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Abstract

The aims of this thesis are two-fold, and centered on synthetic metabolic cir-
cuits, which perform sensing and computation using enzymes. The first part
consisted in developing reinforcement and active learning tools to improve
the design of metabolic circuits and optimize biosensing and bioproduction.
In order to do this, a novel algorithm (RetroPath3.0) based on similarity-
guided Monte Carlo Tree Search to improve the exploration of the search
space is presented. This algorithm, combined with data-derived reaction
rules and varying levels of enzyme promiscuity, allows to focus exploration
toward the most promising compounds and pathways for bio-retrosynthesis.
As retrosynthesis-based pathways can be implemented in whole cell or cell-
free systems, an active learning method to efficiently explore the combinato-
rial space of components for rational buffer optimization was also developed,
to design the best buffer maximizing cell-free productivity. The second part
consisted in developing analysis tools, to generate knowledge from biological
data and model biosensor response. First, the effect of plasmid copy number
on sensitivity of a transcription-factor based biosensor was modeled. Then,
using cell-free systems allowing for broader control over the experimental
factors such as DNA concentration, resource usage was modeled to ensure
our current knowledge of underlying phenomenons is sufficient to account for
circuit behavior, using either empirical models or mechanistic models. Cou-
pled with metabolic circuit design, those models allowed us to develop a new
biocomputation approach, called metabolic perceptrons. Overall, this thesis
presents tools to design and analyze synthetic metabolic circuits, which are
a novel way to perform computation in synthetic biology.
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Résumé

Les buts de cette thèse sont doubles, et concernent les circuits métaboliques
synthétiques, qui permettent de détecter des composants chimiques par
transmission de signal et de faire du calcul en utilisant des enzymes. La
première partie a consisté à développer des outils d’apprentissage actif et
par renforcement pour améliorer la conception de circuits métaboliques et
optimiser la biodétection et la bioproduction. Pour atteindre cet objectif,
un nouvel algorithme (RetroPath3.0) fondé sur une recherche arborescente
de Monte Carlo guidée par similarité est présenté. Cet algorithme, combiné
à des règles de réaction apprises sur des données et des niveaux différents
de promiscuité enzymatique, permet de focaliser l’exploration sur les com-
posés et les chemins les plus prometteurs en bio-rétrosynthèse. Les chemins
obtenus par rétrosynthèse peuvent être implémentés dans des cellules ou des
systèmes acellulaires. Afin de concevoir le meilleur milieu pour optimiser
la productivité du système, une méthode d’apprentissage actif qui explore
efficacement l’espace combinatoire des composants du milieu a été dévelop-
pée. La deuxième partie a consisté à développer des méthodes d’analyse,
pour générer des connaissances à partir de données biologiques, et modéliser
les réponses de biocapteurs. Dans un premier temps, l’effet du nombre de
copies de plasmides sur la sensibilité d’un biocapteur utilisant un facteur
de transcription a été modélisé. Ensuite, en utilisant des systèmes acel-
lulaires qui permettent un meilleur contrôle des variables expérimentales
comme la concentration d’ADN, l’utilisation des ressources a été modélisée
pour assurer que notre compréhension actuelle des phénomènes sous-jacents
est suffisante pour rendre compte du comportement du circuit, en utilisant
des modèles empiriques ou mécanistiques. Couplés aux outils de conception
de circuits métaboliques, ces modèles ont ensuite permis de développer une
nouvelle approche de calcul biologique, appelée perceptrons métaboliques.
Dans l’ensemble, cette thèse présente des outils de conception et d’analyse
pour les circuits métaboliques synthétiques. Ces outils ont été utilisés pour
développer une nouvelle méthode permettant d’effectuer des calculs en bi-
ologie synthétique.

iii





Résumé français détaillé

0.0.1 Introduction

La biologie de synthèse est un domaine de recherche interdisciplinaire qui a
vu le jour au début des années 2000, grâce à des articles fondateurs comme
le repressilateur ou le switch bi-stable, mêlant connaissances en biologie et
modélisation mathématique et permettant de programmer des comporte-
ments dans des systèmes biologiques. En effet, grâce aux avancées permises
entre autres par la baisse du coût de la synthèse d’ADN, les biologistes peu-
vent désormais construire à façon des gènes, et tester leurs connaissances
à une vitesse jusqu’à présent inégalée. L’objectif de la biologie de synthèse
est de faire de la biologie une discipline d’ingénieurs, en standardisant et
inter-opérant des éléments biologiques comme des gènes, leurs promoteurs,
terminateurs et autres éléments de contrôle connus de l’expression génétique
découverts par la biologie fondamentale. Depuis les débuts de ce domaine
de recherche, beaucoup de travaux ont entrepris la construction de circuits
génétiques ayant un comportement prédictible, comme des portes logiques
ou des oscillateurs. Fabriquer de tels circuits permet de démontrer une con-
naissance suffisante de la biologie sous-jacente pour obtenir des comporte-
ments prédictibles, ouvrant la voie à de potentielles applications pratiques,
notamment en médecine. Les échecs de ces circuits permettent aussi de
découvrir les phénomènes biologiques responsables de ces erreurs et donc
de progresser en biologie fondamentale. Cependant, un certain nombre de
limites, dont la synchronisation temporelle des circuits génétiques compor-
tant plusieurs couches ou la nécessité d’imposer un seuil pour considérer
la réponse comme positive ou négative, alors que les concentrations des es-
pèces biochimiques sont par essence des signaux analogiques continus, incite
à proposer de nouvelles approches. Nous souhaitons donc dans cette thèse
utiliser le métabolisme pour effectuer les calculs biologiques. Cette thèse
propose des outils de conception et d’analyse pour développer des circuits
métaboliques qui offrent une solution originale aux limites des circuits clas-
siques de biologie de synthèse.
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Tout d’abord, il est nécessaire de définir les défis de conception de ces cir-
cuits. Il faut dans un premier temps détecter les composés, grâce à des
biosenseurs qui ne sont pas l’objet principal de la thèse mais qui sont évo-
qués en détail au chapitre 6. Une base de données de composés détectables
par ce type de biosenseurs transcriptionnels est aussi disponible en chapitre
4. L’autre problème à résoudre est l’étape métabolique, qui transforme
un composé non détectable en un composé détectable grâce à une enzyme,
partie essentielle de nos futurs circuits métaboliques. Ce problème est con-
ceptuellement similaire à celui de la rétrosynthèse, qui cherche à produire
un composé cible à partir de composés chimiques disponibles à l’achat. La
rétrosynthèse peut être formulée comme un problème d’exploration d’espace
combinatoire, où les algorithmes employant la forte brute ne sont pas les
plus adaptés. De nouveaux algorithmes d’apprentissage renforcé comme
la recherche arborescente de Monte-Carlo (MCTS pour Monte-Carlo Tree
Search par la suite) ont permis des succès majeurs dans des domaines comme
les échecs ou le Go, où la force brute échouait. Le MCTS sera donc employé
en chapitre 3 pour s’attaquer au problème de la biorétrosynthèse, en utilisant
une heuristique de recherche adaptée au problème. La spécificité majeure de
la biorétrosynthèse (comparée à la rétrosynthèse chimique traditionnelle) est
la nécessité de modéliser la promiscuité enzymatique (la capacité de l’enzyme
à catalyser la même réaction chimique sur des substrats différents), et sera
présentée aux chapitres 1 et 2. En effet, la promiscuité enzymatique est un
phénomène biologique majeur, et la considérer permet de résoudre le prob-
lème de bases de données actuellement incomplètes ainsi que de fournir des
enzymes pouvant servir de point de départ pour de l’évolution dirigée pour
catalyser de nouvelles réactions, qui est un sujet majeur pour l’industrie de
l’ingénierie métabolique. Une autre approche d’apprentissage par renforce-
ment, l’apprentissage actif, permet aussi d’évoluer dans des espaces combi-
natoires complexes, et sera utilisé au chapitre 5 pour optimiser le système de
production dans lequel sont exprimés nos circuits métaboliques. En effet,
ceux-ci seront exprimés dans des systèmes acellulaires: ce sont des lysats
cellulaires supplémentés par des composants actifs permettant de remplacer
certaines fonctions perdues lors de la lyse de la cellule (mix énergétique).
Or, ce genre de système est extrêmement sensible à la concentration des
composants chimiques du mix énergétique qui doit donc être optimisé.
Des outils d’analyse de résultats sont aussi nécessaires pour vérifier que le
comportement du circuit conçu est bien le comportement attendu. Dif-
férents types de modèles en biologie existent, à différents niveaux de dé-
tail et de complexité. Je me suis cependant attachée à décrire en priorité
les paramètres pouvant changer dans le contexte expérimental (la quantité
d’ADN, de substrat pour la réaction enzymatique par exemple) et minimiser
le nombre de paramètres qui ne sont pas variés dans la configuration expéri-
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mentale afin de limiter les problèmes d’identifiabilité et de paramétrage du
modèle. Des effets biologiques particulièrement intéressants dans le cadre
de cette thèse étaient les effets de compétition de ressources, détaillés en
chapitre 9, quand plusieurs gènes sont en compétition pour les ressources
finies du systèmes (ribosomes et polymérases) pour exprimer la protéine
qu’ils encodent. Dans ce contexte, pour développer des outils de conception
et d’analyse de circuits métaboliques, le plan de la thèse est le suivant:

• Chapitre 1: Présentation de l’algorithme de rétrosynthèse et des règles
de réaction telles que développées avant mon arrivée dans l’équipe

• Chapitre 2: Utilisation d’outils de rétrosynthèse pour explorer l’espace
biochimique

• Chapitre 3: Présentation d’un nouvel algorithme de rétrosynthèse basé
sur le MCTS

• Chapitre 4: Base de données de métabolites permettant de détecter le
résultat de circuits métaboliques

• Chapitre 5: Méthode d’apprentissage actif pour l’optimisation d’un
système acellulaire d’expression de gènes

• Chapitre 6: Construction des biosenseurs et utilité de la modélisation
• Chapitre 7: Développement et modélisation d’un biosenseur pour les

flavonoides
• Chapitre 8: Revue de littérature sur les modèles adaptés aux systèmes

acellulaires
• Chapitre 9: Implémentation et modélisation de circuits métaboliques

simples en systèmes acellulaires
• Chapitre 10: Implémentation et modélisation de circuits métaboliques

complexes en systèmes acellulaires

0.1 Outils de conception assistée par ordinateur

La première partie a consisté à développer des outils d’apprentissage actif
et par renforcement pour améliorer la conception de circuits métaboliques
et optimiser la biodétection et la bioproduction.

0.1.1 Chapitre 1: Sélection d'enzyme et découverte de

chemins métaboliques

Les méthodes présentées dans ce chapitre ont d’abord été décrites dans
l’équipe avant mon arrivée, avec le développement du logiciel RetroPath2.0,
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encodé dans la plateforme KNIME. Les réactions biochimiques catalysées
par des enzymes sont décrites en utilisant des règles de réaction, apprises
depuis des bases de données en prenant en compte un contexte chimique
variable (plus ou moins étendu) autour du centre de réaction. Cette prise
en compte variable permet de modéliser la promiscuité, ou tout du moins
de faire des hypothèses controllées de promiscuité lors de la biorétrosyn-
thèse. Une des limites majeures de l’outil présenté dans ce chapitre est
l’algorithme de force brute sous-jacent, utilisé pour effectuer la recherche de
chemins métaboliques. Les limites des méthodes présentées permettent donc
de justifier le développement de l’algorithme de RetroPath3.0, qui utilise
cependant le même formalisme en chemo-informatique pour la modélisation
des réactions enzymatiques et de la promiscuité.

0.1.2 Chapitre 2: Enumération de structures chimiques et

cribable virtuel avec RetroPath2.0

L’objectif de ce chapitre est de présenter d’autres applications d’outils de
rétrosynthèse, et particulièrement du formalisme de modélisation des réac-
tions chimiques que nous utilisons dans l’équipe. Mon travail a consisté
à prouver formellement que de nouvelles règles chimiques développées spé-
cialement permettent d’énumérer l’ensemble des isomères d’une molécule.
Ces règles d’énumération ont ensuite été utilisées pour optimiser la tem-
pérature de transition de polymères, prouvant que notre méthodologie est
valide sur un cas simple. Ensuite, ces règles ont été comparées à des règles
biochimiques (présentées au chapitre précédent) pour améliorer l’activité
anti-bactérienne d’aminoglycosides, dans un processus de criblage virtuel.
Elles fonctionnent mieux que les règles biochimiques car restent dans le do-
maine de validité de la QSAR utilisée pour la prédiction. Enfin, les règles
biochimiques ont été utilisées pour compléter l’annotation du métabolisme
d’Escherichia Coli, en s’intéressant au problème des métabolites non iden-
tifiés en spectrométrie de masse et en suggérant une structure et une voie
de synthèse pour ces pics non identifiés. Ce problème est important en
métabolomique et cet outil permet de suggérer des prédictions testables
pour des biochimistes intéressés par ce type de problème. Ainsi, ce chapitre
permet de démontrer la flexibilité et l’utilité de notre formalisme pour une
variété de problèmes biologiques.

viii



0.1.3 Chapitre 3: Recherche arborescente de Monte-Carlo

guidée par similarité chimique pour l'ingénierie

métabolique

Dans ce chapitre, je présente l’implémentation d’un nouvel outil de biorétrosyn-
thèse, qui permet de résoudre certaines des limitations présentées dans les
chapitres 1 et 2. Le formalisme utilisé pour décrire les règles de réaction,
les apprendre à partir de bases de données et les appliquer à des composés
chimiques sont les mêmes que dans ces deux chapitres. Ma contribution prin-
cipale a été d’adapter l’algorithme de MCTS à notre problème, en le guidant
avec un score permettant de prendre en compte à la fois la plausibilité chim-
ique de la réaction que nous utilisons ainsi que la probabilité que nous ayons
une enzyme à disposition qui catalyse réellement cette réaction. Le score
chimique en particulier prend en compte à la fois le substrat et les produits
attendus de la réaction, qui permet de trier les réactions par plausibilité
chimique. J’ai développé le logiciel RetroPath3.0 autour de cet algorithme,
et l’ai validé sur 2 jeux de données différents. D’abord, sur un premier jeu de
données, petit et curé manuellement, la capacité de l’algorithme à retrouver
les chemins métaboliques exacts décrits dans la littérature a été vérifiée. Ceci
nous permet de nous assurer de la plausibilité biologique de nos prédictions.
Ici, RetroPath3.0 obtient de meilleurs scores que la version précédente. En-
suite, sa capacité à trouver des chemins métaboliques pour des composés
ayant été produits par ingénierie métabolique, mais sans connaissance du
chemin exact, a aussi été vérifiée (sur un jeu de données plus conséquent
de 152 composés). Les nombreux paramètres de recherche de RetroPath3.0
ont été testés et expliqués en détail dans une annexe pour faciliter le travail
de développeurs souhaitant utiliser et améliorer l’outil. De plus, d’autres
options ont été développées, pour accélérer (en terme de temps de calcul) la
recherche de chemins, rendant l’outil plus performant pour des utilisateurs
fréquents. J’ai ensuite démontré sa modularité en incluant des prédictions
de toxicité dans l’algorithme, afin d’éviter des intermédiaires toxiques. De
plus, une fonctionnalité a été ajoutée qui n’existe pas dans d’autres outils
de biorétrosynthèse, et qui consiste à suggérer de potentiels suppléments à
mettre dans le milieu de culture pour obtenir des chemins viables. Cette
pratique est courante en ingénierie métabolique mais aucun outil ne perme-
ttait de réaliser ce genre de simulations auparavant. Ainsi, ce logiciel, qui
résout certains des problèmes mentionnés dans les chapitres précédents, est
un outil de biorétrosynthèse intéressant pour la communauté, modulaire et
en accès libre. C’est un outil particulièrement utile dans le cadre de cette
thèse, qui cherche à utiliser des chemins métaboliques pour effectuer des
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calculs en biologie de synthèse, car il permet de concevoir les chemins en
question.

0.1.4 Chapitre 4: Jeu de données de métabolites

déclenchant une réponse cellulaire transcriptionnelle

ou traductionnelle

Le but de ce chapitre concernant le cadre général de cette thèse (le développe-
ment de circuits métaboliques) est le suivant: en combinaison avec les algo-
rithmes de biorétrosynthèse présentés aux chapitres précédents, un jeu de
données de composés détectables peut être utilisé pour trouver un chemin en-
zymatique permettant de transformer un composé indétectable en composé
détectable. Cette stratégie a été utilisée à de nombreuses reprises au cours
de cette thèse, notamment aux chapitres 9 et 10. Ce chapitre présente donc
la curation manuelle d’un nombre conséquent d’articles, pour permettre aux
biologistes de synthèse de savoir quels composés ont déjà été détectés, avec
quelle méthode et dans quel organisme.

0.1.5 Chapitre 5: Exploration à grande échelle guidée par

apprentissage actif pour maximiser la production en

système acellulaire

Dans ce chapitre, j’aborde un autre problème de la conception de circuits
métaboliques et de l’exploration d’espaces combinatoires. La problématique
était la suivante: étant donnée une protéine d’intérêt (qui pourrait aussi
être un métabolite, tant qu’il est détectable à haut débit), comment choisit-
on les composants chimiques du mix énergétique en système acellulaire pour
maximiser la production de la protéine en question? Alors que l’espace com-
binatoire est bien trop grand pour être exploré de façon exhaustive, les algo-
rithmes d’apprentissage actif, qui suggèrent une nouvelle série d’expériences
pour optimiser une métrique d’intérêt, sont parfaitement adaptés à ce prob-
lème. J’ai donc développé une méthode d’apprentissage actif, couplée à
des robots de distribution de liquides, pour optimiser la production de pro-
téines en lysat cellulaire. La question conceptuelle est similaire à celle de
la rétrosynthèse, car les deux problèmes sont des problèmes d’exploration
d’espace combinatoire, comme présenté en introduction. De plus, d’un
point de vue pratique, améliorer la qualité du lysat permet d’obtenir de
meilleurs résultats expérimentaux en testant nos circuits métaboliques en
systèmes acellulaires. Dans un premier temps, nous avons appliqué cette
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méthode au lysat d’un expérimentateur expert, multipliant la production
par 34 et obtenant un modèle prédictif en 10 itérations successives du cycle
d’apprentissage actif. En effet, ce cycle consiste à demander à un ensemble
de modèles de machine learning de prédire de quels points ils ont besoin pour
optimiser leur capacités de prédiction et la production du système. Ainsi,
plus les nombre d’itérations augmente, plus les modèles et la productivité
s’améliorent. Dans un deuxième temps, après avoir identifié les points les
plus informatifs de notre jeu de données (en cherchant à prédire l’ensemble
de nos données à partir d’un sous-ensemble de taille fortement réduite), nous
avons réussi à optimiser d’autres lysats, venant d’autres expérimentateurs
ou supplémentés avec des antibiotiques. Cette méthode permet donc rapide-
ment d’optimiser des lysats cellulaires pour des biologistes souhaitant utiliser
ce type de systèmes pour exprimer une protéine d’intérêt, en utilisant des
algorithmes d’apprentissage actif disponibles en libre accès sur GitHub.

0.2 Analyse et modélisation de circuits

métaboliques: des données à la connaissance

La deuxième partie a consisté à développer des méthodes d’analyse, pour
générer des connaissances à partir de données biologiques, et modéliser les
réponses de biocapteurs. Grâce à ces méthodes d’analyse, nous avons aussi
développé des circuits métaboliques de plus en plus complexes.

0.2.1 Chapitre 6: Biosenseurs transcriptionnels sur-mesure

pour l'ingénierie métabolique

Ce chapitre décrit les avancées récentes en conception de biosenseurs tran-
scriptionnels pour l’ingénierie métabolique. Ces biocapteurs sont une partie
indispensable de n’importe quel circuit en biologie de synthèse, car ils per-
mettent la détection de signaux de sortie du circuit. C’est pour cette raison
que j’ai étudié ce type d’objet biologique durant ma thèse. Etant donné le
nombre important de revues déjà parues sur ce sujet durant les dernières
années, ma première contribution à cet article a été de définir un plan perme-
ttant d’identifier les défis et opportunités dans ce domaine dans les années à
venir, moins souvent présentées dans les autres revues, à savoir développer
des modèles mathématiques pour affiner les propriétés des biosenseurs et
l’importance de développer des biosenseurs avec et pour les systèmes acellu-
laires. J’ai ensuite effectuée la revue de littérature présentée ici, permettant
au lecteur d’avoir un nombre important d’exemples réussis pour trouver la
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solution à son problème de détection, ainsi que les défis à venir pour le
domaine.

0.2.2 Chapitre 7: Développement d'un modèle minimal et

généralisable de biosenseurs transcriptionnels:

l'exemple des �avonoides

Comme mentionné précédemment dans cette thèse, les biosenseurs sont une
partie essentielle d’un circuit en biologie de synthèse, car ils permettent la
détection de signal. C’est la raison pour laquelle développer, modéliser et
analyser des biosenseurs est la première étape dans le développement d’outils
d’analyse pour des circuits plus complexes, car la couche de détection de
signal détermine tout ce qui peut être compris en amont de la détection.
Ma contribution principale fut l’analyse mathématique et la modélisation de
nos biosenseurs. Plus précisément, j’ai observé en analysant les données que
changer le nombre de plasmides de nos biosenseurs changeait non seulement
l’amplitude de la réponse, comme attendu, mais aussi sa sensibilité. J’ai
donc choisi une stratégie de modélisation adaptée, basée sur une équation
de Hill étendue, qui prend en compte le nombre de copies du plasmide à la
fois pour la quantité de facteurs de transcription présents et pour le nombre
de sites d’accrochage, qui est le degré de liberté de notre système. Après
avoir ajusté le modèle aux données et vérifié la consistance des estimations
de paramètres en utilisant des simulations aléatoires, le modèle a été utilisé
pour suggérer des modifications à faire pour changer le comportement du
biosenseur pour atteindre des objectifs donnés, comme une sensibilité plus ou
moins importante, en modifiant le nombre de copies du plasmide, les forces
d’attachement du facteur de transcription à l’ADN ou à son inducteur.

0.2.3 Chapitre 8: Les modèles pour les systèmes

acellulaires en biologie de synthèse: plus facile, mieux

et plus rapide

Les systèmes acellulaires offrent de nombreux avantages comparés à l’expression
in vivo, en particulier pour le développement de circuits métaboliques syn-
thétiques. Tout d’abord, ils permettent un prototypage bien plus rapide.
Ensuite, dans l’objectif de fabriquer des circuits complexes, ils permettent
un contrôle fin de la concentration d’ADN, qui est un élément essentiel des
circuits présentés par la suite. Avant de développer un modèle, il faut donc
connaitre l’état de l’art dans le domaine, présenté dans cette revue.
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0.2.4 Chapitre 9: Des transducers métaboliques "plug and

play" étendent l'espace chimique de détection de

biosenseurs acellulaires

Dans ce chapitre, une implémentation de transducers métaboliques acel-
lulaires, conçus en utilisant les outils présentés en partie 1, est présentée.
Tout d’abord, un biosenseur de l’acide benzoique est développé et optimisé,
modifiant à la fois la quantité de reporter et de facteur de transcription.
Ma première contribution pour ce travail a donc été de modéliser ce test
en utilisant des équations de Hill. Ensuite, des transducers (convertissant
du signal à l’aide d’enzymes) ont été implémentés dans ces systèmes acel-
lulaires, pour l’acide hippurique et la cocaïne. Un élément très intéressant
dans ces deux systèmes est que le signal atteint un pic avant de redescendre
à des concentrations intermédiaires d’enzymes, montrant que la compétition
pour les ressources du système a un rôle majeur dans les effets observés. J’ai
donc procédé en deux étapes, en modélisant d’abord le transducer de l’acide
hippurique en incluant la compétition de ressources, puis en appliquant la
même modélisation à la cocaïne, en prenant en compte les différences en
terme de force des promoteurs de nos deux constructions. Cette modéli-
sation, expliquant les données expérimentales, fut ensuite validée sur de
nouvelles expériences en analysant un décalage du pic du signal du trans-
ducer de l’acide hippurique en variant la concentration de l’ADN codant
pour le facteur de transcription, et augmentant ainsi la compétition pour
les ressources. Ainsi, ce chapitre permet de démontrer l’importance de la
prise en compte de la compétition pour les ressources en biologie de syn-
thèse, à la fois pour la conception et l’analyse de circuits même relativement
simples.

0.2.5 Chapitre 10: Perceptrons métaboliques pour du

calcul neuronal dans des systèmes biologiques

Dans cet article, des circuits métaboliques complexes en biologie de synthèse
furent développés en utilisant les outils de conception présentés en partie 1,
et des outils d’analyse permettant d’apprendre d’expériences précédentes
et d’améliorer les circuits. Plus précisément, dans un premier temps, les
biosenseurs et les transducers métaboliques furent modélisés en utilisant
des fonctions de Hill sur-mesure et modulaires. Ensuite, dans un deuxième
temps, le comportement obtenu en combinant ces circuits a été prédit in
silico et testé à la fois in vivo et dans des systèmes acellulaires. Notre
but était d’abord de construire des additionneurs pondérés, qui peuvent
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être modifiés pour fabriquer des perceptrons, le plus simple des algorithmes
d’intelligence artificielle, qui sont essentiellement des sommes pondérées dig-
italisées. Le contrôle requis sur la quantité d’ADN des différents éléments
(en particulier des enzymes) était uniquement possible en système acellu-
laire. Mon modèle fut utilisé pour prédire la quantité d’enzyme nécessaire
à la réalisation des portes logiques que nous souhaitions implémenter dans
nos perceptrons acellulaires. Ainsi, dans ce projet, ma contribution a con-
sisté à analyser, modéliser et prédire les futures séries d’expériences. Ceci a
permis le développement de circuits métaboliques complexes, qui sont donc
une preuve de concept de cette nouvelle approche pour effectuer des calculs
en biologie de synthèse.

