Jean-François Mangin 
  
Je Souhaite Également Remercier 
  
Edouard Duchesnay 
  
Jean-Christophe Ginefri 
  
Josselin Houenou 
  
Jacques-Charles La 
  

2019SACLS158

© Kévin Ginsburger Je souhaite remercier en premier lieu Cyril Poupon, un très bon directeur de thèse mais également une personne que j'apprécie et que j'estime. Tu m'as bien sûr formé à la recherche scientifique, mais j'ai également découvert avec toi le langage C++, le beau design des codes que tu affectionnes tant, et tant d'autres choses qui m'ont permis de mieux connaître mes goûts et d'affiner mon parcours et ma formation d'ingénieur. Audelà de cette formation technique précieuse, tu as également toujours montré beaucoup d'enthousiasme vis-à-vis de mon travail, tout en me poussant à faire mieux et davantage, et ces trois années dans ton laboratoire m'ont appris à oser de nouvelles choses, avoir confiance en mes idées et en mes capacités. J'aimerais te remercier également pour les conditions exceptionnelles dans lesquelles tu m'as permis de faire ma thèse, me permettant d'aller à des conférences aux quatre coins du monde, de suivre des formations à l'envi et (surtout!) d'accéder à des supercalculateurs pour mes simulations. Enfin, je souhaite te remercier pour ta gentillesse et ta disponibilité, malgré toutes les taches qui t'incombent, qui m'ont permis de me sentir épaulé durant cette thèse.

I Introduction and Context

Ongoing projects

. A dictionary of white matter tissues . . . . . . . . . . . . . . . . . . . . . .

. Towards a computational model of the cortical cytoarchitecture . . . . . .

Conclusion and prospects

. • l'IRM de diffusion (IRMd), une méthode d'IRM mesurant la diffusion moléculaire dans les tissus biologiques, est considérée comme une modalité permettant d'explorer la microstructure car l'ordre de grandeur du déplacement des molécules d'eau auquel elle est sensible est de l'ordre du micromètre. L'IRMd est également capable de mesurer l'anisotropie du processus de diffusion le long des fibres nerveuses, ce qui permet l'étude de la connectivité entre les différentes régions cérébrales.

La sensibilité de l'IRM de diffusion au déplacement des molécules d'eau en fait un outil diagnostic incontournable en neuroimagerie. De manière empirique, on observe que le signal de diffusion est sensible à la densité, l'orientation et la perméabilité des barrières (i.e. la myéline) et à la présence de différents types cellulaires (corps neuronaux, dendrites, axones). En d'autres mots, l'IRMd peut en principe fournir une information sur la microstructure du cerveau à une échelle micrométrique, bien plus petite que la résolution millimétrique de l'image. Cette technique trouve donc de nombreuses applications dans l'étude du cerveau, allant de son développement aux pathologies qui l'affectent telles que les accidents vasculaires cérébraux, la maladie d'Alzheimer ou la sclérose en plaques.

Cependant, de nombreux défis restent à relever pour faire de l'IRMd un véritable outil d'exploration de la microstructure cérébrale. En effet, si le signal IRMd est indubitablement sensible aux caractéristiques microstructurelles des tissus, la difficulté réside davantage dans la spécificité du signal IRMd vis-à-vis des différentes propriétés microscopiques du tissu. Pour connaître précisément l'influence de chaque propriété tissulaire sur le signal observé, une modélisation du signal IRMd est nécessaire. Cette modélisation a long été réalisée en utilisant des approches analytiques reposant sur une représentation simplifiée des tissus par des formes géométriques simples (cylindres pour les axones, sphères pour les corps neuronaux...), permettant la résolution analytique de l'équation de la diffusion. Une telle approche est limitée par ces représentations simplistes qui ne sont pas suffisamment réalistes pour rendre compte de la complexité du signal IRMd.

En parallèle du développement de modèles microstructuraux du signal IRMd, la com- Un premier outil de création de géométries axonales réalistes, permettant d'aller audelà des géométries simplistes proposées dans les simulateurs de l'état de l'art (axones représentés par des cylindres droits) a permis de simuler la présence de différents détails microstructuraux tels que la dispersion angulaire locale et globale, la présence de noeuds de Ranvier et le gonflement axonal (voir figure ).

L'influence de ces propriétés microstructurelles fines sur le coefficient A caractérisant l'importance de la dépendance fréquentielle de la diffusivité extra-axonale a été étudiée, montrant en particulier une forte influence du gonflement axonal sur le coefficient A qui diminue fortement lorsque le gonflement axonal augmente.

. Rendus D correspondant à des fantômes numériques comptant trois populations de fibres avec des diamètres axonaux moyens de . , . et . µm respectivement, et fraction intra-axonal de . chacune.N correspond au nombre de populations axonales (ici ). . La dispersion angulaire globale est ajoutée ( . , . et . degrés par population). . La tortuosité est ajoutée, permettant d'atteindre degrés de dispersion angulaire pour chaque population. . La gaine de myéline est ajoutée. . Les noeuds de Ranvier sont ajoutés. . Un gonflement axonal est ajouté pour chaque population axonale.

xx Symbols Used

Cette étude a permis de mettre en avant l'importance de la modélisation du coefficient A qui dépend de plusieurs paramètres microstructuraux. Ce coefficient correspond à une mesure du désordre au sein des géometries axonales, à l'origine de la dépendance temporelle/fréquentielle de la diffusivité extra-axonale observée expérimentalement et prédite théoriquement. L'utilisation d'outils de simulation numérique permet, à l'image de cette étude, une compréhension et une connaissance plus fine de cette dépendance temporelle, afin de mettre au point des modèles analytiques plus précis permettant d'extraire des informations microstructurales à partir du signal IRMd. La contribution majeure de cette étude est la mise au point d'un outil de simulation réaliste de la substance blanche cérébrale permettant de créer des fantômes virtuels de tissus dont les paramètres géométriques sont contrôlés en utilisant un nombre réduit de paramètres d'entrée.

Ce travail pourra être complété afin d'étudier l'influence de paramètres microstructuraux sur la dépendance temporelle du processus de diffusion en présence de plusieurs populations axonales dans un voxel. En effet, environ 60% des voxels de la matière blanche comptent plus d'une population axonale en leur sein. D'autre part, l'influence d'autres paramètres microstructuraux non modélisés dans cette étude, tels que la présence de cellules gliales (astrocytes, oligodendrocytes) pourront être considérés. Enfin, le simulateur de tissu présenté pourra être amélioré afin d'atteindre des densités axonales plus importantes (> 0.7) et de plus grandes valeurs de dispersion angulaire globale. Ce dernier point est l'objet de la section suivante, présentant un deuxième simulateur développé dans le cadre de cette thèse, baptisé MEDUSA.

MEDUSA: un outil pour créer des fantômes réalistes de la substance blanche

Dans le domaine de la microstructure cérébrale, plusieurs outils ont été proposés pour créer des fantômes virtuels des substances blanche et grise ex nihilo, c'est-à-dire à partir d'un jeu de paramètres microstructuraux d'entrée (diamètre axonal moyen, densité axonale...) mais sans utiliser d'images microscopique issues de l'histologie. La plupart de ces approches utilisent des formes géométriques simples pour représenter les populations cellulaires. En particulier, les axones sont représentés par des cylindres, ce qui en plus d'être peu réaliste, limite considérablement les valeurs de densités axonales et de dispersions angulaires globales atteignables par les algorithmes de l'état de l'art. Partant de cette observation, une nouvelle méthode de création de fantômes réalistes a été proposée dans cette thèse, menant au développement du logiciel MEDUSA. Le principe de base de cette méthode est de décomposer l'ensemble des cellules créées dans un voxel en un ensemble de sphères qui se chevauchent, introduisant ainsi une représentation générique de tous les types de cellules neurales. Ce maillage sphérique permet ensuite une utilisation simplifiée d'un algorithme basé sur des forces de répulsion entre les sphères appartenant à des cellules différentes, afin d'éliminer les collision entre les différentes cellules présentes dans le voxel virtuel. Une implémentation GPU de MEDUSA a été proposée, permettant la création rapide (en quelques dizaines de secondes) de fantômes virtuels avec plusieurs populations de fibres et différents niveaux de détail microstructuraux (figures et ).

Le réalisme des fantômes tissulaires a pu être amélioré grâce à MEDUSA puisque l'algorithme proposé permet d'atteindre de plus grandes densités axonales et dispersions angulaires globales que celles de l'état de l'art, de proposer différents types de distributions des diamètres axonaux et de prendre en compte l'anisotropie de la dispersion angulaire (voir figure ), tout en assurant un contrôle de l'ensemble des propriétés microstructurelles des géométries axonales créées, en utilisant un jeu de paramètres restreint. D'autre part, MEDUSA rend possible l'introduction de cellules gliales (astrocytes et oligodendrocytes) dans les fantômes de matière blanche (voir figures et ), ce qui ouvre la voie à l'étude de l'influence de ces cellules sur le signal IRMd. MEDUSA rend également possible la création de cellules neuronales pour simuler la matière grise.

La décomposition sphérique des cellules permet en outre de simuler la diffusion des molécules d'eau dans les fantômes construits de manière plus efficace d'un point de vue computationnel, ce qui permet l'utilisation de MEDUSA dans le cadre de la création de dictionnaires de tissus virtuels et de leur signature IRMd associée, comme présenté dans la prochaine section qui montre une première application des logiciels de simulation 

Un modèle computationnel pour estimer le gonflement axonal

La mise au point d'outils de simulation plus réalistes et plus rapides de la simulation de la diffusion dans les tissus cérébraux permet de considérer la modélisation computationnelle de la microstructure cérébrale comme une alternative aux modèles analytiques dont le réalisme et le pouvoir de représentation restent limités.

Ainsi, la dernière contribution de cette thèse a consisté en l'utilisation de l'ensemble des outils de simulation développés pour créer un dictionnaire de signaux IRMd simulés issus de voxels virtuels de matière blanche présentant divers degrés de gonflement axonal, qui survient après certaines pathologies neurologiques telles que l'accident vasculaire cérébral.

Ce dictionnaire a ensuite permis d'entraîner un algorithme d'apprentissage machine afin d'apprendre à extraire des propriétés tissulaires à l'échelle microstructurale à partir de signaux IRMd. Afin d'explorer différents temps de diffusion et avoir ainsi accès à différentes échelles spatiales, des séquences OGSE à différentes fréquences d'oscillation et PGSE à Figure : a. Exemple de fantôme issu de MEDUSA avec un diamètre axonal moyen de 0.4µm, densité intra-axonale de 0.5, utilisant différents types de distributions du diamètre axonal dans un voxel de 20µm 3 . b. Fantômes issus de MEDUSA comportant différents niveaux d'anisotropie de la dispersion angulaire, construits à l'aide de la distribution ESAG (elliptically symmetric angular gaussian distribution) pour tirer aléatoirement l'orientation des axones. La direction moyenne de l'axone est donnée par µ/||µ|| et la norme de µ mesure la dispersion de l'orientation autour de cette direction. L'anisotropie le long de chaque axe est quantifiée par le vecteur γ, ce qui permet un contrôle facilité de la forme de la distribution. Un squelette d'astrocyte (avant l'ajout de tortuosité) illustrant le concept de sphères nodales utilisées pour maintenir la structure des astrocytes au cours de l'application de l'algorithme de force de répulsion est également montrée.. différents temps de diffusion ont été utilisées pour créer la signature IRMd de chaque voxel virtuel. Le simulateur MEDUSA utilisé dans cette étude a permis la création de fantômes réalistes avec divers degrés de gonflement axonal (voir figure ).

Un algorithme d'apprentissage de type ExtraTrees, disponible dans le toolkit Scikit-Learn, a été entraîné sur le dictionnaire de signaux simulés. Son pouvoir prédictif a ensuite été évalué sur des échantillons simulés inconnus par l'algorithme, conduisant à des estimations des propriétés microstructurales (densité axonale, diamètre axonal et gonflement axonal) satisfaisantes. L'utilisation conjuguée de séquences OGSE et PGSE a en particulier permis une amélioration de l'estimation du diamètre axonal par rapport à l'état de l'art, et l'algorithme a montré ses capacités à distinguer les configurations pathologiques (correspondants à des gonflements axonaux importants) des configurations saines, ce qui est encourageant pour de futures applications cliniques (voir figure ).

Si cette étude basée uniquement sur des simulations est encore préliminaire, elle a

Figure :

Graphique en nuage de points comparant les valeurs estimées par le modèle computationnel de fraction intra-axonale, diamètre axonal et gonflement axonal aux valeurs vraies utilisées pour la simulation du signal IRMd. Un régresseur de type ExtraTrees a été entraîné sur des jeux de données comportant les signatures PGSE, OGSE, et OGSE+PGSE des voxels virtuels, avec un rapport signal sur bruit de .

néanmoins démontré la pertinence de l'utilisation de modèles computationnels pour la modélisation microstructurelle des tissus présentant des gonflement axonaux, qui sont très difficiles à modéliser de manière analytique à cause des géometries axonales complexes qu'ils impliquent. L'innovation consistant à utiliser des signaux IRMd provenant à la fois de séquences OGSE et PGSE a également permis d'augmenter le pouvoir prédictif du modèle construit, tout en s'affranchissant des difficultés de modélisation analytique du signal IRMd issu de l'espace extra-axonal présentant une dépendance temporelle non négligeable. La suite de ce travail consistera en la création d'un dictionnaire incluant les voxels contenant plusieurs populations axonales, et en la validation du modèle développé sur des données cliniques.

Perspectives et conclusion

L'objectif principal de cette thèse a été le développement d'outils de simulation pour couvrir l'ensemble des étapes de création de signaux IRMd simulés à partir de fantômes tissulaires réalistes. L'une des applications majeures des outils mis au point est la création de dictionnaires de signatures IRMd associées à des fantômes numériques représentant un ensemble de configurations microstructurelles permettant de modéliser un certain type de tissu (matière blanche, matière grise ou tissus pathologiques). De tels dictionnaires sont en effet indispensables à la construction de modèles computationnels du signal IRMd issu des tissus considérés, par le biais des outils d'apprentissage machine, permettant in fine d'accéder à des informations sur la microstructure cérébrale in vivo et donc de répondre à l'un des défis majeurs de la communauté de l'IRM de diffusion.

Cette thèse s'est en particulier attachée à proposer des outils plus réalistes pour la création des tissus, et efficaces du point de vue computationnel afin de rendre possible la création de tels dictionnaires en des temps de calcul raisonnables. Les outils de simulation ont également permis d'étudier l'influence de différentes propriétés microstructurelles sur le signal IRMd mesuré.

Ainsi, les perspectives de ce travail de thèse sont nombreuses et consistent principalement en la création de dictionnaires permettant de décrire l'ensemble des tissus sains (dans un premier temps) de la matière grise et de la matière blanche. Si les possibilités de modélisation de la substance blanche ont déjà été démontrées dans le cadre de cette thèse, dans le cas particulier des tissus présentant des gonflements axonaux, une adaptation du logiciel MEDUSA à la substance grise a également été mise au point afin de représenter les différents constituants du cortex de manière simplifiée (corps neuronaux représentés par des sphères, dendrites et axones représentés par des cylindroïdes) et ainsi reproduire l'organisation des colonnes corticales pour sonder la cytoarchitecture du cortex (voir figure ).

La création de modèles computationnels robustes permettant l'exploration de la microstructure cérébrale aura à terme deux applications majeures en neuroscience:

• la création d'un atlas probabiliste de la microstructure cérébrale in vivo permettant de dépasser les atlas post-mortem actuels de type Brodmann en supprimant la variabilité inter-individuelle et en corrélant les informations microstructurelles avec des informations fonctionnelles. Une telle application donnera à terme une meilleure compréhension du substrat anatomique des fonctions cérébrales • la caractérisation in vivo des tissus anormaux ou pathologiques offrant un outil de biopsie virtuelle non invasive fournissant des biomarqueurs issus de l'imagerie pour mieux diagnostiquer les pathologies neuro-développementales, neurodégénératives et psychiatriques.

Figure :

Fantômes de matière grise simplifiés avec les corps neuronaux représentés en bleu foncé, les fibres axonales tangentielles et radiales du cortex représentées en vert et rouge, et les dendrites orientées de manière isotrope représentées en jaune. Les fantômes sont placés à côté d'une coupe histologique du cortex visuel teinté avec la méthode de Nissl. Six fantômes avec différentes densités de chaque type cellulaire sont superposés pour montrer la possibilité de modéliser des colonnes corticales à l'aide du logiciel MEDUSA.

To affirm that everything communicates with everything else is equivalent to declaring the absolute unsearchability of the organ of the soul. -Santiago Ramón y Cajal

We do not know how the brain, three pounds of water, oil, small molecules, and protein can perform so many individual computations using so little energy. We do not fully understand how the brain creates the mind. In many ways, our twenty-first-century scientific questions and goals remain the same as Cajal's: to clarify the secret of mental life. -Janet Dubinsky, The Beautiful Brain W atching the sky fill with stars, or looking at a magnified slice of brain matter are equally inspiring -or depressing, depending on your temper-contemplations that should remind us how ignorant we are. Is the whole of my being -my memories, my anxiety and joy, my capacity for creation and destruction-really self-contained within this electrified ball of meat?

Understanding the human brain, its structure and, eventually, its function, is a search which might captivate humankind for decades and centuries to come. The human brain indeed reveals the quintessence of the evolutionary process, and shows a most complex organization made up of about billion neurons and billions of nerve fibers.

Over the -year history of modern neuroscience, the way we think about the brain has evolved with the sophistication of the techniques available to study it.

Improvements in microscope design and manufacture, together with the development of cell-staining techniques, afforded neuroscientists their first glimpse at the specialized cells that make up the nervous system. Nineteenth-century histologists thus created some of the first images of nerve cells by chemically stiffening tissue and then immersing it in silver nitrate, randomly staining a small number of cells to make them visible when they were viewed with powerful light microscopes. The technique revealed the silhouette of the cell body and its network of extensions, and it enabled the great neuroanatomist Santiago Ramón y Cajal to prove that the nervous system consists of cells.

Nowadays, numerous techniques are rapidly becoming more precise to observe the brain at various scales. It is now possible to study the distribution of billions of neurochemical receptors in the brain, the thickness of cortex, the great highway system of white matter fiber bundles, and the functional activity of the brain -the basis of its adaptive capacities.

New advances are allowing scientists to investigate not only specific brain regions but also the dynamic pattern of connectivity between them, this massive wiring of the brain made of everchanging connections that can alter in a fraction of a second.

Among those techniques, neuroimaging tools such as computed tomography (CT), ultrasound imaging, positron-emission tomography (PET), electroencephalography (EEG), magnetoencephalography (MEG), and magnetic resonance imaging (MRI) are of particular interest since they allow neuroscientists to look at the brain in vivo.

MRI provides a safe and noninvasive method to probe human neuroanatomy. It became largely used due to its low invasiveness, lack of radiation exposure -contrary to CT or PET-and relatively wide availability. Compared with images from other modalities, MR images of the head also provides excellent anatomical detail and strong grey/white matter contrast.

After anatomical and vascular imaging, MRI has pursued its development, giving rise to two major neuroimaging modalities:

• Functional MRI (fMRI) is a recent methodology that uses MRI in a specialized manner that can indirectly measure brain activity in addition to anatomy. Functional MRI accomplishes this by detecting changes in blood oxygen levels, as cerebral blood flow is altered by local neuronal activation. This technology has revolutionized human neuroscience by allowing researchers to study moment-to-moment changes in the activity of the brain with high spatial resolution as people perform mental tasks, make decisions, recall memories, view pictures or movies, listen to stories, or even just daydream.

• Diffusion MRI (dMRI) is a MRI method that measures molecular diffusion in biological tissues. It is considered as a microstructural probe because it measures the micrometer-scale displacement of water molecules -a displacement that is in the order of magnitude of the cells populating tissues. dMRI is able to measure the anisotropic diffusion of water along fiber bundles, highlighting the connectivity between brain regions.

The sensitivity of dMRI to the displacement of water molecules has made it an invaluable clinical diagnostic tool, particularly in neuroimaging. Empirically, the diffusion signal in brain tissue is sensitive to the density, orientation and permeability of barriers (e.g. myelin) and the presence of various cell types and organelles (e.g. cell bodies, dendrites, axons, neurofilaments and microtubules). In other words, dMRI can in principle provide information about the tissue microstructure on a much smaller scale than that of the actual image resolution: micrometers versus millimeters. This technique has therefore found numerous applications in the study of developmental, normal and pathological processes known to modify the microstructure of white or gray matter: brain development, aging, stroke, traumatic brain injury, multiple sclerosis, Alzheimer's disease notably.

However, making diffusion MRI an actual microstructural probe for healthy and pathological tissues remains very challenging. The difficulties that arise when trying to extract valuable information from the dMRI signal can be summed up in a single idea: the distinction between sensitivity and specificity. Indeed, the dMRI signal is sensitive to microstructural features, and changes that occur in tissues due to pathologies. However, a proper modelling of the dMRI signal is needed to achieve microstructural specificity, i.e.

establishing a relationship between the measured diffusion-weighted MRI signal and the underlying microstructural properties of the observed tissue. Such a modelling has long been done using analytical tools which represent cellular items (axons and other cells)

using simple geometries such as cylinders and spheres, because those geometries enable to derive closed form analytical expression of the corresponding diffusion-weighted MR signal. Such an approach is inherently limited by this over-simplistic representation of cellular items, which is not sufficiently realistic to catch the complexity of the corresponding dMRI signal.

Moreover, while it is claimed that dMRI achieves a micrometer-scale sensitivity, such a statement should be considered carefully. First, drawing on the example of brain white matter, one voxel contains thousands of axons, which means that only coarse-grained, statistical properties of the tissue can be extracted, which also depend on the diffusion time. Second, the quest for the estimation of axon diameter brought out the limitations of diffusion MRI microstructure resolution, which was found to be closer to 10µm than 1µm when using conventional Pulsed-Gradient Spin-Echo sequences on clinical scanners.

Thus, in parallel with the development of microstructure models of the dMRI signal, The aim of this thesis has been to try and improve our ability to extract microstructural information from the dMRI signal. The employed approach has been mainly based on computational methods and numerical studies, and can be divided into three main axes:

• a numerical study of the time/frequency-dependence of the diffusion signal in complex diffusion media, using OGSE sequences

• the design of the MEDUSA framework, which enables to create realistic numerical phantoms of brain tissues at high packing densities, in a computationally efficient way

• the development of a microstructure computational model based on a machine learning framework, trained using a dictionary of synthesized dMRI signals from realistic numerical phantoms with controlled microstructural properties.

The overall objective of the thesis was the creation of a large dictionary of simulated voxels corresponding to all possible geometries encountered in white matter (including two and three crossing fiber populations) and eventually in gray matter. This objective requires important computational resources and computing time that goes beyond the frame of this thesis. A first proof-of-concept of such an approach has been provided for a single population of axons in white matter, to study the influence of a particular axonal pathology called beading.

Thesis Overview

This manuscript is organised in two parts progressively leading the reader from general considerations to the latest results of this three-year work.

The first part will describe the context of this work: starting from an overview of cerebral anatomy and its microstructural aspects (chapter ), we will then elaborate on the principles of diffusion MRI, as well as the main technical developments in this field (chapter ). We will lastly present the main principles to perform large-scale simulations for diffusion MRI, and the tools available for both High Performance Computing (HPC)

and machine learning (chapter ).

The second part of the manuscript gathers the original contributions of this thesis. We will first detail a parametric study on the influence of simulated microstructural properties on the frequency-dependence of diffusion-weighted OGSE signals (chapter ). Then we will describe the MEDUSA tool, which enables the construction of realistic numerical phantoms of brain tissues to study their microstructure (chapter ). We will then cover the application of the MEDUSA tool and of the computational framework developped during this thesis to study axonal beading (chapter ). Finally, several other applications of the developped computational framework will be presented (chapter ), before concluding this manuscript (chapter ).

This manuscript aims ay laying the basis to more realistic computational models of brain microstructure, with a view to characterize microstructure from both healthy and pathological tissues using diffusion MRI.

Part I

Introduction and Context

Chapter

Human brain anatomy

Chapter Outline 

T

his chapter presents the required background of human brain anatomy necessary to understand the developments made during this thesis. In particular, after a first part presenting key aspects of the brain structures at the macroscopic scale, the emphasis is laid in the second part on the microstructure of brain tissues. Focus is made on the cellular composition of white and gray matter, which detailed knowledge is essential to construct more realistic numerical phantoms of brain tissues.

.

Macroscopic anatomy

. .

Gross anatomy

The human brain is part of the central nervous system (CNS), which also includes the spinal cord. The brain is protected by the skull and surrounded by three membranes called meninges (see figure . ): • the dura mater, outer meningeal layer, lies immediately below the bony layer of the skull and contains several blood vessels. It is a thick, fibrous dual-layer membrane consisting of an outer periosteal layer and an inner meningeal layer. These layers are normally fused but can separate to form large venous channels known as the dural sinuses. The dura mater can be thought of as an envelope surrounding the arachnoid mater.

• the arachnoid mater, named for its spiderweb-like appearance, is a thin, transparent membrane composed of collagen and elastic fibers. It is closely applied to the inner surface of the dura mater and separated from the pia mater by the subarachnoid space containing the cerebrospinal fluid.

• the pia mater, delicate innermost layer of the meninges, allows blood vessels to pass through and nourish the brain. It is a thin fibrous tissue impermeable to fluid that encloses the cerebrospinal fluid (CSF), enabling with other meningeal layers to protect and cushion the brain.

Besides ensuring the mechanical and immunological protection of the brain, the CSF (figure . ) serves several purposes, such as the buoyancy of the brain (the net weight of the brain suspended in CSF is equivalent to a mass of -grams when it has an actual mass of about -grams), the homeostasis to regulate the distribution of substances between cells of the brain and the clearing of brain waste [Bacyinski ].

Cerebrospinal fluid is produced by the specialised ependymal cells in the choroid plexuses of the ventricles of the brain, and absorbed in the arachnoid granulations. The volume of CSF is about 125mL at any time in the brain, and about 500mL is generated every day.

The human brain itself is composed of the cerebrum, cerebellum and brainstem (see figure . ).

The brainstem is an area at the base of the brain that lies between the deep structures of the cerebral hemispheres and the cervical spinal cord. It is divided into three sections in humans: the midbrain (mesencephalon), the pons (metencephalon) and the medulla oblongata (myelencephalon). The brainstem coordinates motor control signals sent from the brain to the spinal cord and the body and controls life supporting autonomic functions of the peripheral nervous system. The brainstem also connects the cerebrum with the cerebellum, which plays an important role in motor control.

The cerebellum has the appearance of a separate structure attached to the bottom of the brain, folded underneath the cerebral hemispheres. Its cortical surface is covered with finely spaced parallel grooves which are a consequence of the actual structure of the cerebellar cortex : a continuous thin layer of tissue tightly tucked in the style of an accordion.

Nerve tracts traveling through the brainstem relay signals from the cerebellum to areas of the cerebral cortex that are involved in motor control. This allows for the coordination of fine motor movements needed for activities such as walking. The next sections will give a detailed presentation of the largest part of the brain, the cerebrum, which is responsible for the main functions of the human brain, such as memory, speech, the senses, and emotional response. This description will start with the lobes of the cerebral cortex.

. . Brain lobes

The cerebral cortex, outer layer of neural tissue of the brain cerebrum, is a structure folded into ridges (gyri) and grooves (sulci). The cortical folding provides a greater surface area in the confined volume of the cranium and is essential for the wiring of the brain and its functional organisation.

The cerebral cortex is separated into two cortices, by the longitudinal fissure that divides the cerebrum into the left and right cerebral hemispheres. The two hemispheres are joined beneath the cortex by the corpus callosum.

The cerebral cortex is associated with higher level processes such as consciousness, thought, emotion, reasoning, language, and memory. Each cerebral hemisphere can be subdivided into four lobes, each associated with different functions (see figure . ):

• The frontal lobe, located in the forward part of the brain, extends back to a fissure known as the central sulcus. It is involved in reasoning, motor control, emotion, and language. It contains the premotor and primary motor cortices, which are respectively involved in planning and coordinating movements; the prefrontal cortex, which is responsible for higher-level cognitive functions such as reasoning skills and decision-making; and Broca's area, which is essential for language production.

• The parietal lobe is located immediately behind the frontal lobe, and is involved in processing sensory information. It contains the somatosensory cortex, organized topographically, which means that spatial relationships that exist in the body are maintained on the surface of the somatosensory cortex (for example, the portion of the cortex that processes sensory information from the hand is adjacent to the portion that processes information from the wrist).

• The temporal lobe is located on the side of the head and is associated with hearing, memory, emotion, and some aspects of language. This lobe contains the auditory cortex that processes auditory information, and the Wernicke's area, crucial for speech comprehension.

• The occipital lobe, located at the very back of the brain, is the visual processing center of the brain. It contains the primary visual cortex, which is responsible for interpreting incoming visual information from the retina. The occipital cortex is organized retinotopically, which means there is a close relationship between the position of an object in a person's visual field and the position of that object's representation on the cortex.

Two supplementary areas must be added to properly subdivide the cortical surface:

• The limbic lobe, which is not a single brain structure, but rather an interacting group of brain structures that includes portions of each lobe of the cerebral cortex.

This C-shaped brain region is vital for the functioning of memory, learning, motivation, and emotion, as well as endocrine functions and some autonomic-automatic, unconscious-bodily functions.

• The insular cortex, folded deep within the lateral sulcus (separating the temporal lobe from the parietal and frontal lobes), is believed to be involved in consciousness and plays a role in diverse functions usually linked to emotion or the regulation of the body's homeostasis.

This division of the brain into lobes was further refined in by Korbinian Brodmann (see figure . ) who parcellated the cerebral cortex into areas defined by their cytoarchitecture (histological structure and organisation of cells). Von Economo and Koskinas [Economo ] published an even more detailed cortical map in . The 

. . Gray matter

Gray matter is found both at the surface of the brain, as layers of neuronal cell bodies, and deeper in the brain, in the form of clusters of neurons called nuclei. Its different components are detailed below.

. . . Cortex

Different types of cortices

The cortex is not a uniform structure at the surface of the brain. Its thickness varies according to the location ( [Zilles ] reported a thickness of 4.2-5.7mm in the primary motor cortex against 2.4-2.7mm in the primary somatosensory cortex) and two types of cortex can be distinguished:

• the neocortex, located in the superficial portion of the forebrain, is a highly organized structure that processes sensory, motor, language, emotional, and associative information. It is the largest component of the cerebral cortex and comprises six layers of neurons that are grouped according to their primary input or output circuitry.

Eighty percent of the neurons here are excitatory and project axons to other regions of the neocortex or deep brain structures such as the thalamus, basal ganglia, cerebellum, hindbrain, or nuclei within the spinal cord. Therefore, the neocortex plays
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a paramount role in coordinating the activity of neurons throughout the central nervous system.

• the allocortex is found in the olfactory system and hippocampus and has just three or four layers of neuronal cell bodies in contrast to the six layers of the neocortex.

The cellular organization of the cortex also varies across regions on the surface of the brain, as detailed hereafter.

Cytoarchitectonic parcellation of the cortex

The parcellation of the human brain cortical surface into areas is an important challenge in neuroscience and as such, subject to controversy. While the parcellation can be done using functional information from fMRI or structural information from myeloarchitectonics, as will be discussed later, one of the first parcellation of the human cortex was performed using cytoarchitectonics information. . . .

Indeed

Basal ganglia

Additionally to the cortical mantel, other gray matter structures can be found deeper in the cerebrum. These structures are usually called basal ganglia. The term ganglia is a misnomer since it corresponds to collections of cell bodies outside of the CNS. Basal ganglia are in fact deep cerebral nuclei, i.e. a collection of subcortical cell bodies inside the CNS.

Basal ganglia are strongly interconnected with the cerebral cortex, thalamus, and brainstem, as well as several other brain areas. The basal ganglia are associated with a variety of functions, including control of voluntary motor movements, procedural learning, habit learning, eye movements, cognition and emotion.

The main components of the basal ganglia are (see figure . ):

• the caudate nucleus, a C-shaped structure closely associated with the lateral wall of the lateral ventricle. It is largest at its anterior pole (the head), and its size diminishes posteriorly as it follows the course of the lateral ventricle (the body) all the way to the temporal lobe (the tail), where it terminates at the amygdaloid nuclei.

• the putamen, also a large structure that is separated from the caudate nucleus by the anterior limb of the internal capsule. The putamen is connected to the caudate head by bridges of cells that cut across the internal capsule. Because of the striated appearance of these cell bridges, the caudate and putamen are collectively referred to as the neostriatum.

• the nucleus accumbens, often called the ventral striatum to differentiate it from the neostriatum. The nucleus accumbens and the olfactory tubercle collectively form the ventral striatum. The ventral striatum and dorsal striatum collectively form the striatum, which is the main component of the basal ganglia.

• the globus pallidus, which forms with the putamen the lenticular nucleus, or lentiform nucleus. The globus pallidus is divided into two segments: the internal (or medial) segment and the external (or lateral) segment.

• the ventral pallidum which forms with the globus pallidus a large structure called the pallidum.

• the substantia nigra, located in the mesencephalon, consists of two parts with very different connections and functions: the pars compacta and the pars reticulata.

• the subthalamic nucleus, located in the diencephalon, is the most prominent structure of the subthalamus and lies dorsal to the substantia nigra.

The basal ganglia are of major importance for normal brain function and behaviour.

Their dysfunction results in a wide range of neurological conditions such as disorders of behaviour control and movement, including Tourette syndrome, obsessive-compulsive disorders, addiction, Parkinsonian syndromes, Huntington's disease and dystonia.

. . .

The diencephalon

The diencephalon is one of the most highly developed structures of the human central nervous system and consists of four components:

• the thalamus, comprising the major part of the diencephalon, is a processing center for projections entering and exiting the cerebral hemispheres. It is a relay for sensory signals, including motor signals, to the cerebral cortex.

• the hypothalamus, integrating the functions of the autonomic nervous system and endocrine hormone release from the pituitary gland.

• the epithalamus, a small region of the diencephalon consisting of the pineal gland, the habenular nuclei and the stria medullaris thalami. The pineal gland participates in the regulation of the body's circadian rhythms. • the subthalamus, whose largest division is the subthalamic nucleus that is involved with integration of somatic motor function.

The diencephalon acts as a primary relay and processing center for sensory information and autonomic control. The plethora of communicating pathways between its structures and other parts of the body makes the diencephalon a functionally diverse area. Some of these connections include pathways to the limbic system (seat of memory and emotion), basal ganglia (motor coordination), as well as primary sensory areas, such as auditory or visual.

. . . Other gray matter structures

As mentioned earlier, the cerebellum has a cortical surface, made of a tightly folded and crumpled layer of gray matter called cerebellar cortex. It also contains four deep cerebellar nuclei in the white matter underneath: the dentate, emboliform, globose and fastigii nuclei (see figure . ).

Gray matter is also present in the brainstem, which comprises the cranial nerve nuclei, the substantia nigra and the red nuclei.

. . White matter

White matter of the CNS occupies a large proportion of the brain (approximately percents). It consists of tightly packed glial cells, unmyelinated and myelinated axons -the presence of myelin is responsible for the white appearance of this tissue-and contains no neuronal cell bodies or synapses. White matter regions vary widely with regard to the ratio of myelinated to unmyelinated axons: for example, in the mouse brain, all the axons of the optic nerve are myelinated, but only about percents are myelinated in the corpus callosum [Sturrock ]. Afferent and efferent white matter axonal tracts interconnect cortical areas and gray matter nuclei of the brain and spinal cord. While a small proportion of axonal tracts called projection fibers connect to deep nuclei, brainstem, cerebellum or spinal cord, most axons in cerebral white matter provide connections within cortical regions. These connections include short fiber bundles between adjacent cortical regions (U fibers) and longer axons projecting between contralateral hemispheres (commissural fibers) or distinct brain areas within the same hemisphere (association fibers). This section describes all types of connections found in white matter. .

. . Projection fibers

Projection fibers (see figure . ) are myelinated nerves that connect the cortex with lower parts of the brain (deep nuclei, brainstem, cerebellum) and with the spinal cord. Two types of tracts can be distinguished:

• efferent projection tracts -mainly motor tracts-conduct information towards the outside of the cortex.

• afferent projection tracts -mainly sensory tracts-bring information inside the cortex.

The principal efferent fibers are the motor tract, consisting of the geniculate fibers and corticospinal fibers, and the corticopontine fibers. Additionnally to optic and acoustic fibers, the chief afferent fibers are found in the lemniscus, the superior cerebellar peduncle and the thalamus.

. . .

Commissural fibers

The two cerebral hemispheres are not separate entities: interhemispheric commissural fibers connect both cortical and subcortical regions of the brain. The classical experiments on split-brain patients suggest that a role of commissural fibers is to integrate the activity of the two hemispheres and to compensate for the presence of hemispheric specializations.

The loss of interhemispheric communication is evident in the inability of the split-brain subjects to interrelate stimuli seen in left and right visual fields or to verbally name or describe objects and patterns presented in the left half field of vision [Gazzaniga ].

Five commissural fibers can be distinguished:

• the corpus callosum (see figure . ), largest bundle of commissural fibers, is located superior to the diencephalon and forms the roof of much of the lateral ventricles. The corpus callosum consists of, from rostral to caudal, a rostrum, genu, body, and splenium. Many of the fibers passing through the genu arch rostrally to interconnect the frontal lobes. These form the minor (or frontal) forceps. The fibers interconnecting the occipital lobes loop through the splenium of the corpus callosum, forming the major (or occipital) forceps. The tapetum, which is located in the lateral wall of the atrium and posterior horn of the lateral ventricle, is also composed of fiber bundles that cross in the splenium.

• the hippocampal commissure (also called commissure of fornix) is a thin layer inferior to the splenium of the corpus callosum. It connects the two hippocampi across the midline.

• the anterior commissure, located anteriorly to the corpus callosum, connects the olfactory bulbs, amygdaloid nuclei, and the medial and inferior temporal lobes.

• the posterior commissure, located posteriorly to the corpus callosum, connects areas in the occipital lobes, primarily areas concerned with pupillary response and eye movement control. Posterior commissural fibers cross the midline at the base of the pineal gland and just posterior (dorsal) to the cerebral aqueduct.

• the habenular commissure is a small fascicle running along the upper aspect of the posterior commissure and interconnecting the habenular nuclei.

. . .

Association fibers

The association fibers (figure . ) interconnect various areas of cortex within the same hemisphere. These may be short association fibers (also known as U-fibers) that connect the cortices of adjacent gyri or long association fibers that interconnect more distant areas of cortex. U-fibers Subcortical U-fibers represent connections between adjacent gyri of the brain, located within the cortex or immediately deep to it in the very outer parts of the subcortical white matter. Since dissection methods do not allow to reconstruct these fascicles efficiently, short association fibres are not well described in anatomical atlases of white matter. This is the subject to an active field of research [Guevara ].

Long association fibers Long association fibers connect the more widely separated gyri and are grouped into bundles. The most important bundles include the cingulum located internal to the cingulate gyrus and continuing into the parahippocampal gyrus, the inferior longitudinal fasciculus (temporal-occipital interconnections), and the uncinate fasciculus (frontal-temporal interconnections). The superior longitudinal fasciculus, located in the core of the hemisphere, interconnects frontal, parietal, and occipital cortices, whereas the arcuate fasciculus interconnects frontal and temporal lobes. In the white matter of the temporal lobe, fibers passing between the frontal and occipital areas make up the inferior fronto-occipital fasciculus.

After this overview of the macroscopic anatomy of the human brain, the next section aims at describing the brain tissue at a cellular level. A precise knowledge of the human brain microanatomy is essential, since one of the main objectives of this thesis is to try and construct biomimicking numerical phantoms of white (and eventually gray) matter.

.

Microscopic anatomy

Brain tissues at the microscopic scale are incredibly complex, with a strong variability across different regions of the brain. We can however distinguish white matter micro-structure, mainly composed of myelinated axons (giving the white color) and glial cells responsible for myelination, from gray matter microstructure, mainly composed of neural cell bodies, dendrites and astrocytes. Keeping in mind one major contribution of this thesis -mimicking brain microstructure numerically at the voxel size-a precise description of each cellular component found in these tissues is given, as well as their typical size, density and other properties of interest. The histology of cortex and white matter is then detailed.

