Cartes planaires et partitions aléatoires

Résumé Ce mémoire d'habilitation est une synthèse des travaux de recherche que j'ai effectués entre 2005 et 2019. Il s'organise en quatre chapitres. Les trois premiers portent sur les cartes planaires aléatoires. Le chapitre 1 s'intéresse à leurs propriétés métriques : à partir d'une bijection générale entre cartes et mobiles, on calcule la fonction à trois points des quadrangulations, avant d'évoquer le lien avec les fractions continues. Le chapitre 2 présente la décomposition en tranches, une approche bijective unifiée qui s'applique notamment aux cartes irréductibles. Le chapitre 3 a pour sujet le modèle de boucles O(n) sur les cartes planaires : par une décomposition combinatoire récursive on obtient le diagramme de phase, puis on étudie les statistiques d'emboîtements entre boucles. Le chapitre 4 porte quant à lui sur les partitions aléatoires et processus de Schur, en allant des pavages de dominos pentus aux systèmes fermioniques.

Hormis un avant-propos en français, le document est écrit en anglais. La numérotation des pages de cette version électronique diffère de celle des exemplaires imprimés distribués lors de la soutenance.
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Preface

This aim of this document is to summarize the research that I have carried out after the completion of my doctoral thesis in 2005. This research has been published in the articles [1-28] 1 2 . Of course I shall not attempt to be exhaustive, but I will rather try to present how these different papers articulate with one another.

My presentation consists of four chapters, which roughly correspond to four different "threads" of my research. The first three chapters deal with planar maps. Chapter 1 describes results about the metric properties of random planar maps, which form the continuation of the work done during my doctoral thesis. Chapter 2 is devoted to the slice decomposition, an alternate bijective approach for studying planar maps. Chapter 3 deals with the O(n) loop model on random planar maps, a statistical physics model with a rich critical behavior. In the last Chapter 4, we leave the realm of planar maps and enter that of Schur processes, which have been the main topic of my recent research.

Each chapter aims at being as self-contained as possible: it starts with some reminders of the context, then consists of two or three core sections where I highlight one or two main results, and ends with a conclusion discussing perspectives for future research. For convenience I have gathered some common definitions in the mathematical preliminaries at the beginning of the document.

Note that this document is deliberately not written in the style of a mathematical paper, as my goal is to narrate stories about my research. Even if I follow the tradition of emphasizing some theorems, definitions and other remarks, I avoided using the proof environment: where relevant I provide some elements of justification in the main text, and in any case the reader is invited to consult the original papers where full proofs are given.

For brevity, I had to exclude several papers from my presentation. The most notable exclusion are the three papers [START_REF] Arita | Asymmetric exclusion process with global hopping[END_REF][START_REF] Ayyer | Multivariate juggling probabilities[END_REF][START_REF] Ayyer | Bumping sequences and multispecies juggling[END_REF] which deal with certain Markov chains whose study was motivated by juggling. But two out of these papers were written with my former student François Nunzi (whom I supervised with Sylvie Corteel), so I may simply point to his thesis [START_REF] Nunzi | Autour de quelques chaînes de Markov combinatoires[END_REF] for a nice account of this topic.

1. A separate bibliography is provided for these articles, with numbered citations such as [START_REF] Bouttier | Combinatorics of bicubic maps with hard particles[END_REF]. References to works by other authors, or to works done during my doctoral thesis, are given in the general bibliography with "alpha-style" citations such as [START_REF] Bouttier | Physique statistique des surfaces aléatoires et combinatoire bijective des cartes planaires[END_REF].

2. Due to the important fluctuations of the duration of the refereeing process, these articles are sorted according to the date of their initial posting on arXiv, which is a slightly more accurate indication of the period at which they were conceived.

Avant-propos

Mathématiques discrètes et continues se rencontrent et se complètent volontiers harmonieusement [START_REF] Chassaing | Hachage, arbres, chemins & graphes[END_REF].

Ce mémoire a pour but de présenter les travaux de recherche que j'ai effectués depuis ma soutenance de thèse de doctorat en 2005. Il s'appuie sur les publications [1-28] 1 dont la liste 2 est donnée un peu plus loin. Il ne s'agit bien sûr pas de donner une présentation exhaustive mais plutôt, au travers de quatre chapitres, de présenter quelques idées et le cheminement qui m'a conduit de l'une à l'autre.

Commençons tout d'abord par tenter d'identifier la démarche générale dans laquelle s'inscrivent mes recherches, qu'on peut situer à l'interface entre la physique statistique, la combinatoire et la théorie des probabilités. Le lien entre physique statistique et combinatoire remonte à Boltzmann lui-même, et à sa célèbre formule S = k B ln W qui définit l'entropie microcanonique S d'un système à l'équilibre macroscopique en fonction de son nombre W de micro-états (k B étant la constante de Boltzmann). Ce lien s'est ensuite particulièrement développé autour des modèles exactement solubles 3 : la physique statistique fait grand usage de tels modèles dans lesquelles les grandeurs physiques pertinentes (fonction de partition, fonctions de corrélations...) peuvent être déterminées de manière exacte, au sens où on en a une expression suffisamment explicite pour pouvoir passer à la limite thermodynamique, calculer des exposants critiques, etc. Ce phénomène résulte d'une structure mathématique sous-jacente, appelée généralement intégrabilité 4 . L'étude des modèles intégrables discrets amène de nombreuses questions de nature combinatoire. Nous en verrons deux illustrations au cours de ce mémoire, au travers des cartes planaires d'une part, des processus de Schur d'autre part. La théorie des probabilités apporte quant à elle de nouveaux outils, notamment pour l'étude des limites d'échelle 5 . En effet, dès lors qu'on s'intéresse aux propriétés macroscopiques des modèles, il est possible d'oublier 1. Afin de différencier ces publications des citations de travaux d'autres auteurs, ou bien de travaux effectués pendant ma thèse de doctorat, j'utiliserai des références numérotées comme [START_REF] Bouttier | Combinatorics of bicubic maps with hard particles[END_REF] pour les premières, et des références dans le style «alpha», comme [START_REF] Bouttier | Physique statistique des surfaces aléatoires et combinatoire bijective des cartes planaires[END_REF], pour les secondes qui sont listées dans la bibliographie générale à la fin du mémoire.

2. Cette liste est ordonnée selon la date de publication sur arXiv, qui reflète mieux que celle du journal la période de conception des articles.

3. Voir par exemple le livre de Baxter [START_REF] Baxter | Exactly solved models in statistical mechanics[END_REF] qui traite des modèles sur réseaux bidimensionnels solubles par l'ansatz de Bethe et méthodes liées. [START_REF] Bouttier | Vacancy localization in the square dimer model[END_REF]. Même si cette notion est difficile à définir précisément au-delà du cadre de la mécanique classique. 5. Un autre apport intéressant des probabilités, peu discutée dans ce mémoire, est celle des «limites locales» que l'on peut rapprocher du formalisme des mesures de Gibbs en mécanique statistique. L'idée est alors de décrire directement un système infini sans passer par les systèmes de taille finie. Par bien des aspects, et paradoxalement, cette description peut s'avérer plus simple. certains de leurs détails microscopiques, et les probabilités fournissent un cadre rigoureux pour ce faire. On arrive parfois ainsi à donner une définition mathématique d'un objet-limite continu capturant l'essence de la physique à grande échelle. Par exemple, la carte brownienne6 correspond à la limite d'échelle générique des cartes planaires aléatoires non décorées, et le processus d'Airy à celle des processus de Schur autour d'un point générique de la courbe arctique 7 . Cette démarche donne un sens mathématique au phénomène d'universalité, puisque différents modèles discrets peuvent avoir une même limite d'échelle continue et donc les mêmes propriétés macroscopiques. En outre, cela justifie la pertinence des modèles exactement solubles : en effet on s'appuie typiquement sur leur intégrabilité afin de les étudier, analyse qui pourra être ensuite étendue au continu et à d'autres modèles par universalité. Comme aboutissement, on arrive à des résultats rigoureux qui, au côté des validations expérimentales, permettent de confirmer ou réfuter les prédictions de la physique théorique.

Entrons à présent dans le contenu de ce mémoire. Il est constitué de quatre chapitres principaux, qui sont essentiellement indépendants les uns des autres : chaque chapitre commence par un bref rappel du contexte, comprend ensuite deux ou trois sections présentant certains de mes résultats, et se conclut sur une discussion de quelques pistes de recherche future. Par commodité, quelques définitions communes sont regroupées dans les préliminaires mathématiques en introduction du mémoire.

Les trois premiers chapitres portent sur les cartes planaires, et sont consacrés respectivement aux propriétés métriques des cartes aléatoires, un sujet auquel j'ai continué à m'intéresser après ma thèse de doctorat, à la décomposition en tranches, une nouvelle approche bijective pour l'étude des cartes, et enfin au modèle de boucles O(n) sur les cartes planaires, un modèle de physique statistique au riche comportement critique. Je ne donnerai pas ici de présentation générale du vaste sujet de recherche que sont les cartes, ce qu'on pourra trouver dans d'autres références. Je mentionnerai, entre autres, la revue récente de Gilles Schaeffer [START_REF] Schaeffer | Planar maps[END_REF] pour les aspects relevant de la combinatoire énumérative et bijective, les notes de cours successives de Jean-François Le Gall, Grégory Miermont et Nicolas Curien [START_REF] Gall | Probability and statistical physics in two and more dimensions[END_REF][START_REF] Miermont | Aspects of random maps[END_REF][START_REF] Curien | Peeling random planar maps[END_REF] pour les aspects probabilistes, le mémoire d'habilitation de Guillaume Chapuy [START_REF] Chapuy | Rencontres autour de la combinatoire des cartes[END_REF] pour une évocation du lien avec les hiérarchies intégrables, et enfin le premier chapitre de ma thèse de doctorat [START_REF] Bouttier | Physique statistique des surfaces aléatoires et combinatoire bijective des cartes planaires[END_REF] ou la première partie de celle d'Ariane Carrance [START_REF] Carrance | Random colored triangulations[END_REF] pour une discussion des liens entre cartes et physique théorique.

Dans le quatrième et dernier chapitre, je quitte le monde des cartes planaires pour évoquer mes travaux récents autour des partitions aléatoires, et plus précisément des processus de Schur. Le domaine général est celui des probabilités intégrables auxquelles les notes de cours d'Alexei Borodin et Vadim Gorin [START_REF] Borodin | Lectures on integrable probability[END_REF] donnent une bonne introduction. Ma présentation suivra la manière dont j'ai été amené à m'intéresser à ce domaine, en allant des pavages de dominos aux systèmes de fermions à température finie.

Dans un souci de concision, j'ai été amené à exclure plusieurs travaux de la présentation qui est faite dans ce mémoire. L'omission la plus importante concerne les trois articles [START_REF] Arita | Asymmetric exclusion process with global hopping[END_REF][START_REF] Ayyer | Multivariate juggling probabilities[END_REF][START_REF] Ayyer | Bumping sequences and multispecies juggling[END_REF] qui portent sur des modèles de jonglage aléatoire. Sur ce sujet, le lecteur pourra consulter la thèse de François Nunzi [START_REF] Nunzi | Autour de quelques chaînes de Markov combinatoires[END_REF].

Résumé détaillé du mémoire

Le chapitre 1 est consacré aux propriétés métriques des cartes planaires aléatoires. J'y présente quelques résultats issus de travaux poursuivant ceux effectués pendant ma thèse de doctorat. La présentation n'est pas chronologique puisque, après un rappel du contexte dans la section 1.1, je commence par présenter en section 1.2 une bijection obtenue en 2013 avec Éric Fusy et Emmanuel Guitter dans l'article [START_REF] Bouttier | On the two-point function of general planar maps and hypermaps[END_REF]. Il s'agit d'une correspondance entre cartes convenablement étiquetées (cartes planaires dont les sommets sont étiquetés par des entiers, de telle sorte que deux sommets adjacents ont des étiquettes consécutives) et mobiles (cartes planaires biparties, où les sommets d'un type sont étiquetés par des entiers, et les autres ne sont pas étiquetés mais imposent certaines contraintes sur leurs étiquettes adjacentes). Elle unifie plusieurs constructions antérieures : la célèbre bijection de Cori-Vauquelin-Schaeffer [START_REF] Cori | Planar maps are well labeled trees[END_REF][START_REF] Schaeffer | Conjugaison d'arbres et cartes combinatoires aléatoires[END_REF] entre quadrangulations enracinées et arbres bien étiquetés, une première généralisation que nous avions obtenue avec Philippe Di Francesco et Emmanuel Guitter [START_REF] Bouttier | Planar maps as labeled mobiles[END_REF] et qui relie cartes biparties enracinées et mobiles à une face, et une seconde généralisation due à Miermont, Ambjørn et Budd [START_REF] Miermont | Tessellations of random maps of arbitrary genus[END_REF][START_REF] Ambjørn | Trees and spatial topology change in causal dynamical triangulations[END_REF] 8 qui relie quadrangulations convenablement étiquetées et cartes bien étiquetées.

Cette approche bijective est particulièrement intéressante pour étudier les distances dans les cartes planaires. En effet, par des choix d'étiquetages judicieux, on peut lire certaines propriétés métriques des cartes dans les mobiles correspondants, qui se trouvent être des arbres ou des cartes à un petit nombre de faces. L'analyse de ces derniers objets peut alors être menée à bien par les différentes méthodes connues pour étudier les arbres : décompositions récursives donnant des équations pour les séries génératrices, codage par des marches permettant de passer à la limite d'échelle, etc.

Dans la section 1.3, je donne un exemple d'une telle analyse pour le calcul de la fonction à trois points des quadrangulations, d'après l'article [START_REF] Bouttier | The three-point function of planar quadrangulations[END_REF] écrit avec Emmanuel Guitter. Le problème est de trouver la série génératrice des quadrangulations ayant trois points marqués à distances prescrites. Par une spécialisation de la bijection présentée en section 1.2, le problème est ramené à celui du comptage de cartes bien étiquetées à trois faces, avec des valeurs prescrites pour les étiquettes minimales incidentes à chaque face. De façon surprenante, ce calcul peut être mené à bien de manière explicite, au sens où on peut donner une formule close pour les séries génératrices correspondantes. Il s'agit d'une manifestation d'un phénomène d'intégrabilité discrète que nous avions déjà observé dans le calcul de la fonction à deux points [START_REF] Bouttier | Geodesic distance in planar graphs[END_REF]. À partir de l'expression exacte discrète, il est facile de passer à la limite d'échelle et calculer ainsi la fonction à trois points de la carte brownienne, c'est-à-dire la loi jointe des distances entre trois points tirés au hasard uniformément.

La section 1.4 revient sur le phénomène d'intégrabilité discrète mentionné ci-dessus, dans un cadre légèrement différent : on considère la fonction à deux points seulement, mais dans le contexte plus général des cartes de Boltzmann. Avec Philippe Di Francesco et Emmanuel Guitter, nous avions conjecturé une expression exacte pour cette fonction à deux points dans l'article [START_REF] Bouttier | Geodesic distance in planar graphs[END_REF]. Cette expression a été prouvée quelques années plus tard, dans l'article [START_REF] Bouttier | Planar maps and continued fractions[END_REF] écrit avec Emmanuel Guitter. Le point de départ de ce travail est l'observation, faite auparavant dans l'article [START_REF] Bouttier | Distance statistics in quadrangulations with a boundary, or with a self-avoiding loop[END_REF], que la fonction à deux points intervient dans le développement en fraction continue de la série génératrice des cartes à un bord. Par la théorie générale des fractions continues, on peut donc déduire la première de la seconde, à l'aide de déterminants de Hankel qu'on peut identifier à des caractères de groupes orthogonaux ou symplectiques.

Je conclus ce chapitre par la section 1.5 qui évoque quelques questions ouvertes.

Le chapitre 2 est consacré à la décomposition en tranches des cartes planaires. Il s'agissait initialement d'une reformulation de la bijection de [START_REF] Bouttier | Planar maps as labeled mobiles[END_REF] évoquée dans les articles [START_REF] Bouttier | Distance statistics in quadrangulations with a boundary, or with a self-avoiding loop[END_REF][START_REF] Bouttier | Planar maps and continued fractions[END_REF][START_REF] Albenque | Constellations and multicontinued fractions: application to Eulerian triangulations[END_REF], mais sa portée plus générale a été comprise dans l'article [START_REF] Bouttier | On irreducible maps and slices[END_REF] écrit avec Emmanuel Guitter. En effet, nous y expliquons comment adapter la construction au cas des cartes irréductibles, c'est-à-dire des cartes dans lesquelles tout cycle a une longueur au moins égale à un entier d ≥ 0 fixé, et tout cycle de longueur d est le bord d'une face. Une telle contrainte semble difficile à concilier avec la bijection de la section 1.2.

La section 2.1 rappelle le contexte et notamment le développement du canevas bijectif qui vise à unifier les différentes bijections cartes-arbres connues et à en découvrir de nouvelles, en s'appuyant sur la théorie des orientations.

La section 2.2 donne la définition générale des tranches. Il s'agit de cartes avec un bord et trois points marqués A, B, C sur celui-ci, tels que le côté AB est une géodésique entre A et B, et le côté AC est l'unique géodésique entre A et C. Je décris ensuite deux opérations importantes :

-la décomposition d'une tranche en tranches élémentaires, qui consiste à découper le long de toutes les géodésiques gauches allant des sommets du côté BC vers A, -l'enroulement, qui consiste à identifier les côtés AB et AC, en laissant éventuellement quelques arêtes non identifiées si les longueurs sont différentes : cette opération produit alors des cartes annulaires (ayant deux faces marquées).

À l'aide de ces deux opérations, on parvient à exprimer la série génératrice des cartes annulaires en fonction de celle des tranches élémentaires, qui est elle-même égale à celle bien connue des cartes pointées enracinées. Dans la section 2.3, j'explique comment adapter la décomposition en tranches au cas des cartes irréductibles. La difficulté principale est d'énumérer les tranches élémentaires, qui ne sont plus en bijection avec les cartes pointées enracinées. On est amené à introduire la notion de quasi-tranche, en modifiant légèrement la définition des tranches élémentaires : le côté AB n'est plus nécessairement une géodésique entre A et B, mais seulement un chemin de longueur minimale parmi tous les chemins évitant l'arête BC.

Par une nouvelle méthode de décomposition des quasi-tranches, on obtient un système d'équations algébriques qui détermine leurs séries génératrices. On peut alors énumérer les cartes annulaires irréductibles en appliquant l'opération d'enroulement. Celle-ci ne pose pas de difficulté particulière, une fois observé qu'il convient de traiter à part les cycles séparant les deux faces marquées.

Quelques pistes de recherche sont mentionnées en section 2.4.

Au chapitre 3, nous considérons un modèle de physique statistique sur les cartes planaires, le modèle de boucles O(n). Les configurations sont des cartes planaires décorées de boucles (cycles disjoints sur la carte duale), chacune recevant un poids n qui joue le rôle d'un paramètre non local.

La section 3.1 passe brièvement en revue la littérature au sujet des modèles de physique statistique sur les cartes. Beaucoup de travaux ont porté sur le modèle de Potts à q états, ses différentes reformulations et ses spécialisations. En particulier, le modèle de boucles O(n) est lié aux points «auto-duaux» du modèle de Potts, avec q = n 2 . Lorsque n varie dans l'intervalle [0, 2], il existe une famille de points critiques dont les exposants varient continument avec n. On s'attend à ce que la géométrie des cartes sous-jacentes soit affectée par les corrélations à longue échelle aux points critiques, mais cela reste une question largement ouverte.

Les sections 3.2 et 3.3 présentent principalement les résultats de l'article [START_REF] Borot | A recursive approach to the O(n) model on random maps via nested loops[END_REF] écrit avec Gaëtan Borot et Emmanuel Guitter. Je me concentrerai sur le cas des boucles rigides sur les quadrangulations qui est plus simple à analyser. Dans la section 3.2, je présente la décomposition combinatoire dite des poupées russes 9 : à une configuration de boucles sur une quadrangulation à un bord, on associe la carte externe formée par les arêtes extérieures à toutes les boucles. Il s'agit d'une carte sans boucles mais pouvant avoir des faces de degrés arbitrairement grands. Nous verrons que cette carte suit la loi d'une carte de Boltzmann, dont les paramètres sont donnés par une équation de point fixe qui donne également la fonction de partition du modèle. J'esquisse ensuite dans la section 3.3 la façon dont l'équation de point fixe peut être résolue, en réécrivant celle-ci sous forme d'une équation fonctionnelle pour la résolvante. Cette équation fonctionnelle possède une solution explicite particulièrement simple aux points critiques non génériques du modèle. En particulier, on peut voir que, à ces points, la loi du degré d'une face typique de la face externe a une queue lourde. Par des résultats de Le Gall et Miermont [START_REF] Gall | Scaling limits of random planar maps with large faces[END_REF], la limite d'échelle diffère de la carte brownienne.

La section 3.4 s'inspire de l'article [START_REF] Borot | Nesting statistics in the O(n) loop model on random planar maps[END_REF] écrit avec Gaëtan Borot et Bertrand Duplantier. On s'y intéresse à la structure des emboîtements entre boucles et, plus précisément, à la profondeur d'un sommet marqué, qui est défini comme le nombre de boucles séparant ce sommet du bord. On montre que, à un point critique non générique, la profondeur d'un sommet tiré au hasard croît logarithmiquement avec la longueur du bord (plus précisément, on établit un théorème central limite et un principe de grandes déviations pour cette profondeur). La preuve repose sur le calcul d'une série génératrice raffinée, qu'on parvient à mener à bien en adaptant la méthode utilisée à la section 3.3. 9. Ce terme me semble préférable à celui de joint de culasse qui serait la traduction littérale de gasket.

La section 3.5 présente quelques perspectives.

Dans le chapitre 4, je quitte le monde des cartes planaires pour évoquer mes travaux récents autour des processus de Schur. La section 4.1 présente brièvement le contexte, qui est celui des probabilités intégrables. J'y raconte également de quelle manière j'ai été amené à m'intéresser personnellement à ce sujet, par un groupe de travail sur les hiérarchies intégrables où je m'étais familiarisé avec le formalisme des fermions libres.

La section 4.2 présente mes premières contributions au domaine, et reprend les articles [START_REF] Bouttier | From Aztec diamonds to pyramids: steep tilings[END_REF][START_REF] Boutillier | Dimers on rail yard graphs[END_REF] écrits tous deux avec Guillaume Chapuy et Sylvie Corteel, ainsi que Cédric Boutillier et Sanjay Ramassamy pour le second. Nous définissons la famille des pavages pentus, qui sont des pavages du plan par des dominos (rectangles 2 × 1) obtenus à partir d'un certain pavage fondamental en effectuant une séquence de mouvements élémentaires. Ces pavages sont en bijection avec des configurations de dimères sur un graphe dit en gare de triage. Par spécialisation, nous retrouvons plusieurs familles de pavages connues : partitions planes, partitions-pyramides et pavages du diamant aztèque. Nous donnons des expressions explicites pour la série génératrice des pavages pentus, ainsi que pour les fonctions de corrélation qui sont les probabilités d'occurrence conjointe de certains types de dominos à des positions prescrites. Nous faisons également un lien avec la théorie de Kasteleyn pour les modèles de dimères.

Dans la section 4.3, je m'intéresse aux pavages pentus avec des conditions aux bords périodiques ou libres. Leurs séries génératrices avaient été calculées dans [START_REF] Bouttier | From Aztec diamonds to pyramids: steep tilings[END_REF], mais nous n'avions pas été alors capables de calculer leurs fonctions de corrélation. C'est un problème sur lequel je suis revenu dans les articles [START_REF] Betea | The free boundary Schur process and applications I[END_REF][START_REF] Betea | The periodic Schur process and free fermions at finite temperature[END_REF] écrits tous deux avec Dan Betea, ainsi que Peter Nejjar et Mirjana Vuletić pour le premier. Nous y calculons les fonctions de corrélation des processus de Schur avec des conditions aux bords respectivement libres et périodiques, via le formalisme des fermions libres 10 . J'esquisse les idées principales de notre approche, qui consiste à considérer des fermions à température finie dans le cas périodique, et effectuer une transformation de Bogolioubov dans le cas libre.

La section 4.4 porte sur les applications des considérations précédentes. En effet, on s'attend à ce que la modification des conditions aux bords permette d'observer de nouvelles limites d'échelles. Je considère principalement le cas périodique, d'après [START_REF] Betea | The periodic Schur process and free fermions at finite temperature[END_REF] (le cas libre étant l'objet de travaux en cours). On s'intéresse au cas le plus simple de processus de Schur périodique, qui est une mesure sur les partitions d'entiers appelée mesure de Plancherel cylindrique. Cette mesure interpole entre la mesure canonique et la mesure de Plancherel usuelle sur les partitions. On considère la loi de la plus grande part et on montre que, après recentrage et normalisation, celle-ci admet plusieurs limites possibles :

-la loi de Gumbel dans un régime dit de haute température (incluant la mesure canonique),

-la loi de Tracy-Widom de l'ensemble gaussien unitaire (GUE) dans un régime dit de basse température (incluant la mesure de Plancherel usuelle), 10. Dans le cas périodique, les fonctions de corrélations avaient précédemment été calculées par Borodin [START_REF] Borodin | Periodic Schur process and cylindric partitions[END_REF] via une autre méthode. La nôtre semble plus simple.

-et enfin, dans un régime intermédiaire, une loi interpolant entre les deux lois précédentes, qui avait précédemment été rencontrée par Johansson dans le cadre des matrices aléatoires.

Du point de vue physique, cette transition de phase peut être expliquée par une compétition entre les fluctuations d'origine thermique et celles d'origine quantique. Enfin, la section 4.5 indique quelques directions pour le futur.
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Mathematical preliminaries

We gather here for convenience some general terminology, definitions or notations concerning the objects that we encounter in this document. We believe that most of it is either standard or self-explanatory.

Maps A planar map is a connected graph drawn on the sphere without edge crossings, considered up to continuous deformation. It consists of vertices, edges, faces and corners. In general we allow the graph to have loops and multiple edges; otherwise the map is said simple. The degree of a vertex or face is its number of incident corners. One usually represents a planar map via a stereographic projection of the sphere into the plane, which amounts to distinguishing an outer face containing the "point at infinity", see Figure 0.1. The outer vertices, edges and corners are those incident to the outer face. All the rest are said inner. A planar map having only one face is nothing but a (plane) tree.

One may consider maps on surfaces other than the sphere, such as closed orientable surfaces of higher genus or even nonorientable surfaces. We will however not do so in this document, hence unless stated otherwise all maps will be assumed to be planar. We might sometimes encounter maps with boundaries, which simply means that some faces are distinguished. A (planar) map with one boundary is sometimes called a disk or plane map-the distinguished face is then taken as the outer face-and a map with two boundaries a cylinder or annular map.

When enumerating maps, as well as graphs, trees, etc., a slight subtlety concerns the proper treatment of "symmetries". This problem is usually circumvented by considering rooted maps. Rooting is traditionally done by marking and orienting an edge, which amounts to distinguishing a half-edge; a more recent trend is to do it by marking a corner. Of course, the two ways are equivalent as there is a one-to-one correspondence between half-edges and corners in a map. Rooting also allows to distinguish one root vertex and one root face1 , which is usually chosen as the outer face. A pointed map has a distinguished vertex called the origin. A rooted map is naturally pointed, but in a pointed rooted map the origin and the root vertex may differ.

