on that, one can estimate the mean, mini-

mum and maximum values of gradients and can determine τ by observing these statistics.

When experimenting with Faster-RCNN [130] or SSD [102], we have found across sev-

eral networks (e.g:- VGG16, ResNet-152 etc.), that the mode of initial gradient values is

around 10, with this value decreasing over the iterations. We therefore set the value of τ

as 10.0.

3.3.3 Initializer

We make use of the xavier initialization scheme [57] for initializing any layer whenever

training from scratch or fine-tuning some layers needing initialization. This choice of

initializer is on account of its superior performance as it helps stablize the training and

prevents a network from entering into a local minima position early on.

3.4 Evaluation Protocols

The evaluation protocols in pedestrian detection have been described in detail in chapter

2. In this work, the evaluation has followed the protocol suggested in [47]. In this pro-

tocol, caltech10x (training subset of the caltech dataset sampled at 3 frames interval) has

been used for training. The caltech1x-test (testing subset of the caltech dataset sampled at

30 frames interval has been used for testing. The evaluation for caltech reasonable is done

by considering pedestrians with height > 50px and occlusion < 0.35 in the caltech1x-test
subset. The refined annotations proposed in [47] for caltech10x-train and caltech1x-test
have been used for training and testing respectively.

3.5 Analysis of Design Choices for Pedestrian Detection

3.5.1 Base Network Architecture

The basic design question with respect to base networks is their architecture. The fea-

ture expressive power of a CNN is empirically related to its depth and the connectivity
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amongst its layers (e.g :- Residual connections). This trend has been noticed consistently

across images (image classification) and videos (action recognition) [60]. To quan-

VGG16 (LAMR)
Reasonable near-scale medium-scale partial-occ heavy-occ

Faster-RCNN 13.34 4.09 49.78 40.14 68.10
SSD 15.45 4.13 51.12 43.56 70.03

RPN-BF 9.2 3.86 47.2 18.23 61.4
SDS-RCNN 7.16 2.11 47 15.46 58.27

Table 3.1: Relative performance of different techniques on caltech pedestrian dataset with
VGG16 as base network. Reasonable subset is described in chapter 2. For scale analysis,
only unoccluded pedestrians are used. For occlusion, only pedestrians with heights H ≥ 50
pixels are used. For Near-scale, H ≥ 80 pixels. For Medium-scale, H ∈ [30, 80] pixels.
Partial-occ refers to occlusion O ∈ [1, 35]%. Heavy-occ refers to occlusion O ∈ [35, 80]%.
All figures are LAMR percentage values. The best result in each column is in bold.

ResNet-152 (LAMR)
Reasonable near-scale medium-scale partial-occ heavy-occ

Faster-RCNN 11.17 3.28 46.60 38.1 64.32
SSD 12.84 3.33 47.94 45.02 65.89

RPN-BF 8.92 3.02 45.22 16.77 60.3
SDS-RCNN 7.02 1.2 44.13 14.3 56.12

Table 3.2: Relative performance of different techniques on caltech pedestrian dataset with
ResNet-152 as base network. Column description same as in table 3.1. All figures are
LAMR percentage values. The best result in each column is in bold.

titatively look at the impact of base network selection, we trained the 4 techniques on

the training set of all the 3 datasets (CAL(10x)+CP+BDD). The training set included all

pedestrians irrespective of their heights and occlusion levels. The trained model was then

tested on caltech1x-test dataset. The results are summarized in tables 3.1 through 3.4. A

visual summary of the quantitative figures is in figure 3.1. The depth of networks in ta-

bles 3.1-3.4, increases in the order – VGG16 [141], ResNet-152 [66], Inception-V2 [146],

Inception-V3 [147]. In the above order, the increse in depth decreases as we move from

VGG16 towards Inception-V3. There is a substantial difference in the number of layers

between VGG16 and ResNet-152, while there is very little difference between Inception-

V2 and Inception-V3 in terms of depth. Between ResNet-152 and Inception-V2 there is a

substantial architectural difference which will be described later on in this section.

Analysis of tables 3.1-3.4 reveals that though network depth boosts the performance of

these systems, the improvements are not linear. Improvements though quite pronounced

from VGG16 –> ResNet-152 transition, are less pronounced on subsequent transitions
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InceptionV2
Reasonable near-scale medium-scale partial-occ heavy-occ

Faster-RCNN 11.15 3 45.92 37.65 63.62
SSD 12.01 3.02 46.68 44.37 65.16

RPN-BF 8.13 2.98 44.47 15.2 58.76
SDS-RCNN 6.87 0.4 43.71 15 55.24

Table 3.3: Relative performance of different techniques on caltech pedestrian dataset with
InceptionV2 as base network. Column description same as in table 3.1. All figures are
LAMR percentage values. The best result in each column is in bold.

InceptionV3
Reasonable near-scale medium-scale partial-occ heavy-occ

Faster-RCNN 11.08 2.38 44.98 35.14 62.42
SSD 11.74 2.98 45.07 43.17 64.18

RPN-BF 8.06 2.89 43.94 14.86 55.23
SDS-RCNN 6.5 0.04 42.84 14.74 54.21

Table 3.4: Relative performance of different techniques on caltech pedestrian dataset with
InceptionV3 as base network. Column description same as in table 3.1. All figures are
LAMR percentage values. The best result in each column is in bold.

through InceptionV2 and InceptionV3. Moreover the improvements are more pronounced

for the medium-scale and partially occluded pedestrians. We therefore see that as the dif-

ference in the depth of 2 networks decreases, so is the difference between their impact on

performance. This motivates us to look closer and understand the impact of architectural

differences amongst these networks and how they impact the performance.

3.5.1.1 Architectural Differences and their impact on Detection Performance

Each one of VGG16 [139], ResNet-152 [66] and Inception-V2 and V3 [147] are made up

of some fundamental building blocks. Instead of describing the complete architecture of

these CNNs, we limit ourselves to understanding their building blocks as they uncover

the performance trends observed in tables 3.1 through 3.4. Figure 3.2 illustrates the

fundamental building blocks for the three base network architectures used in our analysis.

VGG16 [140] is built from a cascaded stack of 3× 3 filters, each with a zero padding of 1.

The entire VGG16 network is built from repeatition of the block shown in figure 3.2(a).

The number of 3× 3 convolutional layers vary from one block to the other. A cascade of 2

3×3 convolutions, each with a zero padding of 1, corresponds to a receptive field of 5×5.

Therefore, as one moves from the early layers of VGG16 to the latter layers, one analyzes

the input image at larger scales. The cascaded structure of VGG16 however, makes it

difficult to retain information across scales. The very first 3× 3 convolutional layer in the



3.5. Analysis of Design Choices for Pedestrian Detection 45

Figure 3.1: Scale-wise bar charts with a visual summary of figures in tables 3.1 through
3.4.

first block of VGG16, is able to extract features at a small scale (due to a small receptive
field). Consider the first and third convolutional layers in a VGG16 block. The input to the

third convolutional layer contains the information about the smaller image scale in a very

indirect fashion. Furthermore, pooling operations between two blocks further diminish

this information. Thus, the feature map output from the last layer of VGG16 has very little

information about the small scale features of the input image. This explains the rapid

degradation of LAMR as one moves from left to right (columnwise) in table 3.1. While,

due to pooling layers in all CNN architectures, there is a loss of scale information, VGG16

does not make any effort to counteract it. This however is handled by ResNet-152 and

Inception-V2 and V3 networks through their specific architectures.

The fundamental building block of all architectures in the ResNet family is a “bot-

tleneck residual block” (figure 3.2(b)). Multiple residual blocks are stacked interspersed

with pooling layers to create the resnet architectures. The two 1 × 1 convolutions, first

compress and then expand the feature map in the channel dimensions. By reducing the

channel dimensions, the computational load of the 3× 3 convolution in the middle is sig-

nificantly reduced [67]. The feature map is then expanded across the channel dimensions

to avoid loss of information fed to the next residual block. ResNet-152 employs residual

connections which make it behave like an ensemble of multiple networks [160]. Residual
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(a) VGG16 [140] (b) ResNet-152 [66]

(c) Inception-V2 and V3 [147]

Figure 3.2: Building blocks of CNN architectures used in our analysis of the impact of base
network on pedestrian detection performance.

connections also lead to a richer set of features getting generated. Due the residual na-

ture, there is a more direct flow of information from lower layers to higher layers in the

architecture.

The focus of inception family of architectures is on employing filters of multiple kernel

sizes at the same layer depth so as to capture features of multiple scales easily. The

building block shown in figure 3.2(c), shows this phenomenon. The primary difference

between Inception-V2 and Inception-V3, is the use of batch normalization [75]. In terms

of scale handling, inception family is a much better class of networks than the resnet

family. Due to parallel branches processing information on multiple scales, there is a

much greter retention of small-scale image features. In the case of ResNet, there are no

parallel branches and hence, the flow of small-scale information is substantially less.

More pronounced improvements in medium-scale and partial occlusions show that

Resnet and Inception networks are better at dealing with these aberrations. Performance
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improvements with heavy occlusions are comparatively less. Heavily occluded pedestrians

are delineated by their context rather than visual appearance. It suggests focus on context

as a more relevant factor for detection of heavily occluded pedestrians.

From the previous discussion we gather an important information – while a deeper

network performs better than a shallower network, the architectural specifics of a CNN

play an important role in its fine-grained performance across scales and occlusion levels.

It is important to note that, in practical instances, the selection of a CNN architecture is

also guided by resource constraints such as available amount of processing memory. As an

example, we present the case of two members of the inception family of architectures –

InceptionV3 [75] and InceptionV4 [145]. InceptionV4 has a similar architecture as Incep-

tionV3 but is deeper and has about 2 times the parameters as InceptionV3. As discussed

in section 3.5.1.1, inception family of architectures has better scale handling compared

to other architectures presented in section 3.5.1. Thus, on account of this and its deeper

nature, InceptionV4 is a lucrative choice for use as a CNN architecture. However, as noted

in a seminal review of CNN architectures [19], InceptionV4 has a higher inference time

(∼ 40% more) and twice the power consumption as compared to InceptionV3. Further-

more, networks with large number of parameters are difficult to train or fine-tune when

having a small dataset such as Citypersons. This brings out the conclusion that the choice

of a network architecture is an ensemble of several decisions which go beyond their depth

and architectural details. Thus in practice, it is fruitful to consider the practical constraints

of memory, power consumption and speed requirements when considering a CNN archi-

tecture for use.

3.5.2 Convolution Techniques

3.5.2.1 à trous convolution

à trous convolution [69], increases the field-of-view of filters. This promotes features maps

with a high spatial density. Such feature maps have been shown to improve results by a

considerable margin in segmentation problems [21, 22]. à trous convolution is also used

during inference by some pedestrian detection techniques such as RPN-BF [177].

à trous convolution is obtained by inserting zeros between non-zero elements of a

filter kernel. Existing pre-trained filters can be used for à trous convolution without any

re-training while re-training can also be employed.

In [177], it is reported that introducing à trous convolution with rate = 2, on the

conv5_3 layer of VGG16, improves the miss-rate by nearly 4%. à trous convolution with

rate = 2, means that one zero is introduced between every pair of non-zero elements in

the filter kernel. The same trend is reported for the case when boosted forests are used for

classification (miss-rate on à trous application reduces by nearly 5%).
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à trous convolution can be a very effective technique employed in cases where feature

resolution is too low for reliable classification. This is especially true for small-scale, when

extracting features from the later layers of a network. Small-scale pedestrians are greatly

reduced in resolution due to multiple pooling applications down the layers of a CNN.

à trous convolution also brings with it additional questions which need analysis for

their resolution. To the best of our knowledge, the effect of employing à trous convolution

in various layers has not been analyzed. Existing works (such as [177]), have used à trous

convolution on the layers from which feature maps are sent to RPN. However, it is possible

to employ it on other layers. The exact nature in which this impacts the feature quality

is an open question and needs to be analyzed. The rate value is an equally important

parameter. Higher rate values can reduce feature stride, but because of their very large

fields-of-view may degrade the discriminative quality of features.

Overall à-trous convolution is a promising approach in the absence of other informa-

tion aiding the training process (e.g- segmentation loss in [14]). The exact extent of its

ramifications however need more work for resolution.

3.5.2.2 Depthwise Separable Convolution

During standard convolution in deep networks, a filter kernel during inference convolves

with all the input feature channels. These convolution results are summed to create one

feature channel of the output. In contrast, during depthwise separable convolution [25],

each input feature channel is convolved with a separate kernel. The resulting convolutions

are stacked depthwise, followed by a 1× 1 convolution to generate one feature channel of

the output.

Therefore, in standard convolution, a single filter kernel is tasked with mapping cross-

channel as well as spatial correlations. The depthwise separable convolution approach,

relaxes this constraint, by separating the process in two steps. While the first step in-

volves a set of filter kernels performing channel specific spatial correlations, the second

step involves 1× 1 convolutions to perform cross-channel correlations.

Depthwise separable convolutions are used in the Xception architecture [25], to per-

form image classification. The reported results in [25], indicate marginal improvements.

To the best of our knowledge, depthwise separable convolutions have not been utilized in

pedestrian detection literature yet.

It is however, of interest to utilize depthwise separable convolutions on account of

fewer parameters compared to standard convolutions. For an input with CI channels,

if an output with CO channels is desired by using a filter kernels of size k × k, normal

convolution yields CI ×CO× k× k parameters. With depthwise separable convolution for

the same configuration, the number of parameters turn out to be (CI×k×k)+(CI×CO),
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which is lower than the previous number.

Inception-V3
Reasonable near-scale medium-scale partial-oc heavy-occ
w w/o w w/o w w/o w w/o w w/o

Faster-RCNN 11.03 11.08 2.37 2.38 44.97 44.98 35.09 35.14 62.4 62.42
SSD 11.54 11.74 2.90 2.98 44.69 45.07 43.01 43.17 63.88 64.18

RPN-BF 7.95 8.06 2.47 2.89 43.13 43.94 14.3 14.86 55.20 55.23
SDS-RCNN 6.44 6.5 0.04 0.04 42.77 42.84 14.53 14.74 53.86 54.21

Table 3.5: Impact of Depthwise Separable convolution (w) when replacing normal convo-
lutional layer (w/o) in the last CNN layer in 4 pedestrian detection frameworks.

VGG16
Reasonable near-scale medium-scale partial-oc heavy-occ
w w/o w w/o w w/o w w/o w w/o

Faster-RCNN 12.63 13.34 3.8 4.09 48.12 49.78 39.02 40.14 67.01 68.10

Table 3.6: Impact of Depthwise Separable convolution (w) when replacing normal con-
volutional layer (w/o) in the last CNN layer in Faster-RCNN with VGG16 as the base
architecture.

To study the impact of depthwise separated convolutional layers, we utilized the

Inception-V3 based architectures for Faster-RCNN [130], SSD [102], RPN-BF [177] and

SDS-RCNN [14]. The last CNN layer(s) in these detectors – which generate the feature

map from which the features for final classification and bounding box regression are ob-

tained – were replaced with depthwise separable convolutional layers. The kernel size

and the number of output feature channels were kept the same as their non-depthwise

counterparts. These frameworks were then trained in the same way as in section 3.5.1.

Table 3.5 summarizes the results of using depthwise separable convolution as against their

non-depthwise counterparts. Depthwise separable convolution does provide consistent

improvements but the resulting improvements are small. These small improvements we

believe are due to the sufficiently powerful feature representation power of the Inception-

V3 base network. To verify this, we repeated the above experiment with the VGG16 base

architecture for Faster-RCNN. The resulting performance in table 3.6 shows that improve-

ments are more compared to those in table 3.5. This substantiates our understanding

that the feature representation power of the base network architecture is one of the most

prominent components of a pedestrian detection system.

We have not conducted a more exhaustive analysis of performance impacts when using

depthwise separable convolution on other CNN layers. We reckon that by virtue of its

lesser number of parameters, it is possible to garner increased speed from them. In terms

of detection accuracy however, we do not expect a significant performance boost over



50 Chapter 3. Quantitative Analysis of Pedestrian Detection in Deep Learning

non-depthwise components. This is partly due to the observations in the original paper

proposing depthwise separable convolution [25], which shows that the performance boost

of replacing all convolutional layers with depthwise separable convolution in Inception-V3

is not significant.

3.5.3 Role of Convolutional Layer Selection in Pedestrian Detection

All pedestrian detection frameworks use convolutional base networks for feature extrac-

tion. Feature maps from one (e.g- Faster-RCNN [45]) or more layers (e.g- SSD [102]) are

used for subsequent processing. CNNs being hierarchical, detect features with different se-

mantic information at different layers. Early layers are associated with low-level features

such as edges, while later layers encode high-level information not easily interpretable.

This hierarchical difference in the features extracted by different CNN layers can be

used to detect different types of pedestrian instances more robustly. Pedestrians close

to the camera have a lot of their details visible. Many of those details (e.g - clothing,

accessories etc) vary widely among pedestrians. Higher level features are thus required

to robustly encode the pedestrian-specific information for such instances. In the other

extreme case, pedestrians very far away from the camera have fewer details visible. In the

absence of motion information in still images, their contour is generally the only useful

information available. It requires effective discrimination of their low-level information

from the surroundings for robust classification. This observation has been made use of

in MSCNN [15], to form a multi-scale system. A scale-wise division is made of a dataset

during training and Region Proposal Networks (RPNs) attached to different layers process

a certain scale-range of pedestrians as groundtruth samples pre-defined during training.