. . Brain cells

. . . Neurons

The neuron (see figure . ) is the basic working unit of the brain, a specialized cell designed to transmit information to other nerve cells, muscles, or gland cells. Most neurons have a cell body or soma, a projection which conducts the nerve impulse called axon or neural fiber, and signal receivers called dendrites.

Neural cells: an overview

The neural cell body or soma contains the nucleus and cytoplasm. The nucleus encloses the DNA of the cell, while the cytoplasm contains organelles including granules called Nissl corpus (granular endoplasmic reticulum) and free ribosomes, synthesizing proteins. The neuron cell also contains different organites, such as mitochondrion (breathing of the cell and energy supply), the Golgi apparatus, which regulates the transport of molecules through the membranes and transforms the proteins and the lysosomes (digestion of the cell).

The dendrite contains the same types of organites as the cell body does, except the nucleus and the lysosome. Dendrites extend from the neuron cell body and receive messages from other neurons. The dendrites are covered with synapses formed by the ends of axons from other neurons. Synapses are the contact points where one neuron communicates with another.

There exists a wide variety of neural cell types, each with a specific structure and function (see figure . ). However, a general classification distinguishes between efferent/motor neurons which are multipolar neurons with short dendrites and a long axon enabling to conduct the motor information away from the cortex to other parts of the body, and pseudounipolar afferent/sensory neurons which receive information from sensory receptors and communicate it to the CNS. A third type of neuron called interneurons connect together neurons within the brain or the spinal cord. These interneurons are bipolar.

Additionally to this rough classification, some particular neuron cell types which are the most abundant neurons in the cortex are worth an introduction:

• pyramidal cells, among the largest neurons in the brain. They have a conic-shaped soma of length ∼ 20µm after which the neuron is named. Pyramidal cells have long axons leaving the cortex to connect other cortical areas. They also have a large apical dendrite which rises from the apex of the pyramidal cell's soma. The apical dendrite is a single, long, thick dendrite that branches several times as distance from the soma increases and extends towards the cortical surface. Pyramidal cells have multiple basal dendrites which arise from the base of the soma. The basal dendritic tree consists of three to five primary dendrites. As distance increases from the soma, the basal dendrites branch profusely. Pyramidal dendrites typically range in diameter from half a micrometer to several micrometers. The length of a single dendrite is usually several hundred micrometers. Due to branching, the total dendritic length of a pyramidal cell may reach several centimeters. Pyramidal dendrites are characterized by the presence of dendritic spines.

• granule cells, small neurons which can be found in different regions of the brain; they are both functionally and anatomically diverse, with one common feature being their small cell bodies of diameter ∼ 10µm and small axon of diameter ∼ 0.5µm. Granule cells are interneurons, their axons stay in the cortex. Each granule cell hasdendrites which end in a claw. Each of the dendrites are only about 15µm in length.

The total dendritic length typically amounts to ∼ 60µm.

• the cells of Martinotti, having small dendrites and their axons run towards the surface and turn to follow the superficial layers of the cortex. They make contact with pyramidal cells through their synapses.

• the fusiform cells: their axons reach the surface and their dendrites connect other cortical layers.

The density of pyramidal and granule cells varies greatly across cortical layers, which are named accordingly, as will be shown in the cortex histology section.

Neural fibers: biological characteristics

The axon or neural fiber extends from the cell body and often gives rise to many smaller branches before ending at nerve terminals.

Neural fibers are the principal component of white matter. They are the projections of the neuronal cells responsible for the conduction of the nerve impulse. A nerve fiber is made of an axon which can be enveloped by a myelin sheath (we call it a myelinated fiber).

Myelin is responsible for the white appearance of white matter. 

d D ∝ g log 1 g ( . )
where D is the external diameter of the axon (including the myelin sheath), and g is the g-ratio.

The myelin sheath is a succession of impermeable bilipid layers, separated by layers of water (myelin water). The function of the myelin layers is to improve the speed of propagation of action potentials by inhibiting ionic exchanges between the intra-and the extra-axonal space. Instead, these exchanges mostly take place at the regularly spaced nodes of Ranvier. These nodes are approximately 2µm long and spaced 1mm apart (depending on the axon diameter), and thus constitute only . percent of the axon surface [Giuliodori ].

It is not clear whether the axon diameter and myelin sheath thickness remain constant Due to large differences in mean axon diameter between white matter regions, the density of nerve fibers varies greatly across white matter(10 4 to 10 5 cells/mm 3 [Herculano-Houzel ]).

The fibers of a given population depict a macroscopic angular dispersion that corresponds to the global misalignment of axons, as well as a local tortuosity-which can be defined as the ratio between the geodesic distance along the curvilinear frame defined by the centroid axis of the axonal fiber and the Euclidean distance between the two extremities of the fiber. Values of microscopic misalignments of axons estimated up to degrees were reported in [Ronen a]. . . . Morphologically, the name astrocyte or astroglial cell is an umbrella term that covers several types of glial cell. The largest group are the "true" astrocytes, which have the classical stellate morphology and comprise protoplasmic astrocytes and fibrous astrocytes of the grey and white matter respectively. The second big group of astroglial cells are the radial glia, which are bipolar cells with an ovoid cell body and elongated processes.

Glial cells

Radial glia disappear from many brain regions after maturation and transform into stellate astrocytes.

Protoplasmic astrocytes are the type of astrocytes populating gray matter tissues. They have many fine processes (∼ 50µm long on average) which are extremely elaborate and complex. These processes contact blood vessels to form perivascular endfeet (and sometimes also subpial endfeet), and form multiple contacts with neurons. The cortical density of protoplasmic astrocytes varies between 10 000 and 30 000 per mm 3 . The surface area of their processes is huge (up to 80 000 µm 2 ) and practically covers all neuronal membranes within reach.

Fibrous astrocytes are the type of astrocytes populating white matter tissues. Their processes are long (up to 300µm), though much less elaborate compared to protoplasmic astroglia. The density of fibrous astrocytes is ∼ 200 000 cells per mm 3 . Experimental evidence points to fibrous astrocytes as being crucial in facilitating normal myelination during development, maintaining the right environment for oligodendrocytes and also ion buffering and metabolic supply throughout adulthood [Lundgaard a, Oberheim a].

According to [Oberheim a], the processes of fibrous astrocytes are long -up to 300µmand establish several perivascular or subpial endfeet. Fibrous astrocyte processes also send numerous extensions ("perinodal" processes) that contact axons at nodes of Ranvier, the sites of action potential propagation in myelinated axons. The processes are radially oriented in the direction of the axon bundles, relatively unbranched, and extend evenly from a small cell body. The cell bodies are equally spaced, probably due to the fact that they provide a structural support for the axons tract [Oberheim a].

Figure . illustrates the differences between protoplasmic and fibrous astrocytes, both in terms of structure and location in the brain microstructure.

Oligodendrocytes Oligodendrocytes are glial cells with few processes, which are predominantly found in white matter. The main function of oligodendrocytes is the production of myelin which insulates axons in the central nervous system and assists fast saltatory action potential propagation. Oligodendrocytes also participate in the development of nodes of Ranvier and determine their periodicity. They were first described in [Rio-Hortega ], where these cells were classified into four main phenotypes (I-IV) depending on their morphological appearance, and by the number of their processes and the size of the fibres they contacted.

Type I and II oligodendrocytes are very similar, with a small rounded body producing four to six primary processes, which branch and myelinate to thin (diameter < 2µm) showing protoplasmic astrocytes in layers II to VI of the cortex (see the cortex histology section for more details on these layers) and fibrous astrocytes in white matter. Interlaminar astrocytes are also shown, which abundantly populates the superficial cortical layers and extends long processes without varicosities to cortical layers III and IV.

seems likely that signals from axons of different calibre regulate oligodendrocyte phenotype divergence. This question is of some importance, because the dimensions of the myelin sheath determine the conduction properties of the axons in the unit, whereby axons with long thick myelin sheaths (type III/IV oligodendrocyte axon units) conduct faster than those with short thin myelin sheaths (type I/II oligodendrocyte-axon units).

In addition to these classical myelin-forming oligodendrocytes, a small population of non-myelinating oligodendrocytes known as "satellite oligodendrocytes" are present in the grey matter, where they are usually applied to neuronal perikaria. The function of these satellite oligodendrocytes is unknown.

Microglia Microglial cells are the immunocompetent cells residing in the CNS. Their soma is ∼ 10µm in diameter and total coverage (with processes) is about 15 -30µm. In essence, microglia form the brain immune system, which is activated upon various kinds of brain injuries and diseases. Microglial cells represent about percents of all glial cells in the brain. In the mature CNS, microglial cells may appear in three distinct states:

the resting microglia, activated microglia and phagocytic microglia. In the normal brain, microglial cells are present in the resting state, which is characterized by a small soma and numerous very thin and highly branched processes. Every individual microglial cell is responsible for a clearly defined territory of about 50 000µm3 in volume. There is a clear morphological difference between microglial cells residing in the grey versus white matter: the former extend processes in all directions, whereas the processes of the latter are usually aligned perpendicularly to the axon bundles. Microglial cells are equipped with numerous receptors which make them perfect sensors of the status of the CNS tissue: brain injury is immediately sensed, which initiates the process of activation of microglia. This process turns microglia into an activated (or reactive) state, and some of the activated cells proceed further to become phagocytes. Both reactive microglia and phagocytes provide an active brain defence system [Verkhratsky ].

Ependymal cells Ependymal cells line the ventricles of the brain and central canal of the spinal cord and create cerebral spinal fluid (CSF). These cells are cuboidal to columnar and have cilia and microvilli on their surfaces to circulate and absorb CSF.

. .

White matter histology

The white matter is composed of four main components: neuronal fibers, glial cells (e.g. 

. . Cortex histology

The advent of cell body and myelin staining techniques at the end of the th century resulted in several classical monographies about the cerebral cortex [Brodmann , Vogt , Economo ] based on the analysis of cortical layering. The different cortical layers were microscopically defined by differences in their prevailing cell types (pyramidal cells versus granular cells), packing density of cell bodies, or of myelinated fibers. This .

. . Myeloarchitectonics

The cortex contains numerous myelinated fibres, which show two principal orientations, tangential and radial. The tangential fibres tend to form local concentrations or bands, some of which are visible with the naked eye in unstained sections. The radial fibres are concentrated in bundles.

The scheme representing the myeloarchitectonic layers is shown in figure . , together with a comparable scheme of the cytoarchitectonic organization of the cortex. In both schemes the neocortex is subdivided into six layers. The corresponding myeloarchitectonic layers are [Nieuwenhuys a]:

• (1) the zonal layer differentiated into four sublayers, the narrow sublayer 1 o , which contains only very few fibers, and the external, intermediate and deep sublayers 1a, 1b and 1c, of which 1a contains clearly more fibers than 1b and 1c.

• (2) the dysfibrous layer which contains, just like sub-layer 1 o , only very few fibers.

• (3) the suprastriate layer has three sub-layers, of which the superficial sublayer 3a 1 is more rich in fibers than the remaining sublayers 3a 2 and 3b. Sublayer 3b is characterized by the presence of the end segments of the radial bundles.

• (4) the external stria or outer stripe of Baillarger forms a dark band of tightly packed, tangential fibres.

• (5a) the intrastriate layer is generally relatively poor in tangential fibres, thus contrasting with the bordering stripes of Baillarger.

• (5b) the internal stria or inner stripe of Baillarger is a dense plexus of tightly packed tangentially oriented fibres.

• (6) this layer is subdivided into the pale substriate lamina 6a 1 and laminae 6a 2 , 6b 1 and 6b 2 , which show an increasing wealth of tangentially oriented fibres. Sublayer 6b 2 forms the zone of transition to the subcortical white matter. 

. . . Cytoarchitectonics

The scheme of cytoarchitectonics shown in figure . enables to identify six cytoarchitectonics layers. These layers are:

• (I) the cell-poor zonal layer or molecular layer, with few neurons, is mainly composed of glial cells, apical dendrites and axons parallel to the pial surface.

• (II) the external granular layer is mainly composed of small granular cells which receive afferents from and send efferents to other cortical areas.

• (III) the external pyramidal layer contains small pyramidal cells. Layers I-III are referred to as supragranular layers and constitute the primary origin and termination of intracortical connections.

• (IV) the internal granular layer includes dense packing of granular cells.

• (V) the internal pyramidal layer contains large pyramidal cells which axons leave the cortex and run down to subcortical structures, and Martinotti cells.

• (VI) the multiform layer or polymorphic layer contains few large pyramidal neurons and many small multiform neurons. Layers V-VI are referred to as infragranular layers which are most developed in motor cortical areas.

Though the various analyses of the cerebral cortex resulted in comparable layering schemes, the parcellation of the cortex into numerous areas differs when using cyto-and myelo-architecture, or even within a single modality 

. . Microvasculature

The microvasculature of the brain consists in a dense network of intercommunicating vessels that is mostly comprised of specialized endothelial cells. The density of brain capillaries varies significantly within the brain, depending on location and energy needs, with higher capillary density in gray versus white matter [Cipolla ]. The neurovascular coupling between densities of capillaries and neurons is a proportionality relation, with typically about 10µm of capillaries per cortical neuron [Karbowski ].

The complex cross-talk between all entities and cell types of the brain microvasculature is collectively known as the neurovascular unit (NVU). The NVU is a structure formed by neurons, interneurons, astrocytes, basal lamina covered with smooth muscular cells and pericytes, endothelial cells and extracellular matrix. Each component is intimately and reciprocally linked to each other, establishing an anatomical and functional whole, which results in a highly efficient system of regulation of cerebral blood flow [Sweeney ] (see figure . ). 

. . Conclusion

This introduction chapter has presented the essential knowledge needed to understand the structure of the brain both at macroscopic and microscopic scales. Diffusion MRI, which is the subject at the core of this thesis, enables to obtain information from the brain structure at these two scales, thanks to the sensitivity of diffusion water molecules. The next chapter will explain how MRI is sensitized to this diffusive motion and will present the basic principles of this powerful imaging modality. 

. . Magnetization

A tale of spins The NMR phenomenon can be observed in any nucleus that has a non-zero spin, a quantum-mechanical property conveying an intrinsic form of angular momentum. Atoms composed of an odd number of nucleons -such as hydrogen, fluorine, sodium and phosphorus ( 1 H, 19 F, 23 Na and 31 P, respectively)-all have a non-zero spin.

As body tissues are mostly made of water and fat compounds, they are extremely rich in hydrogen atoms 1 H, whose nucleus consists in a unique proton, with a 1 2 -spin. For this reason, most MRI applications focus on proton imaging.

Polarization The description of the magnetic properties of protons falls within the scope of quantum mechanics. However, an intuitive explanation can be provided using classical physics principles. As such, the angular momentum or spin S of each proton can be envisioned as the consequence of the rotational motion of each proton around an axis. Since protons are electrically charged bodies, this rotation also creates a magnetic momentum µ, linked to S by µ = γS ( . )

where the gyromagnetic ratio γ, specific to each nucleus, is equal to γ = 42.75M Hz/T for the proton.

The magnetic moment µ of spins makes them behave like microscopic magnets. In the absence of magnetic field, each magnet is randomly oriented, such that Σµ = 0. When an external static magnetic field B 0 is applied, the magnetic moment of each spin aligns to it and follows a precession movement about the field axis at the Larmor angular frequency ω 0 , defined as:

ω 0 = γB 0 ( . )
From a quantum physics point of view, the 1 2 -spin of a proton exists in a combination of two principal states: spin-up or spin-down. Consequently, a proton's magnetic moment can be either parallel or anti-parallel to B 0 , corresponding to a low energy or high energy level, respectively. A slight majority of the nuclei are aligned with B 0 , which results at the macroscopic level in a non-zero net magnetization M: this is the polarization phenomenon (see figure . ).

At equilibrium in a static field, the net magnetization vector M is equal to M 0 , which is parallel to B 0 (traditionally set along the +Z direction). This net magnetization along the Z axis is not measurable since its strength is very small compared to B 0 . While the measurement of this longitudinal component M z of M is not possible, M would become measurable if it were tilted in the transverse XY plane, resulting in a non-null transverse component M xy . This is the reason why we perform spin excitation, leading to the spin resonance phenomenon. 

. . Excitation and Relaxation

Excitation In order to measure a NMR signal, the net magnetization vector M must be tilted in the plane transverse to B 0 . The tilting is performed by the application of an oscillating magnetic field B 1 of rotation frequency ω r in the transverse plane (see figure . ), and is caused by a transfer of energy between B 1 and the spins, which is only possible if the resonance condition ω r = ω 0 is met, where ω 0 is the Larmor frequency of the spins. In this case, the Nuclear Magnetic Resonance (NMR) happens. The Larmor frequency lies in the range of radio waves, such that the applied B 1 field is called a Radio Frequency (RF) pulse.

Relaxation Relaxation starts when the RF pulse B 1 is stopped: the net magnetization M has been tilted in the transverse plane and the system starts returning to its initial equilibrium state, aligned with B 0 .

Relaxation is the combination of two mechanisms:

• a longitudinal -or spin-lattice -relaxation corresponding to the recovery of the longitudinal magnetization M z , following an exponential growth with time constant T 1 (see figure . ). At the microscopic scale, it is due to the loss of magnetic moment of spins in collisions with their environment. The longitudinal relaxation parameter T 1 is the time needed for M z to retrieve 63 % of its initial value M 0 . It varies with the field strength and tissue type [Callaghan ]. • a transverse -or spin-spin -relaxation corresponding to the decay of the transverse magnetization M xy , following an exponential decay with time constant T 2 (see fig-

ure . ) which depends on the tissue type. It is due to the loss of phase coherence between spins due to subtle local changes in the magnetic field at the microscopic scale. Local variations of the applied magnetic field B 0 at the macroscopic scale adds up to the dephasing of spins such that, in practice, this decay is faster than expected, and transverse relaxation is characterized by the parameter T * 2 , such that T * 2 < T 2 (see figure . ). The spin echo sequence presented in . . . enables to eliminate the relaxation added by the magnetic field inhomogeneities, giving access to the true T 2 value.

The signal stemming from the transverse magnetization, or "Free Induction Decay" (FID, see figure . ) oscillates at ω 0 , with an exponential attenuation corresponding to T * 2 , and is acquired by a reception coil placed in the plane transverse to the MRI scanner.

The expression of the MR signal is obtained as a solution to the phenomenological Bloch equations [Bloch ], describing the temporal evolution of the three spatial components of the magnetization M as a function of the static field B 0 . When considering a 90 degrees RF pulse (applied in the transverse plane), the components of M write:

       M x (t) = M 0 e -t T 2 sin(ωt) M y (t) = M 0 e -t T 2 cos(ωt) M z (t) = M 0 (1 -e -t T 1 ) ( . )
The excitation and relaxation phenomena that were just introduced are summarized in figure . . 

. . MR image formation

The principles related to spin excitation have been discussed in the previous section.

Once excited, the spins come back to their equilibrium magnetisation through relaxation, during which a signal can be detected. In this section, the spatial encoding of this signal is considered using a traditional Cartesian sampling pattern.

. . . 2D Imaging

In d MRI, the slice to image is first selectively excited with a Gradient of Slice Selection (G Slice ). Like any other gradient, the principle of the G Slice is to make the spins Larmor frequency dependent on their position along the direction of the G Slice (for instance if G Slice is along the Z direction, ω 0 becomes ω z = γ(B 0 + Gz) where G is the G Slice amplitude).

Thus, at the application of the RF pulse, only those spins which Larmor frequency is equal to the RF frequency will be excited. All these spins will belong to a slice perpendicular to the direction of application of GSS (see figure . ).

The data corresponding to this slice are then encoded in terms of spatial frequencies along two dimensions; an inverse d Fourier transform then allows to turn this so-called d k-space (or Fourier plane) into an image of the slice. Two techniques are used together to fill the d k-space, line by line:

• Applying a frequency-encoding (or readout) gradient G Read orthogonal to G Slice changes the precession frequency of spins while signal is acquired, thus allowing to discriminate their position in that direction. We have acquired a line of k-space.

Figure . :

The MR slice selection is performed using a Gradient of Slice Selection (GSS) which makes the Larmor frequency of spins increase along Z. If the frequency ω r of the RF pulse is equal to ω 6 , only the spins in P will flip and contribute to the MR signal (adapted from [Kastler ]).

• For now we have only acquired one line, at the centre of k-space. To fill the k-space we need to encode spatial frequencies in the remaining dimension, i.e. to encode several lines. We use a third gradient, G Phase , called phase-encoding gradient, and orthogonal to both G Slice and G Read . It is applied between excitation and readout, and it induces a variation of phase along its direction, that will hold during the acquisition of signal (readout) described above.

To acquire a full d k-space, it is necessary to repeat the G Phase → G Read pattern as many times as there are lines in k-space, changing the intensity of G Phase every time, so as to explore all needed spatial frequencies in its direction. The relationship between a gradient G -over any combination of axes -applied for a certain duration t and the corresponding encoded spatial frequency k (in m -1 ) is:

k(t) = γ t 0 G(u) du ( . )
At the end of the d imaging process described above, we have encoded Fourier data for one slice, and we are able to reconstruct the corresponding image. In d imaging, one can repeat the process described above several times, selecting different slices, to acquire a three-dimensional field of view (FOV).

However, resolution is limited in the third dimension (slice thickness), because of three main factors. Firstly, selecting a thinner slice requires higher intensity gradients, which eventually run into hardware limitations. Secondly, it requires increasingly sharp excitation profiles to avoid overlap between adjacent slices (at a lower slice resolution, we usually leave a gap between slices to prevent this overlap). Last but not least, when a slice is excited, the acquired signal comes from all spins in it: from a thinner slice comes lower signal, and a loss in imaging quality.

. . . 3D Imaging

All these factors make high isotropic resolutions hard -even impossible -to achieve with d magnetic resonance imaging (MRI). Fortunately it is possible to excite the whole FOV at once and perform d imaging. The principle is to acquire a three-dimensional k-space, corresponding to the volume. To do so we apply the same steps as described earlier, and we add a second phase-encoding gradient, G Part , along what used to be the slice direction, so as to induce phase variation along that direction. It is called the partition-encoding gradient (as the 'slices' obtained in d MRI are named 'partitions'), and it is generally played simultaneously with G Phase .

To acquire a full d k-space, we have to repeat the G Part → G Phase → G Read pattern N Part × N Phase times, with N Part the number of partitions to encode, and N Phase the number of lines, and apply an inverse d Fourier transform to retrieve the imaged volume.

One drawback of d imaging is its sensitivity to patient motion, as the whole d kspace must be filled -which takes time -before reconstructing. Any spatial information corrupted by motion occurring during acquisition affects the quality of all images within the volume. In comparison, in d imaging, each slice is reconstructed separately: motion during the acquisition of one slice has no effect on the rest of the FOV.

. . . MRI sequences

We have seen how to acquire a volume, either slice by slice or all at once, by repeating an 'excitation -phase encoding -frequency encoding' pattern many times, with signal reception taking place during frequency encoding. This is the basic kernel of what is called an MRI sequence. Today, a multitude of sequences exist, that can incorporate additional gradient or radiofrequency (RF) elements to manipulate magnetisation, as explained in this section.

One interest of MRI among other imaging modalities is its ability to discriminate tissues based on their respective T 1 or/and T 2 values [Callaghan , Stanisz ]. A pulse sequence is generally characterised by its echo time (TE) and repetition time (TR). TE corresponds to the time elapsed between spin excitation and signal acquisition. TR is the delay between two applications of the sequence kernel; for basic sequences it corresponds to the time separating the acquisition of two consecutive k-space lines.

Adjusting TR and TE enables to create different contrasts, or weightings. Usually, with an high enough flip angle:

• A short TR and a short TE give a T -weighted (T w) image.

• A long TR and a long TE give a T * 2 -weighted image, or possibly T -weighted (T w) image

• A long TR and a short TE give an image not much influenced by either T 1 or T 2 , that reflects mostly proton density (PD-weighting).

The aim of the next section is to describe the spin echo sequence which is mainly used in this thesis. A short paragraph is also dedicated to the gradient echo sequences.

Spin Echo sequence

The conventional spin-echo (SE) [Hahn ], whose kernel is illustrated in figure . for a d Cartesian sampling, allows to address different contrasts depending on the TE and TR used: proton-density-, T 1 -or T 2 -weighting. After a 90°e xcitation pulse along the x axis, the spins dephase gradually, due to field inhomogeneities and spatially-encoding gradients. Then, applying a 180°refocusing pulse along the y axis at time TE/2 reverts the phase evolution. Spin phases keep evolving as before, but the faster-dephasing ones are now behind the slower ones, such that after another TE/2, all spins are in-phase again. This produces an echo at a time TE after the initial RF pulse.

Since all dephasing spins were affected (not only the ones we dephased with the encoding gradients), dephasings due to magnetic susceptibility disparities and small magnet defects are also cancelled, which means that the echo amplitude is affected by T 2 decay, not T * 2 . This decay depends only on tissue properties, and is slower than T * 2 : longer echo times are achievable, and therefore T w imaging. The transverse magnetization for the Spin Echo sequence writes:

M ⊥ = M z (0)(1 -exp(-T R/T 1)) exp(-T E/T 2) ( . )
The RARE sequence is a faster variant of the Spin Echo sequence where additional 180 degrees pulses create successive spin echoes. A new phase encoding is applied between each echo, enabling to acquire several lines of the k-space during a single T R.

Gradient Echo Sequence Contrary to the Spin Echo sequence, the Gradient Echo sequence (see figure . ) does not use a 180 degrees refocusing pulse. Moreover, the initial 90 degrees RF pulse of the Spin Echo sequence is replaced by an RF pulse with a smaller flip angle α which optimal value (the Ernst angle) is equal to acos (-T R/T 1) [Ernst ].

It enables a faster recovery of the longitudinal magnetization, allowing shorter T E and T R.

However, the absence of refocusing pulse means that the acquired signals is T * 2 weighted (since B 0 field inhomogeneities have not been corrected for), and the smaller flip angle yields a smaller transverse magnetization.

. Diffusion MRI

Diffusion MRI (dMRI) is a powerful tool to probe structural information in the human brain. It has proven useful in clinical applications for the diagnosis and follow-up of acute brain ischemia (stroke) [Moseley ]. It is also the only modality enabling to reconstruct in vivo the major white matter fiber pathways, defined by the mobility of water molecules. An emerging application of diffusion MRI is to try and infer microstructural information from dMRI data, using dMRI as a virtual biopsy tool enabling to estimate axonal properties in white matter. This chapter will present the underlying theory of diffusion MRI before introducing the major methodological advances in the field to better model dMRI data both at the voxel and sub-voxel levels.

Diffusion MRI: from spin motion to brain architecture exploration 

Φ(τ ) = v v T ( . )
which describes how dependent is the velocity from its previous values.

Using the Green-Kubo relation [Boon ,Green ,Kubo ], the diffusion tensor writes

D = 1 3 ∞ 0 Φ(τ ) dτ ( . )
The velocity autocorrelation function is an oscillatory decreasing function of time, with a decay rate characterized by a correlation time τ c . . Diffusion MRI

τ c = ∞ 0 Φ(τ )dτ ( . )
where Φ(τ ) is the normalized scalar velocity autocorrelation Φ

(τ ) = v T v /v T v.
The time scale of the decay of the velocity autocorrelation depends on the nature of the diffusive medium. The decay of the velocity autocorrelation function to approximately zero defines the transition from the molecular dynamic region where memory effects are significant (non-Markovian regime), to the hydrodynamic region where they become negligible (Markovian regime) [Boon ]. In the case of Brownian motion (free diffusion), the hydrodynamic transition has a molecular time scale on the order of ≈ 10 -10 s. However, in porous media such as biological tissues, the spins take more time to fully sample their heterogeneous environment, yielding a much longer decay rate [Helmer ,Latour ].

This slower decay over time is responsible for the time-dependence of the diffusion coefficient in biological porous media such as brain tissues, which will be discussed in section . . . .

Diffusion propagator equation

The just introduced diffusion tensor is only able to fully characterize Gaussian diffusion, which is not sufficient to describe diffusion in complex biological tissues where restriction, heterogeneity, anomalous diffusion and permeability of boundaries are likely to happen.

To tackle these issues, the diffusion propagator P (r, r , τ ) was introduced [Packer ,

Karger

, Callaghan ], which gives the probability of a spin to undergo a displacement from position r to position r in time τ .

Let us now introduce the spin probability density flux j(r) which describes the flux of spins into a unit area at position r and time τ . Fick's first law [Fick ] relates this flux to the spatial gradient of the diffusion propagator

j(r) = -D(r)∇P (r, r , τ ) ( . )
In the absence of source and sink processes, the continuity theorem relates the spatial gradient of flux to the time rate of change of the spin displacement probability via

∂ ∂τ P (r, r , τ ) = -∇j(r) ( . )
By substituting equation . into equation . , we obtain the diffusion propagator equation

∂ ∂τ -∇(D(r)∇) P (r, r , τ ) = δ(r -r )δ(τ ) ( . )
where the right-hand side is for a δ-function initial condition. Equation . is Fick's second law [Fick ], and shows the propagator as the diffusion operator's Green function.

In the case of free diffusion (absence of any diffusion restriction), the solution to equation . is given by the Gaussian propagator P G 

P G (R, τ ) = (|D|(4πτ ) 3 ) -1/2 exp -R T D -1 R/(4τ ) ( . )
where |.| is the determinant. In an isotropic medium with diffusion coefficient D, equation . simplifies to

P G (R, τ ) = ((4πDτ ) 3 ) -1/2 exp -|R| 2 /(4Dτ ) ( . )
. . .

Diffusion contrast

The standard sequence used to measure diffusion was developed by Stejskal and Tan- ).

The two applied gradients dephase spins depending on their position. Since these two gradients are identical, in the absence of motion of the spins, the application of the second gradient should compensate the dephasing induced by the first gradient. However, if spins have moved before the application of the second gradient, they will have a phase shift proportional to their displacement in the gradient direction (see figure . ).

The diffusion contrast caused by the spin dephasing in the direction of the applied diffusion gradient writes as an exponential attenuation S ∝ S 0 e -bADC ( . ) where the b-value characterizes the degree of sensitization to diffusion, ADC is the apparent diffusion coefficient in the direction of the diffusion gradient and S 0 is the spin echo signal without diffusion sensitization. The ADC characterizes the diffusive properties of the medium in a given direction of space: it will decrease if the diffusion process is hindered by restricting barriers over the appropriate length. It is equal to the diffusion coefficient D in the case of an isotropic medium.

Assuming perfectly rectangular shapes of the diffusion gradients, the b-value for the PGSE sequence is given by b

= (Gγδ) 2 (∆ -δ/3) = q 2 τ ( . )
where q is the wave vector such as q = γδG.

If the diffusion process is assumed to be Gaussian, the signal attenuation in any direction is expressed as

S(q, τ ) = S 0 e -q T Dτ q ( . )
where D is a real, symmetric, positive, definite diffusion tensor, which holds the information of the ADC value in any spatial direction. This formulation is the basis of the Diffusion Tensor Imaging technique (see section . . . ).

. . .

Restricted diffusion

The hypothesis of Gaussian diffusion is not sufficient to represent accurately the diffusion signal attenuation, especially when there are restrictions in the diffusion medium. In this case, the effect of the presence of boundaries on the spins diffusive motion must be accounted for, and the previously introduced diffusion propagator is the proper mathematical object to do so.

Short pulse gradient (SPG) approximation

The SPG approximation assumes that the duration of the applied diffusion gradient δ << ∆, so that there is no displacement of spins during the application of the gradients. For a spin moving from a position r to a position r, the net phase shift induced by the diffusion gradient is ∆Φ(r-r ) = γδG.(r-r ).

The normalized echo signal E(G, ∆) is the ensemble average of the phase term

exp(i∆Φ) = exp iγδG.(r -r ) ( . )
According to [Stejskal a], this ensemble average can be computed as

E(G, ∆) = ρ(r )P (r, r , ∆) exp iγδG.(r -r ) dr dr ( . )
where ρ(r ) is the initial distribution of spins.

From this point, the average propagator EAP (R, t) = ρ(r )P (r + R, r , t)dR is defined, and equation . writes

E(G, ∆) = EAP (R, ∆) exp(iγδG.R)dR ( . )
Equation .

is a Fourier relationship between the normalized echo signal E(G, ∆) and the ensemble average propagator EAP (R, ∆), with reciprocal space q = γδG.

The SPG approximation is at the origin of the numerous q-space sampling methods that can be found in the dMRI literature, which consist in acquiring points in the q-space to estimate the ensemble average propagator (or a derived quantity) from the diffusion signal (see section . . . ).

Gaussian phase distribution (GPD) approximation

The hypothesis of infinitely short gradients of the SPG approximation is not true in practice, notably due to the limitations of the gradient amplitude which impose a certain duration of the gradient application to reach a sufficient diffusion sensitization.

An alternative hypothesis consists in assuming that the displacements and thus the phases of the spins follow a Gaussian distribution with a time-dependent variance [Neuman a]. It can be shown [Stepisnik ] that under this hypothesis, the signal attenuation E writes in the form

E = exp - γ 2 2 ∞ n=0 B n T E 0 dt 1 T E 0 dt 2 e -Dλn|t2-t 1 | G * (t 2 )G * (t 1 ) ( . )
where G * (t) = G * (t)g is the effective gradient vector with magnitude G * (t) and direction g and B n and λ n depend on the geometrical structure of the diffusion medium. λ n is related to the eigenvalues of the diffusion operator in the diffusion medium of interest V , and the mathematical expression of B n depends on its eigenfunctions u n (r) as

B n = 1 ρ V dr V dr(g.r )(g.r)u n (r )u n (r) ( . )
where the initial density of spins ρ is assumed to be constant. The principle of MCF is to solve for the transverse magnetization M ⊥ (previously named M XY ) in the Bloch-Torrey equation

∂M ⊥ (r, t) ∂t = D∇ 2 M ⊥ (r, t) -iγB(r, t)M ⊥ (r, t) ( . )
with B(r, t) = B 0 + G(t)g.r (the magnetization has been normalized for T 2 decay).

This is done by decomposing the magnetization on the basis of eigenfunctions u m (r)

of the Laplace (or diffusion) operator within the restricted diffusive medium:

M ⊥ (r, t) = m c m (t)u m (r) ( . )
The time-dependent coefficients c m (t) are computed by substituting equation . into equation . . The MR signal E is obtained by integrating the magnetization over the whole diffusion medium

E = r M ⊥ (r, t)ρ(r)dr ( . )
After some mathematical developments (not shown here, see [Grebenkov ]), the MR signal at time t can be written in a compact matrix form of a scalar product

E = U N n=0 exp - τ n T pΛ + iq n B U * ( . )
The product is computed over N intervals. In each interval, the gradient is constant with strength G n , duration τ n such that T = n τ n . The vector U is related to the initial distribution of spins ρ(r), p = DT /L 2 where L is the length scale of the restrictions and

q n = γG n τ n .
B is computed as an integral of the eigenfunctions u m (r) and Λ is proportional to the eigenvalues of u m (r). These two matrices reflect the geometry of the restrictions (see [Grebenkov ] for more details).

An application of the MCF formalism to the computation of the restricted diffusion signal inside a multilayered cylinder for any gradient direction is given in the Appendix. .

. . Temporal diffusion spectroscopy

The approaches presented previously describe diffusion in restricted systems using the diffusion propagator formalism. However, because of small pore sizes and exchange between pores, much of the useful information in the propagator is often confined to diffusion times that are too small to achieve with PGSE sequences on current MRI scanners [Par-

sons

].

An alternative description of diffusion builds on the velocity autocorrelation function (VACF) of spins introduced in section . . . to compute a frequency-dependent diffusion tensor, defined as the Fourier transform of the VACF [Stepisnik , Callaghan ]:

D(ω) = 1 2 ∞ 0 v(t )v(0) e iωt dt ( . )
The diffusion tensor is the spectral density function of the VACF and can be derived from the Langevin equation for diffusion in restricted geometries. As mentioned in . . . , the decay rate of the VACF is much longer in restricted diffusion media, resulting in a frequency dependence of the diffusion spectrum which exhibits a deficit at low frequencies (see figure . ).

A compact expression for the diffusion attenuation S can be written in terms of the product of the spectral density of the VACF D(ω) and that of the dephasing due to the gradient pulses G, F(ω) [Parsons ]:

S = S 0 exp - 1 π ∞ 0 F T (ω)D(ω)F(-ω)dω ( . )
with 

F(ω) = ∞ 0 dt exp(iωt) t 0 dt γG(t ) ( . )

. . Modelling

Extracting relevant information from the diffusion-weighted signal requires a modelling step enabling to estimate parameters of interest from the data. This section reviews both local dMRI models which basically try to find the best representation of the signal at the voxel level, with or without making physical assumptions about tissue properties . . . , and biophysical models generating a geometrical model of the underlying tissue to solve the inverse problem of microstructure parameter estimation . . . . .

. . Signal models

History of q-space sampling The history of q-space sampling spans from the PGSE experiment of Stejskal and Tanner [Stejskal b] where one point was acquired in the q-space, to multiple-shell, sparse hybrid diffusion imaging (for instance HYDI [Wu ],

presented later) which can be apprehended as a smart sampling of the whole q-space.

As illustrated in figure . , q-space sampling methods have evolved with the refinement of the available local models of the diffusion signal. After the invention of diffusionweighted imaging in by Denis le Bihan [Le Bihan ], Callaghan introduced in the q-space imaging approach, a D Cartesian sampling scheme laying the basis of Diffusion Spectrum Imaging (DSI) [Wedeen ]. DSI is a D Cartesian sampling scheme of the q-space aiming to reconstruct the diffusion propagator using a Fourier transform of the signal. The DSI approach suffered from a lack of sparsity (a lot of points had to be acquired in the q-space), leading to very long acquisition times which prevented the development of EAP cartography in clinical routines.

At the beginning of the 's, the dMRI community focused on the inference of the anatomical connectivity from the dMRI data, which only needed the knowledge of the EAP angular information. High Angular Resolution Diffusion Imaging (HARDI) techniques were thus developed to detect multiple populations of fibers within a voxel. Those techniques were mainly developed to extract the orientational information of diffusion, characterizing the preferred direction(s) of diffusion of the spins inside the voxel. In particular, this orientation information is exploited by fiber tracking techniques.

The HARDI techniques [Tuch ,Tournier ] increased the angular resolution of the diffusion-weighted data using a stronger diffusion sensitization than DTI, and applied diffusion sensitization gradients in a larger number of directions, at a constant b-value.

These first techniques are called single-shell techniques because the constant b-value im-plies that all the data points are acquired over the same shell in the q-space. By construction, single-shell techniques do not allow to reconstruct the full EAP since it misses the radial information of the diffusion process, corresponding to the magnitude of displacement of the spins within the voxel. The diffusion Orientation Distribution Function (dODF) and the fiber ODF (fODF) are the two main representations produced by these HARDI techniques: the dODF is simply the radial integration of the diffusion propagator

dODF (o) = ∞ 0 P (r, t)r 2 dr ( . )
while the fODF offers a direct information on the fiber configuration within the voxel, notably giving access to the fraction of fibers aligned in each preferred direction of diffusion.

The dODF and fODF can be related via the convolution of the impulse response of an homogeneous population of fibers in a given direction R f (o) by:

dODF (o) = f ODF (o) R f (o) ( . )
fODF are obtained from spherical deconvolution techniques and usually give a sharper angular information than dODF. The Constrained Spherical Deconvolution (CSD) method in particular enables a precise delineation of multiple fiber populations within a voxel [Tournier ].

Multiple-shell Hybrid Diffusion Imaging (HYDI) techniques were developed after HARDI, which consist in sampling the q-space over several shells (corresponding to different bvalues), with different number of orientations for each shell, or employing other more sophisticated distributions [Wu ].

We will now present various local models of interest, starting with the well-known DTI. Once D has been estimated, its eigenvalues λ 1 , λ 2 , λ 3 with λ 1 ≥ λ 2 ≥ λ 3 and eigenvectors e 1 , e 2 , e 3 can be computed.

Diffusion

Several quantities of interest can be extracted from this eigensystem:

• the preferred diffusion direction, corresponding to the principal orientation of fibers inside the voxel, is given by the first eigenvector e 1 , the mean displacement of water molecules in direction e 1 is given by √ 2λ 1 τ , which corresponds to the length of the ellipsoid in this direction.