To each map we may associate its dual map which, abstractly speaking, is obtained by exchanging the role of vertices and faces. More concretely, to construct the dual map, we add a new dual vertex inside each face of the original (primal) map and, for each primal edge, we consider its two incident faces and draw a dual edge connecting the two dual vertices inside them. See Figure 0.2 for an example. Note that the dual of a simple map is not necessarily simple.

A map is said bipartite if its vertex set can be partitioned in two subsets so that no edge has its two endpoints in the same subset. This implies that all the faces have even degrees and, in the planar case, the converse is also true. Through duality we obtain an Eulerian map, i.e. a map whose vertices all have even degree. A common combinatorial trick consists in transforming an arbitrary map into a bipartite map by adding a dummy vertex in the middle of each edge. The dummy vertices have degree two and form one of the two subsets of the bipartition. In this sense, bipartite (or dually Eulerian) maps appear as "more general" than ordinary maps. A closely related concept is that of hypermap, see for instance [START_REF] Lando | Graphs on surfaces and their applications[END_REF]p. 43].

A triangulation is a map all of whose faces have degree three. Similarly a quadrangulation has all its faces of degree four. Triangulations and quadrangulations are respectively dual to cubic and quartic maps, where the degree constraint is on the vertices. In a triangulation or quadrangulation with a boundary, we relax the degree constraint on the outer face. A planar quadrangulation (possibly with one boundary) is always bipartite. There is a well-known correspondence between arbitrary maps with n edges and quadrangulations with n faces, see Figure 0.3. This correspondence is two-to-one, since the dual map is sent to the same quadrangulation. It becomes one-to-one after rooting, since the quadrangulation has twice as many corners as the original map. The dual of the quadrangulation is sometimes called the medial graph (though it is actually a map). A celebrated result of Tutte [START_REF] Tutte | A census of planar maps[END_REF] states that the number of rooted planar maps with n edges, or equivalently the number of rooted planar quadrangulations with n faces, is equal to

m n = 2 • 3 n (n + 1)(n + 2) 2n n ∼ 2 √ π 12 n n 5/2 (n → ∞). (0.1) 
A well-labeled map (resp. suitably labeled map2 ) is a map whose vertices are labeled by integers, in such a way that the labels of adjacent vertices differ by at most 1 (resp. exactly 1). Note that a suitably labeled map is necessarily bipartite, since vertices with odd labels can only be adjacent to vertices with even labels, and vice versa.

For us, the notions of path and walk on a map (or graph) are synonymous. The length of a path is its number of edges. A path whose two endpoints are equal is said closed. A path which never visits the same vertex twice, except possibly at the endpoints, is said simple or self-avoiding. A simple closed path is called a cycle. The contour of a face is the closed path formed by its incident edges. A face is said simple if its contour is a cycle (the contour is not a cycle when the face is incident to bridges or "pinch points"). A geodesic between two vertices is a path of minimal length connecting them. It is necessarily simple. The girth of a map is the length of a shortest cycle. It is infinite in the case of a tree.

Partitions An integer partition, hereafter called a partition for short, is a way to decompose a nonnegative integer, called the size of the partition, as a sum of positive integers. The order of the terms in the sum is disregarded3 , therefore we may order them in weakly decreasing order, and view a partition as a finite nonincreasing sequence of positive integers called parts. The number of parts is the length of the partition. The tradition is to denote partitions with lower greek letters: λ, µ, ν... Given a partition λ, its size is denoted |λ|, its length is denoted (λ), and its parts are denoted λ 1 , . . . , λ (λ) with λ 1 ≥ • • • ≥ λ (λ) . It is convenient to set λ i = 0 for i > (λ). The notation λ n means that λ is a partition of size n. The empty partition, denoted ∅, is the unique partition of size zero.

A well-known graphical representation of partitions is via Young diagrams. Trusting that a picture is worth a thousand words, we refer to Figure 0.4 for an example. The small squares are called cells. If we reflect the Young diagram of a partition λ along its main diagonal, we obtain the Young diagram of its conjugate partition, denoted λ . In mathematical notation, we have λ i = #{j : λ j ≥ i}.

For two partitions λ, µ, we write λ ⊃ µ if the Young diagram of λ contains that of µ, in other words if we have λ i ≥ µ i for all i. Such pair (λ, µ) is called a skew shape, and is denoted λ/µ. It is represented as a skew Young diagram, see Figure 0.5. Its size is |λ/µ| := |λ| -|µ|.

The skew shape λ/µ is called a horizontal strip if we have

λ 1 ≥ µ 1 ≥ λ 2 ≥ µ 2 ≥ • • • (0.2)
If so, we write λ µ (0.3) and we say that the partitions λ and µ are (horizontally) interlaced. Graphically, this says that the cells of the skew Young diagram of shape λ/µ lie in different columns, see again Figure 0.5. If λ and µ are such that their conjugates satisfy λ µ , then we say that the skew shape λ/µ is a vertical strip, that the two partitions are vertically interlaced, and we use the alternate notation λ µ.

(0.4)

Note that vertical interlacing amounts to the condition that

λ i -µ i ∈ {0, 1}, i = 1, 2, . . . . (0.5)
Partitions are classically related with symmetric functions [START_REF] Macdonald | Symmetric functions and Hall polynomials[END_REF]. In Section 4, we will encounter Schur functions. To a skew shape λ/µ we associate the skew Schur function s λ/µ that may be defined through the Jacobi-Trudi formula

s λ/µ (x 1 , . . . , x n ) = det 1≤i,j≤ (λ) h λ i -i-µ j +j (x 1 , . . . , x n ) (0.6)
where h k (x 1 , . . . , x n ) is the complete homogeneous symmetric polynomial4 of degree k, which is conveniently defined by the generating function

∞ k=0 h k (x 1 , . . . , x n )z k = n i=1 1 1 -x i z (0.7) 
(with h k = 0 for k < 0). The classical Schur function s λ is obtained by taking µ equal to the empty partition ∅. It may also be expressed as a ratio of alternants

s λ (x 1 , . . . , x n ) = det 1≤i,j≤n x λ i +n-i j det 1≤i,j≤n x n-i j (0.8)
which may be seen as an instance of the Weyl character formula for the general linear group. In Section 1.4 we will also encounter symplectic and orthogonal Schur functions, corresponding to characters of the respective groups (but we do not give the formulas here for brevity).

It is an elementary exercise to check that the skew Schur function of a single variable x is given by

s λ/µ (x) = x |λ/µ| if λ µ, 0 otherwise. (0.9)
This relation, together with the "branching" relation

s λ/µ (x 1 , . . . , x n ) = ν s λ/ν (x 1 , . . . , x m )s ν/µ (x m+1 , . . . , x n ) (m ≤ n) (0.10)
which results from the Jacobi-Trudi formula (0.6) and the Cauchy-Binet formula, yields the expression where dim(λ/µ) is the number of standard Young tableaux of shape λ/µ, i.e. the number of ways to fill the cells of the Young diagram of λ/µ with the numbers 1, . . . , |λ/µ| in such a way that cell numbers increase strictly along rows and colums (from left to right and from bottom to top in French convention).

s λ/µ (x 1 , . . . , x n ) = λ (0) ≺λ (1) ≺•••≺λ (n) λ (0) =µ, λ (n) =λ x |λ (1) /λ (0) | 1 • • • x |λ (n) /λ (n-
1 Mobiles and distance statistics of random planar maps

The purpose of this chapter is to present some of my contributions to the study of the metric properties of random planar maps. The publications closest to this topic are [START_REF] Bouttier | Statistics in geodesics in large quadrangulations[END_REF][START_REF] Bouttier | The three-point function of planar quadrangulations[END_REF][START_REF] Bouttier | Confluence of geodesic paths and separating loops in large planar quadrangulations[END_REF][START_REF] Bouttier | Distance statistics in quadrangulations with a boundary, or with a self-avoiding loop[END_REF][START_REF] Bouttier | Distance statistics in quadrangulations with no multiple edges and the geometry of minbus[END_REF][START_REF] Bouttier | Planar maps and continued fractions[END_REF][START_REF] Albenque | Constellations and multicontinued fractions: application to Eulerian triangulations[END_REF][START_REF] Bouttier | On the two-point function of general planar maps and hypermaps[END_REF]. The general strategy is the following: using a suitable bijection we may translate the problem of determining the distribution of a certain "metric observable" of a map into the problem of counting "mobiles" subject to certain constraints. In several favorable cases, this counting problem may often be solved exactly, and we may then take asymptotics to deduce properties of large random maps.

My presentation will neither be exhaustive nor chronological. After recalling the context in Section 1.1, I will start in Section 1.2 with a general "map-mobile" correspondence taken from [START_REF] Bouttier | On the two-point function of general planar maps and hypermaps[END_REF]. I will then apply two particular cases of this correspondence: in Section 1.3 to compute the three-point function of quadrangulations [START_REF] Bouttier | The three-point function of planar quadrangulations[END_REF], and in Section 1.4 to study the two-point function of Boltzmann maps and its connection with continued fractions [START_REF] Bouttier | Planar maps and continued fractions[END_REF]. Perspectives are discussed in Section 1.5.

Context

two-point function [START_REF] Bouttier | Geodesic distance in planar graphs[END_REF], relying on an unexpected property of discrete integrability. At the time this was a mere observation, but understanding the combinatorial origin of this integrability, as well as working out its applications, has been a major topic of my research in the early period covered by this memoir. This research will be summarized in Sections 1.3 and 1.4.

2. Second, we gave a generalization of the CVS bijection to maps with arbitrary face degrees [START_REF] Bouttier | Planar maps as labeled mobiles[END_REF]. It is now often called the "BDG" bijection but I shall rather use the term mobile which we introduced to designate the type of trees produced by our construction. While more elementary than the previous item, it turned out to have important applications as it allows to establish universality results: the CVS bijection allows to establish convergence results for distance in quadrangulations, our bijection allows to extend them to triangulations, pentagulations, etc. In Section 1.2, I will give a further extension of the mobile bijection, obtained jointly with Éric Fusy and Emmanuel Guitter [START_REF] Bouttier | On the two-point function of general planar maps and hypermaps[END_REF].

After that, the subject became a major topic in probability theory. Let me highlight some works, without the ambition of being exhaustive. First, Marckert and Mokkadem [START_REF] Marckert | Limit of normalized quadrangulations: the Brownian map[END_REF] introduced the Brownian map describing the scaling limit of quadrangulations. They proved the convergence in a certain weak sense and, in his ICM2006 lecture, Schramm [Sch07, Problem 4.1] asked whether the convergence also holds in the stronger Gromov-Hausdorff sense. This question was addressed in a series of papers mostly by Le Gall and Miermont [LG07, LGP08, Mie08, Mie09, LG10, Mie13, LG13] which ended up with an affirmative answer to Schramm's question. See for instance [START_REF] Miermont | Aspects of random maps[END_REF] for a pedagogical presentation. Further developments went in several directions, among which the case of maps of higher genus [START_REF] Chapuy | A bijection for rooted maps on orientable surfaces[END_REF][START_REF] Bettinelli | Scaling limits for random quadrangulations of positive genus[END_REF][START_REF] Bettinelli | The topology of scaling limits of positive genus random quadrangulations[END_REF][START_REF] Chapuy | On tessellations of random maps and the t g -recurrence[END_REF] or on nonorientable surfaces [START_REF] Chapuy | A bijection for rooted maps on general surfaces[END_REF][START_REF] Bettinelli | A bijection for nonorientable general maps[END_REF], and proofs of convergence to the Brownian map for various families of maps [BLG13, BJM14, Abr16, ABA17, Mar18b] (some of them not analyzable using the CVS/mobiles bijections). A direction which is still very open is the investigation of families of maps which do not converge to the Brownian map, but for instance to the so-called stable maps [START_REF] Gall | Scaling limits of random planar maps with large faces[END_REF][START_REF] Marzouk | On scaling limits of planar maps with stable facedegrees[END_REF]. We shall return to this question in Chapter 3, where we discuss its connection with the O(n) loop model on random maps.

So far I have only mentioned works that rely on a bijective approach, but further away from the considerations developed in this chapter there are at least two other sides to the story (that were mostly developed after the publications presented in this chapter):

-local limits of planar maps, whose study was initiated by Angel and Schramm [START_REF] Angel | Uniform infinite planar triangulations[END_REF],

and which recently brought new insights in the study of distances, see e.g. [START_REF] Curien | First-passage percolation and local modifications of distances in random triangulations[END_REF][START_REF] Budd | Geometry of infinite planar maps with high degrees[END_REF] and references therein, -Liouville quantum gravity, whose metric structure and relation with random maps have been recently investigated by Miller, Sheffield and their collaborators in an imposing series of papers including [MS15a,MS15b,MS16a,MS16b,GMS17]. Interestingly, it seems that this approach is able to provide information about families of maps not converging to the Brownian map [GHS17, DG19]. 

From maps to mobiles

In this section we present a bijection obtained with Éric Fusy and Emmanuel Guitter in [START_REF] Bouttier | On the two-point function of general planar maps and hypermaps[END_REF]. It may be seen as the "merger" of two generalizations of the CVS bijection: the bijection of [START_REF] Bouttier | Planar maps as labeled mobiles[END_REF] mapping bipartite maps to mobiles, and the Miermont-Ambjørn-Budd bijection [Mie09,AB13] mapping suitably labeled quadrangulations to well-labeled maps. We start by defining the two families related by our bijection.

Recall from the mathematical preliminaries that a suitably labeled map is a planar map whose vertices are labeled by integers, in such a way that the labels of adjacent vertices differ by exactly 1. A local min is a vertex every neighbor of which has greater label. See Figure 1.1(a) for an example.

A mobile is a bipartite planar map where one of the subsets of the bipartition consists of labeled vertices which carry an integer label (the vertices in the other subset being unlabeled ), subject to the constraint displayed on Figure 1.2(a).

To construct a mobile from a suitably labeled map, first add one unlabeled vertex inside each face of the map, then apply the local rule from [START_REF] Bouttier | Planar maps as labeled mobiles[END_REF] shown on Figure 1.2(b), and finally remove the local min which, by construction, are not incident to any edge in the mobile. See Figure 1.1(b) for an example. Note that, in [START_REF] Bouttier | Planar maps as labeled mobiles[END_REF], the construction was restricted to the case where the suitably labeled map is endowed with a "geodesic labeling" (to be defined below), in which case the resulting mobile is a tree. The extension to a general suitable labeling was done in [START_REF] Bouttier | On the two-point function of general planar maps and hypermaps[END_REF], and the mobile is not necessarily a tree anymore. In fact, its number of faces is equal to the number of local min in the suitably labeled map. Theorem 1.1 (see [START_REF] Bouttier | On the two-point function of general planar maps and hypermaps[END_REF]Theorem 1]). The construction described above is a bijection between suitably labeled maps and mobiles. Furthermore, we have the following correspondences between their components:

6 ≥ -1 (a) (b) Figure 1.2 -(a)
The constraint on labels in a mobile: around an unlabeled (black) vertex, the labels , of two adjacent vertices that appear consecutively in clockwise order must satisfy ≥ -1. (b) The local rule from [START_REF] Bouttier | Planar maps as labeled mobiles[END_REF]: for each edge of the suitably labeled map, we connect its endpoint with larger label (here equal to 6) to the unlabeled vertex added in the face on the left (when seen from the smaller label, here equal to 5).

suitably labeled map ↔ mobile, local min ↔ face, non-local min vertex ↔ vertex, face of degree 2k ↔ unlabeled vertex of degree k, edge with endpoints labeled / -1 ↔ corner at a vertex labeled .

We refer to [START_REF] Bouttier | On the two-point function of general planar maps and hypermaps[END_REF] for the proof and a description of the reverse bijection. We now discuss two particular cases.

-When the suitably labeled map is a quadrangulation, then all unlabeled vertices in the mobile have degree two. Consequently we may ignore them, to obtain a well-labeled map2 . We recover a bijection which appeared in two different forms in [START_REF] Miermont | Tessellations of random maps of arbitrary genus[END_REF] and [START_REF] Ambjørn | Trees and spatial topology change in causal dynamical triangulations[END_REF], see for instance [START_REF] Bouttier | On the two-point function of general planar maps and hypermaps[END_REF]Remark 1] for a discussion of their equivalence.

-When the suitably labeled map has a unique local min, whose label can be taken equal to 0 by a global shift, then it is not difficult to check that the label of any vertex is necessarily equal to its graph distance to the local min. The labeling is then said geodesic. The corresponding mobile is a tree, and we recover the bijection from [START_REF] Bouttier | Planar maps as labeled mobiles[END_REF] between pointed bipartite maps and mobiles.

The intersection between these two cases corresponds to the CVS bijection between pointed quadrangulations (endowed with their geodesic labeling) and well-labeled trees.

Remark 1.1. In [START_REF] Bouttier | Planar maps as labeled mobiles[END_REF], we also gave more general constructions dealing with non necessarily bipartite maps. Lifting the bipartiteness assumption is important to study for instance triangulations [LG13, Section 8]. In fact, we may adapt our current construction as follows: instead of a suitably labeled map, let us start with a well-labeled map. There may then exist some frustrated edges whose two endpoints have the same label, and this is unavoidable if the map is not bipartite. We then modify the map by adding new "square" vertices in the middle of frustrated edges, as shown on Figure 1.3: we get a suitably labeled map. We then construct the mobile as before: the square vertices (which cannot be local min) remain of degree two in the mobile. Furthermore, we may check that there is an additional constraint on the mobile: if, on Figure 1.2(a), the vertex with label is square, then we must have ≥ (instead of ≥ -1). In the case where the original map had a unique local min, hence was endowed with its geodesic labeling, we recover the construction from [BDFG04, Section 4.2], where square vertices were regarded as "flagged edges" with labels shifted by -1 3 . It is also possible to recover the most general construction from [BDFG04, Section 3] for Eulerian maps, we leave this as an exercise to the reader.

Remark 1.2. The bijection extends without difficulty to maps of higher genus [19, Section 2.7]. The extension of the CVS bijection to higher genus was done in [START_REF] Chapuy | A bijection for rooted maps on orientable surfaces[END_REF] and that of [START_REF] Bouttier | Planar maps as labeled mobiles[END_REF] in [START_REF] Chapuy | Asymptotic enumeration of constellations and related families of maps on orientable surfaces[END_REF].

Theorem 1.1 was used in [START_REF] Bouttier | On the two-point function of general planar maps and hypermaps[END_REF] as the basis for several further correspondences. In particular we adapted a neat idea from [START_REF] Ambjørn | Trees and spatial topology change in causal dynamical triangulations[END_REF] which consists in composing our bijection with its "mirror". The mirror bijection consists in reversing the rule of Figure 1.2(b): instead of connecting the vertex with larger label to the unlabeled vertex on the left, we connect the two other vertices. And we do so for every edge of the suitably labeled map. In the mirror bijection, it is now the local max (rather than local min) which become the faces of the mobile. This has drastic consequences in the case where the suitably labeled map is endowed with its geodesic labeling: there is no reason that there exists a unique local max, unless the map is "causal", which was one the motivations of [START_REF] Ambjørn | Trees and spatial topology change in causal dynamical triangulations[END_REF]. Therefore, the mirror mobile has in general several faces, but it is possible to show that its labeling is also geodesic in a suitable sense [START_REF] Bouttier | On the two-point function of general planar maps and hypermaps[END_REF]Proposition 2]. From this observation, we have been able to compute the two-point function of general maps and other similar families. We do not enter into the details here, but since we have been using the term "two-point function" several times without explaining it, let us try to give a (slightly informal) definition: Definition 1.1. Let M be a family of maps, endowed with a weight function w : M → R + . Let us denote by M the set of maps in M with two marked points and, for m ∈ M, denote by D(m) the graph distance between the two marked points in m. Then, the (distance-dependent) two-point function (T d ) d≥0 associated with the weighted family (M, w) is defined by

T d := m∈ M D(m)≤d w(m) ∈ R + ∪ {+∞}. (1.1)
Taking d = ∞ means that we drop the constraint on D(m) in the sum.

When the weight function is such that 0 < T ∞ < ∞, then w(•)/T ∞ defines a probability measure on M, and T d /T ∞ may be interpreted as the distribution function of the random variable D.

Example 1.3. The two-point function of general maps considered in [START_REF] Bouttier | On the two-point function of general planar maps and hypermaps[END_REF] corresponds to taking M the set of all planar maps, and the weight function w(m) = t E(m) , where E(m) denote the number of edges of m and t is a nonnegative real parameter. Here T d is finite for all d if and only if t ≤ 1/12, as may be seen from (0.1).

What makes Definition 1.1 slightly informal is the notion of "points": ideally these would be vertices, but then we run into the problem that a map with only two marked vertices may have symmetries. We usually circumvent the problem by considering pointed rooted maps -i.e. we mark one vertex and one corner-at the price of making the definition less symmetric. Such details do not matter much for asymptotics.

It is immediate to extend the definition to an arbitrary number n of marked points: the (full distance-dependent) n-point function of (M, w) depends on n 2 parameters, which control the distances between the marked points. These distances should obey the triangular inequalities, which immediately raises the question of a "natural parametrization" of the n-point function. As we shall see in the next section, a very natural parametrization exists for n = 3, while the situation remains widely open for n ≥ 4. Note that, for n ≥ 3, the problem of symmetries does not occur anymore: a map with 3 marked distinct vertices cannot have symmetries.

The three-point function of quadrangulations and related results

In this section we restrict to the case of quadrangulations, endowed with the weight function w(m) = g F (m) where F (m) denotes the number of faces of m and g is a nonnegative real parameter smaller than 1/12. An explicit form for the two-point function of quadrangulations was given in [BDFG03a]4 , and a few years later, together with Emmanuel Guitter, we succeeded in computing their three-point function in [START_REF] Bouttier | The three-point function of planar quadrangulations[END_REF]. This is the story I would like to tell here. Our inspiration came from the paper of Grégory Miermont [Mie09]5 containing his generalization of the CVS bijection, mentioned in the previous section. It was then formulated in terms of "sources" and "delays", reflecting his motivations related to Voronoi tessellations. Our key idea was to apply his bijection with a special choice of sources and delays, which we now explain.

Let us consider a quadrangulation with three marked distinct vertices v 1 , v 2 and v 3 . As mentioned above such a quadrangulation does not possess nontrivial symmetries. We denote by d 12 the graph distance from v 1 to v 2 in the quadrangulation, and define similarly d 23 and d 31 . We then introduce the three parameters s, t, u such that

d 12 = s + t d 23 = t + u d 31 = u + s (1.2)
i.e. s = (d 12d 23 + d 31 )/2, etc. A geometrical interpretation of these parameters is given on Figure 1.4. The nice thing about s, t, u is that they are "free", unlike d 12 , d 23 , d 31 which are constrained by the triangular inequalities. More precisely we simply have s, t, u ≥ 0, and at most one of them may vanish due to the constraint that v 1 , v 2 , v 3 are distinct. The vanishing of one parameters occurs when the points are "aligned": having, say, u = 0 simply means that v 3 is on a geodesic between v 1 and v 2 . Also, since we are working 

F 1 2 F F min ℓ(v) = 0 min ℓ(v) = 1 -s min ℓ(v) = 1 -t min ℓ(v) = 1 -u min ℓ(v) = 0 min ℓ(v) = 0
incident to F 1 (resp. F 2 , F 3 ) is 1 -s (resp. 1 -t, 1 -u).
The minimal label among vertices incident both to F 1 and F 2 is 0, and the same holds for the two other interfaces.

with (bipartite) quadrangulations, d 12 , d 23 , d 31 are integer numbers whose sum is even. Hence s, t, u are always nonnegative integers. We now apply the Miermont bijection with the "sources" v 1 , v 2 , v 3 and the "delays" -s, -t, -u. In the language of Section 1.2, this corresponds to endowing the quadrangulation with the suitable labeling defined by

(v) = min{d(v, v 1 ) -s, d(v, v 2 ) -t, d(v, v 3 ) -u} (1.3)
where v denotes an arbitrary vertex of the quadrangulation. It is not difficult to check that is indeed a suitable labeling, with generically 3 local min at v 1 , v 2 , v 3 , except in the aligned case where there are only 2 (e.g., if u = 0 then v 3 is no longer a local min). By Theorem 1.1 (specialized to quadrangulations), we obtain a well-labeled map with respectively 3 or 2 faces. Examining the labels more closely, we find that it has the structure displayed respectively on Figures 1.5 or 1.6. We have reformulated the problem of determining the three-point function of quadrangulations into the problem of counting well-labeled maps with these structures (with now a weight g per edge). We now sketch how to solve this counting problem. For d ≥ 1, let us denote by R d the generating function of well-labeled trees with (strictly) positive labels, rooted at a corner labeled d. By shifting, trees with labels (strictly) larger than -s and rooted a corner labeled d have generating function R d+s . From [START_REF] Bouttier | Geodesic distance in planar graphs[END_REF][START_REF] Bouttier | Statistics of planar graphs viewed from a vertex: a study via labeled trees[END_REF], we know that R d is actually the two-point function of 

2 3 v 1 F F min ℓ(v) = 1 -s ℓ(v) = 0 min ℓ(v) = 1 -t min ℓ(v) = 0
(resp. F 2 ) is 1 -s (resp. 1 -t).
The minimal label among vertices incident to both faces is 0, and is attained at v 3 .

quadrangulations, and is explicitly given by

R d = R (1 -x d )(1 -x d+3 ) (1 -x d+1 )(1 -x d+2 ) (1.4) 
where

R = 1- √ 1-12g 6g
and x is root of the equation x + x -1 = 1-4gR 4gR (this equation has two reals roots for g ≤ 1/12, and we usually pick the root x ≤ 1 which is analytic at g = 0).