Their approach released around the same time as [177], provides a similar miss-rate of

10% as [177] (9.6%) on the caltech reasonable test set. However, MS-CNN performs

better on – partially occluded pedestrians (19% compared to 24% of [177]) and medium
scale pedestrians (49% compared to 54% of [177]). Another recent work [158] shows that

early layers are better at detecting small-scale and partially occluded pedestrians while

later layers perform better for large-scale and unoccluded pedestrians. The performance

achieved by [158], is 9.25% on the caltech reasonable dataset, which is better than [15],

though worse than SDS-RCNN [14]. Although the late fusion reported in [158], showcases

an approach to utilize multiple layers, it is less effective on account of training multiple

heads. In chapter 4 we report experiments of utilizing various convolutional layers with

respect to various scales and occlusion levels of pedestrians.

While the use of multiple layers for pedestrian detection is an intuitively appealing

idea, its optimal usage needs further research. More specifically, there are two major is-

sues surrounding the usage of multiple layers – a) How to select the layers to be modified
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by a specific detection head ? and b) How to combine the detections from multiple layers

?. During standard techniques such as Faster-RCNN, the standard practice is to keep the

initial two layers fixed. However with multiple layers simultaneously detecting pedestri-

ans, the same layer can be modified by multiple detection heads simultaneously based

on hierarchical features extracted at each layer. Lack of exhaustive work in this avenue

indicates that a lot remains in this direction for successful utilization. We make detailed

observations over this in chapter 4.

3.5.4 Anchor Parameters

Anchor boxes have two general parameters – a) aspect-ratio and b) scale. Anchors are

created by transforming a base template which is usually a square of size (height×width
= p× p). For an aspect ratio (width/height) α and scale s, the anchor is created as follows

–

1. Step 1 : Compute the anchor area AR = p2.

2. Step 2 : Compute the width of transformed anchor as ws =
√
AR× α.

3. Step 3 : Compute the height of the transformed anchor as hs =
√
AR√
α

. Note that this

ensures the area of the transformed bounding box is same as the area of the base

anchor.

4. Step 4 : Rescale the anchor by ws × s and hs × s.

In the following subsections we look at the impact of these anchor parameters.

3.5.4.1 Anchor aspect ratios

In the caltech dataset, the mode of aspect ratios (width/height) of pedestrians is 0.41. In

citypersons [179], annotations have been carried out while ensuring that bounding box

aspect ratios are constant to 0.41. Moreover pedestrians in urban environments generally

appear with specific profiles of aspect ratios. This information can be infused in the design

process of anchors.

Table 3.7, shows the impact of setting the aspect ratios of anchors on results for caltech

dataset. The performance figures show around 1-2% of improvement in both Faster-RCNN

[130] and SSD [102].

Setting the aspect ratio to match the dataset allows for a richer set of anchors detected

as positive. This ensures that the training is more diverse, because each anchor will now

observe a specific view of a pedestrian. The impact however is also dependent on the

quality of the base network. For a network like VGG16, the performance improvements
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Aspect Ratios Reasonable Near-Scale Medium-Scale
Faster-RCNN 0.5, 0.6, 1, 2, 3 11.15% 3% 45.92%

0.41 10.05% 2.6% 44.49%
SSD 0.5, 0.6, 1, 2, 3 12.01% 3.02% 46.62%

0.41 9.9% 2.24% 42.34%

Table 3.7: Impact of anchor aspect ratio on Miss-Rate performance on caltech dataset with
InceptionV2 as base network.

are generally higher. More refined base networks are better feature extractors and thereby

can compensate for the lack of a very rich set of positive anchors.

It can also be observed that in table 3.7, we have not reported performance figures

with respect to pedestrian occlusion. Occlusion of pedestrians is not impacted by anchor

parameters in a clear manner. Solving occlusion problem is related to computing bet-

ter feature representations. Anchors on the other hand are placeholders which serve to

delineate different sub-regions of an image from one other.

3.5.4.2 Anchor scales

Understanding the heuristics to set the anchor scales is hard due to a number of reasons.

Setting scales over a large range with the hope of covering all possible pedestrian heights

can result in a large number of negative anchors. It also increases the computational cost.

In SDS-RCNN [14], anchor scales are set to match the 25-350 pixel range in which majority

of pedestrians in the caltech dataset occour. Using the same large range in standard

Faster-RCNN [45], results in an increase of miss-rate by nearly 1.8%. This seems to be

on account of semantic features infused in [14]. Unlike SDS-RCNN [14], Faster-RCNN

does not utilize semantic segmentation as additional information. As a result, when large

number of closely set anchor scales are used, there is an equally large number of negative

anchors. This results in the classical problem of class imbalance which lowers the detection

performance.

Anchor Scales Reasonable Near-Scale Medium-Scale
Faster-RCNN 0.5, 1, 2, 4 10.05% 2.6% 44.49%

0.5 to 4 with step 0.1 11.3% 3.4% 50.2%
SSD 0.5, 1, 2, 4 9.9% 2.24% 42.34%

0.5 to 4 with step 0.1 12.2% 2.8% 45.13%

Table 3.8: Effect of anchor scales on miss-rate performance on caltech-reasonable dataset.
The base anchor size is 128 × 128. The base network is InceptionV2. The aspect ratio of
anchors is 0.41.

Negative anchors may also overlap with pedestrian groundtruth; albeit with a small
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overlap. A robust classifier is needed to handle the presence of large number of negative
anchors. This is especially true when a very large range of anchor scales is used as a design

parameter. Moreover, we feel it is unnecessary to use a large range of anchor scales. The

regression layer for bounding box estimation, used in [55, 102, 47, 14] is able to handle

aberrations due to imperfect overlap of anchors, as long as they are marked as positive.

Table 3.8, shows the results of setting very fine-grained anchor scales. The performance

degrades for both Faster-RCNN and SSD. For SSD the performance degradation is more

pronounced. We reckon this difference in degradation further points towards the feature

handling differences between Faster-RCNN and SSD as outlined in chapter 2.

3.5.5 Loss Function

Till date, the most remarkable improvement in detection performance on caltech dataset

has come about by infusing semantic segmentation features in the detection pipeline.

In SDS-RCNN [14], the groundtruth bounding box is assumed to represent a pseudo-

segmentation mask. The logistic loss over an anchor with respect to this mask is infused

in the loss function of the RPN as well as the BCN [14]. The qualitative and quantitative

results show that this incorporation has led to an improvement by a margin of nearly 2%

over RPN-BF [177].

There are other potential loss function refinements which have been introduced. One

popular example is the focal loss of attention [98].

During training, for every anchor box during training, a softmax score representing its

class can be obtained. Given that the true label for the anchor is t, we use the symbol pt
for the softmax score of being class t. Given this information, in [98], the focal loss for

the anchor is defined as

FL(pt) = −αt(1− pt)γlog(pt) (3.2)

In equation 3.2, the term −log(pt), is the standard cross-entropy, which has been multi-

plied by a factor to generate the focal loss. As the value of pt decreases, FL(pt), increases.

Therefore, focal loss aims to force the optimizer to focus on difficult cases which are hard

to classify. The values of γ and α are empirically chosen.

Table 3.9 shows the results of applying focal loss of attention to the existing loss func-

tions of Faster-RCNN and SSD. Focal loss introduces a minor improvement in performance.

These improvements are in line with the average quantitative improvements reported by

the authors in [98]. However this improvement does not match the improvements in-

troduced by the infusion of segmentation information by SDS-RCNN [14]. Segmentation

information is much more specific and semantic in nature.

In addition to focal loss which is meant as a loss for classification problems, repulsion

loss [166] has also been proposed which is meant for regression problems. Repulsion loss
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Loss function Miss-Rate
Faster-RCNN No Focal loss 10.05%

Focal Loss 9.97%
SSD No Focal Loss 9.9%

Focal Loss 9.7%

Table 3.9: Impact of focal loss inclusion in the loss functions of Faster-RCNN and SSD. We
choose α = 0.5 and γ = 2 as in [98]. Anchor parameters are chosen as delivering best
results according to tables 3.7 and 3.8. InceptionV2 is the base network.

Loss function Miss-Rate
Faster-RCNN No repulsion loss 10.05%

repulsion Loss 8.72%

Table 3.10: Impact of repulsion loss inclusion in the loss function of Faster-RCNN. Anchor
parameters are chosen as delivering best results according to tables 3.7 and 3.8. Incep-
tionV2 is the base network.

has been described in detail in chapter 2. In table 3.10, we outline the impact of repulsion

loss on Faster-RCNN with InceptionV3 as the base network. We see a major performance

boost of ∼ 2% with the inclusion of repulsion loss. Localization is an important basis

for our evaluation metrics. Repulsion loss hence is an important recently proposed loss

function which serves to boost our quantitative performance on account of its focus on

localization accuracy.

3.5.6 Role of Dataset Resolution in Pedestrian Detection

The resolution of a dataset is a key element in deep learning systems. Resolution dif-

ferences between training and testing datasets often translates to degraded performance.

This is especially true when the testing dataset is of a lower resolution.

When developing a system for use with a multitude of cameras with varying resolu-

tions, it is important to do training or fine-tuning so as to minimize degradations caused

by dataset resolution differences. Most pre-trained versions of pedestrian detection sys-

tems are trained on one specific dataset (usually caltech pedestrian dataset). To understand

the role of dataset resolution we performed two complementary experiments – E1 and E2.

In E1, we trained Faster-RCNN [45] with VGG16 as the base network on Caltech train-

ing set (low resolution). We then fine-tuned the trained system on the BDD100K training

set (high resolution). The final system was then evaluated on two datasets – Caltech testing

set and BDD100K validation set.

In E2, we changed the order of datasets during training. Thus, initial training was

done on BDD100K training set followed by fine-tuning using Caltech training set. The
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Before Fine-tuning After Fine-tuning Difference (After - Before)
Caltech

(Testing)
BDD100K
(Testing)

Caltech
(Testing)

BDD100K
(Testing)

Caltech
(Testing

BDD100K
(Testing)

E1 (Caltech followed by BDD100K) 14.62 29.1 14.87 26.22 +0.25 -2.88
E2 (BDD100K followed by Caltech 15.14 27.33 13.43 27.10 -1.71 -0.23

Table 3.11: Impact of relative ordering of datasets of different resolutions when doing
training and fine-tuning. It is better to first train a dataset with a high-resolution dataset
and then fine-tuning it with a low resolution dataset. Caltech refers to caltech reasonable.
BDD100K refers to pedestrians with heights> 50px. All figures are LAMR values

evaluations were then done as in E1.

In table 3.11, we compile the results of how the order of datasets in E1 and E2 im-

pact the performance. The LAMR values were recorded for both E1 and E2 before and

after fine-tuning for both the datasets. In E1, where a high resolution dataset was used

after a low-resolution dataset, the performance on the low-resolution dataset (i.e caltech)

degraded by a margin of 0.25%. In experiment E2, the performance on caltech however

improved by about 1.71%. For BDD100K, which is a high-resolution dataset, the perfor-

mance improved in the case of both E1 and E2.

From the results in table 3.11, a number of important inferences can be made. A

high-resolution dataset is more immune to degradations caused by fine-tuning when a

low-resolution dataset is used. In E2, where fine-tuning was done using caltech, the per-

formance on BDD100K, still improved albeit by a narrow margin of 0.23%. Caltech on

the other hand, suffers degradation in E1, when BDD100K is used for fine-tuning. For the

purpose of maintaining the performance, it is important thereby to use a high-resolution

dataset for initial training, followed by fine-tuning on a low-resolution dataset.

3.6 What is the best pedestrian detector

In this section, we reflect upon our observations from the preceding sections and outline

some guidelines which may prove to be helpful to a system designer.

3.6.1 Base Network Architecture

The most common use-case is to develop a detector which performs well on a specific

custom dataset. At the outset, it is important to start with a deeper base network with ar-

chitectural characteristics suitable for efficient multi-scale processing such as InceptionV3

[147]. Modern CNN architectures like InceptionV3 are deep and perform better, but usu-

ally have fewer parameters than an equivalent extension of classical architectures like

VGG16 [141]. Therefore benefits can be elicited from them in terms of detection perfor-

mance as well as runtime performance. It is well understood that the feature expressive



56 Chapter 3. Quantitative Analysis of Pedestrian Detection in Deep Learning

power of a CNN increases exponentially with depth [122]. Thus, a deeper network is

more effective in modeling an object of interest in a more difficult environment. We ob-

serve from tables 3.1 through 3.4 that a simple change of base network architecture can

provide improvements of upto 1%. While the selection of a base network architecture is

not the only crucial design decision, it can be a good starting point for the design problem.

There are several other interesting architectures and our analysis does not cover them –

e.g Densenet [73] and Xception [25]. These architectures perform well and have fewer

parameters than their counterparts in ResNet family of architectures. Their analysis and

usage can be further useful.

3.6.2 Feature Map Resolution

Most network architectures employ pooling operations which increases the output stride

of a feature map. While the à trous trick has been used with notable performance improve-

ments, more work is needed in this direction. It is not always clear that which layers the à

trous trick be applied to. Deciding the rate value is also a matter of experimentation at this

stage. By applying à trous trick to a subset of convolutional layers, there are multiple ways

to produce a feature map with a specific output stride. There needs to be greater work in

this direction to fully exploit the à trous trick in detection problems. However, from the

application of à trous trick in other works such as [177], and through our experiments

we conclude that it may prove worthwhile to experiment with it, especially for small-scale

pedestrians.

Simultaneous usage of multiple convolutional layers has been successfully employed

in several works [15, 158]. While this approach is interesting, more work is needed to

determine its impact on the feature expressiveness of a deep neural network.

3.6.3 Anchor Design

The choice of dataset specific anchor parameters is known to improve the performance

as shown in RPN-BF. We have given quantitative figures for Faster-RCNN and SSD for the

same in tables 3.7 and 3.8. It is notable that most detection techniques proposed following

RPN-BF, such as SDS-RCNN [14], follow this direction. The limitation of this guideline

is that only aspect-ratio can be appropriately selected by this approach. To the best of

our knowledge, there is no quantitative or heuristic estimate for the fitting capacity of

a bounding box regressor. Even a scale-imperfect anchor can be appropriately regressed

by a regressor. Therefore it appears overwork to carefully study the scale-characteristics

of a dataset to formulate the anchor scale parameters. Another latent difficulty therein

is that, object scales are much more malleable than aspect-ratios. More work in these
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directions can be helpful to suggest a more systematic way of deriving anchor parameters

from dataset statistics.

3.6.4 Semantic Features

The current state-of-art detector – SDS-RCNN [14], makes use of pseudo-segmentation

masks to improve proposal quality as well as final bounding box estimation. As shown

in [14], the infusion of these weak segmentation based features is the most critical com-

ponent of SDS-RCNN bringing about 3% of improvement on caltech-reasonable dataset.

Therefore it is advisable to resort to infusing semantic features in a detection system de-

sign. Further work on better ways of infusing semantic features in different domains such

as video streams can be of further interest to the research community.

3.6.5 Classifier Selection

Classifiers are a very critical part of system design. In [178], an exhaustive analysis of

false-positive sources on Caltech [33] and KITTI [52] datasets reveals primarily two cul-

prits – a) Double detections and b) vertical structures. Out of these vertical structures’

misclassification signals at the inefficiency of existing fully-connected softmax based clas-

sifiers. In most cases, these vertical structures correspond to street-lamps, or doors of

stores or even trees on sidewalks. As the visible details in pedestrians decrease (small-scale
pedestrians), these problems become more pronounced. The improvements obtained by

RPN-BF over Faster-RCNN by a change of classifier suggests that it may be more prudent

to try out new classifiers. Pedestrians have a rather high intra-class variance, which gets

more pronounced as the scale of a pedestrian increases. Decision trees are known to be

good at handling intra-class variance. They are however prone to overfitting in the lack of

careful selection of parameters. Often this is countered through pruning [38]. Therefore

extensive hyperparameter optimization is needed when working with tree-based classi-

fiers in pedestrian detection. The integration of tree-based learning in deep learning has

been relatively poor. Recently several works [186, 184, 7, 84, 138] have appeared on

introducing random forests as potential classifiers for different applications. Tree based

classifiers are of specific interest because they are better at handling intra-class variance –

a major component of pedestrian detection. Joint training of a tree-based classifier with

existing pedestrian detection framework may also be of specific interest.

3.6.6 Post-Processing

As highlighted before, double detections are a principle source of false positives [178].

Multiple detections sharing the same region of space is a well known phenomenon since
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the viola-jones detector [161]. These come about as a result of multiple sliding windows

sharing a potential region of interest. Non-maximal suppression (NMS) is used to remove

such ambiguous cases of multiple detections. NMS partitions all the bounding boxes into

disjoint sets. Bounding boxes in each set are either averaged to obtain the final bound-

ing box, else the box with maximum score is used as in the dalal-triggs detector [31].

This partitioning happens by the sorting of confidence scores of all bounding boxes. For

each bounding box, other bounding boxes overlapping with it above a threshold are sup-

pressed. The choice of this threshold is based on experiments and is non-intuitive. For

cases involving closely separated objects, NMS generally delivers suboptimal results [12].

Recently new variations of NMS such as soft-NMS [12] and a trainable version [70] have

been proposed. In our experiments we have used the traditional version of NMS. The

present results are generally mixed for the new variations, with soft-NMS reporting an

improvement of 3% in mAP of the ‘person’ class in Pascal VOC dataset, while the trainable

version reporting a 0.4% degradation for the same category in MSCOCO dataset. It would

be of interest to work on this front. As pointed out in [178], solution to this problem can

significantly boost the performance of current pedestrian detection systems.