0.2.6 Conclusion et perspectives

De nombreux défis restent à résoudre après ce travail de thèse. Dans les
outils de conception développés, une meilleure prise en compte de la promis-
cuité permettrait des avances substantielles pour le domaine de l’ingénierie
métabolique. De plus, la comparaison des méthodes existantes sur les mêmes
jeux de données permettrait enfin à la communauté de comparer réellement
les mérites des différents algorithmes proposés par les développeurs et serait
une avancée notable. Par ailleurs, les outils de modélisation et d’analyse
présentés en deuxième partie peuvent toujours être améliorés pour une
meilleure prise en compte des réalités biologiques sous-jacentes, en analysant
en détail les raisons des échecs de modélisation. De plus, les circuits com-
plexes présentés en chapitre 10 devraient être testés avec d’autres briques
élémentaires pour prouver la généralisation possible du concept, montré à
l’heure actuelle sur un nombre réduit de cas. Cependant, malgré ses limites,
la modélisation est une aventure essentielle en science car elle permet la for-
malisation de connaissance et l’identification du chemin restant à parcourir
pour vraiment comprendre les phénomènes étudies.
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Introduction

Synthetic biology's aims and advances

Introduction to synthetic biology

Ever since the dawn of time, mankind has wanted to understand and master
the world. The first major revolution in human history is the start of agricul-
ture, where our ancestors, by tending to, selecting, studying and eventually
domesticating plants and animals started leading a sedentary life. This first
revolution led to the emergence of larger groups of persons, that could be
supported by farming instead of hunting and gathering. Cities and civiliza-
tions emerged and collapsed for centuries, until the world as we know it –
connected, globalized and fueled by scientific discoveries – came to exist.
That thirst for knowledge led mankind to try and understand the greatest
mystery of all: what life is and how it came to be, here on Earth. Under-
standing the basic mechanisms of life, from first principles to evolved mam-
mals such as ourselves, has been a scientific endeavor for centuries, from Da
Vinci’s illegal dissections to Mendel’s peas. What gave rise to modern biol-
ogy is the fundamental discovery by Watson and Crick, in collaboration with
Wilkins and Franklin, of the structure of deoxyribonucleic acid (DNA) [1] –
the code for life. The fact that the genetic code was carried by a molecule, in
which a single atom change could cause a phenotypic mutation, was hinted
by the famous essay "What is life" by Schrödinger [2], but knowing the
structure of the actual molecule allowed for unprecedented characterization
of living systems. Biology evolved from an observational science to an ex-
perimental one, where scientists could tamper with and modify genes and
DNA to understand their effect on phenotypes, allowing for unprecedented
control of biological experiments.
Projects that were initially considered science fiction by contemporaries,
such as the Human Genome Project [3], are now completed. While scien-
tists hoped decoding our DNA would be enough to understand our biology,
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phenomena such as epigenetics or environmental factors have been revealed
to be major players and hamper our understanding of life. However, the
declining costs of sequencing and synthesizing DNA (shown in Figure 0.1
[4]) gave rise to a new interdisciplinary field of scientific research: synthetic
biology.

Figure 0.1 Price per base of DNA Sequencing and synthesis. Extract from [4]

As Richard Feynman (supposedly) famously wrote on his blackboard before
his death, ’What I Cannot Create, I Do Not Understand’. Synthetic biol-
ogy aims to create and understand novel biological objects, using standard
parts that can inter-operate. The community wishes to turn biology into an
engineering discipline, by designing and constructing new biological entities
such as enzymes, genetic circuits, and cells that can be modeled, under-
stood, and tuned to meet specific performance criteria. On the long way
towards predictive engineering of biology, the scientific community can test
its knowledge of underlying phenomena. For example, by simplifying the
complex G protein-coupled receptor (GPCR) signal transduction system in
yeast and reducing it to core, modular components, Ellis’s team was able to
understand and model much more deeply the functioning GPCR signaling
than when studying the natural system [5].
While a more detailed history of the field from Monod [6] to 2014 is reviewed
elsewhere [7], only the birth of synthetic biology as a discipline will be pre-
sented in this thesis. Synthetic biology as a field of research is thought to
be born in 2000, with three papers that mark a date in the domain: the
repressilator, the toggle switch and the negative auto-regulator. The re-
pressilator is a network of three transcription factors repressing each other,
thereby creating oscillations [8]. Such a network could also converge to a
stable steady state, and the authors used mathematical modeling to identify
important parameters such as protein half-time that influence the oscilla-
tions, and act upon those [8]. Gardner et al., on the other hand, used two
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transcriptional repressors repressing each other, which lead to stable states
where one is dominant and the other repressed [9]. Small inducers allow
from transitioning from one state to the other, implementing what is called
hysteresis in mechanics. Lastly, Becskei et al. characterized the increased
stability of negative auto-regulation versus absence of feedback in a simple
loop, using both mathematical modeling and experimental verification [11].
The three systems have been extensively modeled, studied and reproduced
in the past years and mark a milestone in synthetic biology. For example,
Lugagne et al. used dynamic feedback and periodic forcing to maintain the
oscillator in its unstable position [10].
While the rest of this introduction will focus on biological circuits and the
current tools and strategies to design them, other notable advances in syn-
thetic biology are worth mentioning to complete the picture of the field and
the tremendous impact it could have on our understanding of the world.
Briefly, examples include whole genome synthesis (Mycoplasma genitalium
[12], Escherichia coli (E. coli) in 2019 [13], using 61 codons instead of 64, or
Saccharomyces cerevisiae [14]), incorporation of unnatural amino acids [15]
or inactivation of retroviruses in pig to potentially allow xenotransplantation
[16]. All those emerging technologies are poised to change our world once
they mature. An interesting perspective from field experts can be found
in Church et al., where the authors discuss possible technological advances,
current hurdles, and links with society [17]. I will now focus on an important
endeavor of synthetic biology: circuit design.

Current strategies for circuit design and their limits

Historically, for its short period of existence, synthetic biology has focused
on building and testing circuits that have predictable behavior for a desired
function, as is commonly done with logic gates in electronics. Those cir-
cuits generally share two important properties: they are digital and genetic.
Genetic, because they preferentially use transcriptional regulation, through
multiple genetic layers, to perform computation [18, 19]. Genetic digital
circuits are extremely useful and have been used in a variety of contexts, in-
cluding biosensors for detection of pollutants [20, 21] and medically-relevant
biomarkers [22, 23], smart therapeutics [24, 25], and dynamic regulation and
screening in metabolic engineering [26, 27, 28]. A number of design methods
and tools are available for those that intend to design genetic circuits.
Some of those software tools are particularly noteworthy of interest. Cello
[29] is essentially a programming language to design computational circuits
in living cells, with the user specifying the desired function, sensors, ac-
tuators and elements of interest such as organism and validity operating
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conditions. The software then generates DNA sequence encoding the de-
sired circuit. The ribosome binding site (RBS) Calculator [30] allows the
user to design libraries for RBS that span order of magnitudes for his gene
of interest. Prediction of RBS strength is of particular interest in synthetic
biology has it allows tuning the expression of the gene of interest. A range
of tools exist to design DNA parts, perform codon optimization (selecting
the best synonymous codons for a given amino acid in the organism the pro-
tein will be expressed in), visualize plasmids or predict clustered regularly
interspaced short palindromic repeats (CRISPR) binding sites or otherwise
facilitate experimental design.
Multiple examples and opinions for the future of genetic circuits have been
published [31, 32, 33, 34, 35]. Using their software Cello, Voigt’s team
managed to automatically design 60 circuits, of which 45 functioned as
planned, while they also built a 3-gate circuit consisting of four layers with
CRISPR/Cas [29]. Despite its elegance and a number of successes, using ge-
netic circuits has some downfalls, especially unexpected causes for failures
due to either compositional context (surrounding DNA parts), host context
(using the circuit in another organism) or environmental context (circuit
behaves differently, for example according to media composition) [36, 37].
A few element of particular interest will be mentioned here: load ([38, 39],
leading to the creation of a load driver by [40]), small number of inputs, time
synchronization between branches of the circuit [41, 42], burden (with the
recent availability of burden controllers [43, 44]). Ideas and concepts from
control theory to address those issues are becoming more and more routine
for synthetic biologists [45].
As an alternative to genetic circuits, metabolism can be used to perform
computation, as asked in an opinion paper [46], and performed by Courbet
et al. [47] or by living organisms [48]. DNA computation [49], while impres-
sive for solving complex computational problems [50, 51], only efficiently
functions in vitro. Digital logic has tremendously changed the world of
electronics, by allowing faster computation, digital storage and enabling
multiple applications that make the world as we know it today. However,
using digital logic in biology is sometimes problematic, as defining threshold
between 0s and 1s for different inputs and moreover across layers can be-
come tricky. On the other hand, using analog computation is much closer to
how organisms naturally process information [52] and has been implemented
using genetic layers [53, 54].
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Recent enabling technologies

In the past decades, numerous enabling technologies have driven the explo-
sion of the field of synthetic biology, tackling problems such as part sourcing
or speed of assembly (see Figure 0.2). One of the most obvious ones is the
falling price of DNA sequencing and synthesis, as shown in Figure 0.1. De-
creasing costs mean that a biologist, instead of painstakingly obtaining one
DNA sequence from an organism of interest that can be hard to cultivate,
and spending weeks in the process, can now order codon-optimized sequences
from a provider and obtain them in a couple of weeks. In 2008, this was
expressed as a hope for the synthetic biology [55] ("One of the hopes of the
synthetic biology community is to shift from reliance on laborious classical
genetic engineering techniques to DNA synthesis") and this is now a reality.
Such a decrease in synthesis cost would not have had such an impact if it
had not been accompanied by new assembly techniques that allow for faster
gene assembly, such as Gibson [56] or golden gate assembly [57, 58].

Figure 0.2 Evolution of the number of publications in synthetic biology. This Figure
is obtained from [59]. No changes were made to the Figure, which was published
under a Creative Commons Attribution 4.0 International License.

The advent of liquid handling robots could also be an enormous step for-
ward for the field, by speeding up both the assembly and testing stages of the
engineering process. While those are harder to master than previously ex-
pected by the community, they are at the heart of some interesting projects
published in the past years. Indeed, the number of experiments that can
be performed with a robot and high throughput testing is incommensurate
with the number of experiments performed on a day to day basis by a biolo-
gist. While utilizing both robots and high throughput measurements is not
adaptable to any project or situation, generating such data with the will,
manpower and skills to analyze it has the potential to revolutionize synthetic
biology and metabolic engineering (a field whose objective is to optimize
bioproduction of chemicals). They provide possibility of large scale experi-
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ments in settings where we know we do not have a sufficient understanding
of the phenomenon to efficiently model it and data really does provide an
advantage: testing genes for metabolic engineering projects, buffer compo-
sitions, enzyme rational modifications, screening of genes from uncultured
organisms... Biofoundries seek to provide integrated informatics and exper-
imental tools to facilitate experimental design and construct testing, so as
to free synthetic biologists from repetitive tasks and give them means to
test ideas in a higher-throughput fashion [60]. Just as standards for data
exchange in Synthetic Biology (Synthetic Biology Open Language (SBOL),
[61]) and systems biology (Systems Biology Markup Language (SBML), [62])
and associated software compatible with those standards allowed for greater
reproducibility and comparisons, widely adopted standards and software
to allow easy and reproducible programming of liquid handling robots will
hopefully mark a milestone in the field. Such a standard could be Roboliq
[63], or BioBlocks [28]. Even without such advanced data and program
sharing practices, liquid handling robots coupled with active learning al-
ready contribute to synthetic biology [64] or chemistry [65].
Another technology that is in its early stages but could become a game-

changer is cell-free systems. The idea of cell-free systems is not new: break
a cell wall so that the cell is not alive anymore, and use the metabolic,
transcription and translation machinery to produce biological components
of interest to the experimentalist instead of fueling cell growth. This tech-
nology has been used for production of proteins and biological research since
the fifties, but has received renewed interest from the synthetic biology com-
munity recently [66]. Cell-free transcription-translation (TX-TL) was really
born in 2003 [67] and a detailed video protocol was later published [68]. It
has since been deeply investigated and improved, and numerous strategies
for regenerating energy have been tested and implemented to better the en-
ergy mix provided to the extract [69]. While numerous explanations exist
to explain why cell-free systems exhaust over time, the reason is likely a
combination of all of the following: DNA and RNA degradation, metabolite
exhaustion, toxic products accumulation, ribosome degradation... Despite
the current limits on our understanding of those systems, they can and have
been used for extensive prototyping for various projects: biosensor develop-
ment [70], prototyping of enzymes for metabolic engineering projects [71, 72]
or part characterization [73]. Moreover, circuits developed for cell-free sys-
tems can be freeze-dried, stored at room temperature and reused months
later, making for potential great diagnostic tools outside the laboratory
[74].
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Aim of this thesis in the context of synthetic biology

In the larger context of synthetic biology, this thesis has one major aim:
propose a new way to perform computation, using metabolic analog circuits
instead of digital genetic ones, which would overcome some of the limitations
presented above. Moreover, this new way to do computation in synthetic
biology is developed mostly in cell-free systems which allow for faster pro-
totyping as presented previously. Furthermore, due to the originality of
the proposed approach, new tools and methodological developments were
required. Therefore, this thesis is centered around building design and anal-
ysis tools for metabolic circuits. I will present the state of the art in those
two domains and what this thesis brings to those two topics.

Design tools for metabolic circuits

How to design a metabolic circuit

We define synthetic metabolic circuits as small networks of metabolites and
reactions that perform an arbitrary operation, whose result can be analyzed.
The problem of designing metabolic circuits can be separated in two differ-
ent sub-problems, which require vastly different skills and tools to solve.
The first one is the problem of output detection: how do we detect the
output from a metabolic circuit, i.e. a metabolite. Indeed, any attempt at
designing complex circuit becomes futile if the output of the circuit cannot
be reliably detected. While biosensor design was not specifically tackled in
this thesis, huge improvements in this domain have been made in the past
years, and are presented in Chapter 6 [75]. For this thesis, I collected vari-
ous compounds that are deemed detectable, either using publicly available
databases or literature curation. This work is presented in Chapter 4 [76], is
publicly available on GitHub and can be used as a starting point for a com-
puter and human readable representation of detectable outputs of metabolic
circuits, or inputs to digital ones.
The other problem to solve is much more complex: how to select an enzyme,
or multiple enzymes, that can chemically transform a given compound into a
detectable one? This problem is conceptually similar to the problem tackled
by retrosynthesis [77]: how to produce a given compound with a set of al-
lowed starting chemicals in a chemical synthesis setting? More precisely, the
concept of retrosynthesis was first proposed by Corey in 1969 [78], which led
him to earn the Nobel Prize in chemistry in 1990 [79]. In his Nobel lecture
[80], Corey defines retrosynthesis analysis as: "a problem-solving technique
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for transforming the structure of a synthetic target molecule to a sequence of
progressively simpler structures along a pathway which ultimately leads to
simple or commercially available starting materials for chemical synthesis."
While I will detail the specificities of retrosynthesis and bio-retrosynthesis
(cheminformatics representation notably) in section "The specifities of ret-
rosynthesis" below, I will first present its striking similarities with other
informatics problems from which we can learn.

Algorithms for navigating complex combinatorial spaces

Retrosynthesis can be formulated as a combinatorial search problem, where
we aim to find a path of chemical reactions leading to our desired prod-
uct from various initial compounds. It is a combinatorial search because
multiple chemical reactions could be used at each step, but not all of them
lead to useful products, which will cause a combinatorial explosion when
using brute force algorithms, becoming computationally intractable. Other
problems of this class include finding the best buffer composition for highest
protein expression (presented in Chapter 5, and submitted for publication),
the best amino acid sequence for yellow fluorescence [81], the best sequence
of moves to win a game of chess or Go [82, 83], or even the best staff schedule
for organizing shifts in a hospital under constraints [84] and playing video
games [85]. All those situations present common features: huge combina-
torial spaces (modifying k amino acids of a sequence of interest leads to
20k combinations, without including potential unnatural amino acids), huge
branching factor (i.e.: what one can do next from a given position). For
example, in the case of buffer optimization, when testing 4 different con-
centrations for 11 components, the design space is composed of 4,194,304
different combinations. In chess or in Go, the branching factor is the num-
ber of moves allowed in a given position: it is on average 35 for chess and
250 for Go [86]. In retrosynthesis, this would be the number of chemical
transformations that apply to a compound. For example, in work by Segler
and co-authors, the branching factor is 46,175 when considering all chemical
transformations that can be applied to a substrate, which the authors reduce
to 50 by selecting the most promising ones [87]. As seen from the previous
examples, strategies from various branches of algorithmics can be used to
tackle these apparently different but computationally similar problems.
A major class of algorithms to perform such searches are reinforcement learn-
ing algorithms, defined as "an area of machine learning concerned with how
software agents ought to take actions in an environment so as to maximize
some notion of cumulative reward" [88]. A history of the field until 1996 can
be found in Kaelbling et al. [89]. In plainer terms, reinforcement learning
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algorithms are self-learning algorithms, that are composed of parts explor-
ing the combinatorial space (allowed moves in a game, chemical reactions
in retrosynthesis), and a part giving a reward to the algorithm if it is closer
to the desired objective (’better’ chance to win in the game, more realis-
tic image, less traffic jams and other specific metrics, as these algorithms
can be applied to a wide range of problems). Definitions of the moves and
the rewards are application-specific. Major leaps have been taken since this
review [89], notably because of the power of deep learning and the compu-
tational hardware and software advances that make it possible. Not only
did reinforcement learning combined with deep learning change Go or chess
computer programs, but it also could have tremendous impact in fields as
diverse as traffic control [90], image recognition and generation [91], targeted
advertising [92] or news recommendation [93] (examples are taken from [94]).
Two sub-classes of reinforcement leaning algorithms have been used in this
thesis: Monte-Carlo Tree Search (MCTS) in Chapter 3 and active learning
in Chapter 5.
Active learning is conceptually simple and presented in Figure 0.3: given a
set of starting points, a machine-learning method is trained on those points,
and suggests new experiments, based on a feature to optimize which can
be either the value of interest (fluorescence, activity), the uncertainty of
the model (where the model knows the quality of its prediction is low) or
a combination of both [95]. The point of the method is that the algorithm
itself decides which experimental points to test next. This is often used in
settings where new information (given by the oracle) is costly in time or
resources: which document to translate by a professional translator to feed
into a language translation algorithm [96], which amino acid sequence to
test to improve this enzyme activity [97] and so on. However, despite their
simplicity, those algorithms require a minima a way to evaluate a new data
point, and often the uncertainty associated to this new data point, meaning
they are not suited to any problem.

A MCTS is another reinforcement learning algorithm. The term Monte-
Carlo Tree Search was coined by Coulom in 2007 [98], by applying Monte
Carlo methods (i.e.: solving deterministic but intractable problems using
random sampling) to tree searches for decision making in Go. The gen-
eral idea is to build a tree to explore the search space, while balancing
exploitation of promising branches and exploration of unknown directions.
It proceeds in iterations, where the steps of one iteration are presented in
Figure 0.4. The search starts at the Tree root, and children are selected us-
ing a Tree policy based on the score of the node and the number of times it
has been visited. A leaf child is expanded by adding children to it, according
to chosen heuristics. The original part of the algorithm, using Monte Carlo
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Figure 0.3 Principles of active learning. This Figure is obtained from [95]. In synthetic
biology, the oracle is the result of an experiment performed by a human or a robot.

to evaluate the node, comes at the simulation step: random exploration is
performed from this node. In chess or Go, that would usually correspond
to playing a number of random moves until the game is won or lost. The
last step, termed back-propagation, consists of updating the Tree with the
results of the simulation. The tree itself decides what to explore to achieve
the reward it ought to maximize: winning in chess or Go [82, 83], scoring
higher at various video games [85] or optimizing a staff schedule according
to staff constraints [84].

Figure 0.4 Principles of Monte Carlo Tree Search. This Figure is obtained from [95].
Selection: Tree is traversed with the tree policy, which is the way to select the
points within the tree, balancing exploration and exploitation of known nodes. Ex-
pansion: New node added to the tree, selected using the tree policy. Simulation:
rollouts are played from new node using the default policy, which is used to explore
unknown space by random evaluation (Monte Carlo). Back-propagation: Final
state value is back-propagated to parent nodes.

One advantage of MCTS (and a notable difference with active learning) is
that it provides a systematic way to evaluate points even if this evaluation
is not straightforward. For example, in a game of chess, a state of the chess
board cannot be truly evaluated unless the game is finished and one of the
players has won. While one could argue that who has the advantage could
be evaluated by the number of pieces each player possesses or predefined
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set-ups that are supposed to give a strategic advantage, the real evaluation
of who has won is only at the end of the game. Evaluating the board based
on heuristics can provide hints but no definitive answer. This is also true in
retrosynthesis: one can only evaluate a synthesis plan for a given chemical
once all the starting chemicals are found, despite a synthesis plan seeming
promising. In order to overcome this problem, the advantage of MCTS is to
perform random simulations, which can be theoretically be performed until
the end of the game. Those algorithms are incredibly powerful, as exempli-
fied by the history of the win of programs against human masters in chess
and Go (detailed below). Therefore, in contrast to active learning where the
point of interest needs to be evaluated by an oracle, in MCTS the evaluation
comes from random simulation of the possible outcomes from the point and
the search does not necessitate oracle intervention.
In 1997, a historical milestone was reached in computer science when Deep-
Blue won its chess games against Gary Kasparov, especially in the eyes of
the general public [99]. Yet, the algorithm proceeded by brute force: it
evaluated all combinations, there was no artificial intelligence involved, just
incredible calculation power, which is why the achievement was later down-
played [100]. Such an approach is not possible in Go, as there are many
more combinations of moves ("In total, the number of different possible
arrangements of stones stretches beyond 10100" [101]), that cannot all be
evaluated in any meaningful way by a brute force algorithm given human-
ity’s current and foreseeable computational calculation power. It was then
seen as the next frontier in computational science applied to games [102].
In 2016, experts were still saying that computer programs did not stand a
chance against human players [103]. Yet, AlphaGo defeated Lee Sedol 4
times out of 5 with a program trained on thousands of expert games and
some self play [104]. This was seen as an incredible feat (acknowledged in
Science’s magazine’s breakthrough of the year [105]), but AlphaGo’s latest
version, that only learned through self play with reinforcement learning us-
ing a MCTS algorithm guided by neural networks, without ever seeing a
human game, won against its previous version 100-0 [82], showcasing the
incredible power of MCTS guided by deep reinforcement learning. Those
programs changed professional chess, as more and more scandals of players
cheating with smartphones are reported [106], and also gave rise to a new
discipline: centaur chess, where players and machines are teamed together
against other centaurs. What is interesting is that centaurs beat both hu-
mans and machines individually, showing associating human creativity and
machine calculating power makes the best of both worlds [107].
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The speci�cities of retrosynthesis

Retrosynthesis, and especially bio-retrosynthesis, does not only necessitate
an efficient combinatorial search algorithm. Indeed, while moves in chess or
Go are straightforward to implement computationally, that is not the case
with enzymatically catalyzed chemical transformations, which are the basic
moves to be carried out in retrosynthesis. I will first explain how chemical
reactions can be encoded and then the specificity of using enzymes, which
require a way to encode promiscuity (i.e.: capacity to catalyze multiple
chemical reactions, on different substrates).

Chemical reaction encoding

While a chemical reaction can be conceptually simple to represent with the
names of the compounds (i.e.: 6 carbon dioxide + 6 water = glucose + 6
oxygen), the question becomes more complex once one intends to account
for the actual chemistry of the reaction, and not reason simply by the names
of the molecules. Molecules have long been represented by structural for-
mula (2D graphs) or 3D representations that were hard (or computationally
inefficient) to manipulate, but new standards emerged and are now widely
adopted, such as the IUPAC International Chemical Identifier (InChI) or
Simplified Molecular Input Line Entry System (SMILES) (that uses meth-
ods from graph theory to depict molecules in a simple ASCII string [108]) for
molecules [109] and the SMILES arbitrary target specification (SMARTS)
language for reactions. While the InChI has the immense advantage of
providing a unique depiction for every chemical, both machine and human-
readable (for experts), it is not efficient for cheminformatics manipulation.
On the other hand, SMILES are not unique despite efforts towards canon-
ization by the community, but allow to work with SMARTS, which render
possible easy matching of substructures in a molecule, in a format that
is once again both human and machine-readable. This depiction of sub-
structures in SMARTS allow for representation of a chemical reaction as a
rule depicting a graph transformation between two sub-graphs encoding the
changes occurring at the reaction center [110]: one sub-graph of the sub-
structure common to all known substrates, the other to all known products.
An important point to note with the SMARTS representation is that an
atom–atom mapping (AAM) between the reactants and products is usually
required for computing this representation of the chemistry of the reaction.
Moreover, both when calculating the AAM and applying the rule under a
SMARTS format to a compound, finding a Maximum Common Substructure
(MCS) is necessary, which is a NP-hard problem and therefore computation-
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ally intensive, as well as highly dependent on the quality of the input data
(for example, chemical reactions should be balanced, i.e.: have the same
number of atoms of each type on each side).
Other approaches that do not necessitate AAM or graph handling were
therefore also developed by the cheminformatics community. Such an ap-
proach was pioneered by Faulon [111] and further developed by Carbonell
and Faulon on "reaction signatures" [112, 113], that encode compounds in
vectors where bits correspond to the occurrence of a given fragment in the
molecule. This conceptually resembles the Extended Connectivity Finger-
Print (ECFP), that are standard for calculating compound similarities [114].
Using these representations of compounds, a reaction can be computed as a
difference between products and substrates signatures, where bits now en-
code the net changes in fragments between substrates and products. Such
representations allows for much faster reaction computation, but necessi-
tate computationally intensive reconstruction of the molecule from a bag of
fragments once the reaction has been applied. Moreover, fragment-based
representations are often used for machine-learning applications in chem-
informatics as they allow an easy and chemically relevant representation of
data, as a bit representing whether a fragment is present or not in a molecule
has chemical significance [115, 87].
In this thesis, I mostly used SMARTS representation for reaction rules
(taken from the RetroRules database [116]), and ECFP for compound simi-
larity calculations. Other formats for representing compounds and reactions
include Bond Electron Matrix [117], Reaction-center Difference Match pat-
terns [118, 119] or MACCS keys [120]. However, once cheminformatics rep-
resentations are chosen for computing the reactions rules, questions remain
on how to treat the problem of enzyme promiscuity.