The maps of Figures 1.5 or 1.6 are not trees, but since they have few faces it is natural to attempt to decompose them into trees. To remain brief, we only detail the aligned case u = 0: as displayed on Figure 1.7, we cut the well-labeled map at v 3 , to obtain a chain, which may be viewed as a Motzkin path with attached subtrees. By a standard combinatorial argument we find that the generating function X s,t of such paths satisfies the recurrence equation

X s,t = 1 + gR s R t X s,t + g 2 R s R t X s,t R s+1 R t+1 X s+1,t+1 (1.5) 
(which uniquely determines X s,t as a power series in g). Remarkably, X s,t admits an explicit expression similar to that of R d , namely

X s,t = (1 -x 3 )(1 -x s+1 )(1 -x t+1 )(1 -x s+t+3 ) (1 -x)(1 -x s+3 )(1 -x t+3 )(1 -x s+t+1 ) . (1.6)
It is straightforward to check that this is indeed the solution of (1.5), alternatively we give two bijective derivations in [START_REF] Bouttier | The three-point function of planar quadrangulations[END_REF] (which however take the expression (1.4) for R d as A chain is a welllabeled tree with two marked vertices with label 0. On the branch between them, the labels remain nonnegative hence form a Motzkin path. Welllabeled subtrees are attached to both sides of the branch, and their labels are at least 1s and 1t respectively. Therefore, summing the weights over all possible such subtrees, the global contribution of a step at height in the Motzkin path is equal gR +s R +t . The careful reader might notice the issue that the minima 1-s and 1-t should be attained in some subtree, this is taken care of by (1.7). an input). As mentioned in the caption of Figure 1.7, X s,t is not quite the generating function of the maps of Figure 1.6 because the minimal label 1s (resp. 1t) should be attained somewhere along F 1 (resp. F 2 ). But this is easily fixed: the actual generating function for them is

ℓ ℓ ℓ ℓ ℓ ℓ ℓ ℓ ℓ ℓ ℓ ℓ ℓ =0 =0 3 = 0= 2 1 1 2 R 0 R g +s +t
∆ s ∆ t X s,t = X s,t -X s-1,t -X s,t-1 + X s-1,t-1 .
(1.7)

Here ∆ s denotes the discrete difference operator

∆ s f (s) = f (s) -f (s -1).
In the generic case s, t, u > 0 the decomposition is more involved, see [START_REF] Bouttier | The three-point function of planar quadrangulations[END_REF]Section 4.3]. Some pieces in the decomposition are the same chains as before, but we also need to introduce so-called Y -diagrams whose generating function Y s,t,u depends on the three parameters, and is explicitly given by

Y s,t,u = (1 -x s+3 )(1 -x t+3 )(1 -x u+3 )(1 -x s+t+u+3 ) (1 -x 3 )(1 -x s+t+3 )(1 -x t+u+3 )(1 -x u+s+3 ) . (1.8)
This expression can be proved by checking that it solves a recurrence equation similar to (1.5), but unlike X s,t we do not know an alternative bijective derivation. Armed with these notations, we may now state the main result of this section:

Theorem 1.2 (see [START_REF] Bouttier | The three-point function of planar quadrangulations[END_REF]). The three-point function of planar quadrangulations, which counts such maps with three marked distinct vertices at prescribed distances parametrized by s, t, u as in

(1.2), is equal to ∆ s ∆ t ∆ u F s,t,u where F s,t,u := X s,t X t,u X u,s (Y s,t,u ) 2 .
(1.9)

The role of the discrete difference operators is again to make sure that the minimal labels 1s, 1t, 1u are attained somewhere along their respective faces in Figure 1.5, F s,t,u corresponds to a cumulative generating function.

It is natural to consider the "continuum limit" of the three-point function, which corresponds to a certain observable of the Brownian map (precisely, it is the joint law of the distances between three uniform points). The first step consists in letting g tend to the critical value 1/12 and rescaling jointly the parameters s, t, u via

g = 1 -Λ 12 , s = S -1/4 , t = T -1/4 , u = U -1/4 (1.10)
where → 0 and Λ, S, T, U are kept fixed (Λ plays the role of a "cosmological constant"). Then, under this scaling, it is straightforward to check that

F s,t,u ∼ -1/2 F(S, T, U ; 3/2Λ 1/4 ) (1.11)
where

F(S, T, U ; α) := 3 α 2 sinh(αS) sinh(αT ) sinh(αU ) sinh(α(S + T + U )) sinh(α(S + T )) sinh(α(T + U )) sinh(α(U + S)) 2 .
(1.12)

The reader might notice that the nontrivial dependency in S, T, U comes from the factor (Y s,t,u ) 2 in F s,t,u , while the X factors contribute a trivial factor 3 at leading order. One may interpret this as the fact that the Y -diagrams capture all the "mass" in the scaling limit, while the X-chains are negligible. It may be seen [START_REF] Bouttier | The three-point function of planar quadrangulations[END_REF][START_REF] Bouttier | Confluence of geodesic paths and separating loops in large planar quadrangulations[END_REF] that the Y -diagrams correspond in the Brownian map to the two "geodesic triangles", namely the two regions delimited by the three geodesics between the marked points 6 . F corresponds to the "grand canonical" continuum three-point function, for probabilistic interpretation it is preferable to return to the "canonical" ensemble, i.e. to consider the uniform distribution over quadrangulations with a large but fixed number n of faces. This is done by extracting the coefficient of g n in the series F s,t,u , which may be estimated for large n by a saddlepoint analysis, and normalizing it by the total number 3 n 2 2n n of quadrangulations with three marked distinct vertices. The end result [START_REF] Bouttier | The three-point function of planar quadrangulations[END_REF] is that, upon replacing by 1/n in the scaling (1.10) for s, t, u, we have

lim n→∞ [g n ]F s,t,u 3 n 2 2n n = 2 i √ π ˆ∞ -∞ dξξe -ξ 2 F(S, T, U ; e -sgn(ξ)iπ/4 3ξ/2). (1.13)
This integral is real and easy to evaluate numerically, see Figure 1.8 for some plots.

To conclude this section, let us briefly my other results in the same vein, all obtained jointly with Emmanuel Guitter. Before the three-point function, we had considered in [START_REF] Bouttier | Statistics in geodesics in large quadrangulations[END_REF] the statistics of the number of geodesics between two points in a quadrangulation. These can be viewed as discrete enumerative counterparts of the results of Miermont [START_REF] Miermont | Tessellations of random maps of arbitrary genus[END_REF] and Le Gall [START_REF] Gall | Geodesics in large planar maps and in the Brownian map[END_REF] about geodesics in the Brownian map. In [START_REF] Bouttier | Confluence of geodesic paths and separating loops in large planar quadrangulations[END_REF], we refined the computation of the three-point function by taking into effect the phenomenon of "confluence" of geodesics, evidenced by Le Gall [START_REF] Gall | Geodesics in large planar maps and in the Brownian map[END_REF]. The full three-point function depends on 6 distance parameters, corresponding to the lengths of the common and proper parts of the three geodesics between the three marked points. We also obtain similar results for minimal separating loops. In [START_REF] Bouttier | Distance statistics in quadrangulations with a boundary, or with a self-avoiding loop[END_REF], we considered quadrangulations with a boundary, and studied variants of the two-point function where either one or both marked points are on the boundary. Our work was an early attempt at considering the rich possible scaling limits of quadrangulations with a boundary, now studied in much greater detail in [START_REF] Bettinelli | Compact Brownian surfaces I: Brownian disks[END_REF][START_REF] Baur | Classification of scaling limits of uniform quadrangulations with a boundary[END_REF]. Also, we first noticed there [8, Equation (7.1)] the connection with continued fractions, on which we will return in the next section. Finally, we considered in [START_REF] Bouttier | Distance statistics in quadrangulations with no multiple edges and the geometry of minbus[END_REF] the two-point function of quadrangulations without multiple edges, which we related to the physical concept of "minimal neck baby universes" (minbus). On the combinatorial side, we understood how multiple edges can be eliminated at the level of the CVS bijection, via the notion of "well-balanced tree", and of the two-point function, via a substitution scheme. More involved substitution schemes will be discussed in Chapter 2.

6. These two regions are well-defined almost surely by the sphericity of the Brownian map [START_REF] Gall | Scaling limits of bipartite planar maps are homeomorphic to the 2-sphere[END_REF][START_REF] Miermont | On the sphericity of scaling limits of random planar quadrangulations[END_REF] and the uniqueness of the geodesic between almost every pair of points [START_REF] Miermont | Tessellations of random maps of arbitrary genus[END_REF]. 

From the two-point function of Boltzmann maps to continued fractions

In this section we consider the family of (face-weighted) Boltzmann maps, obtained by endowing the set of all planar maps with the weight function

w(m) = f face of m g degree(f ) (1.14)
where (g k ) k≥1 is a given sequence of nonnegative real numbers. This setting encompasses quadrangulations (take g k = g if k = 4 and 0 otherwise), edge-weighted general maps (take g k = t k/2 for all k), triangulations, etc. For simplicity, we restrict here to the bipartite case, i.e. we assume that g k = 0 if k is odd (see Remark 1.4 below for a brief discussion of the general case). Also, some of our formulas hold only in the case of bounded degrees, i.e. when the set of k's such that g k = 0 has a maximal element, which we denote by M . The two-point function of Boltzmann bipartite maps with bounded degrees was considered in [START_REF] Bouttier | Geodesic distance in planar graphs[END_REF], where we guessed its general formula by inferring it from the small values of M (e.g. 4 or 6) which we could solve explicitly. Our original approach was based on a certain "integrable" recurrence equation obeyed by the two-point function. Here I will present a rigorous proof of our formula, which was obtained several years later with Emmanuel Guitter in [START_REF] Bouttier | Planar maps and continued fractions[END_REF]. Our proof is based on the beautiful combinatorial theory of continued fractions, developed notably by Flajolet [START_REF] Flajolet | Combinatorial aspects of continued fractions[END_REF] and Viennot [START_REF] Viennot | Une théorie combinatoire des polynômes orthogonaux. Notes from lectures given at LACIM[END_REF].

Let us first set up some conventions and notations. Here, the two-point function R d is precisely defined as the generating function of pointed rooted bipartite maps where both endpoints of the root edge are at distance at most d from the origin (since the map is bipartite, one of the endpoints is strictly further from the origin than the other, and we assume that the root edge is oriented towards it). We conventionally set the constant term of R d to 1, which makes the forthcoming expressions nicer. By Theorem 1.1 specialized to the geodesic labeling, we find that R d is equal to the generating function of (oneface) mobiles whose labels are all positive, and which are rooted on a corner at a vertex labeled d. The Boltzmann weight (1.14) simply amounts to weighting unlabeled vertices in the mobile (an unlabeled vertex of degree k has weight g 2k ). For d = ∞, the twopoint function reduces to the generating function R of pointed rooted maps (or mobiles without the positivity constraint), which is the smallest positive, possibly infinite, root of the equation

R = 1 + ∞ k=1 2k -1 k g 2k R k . (1.15)
From now on we assume that the weights (g 2k ) k≥0 are such that R < ∞.

Theorem 1.3 (see [START_REF] Bouttier | Geodesic distance in planar graphs[END_REF] and [START_REF] Bouttier | Planar maps and continued fractions[END_REF]). The two-point function of Boltzmann bipartite maps with degrees bounded by M = 2p + 2 is given by where

R d = R u d u d+3 u d+1 u d+2 (1.16) ℓ ′ ℓ ℓ ℓ ′ ℓ ℓ ′ ℓ ′ ℓ ′ ℓ ′ ℓ ′ ℓ ′ ℓ ′ =d min ℓ ′ (v) ≥ 1 -d = =d =d d= 0 R +d z 2 2p 1 0 1 2 0 2p
u d = det 1≤i,j≤p y d/2+j-1 i -y -d/2-j+1 i , (1.17) 
and y 1 , y -1 1 , . . . , y p , y -1 p are the roots of the characteristic equation

1 = p+1 k=1 g 2k R k-1 k-1 m=0 2k -1 k -m -1 m j=-m y j .
(1.18)

In the case of quadrangulations (p = 1), we recover the expression (1.4). An interesting feature of our general expression is that the size of the determinant in (1.17) does not depend on the distance parameter d, which is useful for studying its asymptotic behavior.

In a nutshell, the key observation for proving Theorem 1.3 is that the sequence (R d ) d≥1 arises as the continued fraction expansion of the (well-known) generating function W 0 of maps with a boundary. From the general theory of continued fractions, it follows that R d admits an expression of the form (1.16) with u d a Hankel determinant whose entries are given by the series expansion of W 0 . We finally use the specific form of these entries to identify the Hankel determinant as a symplectic or odd orthogonal Schur function, which yields (1.17) using the Weyl character formula.

Let us now provide a few more details. As mentioned above, the connection with continued fractions was first observed in [START_REF] Bouttier | Distance statistics in quadrangulations with a boundary, or with a self-avoiding loop[END_REF], as a byproduct of the study of distances in maps with a boundary 7 . More precisely, let us consider pointed rooted maps and regard the root face as a boundary. Since we wish to control the boundary length (degree) 2n separately, we exclude by convention the root face from the product (1.14), and rather assign it a weight z n with z an extra parameter 8 . We denote by W d the generating function of such weighted maps in which the distance from the origin to the root vertex is at most d, and no vertex incident to the boundary lies closer to the origin than the root vertex. In particular, for d = 0, the origin coincides with the root vertex, hence W 0 can be regarded as the generating function of maps with a boundary. By Theorem 1.1, W d is also the generating function of certain (one-face) mobiles with positive labels. Using a decomposition of these mobiles illustrated on Figure 1.9 -which is in the same spirit as the decomposition used to arrive at (1.5)-we find that W d counts certain weighted Dyck paths and, as such, satisfies the recurrence relation

W d = 1 + zR d+1 W d W d+1 . (1.19)
By iterating this recurrence, we find that W d admits the Stieljes-type continued fraction expansion .20) and in particular the whole sequence (R d ) d≥1 arises as the continued fraction expansion of W 0 with respect to the variable z.

W d = 1 1 - zR d+1 1 - zR d+2 1 - . . . ( 1 
It now follows from the general theory of continued fractions that R d can be expressed in terms of the Hankel determinants formed with the coefficients of the power series expansion of W 0 with respect to the variable z. More precisely, let us denote by w n the coefficient of z n in W 0 , which counts rooted maps with a boundary of length 2n (we have w 0 = 1, corresponding to the map reduced to a single vertex). Then, for n ≥ 0, we form the Hankel determinants

h (0) n = det 0≤i,j≤n w i+j , h (1) n = det 0≤i,j≤n w i+j+1 (1.21)
and we have the relations

R 2n+1 = h (1) n /h (1) n-1 h (0) n /h (0) n-1 , R 2n+2 = h (0) n+1 /h (0) n h (1) n /h (1) n-1 (1.22)
where by convention h

(0) -1 = h (1) 
-1 = 1. See for instance [START_REF] Viennot | Une théorie combinatoire des polynômes orthogonaux. Notes from lectures given at LACIM[END_REF] for a nice combinatorial proof of these formulas using nonintersecting lattice paths.

7. The observation was initially made in the case of quadrangulations, but it immediately extends to Boltzmann maps. 8. This is common in the context of Tutte equations, where z appears as the "catalytic variable" [START_REF] Bousquet-Mélou | Polynomial equations with one catalytic variable, algebraic series and map enumeration[END_REF].

To proceed further we have to use the specific form of w n , which is essentially known in the bipartite case since Tutte [Tut62b] 9 . It reads explicitly

w n = R n q≥0 a q Cat(n + q) (1.23)
where R is the generating function of pointed rooted maps considered before, Cat(n) := (2n)! n!(n+1)! denotes the n-th Catalan number, and

a q := δ q,0 - k≥q+1 2k -2q -2 k -q -1 g 2k R k . (1.24)
See [10, Section 3] for three different proofs of (1.23) in the more general nonbipartite setting 10 . We now form the Hankel determinants (1.21): first we dispose of the prefactor R n in w n , by noting that it just yields a prefactor R in the ratios (1.22). Therefore we find that R d has the form (1.16), with u d given by the reduced Hankel determinants

u 2d+1 = det 0≤i,j≤d-1 wi+j , u 2d+2 = det 0≤i,j≤d-1 wi+j+1 (1.25)
with wn = ∞ q=0 a q Cat(n + q). This very specific form can be exploited to rewrite the determinants in "Toeplitz-Hankel" form: for , i, j nonnegative integers, let p

( ) i,j := +i-j 2 -+i+j+2 2 denote the number of sequences (i = x 0 , x 1 , . . . , x -1 , x = j) such that |x k -x k-1 | = 1 and x k ≥ 0 for all k (we have Cat(n) = p 2n,0,0 ), then it is clear that Cat(i + j + q) = h,h ≥0 p (2i) 0,2h p (2q) 2h,2h p (2j) 2h ,0 , Cat(i + j + q + 1) = h,h ≥0 p (2i+1) 0,2h+1 p (2q) 2h+1,2h +1 p (2j+1) 2h +1,0 . (1.26)
This allows to factor out unitriangular matrices from the Hankel matrices, and we obtain the expressions

u 2d+1 = det 0≤i,j≤d-1 (b i-j -b i+j+1 ), u 2d+2 = det 0≤i,j≤d-1 (b i-j -b i+j+2 ) (1.27)
where b n := q≥0 a q 2q q+n . Note that b -n = b n .

9. We pointed out in [START_REF] Bouttier | Planar maps and continued fractions[END_REF] that the generating function W0 = n≥0 wnz n counting maps with a boundary is arguably the most important object in the enumerative theory of planar maps: it plays a fundamental role in Tutte equations, matrix integrals, etc. In some talks, Emmanuel had the idea of picturing it as an iceberg, whose hidden part was the continued fraction expansion. So far we have not used the assumptions of bounded degrees. When this is the case, taking the maximal degree M = 2p + 2 as in Theorem 1.3, then it is clear from (1.24) that a q = 0 for q > p, hence b n = 0 for |n| > p. Hence, the matrices in (1.27) which may be rewritten in the form (1.18) by simple manipulations: it has 2p roots y 1 , y -1 1 , . . . , y p , y -1 p , and the b n 's, hence the u d 's, are symmetric functions of them. It is then possible to deduce the form of u d announced in Theorem 1.3 by some algebraic considerations: essentially this boils down to showing that the expressions (1.27) (viewed as polynomials in the y i 's) and (1.17) have the same zeros. But, as pointed out to us by Christian Krattenthaler, our determinants may actually be identified with odd-orthogonal and symplectic Schur functions of rectangular partitions, namely

u 2d+1 ∝ o 2p+1 ((n + 1) d ; y), u 2d+2 ∝ sp 2p ((n + 1) d ; y), (1.29) 
see [START_REF] Bouttier | Planar maps and continued fractions[END_REF]Section 5] and references therein for more details. The expressions (1.27) correspond to Jacobi-Trudi-type formulas, which express the Schur functions in terms of the elementary symmetric polynomials, while (1.17) corresponds to the Weyl character formula (where the two parities can be put in a common form). Note that there are normalizing constants in (1.29), but they cancel in the ratios (1.22). This completes the proof of Theorem 1.3.

Remark 1.4. In [START_REF] Bouttier | Planar maps and continued fractions[END_REF] we actually treated the more general case of Boltzmann maps which are not necessarily bipartite. The main complication is that there are now two two-point functions to consider: R d defined as before, and another S d which essentially counts pointed rooted maps where the root edge is frustrated in the sense of Remark 1.1. The continued fractions that we encounter are of Jacobi-type instead of Stieljes-type, the combinatorial reason [START_REF] Flajolet | Combinatorial aspects of continued fractions[END_REF] being that the decomposition illustrated on Figure 1.9 now involves Motzkin paths instead of Dyck paths. We end up with an expression of the form

R d = R u d u d+2 u 2 d+1
where u d is still a rectangular symplectic Schur function, but with a larger number of variables than in the bipartite case (M -2 rather than (M -2)/2). S d may be expressed in terms of a "nearly-rectangular" symplectic Schur in the same variables. See [10, Section 2] for more details. In the bipartite case there are "miraculous" factorizations [10, Section 5] which lead to the expressions presented here.

Remark 1.5. In the case of quadrangulations, we may provide a combinatorial interpretation of the simplest formula (1.4) via 1D dimers. There is an analogous formula for triangulations. See [10, Section 6] for more details.

Conclusion and perspectives

To conclude this chapter, let me first make a personal comment: I feel that the results presented or evoked here form the actual completion of the line of research initiated in [START_REF] Bouttier | Geodesic distance in planar graphs[END_REF] during my doctoral thesis. With Emmanuel we have obtained exact discrete expressions for several quantities related to the distance, studied their continuum limit, and finally obtained an explanation for the existence of such formulas through the combinatorial theory of continued fractions. Still, our approach left several questions which, to the best of my knowledge, remain open as of today.

First, it is natural to ask for an expression of the three-point function of Boltzmann maps, beyond the case of quadrangulations treated in this chapter and the case of general maps treated in [START_REF] Fusy | The three-point function of general planar maps[END_REF]. It seems that, at least in the bipartite case, we may still employ the suitable labeling (1.3) and reduce the problem to the enumeration of certain mobiles with three faces. But we do not know how manageable their general structure will be. It seems that the notion of "chains", and the expression for their generating function X s,t , extend naturally to the Boltzmann setting. But this is less clear for Y -diagrams. A different but related question is whether we may directly obtain the scaling limit (1.13) of the three-point function by a continuous approach, directly at the level of the Brownian map or why not Liouville quantum gravity/Quantum Loewner Evolution [START_REF] Miller | Quantum Loewner evolution[END_REF]. Let me mention that, for the two-point function, such calculation was essentially done by Delmas [START_REF] Delmas | Computation of moments for the length of the one dimensional ISE support[END_REF].

Then, we may of course consider the n-point function for n ≥ 4. As mentioned above, it is already unclear what a natural parametrization of the n 2 pairwise distances, generalizing (1.2), would be. We might still renounce to keep track of all distances, but just only consider a subset of them, for instance between the nearest neighbours. This seems similar in spirit to the original idea of Miermont [START_REF] Miermont | Tessellations of random maps of arbitrary genus[END_REF] of studying Voronoi-like tessellations on quadrangulations. Let me mention the fascinating recent conjecture of Chapuy [START_REF] Chapuy | On tessellations of random maps and the t g -recurrence[END_REF] concerning the masses of the cells in Voronoi tessellations of Brownian surfaces. The simplest case of this conjecture was proved by Guitter [START_REF] Guitter | On a conjecture by Chapuy about Voronoï cells in large maps[END_REF] using techniques similar to those presented in this chapter. I cannot help noting that, as apparent on Figure 1.4, our trick for the three-point function involves a circle packing, and we might wonder whether more involved circle packings might play a role for more points.

Finally, several points remain open in the continued fraction approach of Section 1.4. While we have seen that the two-point function appears naturally in this approach, we might ask for a continued fraction interpretation of the three-point function, or of the intermediate quantities X s,t and Y s,t,u encountered in its computation. On the other hand, the generating function W d of (1.20) corresponds to "truncations" of the continued fractions, but we do not know its general expression beyond the case of quadrangulations [START_REF] Bouttier | Distance statistics in quadrangulations with a boundary, or with a self-avoiding loop[END_REF]. More generally, there is a deep connection between continued fractions and orthogonal polynomials, but the implications of this connection for maps have not been much investigated. Let me mention that the orthogonal polynomials arising from our approach are different from those usually considered in matrix models [10, Section 7.2]. Another question concerns the extension of our approach to Eulerian maps, for which it is natural to generalize the Boltzmann weight (1.14) by weighting differently the two types of faces. Rather than continued fractions one should then consider "multicontinued fractions". Together with Marie Albenque, we made a preliminary study of such fractions [START_REF] Albenque | Constellations and multicontinued fractions: application to Eulerian triangulations[END_REF], but much remains to be understood. Let me also mention a work in progress by Bertrand Eynard and Emmanuel Guitter, which should answer some of these questions via the framework of classical integrability [START_REF] Eynard | Distances sur les mobiles, et systèmes intégrables[END_REF]. Finally, it would be interesting to analyze the two-point function of Boltzmann maps without the assumption of bounded degrees, in order to deduce the continuum two-point function of stable maps [START_REF] Gall | Scaling limits of random planar maps with large faces[END_REF]. With Emmanuel Guitter and Grégory Miermont we made a first, but so far unsuccessful, attempt by trying to guess a (pseudo-)differential equation for the continuum one. Another possible way would be to analyze the asymptotics of the Hankel determinants (1.21), which should present all sorts of interesting technical challenges.

This concludes the list of questions that arise in line with the point of view developed in this chapter. The reader is invited to consult the references given in Section 1.1 for the many other approaches to the study of distances in random planar maps that have been developed since, and their current challenges.

The slice decomposition of planar maps

In this chapter we return to the enumerative and bijective theory of planar maps. The notions of distances and geodesics will still play an important role, but as technical tools rather than objects of study. The publications closest to this topic are [START_REF] Bouttier | Combinatorics of bicubic maps with hard particles[END_REF][START_REF] Bouttier | Blocked edges on Eulerian maps and mobiles: application to spanning trees, hard particles and the Ising model[END_REF][START_REF] Bouttier | Enumeration of maps[END_REF][START_REF] Bouttier | On irreducible maps and slices[END_REF][START_REF] Bouttier | A note on irreducible maps with several boundaries[END_REF], in addition to the papers discussed in Chapter 1 that already contain a fair amount of bijections. Here I will focus on one specific topic, the slice decomposition, which first made brief appearances in [START_REF] Bouttier | Distance statistics in quadrangulations with a boundary, or with a self-avoiding loop[END_REF][START_REF] Bouttier | Planar maps and continued fractions[END_REF][START_REF] Albenque | Constellations and multicontinued fractions: application to Eulerian triangulations[END_REF] as a reformulation of the [START_REF] Bouttier | Planar maps as labeled mobiles[END_REF] bijection, and whose real significance was understood in [START_REF] Bouttier | On irreducible maps and slices[END_REF].

My purpose is here to give a "modern" presentation of the subject, with an emphasis on bijections. It is as self-contained as possible, except for some detailed proofs which should be looked for in [START_REF] Bouttier | On irreducible maps and slices[END_REF]. After recalling the context in Section 2.1, I will introduce the theory of general slices in Section 2.2. I will then discuss irreducible slices in Section 2.3, before concluding with some perspectives in Section 2.4.

Context

The enumerative and bijective theory of planar maps has recently been the subject of a very nice review by Gilles Schaeffer [START_REF] Schaeffer | Planar maps[END_REF], containing an extensive bibliography. I feel therefore exempted from having to recall the whole context, and may focus on the more specific line of research motivating this chapter.

While fairly general, the "map-mobile" correspondence presented in Section 1.2 is only one among the many bijections that are known in literature. In particular, it is not wellsuited for the study of maps with connectivity or girth constraints, for which specific bijections have been found [JS98, Sch98, DLDRP00, PS03, PS06, Fus07, FSP08, Fus09]. It does not apply either easily to tree-rooted maps [Ber07] 1 . Recently, several authors developed a general "bijective canvas" -this name being borrowed from [START_REF] Schaeffer | Planar maps[END_REF]-which, given a family of maps, splits the task of designing a bijection for it into two, more systematic, subtasks:

1. characterize the family of maps at hand in terms of the existence of certain orientations, following the theory of α-orientations developed by Felsner [Fel04] 2 , 1. In [START_REF] Bouttier | Blocked edges on Eulerian maps and mobiles: application to spanning trees, hard particles and the Ising model[END_REF] we proposed an extension of the bijection of [START_REF] Bouttier | Planar maps as labeled mobiles[END_REF] for maps decorated with spanning trees, Ising spins or hard particles (on bipartite maps), but our construction is arguably complicated. Note that Ising spins and hard particles on nonbipartite maps can be treated through the Eulerian version of the bijection of [START_REF] Bouttier | Planar maps as labeled mobiles[END_REF].

2. See also the earlier work of Propp [START_REF] Propp | Lattice structures for orientations of graphs[END_REF]. Bernardi [START_REF] Bernardi | Bijective counting of tree-rooted maps and shuffles of parenthesis systems[END_REF] was one of first to realize the relevance of orientations for the bijective approach, see also [START_REF] Bernardi | A bijection for covered maps, or a shortcut between Harer-Zagier's and Jackson's formulas[END_REF] for the higher genus extension of his bijection. Many, if not all, previously known bijections for planar maps may be recovered through the bijective canvas.