• the mean diffusivity (MD), characterizing the mean displacement of water molecules inside the voxel, is proportional to the trace of D:

M D = λ = λ 1 + λ 2 + λ 3 3 ( . )
• the fractional anisotropy (FA) quantifies the degree of anisotropy of the diffusion process in the voxel and describes the departure of D from isotropic diffusion:

F A = 3 2 (λ 1 -λ) 2 + (λ 2 -λ) 2 + (λ 3 -λ) 2 λ 1 + λ 2 + λ 3 ( . )
DTI is still a widely used representation in clinical applications, due to its simplicity and robustness, and to the small number of data required to estimate it. However, it suffers from three major drawbacks: ) it cannot account for multiple fiber populations within a voxel; ) it is no longer appropriate at high b-values (> 3000s/mm 2 ) where the departure from mono-exponential decay due to diffusion in the intracellular space is not well represented by a Gaussian model; ) the features extracted from DTI (MD and FA) lack of specificity regarding the underlying microstructural changes in the tissues.

In order to overcome points ) and ), higher order local representations have been designed, leading to the development of more sophisticated techniques.

Before presenting some of these techniques, the next paragraph establishes an important distinction between model-free and model-dependent approaches. Here is a non-exhaustive list of other important model-free techniques:

Models or not models ?

• Kurtosis imaging accounts for non-Gaussian diffusion at high b-values due to the presence of restrictions, using a quadratic expansion of the signal attenuation with respect to the b-value [Jensen ]:

S(b)/S 0 = exp -bD + 1 6 b 2 D 2 K + O(b 3 )
where D and K are the diffusion and kurtosis tensors respectively.

• the generalized DTI (gDTI) approach [Liu ] generalizes Fick's second law to higher orders partial differential equations accounting for non-Gaussian diffusion. The normalized signal attenuation E(q) can be decomposed on the SHORE basis

E(q) = Nmax N =0 n 1 ,n 2 ,n 3 a n 1 n 2 n 3 Φ n 1 n 2 n 3 (A, q) ( . )
where a n 1 n 2 n 3 are the coefficients of this decomposition and Φ n 1 n 2 n 3 (A, q) are the SHORE basis functions (these are Hermite functions, see [Ozarslan a] for more details).

Under the SGP approximation, the signal attenuation E(q) is linked to the diffusion ensemble average propagator P (r) via a Fourier transform. By applying this Fourier transform to the SHORE basis, the decomposition of the diffusion propagator keeps the same decomposition coefficients:

P (r) = Nmax N =0 n 1 ,n 2 ,n 3 a n 1 n 2 n 3 Ψ n 1 n 2 n 3 (A, r) ( . )
where the Ψ n 1 n 2 n 3 (A, r) are the Fourier transform of Φ n 1 n 2 n 3 (A, q) and are still Hermite functions.

Thus, using a multiple-shell HYDI sampling scheme, one can efficiently reconstruct the ensemble average propagator. The MAP-MRI framework also provides a convenient estimation of several diffusion features such as the Return To Origin Probability (RTOP), which represents the probability for molecules to undergo no net displacement between the application of the two diffusion sensitizing gradients, or the Return to Plane Probability Multiple-shell dMRI data were acquired @ T over shells from 100 to 5200s/mm 2 along diffusion directions per shell, using a D twice refocused SE EPI sequence (spatial resolution 1.7mm isotropic, T E = 80ms, T R = 6.5s).

show EAP representations for different values of spin displacement magnitudes. These representation have a sharper angular information for higher values of displacements, due to the fact that spins have sampled their environment more thoroughly and encountered more fiber restrictions, leading to a clear delineation between distinct populations of fibers within the voxel. 

Diffusion MRI: from spin motion to brain architecture exploration

. . . From local models to structural connectivity

One of the goals of diffusion MRI is to construct atlases of the human brain connectivity.

The construction of such atlases requires the development of diffeomorphic registration techniques that register dMRI data from different subjects using non-rigid and invertible transformations, and tractography techniques to reconstruct the pathway of axonal fibers inside the brain, known as structural connectome. is chosen within an angular cone centered around the most probable diffusion direction, but the chosen direction can differ from it. Such a method is more robust to noise than streamline approaches and can better resolve fiber crossings. However, while they have a higher rate of true positives, they also have a higher rate of false positives, and are much more computationally expensive.

Diffeomorphic registration

• Global techniques Global tractography techniques [Poupon , Mangin , Kreher ,Fillard ,Reisert ,Jbabdi ] reconstruct all the virtual fibers simultaneously using a global optimization procedure which aims at finding the fiber configuration that best describes the dMRI data. To this end, pieces of fiber tract called are created on the fly by the algorithm in each voxel. The relative orientations of these fiber tract pieces with respect to each other introduces a curvature term in the global energy to be minimized: during the optimization procedure, spins tend to align with each other and form long fibers with low curvature. The interest of this approach is that any additional term can be added to the global energy, enabling to add anatomical priors for instance to constrain the direction of the spins in certain areas of the brain (for instance, making the fibers connect with sharp turns to the cortex). However, the global optimization procedure relies on computationally expensive algorithms, requiring high performance computing to obtain reasonable computation times. 

. . . Biophysical multi-compartment models

Biophysical models of dMRI data represent geometrically the scanned biological tissue, including in their representation a certain number of structural and physical parameters of interest. The aim of biophysical modelling is to solve an inverse problem in order to estimate these parameters from the dMRI data, using appropriate optimization techniques.

Commonly estimated parameters in white matter include the mean axonal diameter and density of axons, the local and angular dispersion of axons, the myelin ratio and the intraand extra-axonal diffusivities.

Most of the existing biophysical models of white matter are analytical, meaning that the link between the geometrical properties of the tissue and the diffusion signal is represented by an equation with unknown parameters. Solving the inverse problem with analytical approaches yield parameter estimation issues due to the existence of several local minima in the optimization process [Jelescu ]. One of the aim of this thesis is to develop realistic computational models of white matter to get rid of these problems: the signal equation is replaced by a machine learning algorithm, trained on simulation data.

We here present the most relevant analytical models of white matter that have been developed in the past years, which lay the foundation of computational approaches by enabling a better comprehension of the diffusion process inside brain tissues. All these models rely on PGSE sequences. This important number of parameters to estimate required high quality MR data (SN R > 1000), with many different measurements leading to very long acquisition times (samples were acquired both parallel and perpendicular to the magnetic field, with various gradient strengths and diffusion times). Such an approach cannot be translated to clinical applications: simpler models with fewer parameters have thus been developed.

Stanisz model

Ball and Stick model

The Ball and Stick model [Behrens ] is probably the simplest microstructure model of white matter (see figure . ). The principle of this model is to write the signal attenuation as the weighted sum of two compartments

S/S 0 = f exp(-bD(n.g)) + (1 -f ) exp(-bD) ( . )
where f is the volume fraction of the anisotropic compartment (the sticks which represent axons), n is the orientation of axons and g is the diffusion gradient direction. In this model, diffusion is assumed to occur only parallel to the axons inside the sticks, while it diffuses isotropically in the extra-axonal space (hence the ball term).

Having only two parameters to estimate, it can be fitted with a limited amount of data and can thus be used in a clinical routine. However, this approach can only estimate a few microstructural parameters, and the employed model suffers from major limitations, notably related to the assumption of isotropic diffusion in the extra-axonal space. The extra-axonal space model remains unchanged with respect to CHARMED. A third compartment featuring isotropic free diffusion is added to the signal model, accounting for partial volume effects from the cerebro-spinal fluid.

CHARMED

In summary, the ActiveAx model of diffusion signal attenuation writes:

S = f intra S intra + f extra S extra + f iso S iso ( . )
where f is the volume fraction of each compartment and f intra + f extra + f iso = 1.

An additional fully restricted water compartment can be added for ex vivo data [Alexan-

der a].
Intra-and extra-cellular diffusivities are fixed to an equal value for the parameter estimation. Parallel and perpendicular hindered diffusivities in the extra-cellular space are also linked by a tortuosity constraint

d ⊥ = d (1 -f ).
Despite the reduction of the number of parameters with respect to AxCaliber, the ActiveAx framework still requires high quality data and strong gradient strengths for the parameter estimation. In particular, the estimation of the axon diameter on a clinical setup remains controversial [Nilsson ].

Fiber dispersion models

Previously presented models all represent each axonal fiber population as a set of parallel axons. However, fiber populations exhibit orientation dispersion in the whole human brain, even in the corpus callosum, where axonal fibers are particularly well aligned [Ronen a].

Several models were thus developed to capture the orientation dispersion of axons. The first attempt was made by Jespersen [Jespersen a] who designed a two-compartment model using an isotropic tensor to describe diffusion in the extracellular space and a distribution of cylindrically symmmetric anisotropic tensors to describe intra-axonal diffusion.

The model approximated the orientation distribution of axons and dendrites, in white and gray matter respectively, using a truncated spherical harmonics series whose coefficients were estimated in addition with the tensor diffusivities and volume fractions. This model showed good predictions on ex vivo data from a monkey brain, acquired with many b-values and gradient orientations (which is not clinically feasible).

In , an extension of the ActiveAx framework to fiber orientation dispersion was proposed [Zhang ](see figure . ). While Jespersen's approach did not make any particular assumption on the geometrical properties of fiber dispersion, this model chose to Additionnally, the NODDI model still uses the Watson distribution which, as explained before, makes strong (and presumably false) assumptions on fiber dispersion properties.

Extensions of the NODDI model accounting for the presence of anisotropic orientation dispersion have been proposed using more general distributions such as the Bingham distribution [Tariq a], or including a spherical harmonics decomposition [Zucchelli ].

While these models are more precise, they are more complex and introduce additional parameters, making the fitting step even more difficult. This is probably one of the reasons why NODDI is still a widely used model.

However, NODDI suffers from considerable shortcomings due to the fact that the diffusivity is usually fixed which biases the estimation of other parameters, and there is an inherent lack of uniqueness of the parameter combinations. The LEMONADE(t) [Novikov d] model aims at overcoming some of the issues of NODDI: by accounting for the degeneracy in model parameter estimation, LEMONADE enables to choose between two parameter branches, selecting the one corresponding to biophysical reality. 

D(t) ≈ D ∞ + A. ln t/ tc t , t >> tc ( . )
where A is a scaling factor (which will be studied in chapter ), tc is the maximum between the correlation time t c (time to diffuse across the correlation length l c of the D random packing geometry) and the pulse width δ of the PG sequence. An equivalent frequency dependence can be measured using Oscillating Gradient sequences

ReD(ω) ≈ D ∞ + A. π 2 |ω|, |ω|t c << 1 ( . )
Equations . and . are only a particular case of equation . , which generally characterizes time-dependence of diffusion near the tortuosity limit: 

D(t) = D ∞ + A.t -ν ( 

Main issues and future directions

The major problem of all the presented multicompartment models used to extract brain tissue microstructural information from diffusion is the estimation of their parameters from the dMRI signal. Practically, even when the q-space is highly oversampled, outputs of the non-linear fitting procedure suffer from heavy bias and poor precision [Novikov a, Jelescu ]. Attempts have been made

to improve precision at the expense of accuracy, by fixing some of the model parameters to a priori values. However, there are two fundamental reasons explaining the parameter estimation issue. The first reason is the existence of several local minima in the parameter space for the objective function of the fitting procedure. These minima correspond to different sets of parameters which all lie within biophysically plausible ranges. The low SNR values of realistic clinical applications make it essentially impossible to choose between these minima. Second, around each of these minima, the profile of the objective function ,Nedjati-Gilani ] and do not suffer from the parameter estimation issues depicted by analytical models.

Moreover, these computational models enable to increase the realism of the tissue representation by simply adding details to the numerical phantoms employed for the simulations (for instance Ranvier nodes and myelin sheath for axons). Adding such details necessitates however to generate a bigger dictionary of training samples in order to train the algortihm properly, which can fastly become computationally expensive.

These "big data" approaches might still provide a viable alternative to analytical models doomed to make a tradeoff between their complexity and a reasonable number of parameters to be fitted, and will be addressed in more details in further sections.

. . . Conclusion

This chapter has introduced the basics of MR imaging and diffusion MRI, and presented recent advances in the field of diffusion MRI models used to extract directional and microstructural information from dMRI data. Emphasis has been laid on current issues raised by the biophysical modelling of dMRI data: the main objective of this thesis is to present novel methods enabling to overcome these issues by resorting to computational models of . Methods

. . Discrete Representation of MAPs and Reorientation

In order to perform MAP fields registration, it is necessary to define a reliable reorientation procedure. In the SHORE model framework, each MAP is represented as a set of coefficients associated to a basis of Hermite functions. This representation makes the reorientation procedure very intricate. Indeed, MAP coefficients can be "rotated" using well-known transformation rules [Nazmitdinov ]. But, to the best of our knowledge, no method has been proposed to apply general affine transformation to MAP coefficients.

. . Methods

This is an important issue as affine transformations must be applied during the MAP reorientation at each step of the registration procedure to ensure that not only rotation, but also shearing and scaling are accounted for [Raffelt ].

We propose to represent each MAP P (r) using spherical multiple-shell samplings of the For each spherical shell i of given radius r i , we consider the set of N sampling vectors

v i,j = (r i , θ j , ϕ j ) (j=1...N )
. Following the method given in [Hong ] for ODF reorientation, a Jacobian matrix J is derived in each voxel from the deformation field that registers the MAP fields. The affine transformation J is applied to the sampling vectors v i,j which gives the orientations of the new vectors v i,j = (r i , θ j , ϕ j ). The probabilities P (r i , θ j , ϕ j ) associated to each new vector are calculated from the P (r i , θ j , ϕ j ):

P (r i , θ j , ϕ j ) = P (r i , θ j , ϕ j ) sin θ sin θ 1 | det(J Ω )|
where J Ω is the Jacobian of the angular transformation from (θ j , ϕ j ) to (θ j , ϕ j ) [Hong ].

The probabilities P (r i , θ j , ϕ j ) are associated to the sampling vectors v i,j by projecting each v i,j on the v i,j vectors using a geodesic interpolation.

. . MAP Similarity Measure

Having defined a new discrete representation of MAPs enabling to perform reorientation in a convenient manner, our registration framework now requires to define a similarity measure based on this discrete representation. Given a fixed MAP field F and a moving MAP field M , diffeomorphic MAP field registration is formulated as the minimization of a similarity energy E sim (F, M, T ), where T is the sought diffeomorphic transformation mapping M to F . In each voxel, the scalar product between two propagators P (r) ∈ F and Q(r) ∈ M defined as sets of probabilities p i(i=1...N ) and q i(i=1...N ) , where N denotes the number of vectors of the associated multiple-shell sampling, is given by:

< P (r), Q(r) >= N i=1 p i q i ( . )
Based on the previous definition of the scalar product, an angular metric (similarity measure) between the two MAPs is defined by:

cos θ P Q = < P (r), Q(r) > (< P (r), P (r) >< Q(r), Q(r) >) 1 2 ( . )
A dissimilarity measure can therefore be defined as:

Diffeomorphic registration of Mean Apparent Propagators

sin θ P Q = 1 -cos 2 θ P Q ( . )
The similarity energy E sim between two MAP fields is thus defined as the sum for all voxels of the dissimilarity measure between the propagator of the fixed MAP field and the corresponding propagator of the moving MAP field.

E sim (F, M ) = v∈V sin θ P Q ( . )
where V is the region of overlap between F and M .

. . Diffeomorphic Registration of MAP Fields

The core of our MAP registration procedure is based on a discrete optimization technique presented by [Heinrich ] with the introduction of the deeds Dense Displacement Sampling technique. The principle of the deeds method is to represent the image grid as a Minimum Spanning Tree (MST, spanning tree with minimum total edge cost) and to search for the global minimum of a registration cost function using dynamic programming on this tree, which enforces the smoothness of the deformation. This discrete optimization scheme was adapted for the registration of MAP fields. The moving MAP field is considered as a graph G with nodes m ∈ G corresponding to voxels and edges e corresponding to links between the nodes. A weight w(m, n) is attributed to the edge between nodes m and n. Its value is the similarity measure between the MAPs of the voxels in nodes m and n. A MST is computed from this graph using the Prim's algorithm. The output of the Prim's algorithm consists of a sorted list of all nodes with increasing tree depth, and of the index of each node's parent. The interest of such a MST is that it reduces neighborhood interaction since the image grid is not fully connected, and replicates the underlying anatomical structure of the brain. Starting from this MST representation, a discrete optimization problem is defined: each node m has a label f m corresponding to a discrete displacement vector. The energy function to be optimized writes:

E(f ) = m∈G Sim(f m ) + σ (m,n)∈N Reg(f m , f n ) ( . )
where Sim(f m ) is the similarity measure between the two MAPs in node m from the fixed and moving MAP fields, and (m, n) ∈ N means that nodes m and n are directly connected in the tree. The regularization term Reg(f m , f n ) is computed as:

Reg(f m , f n ) = ||f m -f n || 2 ( . )
Finding the global minimum of the previous energy is equivalent to finding the best labeling for all nodes (i.e. a set of displacement vectors). The cost C m of the best displacement for the m node is given by (see [Heinrich ])

C m (f n ) = min fm Sim(f m ) + Reg(f m , f n ) + c C c (f m ) ( . )
where f n is the displacement of n (m node's parent), and c are the children of m.

The dynamic programming algorithm consists of traversing the MST from its leave (nodes with maximum tree depth, e.g. having no child) down to the root (node with tree depth equal to zero) by computing for each node m the cost C m for all possible values of f n .

Thereafter, the best labeling for each node can be chosen in another pass from the root to the leaves [Heinrich ]. The labels are chosen among a discrete sampling range of displacement values D = 0, ±1, ..., ±M, where M is the maximum value that can be taken by each displacement vector component. The registration procedure thus yields a discrete displacement vector field. This vector field is transformed into a diffeomorphic mapping by applying the scaling and squaring method [Heinrich ]. The diffeomorphic transformation is then sharpened by combining the previous discrete optimization approach, enabling to converge towards a global optimum, with the continuous diffeomorphic demons algorithm [Vercauteren ] which provides an efficient and reliable way to register MAP fields at fine scales. This combined registration approach yields a continuous-valued and physically plausible transformation. The adaptation of the demons algorithm to MAP fields sums up to defining a similarity energy between MAPs, which has already been done in the previous section. We refer to [Vercauteren ] for all the details concerning the diffeomorphic demons algorithm.

.

Results and Discussion

The efficacy of our novel registration approach was assessed using diffusion MR datasets acquired on two healthy subjects scanned on a Prisma T scanner ( shells between and s/mm 2 , TE/TR= 80ms/49s, 64 diffusion directions per shell, . mm isotropic resolution). The registration was performed on MAP fields computed using the SHORE model with a polar harmonic order of . The multiple-shell sampling for MAP discrete representation consisted of shells of radii ranging from to 10µm, with to sampling vectors per shell evenly distributed over a hemisphere (MAP symmetry is assumed). The moving MAP field was affine registered to the fixed MAP field before computing the diffeomorphic transformation. The discrete optimization was performed at full resolution, the weight associated to the regularization term was empirically set, and the discrete sampling range for displacement values was chosen to be D = 0, ±1, ..., ±3.

The discrete optimization was then completed using the diffeomorphic demons registration In order to emphasize the interest of a discrete optimization step, we compared the result of our algorithm with the diffeomorphic demons used alone for MAP registration. A multi-resolution scheme was used: 1 4 and 1 2 resolution with iterations, and full resolution with iterations. The energy decrease for both methods is shown in figure . , illustrating the interest of dynamic programming on MST to escape local minima and reach lower energy levels. In this figure, for the demons alone, the first iteration corresponds to the iterations of the 1 4 and 1 2 resolution registration steps and for the combined approach, the first step corresponds to the decrease of energy after the discrete optimization.

It is also interesting to assess the ability of the developed framework to register properly the diffusion-weighted data by taking into account both the radial and angular information from diffusion propagators. To this end, the mean squared error (MSE) between probability values of the propagators of the fixed and moving MAP fields on a multiple-shell sampling was computed using our registration algorithm and the DTI-TK algorithm [Zhang ], which is the only state-of-the-art registration tool using both radial and angular diffusion information via the diffusion tensor representation of the propagator. Figure . shows MSE maps computed using both algorithms, with a decrease of 34% of the MSE between affine and diffeomorphic registration using DTI-TK, versus a decrease of 60% with the approach developed in this work. As indicated in figure . , the MSE reaches maximal values in subcortical areas where the registration is more difficult.

The developed framework seems to better register these subcortical regions, which is an encouraging resulting which might prove useful for the construction of short white matter bundle atlases.

. Conclusion

We have developed a novel method to perform diffeomorphic registration on diffusion MAP fields. A reorientation technique based on a discrete representation of MAPs was proposed, as well as a new similarity measure between MAPs. We showed that the use of an hybrid registration approach combining dynamic programming on a MST and demons algorithm enables to obtain a satisfying diffeomorphic mapping between MAP fields by avoiding local minima. Experimental results on real data demonstrate the validity of our registration method, and shows the capability of our registration procedure to significantly improve the alignment of well-known long white matter bundles.

The development of this registration tool was an ancillary study in the frame of this thesis. Further studies consisting in benchmarking our approach on the HCP basis with standard DTI or ODF-based approaches to better understand the role of the radial component of MAPs in the registration process are necessary, but are out of the scope of this thesis work.

The diffeomorphic registration tool that was presented in this chapter is essential to compare microstructural maps between different subjects, using the diffusion propagator representation. The next chapter goes back to the voxel scale and aims at better understanding the influence of white matter microstructure parameters on the time-dependent diffusion signal. The extra-axonal perpendicular diffusivity transverse to axons was thus written as

D(t) = D ∞ + A. ln (t/t c ) t , t c t ( . )
and, equivalently, in the frequency domain:

RD(ω) ∼ D ∞ + A. π 2 |ω|, |ω|t c 1 ( . )
where t is the diffusion time, ω is the dual frequency and .

Material and Methods

. . White matter numerical phantoms

Actual simulation tools rely either on membrane surfaces extracted from manual or automatic segmentations of microscopic imaging data stemming from histological tissue samples or on algorithms generating designs of axonal membranes built from a distribution of rectilinear cylinders (possibly with angular dispersion) which diameters d follow a Gamma distribution h. The function h can be tuned using a α shape parameter and a β inverse scale parameter such that:

h(d; α, β) = β α d α-1 e -βd Γ(α) ( . )
where Γ is a complete Gamma function. The first approach is hard to achieve and generally yields a limited collection of membrane configurations, whereas the second approach provides over-simplistic representations of white matter. Here, we propose a novel framework to design more realistic membrane geometries better mimicking white matter structure. One of the challenging issue of such an approach is to design a tool enabling to cover a wide range of actual geometries while using a limited number of parameters. Several observations can be taken into account to improve the development of more realistic white matter geometries:

• several heterogeneous populations of fibers can populate the field of view (FOV) of interest; whatever the target FOV (from mesoscale to millimeter scale), complex • each fiber population is composed of myelinated or unmyelinated axons which diameters follow the previous Gamma distribution (equation . ) but the shape and inverse scale parameters can vary from a population to another; in addition, each population is characterized by its mean orientation in the D space and by its volume fraction.

• leading to the maximum conduction relationship

d D = kg log 1 g ( . )
where k is a constant, D is the external diameter of the axon (including the myelin sheath) and g is the g-ratio defined as the ratio between the axonal membrane and the external myelin sheath outer membrane diameters.

• the fibers of a given population depict a macroscopic angular dispersion that corres- • the fibers of a given population also depict local undulation than can be simply measured by the ratio between the geodesic distance along the curvilinear frame defined by the centroid axis of the fiber and the Euclidean distance between the two extremities of the fiber.

ponds
• it is not clear whether the axon diameter and myelin sheath thickness remain con- Accounting for all these observations, we propose an algorithm relying on a -fold strategy to design white matter mimicking numerical phantoms, that do not present the actual limitations of existing phantom design tools. Such phantoms will allow to go further into the study of the impact of both intra-and extra-axonal compartments on the diffusion signal. In particular, current achievable numerical phantoms do not provide the possibility to induce local fiber undulation, which might have a significant impact on the signal stemming from the extra-axonal compartment by modifying the parallel and transverse diffusivities along and perpendicular to the fibers. The phantom generation algorithm takes a maximal number of 14N P opulations + 2 parameters to generate complex axonal geometries, where N P opulations is the number of fiber populations (N P opulations > 1 in the case of crossing fibers). The list of control parameters used to design a fiber population is summarized in table . . 

Step

b). A perturbation vector

g is then added to the orientation vector u of the considered fiber, resulting in a rotation around the center and in a new orientation vector u . Each component of g is obtained randomly, following a Gaussian distribution whose variance is proportional to the target angular dispersion. The proposed rotation is accepted if and only if the modified fiber does not collide with another fiber. The global angular dispersion AD is computed as follows:

AD = 1 P ∈P Card(P ) P ∈P f ∈P θ(u f , u P ) ( . )
where u f is the new orientation vector of fiber f in fiber population P , u P is the principal orientation vector of fiber population P , θ(u f , u P ) is the angle between the two lines supported by u f and u P vectors, P denotes the ensemble of all fiber populations in the considered field of view and Card(P ) corresponds to the number of fibers in each fiber population P .

Step -The third step of the phantom generation algorithm consists in the induction of local undulation in the geometry. To this aim, one population is randomly selected from the set of populations that did not reach their target angular dispersion yet. One fiber of this population and a point along this fiber are then selected randomly. A random orthonormal trieder (x, y, z) is built such that z corresponds to the local direction u f of the fiber f . The y-axis of the direct trieder defines the direction along which is applied the undulation deformation on the fiber (see figure . .c). This deformation follows a Gaussian distribution with a zero mean and a variance proportional to the undulation perturbation value provided as an input. It moves all the points of the fiber in the neighborhood of the selected point that is defined using a undulation neighborhood size given as an input parameter of the algorithm for each fiber population. The neighborhood size controls the frequency of the undulations, e.g. the larger this size, the smoother the undulations.

Provided that all the deformed points remain in the field of view and that the modified fiber does not collide with any other fiber, the Gaussian deformation is accepted. The induction of local undulation is a computationally complex problem. Indeed, the total number of points N P oints in the field of view is given by

N P oints = N P opulations . P ∈P f ∈P Card(f ) ( . )
where N P opulations is the number of fiber populations and Card(f ) stands for the number of control points of the centroid of a given fiber f . A typical order of magnitude of N P oints is 10 4 which means that at each step of the induction of local undulation, the algorithm must check at 10 4 points whether the fibers are colliding, which can be computationally heavy. Thus, our algorithm is based on the construction of a look-up table (LUT) which is updated at each step of the undulation induction and whose size is optimized so that we check the intersection at each point of the fiber only with all the points in a neighborhood of this very point. The LUT size must be adequately chosen to optimize the computation time. If the LUT size is too small, collisions might be missed whereas a too large LUT size will drastically increase the computation time.

Influence of microstructural properties on the diffusion time dependence

Step -Our phantom generation algorithm also enables to distinguish the myelin sheath from the axon. The axon membrane is created within the fiber envelope with a radius computed from a predefined g-ratio, corresponding to the ratio between the axon membrane diameter and the outer fiber diameter. For each population, the g-ratio follows a Gamma distribution, thus adding two further control parameters for each fiber population. The myelin sheath corresponds to the space between the axon membrane and the outer envelope of the fiber (see figure . .d).

Step Step -Finally, our algorithm gives the possibility to represent beading caused by cytoskeletal damage of the axon membrane: the contours of both axonal and outer myelin membranes are swollen using adequate bell-shaped functions like sine functions (see figure . .f). The amplitude and spacing of those lobes both follow a Gamma distribution (adding control parameters for each fiber population).

. . Multi-compartmental model for trapezoidal OG measurements

Oscillating gradient spin echo (OGSE) sequences are sensitive to diffusion on the time scale of the oscillation period rather than the interval between the pulses and can thus enhance the sensitivity to small axonal restrictions. Recently, an ActiveAx OGSE model was proposed in [Ginsburger ] which accounts for the frequency-dependence of the diffusivity transverse to axons in the extra-axonal space using cosine OGSE schemes. A frequency-dependence correction was proposed for the extra-axonal tensor and showed significant reduction of the fit error. However, the correction derived in [Ginsburger ] is only valid for sinusoidal waveforms, while square (or in practice trapezoidal) wave oscillating gradients maximize sensitivity to smaller pore sizes in comparison with sinusoidal sequences. Indeed, they yield the highest diffusion weighting within one period compared to other periodic waveforms [Drobnjak ], which also makes trapezoidal sequences more clinically feasible. The aim of this section is thus to adapt the previous model proposed in [Ginsburger ] to trapezoidal waveforms.

. water molecules occurs. The resulting model for the diffusion MR signal S can thus be written as

. . General model

S = (1 -ν iso )(ν ic S ic + (1 -ν ic )S ec ) + ν iso S iso ( . )
where S ic and ν ic are the normalized signal and volume fraction of the intra-cellular compartment, S ec is the normalized signal of the extra-cellular compartment, and S iso and ν iso are the normalized signal and volume fraction of the CSF compartment. The model for S iso assumes an isotropic Gaussian distribution of displacements [Barazany ].

Water diffusion in the intra-cellular compartment is restricted by axonal walls and further restricted by myelin sheath in case of myelinated fibers. Fibers are assumed to be parallel and oriented along a single direction n. Hence, one computes the intra-cellular signal S ic using the Gaussian Phase Distribution approximation of the signal from particles trapped inside a cylinder, which has been derived for trapezoidal OGSE sequences [Xu , Ianuş ]. Diffusion in the extra-axonal compartment is assumed to be hindered. This compartment is generally characterized by a D Gaussian displacement distribution:

S ec = e bG T Dec(n,ν ic )G ( . )
where b is the diffusion sensitization for a given tuning of a diffusion-weighted NMR sequence, G represents the gradient magnitude and D ec is the extracellular diffusion tensor.

Assuming that the diffusion tensor is cylindrically symmetric, D ec is defined as [Jespersen b, Zhang b]

D ec (n, ν ic ) = (d -d ⊥ (ν ic ))nn T + d ⊥ (ν ic )I ( . )
where d ⊥ is the apparent diffusion coefficient perpendicular to axons and I is the 

d ⊥ (ω 0 ) = d ⊥,∞ + A π 2 |ω 0 | ( . ) where d ⊥,∞ is the bulk diffusion constant [Zhang b].
Equation . was obtained combining two observations. First, the signal attenuation can be written as a function of the dispersive diffusivity D(ω) [Novikov ]

-ln S ∼ dω 2π q -ω D(ω)q ω ( . )
where q ω is the Fourier transform of the integral t 0 dt g(t ) of the applied Larmor frequency gradient g(t). Second, the Fourier transform q ω of the integral t 0 dt g(t ) of the applied Larmor frequency gradient g(t) can be written as follows

q ω = iπγg 0 ω 0 δ(ω -ω 0 ) -δ(ω + ω 0 ) ( . )
where δ is the Dirac distribution, for an OG profile g(t) = g 0 cos (ω 0 t) and for a sufficiently large number of oscillations ( ω 0 T 2π 1, T being the total duration of the gradient train g(t)).

Indeed, the presence of these Dirac distributions in q ω leads to the much simplified expression of the signal attenuation

-ln S(T ) ∼ b.RD(ω 0 ) ( . )
which, combined with equation . , results in equation . .

In the case of cosine trapezoidal OGSE (OGSE-CT), the peak frequency (frequency at which q ω reaches its maximum) will be the same as for a cosine OGSE (OGSE-C) sequence with the same frequency ω, since the Fourier expansion of the OGSE-CT f trap (t) is a infinite sum of odd cosine functions

f trap (ωt) = ∞ n=0 a 2n+1 cos ((2n + 1)ωt) ( . )
where |a 2n+1 | is a decreasing sequence. However, it is not a priori clear whether the frequency selectivity (which is characterized by both the full-width-half-maximum of the main lobe and the maximum ratio between the side lobes and main lobe amplitudes) will be preserved using OGSE-CT, which might potentially prevent the use of equation . for OGSE-CT. This question was disambiguated in [Van a] who compared the encoding spectrum F (ω) of both sequences. The encoding spectrum for a OGSE-C sequence is:

|F (ω)| 2 = πγG ω 0 2 [δ(ω + ω 0 ) + δ(ω -ω 0 )] ( . )
It was shown that the differences between the encoding spectra of OGSE-CT and OGSE-C waveforms with equal frequency are minimal, thus justifying as well the use of equation . for OGSE-CT sequences having a high selectivity around the frequency ω 0 of interest (see also figure . ).

Consequently, the same frequency-dependence correction of the extra-axonal space tensor (equation . ) can be used for both OGSE-C and OGSE-CT waveforms.

. .

Monte-Carlo simulations and NMR signal synthesis

The Diffusion Microscopist Simulator (DMS) [Yeh a] relies on a -fold architecture:

• a D phantom generation engine

• a Monte-Carlo simulator engine The theoretical peak frequency is denoted as f th . We observe that the difference between this theoretical peak and the actual frequency peak of the sequence decreases with increasing number of lobes. The actual frequency peak (not the theoretical one) of the OGSE sequences employed in this study is fed in our model for better precision.

• a DW-NMR signal synthesizer

The D phantom generation engine, improved using our novel algorithm to produce biomimicking numerical phantoms, creates the D triangulated surfaces from the fiber descriptions. It includes two non-linearly sampled curves (also called axon and outer myelin sheath membrane centroids), and two profiles of radii to represent the axon membrane and the outer myelin sheath membrane, respectively.

The Monte-Carlo simulator engine is composed of several element that have to be individually tuned:

• a scene modeler that contains the description of the evolving simulated space, including the dimensions of the simulation domain corresponding to a global bounding box set to (-60µm, +60µm, -60µm, +60µm, -60µm, +60µm) in all our simulations, the temporal resolution set to 10µs, the number of simulation steps set to 50000, the set of membranes generated by the D phantom generation engine and the set of particles used to perform the Monte-Carlo simulation (10 6 particles in our simulations).

• a motion model that drives the motion of particles, set to a Brownian random walk model tuned using a parameter corresponding to the diffusivity of the medium (2.0 × 10 -9 m 2 /s in our simulations).

• a membrane model built for each individual axon or outer myelin membrane that integrates: -the triangulated surface itself -a particle-to-membrane interaction model set to the total reflexion interaction in our case -a vertex evolution function set to static in our case (DMS is also able to deal with a temporal evolution of the membranes that is not used in this work)

-a polygon cache that facilitates and speeds up the computation of the list of the closest membrane triangles likely to interact with a particle of arbitrary position in the simulation domain 

. . Estimation of the scaling coefficient A with simulations

Monte-Carlo simulations were launched by placing 10 6 particles in the extra-axonal space of each studied white matter numerical phantom. The employed phantoms composed of a single fiber population, listed in table . , have an intracellular volume fraction of 0.2 and the fiber radii follow a Gamma distribution whose shape and scale parameters α The evolution of the scaling coefficient A with respect to the various sources of disorder is explored by simulating the diffusion process within the geometric configurations presen- . . Results

ted in table .

(configurations C to C , as well as some variants of those configurations).

Table . provides the list of all the control parameters as well as their values employed for the construction of the numerical phantoms. The purpose is to catch the complex dependence of A with respect to geometrical characteristics of the diffusion medium. The degree of complexity of the employed numerical phantom is fully monitored using the DMS simulator, thus enabling a very precise study of the influence of each parameter on the fitted coefficient A.

. Results

. . Numerical phantoms mimicking white matter

We present in this section numerical phantoms generated with our novel algorithm. We note that the generated phantoms have been presented here in the case of multiple fiber populations for more generality. However, the simulations performed to study the structural disorder of white matter in next sections only used phantoms with a single fiber population. While essential to make our approach directly applicable to most white matter regions, the study of the structural disorder induced in crossing areas of multiple fiber populations is out of the scope of this study. This topic is addressed in the Discussion section.

. . Measuring structural disorder in the extra-axonal space

Validation of the employed trapezoidal OGSE model

A linear relationship between the extra-axonal perpendicular diffusivity and the frequency of the employed trapezoidal OGSE sequence is shown in figure . , where the frequency was varied from 60 to 100Hz at a constant b-value of 200 s/mm 2 . This result validates the use of equation . . for one population, . each for the two populations, . each for the three populations and mean diameters . µm (one population), . and . µm (two populations), . , . and . µm (three populations). Down. Same as Up. with global angular dispersion of degrees for the single population, . and . degrees for the two populations, . , . and . degrees for the three populations (for a target angular dispersion of degrees each). . ), plotted against the frequency of the employed OGSE-CT sequence. A linear fit is also plotted which shows the linear dependence of diffusivity to frequency. persion (fibers remain straight but are rotated to induce angular dispersion) of 3.5°yields to a substantial diminution of the scaling coefficient from 9.09µm 2 down to 8.54µm 2 .

Studying different types of structural disorders

Local undulation is induced in configuration C (fibers are deformed to induce angular dispersion), enabling to reach an angular dispersion value of 15°and yielding a moderate decrease of the scaling coefficient from 8.54µm 2 down to 8.26µm 2 . The addition of Ranvier nodes along the myelin sheath (with a g-ratio of 0.6) in configuration C does not significantly change the value of the estimated A coefficient with respect to the previous configuration (A = 8.24µm 2 versus A = 8.26µm 2 in configuration C , which is negligible given the fitting uncertainty at a SNR of ). From C to C , beading is introduced (swelling of the axonal membrane and myelin sheath) with amplitudes equal to 1.5 times the fiber radii in average, and mean spacing of 20.0µm, yielding a significant decrease of A (up to 19% with A going from 8.32µm 2 to 6.76µm 2 ). . .

Understanding the quantitative influence of each disorder parameter

The One possibility to reach this target is to decrease the intracellular volume fraction. Another option consists in increasing angular dispersion using local undulation, as was done In configuration C (corresponding to a global angular dispersion of 3.5°and to a total angular dispersion of 15°after the induction of undulation, with the presence of Ranvier nodes), a small increase of the scaling coefficient is observed due to demyelination, from 8.24µm 2 up to 8.32µm 2 for a demyelination ratio of 25% (see figure . .c), which is not significant given the uncertainties of the estimated values of A at a SNR of .

The introduction of beading in configuration C causes important variations of the scaling coefficient A (figure . .d). As mentioned previously, a mean beading spacing of 20.0µm yields a significant decrease of A (up to 19% with A going from 8.32µm 2 to 6.76µm 2 The scaling coefficient A = 7.95µm 2 is still 4.5% smaller for a beading spacing of 100.0µm, corresponding to a low density of beads, than in the absence of beading where A = 8.32µm 2 .

. Discussion

. .

White matter biomimicking numerical phantoms

Designing realistic numerical phantoms of white matter tissue seems to be a promising approach to study the influence of various structural properties of white matter on the measured diffusion signal. Being able to construct biomimicking simulations geometries without using histological samples is an essential step toward the comprehension of the specific effect of each geometrical characteristic of the diffusing medium on the obtained ). A bigger spacing yields to a lower beading density.

signal. An important aspect of our phantom generation algorithm is its ability to deal with multiple fiber populations, which was reported to represent up to 60% of the number of voxels of a mask of the brain white matter at a spatial resolution of 2mm [Behrens b].

However, generating phantoms with multiple fiber populations come with additional difficulties, notably related to the generation of global angular dispersion. Phantoms presented in figure . exhibit geometrical configurations with multiple fiber populations. In figure . , the target angular dispersion value of 10°can be reached only in the single population case for an intra-cellular fraction of 0.2. The maximum reachable global angular dispersion strongly depends on the number of fiber populations, on the distribution of radii and on the target intra-cellular volume fractions of these populations (for instance, the lower the intra-cellular fraction, the higher the reachable angular dispersion). The use of undulation is essential to reach high values of angular dispersion in multiple population configurations. Indeed, in figure . .b, the induction of global dispersion enables to reach 5.6°of angular dispersion (for a target of 10°). The undulation induction ( . .c) brings
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this angular dispersion up to the 10°target.

. . Characterizing structural disorder with A

As shown in figure . , the differences between diffusion signals obtained by simulating the diffusion process in the extra-axonal space of various geometrical configurations are predominant in the diffusion direction perpendicular to fibers, although there exists differences in all directions. This observation shows that most of the structural disorder effects are caught by the diffusion signal around the equator perpendicular to the mean fiber orientation. Modeling structural disorder using an additional term in the extra-axonal perpendicular diffusivity thus appears to be physically reasonable.