3.7 Conclusion

Past research in pedestrian detection has been primarily followed with respect to bench-

marking on very specific public dataset configurations (e.g- caltech reasonable [34], with

predefined constraints on heights and occlusion). In contrast, in industrial applications,

pedestrian detection systems are applied with live video stream as input, where well-

defined constraints like those of caltech-reasonable are not applicable. As such, live video

stream in industrial applications present a more general set of scenarios which are not

covered by the principal public datasets for pedestrian detection (e.g-caltech [34]). In this

chapter we have outlined a set of potential guidelines for improving the performance of

current pedestrian detection systems. These guidelines can benefit the use-cases of – a)

Benchmarking on existing public datasets and, b) Pedestrian detection in live video stream

inputs in industrial applications.

With respect to benchmarking on existing public datasets, evaluation protocols are

often dataset specific, thereby making thorough cross-dataset analysis difficult. We have

used a consistent protocol (see section 3.4) for our quantitative analysis, thereby pro-

viding a consistent estimate of the performance of existing techniques across pedestrian

heights and occlusion. This analysis shows (tables 3.1 through 3.4) that existing techniques

perform very well for detecting near-scale (i.e unoccluded pedestrians close to the cam-

era). For near-scale pedestrians the average miss-rate (see section 2.5) is less than 4%, and

with the present state-of-art technique approaches near perfection (miss rate of 0.04%).
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The performance for medium-scale pedestrians however shows a major disparity and the

average miss-rate hovering in the range of 40% − 50%. This exhibits that more work is

needed to improve the robustness of pedestrian detection systems for handling inputs a

wide diversity of pedestrian heights. A similar trend exists with respect to occlusion, where

heavily occluded (35− 80%) pedestrians are often 30− 40% harder to detect than less oc-

cluded (< 35%) pedestrians. Combining these observations together, it is also seen that

on the caltech-reasonable subset, while performance has improved to 7.6%, it is well below

the average human-level performance of 0.88% [178]. Our quantitative analysis encom-

passing the selection of base architecture, anchor design, use of multiple layers and use of

à-trous convolution, provide guidelines which serve to improve the performance of exist-

ing pedestrian detection systems. These guidelines applied to a novel pedestrian detection

system construction can serve to provide a good starting point from where more advance-

ments are possible. More notably, we show that with dataset-specific anchor aspect ratios

miss-rates for medium-scale pedestrian detection can be improved by 4− 5%.

Live video stream inputs encompass the aforementioned limitations of pedestrian de-

tection systems, and add additional challenges related to cross-dataset generalization,

varying resolutions, varying illumination and weather conditions. We have used the re-

cently released BDD100K [174] dataset which more adequately models these conditions

(e.g-weather and illumination) than previous datasets such as caltech. Our experiments

(table 3.11) with caltech and BDD100K datasets enable a useful guideline about cross-

dataset generalization. More specifically, initial training on high resolution dataset fol-

lowed by fine-tuning on a low-resolution dataset preserves greater cross-dataset general-

ization than the other way around.

Several important research questions have also turned up during the course of this

analysis. In our work, we have indicated various relevant research directions which serve

to provide good grounds for further developments in pedestrian detection research. As an

example, our experiments with setting fine-spaced anchor scales (table 3.8) shows that it

does not necessarily improve the performance. We have instead shown that it is related

to the robustness of the classifier and use of alternative classifier choices alongwith the

analysis of their performance is more desirable. Even methods with previously demon-

strated improvements such as à-trous convolution can benefit from more analysis about

its applications in pedestrian detection.

Runtime performance is another relevant element, especially in industrial applications

such as autonomous vehicles, due to their safety-driven requirements. We have not made

an exhuastive analysis of runtime performance. Runtime performance can be affected by

multiple optimizations in hardware as well as underlying software implementations and is

better suited for a separate study. An important connection of runtime performance with

deep learning comes in the form of quantization of existing networks. Quantization refers
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to converting the weights of a pre-trained system from 32−bit floating point precision to a

16− bit or 8− bit floating point precision. These quantizations reduce the inference time,

thereby improving runtime performance. However, this trades-off with the actual perfor-

mance figure. Moreover, the improvements in runtime also depend upon the specifics of

a hardware used. An exhaustive analysis of these runtime features can be of significant

interest especially for industrial or other real-time applications.
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4.1 Introduction

In this chapter, we consider the problem of scale and occlusion handling for pedestrian

detection. Successful detection under occlusion implies ability to detect from a potentially

small portion of a pedestrian being visible. Successful detection of small-scale pedestrians

implies the ability to detect when a pedestrian is contained in a small pixel area in an

image. Hence, the two problems are related in a complementary manner. As seen in

chapter 1, these problems are quite well aligned with the recent interests in autonomous

vehicles. Successful detection of far-scale pedestrians can assist the vehicle in making

safety maneuvers well ahead in time, thereby promoting a safer traffic environment. The

same is true for surveillance systems in high security environments like airports and ports

[40].

We elaborate a pedestrian detection system for handling the aforementioned problems.

We consider Faster-RCNN based detection framework as a basis for this design. This is

motivated by the fact that Faster-RCNN framework represents the crucial components of a

broad family of object detection techniques including RPN-BF [177] and SDS-RCNN [14],

which are used for pedestrian detection. For our design, we show that lower layers detect

small-scale and occluded pedestrians better than later layers; which are better at detecting

large-scale and unoccluded pedestrians. We take cue from these conclusions and present

a system design which performs at par with the state-of-art pedestrian detection systems.

4.2 Hierarchical nature of CNN features

CNNs are cascade structures and hence have an inherent hierarchy spread across its lay-

ers. This hierarchy is apparent in the features learnt by CNNs once trained. The nature

of CNN features are analyzed in a multitude of ways such as deconvolutional layers [176]

and t-SNE visualization [35]. Another way which is more commonly employed to under-

stand the global nature of different convolutional layers is to visualize the feature maps

produced by different layers. Such a general visualization confirms that the nature of

features learnt by different convolutional layers is very different. Figure 4.1 shows the

feature maps generated by VGG-16 [140] network pre-trained on ILSVRC-2012 dataset.

The top-row shows the feautre maps corresponding to 4 randomly chosen filters in the

first layer of VGG-16, while the bottom row shows the same for 4 randomly chosen filters

in the last layer of VGG-16. The features in the top-row appear to capture low-level details

such as edges, and contrast. In comparison, it is difficult to interpret the nature of details

in the bottom row of figure 4.1. This observation has a long-standing precedence since

the first large-scale work on training a CNN [86]. This phenomenon is apparent in other

deep learning mechanisms such as RBMs, where lower-layers capture low-level details
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Figure 4.1: Visualization of feature maps from two different layers in VGG-16 network
trained on ILSVRC-2012 dataset.

and higher layers successively capture high-level details such as faces and complex curves

[92].

This hierarchical nature of CNNs evokes an interesting question with respect to occlu-

sion and scale handling : What is the nature of features captured by different CNN layers
across scales and occlusion levels ?

In the subsequent sections we attempt to obtain a quantitative estimate of the effective-

ness of different convolutional layers in handling pedestrians across scales and occlusion
levels. These estimates allow us to forge a system which is capable of simultaneously

utilizing multiple convolutional layers to detect pedestrians across scales and occlusion

levels.
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4.3 Datasets and Evaluation Metrics

4.3.1 Datasets

In this work we utilize the Caltech pedestrian dataset [34] for benchmarking. Availability

of large number of benchmarks [177, 14, 180] on it, makes it a vital dataset for studying

our work and its impact.

The resolution of Caltech dataset images is 640 × 480 and has been captured from a

moving vehicle without any corrections for vehicle pitching [34]. The original annotations

in Caltech suffered from alignment problems [47]. We utilize the improved annotations

[47] in our work for benchmarking. Following [47] the training images taken at interval

of 3 frames (caltech10x-train) are used for training. The testing images taken at interval

of 30 frames (caltech1x-test) are used for testing. We have also evaluated our method on

the reasonable subset (height > 50px and occlusion < 0.35).

Evaluation on the reasonable subset involves evaluating on the reasonable annotations

from the caltech1x-test set. New annotations of [47] are available only for these subsets

(caltech10x and caltech1x).

4.3.2 Evaluation Metrics

We use log-average miss rate as proposed in [34] for the evaluation of our proposed

approach. This average miss-rate is computed for a range of false positives per image
(FPPI) in [10−2, 100].

4.4 Layer-wise analysis of CNN layers’ effect on scale and oc-

clusion

As features pass between convolutional layers separated by pooling layers, they undergo

feature and scale transformation. Intuitively, it suggests that small-scale and partially oc-

cluded pedestrians can be captured well by the lower CNN layers. To look into this effect

quantitatively, we design a system as exhibited in Figure 4.2. For our study, we use the

data flow depicted in figure 4.2 using dashed green lines, i.e, no concatenation is per-

formed. It uses VGG16 [140] as a base network which is also used in Faster-RCNN [45].

We model a detection framework after Faster-RCNN, by extracting features from a subset

of convolutional layers. VGG16 is divided into convolutional blocks. Within each block,

feature maps are of the same shape and they are transformed into half their size by the

pooling layer between consecutive blocks [140]. We extract features (f convi ) from the last

convolutional layer within each block (thus i ∈ {1, 2..5}. Each f convi feeds into a separate

region proposal network (RPN) [45]. A RPN passes the feature map through one or more
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Figure 4.2: Block Diagram of the proposed pedestrian detection system. The data flow
for the study in section 4.4, is indicated using dashed green lines. We later improve upon
this and the final system’s data flow is shown in solid black arrows. The red dashed lines
in the diagram refer to the location of pooling layers in VGG16 [140], where the feature
map changes size.

convolutional layers resulting in a feature map (fRPNmap ). It then slides a set of template

bounding boxes (anchors) over fRPNmap . An anchor is a template bounding box which is

translated through a feature map. It is centered at each pixel and for the resulting area

of the feature map it determines if that area contains a region of interest [45]. Anchors’

intersection over union (IoU) with groundtruth bounding boxes is used to determine the

presence of positive proposals during training (IoU> 0.7 =⇒ +ve and IoU< 0.3 =⇒
-ve, 0.3 <IoU< 0.7 don’t contribute to RPN training) [45]. Anchors are created for vary-

ing scale and aspect ratios. Due to the upright nature of pedestrians, pedestrian specific

systems [177, 14] consider anchors encompassing several scales but limited to a constant

aspect ratio of 0.41 (mode of aspect ratios of pedestrians in caltech dataset). Using two

sibling fully connected layers, RPN performs two tasks on these anchors – a) proposal

classification and b) proposal bounding box regression. In Faster-RCNN, positively clas-

sified proposals are further refined by a set of two sibling fully-connected layers for final

object-level classification and regression. In a related work of RPN-BF [177], the authors

show an improved performance using boosted forests. We use gradient boosted trees as

classifiers, to do the final object level classification. At the end we use soft non-maximal
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suppression [41] for getting final detections

In our experiments we use one convolutional layer (kernel size: 3×3, stride: 1, padding:

1, num-filters: 512) in each RPN. More convolutional layers for early layer feature maps

may be beneficial but they require much GPU memory. Our base VGG16 network is pre-

trained on the imagenet dataset. We train the design of figure 1, in two stages. In the first

stage, we train the RPNs, using stochastic gradient descent with the same loss function

(eqn 4.1) as proposed in [45].

L({pi}, {ti}) =
1

Ncls

∑
i

Lcls(pi, p
∗
i )+

λ

Nreg

∑
i

Lreg(ti, t
∗
i )p
∗
i

(4.1)

In equation 4.1, quantities with a star (p∗i , t
∗
i ) refer to groundtruth and those without

it refer to the anchor which overlapped them with an IoU> 0.7. {pi} is the label of ith

anchor (+ve or -ve), {ti} is the vector of bounding box coordinates of ith anchor, Lcls is

the cross-entropy loss, Lreg is the smoothed-L1 loss, λ is a scalar constant (set to 1.0 in our

implementation). Ncls is minibatch size andNreg is total number of anchors. Following the

RPN training, we select the top 1500 ROIs based on RPN scores and extract RPN features

from them. These serve as input to gradient boosted trees (GBT). We train the GBTs using

the XGBoost framework. We set the maximum depth of each tree as 6, and the maximum

number of trees as 1024. GBTs are used only for classification. Coordinates predicted by

the regression layer of RPN are not further regressed by GBTs.

To evaluate the impact of the convolutional layer connected to ith RPN (RPNi), we

detach all the other RPNs from the non-maximal suppression. We use the caltech10x

training set [47] for training and caltech1x-testing set [47]. For occlusion studies we also

use the complete caltech test dataset for testing using old annotations due to wider range

of occlusion levels present in them.

4.4.1 Effect of CNN layers on scale and occlusion based detection

Pedestrian height(in pixels) Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Fused
> 80 4.83 4.97 3.88 2.17 2.15 3.27

50− 80 9.17 9.54 9.40 10.48 10.68 10.43
All (height > 50) 12.83 13.12 11.34 11.2 10.95 10.16

Table 4.1: Log-Averaged miss rate for pedestrians of different heights by different layers
in Caltech-reasonable (test) dataset.
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Occlusion(% occlusion by area) Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Fused
0 (No occlusion) 10.6 10.4 9.7 9.68 9.64 9.79

1− 35 22.3 24.75 25.2 25.5 26.1 25.3
65− 80 67.2 69.9 71.2 73.5 76 75.4

All (0− 80% occlusion) 68.4 70.1 72.7 75 77.2 76.3

Table 4.2: Log-Averaged miss rate for varying occlusion levels by different layers in
Caltech-complete (test) dataset. For the Caltech-complete we have used the old anno-
tations (pedestrian height > 50 pixels.)

Table 4.1 shows the log-average miss-rate for different pedestrian heights in the

caltech-reasonable test-set. The column titled “fused”, refers to the configuration with

all RPNs contributing to NMS. For larger heights, better performance is achieved by the

later layers, while the opposite is true for smaller heights. Small-scale pedestrians are

mainly discriminated by their contours and other low-level features. Near-scale pedes-

trians have greater amount of visual detail, which varies with context such as clothing.

Thus, their detection requires more semantic features which are captured by higher CNN

layers. Moreover, due to a sequence of pooling layers, feature resolution decreases with

CNN layer depth. For small-scale pedestrians this leads to their features reduced to sub-

pixel accuracy. This is another factor behind a lower accuracy of detection of small-scale

pedestrians in later CNN layers.

Table 4.2, shows the performance of different layers based on pedestrian occlusion. We

test the system on the complete caltech dataset. To keep the study concise and tractable,

we limit ourselves to pedestrians with a minimum height of 50 pixels. Extremely occluded

pedestrians (occlusion > 80%) often require specialized approaches and we keep them out

of our study. Table 4.2, points to the conclusion that lower CNN layers capture occlusion

better than higher layers. This is expected as high-level of occlusions imply a less amount

of visible pedestrian area, which is compromised by pooling layers. In the caltech dataset,

high levels of occlusion are primarily observed in medium-to-small scale pedestrians [34].

We consider the trends of tables 4.1 and 4.2, fairly indicative and frame our design from

these conclusions.

4.4.2 Pedestrian Detection System Design

Following the inferences from section 4.4, we design our pedestrian detection system to

leverage multiple convolutional layers explicitly and simultanously. Our system design is

similar to the one we used in our study ( figure 4.2), with some modifications. The system

level modifications include –

1. Concatenating all convolutional layers within a block before feeding the correspond-
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ing RPN.

2. Using a dense system of pedestrian specific anchors.

3. Use of a modified loss function for RPN.

In addition, we experiment with two fusion approaches to utilizing multiple convolu-

tional layers and determine the better of the two.

4.4.2.1 Feature Map Concatenation

As shown in figure 4.2, we concatenate feature maps from convolutional layers in each

block of VGG16. VGG16 feature maps in each block have the same dimensions. Thus they

can be concatenated without any overhead of resizing. Due to hierarchical character of

CNN features, this also enhances the feature diversity for the input to the RPN.

4.4.2.2 Anchor Design

Layer Scales
Conv1 [12, 512, 32]
Conv2 [10, 256, 32]
Conv3 [8,128, 32]
Conv4 [8, 128, 16]
Conv5 [8, 128,16]

Table 4.3: Anchor scales chosen for different layers. The notation [A,B,C] in the second
column refers to minimum scale as A, maximum scale as B with a step-size of C (all in
pixels).

Some preliminary bounds are available to determine the minimum detectable size of

an object for an anchor of identical scale as the object [42]. However their assumption re-

quires us to have cover all possible scales of objects which is impractical for large datasets

like caltech. To mitigate the risk of choosing a set of fixed anchors, we consider a more

dense set of anchors (large range of scales with small step sizes) as compared to [177] and

[14]. Our anchor construction is detailed in table 4.3. All our anchors have a fixed as-

pect ratio of 0.41 (width/height). Anchors which fall outside a feature map perimeter are

eliminated from computations. A dense set of anchors though increasing computational

complexity, helps in improving detection of positive (pedestrian) region proposals.