Enzyme promiscuity

First, enzyme promiscuity needs to be defined. "Substrate promiscuity oc-
curs when enzymes carry out their typical catalytic functions using non-
canonical substrates. By contrast, ’catalytic promiscuity’ occurs when the
catalytic abilities of the active site are used to catalyze a distinctly differ-
ent type of reaction." [121]. The term moonlighting can also be found for
proteins that perform multiple biological functions, and catalytic promiscu-
ity for enzymes would fall in that domain [122]. The alternative substrates
concerned by an enzyme’s substrate promiscuity usually share some chem-
istry, such as bonds, groups or overall aspect [123]. Enzyme promiscuity
is a key characteristic of enzymes, as it is thought to be a major driver of
evolution or adaptability of organisms [124, 125, 126, 127], as well as key for
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metabolic engineering as promising starting enzymes for protein engineer-
ing [128] or for screening against new substrates [129]. It is now thought to
be common [130, 123] and have influence on metabolism in what is termed
"underground metabolism". It could explain failure modes of current gene
essentiality modeling [131] and some approaches propose including it for
extending or gap-filling of metabolic models [132]. It is interesting to note
that while enzymes can reach high catalytic efficiency on those alternative
substrates, most enzyme databases (with the notable exception of Braun-
schweig Enzyme Database (BRENDA) [133]) record only the main reaction,
that has the highest catalytic rate. It is therefore necessary to model enzyme
promiscuity to make the most of current knowledge on the biochemistry of
enzymes and of the data currently available in databases.
Various attempts have been made at either predicting [126] or scoring en-
zyme promiscuity [134]. However, none of these approaches really solve
the problem of encoding promiscuity for retrosynthesis, where the degree
of promiscuity is paramount. Different strategies have been adopted mean-
while. The BNICE framework uses reaction rules based on the EC number
classification [135, 117, 136, 137], that sorts enzymatic reactions according
to the chemistry involved and are usually extremely generalist (i.e.: us-
ing a broad description that can apply to a number of molecules). On
the other hand, the approach taken in this thesis is to adopt a more data-
driven method, by automatically generating rules from databases of interest
[116, 138]. The user can tune the amount of promiscuity allowed, using a
feature called the diameter that will be described in more details in Chapters
1, 2 and 3 and has been described in the literature [112, 116, 138]. Tun-
ing the amount of promiscuity, used in conjunction with an efficient search
algorithm, is key to control the combinatorial space explosion as more gen-
eralist rules apply more broadly on substrates of interest and generate more
products that themselves have to be included in the retrosynthetic search.

The first part of this thesis will investigate the problem of using efficient
algorithms for combinatorial search for metabolic circuit design. More pre-
cisely, both the issues of pathway design using retrosynthesis and buffer
optimization using active learning will be covered. The second part of this
thesis will concern itself with analyzing the results from those metabolic
circuits, while current analysis and modeling tools are presented in the next
part of this introduction.
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Analysis and modeling tools for metabolic

circuits

As mentioned at the beginning of this introduction, synthetic biology was
defined from the start as an engineering discipline, stressing its use of math-
ematical modeling for circuit design and understanding. However, as was
sensed from the beginning of the discipline, care must be taken due to our
limited knowledge of biological effects and the degree of details required in a
model. For example, as early as 2007, emphasis was put on the importance
of modeling, to reduce the number of experiments needed to understand the
behavior of a biological system [139]. However, Kaznessis argues that there
should be first a reflection on the type of model according to the situation:
from an engineering point of view, the model needs to be ’at the level of
design degrees of freedom’. The author then pointed out two such degrees
of freedom in synthetic biology: either at the network level by changing the
topology of the circuit, or at the bio-molecular level when one wishes to
play on promoter sequences or chemical species quantities. The synthetic
biologist therefore has to consider not only his knowledge of the biology
underlying his system, but also the tools he can leverage to study it. Only
parameters that can be experimentally controlled, tuned or modified need
to be modeled as their impact on the system’s behavior can be studied.
There is no advantage from an engineering standpoint in modeling effects
that cannot be controlled or modified in a given experimental set-up (ribo-
some diffusion in the cell for example). This is an approach fit for synthetic
biology seen as an engineering discipline. Obviously, modeling can also be
seen as an interesting endeavor in itself, and as a way to formalize knowledge
and identify gaps that we need to fill in our knowledge of a system [140].
Modeling can be a way to ensure our knowledge of a system is sufficient for
understanding its behavior, or even be a driver of new biological discovery.
I will first make a broad presentation of different modeling strategies, mainly
for synthetic biology and metabolic engineering, before stressing the current
challenges faced specifically when developing metabolic circuits.

Di�erent modeling strategies

Kinetic models

Kinetic modeling has a long history in biology, including for example the
famous works of Michaelis and Menten on enzyme biochemistry [141] or
Monod for bacteria growth rates [6]. Kinetic models can have varying de-
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grees of detail, from a couple of biochemical species, to dozens or to hundreds
of them, each level of detail with its own type of challenges. The difficulty
of small-scale models will be to capture the subtleties in the data, while
the difficulties in larger scale models will be the parameterization and the
efficient computational simulation of such systems. Another key issue for
large scale models is to be identifiable: i.e., that parameters can indeed be
obtained from experimental data, which is obviously a growing issue as the
network and number of parameters grow in size [142]. One interesting point
to keep in mind is that "as measuring techniques improve, models will nec-
essarily need to become more complex to match the experimental results"
[55]. The authors stress again the fact that models should be simple as long
as they accurately represent data, and augment in complexity along with
experimental techniques. There is no necessity in modeling with extensive
detail and unknown parameters a system that can be readily explained with
a simpler model using for example the equilibrium assumption about tran-
scription factor binding. Interesting examples include the modeling used in
the original papers of the repressilator [8] or the toggle switch [9] for small
scale; on a larger yet manageable scale, a detailed mechanistic modeling of
an arsenic biosensor including different promoters, feedback regulation and
architectures has been performed [143]. The most comprehensive mathemat-
ical model for a whole cell so far is the genome-scale model of Mycoplasma
genitalium which represents all the formalized knowledge we have about this
organism [144]. A lot of effort was put in this work to efficiently simulate
different cellular processes using the best tool available for each, and manage
the different time-scales they occur at.

Stoichiometric models

Using a different approach, constraint based modeling aims at considering
large scale systems (often genome-scale models) and representing biological
knowledge in the form of constraints on reactions or fluxes, and usually solv-
ing this system for a given objective function. The most famous example of
constraints based modeling is undoubtedly Flux Balance Analysis (FBA),
where the assumption of steady-state allows for fast solving using linear
programming, and the assumption of optimality for the cell allows finding
fluxes and growth rates among the authorized space of flux given by the con-
straints. While FBA has had numerous applications since its inception in
biotechnology or to identify essential genes [145], numerous methods exist to
develop more complex and biologically accurate stoichiometric models [146].
For example, various frameworks extend FBA to include limited cellular re-
sources (resource balance analysis) [147, 148], thermodynamic constraints
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[149], promiscuity of enzymatic reactions [132] or enzyme structure activity
for assessing impact of temperature on the organism [150]. Some modelers
argue for the importance of hybrid models that integrate constraints-based
modeling with kinetics to allow dynamics simulation (dynamic FBA) [151].
While this is a burgeoning and fascinating field of research, this type of mod-
eling does not typically apply to questions in synthetic biology but rather in
metabolic engineering as they answer questions from a much more systemic
point of view than the behavior of the circuit of interest.

Current challenges in synthetic biology modeling

A number of reviews and opinions exist that present current challenges for
synthetic biology. Karamasioti and co-authors notably insist on the impor-
tance of accounting for context dependency and robustness of circuit design
to unknown or varying parameters [36]. Those problems, among others, will
be briefly presented below. Then I will present where this thesis fits in the
context of modeling in synthetic biology applied to metabolic circuits.

Resource competition and load

While it has been known for a long time in synthetic biology that excessive
demands on cellular resources can change circuit behavior, only recently
can burden be actually measured experimentally [43, 44]. While numerous
strategies now exist to model resource competition [152], Del Vecchio’s team
developed easy to use, well-thought and understandable tools now widely
used for modeling those effects in synthetic biology [153, 154]. Those models
modify the Hill equation [155] traditionally used for modeling promoter ac-
tivation in synthetic biology circuits to account for those limited resources.
Other approaches consider fractions of ribosomes dedicated by cells to dif-
ferent partitions of the proteome: circuit proteins, ribosomes, metabolic
enzymes, and housekeeping proteins. This allows to analyze the interac-
tions of gene circuits with the host cells (including growth rate) and not
only the effect of increasing circuit size like previous model [156].

Balancing mechanistic and empirical modeling

As has been hypothesized a number of times in this introduction, adapted
models for synthetic biology have the correct amount of mechanistic versus
empirical modeling so as to explain degrees of freedom for the bio-engineer
while remaining tractable. Yordanov et al. link steady-state dose response
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shifts of biological systems to the underlying biochemical parameters [157].
Other papers look at the importance of modeling DNA copy number [158,
159] to understand effects beside simple increase in mRNA production.

E�cient parameterization of models

A major question for synthetic biology at the moment, notably for large
scale kinetic modeling, is the correct parameterization of models with bi-
ologically relevant parameters. One way to approach the problem is to
make consistent parameters from available databases, knowing their limits
(such as experimental conditions for measures, in vitro measurements and
not in vivo, reliability of measurements ...) and build consistent parameter
sets from those databases [160]. Others include efficiently characterizing
parameter uncertainty in the model [161], including by identifying circuit
topologies whose behavior is robust to variation in parameters [162].

Single-cell modeling

With the expanding experimental high-throughput toolkit available to the
experimentalist, it is now possible to gain insight into single-cell circuit
behavior. This allows fascinating discoveries into whether differences in be-
havior are due to stochastic effects of the process in itself (such as transcrip-
tional bursting [163]), or if the cells have slightly different rates for those
processes, which would also explain the population distribution of circuit re-
sponse [164]. Calibrating models for single cells [165] and generalizing such
measures to ensure true understanding of a circuit behavior are on their way
but the synthetic biology community is not there yet. Real time control of
a single cell proves this is indeed possible given the correct experimental
set-up and computational tools [10].

Bacterial community modeling

One of the next frontiers in synthetic biology is community distributed path-
ways or circuits [166]. Despite advances in modeling such behavior, for ex-
ample quorum sensing [167], there is still much to do, notably to make the
most of newest parallel computing technologies with tools tailored for biol-
ogy to represent individual trajectories of cells in a population [168]. Those
models can also be interfaced with other modeling approaches presented
before, to model both individual cells and community approaches with suf-
ficient level of detail to capture interesting collective behaviors.
While numerous challenges exist in mathematical modeling for the field of
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synthetic biology, the main aim of this thesis regarding metabolic circuits
was not theoretical but practical: it was to have models that could reproduce
the experimental data at hand, to ensure our knowledge was sufficient to ex-
plain the observations, and give insights to make the circuits function, rather
than to develop new modeling strategies. However, given the importance of
resource competition in our circuits, this was included in Chapters 9 and 10
with two different strategies best adapted to the situations at hand.

Thesis structure and contributions

Due to the extensive collaboration this thesis involved, my contributions,
mentioned in the present introduction, will also be detailed at the beginning
of each chapter. The conclusion will also analyze my contributions and their
limits.

Part 1: Computational design tools: e�cient navigation

through complex combinatorial spaces for retrosynthesis

and experiment design

The first part of this thesis will be focused on utilizing efficient algorithms
for navigating complex combinatorial spaces to design metabolic circuits.

• With Chapter 1 [169], we will see in details the retrosynthesis algo-
rithm that was developed prior to my arrival in the team (RetroPath
2.0). Within this Chapter, I wrote the pathway design part.

• With Chapter 2 [170], we will see how such tools can be used for
navigating the chemical space for purposes other than retrosynthesis.
For this Chapter, my main contribution was the mathematical proof
of the use of such algorithms for isomer enumeration.

• With Chapter 3, we will see how a new similarity-guided search algo-
rithm using Monte Carlo Tree Search was implemented for more effi-
cient retrosynthesis. I conceived, developed and tested the software,
as well as wrote the article.

• With Chapter 4 [76], I will present a dataset that was published to
facilitate use of retrosynthesis for biosensor design, necessary to detect
metabolic circuits output. For this Chapter, I did literature curation
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and data formatting. I also regularly updated the dataset with litera-
ture curation.

• With Chapter 5, we will see the use of active learning algorithms for
improved protein production in cell-free systems. For this Chapter, I
developed the active learning methods used in the submitted article
presented as Chapter 5. This can be used to optimize the cell-free
composition for improving metabolic circuits’ expression.

Part 2: Analyzing and modeling metabolic circuits: from

data to knowledge

The second part of this thesis will be focused on analysis and modeling tools
for metabolic circuits.

• With Chapter 6 [75], I will review how to build biosensors and the
next steps in the field of transcriptional biosensor design and tuning.
Biosensors are the first building block for metabolic circuits, as they
allow signal detection, and I wrote the review presented in this Chap-
ter.

• With Chapter 7 [171], we will see the development and modeling of
an in vivo biosensor for pinocembrin and naringenin. My work in this
article involved modeling our biosensor, and notably accounting for
the effect of plasmid DNA copy number on biosensor sensitivity.

• After this in vivo work, my colleagues and I decided to use cell-free
systems for the rest of our metabolic circuit developments, for the
various advantages they present. I will first review the state of the art
of modeling cell-free systems in a review presented as Chapter 8 [172].

• We will then see with Chapter 9 [173] a cell-free implementation of
simple metabolic circuits designed with the tools presented in Chapter
1. My contribution to this article consisted of modeling our results for
understanding whether our current knowledge on resource competition
could explain the results obtained by the other authors.

• Finally, I will present in Chapter 10 [174] an implementation of metabolic
circuits. Those were also designed using tools presented in Chapter 1.
My contribution was the design and empirical modeling of the individ-
ual parts of the metabolic circuits, and prediction of circuit behavior
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for successive rounds of experiments, in collaboration with the other
authors of the article.
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Part I

Computational design tools: e�cient

navigation through complex combinatorial

spaces for retrosynthesis and experiment

design





1Enzyme Discovery: Enzyme
Selection and Pathway
Design

This work was published in Methods in Enzymology by Pablo Carbonell,
Mathilde Koch, Thomas Duigou and Jean-Loup Faulon.
Only minor modifications to the published paper have been introduced in
the Chapter below.

Detailed contribution to this thesis

The methods discussed in this publication were first described in [138] and
[175]. P.C. wrote the Enzyme Selection section, M.K. and T.D. wrote the
Pathway Design section and J.-L.F. supervised the project.
The aim of this Chapter is to present methods used in the team before
my arrival to perform retrosynthesis and my contribution presented in the
RetroPath3.0 Chapter. The biochemical reactions catalyzed by enzymes are
described using reaction rules, learned from data taking into account more or
less of the chemical context around the reaction center, allowing us to encode
enzymatic promiscuity. One of the main limits of the tools presented in this
Chapter is the brute force algorithm that is used to perform the search,
as such a huge combinatorial space necessitates better search algorithms.
The limits of the methods presented in this Chapter therefore justify the
novel developments presented in the RetroPath3.0 Chapter. However, the
chemical reaction rules extraction and usage is conceptually identical.

Full reference
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1.1 Abstract

In this protocol, we describe in silico design methods that can assist in the
engineering of production pathways that are based on enzymatic transforma-
tions. The described protocols are the basis for automated processes to be
integrated into an iterative Design–Build–Test–Learn (DBTL) cycle in syn-
thetic biology for chemical production. Selecting the right enzyme sequence
for a desired biocatalytic activity from the extensive catalogue of sequences
available in databases is challenging and can dramatically influence the suc-
cess of bioproducing chemical compounds. A method for enzyme selection is
presented that helps identifying candidate enzyme sequences through a scor-
ing approach that considers not only sequence homology but also reaction
similarity. Selecting a viable biochemical pathway for compound production
requires screening large sets of reactions in a process involving combinatorial
complexity. A method for pathway design using retrosynthesis is presented.
The protocol allows the discovery of alternative chemical pathways leading
to the final product by using reaction rules of selectable degree of speci-
ficity. The protocols can be reversed through clustering discovery and prod-
uct identification processes. The integration of these protocols into a general
pipeline provides a toolbox for enhanced automated synthetic biology design
and metabolic engineering.

1.2 Introduction

Industrial biotechnology is facing two main challenges to develop more sus-
tainable alternatives to petroleum-based chemistry: (1) its high R&D costs
and (2) the limited range of compounds currently available for bioproduc-
tion. Computational strategies could help in addressing both these issues by
integrating the increasing number of available tools into a unified pipeline to
develop engineered organisms for the production of high-value compounds
[176]. Enzymes are the essential building blocks enabling the chemical bio-
transformations leading to formation of the desired compounds. Several
tools exist to select candidate sequences for the enzymes at each step of a
given pathway including antiSMASH for biosynthetic gene clusters [177], as
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well as tools based on reaction homologies like EC-Blast [178] and E-zyme
[179] or based on machine learning [180, 181].
Alternative metabolic pathways are first in silico designed and assessed be-
fore being built and tested [182, 183, 184, 185]. While some computationally
driven strategies make combinations of known metabolic reactions albeit not
necessarily in the same chassis [186], others allow to design pathways that
use novel reactions not stored in metabolic databases through the use of
promiscuity hypotheses [187, 188, 112, 138, 189, 137, 190, 191].
In this protocol, we describe in silico design methods associated with the
engineering of pathways for chemical production through enzymatic trans-
formations with the goal of automating processes that can be integrated
into iterative DBTL cycles like those present in synthetic biology projects.
As depicted in Figure 1.1, we consider several scenarios where computa-
tional methods can provide solutions to enzyme-related design problems
often found in the context of bioproduction of chemicals: enzyme selection,
cluster discovery, and pathway design.

Figure 1.1 Enzyme selection, cluster discovery, and pathway design. (A) Enzyme
selection identifies candidate enzyme sequences. (B) Pathway design allows dis-
covering alternative chemical transformations leading to the product. (C) The
discovery process is reversed when the final product is unknown, cluster discovery
allows annotating chemical transformation for a given gene cluster, and product
identification predicts chemical products of the pathway.

1.3 Enzyme selection

1.3.1 Introduction to Enzyme Selection

This protocol considers the scenario where a production pathway and its
associated product are known. In that case, we use computational meth-
ods to replace individual enzymes by more efficient and/or specific alter-
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natives. Choosing appropriate enzyme sequences to efficiently catalyze the
set of reactions that are contained in production pathways is a relevant de-
sign problem whose solutions will depend on the specifications, for instance
whether the system will work on cell or cell-free environments or the process
conditions. Selecting the right starting enzyme sequences for each case can
dramatically influence the success of the overall project. Low-performance
enzymes can create bottlenecks in the pathways and lead to poor titers,
yields, and productivity. When bottlenecks are present, enzyme engineer-
ing provides strategies like directed evolution for adaptation of the enzyme
sequence toward the desired activity. However, applying directed evolution
might not be always feasible and, even when it is the case, choosing the right
initial parent enzyme is an important requirement to increase success rates.
Here, we describe a method for automated sequence selection with the ability
to mine reactions that are expressed in generalized rules. Our approach pro-
vides a systematic way for addressing either natural or non-natural chemical
diversity of biosynthetic pathways by limiting ourselves not only to natural
biochemical reactions but also to de novo engineered pathways. The method
can therefore assist in the selection of heterologous candidate enzymes to ex-
press for both natural and non-natural target reactions.

1.3.2 Protocol Description (Selenzyme)

Enzyme sequence selection is often performed based on sequence homology,
i.e., by mining protein databases like UniProt through Basic Local Align-
ment Search Tool (BLAST) searches. This approach is useful in order to
identify families and classes of enzymes that potentially share similar func-
tions. Multiple sequence alignments of homologous can help us to identify
alternative parent enzymes by looking at conserved regions and hot spots
for directed evolution through [192]. However, this approach has still some
room for improvement, as described in this protocol by looking closer at
the chemical transformations that are achieved by these homologous se-
quences. Notably, looking for enzymes with similar annotated chemical
reactions helps us to identify alternative enzymes not found by performing
a search that is based solely on sequence alignments.

Preparation Steps

Pathway Representation and Use of Generalized Transformations The goal of
this method is to have a proper methodology that can be applied to system-
atically search for enzyme sequences and for any given pathway such as the
ones identified by protocols described in this chapter. Most importantly,
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the approach should be able to work with reactions for which no known
sequences are available in enzyme databases. The method should be able to
provide a list of suggested enzyme sequences as parent templates for enzyme
discovery of sought activities.
The first step is to encode each of the reactions in the pathway in a mean-
ingful way that can be processed to compare chemical similarity.

1. Reactions can conveniently be represented using the SMILES/SMARTS
notation [108], as it provides an intuitive notation and can be either
sketched by hand or through a chemical editor.

2. A reaction SMILES is formed by combining together the SMILES sym-
bols for reactants, agents (optional) such as catalysts, solvents, etc.,
and products (a detailed example is shown in Figure 1.4). Whereas
SMILES representation for chemicals is commonly found in online re-
action databases like KEGG, MetaCyc, etc., reactions represented in
SMILES format are found less frequently. For instance, the reaction
database Rhea allows downloading any reaction in Molecular Design
Limited (MDL) RXN format rather than SMILES.

3. Molecular format converters like OpenBabel [193] or molecular toolkits
like RDKit [194] can read and interconvert between reaction formats.

4. Moreover, a useful feature of the SMARTS representation is that it
allows for generalized transformations, generally called reaction rules.
Reaction rules are a powerful tool in this context because they allow us
to define a class of reactions and therefore to consider alternative en-
zyme candidates. In this chapter, the power of using reaction rules for
retrosynthesis is shown, and Figure 1.4 provides examples of SMARTS
encoding for reactions.

Computing Reaction Similarity

Several approaches are possible in order to define a metrics that measures
similarity between reactions. Notably, Reaction Decoder Tool (RDT) [195]
(available at https://github.com/asad/ReactionDecoder) provides one type
of reaction comparison based on bond changes, reaction centers, or sub-
structures. This tool requires AAM in order to be able to identify reaction
centers and bond changes (see section about atom–atom mapping in this
chapter). Here, we take a different approach to describe a simplified algo-
rithm that does not require AAM and is based on computing similarities
between reactants.
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Description of the general work�ow In order to compute similarity between
two chemical species, we employ a fingerprint approach as described in the
following workflow and summarized in Figure 1.2.

Figure 1.2 Computing reaction similarity. A Similarity between tyrosine ammonia lyase
EC 4.3.1.23 (top) and phenylalanine ammonia lyase EC 4.3.1.24 (bottom) is com-
pared by using fingerprints. B For clarity, short fingerprints of 64 bits were com-
puted using RDKit limited for the two substrates (tyrosine and phenylalanine) and
the two products (coumarate and cinnamate). A first approach consists on comput-
ing similarity between left (S) and right (P) reactants by counting the number of
common bits in the fingerprint. A second approach consists on computing left (L1,
L2) and right (R1, R2) fingerprints for the reaction centers (bits not in common
between left and right reactants) and then to count number of common bits in the
left (L) and right (R) reaction centers.

1. Fingerprints are binary vectors where each chemical feature is repre-
sented by one or more components of the vector as bits [196]. The
features spanned by the vector are generally related to topological
elements of the chemical structure like fragments, pharmacophores,
etc. Since the number of components that exist in the chemical space
can become very large, fingerprint vectors are usually limited in size
through a compression technique known as "hashing". Hashed fin-
gerprints can be computed by several cheminformatics toolboxes like
RDKit for Python or through workflow systems like KNIME [197].
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2. To compute similarity between chemicals, we compare their finger-
prints. For that purpose, there are several metrics available [196],
the Tanimoto similarity being one of the most widely used. For bi-
nary fingerprints, Tanimoto similarity can be computed as the ratio
of common bits divided by the total number of bits in the molecules,
making this calculation very efficient.

3. In order to compute similarity between reactions, we can use two types
of strategies based on reactant or reactions fingerprints.
Reactant fingerprints

• For each left reactant, we compute pairwise similarities to each
right reactant and keep the closest one.

• For each right reactant, we compute pairwise similarities to each
left reactant and keep the closest one.

Reaction fingerprint

• Define an overall reaction fingerprint as the difference between
the sum of fingerprints of the products and the sum of reactants.

• Alternatively, it can be computed by using OR and XOR logical
operations instead of computing the sum and difference, respec-
tively. However, this last approach has the drawback that it does
not make a difference between chemical features that are created
or transformed through the chemical reaction.