Across all configurations, at a SNR of , the values of the scaling coefficient A vary between 9.09µm 2 and 6.77µm 2 which is consistent with previous studies [Burcaw b,

Fieremans b] reporting the empirical law A ∼ l 2 c were the correlation length l c closely follows the mean external radius of the fibers. Indeed, in our case the mean axonal diameter is equal to 2.0µm yielding l c ∼ 1.0µm, which leads to A ∼ 1.0µm 2 . This value corresponds to the order of magnitude of the fitted values of A.

As reported in [Fieremans

b], the effect of angular dispersion introduced in configurations C and C on the estimated perpendicular diffusivity can be understood by considering the diffusion process along each fiber in the presence of orientational dispersion. When the orientation of a given fiber differs from the mean orientation of the fibers population, the diffusion process along this fiber yields a local parallel diffusivity whose projection on the plane perpendicular to the mean fiber population direction is not null.

Due to this projection effect, the existence of longitudinal frequency-dependence along each elementary fiber will yield a frequency-dependence of the global perpendicular diffusivity. Thus, the frequency-dependence observed in our work might not only originate from the D short-range disorder in the plane transverse to axons, but might also be partly explained by the contamination of the perpendicular diffusivity (and thus of the scaling coefficient A) with longitudinal diffusion frequency-dependence. As a consequence, in addition to modeling the D short-range disorder in the plane perpendicular to fibers, the estimated scaling coefficient A might also embed some information related to physical properties along the fibers. While this hypothesis makes the physical interpretation of the coefficient A tricky, it would enable to obtain information from both parallel and perpendicular extra-axonal diffusion processes by measuring only one coefficient. The interest of such an approach is that the estimation of A relies on a simple and robust fitting procedure. It only requires to perform data acquisition using trapezoidal OGSE sequences with a sufficient number of frequencies to be able to fit the data properly, which is clinically feasible.

The introduction of Ranvier nodes in configuration C does not yield to a significant change in the scaling coefficient A. This is not surprising since Ranvier nodes correspond to a very low volume fraction of the extracellular space, due to their low width, reported to correspond on average to a few thousandths of the internodal length [Salzer a],

which is amplified by the low intracellular fraction of . employed in our simulations.

In figure . .c, demyelination is mimicked by progressively increasing the width of the Ranvier nodes, from 1% to 25% of the internodal length. The observed increase of the scaling coefficient A is again small (up to 3% for the maximal demyelination ratio of 25%, roughly corresponding to the percentage of demyelinated areas observed in the cerebral cortex of multiple sclerosis patients [Bø ]).

In this study, only the structural effects of Ranvier nodes and demyelination on diffusion properties in the extra-axonal space were studied. However, from the diffusion point of view, the most interesting feature of Ranvier nodes and unmyelinated regions areas is that they represent those regions along a myelinated axon where the exchange between intra-and extra-axonal water is the fastest. The analysis of the effect of such an increased exchange would be of great interest to thoroughly study the effect of Ranvier nodes and demyelination on the scaling constant A. Indeed, in the Appendix F of [Burcaw b],

the authors theoretically tackled this problem and their prediction is that the values of the scaling constant A may or may not be affected by the exchange, depending on the exchange regime (slow, intermediate or fast). Their theoretical analysis takes into account a general uniform exchange of molecules between intra-and extra-axonal space. However, the Ranvier nodes and demyelination around them would introduce a local exchange linked to the disorder with which the Ranvier nodes occurs within the voxel. In this condition, it is not clear if the argument in [Burcaw b] still holds. This question will be investigated in a future work.

. . The strong influence of beading on the scaling coefficient A

The value of the scaling coefficient A appears to be mostly influenced by the local enlargement of both axonal and myelin membranes, also called beading. Indeed, figure .   shows a significant decrease of A (up to 19%) in the presence of beading.

According to figure . .d the scaling coefficient is still 4.5% smaller for a beading spacing of 100.0µm than in the absence of beading, suggesting that A could be a putative marker of the presence of beading, since A is significantly reduced even for a lower density of beadings within the phantom.

The influence of beading on the diffusion signal has been extensively studied in [Budde b],

where it was emphasized that neurite beading might explain the decrease of the apparent diffusion coefficient after ischemic stroke. Our results point in the same direction, since the significant decrease of the coefficient A in case of beading induces a net decrease of the transverse diffusivity which results in a diminution of the apparent diffusion coeffi- 
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spacing between each beading is highly variable (as shown in table . , the variance of the spacing distribution is equal to one fourth of the spacing value) and the fibers are randomly placed in the phantom, thus mimicking transverse short-range disorder better representing actual brain white matter tissues.

The extracellular diffusion signal obtained from our simulations thus gives a more realistic view of the effect of beading on the transverse diffusion coefficient, which appears to be quantitatively significant. As discussed earlier, the effect of beading on the scaling coefficient A might partly originate from the hindrance of extra-axonal diffusion along the beaded fibers, due to the projection of parallel diffusivity on the transverse plane, as a consequence of angular dispersion.

The effect of beadings on the intra-cellular diffusion process -which is not studied in this work-might also be quantitatively substantial, as suggested in [Marco ]. In this work, the sensitivity of the diffusion signal of intracellular metabolites with respect to beaded structures was studied using Monte-Carlo simulation of brain metabolites dynamics, which can be compared, from the numerical simulation point of view, with the water's one after proper scaling. A clear dependence of both radial and axial intracellu- Indeed, beadings are supposed to primarily affect the diffusion process along the fibers and a 1/ √ t ∼ √ ω frequency-dependence of the parallel diffusivity in the intra-cellular space of beaded axons is expected. Similarly to what was done in [Marco ] for intracellular metabolites, an interesting approach would be to capture directly the effect of beading on the intra-cellular parallel diffusivity √ ω term, by performing D Monte-Carlo simulations of spin dynamics in the intra-cellular space and fitting the scaling factor of the √ ω term for various beaded geometrical configurations. The amount of variation of this "intra-cellular disorder" scaling factor in the presence of beading could be compared to the variation of the scaling factor A studied in this work. Moreover, since it has been observed in this study that A depends (mostly) both on angular dispersion and beading, further information from an intracellular model accounting for beading would enable to disentangle the influence of angular dispersion and beading on the coefficient A.

In any case, the presented approach provides a reliable way to detect beading-induced modifications of the diffusion process, which are measurable for a SNR greater or equal to , as shown in figure . . The estimation of A was performed using a linear fit with values of the perpendicular diffusivity corresponding to five distinct OGSE frequencies. The degradation of the estimation of A while reducing the number of measurements (by using only three OGSE frequencies for instance) should also be studied in order to reduce acquisition time. However, a protocol relying on a single b-value at different OGSE frequencies and along directions already meets the requirements of a clinical research protocol and will be used in the future to assess all the findings presented in this work. The range of explored OGSE frequencies from 60Hz to 100Hz allows to obtain a sufficiently short echo time (< 120ms) that enables to preserve at least 23% of the magnetization before diffusionweighting, when considering an average T 2 value of 80ms at 3T . A diffusion sensitization of 200s/mm 2 still preserves 20% of the signal after T 2 relaxation and diffusion decay for a diffusion coefficient of 0.7 × 10 -9 m 2 /s. Therefore, it seems possible, if the voxel spatial resolution is kept on the order of 2mm, to apply this imaging protocol on a clinical T MRI system in vivo in human subjects.

. . Effect of SNR

In order to invoke practical conclusions from the numerical simulation results reported here, the present study addressed the impact of noise on the quality of the A scaling coefficient fit. Indeed, Gaussian noises with equal standard deviations were added to the real and imaginary parts of the complex NMR signal before computing its magnitude which 

. . Limitations

An intracellular fraction of . was employed to generate our numerical phantoms, which is not realistic since values of intracellular fraction are reported in the range ( . -. ).

The choice of such a low fraction was deliberately made because it enables an important variation of both global and local angular dispersion as well as beading amplitude which is not possible at higher intracellular fractions. Those geometrical considerations are a major difficulty when trying to design realistic numerical phantoms, which becomes even stronger in the case of multiple populations.

The simulations performed in this study only used phantoms with a single fiber population, thus omitting the effect of crossing fibers on the scaling coefficient A.

Studying the effect of multiple fiber populations on our model is essential and will be possible since our algorithm to design numerical phantoms enables to generate multiple populations geometries. However, we chose to restrict this study to single populations because ) this study has never been performed, even in the case of a single population;

understanding the various structural disorder effects for one population is, in our opinion, already a major challenge ) it enables a more important variation of both global and local angular dispersion whose effects are of interest and ) choosing a proper adaptation of our model to multiple fiber configurations requires a thorough investigation which should be the object of a complete study. Indeed, there are at least two distinct approaches to adapt our model to fiber crossing configurations. The first approach relies on the hypothesis formulated in [Burcaw b] that the behavior of equation . will persist in fiber crossing regions because as long as the neurites of each tract are randomly positioned, the dynamical exponent will remain equal to , thus still leading to a |ω| frequency dependence in the extra-axonal space. However, in the case of fiber crossing, equation .

will no longer describe the frequency-dependence of the sole perpendicular diffusivity.

Indeed, the fact of introducing fibers with multiple directions leads to a D disorder, while in the case of parallel fibers, the disorder was D, in the plane perpendicular to fibers. Thus, equation . will apply not only to the diffusion coefficient transverse to axons -the perpendicular diffusivity-but to the overall diffusion coefficient. The second approach assumes that there is not a qualitative change of the underlying physics when introducing fiber crossings. In this case, an adaptation of our model to fiber crossings would draw from similar adaptations of state-of-the art microstructure models to deal with multiple fiber configurations, such as AMICOx [Auría ] which estimates axon diameter indices in two fiber orientations (synthetic data only, using ActiveAx model in two orientations [Zhang b]). A second approach [Kaden ] introduced the "spherical mean technique", capable of factoring out the effects of fiber crossing to estimate "peraxon" parallel and perpendicular effective diffusion coefficients, and subsequently extract fiber orientation using spherical deconvolution. Similarly, estimation of NODDI in two directions [Reddy ] for tractography uses fiber orientation estimates from neighboring voxels.

The effects of permeability on the diffusion signal were not simulated in this study.

The addition of permeability could nonetheless have a strong impact on the diffusion signal, especially in the presence of demyelination, if the permeability of the inner axonal membrane is assumed to be much higher than the myelin permeability. The absence of permeability in the performed simulations might thus explain the absence of effect of demyelination on the A coefficient.

Additionnally, this study focused on the frequency-dependence of the perpendicular diffusivity. While it has been found that beading strongly affects the scaling coefficient A of the transverse frequency-dependence, it is known from literature that beading mostly 

. . Conclusion

This will be the object of future work.

. Conclusion

x In this work, a novel tool to design more realistic phantoms of white matter was presen- 

. Diffusion MRI simulation tools in white matter

Analytical models developed in the literature rely on oversimplistic views of tissue microstructure that are far from accurately representing their cellular organization. The main
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reason for this is the lack of solutions to the diffusion equations for geometries more complex than cylinders, spheres and ellipsoids. In addition to mathematical limitations, the fitting of these oversimplistic models is far from being straightforward, due to the presence of highly non-linear functions in their equations, in particular for microstructural features of interest like the axon diameter parameterizing Bessel's functions.

The popularization of High Performance Computing (HPC), either based on the use of GPU or multi-core CPU, has pushed the dMRI community to go beyond analytical models by considering in silico simulation approaches to model brain tissue microstructure.

Simulations offer a unique opportunity to enhance the realism of tissue modeling, using computational frameworks that more robustly capture the mapping between features derived from diffusion-weighted MR signals and ground truth microstructure paramet-

ers [Nedjati-Gilani ].
To tackle the particularly ill-posed problem of tissue-to-signal relationship, the use of virtual histology seems to be a credible approach: if the geometrical properties of the generated numerical tissues are well known and controlled, the synthesis of the associated signal -using, in the case of diffusion MRI, Monte-Carlo simulations of the diffusion processfor a wide range of different geometries will provide a valuable set of data that could be used to model this relationship, with the help of machine learning techniques. Of course, the new problem posed by virtual histology is to design a generative model creating realistic numerical scenes that represent sufficiently well the biological environment. This is the subject of the first section of this chapter.

. . Brain tissue simulation

Designing realistic microstructure geometries for brain white matter tissues is the first step of the diffusion MRI simulation pipeline. The main difficulty is to create the most realistic geometries, while being able to control exactly the geometrical properties of the generated phantoms. We only deal here with brain tissue simulation tools which create numerical phantoms ex nihilo, as opposed to numerical phantoms created from histological images [Kleinnijenhuis a]. Indeed, a simulation approach based on these latter phantoms is very time-consuming and does not allow to have access to the plethora of possible geometries in white matter but only to the limited set of configurations provided by the reduced set of histological samples available. However, it should be noted that histoogy-based phantoms provide unrivalled realism and can provide a potential basis for comparison with generative models of white matter. Once packed in a plane, these circles are extended to form straight, parallel cylinders which can be deformed afterwards.

State-of-the-art

While we do not aim at presenting all existing tissue simulators, some of them can Going further For now, a lot of different versions of quite similar diffusion MRI simulators have been developed by several independent teams. Would it be possible to propose a general enough framework, that could enable all teams to combine their efforts in order to create a brain tissue simulator used by all?

One of the main issues of current generative models is the representation of axonal fibers as cylinders, which considerably limits the values of achievable angular dispersion and packing densities of axons. Moreover, state-of-the-art simulators do not provide any tool to create microvasculature or synthetic glial cells, such as oligodendrocytes and astrocytes, which are prevalent in white matter and might thus have an important impact on the observed diffusion-weighted MR signal.

These issues must be overcome while ensuring that the proposed framework enables to construct numerical phantoms in a reasonable computation time. Indeed, one of the future applications of tissue simulators is the creation of a large dictionary of simulated tissues representing all possible configurations of axons in white matter (see chapter ).

Such a simulator has to be fast and computationally efficient, and must be designed to be usable on HPC facilities. Additionally, it is desirable for the proposed simulator to be able to represent any kind of brain cell in a generic manner, and to solve the packing between all cells in a generic manner, in order to be easily modified and improved to account for new biophysical details. Preferably, the representation of each constructed phantom should be done using a common file format, based for instance on the Hierarchical Data Format (HDF ), that could enable a fast and efficient loading of the phantom in other softwares, such as Monte-Carlo simulators. Last but not least, the simulator must of course completely control the geometrical properties of the constructed phantoms, and be able to distinguish between each cell population in order to associate specific physical properties to each cell type (such as permeability of the membrane for instance).

. . Diffusion process simulation

Contrary to the creation of realistic brain tissues which is controversial and subject to change due to the difficulty of representing brain tissues in a biologically consistent manner, the Monte-Carlo simulation of the water diffusion process in these constructed tissues is somehow simpler, and there is nearly a consensus in the community on the method to adopt. This method consists in placing many particles randomly in the simulated geometry, simulating the Brownian motion of each particle by drawing a random direction for each particle, at each step of the simulation, and modifying the trajectory of the particle accordingly if it encounters a membrane barrier.

However, there are some essential nuances that are worth being highlighted:

• the step size can be of two types: constant or variable. Variable step size methods [Grebenkov ] adapt the size of each step to the local environment of the particle in order to have a nearly optimal number of simulation steps for each simulation. However, such methods are not computationally interesting if a parallelized simulation code is used where each thread computes the trajectory of one particle:

it is preferable to have the same number of simulation steps for each particle. Also, this method is harder to implement, in particular it leads to a more complex computation of the phase of particles. Fixed step size methods are thus the most widely used. There is still no consensus however on the size of each constant step:

some studies indicate that a step size smaller than tenth of the axon diameter is sufficient to ensure the precision of the simulation [Fieremans b], while others tend to indicate that a conservative step size between and percent of the axon radius is necessary for precision [Xing ]. Longer diffusion times allow the use of bigger steps, due to coarse graining of the diffusion process. Indeed, a large step size enables to speed up the computation but might smooth out the contour of the microstructure, resulting in an accuracy loss [Fieremans ].

• the particle-membrane interaction can be more or less realistic. The conventional approach consists in using an elastic boundary reflection when a particle encounters a membrane barrier: if the particle step makes it cross a barrier, the barrier elastically reflects the particle and makes it move to a new position that is located by the rule of elastic reflection, as shown in figure . . The reflected step is checked again and the reflection process is repeated until no further barrier intersections are detected. Such a method can lead to several reflections during one step, which leads to complex implementations and most of all, requires more computing time. While reflection on the membrane seems to be a reasonable choice, there is no evidence that the "bouncing back" of water particles on axonal membranes is elastic. The study of Xing et al. [Xing ] has in particular shown that a random treatment of the reflection, either using a non-elastic boundary reflection (after the membrane collision, the particle goes in a random direction, see figure . ), or a non-crossing random leap (the particle encountering a membrane cancels the original step and randomly chooses another direction to leap until the chosen step does not cross any membrane, see figure . ) produces very similar results for small enough step sizes.

When the step number is sufficiently large and the step size is much smaller than the restriction size, non-crossing random leap agrees with elastic collision, at least in the case of impermeable membranes [Xing ].

• the boundary conditions at the edge of the numerical phantom can be of three types: ) the periodic boundary condition repeats the phantom by copies of itself at each edge. When particle crosses one edge of the phantom, it comes back from the opposite edge of the phantom, and the crossing event is recorded by the simulator. This method is theoretically the best solution since it makes the diffusion environment effectively infinite. However, it requires the construction of adapted phantoms [Hall b] which have no microstructural object touching the edges, or have a periodicity in the packing that matches the phantom size [Fieremans ].

Otherwise, undesired restricted diffusion effects could occur due to geometrical discontinuities at the edges of the phantom. Constructing adapted phantoms is quite restrictive since it usually requires to start the construction of the phantom with a D circle packing problem in order to ensure periodicity, and to extend those circles to cylinders in a second step.

) the mirroring boundary conditions consists in simulating the diffusion outside of the phantom by mirroring the particle position with respect to the phantom edge it crosses. This mirroring method can artificially increase the fiber orientation dispersion of the phantom [Fieremans ] but can be used on a wider range of phantoms since it does not require periodicity.

) instead of using an actual boundary condition, an alternative approach consists in letting the particles diffuse in a much larger phantom than needed, and to keep only 

. . Synthesis of the dMRI signal

The synthesis of the diffusion-weighted MR signal from the trajectories of the particles is very simple, at least in the case of constant step sizes: the phase changes of each step along each particle's trajectory are accumulated:

Φ = N j=0 Φ j = N j=0 γ G(t j ), r(t j ) t ( . )
where < . > is the scalar product between vectors, N is the total number of time steps, G(t j ) is the magnetic field gradient at time step j, r(t j ) is the particle position at time step j, t is the time step, and γ is the gyromagnetic ratio. In the absence of drift, the overall diffusion signal attenuation for M particles at the echo time is given for each gradient direction by:

S(T E) S 0 = 1 M M i=1 cos(Φ i ) ( . )
This step of the simulation pipeline is the least computationally expensive, and can be easily parallelized (with again, one thread per particle trajectory). The main practical difficulty when implementing the diffusion MR signal synthesis resides in the fact that any kind of diffusion-weighting sequence should be managed. While implementing a function to create a gradient shape for each type of sequence is an option, the advent of sequence optimization frameworks to increase for instance the sensitivity to certain microstructural details leads to the creation of arbitrary gradient waveforms [Drobnjak a, Drobnjak b], which must also be handled by the simulator. Therefore, the best practice might consist in feeding the signal synthesis algorithm with a generic object that might represent any kind of sequence. Not only should the diffusion-weighting gradients be given to the simulator, but also all the other gradients played during a "real" acquisition, such as the spoiler and readout gradients. Having such a tool would indeed enable a very precise comparison between simulated signals and actual acquisitions performed on MR scanners.

Additionally to the diffusion process itself that is simulated in the presented diffusion simulation pipeline, other physical effects should be accounted for to obtain truly realistic diffusion signals from simulations in white matter numerical phantoms:

• Water exchange due to permeability of cell membranes can be modelled by a • T 1 and T 2 relaxation varies across tissues, yielding different signal weightings in each white matter compartment which must be accounted for when synthesizing the diffusion signal

• IVIM signal due to the blood flow in capillaries is non-negligible at small b-values. It can be modelled realistically by adding microvasculature in the numerical phantoms [Gagnon ] before performing the Monte-Carlo simulations.

Depending on the studied tissue and employed diffusion-weighting sequence, these effects can have an important impact on the measured diffusion signal and can potentially bias the interpretation of this signal if not taken into account.

.

Learning the tissue-to-signal mappings

We just presented the different approaches available to synthesize a diffusion-weighted signal from a brain tissue numerical phantom. When creating a computational model for diffusion MRI, designing an efficient tool enabling to perform fast simulations from realistic phantoms is really the hardest part. Once this is done, and a large dictionary of phantoms and associated signals has been created, the last step is to learn the mapping between the signal features and the underlying microstuctural properties of the employed phantom.

. . Learning the tissue-to-signal mappings

This part does not require any further development: apart from extracting the features of interest from the diffusion signal, and organizing the data to obtain a proper training dataset, everything is already done. Indeed, the current outbreak of machine learning and deep learning techniques in the computer science community provides very convenient and easy-to-use tools that will learn the tissue-to-signal mapping very efficiently, and enable to better understand the influence of microstructural details on the measured signal. Still, a wide range of machine learning frameworks are available, and one has to pick one to apply it to the dMRI simulation data. We thus propose a quick overview of available machine learning techniques relevant to the diffusion MRI microstructure field, and explain how such techniques can be used to learn the tissue-to-signal relationship.

. . Analytical versus computational models

Before delving into the wealth of available machine learning tools, a quick reminder of current analytical approaches used to decode the diffusion signal might be appropriate.

As already mentioned in chapter , the main difficulties of analytical models of the diffusion Analytical models are of course essential to understand the physics of the diffusion process in brain tissues. However, these models could be conveniently replaced by computational tools for the particular issue of solving the inverse problem of tissue microstructure estimation from the diffusion signal. Indeed, machine learning tools have several advantages with respect to analytical approaches:

• it avoids the need for any analytical model of tortuous extra-cellular diffusion for which only approximations are available, as just mentioned

• it enables to get rid of the fitting procedure: instead of trying to fit an analytical model to the signal by tweaking its parameters, which does not give any guarantee about the physical relevance of the estimated parameters, ML tools provide a robust optimization framework which provides better guarantees against local minima

• most machine learning tools, such as the Random Forest algorithm (introduced hereafter) give additional information, such as the importance measure of each feature used for the learning, enabling to better understand the influence of each microstructural property on the measured diffusion signal.

The next section will give a brief overview of available machine learning tools that can be used to construct computational microstructure models.

. . Machine learning for diffusion MRI: a revolution?

.

. . Review of existing tools

The first step to choose the appropriate machine learning tool is to know the type of problem we want to solve, and the type of data we have at our disposal. In the case of computational models for microstructure, the learning data comes from simulations, as explained before. Each phantom corresponds to a virtual voxel, and the signal synthesized from this phantom can be envisioned as tabular data composed of the signal values for each orientation of the applied diffusion-weighted sequence. These signal values can be further transformed into a set of extracted features such as ADC, FA, parallel and transverse diffusivities for instance, which improves the parsimony of the signal representation.

Other rotationally invariant features such as spherical harmonics fits coefficients can be extracted [Nedjati-Gilani ]. The problem to solve is the estimation of the underlying microstructural parameters from a diffusion signal: it is thus a regression problem.

Since the ML algorithm will be trained on a set of labeled data (for each phantom, the microstructural properties are known and fed into the algorithm), the machine learning problem to solve is a supervised regression of tabular data.

The amount of data to train the ML algorithm depends on the size of the generated dictionary of simulated data. This size itself depends on the number of degrees of freedom given during the simulation process: if only a few microstructural parameters are varied to obtain a dictionary (such as for instance the beading amplitude, volume fraction and diameter of axons, see chapter ), 10 4 samples might be sufficient to model all possible configurations properly. On the contrary, up to 10 1 0 samples should be created to obtain a dictionary of all possible microstructure configurations in white matter, including multiple fiber populations within the voxel (up to 3 fiber populations).

The size of the training data has a strong influence on the choice of the machine learning tool. While there is not an absolute rule on this matter, "classical" machine learning techniques might be better adapted to small training dataset (up to 10 5 samples), while bigger datasets allow the use of deep learning algorithms which can be more efficient.

A brief overview of typical supervised machine learning regression tools that could be used on diffusion MRI microstructure datasets (i.e. tabular data) is given here (see figure . ), from the simple linear regression to more advanced techniques such as neural network regression.

Linear regression A linear regression model predicts the target as a weighted sum of the feature inputs. The linearity of the learned relationship makes the interpretation easy. The learned relationships between the input feature x and output target y are linear and can be written as follows:

y = β 0 + β 1 x 1 + ... + β p x p + ε ( . )
The predicted outcome is a weighted sum of its p features. The β j represent the learned feature weights. The first weight β 0 in the sum is called the intercept and is not multiplied with a feature. The error ε is the difference between the prediction and the actual outcome.

Various methods can be used to estimate the optimal weights. The ordinary least squares method is usually used to find the weights that minimize the squared differences between the actual and the estimated outcomes. There are various algorithms that can grow a decision tree. They differ in the possible structure of the tree (e.g. number of splits per node), the criteria how to find the splits, when to stop splitting and how to estimate the simple models within the leaf nodes. The classification and regression trees (CART) [Breiman ] algorithm is probably the most popular algorithm for tree induction. The following formula describes the relationship between the outcome y and features x:

y = M m=1 c m I x∈Rm ( . )
I x∈Rm is an indicator function that returns 1 if x is in the subset R m and 0 otherwise.

If an instance falls into a leaf node R l , the predicted outcome is y = c l where c l is the average of all training instances in leaf node R l .

Here is how the subsets are created: CART takes a feature and determines which cut-off point minimizes the variance of y. The variance tells us how much the y values in a node are spread around their mean value. As a consequence, the best cut-off point makes the two resulting subsets as different as possible with respect to the target outcome.

The algorithm continues this search-and-split recursively in both new nodes until a stop criterion is reached. Possible criteria are: a minimum number of instances that have to be in a node before the split, or the minimum number of instances that have to be in a terminal node.

The tree structure is ideal for capturing interactions between features in the data.

The data ends up in distinct groups that are often easier to understand than points on a multi-dimensional hyperplane as in linear regression. The interpretation is arguably pretty simple. The tree structure also has a natural visualization, with its nodes and edges. There is no need to transform features. In linear models, it is sometimes necessary to take the logarithm of a feature. A decision tree works equally well with any monotonic transformation of a feature.

However, trees fail to deal with linear relationships. Any linear relationship between an input feature and the outcome has to be approximated by splits, creating a step function, which is not efficient. This goes hand in hand with a lack of smoothness: slight changes in the input feature can have a big impact on the predicted outcome, which is usually not desirable. Trees are also quite unstable. A few changes in the training dataset can create a completely different tree. This is because each split depends on the parent split. And if a different feature is selected as the first split feature, the entire tree structure changes.

k-nearest neighbours Many machine learning techniques involve building a model that is capable of representing the data and then finding the optimal parameters for the model to minimize error. k-nearest neighbors, however, is an example of instance-based learning where the training data is simply stored and used to make new predictions.

In general, instance-based techniques such as k-nearest neighbors are lazy learners, as compared to model-based techniques which are eager learners. A lazy approach will only "learn" from the data (to make a prediction) when a new query is made while an eager learner will learn from the data right away and build a generalized model capable of predicting any value. Thus, lazy learners are fast to train and slower to query, while eager learners are slower to train but can make new predictions very quickly.

The k-nearest neighbor method is based on the assumption that nearby points have similar values. It can be used for regression and uses the nearest neighbours of a data point for prediction, by taking the average of the outcome of the neighbors. The tricky parts are to find the right value for k (using a bias-variance tradeoff) and decide how to measure the distance between instances, which ultimately defines the neighbourhood.

Support Vector Machines A support-vector machine [Vapnik ] constructs a hyperplane or set of hyperplanes in a high-or infinite-dimensional space, which can be used for classification and regression. Intuitively, a good separation is achieved by the hyperplane that has the largest distance to the nearest training-data point of any class (so-called functional margin), since in general the larger the margin, the lower the generalization error of the classifier.

Whereas the original problem may be stated in a finite-dimensional space, it often happens that the sets to discriminate are not linearly separable in that space. For this reason, it was proposed that the original finite-dimensional space be mapped into a much higher-dimensional space, presumably making the separation easier in that space. To keep the computational load reasonable, the mappings used by SVM schemes are designed to ensure that dot products of pairs of input data vectors may be computed easily in terms of the variables in the original space, by defining them in terms of a kernel function k(x, y) selected to suit the problem.

SVM is a powerful tool, especially in the case where the kernel enabling to map variables into a linear space is known (for instance, in diffusion MRI, one could think of using the dot product of MAP-MRI [Ozarslan b] to define a kernel mapping diffusion propagators in a linear space). However, one of the main drawbacks of this method is the lack of interpretability of the regression parameters.

Random Forest and ExtraTrees Random Forest and ExtraTrees are both tree-based ensemble methods [Breiman ,Geurts ]. These two approaches find their origin in the tree boostrap aggregating (or bagging) procedure, a very simple yet powerful ensemble method which combines the predictions from multiple decision trees to make more accurate predictions than any individual model.

Bagging decreases the variance of the prediction by training each decision tree on a random subsample of the training dataset, using combinations with repetitions to produce multisets of the same cardinality/size as the original data, and then calculating the average prediction from each tree.

Random Forests are an improvement over bagged decision trees. Indeed, decision trees are greedy: they choose which variable to split on using a greedy algorithm that minimizes error. As such, even with bagging, the decision trees can have a lot of structural similarities and in turn have high correlation in their predictions. Combining predictions from multiple models in ensembles works better if the predictions from the sub-models are uncorrelated or at best weakly correlated. Random forest changes the way how the sub-trees are learned so that the resulting predictions from all of the subtrees have less correlation. It is a simple tweak: in decision trees, when selecting a split point, the learning algorithm is allowed to look through all variables and all variable values in order to select the most optimal splitpoint. The random forest algorithm changes this procedure so that the learning algorithm is limited to a random sample of features of which to search.

The ExtraTrees algorithm is again an improvement over Random Forests. Its two main differences are that it splits nodes by choosing cut-points fully randomly and that it uses the whole learning sample (rather than a bootstrap replica) to grow the trees. From the bias-variance point of view, the principle behind the ExtraTrees method is that the explicit randomization of the cut-point and attribute combined with ensemble averaging should be able to reduce variance more strongly than the weaker randomization schemes used by Random Forests. The usage of the full original learning sample rather than bootstrap replicas is motivated in order to minimize bias [Geurts , Wehenkel ].

Random Forests and ExtraTrees regressors enable a simple interpretation of regression results, since they both give access to the importance measure of each feature. This importance measure gives a better understanding of the underlying regression process by characterizing the features which are most important to perform predictions.

Multi-layer perceptrons

While there exists a wide variety of neural network, multilayer perceptrons are well suited for the particular problem of supervised learning from tabular data [Hastie ].

A multi-layer perceptron (MLP) is a class of feedforward artificial neural network. This class of networks consists of multiple layers of computational units, usually interconnected in a feed-forward way. Each neuron in one layer has directed connections to the neurons of the subsequent layer. In many applications the units of these networks apply a sigmoid function as an activation function.

Multi-layer networks use a variety of learning techniques, the most popular being backpropagation. Here, the output values are compared with the correct answer to compute the value of some predefined error function. By various techniques, the error is then fed back through the network. Using this information, the algorithm adjusts the weights of each connection in order to reduce the value of the error function by some small amount.

After repeating this process for a sufficiently large number of training cycles, the network will usually converge to some state where the error of the calculations is small. In this case, one would say that the network has learned a certain target function. To adjust weights properly, one applies a general method for non-linear optimization that is called gradient descent. For this, the network calculates the derivative of the error function with respect to the network weights, and changes the weights such that the error decreases. For this reason, back-propagation can only be applied on networks with differentiable activation functions.

Typical problems of these networks are the risk of overfitting the training data, the speed of convergence and the possibility of ending up in a local minimum of the error function. Still, many practical methods enable to alleviate these issues and make backpropagation in multi-layer perceptrons the tool of choice for many machine learning tasks.

The biggest issue, however, is that neural networks are "black boxes," in which the user feeds in data and receives answers. While fine-tuning is possible, the exact decision process is not accessible, which makes neural networks hard to interpret.

. . . Toward a dictionary of white matter configurations

The construction of a dictionary of white matter configurations aims at representing in the dictionary all possible white matter configurations. This is of course impossible and, similar to analytical models, some choices must be done to decide which microstructural details should be modeled (for instance, the presence of Ranvier nodes or astrocytes) and which parameter values should be sampled (for instance, the value of the axon diameter or the density of astrocytes). The sampled parameters correspond to the microstructural features of interest, which will be predicted from the signal, once the learning step is achieved.

In order to efficiently cover the parameter space while generating a reasonable number of samples, a random sampling technique must be employed for each sampled parameter [Nedjati-Gilani ]. The sampling scheme can be further improved using smart sampling techniques where each new sample is optimally chosen to fine-tune the regression results of the learning algorithm [Loyola R

].

An important technical point must be tackled: in the frame of the creation of a large dictionary of signals, what should we store in the computer memory? The simplest method is to keep, for each constructed white matter phantom, the outcome of the Monte-Carlo simulation, performed for a sufficiently long diffusion time and with enough particles to be used to synthesize the signal from any diffusion-weighting sequence. Thus, if a new sequence emerges in the community, it will not be necessary to perform again all Monte-Carlo simulations (which are the most expensive part) to obtain the associated signals. However, such an approach would require a huge storage capacity. Indeed, storing the particle trajectories stemming from a typical Monte-Carlo simulation requires several Gigabytes. Creating a dictionary of white matter phantoms might require at least 10 8 of these. Thus, only the diffusion-weighted signals should be stored, requiring a careful choice of diffusion-weighted sequences and tuning parameters before launching the simulation pipeline.

.

Computational models of diffusion MRI: contributions

The main objective of this thesis was to try and improve all the steps of the diffusion MRI simulation pipeline, yielding the three following contributions.

. . Phantom creation

Novel phantom construction algorithms have been proposed to improve the realism of the white matter numerical phantoms. A first approach was presented in chapter where the DMS simulator [Yeh b] was extended to account for the presence of axonal beading, angular dispersion and Ranvier nodes. This first approach was still based on the representation of axons as cylinders, and therefore suffers from axonal packing density limitations.

A completely different method has thus been developed, based on the decomposition of each microstructural item in the phantom as a set of overlapping spheres. This novel GPU-based framework, called MEDUSA (see chapter ) enables the fast construction of white matter phantoms comprising axonal fibers, oligodendrocytes and astrocytes. The algorithm reaches high values of packing density and angular dispersion for the axonal fibers, even in the case of multiple white matter fiber populations. This novel phantom generation algorithm will be presented in further details in chapter .

. . Monte-Carlo simulation and signal synthesis

Structure of the simulation code The Monte-Carlo and signal synthesis codes which had previously been developed as two separate codes in the DMS simulator, have been merged into a single piece of code: the accumulated phase of each particle can now be computed on the fly at each new step of its trajectory, without the need to store the entire trajectory to compute the phase accumulation in a second time (see figure . ). This choice of implementation has been done to avoid the computational cost of writing the particle trajectories to disk at the end of the Monte-Carlo simulation, and reading them again from disk when starting the MR signal synthesis. Indeed, as mentioned earlier, particle trajectories are most of the time not saved to disk because of the important storage capacity demanded, which would exceed actual storage capacities for a huge set of simulations.

However, it is still possible to store those trajectories by adding an option when using the simulation tool. In the same vein, while leading to a much smaller computational gain, the phantom creation code was also included in the simulation code, enabling to avoid writing the constructed phantom to disk and reading it by the Monte-Carlo simulator.

Scheme . gives an overview of the structure of the simulation code and how its different elements fit together.

Parallelized implementation benchmarks

The Monte-Carlo simulation and signal synthesis codes of DMS have been completely rewritten ) in CUDA, enabling to assess the performances of GPU devices to perform the simulations efficiently; ) in C++ using the Kokkos framework, which enables to write portable simulation codes that can be run almost optimally on any kind of HPC device (both GPU and CPU-based). A performance comparison has been made between the CUDA and Kokkos implementations on a typical example of numerical phantom (see figure . 
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In addition, it offers an easier implementation since everything remains written in plain C++, and can be run on any HPC platform. This benchmark was done with a typical white matter phantom built with the MEDUSA phantom creator (see chapter ), with a packing density of axons of 0.7 and a mean diameter of 1.0µm. 10 5 particles were placed in the simulation domain, a diffusion time of 200ms was used with equal time steps of 1.0µs. Figure . shows the computation time for various versions of the code on different hardware, emphasizing the versatility and efficiency of the Kokkos framework.

The presented simulation tools will be made available to the diffusion MRI community via the creation of a webservice enabling anyone to use the simulation pipeline freely.

Additionally, all the source codes will be made available on the Framagit platform.

The next chapter will present in details one of the major contributions of this thesis, the MEDUSA phantom generation tool, which enables the creation of more realistic D numerical phantoms of white matter. 

T

his chapter presents MEDUSA, a white matter phantom simulator. A prior simulator was designed in the frame of this thesis, presented in chapter . However, as mentioned in the previous chapter, this extension of the DMS simulator [Yeh b] still suffered from severe limitations in packing densities and reachable values of angular dispersion, due to the fact that it kept the representation of axons as cylinders. The previous chapter already introduced the MEDUSA simulator which tries to get rid of previous phantom simulator issues by using a decomposition of each geometry as a set of spheres. This chapter gives a detailed presentation of this novel approach and shows the benefits in terms of computational efficiency, genericity, evolutivity and representational power of complex white matter structures.

. Introduction

In the particular field of brain microstructure, several tools have been proposed to con- . However, the presented tissue generator does not provide any packing method for the constructed digital cells while preventing overlap between generated cells is one of the main challenge of phantom construction.

In this work, the Microstructure Environment Designer with Unified Sphere Atoms (MEDUSA) is presented, which enables to represent any kind of cellular type (axons, astrocytes and oligodendrocytes, neurons) using a spherical meshing technique. Since all microstructural items are represented as a set of overlapping spheres, the packing of such . . Methods items can be performed using an algorithm which solves collisions between spheres in a generic way that does not require to consider the particular type of biological structure it is dealing with. Such an algorithm, written in CUDA, enables a very fast resolution of all collisions in each constructed scene. This new method is applied here to construct realistic phantoms of white matter tissues, including all the features already provided by DMS to create axonal fibers, while reaching much higher values of angular dispersion and packing density, and covering the construction of astrocytes and oligodendrocytes to enhance the realism of the phantoms. The putative construction of realistic gray matter phantoms using such an approach is also illustrated.

. Methods

. . The synthesis of various white matter cells. leading to the maximum conduction relationship

Axonal fibers

d D ∝ g log 1 g ( . )
where D is the external diameter of the axon (including the myelin sheath), and g is the g-ratio defined as the ratio between the axonal membrane and the external myelin sheath outer membrane diameters.

The fibers of a given population depict a macroscopic angular dispersion that corresponds to the global misalignment of axons, as well as a local tortuosity-which can be defined as the ratio between the geodesic distance along the curvilinear frame defined by the centroid axis of the axonal fiber and the Euclidean distance between the two extremities of the fiber.

It is not clear whether the axon diameter and myelin sheath thickness remain constant along the axon; several studies have assumed this absence of variation [Beaulieu ,Daducci ] whereas other studies tend to indicate a variation of the axon diameter [Lee b, Table . shows all the geometrical parameters that can be set to construct each population of axonal fibers with a controlled degree of realism using MEDUSA. Figure .   illustrates the influence of each parameter.