In this chapter, we propose another general bijective approach which is based on geodesics rather than orientations. The fundamental idea is that maps can be canonically decomposed along leftmost geodesics, and we call slices the pieces appearing in this decomposition. Initially slices were conceived as a by-product of the CVS/BDG bijection: in the algorithm which produces a map out of a mobile, a slice is the portion of the map which arises from a specific subtree. This follows easily from the well-known observation that the sequence of "successors" of a corner of the mobile forms a leftmost geodesic in the map. We used slices in [10, Appendix A] and [START_REF] Albenque | Constellations and multicontinued fractions: application to Eulerian triangulations[END_REF]Section 4] as a shortcut to reformulate certain combinatorial arguments without resorting to mobiles. But we also realized that slices remain convenient in some situations where mobiles might be impractical. A first example is [8, p. 33], where slices are used to decompose quadrangulations with self-avoiding (simple) boundaries, whose corresponding mobiles are not so easy to characterize. But the virtue of slice decomposition was only fully realized in [START_REF] Bouttier | On irreducible maps and slices[END_REF] where we studied "irreducible" maps, which are even less easy to study using mobiles 5 . This shows that slice decomposition is robust. It also seems to behave well when passing to the scaling limit: in [START_REF] Gall | Uniqueness and universality of the Brownian map[END_REF], Le Gall used slices (which he calls discrete maps with geodesic boundaries or DMGB) as an important ingredient in his proof. Bettinelli and Miermont use them again to study Brownian disks [START_REF] Bettinelli | Compact Brownian surfaces I: Brownian disks[END_REF].

While it does not seem directly related with the topic of this chapter, I will conclude this overview of the context by mentioning the current common belief that planar maps decorated with models of statistical physics -such as the O(n) loop model we will discuss in Chapter 3-are deeply related with bidimensional walks confined in a quadrant. One of the first to realize the importance of this idea is Sheffield in his "hamburger-cheeseburger bijection" [START_REF] Sheffield | Quantum gravity and inventory accumulation[END_REF] which motivated the "mating-of-trees" approach to Liouville quantum gravity [START_REF] Duplantier | Liouville quantum gravity as a mating of trees[END_REF]. There are several known bijections of this style -see the references given in the last section of [START_REF] Schaeffer | Planar maps[END_REF]-and the list keeps growing [KMSW19, Bud17a, GKMW18, BHS18]. I mention a possible connection with slice decomposition in Section 2.4.
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Figure 2.1 -Construction of the leftmost geodesic from the corner c to the vertex v. We start at the vertex incident to c, and consider all the incident edges leading to a vertex strictly closer to v (these edges are here shown in red). We pick e 1 as the leftmost one (i.e. e 1 is the first red edge encountered when turning clockwise around the vertex incident to c). We then move to the other endpoint of e 1 , and consider again all the incident edges leading to a vertex strictly closer to v (these edges are here shown in blue). We pick e 2 as the leftmost one, using now e 1 as the reference, and so on until we reach v. The edges e 1 , e 2 , . . ., form the wanted leftmost geodesic. Note that this construction only relies on the existence of a local orientation at each vertex.

General slices

The most important part of this section consists of definitions: what slices are and which operations we may perform on them. Let us first observe that, in a planar map, or more generally an orientable map, there is a well-defined notion of leftmost geodesic from a corner c to a vertex v. As illustrated on Figure 2.1, we may construct it step-by-step by starting from the vertex incident to c and by moving, at each step, to the leftmost adjacent vertex lying strictly closer to v, where we use the direction we are coming from as a reference. We now introduce slices and some related terminology. Definition 2.1 (see Figure 2.2(a) for an illustration). A slice is a planar map with a boundary, with three distinguished outer corners -denoted here A, B, and Cwhich appear in counterclockwise around the outer face and split its contour in three portions:

-the left boundary AB, which is a geodesic between A and B, -the right boundary AC, which is the unique geodesic between A and C, 3. In this document I do not consider at all blossoming trees, though I also investigated them during my doctoral thesis and shortly after in [START_REF] Bouttier | Combinatorics of bicubic maps with hard particles[END_REF]. I remain puzzled by the fact that the blossoming bijection of [START_REF] Bouttier | Census of planar maps: from the one-matrix model solution to a combinatorial proof[END_REF] appears in the intersection of both unified constructions [BF12b, Section 7.3] [AP15, p. 14].

4. See also the recent paper [START_REF] Lepoutre | Blossoming bijection for higher-genus maps[END_REF] which gives a blossoming bijection in any genus, building on Propp's theory of orientations [START_REF] Propp | Lattice structures for orientations of graphs[END_REF].

5. In [BF12b, Section 1.1], Bernardi and Fusy mention that their approach based on generalized mobiles may be extended to irreducible maps, but cite a paper which has not appeared yet. -and the base BC.

The vertex incident to A is called the apex, the width is the length of the base, the depth is the length of the left boundary, and the tilt is the depth minus the length of the right boundary. A slice of width 1 is said elementary, a slice of arbitrary width is said composite. The unique elementary slice of tilt -1 is the trivial slice reduced to a single edge whose two end corners are A = B and C. It is different from the empty slice, which is the elementary slice of tilt +1 reduced to a single edge whose two end corners are B and A = C. Note that, by the triangular inequality, the tilt is smaller than or equal to the width, hence an nontrivial elementary slice may have tilt 0 or 1.

In [START_REF] Bouttier | Planar maps and continued fractions[END_REF][START_REF] Bouttier | On irreducible maps and slices[END_REF], it is assumed that all slices are elementary, but here we find convenient to also consider composite slices. Note that we impose no constraint on the base, it is not even assumed that it forms a simple path, and the graph distance from B to C may be smaller than the width.

For simplicity, we restrict from now on on to bipartite maps, and only briefly discuss the general case in Remark 2.1 at the end of this section. Bipartiteness implies that the width and the tilt have the same parity, in particular a nontrivial elementary slice has tilt 1.

It was noted in [START_REF] Bouttier | Planar maps and continued fractions[END_REF] that there is a one-to-one correspondence between elementary slices and pointed rooted maps: we go from an elementary slice to a pointed rooted map by identifying the boundary edges together as illustrated on Figure 2.2(b). We must exclude the trivial and empty slices which are pathological. After the identification, the base becomes the root edge and the apex becomes the origin. The correspondence is oneto-one because the merged boundaries form the leftmost geodesic going from the root to (a) (b) the origin, which can be recovered canonically from the pointed rooted map structure 6 .

From this correspondence, we deduce that the generating functions of elementary slices of tilt 1, weighted by the Boltzmann weight (1.14) -where we do not include the outer face in the product-is equal to R as defined in Section 1.4. Note that R has constant term 1, corresponding to the empty slice. The generating function of elementary slices of depth at most d is nothing but the two-point function R d .

We now consider composite slices and describe the important operation of decomposing them into elementary slices. See the illustration on Figure 2.3(a). We start from a composite slice with apex A and base BC, and denote by v 0 , v 1 , . . . , v n the base vertices read from B to C. To the base vertex v i we associate a label i := d(v 0 , A)d(v i , A), where d denotes the graph distance in the slice. Note that n is the width, d(v 0 , A) is the depth, n is the tilt, and we have | ii-1 | = 1 for any i = 1, . . . , n. We now cut the slice along each leftmost geodesic from a base vertex to the apex A. This has the effect of cutting the composite slice into elementary slices. More precisely, if we denote by v i the first vertex common to the leftmost geodesics started at v i-1 and v i , then these two geodesics delimit a slice of width 1, base

v i-1 v i , apex v i and tilt i -i-1 . If i -i-1 = -1, the slice is trivial. If i -i-1 = 1
, we obtain a nontrivial slice, which is possibly empty if the geodesic from v i-1 starts with the base edge v i-1 v i . To summarize, we end up with a label sequence 0 = 0 , 1 , . . . , n with increments ±1, and a nontrivial elementary slice for each up-step of the label sequence (and the trivial slice for each down-step). We may call such object a "path of elementary slices", and it is not difficult to check that the correspondence is one-to-one as we may reconstruct the composite slice by gluing back the elementary slices together as shown on Figure 2.3(b). An immediate consequence of the decomposition is that the generating function of composite slices of width n and tilt is equal to

n n+ 2 R n+ 2 .
It is possible to keep track of the depth of the composite slice, by expressing it in terms of the labels and the depths of the elementary slices, but we will not enter into such considerations here.

As an application of this decomposition, we easily recover the equation (1.15) satisfied by R: the term 1 on the right-hand side corresponds to the empty slice, and the term of index k in the sum corresponds to elementary slices where the base edge is incident to an inner face of degree 2k. Indeed, for such a slice, removing the base edge yields a composite slice of width 2k -1 and tilt 1.

We now describe another important operation on composite slices called wrapping, which we illustrate on Figure 2.4. It consists in identifying boundary edges as in the procedure of Figure 2.2(b), but the identifications are different. Namely, we only identify together the left and right boundaries, starting from the base. When the tilt is nonzero, some edges of the longer boundary remain unmatched, and they delimit a new face which we call the central face. The unmatched base edges delimit another new face which we consider as the outer face, and which we root at the former position of the base endpoints. When the tilt is zero, there is no central face but an origin which is the former apex. Before stating the conclusion as a theorem, we first need to characterize the resulting maps.

Definition 2.2. Given a positive integer , a -annular map is a rooted map with an extra distinguished face of degree , called the central face, such that any cycle winding around the central face has length at least . A -strict-annular map is a -annular map such that the contour of the central face is the unique winding cycle of length .

Note that we allow for odd values of , which corresponds to the "quasi-bipartite" case where both the central and the outer face have odd degrees (but all other faces have even degrees as usual). Pointed rooted maps may be thought as the case = 0. Theorem 2.1 (see [START_REF] Bouttier | Planar maps and continued fractions[END_REF] and [START_REF] Bouttier | On irreducible maps and slices[END_REF]). The wrapping operation is a one-to-one correspondence between:

-composite slices of zero tilt and pointed rooted maps, -composite slices of positive tilt and -annular maps, -composite slices of negative tiltand -strict-annular maps.

In all cases, the width of the composite slice is equal to the degree of the outer face of the corresponding map. The corresponding generating functions for a prescribed width/outer degree n are respectively

n n/2 R n/2 , n (n+ )/2 R (n+ )/2 and n (n-)/2 R (n-)/2
, where R is determined by (1.15).

The case of zero tilt is rather straightforward and was given in [START_REF] Bouttier | Planar maps and continued fractions[END_REF]. The case of nonzero tilt is more involved and requires an argument which was first given in [16, Section 7.2] for the case of irreducible maps considered in the next section. As observed by the anonymous referee -which I would like to thank again for his/her most insightful report-the argument is actually more general, and I will now sketch it in the simpler current setting.

The main difficulty consists in defining the inverse operation of wrapping, i.e. reconstructing a composite slice from a map. The basic idea is that, as before, the left and right boundaries of the slice should somehow correspond to a "leftmost geodesic" in the map. This works straightforwardly for a pointed rooted map, where we have to consider the leftmost geodesic from the root to the origin. For a -(strict-)annular map, we actually have to introduce the lift of the map, which may be seen as its preimage through the exponential mapping z → exp(2iπz), assuming that the map is drawn on the complex plane with the point z = 0 within the central face. The lift is an infinite but periodic map, so its properties remain manageable. We then consider the leftmost geodesic going from (a preimage of) the root to +∞ (for a -annular map) or to -∞ (for a -strict-annular map). It follows from Definition 2.2 that such geodesic is indeed well-defined, and that it eventually reaches the central face and continues following its contour forever. See Figure 2.5 for an illustration, and [START_REF] Bouttier | On irreducible maps and slices[END_REF] for more details. We now simply have to cut along the finite portion of the geodesic between the root and the coalescence point to obtain a composite slice, and it is now elementary to check that this is indeed the inverse operation of wrapping.

Theorem 2.1 may be seen as a first illustration of the relevance of slice decomposition. Its enumerative consequences can also be obtain as a particular case of [BF12b, Theorem 34] which relies on so-called "b-dibranching mobiles", but I consider the present approach to be more transparent. Slice decomposition is actually able to treat the general setting of [START_REF] Bernardi | Unified bijections for maps with prescribed degrees and girth[END_REF] as we will see in the next section. But let us now finish this section with some remarks. First, notice that the generating function of -annular slices is equal to R times that of -strict-annular slices, for any outer degree n. This calls for a combinatorial explanation, which is as follows: given a -annular slice, we may decompose it bijectively along its outermost winding cycle of length , to obtain a -strict-annular slice (the exterior of the cycle) and a -annular slice of outer degree (the interior of the cycle). The latter slices have generating function R , as seen by taking n = in Theorem 2.1.

Elaborating on this idea, we may enumerate general annular maps with prescribed boundary lengths -i.e. quasi-bipartite maps with two marked corners incident to distinct faces of respective prescribed degrees m and n, with m + n even and no constraint on the winding cycles-through the generating function

A m,n : = 0≤ ≤min(m,n) +m even × m (m -)/2 R (m-)/2 × n (n + )/2 R (n+ )/2 = 2 m + n • m! m 2 ! m-1 2 ! • n! n 2 ! n-1 2 ! • R (m+n)/2 .
(2.1)

Indeed, considering such an annular map and treating the face of degree m as the outer face, we may decompose it along the outermost cycle of minimal length, which we denote by , and obtain a -strict-annular map of outer degree m (the exterior of the cycle) and a -annular map of outer degree n (the interior of the cycle, after inversion). This decomposition is -to-one because there are ways to glue back the two pieces together. This explains the first line of (2.1) and we pass to the second line by a simple identity on binomial numbers. Note that the formula remains meaningful in the case m = 0, where we recover the generating function of pointed rooted maps with outer degree n.

The formula (2.1) appears in [Eyn16, Corollary 3.1.2] under different notations. A more general formula of Collet and Fusy [START_REF] Collet | A simple formula for the series of bipartite and quasi-bipartite maps with boundaries[END_REF] counts quasi-bipartite maps with an arbitrary number of boundaries of prescribed lengths: it may be obtained from (2.1) by taking derivatives with respect to the face weights (g 2k ) k≥0 and by using (1.15), or by integrating in the case of one boundary to recover the formula (1.23).

Remark 2.1. The discussion of this section extends naturally to the nonbipartite case, up to some complications which we list here. First, the tilt of a slice is no longer necessarily of the same parity as the width. Therefore, there exists another type of elementary slice which has zero tilt. The generating function of such slices with depth at most d is nothing but the quantity S d mentioned in Remark 1.4. Pairs of such slices may be glued to obtain a pointed rooted map where the root edge is frustrated, see [10, Figure 17]. The decomposition of a composite slice now involves a label sequence with increments -1, 0, +1, and elementary slices of zero tilt are attached to the 0-increments. The wrapping operation works unchanged. Generating functions of composite slices and annular maps are now polynomials in R and S := S ∞ , whose expressions are elementary but longer than those of the bipartite case S = 0. We therefore leave them as exercises to the reader.

Irreducible slices

In this section we explain how to adapt the slice decomposition in the presence of "irreducibility" constraints. Our discussion follows for a good part that of the previous section, and emphasizes what the new phenomena related to irreducibility are. The presentation will therefore be different from [START_REF] Bouttier | On irreducible maps and slices[END_REF]. But let us first define what an irreducible map is. Definition 2.3. Given a nonnegative integer d, a map (resp. a map with a boundary) is said d-irreducible if it does not contain any cycle of length smaller than d, and any cycle of length d is the contour of a face (resp. is the contour of an inner face). An irreducible d-angulation is a d-irreducible map where every face has degree d.

Note that d is unrelated to the depth considered previously. The notion of irreducibility is closely related to the girth: a d-irreducible map has girth at least d, and a map of girth at least d is a (d -1)-irreducible map containing no face of degree d -1.

Irreducible triangulations and quadrangulations were first enumerated by respectively Tutte [START_REF] Tutte | A census of planar triangulations[END_REF] and Mullin and Schellenberg [START_REF] Mullin | The enumeration of c-nets via quadrangulations[END_REF]. Note that these authors do not use the word "irreducible" but "simple", which probably did not have its current acceptation in the sixties. Their approach is based on a substitution procedure -see for instance [FS09, I.6.2] for general background-by deducing the generating function of irreducible tri-or quadrangulations from that of simple ones. In our initial investigation of irreducible maps, we actually followed their approach by devising an iterated substitution procedure for enumerating d-irreducible maps, with arbitrary d and prescribed face degrees. We do not enter into the details and refer the interested reader to [16, Sections 2 and 3]. But we then realized that some of the auxiliary quantities that we needed for our computations could be interpreted combinatorially as slice generating functions. This allowed us to rederive our enumerative results bijectively, and recover in particular the bijections of [START_REF] Fusy | Transversal structures on triangulations: a combinatorial study and straight-line drawings[END_REF][START_REF] Fusy | Dissections, orientations, and trees with applications to optimal mesh encoding and random sampling[END_REF] for irreducible triangulations and quadrangulations. We note in passing that irreducible quadrangulations are the "medials" -recall Figure 0.3of 3-connected maps [MS68, Section 5], which themselves correspond to convex threedimensional polyhedra by Steinitz's theorem.

We now consider d-irreducible slices, defined by combining Definitions 2.1 and 2.3 (note that a slice has a boundary). The Boltzmann weight of a d-irreducible slice is defined as in (1.14), where as before we do not include the outer face in the product. Here the weight only involves the g k 's for k ≥ d. We again restrict here to the bipartite case, so we take d = 2b and g k = 0 for k odd. We denote by R (d) the generating function of bipartite d-irreducible nontrivial elementary slices.

The first new phenomenon is that it is no longer possible to identify R (d) with the generating function of d-irreducible pointed rooted maps. Indeed, gluing the boundaries as in Figure 2.2(b) might create "short cycles" that wind around the origin.

Fortunately, d-irreducibility poses no problem for the decomposition of Figure 2.3: a composite slice is d-irreducible if and only if all the elementary slices appearing in its decomposition are d-irreducible. One direction is obvious, the other relies on the observation that, when gluing d-irreducible elementary slices along their left/right boundaries as on Figure 2.3(b), then we cannot create "short cycles". Indeed, since the glued boundaries are geodesics, and since every cycle in the composite map that crosses one of them must cross it another time, we see that for any cycle in the composite map there exists a shorter cycle in each elementary slice that it visits. We deduce that the generating function of d-irreducible composite slices of width n and tilt is n

n+ 2 (R (d) ) n+ 2 .
That is, we only change R into R (d) with respect to the expression of Section 2.2.

The main complication arises when we attempt to find an analogue of equation (1.15) for R (d) by removing the base edge in a d-irreducible elementary slice. The composite slice we obtain by removing the base edge is still d-irreducible, but it satisfies extra constraints due to cycles going through the base edge in the elementary slice. We therefore have to find another decomposition, which may be done by introducing generalized elementary slices, which we called k-slices in [START_REF] Bouttier | On irreducible maps and slices[END_REF] but which we call here quasi-slices.

A quasi-slice is defined as an elementary slice in Definition 2.1, with the sole difference that the left boundary is no longer assumed to be a true geodesic between A and B, but only a shortest path among paths avoiding the base edge BC. See Figure 2.6(a) for an illustration. The tilt may now take values other than ±1. Since we have not changed the assumption on the right boundary, the tilt is still at least -1 with equality if and only if the quasi-slice is reduced to the trivial slice, but we may now have a tilt larger than 1. By bipartiteness, it must be an odd number, and we denote by U 

(d) 0 = R (d) -1,
as the empty slice should not be regarded as a quasi-slice. We now explain how to decompose a quasi-slice, which is done in two ways depending on k (recall that d = 2b).

-For k ≥ b, the decomposition consists as before in removing the base edge. We obtain a d-irreducible composite slice of tilt 2k +1 ≥ d+1, and we easily check that the decomposition is now bijective because of the large tilt (in the reverse bijection we do not risk creating short cycles). We deduce that

U (d) k = ≥k+1 g 2 2 -1 + k (R (d) ) +k , k ≥ b. (2.2) 
In particular this quantity vanishes in the case of irreducible d-angulations, since we shall take g 2 = 0 for all ≥ b. We obtain generically two quasi-slices, with respective bases BC and CD and tilts 2i + 1 and 2j + 1, where -1 ≤ i < k and j = ki. We deduce that

-For 0 ≤ k ≤ b -1,
U (d) k = g 2b δ k,b-1 + U (d) k+1 + k j=1 U (d) k-j U (d) j , 0 ≤ k ≤ b -1. (2.3)
Note that, combining (2.2) and (2.3), we get a closed system of equations for U

(d) 0 = R (d) -1, U (d) 1 , . . . , U (d) b .
It is actually possible to eliminate the last b quantities, see [START_REF] Bouttier | On irreducible maps and slices[END_REF]Section 5.4] for details, and we end up with the following explicit equation for R (d) :

- 1 b b p=1 b p b p -1 1 -R (d) p = g 2b + ≥k+1 g 2 2 -1 + k (R (d) ) +k . (2.4)
It should be seen as the d-irreducible counterpart of (1.15). Let us mention that, in the decomposition of quasi-slices, it is possible to keep track of the depth and obtain refined generation functions that are essentially two-point functions of d-irreducible maps, see [START_REF] Bouttier | On irreducible maps and slices[END_REF]Section 8].

We turn to the wrapping operation of Figure 2.4: it actually works without any modification once we realize that we should treat differently the winding and nonwinding cycles. This is the clever observation of our anonymous referee, which we mentioned above. Let us define the resulting objects. For d = 0, we recover the notion of -(strict)-annular map of the previous section. For d = , a (d, d)-irreducible annular map is nothing but a d-irreducible map with a boundary and an extra marked face of degree d. We again allow to be odd, which corresponds to the quasi-bipartite case where the central and outer faces are the only two faces of odd degree. We may now state the d-irreducible analogue of Theorem 2.1. In all cases, the width of the composite slice is equal to the degree of the outer face of the corresponding map. The corresponding generating functions for a prescribed width/outer degree n are respectively

n (n-)/2 (R (d) ) (n-)/2 and n (n+ )/2 (R (d) ) (n+ )/2
, where R (d) is determined by (2.4).

As a consequence, the generating function

F (d)
2m of d-irreducible maps with a boundary of degree 2m satisfies the "pointing" formula

∂F (d) 2m ∂g d = 2m m -b (R (d) ) m-b , d = 2b. (2.5)
The proof is essentially the same as that of Theorem 2.1. The only new thing to check is that we cannot create "short" nonwinding cycles when identifying the left and right boundary as in Figure 2.4, but the reasoning is the same as for the decomposition of d-irreducible composite slices into elementary slices.

We now conclude this section by some remarks, several of which are direct adaptations of the remarks made after Theorem 2.1. The generating function of (d, )-quasiirreducible annular maps is equal to (R (d) ) times that of (d, )-irreducible annular maps, for the same combinatorial reason as before. We may also enumerate d-irreducible quasibipartite annular maps with prescribed boundary lengths m, n > d by decomposing along the outermost shorter cycle which must have a length > d, to get the generating function

A (d) m,n : = 2b< ≤min(m,n) +m even × m (m -)/2 (R (d) ) (m-)/2 × n (n + )/2 (R (d) ) (n+ )/2 = 2 m + n • m! m+d 2 ! m-1-d 2 ! • n! n+d 2 ! n-1-d 2 ! • (R (d) ) (m+n)/2 .
(2.6) This is the d-irreducible analogue of the formula (2.1), which we recover for d = 0. By differentiating with respect to the face weights (g 2k ) k>d , we obtain a d-irreducible analogue of the Collet-Fusy formula [START_REF] Collet | A simple formula for the series of bipartite and quasi-bipartite maps with boundaries[END_REF]. We actually adapted their bijective proof to the irreducible setting in [START_REF] Bouttier | A note on irreducible maps with several boundaries[END_REF], but we will not enter into the details here. Note that, to obtain the generating function F

n of d-irreducible maps with a single boundary, we may either integrate (2.6) with respect to g m for some m > d, or integrate (2.5) at n = 2m with respect to g d . The lengthy expression of

F (d)
n is given at [START_REF] Bouttier | On irreducible maps and slices[END_REF]Equation (3.21)], where we obtained it via substitution. To my knowledge, it still awaits a bijective interpretation.

So far we have enumerated d-irreducible maps with boundaries. Note that, by Definition 2.3, a d-irreducible map with a boundary of length d is reduced to either a tree or a single d-gon. But, if we do not regard the outer face as a boundary anymore, there may exist nontrivial rooted d-irreducible maps whose outer face has degree d, and we denote by H d their generating function. In [16, Section 9.1], we computed H d through substitution. We may also characterize it combinatorially as follows. Observe that ∂H d ∂g d counts d-irreducible maps with two marked faces of degree d, which are closely related with (d, d)-quasi-irreducible maps whose generating function is (R (d) ) d . Indeed, the latter are essentially "sequences" formed by concatenating the former. There are small subtleties to be taken care of, and we obtain the relation

∂H d ∂g d = 2 + dg d - d 2 • 2g d + g 2 d 1 + 2g d + g 2 d -(R (d) ) -d , (2.7) 
see also [START_REF] Bouttier | On irreducible maps and slices[END_REF]Equation (9.21)].

Again, all our discussion may be extended to the nonbipartite case, at the price of having to introduce another generating function S (d) counting d-irreducible elementary slices of tilt 0. The first part of Theorem 2.2 is unchanged, but the generating functions are now polynomials in R (d) and S (d) .

Finally, let us observe that we may recover the enumerative results of [START_REF] Bernardi | Unified bijections for maps with prescribed degrees and girth[END_REF] for maps with prescribed girth, simply by setting the weight g d to 0: as mentioned above a d-irreducible map without d-gons is nothing but a map of girth d + 1 (or d + 2 in the bipartite case).

Conclusion and perspectives

We now conclude this chapter by evoking some directions for future research. A first immediate question is the connection between slice decomposition and the bijective canvas. There is such a close connection between the enumerative results of Section 2.3 and those of [START_REF] Bernardi | Unified bijections for maps with prescribed degrees and girth[END_REF] that we may wonder whether the two approaches are the two sides of the same coin. At the fundamental level it is however not clear how to relate orientations and geodesics, I currently do not understand the Bernardi-Fusy bijection between bioriented maps and generalized mobiles well enough to tell. Superficially, the fact that it is essential to consider orientations that are accessible suggests that one might associate with it a suitable generalized distance. Incidentally, we may wonder whether the bijection of Section 1.2 -that produces mobiles with several faces-might be extended in the Bernardi-Fusy framework to treat certain "partially accessible" orientations.