4.4.2.3 Loss Function

The loss function for RPNs in [45, 177], do not take into account the object dimensions. In

our work we give weight to the observation that pedestrians can appear at a wide variety
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of scales on account of their varying distances from a camera. To this end, we modify the

RPN loss function as follows–

L({pi}, {ti}) ,
1

Ni

∑
i

[I1i {
Lcls(pi, p

∗
i ) + ζLreg(ti, t

∗
i )

f(hi) + ε
}+

ηI0i Lcls(pi, p
∗
i )]

(4.2)

In equation 4.2, I1i is an indicator function which is 1 if the ith anchor is a pedestrian

candidate proposal and 0 otherwise. I0i is an indicator function which is 1 if the ith anchor

is a non-pedestrian candidate proposal and 0 otherwise. Lcls is the log-loss over two

classes (pedestrian vs. non-pedestrian). Lreg is the regression loss and it is clear from

equation 4.2, that it is activated only for positive proposals. ζ and η are scalar constants.

ζ intuitively denotes the balance between the classification loss and the regression loss.

η denotes the balance between the true-positive(TP) classification and true-negative(TN)

classification. In our experiments we set both ζ and η to 1. We normalize our loss function

by the total number of anchors in the RPN (Ni). Other symbols (pi,p∗i ,ti,t
∗
i ) are the same

as in equation 4.1. In our loss function f(hi) denotes the running accuracy of correct RPN

classification for a pedestrian of height hi. Running accuracy is a metric which keeps an

updated track of the accuracy through the iterations of training. The running accuracy is

computed as follows-

• Step 1: Get all unique heights H , {h1, h2, ..., hN} in the dataset.

• Step 2: Initialize a dictionary D with elements of H as keys. For each hi in H,

D[hi] , (CCi, TCi). Here, (., .) is the notation for a tuple of two numbers. CCi, is

the cumulative count (across iterations) of correct RPN classifications for a pedestrian

of height hi. TCi is the cumulative count (across iterations) of the number of times,

a positive proposal overlapping with a pedestrian of height hi has passed through

the proposal classification layer.

• Step 3: The running accuracy f(hi) is then defined as : f(hi) , CCi
TCi

Running accuracy is just an online version of accuracy of prediction. The parameter ε is a

small scalar constant to avoid infinity, when f(hi) = 0.

The incorporation of f(hi), makes the loss function in equation 4.2, scale aware. For

pedestrians of certain heights, which are not getting detected by RPN, the loss function

is penalized. For every unique height of pedestrians, f(hi) is maintained. During the

training process, feature weights in the network are constantly updated. Some of these

updates may improve detections of certain heights while deteriorating other pedestrian

heights. Keeping a continuous track of accuracy during training helps in stablizing the

network towards a balance of detection of all pedestrian heights. This is in stark contrast
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Figure 4.3: The proposed pedestrian detection system with early fusion.

to [45, 177], where the network is not made to give any weightage to the pedestrian

height.

For bounding box regression we use the same smoothed L1-loss and bounding box

parametrization as adopted in [45].

4.4.2.4 Fusion Approaches

In figure 4.2, detections produces by a number of RPN+GBT heads are merged together

and post-processed using non-maximal suppression. This approach of putting the infor-

mation from multiple convolutional layers together is called late fusion. Another approach

called early fusion is shown in figure 4.3. In early fusion, we resize the feature maps fro

multiple layers to a common size and concatenate them together. This is followed by a

single RPN+GBT head. Compared to the late fusion, early fusion is simpler in design and

computationally more efficient due to smaller number of operations involved due to less

number of RPN heads. We have experimented with both approaches and we show the

results in the next section.
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4.5 Experiments and Results

4.5.1 Training

We train each RPN using the SGD optimizer for 30 epochs with a learning rate of 0.001

and a momentum of 0.99. The learning rate was decreased by a factor of 10 after every

10 epochs. A total of 4 Nvidia Titan X (Maxwell) GPUs; each with 12 GB of memory;

were utilized during training. We use the caltech 10x training set and caltech 1x testing

set in our experiments as in section 4.4. During the training process, the convolutional

layers of the base network are also modified. Based on our experiments, we found that for

the case of late fusion, the RPNs should be trained starting from the lowest convolutional

layers and down to the highest. Moreover a RPN should be allowed to modify only the

convolutional layers, whose feature maps are concatenated to supply the input to the RPN.

This helps in making the training process more stable.

4.5.2 Results

Subset
Log-Average Miss Rate

(Testing)
Testing Set Training Set

Late Fusion Early Fusion

Caltech Reasonable 9.25% 8.84% Caltech-reasonable(1x-Test)
Caltech-reasonable

(10x-Train)

Caltech-All 46.2% 44.37%
Caltech-all
(1x-Test)

Caltech-all
(10x-Train)

Table 4.4: Log-averaged miss rate over different subsets of caltech[46]. The testing and
training subsets are shown in the 3rd and 4th columns. New caltech annotations of [46]
are used for training and testing.

Method
Caltech-Reasonable(1x)

Test Set
Faster-RCNN[45] 15%

RPN-BF[177] 9.58%
RPN-BF

(Using only RPN)[177]
14.8%

SDS-RPN[14] 9.63%
SDS-RCNN[14] 7.6%
MS-CNN[16] 9.95%

FDNN[36] 8.65%
Ours 8.84%

Table 4.5: Comparison with other works with performance on Caltech-reasonable(test set)
of caltech1x
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Heights
Log-Average Miss Rate
(Caltech-All Testing)

Late Fusion Early Fusion
>80px 3.25% 3.11%

50-80px 12.66% 11.25%
<50px 64.20% 64.17%

Table 4.6: Miss-Rates for different pedestrian height ranges in the caltech-all testing (1x-
test) set. This includes all occlusion levels. New annotations from [46] are used for
training and testing.

In table 4.4 we show the performance of the proposed system on two variations of

the caltech 1x testing set. In the first row, we show the performance on the reasonable

subset (height > 50 px and occlusion < 35%). In the second row results are shown for all

annotations in the caltech 1x testing set. Table 2.1 shows a comparison of our performance

vis-à-vis other recent methods; revealing a comparable and competitive performance of

our approach. Table 4.6 shows the height-wise performance of the proposed approach

over the caltech-all test dataset.

From tables 4.4 and 4.6, we see that early fusion provides a small but definite perfor-

mance improvement over late fusion. During early fusion, detection is performed based

on information of all the convolutional layers put together. On the contrary, during late

fusion, detections are obtained based on information in individual layers, followed by the

coalescing of the results. Apart from performance benchmarks in tables 4.4 and 4.6, this

qualitative argument demonstrates that early fusion is a better and direct way to harness

multiple convolutional layers simultaneously.

In our implementation of early fusion we have used resizing of the feature maps from

different layers to the fixed size. One of the limitations of this implementation approach

is that due to bilinear interpolation for resizing, training takes a little longer, as has been

documented in [74]. The use of à trous convolution can mitigate this behavior. We have

not utilized à trous convolution in this work because its use in VGG16 is limited as we

explain next. Without changing the structure of the VGG16 network drastically, the only

reasonable à trous value to use in it is 2. This à trous convolution can be carried out

right after each pooling layer, in addition to setting the pooling stride to be 1. This setting

allows one to have feature maps before and after the pooling operation to be the same.

Therefore, in order to completely avoid explicit resizing, yet to have all feature maps to

be of the same size, the only approach is to use à trous convolution after each pooling op-

eration which leads to each feature map of the same size as the input image. While this is

theoretically possible, it is computationally difficult to achieve because of limited memory

of computational devices. The total number of feature map channels (when considering
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all the feature maps in VGG16) is 8192, and therefore when using an input image of size

P × Q, the total amount of memory needed to store all the feature maps (using 32-bit
floating point numbers) is ∼ 10 GB. In addition weights in RPN and convolutional filter

weights have to be stored as well. In our experiments we have found such a configuration

to be untenable. In our proposed approaches in chapters 5 and 6 we have used ResNet

class of networks and have utilized à trous convolution therein to perform early fusion of

multiple layers.

4.6 Analysis

Our work demonstrates that combining multiple convolutional layers can improve pedes-

trian detection. We have experimented with two approaches to utilizing multiple convo-

lutional layers simultaneously –early fusion and late fusion. Our experiments demonstrate

that early fusion is better than late fusion on accounts of both detection accuracy and

detection speed. Our experiments have also demonstrated that different layers have dif-

fering affinities for scale and occlusion. It is hence, beneficial to explore approaches to

make individual layers more scale and occlusion specific, where a layer is specialized to

detect pedestrians in a specific scale or occlusion range. We consider this a future objective

of our work. We have also explored the use of running accuracy metric in the RPN loss

function. While it has helped in faster training, its precise impact needs to be verified by

ablation studies. Inclusion of f(hi) directly in denominator can give big jumps to the loss

function thereby reducing the stability of training. Exploring other weightage functions is

also an important part of our future work.

Another major takeaway of this work is a quantitative record of the impact of various

convolutional layers on detection of pedestrians of varying scales and occlusion levels.

To the best of our knowledge, while this varying behavior of different layers has been

known and acknowledged for long, its precise quantitative study on pedestrian detection

has never been carried out before. Therefore, this work serves as an important guide for

future design approaches for pedestrian detection.
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5.1 Introduction

In this chapter we describe our contributions towards designing a pedestrian detection

with a high detection accuracy and high detection speed at the same time. We begin by

describing the speed and accuracy trade-off in object detection. This is followed by a brief

look at some related literature relevant to the ideas presented in this chapter. In deep

learning, the speed/accuracy tradeoff is a consequence of technical differences between

single-stage and two-stage detectors. We have looked at these technical differences in

sections 2.2.2 and 2.2.1 in chapter 2. Here, we briefly summarize those differences and

utilize them to motivate an important concept called “processing targets”. The problem

of designing a pedestrian detection with high speed and high detection accuracy is then

formulated in terms of selection of processing targets. We take a brief look at different

methods for achieving it and then introduce our usage of pseudo semantic segmentation

to select the processing targets. This is followed by a more exhuastive description of

the entire system. We make use of several observations from the preceding chapters and

gradually describe the design of the system as a whole. We close with a quantitative and

qualitative discussion of our experiments and results.

5.2 Revisiting the Speed/Accuracy Tradeoff

The accuracy of a pedestrian detector is the fundamental metric for measuring its effective-

ness in detecting pedestrian instances. In practical applications, the overall effectiveness

of a detector is often described by the accuracy coupled with inference speed [9]. The

concept of inference speed describes the number of images processed by the detector per

unit time. It is often expressed in frames per second (fps). The frames correspond to RGB

images being fed to the detector. These frames may correspond to distinct images coming

from different sources or frames coming from a video stream.

The traits of detection speed and accuracy are understood to be in trade-off with re-

spect to each other [74]. Detectors exhibiting higher accuracy often perform more inten-

sive computations which renders them with a low inference speed, and vice versa. Often,

in such cases the trade-off has to be balanced by careful experimentation to choose appro-

priate hyperparameters during inference. For instance, in Faster-RCNN [130], the number

of proposals to be selected is continually adjusted and experimented with to determine the

minimum number of proposals which lead to decent accuracy and speed [74]. A different

approach which is also adopted is network quantization; instead of using 32-bit floating

point representation of network weights, 16-bit or even 8-bit representation is used. This

is either done offline [96] – quantize a pre-trained network without retraining, or online
[77] – retraining a network with a dedicated quantization approach to learn quantized
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weights directly. However, this approach always leads to some loss of accuracy and can be

complex. For instance, in case of offline quantization when finetuning, one has to fine-tune

the 32-bit representation followed by its quantization. In the case of online quantization,

the finetuning needs to follow complex mechanism of quantization where approximation

strategies need to be assessed [82] to balance the speed/accuracy trade-off.

This encourages us to look for formulating new architecture(s) and systems which

enable us to take advantages of a detector with simultaneous high accuracy and high

inference speed. In this chapter, we discuss a pedestrian detection system which lever-

ages semantic segmentation features for fast and accurate pedestrian detection. The pro-

posed detector is lightweight and performs less computations than conventional detectors,

thereby achieving high inference speed. The less computations as will be seen, are per-

formed while focusing on potential pedestrians, thereby achieving high accuracy.

In the next section, we describe the fundamental traits of existing detectors by catego-

rizing them as –single-stage and two-stage detectors. This categorization as will be seen,

exhibits the speed/accuracy trade-off of conventional detectors.

5.3 Related Work

We limit our focus to deep learning based pedestrian detection systems. Most contem-

porary pedestrian detection systems are derived from Faster-RCNN [130], SSD [102] or

YOLO [127]. Of these, Faster-RCNN is most commonly used as the basis for building

pedestrian detection systems [177, 14, 16, 108, 113, 181, 95], on account of better detec-

tion accuracy than one-stage detectors. Pedestrian detectors based on one-stage detection

systems include [171, 103, 36, 49, 129, 90, 120, 109]. Our treatment of related work

focuses on speed/accuracy trade-off in contemporary pedestrian detectors and delineating

details which offer the cue for balancing this trade-off; thereby setting the basis of our

contributions. We have noted in chapter 2 that existing pedestrian detectors have primar-

ily been derived from general-category detectors and can be categorized into two-stage

and one-stage detectors. Figure ?? in chapter 2 summarizes the relative performance of

one-stage and two-stage detectors vis-à-vis speed and accuracy. In the next two para-

graphs we briefly cover a summary of some major pedestrian detectors categorized into

one-stage and two-stage detectors. We then review some works which utilize semantic

segmentation to improve pedestrian detection. In our proposed approach, semantic seg-

mentation has been used in a novel way to improve detection performance and detection

speed simultaneously, and is described in detail later in section 5.7.

Two-stage pedestrian detectors : Approaches extending Faster-RCNN to pedestrian

detection include use of tree-based classifiers [177, 159], use of multiple CNN layers
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[16, 159], use of additional information such as optical flow, segmentation and differ-

ent color channels [108, 14], use of different networks for processing different scales of

pedestrians [95] and novel loss terms such as repulsion loss [166] for improved localiza-

tion. These extensions improve upon the generic Faster-RCNN detector for pedestrians by

an order of 5 − 7% LAMR. However a comparable improvement in inference speed is not

observed. Often these extensions invoke increased system complexity thereby requiring

more floating point operations per second (FLOPs), which lowers the inference speed. Gen-

erally the performance of two-stage detectors varies from 8− 14 fps, while that of generic

VGG16 based Faster-RCNN detector lies in the range of 7− 10 fps.

All two-stage pedestrian detectors use region proposal network (RPN) for proposal

generation. As mentioned before and illustrated in figure ??, the features for proposal

generation in RPN are generated without intra-anchor feature pooling. These proposals

are often poorly localized [177] and require a further classification and regression stage

[177, 14, 16] for improved performance. All the two-stage detectors utilize intra-anchor

feature pooling after the proposal generation. These pooling operations are carried out

over a large number of proposals to minimize the miss-rate. As a result, the inference

speed of two-stage detectors are limited by the number of processed proposals in addition

to system complexity.

One-stage pedestrian detectors : One-stage pedestrian detectors are based on SSD

[102] or YOLO [127]. The performance of generic SSD and YOLO detectors on pedestrian

detection is significantly lower than that of Faster-RCNN. Their extensions to pedestrian

detection include multi-step training of SSD [103], use of late fusion of multiple networks

to refine the pedestrian candidates generated by SSD [36], recurrent networks for incor-

porating context [129] and use of skip connections in YOLO [90]. These extensions have

improved their performance vis-̀-vis their generic counterparts. The recently proposed

ALF-net follows the ideas of cascade-RCNN [18], but over SSD [102]. ALF-net achieves

an impressive 4.5% miss-rate on caltech-reasonable dataset while operating at ∼ 20 fps.

This performance is still lower than the performance of generic SSD (48 − 60 fps). Other

one-stage pedestrian detectors [119, 90, 120, 109] report their runtime performance in

the range of 20− 25 fps which is substantially lower than their generic counterparts. This

reduction is primarily the result of added system complexity. For example [36] performs

late fusion of multiple CNN networks, each of which operates upon the pedestrian candi-

dates generated by a SSD which is pre-trained to generate pedestrian proposals. At the

same time, one-stage detectors share the lack of intra-anchor feature pooling which fails

to provide as relevant pedestrian features as two-stage detectors.
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Use of semantic segmentation for pedestrian detection : The use of semantic seg-

mentation in a deep learning setting for pedestrian detection was used in F-DNN [36].

The masks in [36] are predicted by a separate network trained for semantic segmenta-

tion and then used as a post-processing cue to remove invalid detections. This however

makes it difficult to tune F-DNN for datasets like caltech pedestrians [34] which do not

come with groundtruth segmentation masks. This deficiency is answered by SDS-RCNN

[14]. SDS-RCNN uses the pedestrian bounding box in the training data to construct a

pseudo-segmentation mask. A pixel-wise cross entropy term to classify background from

pedestrian instances augments the standard loss function of the RPN, thereby forcing the

output feature map of RPN to focus better on pedestrian instances. The RPN features

are then used for classification and regression by a second network. This multi-task ap-

proach though very promising suffers from the limitations discussed before for two-stage
pedestrian detectors. Furthermore, semantic segmentation has been used with the objec-

tive of improving the detection accuracy without any focus on utilizing it for improving

the inference speed. In contrast, our proposed approach shows that the use of semantic

segmentation based on pseudo-segmentation masks naturally leads to a mechanism to re-

duce the number of anchors to be processed by as much as 97%. This is the key to invoke

intra-anchor feature pooling without suffering a runtime performance setback.