To construct one fiber in a given population, the algorithm draws the fiber orientation from a Watson distribution [Fisher ], whose κ parameter is set according to the desired Illustration of the induction of tortuosity within axonal fibers. A Gaussian deformation is applied at a randomly selected sphere, in a random direction orthogonal to the main fiber orientation.

value of global angular dispersion and the mean value is equal to the mean orientation of the fiber population. Other orientation dispersion distributions can also be used, as shown at the end of the Results section. A starting point is then drawn randomly on the minimal sphere containing the scene field of view, and a straight fiber grows in the direction of the fiber orientation, by successively adding overlapping spheres of constant radius r in this direction. The radius r of the spheres is equal to the axonal radius. The distance d s between each sphere center is a computational tradeoff between a representative fiber structure and a treatable amount of spheres. We typically choose d s = r/4. The fiber stops growing when it reaches the other end of the field of view. Only the spheres that are inside the field of view are kept. Fibers are created until the volume fraction is reached for a given fiber population.

Once those straight fibers made of spheres have been created, the addition of tortuosity is done in a second step by randomly deforming portions of fibers using Gaussian distribution functions, until the required value of local angular dispersion (also called tortuosity) has been reached, as shown in figure . . Beading, consisting in local variations of the axon diameter, can also be rendered by applying sinusoidal functions to the radii of spheres on some random portions of the axonal fibers, as illustrated in scheme . . This feature can be used to represent swollen fiber regions due to cytoskeletal damage [Budde c, Tang-Schomer a] as well as healthy white matter tissues where beaded regions can also be found, as demonstrated in two recent works [Lee b, Abdollahzadeh ], suggesting that modeling axons by straight cylinders may not be accurate. The creation of a myelin sheath and Ranvier nodes is done only after the collision solver algorithm has been applied. Indeed, the axonal fiber spheres which have been created previously correspond to the outer axonal membranes. Once the final position of all outer axonal fiber spheres is known, the creation of the inner axonal membrane is done simply by duplicating all the spheres with a smaller radius, whose value is computed using the value of the g-ratio required by the user. The myelin sheath consists of the space between the spheres from the inner and the outer axonal membranes.

Ranvier nodes are then added by setting the sphere radius of external membrane spheres to the value of the corresponding inner membrane sphere, at regular intervals whose value correspond to the internodal length, computed using the maximal conduction body and processes, the total diameter of the astrocyte, the volume fraction, and the balancing factor which will be defined immediately afterwards.

The generative model used to construct astrocytes is inspired from the method presen- leads to the apparition of branching processes whose number can therefore be controlled.

The D point cloud from which the MST is computed is made of random points drawn inside a sphere whose radius is equal to the total radius of the astrocyte. However, in order to satisfy the constraint that astrocyte processes are radially oriented in the direction of axon bundles, D points whose position differ from the main axon bundles directions with a certain angular threshold (typically degrees) are discarded. The astrocyte soma is located at the root node of the MST.

Tortuosity is also added to the astrocyte processes following a similar procedure as for axons, i.e. randomly applying Gaussian deformation in a random direction on each branch of the processes. Finally, in order to improve the realism of the constructed astrocytes, the radii r of processes decrease when the distance d to the soma increases

r = r 0 e (-α.d/R) ( . )
where R is the total radius of the generated astrocyte, and α is a tunable parameter (typically equal to ). Indeed, microscopic images of astrocytes in [Oberheim b] strongly suggest that the diameter of astrocyte processes decreases with the distance to the soma. Similar observations were done for dendrite processes which were modeled with decreasing diameters when the distance to the soma increases in [Cuntz a]. However, equation . is not based on any biological evidence and was employed for rendering Oligodendrocytes Oligodendrocytes are glial cells with fewer processes than astrocytes. The main function of oligodendrocytes is the production of myelin which insulates axons in the central nervous system. Oligodendrocytes were first described in [del Río-Hortega ], where these cells were classified into four main phenotypes. We here focus on type II oligodendrocytes, which are very similar to type I oligodendrocytes with a small rounded body producing four to six primary processes, which branch and myelinate to thin (diameter < 2µm) axons, each secondary process forming a single internodal myelin segment of approximately 100 -200µm length. Type II oligodendrocytes are predominant in white matter, where they are the primary cell type.

As shown in table . , the construction of oligodendrocytes requires the definition of several geometrical parameters per oligodendrocyte population, such as the diameter of the body and processes, the total diameter of the oligodendrocyte, the volume fraction, and the number of processes. Similar to astrocytes, oligodendrocytes creation also involves the construction of a MST using the exact same method described for astrocytes.

As shown in scheme . , the main difference between astrocyte generation and oligodendrocyte generation resides in the fact that oligodendrocytes processes must be attached to the axonal outer membrane, since they are involved in the creation of the myelin sheath.

Thus, a search radius also has to be specified for each oligodendrocyte, which defines the area in which the oligodendrocyte myelinate axons. Depending on the number of processes count for each particular oligodendrocyte, a set of spheres from the external membranes of axons present in the area are selected, which constitute connection points for the oligodendrocyte. The algorithm checks that the selected axonal spheres are not located around Ranvier nodes, and axonal spheres are preferentially chosen around the center of the internode region, using a Gaussian distribution. This particular connection feature of oligodendrocytes has required the creation of a look-up-table that identifies all the external axonal spheres present in a given sub-region of the scene field of view. . . A generic approach to generate packings of non-colliding cells using spheres.

The main objective of the presented phantom generation approach is to be able to represent a wide variety of cell types present in the human brain while being able to solve the collisions between the generated structures using one simple packing algorithm. To this end, the use of overlapping spheres of varying sizes is particularly suitable for packing, since it only involves the computation of distances between spheres, thus decreasing computational complexity with respect to classical triangular mesh approaches, while maintaining a high representational power.

The idea to represent fibers as chains of spheres, which is here generalized to any kind of cell type, was first considered in [Altendorf ]. The essential idea is the force-biased spheres packing algorithm, whose implementation is explained here. At this point, each sphere in the scene is represented as a simple structure comprising the position of its center, its radius, the ID of the cell population it belongs to, and the ID of the cell item it belongs to (ID means here the identity of the population or item it refers to). This set of spheres is fed into a GPU-based collision solver (written in CUDA), which computes and applies repulsion forces between spheres which do not belong to the same cell item. More precisely, the repulsion force for a pair of overlapping spheres belonging to distinct cell items describes the necessary displacement to make them non-penetrating.

Repulsion forces

Let s 1 = (x 1 , r 1 , p 1 , c 1 ) and s 2 = (x 2 , r 2 , p 2 , c 2 ) be two spheres with centers in position x i , radius r i , cell population ID p i and cell item ID c i . Two spheres having distinct cell population ID do not belong to the same cell population (one can belong to an astrocyte population, the other to an axonal fiber population for instance), while two spheres having the same cell population ID but distinct cell item ID belong to the same cell population (both belong to the same axonal fiber population for instance) but not to the same element within that population (not the same axonal fiber for instance). The overlap O between those two spheres is

O(s 1 , s 2 ) = max (0, r 1 + r 2 -d(x 1 , x 2 )) ( . )
where d(x 1 , x 2 ) denotes the Euclidean distance between the two sphere centers.

The repulsion force on s 1 works in the opposite direction to s 2 , with a strength linearly dependent on the overlap

F (s 1 , s 2 ) = O(s 1 , s 2 ) 2 x 1 -x 2 |x 1 -x 2 | ( . )
For each sphere of the scene, the repulsion force is computed with all other spheres that do not belong to the same item, and the total repulsion force for a sphere s 1 is cumulated over all spheres from distinct items, whose set is denoted by S:

F tot (s 1 ) = s∈S,s =s 1 F (s 1 , s) ( . )
If a sphere goes out of the field of view due to repulsion forces, these forces are not applied. The algorithm is optimized using a D sweep and prune algorithm [Avril ] that reduces the number of collision checks by sorting the spheres in the voxel using their position projected along an arbitrary axis. This sorting-based algorithm enables an additional ten-fold speed-up.

Stopping criterion and regularization

In order to determine when the collision solver should be stopped, a stopping criterion must be defined. During the packing process, the repulsion forces decrease very fast at the beginning and converge slowly to zero at the end (see figure . ). As emphasized in [Altendorf ], the process should be stopped by a criterion which is dependent on the repulsion forces strength. The total repulsion forces strength is computed at each step as the sum of the norms of each applied repulsion force. The algorithm terminates with a packing solution if the total force strength falls below a certain limit αs.n, where s is the size of the bounding box, n is the number of items in the scene and α is an overlap tolerance provided by the user, typically equal to 0.002.

Of course, if the packing density is too high, it is possible that the collision solver may not converge due to the absence of solution to the packing problem. This case is managed with an additional stop criterion based on the maximal number of steps. This maximal number of steps depends on the complexity of the packing problem, but was typically in the range of 50 -200 iterations for the here shown examples.

At each step of the collision solving algorithm, once the repulsion forces between all spheres have been applied for this given step, a regularization procedure is performed for the spheres belonging to a given item. The regularization consists in smoothing the deformed items by computing a weighted sum between each sphere position and the mean position of the neighboring spheres within the item. The degree of smoothing is controlled by the number of neighbor positions taken into account, as well as the sum weights. It is important to note that the stronger the smoothing, the slower the convergence rate of the collision solver algorithm.

The particular case of glial cells Applying repulsion forces on glial cells at each step of the packing algorithm leads to problems related to the conservation of the branching structure, especially for astrocytes. The regularization approach presented in the previous section is sufficient for axonal fibers, but additional constraints have to be added to preserve the shape of each generated glial cell during the packing process. This particular . . Methods problem is addressed by identifying nodal spheres in each glial cell item, which correspond to spheres belonging to two or more branches of a given process, or directly related to the soma of the cell (see figure . ).

Nodal spheres are given an additional label, and all the spheres belonging to a branch of the process between two nodal spheres are given the label of their two nodal spheres.

Thus, at each step of the packing process, after the application of repulsion forces on spheres of the glial cell processes, the position of all spheres between two nodal spheres are regularized following the approach of the previous section, so that each branch of a given process is attached to its nodal spheres on both sides. It is important to note that for each process of a given glial cell, the sphere directly related to the soma of the cell is not moved during the packing process. The sphere representing the soma is not moved either, since the algorithm takes care of avoiding the overlap between two soma spheres when creating the initial geometry before the collision solving procedure.

This straightforward regularization approach is only valid if the amplitude of the repulsion forces applied at each step of the algorithm are small enough not to irreversibly . .

Examples of generated virtual tissues

As shown previously, the MEDUSA framework enables the creation of distinct cell types in a given virtual tissue. Figure . shows an example of a typical virtual tissue representing a white matter voxel comprising axonal fibers, astrocytes and oligodendrocytes using realistic geometrical parameters. This figure illustrates the capability of MEDUSA to create biomimicking scenes with a high degree of realism very efficiently, without any collision between the different items: a runtime of 56s on a NVidia DGX station was observed, for a realistic voxel size of 100µm 3 as recommended in [Hall b] and a total number of 625000 spheres inside the voxel. A reduced number of input parameters was sufficient to generate this virtual tissue and control the geometrical properties of interest for each cell population.

. . Convergence of the MEDUSA framework

Figure . shows the evolution of the repulsion forces during the packing process, for an example configuration with a single axonal fiber population, with and without the regularization procedure, and illustrates the impact of the smoothing procedure on the convergence rate of the packing. The regularization has a reasonable impact on the con- vergence and is essential to preserve the shapes of the items while applying repulsion forces.

. . Packing densities limits

Figure . shows the maximal values of packing densities as a function of global angular dispersion, for one (a.), two (b.) and three (c.) fiber populations which have the same geometrical parameters.

Let n be the amount of fibers and s the size of the bounding box, the packing procedure is considered successful if the remaining repulsion force at the end of runtime falls below 0.002s.n after iterations, meaning that the mean sum of necessary displacement in a fiber or cell process is smaller than . percent of a unit size [Altendorf ].

. .

Computational efficiency

One important aspect of MEDUSA is that it can be run efficiently on any GPU-capable computer. . . Results

. . Constructing biophysically plausible packings

The well-known Gamma distributions are employed throughout this work to model axonal diameter distributions, and a large value of mean axonal diameter of 2.0µm is deliberately used to improve the visibility of the constructed fibers in a typical voxel of 100µm 3 in the presented figures, for illustration purposes. However, it is known that Gamma distribu- In particular, the elliptically symmetric angular Gaussian distribution (ESAG) [Paine ] is well suited to MEDUSA needs, since it enables a simple modeling of anisotropic orientation dispersion of each generated axonal population, is very fast to simulate from, and uses only five parameters. The first three parameters correspond to the vector µ. The mean direction of the axon population is given by µ/||µ|| and the norm of µ is a measure of the orientation dispersion around this direction.

Due to its ellipse-like constant density contours inscribed on the unit sphere, the ESAG distribution has reflective symmetry about the center of the sphere along two axes orthogonal to each other and to its mean direction. The anisotropy along each of these two axes is quantified by the vector γ, thus enabling a straightforward control of the distribution shape. 

. Discussion

The MEDUSA framework provides a new way to generate realistic numerical phantoms of the brain white matter. One important property of the MEDUSA paradigm, which consists in decomposing each cell type into a set of overlapping spheres and applying repulsion forces between those spheres, is that the overall structure of the cells is preserved after the application of those forces, thus enabling the creation of highly realistic scenes without any collision. As illustrated in figure . , the spherical decomposition technique enables to create all types of cells with a high degree of realism which is equivalent to triangular mesh approaches. While the efficiency of such an approach is still putative, being able to fastly generate realistic numerical phantoms of white matter and their associated diffusion-weighted signals will at least prove useful to optimize diffusion-weighting sequence parameters, in order to increase sensitivity to certain biophysical properties of interest, such as axon diameter or myelin thickness. We observe in figure . that in the case of a single fiber population, small values of global angular dispersion (GAD) enable to reach a high volume fraction of approximately 0.72. This low value of angular dispersion is equivalent to the z-axis preferred orientation distribution which yielded the highest volume fraction in [Altendorf ].

. . MEDUSA: a novel generative framework

High packing densities

Still in the case of a single fiber population, an increasing GAD yields to a diminution of the highest achieved volume fraction, which is consistent with observations in [Altendorf ] and is due to the fact that increasing GAD shifts the packing procedure from a random packing of D discs when GAD = 0 degree, for which the maximal volume fraction can reach up to 0.78 [Altendorf ], to a general D packing problem.

On the contrary, a positive effect of increasing GAD is observed in figure . on the highest achieved volume fraction in the case of multiple fiber populations, due to the fact that the introduction of GAD diminishes the discrepancy between the direction of the fibers of different populations.

However, while the two populations case still enables to reach high volume fractions up to 0.71, the highest achieved volume fraction with three populations goes down to 0.57. This is still a huge improvement with respect to previous approaches [Ginsburger b].

Convergence As explained before, the packing algorithm terminates with a valid solution if the total repulsion force strength falls below a certain limit αn, where n is the number of items in the scene and α is an overlap tolerance provided by the user. This convergence rule is somehow arbitrary and, by definition, does not guarantee the absence of overlap if a non null tolerance value is provided. To ensure a non-overlapping system, a final step could be added, as mentioned in [Altendorf ], where the radius of each sphere is reduced according to the maximal overlap with other spheres. In this case however, the axon radius does not remain constant along the fiber centroid.

. . Approximation errors due to the spherical meshing

Effect on the volume fraction One essential aspect of the employed MEDUSA phantom creator is the consistency between the target volume fraction value required by the user To perform such a comparison, three variables need to be introduced: the radius of the cylinder R (and thus of the spheres representing the cylinder), the spacing d between the spheres of the spherical mesh, and the total number N of spheres in the spherical mesh.

A simple geometrical derivation yields the following expression for the cylinder volume

V C : V C = π(N -1)dR 2 + 2πR 3
since the length of the cylinder is given by (N -1)d + 2R.

The volume V S of the corresponding spherical mesh is :

V S = (N -1) 4 3 πR 3 - π 12 (4R + d)(2R -d) 2 + 4 3 πR 3
Figures . and . Figure . illustrates the exponential increase in approximation error when the sphere spacing increases. Figure . shows a linear increase in approximation error for bigger sphere radii and indicates that the approximation error is always lower than 0.5% for a sphere spacing d = 0.1R -corresponding to the spacing value used in this manuscript to construct the p ĥantomsand sphere radii ranging from 0.1µm to 5.0µm.

Effect on the synthesized signal In order to make sure that the signal synthesized from phantoms constructed with spherical meshes matches the corresponding signal syn- thesized from a "perfectly smooth" phantom made of cylinders, simulations were performed in two meshes representing exactly the same geometrical configurations -a voxel containing a single fiber population composed of straight cylinders with mean diameter of 1.0µm and packing density of 0.6-, with the exact same number of particles with identical initial positions. The "perfectly smooth" phantom was obtained by using analytical equations for the straight cylinders to test the particle collisions during the Monte-Carlo simulation.

Figure . shows the mean absolute error between the diffusion signal obtained from the spherical mesh and the reference smooth mesh as a function of the sphere spacing (expressed in percents of the cylinder radius) used for the spherical mesh. The diffusion signal is computed in directions and the sphere spacing is varied between 0.5R and 0.05R, where R is the radius of the cylinder. Figure .  indicates that the error falls below 1.5% at a spacing of 0.1R corresponding to the spacing value used in this article to construct the virtual tissue phantoms and perform the simulations. Such a small difference is not significant considering the employed noise level (SN R = 30).

. . Outlook

Creating dictionaries of virtual tissues and their DW-NMR signatures The MEDUSA framework is particularly adapted to the creation of a dictionary of synthetic white matter geometries, due to several advantages:

• its ability to reach high values of packing density even at high values of global angular dispersion of the axonal fibers

• the modeling of advanced properties of axonal fibers such as tortuosity, beading, myelin sheath and Ranvier nodes, and the ability to represent various type of white matter cells (astrocytes and oligodendrocytes)

Figure . : Mean absolute error of the diffusion signal obtained from a Monte-Carlo simulation inside a numerical phantom made of cylinders (mean diameter of 1.0µm, intra-axonal fraction of 0.6) decomposed using a spherical meshing technique, compared to the signal obtained from the same phantom using a smooth mesh (i.e. the exact equation of the cylinders is used to compute the particle collisions during the MC simulation). The MAE is expressed as a function of the sphere spacing used for the spherical meshing.

• the low computation time for each phantom (see figure . for typical computing times on a NVidia DGX station)

In the prospect of creating a dictionary of synthesized diffusion MRI signals associated to each generated geometry, the sphere decomposition is also very convenient. Indeed, when performing Monte-Carlo simulations of the diffusion process in the generated phantoms, the decomposition of objects into spheres enables a diminution of the computational time (measured up to 70%), due to the fact that the collision checking between diffusing particles (spins) and the cell membranes is more efficient with spheres than with a triangular mesh. Provided that a one-to-one mapping exists between each generated substrate and the corresponding synthesized signal in the diffusion MRI space, which notably depends on the employed diffusion-weighting MRI sequence, such a dictionary-based machine learning approach could prove useful to inversely decode white matter microstructure. While remaining very challenging, such an approach is one of the main motivations and potential outlooks of the MEDUSA framework. generated by MEDUSA. Using the same virtual tissues with different imaging techniques, such as diffusion MRI and D-PLI, could enable to better understand the relationship and complementarity between images obtained from these two modalities. This latter aspect will be addressed in future studies.

D-PLI as a use case beyond diffusion MRI

Towards gray matter virtual tissues

The MEDUSA framework was here presented as a tool to create realistic phantoms of the brain white matter. However, the generic approach shown here, relying on the sphere decomposition and the application of repulsion forces to avoid collision between objects, can be adapted to construct gray matter phantoms.

The construction of a wide variety of different neural cell types, as was done in [Cuntz a,

Palombo a], is out of the scope of this work. However, in order to illustrate the ability of the MEDUSA framework to adapt to gray matter, an example phantom comprising simple stellate cells at a packing density of 0.32 is shown in figure . . .

Limitations and future work

Biophysical realism The high representational power of MEDUSA enables to construct a large variety of cell shapes while ensuring the absence of collision in a given voxel, thus fulfilling all the essential requirements to obtain realistic white matter substrates.

However, the actual realism of the substrates still depends on the exactness of the assumptions used for the characterization of the generated white matter tissues. To this end, the ongoing field of research of D axonal morphometry [Xu , Lee b, Abdollahzadeh ] is essential to improve our knowledge of the axonal shape and the fiber orientation dispersion. In particular, the assumption of circular axonal cross-sections used in this paper might not stand, as suggested in [Xu , Abdollahzadeh , Lee b], or [Gagnon ] could also be used.

Packing-induced tortuosity On another front, the fact of using a set of spheres instead of a cylinder to represent a fiber gives a lot more degrees of freedom to solve the packing problem. It is however worth noting that the proposed packing algorithm yields the creation of a certain amount of tortuosity among axonal fibers, induced by the application of repulsion forces. While such a phenomenon is not a problem itself since similar effects can be observed in actual white matter axonal packings [Nilsson ], the detrimental effect is that the obtained value of tortuosity for a given fiber population differs from the value required by the user when constructing the virtual scene.

While this effect is quite negligible at small volume fractions, it can significantly alter the obtained value of tortuosity at high volume fractions: for instance, a tortuosity of 12 degrees is induced by the sole application of repulsion forces at a volume fraction of 0.7 for a single fiber population with a global angular dispersion of 10 degrees.

If the tortuosity value required by the user is big enough to "absorb" this induced tortuosity, this effect is corrected for by diminishing the amount of tortuosity induced by applying Gaussian deformations to the fibers. In the event that the actual value of tortuosity differs from the input value required by the user, the amount of tortuosity is computed again at the end of the phantom generation procedure and potential discrepancies are noted by the algorithm.

. Conclusion

The MEDUSA framework enables the fast generation of realistic phantoms of white matter, comprising different types of cells, while efficiently avoiding collisions thanks to a spherical decomposition of the shapes. The presented approach can be generalized to any type of cells in the white and gray matter, and is an important step in the investigation of the microstructure of brain tissues. Since MEDUSA enables to control the geometrical properties of the generated phantoms, it is indeed an efficient tool to generate a wide variety of configurations, which can be seen as a dictionary of all possible samples of brain tissues in a given voxel. Future work will consist in widening the MEDUSA framework to a larger variety of brain cells, such as specific types of neurons, and creating phantoms of multiple voxels catching the structure and organization of the brain at a mesoscopic scale.

Having presented the MEDUSA framework, the next chapter will show the first ap-

Chapter

A computational model to decode beaded axons microstructure An alternative strategy to establish diffusion MRI microstructure models consists in replacing the mathematical forward models expressing the tissue-to-signal relationship by the combination of numerical simulations of the water diffusion in realistic numerical phantoms of white matter with machine learning.

This emerging approach was first demonstrated in [Nilsson ] where a library of simulated diffusion-weighted MR signals was generated by varying the microstructural properties of numerical phantoms. A nearest-neighbour algorithm was employed to estimate microstructure parameters from unseen data, using a direct comparison between their related raw diffusion signals.

The approach proposed in [Nedjati-Gilani ] further improved this computational framework by extracting orientationally invariant features derived from the diffusionweighted signals to train a robust random-forest regressor. These new methods were efficiently applied to measure axon permeability, for which the estimation remained quite unsatisfying with state-of-the-art analytical Karger-like models. While the results shown in [Nilsson ] and [Nedjati-Gilani ] were successful proofs-of-concept, the presented frameworks still used numerical phantoms relying on straight parallel cylinders with variations of radii across axons but constant radii along each axon to mimic axonal structures, which lacks of realism regarding the actual white matter organization. .

Material and Methods

. .

Phantom generation

The Microstructure Environment Designer with Unified Sphere Atoms (MEDUSA) was employed to generate the numerical phantoms [Ginsburger ] (see figure . ). ME-DUSA is a novel phantom simulator which models axonal fibers using a spherical meshing technique. Axons are represented as sets of overlapping spheres and the packing is performed using a force-based algorithm which solves collisions between spheres belonging to distinct axons, thus making it a generic framework to design any realistic tissue geometry.

The MEDUSA framework is particularly suitable to create a dictionary of synthetic white matter geometries, due to its ability to reach high values of packing densities that cannot be reached with conventional tools, and to model advanced properties of axonal fibers such as global angular dispersion (misalignment of axons), axonal tortuosity (defined as the ratio between the geodesic distance along the curvilinear frame defined by the centroid axis of the axonal fiber and the Euclidean distance between the two extremities of the fiber) and beading, with a reduced set of control parameters. Moreover, the CUDA implementation of MEDUSA ensures a low computation time for each phantom creation.

The first step in the construction of a computational model for axonal beading consisted in the creation of a large dictionary of numerical phantoms. Each phantom was characterized as a combination of three structural properties: the axon radius, the intracellular fraction and the beading amplitude (the beading amplitude of a beaded axon is here defined as the ratio between the axonal radius in a beaded region and the axonal radius in a non-beaded region). white matter substrates were constructed using MEDUSA. As shown in table . , for each substrate, intra-axonal volume fraction is randomly selected using a uniform distribution between 0.4 and 0.7, mean axonal diameter between 1.0 and 3.0µm and beading amplitude between 1.0 and 1.2 for healthy tissues ( samples), 1.2 and 1.9 for pathological tissues ( samples).

The standard deviation σ r of the axon radius was set to µ r /10. A constant value of ten degrees of global angular dispersion and five degrees of axonal tortuosity was set to increase the realism of the simulated tissues [Ronen a]. The mean direction of each axonal fiber was drawn from a Watson distribution function and axonal radii were drawn from a Gamma distribution.

Beaded regions were created by locally swelling the axonal radius using bell-shaped functions. The distance between beads for each axon was drawn from a normal distribution with mean 3.0µm and a standard deviation of 0.3µm, which corresponds to reported physiological ranges [Palombo c].

. . Monte-Carlo simulations

In the prospect of creating a dictionary of synthesized diffusion MR signals associated to each generated geometry, the sphere decomposition of axons proposed by MEDUSA is very convenient. Indeed, when performing Monte-Carlo simulations of the diffusion process in the generated phantoms, the decomposition of objects into spheres enables a diminution of the computational time (measured up to 70%), due to the fact that the collision checking between diffusing particles (spins) and the cell membranes is more efficient with spheres than with a triangular mesh.

Monte-Carlo simulations were thus performed on each virtual tissue from the dictionary using 10 5 spins, with a random walk step equal to percents of the mean axonal diameter for each tissue [Xing , Fieremans ]. Equal-step-length random leap [Xing ] was employed for particle-membrane interaction. Axons were assumed to have imper- . the uncertainties of the slopes were computed from the correlation coefficient of the linear regression.

In order to better understand the precise effect of beading on the OGSE-weighted signals, simulations were also performed at each employed OGSE frequency for the two extreme values of beading amplitude used in this study ( . and . ). D representations of the signal attenuation in the plane perpendicular to the mean axon direction were obtained from these simulations.

. . ExtraTrees regression

Feature extraction A feature vector was computed from each synthesized diffusionweighted signal using a diffusion tensor analysis, comprising diffusion metrics: the mean diffusivity, fractional anisotropy, parallel and perpendicular diffusivities. 

Gilani

] thanks to a better randomization scheme during the construction of the trees.

The regressor is first trained on a sub-sample of the dictionary of generated signals which microstructural parameters are known (corresponding to the parameters specified in the simulation pipeline to construct the numerical phantoms). The trained regressor can then be used to estimate microstructure parameters on previously unseen data.

Each regression tree is trained by recursively splitting the training sample with binary tests on the input variables. Splits are chosen by the tree growing procedure so as to reduce as much as possible the variance of the output variable in the sub-samples resulting from those splits. The splitting procedure is applied to the whole training sample to define the root node of the tree and then recursively called on its successor nodes. It is stopped at terminal nodes when there is no more improvement in the estimation of the output variable. More details about the ExtraTrees method can be found in [Geurts ].

ExtraTrees regressor enables a simple interpretation of regression results, since it gives access to the importance measure of each feature. This importance measure gives a better understanding of the underlying regression process by characterizing the features which are most important to perform predictions. Importance measure plots are computed in this work for each estimated microstructural parameter (beading amplitude, diameter and intra-axonal fraction) and for each type of feature (OGSE, PGSE, combined OGSE+PGSE features).

Training and testing

The Scikit-Learn implementation of the ExtraTrees regressor was trained on the whole dictionary ( healthy and pathological samples) to learn the mapping between the extracted features and the underlying microstructure parameters of interest : the intra-cellular volume fraction, the axon diameter and the beading amplitude.

trees were used for the ExtraTrees regressor, with a maximum depth equal to for each tree (other parameters were set to default values). The number of trees and their depth was chosen using a meta-optimization procedure. All performance metrics were computed using a -fold cross-validation strategy to reduce bias due to the choice of training data. . .

Data analysis

In order to assess the quality of the regression with the ExtraTrees algorithm, scatter Correlation coefficients (R 2 ) for each parameter are also shown for each scatter plot.

Additionally, for each regression, variable importance plots are constructed, telling us how important each variable was to estimate the parameters (only the ten most important variables are shown in each plot). At each split in each tree, the improvement in the splitcriterion is the importance measure attributed to the splitting variable, and is accumulated over all the trees in the forest separately for each variable.

The data analysis pipeline was used to assess the regression outcome using three different feature types. First, the regression was performed using only the features extracted from the synthesized PGSE diffusion-weighted signals ( features per phantom). Then, the regression was assessed using only the features extracted from the synthesized OGSE diffusion-weighted signals ( features per phantom). Finally, the regression was assessed using the full combination of PGSE and OGSE features, resulting in features per phantom.

Since the combination of OGSE and PGSE features to perform regression involves longer acquisition times, it is interesting to study the impact of reducing the number of available features on the regression output. A reduced combination of PGSE and OGSE features was thus also used for the assessment, where the features of only OGSE . Results

. . Influence of beading on OGSE signals

Figure . shows the influence of the beading amplitude on the OGSE signal attenuation in the plane perpendicular to the mean axon direction, at two extreme values of beading amplitudes (1.0 and 1.9), and for each OGSE frequency ranging from 75Hz to 200Hz.

The signals were obtained in MEDUSA generated numerical phantoms with typical white matter microstructural properties: mean axonal diameter of 1.0µm, axonal volume fraction of 0.7 and two beading amplitudes (1.0 and 1.9), with degrees of local angular dispersion. The effect of beading is particularly obvious at high OGSE frequencies where a swelling effect can be noticed on the signal attenuation profile at the biggest beading amplitude of 1.9.

. . Parametric study

In order to disentangle the effect of each microstructural property on the synthesized signal, a preliminary study was performed where each microstructure parameter of interest was varied, while maintaining the others constant. This parametric study was performed separately for the employed OGSE and PGSE sequences. 

. . Results

Figure . shows a neat decrease of ADC, parallel and perpendicular diffusivities and their slopes with respect to OGSE frequency for increasing values of beading amplitude, while the effect on the FA is unclear. The same observations can be made for the PGSE sequence in figure . (left) with a clearer effect of beading amplitude on the FA, which increases for increasing BA up to . , where it peaks and then decreases for bigger BA.

The influence of axonal diameter on the OGSE diffusion metrics is shown in figure .   and indicates increasing trends of ADC, parallel and perpendicular diffusivities and their slopes with increasing diameter, which are also observed for the PGSE sequence in fig- 

. . Regression

The scatter plots corresponding to the estimation of beading amplitude, intra-cellular fraction and axonal diameter using the ExtraTrees regressor are given in figure . . These scatter plots are shown for the three types of regression performed: one using only the OGSE features, the other one using only the PGSE features and the last one using the full OGSE and PGSE features. The regression R 2 scores using OGSE/PGSE/OGSE+PGSE features are equal to 0.41/0.47/0.55 for intra-axonal fraction, 0.69/0.79/0.85 for diameter and 0.53/0.55/0.60 for beading amplitude. Figure .   shows the same results for the reduced set of OGSE+PGSE features, yielding a regression R 2 score of 0.52 for intra-axonal fraction, 0.85 for diameter and 0.58 for beading amplitude.

. .

Feature importances

Variable importance plots are shown in figure . for each performed regression (based on PGSE features, OGSE features and full OGSE+PGSE features), and each of the estimated microstructure parameter. It appears that when using only OGSE features, the parallel diffusivities at high frequencies (from 150Hz to 200Hz) are the most important features used for the regression of the beading amplitude, while parallel diffusivities at low frequencies (75Hz and 100Hz) are used for the diameter regression. Perpendicular diffusivities at high frequencies (from 125Hz to 175Hz) are mostly employed for the regression of intra-axonal fraction using OGSE features. A regression R 2 score of 0.55 is obtained in the best case scenario with full OGSE+PGSE features using the ExtraTrees regressor. A R 2 score of 0.52 is obtained using the reduced OGSE+PGSE features, which is already a substantial improvement in comparison with the regression R 2 scores for OGSE and PGSE features of 0.41 and 0.47 respectively. The scatter plot in figure . indicates that phantom configurations with bigger beading amplitudes (> 1.4) are better estimated. One possible interpretation is that at small values of beading amplitude, the beaded axonal regions do not sufficiently affect the diffusion properties (and in particular the parallel diffusivity) to be able to infer the beading amplitude from the diffusion-weighted signal. This is why we observe a nearly horizontal scatter plot for beading amplitudes < 1.4, with most estimated values comprised between 1.1 and 1.4. For bigger beading amplitude values, the difference between an amplitude of 1.5 and 1.6 for instance becomes much more easily identifiable because it affects the signal more importantly. Thus, the R 2 regression score does not entirely reflect the information brought by the regression: while the regressor is not always able to identify beading amplitudes properly (at least at small beading amplitudes), it can distinguish between small beading amplitudes, which could correspond to beading in healthy tissues, and bigger beading amplitudes corresponding to pathological cases. However, the limit of beading amplitudes between healthy and pathological tissues is usually located around 1.2 [Budde a, Marco ], meaning that there is a "grey" area for beading amplitudes estimation between 1.2 and 1.4. This can be illustrated more quantitatively by performing classifications on our dataset: an ExtraTrees classifier [Pedregosa ] ( trees with maximum depth of ) trained on the full OGSE+PGSE features to distinguish between "healthy" configurations (BA < 1.2) and "pathological" ones (BA > 1.2) yields a classification score of 75%, while the same classifier used to distinguish between small beading amplitude configurations (BA < 1.4) and bigger ones yields a score of 80%. Such a progression in the classification score emphasizes the difficulty to classify configurations in the area where beading amplitudes are comprised between 1.2 and 1.4. An option to solve this issue could consist in simulating more samples in this area to better train the regressor/classifier, using for instance a smart sampling method [Loyola R ]. an increase of OGSE-derived FA is observed for increasing fractions, which is physically relevant. The behavior of the PGSE-derived FA may however seem surprising since no clear trend can be observed, while an increase of FA with intra-axonal fraction is usually expected. This might be explained by the fact that higher intra-axonal fractions lead to the presence of more beaded regions in the phantoms, which hinder the diffusion process along the axons, thus diminishing its anisotropy.

. . Sensitivity to diameter and intracellular fraction

Regression R 2 score of 0.85/0.60 are obtained for diameter/intra-axonal fraction in the best case scenario with full OGSE+PGSE features using the ExtraTrees regressor.

R 2 scores of 0.85/0.58 are obtained using the reduced OGSE+PGSE features, which is a big improvement in comparison with the regression R 2 scores for OGSE and PGSE features of 0.69/0.53 and 0.79/0.55 respectively. The estimation of intra-axonal fraction precision of fitting procedures, at the expense of accuracy. The approach proposed in this work enables to get rid of most of these problems by using a computational model for TDD.

As illustrated in figures . and . , the presented computational framework enables to combine OGSE and PGSE features conveniently to improve regression results for beading amplitude, axonal diameter and volume fraction. The ExtraTrees regressor used in this study also gives access to the importance measure of each extracted feature, enabling a better understanding of the underlying physical processes. Another major drawback of TDD is the need for long scanning times, which are detrimental for the translation in a clinical setting. While the presented approach does not actually overcome this issue, it gives a way to quantitatively assess the importance of each measurement on the estimation quality, thus enabling to optimally acquire measurement points in the time/frequency domain to characterize tissue microstructure.

. . Limitations

The main goal of this numerical study is to investigate the ability of a computational model to extract microstructural information of interest from beaded axons using OGSE and PGSE measurements. Although numerical simulation results presented here can be helpful to interpret experimental data, this study has some limitations. In particular, T 2 and T 1 relaxation effects were neglected. These relaxation effects should be accounted for if the presented simulation framework was employed to train a microstructure decoder used on experimental data. However these relaxation effects are not expected to qualitatively change the results presented in this study.

Moreover, the diameter of axons has not been reduced between each beaded region, while such a feature can be observed after stroke and acute trauma [Budde b] and enables to preserve the total volume of the axons during the beading creation. This choice has been made due to the fact that contrary to the work presented in [Budde b] where beaded regions are periodic and of equal length, the size and distribution of beaded regions follow probabilistic distributions in the MEDUSA phantoms, which makes it more difficult to preserve the total volume of axons after the beading creation. The creation of reduced regions will be the subject of future work, but is not expected to qualitatively change the results presented here, since it will amplify the effect of beading on the diffusion signal. The only potential difference could be in the estimation of axonal diameter, which might be biased by the presence of these regions of reduced diameter along the axons.

The estimation of beading density, which is a relevant parameter to diagnose pathological tissues [Budde a], will also be investigated.

Finally, the simulations were only performed in this work for a single axonal population.

Studying the influence of crossing fiber configurations on the estimation of microstructural parameters could be of interest since a majority of voxels in diffusion MRI contain more than one axonal fiber population [Behrens b]. Nonetheless, the presented approach can be readily adapted to construct dictionary of signals from crossing fiber populations, since the MEDUSA framework employed to generate the phantoms manages multiple fiber populations, and will be investigated in the future.

. Conclusion

In this work, we developed a novel computational model for time-dependent diffusion MRI relying on simulation-based machine learning, in order to relate the time-dependent diffusion MR signal to tissue microstructural properties. The MEDUSA framework employed to generate numerical phantoms enables to obtain very realistic white matter environments, accounting for axonal angular dispersion, tortuosity and beading at high packing densities. The interest of our approach was investigated through the specific study of axonal beading, a structural property for which analytical models are intractable.

The presented model was able to distinguish between small (< 1.4) and big beading amplitudes using features extracted from OGSE and PGSE diffusion-weighted signals, Moreover, the number of free parameters is also more important in a full dictionary of white matter tissues: not only should the axonal diameter, intra-axonal fraction and beading amplitude be sampled as proposed in chapter , but also the diffusivity of water molecules, the permeability of axons and their local and global angular dispersions in a first approach. The axon permeability parameter is in practice replaced by the intracellular water residence time τ i for the parameter sampling. τ i is connected to permeability through the expression τ i = R/2k where R is the mean axon radius and k is the permeability [Nedjati-Gilani ].

Figure . illustrates the extent of the parameter space to construct the white matter dictionary. The maximum number of fiber populations within a simulation voxel is set to , which seems reasonable considering the 1.25mm isotropic resolution achievable on modern scanners, and the total number of sample points (each corresponding to one simulation) is set to 10 10 to obtain a sufficient sampling of the parameter space [Loyola R ]. This figure is merely indicative, since the random sampling of the parameter space enables to add new simulations in a simple way to gradually increase the precision of the dictionary, making it possible to incrementally improve the white matter computational model. A uniform sampling of the parameter space was used to roughly estimate it (while the actual sampling is random), keeping only geometrical configurations achievable by MEDUSA, which correspond to a maximal packing density as a function of the global angular dispersion of axons and the number of fiber populations (see figure . ).

Considering the fact that a single simulation, from the creation of the virtual tissue sample to the synthesis of the associated diffusion-weighted signals, takes an average of 12 minutes on a NVidia DGX , (notably depending on the packing density of the virtual tissue sample), this leads to an approximate total of 2.10 9 computing hours in order to create a first version of the full dictionary, which is very challenging.

There are several possible options to construct this huge dictionary. The number of fiber population for each generated voxel can be considered as a random variable with values uniformly sampled between 1 and 3, or the dictionary can be divided into three dictionaries, each corresponding respectively to configurations including , or fiber populations. If all the dictionary samples are drawn together, irrespective of the number of fiber populations in each sample, the dictionary will contain mostly fiber population configurations (see again figure . ). Since a lot of voxels in the brain contain only one or two fiber populations, the dictionary will only become useful when all configurations have been simulated, while the dictionaries option enables an incremental computation of the dictionary which can still be used if a part of the simulations has not yet been done.

This is an important aspect considering the huge number of computing hours required to create the full dictionary.