Another direction concerns the extension of slice decomposition to Eulerian maps, where we may distinguish two types of faces hence weight them differently. In view of the Eulerian version of the [START_REF] Bouttier | Planar maps as labeled mobiles[END_REF] bijection, it is natural not to consider true geodesics anymore, but instead shortest oriented paths with respect to the canonical orientation that alternates around each vertex. The fundamental ideas of slice decomposition seem to adapt to this setting, see [START_REF] Albenque | Constellations and multicontinued fractions: application to Eulerian triangulations[END_REF]Section 4] for the case of constellations and [START_REF] Dervieux | The number of corner polyhedra graphs[END_REF][START_REF] Dervieux | Énumération de cartes planaires orientées[END_REF] for the case of corner triangulations, which are Eulerian triangulations subject to certain irreducibility constraints arising from their connection with corner polyhedra [START_REF] Eppstein | Steinitz theorems for simple orthogonal polyhedra[END_REF]. With Marie Albenque, we are currently investigating the general theory. One of our goals is to provide bijective proofs of the several beautiful formulas for bicolored (Ising) maps which may be found in [Eyn16, Chapter 8]. We already obtained several results which seemed out of reach using the Eulerian mobiles of [START_REF] Bouttier | Planar maps as labeled mobiles[END_REF] or the blossoming trees of [START_REF] Bousquet-Mélou | The degree distribution in bipartite planar maps: applications to the Ising model[END_REF]. Our next challenge is the treatment of maps with "Dobrushin" boundary conditions, which seem naturally connected with bidimensional walks by keeping track of the boundary lengths of each color in some suitable (e.g. peeling) decomposition. See also the recent preprint [START_REF] Chen | Critical Ising model on random triangulations of the disk: enumeration and local limits[END_REF] of my former student Linxiao Chen 7 and Joonas Turunen, which enumerates Ising triangulations with Dobrushin boundary conditions via Tutte equations. We note that Eulerian maps with girth -and more generally cycle-lengthconstraints have been considered by Bernardi and Fusy in [START_REF] Bernardi | Unified bijections for planar hypermaps with general cycle-length constraints[END_REF] under the name of hypermaps. Once again one may attempt to reproduce their results using slices. We speculate that the choice for the decomposition of a quasi-slice used in Section 2.3, where we may choose to either remove the base edge or cut as in Figure 2.6, might be made dependent on some varying parameter to accommodate for cycle-length constraints.

A third direction which I would like to investigate is the possible connection with topological recursion, see [START_REF] Eynard | Counting surfaces[END_REF]Chapter 7] for an account of its map-related aspects. In topological recursion, a key role is played by the "Bergman kernel" which, in maps, is essentially the generating function of cylinders/annular maps. As we gave in Section 2.2 a new bijective derivation of this quantity, we might try to look for a slice decomposition of maps with more involved topologies. A first case to understand is that of "pants" or more generally planar maps with several boundaries, where we may for instance attempt to reinterpret the Collet-Fusy bijective derivation using slices.

Finally, let me mention some asymptotic questions. Since irreducible quadrangulations are in bijection with three-connected planar graphs -whose planar embedding is unique by Whitney's theorem-it is tempting to try studying their scaling limits, starting from quadrangulations using slices or the Fusy-Poulalhon-Schaeffer bijection [START_REF] Fusy | Dissections, orientations, and trees with applications to optimal mesh encoding and random sampling[END_REF], and going to three-connected graphs possibly through an irreducible analogue of the Ambjørn-Budd bijection [START_REF] Ambjørn | Trees and spatial topology change in causal dynamical triangulations[END_REF][START_REF] Bettinelli | The scaling limit of uniform random plane maps, v ia the Ambjørn-Budd bijection[END_REF]. Then, one might try to deduce results for general planar graphs [START_REF] Chapuy | On the diameter of random planar graphs[END_REF]. Less speculatively, substitution schemes for planar maps lead to very interesting asymptotic phenomena [START_REF] Banderier | Random maps, coalescing saddles, singularity analysis, and Airy phenomena[END_REF] and it might be worthwhile to investigate the case of irreducible maps. In this chapter we come closer to physics, by considering a model of statistical mechanics on random maps. The publications in this topic are [START_REF] Borot | A recursive approach to the O(n) model on random maps via nested loops[END_REF][START_REF] Borot | More on the O(n) model on random maps via nested loops: loops with bending energy[END_REF][START_REF] Borot | Loop models on random maps via nested loops: the case of domain symmetry breaking and application to the Potts model[END_REF][START_REF] Borot | Nesting statistics in the O(n) loop model on random planar maps[END_REF]. Our initial interest came from the work of Le Gall and Miermont on scaling limits of maps with large faces, which differ from the Brownian map. We were particularly puzzled by the discussion in [LGM11, Section 8] which suggests a connection with the so-called O(n) loop model. After some investigation we realized that the connection becomes much simpler when "loops are drawn on the dual", as we will explain in more detail below. This led us to introduce the gasket decomposition, which is an exact combinatorial relation between loop-decorated maps and Boltzmann maps (as defined in Section 1.4). The gasket decomposition allows to rederive and generalize in a transparent manner some functional equations for the partition function of the model, which were first derived using matrix models.

To simplify the presentation, I will focus on the specific case of the rigid O(n) loop model on quadrangulations, whose analysis is easier. After recalling some context in Section 3.1, I define the model and present the gasket decomposition in Section 3.2. I then discuss the phase diagram of the model in Section 3.3. The material for these two sections comes mostly from the paper [START_REF] Borot | A recursive approach to the O(n) model on random maps via nested loops[END_REF] written with Gaëtan Borot and Emmanuel Guitter. Section 3.4 is devoted to the statistics of nestings between loops, and is based on the more recent preprint [START_REF] Borot | Nesting statistics in the O(n) loop model on random planar maps[END_REF] written with G. Borot and Bertrand Duplantier. Concluding remarks and perspectives are gathered in Section 3.5.

Context

Let me attempt to review the literature on models of statistical mechanics on random maps. Arguably, the most emblematic model is the Ising model, which was solved1 by Kazakov [START_REF] Kazakov | Ising model on a dynamical planar random lattice: exact solution[END_REF] via a two-matrix integral in the case of "dynamical" random planar quartic maps. By dynamical it is meant that the model is annealed: the map and its decorations -here ±1 spins-are drawn together at random, so that the marginal probability of drawing a given map is proportional to the partition function of the Ising model defined on it. This is the situation which is most relevant for 2D quantum gravity, where we want the geometry to be affected by the presence of the spins ("matter"). Quenched models have also been studied through scaling arguments and numerical simulations, see e.g. [START_REF] Janke | Ising and Potts models on quenched random gravity graphs[END_REF] and references therein, but the results are much scarcer than in the annealed case which we consider from now on.

The remarkable feature of Kazakov's solution is that it shows the existence of a phase transition and a critical point, as in the Ising model on regular bidimensional lattices. The universal critical exponents are however different from their regular lattice counterparts [START_REF] Boulatov | The Ising model on a random planar lattice: the structure of the phase transition and the exact critical exponents[END_REF], but related via the Knizhnik-Polyakov-Zamolodchikov (KPZ) relations [START_REF] Knizhnik | Fractal structure of 2D-quantum gravity[END_REF]. In fact, the Ising model was used as a testbed for the KPZ relations, see for instance [START_REF] Duplantier | Conformal fractal geometry & boundary quantum gravity[END_REF] for a review of this fascinating topic. What is most relevant for our discussion is that the "string susceptibility exponent" at the Ising critical point differs from that of pure gravity, which is why it is expected that the large-scale geometric properties of critical Ising maps are fundamentally different from those of usual undecorated maps.

Another, actually older, solvable model is that of maps decorated with a spanning tree [START_REF] Mullin | On the enumeration of tree-rooted maps[END_REF]. It was argued in [START_REF] Boulatov | Analytical and numerical study of a model of dynamically triangulated random surfaces[END_REF] that this is equivalent to considering Gaussian embeddings of maps in "-2" dimensions (note that Boulatov et al. consider cubic maps, and do not seem to know about Mullin's formula). This yields yet another check of the KPZ relations, and yet another large-scale geometry.

A common generalization of these two models is the q-state Potts model [START_REF] Kazakov | Exactly solvable Potts models, bond-and tree-like percolation on dynamical (random) planar lattice[END_REF]: Ising corresponds to the case q = 2 and spanning trees (or forests) to the q → 0 limit. By the Fortuin-Kasteleyn (FK) random cluster representation, it makes sense to consider noninteger values of q. The case q = 1 corresponds to bond percolation, for which the geometry of maps is the same as in the pure gravity case (since the "partition function" of percolation is trivial). It is however very interesting to study the percolation transition and the geometry of interfaces, see e.g. [START_REF] Angel | Growth and percolation on the uniform infinite planar triangulation[END_REF][START_REF] Angel | Percolations on random maps I: Half-plane models[END_REF][START_REF] Curien | Percolation on random triangulations and stable looptrees[END_REF]. For any q ∈ [0, 4], there is a continuous phase transition whose critical exponents vary with q. Consequently we expect a different large-scale geometry of the maps for each q. Much effort has been devoted to analyzing the Potts model on maps for general q, sometimes in different languages.

1. In its original formulation, the Potts model amounts to considering q-colorings of maps. This topic was considered by Tutte himself [START_REF] Tutte | Dichromatic sums for rooted planar maps[END_REF]. In particular, he worked for more than ten years to solve some functional equations arising in the case of "chromatic sums" (i.e. of properly q-colored maps, obtained in the antiferromagnatic zero-temperature limit of the Potts model). See [START_REF] Tutte | Chromatic sums revisited[END_REF] and references therein, and also [START_REF] Baxter | Dichromatic polynomials and Potts models summed over rooted maps[END_REF]. The combinatorial approach of Tutte, based on functional equations, has been recently generalized by Bernardi and Bousquet-Mélou to nonzero temperatures [START_REF] Bernardi | Counting colored planar maps: algebraicity results[END_REF][START_REF] Bernardi | Counting coloured planar maps: differential equations[END_REF]. The main outcome is a characterization of the partition function of the q-state Potts model on random planar maps: it satisfies an explicit algebraic equation for q of the form 2 + 2 cos(πj/m) with j, m integers (and q = 0, 4), and it obeys an explicit nonlinear differential equation for general q. See also [START_REF] Bousquet-Mélou | Spanning forests in regular planar maps[END_REF] for the already nontrivial case q → 0. Meanwhile, in theoretical physics, the matrix integral representation of the Potts model was studied in several papers [Dau95, Bon99, EB99, ZJ00a, GJSZJ12]. We note that there is not so far much connection between the two approaches: for instance the existence of "algebraic points" is known to theoretical physicists, but for a slightly different notion of algebraicity (i.e. with respect to the parameter coupled to the boundary length in the disk generating function, while Tutte, Bernardi and Bousquet-Mélou consider the parameter coupled to the number of edges).

2. By a well-known construction, which we review in [15, Section 2.1], the q-state Potts model on a planar map may be reformulated in terms of loops on a derived map.

In particular, at a "self-dual" point, we obtain precisely the fully-packed version of the O(n) loop model with the relation q = n 2 , and the general O(n) loop model corresponds to the dilute Potts model. Here, the natural range for observing new geometries is n ∈ [0, 2], or actually [-2, 2] if we dare consider negative Boltzmann weights [START_REF] Caracciolo | The O(n) vector model at n = -1, -2 on random planar lattices: a direct combinatorial derivation[END_REF]. The O(n) loop model on cubic maps turns out to be exactly solvable using matrix integrals and loop equations [Kos89,GK89,KS92,EZJ92,EK95,EK96] or the gasket decomposition [START_REF] Borot | A recursive approach to the O(n) model on random maps via nested loops[END_REF][START_REF] Borot | More on the O(n) model on random maps via nested loops: loops with bending energy[END_REF] presented in this chapter. The limit n → 0, which describes polymers or self-avoiding walks, was first considered in [START_REF] Duplantier | Conformal spectra of polymers on a random surface[END_REF]. The exact solvability of the O(n) loop model allows to analyze completely its critical behavior and exponents, which again are consistent with the KPZ relations. More recently, the model was put into the framework of topological recursion [START_REF] Borot | Enumeration of maps with self-avoiding loops and the O(n) model on random lattices of all topologies[END_REF].

3. The self-dual q-state Potts model/fully-packed O(n) loop model appears under yet another language in the paper [START_REF] Sheffield | Quantum gravity and inventory accumulation[END_REF], which we already mentioned in Section 2.1 and which led to many further developments [GMS19, BLR17, Che17, GS17, GS15, GKMW18] including the abelian sandpile model on random maps [START_REF] Sun | Sandpiles and unicycles on random planar maps[END_REF] and bipolar orientations [START_REF] Kenyon | Bipolar orientations on planar maps and SLE 12[END_REF]. Most of these papers deal with the scaling limits at critical points, using the "mating-of-trees" or "peanosphere" construction.

4. On the square lattice, there is a well-known correspondence between the Potts model and the ice or "six-vertex" model. This correspondence breaks down on a random quartic map, but still there is a three-to-one correspondence between 3colorings of a planar quadrangulation and ice configurations/Eulerian orientations of its dual quartic map. The matrix integral representation of the six-vertex model on random quartic maps was studied in [START_REF] Kostov | Exact solution of the six-vertex model on a random lattice[END_REF][START_REF] Zinn-Justin | The six-vertex model on random lattices[END_REF]. More recently, Eulerian orientations of both quartic and general Eulerian maps were considered in [BB-MDP17, EPG18, BMEP18]. Here the results are mostly enumerative.

After this long list one may wonder if a model other than the Potts model has ever been considered on random maps. In 1989, Kazakov [START_REF] Kazakov | The appearance of matter fields from quantum fluctuations of 2D-gravity[END_REF] realized that the one-matrix model, corresponding to the Boltzmann maps considered in Section 1.4, already allows to reach multicritical points different from pure gravity by fine-tuning the weight sequences (g k ) k≥1 . Unfortunately some of these weights are negative, which makes the probabilistic interpretation difficult and the conformal field theory "nonunitary", as realized by Staudacher who noted a connection with the dimer model on random quartic maps [START_REF] Staudacher | The Yang-Lee edge singularity on a dynamical planar random surface[END_REF]. More recently, Le Gall and Miermont proposed another way of escaping from pure gravity with Boltzmann maps, by considering a nonnegative weight sequence (g k ) k≥1 with unbounded support and fine-tuned asymptotics [START_REF] Gall | Scaling limits of random planar maps with large faces[END_REF]. Interestingly, it appears that there exists a one-parameter family of weight sequences which interpolates between the cases considered by Kazakov and by Le Gall and Miermont [START_REF] Ambjørn | Generalized multicritical onematrix models[END_REF]. As we will explain in this chapter, Boltzmann maps with weight sequences satisfying the Figure 3.1 -A (non-rigid) loop configuration on a quadrangulation with a boundary. assumptions of [START_REF] Gall | Scaling limits of random planar maps with large faces[END_REF] appear in the gasket decomposition of O(n) loop configurations on random maps. So, the Potts model is still lurking in the background! Still, a few models of statistical mechanics on random maps which are not (immediately) related to the Potts model have been considered, such as ADE height models [START_REF] Kostov | Gauge invariant matrix model for the Â-D-Ê closed strings[END_REF][START_REF] Kostov | Solvable statistical models on a random lattice[END_REF] and hard particles [START_REF] Bouttier | Critical and tricritical hard objects on bicolourable random lattices: exact solutions[END_REF], which are both exactly solvable.

The gasket decomposition

The O(n) loop model aims at describing a "gas of loops" on a lattice. By loop, we here mean a cycle (simple closed path), and not a loop in the graph theoretical sense. As usual in statistical mechanics, the model admits several different "microscopic" definitions, which are expected not to matter much at a macroscopic level. Their common feature is that n plays the role of a nonlocal weight per loop, which arises through high-temperature graphical expansions of models with O(n) symmetry [START_REF] Domany | Duality relations and equivalences for models with o(n) and cubic symmetry[END_REF]. We note that the term "O(n) loop model" is a misnomer since there is no action of the orthogonal group on the loops themselves, but this term is traditionally used in the literature so we will stick with it. We now provide the precise combinatorial (microscopic) definition on which we will concentrate.

A loop configuration is a collection of disjoint cycles (i.e. the loops are both self-and mutually avoiding). On planar maps, we find it convenient to think of loops as living on the dual map: they go through the faces and edges of the primal map. For simplicity, we restrict to the case of a quadrangulation with a boundary: the loops then live on the dual almost-quartic map, and we assume that no loop visits the outer face. See Figure 3

.1 for an example.

A loop configuration on a quadrangulation with a boundary is said rigid if, in each visited face, the loop enters and exists through opposite edges. In other word, "turns" are forbidden, see Figure 3 quadrangulations with a boundary which are endowed with a rigid loop configuration. It is defined by assigning to such a map m a weight

w(m) = n L(m) g fu(m) h fv(m) (3.1)
where n, g, h are nonnegative real parameters, and L(m), f u (m), f v (m) denote respectively the number of loops, the number of unvisited inner faces and the number of visited faces of m. Note that taking n = 0 or h = 0 amounts to forbidding the loops, and we recover the natural weight function of quadrangulations considered in Section 1.3. For p a positive even integer, we denote by Z p the sum of the weights of all loopdecorated quadrangulations with a boundary of length p. We say that the triplet (n, g, h) is admissible if Z p is finite. It is not difficult to check that the property of being admissible does not depend on p and that, for all n, it is satisfied for g and h small enough. We set by convention Z 0 = 1.

We now describe the gasket decomposition, which makes a link with the face-weighted Boltzmann maps defined in Section 1.4. The general idea of viewing Boltzmann maps as "gaskets" of O(n) loop models actually appears already in [START_REF] Gall | Scaling limits of random planar maps with large faces[END_REF], but the precise connection proposed by Le Gall and Miermont poses some technical difficulties which we were able to circumvent with the idea of having the loops on the dual map, and introducing the rigid O(n) loop model which makes the correspondence both exact and manageable.

Starting with a loop-decorated quadrangulation with a boundary, let us erase all the loops and their interiors (vertices and edges) as well as the edges they cross. See Figure 3.3. We call gasket the resulting object, it is a planar bipartite map without loops, but possibly with inner faces of high degree. In particular, it is not necessarily a quadrangulation. Note that the degree of the outer face is unchanged.

Of course, we lose information in the process so this correspondence is not bijective. But we can fix this by keeping track of the contents of the outermost loops, which turn into faces in the gasket. Let us consider such an outermost loop of length . Since we are considering a rigid loop configuration, it is not difficult to check that is necessarily even, and that the gasket face associated with the loop has degree . We now consider the internal map formed by the vertices, edges and loops inside the loop at hand: it is nothing but a loop-decorated quadrangulation with a boundary of length (as counted by Z ), with a rooting inherited from that of the original map. Therefore, to make the decomposition reversible, we need to attach to each face of the gasket coming from an outermost loop an internal map with matching outer degree. Note that the gasket may also have regular faces of degree 4, corresponding to the unvisited faces of the original quadrangulations which are not surrounded by loops. It is not difficult to check that the decomposition is now reversible and can be turned into a recursive bijective decomposition, which has the following consequences. Theorem 3.1 (see [START_REF] Borot | A recursive approach to the O(n) model on random maps via nested loops[END_REF]). For p ≥ 2 even, denote by F p (g 2 , g 4 , g 6 , . . .) the generating function of rooted bipartite maps with a boundary of length p, with the Boltzmann weight (1.14). Then, the sequence (Z p ) p≥2 is solution of the fixed-point equation

Z p = F p (z 2 , z 4 , z 6 , . . .) z p = gδ p,4 + nh p Z p . (3.2)
When (n, g, h) is admissible, the gasket is distributed as a Boltzmann bipartite map with the weight sequence (z k ) k≥2 .

Note that F 2n (g 2 , g 4 , g 6 , . . .) is the same quantity as that denoted by w n in Section 1.4, we use here a different notation to emphasize its dependency on the weight sequence. It is clear that the fixed-point equation (3.2) uniquely determines Z p and z p as formal power series in n, g and h. The quantity z p accounts for the possible ways to "fill" a face of degree p in the gasket: it may either be a regular face of weight g if p = 4, or arise from an outermost loop (weight n) covering p visited faces (h p ) and containing an internal map of outer degree p (Z p ).

Remark 3.1. The gasket decomposition may be adapted to situations which are more general than the rigid case presented here, at the price of making the fixed-point equation more complicated (as we have to correctly account for the different possible types of "rings" formed by the faces visited by a given loop). We treated the case of quadrangulations (not necessarily rigid) in [START_REF] Borot | A recursive approach to the O(n) model on random maps via nested loops[END_REF], then extended to general degrees in [START_REF] Borot | More on the O(n) model on random maps via nested loops: loops with bending energy[END_REF]. This allows to recover in particular the O(n) loop on cubic maps, previously studied in the references given in Section 3.1. We may also incorporate an extra "bending energy" parameter. Finally in [START_REF] Borot | Loop models on random maps via nested loops: the case of domain symmetry breaking and application to the Potts model[END_REF] we considered "twofold" loop models that arise from the correspondence with the Potts model outside the self-dual situation.

Exact solution and phase diagram

It turns out that the fixed-point equation (3.2) may be "solved", in the sense that we may rewrite it as a functional equation whose solution may be written in parametric form using the techniques from [Kos89, GK89, EK95]. But, before, it is instructive to have a qualitative discussion of the possible asymptotic behaviors of Z p and z p as p → ∞, as it makes the connection with the work of Le Gall and Miermont [START_REF] Gall | Scaling limits of random planar maps with large faces[END_REF].

Consider a sequence g = (g 2k ) k≥1 of nonnegative weights and set

ϕ(x) := ∞ k=1 2k -1 k g 2k x k . (3.3) 
We saw in Section 1.4, precisely at (1.15), that the generating function R of pointed rooted bipartite maps with the Boltzmann weight (1.14) satisfies R = 1 + ϕ(R). The weight sequence g is said admissible if R is finite and, in this case, we necessarily have ϕ (R) ≤ 1. We say that g is subcritical if ϕ (R) < 1, and critical if ϕ (R) = 1. This distinction plays a role when considering the probability that the Boltzmann map has a large number of vertices: it decays exponentially in the subcritical case, and as a power law in the critical case. Furthermore, a critical sequence g is said generic if R is strictly smaller than the radius of convergence of ϕ, and nongeneric otherwise. Le Gall and Miermont exhibited examples of nongeneric critical sequences for which

g 2k ∼ c (4R) -k k a , k → ∞ (3.4)
where c is a fine-tuned positive constant, and the exponent a is comprised between 3/2 and 5/2. Note that the exponential decay factor (4R) -k is fixed by the requirement that ϕ has radius of convergence R. For such sequences, the law of the degree of a typical face has a heavy tail (while it has an exponential tail in the generic case), and we observe scaling limits different from the Brownian map [START_REF] Gall | Scaling limits of random planar maps with large faces[END_REF]. How do the weight sequence z solving the fixed point equation (3.2) fit into this classification? We cannot rule out the possibility that z is subcritical or generic critical. But, more interestingly, an elementary computation -see [START_REF] Borot | A recursive approach to the O(n) model on random maps via nested loops[END_REF]Section 3.3] for details-shows that for a nongeneric critical weight sequence satisfying (3.4) we have To summarize, for an admissible triplet of parameters (n, g, h), the weight sequence z governing the structure of the gasket in the rigid O(n) model may either be subcritical, generic critical or nongeneric critical with the dense or dilute value of the exponent a. Correspondingly, we say that the model is at a subcritical point, a generic critical point or a dense or dilute nongeneric critical point. Which situation occurs in practice is encoded in the phase diagram of the model. Figure 3.4 displays the qualitative phase diagram for a fixed value of n < 2, which is expected from physical grounds and is confirmed by the exact solution, as we will explain now. We start by recalling certain well-known analytical properties of the generating function of Boltzmann maps with a boundary, see for instance [14, Section 6] for more details. Let us introduce the resolvent

F 2k (g 2 , g 4 , g 6 , . . .) ∼ c 2 cos πa (4R) k k a , k → ∞. ( 3 
W(ξ) := 1 ξ + k≥1 F 2k (g 2 , g 4 , g 6 , . . .) ξ 2k+1 (3.9) 
which is closely related with the quantity W 0 considered in Section 1.4. The one-cut lemma states that, when the weight sequence g is admissible, the function ξ → W(ξ) is analytic in C \ [-γ, γ] with γ := 2 √ R (which depends on g), has singularities at ±γ and a cut on [-γ, γ], with finite limits when one approaches the cut from the upper or the lower half-plane. For ξ ∈ [-γ, γ], we denote these limits by W(ξ + i0) and W(ξ -i0) respectively. Note that, in the bipartite setting considered here, W is an odd function of ξ; in the general setting the cut may no longer be symmetric about 0. Furthermore, the spectral density

ρ(ξ) := W(ξ -i0) -W(ξ + i0) 2iπ (3.10) 
is a nonnegative even function on [-γ, γ], vanishing at ±γ, and we have the functional relation

W(ξ -i0) + W(ξ + i0) = ξ - k≥1 g 2k ξ 2k-1 , ξ ∈ [-γ, γ]. (3.11) 
Let us now substitute g = z the solution of the fixed point equation (3.2). Then, we get that

W (ξ) := 1 ξ + k≥1 Z 2k ξ 2k+1 (3.12) 
has a cut [-γ, γ] depending on (n, g, h), and the functional relation becomes

W (ξ -i0) + W (ξ + i0) = ξ -gξ 3 - n hξ 2 W 1 hξ + n ξ , ξ ∈ [-γ, γ]. (3.13) 
This equation is very similar to that for the O(n) loop model on cubic maps, which was originally derived using matrix integrals, and which we recovered using the gasket decomposition in [START_REF] Borot | More on the O(n) model on random maps via nested loops: loops with bending energy[END_REF]. The functional equation (3.13) relates the values of W on the cut [-γ, γ] to that on its image through the inversion ξ → 1 hξ . Admissibility entails that the cut and its image have disjoint interiors, but they can possibly meet at their endpoints when γ is equal to the fixed point h -1/2 of the inversion. From the relation γ = 2 √ R, this happens precisely when the second condition (3.7) for nongeneric criticality is satisfied. As we shall see, the first condition (3.6) is then a consequence of the functional equation. In other words, we have γ ≤ h -1/2 with equality if and only if the model is a nongeneric critical point.

The key observation for solving the functional equation (3.13) is that, given the value of γ, it is an inhomogeneous linear equation in W . Therefore, we have

W (ξ) = W part (ξ) + W hom (ξ) (3.14) 
where

W part (ξ) := 2(ξ -gξ 3 ) -n 1 h 2 ξ 3 -g h 4 ξ 5 4 -n 2 + n (2 + n)ξ (3.15)
is the particular solution of (3.13) which is a Laurent polynomial in ξ, and W hom is an odd solution of the homogeneous linear equation

W hom (ξ -i0) + W hom (ξ + i0) + n hξ 2 W hom 1 hξ = 0, ξ ∈ [-γ, γ]. (3.16) 
The set of meromorphic solutions of this equation is a certain infinite-dimensional vector space, and the precise solution W hom which we should pick is determined by the analyticity properties of W . Indeed, we know that W cannot have poles, but W part has poles at 0 and ∞: these should be therefore cancelled by W hom . Also, by (3.12), we should moreover impose that W (ξ) ∼ 1 ξ for ξ → ∞. Such constraints turn out to be sufficient to fix completely W hom given γ.

The actual value of γ is fixed by the consistency condition that the spectral density ρ is nonnegative on [-γ, γ] and vanishes at ±γ. All the nonlinearity of the problem is hidden in this condition, as the space of solutions of (3.16) depends on γ in an essential way.