4. Finally, reaction similarity is computed by comparing the resulting
fingerprints

• For reactant fingerprints, average both left and right closest sim-
ilarities in order to obtain an overall similarity between the two
reactions.

• For reaction fingerprints, compute similarity between the overall
fingerprints.

• An alternative solution for reaction fingerprints is to keep a ta-
ble with two fingerprint vectors, one consisting on the substrate
features that are transformed and another one for the product
features and measuring similarity in a similar approach as for
reactant fingerprints (see Figure 1.2).

Reaction Directionality In the previous description, we assumed a preferred
direction for the reactions. When this is not the case, we may compute sim-
ilarity in both directions in order to keep the one that is the closest one. In
principle, databases like MetaCyc, KEGG, or BRENDA [198, 133] contain
information about reaction′s preferred direction, reversibility and, increas-
ingly, data about free Gibbs energy. When this information is not available,
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several strategies are possible in order to assign a preferred direction to the
reaction.

1. Estimation of reaction thermodynamics by using group contribution
methods [199]. Each chemical group in the reaction contributes to
the free Gibbs according to some tabulated experimental data. The
balance between left and right groups provides roughly an estimate of
free energy and eventually allows determining the reaction direction.
This is the strategy used by some databases like MetaCyc [200] and
in some organism models [201].

2. Knowledge-based reaction direction inference. If a set of reactions with
a high level of confidence knowledge of their direction are available, we
can use such information in order to infer the most plausible direction
for another given reaction. The algorithm is as follows:

a) Start with initial set of reactions with curated direction informa-
tion.

b) Collect information about reactants and cofactors for each reac-
tion in the reference set.

c) Extract a list of currency metabolites (common cofactors) from
a reference database.

d) FOR each non-annotated reaction:
i. Identify left and right cofactors and main reactants based on

information from a b and c.
ii. Search for top similar annotated reactions
iii. Extract frequency of left/right cofactor pairs.
iv. Set direction with highest frequency in top similar reactions

based on left/right cofactor pairs

Screening, ranking and selection

Database screening In order to identify candidate enzyme sequences for a
given chemical transformation, screen the target reaction against the reac-
tions in an annotated metabolic database like Metacyc, MetaNetx [202], or
Biochem4j [203].

1. The calculation should be performed in a computationally efficient
way. A similarity algorithm like the one described in the previous
section based on fingerprints is therefore required.

2. Reactions in the database are classified in descending order of simi-
larity according to the fingerprint algorithm. For each reaction, add
annotated sequences to the candidate list until either the maximum
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number of allowed sequences is reached or some similarity minimum
threshold has been exceeded.

Properties′s calculation The list of candidate sequences obtained in the pre-
vious step might contain redundancies as well as over-representation for
some reaction classes. Therefore, the next step is to analyze the set in order
to characterize each protein according to key properties and to ultimately
provide some ranking leading to candidate selection.

1. Based on the information contained in the database, reactions can
be classified according to their reaction Enzyme Commission (EC)
class. This information can help in order to perform a quick initial
preselection.

2. Redundancy in sequences can be easily identified through CD-HIT
[204], which provides a fast way of clustering large sets of sequences.

3. A multiple sequence alignment of the sequences is then applied to
get a more detailed comparative analysis of the sequences with the
advantage that it can help to identify conserved regions in the protein,
using T-Coffee [205] or ClustalW.

4. Additional position-based and global properties can be computed using
packages like EMBOSS [206], amino acid indexes [207], or online tools
like PredictProtein.

5. Other properties: position-specific scoring matrices (PSSM) using PSI-
BLAST, functional domains using pfam collections and HMMER.

Ranking of Sequence Candidates Once the list of sequence candidates with
calculated properties has been generated, the list needs to be prioritized.
The criteria for ranking might vary depending on the application. For en-
zyme sequences that are going to be expressed in heterologous host, a rank-
ing can be formed based on the following criteria:

1. Protein properties: percentage of secondary structure (helices, sheets,
turns), molecular weight, isoelectric point, percentage of polar amino
acids, etc.

2. Functional properties: target reaction similarity, UniProt protein evi-
dence, sequence conservation in the alignment, etc.

3. Host-specific properties: sequence taxonomic distance to host organ-
ism, solubility or toxicity toxicity.

By combining together these properties through weighted sums, we can ob-
tain a score for the sequence. Weights in the score can be heuristically fitted

33

https://www.predictprotein.org/
http://pfam.xfam.org/
http://scratch.proteomics.ics.uci.edu/
http://exploration.weizmann.ac.il/pandatox


by downloading the proteome sequences of the host organism and calculat-
ing typical values obtained for each of these parameters. A more complex
scoring function can be also developed by employing machine learning using
host-specific values for computed protein properties as a training set.

Selenzyme: Online Enzyme Selection Tool

Selenzyme is a free online tool for enzyme selection that integrates the afore-
mentioned features to efficiently search for enzyme sequences starting from
some target reaction [175].

1. User′s queries consist of a target reaction expressed in SMILES or
RXN format or cross-referenced to an external database identifier or
EC classification.

2. The software outputs a table of candidate sequences that can be ranked
based on different criteria. In addition, the user can manually add
or remove additional sequences to the table. A multiple sequence
alignment of the output table can be visualized through MSAViewer
[208].

An example of output table from Selenzyme is shown in Table 1.1. The input
query was the reaction SMARTS shown in Figure 1.4. Several properties
were computed for the sequences that are annotated for the closest reactions
to the target. A score is calculated for each sequence based on decreasing
order by reaction similarity, taxonomic distance, sequence conservation, and
protein evidence.
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Score Seq. ID Organism
source

Tax.
Distance

Protein
Evidence

Consv.
Score

% He-
lices

%
Sheets

%
Turns

%
Coils

Mol.
Weight

Isoelec.
Point

Polar
(%)

127.7 P61891 E. coli O157:H7 3 3 58 39.5 33.8 7.4 24.7 32,337.3 5.4603 39.423

98.7 P61895 Raoultella terri-
gena 6 3 59 35.9 38.3 8.6 24.9 23,055.38 5.043 40.889

97.7 Q83Q04 Shigella flexneri 6 3 58 39.2 33.8 7.8 24.7 32,349.36 6.5453 39.423

77.7 Q59838 Salmonella
muenchen 8 3 58 41.2 31.8 8.6 24.3 29,502.96 5.7944 40.636

69.7 P61897

Pectobacterium
carotovorum
subsp. caro-
tovorum

9 3 60 28.3 40.6 13.8 29 16,148.7 9.297 42.208

65.7 C5BF98
Edwardsiella
ictaluri (strain
93-146)

9 3 56 38.2 35.1 6.8 25.3 32,348.45 4.9809 36.859

57.7 A1JIV0

Yersinia entero-
colitica serotype
O:8/biotype 1B
(strain NCTC
13174/8081)

10 3 58 35.6 34.6 9.5 25.8 32,581.62 5.815 40.193

56.7 P37226 Photobacterium
profundum 10 3 57 41.6 34.5 7.1 22.3 32,293.2 4.7141 37.5
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46.7 B5FGF5 Vibrio fischeri
(strain MJ11) 11 3 57 43.1 29.2 8.8 24.4 32,252.09 4.5494 37.942

46.7 A8FRU0
Shewanella sed-
iminis (strain
HAW-EB3)

11 3 57 47.1 31.2 4.4 22.7 32,010.79 4.5659 37.299

43.7 Q5WU94
Legionella
pneumophila
(strain Lens)

11 3 54 36.6 30.6 14.3 23.6 36,063.95 5.7759 45.758

39.7 A4G5Z9 Herminiimonas
arsenicoxydans 12 3 60 47.6 27.5 9.9 20.1 35,364.65 7.0784 41.641

38.7 Q5H496

Xanthomonas
oryzae pv.
oryzae (strain
KACC10331/
KXO85)

12 3 59 42.3 29.5 9.6 23.7 34,925.04 5.4464 39.939

34.7 B0BQN0

Actinobacillus
pleuropneumo-
niae serotype 3
(strain JL03)

12 3 55 51.5 29.2 6.6 17.9 33,404.75 5.4643 38.17
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31.7 Q14IT0

Francisella tu-
larensis subsp.
tularensis
(strain FSC
198)

12 3 52 45.9 33.7 11.6 14.2 34,090.77 7.3844 40.752

29.7 Q8XXW5

Ralstonia
solanacearum
(strain
GMI1000)

13 3 60 47.3 30.4 6.7 20.8 35,422.8 6.6924 39.818

29.7 Q393V1

Burkholderia
lata (strain
ATCC 17760/
LMG 22485/
NCIMB 9086/
R18194/ 383)

13 3 60 54.5 26.9 9 14.7 35,131.36 5.7875 40.549

28.7 A1VRQ1

Polaromonas
naphthalenivo-
rans (strain
CJ2)

13 3 59 51 22.1 8.3 23.7 34,845.99 5.4269 38.415

24.7 Q2GCH6
Neorickettsia
sennetsu (strain
Miyayama)

13 3 55 51.2 30.4 5.7 18.1 33,851.77 8.3718 39.683

Table 1.1 Output Table From Selenzyme Based on Reaction SMARTS for EC 1.1.1.3737



Integration With RetroPath2.0 and Other Work�ows Selenzyme has been inte-
grated into the SYNBIOCHEM-automated DBTL pipeline for fine chemical
production [209]. The output of the pathway discovery tool RetroPath2.0,
described in this chapter, can point to Selenzyme queries allowing enzyme
sequence discovery for each step in the pathway.
Selenzyme provides a RESTful service allowing query submission through
web-based applications. A KNIME node [197] making use of the RESTful
service is available at http://www.myexperiment.org/packs/734. The reac-
tion query can be generated using the cheminformatics workflows in KNIME
and the resulting tables containing sequences can be easily processed down-
stream.

Other Applications of the Protocol

1. The described protocol has been focused on enzymes in production
pathways. However, the application of the protocol can be extended
to other applications such as in the development of enzyme-mediated
biosensors [77], in the design of transporters, etc.

2. The protocol described here provides a first step when selecting for
some target reaction. The resulting list of candidate enzymes as well as
the resulting multiple sequence alignment (Figure 1.3) can be used as
a starting point in order to carry out structure-based enzyme analysis
of design.

Improvements of the Protocol

Several improvements are possible on the described protocol.

1. Estimating enzyme efficiency based on kinetic parameters when they
are available. Database like BRENDA [133] provides kinetic values
obtained by enzymatic assays, which can provide a first estimate of
enzyme efficiency.

2. Using machine-learning techniques to predict enzyme efficiency using
kinetic parameters in databases as training set [181].

3. Balancing multi-enzyme pathways: enzyme selection for multi-step
pathways should consider overall pathway performance, i.e., searching
some compatibility in the reactions (same source, kinetics, etc.). This
approach can also be used to guide pathway tuning through transcrip-
tional and translational parts either to refactor a natural gene cluster
or to balance a de novo pathway from multiple heterologous sources.

38

http://www.myexperiment.org/packs/734


Figure 1.3 Selenzyme result for EC 1.1.1.37 Detail of a multiple sequence alignment dis-
played by Selenzyme for the example given in Table 1 for EC 1.1.1.37

1.4 Pathway Design

1.4.1 Introduction to Retrosynthesis

This protocol considers the scenario where a desirable product is known, but
no natural pathway leading to it is known. In such a case, we use retrosyn-
thesis to discover possible pathways. Such algorithm generates networks
linking the target compounds that one desires to bioproduce (the source) and
the metabolites of the chassis strain (the sink) by applying chemical rules.
These networks are then processed to extract biologically relevant informa-
tion. For example, pathways can be enumerated [210] and ranked based
on several criteria including enzyme availability and performance, product
and intermediate compound toxicities [211], or the theoretical yield of the
desired compound [187, 188, 212, 190, 213]. Users of retrosynthesis-based so-
lutions often face a challenge common to most of these tools: the algorithms
and the underlying data are often not fully documented and released. In
most cases, authors provide fine-tuned webservers [187, 113, 188, 189, 214]
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filled with pregenerated data that focuses on some exemplar cases. On the
contrary, [138] provide the open-source workflow RetroPath2.0 based on the
KNIME analytics platform [197] that uses community nodes and is there-
fore fully modular and can easily be tuned to a user’s need. We describe
first a protocol based on the RetroPath2.0 workflow and the necessary steps
to generate and use retrosynthesis for bioproduction. The tool is available
at myExperiment.org along with a set of reaction rules and some classic
metabolic engineering examples to test RetroPath2.0 features.

1.4.2 Protocol Description (RetroPath2.0)

Preparation steps

Sink and Source De�nition The first step to generate a retrosynthesis map is
to encode all compounds of interest in a format that will allow processing
by the retrosynthesis algorithm. Source compounds are the compounds the
workflow starts iterating upon (compounds one desires to produce) and the
sink compounds are the compounds where the algorithm stops (either the
metabolome of the chassis organism or compounds easily supplemented in
the media).

1. Gather compounds from a whole-cell metabolic model of the chassis
organism of interest. It must include structural data for compounds.

2. Filter out compounds with incomplete structure. They often stand to
define a class of compounds and cannot be processed further.

3. Select the sink compounds: either the whole set of compounds from
the chassis organism or a subset selected based on expert knowledge.
One can, for example, remove compounds belonging to blocked path-
ways by performing a flux-balance analysis. Sink compounds can also
include molecules easily supplemented in the media.

4. Choose source compounds that one desires to bioproduce and collect
associated structural information in order for the algorithm to process
them.

Reaction Rules The second step is to encode (bio)chemical reactions that
will be used to perform the retrosynthesis. RetroPath2.0 uses reaction
SMARTS to encode reactions. It is a SMIRK-like reaction rule [108] format
defined by RDKit [194].

40

https://www.myexperiment.org/workflows/4987.htm


1. Select a database containing reaction information. Such database
should at least provide the structure of each compound involved in
a reaction.

2. Remove all reactions that do not modify the structure of a compound
(transport reactions for example) and reactions involving incomplete
structures (class of compounds, R-groups, etc.). Remove stereochem-
istry.

3. Perform an AAM to identify the reaction center (i.e., the part of the
molecule that changes during the reaction). This AAM is also neces-
sary later on to compute the reaction SMARTS.

4. Before building the monocomponent rules, one should consider the
reactions in the reverse direction, i.e., consider the natural products as
substrates and natural substrates as products. This is only needed for
a retrosynthetic usage. Decompose multiple substrate reactions into
components. There are as many components as there are substrates
and each component gives the transformation between one substrate
and the products. Each product must contain at least one atom from
the substrate according to the AAM. This strategy enforces that only
one substrate can differ at a time from the substrates of the reference
reaction when applying the rule. Cosubstrates and coproducts that
are currency cofactors (such as water, CO2, adenosine triphosphate
(ATP), Nicotinamide Adenine Dinucleotide Phosphate (NADP), etc.)
can be ignored from the rules under the assumptions that they are
available in the cell and that there is no gain for retrosynthesis analysis
in modeling promiscuity on these compounds.

5. Compute reaction rules as reaction SMARTS for each component. Do
it for varying diameters around the reaction center (2–16 in RetroPath2.0)
by removing from the reaction components all atoms that were not in
the spheres around the reaction center atoms (Figure 1.4).

Building a Retrosynthesis Network

Once the user has performed the preparation steps, the rules, sink, and
source are provided as inputs to RetroPath2.0 that builds the retrosynthesis
network. The following section describes the steps followed by the algo-
rithm. It will help highlighting key tunable parameters for the advanced
user: scoring of the enzymes, number of compounds kept for the next iter-
ation, maximum number of steps, as well as the role of the reaction diame-
ter.
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Figure 1.4 Rules and SMARTS for reaction 1.1.1.37 Retropath 2.0 rules and correspond-
ing SMARTS for reaction 1.1.1.37 at various diameters. A Reaction 1.1.1.37 with
atom mapping. The level of promiscuity is modeled by the diameter (∞ purple, 4
blue, or 0 green), i.e., the number of bonds to consider around the reaction center
(atoms 5 and 6), defining the atoms kept in the rules. B The SMARTS correspond-
ing to the reaction rules at the various diameters. For readability, cofactors are not
considered.

General Work�ow Presentation The RetroPath2.0 workflow essentially fol-
lows the algorithm described below, proceeding in an iterative manner. For
the sake of clarity, we present here the algorithm for one initial source com-
pound, but it can process multiple compounds in parallel.

1. Verify the source compound is not already present in the sink.
2. Start iteration by applying the rules to each compound of the source

set. The workflow starts by applying rules at the biggest diameter
allowed by the user, typically d = 16. If no product is formed, the
diameter is decreased to the available diameter value just below, al-
lowing matching for shorter fragments and therefore more promiscuity.
This step is repeated until some products are formed or until all possi-
ble diameters have been exhausted. For each compound, the products
are computed using the RDKit KNIME nodes [194]. Products are
standardized and duplicates are merged. All substrate-product pairs
are added to the growing network along with the reaction rules linking
them.

3. (Optional) Products can be scored according to a rule prioritization
scheme. The one used in RetroPath2.0 will be briefly described below.
Products are ranked according to the score of the rule used to produce
them at the current iteration.
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4. In the next iteration, the set of products becomes the new source
set. However, before iterating, the workflow removes from the new
source set all compounds that belong to the sink (as these are already
solutions and there is no need to iterate) and the workflow adds the
product set to the sink in order to avoid applying reactions on the
same products during subsequent iterations.

5. Apply steps 2–4 either a predefined number of iterations or until the
source set is empty.

6. The final produced graph is composed of the list of links between
substrates and products annotated with their corresponding reaction
rule. Products belonging to the initial sink set are annotated as such.

Remark: Rule Scoring by Enzyme Sequence Consistency As mentioned in the
optional step 3 of the algorithm, products can be scored according to a rule
prioritization scheme. In RetroPath2.0, this is done by scoring the confi-
dence one can have that a rule is indeed linked to a trustworthy enzymatic
sequence. More specialized scoring strategies are possible depending on the
selected enzyme sequence. A description of the Selenzyme protocol can be
found in this chapter.

Pathway Enumeration Between Two Pools of Compounds

Computing the Scope The aim is to compute the metabolic scope connecting
the source compounds to the sink compounds, i.e., the set of compounds and
reactions that are involved in at least one pathway.

1. Forward search: starting from source compounds, find all reachable
compounds. A compound is considered as reachable whenever it is in
the initial sink or if it is producible using a fireable reaction.

2. Backward search: starting from the sink compounds, add to the scope
all reactions that can be fired, as long as the reaction substrates are
all reachable.

3. (Optional) Simplify the scope by only keeping the shortest paths from
the compounds of interest to the sink.

4. Visualize and explore the scope thanks to ScopeViewer, a web appli-
cation provided in [138].

Enumerating Pathways For each source compound, proceed to the following
steps to find pathways producing this source compound.
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1. Build the stoichiometric matrix. The stoichiometric matrix describes
the directed subnetwork involving the set of compounds and reactions
identified at the scope step, starting from the source compound of
interest.

2. Enumerate elementary flux modes. An elementary mode corresponds
to a minimal unique set of reactions that (i) verified the stoichiometric
constraints of the network and (ii) is able to carry nonzero fluxes at
the system′s steady state [215]. Only enumerated flux modes linking
source compounds to the sink compound are kept in order to form the
final list of pathways.

3. Enumerate the pathways from the elementary flux modes. We provide
at https://github.com/brsynth/rp2paths a separate utility program
"RP2paths" allowing one to enumerate pathways from the results gen-
erated by RetroPath2.0.

1.4.3 Use case: 1,4-Butanediol Pathways Prediction

Using RetroPath2.0

1,4-Butanediol is an important commodity chemical used as a starting point
for the synthesis of other chemicals and polymers such as the polybutylene
terephthalate, a unique engineering plastic. While most of the production of
1,4-butanediol is performed by chemical synthesis and is still making use of
petroleum-based feedstock, a bioprocess alternative has been first reported
in [191].
Here we showcase the usefulness of RetroPath2.0 in order to predict path-
ways enabling the bioproduction of 1,4-butanediol in E. coli.

Materials and Methods

To build the retrosynthetic graph and enumerate the pathways, we use the
procedure below:

• 1,4-Butanediol is considered as the source compound.
• Sink compounds were extracted from the iJO1366 E. coli whole-cell

model [216] and MetaNetX cross-references [202].
• Reaction information is collected from the MetaNetX database and

reaction rules are generated following the aforementioned guidelines.
The generated set contains from 6900 to 19,000 unique rules, depend-
ing on the diameter considered.
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• RetroPath2.0 is applied with a maximum of four retrosynthesis iter-
ations, keeping a maximum of 100 compounds for the next iteration,
and reaction diameters ranging from 12 to 8.

• Pathways are enumerated thanks to the RP2paths software.

Using RetroPath2.0 we successfully retrieved the bioproduction pathway
reported by [191], as well as five alternatives enabling the production of
1,4-Butanediol diacrylate (BDA) (depicted in Figure 1.5). Four pathways,
including the one reported by [191], propose a common strategy where
the coenzyme A to be attached to 4-hydroxybutyrate is supplied by dif-
ferent CoA-related chemicals (namely CoA, acetyl-CoA, succinyl-CoA, and
butanoyl-CoA).

1.4.4 Other applications of the Protocol

The choice of rule sets, sink, and source depends on the application.

1. For instance, if one wishes to find all producing pathways for a given
compound, the source will be the target, the sink the metabolites of the
chassis strain, and the rules the reversed form of all known metabolic
reactions, as was presented here.

2. To degrade a given xenobiotic, the rule set can be the same metabolic
reactions in the forward direction, the sink will be the metabolites of
the chassis strain, and the source is the compound to degrade.

3. Another choice of settings allows for another application of interest:
choosing a set of known detectable compounds as sink, a set of target
compounds one wishes to detect as source, and the set of forward rules,
one can design sensing-enabling pathways [77].

The versatility of this tool allows us to use it for various applications, as
showcased in Chapter 2 [170] .

1. Using a set of rules for isomer generation or fragment exchange, in-
stead of enzymatic rules, we can generate all structural isomers of a
given compound or virtually screen the chemical space around a set of
molecules of interest.

2. Moreover, the way we encode our rules using diameter allows us to
tune the promiscuity we allow in our compounds′ generation. There-
fore, this workflow can be used for metabolome completion; with novel
molecules generated using promiscuous enzymatic reaction rules.
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1.5 Summary and conclusion

We have covered in this chapter some possible scenarios involving enzyme
discovery and pathway design for synthetic biology and metabolic engineer-
ing applications. For a given biochemical transformation, we can select
enzymes sequences through the Selenzyme [175] protocol. Starting from
a desired target compound, we can identify production pathways through
the RetroPath2.0 [138] protocol. As shown in Figure 1.1, such discovery
process can be in some cases reversed, for instance when an interesting
pathway is known, but not its product. A tool such as antiSMASH [177] al-
lows for the annotation of the transformation steps involved in the pathway
starting from the gene cluster, as well as allowing integration of predicted
biosynthesis pathways for secondary metabolites with genome-scale models
of metabolism. Once a putative biochemical pathway has been inferred from
a gene cluster, antiSMASH and RetroPath provide means to predict and
enumerate its main products and side products of enzyme promiscuity. The
tools and protocols described in this chapter and the resulting integrated
pipeline offer a rich synthetic biology toolbox for enzyme discovery.
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Figure 1.5 Enumerated pathways for 1,4-Butanediol production. Each pathway is
depicted by a distinct color. Pathway referenced in Yim et al. (2011) is in red
(J-G-D-C-B-A). Compounds are represented by their structures, and reactions by
their EC numbers when known (else by the MetaNetX reaction ID). 1,4-Butanediol
and sink compounds are surrounded by a solid line, intermediates by a dashed line.
A, 1,4-butanediol; B, 4-hydroxybutanal; C,4-hydroxybutyryl-CoA; D, acetyl-CoA;
E, CoA; F, succinyl-CoA; G, 4-hydroxybutyrate; H, butanoyl-CoA; I, vinylacetyl-
CoA; J, succinate semialdehyde; K, crotonoyl-CoA. Cofactors have been removed
for clarity.
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2Molecular structures
enumeration and virtual
screening in the chemical
space with RetroPath2.0

This work was published in Journal of Cheminformatics by Mathilde Koch,
Thomas Duigou, Pablo Carbonell and Jean-Loup Faulon.
Only minor modifications to the published article have been introduced in
the Chapter below.

Detailed contribution to this thesis

The aim of this Chapter is to present other applications of retrosynthesis
tools, and especially of the chemical rule encoding used in the team. While
my work involved mainly the mathematical proof behind the isomer enu-
meration algorithm presented in this Chapter, presenting various uses of
such algorithms and reaction representation supports our use of the same
reaction formalism in the next Chapter.

Full reference

Koch M., Duigou T., Carbonell P., Faulon J-L. (2017) Molecular structures
enumeration and virtual screening in the chemical space with RetroPath2.0
Journal of Cheminformatics, 10.1186/s13321-017-0252-9.

Contributions as stated in the article

The work was directed by J.-L.F. who sketched the proof of the claim,
designed all workflows, and generated the results presented in the isomer
enumeration and metabolome completion and metabolomics sections. M.K.
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wrote the proofs in the isomer enumeration section, T.D. wrote all workflows
and produced the results in the section search for molecules maximizing
biological activities. P.C. used the workflows to generate the results in the
section virtual screening in the chemical space. All authors contributed to
the manuscript write-up.