A proposal was made during this thesis to participate to the Jean Zay challenge, organized by the GENCI, which provides huge computational resources (around modern NVidia GPUs) for a short period of time. Such a challenge, combined with the computational resources already allowed by the GENCI on a longer period, could constitute a leap forward in this ambitious project.

.

Towards a computational model of the cortical cytoarchitecture

While creating a dictionary of all possible white matter configurations is already a challenging task, the creation of an equivalent dictionary for all cortical structures is an even more ambitious project. Indeed, the microstructure of the cortex is incredibly complex, with a wide variety of neural cell types and various types of layered organizations of these cells across brain regions [Palomero-Gallagher ].

Most of the current approaches to construct numerical phantoms of grey matter focus on the realism of the neural cells to create virtual tissue samples [Palombo b, Cuntz b]. However, while constructing ultra-realistic neural geometries might be useful to study in detail the intracellular signal stemming from neural cells, this approach is not adapted to the creation of a dictionary of grey matter voxels. Indeed, the complex geometrical structure of each neural cell type, and the existence of a plethora of cell types requires a large number of geometrical parameters to construct realistic grey matter virtual tissue samples using generative algorithms, which can not be sampled in a reasonable computation time to create a dictionary, even through the use of HPC.

To overcome this difficulty, an alternative approach consists in simplifying the numerical representation of cortical tissues based on the observation that all these tissues share common structural characteristics [Santuy , O'Kusky , noa , Nieuwenhuys b, Arellano , Jespersen ]:

• the presence of soma which diameters vary mostly between 5 and 30µm (with a majority between 10 and 20µm), and which can be reasonably approximated by spheroidal or pyramidoidal shapes. The soma density in a grey matter voxel is usually inferior to 20%

• the presence of dendrites which are radially oriented (in the direction perpendicular to cortical layers) with a very strong angular dispersion, resulting in a nearly isotropic orientation distribution at the voxel scale. These dendrites have small diameters centered around 0.5µm, and mean lengths varying between 10 and 60µm, and can be reasonably approximated by cylindrical shapes. The density of dendrites in a grey matter voxel lies between 20 and 50%

• the presence of myelinated axons with both tangential and radial orientations with a small angular dispersion, and small diameters centered around 0.5µm. These axons usually have a g-ratio close to 0.7 and their density lies between 20 and 30%, with a proportion between radial and tangential axons varying across cortical layers

• the presence of blood vessels and glial somata which both occupy around 3% of the cortical volume fraction.

Based on these observations, cortical tissues could thus be modeled using simplified representations: sets of spheres or spheroidal shapes with varying diameter distributions and densities could be used to model neural cell soma, while cylindrical shapes with isotropic or radial/tangential orientations could be employed to model grey matter dendrites and axons respectively. The density profiles of each cell type could be varied to obtain different types of samples corresponding to distinct layers of the cortex [Mackey ].

While this has to be checked properly, such a simplification is not expected to have a significant impact on the diffusion-weighted diffusion signal at the voxel scale, in comparison with more detailed representations due to the coarse-graining effect of the diffusion process. Moreover, it enables the convenient creation of grey matter virtual tissue samples with a reduced set of parameters, thus drastically decreasing the size of the target dictionary and therefore making the problem more tractable using HPC. Figure . gives an example of such samples, generated with the MEDUSA simulator adapted for grey matter. These samples can be sticked vertically to simulate varying soma, axon and dendrite densities, and varying soma diameters, to show that cortical columns can be easily simulated within the proposed framework. This first draft shows the potential of the developed simulation pipeline to construct computational models for grey matter, in order to map the cytoarchitecture of the cortex. This short chapter presented ongoing work and prospects based on developments made in the frame of this thesis. It is now time to conclude this thesis manuscript by emphasizing its main contributions. .

Chapter

Conclusion and prospects

Conclusion and main contributions

The main objective of this thesis was to develop novel simulation tools for the synthesis of diffusion MR signal from realistic brain tissue numerical phantoms. One of the major applications to the development of such a simulation pipeline is the creation of diffusion MR signal dictionaries containing synthesized diffusion-weighted signals corresponding to a huge amount of possible geometrical configurations at the cellular level. By providing the necessary data to construct robust computational models based on machine learning techniques, these dictionaries could enable to map the brain tissue microstructure in vivo, which is one of the key challenges the diffusion MRI community is facing. The main idea of this thesis was to focus on the creation of more realistic and computationally efficient simulation tools and use these tools to study the influence of specific microstructural parameters on the diffusion MR signal, in order to pave the way to machine learning based decoders of brain tissue ultrastructure. We summarize here the major contributions of this work. 

. Prospects

As explained in chapter , the prospects of this thesis work are the construction of dictionaries of virtual brain tissues samples (for both white and grey matter) and associated diffusion-weighted signals, spanning a wide variety of physically and biologically plausible geometrical configurations at the cellular level. To this end, the realism of the numerical phantoms can be further improved, by adding missing microstructural details such as microvascularisation in both white and grey matter, and the developed simulation pipeline has to be deployed on High Performance Computing facilities to conclude the simulation campaigns.

Those dictionaries will be used to train computational models in order to map the brain tissue microstructure in vivo, addressing two categories of applications in neuroscience:

• making possible the in vivo characterization of brain tissue microstructure and ultimately allowing to establish novel probabilistic microstructural atlases of white matter and cytoarchitectonic atlases of the cortical mantel. Such atlases would enable to go beyond post-mortem atlases like the Brodmann atlas, better capturing the cellular organization of tissues in healthy subjects. This would certainly contribute to provide valuable insights about the anatomical substrate coding for brain functions . . Prospects

• making possible the in vivo characterization of abnormal brain tissues using dedicated machine learning tools similar to those presented for beaded axons, and thus offering alternative ways to define imaging biomarkers to better diagnose and prognose neurodevelopmental, neurodegenerative and psychiatric diseases. Mots clés : IRM de diffusion, simulations Monte-Carlo, fantômes numériques, microstructure de la substance blanche L'imagerie par résonance magnétique du processus de diffusion (IRMd) de l'eau dans le cerveau a connu un succès fulgurant au cours de la décennie passée pour cartographier les connexions cérébrales. C'est toujours aujourd'hui la seule technique d'investigation de la connectivité anatomique du cerveau humain in vivo. Mais depuis quelques années, il a été démontré que l'IRMd est également un outil unique de biopsie virtuelle in vivo en permettant de sonder la composition du parenchyme cérébral également in vivo. Toutefois, les modèles développés à l'heure actuelle (AxCaliber, ActiveAx, CHARMED) reposent uniquement sur la modélisation des membranes axonales à l'aide de géométries cylindriques, et restent trop simplistes pour rendre compte précisément de l'ultrastructure de la substance blanche et du processus de diffusion dans l'espace extra-axonal. Dans un premier temps, un modèle analytique plus réaliste de la substance blanche cérébrale tenant compte notamment de la dépendance temporelle du processus de diffusion dans le milieu extra-axonal a été développé. Un outil de décodage complexe permettant de résoudre le problème inverse visant à estimer les divers paramètres de la cytoarchitecture de la substance blanche à partir du signal IRMd a été mis en place en choisissant un schéma d'optimisation robuste pour l'estimation des paramètres. Dans un second temps, une approche Big Data a été conduite pour améliorer le décodage de la microstructure cérébrale. Un outil de création de tissus synthétiques réalistes de la matière blanche a été développé, permettant de générer très rapidement un grand nombre de voxels virtuels. Un outil de simulation ultra-rapide du processus de diffusion des particules d'eau dans ces voxels virtuels a ensuite été mis en place, permettant la génération de signaux IRMd synthétiques associés à chaque voxel du dictionnaire. Un dictionnaire de voxels virtuels contenant un grand nombre de configurations géométriques rencontrées dans la matière blanche cérébrale a ainsi été construit, faisant en particulier varier le degré de gonflement de la membrane axonale qui peut survenir comme conséquence de pathologies neurologiques telles que l'accident vasculaire cérébral. L'ensemble des signaux simulés associés aux configurations géométriques des voxels virtuels dont ils sont issus a ensuite été utilisé comme un jeu de données permettant l'entraînement d'un algorithme de machine learning pour décoder la microstructure de la matière blanche cérébrale à partir du signal IRMd et estimer le degré de gonflement axonal. Ce décodeur a montré des résultats de régression encourageants sur des données simulées inconnues, montrant le potentiel de l'approche computationnelle présentée pour cartographier la microstructure de tissus cérébraux sains et pathologiques in vivo. Les outils de simulation développés durant cette thèse permettront, en utilisant un algorithme de recalage difféomorphe de propagateurs de diffusion d'ensemble également développé dans le cadre de cette thèse, de construire un atlas probabiliste des paramètres microstructuraux des faisceaux de matière blanche.

Title: Modeling and simulation of the diffusion MRI signal from human brain white matter to decode its microstructure and produce an anatomic atlas at high fields (3T).

Keywords: diffusion MRI, Monte-Carlo simulations, numerical phantoms, white matter microstructure Diffusion Magnetic Resonance Imaging of water in the brain has proven very useful to establish a cartography of brain connections. It is the only in vivo modality to study anatomical connectivity. A few years ago, it has been shown that diffusion MRI is also a unique tool to perform virtual biopsy of cerebral tissues. However, most of current analytical models (AxCaliber, ActiveAx, CHARMED) employed for the estimation of white matter microstructure rely upon a basic modeling of white matter, with axons represented by simple cylinders and extra-axonal diffusion assumed to be Gaussian. First, a more physically plausible analytical model of the human brain white matter accounting for the time-dependence of the diffusion process in the extra-axonal space was developed for Oscillating Gradient Spin Echo (OGSE) sequence signals. A decoding tool enabling to solve the inverse problem of estimating the parameters of the white matter microstructure from the OGSE-weighted diffusion MRI signal was designed using a robust optimization scheme for parameter estimation. Second, a Big Data approach was designed to further improve the brain microstructure decoding. All the simulation tools necessary to construct computational models of brain tissues were developed in the frame of this thesis. An algorithm creating realistic white matter tissue numerical phantoms based on a spherical meshing of cell shapes was designed, enabling to generate a massive amount of virtual voxels in a computationally efficient way thanks to a GPU-based implementation. An ultra-fast simulation tool of the water molecules diffusion process in those virtual voxels was designed, enabling to generate synthetic diffusion MRI signal for each virtual voxel. A dictionary of virtual voxels containing a huge set of geometrical configurations present in white matter was built. This dictionary contained virtual voxels with varying degrees of axonal beading, a swelling of the axonal membrane which occurs after strokes and other pathologies. The set of synthetic signals and associated geometrical configurations of the corresponding voxels was used as a training data set for a machine learning algorithm designed to decode white matter microstructure from the diffusion MRI signal and estimate the degree of axonal beading. This decoder showed encouraging regression results on unknown simulated data, showing the potential of the presented approach to characterize the microstructure of healthy and injured brain tissues in vivo. The microstructure decoding tools developed during this thesis will in particular be used to characterize white matter tissue microstructural parameters (axonal density, mean axonal diameter, glial density, mean glial cells diameter, microvascular density ) in short and long bundles.

The simulation tools developed in the frame of this thesis will enable the construction of a probabilistic atlas of the white matter bundles microstructural parameters, using a mean propagator based diffeomorphic registration tool also designed in the frame of this thesis to register each individual.
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  Conclusion and main contributions . . . . . . . . . . . . . . . . . . . . . . . Prospects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Bibliography List of Figures dépendance fréquentielle linéaire de la diffusivité extra-axonale . . . . . . . . . xviii Fantômes numériques réalistes de la substance blanche cérébrale . . . . . . . . xix Fantômes issus de MEDUSA comportant plusieurs populations de fibres . . . . xxi Fantômes issus de MEDUSA comportant différents détails microstructuraux . xxii Résumé de la thèse La compréhension du cerveau humain, tant du point de vue structurel que fonctionnel, est une quête qui pourrait occuper l'humanité pour des dizaines d'années à venir. En effet, le cerveau humain représente la quintessence du processus d'évolution, et présente une organisation complexe faite d'environ milliards de neurones et de milliards de fibres nerveuses. Au cours du dernier siècle qui correspond à l'époque des neurosciences modernes, notre connaissance et notre appréhension du cerveau ont évolué avec la sophistication des techniques disponibles pour l'étudier. Les améliorations dans la mise au point et la fabrication des microscopes, conjuguées au développement de techniques de coloration des cellules, ont permis aux neuroscientifiques d'apercevoir les cellules spécialisées qui composent le système nerveux. Les histologistes du siècle dernier, au rang desquels Santiago Ramón y Cajal, ont ainsi produit les premières images de cellules nerveuses en utilisant le nitrate d'argent. De nos jours, de nombreuses techniques peuvent être utilisées pour observer le cerveau à différentes échelles. Il est maintenant possible d'étudier la distribution de milliards de récépteurs neurochimiques, l'épaisseur du cortex, le système d'interconnexions constitué par les fibres de la matière blanche, ainsi que l'activité fonctionnelle du cerveau. Parmi ces techniques, les outils de neuroimagerie tels que la tomodensitométrie, l'imagerie par ultrasons, la tomographie par émission de positrons (TEP), l'électroencéphalographie (EEG), la magnétoencéphalographie (MEG) et l'imagerie par résonance magnétique (IRM) sont particulièrement intéressantes car elles permettent aux neuroscientifiques l'exploration du cerveau in vivo. L'IRM est en particulier une méthode fiable et non-invasive d'exploration de la neuroanatomie humaine. Son caractère peu invasif son absence de radiations, en comparaison avec d'autres modalités d'imagerie telles que la tomodensitométrie ou la TEP, en ont fait une modalité phare largement utilisée dans un cadre clinique. L'IRM offre également un excellent contraste gris/blanc dans le cerveau donnant accès à des détails anatomiques inaccessibles par d'autres techniques. Après l'imagerie anatomique et vasculaire, l'IRM a poursuivi son développement pour donner naissance à deux modalités phares en neuroimagerie: • l'IRM fonctionnelle (IRMf), une méthode récente qui utilise l'IRM pour mesurer xv xvi Symbols Used indirectement l'activité cérébrale en plus de l'anatomie, en détectant les changements de niveaux d'oxygène dans le flux sanguin causés par des activations neuronales locales. L'IRMf a révolutionné les neurosciences en permettant l'étude de l'activité du cerveau en temps réel avec une bonne résolution spatiale pendant la réalisation de taches mentales telles que la prise de décision, la lecture, le calcul ou la visualisation d'images;

  munauté s'est attachée à la mise au point de séquences IRM augmentant la sensibilité du signal IRMd à la microstructure des tissus, telles que la séquence d'écho de spins avec gradients oscillants. Les récentes avancées théoriques dans la modélisation du signal IRMd ont également mis en avant l'importance de la prise en compte de la dépendance temporelle du signal IRMd dans l'espace extra-axonal. Les gradients oscillants permettent une étude facilitée de cette dépendance temporelle en faisant varier la fréquence, et donc le temps de diffusion des séquences utilisées. Le but de cette thèse a été d'améliorer les méthodes d'extraction d'information microstructurelles à partir du signal IRMd. Les approches employées ont fait la part belle aux méthodes numériques et à la simulation, et peuvent être divisées en trois axes principaux: • une étude numérique de la dépendance temporelle/fréquentielle du signal IRMd dans des milieux de diffusion simulés complexes, en utilisant des séquences basées sur des gradients oscillants • la mise au point du logiciel MEDUSA, permettant la création efficace de fantômes numériques réalistes des tissus cérébraux à haute densité • le développement d'un modèle computationnel reposant sur des techniques d'apprentissage machine, entraîné sur un dictionnaire de signaux IRMd simulés à partir de fantômes numériques dont les propriétés microstructurelles sont connues et maîtrisées L'objectif final du travail effectué durant cette thèse est la création d'un grand dictionnaire de voxels simulés comprenant l'ensemble des géométries cellulaires pouvant exister au sein de la matière blanche (y compris les voxels avec plusieurs populations de fibres) et éventuellement de la matière grise. Cet objectif nécessite d'importantes ressources de calcul, et implique des temps de calcul qui dépassent le cadre de cette thèse. Cependant, une preuve de concept de cette approche numérique a pu être réalisée durant cette thèse, en restreignant le dictionnaire construit à une unique population de fibres par voxel. Cette preuve de concept a permis d'étudier l'influence du gonflement axonal survenant après certaines pathologies cérébrales sur le signal IRMd. Influence des propriétés microstructurelles de la matière blanche sur la dépendance temporelle du signal IRMd Bien que les séquences d'écho de spin à gradients pulsés dites PGSE sont toujours très utilisées en routine clinique, les séquences d'écho de spin à gradients oscillants dites OGSE constituent une approche prometteuse car elles sont capables d'explorer des temps de diffusion plus courts que les PGSE, et ont donc accès à des échelles spatiales plus fines pour l'étude de la microstructure. Des études portant sur ces séquences OGSE ont observé une dépendance linéaire de la diffusivité extra-axonale dans le plan perpendiculaire aux axones par rapport à la fréquence d'oscillation des gradients OGSE employée. Pourtant, la plupart des modèles compartimentaux pour la microstructure ignorent cette dépendance fréquentielle/temporelle de la diffusivité et donc du signal IRMd et modélisent le signal extra-axonal en supposant une diffusion Gaussienne. Une première approche théorique de la dépendance fréquentielle linéaire de la diffusivité extra-axonale a mené à une nouvelle modélisation de la dépendance temporelle:D(t) = D ∞ + A.ln (t/t c ) t , t c t ( ) qui s'écrit de manière équivalente dans le domaine fréquentiel:

Figure :

 : Figure : Diffusivité extra-axonale dans la direction perpendiculaire aux axones en fonction de la fréquence d'oscillation de la séquence OGSE, issue de la simulation de la diffusion de l'eau dans l'espace extra-axonal d'un fantôme numérique constitué d'axones cylindriques. Une droite montre le caractère linéaire de la dépendance fréquentielle.

xxiFigure :

 : Figure : Exemples de fantômes comportant , et populations de fibres avec des fractions intra-axonales de 0.1, 0.4 et 0.7. Un diamètre moyen de 2.0µm a été utilisé pour chaque population. La taille du voxel est de 100µm 3 .

  Figure : Fibres axonales ( population) construites avec MEDUSA avec différents niveaux de détails microstructuraux. Un diamètre moyen de 2.0µm a été utilisé, et la taille du voxel est de 100µm 3 .
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 : Figure :Astrocytes construits avec MEDUSA pour valeurs du "balancing factor" (BF). Un squelette d'astrocyte (avant l'ajout de tortuosité) illustrant le concept de sphères nodales utilisées pour maintenir la structure des astrocytes au cours de l'application de l'algorithme de force de répulsion est également montrée..

Figure :

 : Figure : Scènes réalistes issues de MEDUSA comportant des astrocytes (en vert), des oligodendrocytes (en violet) et des axones. A des fins d'illustration, une faible fraction intraaxonale de 0.3 a été choisie et 200 astrocytes et oligodendrocytes ont été ajoutés. Un diamètre axonal moyen de 2.0µm a été utilisé, et la taille du voxel est de 100µm 3 .

Figure :

 : Figure : Exemple de fantômes numériques issus de MEDUSA pour différentes valeurs de fraction intra-axonal et de gonflement axonal. Une petite taille de voxel a été utilisée à des fins d'illustration. La taille des voxels utilisés pour la simulation varie pour conserver environ fibres par voxel pour toutes les configurations géométriques simulées, afin de diminuer la variance du signal IRMd synthétisé.

  the community worked actively to design diffusion-weighted sequences more sensitive to microstructure, such as Oscillating-Gradient Spin-Echo (OGSE) sequences. These sophisticated sequences are usually much more demanding in terms of gradient strength to achieve similar diffusion-weightings as PGSE sequences, which has considerably limited their clinical application, though the emergence of Connectome gradients might change this situation in the long term. However, recent theoretical developments have shed the light on the importance of taking into account the diffusion time when trying to perform microstructure modelling. The relative importance of different features of tissue geometry depends on the measurement time scales. Thus, OGSE sequences could be a candidate of choice for microstructure dMRI, since the OGSE method allows different microstructure length scales to be probed by varying the diffusion time.

Figure . :

 . Figure . : Scheme of the meninges (source http://encyclopedia.lubopitko-bg.com): from outermost to innermost, the protective layers of the brain are: the skull bone, the dura mater, the arachnoid and the pia mater.

Figure . :

 . Figure . : The brain ventricular system enable the circulation of the cerebrospinal fluid (CSF) in space around and within the brain. Image adapted from [staff ].

Figure . :

 . Figure.: The encephalon can be divided into four main structures: . the cerebrum is the biggest part of the brain, made of two hemispheres; . the diencephalon contains the hypothalamus, thalamus and pineal gland. It is located deep within the brain, between the cerebrum and the brainstem; . the brainstem consists of the midbrain, the pons and the medulla oblongata. It connects the encephalon to the spinal cord. . the cerebellum is located in the posterior cranial fossa, and is separated from the overlying cerebrum by a layer of dura mater, the tentorium cerebelli. Image adapted from[staff ].

  Figure . : a. Lateral view of the four external lobes of the human brain: frontal, parietal, temporal and occipital. The central and lateral sucli and the precentral and postcentral gyri are also shown. b. Main functional areas of the brain. Images taken from [staff ].

Figure

  Figure . : Lateral (left) and medial (right) surfaces of Brodmann's cytoarchitectonic map [Brodmann ]. Each area is delimited by its specific cytoarchitecture and labelled with a distinct number. Source: http://philschatz.com/anatomy-book.

  , the Brodmann atlas constructed in delineated different areas based on variations in cell shape, size and density, i.e. neural cytoarchitecture, using the Nissl staining technique. Despite the fact that the Brodmann parcellation is based on histological observations of a single brain, thus not accounting for interindividual variability, it is still widely used in the neuroscience community. Other atlases were developed using similar techniques [Economo , Bailey ]. The advent of diffusion MRI microstructure, allowing to infer microstructure non-invasively , coupled with diffeomorphic registration frameworks enabling to construct atlases of diffusion propagators from different subjects, might enable to improve to complement and improve these atlases by accounting for the human brain interindividual variability. Many of the areas defined by Brodmann and based solely on their neuronal organization have since been correlated closely to diverse cortical functions. For example, the area number number of the Brodmann atlas corresponds to the primary visual cortex. Some of these correlations are however still under debate [Duffau ].

Figure . :

 . Figure . : Coronal slice of human brain showing the basal ganglia. The strands of grey matter within the internal capsule, connecting the caudate nucleus to the putamen, are well visible on this picture. The putamen forms with the globus pallidus the lentiform nucleus. Source: adapted from http://www.anatomie-amsterdam.nl.

Figure . :

 . Figure . : Axial view of the cerebellum. The four cerebellar nuclei are shown, as well as the cerebellar cortex which surrounds the cerebellum, the corpus medullare, interior white substance of the cerebellum, and the cerebellar peduncle connecting the cerebellum to the brainstem. Image adapted from [staff ].

Figure . :

 . Figure . : Projection fibers and corpus callosum (source http://apbrwww .apsu.edu).

Figure . :

 . Figure . : Corpus callosum scheme, showing the different sections and their relative lengths [Highley ].

Figure . :

 . Figure . : Principal systems of association fibers in the cerebrum (source [staff ]). The U-fibers are represented, as well as long association fibers (superior and inferior longitudinal fasciculus, cingulum, perpendicular fasciculus, uncinate fasciculus).

Figure . :

 . Figure .: Scheme of a neuron cell exhibiting its main components: the cell body or soma found in grey matter, the dendrites, the axon with a myelin sheath interrupted by Ranvier nodes. The nerve impulse is received by the dendrites and is propagated along the axon towards the axon terminals and the synapses. Image from https://www.thoughtco.com/.

Figure . :

 . Figure . : Set of archetypical neuron cells. Image adapted from [Schmolesky ].

Figure . :

 . Figure . : Brain tissue microstructure, showing the role of glial cells in white matter: a. a single oligodendrocyte extend its processes to several (up to ) axons, wrapping approximately 1µm of myelin sheath around each axon. Astrocytes connect to axon at nodes of Ranvier; b. The cell membrane surrounding the axon, the axolemma, is wrapped inside several layers of myelin created by an oligodendrocyte. Image from [Nilsson ].

Figure . :

 . Figure . : Microscopy image from [Oberheim a]showing protoplasmic astrocytes in layers II to VI of the cortex (see the cortex histology section for more details on these layers) and fibrous astrocytes in white matter. Interlaminar astrocytes are also shown, which abundantly populates the superficial cortical layers and extends long processes without varicosities to cortical layers III and IV.

  led to layering schemes of the cerebral cortex, and the delineation of numerous cortical areas based on cell body staining (cytoarchitecture), or myelin staining (myeloarchitecture) techniques [Palomero-Gallagher ].

Figure . :

 . Figure . : Scheme of the cytoarchitectonics layers (designated with Roman numbers) and the myeloarchitectonics layers (designated with Arabic numbers), from [Nieuwenhuys a].

Figure . :

 . Figure . : Scheme of the neurovascular unit. The neurovascular unit represents an interactive network of vascular cells (pericytes and endothelial cells), glia (astrocytes and microglia), and neurons. Image from [Sweeney ].

Figure . :

 . Figure . : Up: precession of a spin around a static magnetic field B 0 . Left: randomly oriented spins in the absence of any static magnetic field. Right: in the presence of a strong magnetic field B 0 , spins align parallel (a slight majority) and anti-parallel to its direction. Adapted from [Decorps ].

Figure . :

 . Figure . : Effect on macroscopic net magnetisation of a B 1 field rotating at the Larmor frequency ω 0 viewed (a) from laboratory frame (XYZ) where B 0 is aligned with the Z axis (b) from a rotating frame of reference (xyz) of frequency ω r , where B 1 lies along the x axis. The z axis is aligned with Z. Adapted from [Decorps ].

Figure . :

 . Figure . : Longitudinal relaxation or T 1 recovery (image from [Ridgway ]). The growth of M z follows an exponential law: the relaxation time T 1 corresponds to the time when 63 percents of the longitudinal magnetization has been recovered.

Figure . :

 . Figure . : Transverse relaxation or T 2 decay (image from [Ridgway ]). The decay of M xy follows an exponential law: the relaxation time T 2 corresponds to the time when 37 percents of the transverse magnetization remains.

Figure . :

 . Figure . : Excitation and relaxation [Lebois]: the magnetization is tilted in the transverse plane after the 90 degrees RF pulse, then comes back to its initial equilibrium.

Figure . :

 . Figure . : Sequence diagrams of a spin echo and a gradient echo sequence, from [Beaujoin ]. a. Spin echo sequence, with a 90 degrees RF pulse that flips net magnetization in the transverse plane, a 180 degrees refocusing pulse applied at t=TE/ to rephase the spins, and the signal readout at t=TE. b. Gradient echo sequence with a flip angle α lower than 90 degrees. The low flip angle excitation provides a faster recovery of the longitudinal magnetization that allows shorter TR/TE and decreases scan time. G s is for the slice selection, G ϕ for the line selection and G r for the line readout.

Figure . :

 . Figure . : Chronogram of the PGSE sequence.

  figure . ).

Figure . :

 . Figure . : Illustration from [Beaujoin ] of the spin dephasing during the PGSE experiment: in the presence of a diffusive motion, spins are not rephased by the second diffusion gradient. This results in phase incoherence at the readout which leads to a signal loss, at the origin of the dMRI contrast.

Figure . :

 . Figure . : Relation between the decay of the velocity autocorrelation function and the diffusion spectrum for free and restricted diffusion (image adapted from [Parsons ]).

Figure . :

 . Figure . : Simplified chronogram of the trapezoidal cosine OGSE sequence.

Figure . :

 . Figure . : Evolution of the q-space sampling schemes with the refinement of local models of diffusion MRI data. Courtesy of Cyril Poupon.

  Tensor Imaging (DTI) The diffusion tensor representation[Basser ] has already been introduced in section . . . . DTI only probes the Gaussian part of the diffusion propagator (at relatively low b-value), and is the first term of the cumulant expansion ofth diffusion MR signal. The signal attenuation can thus be conveniently represented by a symmetric, positive, definite diffusion tensor (see again equation . ). This tensor can be conveniently visualized as an ellipsoid, as shown in figure . . Since the diffusion tensor D is a 3 × 3 symmetric tensor, it has only six unknown coefficients. One null b-value image is also needed for the spin echo signal S 0 , resulting in unknowns requiring a minimum of acquisitions to be estimated (in practice, a few dozens of isotropically distributed gradient directions are used to reduce the influence of noise and orientational variance).

Figure . :

 . Figure . : Representation of the diffusion tensor as an ellipsoid. The tensor has eigenvalues λ 1 , λ 2 , λ 3 and eigenvectors e 1 , e 2 , e 3 . According to Einstein's equation [Einstein ], the mean displacement of water molecules in direction e 1 is given by √ 2λ 1 τ , which corresponds to the length of the ellipsoid in this direction.

  Amongst the plethora of local representations of diffusionweighted data, a distinction can be made between the techniques which make physical assumptions about diffusion and/or tissue properties (called model-based techniques) and the others (called model-free techniques). Many local model-based techniques are built on assumptions about the way molecules diffuse in their environment. DTI for instance, is a model-based technique where the diffusion process is assumed to be Gaussian. One of the first extensions of DTI, the Multi-Gaussian tensor model [Tuch ], decomposed the HARDI signal as a weighted mixture of tensors. Basically, all the models which have used mixtures of distributions such as Wisharts, Bingham, Watson or Von Mises-Fisher distributions to model the diffusion process [McGraw , Jian ] are model-based. Other local model-based techniques are built on assumptions about the tissue properties. Spherical deconvolution techniques [Tournier , Tournier ] reconstruct the fODF from the HARDI signal by making an assumption about the impulse response of an homogeneous population of fibers. Biophysical and microstructure models of the diffusion signal are of course also model-based techniques which make strong assumptions about the underlying biological tissue properties, and will be detailed in . . . . On the other side, model-free techniques do not make any physical assumption on the diffusion process, and simply offer a representation of the diffusion-weighted signal. The Diffusion Spectrum Imaging presented earlier was one of the first model-free techniques.

  gDTI reconstructs the diffusion propagator and accurately resolves multiple fiber orientations. A similar approach was developed as an extension of the Bloch-Torrey equation to include a diffusion term with an arbitrary rank Cartesian tensor [Ozarslan ] • The Persistent Angular Structure MRI (PAS-MRI) method [Jansons ] represents the relative mobility of particles in each direction. PAS-MRI computes the persistent angular structure at each voxel of an image and reveals the orientations of white matter fibers • Q-ball imaging (QBI) [Tuch ] uses a spherical sampling of the q-space to reduce the acquisition time with respect to the DSI technique and enables to compute the dODF using the Funk-Radon transform • Analytical Q-ball imaging (aQBI) [Descoteaux ] uses the same q-space sampling as QBI but is more efficient to compute the dODF thanks to an analytical decomposition of the diffusion signal on a basis of modified spherical harmonics • Mean Apparent Propagator MRI (MAP-MRI) [Ozarslan a] reconstructs the diffusion ensemble average propagator by decomposing the signal on the SHORE basis (see next section) The next paragraph presents MAP-MRI which was implemented during this thesis in the Connectomist software and has been employed as a local representation to develop a new method for diffeomorphic registration of dMRI data, presented in chapter . MAP-MRI: a state-of-the-art model-free technique The principle of MAP-MRI is to decompose the diffusion signal on a basis of Hermite functions, called the SHORE basis [Ozarslan a]. This basis has a very interesting property: its functions are eigenfunctions of the Fourier transform, meaning that they are invariant to the Fourier transform (except for some scaling factors).

(

  RTPP) and Return to Axis Probability (RTAP) which can be seen as the decomposition of the RTOP values into components parallel and perpendicular to the direction of the primary eigenvector of the diffusion tensor, respectively [Ozarslan a]. These features are closely related to microstructural properties of the tissue (for instance, RTAP can be related to the mean cross-sectional area of white matter axons modelled as parallel cylinders). Since MAP-MRI enables the reconstruction of the full EAP, one can visualize isoprobability surfaces for different values of spin displacements. Figures . , .and .

Figure . :

 . Figure . : Isoprobability surfaces of diffusion propagators reconstructed with MAP-MRI, using SHORE basis functions at polar harmonic order , with a spin displacement of 1µm.Multiple-shell dMRI data were acquired @ T over shells from 100 to 5200s/mm 2 along diffusion directions per shell, using a D twice refocused SE EPI sequence (spatial resolution 1.7mm isotropic, T E = 80ms, T R = 6.5s).

Figure . :

 . Figure . : Isoprobability surfaces of diffusion propagators reconstructed with MAP-MRI, using SHORE basis functions at polar harmonic order , with a spin displacement of 5µm.

Figure . :

 . Figure . : Isoprobability surfaces of diffusion propagators reconstructed with MAP-MRI, using SHORE basis functions at polar harmonic order , with a spin displacement of 10µm.

  The structure of the human brain is extremely variable, and this makes the analysis of the diffusion MR data of individual subjects difficult. The development of brain atlases is therefore critical for the analysis of local model maps from diffusion MRI. Subjects from a population can be registered together to create an atlas for that population. Low-dimensional transformation models, such as rigid or affine models used for the registration are not sufficient to catch the variability between human brains, and might lose information from small structures such as gyri in the cortex. To account for this problem, a non-linear alignment of the population is needed. In deformation-based methods of atlas construction, non-rigid registration is used to match structures locally to the same coordinate system.If non-rigid transformations are used, the variability of the population is encoded in the deformation fields from each brain image to the atlas. Individual subjects can then be registered to an atlas to detect differences between structures in the subject and "normal" anatomy. Furthermore, the creation of atlases of different populations of subjects allows the comparison of typical anatomies for each group. Quite often, studies in neuroscience rely on two populations : a test group characterized by the specificity to be investigated and a control group made up of normal subjects representing the global population. Different techniques have been proposed to perform diffeomorphic registration of diffusion MR data, using either the DTI local model or HARDI models. [Alexander ] described a method allowing to register DTI data keeping the original orientations of the tensor. DTI-TK [Zhang ] provided a diffeomorphic tensor-based coregistration method optimized to align white matter anatomy. With the emergence of HARDI models going beyond DTI, new techniques were developed that took benefit of the high angular resolution of ODFs or fODFs. In [Raffelt ], diffusion-weighted data were registered using a diffeomorphic transformation, computed using the decomposition of the fiber orientation distribution on a modified spherical harmonics basis. An alternative approach was proposed by [Yap ] using an elastic registration of HARDI data based on the spherical harmonics decomposition of the diffusion orientation distribution function. However, state-of-the-art registration methods of diffusion MR data do not take full advantage of the information available in the diffusion propagator, because ODFs and fODfs miss the radial part of the diffusion information, related to the magnitude of displacement of the diffusing water molecules. Since the MAP-MRI model [Ozarslan a] allows the reconstruction of the entire mean apparent diffusion propagator, a registration method taking advantage of this local model was missing. A novel diffeomorphic registra-tion technique based on MAP-MRI diffusion propagators has thus been developed in the frame of this thesis and is presented in chapter . Tractography By extracting highest probability peaks from local models of dMRI data, the preferred directions of diffusion in each voxel can be inferred. Such information can be fed into so-called tractography algorithms to reconstruct the pathway of axonal fibers inside the brain. Virtual fibers are thus reconstructed using various tractography techniques, which can be divided in two groups: • Local techniques [Mori , Poupon ] are the most intuitive tractography procedures. The first local tractography technique, called streamline deterministic tractography (see figure . ), was developed by Basser et al. [Basser ]: seed points are placed in each voxel (typically to per voxel) and fiber pathways grow from these seed points, following the principal diffusion directions and considering an aperture cone (typically degrees) restricting the propagation domain forwards and backwards within this cone. Streamline deterministic tractography is very fast, but cannot resolve fiber crossings and kissings. This method is also prone to local errors in the estimation of fiber directions (due to noise and partial voluming effects) and usually creates a lot of false positives [another local method which incorporates the uncertainty of dMRI measurement to propagate according to a probability distribution function. The orientation of growth of the virtual fibers

Figure . :

 . Figure . : Tractogram superimposed on a generalized fractional anisotropy map, obtained from the Archi database [Assaf ] using a streamline deterministic tractography technique with one seed per voxel. Slices of mm width are shown for a better visualization of the fibers.

  Stanisz [Stanisz a] developed one of the first biophysical models of white matter, investigating the bovine optic nerve ex vivo from a PGSE experiment. Three compartments were used in this model: prolate ellipsoids were employed to represent axons, spheres of constant diameter for glial cells, hindered diffusion for the extracellular space. The cell membranes were assumed to be permeable, with different values of permeability for axons and glial cells. Two different diffusion coefficients were used for the intra-and extra-cellular spaces. The restricted diffusion signal was computed using the SGP approximation. Nine microstructural features were estimated: average axon diameter and length (due to the ellipsoid shape), density of axons, size and density of glial cells, intra-and extra-cellular diffusivities and membrane permeabilities.

  represent it as a parametric Watson distribution: axons are assumed to have a cylindrically symmetric directional distribution around their main orientation, thus discarding all types of anisotropic dispersions such as bending or fanning. The Watson distribution has the advantage of being characterized by a single concentration parameter κ, thus enabling to preserve the philosophy of the clinically-oriented ActiveAx framework and to estimate all model parameters with HARDI shells, making it possible for in vivo human acquisitions. Zhang pursued the model simplification and proposed the Neurite Orientation Dispersion and Density Imaging (NODDI) model in [Zhang a], which has become popular thanks to its simple acquisition scheme and has been used in a lot of studies characterizing healthy and pathological brain tissues [Kodiweera , Schneider , Colgan ]. In comparison with the extended version of ActiveAx just presented, NODDI only requires two shells, thus meeting the requirements of clinical routines. It is a threecompartment model where the intra-neurite compartment is represented by sticks (instead of cylinders) following a Watson distribution, extra-axonal space is modelled as hinderedGaussian diffusion and CSF exhibits free isotropic diffusion (see figure.).

Figure

  Figure . : Outline of the historical multi-compartment models, with their associated compartments. Intra-axonal space is modelled either by sticks or cylinders, extra-cellular space by Gaussian anisotropic diffusion (except for the Balls and Sticks model where it is isotropic) and CSF water is accounted for using an isotropic Gaussian diffusion model. The stationary compartment is only used for fixed ex vivo tissues where it represents water trapped in glial cells. Image from [Beaujoin ].

  r-space at different magnitudes of the displacement vectors r (e.g. a set of vectors uniformly distributed over spherical shells with varying radii). A discrete representation of each MAP is obtained by storing the value of the probability P (r) for each of those displacement vectors, with r = (r, θ, ϕ) in spherical coordinates. The same multiple-shell sampling is used for all the MAPs. Due to this discrete representation, MAPs are no longer in different local tensor frames and their probabilities can be directly compared for each displacement vector, making the initial reorientation unnecessary [Ozarslan b].

  algorithm at full resolution ( iterations). A Gaussian diffusion-like regularization was chosen with σ dif f usion = 1 and the demons transformation was composed with the previously obtained diffeomorphism. The comparison of the MAP fields (see fig. . ) indicates that our registration method has clearly reduced the shape difference between MAPs and improved the directional consistency. The computed diffeomorphism between the fixed and moving MAP fields is shown in figure . . Besides the high visual consistency between MAP fields after diffeomorphic registration, the performance of our registration algorithm was evaluated using a streamline regularized deterministic tractography [Perrin a] on the fixed and moving MAP fields

Figure . :

 . Figure . : Coronal slices of MAP fields computed using the SHORE model with polar harmonic order , at a displacement value of 5µm, overlayed on the fixed T image. The MAPs of the fixed MAP field (up) are compared with those of the affine-registered moving MAP field (middle) and diffeomorphic-registered MAP field (bottom).

Figure . :

 . Figure . : Representation of the obtained diffeomorphism by vectors in each voxel.

Figure

  Figure . assesses the ability of the method to accurately realign the Corpus Callosum and the left and right Cortico-Spinal tracts.

Figure . :

 . Figure . : Comparison of the Corpus Callosum and Cortico-Spinal tract fiber bundles from the moving MAP field before and after diffeomorphic registration (red) with those from the fixed MAP field (blue). The tractography has been performed on the fixed MAP field, the affine-registered moving MAP field and the diffeomorphic-registered moving MAP field on the whole brain using Connectomist. Fiber tracts were extracted using a bundle labelling software [Guevara ].