Let us write the solution in the nongeneric critical case γ = h -1/2 , which is both easier and more interesting. In this case the solution of (3.16) takes the form

W hom (ξ) = B(ξ) -γ 2 ξ 2 B γ 2 ξ ξ -γ ξ + γ b -B(-ξ) -γ 2 ξ 2 B -γ 2 ξ ξ + γ ξ -γ b (3.17)
where the exponent b is as in (3.8), and B is a meromorphic function which, from the analyticity requirements on W , is equal to

B(ξ) = g 4 -n 2 ξ 3 + 2bγξ 2 + 2b 2 γ 2 ξ + 2 3 (b + 2b 3 )γ 3 - 1 4 -n 2 (ξ + 2bγ). (3.18) 
Finally, the consistency condition yields a relation between the parameters n, g and h of the model, which is nothing but the equation for the nongeneric critical line. 

such that g = 3 2 + b 2 h - 2 -n 2b 2 h 2 (3.19)
and g ≤ g * , h ≥ h * , with

g * := 3b 2 (2 -b) 2 2(2 -n)(b 2 -2b + 3) 2 , h * := b 2 (2 -b) 2 (2 -n)(b 2 -2b + 3) (3.20) 
and b as in (3.8). The point (g * , h * ) is a dilute critical point, and all the other points are dense critical points, including the "full-packed" critical point (0, 2b 2 2-n ).

Identifying the dilute and dense critical exponents is rather straightforward from (3.17), as it yields the expansion of W around the singularities at ±γ, which are related with the asymptotic behavior of Z 2k for k → ∞.

It is also possible to obtain a parametrization for the generic critical line displayed on Figure 3.4, which connects the point (g, h) = (1/12, 0) to the dilute critical point. It is more complicated since, for γ < h -1/2 , the solution of the functional equation (3.16) passes through the use of an elliptic parametrization, see [START_REF] Borot | A recursive approach to the O(n) model on random maps via nested loops[END_REF]Sections 6.3 and 6.4] for details.

Let me mention that the derivation of Theorem 3.2 which we gave in [START_REF] Borot | A recursive approach to the O(n) model on random maps via nested loops[END_REF] was based on numerical evidence which we did not fully justify. More precisely, we assumed that the consistency condition, which we use to identify the correct value of γ, is not only necessary but also sufficient. This has been proved rigorously by Timothy Budd and Linxiao Chen in [Bud18, Theorems 1 and 2]. In a nutshell, the first theorem, due to T. Budd, asserts that the model is admissible if the fixed-point equation (3.2) admits a solution in the space of nonnegative real sequences (which is then unique), while the second theorem, due to L. Chen, asserts that such solution exists if the functional equation (3.13) admits a solution satisfying the consistency condition2 (which is then unique). See also the discussion in Linxiao's thesis [Che18, Chapter II].

In the papers [START_REF] Borot | More on the O(n) model on random maps via nested loops: loops with bending energy[END_REF] and [START_REF] Borot | Loop models on random maps via nested loops: the case of domain symmetry breaking and application to the Potts model[END_REF], we follow a similar approach to analyze the phase diagrams of the O(n) loop model on cubic maps with bending energy and of the "twofold" loop models, respectively. These are the most general models that we may solve by the techniques presented in this section. New insights are needed to solve models where the loops may visit faces of higher degree.

By combining Theorems 3.1 and 3.2 with the results from [START_REF] Gall | Scaling limits of random planar maps with large faces[END_REF], we obtain some interesting information about the geometry of the gasket in the rigid O(n) loop model for n < 2: at the nongeneric critical points, whose existence has been shown, the gasket is distributed as a Boltzmann bipartite map with a nongeneric critical weight sequence z such that

z 2k ∼ c γ -2k
k 2±b where b is as in (3.8), and where the + andsign is taken in the dilute and dense case respectively. Therefore, by the results of Le Gall and Miermont, if we condition the gasket to have a large number U of vertices, the typical distance between gasket vertices is of order U 3±2b , and if we divide by this factor the gasket converges (at least along subsequences) in the Gromov-Hausdorff sense as U → ∞ towards a random compact metric space of Hausdorff dimension 3 ± b ∈ (2, 4). This limit is different from the Brownian map which has dimension 4.

Nesting statistics

So far we have obtained a relatively precise information about the structure of the gasket, but it is natural to ask also for geometric information about the full map with loops. It seems difficult to handle distances in the full map by our approach but, interestingly, we may obtain information about the nestings between loops.

Let us consider a loop-decorated quadrangulation with a boundary. The associated nesting tree is the graph whose edges and vertices (hereafter called nodes) correspond respectively to the loops and to the regions which they delimit on the underlying surface of the quadrangulation; the incidence relations in the nesting tree keep track of those in the surface. See Figure 3.5 for an illustration. The nesting tree is indeed a tree by the planarity of the surface3 and by the fact the loops are disjoint cycles. The root node of the nesting tree corresponds to the region incident to the boundary, which may be identified with the gasket. We are interested in understanding the structure of the nesting tree, especially at a nongeneric critical point where we expect it to have an nontrivial structure.

In the paper [START_REF] Borot | Nesting statistics in the O(n) loop model on random planar maps[END_REF] we considered the situation where the loop-decorated map has an extra marking, such as a distinguished vertex or another boundary. The extra marking turns into a distinguished node in the nesting tree, which may differ from the root vertex. The depth is defined as the distance between the root and distinguished nodes in the nesting tree; it corresponds to the minimal number of loops that one must cross to go from the root to the extra marking in the loop-decorated map.

For simplicity I will restrict to the case where the extra marking is a vertex, which we pick uniformly at random in the loop-decorated map. Note that the corresponding node is in general not uniform in the nesting tree. If the loop-decorated map is itself picked at random, according to the rigid O(n) loop model measure with a prescribed boundary length 2k, the depth is a random variable which we denote by P k . Theorem 3.3 (see [START_REF] Borot | Nesting statistics in the O(n) loop model on random planar maps[END_REF]). At a nongeneric critical point of the rigid O(n) loop model with n ∈ (0, 2), the depth P k of a uniformly chosen vertex in a loop-decorated quadrangulation of boundary length 2k grows logarithmically with k as k → ∞. More precisely, we have the convergence in distribution

P k - n π √ 4-n 2 ln k √ ln k d → N (0, σ 2 ) (k → ∞) (3.21) 
where N (0, σ 2 ) is the normal distribution with mean 0 and variance σ 2 := and we have the large deviation estimate

ln Prob P k = p π ln k ∼ - J(p) π ln k (k → ∞, p ≥ 0) (3.22)
where the rate function J reads

J(p) := p ln 2p n 1 + p 2 + arccot(p) -arccos(n/2). (3.23) 
The rate function J is plotted on Figure 3.6 for a few values of n. It is strictly convex-we have J (p) = 1 p(p 2 +1) > 0-and attains it minimum at p = n √ 4-n 2 consistently with (3.21). At p = 0 it takes the value arcsin(n/2). Note that, remarkably, the statement of the theorem does not depend on the dilute/dense nature of the nongeneric critical point.

Theorem 3.3 differs slightly from the results stated in [START_REF] Borot | Nesting statistics in the O(n) loop model on random planar maps[END_REF]. First, we consider here the rigid O(n) loop model instead of the O(n) loop model on cubic maps with bending energy. This change is rather innocent since the computations are entirely similar. Second, we consider the asymptotics for a large perimeter 2k while, in [START_REF] Borot | Nesting statistics in the O(n) loop model on random planar maps[END_REF], we condition the loopdecorated map to contain a fixed number V of vertices and consider the limit V → ∞ (keeping either the perimeter 2k finite, or having it grow with V in an appropriate "crossover" scaling). This change somewhat simplifies the proof of Theorem 3.3 which we will sketch in the remainder of this section (see Remark 3.3 for a discussion of the conditioning).

The key ingredient in the proof of Theorem 3.3 is an exact expression for a refined generating function keeping track of the depth of the marked vertex. More precisely, for k a nonnegative integer and s a formal or nonnegative real variable, we set

Z • 2k [s] := m w(m)s P (m) (3.24)
where the sum runs over all pointed loop-decorated quadrangulations m with a boundary of length 2k, the weight w(m) is as in (3.1), and P (m) denotes the depth of the distinguished vertex. The probability generating function of P k is then given by

E s P k = Z • 2k [s] Z • 2k (3.25)
where the unrefined generating function

Z • 2k = Z • 2k [1]
is related to the generating function Z 2k considered in the previous sections by

Z • 2k = g ∂ ∂g + h ∂ ∂h + k + 1 Z 2k . (3.26) 
Indeed, by Euler's relation, the number of vertices of a loop-decorated quadrangulation m with a boundary of length 2k is equal to

f u (m) + f v (m) + k + 1.
Now, by differentiating the fixed point equation (3.2), we find that Z • 2k satisfies the relation

Z • 2k = F • 2k (z 2 , z 4 , z 6 , . . .) + n ∞ =0 h 2 F • 2k,2 (z 2 , z 4 , z 6 , . . .)Z • 2 (3.27)
where F • 2k (g 2 , g 4 , g 6 , . . .) denotes the generating function of pointed rooted bipartite maps with a boundary of length 2k, and F • 2k,2 (g 2 , g 4 , g 6 , . . .) = ∂ ∂g 2 F 2k (g 2 , g 4 , g 6 , . . .) that of annular bipartite maps with boundaries of lengths 2k and 2 , the boundary of length 2k being rooted 4 . The combinatorial meaning of (3.27) is the following. The first term in the right-hand side corresponds to the case where the marked vertex belongs to the gasket. The second term corresponds to the opposite case: then, we consider the outermost loop that separates the marked vertex from the boundary. Denoting the length of this loop by 2 , we find that, in the gasket decomposition, the gasket has a distinguished face of degree 2 , inside which we find a pointed internal map with outer degree 2 . This explains the different factors appearing in the sum over .

We then claim that the refined generating function Z • 2k [s] satisfied the modified equation

Z • 2k [s] = F • 2k (z 2 , z 4 , z 6 , . . .) + ns ∞ =0 h 2 F • 2k,2 (z 2 , z 4 , z 6 , . . .)Z • 2 [s] (3.28) 
where the weight sequence z does not depend on s, and is still given by the fixed point equation (3.2). Indeed, if we consider a map m contributing to Z • 2k [s], it contributes to the first term of the right-hand side if P (m) = 0, and to the second term if P (m) ≥ 1. In this latter case, we have P (m) = P (m ) + 1, where m is the internal map containing the marked vertex.

We now form the series

W • s (ξ) := 1 ξ + k≥1 Z • 2k [s] ξ 2k+1 .
(3.29)

4. If we choose to also root the other boundary for symmetry, then we have to divide the term of index in (3.27) by 2 . This is the convention that we follow in [START_REF] Borot | Nesting statistics in the O(n) loop model on random planar maps[END_REF], where the cylinder generating function F (2) which we consider is related to the current

F • by F (2) 2k,2 = 2 F • 2k,2 .
For |s| ≤ 1, it is analytic in the same domain as the series W (ξ) considered in Section 3.3, namely C \ [-γ, γ] (γ being independent of s). The equation (3.28) then translates into the functional equation

W • s (ξ -i0) + W • s (ξ + i0) = - ns hξ 2 W • s 1 hξ + ns ξ , ξ ∈ [-γ, γ], (3.30) 
see [START_REF] Borot | Nesting statistics in the O(n) loop model on random planar maps[END_REF]Section 4] for details. This functional equation may be solved along the same lines as (3.13). In particular, the homogeneous linear equation is the same as (3.16), except that n is replaced by ns. At a nongeneric critical point, the solution takes the form Note that the expression for W • s (ξ) is much more compact than that for W (ξ), cf (3.17) and (3.18). This is again a manifestation of the general principle that the generating functions of pointed rooted maps are simpler than those of maps which are just rooted 5 . Close to the endpoints of the cut, we have the asymptotic equivalent

W • s (ξ) = ns (2 + ns)ξ + 1 2(2 + ns)b(s)γ ξ + γ ξ -γ b(s) - ξ -γ ξ + γ b(s) (3.
W • s (ξ) ∼ ± 2 b(s)-1 (2 + ns)b(s)γ • (1 ∓ γ/ξ) -b(s) (ξ → ±γ) (3.33) 
which implies (using the analyticity of

W • s in C \ [-γ, γ]) the asymptotics Z • 2k [s] ∼ 4 b(s) 2(2 + ns)Γ(1 + b(s)) • γ 2k k 1+b(s) (k → ∞). (3.34) 
Note that this asymptotic behavior does not depend on the dense/dilute nature of the nongeneric critical point, and that the subleading exponent 1 + b(s) takes the value 3/2 at s = 0 regardless of n. By (3.25), we find that the probability generating function of P k satisfies 

E s P k ∼ cst • k b-b(s) . ( 3 
J(p) π = inf t∈(-∞,ln(2/n))
bb(e t ) -p π t .

(3.36)

5. In particular, for s = 0-which amounts to forcing the marked vertex to be in the gasket-we have W • 0 (ξ) = Remark 3.2. Outside the nongeneric critical situation, it should be possible to obtain an expression for W • s (ξ) using the same elliptic parametrization as for W (ξ). We expect to find an asymptotic behavior of the form Z

• 2k [s] ∼ C(s) γ 2k k 3/2
for k → ∞, with only the constant depending on s. This would imply that P k has a discrete limit law as k → ∞. Remark 3.3. Conditioning on having a fixed number V of vertices, as we do in [START_REF] Borot | Nesting statistics in the O(n) loop model on random planar maps[END_REF], is more involved since we need to extract from the refined generating function Z • 2k [s] the contribution of maps with V vertices, which may be done by introducing an auxiliary weight per vertex and performing a contour integral. The limit V → ∞ may then be studied by a bivariate saddle-point analysis. Remarkably, we find that Theorem 3.3 holds with very little modification in this setting: set c = 1 if we are at a dilute critical point, and c = 1/(1b) otherwise. Then, in the regime V → ∞ with k fixed, we simply have to replace ln k by c ln V in (3.21) and (3.22). And in the crossover regime V → ∞ with k ∝ V c/2 , the statements hold without modification.

Interestingly, we found that the rate function J of Theorem 3.3 also appears when considering the so-called Conformal Loop Ensembles (CLE) coupled to Liouville quantum gravity. More precisely, our starting point was the expression of the multifractal spectrum of extreme nesting in CLE which has been computed by Miller, Watson and Wilson [START_REF] Miller | Extreme nesting in the conformal loop ensemble[END_REF]. In a nutshell, it is the function that associates to ν > 0 the Hausdorff dimension of the set of points z ∈ C such that the number of CLE loops surrounding the ball B(z, e -r ) grows as νr for r → ∞. To obtain our J, we need to replace the Euclidean radius e -r of the ball by its Liouville quantum measure. This is done by applying a functional version of the KPZ relations, see [START_REF] Borot | Nesting statistics in the O(n) loop model on random planar maps[END_REF]Section 2.6] for details.

To conclude this section, let me mention that our results have been complemented by Chen, Curien and Maillard [START_REF] Chen | The perimeter cascade in critical Boltzmann quadrangulations decorated by an O(n) loop model[END_REF]-see also [START_REF] Chen | Random Planar Maps coupled to Spin Systems[END_REF] Chapter III]-who showed that, when the perimeter 2k of the loop-decorated map tends to infinity, the nesting tree may be described by a certain multiplicative cascade. Their approach consists in keeping track of the lengths of the longest outermost loops, and showing that they scale linearly with k, with random proportionality constants whose law is explicit.

Conclusion and perspectives

In this chapter we have presented the gasket decomposition and some of its applications to the study of the O(n) loop model on random maps. Many other results on this model have been obtained recently by Timothy Budd [START_REF] Budd | On a connection between planar map combinatorics and lattice walks[END_REF][START_REF] Budd | Winding of simple walks on the square lattice[END_REF][START_REF] Budd | The peeling process on random planar maps coupled to an O(n) loop model[END_REF]. In particular, while studying the peeling process of loop-decorated random maps, he uncovered a surprising connection with walks on the square lattice, which allows to study their winding angles around the origin.

Let me now list a few directions for future research. First, it would be interesting to make a connection between our approach and that developed by Bernardi and Bousquet-Mélou (recall that the O(n) loop model is intimately connected with the Potts model, as mentioned in Section 3.1). Do the techniques discussed in this chapter allow to recover the same algebraicity results as those [START_REF] Bernardi | Counting colored planar maps: algebraicity results[END_REF]? And how does differential algebraicity [START_REF] Bernardi | Counting coloured planar maps: differential equations[END_REF] arise in this context? Another challenging question is to extend the gasket decomposition in the presence of degree constraints on the vertices. In particular, the results from [START_REF] Eynard | The Potts-q random matrix model: loop equations, critical exponents, and rational case[END_REF] still await a combinatorial explanation.

The topic of maps with large faces, which was my initial motivation for considering the O(n) loop model, is still a very active domain of research [START_REF] Budd | Geometry of infinite planar maps with high degrees[END_REF][START_REF] Richier | Limits of the boundary of random planar maps[END_REF][START_REF] Curien | Duality of random planar maps via percolation[END_REF][START_REF] Marzouk | On scaling limits of planar maps with stable facedegrees[END_REF]. From the point of view of statistical physics, it is still not completely understood how the phase transition between the dense and dilute regimes manifests itself at the geometric level. More precisely, in the qualitative discussion at the beginning of Section 3.3, the phase transition occurs when the exponent a appearing in (3.4) takes the value 2. The dense and dilute phases corresponds to the respective cases a < 2 and a > 2. By analogy with the O(n) loop model on regular lattices (whose scaling limit at a critical point is believed to be a conformal loop ensemble), we expect the contours of the faces to be simple in the scaling limit for a ≥ 2, and nonsimple for a < 2. Some results in that direction were obtained in [START_REF] Richier | Limits of the boundary of random planar maps[END_REF] but, to my knowledge, the question is not settled. A very interesting duality between the dense and dilute regimes has been studied in [START_REF] Curien | Duality of random planar maps via percolation[END_REF].

Finally, I would like to extend the gasket decomposition to other models of statistical physics on random maps such as the six-vertex model-see the references given in Section 3.1 and the recent preprint [START_REF] Bousquet-Mélou | Eulerian orientations and the six-vertex model on planar map[END_REF]-and the ADE height model [START_REF] Kostov | Gauge invariant matrix model for the Â-D-Ê closed strings[END_REF][START_REF] Kostov | Solvable statistical models on a random lattice[END_REF]. Some preliminary investigation shows that our approach may indeed be adapted to this setting, with new technical challenges to be overcome. For instance, loop representations of the six-vertex model typically involve complex weights, whose probabilistic interpretation is unclear. The primary motivation is to gain geometric insight on these models.

In this chapter, we leave the the realm of planar maps and enter that of Schur processes. They are certain measures over sequences of partitions, with deep connections with models of statistical mechanics such as lozenge or domino tilings, last passage percolation (LPP) and the totally asymmetric simple exclusion process (TASEP). The publications closest to this topic are [START_REF] Bouttier | From Aztec diamonds to pyramids: steep tilings[END_REF][START_REF] Betea | Perfect sampling algorithm for Schur processes[END_REF][START_REF] Boutillier | Dimers on rail yard graphs[END_REF][START_REF] Betea | The free boundary Schur process and applications I[END_REF][START_REF] Betea | The periodic Schur process and free fermions at finite temperature[END_REF][START_REF] Betea | New edge asymptotics of skew Young diagrams via free boundaries[END_REF]. In this chapter I will present my contributions from a personal perspective.

After recalling some context in Section 4.1, I discuss in Section 4.2 how Schur processes arise in connection with a family of domino tilings called steep tilings [START_REF] Bouttier | From Aztec diamonds to pyramids: steep tilings[END_REF], that are equivalent to dimer coverings of rail yard graphs [START_REF] Boutillier | Dimers on rail yard graphs[END_REF]. In Section 4.3, I explain how to compute the correlation functions in the presence of periodic or free boundary conditions using the free fermion formalism. Then, in Section 4.4, I discuss the corresponding asymptotics. The material for these two sections comes from [START_REF] Betea | The free boundary Schur process and applications I[END_REF][START_REF] Betea | The periodic Schur process and free fermions at finite temperature[END_REF]. I conclude with some perspectives in Section 4.5.

Context

Let me start by telling how I became interested in the subject: in 2011-2012 I was spending the academic year at LIAFA1 , and participating in their groupe de lecture de combinatoire which that year was on the topic of integrable hierarchies, following the book by Miwa, Jimbo and Date [START_REF] Miwa | Solitons[END_REF]. The initial motivation was to understand their connection with map generating functions, but I actually did not pursue further work in that direction2 . However, in Spring 2012 I also visited the Mathematical Sciences Research Institute in Berkeley during the program Random spatial processes, where I learnt about the work of Benjamin Young on pyramid partitions [START_REF] Young | Computing a pyramid partition generating function with dimer shuffling[END_REF]. Back in Paris, together with Guillaume Chapuy and Sylvie Corteel, we were struck that the fact that the vertex operator formalism, that plays a key role in integrable hierarchies, is also useful for the study of pyramid partitions [START_REF] Young | Generating functions for colored 3D Young diagrams and the Donaldson-Thomas invariants of orbifolds[END_REF]. Also, we were puzzled by the similarity between the expression of the generating function of pyramid partitions and that of domino tilings of the Aztec diamond [START_REF] Elkies | Alternating-sign matrices and domino tilings[END_REF][START_REF] Elkies | Alternating-sign matrices and domino tilings[END_REF]. This led us to introduce the notion of steep tilings [START_REF] Bouttier | From Aztec diamonds to pyramids: steep tilings[END_REF], which encompasses both families and may be enumerated by the vertex operator formalism. After Sylvie presented our work at Aléa, we were joined by Cédric Boutillier and Sanjay Ramassamy, with whom we introduced rail yard graphs [START_REF] Boutillier | Dimers on rail yard graphs[END_REF]. Dimer models on rail yard graphs are essentially equivalent to steep tilings, as we shall see in Section 4.2, but they come with a coordinate system which is more convenient for expressing the so-called correlation functions. These models are, in some sense, the most general combinatorial realizations of Schur processes.

Schur processes were introduced by Okounkov and Reshetikhin [OR03, OR07] as a generalization of Okounkov's Schur measures [START_REF] Okounkov | Infinite wedge and random partitions[END_REF]. They also appear, more or less implicitly, in the works of Johansson [Joh02,[START_REF] Johansson | Discrete polynuclear growth and determinantal processes[END_REF][START_REF] Johansson | The arctic circle boundary and the Airy process[END_REF]. Together with their nondeterminantal generalization called Macdonald processes [START_REF] Borodin | Macdonald processes[END_REF], they are central models in the field known as integrable probability [START_REF] Borodin | Integrable probability[END_REF][START_REF] Borodin | Lectures on integrable probability[END_REF]. I will not attempt to review the abundant literature in this field but, besides the references cited in the previous papers, point to the book by Romik [START_REF] Romik | The surprising mathematics of longest increasing subsequences[END_REF]. It gives a nice account of the story of the Ulam-Hammersley problem, which consists in studying the asymptotic distribution of the length of a longest increasing subsequence of a random permutation, and which is intimately connected with the Plancherel measure on integer partitions [BDJ99,BOO00,Joh01], the simplest instance of a Schur measure.

The vertex operator formalism, also known as the free fermion formalism, the (semi) infinite wedge, the fermionic Fock space, the boson-fermion correspondence, etc, is a classical topic in mathematical physics, see e.g. [JM83, MJD00, AZ13], [Kac90, Chapter 14] or [ZJ08, Chapter 1]. Its probabilistic application for the study of Schur measures and processes was pioneered by Okounkov [Oko01, Appendix A], see also [START_REF] Prähofer | Scale invariance of the PNG droplet and the Airy process[END_REF]. In contrast, other authors such as Johansson [START_REF] Johansson | Discrete orthogonal polynomial ensembles and the Plancherel measure[END_REF] and Borodin-Rains [Rai00, BR05, Bor07] used variants of the orthogonal polynomial method developed in random matrix theory.

Since my own entry in the subject was through the vertex operator formalism, I found it natural to continue using it. In our work on steep tilings [START_REF] Bouttier | From Aztec diamonds to pyramids: steep tilings[END_REF], we understood how to apply it to enumerate tilings with periodic or free boundary conditions. But it was unclear how to extend the approach to handle the correlation functions. This is the problem that we solved in the papers [START_REF] Betea | The free boundary Schur process and applications I[END_REF][START_REF] Betea | The periodic Schur process and free fermions at finite temperature[END_REF], which will be reviewed in Section 4.3.

From domino tilings to Schur processes

In this section we explain how Schur processes arise in connection with a certain family of domino tilings, that we call steep tilings, and that are in bijection with dimer coverings of rail yard graphs. The definitions in this section differ slightly from those in [START_REF] Bouttier | From Aztec diamonds to pyramids: steep tilings[END_REF] and [START_REF] Boutillier | Dimers on rail yard graphs[END_REF], see Remark 4.1. The term "steep" comes from the fact that the associated height function, which we will not discuss here for brevity, has eventually the maximal possible slope in two opposite directions.

Consider the domino tiling represented on the left of Figure 4.1, which we call the fundamental tiling. We choose the Cartesian coordinate system (x, y) such that the corners of dominoes belong to the lattice Z 2 and, by convention, the origin (0, 0) is the point at the center of the figure (hence is a corner common to four different dominoes). A point of Z 2 is said odd or even depending on the parity of the sum of its coordinates. Parity allows to distinguish four types of dominoes: a horizontal (resp. vertical) domino is said north (resp. east) if its top-left corner is odd, and south (resp. west) otherwise. In the fundamental tiling, the region x + y ≥ 1 contains only north and east dominoes, corresponding to a perturbation of it by finitely many "flips". North and east (resp. south and west) dominoes are represented in green (resp. orange). The fundamental tiling is periodic along the north-west to south-east direction, along the perpendicular direction it is almost periodic (notice the "zig-zag" pattern gets shifted at the green-orange interface, which is the only place where we can perform initial flips). A general steep tiling coincides with the fundamental tiling far away from the interface.

while the region x + y ≥ -1 contains only south and west dominoes.

A general steep tiling is obtained from the fundamental tiling by performing flips. A flip is the elementary operation which consists in replacing a pair of parallel dominoes forming a 2 × 2 block by a pair of dominoes with the opposite orientation. Note that, initially in the fundamental tiling, the only flippable blocks are centered at the positions (n, n) with n an odd integer. But, after such flips have been performed, new flippable blocks appear. An example of steep tiling is represented on the right of Figure 4.1. A steep tiling is said pure if it may be obtained from the fundamental tiling by finitely many flips, hence it coincides with it outside a finite region. For a general steep tiling, we require that the number of flips centered on the line xy = n be finite for each n, but the total number of flips may be infinite. Informally this says that a steep tiling coincides with the fundamental tiling sufficiently far away from the line x + y = 0. Such more general setting is necessary when considering periodic steep tilings, for instance. Keeping track of the number of flips on each line amounts to putting certain weights on dominoes, but these weights are easier to define in the language of rail yard graphs, which we now present.

Steep tilings are in bijection with certain dimer coverings of the (universal) rail yard graph, obtained as follows. Given a steep tiling, the first step consists in passing to the dual picture, namely to the corresponding dimer covering of the dual graph, as displayed on the left of To facilitate the further identification with a sequence of interlaced partitions, south and west (resp. north and east) dimers are represented with solid (resp. hollow) endpoints, that indicate the presence of a particle (resp. of a hole). Right: the same dimer covering, now represented on the "universal" rail yard graph. To help visualize the deformation, we represent in lighter color the dimers close to the origin.