Abstract

Background: Network generation tools coupled with chemical reaction
rules have been mainly developed for synthesis planning and more recently
for metabolic engineering. Using the same core algorithm, these tools apply
a set of rules to a source set of compounds, stopping when a sink set of com-
pounds has been produced. When using the appropriate sink, source and
rules, this core algorithm can be used for a variety of applications beyond
those it has been developed for.
Results: Here, we showcase the use of the open source workflow RetroPath2.0.
First, we mathematically prove that we can generate all structural isomers
of a molecule using a reduced set of reaction rules. We then use this enu-
meration strategy to screen the chemical space around a set of monomers
and predict their glass transition temperatures, as well as around amino-
glycosides to search structures maximizing antibacterial activity. We also
perform a screening around aminoglycosides with enzymatic reaction rules
to ensure biosynthetic accessibility. We finally use our workflow on an E.
coli model to complete E. coli metabolome, with novel molecules gener-
ated using promiscuous enzymatic reaction rules. These novel molecules are
searched on the MS spectra of an E. coli cell lysate interfacing our workflow
with OpenMS through the KNIME Analytics Platform.
Conclusion: We provide an easy to use and modify, modular, and open-
source workflow. We demonstrate its versatility through a variety of use
cases including molecular structure enumeration, virtual screening in the
chemical space, and metabolome completion. Because it is open source and
freely available on MyExperiment.org, workflow community contributions
should likely expand further the features of the tool, even beyond the use
cases presented in the paper.

2.1 Introduction

The number of known chemical reactions is huge, at the time this manuscript
was written there were ' 84 million single- and multi-step reactions in the
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Chemical Abstract Service (CAS) database [217]. Yet, many reactions in
CAS are redundant because the same reactions are applied to different reac-
tants. Identifying identical reactions can be performed by computing reac-
tion rules. Reaction rules represent reactions at the reaction center only. In
other words, a reaction rule comprises only the substructures of the reactants
and the products for which the atoms are either directly involved in bond re-
arrangements or are deemed to be essential for the reactivity of the reaction
center. While a set of reaction rules is of course not available for all known
chemical reactions, rules have been compiled for focused applications, such
as retrosynthesis planning [218, 219], the discovery of novel chemical enti-
ties in medicinal chemistry [220], xenobiotic (including drug) degradation
[185], metabolomics [214], and metabolic engineering [188, 136, 191, 190].
Depending on the application, the number of rules varies from less than
one hundred to few thousands, but in all cases the number of known reac-
tions per application far exceeds the number of rules (there are for instance
more than 14,000 reactions in metabolic databases such as MetaNetX [202]).
There are several ways of coding reaction rules (for instance, BE-matrices
[221] and fingerprints [112]) but most of the time the rules can be repre-
sented by reaction SMARTS [108], as it is done in the current paper.
The purpose of reactions rules is to generate reaction networks. The rules
can be used in a forward manner to find for instance the metabolic degra-
dation products of a drug, or in a reverse manner to find the reactions
producing a desired product from a set of available reactants. In this later
usage one produces retrosynthesis reaction networks. Several tools have
been developed in the past to generate (retrosynthesis) reaction networks
and reviews are available for synthesis planning [218, 219], and for metabolic
engineering [182]. Disregarding if the rules are applied in a forward or re-
verse manner, network generation tools are making use of the same core
algorithm. Starting from a source set of compounds the core algorithm ap-
plies the rules in an iterative fashion either a predefined number of times or
until a sink set of compounds has been produced. At each iteration, the al-
gorithm fires the rules on the source set producing new molecular structures
and determines the new source set of molecules the rules will be fired upon
at the next iteration. That set must comprise molecules that have not been
processed before. Further details on the core algorithm and the differences
between the various implementations are provided in [222] and [138]. In the
current paper we make use of an open source workflow (RetroPath2.0 [138]),
which follows the above core algorithm. This workflow is not based on origi-
nal codes but instead was constructed entirely by assembling KNIME nodes
[223] developed by the cheminformatics community (primarily RDKit nodes
[194]). RetroPath2.0 is the first open source release of a retrosynthesis reac-
tion network generation, and its usage in the current paper beyond network
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generation demonstrates its versatility.
As already mentioned, reaction network generation tools coupled with re-
actions rules have been developed and used primarily for synthesis planning
and metabolic engineering, but can they be used to enumerate molecules (iso-
mers for instance) and more generally to search chemical structures in the
chemical space?
In principle yes if one can devise reaction rules enabling the production of
any molecule in the chemical space. Such a set of rules necessarily exists for
all known molecules (such as those in the CAS database) since they have
been produced through either natural or synthetic chemical reactions. In
practice and as already stated, reaction rules so far developed are application
limited. Yet, within their respective application fields, specific rules have
been used to discover novel molecules and reaction pathways. Taking ex-
perimentally validated examples, the rules associated with the ligand-based
de novo design software Design of Genuine Structures (DOGS) (inSili.com
LLC) [220] have enabled the production of new chemical entities inhibitors
of DAPK3 (death-associated protein kinase 3) [224], metabolic rules for
promiscuous enzymes have allowed the discovery of novel metabolites in E.
coli [181] and have also been used to engineer metabolic pathways producing
1,4-butanediol [191] and flavonoids [225].
Going beyond application limited reaction rules, the main contribution of
the present paper is to propose a set of transformation rules that enables
the generation of any isomer of any given molecule of the chemical space.
Precisely, we prove the claim that any isomer of any given molecule of N
atoms, can be reached applying at most O(N2) rules.
As illustrations, our transformation rules are used to screen the chemical
space for structures that are similar to a given set of well-known monomers
and to search aminoglycosides structures maximizing antibacterial activities.
The compounds produced by our rules are not necessarily chemically acces-
sible, since our transformation rules are not constructed based on chemical
synthesis schema. To probe the (bio)synthetic accessibility of our solutions,
we also perform search in the (bio)chemical space using enzymatic reaction
rules. The enzymatic rules are also used to propose novel molecules com-
pleting E. coli metabolic network and for which masses are found in cell
lysate mass spectra. All results presented in this paper have been produced
making use of the open source workflow RetroPath2.0. RetroPath2.0 and
the associated data are provided as Supplementary and can be downloaded
at MyExperiment.org . The only differences between the various usages
we have made of the RetroPath2.0 are within 1) the set of reaction rules
and 2) the way molecules are selected at each iteration during the network
generation process.
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2.2 Results and Discussion

The purpose of this section is to showcase the versatility of RetroPath2.0
by taking use cases of interest to the community. We first propose reaction
rules to enumerate isomers (section isomer enumeration), we then use the
rules to screen in the chemical space structures that are similar to some
known monomers (section virtual screening) and compute property distri-
bution (Glass transition temperature) in both the Chemical Space and Pub-
Chem, we next use a Quantitative Structure Activity Relationship (QSAR)
to search aminoglycosides types molecules for which antibacterial activity is
maximized using both isomer transformation rules and enzymatic rules (sec-
tion search for molecules maximizing biological activities), and we finally use
enzymatic rules to find novel metabolites in E. coli and annotate the Mass
Spectrometry (MS) spectra of an E. coli cell lysate interfacing RetroPath2.0
with OpenMS [226] (section metabolome completion and metabolomics).

2.2.1 Isomer enumeration

Isomer enumeration is a long-standing problem that is still under scrutiny
[227, 228]. Our intent here is not to provide the fastest enumeration al-
gorithm but to demonstrate how RetroPath2.0 can perform that job once
appropriate reaction rules are provided. However, we provide in Figure
2.1 a comparison of RetroPath2.0’s execution time with the OMG and
PMG software tools [228, 229] specifically dedicated to isomers enumeration.
RetroPath2.0 is found faster than OMG but slower than PMG. Thereafter,
we outline two approaches making use of RetroPath2.0. The first is based
on the classical canonical augmentation algorithm [230] and the second con-
sists of iteratively transforming a given molecule such that all its isomers
are produced. We name this latter approach isomer transformation. In both
cases we limit ourselves to structural (constitutional) isomers, as there al-
ready exist workflows to enumerate stereoisomers [231].

Canonical augmentation

The principle of canonical augmentation, which is an orderly enumeration
algorithm, is to grow a molecular graph by adding one atom at a time and
retaining only canonical graphs for the next iteration [230]. The algorithm
first proposed by Brendan McKay has been used to generate the GDB-17
database of small molecules [232]. The original algorithm has also been mod-
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Figure 2.1 Execution time for each tested software on the enumeration of alkane
isomers.

ified such that at each step a bond (not an atom) is added to the growing
molecules [228]. In the present implementation we use the original McKay
algorithm [230], consequently, the number of iterations is the number of
atoms one wishes the molecule to have. The algorithm can easily be im-
plemented into RetroPath2.0 by choosing as a source set a single unbonded
atom, and a rule set depicting all possible ways an atom can be added to
a molecular graph (see method section for more information). Considering
that an atom can be added to a growing molecule through one, two, or more
bonds (depending on its valence), the set of reaction rules is straightforward
however cumbersome if one starts to consider all possible atoms types. For
this reason we limit ourselves to carbon skeleton as it is usually done in the
first step of isomer enumeration algorithm. Figure 2.2 below depicts the set
of rules that generate all triangle free carbon skeletons.

We note that rules R2 to R4 will generate cycles since the added atom
is attached to the growing molecule by 2 to 4 four bonds, thus only rule
R1 is necessary to grow acyclic molecules (alkanes for instance). Table 2.1
provides the numbers of structural isomers of alkanes found up to 18 carbon
atoms running RetroPath2.0 with rule number 1 in Figure 2.2.

Isomer transformation

The isomer canonical augmentation algorithm becomes more complex when
one starts to consider different atom and bond types. To overcome these dif-
ficulties the idea of the transformation enumeration approach is to start with
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Figure 2.2 Reaction rules for canonical augmentation of carbon skeletons. The cor-
responding reaction SMARTS string is provided for each rule.

one fully-grown molecule to which one applies all possible transformations
such that all the structural isomers of the initial molecule are generated.
This approach can be implemented in RetroPath2.0 using a hydrogen sat-
urated molecule as a source and a reaction rule set enabling to transform
the molecule while keeping the correct valence for each atom. Because atom
valences are maintained the total number of bonds must remain the same
after the transformations have taken place. In order to maintain the number
of bonds constant, for any reaction rule the number of bonds created must
equal the number of bonds deleted.
RetroPath2.0 applies a reaction rule to a given molecule by first searching
all occurrences in the molecule of the sub-graph representing the reactant
(left side of the rule). To this end the labels on the sub-graph are removed.
Then for each occurrence of the unlabeled sub-graph in the molecule, the
labels are restored and the bonding patterns on the molecule are changed
accordingly. The process is illustrated in the Figure 2.3 where it can be seen
that rules Ra and Rb are identical (i.e. they produce the same solutions).
In general, two rules Ra = (La, A) and Rb = (Lb, B) will produce the same
solutions if a one-to-one mapping π can be found between the labels La and
Lb of the rules such that the set of edges (A) in Ra is transformed by π into
the edges (B) of Rb, i.e. π(A) = B.
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Nbr of car-
bon atoms

Nbr of struc-
tures output
by canon-
ical aug-
mentation
algorithm

Nbr of struc-
tures output
by isomer
transfor-
mation
algorithm

Nbr of it-
erations
for isomer
transfor-
mation
algorithm

1 1 1 1
2 2 1 1
3 3 1 1
4 5 2 2
5 8 3 3
6 13 5 3
7 22 9 4
8 40 18 5
9 75 35 5
10 150 75 6
11 309 159 7
12 664 355 7
13 1466 802 8
14 3324 1858 9
15 7671 4347 9
16 18030 10359 10
17 42924 24894 10
18 103447 60523 10

Table 2.1 Number of generated alkane isomers by canonical augmentation algo-
rithm and isomer transformation algorithm. The numbers agree with earlier
calculations [233]. For a given number of carbon atoms (N), the canonical augmen-
tation generates all alkanes from 1 to N carbon atoms, while the isomer transfor-
mation enumeration generates alkanes having only N carbon atoms, one can thus
verify that at any given number of carbon atoms N , the numbers of structures
generated by the canonical augmentation algorithm equals the sum of numbers of
isomers generated by the transformation algorithm up to N .

Claim

The 19 rules described in Figure 2.4 allow us to generate all isomers of a
given molecule at most 3/4 ∗ (N2˘N) iterations, where N is the number of
atoms, respecting the following constraints: the maximal valence is 4 and
there cannot be two double bonds on the same atom in a 3 or 4 membered
ring.
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Figure 2.3 Identical rules. There are two different ways (two different possible matchings for
the reactants of the rules) of applying rules Ra and Rb, each rule produces molecules
M1 and M2. The molecules produced by Ra are identical to those produced by Rb
because the rules are identical. Ra is identical to Rb because when applying the
one-to-one label mapping π(1, 2, 3, 4) = 2, 1, 4, 3 on the edges of the Ra one obtains
the edges of Rb.

Lemma 1

The minimal number of bonds one can change is 4 and the 19 rules described
in Figure 2.4 generate all minimal transformations respecting the following
constraints: the maximal valence is 4 and there cannot be two double bonds
on the same atom in a 3 or 4 membered ring.

Proof: The minimal transformation one can perform consists of deleting one
bond and creating another one. Since the bond created must be different
from the one deleted at least three atoms (A1, A2, A3) must be involved.
Let a12, a13, and a23 be the bond orders between the three atoms and let
b12, b13, and b23 the bond orders after the reaction has taken place. Because
the atom valence is maintained the following system of equations holds:

(L1)a12 + a13 = b12 + b13

(L2)a12 + a23 = b12 + b23

(L3)a13 + a23 = b13 + b23

(2.1)
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Figure 2.4 Isomer transformation rule set. All reactions rules are solutions of system of
equations (2) and are not identical (see text and Figure 2.3 for definition of identical
rules). Reactions in green move bonds around without creating or deleting cycles.
Reactions in blue change bond order by creating or deleting at least one cycle. To
each reaction corresponds a reverse reaction. The reverse reaction of R1 is R1, for
R2 it is R4, for R3 : R7, for R5: R5, for R6 : R8 and the reverse reaction of R9 is
R9. The reverse reaction for R10 is R15, for R11, R18, for R12, R19, for R13, R16
and for R14, R17. The bond order a13 and a24 can take any value from 0 to 3. The
full list of rules excluding triple bonds can be found in Figure 2.10.

(L1) + (L2) − (L3) =⇒ a12 = b12, which implies a23 = b23 and a13 = b13.
It is therefore impossible to proceed to a minimal transformation with only
3 bonds involved. Let us consider 4 atoms. There are 6 possible bonds
between those atoms. Let us consider that we are changing 4 bonds, since
we aim to find minimal transformations. Let us call a13 and a24 the two
fixed bonds, without loss of generality. Valence conservation (with b13 = a13

and b24 = a24) gives us the following system:

(L1)a12 + a14 = b12 + b14

(L2)a12 + a23 = b12 + b23

(L3)a23 + a34 = b23 + b34

(L4)a14 + a34 = b14 + b34

(2.2)

We can notice that (L1) + (L3) = (L2) + (L4): we therefore have a system
of 3 equations with 4 unknowns, so we can set an unknown and calculate
the other solutions.
As we are looking for minimal transformations, we can assume that we are
changing a bond order by 1 on this unknown that we can set. Since valence
is conserved, if a bond order is increased, then a bond order from the same
atom has to be decreased. As the problem is perfectly symmetrical in all
variables at this point, we can thus assume without loss of generality (at least
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Figure 2.5 Rules before solution space reduction due to valence and structure con-
siderations. Reactions in green move bonds around without creating or deleting
cycles. Reactions in blue change bond order by creating or deleting at least one cy-
cle. Reactions in purple were deleted because valence is limited to 4, and reactions
in black were deleted because there cannot be two double bonds on the same atom
in a 3 or 4 membered ring.

one bond has to be deleted) that b12 = a12 − 1. Then solving the system
immediately gives us b14 = a14 + 1, b23 = a23 + 1 and b34 = a34 − 1. This
system can only be solved in our case (positive bond orders, no quadruple
bonds) if a14 and a23 are either 0, 1 or 2 and a12 and a34 are either 1, 2 or
3. This means that we have at most 81 (34) cases for initial bond orders
where our isomer problem has a solution. However, this solution space can
be further reduced by problem symmetry arguments. We can see that the
roles of a12 and a34 are symmetrical, as well as the roles of a14 and a23.
Let us call A1 the atom with the highest considered sum of bound orders
(neglecting the fixed orders a13 and a24.). Therefore, it is such that

a12 + a14 ≥ a12 + a23 (higher considered sum of bound orders than A2), or
a14 ≥ a23 (Condition 1) a12 + a14 ≥ a14 + a34 (higher considered sum of
bound orders than A4), or a12 ≥ a34 (Condition 2) a12 + a14 ≥ a23 + a34

(higher considered sum of bound orders than A3), is automatically verified
when the other two are verified.
Condition 1 is not respected when a23 = 2 and a14 = 0or1 or when a23 = 1
and a14 = 0, without constraints on a12 and a34: (2+1) * 9 = 27 solutions.
For the same reason, 27 solutions do not respect condition 2. The solutions
that do not respect both condition 1 and condition 2 are (2+1) * (2+1) =
9. By symmetry arguments, we therefore reduced the solution space from
81 to 81 - 27 - 27 + 9 = 36. These 36 reaction rules are presented in Figure
2.5.
We can further reduce the solution space by considering that the maximum
atom valence is 4. The solutions that do not respect this constraint are such
that a12 + a14 = 5, so a12 = 3 and a14 = 2 (and this automatically verifies
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conditions 1 and 2). Since there are no constraints on a23 and a34, we have 9
such solutions: the solution space has been reduced to 36 - 9 = 27 reactions.
One more constraint, imposed by 3D conformation of the molecule, is that
there cannot be two double bonds on the same atom in a 3 or 4 membered
ring. This must be true for our initial molecule as well as for the produced
molecule. For the initial molecule (as can be seen in the 4 black rules under
rule 13 in Figure 2.5, when a12 = a14 = 2, since a34 > 1 (bond whose order
will be reduced), there is a cycle if a23! = 0. There are therefore 4 solutions
where the initial molecule is invalid: when a12 = a14 = 2, and a34 is 1 or 2
(smaller than a12) and a23 is 1 or 2.
This must also be true for the produced molecule. Two double bonds will
be produced around atom 1 with a12 = 3 and a14 = 1 (this can be seen
in the 4 black rules under rule 18 in Figure 2.5). There will be a cycle if
a34! = 0. There are therefore 4 solutions where the produced molecule is
invalid: when a12 = 3,a14 = 1, and a34 is 2 or 3 and a23 is 0 or 1 (smaller
than a14).
Since these solutions respect valence constraints and problem symmetry,
they are not included in the previous solution space reductions and therefore
the solution space is reduced to 27 - 8 = 19 solutions. A summary table
of solution space reduction is given in Table 2.4. Since we have found 19
different working solutions for all the cases we have left, we have proved that
the minimal number of bonds one can change is 4 and the 19 rules described
in Figure 2.4 generate all these minimal transformations.

Lemma 2

Let us considerMb an isomer ofMa. We can apply a rule from this set of 19
rules that will reduce the sum of absolute order differences between those
two molecules by at least 2 and at most 4.

Proof: Let (aij) be the order of bonds in Ma, (bij), j ∈ [2, N ], i ∈ [1, j− 1],
the order of bonds in Mb, where N is the number of atoms in Ma and Mb.
Since Mb is different from Ma, we can find i, j such that aij > bij . By
valence conservation in atom Aj , we can find k such that ajk < bjk, and
by valence conservation of atom Ak, we can also find l such that akl > bkl.
Therefore, we are considering 4 atoms and 4 bonds between those atoms,
with at least 3 of their orders changing by 1. According to Lemma 1 (2.2.1)
the minimal number of bonds one can change is 4, so we will also have to
change the bond order between Ai and Al. We are therefore considering a
minimal transformation, so we know thanks to Lemma 1 that we can apply
a rule from our set of rules to generate that transformation. Let us call
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Ma′ the molecule produced that way, and a′ij its bond orders. Let us now
calculate the sum of orders of Ma′. Then, by applying the rule, we have
a′ij = aij − 1, and therefore |bij˘a′ij | = |bij˘aij | − 1. For the same reason,
|bkl˘a′kl| = |bkl˘akl| − 1. Moreover, a′jk = ajk + 1, and since ajk is smaller
than bjk, we also have |bjk˘a′jk| = |bjk˘ajk| − 1. The only bond we did not
choose to change is ali. The order ali′ of the transformed bond is either
closer to bli than was ali, then the difference of the sum of absolute order
differences is reduced by 4, or is further from bli, and this sum is reduced by
2. Therefore, if Ma and Mb are different, we can apply a rule from this set
of rules that will decrease the sum of absolute order differences by at least
2 and at most 4.

Lemma 3

Considering Ma and Mb an isomer of Ma, the 19 rules described in Figure
2.4 allow us to transform Ma into Mb using at most 3/4 ∗ (N2˘N) single
transformations, where N is the number of atoms, respecting the following
constraints: the maximal valence is 4 and there cannot be two double bonds
on the same atom in a 3 or 4 membered ring.

Proof: Let us consider Mb an isomer of Ma. If the sum of absolute order
differences is not null, then Mb is different from Ma and using Lemma 2
(2.2.1), we know we can apply a rule that will strictly decrease the sum
of absolute order differences. This sum is obviously positive, is an integer,
and is strictly decreasing each time we apply a transformation rule so it
will converge to 0 in S/2 transformations at most, where S is the sum of
absolute order differences between Ma and Mb. When this sum is null, all
bond orders are the same, which means the molecules are the same. An
upper estimation of the maximum bond order difference is obtained when
Ma only has triple bonds, which all have to be deleted. In that case, the sum
of absolute order differences is: S = 3 ∗ (N2−N)/2, where N is the number
of atoms and (N2 − N)/2 the number of defined orders (since aij = aji).
Therefore, since the sum decreases by at least 2, the maximum number of
transformations we need to apply is 3 ∗ (N2˘N)/4.

Proof of the main claim: Given the workings of the algorithm (breadth-first,
as explained in section 2.4.2), the number of iterations for generating all
isomers is the number of iterations for generating the furthest one in term
of bond order difference from our starting molecule. Therefore, applying
Lemma 3 (2.2.1), we know the maximum number of iterations of the algo-
rithm is 3 ∗ (N2 −N)/4.
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Notice that although the number of iterations of the algorithm scales O(N2),
the number of transformation rules applied (i.e.: single reactions) is propor-
tional to the number of isomers.

Corollary 1

The maximum number of iterations to generate all alkanes is N − 1, where
N is the number of carbon atoms (hydrogens are not considered here).

Proof: Adapting the demonstration of Lemma 3 (2.2.1), we have to consider
the sum of absolute order differences of the farthest isomers that can be
reached. Since alkanes are acyclic, the number of bonds is N −1 (proven by
a simple recurrence, the new atom being joined at a single point to the chain
since the molecule is acyclic). Therefore, considering all bonds are different
in the new molecule, the sum of absolute order differences is at most 2(N−1).
Therefore, the maximum number of iterations of the algorithm is N − 1.
The isomer transformation algorithm was applied to generate all alkanes up
to 18 carbon atoms using rule R1 of Figure 2.4, since it is the only rule with
only single bonds. Results are presented in Table 2.1, where it can be seen
that Corollary 1 (2.2.1) is verified in practice.

2.2.2 Virtual screening in the chemical space

In this section we used RetroPath2.0 to search all molecules that are at
predefined distances of a given set of molecules. Such queries are routinely
carried out in large chemical databases for drug discovery purposes [234],
but in the present case we search similar structures in the entire chemical
space. To perform search in the chemical space, we used a source set com-
posed of 158 well-known monomers having a molecular weight up to 200
Da. Our rule set included the transformations colored green in Figure 2.4
(i.e. transformation rules where double bonds are not transformed into cy-
cles and conversely). For each monomer, RetroPath2.0 was iterated until
no new isomers were generated. Each generated structures at a Tanimoto
similarity greater than 0.5 from its corresponding monomer were retained
(Tanimoto was computed using MACCS keys fingerprints [120]).
Next, we wanted to probe if the generated structures exhibited interest-
ing properties as far as polymer properties are concerned. To that end
we first developed a Quantitative Structure Property Relationship (QSPR)
model taking properties from [235]. We focused on polymer glass transi-
tion temperature Tg data [236]. The QSPR model was based on a ran-
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dom forest trained using RDKit fingerprints descriptors [194]. The obtained
model had a leave-one-out cross-validation performance of Q2 = 0.75. The
model was then applied to predict the Tg for the set of enumerated isomers.
Figure 2.7 compares the distribution of predicted Tg values for the enu-
merated isomers with those obtained from isomer structures available from
PubChem. Tg values for enumerated isomers appeared evenly distributed
around 301.86 ± 25.69 K compared with the isomers that were available in
PubChem (331.66± 46.19 K). This shift in the Tg values could be explained
by the difference in distribution that necessarily exists between the isomers
that are present in PubChem and the total number of enumerated isomers.
As we lower the Tanimoto threshold, some monomers might become under-
represented in terms of isomer availability in PubChem. Figure 2.6 shows
the distributions of both sets of isomers in function of the threshold. The
increased ability of selecting polymers with Tg above or below room tem-
perature for the enumerated set compared with the PubChem isomers is a
desirable feature, as this parameter will determine the mechanical proper-
ties of the polymer [237]. In that way, performing a virtual screening of the
chemical space of isomers of the reference monomers opens the possibility
to engineering applications with improved polymer design.

Figure 2.6 Distributions of predicted Tg values for enumerated isomers and for iso-
mers found in PubChem with varying Tanimoto threshold.. Distribution
of predicted polymer glass transition temperature Tg for enumerated isomers and
for isomers found in PubChem of a reference set of 158 monomers with a Tanimoto
similarity greater than a threshold varying between 0.5 and 1.