Our approach utilizes the ideas of SDS-RCNN [14] but without using a RPN. We prune

most of the anchors away and use a combination of visible and full body bounding boxes

to select positive and negative anchors which are feature pooled for final classification and

regression. This approach therefore leverages the best of both worlds – two-stage (intra-

anchor feature pooling favoring detection accuracy) and one-stage (reduced computations

favoring inference speed).

5.4 Fundamental traits of single-stage and two-stage detectors

The case of two-stage and single-stage detectors has been described in detail in sections

2.2.1 and 2.2.2 respectively. In this section we briefly recall their characteristics with

respect to feature handling. These characteristics as we will see have a major bearing on

the processing speed and detection accuracy.

5.4.1 Two-stage detectors

Two-stage detectors use a fixed kernel size to probe a feature map using convolutions. The

feature map is generated by a CNN and is tiled with hypothetical anchor boxes. Anchors

can be of varying sizes and hence a fixed kernel cannot probe the entirety of features

covered by an anchor box. Thus this kind of feature probing is an approximation. This
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feature probing is used in region proposal network (RPN) to classify a given anchor as

positive or negative during training. This, results in a reduction in the number of anchors

to be processed for obtaining the final detections. The selected positive anchors are then

passed to the second stage which performs intra-anchor pooling using ROI-pooling [130]

or ROI-align [43] to obtain features covering the entirety of an anchor box.

5.4.2 One-stage detectors

In comparison, a one-stage detector such as SSD [102] or YOLO [127] bypasses the in-

tial region proposal stage (corresponding to the first stage of two-stage detectors such as

Faster-RCNN [130]). Instead one fixed kernel size is used to probe the features and per-

form final classification and regression. Let us assume that A confocal anchors are located

at each location in a feature map F . Let Fp be the feature vector extracted by the kernel

at a location p in F . The feature vector Fp then represents the features using which the

classification and regression of all A anchors at p is done. Since different anchors can

have different sizes and aspect ratios, this approach is sub-optimal owing to the lack of

intra-anchor feature pooling.

From a computational perspective, one-stage detectors are faster due to the lack of

intra-anchor feature pooling. The price for this high inference speed is paid in terms of

detection accuracy. Intra-anchor feature pooling is a slow operation owing to the fact that

tensors are not stored in a contiguous manner in the memory. Intra-anchor feature pooling

involves extraction of a subset of a tensor and this involves repeated fetches through the

memory in a non-contiguous manner leading to the operation getting slower.

This leads to the insight that the feature handling mechanism of a detector has a

coupled and opposing impact on detection accuracy and speed. The fundamental question

to ask here is – how can a balance be struck between two-stage and one-stage detectors ? In

the remaining sections we will see an approach which leverages semantic segmentation

in order to reduce the number of anchors. Reduction in the number of anchors to be

processed implies fewer intra-anchor pooling operations thereby improving the inference

speed.

5.5 On the number of processing targets for convolutional de-

tectors

We use the term “processing targets" to jointly refer to RPN proposals in Faster-RCNN-

based detectors and the receptive fields of feature map cells processed by one-stage de-

tectors like SSD [102] and YOLO [127]. The number of “processing targets" is directly
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proportional to the number of convolutional operations for – classification and regression
of a bounding box.

This offers an alternative insight into the speed vs. accuracy performance of single-stage

and two-stage detectors. Let S1 and S2 respectively be the number of processing targets

for one-stage and two-stage detectors respectively. Single-stage detectors such as SSD,

perform O(S1) convolutional operations while two-stage detectors such as Faster-RCNN

perform O(S2) convolutional operations. The cost of these convolutional operations is

different though – O(S2) operations are performed alongwith feature pooling operations

thereby making them more costly. O(S1) operations do not involve feature pooling and

hence are considerably less costly and hence faster. In general S1 < S2, but due to feature

pooling O(S1) takes lesser time than O(S2) (see table 5.1 for an example). As a reminder,

as stated before, lack of feature pooling leads to less relevant features being captured

which impacts the detection fidelity adversely.

Figure 5.1: Impact of number of RPN proposals on the recall of pedestrians. Shown
for 4 techniques. Of these except RPN [177], the others are non-deep learning based
techniques. As the number of proposals is increased, the recall is stablized over a large
range of intersection-over-union with groundtruth bounding boxes. The dataset used here
is the caltech-reasonable test set.

The above discussion concludes that the number of processing targets should be small

for maintaining high detection speed. In order to maintain high detection accuracy, the

locations of processing targets vis-à-vis should correspond to the locations of objects. This

can be quantified by considering all object locations as the positive class, and all other loca-

tions as the negative class. Then based on the overlap between the processing targets and

the positive class, the precision and recall for the processing targets can be determined.

This kind of quantitative analysis is useful only for two-stage detectors due to a proposal

generation stage which performs classification and bounding box regression of anchors.

For a single-stage detector using N × P feature map, there are a total of NP processing

targets and no bounding box regression is performed for anchors. There a precision-recall
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analysis of processing targets for single-stage detectors is not very useful.

Thus we conclude that, the number and quality of processing targets is an important

key to maintain a balance between detection accuracy and detection speed. A number of

non-deep learning techniques also limit the number of processing targets by the use of pro-

posals (section 2.2.1), and show a similar trend where the number of proposals impacts

the detection accuracy and speed. However, deep learning techniques being computation-

ally more intensive show this impact in a rather clearer manner. An illustration appears

in figure 5.1, when detecting pedestrians in the caltech-reasonable test set. For increas-

ing number of processing targets, the recall is considerably stablized for larger ranges of

intersection-over-union with the groundtruth bounding boxes.

Network
Number of
Processing

Targets
Inference/sec

FRCNN
(VGG16)

600 7

SSD
(VGG16)

1939 48

Table 5.1: A comparison of the number of processing targets for Faster-RCNN [130] and
SSD [102] with VGG16 [140] as the base network. For Faster-RCNN the figures corre-
spond to 600 object proposals being selected for processing by the second stage. For SSD,
the number of processing targets correspond to the network topology as shown in [102]

Reducing the value of P while encompassing all relevant pedestrians is therefore an

important problem. We take up a semantic segmentation approach to reduce the num-

ber of processing targets (P ). As will be seen in subsequent sections, this approach is

a two-pronged approach for improving the detection accuracy while maintaining a high

detection speed. This is possible because using the semantic segmentation approach, we

select a minimal number of relevant processing targets. This eliminates the majority of

false positives thereby improving the ensemble detection performance. At the same time a

small value of P makes the system amenable to increased inference speed.

5.6 Reducing the Number of Processing Targets

As noted before, reducing the number of processing targets essentially means

There is very little to no prior information available about the location of objects in

an image. For instance, assuming a natural scene with pedestrians in it, there are some

regions (e.g:- top of the image usually corresponding to open skies or high rises) of the image

which are less likely to have pedestrians. However, it is untenable to utilize this informa-

tion in a quantitative setting because it is possible to have other image instances where
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this is not true at all. For example, a surveillance camera mounted in an indoor setting

covering a hallway is likely to break from such statistical assumptions. Nevertheless, such

information has been utilized in the past through approaches such as GIST [116, 32] and

visual codebook generation approaches trying to model shape and spatial context using

feature histograms [164]. The primary objective of these early efforts was to reduce the

number of regions to be processed while ensuring a low rate of false negative detections.

Interestingly empirical studies on the use of such prior information in object detection

such as [32] show that such prior information is hurtful in cases where different types

of objects share similar context (e.g:-cats and dogs, near and far-scale pedestrians). Such

early empirical studies have largely led to object specific appearance models being more

favored.

Other approaches to reduce the number of processing targets include using a cascade

of classifiers as in the AdaBoost setting [17, 9] and using object proposals [177]. The

use of the cascade of classifiers reduces the number of processing targets in the sense that

early stages remove discard most of the image regions, while successive stages process

only regions not discarded by any of the previous stages. Boosting based classifiers are

difficult to implement and train in a deep learning setting for reasons explained in section

2.3.5. Object proposal techniques select a small set of image regions which are likely to

contain an object of interest. In the case of pedestrian detection this implies regions which

are likely to contain pedestrians. Object proposals can be envisaged as saliency maps

reflecting the liklihood of an image region as containing an object of interest.

In this work, we utilize semantic segmentation as the avenue for reducing the number

of processing targets. Semantic segmentation has been used in the past [14] for improving

pedestrian detection. However this improvement was motivated by improving the feature

map fidelity for pedestrian detection and not improving the balance between detection

speed and accuracy. In the next section we describe the details of utilizing semantic seg-

mentation to reduce the processing targets.

5.7 On Semantic Segmentation to Reduce Processing Targets

Semantic segmentation is used to generate pixel-level labels for objects in a given image.

Generally pedestrians occupy a small portion of the image space and as such semantic seg-

mentation of pedestrians is a sparse representation of the pedestrians in the image space.

Traditionally processing targets in two-stage detectors are obtained by performing a 2-

class classification (object and background) as in RPN [130]. As discussed in section 2.2.1,

this classification does not involve intra-anchor pooling and hence is similar in mechanism

to that followed in single-stage detectors such as SSD. In the lack of a sparse representation

of the image space, this leads to the generation of proposals which visually do not corre-
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Figure 5.2: Top 35 proposals (green) generated by RPN [130] for an image in the caltech-
reasonable test set. The red boxes correspond to groundtruth bounding boxes for the
labelled pedestrians.

spond to actual pedestrians (hence false positives). As an example, the illustration in figure

5.2 shows the top 35 proposals generated by RPN. Generally, a much larger number (e.g:
300-600) proposals are selected for the second stage of Faster-RCNN. As can be seen, there

are far too many proposals compared to the number of groundtruth instances of pedestri-

ans in the image. In the lack of a mechanism to ignore most of these proposals, valuable

time and computational resources are spent on processing these proposals. Furthermore,

this also keeps open the door of possibility that a classifier is unable to classify all the

proposals with perfect precision and perfect recall. In other words, working with large

number of proposal regions presents the danger of increased false positive detections.

To utilize semantic segmentation, we consider a pseudo segmentation mask, hence-

forth referred to as PSM for brevity. It is worth noting that most of the publicly available

datasets for pedestrian detection do not come with a pre-annotated segmentation mask

for each pedestrian. A PSM refers to the bounding box of a pedestrian considered as a

segmentation mask. Figure 5.3 presents some examples of PSMs. The PSM is not an accu-

rate segmentation mask for it is obtained from an inexact representation of a pedestrian

by considering the bounding box as a mask. However, it has been used successfully in

[14] and our experiments as will be seen reveal that it offers an excellent way to reduce

the number of processing targets. We utilize the PSM in a pixelwise classification setting.

We utilize a 1 × 1 convolutional layer to pixelwise classify a feature map into pedestrians

and non-pedestrians. During training, this classification is guided by the PSM. Figure 5.4
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Figure 5.3: Left : An image with pedestrian bounding boxes. Right : The pseudo segmen-
tation mask for the image on the left.

shows a set of examples of probability maps obtained after pixelwise classification of a

feature map whilst guided by PSM.

Figure 5.4 confirms the relevance of using PSM as stated before. The probability maps

(bottom row) demonstrate a high degree of affinity for pedestrian locations, even for

small-scale pedestrians. Anchors at locations corresponding to lower probability need not

be processed thereby eliminating a large fraction of anchors from computations.

In this section we described the utility of semantic segmentation in the form of PSM

for pixelwise classification. We next come over to the question of integrating PSM with a

complete pedestrian detection pipeline.

5.8 Proposed Pipeline for Fast Pedestrian Detection

To describe our proposed pipeline we will take a step-wise approach where we will de-

scribe the individual components of the system alongwith the rationale for their design

choices. This is helpful in piecing together the global view of the pipeline. Figure 5.5
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Figure 5.4: Pixelwise classification probability of image regions to be pedestrian.

summarizes the block diagram of the proposed approach.

5.8.1 Input

As in any object detection system, the input to our system consists of a minibatch B of

images. All the images in our minibatch have the same size H ×W × C (height × width
× channels).

Generally in nearly all practical applications encompassing surveillance and au-

tonomous vehicles, the output resolution of a camera is fixed apriori. Therefore, no

explicit resizing of images or frames is needed to pack multiple images in a minibatch.

Hence, the concern of distortion occouring as a result of explicit resizing is not of gravity

in practical situations. Nevertheless, in situations where images have to be resized to cre-

ate a minibatch (B > 1), no problem is posed if |B| is used for initial training of the target

network. However, caution must be excercised by ensuring that in all subsequent training

or fine-tuning of the target network, the minibatch height and width is not changed. Gen-

erally, in frameworks like SSD [102] or YOLO [127], where |B| > 1 is used, various image

dimensions are experimented with, by considering them as hyperparameters. Larger di-

mensions are preferred [16] on account of greater visual clarity of objects (especially small
objects). However, larger image dimensions as input lead to more computations thereby
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Figure 5.5: Block diagram of the proposed approach.

decreasing the inference and training duration. Therefore, the general practice is to use

experiment with input image dimensions within a pre-specified range.

In our proposed system, we utilize B of dimensions 512× 512× 3.

5.8.2 Base Network

The base network is a CNN architecture pre-trained on a dataset like imagenet [?]. We

utilize Resnet-152 [67] as the base network in this work.

A summary of architectural details of various members of the resnet family is presented

in figure 5.6. It can be seen that each one of these architectures can be grouped into 4

blocks (conv2_x, conv3_x, conv4_x and conv5_x. Successive blocks are separated by a

max-pooling layer. In the rest of this chapter, we follow the following naming convention

for referring to blocks. We consider the row in figure 5.6, corresponding to convP_x as

Block(P − 1). Thus, conv2_x corresponds to Block1 and so on.

Considering the fact that CNNs are hierarchical structures, various layers extract fea-

tures of varying complexity from an input image. To inculcate increased feature diversity,

we utilize feature map outputs from Block2, Block3 and Block4. It can be seen in figure

5.6, that output feature map dimensions are different for these blocks. While bilinear in-
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Figure 5.6: Architectural details of various members of the ResNet family. Courtesy of
[67].

terpolation can be utilized for resizing them to the same dimensions, it is not a preferred

approach as it leads to unstable training during backpropagation as has been observed in

[144]. We instead utilize à trous convolution to solve this problem. We set à trous rate for

the convolutional filters in blocks 2 through 4 as 2. This results in an output feature stride

of 8. For B of dimensions 512× 512× 3, this results in feature maps of dimensions 64× 64,

which are concatenated along the channel dimension, to obtain a feature map (ObObOb) of size

64× 64× 3584.

5.8.3 Deformable Convolution

The operation of convolution in deep learning involves sliding a m×n filter over a feature

map and computing its correlation with the feature map values for each sliding location.

As a passing remark worth noting for its relevance, convolutions in deep learning do not

involve flipping the filter as is done in convolutions studied in signal processing literature

[110]. Figure 5.7 shows an example. From figure 5.7, we see that at each sliding location,

the filter kernel shape is congruent to the sliding location.

The operation of deformable convolution [30] introduced the concept of offset loca-

tions in convolution. For every sliding location of the filter kernel, a separate branch

computes the offset values. These offset values denote the horizontal and vertical shifts

for each feature map location. The correlation is computed with feature map values at

locations determined by these shifts. Example of offsets are shown in figure 5.8. The sep-

arate branch consists of a convolutional filter and is described in [30]. The offsets might
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Figure 5.7: Standard convolution process in CNNs. The convolutional kernel computes
correlation with feature map values for every sliding location. The correlation result be-
comes the feature map value for the center point location of the filter in the output feature
map.

Figure 5.8: a: The sliding location of the filter kernel, b,c and d: Various examples of
possible offset locations. The offsets are applied to each location at the sliding position
of the kernel. The correlation is computed between the filter kernel and the feature map
values at the locations after applying offsets (in blue).

result in non-integer locations in the feature map. To counteract this, bilinear interpola-

tion of feature map values are used to find the feature map value for non-integral locations

and they are used to compute the correlation.

Deformable convolution owing to non-uniform sampling of feature map is able to learn

more object centric and shape specific features compared to normal convolution. In figure

5.11, we show an illustration of sampling locations of both normal convolution (figure

5.9) and deformable convolution (figure 5.10) for one specific pedestrian. As can be seen

deformable convolution has sampling locations which are more specifically glued to the

pedestrian as compared to normal convolution.

We utilize 1024 filters of kernel size 3× 3 with stride of 1 for deformable convolution

in the proposed system. This convolution with ObObOb results in an output feature map OdOdOd of
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.5

Figure 5.9: Normal Convolution

.5

Figure 5.10: Deformable Convolution

Figure 5.11: Sampling locations shown for one pedestrian with a): Normal Convolution
and b): Deformable Convolution. In both cases the convolution kernel is 3×3 with stride
1.

size 64× 64× 1024.

5.8.4 Semantic Fully Convolutional Layer

In order to make use of semantic segmentation as explained in section 5.7, we make use

of a set of parallel branches of fully convolutional layers which differ in their à trous

rates. This structure is reminescent of à trous spatial pyramid pooling (ASPP) introduced

in [22]. Figure 5.12 shows the details of the semantic segmentation module as used in our

proposed system. The feature maps from the 3 branches are concatenated in the channel

dimension to obtainOaOaOa of size 64× 64× 768. Another convolutional layer with 256 filters

of size 3 × 3 acts on OaOaOa to obtain a feature map of size 64 × 64 × 256, which is then

convolved with a convolutional layer with 2 filters of size 1×1 to obtain the a feature map

OcOcOc of size 64× 64× 2, which we refer to as the pixelwise segmentation map.