There are finitely many dimers on the longer edges, and the weights are associated with them.

where Z := Z + 1 2 is the set of half-integers. Next, we slightly deform the dual graph as follows: given a vertex (x, y) ∈ (Z ) 2 -we leave it at the same position if xy is even, -we translate it by ( 1 2 , 1 2 ) if xy ≡ 1 mod 4, -we translate it by (-1 2 , -1 2 ) if xy ≡ -1 mod 4. See the right of Figure 4.2 for an illustration. A more convenient choice of coordinates [START_REF] Boutillier | Dimers on rail yard graphs[END_REF] for the vertices of the deformed graph, which we call the universal rail yard graph (URYG), is to set

x = X 2 + Y, y = - X 2 + Y (4.1)
where X ∈ Z and Y ∈ Z . Thus, the vertex set of the URYG may be thought as Z × Z in terms of the (X, Y ) coordinates. There are two types of edges: shorter edges connecting vertices with the same value of Y , and longer edges connecting vertices whose values of Y differ by ±1. We do not detail here the full characterization of dimer coverings corresponding to steep tilings, but simply note that the finiteness condition on the number of flips along a line xy = n implies that the number of longer edges covered by dimers, hereafter called covered longer edges, is finite along each such line. In particular pure dimer coverings, corresponding to pure steep tilings, have finitely many covered longer edges, but the converse is not true 3 . To a dimer covering C with finitely many covered longer edges, we assign a weight

w(C) := i∈Z u n i (C) i (4.2)
where n i (C) is the number of covered longer edges connecting vertices with abscissas i -1 2 and i + 1 2 in the URYG coordinates (so their middles have abscissa i ∈ Z ), and the u i 's are arbitrary variables. By working out the correspondence backwards, we see that the weight w(C) corresponds to putting certain weights on dominoes in the steep tiling picture. Details are left to the reader. The only pure tiling with weight 1 (i.e. containing no covered longer edge in the dimer picture) is the fundamental tiling.

Remark 4.1. The original definition of steep tilings in [START_REF] Bouttier | From Aztec diamonds to pyramids: steep tilings[END_REF] involves the so-called asymptotic data, which is a binary word on the alphabet {+, -}. Here we consider only steep tilings with asymptotic data

• • • + + --+ + --+ + --• • • .
There is no loss of generality in doing so, as arbitrary asymptotic data may be "emulated" by setting appropriate variables u i in (4.2) to zero. Similarly the original definition of rail yard graphs in [START_REF] Boutillier | Dimers on rail yard graphs[END_REF] involves the so-called LR and sign sequences, and here we consider the case where these are respectively

• • • LRLRLRLR • • • and • • • + + --+ + --+ + --• • • (
again, without loss of generality, which is why we call this case "universal"). The URYG which we consider here corresponds actually to the contracted graph R of [24, Section 5.2].

The main result of [START_REF] Bouttier | From Aztec diamonds to pyramids: steep tilings[END_REF] concerns the weighted enumeration of steep tilings subject to various kinds of boundary conditions (pure, periodic, free, etc), and the main result of [START_REF] Boutillier | Dimers on rail yard graphs[END_REF] is an explicit expression for their so-called correlation functions in the pure case. So, let us first review the results for the pure case. We start with the enumerative result. 

Z = (i,j)∈Z 2 i<j 1 + u 4i+ 1 2 u 4j-1 2 1 + u 4i+ 3 2 u 4j-3 2 1 -u 4i+ 1 2 u 4j-3 2 1 -u 4i+ 3 2 u 4j-1 2 . (4.3)
It is clear that Z is a well-defined formal power series in the variables (u i ) i∈Z , with nonnegative integer coefficients. Furthermore, it is analytically convergent when the u i 's are small enough and decay fast enough (e.g. exponentially) at ±∞.

We now discuss some examples, that are obtained by reduction, i.e. by setting some u i 's to zero, cf. Remark 4.1. Reduction amounts to forbidding certain types of dominoes/dimers at certain positions, such that the resulting subfamily is in bijection with another family of tilings. For brevity, we only write down the reduced formulas, and refer to the original papers for the combinatorial details of reduction.

3. Dimer coverings with finitely many covered longer edges may have different boundary conditions for X → ±∞. A boundary condition corresponds to a partition, and the pure case corresponds to having the empty partition as boundary condition for both X → +∞ and X → -∞. Boundary conditions are analogous to the "asymptotics" for "3d partitions" (plane partitions) considered in [START_REF] Okounkov | Quantum Calabi-Yau and classical crystals[END_REF]. 

= v 2i+1 , u 4i-1 2 = v 2i . We get Z Aztec = i<j (1 + v 2i+1 v 2j ) (4.4)
which corresponds to Stanley's weighting scheme for the Aztec diamond, see [START_REF] Bouttier | From Aztec diamonds to pyramids: steep tilings[END_REF]Remark 2]. Taking further v i = 1 for 1 ≤ i ≤ 2 and v i = 0 otherwise, we recover the well-known fact that there are 2 ( +1 2 ) domino tilings of the Aztec diamond of order . Taking more generally v i = q (-1) i i for 1 ≤ i ≤ 2 , we recover the q-series

i=1 (1 + q 2i-1 ) +1-i [EKLP92a]. Example 4.3 (Pyramid partitions). For i ≥ 0, take u 4i+ 1 2 = u 4i+ 3 2 = 0, u 4i+ 5 2 = v 2i and u 4i+ 7 2 = v 2i+1 . Similarly for i ≤ 0, take u 4i-1 2 = u 4i-3 2 = 0, u 4i-5 2 = v 2|i| and u 4i-7 2 = v 2|i|+1 . We get Z pyramids = ∞ i,j=0 (1 + v 2i v 2j )(1 + v 2i+1 v 2j+1 ) (1 -v 2i v 2j+1 )(1 -v 2i+1 v 2j ) . (4.5) 
By taking v i = v i = q i+ 1 2 we obtain the q-series k≥1

(1+q 2k-1 ) 2k-1 (1-q 2k ) 2k
which is the generating function of pyramid partitions [START_REF] Young | Computing a pyramid partition generating function with dimer shuffling[END_REF][START_REF] Young | Generating functions for colored 3D Young diagrams and the Donaldson-Thomas invariants of orbifolds[END_REF].

Example 4.4 (Plane partitions). For i ≥ 0, take u 4i+ 1 2 = u 4i+ 3 2 = u 4i+ 7 2 = 0 and u 4i+ 5 2 = v i . For i ≤ 0, take u 4i-1 2 = u 4i-3 2 = u 4i-5 2 = 0 and u 4i-7 2 = v |i| . We get Z pp = ∞ i,j=0 1 1 -v i v i .
By taking v i = v i = q i+ 1 2 we obtain the q-series k≥1 1

(1-q k ) k which is the well-known MacMahon generating function of unboxed plane partitions.

We now discuss the correlation functions. Here it is slightly easier to work in the dimer picture: suppose that the u i 's are nonnegative and such that the partition function Z is finite. Then, we may interpret w(C)/Z as the probability of the pure dimer covering C in the URYG dimer model. For E a finite set of edges of the URYG, the correlation function P (E) is defined as the probability that all the edges in E are covered by dimers. Since the URYG is bipartite, we expect4 by the general Kasteleyn theory (see e.g. [dT15] and references therein) that P (E) may be expressed in the form of a determinant of size |E|, which is a minor of the so-called inverse Kasteleyn matrix. This turns out to be the case, and we are furthermore able to give an explicit expression for the entries of the inverse Kasteleyn matrix.

To state this expression, we need some further definitions and notations: for X ∈ Z, we set

F X (z) := i∈4Z+ 1 2 i<X (1 -u i z) -1 i∈4Z+ 3 2 i<X (1 + u i z) i∈4Z+ 5 2 i>X (1 -u i z -1 ) i∈4Z+ 7 2 i>X (1 + u i z -1 ) -1 . (4.6)
This quantity, and its inverse F X (z) -1 , are to be interpreted as Laurent series in z, where the first two factors should be seen as power series in z, and the last two as power series in z -1 . If we assume, for simplicity, that all the u i 's are smaller than 1 and decay exponentially as i → ±∞, then these Laurent series are convergent in an open annulus containing the unit circle (other cases may be treated by analytic continuation). Let (X, Y ) and (X , Y ) be the URYG coordinates of two vertices, with X odd and X even. Then, we set

C(X, Y ; X , Y ) :=            [z Y w -Y ] F X (z) F X (w) ∞ k=0 w z k+ 1 2 if X < X , [z Y w -Y ] F X (z) F X (w) ∞ k=0 z w k+ 1 2 if X > X , (4.7) 
where [z Y w -Y ] means extraction of the coefficient of z Y w -Y in the bivariate Laurent series on the right (which may be represented as a double contour integral).

Theorem 4.2 (see [START_REF] Boutillier | Dimers on rail yard graphs[END_REF]Theorem 5]). C is an inverse Kasteleyn matrix for the URYG dimer model, in the sense that, for any finite set E = {e 1 , . . . , e n } of edges, we have

P (E) = ±u i 1 • • • u im det 1≤k, ≤n C(X k , Y k ; X , Y ). (4.8)
where the edge e k has endpoints (X k , Y k ) and (X k , Y k ) (with X k assumed odd and X k even), and i 1 , . . . , i m (m ≤ n) denote the abscissas of the longer edges in E.

The proofs of Theorems 4.1 and 4.2 rely on two ingredients:

-a bijection between steep tilings (or URYG dimer coverings) and sequences of interlaced partitions that form a Schur process;

-the vertex operator/free fermion formalism (plus some combinatorial tricks to make the connection with Kasteleyn theory).

In the remainder of this section, we will give the first ingredient, for the second we refer to the original papers. Consider again Figure 4.2 and pay now attention to the endpoints of the dimers, which are represented either solid (•) or hollow (•). These symbols form a particle configuration: the symbol • indicates the presence of a particle, and the symbol • the absence of a particle, hence the presence of a hole. In detail, we put particles (resp. holes) on the endpoints of dimers corresponding to south or west (resp. north or east) dominoes. In terms of URYG coordinates, there are particles on the endpoints of a dimer covering an edge between (X, Y ) and (X + 1, Y ) if and only if X is even. Therefore, to each dimer covering we may associate a particle configuration on the URYG vertex set.

If we restrict to the vertices having a given abscissa X ∈ Z, then we obtain a 1D particle configuration that is a Maya diagram [START_REF] Miwa | Solitons[END_REF]. Such diagram is in bijection with a partition λ(X): again we trust that Figure 4.3 is worth a thousand words. Therefore, a URYG dimer covering corresponds to a sequence of partitions (λ(X)) X∈Z . This sequence satisfies the interlacing property

λ(4k) ≺ λ(4k + 1) ≺ λ(4k + 2) λ(4k + 3) λ(4k + 4), k ∈ Z. (4.9) 
This is a straightforward consequence of the URYG structure, of the coding of partitions by Maya diagrams, and of the characterization (0.5) of interlacing. For instance, the relation λ(4k + 1) ≺ λ(4k + 2) is obtained by considering the dimers between vertices with abscissas 4k +1 and 4k +2: for each such dimer there are particles on the endpoints, whose ordinates differ by 0 or 1, so we conclude by (0.5) that λ(4k + 2)/λ(4k + 1) is a vertical strip. Note that its size is equal to the number of covered longer edges with middle abscissas 4k + 3 2 . Other cases are obtained by symmetry and "particle-hole duality". The fundamental tiling corresponds to the constant sequence equal to the empty partition, and pure steep tilings map to sequences with finite support (i.e. equal to the empty partition except for finitely many terms). The weight w(C) of a dimer covering may be rewritten in terms of partitions as

w(C) = i∈Z u ||λ(i+ 1 2 )|-|λ(i-1 2 )|| i . ( 4 

.10)

Interestingly, both the interlacing property (4.9) and the weight (4.10) can be rewritten in terms of Schur functions in one variable. More precisely, by (0.9), we have

w(λ) := k∈Z s λ(4k+1)/λ(4k) u 4k+ 1 2 s λ (4k+2)/λ (4k+1) u 4k+ 3 2 × s λ(4k+2)/λ(4k+3) u 4k+ 5 2 s λ (4k+3)/λ (4k+4) u 4k+ 7 2 = i∈Z u ||λ(i+ 1 2 )|-|λ(i-1 2 )|| i if (4.9) is satisfied, 0 otherwise. (4.11) 
for any sequence of partitions λ = (λ(X)) X∈Z which is eventually constant for X → ±∞.

If we restrict to sequences with finite support, corresponding to pure steep tilings, the form (4.11) tells that λ is a Schur process [OR03, OR07]. We then may reuse the results and methods of Okounkov and Reshetikhin, that are based on free fermions, to prove Theorem 4.1 and to characterize the correlation functions of the particle configuration (i.e., for any finite set F of vertices, the probability that there is a particle on each element of F ). By relating the correlation functions of particles to those of dimers, we obtain Theorem 4.2.

Periodic and free boundary conditions: fermionic approach

In the paper [START_REF] Bouttier | From Aztec diamonds to pyramids: steep tilings[END_REF], we did not restrict to pure steep tilings, which coincide with the fundamental tiling outside a finite region (see again Figure 4.1), but we also considered other types of "boundary conditions".

For instance, we may consider periodic steep tilings, that have a period (2T, -2T ) in the (x, y) coordinates for some positive integer T (note that the fundamental tiling as an imaginary period, but some details are nontrivial. In particular, we understood that shift-mixing amounts in physical terms to passing to the grand canonical ensemble.

In parallel, in our work on steep tilings we also found expressions for the partition function of tilings with free boundary conditions, see [START_REF] Bouttier | From Aztec diamonds to pyramids: steep tilings[END_REF]Theorem 4]. Intuitively this corresponds to not prescribing the boundary conditions 5 of the URYG dimer coverings at X → ±∞. When there is only one free boundary, i.e. when the asymptotics at X → +∞ is free but the one at X → -∞ corresponds to the empty partition, the sequence of interlaced partitions forms a pfaffian Schur process, as defined in [START_REF] Borodin | Eynard-Mehta theorem, Schur process, and their Pfaffian analogs[END_REF]. For such a process, there is an analogue of Theorem 4.2 where the determinant is replaced by a pfaffian. When there are two free boundaries, we obtain a variant of the Schur process that, to my knowledge, had not been considered before [START_REF] Bouttier | From Aztec diamonds to pyramids: steep tilings[END_REF]. By analogy with the periodic case, I conjectured that the correlation functions are not pfaffian in general, but become so after performing a suitable shift-mixing. We proved this conjecture with Dan Betea, Peter Nejjar and Mirjana Vuletić in [START_REF] Betea | The free boundary Schur process and applications I[END_REF], using again fermionic techniques. The basic idea here is to perform a certain Bogoliubov transformation, which is another classical method in mathematical physics [START_REF] Blaizot | Quantum theory of finite systems[END_REF].

In the remainder of this section, I will sketch the basic ideas of [START_REF] Betea | The periodic Schur process and free fermions at finite temperature[END_REF] and [START_REF] Betea | The free boundary Schur process and applications I[END_REF]. I mostly focus on the partition picture, but the reader may keep in the back of her mind the tiling/dimer picture.

Let me start with the most elementary setting, which corresponds to plain random partitions. Consider the periodic partition function Z per of Theorem 4.3, in which we set all u i 's to zero. It then reduces to the well-known generating function of partitions

Z par = ∞ k=1 1 1 -q k . (4.14) 
Indeed, URYG dimer coverings without covered longer edges are in bijection with constant sequences of partitions. In probabilistic terms, we are considering the canonical measure on partitions, in which a given partition λ appears with probability 1 Zpar q |λ| . To such a random partition we associate a random Maya diagram, via the bijection of Figure 4.3. In explicit terms, the positions of the particles form the set

S(λ) = λ 1 - 1 2 , λ 2 - 3 2 , λ 3 - 5 2 , . . . ⊂ Z (4.15)
where the origin is by convention at the "bottom corner" of the Young diagram. It is clear that, for different s ∈ Z , the events {s ∈ S(λ)} cannot be independent, because there are as many positive elements in the set S(λ) as negative elements in its complementary (in other words, the Maya diagram has charge zero). There is, however, a surprisingly simple way to obtain independence: consider a random integer taking value c with probability proportional to q c 2 2 t c (it is nothing but Borodin's shift-mixing parameter) and independent of λ. Then, consider the shifted set

S(λ) + c = λ 1 - 1 2 + c, λ 2 - 3 2 + c, λ 3 - 5 2 + c, . . . ⊂ Z . ( 4 
.16)

cf. footnote 3

It is not difficult 6 to see that the probability that this set is equal to a given S ⊂ Z is proportional to

q |λ|+ c 2 2 t c = s∈S∩(0,∞) (q s t) s∈(Z \S)∩(-∞,0) (q -s t -1 ). (4.17)
Here, it is understood that the right-hand side vanishes as soon as one of the sets of indices is infinite (since 0 < q < 1). Summing (4.17) over all pairs (λ, c) or subsets S ⊂ Z yields a classical combinatorial proof of the well-known Jacobi triple product identity. Moreover, it also implies that

Prob (s ∈ S(λ) + c) = q s t 1 + q s t , s ∈ Z (4.18)
and that these events are independent for different s's. We recognize the Fermi-Dirac distribution describing a grand canonical ensemble of fermions, where q is related to the physical temperature (q = 0 is zero temperature, q → 1 is the high-temperature limit) and t to the chemical potential. Asymptotics will be discussed in Section 4.4.

We now turn to the general setting of the periodic Schur process, corresponding to taking nonzero u i 's in the partition function Z per of Theorem 4.3. In other words, we are consider a random 4T -periodic sequence of integer partitions, which is equal to λ = (λ(X)) X∈Z with probability proportional to q λ(0) times the Schur weight (4.11) (with the range of indices in the product restricted to a period). At this stage, we make some use of the free fermion formalism: for brevity we will not include the definitions here, but refer instead to the relevant sections of the original papers, namely [26, Section 3] and [27, Appendix B], and references therein.

We are interested in the particle correlation function which, as mentioned at the end of the previous section, is defined as the probability that there are particles on all sites of a given finite set F . More precisely, let F = {(X 1 , Y 1 ), . . . , (X n , Y n )} ⊂ Z × Z be such a finite set, written in URYG coordinates. We assume that the abscissas are ordered (X 1 ≤ • • • ≤ X n ) and, by periodicity, that all of them belong to a same period, say {1, . . . , 4T }. The correlation function ρ(F ) is defined explicitly in terms of λ as ρ(F ) := Prob (Y k ∈ S(λ(X k )) for all k = 1, . . . , n) .

(4.19)

The free fermion formalism allows, after some manipulations, to write this correlation function in the form

ρ(F ) = Ψ(X 1 , Y 1 )Ψ * (X 1 , Y 1 ) • • • Ψ(X n , Y n )Ψ * (X n , Y n ) (4.20)
where the Ψ(X i , Y i ) are certain fermionic creation operators acting on the fermionic Fock space, the Ψ * (X 1 , Y 1 ) are their dual annihilation operators, and • denotes a certain expectation value (or state) on the corresponding operator algebra. See [24, Section 4.3] for a relatively detailed discussion of the way to arrive at the form (4.20) in the nonperiodic case. In the periodic case, the expectation value of an operator O reads O = Tr(Oq H Π 0 ) Tr(q H Π 0 ) (4.21)

where H is the energy operator, and Π 0 the projector on the subspace of charge 0.

For q = 0 (zero temperature), the expectation value reduces to the vacuum expectation value. In this case, Wick's lemma entails that the correlation function reads This says that the particle configuration is a determinantal point process, and K is its correlation kernel. In fact, in the case q = 0 the correlation kernel has essentially the same expression as the inverse Kasteleyn matrix C of the previous section.

ρ(F ) = det 1≤k, ≤n K(X k , Y k ; X , Y ), K(X, Y ; X , Y ) : = Ψ(X, Y )Ψ * (X , Y ) if X ≤ X , -Ψ * (X , Y )Ψ(X, Y ) if X > X .
In the case q > 0, the difficulty is that Wick's lemma does not hold anymore for the expectation value (4.21). Hence, the process is nondeterminantal. But the solution to this problem is the same as for the canonical measure on partitions, namely we shall pass to the grand canonical ensemble for which the expectation value reads

O = Tr(Oq H t C ) Tr(q H t C ) (4.23)
where C is the charge operator. This is nothing but the operator version of the Fermi-Dirac distribution (4. with c independent of the Schur process and distributed as above. The correlation function ρ(F ) may be recovered through a simple contour integration on t. For the expectation value (4.23), Wick's lemma holds for any q and t (the fundamental reason being that q H t C is the exponential of a "free Hamiltonian", namely a quadratic form in the creation/annihilation operators), so we find that ρ(F ) admits the same determinantal expression as in (4.22), with • the grand canonical expectation value. This was, in a nutshell, the idea of our rederivation of Borodin's correlation function, see [START_REF] Betea | The periodic Schur process and free fermions at finite temperature[END_REF]Sections 3 and 4]. We now discuss the free boundary case. We again find an expression of the form (4.20) for the correlation function ρ(F ), where the expectation value is now

O = u|O|v u|v (4.25)
with u|, |v certain free boundary states depending on positive parameters u, v such that uv < 1 (the product uv plays a role similar to the q of the periodic case). We have the same issue that Wick's lemma does not hold for this expectation value. In view of the periodic case, it is natural to try to fix this problem by modifying the expectation value. After some efforts, we were able to identify the appropriate modification, which consists in replacing the free boundary states u|, |v by some extended free boundary states u, t|, |v, t that are obtained by performing a certain Bogoliubov transformation on the vacuum, see [26, Section 3.2.1] for the details. Here, t is a positive real parameter playing a role similar to the periodic case. In terms of correlation functions, passing to the extended free boundary states amounts to replacing the original correlation function ρ(F ) by its shift-mixed variant ρ(F ) as in (4. [START_REF] Boutillier | Dimers on rail yard graphs[END_REF], with c now an even random integer independent of the Schur process (its law is obtained by conditioning the c of the periodic case to be even, with q = uv).

A peculiar property of the extended free boundary states is that they are not eigenvectors of the charge operator. As a consequence, for the corresponding expectation value we have Ψ(X, Y )Ψ(X , Y ) = 0. (4.26)

This says that, when we apply Wick's lemma to evaluate the correlation function (4.20), we shall not ignore the "contractions" between two Ψ's, or between two Ψ * 's. The outcome is that the shift-mixed correlation function takes the pfaffian form

ρ(F ) = pf 1≤k, ≤n K(X k , Y k ; X , Y ) (4. 27 
)
where K is now a 2 × 2 matrix-valued kernel Here, the meaning of (4.27) is that we form the 2n × 2n matrix made of the blocks K(X k , Y k ; X , Y ), and we take its pfaffian (the matrix is indeed antisymmetric by properties of the kernel). The conclusion is that the shift-mixed process is a pfaffian point process. In the case of one free boundary (u = 0 or v = 0), the shift-mixed process is identical to the original process, and we recover the result of Borodin and Rains [START_REF] Borodin | Eynard-Mehta theorem, Schur process, and their Pfaffian analogs[END_REF] regarding the correlation functions of the pfaffian Schur process. For two free boundaries (uv > 0), our result was new, see [START_REF] Betea | The free boundary Schur process and applications I[END_REF]Theorem 2.5].

K(X, Y ; X , Y ) := K 1,1 (X, Y ; X , Y ) K 1,2 (X, Y ; X , Y ) K 2,1 (X, Y ; X , Y ) K 2,2 (X, Y ; X , Y ) (4.28) 

Periodic and free boundary conditions: asymptotics

Beyond the technical challenge of adapting the free fermion formalism, our motivation for studying the Schur process with periodic and free boundary conditions is that it allows to observe different large-scale behaviors from the usual Schur process with empty boundary conditions.

In random partitions, one distinguishes two types of scaling limits, called the bulk and edge scaling limits. Following [27, Section 2], let us illustrate the distinction in the case of a random partition λ distributed according to the canonical measure. From the expression (4.14) of the partition function, a second moment calculation shows that we have the convergence in probability

r 2 |λ| P → π 2 6 
, where q = e -r , r → 0 + . (4.30)

In particular, r -1 plays not only the role of a temperature, but also of a length scale for the Young diagram of λ (since its area |λ| is of order r -2 ), hence for its associated Maya diagram. This suggests to take s = xr -1 in (4.18), for some fixed x ∈ R, with the immediate result

Prob (s ∈ S(λ) + c) → e -x+ln t 1 + e -x+ln t .

(4.31)

In fact, the same result holds without the +c shift, with t = 1. The right-hand side gives the slope of Vershik's limit shape for uniform partitions [Ver96] 7 . Also, for i ∈ Z, the indicators 1 s+i∈S(λ) become asymptotically i.i.d. Bernoulli random variables:

this is Okounkov's observation that "a typical (canonical) partition is locally a random walk" [Oko01, Section 3.4]. Such a result describes the bulk scaling limit of canonical partitions. We now turn to the edge scaling limit which corresponds to studying the distribution of the first part(s) of λ, or equivalently the position of the rightmost particle(s) in the Maya diagram. By the independence property of the Fermi-Dirac distribution (4.18), it is not difficult to check that, for any x ∈ R, we have Let us now discuss the periodic Schur process. The bulk scaling limit has been studied in great generality by Borodin [Bor07], but he did not consider the edge scaling limit. We addressed this question with Dan Betea [START_REF] Betea | The periodic Schur process and free fermions at finite temperature[END_REF], in the context of the cylindric Plancherel measure/process (CPM/CPP). The CPP corresponds to some sort of "poissonian" limit of periodic steep tilings, but we will not enter into details here. The CPM is a marginal of the CPP, and it may be defined as the measure on partitions p(λ) = 1 Z CPM µ⊂λ q |µ| (s λ/µ (ex y )) 2 (4.33) 7. To recover Vershik's result, we should prove concentration, and that the limit of canonical partitions for q → 1 is the same as the limit of uniform random partitions of size n → ∞ ("equivalence of ensembles").

where q and y are nonnegative real parameters with q < 1, s λ/µ (ex y ) is the exponential specialization of the skew Schur function as defined in (0.12), and the partition function Z CPM is equal to e y 2 /(1-q) ∞ k=1 (1q k ) -1 . The CPM interpolates between the canonical measure, recovered for y = 0, and the Plancherel measure, recovered for q = 0.

Let λ denote a random partition distributed according to the CPM. We are interested in the limit q → 1 and/or y → ∞ where |λ| gets large, and we consider the largest part λ 1 . We set as before q = e -r . Since the CPM interpolates between canonical and Plancherel, we intuitively expect to observe at least two different regimes:

-when we let r → 0 keeping y "small", λ 1 should have Gumbel-type fluctuations as in the canonical measure, -when we let y → ∞ keeping r finite, the fluctuations of λ 1 should be of the same nature as in the Plancherel measure which, as shown by Baik, Deift and Johansson [START_REF] Baik | On the distribution of the length of the longest increasing subsequence of random permutations[END_REF], are governed by the Tracy-Widom GUE distribution.

In fact, there exists a crossover regime where the rescaled fluctuations of λ 1 follow a distribution that interpolates between Gumbel and Tracy-Widom. This interpolating distribution was first encountered by Johansson [START_REF] Johansson | From gumbel to tracy-widom[END_REF] in a random matrix model. It depends on a positive parameter α and may be defined as the Fredholm determinant where I 0 (z) := 1 2π ´π -π e z cos φ dφ is the modified Bessel function of the first kind and order zero.