Moreover, we were interested in determining how many of the starting 158
monomers were accessible through biosynthesis. Namely, how many of the
compounds can be synthesized by engineering a metabolic pathway in a
chassis organism. This computation can be accomplished by RetroPath2.0
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Figure 2.7 Distributions of predicted Tg values for enumerated isomers and for iso-
mers found in PubChem. Distribution of predicted polymer glass transition
temperature Tg for enumerated isomers and for isomers found in PubChem of a
reference set of 158 monomers with a Tanimoto similarity greater than 0.5.

by defining all naturally produced chemicals as sinks in the workflow and
using a collection of known enzymatic reaction rules in reversed mode. The
process has been described in detailed elsewhere [138]. Through the appli-
cation of the rules in a retrosynthetic fashion, it is possible to determine the
routes that connect the target compounds to the natural precursors. Of the
158 available monomers, using the RetroPath2.0 workflow downloaded from
MyExperiment.org [138], we were able to identify 17 compounds that can
be naturally synthesized (Figure 2.8A). We provide in an archive containing
the list of pathways for those 17 compounds.
The QSPR model for Tg was applied to the set of enumerated isomers. As
shown in Figure 2.8B, the resulting set provided a good covering of the
chemical space surrounding the starting monomer set. Moreover, a signifi-
cant number of enumerated isomers show a high predicted Tg value, which
may indicate a good candidate as a building block replacement for known
monomers. Interestingly, those isomers that were close to biosynthetic ac-
cessible monomers (Tanimoto based on MACCS keys fingerprint > 0.8) have
a distribution of predicted Tg values that significantly differ from the full
set (p − value < 1e − 12 Welch t-test), with a mean Tg = 352.1K (Tg =
301.9 K in the full distribution). These close isomers to biosynthetically
accessible monomers might be considered as good candidates for alternative
biosynthesis since reaching them through biosynthesis may require only few
modifications of the original catalytic route.
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2.2.3 Search for molecules maximizing biological

activities

In this section we are interested in searching chemical structures in the
chemical space optimizing biological activities. This type of search can be
solved using inverse QSAR procedures [238]. Inverse QSAR requires to first
build a QSAR equation predicting activities from structure and then either
(i) inverting the equation and enumerating structures matching a given ac-
tivity [238] or (ii) searching in the chemical space structures similar to those
used to build the QSAR equation [235] but having optimized activities. The
second approach makes use of either deterministic methods such as lattice
enumeration [239] or stochastic searches.
We propose here to use RetroPath2.0 to solve the inverse QSAR problem
using a stochastic approach with isomer transformation rules and enzymatic
rules for biosynthetic accessibility. To this end, we selected a dataset of 47
aminoglycosides structures for which antibacterial activities have been mea-
sured using a Minimum Inhibitory Concentration (MIC) assay [240]. The
dataset is composed of natural aminoglycosides (gentamicin, tobramycin,
neomycin, kanamycin A and B, paromomycin, ribostamycin and neamine)
to which are added synthetic structures built on a neamine scaffold. This
dataset has already been used to build a QSAR model based on Compar-
ative MolecularField Analysis (CoMFA) analysis leading to a Q2 of 0.6 for
a Leave-One-Out (LOO) procedure [240]. We provide in Supplementary a
QSAR workflow that makes use of RDKit fingerprints [194] and random
forest as a learner leading to a higher Q2 (0.7) for LOO. With that QSAR
in hand we run RetroPath2.0 with a source set composed of the 47 amino-
glycosides used in the training set, and two different reaction rules sets. The
first set is extracted from the transforming enumeration rules depicted in
Figure 2.4, the second set is composed of enzymatic reaction rules leading to
neamine (an aminoglycoside) biosynthesis from glucose. Reaction rules for
the second set were computed as explained in the method section resulting
in 94 rules specific to the biosynthesis of aminoglycosides.
In both cases, reactions rules were fired on the initial source set composed
of 47 structures. All rule products were ranked according to their predicted
activities as calculated by the QSAR and were selected for the next itera-
tion according to a tournament procedure described in the methods section
which derives from [241]. The Figure 2.9 (A and B) below gives the top
activity and the average population activity vs. iteration. The most active
structures found by each rule set are also drawn in Figure 2.9 (C and D).
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We observe in Figure 2.9 that the average curve in B is lower that the one in
A. This is due to the fact that enzymatic rules generated a lot of compounds
that are structurally far from aminoglycoside (i.e. H2O, NH+

4 , O2. . . ).
Moreover, the rules used for A, allow more transformation / modification,
thus enabling to better explore the chemical space, and ultimately finding
more active compounds. We note that the structure in Figure 2.9 (C) have a
slightly better predicted activity (pACT = 9.015) than the initial compounds
used in the training set, while the structure in Figure 2.9 (D) have the same
predicted activity than gentamicin (pACT = 8.867).

2.2.4 Metabolome completion and metabolomics

In this last example we use enzymatic reaction rules in an attempt to com-
plete the metabolome of species used in biotechnology. We are motivated
here by current efforts invested to complete the knowledge on the metabolism
of various organisms [214, 188, 182]. The benefits are numerous and include
the identification of relevant biomarkers for many diseases; for personalized
nutrition advice; and also for searching for relevant indicators and metabo-
lites of plant and animal stress in agricultural practices and breeding pro-
grams. Additionally, knowing the metabolic space of microbes is an essential
step for optimizing metabolic engineering and creating synthesis pathways
for new compounds for industrial applications. Experimental evidences from
metabolomics analyses are often informing us that with currently known
metabolites one cannot cover the ranges of masses found in actual samples,
and consequently there is a need of completing the metabolomes of inter-
est. This need is clearly seen in the Human Metabolome Database (HMDB)
where the number of reported masses has recently grown from 20,931 in 2013
[242] to 74,461 (at the time this manuscript was written), while annotated
metabolites in metabolic databases are still in the range of 1847 (Human-
Cyc). Despite such a growth in databases, a significant amount of spectral
peaks remains unassigned. This high fraction of unassigned peaks might be
due to several factors including isotope, adduct formation, ion fragmenta-
tion, and multimers. Besides such sources of uncertainty in samples, many
unassigned peaks should also be due to promiscuous activities of enzymes
not yet characterized because of the lack of an appropriate description of
the mechanisms of enzyme promiscuity.
To gain insights into those mechanisms enabling promiscuity, reaction rules
have been shown to be appropriate [181] in particular the rules allowing to
focus on the center of the reactions. To this end, several enzymatic reaction
rules have been proposed such as those derived from bond-electron matri-
ces [137], on the smallest molecular substructure changing during transfor-
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mations [191], or on reaction rules that code for variable environments at
reaction centers (see [188] and method section). That latter reaction rule
system codes for changes in atom bonding environments where the reaction
is taking place and the environment can range from including only the atoms
participating to the reaction center to the entire set of atoms and molecules
participating to the reaction. The advantage of that latter approach is that
the size of the environment (named diameter) can be tuned to control the
combinatorial explosion of possible products.
The degree of plasticity in metabolic networks that is uncovered by vari-
able reaction center diameter is actually revealing an intrinsic feature of
organisms linked to their adaptability, i.e. enzyme promiscuity. Promiscu-
ity stands for the ability of enzymes to catalyze more than one reaction or
to accept more than one substrate, a mechanism which can be traced to
the evolutionary origins of enzymatic functions. Mimicking nature, such en-
zyme versatility can provide novel ways for biosynthesizing metabolite and
even bioproducing non-natural molecule. To that end, the variable diameter
method has shown itself to be especially well-suited for modeling the mech-
anisms of enzyme promiscuity as it has already enabled the experimentally
validated discovery of a novel metabolite in E. coli and of the promiscuous
enzymes producing it [181].
In this study, we make use of RetroPath2.0 to exemplify how variable re-
action rule diameters can be used to complete the metabolome of E. coli.
More precisely, we used as a source set all the metabolites present in E. coli
iJO1366 model [216]. We first tested the two rule sets aforementioned, a set
of about 100 reaction rules part of the BNICE framework [137] and a set of
50 reaction rules developed with the Sympheny software [191]. The reaction
rules coded in the form of SMARTS string are provided in Supplementary at
MyExperiment.org, along with the EC numbers corresponding to the rules.
While the two rule sets were not developed to code only for E. coli reactions,
for each EC number there is a corresponding enzyme annotated inE. coli so
we kept all rules in the two sets. We then tested reaction rules with variable
diameters using the procedure described in the method section to code for
all E. coli metabolic reactions extracted from iJO1366 model. Rules were
calculated for each reaction with diameters ranging from 2 to 16. Table 2.2
below provides the number of compound generated running RetroPath2.0
for one iteration on the metabolites of the iJO1366 model and the rules sets
mentioned above (see Method section for additional details).

Table 2.2 shows that the number of compounds generated increases as the
diameter decreases. This is consistent with the fact that shorter diameters
will accept more substrates than higher ones and will thus produce more
products. Although they were not constructed with diameters, the BNICE
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Reaction
rule set

Nbr of
com-
pounds
generated

E. coli
model
coverage
(1)

MS peaks
coverage
(2)

Median
nbr of
com-
pounds
per peak

Averaged
nbr of
com-
pounds
per peak

E. coli Model
[43]

751 100.0 12.3 1 1.5

Sympheny [9] 9448 48.2 40.4 3 6.3
BNICE [42] 8421 68.8 45.3 3 5.8
D16 (3) 1230 82.0 23.1 1 2.0
D10 2992 83.6 25.6 1 2.3
D8 5055 84.2 28.1 1 2.7
D6 11981 84.7 46.6 2 3.1
D4 37450 86.8 60.6 2 5.7
D2 162480 91.7 79.9 8 16.9

Table 2.2 Metabolome completion. Compounds generated by RetroPath2.0 using various
reaction rules applied on E. coli iJO1366 model metabolites [216]. All numbers
correspond to compounds having different InChIs at the connectivity level
(1) The E. coli model contains 751 compounds (with different connectivity InChIs).
The column reports the % of these 751 compounds generated by the different rule
sets. (2) The MS spectra were downloaded from Metabolight [243] and the OpenMS
workflow described in the Method section retrieved a total of 800 distinct peaks.
The column reports the % of peak assigned to at least one compound generated by
the rule sets. (3) The number indicates the diameter

and Sympheny rule sets generally correspond to small environments com-
prising only few atoms and bonds around reaction centers, which explain
why these two systems generate more products than high diameter rule
sets. Nonetheless, even with high diameters, all variable diameter rule sets
produce more molecules found in E. coli model than the BNICE and Sym-
pheny rule sets. This might indicate that the variable rule sets correspond
to a more accurate encoding of metabolic reactions than the other systems.
To further probe the coverage of the various rules sets listed in Table 2.2
we searched if the compounds produced could be found in MS spectra. To
this end, we downloaded MS spectra from Metabolight [243] where masses
have been measured on E. coli cell extracts. The spectra downloaded cor-
responded to a study aimed at probing the dynamics of isotopically labeled
molecules (i.e. 13C labeled glucose) [244]. Since we are concerned here with
wild type E. coli metabolome, we considered only the spectra where E. coli
cells had not yet been exposed to labeled glucose (spectra acquired at time
t=0). All compounds generated by our various rules sets were prepared
to be read by OpenMS nodes [226] and a workflow was written with these
nodes to annotate the MS spectra peaks (cf. Method section for details).
The results presented in Table 2.2 show that as the diameter decreases the
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number of peak assignment increases, which is not surprising considering
that the number of compounds generated increases as well. We observe that
the Sympheny and BNICE rules sets give results similar to those obtained
by the D6 rule set, albeit with a higher number of annotations per peak.
In all cases the rule sets produced compounds not present in the E. coli
model but with corresponding masses in the MS spectra. A supplementary
Table available online gives a list of 40 such compounds having an identifier
in MetaNetX [202] and produced by three identical reactions (i.e. reactions
having the same substrates and products) generated using the Sympheny,
BNICE and D6 rule sets. The compounds were produced by 53 reactions,
some compounds being produced by more than one reaction. We note that
the 40 compounds have been generated by rule sets for which at least one
gene in E. coli has been annotated with the same corresponding EC num-
ber. The 40 compounds are thus potential new E. coli metabolites and their
presence should be further verified using for instance MS/MS analysis.

2.3 Conclusions

In this paper we have presented a general method allowing one to explore the
chemical space around a given molecule, or around a given set of molecules.
The originality of the method is that the exploration is performed through
chemical reactions rules. We have given a set of rules allowing us to gen-
erate any isomer of any given molecule of the chemical space. We also
provide examples making use of reaction rules computed from enzymatic re-
actions. Using rules computed on known reactions has a definite advantage
regarding the (bio)synthetic accessibility of the molecule produced, which is
not necessarily the case for other techniques producing molecules de novo
[235, 238, 241, 245, 246, 247, 248, 249].
Our method has been implemented into RetroPath2.0, a workflow running
on the KNIME Analytics Platform [223]. RetroPath2.0 can easily be used
with source molecules and reaction rules different than those presented in the
paper. For instance the workflows provided in Supplementary at MyExperi-
ment.org can be used with the reaction SMARTS rules and fragment libraries
(as source compounds) of the DOGS software (inSili.com from [220]) devel-
oped for de novo drug design, other technique evolving molecules toward
specific activities or properties [241, 248, 249] could also be implemented
in RetroPath2.0 provided that one first codes reaction rules in SMARTS
format.
Aside from searching molecules having interesting properties and activities
RetroPath2.0 can also be used to complete metabolic maps by proposing
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new metabolites biosynthesized through promiscuous enzymes, these new
metabolites can in turn be used to annotate MS spectra and to that end we
provide an interface with OpenMS [226]. Finally, RetroPath2.0 was orig-
inally developed to enumerate pathways producing a given target product
from a source set of reactants. While we have benchmarked the workflow in
the context of metabolic engineering, [138] it can also be used for synthesis
planning as long as synthesis reaction rules are available.

2.4 Methods

2.4.1 Generating reaction rules

All our reaction rules are represented in the form of reaction SMARTS [108].
Reaction rules used for canonical augmentation are provided in Figure 2.2
and for isomer transformation in Figures 2.4, 2.5 and 2.10 and Table 2.3.
Enzymatic reaction rules were computed taking enzymatic reactions from
MetaNetX version 2.0 [202]. To compute rules, we first performed an AAM
using the tool developed by [195] (Figure 2.11 A). Next, multiple substrates
reactions were decomposed into components (panels C and D in Figure 2.11).
There are as many components as there are substrates and each component
gives the transformation between one substrate and the products. Each
product must contain at least one atom from the substrate according to the
AAM. This strategy enforces that only one substrate can differ at a time
from the substrates of the reference reaction when applying the rule.

The following step consisted in computing reactions rules as reaction SMARTS
for each component. We did it for diameters 2 to 16 around the reaction
center (panels C and D in Figure 2.11) by removing from the reaction com-
ponents all atoms that were not in the spheres around the reaction center
atoms.
We extracted more than 24,000 reaction components from MetaNetX reac-
tions, each one of those leading to a rule at each diameter (from 2 to 16).
We provide in Supplementary at MyExperiment.org a subset of 14,300 rules
for E. coli metabolism. The rules were selected based on the MetaNetX
binding to external databases and the iJO1366 whole-cell E. coli metabolic
model [216]. We also provide enzymatic rules enabling the biosynthesis
of aminoglycosides from Glucose. The reactions were extracted from the
map00524 KEGG map [250], and rules were computed as above on reac-
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tions for which a MetaNetX identifier could be retrieved. The resulting set
comprised 94 rules calculated for each diameter ranging from 2 to 16.

2.4.2 RetroPath2.0 core algorithm

The RetroPath2.0 workflow essentially follows an algorithm proposed by
some of us [222, 138] and its workflow implementation, which has already
been described in details in [138], is summarized in Figure 2.12. We here
focus on the different usages of RetroPath2.0 for the use cases provided in
section 2.2.
In all cases the workflow performs the generation of structures in a breadth-
first way by applying iteratively the same procedure. An iteration starts
by applying reaction rules to each of the compounds of a source set. For
each compound, the products are computed using the RDKit KNIME nodes
one-component or two-component reactions [194]. Products are sanitized
(removal of structures having incorrect valence), standardized and duplicates
are merged. The set of products will become the new source set for the next
iteration. The workflow iterates until a predefined number of iterations is
reached or until the source set is empty.

In the case of isomer augmentation (workflow RetroPath2.0-Mods-isomer-
augmentation, sections 2.2.1) the initial source set is composed of a single
carbon atom and the rule used is R1 in Figure 2.2, since it is the only rule
that will produce acyclic molecules. The rule is fired on the source set, and
the products become the new source set in the next iteration. The workflow
is iterated a number of times equal to N − 1, where N is the number of
atoms one wishes the final molecule to have.
In the case of isomer transformation (workflow RetroPath2.0-Mods-isomer-
transformation, sections 2.2.1 and 2.2.2) the initial source set is composed
of a molecule that is filled with the appropriate number of hydrogens using
the RDKit KNIME node Add Hs. At each iteration rules are fired on the
source set and the products obtained become the new source set for the next
iteration. As an additional last step of each iteration, products that have al-
ready been processed in a previous iteration are filtered out before building
the next source set. This necessitates maintaining a set (named sink) com-
prising all molecules so far generated. All products that have already been
obtained are removed from the product set and the remaining molecules are
(i) added to the sink set and (ii) used as the new source set for the next
iteration. This avoids applying reactions on the same products during sub-
sequent iterations. Disconnected structures are removed from the results by
filtering out any product having several disconnected components (accord-
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ing to the SMILES representation). When enumerating alkane, disconnected
structures represents between 50 and 66% (depending of the alkane size) of
the generated structures before filtering and merging duplicates. To gener-
ate the results of Table 2.1, since we are enumerating alkanes (no multiple
bonds or cycles), the rule to be used is R1 in Figure 2.4. To enumerate the
isomers of the monomers in section 2.2.2, if we prohibit the transformation
of multiple bonds into cycles and thus keep the number of single, double
and triple bonds constant, the rules to be used are R1, R5 and R9 in Fig-
ure 2.4 (also found in Figure 2.10 since the monomers used do not contain
triple bonds). Since this algorithm can become computationally intensive,
we also provide an additional workflow (called RetroPath2.0-Mods-isomer-
transformation-queue) to deal with memory management. This workflow
illustrates how to introduce a First In First Out (FIFO) data structure for
the source set (i.e. queue containing structures upon which rules will be
fired) and use it for iteratively firing rules on small chunks of structures
(e.g. chunk of 20 structures), new products obtained are then added to the
source queue. Interestingly, the breadth-first approach for generating the
structures can be replaced by a depth-first approach by replacing the queue
(first in, first out structure) by a stack (last in, first out structure).
In the case of inverse-QSAR (workflow RetroPath2.0-Mods-iQSAR, section
2.2.3), the source set initially comprises the molecules used in the training
set when building the QSAR. At each iteration, one or two molecules are
chosen at random from the source set depending on the rule set that is be-
ing used (one molecule with enzymatic reaction rules, two molecules with
isomer transformation rules). Rules are then fired on the selected molecules
and an activity is predicted for each product using the QSAR equation. The
source set is updated retaining molecules according to a selection tourna-
ment procedure borrowed from [241]. Briefly, the initial source set (i.e. the
set of structures used at the start of the current iteration) is merged with
the product set (i.e. the set of structures obtained after firing the rules).
This merged set is then randomly split into 10 subsets and the 10 top best
structures from each subset are retained according to their predicted ac-
tivity. Finally, all the retained structures are pooled together to form the
updated source set to be used at the next iteration. The workflow is iterated
a (user) predefined number of times.
In the case of E. coli metabolic network completion (workflow RetroPath2.0-
Mods-metabolomics, section metabolome completion and metabolomics), we
provide three workflows. The first workflow is RetroPath2.0, which is fully
described in [138] and is similar to the isomer transformation one. Here,
RetroPath2.0 produces a list of molecules obtained using E. coli enzymatic
reaction rules (see Generating reaction rules section). The second workflow
takes as input the products generated by RetroPath2.0, computes the exact
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mass for each product and prepare files to be read by OpenMS nodes for
MS data peak assignment [226]. The last workflow is built with OpenMS
nodes, it reads several MS data files in mzML format, two lists of adducts
in positive and negative modes, and the files generated by the second work-
flow (containing RetroPath2.0 generated products with masses). The work-
flow searches for each compound the corresponding peak in the MS spectra.
The workflow was parameterized for metabolomics analysis as described in
OpenMS manual [251], the AccurateMassSearch node was set to negative
ion mode as the experiment were carried out with an LTQ-Orbitrap instru-
ment operating in negative FT mode (cf. protocols in [243]).
Further details on how to run all the above workflows are provided in the
Supplementary at MyExperiment.org
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Figure 2.8 Representation of monomers and isomers in the chemical space. A Initial
158 monomers (green big circles) represented in the chemical space of chemical
descriptors using the two main principal components computed from the MACCS
fingerprints as axes. Monomers that can be produced through biosynthesis are
represented as big circles in red. B Covering of the chemical space generated by the
574,186 isomers (blue) enumerated for the 158 monomers (green) with a Tanimoto
similarity greater than 0.5 and associated predicted Tg property of the resulting
polymer. Virtual monomers are depicted as small circles to facilitate visualization
of their distribution around the starting monomers.
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Figure 2.9 Evolution of predicted activities. A and B Evolution vs. iteration number of
the best predicted activity (red) and average population predicted activity (blue)
from among the newly generated structures using A transformation enumeration
rules or B enzymatic rules. C and D Selected best structure generated after 500
iterations using either C transformation enumeration rules or D enzymatic rules.

Figure 2.10 Reduced isomer transformation rule set.. Reduced set excluding triple bonds.
Reactions in green move bonds around without creating or deleting cycles. Reac-
tions in blue change bond order by creating or deleting at least one cycle. To each
reaction corresponds a reverse reaction. The reverse reaction of R1 is R1, for R2 it
is R4, for R3 : R7, for R5: R5, for R6 : R8 and the reverse reaction of R9 is R9.
The bond order a13 and a24 can take any value from 0 to 3.
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Figure 2.11 RetroPath2.0 rules and corresponding SMARTS for reaction 2.6.1.93
at various diameters. A Full reaction 2.6.1.93 with atom mapping. B The
list of broken bonds (-1) and bonds formed (+1) is given by their atom numbers.
C The corresponding SMARTS for the component modeling promiscuity on 6’-
Oxo-paromamine: Substrate + L-Glutamate = Product + 2-Oxoglutarate. D The
corresponding SMARTS for the component modeling promiscuity on L-Glutamate:
Substrate + 6’-Oxo-paramamine = Neamine + Product. C and D. Rules are
encoded as reaction SMARTS and characterized by their diameter (∞ purple, 6
blue or 2 green), that is the number of bonds around the reaction center (atoms
19, 20 and 23, 24) defining the atoms kept in the rule.
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Figure 2.12 RetroPath2.0 KNIME workflow. Inner view of the "Core" node where
the computation takes place. The "Source, Sink..." and "Rules" nodes parse
the source, sink and rules input files provided by the user and standardize data so
that it can be processed by downstream nodes. Definitions for source, sink, and
rule sets are provided in the text. The outer loop ("Source" loop) iterates over
each source compounds, while the inner loop ("Length" loop) allows to iterate the
process up to a maximum number of steps predefined by the user. The nodes (i)
"FIRE", (ii) "PARSE", (iii) "UPDATE SOURCE..." and (iv) "BUILD" are sequen-
tially executed at each inner iteration. Respectively, they (i) apply all the rules on
source compounds, (ii) parse and standardize new products, (iii) update the lists of
source and sink compounds for the next iteration and (iv) merge results that will
be written by the node "Write global results". Once the maximum number of steps
is reached (or no new product is found), the "Compute scope" node identify the
scope linking each source to the sink compounds, then these results are written by
the node "Write per source results". Only the main nodes involved in the process
are shown.
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2.5 Supplementary Data

Rule ID Rule
R1 ([∗ : 1]− [∗ : 2].[∗ : 3]− [∗ : 4]) >> ([∗ : 1]− [∗ : 4].[∗ : 2]− [∗ : 3])
R2 ([∗ : 1] = [∗ : 2].[∗ : 3]− [∗ : 4]) >> ([∗ : 3]− [∗ : 2]− [∗ : 1]− [∗ : 4])
R3 ([∗ : 1] = [∗ : 2].[∗ : 3] = [∗ : 4]) >> ([∗ : 1]− 1− [∗ : 2]− [∗ : 3]− [∗ :

4]− 1)
R4 ([∗ : 2]− [∗ : 1]− [∗ : 4]− [∗ : 3]) >> ([∗ : 2]− [∗ : 3].[∗ : 1] = [∗ : 4])
R5 ([∗ : 3]− [∗ : 4]− [∗ : 1] = [∗ : 2]) >> ([∗ : 3]− [∗ : 2]− [∗ : 1] = [∗ : 4])
R6 ([∗ : 2] = [∗ : 1] − [∗ : 4] = [∗ : 3]) >> ([∗ : 2] − 1 − [∗ : 3] − [∗ : 4] =

[∗ : 1]− 1)
R7 ([∗ : 1]− 1− [∗ : 2]− [∗ : 3]− [∗ : 4]− 1) >> ([∗ : 2] = [∗ : 3].[∗ : 1] =

[∗ : 4])
R8 ([∗ : 3] − 1 − [∗ : 4] − [∗ : 1] = [∗ : 2] − 1) >> ([∗ : 3] = [∗ : 2] − [∗ :

1] = [∗ : 4])
R9 ([∗ : 1]− 1 = [∗ : 2]− [∗ : 3] = [∗ : 4]− 1) >> ([∗ : 1]− 1 = [∗ : 4]− [∗ :

3] = [∗ : 2]− 1)
R10 ([∗ : 2]− [∗ : 1] = [∗ : 4]− [∗ : 3]) >> ([∗ : 2]− [∗ : 3].[∗ : 1]#[∗ : 4])
R11 ([∗ : 3]− [∗ : 4] = [∗ : 1] = [∗ : 2]) >> ([∗ : 3]− [∗ : 2]− [∗ : 1]#[∗ : 4])
R12 ([∗ : 2] = [∗ : 1] = [∗ : 4] = [∗ : 3]) >> ([∗ : 2]−1− [∗ : 3]− [∗ : 4]#[∗ :

1]− 1)
R13 ([∗ : 2] − 1 − [∗ : 3] − [∗ : 4] = [∗ : 1] − 1) >> ([∗ : 2] = [∗ : 3].[∗ :

1]#[∗ : 4])
R14 ([∗ : 1] − 1 = [∗ : 4] − [∗ : 3] = [∗ : 2] − 1) >> ([∗ : 2]#[∗ : 3].[∗ :

1]#[∗ : 4])
R15 ([∗ : 1]#[∗ : 2].[∗ : 3]− [∗ : 4]) >> ([∗ : 3]− [∗ : 2] = [∗ : 1]− [∗ : 4])
R16 ([∗ : 1]#[∗ : 2].[∗ : 3] = [∗ : 4]) >> ([∗ : 3]− 1− [∗ : 4]− [∗ : 1] = [∗ :

2]− 1)
R17 ([∗ : 1]#[∗ : 2].[∗ : 3]#[∗ : 4]) >> ([∗ : 1] − 1 = [∗ : 2] − [∗ : 3] = [∗ :

4]− 1)
R18 ([∗ : 3]− [∗ : 4]− [∗ : 1]#[∗ : 2]) >> ([∗ : 3]− [∗ : 2] = [∗ : 1] = [∗ : 4])
R19 ([∗ : 3] − 1 − [∗ : 4] − [∗ : 1]#[∗ : 2] − 1) >> ([∗ : 3] = [∗ : 2] = [∗ :

1] = [∗ : 4])
Table 2.3 List of the 19 SMARTS rules that were used in this study.