The 2 channels of OcOcOc correspond to pedestrians and non-pedestrians respectively. Dur-

ing training a pixelwise cross entropy loss is computed between OcOcOc and PSM obtained

from the training dataset. This trains the semantic segmentation module for predicting

pedestrian locations in the input image.
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Figure 5.12: Semantic Segmantation module of the proposed system.

5.8.5 Anchor Location Selection

In existing anchor based detection frameworks such as Faster-RCNN [130], SSD [102]

and YOLO [127], anchors are densely tiled over a feature map. In our approach the use

of semantic segmentation, which provides a good estimate of pedestrian locations (figure

5.4), provides an opportunity to avoid tiling a dense set of anchors. Anchors may be

centered only at locations with a high probability of pedestrians.

To achieve this, we make use of OcOcOc as follows. Let OcpOcpOcp be the channel of OcOcOc corre-

sponding to pedestrians. We concatenate OcpOcpOcp with OdOdOd in the channel dimension. The

resulting feature map is processed by a convolutional layer with 1 filter of size 3 × 3 to

obtain a feature mapOACOACOAC of size 64× 64× 1. We infer a set of locations C where anchors

are centered as follows :

C = argmax|C|(σ(OACOACOAC)) (5.1)

where σ(.) is the sigmoid function and argmax|C|(OACOACOAC) is a function representing top

|C| locations in OACOACOAC . The parameter |C| is a hyperparameter in our system. To facilitate

backpropagation, we define the gradient of argmax(.) as the identity function, which

passes the gradients coming from the top layers to the bottom layers without modification.

Anchors centered at C, are known as the candidate anchors in our work.

All the proposal anchors centered at locations defined by C, are subsequently used for
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classification and bounding box regression.

5.8.6 Classification and Bounding Box Regression

In our work we perform classification and bounding box regression in two steps – coarse
and fine-grained. For both steps, features pooled from the anchors located at C are used

for classification and regression.

Coarse-Step

We pool features from the proposal anchors inOdOdOd. For pooling we crop the features inside

the anchors and resize them to a fixed size followed by max-pooling by a 2×2 kernel with

stride of 2. In our implementation the fixed size is 14 × 14. These features are fed to two

sibling fully connected layers for classification and regression respectively.

Our regression function predicts – sx (horizontal scale factor), sy (vertical scale fac-

tor), tx (horizontal translation) and ty (vertical translation). Given an anchor with center

(xc, yc), width as w and height as h, it is transformed as follows:

xnewc = xc + tx

ynewc = yc + ty

wnew = w × sx
hnew = h× sy

(5.2)

In equation 5.2, variables on the left hand side are the transformed variables after

regression.

Fine-grained Step All the anchors classified as pedestrians by the coarse-step classifi-

cation, are transformed according to equation 5.2. The process of coarse-step classification

and regression is then repeated using a different set of classification and regression layers,

resulting in the final set of bounding boxes detected as pedestrians on the image.

In our work, since the fine-step of classification and regression, pools features from the

regressed anchors of the coarse-step, it extracts features from an improved location. This

helps in an improved prediction of bounding box coordinates. It is possible to cascade

multiple such steps. However, in our implementation use of 2 steps was found sufficient

for good results. Addition of subsequent steps increases the number of feature pooling

operations – thereby decreasing inference speed.
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5.9 Training

5.9.1 Loss Function

During training, all anchors overlapping with an IoU > 0.5 are selected as positive an-

chors, the remaining being negative anchors. In our proposed approach there are a total

of 5 loss terms as enumerated below :

1. Spatial Attention loss (Latt) : This refers to the pixelwise cross-entropy between OcOcOc
and the groundtruth pseudo segmentation mask, averaged across all pixels. This

cross-entropy is computed for 2 classes – pedestrian and background.

2. Coarse-step classification loss Lcoarsecls : The coarse stage classification loss is also a

cross-entropy loss for the classification of a proposal anchor as pedestrian or back-
ground.

3. Coarse-step regression loss Lcoarsereg : For regression we use the smooth-L1 loss as used

in [130]. Regression is performed only for proposal anchors classified as pedestrians.

The regression loss is Lsmooth1 (pi, p
∗
i ), where pi denotes the transformation of the

anchor box variables (sx, sy, tx, ty), while p∗i denotes the same for the groundtruth

box. These transformations are described in equation 5.3.

ptx = log(
tx − xc
wa

)

pty = log(
ty − yc
ha

)

psx = log(sx)

psy = log(sy)

(5.3)

wa and ha are the width and height of the anchor respectively. The scaling is done

assuming the scale of the anchor box as 1. Faster-RCNN during the RCNN stage,

starts with proposal boxes which are already regressed. In our approach, there is

a bigger difference between anchor and groundtruth bounding box dimension. We

found that regression using sx and sy instead of width and height as in [130] lead

to more stable training.

4. Fine-grained step classification loss Lfinecls : Same as the formulation of Lcoarsecls .

5. Fine-grained step regression loss Lfinereg : Same as the formulation of Lcoarsereg

6. Regularization losses LR : We use l2 regularization in all our convolutional layers.

LR is the sum of all the regularization terms in our detector.
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Test Set LAMR
Caltech1x (trained on caltech10x) 4.83

Caltech1x (trained on citypersons + caltech10x) 3.79
Citypersons-val (trained on citypersons train) 11.58

Table 5.2: Performance of the proposed approach on caltech1x and citypersons-validation
set. (|C| = 350).

Method Caltech1x Citypersons-val
RPN-BF[177] 9.6 N/A
MSCNN[16] 10 N/A

SDS-RCNN[14] 7.6 N/A
GDFL[?] 8 N/A

SSD (Resnet-152)[102] 11 N/A
Rep-Loss[166] 4 13.1

Ours 3.79 11.58

Table 5.3: Comparative performance of the proposed approach with other pedestrian de-
tectors.

The total loss function for training our detector is

Ltotal =
αLatt
N

+
Lcoarsecls + Lcoarsereg + Lfinecls + Lfinereg

Na
+ λLR (5.4)

In equation 5.4, α is a constant scaling factor, while Na is the minibatch size (total num-
ber of anchors) and N is the batchsize of images. λ is the regularization factors (set to

0.00005 in all our experiments). Pedestrian bounding boxes in training data contain sev-

eral background elements as well. Our experiments with α = 1, suggest that it causes

small-scale pedestrians to be missed, especially with large-scale pedestrians around. Since

Latt is obtained by averaging over all the pixels, large-scale pedestrians contribute more

to it. Scaling Latt by small value of α is found by us to be a better approach for improved

detections. In all our experiments, α = 0.8.

5.9.2 Implementation Details

In our implementation, we obtain the best results with |C| = 350. We use anchors with

two aspect ratios (0.41, 2.41) and 6 scales (0.25, 0.5, 0.75, 1, 2, 4) resulting in 12 anchors

at each location. All anchors have been generated with a base anchor size of 64 × 64.

Thereby, 12× 60 = 720 anchor features are the input to our coarse-stage classification.

For training, we utilized the stochastic gradient descent algorithm. We did a warm-

up phase where the learning rate (lr = 0.003) for first 10K steps, after which lr was
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Two-step
(cls+reg)

Deformable
Convolution

Early
Fusion

LAMR

X X X 4.83
X X – 6.22
X – X 5.81
– X X 5.67
– – – 7.19

Table 5.4: Summary of ablation studies on caltech-1x dataset. These ablations were per-
formed for |C| = 350 and directly training the system on caltech10x-train.

reduced by a factor of 0.5 after every 10K steps. Data augmentation was used in our

training experiments with random horizontal flip and random brightness and contrast

adjustments. The batchsize used in our experiments was 2. Our proposed system was

implemented in TensorFlow [1] and was run on a single NVidia V100 GPU with 32 GB of

GPU memory.

5.10 Experiments and Results

5.10.1 Datasets

We experimented with the caltech-reasonable [34] and citypersons [179] datasets. For

caltech-reasonable, we utilized the improved annotations provided by [178] for the 10x

training set (42782 images) and for the 1x testing set (4024 images). For the citypersons

dataset we used the original annotations from the authors [179]. For citypersons we

trained on the training set (2975 images) and tested on the validation set (1525 images).

For both the datasets, we utilized only the reasonable subset annotations (height≥ 50

pixels, occlusion≤ 0.35) for training. We use log-averaged miss-rate (LAMR) [34] as the

evaluation metric.

5.10.2 Results

5.10.2.1 Detection Accuracy

Our best results were obtained with |C| = 350, by training our system first on caltech10x

training set followed by fine-tuning on the citypersons training set. Table 5.2 summa-

rizes the results on caltech-reasonable and citypersons (validaton) datasets for different

choices of training set. In table 5.3, we provide a comparison of our best numbers with

several other pedestrian detectors. Table 5.3 shows that our system outperforms the

other methods on both caltech-reasonable and citypersons validation sets. Methods such

as [16, 166, 14] perform upscaling of input images prior to feeding them to their systems.
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Figure 5.13: Some detections (Left) on the validation set of caltech-1x dataset compared
with corresponding groundtruth (Right).

Method Inference Speed (fps)
RPN-BF[177] 7
MSCNN[16] 8

SDS-RCNN[14] 5
SSD (VGG16)[102] 48

Rep-Loss[166] N/A
Ours 11

Table 5.5: Comparative performance of the inference speed of various detectors. For our
proposed detector, the inference speed corresponds to |C| = 350.

Upscaling has been shown in [16, 166] to improve performance by around 0.4−1.7 LAMR

points. Upscaling input images to higher sizes is likely to further improve the performance

of our system.

5.10.2.2 Detection Speed

Our system operates at an inference speed of ∼ 11fps under a batchsize of 2 images, for

|C| = 350. This speed is comparable with the performance of most Faster-RCNN based

systems. As table 5.7 shows, the inference speed decreases with an increase in the value

of |C|. This is expected since the number of feature pooling operations is proportional

to the value of |C|. Table 5.7 in conjunction with table 5.6 details the relative loss in

detection accuracy for an increase in inference speed by decreasing the value of |C|. Even

at |C| = 100, the performance obtained is quite competitive with the detection speed being

at 20 fps. This shows that the proposed system offers considerable flexibility in terms of
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|C| LAMR
Caltech-1x Citypersons-val

30 8.59 15.3
50 8.41 14.73
60 8.05 14.21
100 6.69 13.95
350 3.79 11.58

Table 5.6: Effect of varying the hyper-parameter |C|. The miss-rate for caltech-1x is based
on model pre-trained on citypersons-train followed by fine-tuning on caltech-1x. The
miss-rate for citypersons-val is based on model trained on citypersons-train.

|C|
Detection

Speed (fps)
30 60
60 36
90 24

100 20
350 11

Table 5.7: Impact of varying the hyper-parameter |C| on inference speed.

detection speed while maintaining competitive detection performance. We also observe

from table 5.7 that, for lower values of |C|, the inference speed can be as high as 60 fps,

which is higher than the speed of SSD [102] (with VGG16 as base network) (table 5.6).

Feature pooling is a slower operation and is avoided by SSD for that purpose. However, for

lower values of |C|, even with intra-anchor feature pooling, our proposed system performs

fewer operations compared to SSD. This is on account of the fact that, SSD performs multi-

scale computations which effectively increase its computations compared to our approach.

However, for higher values of |C|, there are significantly more pooling operations which

results in inference speeds more similar to other faster-rcnn based approaches.

5.10.3 Ablation Studies

In table 5.4 we summarize the ablation studies in our experiments. The use of deformable

convolution assists in improvedOcpOcpOcp and provides a boost of ∼ 0.9 LAMR points. The early

fusion of multiple layers is responsible for a gain of ∼ 1.4% in LAMR, thereby verifying

the effectiveness of using multiple layers. To study the role of two-stage classification and

regression, we switched to single-step classification and regression, which lowered our

LAMR by 1.04%. Most of this loss in LAMR was observed for pedestrians with occlusion

close to 0.35% (upper limit of occlusion in caltech-reasonable), and was owing to insuf-

ficient bounding box overlap. This is expected, as an anchor may not overlap fully with
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a pedestrian under high occlusion conditions. Hence, it is difficult to estimate the full

bounding box by the partial view of a pedestrian.

In table 5.6 we show the effect of varying the hyper-parameter |C| which decides the

number of anchors to be selected. Higher values of |C| lead to improved performance, but

at the cost of inference speed as it leads to more number of feature pooling operations.

5.10.4 Spatial Attention : Comparison with RPN

It is not straightforward to quantitatively compare spatial attention with RPN. Spatial

attention module does not perform any bounding box regression and does not select all

anchors at any specified location. Thus, although RPN and spatial attention in our work

– both aim to reduce the search space for pedestrians, the underlying mechanisms are

different. Traditionally RPN is evaluated by measuring the IoU of its proposal outputs

with the groundtruth to compute the LAMR. In our work since no regression is performed

on the anchors by the spatial attention, comparison using IoU is not fair.

For a fairer comparison, we trained Faster-RCNN with ResNet-152 on caltech10x and

compared its performance on caltech1x with our approach for the configuration in the last

row of table 5.4. In this case, the only difference between Faster-RCNN and our approach

remains in our use of spatial attention. We gain 0.42% of performance over standard

Faster-RCNN Ours
12.02 11.6

Table 5.8: Comparison between spatial attention and RPN on the basis of LAMR

faster-RCNN (table 5.8). This basic comparison serves to show that the performance of

the proposed spatial attention module is comparable to the RPN performance.

5.11 Discussion and Conclusions

In nutshell, the proposed approach combines the best of single-stage and two-stage detec-

tors. Intra-anchor feature pooling utilized in two-stage detectors is a better feature han-

dling mechanism compared to sliding of a convolutional kernel over a feature map, which

is followed in one-stage detectors. The former approach provides for separate features for

each anchor while in the latter approach, all confocal anchors share the same feature. The

proposed approach utilizes intra-anchor feature pooling thereby making it more robust

compared to single-stage detectors. At the same time, it gets around the lack of detection

speed in two-stage detectors, by reducing the number of processing targets. This operation

is done using a basic semantic segmentation module, which not only provides the basis for
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selecting relevant anchors for processing, but also decreases the risk of false-positive de-

tections. Compared to many previous approaches like [14], where semantic segmentation

has been used to improve the discirminability of feature maps, the proposed approach

takes this methodology a step further and harnesses it for better detection speed. The

proposed semantic segmentation module is an effective replacement of the RPN stage of

Faster-RCNN [130] – the hallmark of two-stage detection frameworks. As against RPN,

the proposed approach does not perform any regression over bounding boxes. This goes

on to confirm that while the proposed system is not perfectly single-stage, due to its re-

liance on pedestrian probability map, it is not perfectly two-stage because bounding box

regression is an integral part of two-stage approaches. Our proposed system is hence, a

significant deviation from existing two-stage approaches.

Feature extraction strategies following the principle of early fusion for better feature

diversity and deformable convolution for better object centric features ensures that the

features feeding the semantic segmentation module as well as the final intra-anchor fea-

ture pooling module are well aligned with the discriminative task of separating pedestrians

from non-pedestrian entities.

The effectiveness of the proposed system depends heavily on the choice of certain hy-

perparameters, the most important one of which is the the parameter C (section 5.8.5).

Our experiments summarized in table 5.6, confirm that the choice of C inpacts the detec-

tion speed as well as detection accuracy. One limitation of the proposed approach is the

lack of any analytical procedure to either pre-determine C based on dataset statistics, or

to integrate it directly in the training process for its opimal selection. Higher values of

C, though improve the detection speed, but they also degrade the detection accuracy. We

hence, envision that it is of considerable research and practical interest to explore a more

analytical approach to determine C rather than treating it as a free hyperparameter.

Another major hallmark of the proposed system is a 2-step process of classification and

bounding box regression. While a similar approach has been adopted in “Cascade-RCNN”

[18], their basic motivation is quite different from ours. In [18], the focus is on using

a cascade of classifiers and regressors such that each is adept at detecting objects within

a quality measure (intersection-over-union), which is better than the detection quality of

its predecessor. The training process outlined in [18], reflects this motivation. Cascade-

RCNN cannot be trained end-to-end. Each stage of the cascade must be trained before

the subsequent stages can be trained. To the contrary, in the proposed approach, the

two steps can be trained together and thus the entire proposed pipeline is an end-to-

end trainable system. The primary motivation behind using a two-step classification and

bounding box regression is to make up for a lack of bounding box regression process used

in RPNs. Our ablation studies confirm (section 5.4), that the two-step process improves

the detection performance by around 0.86%. While this improvement might seem small,
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it goes on to show that from a practical perspective it is indeed possible to have multi-

step classification and regression with the advantages of end-to-end training. This can be

especially beneficial in competitive cases where even a minor improvement in performance

is extremely desirable. Increasing the number of steps though is possible, it leads to

increase in the number of feature pooling operations thereby causing the detection speed

to suffer.



Chapter 6

Reducing anchors even more : Faster
and Better

6.1 Introduction

In the previous chapter we studied the use of semantic segmentation based spatial atten-

tion to reduce the number of anchors and therefore reduce the computational complexity

of pedestrian detection. The result of this approach was a faster pedestrian detector with

a high detection accuracy. Can we push the barriers further and look for even faster and

better pedestrian detectors ? The subject of this chapter is to simplify the design intro-

duced in the last chapter for faster and better pedestrian detection. The fundamental

tenet of this simplification is based on further reducing the number of processing targets

while ensuring that the processing targets cover the pedestrian instances very well.