Figure . :

 . Figure . : Left.Decrease of the similarity energy between MAP fields for the diffeomorphic demons used alone (dotted lines) and combined with dynamic programming (DP) on MST (continuous line). Right. Comparison of the Dice index and mutual information between fiber tracts from tractography on fixed and moving MAP fields after affine and diffeomorphic registration.

Figure . :

 . Figure . : Comparison of the Mean Squared Error between probability values of the propagators of fixed and moving MAP fields on a multiple-shell sampling after diffeomorphic registration using DTI-TK (left) and the registration approach developed in this work (right). The total MSE decreases of 34% with DTI-TK and 60% with our approach in comparison with affine registration.

  schemes such as Oscillating Gradient Spin Echo (OGSE) sequences seem a promising approach since they enable to explore the diffusion pattern in the frequency domain dual to the diffusion time domain and are able to probe shorter diffusion times compared to conventional PGSE. Some OGSE studies have reported that, at frequencies below 400Hz, the OG-measured extra-axonal diffusivity transverse to axons in white matter is linearly dependent on the frequency of the employed OGSE sequence [Portnoy b], whereas state-of-the art multi-compartment models of white matter relying on PGSE or OGSE sequences usually assume a Gaussian diffusion in the extra-axonal space [Assaf b,Alexander b,Zhang b,Ianuş ]. A theoretical explanation was given in [Burcaw b], where the observed frequency-dependence is interpreted as resulting from the extra-axonal D short-range disorder of axonal packings in the plane transverse to white matter fibers.

  t c represents the time to diffuse across the correlation length l c of the packing geometry (l c closely follows the mean external radius r ext of the axon packing [Burcaw b, Fieremans b]). Similar to recent models accounting for extra-axonal time-dependence in the case of single diffusion encoding sequences [De Santis b], a multi-compartment model for cosine OGSE sequences was proposed in [Ginsburger ] which added a frequency-dependent term in the extra-axonal diffusion tensor perpendicular diffusivity based on equation . , showing a significant improvement of the model fit quality. The first contribution of this study is to show the relevance of such a frequencydependent correction using clinically feasible cosine trapezoidal OGSE sequences. The theoretically predicted linear relationship between the extracellular perpendicular diffusivity and the OGSE frequency was observed using D simulations of the diffusion process with different values of signal-to-noise ratios (SNR). Having introduced a physically plausible frequency-dependent correction in our model, the next step is to study the dependence of its scaling coefficient A (equation . ) to the geometrical features of the extracellular space. Indeed, to our knowledge, this dependence is very little known. An empirical law A ∼ l 2 c relating A to the correlation length l c was given in [Burcaw b, Fieremans b] but is not sufficient to catch the complexity of the scaling coefficient A. The value of A is a measure of the strength of the structural disorder [Novikov b, Burcaw b], thus related to the geometrical properties characterizing the spatial organization of white matter at various scales. A possible approach to decipher the complex relationship between A and white matter features is to perform Monte-Carlo simulations of the diffusion process in diffusing media with increasing level of structural disorder. The simulation of the diffusion process in state-of-the-art Monte-Carlo simulators such as CAMINO [Hall a] and DMS [Yeh a] is decomposed into three main steps: ) the generation of a D numerical phantom representing the diffusion medium ) the Monte-Carlo simulation of the Brownian motion of spins ) the synthesis of a DW-NMR signal. Simulators like CAMINO or DMS are able to extract triangle meshes from histological samples in step ) in order to simulate diffusion in ultra-realistic media. However, this approach does not allow to have access to the plethora of possible geometries but only to the limited set of configurations provided by the reduced set of histological samples. Beside the possibility to use geometries extracted from histological samples in step ), state-of-the-art simulators can only generate a limited number of geometries which might not represent white matter sufficiently well. For instance, the CAMINO and DMS simulators are able to simulate the diffusion process in any triangle mesh, but the algorithm used to construct simulation meshes from input geometrical parameters only generates substrates with straight cylinders of various diameters (including crossing between two populations of fibers). Other simulation tools like Fiberfox [Neher a] rely on analytical models associated to each particular cell geometry, including various combinations of sticks, tensors, zeppelins, balls, dots and astrosticks. They are inherently limited by the realism of the used geometries and the employed analytical models do not account for the presence of structural disorder in the extracellular space. There is thus a real need to propose alternative generative algorithms able to create more complex geometries while controlling the parameters driving the various sources of geometrical disorder to explore more extensively the vast domain of possible geometries. The main contribution of this study is therefore the development of a novel algorithm to produce a wide variety of biomimicking numerical phantoms representing more realistic white matter tissue configurations from a reduced set of control parameters. Embedded in the Diffusion Microscopist Simulator (DMS) [Yeh a], this algorithm enables to control the degree of complexity of the generated geometrical configurations (induction of global angular dispersion and local undulation, presence of Ranvier nodes along the axonal membrane, presence of beading) with few design parameters, and without the necessity of any input histological sample. Such numerical white matter phantoms are then used to perform Monte-Carlo simulations of the diffusion process from which simulated diffusion-weighted NMR signals can be synthesized using trapezoidal OGSE sequences at different values of SNR. The obtained signal is fed into our analytical model to explore the evolution of the structural disorder coefficient A for various well-characterized geometrical configurations of the extracellular space.

  configurations of fibers are likely to happen and several studies in the field of diffusion MRI have reported a percentage of around 60 percent of voxels containing crossing, kissing or splitting fibers at the conventional millimeter resolution of diffusion MRI data [Behrens b].

  myelinated axons are regularly interrupted by Ranvier nodes along the axon main direction [Salzer a]; the internode distance d has been extensively studied in [Rushton b]

  to the global misalignment of the axons which has previously been modeled both in ActiveAx [Alexander b] and NODDI [Zhang b] models using Watson's or Bingham's distributions relying on the knowledge of the principal orientation and of one or two concentration parameters respectively, thus imposing a strong assumption on the nature of angular dispersion.

  stant along the axon [Lee a,Abdollahzadeh ]; several studies have assumed this absence of variation [Beaulieu , Daducci ] whereas there is no clear assessment of such a property; in particular, it is known that membrane injury can induce axonal beading for instance due to cytoskeletal damage. According to [Budde b], beading-induced changes in cell-membrane morphology are sufficient to significantly hinder water mobility and thereby decrease the apparent diffusion coefficient; it is therefore recommended to account for this and allow axon diameter variation.

Figure . :

 . Figure . : List of control parameters names associated to each step of the phantom generation algorithm.

  figure . .b, global angular dispersion is created by selecting randomly one fiber among a fiber population. The fiber population is randomly selected among those that did not reach their target angular dispersion yet. Then, a center of rotation is selected along this fiber, following a Gaussian distribution to ensure that most of the selected rotation centers belong to the central part of the fibers (see figure . .b). A perturbation vector

-

  The algorithm also accounts for the presence of Ranvier nodes along the myelin sheath (figure . .e). The internodal distance d is set using equation . (maximal conduction relationship [Rushton b]). The width w R of each Ranvier node corresponds to a fraction α R of the internodal length d such that w R = α R .d, with α R typically equal to 10 -3 , as described in [Salzer a]. This fraction follows a Gamma distribution adding two further control parameters.

  White matter tissues are modeled using three tissue compartments embedding three types of micro-structural environments: intra-cellular, extra-cellular and cerebro-spinal fluid (CSF) compartments. A common assumption of effectively impermeable axonal walls is used ( [Assaf b], [Alexander b], [Zhang b]). Thus each compartment provides a separate normalized MR signal and no exchange between the populations of

Figure

  Figure.: a. Phantom generation for two populations (blue and green) with orientations u i b. Global angular dispersion is created by selecting randomly an axon among a given fiber and a point on this axon which will be the center of rotation of the fiber. The selection of the rotation center follows a Gaussian distribution with mean µ and variance σ. A perturbation vector g whose components follow a Gaussian distribution with a variance proportional to the target angular dispersion is added to the orientation vector u, resulting in a rotation around the selected fixed point and in a new orientation vector u . c. Local angular dispersion is induced by deforming each axon separately. A point on the axon (in red) and a direct trieder (u x , u y , u z ) are chosen randomly. u y defines the direction of the undulation deformation whose amplitude follows a Gaussian distribution with a variance depending on the number of points which are affected by the deformation around the central red point. d. Creation of the myelin sheath. Inside each cylinder of radius R tot , an inner cylinder of radius R = g.R tot (g is the g-ratio) is created which represents the axonal membrane, and the external cylinder represents the outer layer of myelin sheath. e. Creation of Ranvier nodes. The resolution of the fiber mesh around each Ranvier node is refined to better account for the exponential decay of the myelin thickness around the node. f. Beading generation. Both the axonal contour (inner mesh) and the myelin sheath (external mesh) are swollen with a sine function. The myelin sheath thickness is preserved since beading comes from the swelling of the axonal membrane due to injury.

  extra-axonal space with trapezoidal OGSE sequences In [Ginsburger ], a correction to the d ⊥ component of the extracellular diffusion tensor D ec which describes diffusion perpendicular to the fibers was proposed for cosine OGSE, making the diffusion transverse to the fiber bundle in the extra-axonal space d ⊥ dependent on the frequency of the OGSE sequence ω 0 :

Figure . :

 . Figure . : Power modulation spectra for trapezoidal cosine OGSE gradient waveforms at 64Hz for different number of half periods (or lobes), showing the influence of the number of lobes on the frequency selectivity.The theoretical peak frequency is denoted as f th . We observe that the difference between this theoretical peak and the actual frequency peak of the sequence decreases with increasing number of lobes. The actual frequency peak (not the theoretical one) of the OGSE sequences employed in this study is fed in our model for better precision.

Figure . :

 . Figure . : Illustration of the two simulation modalities available in DMS on an example mesh (figure a.) with intracellular volume fraction of . and 5°angular dispersion induced by undulation. In figure b. corresponding to a cross-section of figure a., random walkers for Monte-Carlo simulation of the diffusion process are placed only in the extra-axonal space, with impermeable membranes. The obtained signal thus stems exclusively from the extracellular space. In figure c., particles are initially placed in both intra-and extra-cellular compartments, with impermeable membranes. The diffusion process is thus simulated in both compartments, without exchange between them.

-

  a particle or random-walker model that represents water molecules moving in the simulation domain. Particles are randomly distributed either over the whole simulation domain, or only in the intra-or extra-cellular space. In this work, two types of simulations were performed, either with particles randomly distributed in the whole domain or restricted to the extra-cellular space (see figure . ), since the present study is focused on the characterization of the extracellular space signal for different levels of structural disorder. The trajectories of random walkers computed using the Monte-Carlo simulator engine are fed into the diffusion-weighted NMR signal synthesizer, which synthesizes a volume of DW-MRI signals for a given DW-MRI sequence and for a specific tuning of the sequence parameters. The DW-NMR signal synthesizer is also composed of several elements that have to be individually tuned: • a DW-NMR sequence factory that allows to simulate the chronograms of gradients and radio-frequency pulses; several schemes are available (bipolar double STEAM sequence, bipolar STEAM sequence, multiple PGSE sequence, single PGSE sequence, twice refocused spin echo sequence, OGSE sequence); in this work, a trapezoidal OGSE sequence was tuned (see figure . ), requiring to define the period of oscillating gradients (varying in this study), the gradient time resolution (10.0µs), the maximum gradient slew rate and the maximum gradient magnitude (respectively 200T /m/s and 80mT /m corresponding to the latest Connectome gradient coils available for T MRI systems on the market).• a Cartesian grid defined within the MC simulation domain using a local bounding box and the D volume size; in our case, to avoid boundary effects, the local bounding box was chosen slightly smaller than the global bounding box of the MC domain and set to(-55µm, +55µm, -55µm, +55µm, -55µm, +55µm). • a noise model to simulate the actual level of noise corrupting the signal of real acquisitions; the analysis of the impact of the noise on the signal of the extra-cellular space and on the inference of the structural white matter disorder has been done for four different values of SNR in this study : an infinite value corresponding to the absence of noise, a SNR of at b = 0 corresponding to state-of-the-art experimental conditions with the latest T clinical MRI systems available on the market, and SNR of and corresponding to worse experimental conditions. • a spin model associated to each random walker in charge of accumulating the net phase evolution induced by the trapezoidal OGSE sequence and seen by the random walker along its trajectory. Although they clearly influence the SNR when long echo times are chosen, the effects of T /T relaxation have not been taken into account by the spin model in the performed simulations. The synthesized DW-MR image consists of a D volume corresponding to the T 2 reference volume at b = 0s/mm 2 (set to 10000 in our case) and a D volume corresponding to the employed trapezoidal OGSE sequence along a set of uniformly distributed diffusion directions over the unit sphere ( directions in our case).

Figure . :

 . Figure . : Schematic representation of the employed trapezoidal cosine OGSE gradient waveform, here with six lobes (half-periods) before and after the degrees refocusing pulse. The separation between gradient waveforms, t sep , is required to accomodate the degrees RF pulse, and has been set to allow a continuous single frequency oscillating gradient to be drawn between the two waveforms to obtain a narrower peak at the desired frequency [Baron b]. The duration of the shorter lobes are increased by half the gradient ramp time, t ramp , to ensure zero cumulative gradient area.

Figure . :

 . Figure . : Values of the control parameters of the phantom generation algorithm for each studied configuration (C to C ). In configurations C to C , one or two parameters are varied: GAD for C , LAD for C , < R > for C , < BS > and σ BS for C . The parameter value in bold corresponds to the default value used to generate each configuration, which are employed in figure . to study the evolution of the scaling coefficient A for different types of structural disorder. Other values below correspond to variants of each configuration, which are employed in figure . to study the evolution of A with respect to the variation of one given geometrical parameter, associated to one specific disorder type.

  Figure . represents various configurations with one, two and three fiber populations and with or without global angular dispersion. Figure . .a represents a set of straight parallel fibers randomly placed in the phantom volume, with mean fiber diameter of 2.0µm (diameter variance of 0.2µm) and volume fraction of 0.1. In figure . .b, global angular dispersion is induced, enabling to reach 5.6°of angular dispersion (for a target value of 10°). The undulation induction (figure . .c) brings this angular dispersion up to the 10°t arget. Figure . .d-e illustrate the creation of myelin sheath and Ranvier nodes which account for the actual structure of myelinated fibers. Beading -consisting in a swelling of both axonal and myelin sheath membranes-is also handled (figure . .f). In all presented surface renderings, there is no collision between the membranes. Figure . .f presents a realistic geometry mimicking a complex white matter environment, taking into account all the putative deformations of membranes observed in real tissues (angular dispersion, undulation, myelination and creation of Ranvier nodes, beadings).

Figure . :

 . Figure . : Up. Surface renderings of outer fiber envelopes corresponding to one (left), two (middle) and three (right) fiber populations with intracellular fraction of .for one population, . each for the two populations, . each for the three populations and mean diameters . µm (one population), . and . µm (two populations), . , . and . µm (three populations). Down. Same as Up. with global angular dispersion of degrees for the single population, . and . degrees for the two populations, . , . and . degrees for the three populations (for a target angular dispersion of degrees each).

Monte-

  figuration which corresponds exactly to the D short-range disorder geometry described in [Novikov b, Burcaw b] . From C to C , the induction of global angular dis-

Figure

  Figure .: . Surface renderings corresponding to three fiber populations with mean diameters . , . and . µm respectively with intracellular volume fraction of . each. N is the number of populations in general (here N = 3). . Global angular dispersion is induced ( . , . and . degrees per population). . undulation is induced, enabling to reach degrees of angular dispersion for each population. . Creation of the myelin sheath. . Creation of Ranvier nodes with mean ratio between internodal length and node width. . Creation of beadings with . µm mean inter-beading length and beading magnitude ratios of . , . and . respectively.

Figure

  Figure . : Frequency-dependent perpendicular diffusivity in the extracellular space measured by performing Monte-Carlo simulations with diffusing particles in the extracellular space of configuration C (see table.), plotted against the frequency of the employed OGSE-CT sequence. A linear fit is also plotted which shows the linear dependence of diffusivity to frequency.

  It appears from figure . a-d. that the diffusion signal variation between configuration C and configurations C to C is stronger for diffusion sensitization directions perpendicular to fibers, meaning that most of the information stemming from the increasing complexity of the studied geometrical configurations is included in the evolution of perpendicular diffusivity. Figure . also clearly indicates that beading (corresponding to configuration C ) has the strongest effect on the perpendicular diffusivity. This result can be directly related to the important variations of A observed in configuration C , as reported previously.

Figure . :

 . Figure . : From left to right, simulation domains corresponding to different geometrical configurations (from C to C ) are shown. A D rendering of the root-mean-squared difference (represented by the minus sign) between the diffusion signal stemming from each configuration and the "reference" configuration C (most left configuration composed of straight parallel cylinders) is shown on a spherical surface. a. The RMS signal difference is computed between configuration C and C . The red area where the diffusion signal difference is the strongest corresponds to diffusion sensitization directions perpendicular to fibers. Blue areas correspond to directions parallel to fibers where the signal differences are weaker but not null, and originate from the variations of diffusion properties around those directions when structural disorder is added. Figure b., c. and d. represent the same RMS signal differences between configurations C and C , C and C R4 (corresponding to configuration C with a demyelination ratio of 25%, see table .), C and C respectively.

  Figure . : From left to right, simulation domains corresponding to different geometrical configurations (from C to C ) are shown. A D rendering of the root-mean-squared difference (represented by the minus sign) between the diffusion signal stemming from each configuration and the "reference" configuration C (most left configuration composed of straight parallel cylinders) is shown on a spherical surface. a. The RMS signal difference is computed between configuration C and C . The red area where the diffusion signal difference is the strongest corresponds to diffusion sensitization directions perpendicular to fibers. Blue areas correspond to directions parallel to fibers where the signal differences are weaker but not null, and originate from the variations of diffusion properties around those directions when structural disorder is added. Figure b., c. and d. represent the same RMS signal differences between configurations C and C , C and C R4 (corresponding to configuration C with a demyelination ratio of 25%, see table .), C and C respectively.

  .a ) from 9.09µm 2 to 8.43µm 2 for the biggest value of global angular dispersion of 4.5°. The diminution of A gets stronger for increasing values of global angular dispersion. However, the study of the influence of global angular dispersion on A was limited to small values of angular dispersion, owing to the fact that higher values of angular dispersion were not reachable for the specific fiber density and radii distribution of C . These values of angular dispersion are far from the values of microscopic misalignments of axons estimated up to 18°[Ronen b].

  Figure . :Value of the scaling coefficient A in m 2 for geometric configurations with increasing structural disorder. The simulation are performed in configurations C to C , whose design parameters are summarized in table . .
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 a Figure . : a. Value of the scaling coefficient A in m 2 plotted against the global angular dispersion. The simulations were performed in variants of configuration C by varying the global angular dispersion value (see table .). b. Value of the scaling coefficient A plotted against the angular dispersion. The simulations were performed in variants of configuration C by varying the local undulation value (see table .). c. Value of the scaling coefficient A plotted against the percentage of demyelination. The simulations were performed in variants of configuration C by varying the percentage of demyelination, directly related to the width of Ranvier nodes (see table .). d. Value of the scaling coefficient A plotted against the mean beading spacing. The simulations were performed in variants of configuration C by varying the value of the mean beading spacing (see table .). A bigger spacing yields to a lower beading density.

  Figure . : a. Value of the scaling coefficient A in m 2 plotted against the global angular dispersion. The simulations were performed in variants of configuration C by varying the global angular dispersion value (see table .). b. Value of the scaling coefficient A plotted against the angular dispersion. The simulations were performed in variants of configuration C by varying the local undulation value (see table .). c. Value of the scaling coefficient A plotted against the percentage of demyelination. The simulations were performed in variants of configuration C by varying the percentage of demyelination, directly related to the width of Ranvier nodes (see table .). d. Value of the scaling coefficient A plotted against the mean beading spacing. The simulations were performed in variants of configuration C by varying the value of the mean beading spacing (see table .). A bigger spacing yields to a lower beading density.

  Figure . : a. Value of the scaling coefficient A in m 2 plotted against the global angular dispersion. The simulations were performed in variants of configuration C by varying the global angular dispersion value (see table .). b. Value of the scaling coefficient A plotted against the angular dispersion. The simulations were performed in variants of configuration C by varying the local undulation value (see table .). c. Value of the scaling coefficient A plotted against the percentage of demyelination. The simulations were performed in variants of configuration C by varying the percentage of demyelination, directly related to the width of Ranvier nodes (see table .). d. Value of the scaling coefficient A plotted against the mean beading spacing. The simulations were performed in variants of configuration C by varying the value of the mean beading spacing (see table .). A bigger spacing yields to a lower beading density.

  Figure . : a. Value of the scaling coefficient A in m 2 plotted against the global angular dispersion. The simulations were performed in variants of configuration C by varying the global angular dispersion value (see table .). b. Value of the scaling coefficient A plotted against the angular dispersion. The simulations were performed in variants of configuration C by varying the local undulation value (see table .). c. Value of the scaling coefficient A plotted against the percentage of demyelination. The simulations were performed in variants of configuration C by varying the percentage of demyelination, directly related to the width of Ranvier nodes (see table .). d. Value of the scaling coefficient A plotted against the mean beading spacing. The simulations were performed in variants of configuration C by varying the value of the mean beading spacing (see table .). A bigger spacing yields to a lower beading density.

  cient. However, in [Budde b], simulations were run on numerical phantoms with an hexagonal packing of fibers and periodic restrictions along the fiber. The periodicity of the employed simulation domain might affect the realism of the obtained diffusion signal since it does not reflect the D short-range disorder along white matter fibers nor the D short-range disorder in the plane transverse to fibers [Novikov b, Burcaw b]. In our simulations, short-range disorder effects are expected to be accounted for, since the

  lar dispersive diffusivities with respect to the frequency of the employed OGSE sequence in the presence of beadings was observed. Moreover, results of MC molecular diffusion simulations in complex synthetic substrates mimicking the presence of beads showed a clear 1/ √ t dependence of the axial intracellular Apparent Diffusion Coefficient due to D short-range disorder introduced in the axial direction by the randomly placed beads, in good accordance with theoretical predictions in [Burcaw b] and in [Novikov b].

  figure . and . ) are strongly mitigated by noise. However, this analysis suggests that it is possible to reliably detect changes in perpendicular diffusivity and estimate the corresponding scaling coefficient A for a SNR greater or equal to (see again figure . , .and .). The algorithm employed to estimate the parameters of the model presented in this work is part of a framework which maximizes a Rician log-likelihood function using a robust Expectation Maximization algorithm. In the presence of noise in DW data, the use of such a framework enables to alleviate the fit error of the model parameters.

  affects diffusion along axons [Budde a,Novikov a]. It might thus be of interest to also study the parallel diffusivity and its frequency-dependence in the presence of beading, which has already been characterized theoretically and experimentally [Novikov a].

  ted, enabling to study the influence of different geometrical features on the linear-infrequency dependence of the extra-axonal perpendicular diffusivity, weighted by a scaling coefficient A.By performing Monte-Carlo simulations in the extracellular space of numerical phantoms with increasing geometrical complexity, it was observed that this scaling coefficient A is sensitive to the modification of geometrical properties of the diffusing medium, such as the introduction of global angular dispersion and undulation. The presence of Ranvier nodes and demyelinated areas along the axons in the numerical phantom did not seem to significantly change the fitted value of A and further simulations in both intra-and extra-axonal spaces taking into account the high level of exchange around unmyelinated areas have to be performed to possibly observe as stronger effect on the coefficient A.The introduction of beading in the numerical phantoms was by far the most impacting geometrical modification, with a strong deviation of the fitted scaling coefficient A from geometries without beaded structures. Future work will consist in studying the effect of multiple fibers populations on the estimation of the scaling coefficient A, since crossing configurations represent at least 60% of white matter regions. The effect of further geometrical characteristics on the structural disorder coefficient A, such as the presence of astrocytes and oligodendrocytes which could slow down the diffusion in the extra-axonal space, should also be considered by introducing those geometries in our numerical phantom generation algorithm. Further developments are also needed to be able to reach higher values of angular dispersion and beading at high and realistic intracellular volume fractions (> 0.7). This simulation study shows the importance of the generation of more realistic numerical phantoms in order to catch the complexity of the underlying diffusion biophysics.Analytical models such as the one employed in this study enable to assess the degree of realism needed to perform Monte-Carlo simulations reflecting the actual diffusion process in white matter without adding dispensable and computationally costly details in the phantoms geometry. This is a necessary step towards the construction of dictionaries of simulated biomimicking geometries to reciprocally decode white matter microstructure. This chapter showed the complexity of the diffusion signal in the extra-axonal space, and emphasized the influence of axonal microstructure parameters on the diffusion signal time-dependence. Instead of trying to model the extra-axonal signal analytically, another option consists in building computational models of the white matter diffusion signal. The next chapter thus presents simulation tools for diffusion MRI and discusses the possibility to construct a dictionary of white matter diffusion signals, taking advantage of the advent of High Performance Computing. Such a dictionary could be used to train a machine Chapter simulation tools in white matter . . . . . . . . . . . . . Brain tissue simulation . . . . . . . . . . . . . . . . . . . . Diffusion process simulation . . . . . . . . . . . . . . . . . . Synthesis of the dMRI signal . . . . . . . . . . . . . . . . . Learning the tissue-to-signal mappings . . . . . . . . . . . . . . . . . Analytical versus computational models . . . . . . . . . . . . . Machine learning for diffusion MRI: a revolution? . . . . . . . . Computational models of diffusion MRI: contributions . . . . . . . . . . Phantom creation . . . . . . . . . . . . . . . . . . . . . . Monte-Carlo simulation and signal synthesis. . . . . . . . . . T his chapter is dedicated to the presentation of state-of-the art techniques for the simulation of the diffusion MRI signal in realistic numerical phantoms. Machine learning tools used to learn the mapping between the signal and the underlying microstructural properties of the employed phantoms are also introduced. Taking both a scientific and technical standpoint, this chapter discusses the shortcomings of current approaches, the modelling framework needed to meet the challenges of diffusion MRI microstructure, andthe available computing techniques that can be used for novel computational approaches of microstructural modelling.

  In the particular field of brain microstructure, a plethora of tools have been proposed to construct numerical phantoms of gray and white matter [Fiereemphasized in chapters and , a proper modelling of the diffusion process in the extra-axonal space is essential to obtain a realistic diffusion signal. Indeed, it has been established both theoretically and experimentally that the random packing of axons in their transverse plane plays a crucial role in the time-dependence of the diffusion coefficient in white matter [Burcaw c] (see again chapters and ). Thus, simulators that represent white matter as an arrangement of regularly packed parallel cylinfail to capture the complexity of the diffusion process in white matter.Numerous frameworks have been proposed to obtain numerical phantoms mimicking axonal random packing (see figure.proposed methods sum up to D circle packing algorithms, with circles of different diameters drawn from a given distribution (for instance a Gamma distribution).

  be introduced: the AxonPacking simulator [Mingasson a] for instance, performsdimensional random disks packing to generate white matter substrates, thus not enabling to model -dimensional effects such as local and global angular dispersion of axons, as well as axonal swelling or beading. The CAMINO simulator [Hall b] enables the construction of white matter phantoms including regularly-packed cylinders, crossing cylinders, irregularly-packed cylinders with distributed radii and mesh substrates. The generation of geometries from scratch (i.e. without any histological input) is thus limited to straight cylinders, with at most two fiber populations, which is not sufficient to fully represent the complexity of white matter. The Diffusion Microscopist Simulator [Yeh b] (DMS) has recently been improved in the frame of this thesis (see chapter ) and includes, besides all the tools provided by CAMINO, the possibility to model any number of fiber populations, add global angular dispersion, tortuosity and beading to axons as well as myelin and Ranvier nodes [Ginsburger a].

Figure . :

 . Figure . : Examples of two-dimensional (top) and three-dimensional (bottom) packing methods developed to create white matter numerical phantoms with increasing degree of realism. Figures adapted from [Balls a, Hall b, Fieremans b, Harkins a, Budde a, Ginsburger a] .

Figure . :

 . Figure . : Illustration of the three types of particle-membrane interactions for Monte-Carlo simulations of the diffusion process. A is the starting point, B is the ending point, B is the supposed ending point without barrier, and C is the point of contact with barrier. a. Elastic boundary reflection: the length of the reflected step is the sum of AC and CB, which is equal to AB . b. Non-elastic boundary reflection: CB returns back to the original side along a random direction. The sum of AC and CB is also equal to AB . c. Non-crossing random leap: AB is sampled randomly to replace AB , and AB should not cross the barrier. Image from [Xing ].

  the trajectory of particles that stayed in a central sub-volume of the phantom[Cook , Yeh b]. Such a strategy is however only viable for short diffusion times where a majority of the particles have stayed in the central sub-volume, and requires the creation of bigger phantoms which can also be computationally demanding.Other choices must be made when performing a dMRI Monte-Carlo simulation. The number of particles must be large enough to avoid bias and variance of the simulated signal [Hall b, Xing , Hall a], but too large a number might result in a computational burden. This number is usually empirically set, depending on the exper-iment, and can be roughly situated in the range of 10 5 -10 6 particles. Similarly, the size of the phantom, and thereby the number of axonal fibers inside the phantom, has a strong influence on the simulated diffusion signal: it was reported in [Hall a] that at least 10 3 fibers must be used in each phantom to reduce the bias below 1%. Finally, axonal membranes can be assumed to be permeable or absorbing, resulting in more complex implementations requiring, in the case of permeability, to adjust the step size in order to maintain the particle-density balance between intra-and extra-axonal comparttechnical standpoint, since at least 10 5 particles are usually involved in a simulation, it is essential to alleviate the computational workload by recurring to smarter and more easily parallelizable simulation algorithms. To this end, the use of look-up tables [Hall a, Yeh b], enabling to reduce the number of collision checks of each particle to neighboring membranes, is essential. Monte-Carlo simulations of the diffusion process also have two main computational advantages: the particles do not interact with each other, and the simulation of each particle trajectory can be made very simple, notably using alternative particle-membrane interactions such as non-crossing random leap[Xing ]. Considering these two points, the parallelization of Monte-Carlo simulations requires a lot of threads (one for each particle), and each thread can have limited computational power: this is almost the definition of a Graphical Processing Unit (GPU) which is therefore an ideal candidate for the hardware part. However, keeping in mind the aim of large scale simulations of the diffusion process to construct a dictionary of all possible white matter diffusion signals, one must take into account the fact that current HPC centers are mostly equipped with CPUs. This is why the Kokkos framework [Carter Edwards ], or other similar frameworks such as OpenCL[Stone ], are particularly well suited for the implementation of Monte-Carlo simulation codes, since they enable to run the code almost optimally on both CPU and GPU based computational facilities.

  transmission probability for the particle to pass through the membrane [exchange can happen on the whole membrane surface or at selected areas such as the Ranvier nodes for axons[Nilsson ].

  signal are ) the necessary over-simplification of the tissue representation to simple glyphs such as cylinders and spheres, in which the solution of the diffusion equation is known and ) the parameter estimation, which is generally prone to local minima. Moreover, one could add that while a lot of progress has been made to model the complex diffusion process in the extra-axonal space, notably accounting for the time-dependence of at intermediate diffusion times which are neither in the short-time or long-time regime nor in the tortuosity limit, is generally unknown. Moreover, even in the long-time regime where a lot of theoretical advances have been made, a proper model for the scaling prefactor of time-dependent terms in the extra-axonal diffusion coefficient (see chapter ), is missing.

Figure . :

 . Figure . : Illustration of the principle of important machine learning algorithms for supervised learning of tabular data, which can be used for diffusion MRI microstructure computational models.

  Linear models are very restrictive, which can weaken their predictive performance due to an oversimplification of the problem. Moreover, the interpretation of the weights is sometimes unintuitive because it depends on all other features. A feature with high positive correlation with the outcome y and another feature might get a negative weight in the linear model, because, given the other correlated feature, it is negatively correlated with y in the high-dimensional space[Molnar ].Decision treesLinear regression models fail in situations where the relationship between features and outcome is nonlinear or where features interact with each other. Tree based models split the data multiple times according to certain cutoff values in the features. Through splitting, different subsets of the dataset are created, with each instance belonging to one subset. The final subsets are called terminal or leaf nodes and the intermediate subsets are called internal nodes or split nodes. To predict the outcome in each leaf node, the average outcome of the training data in this node is used [Molnar ].

  ) and four types of IT hardware, showing that the Kokkos framework is well suited for Monte-Carlo simulations. It has almost the same performances as CUDA on GPUs while keeping very correct performances on CPUs.

Figure . :

 . Figure.: Overview of the developed simulation code structure showing that the diffusion simulation pipeline can be used in one go, thus avoiding to read and write intermediate files such as numerical phantom structure of particle trajectories to disk, or each module can be used separately. If the particle trajectories are not stored, the accumulated phase of each particle is computed at each step of the Monte-Carlo simulation. This leads to a considerable computational gain since reading/writing particle trajectories is computationally expensive.

Figure . :

 . Figure . : Benchmark of the diffusion simulation code for various implementations and various hardware. A typical white matter phantom built with the MEDUSA phantom creator was employed, with a packing density of axons of 0.7 and a mean diameter of 1.0µm. 10 5 particles were placed in the simulation domain, a diffusion time of 200ms was used with equal time steps of 1.0µs.
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  b] performs -dimensional random disks packing to generate white matter substrates, thus not enabling to model -dimensional effects such as local and global angular dispersion of axons, as well as axonal swelling or beading. The CAM-INO simulator [Hall a] enables the construction of white matter phantoms including regularly-packed cylinders, crossing cylinders, irregularly-packed cylinders with distributed radii and mesh substrates. The generation of geometries from scratch (i.e. without any histological input) is thus limited to straight cylinders, with at most two fiber populations, which is not sufficient to fully represent the complexity of white matter. The Diffusion Microscopist Simulator [Yeh a] (DMS) has recently been improved (see chapter ) and includes, besides all the tools provided by CAMINO, the possibility to model any number of fiber populations, add global angular dispersion, tortuosity and beading to axons as well as myelin and Ranvier nodes [Ginsburger b]. However, the generative model employed in DMS, which is similar to CAMINO, is mainly based on the representation of axonal fibers as cylinders, which considerably limits the values of angular dispersion and packing densities that can be achieved with this type of algorithm. Moreover, neither CAMINO nor DMS have yet provided a tool to create synthetic glial cells, such as oligodendrocytes and astrocytes, which are prevalent in white matter and might thus have an important impact on the observed diffusion-weighted MRI signal [Marco ]. Several frameworks have also been proposed in recent years to create gray matter phantoms [Van Nguyen , Cuntz a]. What seems to be an extension to CAM-INO for gray matter has recently been presented and seems a most promising tool to generate different types of neural cells, using a reduced set of geometrical parameters [Palombo a]

  Axonal fibers are the principal component of white matter. In a typical imaging voxel, complex configurations of fibers due to the presence of several heterogeneous populations are likely to happen. Several studies in the field of diffusion MRI have reported a percentage of around 60 percent of voxels containing crossing, kissing or splitting fibers at the conventional millimeter resolution of diffusion MRI data [Behrens b]. Each fiber population is composed of myelinated or unmyelinated axons, which diameter distribution can be represented by a Gamma function whose shape and scale parameters can vary from one population to another [Assaf b, Alexander b]. Other more realistic axonal diameter distributions can also be used, such as the lognormal or generalized extreme value distributions [Sepehrband b]. Myelinated axons are regularly interrupted by Ranvier nodes along the axon main direction [Salzer a]; the internode distance d has been extensively studied in [Rushton b]

Figure . :

 . Figure . : List of control parameters used to generate populations of axonal fibers in the phantom generation algorithm.

Figure . :

 . Figure . : Illustration of the axon creation procedure. The shown parameters correspond to table . .

  Figure . :Illustration of the induction of tortuosity within axonal fibers. A Gaussian deformation is applied at a randomly selected sphere, in a random direction orthogonal to the main fiber orientation.

Figure . :

 . Figure . : Illustration of the induction of beading within axonal fibers. Fiber spheres are swollen according to a sinusoidal or bell-shaped function to locally increase axonal diameter.

  Figure . : Illustration of the creation of a myelin sheath and Ranvier nodes on axonal fibers.The spheres from inner axonal membrane (in red) are created after the collision solver. Their diameter is computed using the g-ratio and the outer axonal diameter.

Figure . :

 . Figure . : List of control parameters used to generate populations of astrocytes in the phantom generation algorithm.

  scheme . , the basic idea relies on the construction of a minimum spanning tree (MST) from a set of points in D. The distance cost function used to compute the MST is composed of two components, weighted by a balancing factor b f : the wiring cost, corresponding to the Euclidean distance between nodes of the tree, and the conduction cost, corresponding to the path length from the astrocyte body to each given node. A balancing factor b f = 1 leads to a completely stellate structure, and a progressive diminution of b f

Figure . :

 . Figure . : Illustration of the astrocyte creation procedure. The scheme shows that each astrocyte is created from a random point cloud. Euclidean minimum spanning trees created at different values of the balancing factor are shown, ranging from perfect minimum spanning trees to almost direct connections to the root node. The function used to model processes diameter is also shown here in D.

Figure . :

 . Figure . : List of control parameters used to generate populations of oligodendrocytes in the phantom generation algorithm.

Figure . :

 . Figure . : Illustration of the oligodendrocyte creation procedure. Each oligodendrocyte searches candidate outer axonal membrane spheres within a search area, and connects to one of these. The connection algorithm employs a look-up table to make the search procedure efficient.

  Let us consider that, in the first step of the phantom generation framework, a set of microstructural items I has been created, according to a set of geometrical parameters provided by the user. Those items belong to one or several cell populations, such as axonal fibers, astrocytes or oligodendrocytes. Each microstructural item i ∈ I is made of overlapping spheres and since the collision solver has not yet been . . Methods used, there exists some overlapping between spheres of different items, which should be removed.

Figure . :

 . Figure . : Evolution of the total repulsion forces (a.u.) during the packing process for an example configuration with a single axonal fiber population with mean diameter 2.0µm and volume fraction 0.7, with and without the regularization procedure.

Figure . :

 . Figure . : Astrocytes generated with the MEDUSA framework at values of the balancing factor (BF) are shown. An example astrocyte skeleton (before the application of tortuosity to the processes) illustrating the concept of nodal spheres is also shown. Each branch of an astrocyte process corresponds to a green segment between two nodal spheres.

Figure . :Fibers

 . Figure . : Example phantoms containing , and fiber populations at volume fractions of 0.1, 0.4 and 0.7. A mean diameter of 2.0µm was employed for each population. The voxel size is 100µm 3 .

  Figure . : Axonal fibers ( population) generated with the MEDUSA framework with different microstructural details (see table .). A mean diameter of 2.0µm was employed and the voxel size is 100µm 3 .

Figure . :

 . Figure . : Realistic scene generated with the MEDUSA framework with astrocytes and fibers. For illustration purposes, a small volume fraction of 0.3 was employed and 200 astrocytes were generated. A mean diameter of 2.0µm was used for axonal fibers, and the voxel size is 100µm 3 .

Figure . :

 . Figure .: Realistic scene generated with the MEDUSA framework with astrocytes (in green), oligodendrocytes (in purple) and fibers. For illustration purposes, a small volume fraction of 0.3 was employed and 200 astrocytes and oligodendrocytes were generated. A mean diameter of 2.0µm was used for axonal fibers, and the voxel size is 100µm 3 .

Figure . :

 . Figure . : Maximum achieved volume fraction (or packing density) as a function of the global angular dispersion, for , and fiber populations with the same geometrical properties. The theoretical limit corresponds to the case of random packing of D discs [Altendorf ].

  Figure . shows the computation time in log scale as a function of both the number of spheres inside the scene and the volume fraction. The measures were made using a C++/CUDA implementation of MEDUSA run on a NVidia DGX station. An approximate linear dependence is observed for both cases, illustrating the fact that the computation time grows exponentially with the volume fraction and the number of spheres inside the generated scene.