78



a12 a34 a23 a14 Rule or argument for space reduction
1 1 0 0 Rule 1
1 1 0 1 Rule 4
1 1 0 2 Rule 10
1 1 1 1 Rule 7
1 1 1 2 Rule 13
1 1 2 2 Rule 14
2 1 0 0 Rule 2
2 1 0 1 Rule 5
2 1 0 2 Rule 11
2 1 1 1 Rule 8
2 1 1 2 Double bonds in 4 membered ring
2 1 2 2 Double bonds in 4 membered ring
2 2 0 0 Rule 3
2 2 0 1 Rule 6
2 2 0 2 Rule 12
2 2 1 1 Rule 9
2 2 1 2 Double bonds in 4 membered ring
2 2 2 2 Double bonds in 4 membered ring
3 1 0 0 Rule 15
3 1 0 1 Rule 18
3 1 0 2 Valence is limited to 4
3 1 1 1 Rule 19
3 1 1 2 Valence is limited to 4
3 1 2 2 Valence is limited to 4
3 2 0 0 Rule 16
3 2 0 1 Double bonds in 4 membered ring
3 2 0 2 Valence is limited to 4
3 2 1 1 Double bonds in 4 membered ring
3 2 1 2 Valence is limited to 4
3 2 2 2 Valence is limited to 4
3 3 0 0 Rule 17
3 3 0 1 Double bonds in 4 membered ring
3 3 0 2 Valence is limited to 4
3 3 1 1 Double bonds in 4 membered ring
3 3 1 2 Valence is limited to 4
3 3 2 2 Valence is limited to 4

Table 2.4 Solution space reduction arguments or rules corresponding to bond configu-
rations in section Isomer enumeration. This is shown for the 36 rules after reduction
of the solution space by problem symmetry arguments.
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3RetroPath3.0:
Similarity-guided Monte Carlo
Tree Search for metabolic
engineering

This work has been submitted for publication by Mathilde Koch, Thomas
Duigou and Jean-Loup Faulon.
Only minor modifications to the submitted paper have been introduced in
the Chapter below. Most notable modifications of the submitted paper
consisted in moving section on detailed golden set analysis, database sped-
up calculations, extension of previous searches to the Supplementary for
space constraints.

Detailed Contribution to this thesis

In this Chapter, I present the implementation of a novel bio-retrosynthetic
algorithm that overcomes some of the limitations presented in Chapters 1
and 2. The formalism used to derive reaction rules from knowledge databases
and apply them to compounds, as well as the way promiscuous reactions are
encoded, is mostly identical except for small technical details. However, my
main contribution was the adaptation of the Monte Carlo Tree Search algo-
rithm to our case, guiding it with a score that encompasses both chemical
relevance of the applied reaction and likelihood that an enzymatic sequence
exists to catalyze it. I developed the RetroPath 3.0 software built around
this algorithm, and validated it on two different datasets. First, on a small
and manually curated dataset of 20 compounds, the capacity of the algo-
rithm to find pathways described in the literature was evaluated, in order o
assess the biological relevance of generated pathways. Then, its capacity to
find pathways for compounds that are described in a dataset of successful
metabolic engineering projects was also evaluated. I also developed other
features that allow for faster searches for frequent users, making it relevant
for metabolic engineering from a practical standpoint. I then showcased
its modularity by including toxicity prediction in the algorithm, to try and
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avoid toxic intermediates. Therefore, this software, that overcomes some
algorithmic limitations of previous retrosynthetic tools, becomes a better
design tool for designing metabolic pathways. This is particularly useful
in the context of development of synthetic metabolic circuits, which use
metabolism to perform computation: such circuits require an efficient way
to explore the metabolic space around detectable compounds.

Full reference

Not available yet.

Contributions as stated in the article

M.K., T.D. and J.-L. F. designed the study. M.K. developed the MCTS
algorithm. T.D. developed rule extraction and application code, chassis
analysis and LASER extraction. Both M.K. and T.D. tested and validated
the software. M.K., T.D. and J.-L. F. wrote the paper.

3.1 Abstract

Metabolic engineering aims to produce chemicals of interest from living
organisms, to advance towards greener chemistry. However, the research
and development process is still long and costly and efficient computational
design tools are required to explore the chemical biosynthetic space. We
provide RetroPath 3.0, an open-source, modular command line tool that
explores the bio-retrosynthesis space using a similarity-guided Monte Carlo
Tree Search. We validate it on a dataset of manually curated experimental
pathways as well as on a larger dataset of successful metabolic engineer-
ing projects. Moreover, we provide a novel feature, that suggests potential
media supplements to complement the enzymatic synthesis plan.

3.2 Introduction

Efficient computational tools are required for metabolic engineering to achieve
its true potential as a game-changer in the bioeconomy. Such tools in-
clude pathway design tools, to assist the metabolic engineer in finding new
pathways for production of a target of interest. While some tools restrict
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themselves to reactions already present in databases [186, 185], others al-
low the generation of de novo reactions, using retrosynthesis algorithms
[252, 138, 188, 137, 210, 191, 190, 187, 136]. At its core, a retrosynthesis
algorithm is simple: break down a target molecule into simpler molecules
that can be combined chemically or enzymatically to produce it, and iterate
recursively until all required compounds are either commercially available
or present in the chassis organism of choice. Current bioretrosynthesis tools
suffer from a number of limits. First of all, they are usually accessible by a
web-server and not locally, limiting an expert user’s capacity to tune them.
Secondly, a number of parameters are often included within the pathway
search, decided by the software designer and with limited capacity for a
user to incorporate his own knowledge, as the retrosynthesis tool solves for
both optimization of those parameters and actual retrosynthetic pathway
search. Some examples include enzyme performance [138], predicted yield
[187, 188, 190, 212, 253], thermodynamics or cofactor usage [252]. Moreover,
those tools rarely include the latest advances in combinatorial search space
exploration, pioneered in the field of Artificial Intelligence.
In order to address those limitations, we present RetroPath 3.0, which is
released as an open source python package freely available on Pypi and
GitHub for community contributions. RetroPath 3.0’s search algorithm re-
lies on Monte Carlo Tree Search (MCTS), which has already revolutionized
the field of Artificial Intelligence, as illustrated by the stunning victory of
Google’s AI (AlphaGo) against a Go master in 2016 [104, 82, 83]. An in-
teresting application used this algorithm combined with neural networks in
chemical retrosynthesis, but acknowledging that natural compounds synthe-
sis was beyond their scope [87]. Our aim with RetroPath 3.0 is to provide a
command line software using MCTS, while allowing a number of augmenta-
tions and features to be used or developed by experts users to tune it to their
needs. Lack of open-source computer-assisted pathway design tools is cur-
rently pointed out as one of the major limits faced by metabolic engineering
projects [254, 255]. Therefore, RetroPath 3.0 is a timely software that will
hopefully contribute to metabolic engineering realizing its true potential for
green chemistry.

3.3 Theoretical background

3.3.1 Reaction rules for representing enzymatic reactions

We use reaction rules that describe the changes in bonding patterns when a
set of substrates is transformed into a set of products to describe enzymatic
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reactions. An important feature of rules for retrosynthetic applications is
that they need to be generalisable, so that they can be applied to a new
substrate that was not from among the substrates the rules were learned on.
Moreover, using generalized reaction rules is the first step towards predicting
promiscuous reactions, as those reactions are often missing from metabolic
databases. Modeling promiscuity is a key feature in metabolic engineering,
as it has for example been estimated that 37% of E. coli K12 enzymes have
a promiscuous activity on structurally similar substrates [130]. In our data-
driven approach, we learn rules at various levels of specificity around the
reaction present in the database, by keeping in the described pattern of
the rule a varying number of atoms around the reaction center. We select
those atoms using a number we call diameter that represents the distance
in bonds around the reaction center: a rule at diameter 2 will include atoms
at a distance of 1 around the reaction center, while a rule a diameter 10 will
include atoms at a distance of 5 around the reaction center. Therefore, the
rule at diameter 2 can apply to more diverse substrates and therefore encode
more promiscuity than the rule at diameter 10. A more detailed description
of reaction rules can be found in [138, 116] and in the Methods section, as
well as in Chapters 1 and 2.

3.3.2 Necessity of ranking reactions

Once we extracted our rules, we sought to find out how many rules on
average applied to a compound. If this number is low enough, an exhaustive
search can be considered, but in the other case, applying chemical reaction
rules iteratively on substrates and their products leads to a combinatorial
explosion. Our encoding of reaction rules at various diameters allows us to
select the degree of promiscuity, which has a high impact on those statistics.
Results for rule sets used in this study are presented in Table 3.1, and
for individual diameters in Supplementary Table 3.2. We can see from this
Table that the branching factor (the average number of rules that apply to a
substrate) is around 100 when using rules at diameters 6, 10 and 16 (slightly
promiscuous, medium and very specific) and drastically increases with the
level of promiscuity (adding rules at diameter 2 that are highly promiscuous
lead to a branching factor of 900). Therefore, the more promiscuity we
allow, the higher our branching factor becomes.
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Set of diameters
used

6, 10, 16 2, 6, 10, 16 All (2 to 16)

Average number of
applicable rules

100 900 1183

Table 3.1 Average branching factor for chosen sets Average number of applicable rules
that on a compound according to the set of diameters used. Information on average
number of rules at all individual diameters are available in Supplementary Table
3.2.

Such a high branching factor is comparable to the Go game (branching
factor of 250) and much higher than chess (35), and the reason why using
algorithms that were successful in this domain could also be of interest for
retrosynthesis [104, 87]. We therefore use an algorithm (MCTS) that can
effectively handle this combinatorial explosion, and a heuristic (chemical
similarity) to guide the search.

3.3.3 Chemical similarity and sequence availability for

reaction ranking

Chemical similarity between query (applied on a new substrate) and the
native chemical transformation has been used in various studies [212, 256,
257, 187]. We adapted the strategy from Coley et al., that proceeds in a
2 step evaluation of the reaction. In a first step, before rule application,
similarity between query and native substrates is calculated. After rule ap-
plication, similarity between query and native products is also calculated.
This allows accounting of similarity in a manner straightforward to use with
monocomponent reaction rules (Figure 3.1A). Using this metric allows us to
select chemical reactions similar to the ones present in metabolic databases,
increasing our chances that this predicted reaction can be catalyzed.
However, in [212] [256] [257], the authors are interested in chemical retrosyn-
thesis, whereas we are interested in enzyme-catalyzed reactions. There-
fore, we combine (through multiplication) this chemical score with a scoring
scheme that we developed previously [138]. Briefly, this biological score
characterizes our confidence that a sequence exists to catalyze the desired
enzymatic rule. We updated this scoring scheme to be a normalized score,
between 0 and 1, to be in the same range as the chemical score. This bio-
logical score has the useful property that rules at low diameter (i.e.: more
promiscuous) are usually ranked lower than rules at high diameters (i.e.:
more specific and trustworthy).
In RetroPath 3.0, this combined biochemical score is used for ranking and
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excluding reaction rules that are not considered trustworthy (similarity too
low to the original reaction, or sequence availability too low). We found
cut-offs of 0.3 provide a good trade-off between allowing promiscuity and
keeping realistic rules.

3.3.4 Integrating rule ranking with Monte Carlo Tree

Search

(a)

(b)

Figure 3.1 Presentation of the algorithm and the chemical scoring scheme employed
a Chemical score computation and rule selection scheme. We start by selecting
substrates within the rule collection that are similar to the query substrate. We then
apply those rule templates and check similarity of those products to the products
the rules were learned on. b Monte Carlo Tree Search algorithm. Circles represent
nodes, and pentagons molecules.
Detailed explanations are in the main text and in the Methods section.

A Monte Carlo Tree Search (MCTS) algorithm proceeds in 4 phases, re-
peated until a resource budget (time or number of iterations) has been ex-
hausted (Figure 3.1B).
(Selection) Starting from the root node (here, a chemical state containing
the target compound), the best children nodes according to the selection
policy are iteratively chosen until a leaf node is reached. We use a selection
policy guided by the biochemical score of the reaction rule, unless otherwise
stated.
(Expansion) Possible transformations are selected based on the ranking
scheme presented above and the node is expanded (with a predefined max-
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imum number of children).
(Simulation or rollout) This is an iterative procedure that starts by check-
ing the status of the state. If it is terminal, a reward (or penalty) is returned
according to the rewarding policy (detailed in the methods section). If it
is not terminal, a transformation is randomly sampled from available trans-
formations and the process is repeated. This is performed until a maximum
number of rollout steps or the maximal depth of the tree is reached.
(Backpropagation or update) The score obtained after exploring this
node is returned to its parents to update their values and visit counts.
The biochemical rule ranking is used both in expansion and rollout phases.
For evaluation of a state, we check whether compounds belong to a sink
(chassis organism of interest for bioretrosynthesis but buyable compounds
in retrosynthesis).

3.4 Results and Discussion

3.4.1 Evaluating RetroPath 3.0 with a golden dataset

We first evaluate our tool on a manually curated dataset of 20 compounds
(see Methods for selection) to identify the best settings for a retrosynthetic
search on 20 compounds (chosen compounds and rationale for selection are
available in the Methods section). RetroPath 3.0 provides a number of fea-
tures for expert users (See Supplementary Note 1) and we wanted to compare
them on this golden dataset to select the best parameters possible. While
various metrics could be available to describe what a good bioretrosynthesis
algorithm should do, there is no obvious consensus. Should such an algo-
rithm be fast? Return a lot of pathways? Return fewer but more reliable
pathways? We use three criteria for comparing algorithms. First, it should
return pathways for as many compounds as possible. Second, results should
include the chosen literature-described experimental pathway (exact inter-
mediates are found). For parameter sets with identical results on those two
criteria, the third criteria is that a better parameter combination should
return the experimental pathway in less iterations.

The best parameters set we found used chemical and biological thresholds of
0.3, and a maximum of 10 allowed children per node (detailed configuration
is available as Supplementary Table 3.4 and effects of various parameters
were investigated and presented in Supplementary Note 1). Results com-
paring RetroPath 3.0 and RetroPath 2.0 (run with the same set of rules at
diameters 6, 10 and 16 and a timeout of 3 hours) on the golden dataset are
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Figure 3.2 Results of the RetroPath suite against the golden dataset to identify
the experimental pathway. We compared results of RetroPath 2.0, the default
configuration of RetroPath 3.0 and a combination of results between the default
configuration and a more tolerant one on the used scores with a timeout of 3 hours.
With supplementation (purple) means a supplement has to be provided in the media
to identify the correct experimental pathway. One step different (dark blue) means
only one step differs from the described pathway, for example by using a different
co-substrate. One step lacking (light blue) means the search algorithm found a
pathway identical to the experimental one, except one step which was shortcutted.
Fully found (green) means the experimental pathway was found without restriction.
Not found (orange) means the experimental pathway was not found.

presented in Figure 3.2. For all compounds, at least one pathway was found
with those settings with RetroPath 3.0, while one compound had no pathway
with RetroPath 2.0. For 2-amino-1,3-propanediol, the same core pathway
was found, but the identified co-substrate in the first step was different (D-
alanine for RetroPath instead of D-glutamate for the experimental pathway,
the main substrate being dihydroxyacetone phosphate) (one step different in
Figure 3.2 - dark blue). For four compounds (TPA, N-methylpyrrolinium,
1,4 BDO and protopanaxadiol), the experimental pathway was not found
for different reasons. For TPA, the described experimental pathway in our
golden dataset starts from a compound added to the mix, xylene. Run-
ning our workflow adding this compound to the sink allows us to find the
experimental pathway (Figure 3.2 - purple). For protopanaxadiol and N-
methylpyrrolinium, we ran the MCTS using a different set of parameters,
allowing both to explore more reactions (15 instead of 10) and more toler-
ance on the scores (cut-offs of 0.15 instead of 0.3). With those new settings
we found the experimental pathway for both compounds. For 1,4 BDO, the
experimental pathway was not found with these new settings either, but
a similar pathway (lacking only one enzymatic step) was found with the
default configuration. It transforms 4-hydroxybutyryl Coa into 1,4 BDO
without using 4-Hydroxybutyraldehyde, supposedly catalysed by EC num-
ber (1.2.1.84: alcohol-forming fatty acyl-CoA reductase, without the alcohol
dehydrogenase step from the literature example). The rest of this pathway
is identical to the experimental pathway (one step lacking in Figure 3.2-
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light blue).

In conclusion, our workflow found at least a pathway for each compound
of our golden dataset (100% success), and found the experimental pathway
75% of the time with strict settings, and 95% of the time when trying
more tolerant settings on failed compounds, media supplementation or using
another cofactor (lacking one step is considered a failure). We can see this
is better than our previous algorithm, proving that RetroPath 3.0 suggests
more experimentally relevant pathways.

3.4.2 Importance of our scoring schemes

Although all parameters of interest are evaluated (with a timeout of 4 hours)
in Supplementary Figures 3.6 to 3.16 in Supplementary Note 1, we detail
here the impact of the scoring scheme. As mentioned in the theoretical
background section, we use a biochemical score, based on both chemical
similarity and estimation of enzyme sequence availability. We analyzed al-
gorithm behavior when guided only by similarity, biological score or no
scoring scheme (classical algorithm). The results are presented in Figure 3.3
and validate our approach. We can see the score contributing most to our
biochemical score’ success is the chemical similarity component, while the
biological score mainly ensures experimental relevance.

Figure 3.3 Impact of guidance scheme on retrieval performance of RetroPath 3.0We
compared results between guiding the search based on the Classical UCT formula, a
formula guided by Biological scoring, Chemical scoring or Biochemical scoring. One
pathway found means that at least one pathway have been predicted. Experimental
pathway found means that the experimental pathway is from among the predicted
pathways.
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3.4.3 Evaluating RetroPath 3.0 on successful metabolic

engineering projects

After validating relevance of predictions, we tested RetroPath 3.0 on a
larger dataset. Our previous tool [138] was tested on the LASER database
[258, 259] that compiles successful metabolic engineering projects, completed
with compounds taken from the Metabolic Engineering journal (see Meth-
ods, available as Supplementary Data 1 available online). Given the cura-
tion level of this dataset, we checked the number of compounds for which
we could find a pathway, and not the exact experimental pathway.
We ran our RetroPath 2.0 software using the same RetroRules rules (diam-
eters 6, 10 and 16) and solved 77.6% compounds (118 out of 152), finding a
median number of pathways of 4.5. With RetroPath 3.0 and a score cut-off
of 0.3, we solved 121 compounds (79.6%) with a median number of path-
ways of 11.5. Without score cut-off, we obtain 6 more compounds, yielding
a success rate of 83.6% (results are available as Supplementary Data 2 avail-
able online). The main advantage of RetroPath 3.0 over RetroPath 2.0 is its
capacity to find longer pathways. Indeed, the memory requirements of the
exhaustive search performed by RetroPath 2.0 essentially limit it to 5 step
pathways, while RetroPath 3.0 can explore longer pathways and therefore
find more solutions given the same allowed time. Its focus on promising
areas of the search space also lead RetroPath 3.0 to propose more solutions
for the same compound.

3.4.4 Supplement �nder for media supplementation

The literature pathway that we identified for TPA used xylene for me-
dia supplementation, i.e.: xylene is not a metabolite from the microbial
strain but was necessary for producing TPA and experimentally added to
the strain’s growth media. Knowing this allowed us to add xylene to the list
of starting compounds for retrosynthetic search. Media supplementation is
commonly done in metabolic engineering but rarely integrated into retrosyn-
thesis tools. We therefore developed a RetroPath3.0 feature that analyses
search trees and suggests potential media supplements, available from the
chemical provider Sigma. We first extracted supplement information from
LASER, as well as two TPA experimental pathways known from the litera-
ture. Filtering out gene inducers, antibiotics or early precursors, we obtain
a list of 8 curated pathways with supplementation (available as Supplemen-
tary Data 3 available online). In 5 cases out of 8, we retrieve the compound
that was used for supplementation in the described experimental pathway.
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For 2 cases, we did not find the experimentally described supplement but
suggest other possibilities. Here, we used availability in the Sigma-Aldrich
database as a criterion on whether a compound could be an interesting sup-
plement. However, this feature can be used with any database of interest,
for example with in-house compounds of a laboratory. One could include
criteria such as capacity to cross membranes, solubility, toxicity, cost or any
other feature of interest and select compounds that are biologically relevant
for their application of interest.

3.4.5 Custom use of RetroPath 3.0: avoid toxic

intermediates

We sought to make our tool as modular and flexible as possible, therefore
allowing expert users to input their knowledge. We showcase this by im-
plementing a toxicity score to bias the search away from toxic compounds
[211, 188]. This toxicity score is negative (between 0 and -10 in our training
dataset) for toxic compounds, and set to 0 otherwise. The strength of using
bias in MCTS is that it favors preferred routes (here, avoiding toxic interme-
diates) but can still find results if those preferred routes are not successful,
in contrary to other algorithms that would exclude those intermediates al-
together. While implementing this feature did not change our results on the
golden dataset (i.e.: the experimental pathway was identified for the same
compounds), the order as well as the total number of returned pathways
was impacted (Supplementary Table 3.3).
While we tested it with toxicity, biasing the search could also be used to
encourage pathways to be found from a set of privileged metabolites (core
metabolism), by cost, availability in the cell or any other metric the ad-
vanced user wishes to use, making MCTS ideal to incorporate biological
knowledge into retrosynthetic search.

3.4.6 Database sped-up calculations

When running a rule-based retrosynthetic algorithm, the most time and
power consuming steps are rule application steps which require sub-graph
matching, as this is an NP hard sub-graph isomorphism problem. We im-
plemented a NoSQL database that allows for a frequent user to store rule
application calculations. To allow for fair comparison between runs and al-
gorithms, it was not activated in the results presented previously. However,
when this feature is active, the results of the first rule application on a com-
pound is stored in the database. When the same calculation is encountered
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in a later run of RetroPath 3.0, results are retrieved from the database.
This allows for faster runs of the algorithm and therefore larger and deeper
exploration within the same time budget. For example, we ran the TPA
retrosynthetic search 4 times: without the database, and with the database
for the first, second and third time, allowing 1 hour and 100 000 iterations
at each step. We present in Figure 3.4 the number of iterations performed in
1 hour, as well as the number of pathways found. While we can see the first
run with the database is not as efficient as the run without it (reaches less
iterations and does not find a pathway), we can see that having filled the
database allows for more exploration of the tree in runs 2 and 3, where in
the same allocated time more iterations are performed and more pathways
found.

(a) (b)

Figure 3.4 Database sped-up retrosynthetic search We compared results between a clas-
sical run where computation is performed on the fly versus storing results in a
Database. a Reached iteration is the number of iterations performed by the algo-
rithm in the given time-frame (1hour). b Found pathways is the number of found
pathways per run.

3.4.7 Extending a previous search

Another feature of interest for expert users is the possibility to extend a pre-
viously run tree. For example, considering the example of protopanaxadiol,
the experimental pathway was not found with our default settings, but was
with more tolerant settings (15 children instead of 10 and a score cut-off of
0.15 instead of 0.3). However, instead of starting from scratch and losing
the previously made calculations, it is possible to restart the search from
a saved tree, with more tolerant settings. The results after running for 4h
and 10 000 iterations are presented in Figure 3.5. With the default settings,
the iteration budget is spent finding only 1 pathway (not the experimental
one). Using more tolerant settings is slower (604 iterations are performed
in the allotted time) and 2 pathways are found. Extending the original tree
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allows for performing more iterations (786) and finding one more pathway,
when compared to starting from scratch.