This further simplification is achieved by the introduction of an anchor selection layer.

The proposed anchor selection layer performs a quick classification of anchors to deter-

mine which anchors are the most relevant. In this process, during training it is aided by

the visible as well as the full body bounding boxes. As will be seen, this approach while

minimizing the number of anchors to be processed, covers the pedestrian instances quite

densely.

There are other simplifications introduced in this present work, which aid in speeding

up the detection process. Although their elaborate description is deferred to the later

sections, these simplifications involve – pruning of the deformable convolutional layer

and use of a single-step classification and regression process.

This chapter is organized as follows. We begin by examining in detail the performance

characteristics of the system introduced in chapter 5. This examination is then followed by

a description of the system proposed in this chapter. Particular emphasis is paid on eliciting

the differences from the system in chapter 5 and understanding their impact on detection
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accuracy and detection speed. We then present results and analysis of the proposed system

followed by a discussion which summarizes the proposed work and points out the potential

avenues for further research.

6.2 Related Work

The background literature for this chapter is primarily shared with the background in

chapter 5. Hence, in this section, we limit ourselves to the related literature which is di-

rectly linked to two of our main contributions in this chapter, namely the anchor selection

layer and the use of visible and full body bounding boxes.

Techniques for Anchor Classification : The term “anchor classification” must be supple-

mented with a reference to the application context. For example, in a two-stage detector

like Faster-RCNN [130], anchors are classified two times – a) in the RPN stage, anchors

are classified as either representing a class agnostic object or background entity and, b) in

the RCNN stage, the regressed versions of anchors representing objects in the RPN stage

are further classfied into one of the object classes. To be precise, in the RCNN stage clas-

sification does not directly act on an anchor but rather on its regressed version. It is still

worthwhile to refer to them as anchors because the classification done in the RPN stage is

2-class and hence is not suitable for final object detection. For all practical purposes, the

positively classified anchors in the RPN stage, are still object candidates.

The classification of anchors in the RPN stage has been described in detail in chapter 2.

The major takeaway needed for this chapter is the fact, that this classification is based on

a fixed-size convolutional kernel. Anchors are usually of varying aspect ratios and scales

and hene a fixed-size convolutional kernel is unlikely to fully cover the region inside an

anchor. To the best of our knowledge, this limitation has not received any response in

the existing literature. Most attempts at improving the classification of anchors has been

through the use of post-processing techniques such as Greedy-NMS [56] which is adopted

in HyperNet framework [83], or through position-sensitive ROI-pooling [29], or by using

surrounding information around an anchor during classification as is done in MS-CNN

[16]. While these attempts have proven to be effective, they do not address the funda-

mental limitation that a fixed-size convolutional kernel is unable to cover the entirety of

an anchor. During training and inference, typically the number and size of anchors is

fixed. Therefore this limitation is not hard to overcome. Our proposed anchor selection

layer overcomes this limitation by using a multibranch set of convolutional layers. These

convolutional layers are lightweight, with each layer handling only a fraction of the an-

chors. This makes this proposed approach amenable to better classification accuracy as

well as faster performance.
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Use of visible and full body bounding boxes : Public datasets for pedestrian detection,

are often provided with full-body as well as the visible-body bounding boxes [34, 179].

Few pedestrian detectors utilize only the full body bounding boxes for training. In [182];

a spatial attention based work addressing detection under occlusionl; visible bounding

boxes are used in addition to full-body boxes and body part annotations. Body part an-

notations are coarsely defined based on the other two bounding boxes. The basic idea to

re-weight the intra-anchor feature maps with the 3 attention maps; one for each type of

annotation. Though it is outperformed by other detectors [14, 16] on caltech reasonable

subset, it indicates major improvements in cases with partial or heavy occlusion. This

suggests that the use of visible part of bounding boxes aids in detection under occlusion.

Intuitively, an anchor box which overlaps sufficiently well with both the visible and full

body bounding box is a better candidate for regression. Regression of such an anchor box

is easier owing to more complete information about the pedestrian inherent in it. Com-

paratively, complete dependence on full-body or visible bounding box may lead to a wide

variance in the information inherent in the anchor.

We next take a look at the performance characteristics of the system presented in chap-

ter 5. Specific focus is given to the computational complexity and performance details of

some of the components of the system. Understanding these details allows us to make

appropriate refinements thereby achieving improved detection speed without loss of per-

formance.

6.3 Performance Characteristics

For simplicity we have reproduced the block diagram of the system proposed in chapter

5 in figure 6.1. The rationale of the design characteristics of this system have already

been described in section 5.8. Our objective in this section is to understand the impact of

various components and design decisions in figure 6.1 on detection speed and accuracy.

6.3.1 Deformable Convolutional Layer

Deformable convolutional layer is a major improvement over the standard convolution

as the former computes correlation by sampling locations which are non-uniformly dis-

tributed over the feature map. This non-uniform sampling is made possible by a separate

branch (referred to as the offset branch) which consists of a convolutional layer. Let us con-

sider that a 3 × 3 deformable convolution operation with a stride of 1 is being employed.

Recalling the details of the deformable convolution presented in section 5.8.3, this implies

that a total of 3× 3 = 9 offset points must be computed for each sliding location of the de-

formable convolutional filter. To facilitate this, the convolutional layer in the offset branch



104 Chapter 6. Reducing anchors even more : Faster and Better

Figure 6.1: Block diagram of the approach proposed in chapter 5. Reproduced here for
simplicity and comparison with the approach presented here in figure 6.2 .

has 2× = 18 channels (the multiplicative factor accounting for the offsets in x and y direc-
tions and therefore 2). As illustrated in figure 6.3, the convolutional layer output in the

offset branch consists of the offsets for all the locations in the feature map and therefore

is used to compute the deformable convolution output.

Computationally, this operation has a time complexity higher than that of normal con-

volution. Let Ni be the number of input channels to a convolutional layer, No be the

number of output channels, K×K be the kernel size and M ×M be the size of the output

feature map. The time complexity of the convolutional operation can then be computed

as in [64] to be:

O(Ni ×K2 ×No ×M2) (6.1)

It can be seen therefore that following the same notations as above, the time complex-

ity of a K ×K deformable convolutional operation is as follows

O(Ni ×K2 ×No ×M2) +O(Ni ×K2 × 2×K2 ×M2) +O(I) (6.2)

In equation 6.2, the last term (O(I)) represents the time complexity of other operations
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Figure 6.2: Block diagram of the proposed approach. This block diagram differs from
figure 6.1 in terms of many refinements which allow for better inference without loosing
detection accuracy.

such as computing bilinear interpolation from offset values.

Therefore, in applications such as high speed automotive applications, where near

real-time performance is critical, deformable convolution can be a major computational

limiting module. While we have discussed its time complexity, its space complexity is

also greater than normal convolution on account of a separate offset branch and bilinear

interpolation.

One of the major refinements in the proposed system of figure 6.2 is the replacement

of deformable convolutional operation with depthwise separable convolution. Due to

the early fusion approach adopted in our work, the number of output feature channels

from the base network is very large. As seen in equation 6.1, the time complexity is

proportional to the number of feature channels (both input and output). Therefore, a

straightforward purging of the deformable convolutional layer is not desirable. We instead

adopt a depthwise separable convolutional layer [25], which first processes the input

feature map channel wise and then fuses the individual channel outputs using a 1 × 1

convolution to obtain the final output feature map. The time complexity of deformable

convolution is substantially lower than that of normal convolution and hence is much more

efficient than deformable convolution as well. Using the same notations as in equations
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Figure 6.3: Illustration of offset calculation for a 3× 3 deformable convolution operation.

6.1 and 6.2, the time complexity of deformabel convolutional operation is

O(Ni ×K2 ×M2 +Ni ×No ×M2) (6.3)

Channelwise processing helps in better amalgamation of information in different fea-

ture channels. This is much better than normal convolution or even deformable convo-

lution in the sense, that in those operations, all the feature channels are processed by

the same convolutional filter. This is less desirable as the feature channels in the output

of early fusion come from hierarchically different convolutional layers and hence contain

information of varying nature.

6.3.2 Concatenation of pedestrian probability map and deformable convo-
lution output

In figure 6.1, it can be seen that there is a concatenation along the channel dimensions

of OdOdOd and OcpOcpOcp. Elementwise multiplication in place of concatenation is another possibil-

ity that could be employed here. Concatenation in figure 6.1 was favored on following

qualitative account.

In cases where the semantic segmentation module is in lack of perfection, i.e fails to

localize very small pedestrians, a direct multiplication in place of concatenation would

result in a feature map which is completely devoid of the information corresponding to

very small pedestrians.

However, concatenation results in an added extra channel. While this does not incur a

huge computational penalty, our observations reveal that semantic segmentation module

through adequate training is indeed good at localizing nearly all pedestrians.



6.3. Performance Characteristics 107

Dataset IoU(0.5) IoU(0.2)
Caltech1x-Test 0.89 0.97

CityPersons
(Validation set)

0.93 0.98

Table 6.1: Intersection-over-union analysis of the performance of semantic segmentation
module.

Table 6.1 summarizes the intersection over-union performance of the semantic seg-

mentation module. To conduct this analysis OcpOcpOcp was thresholded for all values v ≥
{0.5, 0.2} and their IoU computated against the PSM of the pedestrians from the dataset.

This analysis suggests that the performance of semantic segmentation module is quite

competitive. For a threshold value of 0.2, the IoU performance is near perfect. This sug-

gests that the elementwise multiplication ofOdOdOd andOcpOcpOcp does not rob away the small-scale

pedestrian features, while their absolute strength might be affected for lower values in

OcpOcpOcp.

Guided by these observations, we go about the route of elementwise multiplication

(also known as schur product in the linear algebra literature). In figure 6.1, we use a

3× 3 convolutional layer to further process the concatenated feature map. We purge this

convolutional layer away and directly use the schur product output as the input to the

anchor selection layer.

6.3.3 Two-Step classification and regression

The two-step classification and regression process adopted in figure 6.1, provides around

0.86% of performance boost compared to using only one classification and regression step.

At the same time, its impact on computational time is significant as the number of intra-

anchor feature pooling operations approximately double because of two steps. This in-

crease in pooling operations double only approximately, as only the positively classified

and regressed bounding boxes from the first step are used for feature pooling by the

subsequent step. Due to the smaller magnitude of benefit reaped from using a two-step

classification and regression process, we decide in favor of a single step classification and

regression process. This results in significantly fewer pooling operations and therefore

promotes faster training and inference.

6.3.4 Input Size

The input size to a network in object detection is of significant importance. Various ex-

isting pedestrian detection approaches such as MSCNN [16] and F-DNN [36] show that

inference and training with increased image sizes results in performance boost of upto
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2 − 3% [16]. We hence decide to use an input image size of 1024 × 1024. This input im-

age size helps in improving the visibility of small-scale pedestrians in caltech dataet [34],

while providing minimal distortion to the pedestrians in the citypersons dataset [179].

Having described the computational aspects of various system design approaches in

figure 6.1, we now proceed to describing the details of the refinements introduced and

compare the new architecture (figure 6.2) with that in figure 6.1.

6.4 Proposed Approach

Since the present approach is a simplification and refinement of the approach presented

in chapter 5, for the purpose of brevity we limit ourselves only to some characteristic

differences between the two approaches. We first outline the summary of the proposed

approach followed by a detailed explanation of the anchor selection layer.

6.4.1 Summary

In this section, we describe the essential differences in the proposed pipeline (figure 6.2)

from that in figure 6.1. The input minibatch is processed by a ResNet-50 base network and

after early fusion is processed by a depthwise separable convolution operation. The se-

mantic segmentation module (figure 5.12 and section 5.8.4) is used to generate a pseudo-

segmentation map which is a pixelwise probability of pedestrian presence in an image. A

schur product ofOdOdOd andOcpOcpOcp is then fed to an anchor selection layer. The anchors selected

from the anchor selection layer are used for classification and bounding box regression.

The anchors are cropped and resized to 14 × 14 using bilinear interpolation followed by

max-pooling to obtain a 7 × 7 × 64 feature map which is flattened and fed to two sibling

1 × 1 convolutional layers for classification and bounding box regression. Softmax cross

entropy is used for training classification (pedestrian vs. non-pedestrian), while the para-

metric formulation used in [130] is used in conjunction with smooth-L1 loss for bounding

box regression. We use non-maximal-suppression (NMS) over the predictions to get final

detections.

6.4.2 Anchor Selection Layer

We select the top C locations inOcpOcpOcp for further processing. If NA is the number of anchors

at each location, this requires C × NA anchors to be feature pooled. For high values

of C (e.g:-1000), this is time-consuming and further requires a large memory footprint.

Furthermore, not all anchors encompassing pedestrians are useful; as shown in figure 6.4,

where only the magenta anchor overlaps sufficiently well with both full-body and visible

part of the bounding box. An anchor overlapping well with both the full body and visible
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Figure 6.4: An occluded pedestrian with full-body bounding box (green) and visible
bounding box (blue). Red anchors are confocal with the magenta anchor. The red an-
chors do not overlap well with both the full-body and visible bounding box, while the
magenta anchor has sufficient overlap with both.

part of the bounding box encapsulates information about the pedestrian and the occlusion

and is thus more useful than other anchors. We therefore stipulate that based on the

overlap criteria it is possible to further restrict the number of anchors to be processed. To

handle test cases with no prior bounding boxes available, we use a classification strategy

to learn good anchors, as described below.

The input to the anchor selection layer isOhOhOh, which is the schur product ofOcpOcpOcp andOdOdOd
(broadcasted across the feature channel). A set of NA sibling classification branches are

set up. Each classification branch serves the classification of anchors with a specific scale

and aspect ratio. The ith classification branch is constituted of a convolutional layer with

32 filters of size hi×wi, followed by a 1×1×2 convolutional layer, which is then followed

by a softmax operation to determine the probability of an anchor to be positive. hi × wi
is determined by the configuration used for generating anchors. An example is shown in

figure 6.5.

Each classification branch during training is trained using focal loss for classification.

for an anchor A, its IoU with the full-body bounding box BF and visible bounding box BV
is computed and the class of the anchor is determined as positive or negative as follows

class(A) =

+ve, IoU(A,BV )≥ α; IoU(A,BF )≥ β

−ve otherwise
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Figure 6.5: The anchor selection layer. For illustration it is assumed that all anchors
have been generated by a base anchor of size 64 × 64 and have an aspect ratio of 0.41
(width/height). The anchor at scale 1 then corresponds to a box of size ∼ 100× 41. For a
feature stride of 16, a kernel of size 7× 3 will cover the corresponding area of this box in
the feature map. For other scale values, the kernel size can be similarly defined.

Behavior during training and testing : During training, we utilize both positively and

negatively classified anchors, while only positively classified anchors are used during test-

ing. Let npos be the number of positive predicted anchors during training. Then the number

of negative anchors used is defined as follows :

nneg = min(5× npos,M − npos) (6.4)

where, M is a hyperparameter and is usually limited by the memory capacity of the com-

puting device. During testing phase, we use only the positive anchors for classification and

regression.

This difference in behavior is preferred so that during training, a large range of samples

encompassing positive and negative examples are seen by classifier and regressor for robust

learning.
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6.5 Training and Implementation Details

Training set Testing set
Testing set LAMR (%)

(IoU : 0.5)
Testing set LAMR (%)

(IoU : 0.75)
caltech-reasonable (train) caltech-reasonable (test) 4.76 18.16

citypersons(train) +
caltech-reasonable (train)

caltech-reasonable (test) 3.99 17.62

citypersons(train) citypersons (test) 8.12 25.5

Table 6.2: LAMR of our proposed approach over caltech-reasonable and citypersons(val)
datasets. Our best results on caltech-reasonable (test) are achieved through pre-training
on citypersons(train) dataset.

We implemented our proposed approach on top of tensorflow object detection api

[74]. We used stochastic gradient descent (SGD) with a momentum value of 0.9 as an

optimizer. Our initial learning rate was set to 0.01 with gradients clipped to a value of

10.0. This warm-up phase lasted for 10K iterations after which the learning rate was

decreased by a factor of 10 after every 30K iterations. Data augmentation was used for

training in the form of – a) random horizontal flipping, b) random brightness adjustment

and c) random contrast adjustment. We upscaled all images using bilinear interpolation

to a fixed size of 1024× 1024.

6.5.1 Loss Function

Our loss function can be written as

Ltotal , Lss + LAcls + Lbboxcls + Lbboxreg + Lreg2 (6.5)

where,

1. Lss : Average pixelwise cross entropy term for semantic segmentation.

2. LAcls
i : Cross entropy term for anchor classification. It is a sum of NA terms, where

NA is the number of confocal anchors.

3. Lbboxcls : Average cross entropy term for bounding box classification.

4. Lbboxreg : Average smooth L1-loss term as defined in [130].

5. Lreg2 : Average of regularization terms elsewhere in the network.
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6.6 Experiments, Results and Analysis

6.6.1 Datasets

We used caltech-reasonable [34] and citypersons [179] for validating the performance

of the proposed approach. In the citypersons dataset’s evaluation protocol, there are 4

Caltech-Reasonable CityPersons
Train Test Train Val

Images 42,782 4024 2,975 500

Table 6.3: Summary of dataset size of caltech-reasonable [34] and citypersons [179]
dataset.