  Figure . : Computation time of an example packing containing fibers, astrocytes and oligodendrocytes (volume fraction of . ) in seconds, as a function of the number of spheres (a) and the achieved volume fraction (b), with or without using the smoothing of objects between each application of the repulsion forces.

  tions fail to accurately describe the main characteristics of the axon diameter distribution [Sepehrband b], and the peak of axonal diameter distributions in the human brain is located below 1.0µm [Caminiti ]. Moreover, the standard Watson distributions are employed to model the global angular dispersion of axons. The Watson distribution is used for the sake of simplicity, but assumes an axially symmetric distribution of axons which is not realistic even in the corpus callosum [Schilling ]. Nevertheless, MEDUSA is a modular framework, and the choice of these distributions is interchangeable with other more realistic distributions to model white matter axon configurations. It has been found in [Sepehrband b] that the generalized extreme value distribution, which has one additional unknown parameter with respect to the Gamma distribution, consistently fitted the measured distribution of axonal diameters from white matter electron microscopy images better than other distribution functions. It was also shown that, while having the same number of unknown parameters, the lognormal and inverse Gaussian distributions outperformed the Gamma distribution. Figure . .a shows numerical phantoms with mean axonal diameter of 0.4µm generated with MEDUSA using these various distributions, illustrating the versatility of MEDUSA regarding the choice of an axonal diameter distribution. In the same vein, the existence of complex fibre configurations, such as fanning and bending axons, gives rise to anisotropic orientation dispersion. Fanning and bending fibres have been shown to be widespread in brain histology data [for MEDUSA to be able to draw axon orientations from a distribution enabling the characterisation of anisotropic orientation dispersion. The well-known Bingham distribution [Bingham ] has been used in previous work to model and quantify anisotropic orientation dispersion [Tariq b]. However, the MEDUSA framework requires to draw the orientation of each fiber from the chosen angular dispersion distribution. Obtaining random samples from the Bingham distribution and, more generally, from distributions of the Fisher-Bingham family, requires the use of acceptance-rejection methods [Kent ], which can be computationally expensive [Paine ] and difficult to implement. An alternative to the Bingham distribution is the angular central Gaussian distribution, which has the additional advantages of being simple and fast to simulate from [

Figure

  Figure . : a.Example MEDUSA phantoms with mean axonal diameter of 0.4µm, packing density of 0.5, using various axonal diameter distributions in a voxel of 20µm 3 . b. MEDUSA phantoms at various levels of orientation dispersion anisotropy, constructed using the elliptically symmetric angular gaussian distribution (ESAG) to draw axon orientations. The mean direction of the axon population is given by µ/||µ|| and the norm of µ is a measure of the orientation dispersion around this direction. The anisotropy along each of the symmetry axes is quantified by the vector γ, thus enabling a straightforward control of the distribution shape.

  Figure . .b shows numerical phantoms constructed using the ESAG distribution with different levels of dispersion and directional anisotropy, illustrating the ability of ME-DUSA to model anisotropic orientation dispersion of axons in an efficient and user-friendly way.

  Controlling cell morphologies MEDUSA represents a novel tool to perform groundtruth controlled studies of brain white matter tissues and thus better understand the particular effect of different geometrical properties of the white matter tissues (beading of axons, presence of astrocytes and oligodendrocytes) on the observed diffusion MRI signal using Monte-Carlo simulations of the diffusion process [Hall a, Yeh a].The synthesis of diffusion MRI signals from the generated geometries can also be used to assess the validity of white matter multicompartment models [Zhang bwhen introducing finer degrees of structural complexity in the phantoms, such as the tortuosity of axons, which is not accounted for in current analytical models.The fact that the MEDUSA framework enables the fast creation of a realistic tissue, with a reduced set of parameters giving a full control over the geometrical properties of the generated tissue, paves the way to the construction of a dictionary of white matter geometrical configurations. Such a dictionary would include millions of geometries representing all possible white matter geometrical configurations over a wide range of realistic parameter values. Computing the diffusion MRI signal associated to each of these geometries using Monte-Carlo simulations would enable to use machine learning techniques to model the relationship between the measured diffusion MRI signal and the underlying tissue properties, thus creating a DW-NMR signature of corresponding microstructural features.

  In the presence of global angular dispersion and multiple fiber populations, the MEDUSA framework enables to reach much higher values of fiber packing densities than previous frameworks such as the latest version of DMS [Ginsburger b].

Figure . :

 . Figure . : Approximation error of the volume fraction due to the spherical meshing technique as a function of the sphere spacing.

  Figures . and . show the volume fraction approximation errorV C -V S V C computedboth as a function of the sphere spacing d at fixed values of R = 1.0µm and N = 100, and as a function of sphere radius R with d = 10% (in units of R) and N = 100.

Figure . :

 . Figure . : Approximation error of the volume fraction due to the spherical meshing technique as a function of the sphere radius, at a fixed sphere spacing equal to 10% of the sphere radius.

  Due to their high degree of realism, the virtual tissues generated with MEDUSA could also be used to simulate light microscopic measurements, such as D Polarized Light Imaging ( D-PLI) [Axer a, Axer b, Larsen , Zilles ]. D-PLI is a technique for analyzing the fiber architecture of myelinated axons in unstained histological brain sections at the micrometer level. The regularly arranged lipids in the myelin sheaths induce optical birefringence, which allows to extract the local orientation of myelinated axons similar to diffusion MRI but at much higher resolution. Simulations of D-PLI measurements [Dohmen , Menzel b] require tissue phantoms that define the local optical properties, i.e. the local optic axis [Dohmen , Menzel b] or refractive indices [Dohmen , Menzel a] which can easily be assigned to the different neuronal components (e.g. axon, myelin, extracellular space)

  . The employed algorithm to generate such cells is similar to the one used to construct astrocytes, based on the computation of a minimum spanning tree as explained earlier.The adaptation of MEDUSA to more complex neural cell shapes, such as Purkinje or pyramidal cells, only necessitates to modify the algorithm creating the node points from which the minimum spanning tree is computed, using for instance a preliminar tree generation algorithm as described in [Palombo a]. The ability of MEDUSA to generate astrocytes with controlled geometrical properties could also be used to model activated gray matter astrocytes (due to plasticity for instance) whose shapes are modified during activation, with an observed increase in the number of processes and in their perimeter and volume [Theodosis , Blumenfeld-Katzir ].

Figure . :

 . Figure . : Example phantom containing stellate neural cells at a volume fraction of 0.32, showing the potential application of the MEDUSA framework to gray matter phantom generation.

Figure . :

 . Figure . : Example of numerical phantoms simulated at different values of intra-axonal fractions and beading amplitudes.A small voxel size was used for illustration purposes. In the tissues used for simulations, the voxel size was varied to keep fibers per voxel at all employed mean diameters and intra-axonal fractions, in order to ensure a low variance of the synthesized signal. The employed MEDUSA GPU-based phantom generator enables to construct realistic phantoms with fully controlled geometrical properties. It decomposes each axonal fiber as a set of overlapping spheres and applies repulsion forces between spheres of different fibers to remove sphere overlaps and thus avoid collisions.

  study was performed to study the influence of each microstructure parameter of interest on the observed OGSE and PGSE signals independently. Beading amplitude was varied in the range [1.0, 1.9] with constant steps of 0.1, axonal diameter was varied in the range [1.0µm, 3.0µm] with constant steps of 0.25µm and axonal volume fraction was varied in the range [0.4, 0.7] with constant steps of 0.025. For each of these simulations, the apparent diffusion coefficient (ADC), parallel and perpendicular diffusivities (λ and λ ⊥ ) were computed. Additionnally, for OGSE signals, the slope of these quantities with respect to the OGSE frequency was computed. Since the frequencydependence of ADC, FA parallel and perpendicular diffusivities appeared almost linear in[Aggarwal ], in the range of frequency 50 -150Hz which is close to the one employed in this article, a linear regression was performed using least squares fittings and
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 . Figure . : Trapezoidal OGSE sequences employed in this study. The list of associated parameters is given in table ..

Figure

  Figure . : PGSE sequences employed in this study. The list of associated parameters is given in table ..

  Figure . gives a schematic overview of the strategy employed for the regression procedure. At each step of the cross-validation, ExtraTrees are trained on a fraction of the feature vectors. The remaining feature vectors are used for testing, which gives an estimation of the regressor performance by directly comparing the estimations to the known ground truth values.

  plots comparing the ground truth values for each phantom against the predicted values from the ExtraTrees regressor are used. Those scatter plots are computed for each of the estimated variables. The scatter plots are colour-coded with colour bars showing the absolute difference between predicted and actual values of the estimated variable.

Figure . :

 . Figure . : Strategy of the employed regression procedure (f = intra-axonal fraction, d = diameter, D AX = axial diffusivity, D RAD = radial diffusivity), using OGSE and/or PGSE features. The 75Hz legend corresponds to an OGSE sequence at 75Hz frequency, while the (500, 20) legend corresponds to a PGSE sequence with a b-value of 500s/mm 2 and an effective diffusion time ∆ ef f of 20ms. A -fold cross-validation prevents bias due to the choice of training data.

  Figure . :D representations of the synthesized DW OGSE signal attenuations in the plane perpendicular to the mean axon direction at two different values of beading amplitude ( . and . ) for each employed OGSE frequency, all other tissue parameters being equal (mean diameter of 1.0µm , intra-axonal fraction . ). The grey circular grids correspond to normalized signal attenuations between . and . . The observed asymmetry of the glyphs is due to the presence of degree tortuosity in the simulated axonal tissues.

Figures

  Figures . , . and . respectively show the influence of the beading amplitude, axonal diameter and intra-cellular fraction on the apparent diffusion coefficient (ADC), the fractional anisotropy (FA), and the parallel and perpendicular diffusivities (λ and λ ⊥ ) for the employed OGSE frequencies. The slope of these features with respect to the OGSE frequency are also shown. Figure.shows the influence of the microstructure parameters on ADC, FA, λ and λ ⊥ for the employed PGSE sequences.

Figure . :

 . Figure . : Left: Values of ADC, FA, parallel and perpendicular diffusivities as a function of beading amplitude, for OGSE sequences at various frequencies ranging from 75Hz to 200Hz. Third order polynomial fits are performed for each metric. Right: Slope of ADC, FA, parallel and perpendicular diffusivities with respect to OGSE frequencies, as a function of beading amplitude.

Figure . :

 . Figure . : Left: Values of ADC, FA, parallel and perpendicular diffusivities as a function of axonal diameter, for OGSE sequences at various frequencies ranging from 75Hz to 200Hz. Right: Slope of ADC, FA, parallel and perpendicular diffusivities with respect to OGSE frequencies, as a function of axonal diameter.
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 . Figure . : Left: Values of ADC, FA, parallel and perpendicular diffusivities as a function of axonal volume fraction, for OGSE sequences at various frequencies ranging from 75Hz to 200Hz. Right: Slope of ADC, FA, parallel and perpendicular diffusivities with respect to OGSE frequencies, as a function of axonal volume fraction (VF).

Figure . :

 . Figure . : Values of ADC, FA, parallel and perpendicular diffusivities as a function of beading amplitude (left), axonal diameter (middle) and axonal volume fraction (right), for the employed PGSE sequences.

Figure

  Figure . demonstrates that the OGSE signals are sensitive to variations of beading amplitude, particularly at high frequencies (> 150Hz). These observations are supported by the importance measure plot given in figure . which shows that the top-four features used to perform regression from OGSE data are the parallel diffusivities at 175Hz, 150Hz,

Figure . :

 . Figure . : Scatter plots comparing the ground truth values of intra-axonal fraction, diameter and beading amplitude of the simulated tissues against predictions from the ExtraTrees regressor, using only OGSE features(top), PGSE features (middle), or full OGSE + PGSE features (bottom) to perform predictions, with SNR= .

Figure . :

 . Figure . : Scatter plots comparing the ground truth values of intra-axonal fraction, diameter and beading amplitude of the simulated tissues against predictions from the ExtraTrees regressor, using a reduced combination of features from OGSE + PGSE measurements to perform predictions, with SNR= .

Figure . :

 . Figure . : Feature importances for the regression of beading amplitude, diameter and intraaxonal fraction using OGSE, PGSE and full OGSE + PGSE features to perform the regression. λ par and λ perp correspond to parallel and perpendicular diffusivities. The features with values inside parentheses correspond to PGSE features. The first value inside the parentheses corresponds to the b-value, the second to the effective diffusion time:, for instance ADC(500, 20) corresponds to a PGSE-derived ADC with a b-value of 500s/mm 2 and effective diffusion time ∆ ef f = 20ms.

  Similar to beading, figures . , . and . clearly indicate a sensitivity of both OGSE and PGSE features to diameter and axonal volume fraction. The influence of diameter is particularly interesting: while PGSE-derived ADC and perpendicular diffusivities tend to be rather flat between 1.0 and 2.0µm (see figure . top and bottom, middle plots), the same OGSE-derived features and their corresponding slopes are strongly varying for the same diameter values (see figure . top and bottom, left plots). The exact opposite effect can be observed at diameter values between 2.0 and 3.0µm, illustrating the complementarity of OGSE and PGSE derived features to estimate axonal diameter, which is also shown in figures . and . where regression scores are improved when combining OGSE and PGSE features. The behavior of the PGSE-derived fractional anisotropy with respect to axonal diameter is also quite interesting, since it shows a clear sensitivity of FA to small diameter values which might explain the fact that PGSE-derived FA are amongst the top features used for axonal diameter regression, as shown in figure . . Regarding intra-axonal fraction, a decrease of ADC, parallel and perpendicular diffusivities and

Figure

  Figure . : Parameter space of the full white matter dictionary.

Figure . :

 . Figure . : Maximum packing density attainable by MEDUSA as a function of global angular dispersion, for , and fiber populations in the simulated voxel.

Figure . :

 . Figure . : Simplified grey matter phantoms with spherical neural cell soma in dark blue, tangential and radial axons in green and red, and isotropically oriented dendrites in yellow. The constructed phantoms are shown beside a Nissl stain of the visual cortex from [Schmolesky ]. Six different samples with distinct soma densities and diameter distributions are aligned vertically to show the possibility to mimick cortical layers.
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Mesoscopic organization of neural fibers About

  

	Figure . : Probability density functions of several distributions are used to model empir-
	ical axon diameter distribution data measured from electron microscopy in the mouse corpus
	callosum. Adapted from [Sepehrband	a].
				percents of the white matter
	volume is composed of axons [Nilsson ,Perge	]. In adults, the myelin sheath occupies
	approximately -percents of the white matter volume [Mottershead	,Perge	,
	Stikov	]. Thus, if the volume of the myelin sheaths is counted, nerve fibers occupy
	percents of the white matter volume, with	to	percents of myelinated nerve
	fibers [Biedenbach	, Liewald	].
	Nerve fiber populations are grouped into bundles. In a typical imaging voxel, complex
	configurations of bundles due to the presence of several heterogeneous fiber populations are
	likely to happen. For instance, several studies in the field of diffusion MRI have reported
	a percentage of around 60 percents of voxels containing crossing, kissing or splitting fibers
	at the conventional millimeter resolution of diffusion MRI data [Behrens	a].
	Each fiber population is composed of myelinated or unmyelinated axons, which dia-
	meter distribution can be represented by various distributions such as the log-normal
	or generalized extreme value distributions [Sepehrband	a] according to histological
	observations, as shown in figure . .
	Fiber inner diameters are reported to range from 0.16µm to 9.0µm in the human
	brain [Aboitiz	, Liewald	], with a large majority of axons with average diameter
	values below 1.0µm.
	along the axon; several studies have assumed this absence of variation whereas other
	studies tend to indicate a variation of the axon diameter [Lee	a,Abdollahzadeh	];
	in particular, it is known that membrane injury can induce axonal beading for instance
	due to cytoskeletal damage [Budde	a].

Diffusion MRI: from spin motion to brain architecture exploration Chapter Outline

  

	NMR imaging, or MRI. For this, they shared the Nobel Prize in Medicine and Physiology
	in	. Spatial encoding is the subject of section . . .
		8 8 8 . Physical principles of MRI. . . . . . . . . . . . . . . . . . . . . . Magnetization. . . . . . . . . . . . . . . . . . . . . . . . Excitation and Relaxation . . . . . . . . . . . . . . . . . . . MR image formation . . . . . . . . . . . . . . . . . . . . Diffusion MRI . . . . . . . . . . . . . . . . . . . . . . . . . . Theory . . . . . . . . . . . . . . . . . . . . . . . . . . Modelling . . . . . . . . . . . . . . . . . . . . . . . 8 8 Chapter his chapter is two-fold: first, an overview of the essential physical principles behind T MRI, as well as the basic acquisition sequences and image generation mechanisms are
		presented; second, diffusion-weighted MRI, the core subject of this thesis, is tackled: the
		basics of diffusion MRI as well as state-of-the art approaches that use diffusion MRI for
		human brain structural connectome and microstructure inference are covered.
		.	Physical principles of MRI
		The Nuclear Magnetic Resonance (NMR) phenomenon at the origin of MRI was first
		described in	by Isidor Isaac Rabi [Rabi	], who won the Nobel Prize in Physics in
			. The works of Felix Bloch [Bloch	] and Edward Mills Purcell [Purcell	] were
		then jointly awarded the Nobel Prize in Physics in	for the expansion of the technique
		on liquids and solids. The principles described by these scientists are briefly explained in
		sections . . and . . .
			Three decades later, the works of Paul Lauterbur [Lauterbur	] and Sir Peter
		Mansfield [Mansfield	] allowed to encode the NMR signal spatially, thus enabling

  Analytical expressions ofB n and λ n can only be derived analytically for simple geometries such as parallel planes,

	cylinders and spheres [Neuman	a, Stepisnik	].	
	Multiple Correlation Function (MCF) The Multiple Correlation Function (MCF)
	approach was developed by Grebenkov [Grebenkov	] to compute the diffusion-weighted
	signals for piecewise constant gradients in restricted geometries, similar to prior matrix
	formalism methods [Callaghan	, Drobnjak	b, Codd	, Drobnjak	a, Drobn-
	jak	] which are not covered in this thesis.		

  the CHARMED model, which estimates the axonal fiber orientations, parallel intra-axonal diffusivity, extracellular diffusivity and volume fractions.

	The CHARMED model laid the foundation of two major microstructure estimation
	frameworks: AxCaliber [Assaf	a] and ActiveAx [Alexander	], which both aim to
	estimate the diameter of axons.		
	AxCaliber AxCaliber [Assaf	a] is an extension of the CHARMED model which
	assumes a known fiber direction and aims to estimate the distribution of axon diameters.
	Based on the histological work of Aboitiz [Aboitiz	], it assumes that axon diameters
	follow a Gamma distribution. The AxCaliber framework is well suited to the estimation of
	axon diameter in sciatic and optic nerves, but is not appropriate for clinical applications
	since it requires many measurements perpendicular to the studied bundle and assumes
	prior knowledge of fiber orientation [Assaf	a].
	ActiveAx ActiveAx [Alexander	,Alexander	a] was developed to overcome the

The Composite Hindered and Restricted model of diffusion (CHARMED) is a two-compartment model of white matter, which introduced a more realistic representation of the intra-axonal space [Assaf a]. Unlike the Ball and Stick model, it represents axons as a distribution of packed parallel and impermeable cylinders (with one or two populations of fibers). The extra-axonal space is modelled by hindered Gaussian diffusion (see figure . ). The distribution of axon diameters and perpendicular intra-axonal diffusivity are fixed in limitations of the AxCaliber framework, in order to make the estimation of axon diameter feasible in a clinical routine. It uses rotationally invariant dMRI acquisitions, enabling to infer the fiber orientation. Additionally, the tissue model is simplified: instead of using a Gamma distribution to model axon diameters, a single diameter value corresponding to the mean volume-weighted diameter of the distribution -called axon diameter index-is used.

  the normal and globally ischemic rat brain. The analysis was extended to a frequency dependent tensor by Aggarwal et al. [Aggarwal ], who investigated in particular the frequency dependence of parallel and perpendicular diffusivities in normal and demyelinated rat brain tissues and showed different frequency dependences in Stimulated echo acquisition mode (STEAM)-DTI has also proven useful to observe in vivo time dependence in human brains. A pronounced in vivo time dependence in the longitudinal diffusivity and less pronounced time dependence in the transverse dif-

	various parts of the brain. Portnoy et al. [Portnoy	a] employed both OGSE and
	PGSE sequences over extended b-value ranges to characterize tissue microstructure, and
	observed a linear-in-frequency dispersion in the plane transverse to fibers. Baron and
	Beaulieu [Baron	a] found that eight major white matter tracts and two deep gray
	matter areas exhibited time-dependent diffusion. Similar findings were reported in the
	human corpus callosum by Van et al. [Van	b] using OGSE sequences.
	It is empirically difficult to observe diffusion time dependence in brain tissues. Indeed,
	this effect occurs at time scales corresponding to micrometer length scales featuring axons
	and dendrites diameters and heterogeneities (e.g. spines, beads). These short diffusion
	times are difficult to probe on human scanners. Additionally, time-dependence is due to
	coarse graining over structural disorder, which results in the power law approach towards
	D ∞ shown in equation . : the more disordered the sample is, the slower the approach,
	therefore requiring a sufficiently broad range of times to detect it [Novikov	a].

. ) with ν = (p+d)/2, p and d being the structural exponent and spatial dimensionality of the problem respectively. In most MRI experiments, the diffusion time is not long enough to reach the tortuosity limit where diffusion becomes Gaussian, and time dependence and fine microstructural details are lost. Conventional MRI sequences typically approach the long time regime where diffusion depends on large scale structural fluctuations via the power law of equation . . Still, several ex vivo and in vivo experiments have observed this time-dependence effect [Novikov a]. Due to their ability to probe shorter diffusion time scales in comparison with conventional PGSE, OGSE diffusion-weighted sequences have been used extensively to this end: Does et al. [Does ] investigated the dependence of ADC on diffusion time in fusivity has thus been reported in several white matter tracts of healthy human volunteers for relatively long diffusion times (t = 45 -600ms), on a standard clinical scanner using STEAM-DTI [Fieremans a]. A similar effect was subsequently observed in the direction transverse to white matter tracts with STEAM-DTI in the range t = 48 -195ms [De Santis a]. In this latter study, a diffusion time-dependent term was added to the extra-axonal space tensor of a two-compartment white matter model, and was shown to improve axonal diameter and density estimation in human white matter. Other frameworks such as LEMONADE(t) [Novikov d] include time-dependence effects in a rotationally invariant analytical model of brain microstructure.

All in all, time-dependent diffusion MRI is emerging as a strong candidate for microstructure characterization. The wealth of information available in the extra-axonal space needs to be modelled properly in order to extract valuable microstructural information from the dMRI data. Biophysical models that ignore this time-dependence might be able to capture relative trends of axonal properties over different brain structures, but take the risk of providing biased estimates, such as a consistent overestimation of axonal diameter, as reported in [De Santis a].

  P (r) from dMRI data. This propagator represents an averaged likelihood for particles to undergo a net displacement r. The SHORE model deals with multiple fiber populations which diffusion properties must not be modified when applying non-linear spatial transformations. It is thus of high importance to perform a precise reorientation of MAPs during diffeomorphic registration. Furthermore, in the SHORE model framework, MAPs are computed in a local tensor frame, which varies from voxel to voxel. Thus, before registering two MAP fields, all the propagators must be put initially into the same reference frame by performing a reorientation. As a first contribution, a reorientation method based on a discrete representation of MAPs will be proposed in this work, as well as a new similarity measure between MAPs. In addition to the model selection, an optimization method

	costs [Zhang	]. The SHORE model [Ozarslan	b, Fick	] tackles tensor and
	ODF-based models issues by computing in each voxel a Mean Apparent Propagator (MAP)
					Chapter
	Diffeomorphic registration of Mean
			Apparent Propagators
	Chapter Outline		
	.	Introduction		
	Diffeomorphic dMRI data registration is a key enabling technique for accurate group
	analyses of dMRI data and for building white matter and fiber-tract atlases. Current
	registration methods align either fields of second-order tensors [Zhang	, Yeo	],
	known to be unable to deal with complex fiber configurations, or orientation distribu-
	tion functions (ODF), missing the information stemming from the radial component of
	the diffusion signal [Geng	, Raffelt	, Yap	]. Other approaches aim at per-
	forming the diffeomorphic registration diretly on the dMRI data [Zhang	], thus not
	using the parcimony of local model representations, leading to very large computational

diffusion MRI. The next chapter will present the first contribution of this thesis: a diffeomorphic registration algorithm for diffusion propagator maps. Such a tool is necessary to compare microstructural maps between subjects, and construct atlases of the human . Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Discrete Representation of MAPs and Reorientation . . . . . . . . MAP Similarity Measure . . . . . . . . . . . . . . . . . . . Diffeomorphic Registration of MAP Fields . . . . . . . . . . . Results and Discussion . . . . . . . . . . . . . . . . . . . . . . Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . T his short chapter is dedicated to the presentation of a novel diffeomorphic registration approach developed in the frame of this thesis, to register maps of diffusion propagators constructed using the MAP-MRI [Ozarslan b] technique. In view of mapping the microstructure of the human brain, such a registration tool is useful to compare quantitative microstructural biomarkers between subjects and construct atlases of the human brain microstructure. must be chosen to perform dMRI data registration efficiently. State-of-the-art dMRI data registration techniques rely on continuous optimization schemes which are prone to local minima. This drawback can be practically alleviated using multi-scale approaches and adding regularization to smooth the energy landscape and favor its convergence to the global optimum, but this is not always sufficient to escape local minima depending on the size of the deformations. In [Heinrich ], a discrete optimization procedure was successfully applied to high resolution CT volumes deformable registration. A global optimum of the registration cost function was found by using dynamic programming on the image grid represented as a minimum spanning tree (MST), while enforcing the smoothness of the deformation. The result of dynamic programming registration on a MST is given as a displacement vector field. The amplitude of the displacement vectors in each direction is an integer multiple of the voxel dimension, thus limiting the registration accuracy to the voxel scale. It is thus interesting to combine this discrete optimization approach, enabling to converge towards a global optimum, with the continuous diffeomorphic demons algorithm [Vercauteren

] 

which provides an efficient and reliable way to register MAP fields at fine scales. As a second contribution to this thesis work, we implemented this hybrid optimization method and adapted it to the registration of MAP fields using our MAP reorientation method. The efficacy of such a registration approach on real dMRI data registration is shown in the last section of this work.

  of machine learning algorithms using a dictionary of simulated OGSE and PGSE-weighted diffusion MR signals synthesized from the MEDUSA phantoms.

	.	Introduction	
	Due to its sensitivity to micrometer-scale displacements of water molecules in tissues,
	diffusion MRI (dMRI) has become an invaluable clinical tool for detecting numerous neur-
	ological pathologies known to alter the microstructure of white or gray matter such as
	ischemic stroke, traumatic brain injury, multiple sclerosis or tumors.
		In white matter, while it is empirically known that the diffusion signal is sensitive to
	axonal organization and structure, finding a one-to-one mapping between the measured
	diffusion-weighted MR signal and the underlying microstructural properties of the ob-
	served tissue remains a very challenging task [Novikov	b]. One of the major reasons
	for such a limitation is that most models used to provide estimates of tissue microstructure
	properties are not sufficiently realistic. Indeed, over-simplistic geometries such as cylinders
	Chapter Outline and spheres are employed to represent axons and other cells, because those geometries en-
	able to derive closed-form analytical expressions of the corresponding diffusion-weighted
	MR signals [Neuman	b, Vangelderen	, Sen	b, Grebenkov	]. Another
	reason is that only approximate solutions for analytical models of tortuous extra-cellular
	diffusion are available [Burcaw	c]. In the particular case of time-dependent diffu-
	sion MRI, where the dual diffusion time/frequency domain is investigated, this problem
	becomes even more serious since no general analytical solution exists for all diffusion
	times/frequencies [Reynaud	].
			. .	Sensitivity to beading. . . . . . . . . . . . . . . . . . .
			. .	Sensitivity to diameter and intracellular fraction . . . . . . . .
			. .	Computational time-dependent diffusion MRI . . . . . . . . .
			. .	Limitations . . . . . . . . . . . . . . . . . . . . . . .
		.	Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . .

. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . Material and Methods . . . . . . . . . . . . . . . . . . . . . . . Phantom generation . . . . . . . . . . . . . . . . . . . . . Monte-Carlo simulations . . . . . . . . . . . . . . . . . . . Parametric study . . . . . . . . . . . . . . . . . . . . . . ExtraTrees regression . . . . . . . . . . . . . . . . . . . . . Data analysis . . . . . . . . . . . . . . . . . . . . . . . Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Influence of beading on OGSE signals . . . . . . . . . . . . . . Parametric study . . . . . . . . . . . . . . . . . . . . . . Regression . . . . . . . . . . . . . . . . . . . . . . . . . Feature importances . . . . . . . . . . . . . . . . . . . . Discussion . . . . . . . . . . . . . . . . . . . . . . . . . .

T

his chapter introduces the first application of the diffusion MRI simulation pipeline developed during this thesis. Through the specific application of beaded axon microstructure characterization, the construction steps of a microstructure computational model using our simulation pipeline are presented, from the creation of realistic white matter phantoms using the MEDUSA simulator (presented in the previous chapter) to the training

Table . :

 . Ranges of the geometrical control parameters used to generate the dictionary of virtual tissue samples. The parameter ranges correspond to realistic physiological values found in white matter. A degree tortuosity of axons was induced to obtain more realistic tissue samples.

		Virtual tissue parameters	
		Parameter distribution Distribution sampling	Range
	Intra-axonal volume fraction	Target value Φ	uniform	0.4 -0.7
	Axon diameter	Gamma distribution	µ: uniform σ: uniform	1.0 -3.0µm µ/10 -µ/2µm
	Beading amplitude	Normal distribution	µ ( samples): uniform healthy µ ( pathological samples): uniform	1.0 -1.2 1.2 -1.9
			σ: uniform	BA/10 -BA/5
	Beading separation	Normal distribution	µ: fixed σ: fixed	10.0µm 2.0µm
	Beading length	Normal distribution	µ: fixed σ: fixed	2.0µm 0.5µm
	Global Angular Dispersion	Target value GAD	fixed	10°T
	ortuosity	Target value T	fixed	5°T
	ortuosity wavelength	Target value T W	fixed	20.0µm
	Tortuosity amplitude	Target value T A	fixed	5.0µm
	Intrinsic diffusivity	Target value D	fixed	2.0µm 2 /s

Table . :

 . Trapezoidal OGSE sequence parameters OGSE frequencies (Hz) 75 | 100 | 125 | 150 | 175 | 200 Number of lobes 8 | 10 | 10 | 10 | 10 | 12 Diffusion gradient strengths (mT /m) 63.7 | 89.0 | 128.5 | 177.0 | 242.0 | 300.0 List of parameters used to synthesize diffusion-weighted OGSE signals.

	b-value (s/mm 2 )	450
	Gradient orientation count	400
	Signal-to-noise ratio	30
		PGSE sequence parameters
		δ (ms)	6.3 | 6.6 | 5.0 | 4.4
		∆ (ms)	22.3 | 22.6 | 42.0 | 41.9
	Diffusion gradient strengths (mT /m)	200 | 100 | 200 | 100
		b-values (s/mm 2 )	1000 | 500 | 1000 | 500
		Gradient orientation count	60
		Signal-to-noise ratio	30
	meable membranes. The voxel size was varied to keep	fibers per voxel at all em-
	ployed mean diameters and intra-axonal fractions, in order to ensure a low variance of the
	synthesized signal [Hall	a].
	The bounding box of each virtual tissue being limited, diffusing spins may diffuse
	beyond it during Monte-Carlo simulations, especially at long diffusion times. Some spins
	might thus not experience a constant environment, and may produce meaningless signals.
	A proper boundary condition is thus necessary to avoid edge effects. MEDUSA generates
	-dimensional phantoms with geometrical discontinuities over the boundaries. Indeed,

the phantom generation algorithm is based on the application of repulsion forces which do not allow to enforce the periodicity at the boundaries. This can introduce an additional restricted diffusion effect corresponding to the box size when using a periodic boundary condition as in

[Hall b]

. Another method was thus preferred, which consists in

Table . :

 . List of parameters used to synthesize diffusion-weighted PGSE signals.

	OGSE diffusion-weighted signals at distinct frequencies from Hz to	Hz and
	constant b-value of 450s/mm 2 were synthesized according to the protocol given in table .
	using	diffusion gradient orientations and adding noise to reach a signal-to-noise ratio
	of	. Four additional PGSE diffusion-weighted signals at b-values of 500s/mm 2 and
	1000s/mm

discarding spins near the boundaries, and collecting signals only from these near the centre, which are exposed in a relatively constant environment

[Fieremans ]

. The fraction between the area where signals are to be collected and the total area of the bounding box was empirically set to . . 2 were synthesized. The PGSE sequences were set to obtain effective diffusion times ∆ ef f of 20ms and 40ms for the two b-values (see table

.

). All the employed OGSE and PGSE sequences are illustrated in figure . and . respectively.

  ure . (middle). The increase is stronger for small diameters (< 2.0µm) for the OGSE sequence, while it is stronger for bigger diameters for the PGSE sequence. The effect of axonal diameter on FA appears quite opposite between the OGSE and PGSE sequence, since the FA reaches its minimum value around 2.0µm for the OGSE sequence when it peaks around 2.5µm for the PGSE sequence. Finally, the effect of increasing intra-axonal fraction on both OGSE and PGSE diffusion metrics is an overall decrease of ADC, parallel and perpendicular diffusivities, and an increase of the FA which is mostly observable for the OGSE sequence (seefigure . and . (right)). Similar to the results found in[Aggarwal ], the slopes of ADC, parallel and perpendicular diffusivities with respect to the OGSE frequency are positive while the FA slopes are mostly negative.

  • K. Ginsburger, C. Poupon. Including diffusion frequency dependence in the extraaxonal space to improve axonal diameter mapping using trapezoidal OGSE se-Ginsburger, F. Matuschke, F. Poupon, J-F. Mangin, M. Axer, C. Poupon. ME-DUSA: A GPU-based tool to create realistic phantoms of the brain microstructure using tiny spheres. Proceedings of ISMRM , abstract number . • K. Ginsburger, F. Matuschke, F. Poupon, J-F. Mangin, M. Axer, C. Poupon. Machine learning based estimation of axonal properties in the presence of beading. K. Ginsburger, F. Matuschke, F. Poupon, J-F. Mangin, M. Axer, C. Poupon. ME-DUSA: a GPU-based tool to create realistic phantoms of the brain white matter microstructure. Proceedings of OHBM , abstract number .

	quences. Proceedings of ISMRM	, abstract number	.
	• K. Ginsburger, C. Poupon. Biomimetic numerical phantoms for white matter tissues
	characterization with few design parameters. Proceedings of OHBM	, abstract
	number	.	
	• K. Proceedings of ISMRM	, abstract number	.

• • K. Ginsburger, F. Matuschke, F. Poupon, J-F. Mangin, M. Axer, C. Poupon. Estimation of beaded axons microstructural properties using simulation-based machine learning. Proceedings of OHBM , abstract number .
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is not as good as in [Nedjati-Gilani ] probably due to the fact that stronger b-values similar to those used in [Nedjati-Gilani ] with PGSE sequences are needed. However, the estimation of diameter is particularly good in comparison with [Nedjati-Gilani ],

and is not degraded using the reduced version of combined OGSE+PGSE features. The quality of diameter estimation is much better than what could be expected using analytical models of the diffusion signal [Nilsson ], which might be explained by the fact that the extra-axonal signal information is leveraged by the employed computational model, and the estimation of diameter is not biased by an improper modeling of the extra-axonal signal. A degradation of the regression quality can however be observed towards higher diameter values, which is counter-intuitive since bigger diameters are usually easier to estimate. This can probably be explained by the fact that beading has a stronger effect at higher diameters (since the absolute value of the beaded regions width becomes bigger) which might partly "destroy" the diameter information in the diffusion-weighted signal due to a strong alteration of the diffusive properties along axons.

Surprisingly enough, the diameter regression score using only PGSE features is better than the one for OGSE features, with a good estimation of diameters even below 2.0µm (see figure . ). This could be explained by the fact that the PGSE-derived parallel diffusivity shows a strong dependence to diameter in figure . . Such a dependence may arise from the already mentioned fact that the diameter of beaded regions grows with the axonal diameter, which has a strong influence on parallel diffusivity, leading to a bias in the estimation of diameter which is helped by the presence of beading in the simulated phantoms.

Looking at the importance measure plots, we notice that for both OGSE and PGSE features, the perpendicular diffusivities are mostly used to estimate intra-axonal fraction, which is physically relevant since axonal packing density mostly influences the diffusion process in the direction perpendicular to axons. Regarding diameter estimation, importance measure plots do not give such a clear trend as for intra-axonal fraction, though the larger importance of fractional anisotropy with respect to other estimated microstructural properties can be noticed.

. . Computational time-dependent diffusion MRI

By measuring diffusive properties at various diffusion times, time-dependent diffusion MRI (TDD) is a strong candidate to lift the degeneracy in white matter microstructural parameter estimation [Novikov b]. However, one of the major drawbacks of TDD is the absence of a general analytical solution for all diffusion times/frequencies. Current approaches try to overcome this problem by extracting relevant information in time regimes where systems simplify, i.e. in the short time regime, near the long-time regime and at the tortuosity limit [Reynaud ]. The provided analytical solutions do not account for subtle microstructural properties such as axonal beading and usually consider axons as simple cylinders. Even with these simplifications, most TDD frameworks suffer from over-
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. A dictionary of white matter tissues . . . . . . . . . . . . . . . .

. Towards a computational model of the cortical cytoarchitecture . . . . .

T

his chapter presents two ongoing research projects in the frame of this thesis, which are dedicated to the computational modeling of brain microstructure. These projects are based on the diffusion simulation pipeline developed during this thesis and aim at constructing large dictionaries of simulated signals for white and grey matter to allow, in the long term, the use of trained machine learning tools to map brain microstructure in vivo.

.

A dictionary of white matter tissues

The final goal of the simulation pipeline developed during this thesis is the creation of a dictionary of all possible geometrical tissue configurations found in white matter and their associated diffusion-weighted signals. Such a dictionary will enable to map white matter microstructure in vivo without relying on any analytical model and is thus expected to improve the precision and robustness of white matter tissue characterization.

While all the simulation tools to construct this dictionary are available, it still requires a huge simulation campaign for which a computational resource application has been sent to the French group of HPC facilities called GENCI. Indeed, the specificity of the construction of a dictionary of all possible white matter configurations is that, contrary to the simulation campaign presented in chapter which focused on a single population of beaded axons, voxels containing several populations of axons also have to be accounted for to build a general model of white matter tissues. Accounting for the presence of multiple fiber populations leads to a rapid increase of the number of simulations required to span the parameter space satisfactorily: each fiber population can have different microstructural properties, which multiplies the number of possible geometrical configurations.

. . Diffeomorphic registration of diffusion propagator maps

A novel diffeomorphic registration framework was developed to take advantage of the full diffusion propagator information to register diffusion-weighted data. While state-of-theart approaches use ODF or FOD to perform the registration, the proposed approach is based on the voxelwise comparison of MAP-MRI propagators, enabling to use both angular and radial diffusion information to compute the diffeomorphism. This work provided a proof-of-concept with encouraging registration results, which have to be benchmarked with state-of-the-art approaches in order to compare the quality of long and especially short white matter bundles registration. This registration tool is intended to be used to compare microstructural maps obtained between different subjects.

. . Influence of microstructure on diffusion time dependence

A first tissue simulator was designed to construct realistic white matter numerical phantoms depicting axons with angular dispersion, tortuosity, beading and Ranvier nodes. The 

. . MEDUSA: constructing realistic brain tissue phantoms

A second tissue simulator was designed in the frame of this thesis to overcome the limitations of the previous simulator and enable the construction of axonal packings with a high level of angular dispersion and high packing densities. This novel simulator, called MEDUSA, is based on the decomposition of each cellular item in the numerical phantom as a set of overlapping spheres, providing a generic and computationally efficient framework to prevent collisions between each item using a force-based D packing algorithm.

The MEDUSA tool enables the fast construction of realistic white matter scenes depicting axons, astrocytes and oligodendrocytes, and can be readily adapted to the creation of grey matter phantoms. This work was published in the journal NeuroImage.

. . A computational model to decode beaded axons microstructure

Taking advantage of the developed simulation pipeline, a simulation study was finally performed to better understand the influence of beading on PGSE and OGSE diffusionweighted signals. A dictionary of virtual tissue samples depicting beaded axons and their associated diffusion signals was computed and used to train a machine learning algorithm. 
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