Our theorem encompasses the canonical case y = 0, for which we recover (4.32), and the Plancherel case q = 0 for which we recover the result of Baik, Deift and Johansson [START_REF] Baik | On the distribution of the length of the longest increasing subsequence of random permutations[END_REF]. The physical intuition behind our theorem is the following. In the CPM the fluctuations of λ 1 have two origins: thermal fluctuations of order r -1 , governed by the Gumbel distribution, and quantum fluctuations of order L 1/3 , governed by the Tracy-Widom GUE distribution. In the high-temperature regime (r -1 L 1/3 ) the former wins, hence we observe the Gumbel distribution. In the low-temperature regime (r -1 L 1/3 ) the latter wins, hence we observe the Tracy-Widom GUE distribution. Finally in the crossover regime (r -1 ∝ L 1/3 ) both have the same order of magnitude, hence we observe the interpolating distribution. Note that, in the high-temperature regime, the parameter y actually affects the deterministic first-order asymptotics of λ 1 . This may be related to the bulk asymptotics of the CPM, see the discussion in [27, Section 5]. We have also studied the crossover edge asymptotics of the cylindric Plancherel process, and shown that it involves the finite-temperature extended Airy kernel previously introduced by Le Doussal, Majumdar and Schehr [START_REF] Le Doussal | Periodic Airy process and equilibrium dynamics of edge fermions in a trap[END_REF] in the context of the equilibrium dynamics of noninteracting fermions in a harmonic trap. See [START_REF] Betea | The periodic Schur process and free fermions at finite temperature[END_REF]Section 6] for more details.

While we have not considered the edge asymptotics of periodic steep tilings in our paper, we believe that, by universality, Theorem 4.4 should hold with little modifications for generic edge points. In fact, our approach based on saddle-point computations should be easy to adapt to this situation.

Finally, let us briefly discuss the free boundary Schur process. In the paper [START_REF] Betea | The free boundary Schur process and applications I[END_REF], we considered the asymptotics in the case of one free boundary, corresponding to the pfaffian Schur process of Borodin and Rains [START_REF] Borodin | Eynard-Mehta theorem, Schur process, and their Pfaffian analogs[END_REF]. We discussed the bulk asymptotics for two instances of the process, namely symmetric plane partitions and plane overpartitions. It should not be difficult to extend our results to the case of steep tilings. Regarding the edge asymptotics, we considered its application to last passage percolation, and encountered a limiting distribution that interpolates between the three Tracy-Widom GOE/GUE/GSE distributions.

The case of two free boundaries is still pretty much work in progress. We have announced some of our results in the extended abstract [START_REF] Betea | New edge asymptotics of skew Young diagrams via free boundaries[END_REF], where we establish a convergence in distribution similar to (4.36) for some free boundary analogues of the CPM. The corresponding limiting distributions are expressed in terms of certain Fredholm pfaffians, and appear not to have been considered before. Together with Dan Betea, Peter Nejjar and Mirjana Vuletić, we are currently writing the long journal paper that will be the sequel of [START_REF] Betea | The free boundary Schur process and applications I[END_REF], and which will treat both bulk and edge asymptotics in the presence of two free boundaries.

Conclusion and perspectives

In this chapter I have explained how, starting from the question of finding a general family of tilings encompassing both domino tilings of the Aztec diamond and pyramid partitions, I was led to study various aspects of Schur processes and join the very active field of integrable probability.
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One paper left out of this chapter is [START_REF] Betea | Perfect sampling algorithm for Schur processes[END_REF], where we revisit the Robinson-Schensted-Knuth correspondence and its growth diagram formulation [START_REF] Fomin | Schur operators and Knuth correspondences[END_REF], from the point of view of its applications to the sampling of Schur processes. In particular, we found an unexpected connection with the famous domino shuffling algorithm [START_REF] Elkies | Alternating-sign matrices and domino tilings[END_REF].

Let me now list some of the questions I would like to address from now on. In the immediate future, I am eager to explore further the applications of the periodic and free boundary Schur processes to last passage percolation and exclusion processes. A particularly tantalizing question is the connection with the (1 + 1)-dimensional Kardar-Parisi-Zhang (KPZ) equation: as noted for instance in [START_REF] Dean | Finitetemperature free fermions and the kardar-parisi-zhang equation at finite time[END_REF], the finite-temperature Airy kernel which we encountered in (4.35) also appears in the KPZ context. To our knowledge, the fundamental origin of this coincidence is yet to be found. Also, we would like to investigate whether a similar connection exists for the kernels which we encounter in [START_REF] Betea | New edge asymptotics of skew Young diagrams via free boundaries[END_REF].

The approach of Baik, Deift and Johansson [START_REF] Baik | On the distribution of the length of the longest increasing subsequence of random permutations[END_REF] for studying the edge asymptotics of the Plancherel measure on partitions was based on Riemann-Hilbert techniques. It would be interesting to extend this approach to the CPM, as our derivation of Theorem 4.4 was based rather different methods, namely determinantal point processes in the spirit of [START_REF] Borodin | Asymptotics of Plancherel measures for symmetric groups[END_REF][START_REF] Johansson | Discrete orthogonal polynomial ensembles and the Plancherel measure[END_REF]. The Riemann-Hilbert approach seems better suited to analyze the asymptotics of the distribution F α , as was done in the very recent preprint [START_REF] Cafasso | A Riemann-Hilbert approach to the lower tail of the KPZ equation[END_REF] which complements the probabilistic approach of [START_REF] Corwin | Lower tail of the KPZ equation[END_REF]. Also, this might shed light on the free boundary case for which everything is open.

The next direction of research is the extension to nondeterminantal models such as Macdonald processes [START_REF] Borodin | Macdonald processes[END_REF]. These processes have been recently related to the six vertex model by graphical methods [START_REF] Borodin | Between the stochastic six vertex model and Hall-Littlewood processes[END_REF] and the approach was extended to the case of one free boundary [START_REF] Barraquand | Stochastic sixvertex model in a half-quadrant and half-line open asymmetric simple exclusion process[END_REF]. It is then natural to ask whether periodic and (two) free boundary versions of the processes may be considered.

Finally, it seems that we left random maps out of this chapter, but a connection with them was made in [START_REF] Okounkov | Random matrices and random permutations[END_REF]: in this paper Okounkov uses an interplay between maps on surfaces and ramified coverings of the sphere, to give the first proof of a conjecture left by Baik, Deift and Johansson regarding the asymptotic joint distribution of the first parts λ 1 , λ 2 , λ 3 , . . . of a Plancherel random partition (subsequent proofs were given in [START_REF] Borodin | Asymptotics of Plancherel measures for symmetric groups[END_REF][START_REF] Johansson | Discrete orthogonal polynomial ensembles and the Plancherel measure[END_REF] by determinantal point process techniques). I have just started supervising the M2 internship of Alejandro Caicedo who will study Okounkov's paper, and look for possible extensions to related models of random partitions.
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 01 Figure 0.1 -Different drawings of the same graph in the plane. The first three correspond to the same planar map: the first two differ by a simple deformation, and the third by a different choice for the outer face. The fourth corresponds to a different planar map, as may be seen for instance by considering the face degrees.
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 02 Figure 0.2 -A map and its dual map (drawn with red solid and green dashed edges respectively).

Figure 0 . 3 -

 03 Figure 0.3 -The quadrangulation (blue solid edges) associated with the map of Figure 0.2 (here shown with red dashed edges).
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 04 Figure 0.4 -The Young diagram of the partition (4, 2, 2, 1) shown in French (left), English (middle) and Russian (right) conventions. The conjugate partition is (4, 3, 1, 1).
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 05 Figure 0.5 -The skew Young diagram of shape (4, 2, 2, 1)/(2, 2, 1), shown in French convention. It is a horizontal strip since no two cells are in the same column.
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 11 Figure 1.1 -(a) A suitably labeled map (local min are surrounded). (b) Its corresponding mobile (blue edges).

Figure 1 . 3 -

 13 Figure 1.3 -Dealing with frustrated edges: starting with a frustrated edge with endpoints labeled, say, 3 (a), we add in its middle a new "square" vertex with label 3 + 1 = 4 (b). This square vertex becomes a labeled vertex of degree two in the mobile (c).

1Figure 1 . 4 -

 14 Figure 1.4 -Geometrical interpretation of the parameters s, t, u of (1.2): they correspond to the radii in the "circle packing" consisting of three circles whose centers are at pairwise distances d 12 , d 23 and d 31 .

Figure 1 . 5 -

 15 Figure 1.5 -Structure of the well-labeled map in the case s, t, u > 0: the map has three faces F 1 , F 2 , F 3 , which are pairwise adjacent. The minimal label among vertices incident to F 1(resp. F 2 , F 3 ) is 1s (resp. 1t, 1u).The minimal label among vertices incident both to F 1 and F 2 is 0, and the same holds for the two other interfaces.

Figure 1 . 6 -

 16 Figure 1.6 -Structure of the well-labeled map in the case s, t > 0 and u = 0: the map has two faces F 1 , F 2 , and v 3 is a vertex incident to both. The minimal label among vertices incident to F 1 (resp.F 2 ) is 1s (resp. 1t).The minimal label among vertices incident to both faces is 0, and is attained at v 3 .

Figure 1 . 7 -

 17 Figure 1.7 -Cutting the well-labeled map of Figure 1.6 into a chain.A chain is a welllabeled tree with two marked vertices with label 0. On the branch between them, the labels remain nonnegative hence form a Motzkin path. Welllabeled subtrees are attached to both sides of the branch, and their labels are at least 1s and 1t respectively. Therefore, summing the weights over all possible such subtrees, the global contribution of a step at height in the Motzkin path is equal gR +s R +t . The careful reader might notice the issue that the minima 1-s and 1-t should be attained in some subtree, this is taken care of by (1.7).

23 Figure 1 . 8 -

 2318 Figure 1.8 -Plots of the probability density of (D 23 , D 31 ) conditionally on D 12 , for D 12 = 0.8, 1.5 and 3 (top to bottom). Here D 12 = S + T , D 23 = T + U and D 31 = U +S denote the distances between three uniform points in a random quadrangulation with a large number n of faces, rescaled by a factor n -1/4 .
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 19 Figure 1.9 -The decomposition of the mobile associated with a map with a boundary counted by W d . The sequence of labels around the special unlabeled vertex (coming from the root face) is coded by a Dyck path, whose down-steps correspond to the subtrees of the mobile. The global contribution of all possible subtrees for a down-step from height is zR +d . Notice the similarity with Figure 1.7.

  10. A relatively short derivation of (1.23) is by "depointing" [10, Section 3.1]: let R(v) denote the generating function of pointed rooted maps with an extra weight v per vertex. Then using mobiles one may see that (i) R(v) satisfies the equation obtained from (1.15) by replacing the term 1 in the right-hand side by v and (ii) we have wn = 2n n ´1 0 R(v) n dv. From this we get (1.23) through the change of variable v → R.

  are banded. Let us consider the characteristic equation p n=-p b n y n = 0 (1.28)

2 .

 2 apply to these orientations one of the two known unified constructions: either the Bernardi-Fusy construction which is based on a suitably generalized notion of mobiles [BF12a, BF12b, BF14, BF18], or the Albenque-Poulalhon construction based on blossoming trees [AP15] 3 4 .
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 22 Figure 2.2 -(a) General structure of a slice. (b) The one-to-one correspondence between elementary slices and pointed rooted maps.
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 23 Figure 2.3 -(a) The decomposition of a composite slice into elementary slices, by cutting along the leftmost geodesics from the base vertices. (b) The corresponding "path of elementary slices".
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 24 Figure 2.4 -(a) Wrapping a composite slice of tilt +2: pairs of edges with the same label are identified. They become a path joining the outer face to the central face (formed by the 2 unmatched left boundary edges) in the resulting 2-annular map (b).
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 25 Figure 2.5 -Selecting a suitable leftmost geodesic in (a) a pointed rooted map, (b) a-annular map and (c) a -strict-annular map. In the annular cases, the leftmost geodesics are actually constructed on the "lift".

Figure 2 . 6 -

 26 Figure 2.6 -(a) General structure of a quasi-slice. (b) The decomposition of a quasislice with "small" tilt: we cut along the leftmost shortest path from A to C avoiding the first vertex D of the right boundary.

  we have to consider a new decomposition illustrated on Figure 2.6(b). First, d-irreducibility implies that the length of the right boundary is positive (except in the case k = b -1 where the slice might also be reduced to a single d-gon). Hence, there is a first vertex D on the right boundary, and we now cut the quasi-slice along the leftmost shortest path from A to C avoiding CD.
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 24 Given two nonnegative integers d, , a (d, )-quasi-irreducible annular map is a rooted map, where the outer face is regarded as a boundary, and an extra distinguished central face of degree -or a marked central vertex if = 0such that:-the length of any cycle not winding around the central face/vertex is at least d, with equality if and only if the cycle is the contour of a face, -for > 0, the length of any cycle winding around the central face is at least .A (d, )-irreducible annular map is defined in the same way, with the extra condition that the only winding cycle of length is the contour of the central face.

Theorem 2 . 2

 22 (see[START_REF] Bouttier | On irreducible maps and slices[END_REF] Section 9.3]). The wrapping operation is a one-to-one correspondence between:d-irreducible composite slices of nonpositive tiltand (d, )-irreducible annular maps, -d-irreducible composite slices of nonnegative tilt and (d, )-quasi-irreducible annular maps.

7 .

 7 and the corresponding chapter of his thesis [Che18, Chapter V] 3 The O(n) loop model on random planar maps
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 232 Figure 3.2 -The possible types of faces in the rigid O(n) loop model, and their weights.
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 33 Figure 3.3 -The gasket of the loop-decorated map of Figure 3.1.

Figure 3 . 4 - 3 8 )

 3438 Figure 3.4 -Qualitative phase diagram of the rigid O(n) model for fixed n < 2.

Theorem 3 . 2

 32 (see[START_REF] Borot | A recursive approach to the O(n) model on random maps via nested loops[END_REF] Section 6.2] and [Bud18, Section 1.2.1]). For n ∈ [0, 2], the nongeneric critical points of the rigid O(n) loop model are obtained for parameters (g, h)
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 35 Figure 3.5 -Left: schematic representation of a pointed loop-decorated quadrangulation with a boundary (the red arrow and the blue cross represent respectively the root edge and the distinguished vertex). Right: the corresponding nesting tree.

Figure 3 . 6 -

 36 Figure 3.6 -A plot of the rate function J for n = 1 (blue), n = √ 2 (green) and n = √ 3 (yellow).

  .35) Theorem 3.3 follows by standard arguments of analytic combinatorics: the asymptotic normality (3.21) follows from the quasi-powers theorem [FS09, Theorem IX.8], and the large deviation estimate (3.22) is given by considering the Legendre transform of the function t → bb(e t ), which is nothing but
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 41 Figure 4.1 -A portion of the fundamental tiling (left), and a pure steep tiling (right)corresponding to a perturbation of it by finitely many "flips". North and east (resp. south and west) dominoes are represented in green (resp. orange). The fundamental tiling is periodic along the north-west to south-east direction, along the perpendicular direction it is almost periodic (notice the "zig-zag" pattern gets shifted at the green-orange interface, which is the only place where we can perform initial flips). A general steep tiling coincides with the fundamental tiling far away from the interface.
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 4242 Figure 4.2 -Left: the dimer covering on (Z ) 2 corresponding to the steep tiling displayed on the right of Figure 4.1.To facilitate the further identification with a sequence of interlaced partitions, south and west (resp. north and east) dimers are represented with solid (resp. hollow) endpoints, that indicate the presence of a particle (resp. of a hole). Right: the same dimer covering, now represented on the "universal" rail yard graph. To help visualize the deformation, we represent in lighter color the dimers close to the origin.There are finitely many dimers on the longer edges, and the weights are associated with them.

Theorem 4 . 1

 41 (see[START_REF] Bouttier | From Aztec diamonds to pyramids: steep tilings[END_REF] Theorem 3] and[START_REF] Boutillier | Dimers on rail yard graphs[END_REF] Theorem 1]). The pure partition function Z, defined as the sum of the weights (4.2) of all pure dimer coverings, is equal to

Example 4 . 2 ( 2 = u 4i-3 2 = 0

 42220 Domino tilings of the Aztec diamond). Take u 4i+ 3 for all i ∈ Z, and set u 4i+ 1 2

Figure 4 . 3 -

 43 Figure 4.3 -The correspondence between Maya diagram and partitions. Here we consider the partition λ = (4, 2, 1), whose parts give the displacements of the particles (•) with respect to their "ground state". The parts of the conjugate partition λ = (3, 2, 1, 1) give the displacements of the holes (•).
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 44 Figure 4.4 -The periodic steep tiling corresponding to the constant sequence of partitions equal to (3, 2, 2).

  [START_REF] Arita | Asymmetric exclusion process with global hopping[END_REF]. Passing to it amounts to considering the "shift-mixed" correlation function ρ(F ) := Prob (Y kc ∈ S(λ(X k )) for all k = 1, . . . , n) (4.24)

with K 1 , 1 (

 11 X, Y ; X , Y ) := Ψ(X, Y )Ψ(X , Y ) K 2,2 (X, Y ; X , Y ) := Ψ * (X, Y )Ψ * (X , Y ) K 1,2 (X, Y ; X , Y ) := Ψ(X, Y )Ψ * (X , Y ) if X ≤ X -Ψ * (X , Y )Ψ(X, Y ) if X > X =: -K 2,1 (X , Y ; X, Y ).

Prob λ 1

 1 ≤ r -1 ln r -1 + xr -1 → e -e -x . (4.32) In other words, the rescaled fluctuations of the first part λ 1 are governed by the Gumbel distribution, consistent with the result of Erdős and Lehner [EL41]. More generally, the rescaled positions of the k first parts λ 1 , . . . , λ k converge to the positions of the k rightmost points in a Poisson point process with intensity e -x dx.

F

  α (x) := det(I -M α ) L 2 (x,∞) (4.34)where M α is the finite-temperature Airy kernelM α (x, x ) := ˆ∞ -∞ e αu 1 + e αu Ai(x + u) Ai(x + u)du (4.35)with Ai the Airy function. For α = ∞, M α reduces to the usual Airy kernel, hence (4.34) reduces to the classical expression for the Tracy-Widom GUE distribution as a Fredholm determinant. We may now state our main result.
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 44 (see[START_REF] Betea | The periodic Schur process and free fermions at finite temperature[END_REF] Theorems 1 and 2]). Consider the cylindric Plancherel measure (4.33) with q = e -r , and suppose that r → 0 and/or y → ∞ in such a way that r 2 y → α, where α ∈ [0, ∞] is fixed.-In the low-temperature regime α = ∞ or the crossover regime 0 < α < ∞, we have for allx ∈ R Prob λ 1 -2L L 1/3 ≤ x → F α (x),In the high-temperature regime α = 0, we have for all x ∈ R Prob λ 1r -1 ln(r -1 I 0 (2y + ry)) r -1 ≤ x → e -e -x (4.37)
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Voir les références données à la section 1.1.

Voir par exemple l'article de Prähofer et Spohn[START_REF] Prähofer | Scale invariance of the PNG droplet and the Airy process[END_REF] qui traite du modèle de croissance polynucléaire (PNG), qui se ramène à un processus de Schur. Nous rencontrerons brièvement le noyau d'Airy et son analogue à température finie au chapitre 4.

Voir la remarque 1 dans[START_REF] Bouttier | On the two-point function of general planar maps and hypermaps[END_REF] pour une discussion de l'équivalence entre la formulation de Miermont et celle d'Ambjørn et Budd.
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This is an advantage of corner-rooting where the choice is canonical. For edge-rooting one needs a convention, for instance that the root face is the one on the right of the root edge.

Or "very well-labeled" map[START_REF] Arquès | Les hypercartes planaires sont des arbres très bien étiquetés[END_REF] 

If we do care about the order, we have a composition.

For simplicity we will ignore the distinction between symmetric polynomials and symmetric functions.

The study of the metric properties of random maps has been an exploding topic of research over the last 20 years. To my knowledge, considering the distance in 2D quantum gravity was first advocated by Watabiki and his collaborators, see e.g.[START_REF] Ambjørn | Scaling in quantum gravity[END_REF] and references therein. In particular, this paper successfully predicted 1 the asymptotic form of the so-called two-point function of pure gravity. Coincidentally, Schaeffer introduced in his thesis [Sch98, Chapter 6] one of the most important tools for a rigorous study of distances, namely the bijection between quadrangulations and well-labeled trees. His construction is actually a clever reformulation -which makes the role of distance manifestof an earlier bijection due Cori and Vauquelin[START_REF] Cori | Planar maps are well labeled trees[END_REF], hence it is nowadays known as the CVS bijection. It was exploited in[START_REF] Chassaing | Random planar lattices and integrated superBrownian excursion[END_REF] to prove the first convergence result for a metric-related observable, the radius. This is the time where I entered into this subject, during my own thesis. This led to several papers written with Philippe Di Francesco and Emmanuel Guitter: in a nutshell we brought the following two main contributions to the field.1. First, we gave a rigorous derivation of the Ambjørn-Watabiki expression for the 1. It has recently been realized by Timothy Budd that the derivation of[START_REF] Ambjørn | Scaling in quantum gravity[END_REF], which is usually regarded as nonrigorous, can be made rigorous if one understands that it actually describes the first passage percolation distance in cubic maps with exponential edge weights[START_REF] Ambjørn | Multi-point functions of weighted cubic maps[END_REF].

It is somewhat surprising that well-labeled maps appear both as generalizations of suitably labeled maps and as particular cases of mobiles.

As observed in [Mie06, Section 3.3], another natural convention consists in labeling the square vertices by half-integers, for instance the square vertex on Figure 1.3 would get label 3.5 instead of

Note that, though general maps and quadrangulations are in bijection, their metric structures hence their two-or three-point functions are a priori different. But, in fact, not too much[19] [BJM14,[START_REF] Fusy | The three-point function of general planar maps[END_REF][START_REF] Lehéricy | First-passage percolation in random planar maps and Tutte's bijection[END_REF].

The preprint was in fact posted in December 2007 on the arXiv. We also had the chance to learn about Grégory's work via the séminaire Cartes, which had not yet evolved into the current journées.

Mobiles and distance statistics of random planar maps

In all rigor, we only consider here pointed rooted maps such that the leftmost geodesic from the root to the origin starts with the edge immediately left of the root corner. In the bipartite case, these form precisely half of all pointed rooted maps (just reverse the direction of the root edge to obtain the others). Note that this remark was already made in Section 1.4 when defining the two-point function.

In the usual sense in statistical mechanics: computation of the partition function.

In fact, L. Chen proved that it is sufficient to check the positivity of the spectral density in the vicinity of ±γ, which is the actual criterion we used in[START_REF] Borot | A recursive approach to the O(n) model on random maps via nested loops[END_REF].

The higher genus case, where the nesting graph is not necessarily a tree, has been considered in[START_REF] Borot | Nesting statistics in the O(n) loop model on random maps of arbitrary topologies[END_REF].

ξ √ 1-(γ/ξ)

consistently with the universal form of the series W • (ξ) of pointed rooted Boltzmann maps.

Laboratoire d'informatique algorithmique : fondements et applications, now merged into IRIF (Institut de recherche en informatique fondamentale)

Unlike my colleague Guillaume Chapuy[START_REF] Carrell | Simple recurrence formulas to count maps on orientable surfaces[END_REF][START_REF] Alexandrov | Weighted Hurwitz numbers and topological recursion: an overview[END_REF][START_REF] Chapuy | Rencontres autour de la combinatoire des cartes[END_REF] 

Let us point out that we only "expect" and do not "know" a priori: since the URYG is infinite there are technical difficulties in applying the Kasteleyn theory. To my knowledge, the general theorems of Kenyon et al.[START_REF] Kenyon | Dimers and amoebae[END_REF] need certain periodicity assumptions that are not satisfied for the URYG with general, non periodic, weights.

Consider first the case where λ = ∅, where the formula (4.17) is easy. Then, consider the effect of "creating" the parts of λ one at a time: to add the part λ k we remove the element -k + 1 2 + c from S, then add the element λ k -k +[START_REF] Bouttier | Combinatorics of bicubic maps with hard particles[END_REF] 2 + c to it. Observe that both sides of (4.17) get multiplied by q λ k . This establishes the formula for any partition λ.
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has period (2, -2)). In terms of sequences of interlaced partitions, such periodic tilings correspond to sequences of the form (4.9) which have a period 4T . A first caveat is that the sum of the weights (4.2) of all periodic steep tilings is ill-defined, since there are infinitely many periodic tilings C such that w(C) = 1, for instance the tiling displayed on Figure 4.4. Such tilings are in bijection with constant sequences of partitions, for which the product of Schur functions w(λ) of (4.11) evaluates to 1. To fix this problem, we introduce the modified partition function

where q is an extra variable, which should be of modulus smaller than 1 to make the sum convergent, and where we restrict the range of i's in (4.2) to the interval Z ∩ [0, 4T ] by periodicity. The variables q and u i 's may be related to the number of periodic flips that are needed to obtain the tiling C from the fundamental tiling (a periodic flip is the operation that consists in performing simultaneous flips at all translates of a given position, so as to preserve periodicity).

Theorem 4.3 (see [START_REF] Bouttier | From Aztec diamonds to pyramids: steep tilings[END_REF]Theorems 5 and 12]). The periodic partition function is given by

where 1 i<j = 1 if i < j and 0 otherwise.

In the same way that the sequence of partitions corresponding to a random pure steep tiling is a Schur process as defined in [START_REF] Okounkov | Correlation function of Schur process with application to local geometry of a random 3-dimensional Young diagram[END_REF], the sequence λ corresponding to a random periodic steep tiling (with the weight q |λ(0)| w(λ)) forms a periodic Schur process, as defined in [START_REF] Borodin | Periodic Schur process and cylindric partitions[END_REF]. In fact, Theorem 4.3 follows from Borodin's results. In [START_REF] Bouttier | From Aztec diamonds to pyramids: steep tilings[END_REF] we gave another derivation based on the vertex operator formalism. It might be possible to derive the periodic analogue of Theorem 4.2 using Borodin's expression for the correlation functions, but the main difficulty is that the periodic Schur process is not determinantal as soon as q > 0, i.e. the particle correlation function is not directly given by a determinant.

Borodin found that the process becomes determinantal if one performs "shift-mixing": in colloquial terms this corresponds to choosing some integer c ∈ Z independent of the tiling, with probability proportional to q c 2 2 t c where q is the same parameter as before and t is another arbitrary positive real parameter, and shifting the tiling by the vector (c, c). Then, for the shift-mixed tiling, the particle correlation function has determinantal form.

I became quite puzzled by Borodin's result. His proof was based on the so-called L-ensembles, and not the free fermion formalism (though he mentions that his original unpublished derivation was based on Fock space techniques). I therefore took it as a challenge to rederive his result using fermions. We solved this problem with Dan Betea in [START_REF] Betea | The periodic Schur process and free fermions at finite temperature[END_REF], using finite temperature ensembles of free fermions. The idea is of course rather natural in quantum statistical mechanics, where inverse temperature may be thought of