Method Stages LAMR Speed
caltech-reasonable

(test)
(w/o CP pre-training) (CP pre-trained)

citypersons
(val)

(trained only on CP)
Faster-RCNN [130] 2 12.10 15.4 7

SSD [102] 1 17.78 (16.36) 19.69 48
YOLOv2 [127] 1 21.62 (20.83) NA 60
RPN-BF [177] 2 9.6 (NA) NA 7
MS-CNN [16] 2 10.0 (NA) NA 8

SDS-RCNN [14] 2 7.6 (NA) NA 5
ALF-Net [103] 1 4.5 (NA) 12.0 20
Rep-Loss [166] 2 5.0 (4.0) 13.2 -

Ours 1.5 4.76 (3.99) 8.12 32

Table 6.4: Performance comparison of the proposed method with other methods for
caltech-reasonable test set and citypersons validation set. The speed figures are in frames
per second.

distinct categories of evaluation – pedestrian, rider, sitting person and person (other). We

cluster these 4 sub-categories are into one and refer to it as pedestrians.

6.6.2 Hyperparameter settings

Unless and otherwise mentioned, we use parameter settings as mentioned henceforth.

Following [177, 14, 16], we use anchors with an aspect ratio of 0.41 (average aspect
ratio of bounding boxes in caltech and citypersons datasets). We use 6 anchor scales

({0.25, 0.5, 0.75, 1, 2, 4}), generated from a base anchor of size (64, 64). For anchor se-

lection layer (sec 6.4.2), α = 0.3, β = 0.5, M = 2000. C = 1000 in our work.
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6.6.3 Results and Analysis

Table 6.2 summarizes the LAMR of our proposed approach on caltech-reasonable and

citypersons datasets. Table 6.2 summarizes the comparative performance of our pro-

posed approach with other pedestrian detectors vis-á-vis accuracy and speed on caltech-

reasonable and citypersons datasets. We achieve state-of-art performance on both caltech-

reasonable and citypersons datasets. Our best results on caltech-reasonable is obtained

by first pre-training our model on citypersons training set, followed by fine-tuning it on

caltech-reasonable training set. This amounts to 0.77% improvement in LAMR. From ta-

ble 6.2, we see that our improvements on citypersons is much higher than on caltech-

reasonable. The input to our model is 1024 × 1024, which results in higher distortion

for caltech-reasonable images (640 × 480) than citypersons images (2048 × 1024). This

lower distortion gives better training to our model and explains higher improvements on

the citypersons dataset. We attribute the slight degradation in detection accuracy com-

pared to the approach presented in chapter 5 (where LAMR on caltech-reasonable test

set is 3.79%), to the use of a shallower base network, non-usage of deformable convolu-

tional layer and non-usage of a cascade of classification and regression stages. However,

this degradation is small (0.20% on the caltech reasonable and 0.93% on the citypersons

validation set), while achieving a higher detection speed.

With an optimized implementation, our approach performs inference at ∼ 32 fps, on

input images of size 1024 × 1024, which is ∼ 1.5 times faster than the next best speeds

(∼ 20 fps) achieved by [103]. It is to be noted that we report our inference speed only

for the inference evaluation and do not factor in the time for any display or disk access.

It is further notable that the speeds reported in [103] are for images of size 480 × 640,

while for us all images are of size 1024 × 1024. This shows a major speedup attained by

our approach vis-á-vis other competitive methods.

To the best of our knowledge, ours is the first two-stage detector achieving a high

detection accuracy while also providing a high inference speed. Accuracy-wise our method

competes closely with Rep-Loss [166] and ALF-net [103], while being faster than both of

them.

The above improvements in inference speed and accuracy in our approach are largely

possible through a conjunction of semantic segmentation layer and anchor selection layer.

The semantic segmentation layer provides high quality segmentation maps, which assist in

selecting a small set of locations at which all anchors are classified. The anchor selection

layer then further reduces this count by classification. As a result, the number of anchors

used during testing phase is proportional to the number of pedestrians in the image.
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6.7 Ablation Studies

6.7.1 Comparison with Region Proposal Network

LAMR
RPN Semantic Segmentation + Anchor selection layer
15.18 8.12

Table 6.5: Ablation study of RPN vs. our approach using semantic segmentation and
anchor selection layer on the citypersons(validation) dataset.

To know the impact of our first stage using semantic segmentation and anchor selection

layers, we replace our first stage with standard RPN layer of Faster-RCNN [130], with the

same anchor parameters as reported in section 6.6.2, and using top 300 proposals for

processing. From table 6.5 shows that our first stage has a huge impact on performance.

This performance boost speaks jointly of the improvements brought about by semantic

segmentation and anchor selection layer. Moreover, our first stage has computational

advantages over RPN as shown below.

In the RPN, for a feature map with 512 channels, and 6 confocal anchors, the classifier

will admit 512 × 2 × 6 parameters for foreground/background classification. The RPN

regressor will admit 512 × 4 × 6 parameters for 4 quantities regressed for each anchor

box. This leads to a total of 512 × (4 + 2) × 6 = 18432 trainable parameters. This does

not include the parameter count of proposal filters and feature projection layer in RPN

[130]. In contrast, the union of segmentation and anchor classification modules admit a

total of 7048 training parameters in our approach. Thus, compared to a basic RPN with

no extra proposal filter and feature projection layers, our approach admits 2.61 times less

parameters than RPN. This makes learning easier for our system on smaller pedestrian

datasets like citypersons [179] (2975 training images).

6.7.2 Impact of anchor selection layer

Removing the anchor selection layer (sec 6.4.2) from the pipeline, compels one to use all

possible anchors at all the top C locations in OcpOcpOcp. Since, the total number of anchors one

may use in a batch is limited by the memory limit of the computing device, large values

of C (e.g:- 1000) were no longer admissible on our systems. In the proposed approach,

the anchor selection layer, makes it possible to use large values of C, as classification lets

one choose a set of positive and negative anchors during training (equation 6.4). We

experimented with C = 300 (resulting in number of anchors as 300 × 6 = 1800). This

dropped the LAMR on the caltech-reasonable dataset (after pre-training on citypersons)

to 9.57%. For a fair comparison our proposed approach was also tried with C = 300,
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resulting in a LAMR of 7.37. This corresponds to ∼ 2.20% improvement brought upon by

the anchor selection layer.

6.8 Conclusions

In this chapter we discussed an architectural refinement over the approach presented in

chapter 5. The major refinement over the system in chapter 5 proposed in this chapter is

that of an anchor selection layer. The anchor selection layer uses anchor specific kernels

(kernels with shape matching the anchor shapes) to select anchors for further processing. A

related refinement is that of the use of both visible and full body bounding boxes in terms

of their overlap criterion with the anchors during training to guide the anchor selection

layer. Other refinements such as the use of depthwise separable convolution in place of

deformable convolution enable faster feature processing with lesser number of parame-

ters. These refinements greatly improve upon the detection speed of pedestrian detection

across compared to chapter 5. The detection accuracy suffers a minor breakdown and we

infer it owing to the use of a shallower base network as well as non-usage of some compu-

tationally heavy layers such as deformable convolution and cascade of classification and

regression stages.





Chapter 7

Conclusion and Future Work

In this thesis we focus on simultaneously improving the detection accuracy and detection

speed of deep learning based pedestrian detection systems. The relevance of accurate and

real-time detection is essential for autonomous vehicles especially when maneuvering at

high speeds; and this forms the main motivation for our work. With a number of deep

learning based detection systems being available; our work begins with the quantitative

analysis of their accuracy and inference speed performance. This initial analysis presented

in chapter 3 shows that one has at their disposal a large number of tools from deep learn-

ing, which can be employed to improve existing systems. As a part of our analysis we con-

duct experiments with a number of different refinements such as using various network

architectures and using different types of convolutional layers. These refinements have

primarily been proposed and validated on image classification problems and to the best of

our knowledge, their systematic quantitative analysis has not been conducted before on

pedestrian detection. Our initial analysis therefore, lends one a repertoire of information

related to impact of various architectural refinements, as well as training and fine-tuning

strategies, which can aid one in designing a custom pedestrian detection system. Though,

we have primarily focused upon Faster-RCNN [130], SSD [102], RPN-BF [177] and SDS-

RCNN [14], our analysis can be extended to any other pedestrian detection system on

account of its generality. Refinements considered in chapter 3, such as base network ar-

chitecture, loss function impact and impact of various types of convolutional techniques

such as à trous and depthwise separable convolution are applicable to existing as well as

future deep learning based pedestrian detection systems. This analysis has motivated the

design of pedestrian detection systems proposed in the subsequent chapters of this thesis;

both in terms of architectural refinements and training and fine-tuning strategies.

Detection of pedestrians across scales and occlusion levels is an important problem. In

deep neural networks, pooling operations reduce feature map dimensions, thereby often

reducing information of small-scale and highly occluded pedestrians to a sub-pixel level.
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Furthermore, different CNN layers are known to learn semantically different features. This

motivates us to focus on the important concept of convolutional layer selection which has

been outlined in chapter 3. The topic of convolutional layer selection refers to – “The

optimal approach to utilize multiple convolutional layers simultaneously for pedestrian

detection.”. The idea of utilizing multiple convolutional layers has been stressed several

times in literature before, but to the best of our knowledge, their quantitative impact on

pedestrian detection across scales and occlusion levels has never been done before. In

chapter 4, we conduct this analysis and hence quantitatively demonstrate that early layers

are more suitable for detecting small-scale and highly occluded pedestrians, while later

layers are more suitable for detecting large-scale and unoccluded pedestrians. We also

note in chapter 4, that tree based ensemble classifiers are better at handling classification

problems with a large intra-class variance. In a previous work known as RPN-BF [177],

boosted forests are used for classification of deep learning features. We compliment the

approach of RPN-BF in two ways – a) early and late fusion of multiple convolutional layers

which demonstrates that early fusion is a much better strategy than late fusion for both

detection accuracy and detection speed and, b) use of gradient boosted trees (GBT) for

classification. We show that the use of GBTs which utilize the concept of boosting to

grow decision trees, improve the performance under early fusion over both Faster-RCNN

[130] (by ∼ 5% LAMR) and RPN-BF [177] (by ∼ 1.5% LAMR). Although seemingly small,

this improvement corresponds to correct detection of nearly 3800 previously undetected

pedestrians. GBTs however are difficult to train jointly with CNNs and existing attempts

at doing so have not received a major performance improvement in image classification

problems [69]. Features first need to be extracted from a CNN followed by feeding them

to a GBT – this transfer being difficult to achieve fastly due to implementation differences

between modern GBT and CNN frameworks. This also causes the inference speed to go

down to around 5 − 7 fps. This detection speed is not reasonable when most cameras in

use today operate at around 30 fps. For a vehicle travelling at high speeds, this low speed

can pose dangers to both the vehicle and the pedestrians. This motivates us to further

achieve a better balance between detection speed and accuracy, while utilizing multiple

convolutional layers.

In response to our conclusions in chapter 4, take cue from the use of semantic segmen-

tation in RPN-BF [14] and utilize that idea in chapter 5. However, unlike RPN-BF, we do

not limit ourselves to improve the feature representation, but go on to reduce the number

of anchors to be processed. We set the relevance of this idea in chapter 5, where we pro-

vide the details of the feature handling mechanisms of one-stage and two-stage detectors.

More explicitly, we show that feature pooling is the primary trait which delivers better

performance but slower speed to two-stage detectors such as Faster-RCNN [130], SDS-

RCNN [14] and RPN-BF [177]. Semantic segmentation module in our proposed system
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focuses on the pedestrians. This enables us to select a small set of regions which reduce

the number of feature pooling operations in the detection stage. Our work differs signifi-

cantly from other region selection based schemes like Faster-RCNN [130], which perform

bounding box regression of anchor boxes. We only select a set of locations from where

we select all anchors centered at those locations as regions without any bounding box re-

gression. classification and bounding box regression is performed only in the second stage

using a cascade of classification and regression modules. The proposed cascade is simpler

than Cascade-RCNN [18] and can be trained end-to-end. With our approach to reduce

the number of anchors to be processed, we obtain the state-of-art performance on caltech

(3.79% LAMR) and citypersons dataset (7.19% LAMR) while maintaining a high inference

speed (∼ 20 fps). Usually modern detection systems use a large number of confocal an-

chors. Despite performing at the state-of-art level, the proposed approach can come under

heavy load when a large number of confocal anchors are involved. Use of a cascade of two

classification and regression modules implies that feature pooling is done two times over.

Thus it is challenging to deploy the proposed approach on memory-constrained devices.

To overcome the limitations of the approach presented in chapter 5, we propose an

anchor selection layer in chapter 6. The anchor selection layer further reduces the number

of anchors to be processed. The anchor selection layer utilizes anchor specific kernel

sizes for classification. This allows one to classify an anchor based on the entirety of

information contained therein; but without using the costly operation of feature pooling.

We further remove the cascade of classification and regression modules, thereby reducing

the number of feature pooling to half. This proposed approach, allows us to obtain the

highest inference speed of ∼ 40fps while maintaining the state-of-art performance on both

citypersons (8.14% LAMR) and caltech reasonable (3.99% LAMR) datasets.

While, we have been successful in settling the problem of balancing the trade-off

between detection accuracy and detection speed, there are many impending challenges

which need to be addressed. In a recent review [170], the human level performance

for pedestrian detection on the caltech-reasonable test set is shown as 0.88% LAMR. Our

current state-of-art results on the same dataset is 3.79% LAMR. This difference of 2.91%

LAMR is significant to be bridged to ensure successful systems which perform at-par with

human performance. Human beings are good at detecting pedestrians under poor illumi-

nation and weather conditions including wide ranges of scales and occlusion levels. Work

in these directions is critical for bridging the gap to human level performance. The human

level performance is an important objective for critical applications where human safety

is directly involved such as in self-driving vehicles. One of the traditional bottlenecks in

pedestrian detection research is unavailability of large scale datasets which reflect the wide

range of illumination and weather conditions. Recently there has been some progress in

this direction with the release of datasets such as BDD100K [174] and nightowls dataset
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[112], which address these needs. Technically, poor weather and illumination lead to

poor feature extraction to the lack of gradient information in such conditions due to poor

visibility. Therefore an important future work in this direction is to evaluate the existing

techniques on newer datasets like BDD100K and nightowls; thereby paving way to under-

standing the behavior of CNNs on pedestrian feature extraction. In practical instances, a

detection system is expected to perform irrespective of illumination and weather condi-

tions. Therefore work on determining and improving the generality of feature extracted

from CNNs is an important direction of research.

Fine-tuning of an existing pedestrian detection system to new scenarios is another

important challenge. We have covered this in chapter 3, and have made some impor-

tant observations about the impact of image resolution on pre-training and fine-tuning.

However, in practice other constraints may also apply. For example, when fine-tuning a

system to images coming from a new camera; the new camera may have its own camera-

specific aberrations (due to different sensors) and field-of-view. There does not appear to

be an adequate study of fine-tuning strategies under these scenarios. With the growing

proliferation of pedestrian detection systems in a world, where the number and quality

of cameras is ever-changing, it is pertinent to deeply study these aspects of pedestrian

detection systems.

Human beings make use of a multitude of information when detecting pedestrians in

real life situations. Information about pedestrian motion, contextual information about

the environment, action of a pedestrian and prediction of the immediate future behavior

of a pedestrian are some common traits exploited during driving maneuvers in real life.

Work on aforementioned traits has been and is being done, though in an isolated setting.

As an example, it is vital to predict the future locations of other vehicles and pedestri-

ans; something done effortlessly by human beings. While works such as social-LSTM [2],

AMIR [131], P2F [162] exist on multi-target visual prediction, an amalgamation of these

ideas with detection and action recognition is necessary to simulate the functionalities

employed by human beings when driving in real environments. It is therefore, pertinent

to work on multi-task systems for pedestrian detection, where information from multiple

sources such as action recognition and future prediction are fused to make a final deter-

mination of pedestrian locations. Most of the contemporary pedestrian detection systems

do not incorporate such multi-task solutions. Work in this direction can be facilitated by

publicly available datasets with annotations for such traits. VIRAT video dataset [115],

though not suitable for applications such as autonomous driving is an encouraging tem-

plate dataset, which can be followed by potential future releases of similar dataset suited

for autonomous applications. VIRAT dataset is labeled with human activities apart from

pedestrian bounding boxes and is provided in video form, thereby making it possible to

use motion information. Recently proposed EuroCityPersons dataset [13] having come
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with annotations describing pedestrian motion orientation is a good step in this direction.

All the pedestrian detection analysis and proposals in this thesis related to the fully-

supervised setting. In a fully-supervised setting, all the pedestrians in an image need to

be annotated for proper learning. Collecting high-quality annotations of pedestrians is

a costly endeavor, requiring a lot of time and training for the annotators. Furthermore,

inter-annotator variance is an important challenge [89] when conducting large-scale an-

notations in computer vision. While availability of images and videos is an easy task

today, their annotations is not. This has led to the development of several weakly and

semi-supervised approaches for detection problems as well. In the semi-supervised sce-

nario, only a limited number of pedestrians may be labelled in an image, instead of all. In

the weakly supervised setting, there is no localization information for pedestrians, only an

indication of their presence of absence. It is an attractive direction of research which can

have major ramifications on the cost-effectiveness of pedestrian detection systems. Most

of the existing work in these two settings have been carried out in general-category object

detection. To the best of our knowledge, there is no existing literature on pedestrian de-

tection which caters to weakly or semi-supervised settings. We consider this to be the next

major helm of pedestrian detection research owing to its practical impact.
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