(a) (b)

Figure 3.5 Extending a previous search We compared results between default settings,
more tolerant settings and extending the saved searched. a Reached iteration is the
number of iterations performed by the algorithm in the given time-frame (1hour).
b Found pathways is the number of found pathways per run.

3.5 Conclusion

We provide here RetroPath 3.0, an open-source Python package for ret-
rosynthesis. RetroPath 3.0 uses Monte Carlo Tree Search, a combinatorial
search algorithm that changed the field of artificial intelligence when play-
ing board games. While MCTS has already been implemented for chemical
synthesis [87], RetroPath 3.0 is to our knowledge the first application of
this algorithm to metabolic engineering. It is a versatile, modular command
line tool, build for metabolic engineers, that takes as input a compound of
interest, a chassis organism as sink and a set of reaction rules.
While RetroPath 3.0 can take as input any set of chemical rules in SMARTS,
giving great freedom to users to use reactions from their pathways or mi-
crobial strain of expertise, the tests presented in this article use rules from
our RetroRules database [116]. RetroRules was built using a data-driven
approach showcased in RetroPath 2.0 [138], allowing promiscuity encoding.
Using both reaction rules at various diameters and chemical similarity scor-
ing, we can tune the allowed promiscuity within our search, which is an ad-
vantage over building reaction rules from EC numbers as is commonly done
in metabolic engineering. Another advantage of a data-driven approach
is that it is bound to get more precise and information-rich as metabolic
databases expand.
We validated RetroPath 3.0 by verifying on a manually curated dataset that
a literature-described pathways could be found for 20 different compounds.
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The fact that the experimental pathways are found for 75% of compounds us-
ing default settings and 95% of the time using more tolerant ones, with much
better results when biochemically guiding the search, confirms the ability
of RetroPath 3.0 to suggest experimentally viable pathways for metabolic
engineers.
Moreover, following the standards we set in our RetroPath 2.0 paper, we
tested RetroPath 3.0 on a larger dataset and found a pathway for 83.6% of
compounds that were results of successful metabolic engineering projects.
These results confirm that RetroPath 3.0 generalizes well to metabolic en-
gineering compounds outside the golden dataset. Moreover, RetroPath 3.0
suggests more pathways (median number of 11.5 versus 4.5), given metabolic
engineers more suggestions with which to exercise their expertise.
While a restricted number of chassis was provided with RetroPath 3.0, the
user can provide his own chassis or supplement the media with a given com-
pound of interest. For example, when supplementing xylene to the chassis an
experimentally described pathway to TPA [260] is found, and when adding
thebaine to the media, a pathway for morphine production is also found
[261]. A novel feature that should be welcomed by the metabolic engineer-
ing community is the ability of RetroPath 3.0 to suggest media supplements
to complement the enzymatic synthesis plan. This feature, tested on 8 path-
ways, found the experimentally described supplement for 5 of them, and also
suggests others supplements to test.
We showcase RetroPath 3.0’s modularity by biasing the search towards less
toxic intermediates, and also provide expert users 2 strategies to speed-up
the retrosynthetic search, either by storing results in a database or extend-
ing a search from previously run search trees. Another feature of interest
is the ability to use RetroPath 3.0 for biosensor design, as we also demon-
strated with our previously developed tools [77, 262]. This can be used in
conjunction with a dataset of detectable compounds [76] to allow for design
of Sensing Enabling Metabolic Pathways.
Despite the advantages presented above, RetroPath 3.0 still presents some
limits, mostly related pathway ranking. The authors of this article believe
modular design, with a downstream analysis of selected pathways, to be a
more appropriate course of action than ranking within the tool: so many
genome or growth conditions modifications can increase a pathway yield
that including all ranking schemes into one to come up with a ‘best’ path-
way neglects both metabolic engineers’ expertise and years of lessons from
the industry. However, most bio-retrosynthesis developers present all inte-
grated tools that perform pathway search and ranking together. Ranking
schemes in such tools can involve accounting for enzyme integration into the
chassis, kinetics, toxicity, carried flux, thermodynamics or preferred cofac-
tor usage [252, 253]. Our approach provide two advantages over integrated
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tools. First, ranking the pathways separately allows for a much more mod-
ular integration, and the ability to integrate new ideas into ranking much
more easily. Moreover, as shown in the custom use section, for advanced
users attached to using these schemes, it is possible to integrate them eas-
ily given RetroPath 3.0’s modular code and the ability of the Monte Carlo
Tree Search algorithm to bias the search towards or away from properties
of interest.
While stereochemistry has been described as one of Nature’s most interest-
ing advantages compared to the traditional chemical industry [263], it is not
used in results presented here, mainly due to current technical limitations
to the way stereochemistry is handled by the cheminformatics packages we
used at the moment. However, since our formalism uses rules SMARTS
which are stereo-aware [108], and our standardisation schemes can leave or
remove stereochemistry, users wishing to use stereochemistry in RetroPath
3.0 can do so.
Another major advance that could be included in RetroPath 3.0 would be
to guide reaction selection steps through learned values instead of similarity.
For example, this was implemented in [87] or [264]. However, the authors
learned values from Reaxys which contains 12.4 million single-step reactions
(compared to around 80k in Metanetx, including reactions without chemi-
cal structures [202]). Therefore, using learned values in bio-retrosynthesis
seems out of reach for the moment, but could become available in the coming
years due to the intense curation efforts under way in the community. More-
over, those learned values in bio-retrosynthesis would have to be chassis-
dependent, as a intermediate compound’s value for bio-retrosynthesis de-
pends highly on the chassis of interest.
In conclusion, we present here a highly modular tool using one of the latest
tree search algorithms for bio-retrosynthesis. This tool is modular enough
for expert users to input their expert knowledge, and has been thoroughly
tested on datasets of interest to the community.

3.6 Materials and methods

All chemical operations were performed using RDKit release 2019.03.1.0 and
Python 3.6.

3.6.1 Compound standardization

All compounds were standardized using the following steps:
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1. sanitizing chemical depictions using RDKit’s SanitizeMol method
2. removing isotope
3. neutralizing charges
4. removing stereo
5. converting back and forth to InChI [265] to ensure tautomerism con-

sistency

3.6.2 Reaction rule encoding

Our reaction rules are generated as presented in our RetroRules database
[116]. Briefly, we extracted known biochemical reactions from the MetaNetX
[202] database version 3.1 and filtered out incomplete reactions. We iden-
tified the reaction centers based on atom-atom mappings we performed us-
ing the Reaction Decoder software [195](version 2.1.0). We decomposed
multi-substrates reactions into mono-substrate components by considering
one substrate per component and only the subset of products that share at
least one atom with the substrate. Mono-components involving a typical
co-factor (such as CO2, ATP, NADH, ...) as substrate were excluded. Fi-
nally, each mono-component reaction is encoded into a collection of reaction
rules using the SMARTS [108] formalism for a diameter ranging from 2 to
16 around the reaction center.
The main difference with the RetroRules procedure is that we use implicit
hydrogen notation in the reaction rules instead of explicit, which allows
much faster computation of standardization of compounds and reaction rule
application through RDKit.
To validate the reaction rules, we checked that applying the reaction rules
on the substrates used as templates produce the products described in the
template reactions. The success rates range from 99.4% for reaction rules
at diameter 2 to 99.8% for those at diameter 16. We also performed a cross-
radius consistency check by ensuring that sets of products produced by large
diameter reaction rules (e.g. reaction rules generated with a diameter of 10)
are always subsets of products produced by reaction rule at any smaller di-
ameter (e.g. reaction rules for diameter 8), which show a success rate of
99.3%. Only reaction rules passing successfully both procedures have been
retained and used, which represent almost 146k distinct reaction rules (avail-
able for download on RetroRules website, download page, release 20190524)
and model more than 18k biochemical reactions in both directions.
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3.6.3 EMS generation for branching factor calculation

We generated what we called the Extended Metabolic Space (EMS) at 1
step, i.e. the metabolic space that can be reached by applying our reaction
rules once on all compounds of MetaNetX [202] being used as template for
generating at least one reaction rule. We filtered out substrates having a
molecular weight greater than 1 kDa. We set a timeout cut-off of 1 second
on rule application. We then analyzed the results presented in Tables 3.1
and 3.2 using the NetworkX python software [266].

3.6.4 Chemical score calculation

After compound standardization, we calculate a 1024 binary Morgan finger-
prints vector using the RDKit method GetMorganFingerprintAsBitVect at
diameter 4.
For substrate score, the query substrate is compared to all native substrates
a rule was learned on using Tanimoto score [196, 267], and the maximum
score is kept.
For products and substrate scoring, the procedure is as follows: For each
native (nsub, nproducts) couple:

1. calculate Tanimoto of query and native substrate.
2. generate all combinations of native and query products (below 1000

to avoid a combinatorial explosion. The number of combinations is n!
where n is the number of products generated by the rule application)

3. for each combination, calculate the geometric mean of the Tanimoto
scores of products

4. Keep the highest combination score.
5. The score of this native combination is the product of the substrate

score and the highest combination score.

The score of the rule is the highest score of all native substrates and products
the rule was generated from. Rules generating a different number of products
from the template receive a score of -1.

3.6.5 Biological score calculation

A penalty is calculated as presented in our RetroPath 2.0 paper [138].
Briefly, we clustered reaction rules according to the EC number annota-
tions inherited from the template reactions. Independently, we clustered
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enzyme sequences collected from UniProt [268] (release 2019.04) according
to sequence similarity using the cd-hit software [204] (version 4.6.8). We
establish the sequences to reaction rules associations based on Rhea [269]
(v98), MetaCyc [270] (v21.5) and Reactome [271] (v66) cross-links. The
penalty score was then computed as

penaltyscore(rule) = log10(nrule)
with nrule the number of distinct clusters that contains sequences associated
to the rule.
In addition, we then normalized this penalty into a score comprised between
0 and 1 using the following function:

score(rule) = 1
1 + alpha.weightedpenalty(rule)

with
weightedpenalty(rule) = penaltyscore(rule)√

radius(rule)

and alpha = 1
median(weightedpenalty) .

3.6.6 Sinks construction

Except when stated, sink compounds have been extracted from genome-
scale metabolic models by only collecting the chemicals that lie in the cy-
tosol compartment. In addition, we filtered out "dead-end" compounds,
i.e. compounds that cannot be produced by any reactions in a steady-state
metabolic model, that we detected by performing a Flux Variability Analy-
sis using the COBRApy package [272] (v0.15.3).
Chemical structures have been obtained using cross-links from the models
to metabolic databases. In case no cross-link or not any valid structure was
found, the PubChem [273] database was examined using compound names
as query. Finally, all chemical structures were standardized as described in
the Compound standardisation section.

3.6.7 Available sinks

The available sinks provided with our software are iML1515 [274], iJO1366
[216] and core E. coli metabolism [275], as well as Bacillus Subtilis iYO844
model [118] and our set of detectable compounds for biosensor design [76].
The genome scale models were obtained from the BiGG Models database
[276]. By default, we used sinks from the iML1515 model.
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3.6.8 RetroPath 2.0 con�guration

For all tests made with RetroPath2.0, we perform all executions on a recent
work station. We use the sink extracted from the iML1515 model, and we set
the maximum pathway length to 5, the maximum number of structures to
keep for next iteration to 1000, and a 3 hours per execution time budget. We
then use the rp2paths software available on GitHub to extract the pathways
from RetroPath2.0 output [138].

3.6.9 Monte Carlo Tree Search implementation

The aim of Markov decision processes is to model sequential decision pro-
cesses of an agent in an environment [277]. Its most notable components are
states (representing positions in a game) and actions (allowed transforma-
tions from the state). In RetroPath 3.0, following the method developed by
[87], we consider states to be a set of molecules. The initial state contains
only the target compound one desires to produce. Actions are transforma-
tion of any molecule of the state that do not transform the compound into
itself nor produce a non-sink compound that has already been produced be-
fore in the synthesis plan so as to avoid loop searches. A state is considered
terminal if all compounds are in the sink, if no move can be applied to this
state or if the maximum allowed depth has been reached. Monte Carlo Tree
Search is a reinforcement learning approach that builds a search tree and
stochastically explores search space to bias search towards most promising
regions of combinatorial space, following steps presented in Figure 3.1B and
detailed below.

Selection Starting from the root node, the best children nodes according to
the selection policy are iteratively chosen until a leaf node is reached. The
formula we used is:

V alue = Nodescore
Nodevisits

+ UCTK.chemicalscore.biologicalscore.

√
Parentvisits

1 +Nodevisits

where Nodescore is the cumulative score from rollouts, Nodevisits is the num-
ber of visits to this node, UCTK is the UCT (Upper Confidence Trees)
constant used (balances between exploitation and exploration), chemical
and biological scores are the scores of the move leading to this node and
parent visits is the number of visits of this Node’s parents.
Other policies have been developed, notably with only chemical, biological
score, or no scoring. In our implementation, grand-children of a node can
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only be explored if all his children have had at least minimalvisits number
of visits. This allows mandatory rollout on different branches at least once
to favor exploration.

Expansion For each compound that is not in the sink, its n best moves are
identified and stored (with n the maximal number of children allowed for the
node). Then, the n best moves overall on the state are selected and children
created iteratively (one at the first visit of the node, the next at the next
visit and so on) for each of these moves and a rollout is performed.

Rollout Rollout is an iterative procedure that starts by checking the status
of the state. Is it is terminal, a reward (or penalty) is returned according
to the rewarding policy. If it is not terminal, a transformation is randomly
sampled from available transformations and the process is repeated. This is
performed until a maximum number of rollout steps or the maximal depth
of the tree is reached. The function for random sampling used throughout
this study gives weight chemical * biological score to moves, therefore giving
more probability of being sampled to higher scoring moves according to our
scoring scheme.

Rewarding policy A state is rewarded as follows:

1. receives a penalty of -1 when no compound is solved
2. receives a bonus of 5 when the state is fully solved.
3. receives a score of numberfound

totalnumber
when only a fraction of molecules in the

state are solved.

Update The node and its parents update their value and node counts ac-
cording to the results obtained from the above rewarding scheme after roll-
out.

3.6.10 Returning complete pathways

Each time a full pathway is found during the tree expansion, the pathway is
returned, and an additional bonus of 10 is received by the node, to allow for
biasing towards similar successful pathways. At the end of search, the most
visited pathway is returned ("best"), and all pathways are returned ranked
in order of decreasing biochemical score.
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3.6.11 Rule calculation cache using a NoSQL database

Rule calculation can be optionally cached into a NoSQL database in order to
optimize the running time of RetroPath 3.0. We released this cache system
as an optional python package named rp3_cache that is also available on
GitHub. Technically, the cache system relies on the Mongo DB database
that is embedded into a Docker container to make the implementation ag-
nostic of the operating system.

3.6.12 Tree extension

The tree extension procedure starts with a tree containing search results.
If n children were allowed in the first run and the extension allows m more
children, up to n + m children can be found for a given node. Node scores
and visit counts are re-initialized, and nodes are first flagged for extension
then extended when they are first visited in the new search.

3.6.13 Golden dataset construction

In order to perform golden dataset curation, we focused on articles where
pathways were explicitly described (i.e.: no missing steps, and available
intermediate compounds). We retrieved compound structures in PubChem
[273] and EC numbers from BRENDA [133] based on enzyme name as given
in the article. We selected pathways of strictly more than 1 step. We then
verified for each step that we had chemical rules available in our RetroRules
[116] database to encode the described transformations. This ensures a
fair comparison between tools using our publicly available reaction rules, in
order to evaluate separately retrosynthesis tools and the underlying chemical
rules. The detailed list with references is available as Supplementary Table
3.5, and the pathways as Supplementary Data 1 available online.

3.6.14 Experimental pathway comparison

In order to compare the pathways found by RetroPath 2.0 or 3.0 and the
experimental pathways described in the literature, we have two types of
information: compound identity and EC number identity. We consider the
reaction EC number to be equal if it is identical up to 3 digits (1.1.1.x is
identical to 1.1.1.y). Since spontaneous reactions do not have an EC number,
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we used compound identity for comparison, and EC number as additional
information.

3.6.15 Laser retrieval and Metabolic Engineering

completion

We build the LASER dataset by parsing target molecule and chassis in-
formation from the LASER database published by Winkler et al. which
provides a curated list of more than 600 successfully implemented metabolic
designs [258, 259]. When available, we store the chemical structure provided
by MetaCyc (v23.0), otherwise we query the PubChem database based on
target compound names. We augmented this list with target compounds
reported in the Metabolic Engineering journal in 2016 (volumes 33 to 38)
and published in RetroPath 2.0 [138]. All chemical structures have been
standardized using the procedure described in the Compound standardisa-
tion section. The final dataset used in the present paper contains 211 unique
structures that are provided as Supplementary Data 2 available online.

3.6.16 Extracting supplements from LASER

LASER provides a ’Media’ line that contains addition to the media, ex-
tracted using Natural Language Processing. This can include antibiotics,
promoter inducers or supplements of interest required to build the pathway.
We removed all compounds that did not concern pathway supplements, and
removed early precursor supplementation. Structures were obtained from
PubChem. We obtain a list of only 6 pathways satisfying these requirements,
and 8 when we also add two pathways for TPA from literature [278, 260].
This list is available as Supplementary Data 4 available online.

3.6.17 Supplement �nder feature

The Supplement finder functions as follows:

1. load search tree in memory
2. explore all nodes and keep compound structures that complete of a

chemical state (i.e.: all other compounds of the state are solved)
3. compounds that allow for completion of more than N states (which

would complement N pathways) are kept. Here N= 1: any compound
that can complement a pathway is kept.
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4. compounds are filtered according to presence in a Database of interest.
Here, we filtered according to presence in the Sigma catalogue.

5. We keep the N best suggestions (according to number of pathways that
are completed). Here, we returned up to 20 potential supplements.

6. All completed pathways are extracted for future analysis.

3.6.18 Toxicity implementation

We used data from EcoliTox [211] and XTMS [188] to build a QSAR model
(using as input features 1024 binary Morgan fingerprints vector calculated
with the RDKit method GetMorganFingerprintAsBitVect at diameter 4),
predicting log(IC50) of the compounds. We train our model using scikit-
learn (version 0.19.1) [279]. The model is a multi-layer perceptron trained
with the default parameters from scitkit-learn except the following param-
eters: maximum iteration of 20000, adaptive learning rate, adam solver,
early stopping and the following layers: (10, 100,100, 20). This model has a
Leave-One-Out (LOO) score of 0.81. In prediction mode, toxicity was used
only if the predicted log(IC50) <= 0. The modified UCT function that was
used is:

V alue =Nodescore
Nodevisits

+ biask.
toxicity

1 +Nodevisits
+

UCTK.chemicalscore.biologicalscore.

√
Parentvisits

1 +Nodevisits

3.6.19 Hardware

We ran our tests on 2 calculation clusters and 1 personal computer. Tests
involving using the NoSQL Database and media supplementation were run
on a desktop computer with the following characteristics: CPU is Intel(R)
Xeon(R) W-2145 CPU @ 3.70GHz and 32G of RAM. Tests for the golden
dataset evaluation were performed on the Migale cluster (2.0 to 2.4 GHz
CPUs). Allocated resources per job were set to 1 vCPU and 20 GBs. Tests
for the Laser database evaluation were run on the IFB cluster (2.3GHz
CPUs). Allocated resources per job were set to 1 vCPU and 40 GBs. Cluster
tests were run using snakemake 5.4.0 [280].
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3.7 Supplementary Tables

Diameters used 2 4 6 8 10 12 14 16
Average number of
applicable rules

797 227 73 35 20 14 11 8

Table 3.2 Average branching factor for individual diameters Average number of rules
that apply to a compound according to the diameter at which the rule is used.
This shows that more promiscuous rules (at lower diameters) generate a bigger
combinatorial space.

Compound

Total Iteration for Rank of
pathway experimental experimental
number pathway pathway

Default Toxicity Default Toxicity Default Toxicity
3-methyl-1-butanol 1 1 4 4 1 1
1,4-Butanediol NA NA NA NA NA NA
2-amino-1,3-propanediol 1 1 1 1 1 1
2,5-DHBA 34 31 88 97 4 4
benzyl alcohol 13 22 1815 2213 4 8
caroten 4 4 6508 6443 1 1
cis,cis muconate 11 11 159 176 6 6
glutaric acid 61 74 1114 571 13 7
lycopene 106 103 101 96 1 1
mesaconic acid 14 14 9 9 1 1
naringenin 38 40 408 1011 1 9
N-methylpyrrolinium 9 10 NA NA NA NA
p-hydroxystyrene 59 61 34 33 1 1
piceatannol 34 38 8581 8996 32 36
pinocembrin 25 25 66 55 2 2
protopanaxadiol 1 2 NA NA NA NA
styrene 43 45 14 13 2 2
TPA 9 10 NA NA NA NA
vanillin 34 36 169 171 4 4
violacein 3 3 158 158 3 3

Table 3.3 Toxicity biased results Comparing results between the default configuration and
the one using the toxicity score to bias the search. Total pathway number is the
total number of pathway found with the given time and iteration budget. The
iteration and rank for the experimental pathway refer to the pathway described in
the golden dataset.
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Parameter
name

Golden
Default

Golden
Rescue

Laser De-
fault

Laser Res-
cue

Itermax 10000 10000 50000 10000
Expansion width 10 15 10 10
Time budget (s) 10800 when

comparing
to RP2,
14400
otherwise

10800 when
comparing
to RP2,
14400
otherwise

10800 10800

Max depth 7 7 10 7
UCT Policy Biochemical Biochemical Biochemical Biochemical
UCTK 2 2 2 2
Rollout Policy Uniform on

biochemical
score

Uniform on
biochemical
score

Uniform on
biochemical
score

Uniform on
biochemical
score

Max rollout 2 2 2 2
Chemical scoring Substrate

and prod-
uct

Substrate
and prod-
uct

Substrate
and prod-
uct

Substrate
and prod-
uct

Virtual visits 0 0 0 0
Rule diameters 6, 10, 16 6, 10, 16 6, 10, 16 2, 6, 10, 16
Biological score
cut-off

0.3 0.15 0.3 0

Substrate score
cut-off

0.3 0.15 0.3 0

Chemical score
cut-off

0.3 0.15 0.3 0

Minimal visits
count

1 1 1 1

Fire timeout (s) 1 1 1 1
Penalty -1 -1 -1 -1
Reward 5 5 5 5
Full pathway re-
ward

10 10 10 10

Seed 42 42 42 42
Table 3.4 RP3 configuration Detailed configuration data for RetroPath 3.0 runs on vali-

dation datasets.
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Name InChI Reference
3-methyl-1-butanol InChI=1S/C5H12O/c1-5(2)3-4-

6/h5-6H,3-4H2,1-2H3
[281]

1,4-Butanediol InChI=1S/C4H10O2/c5-3-1-2-4-
6/h5-6H,1-4H2

[282, 191]

2-amino-1,3-
propanediol

InChI=1S/C3H9NO2/c4-3(1-5)2-
6/h3,5-6H,1-2,4H2

[283]

2,5-DHBA InChI=1S/C7H6O4/c8-4-1-
2-6(9)5(3-4)7(10)11/h1-3,8-
9H,(H,10,11)

[284]

benzyl alcohol InChI=1S/C7H8O/c8-6-7-4-2-1-3-
5-7/h1-5,8H,6H2

[285]

caroten InChI=1S/C40H56/c1-31(19-13-
21-33(3)25-27-37-35(5)23-15-29-
39(37,7)8)17-11-12-18-32(2)20-14-
22-34(4)26-28-38-36(6)24-16-30-
40(38,9)10/h11-14,17-22,25-28H,15-
16,23-24,29-30H2,1-10H3/b12-
11+,19-13+,20-14+,27-25+,28-
26+,31-17+,32-18+,33-21+,34-22+

[286]

cis,cis muconate InChI=1S/C6H6O4/c7-5(8)3-1-2-
4-6(9)10/h1-4H,(H,7,8)(H,9,10)/p-
2/b3-1-,4-2-

[287]

glutaric acid InChI=1S/C5H8O4/c6-4(7)2-1-3-
5(8)9/h1-3H2,(H,6,7)(H,8,9)

[288]

lycopene InChI=1S/C40H56/c1-33(2)19-
13-23-37(7)27-17-31-39(9)29-15-
25-35(5)21-11-12-22-36(6)26-16-
30-40(10)32-18-28-38(8)24-14-20-
34(3)4/h11-12,15-22,25-32H,13-
14,23-24H2,1-10H3/b12-11+,25-
15+,26-16+,31-17+,32-18+,35-
21+,36-22+,37-27+,38-28+,39-
29+,40-30+

[289]

mesaconic acid InChI=1S/C5H6O4/c1-3(5(8)9)2-
4(6)7/h2H,1H3,(H,6,7)(H,8,9)/b3-
2+

[290]
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naringenin InChI=1S/C15H12O5/c16-9-3-
1-8(2-4-9)13-7-12(19)15-11(18)5-
10(17)6-14(15)20-13/h1-6,13,16-
18H,7H2

[291]

N-methylpyrrolinium InChI=1S/C5H10N/c1-6-4-2-3-5-
6/h4H,2-3,5H2,1H3/q+1

[292]

p-hydroxystyrene InChI=1S/C8H8O/c1-2-7-3-5-
8(9)6-4-7/h2-6,9H,1H2

[293]

piceatannol InChI=1S/C14H12O4/c15-11-
5-10(6-12(16)8-11)2-1-9-3-4-
13(17)14(18)7-9/h1-8,15-18H/b2-
1+

[294]

pinocembrin InChI=1S/C8H8/c1-2-8-6-4-3-5-7-
8/h2-7H,1H2

[295]

protopanaxadiol InChI=1S/C30H52O3/c1-
19(2)10-9-14-30(8,33)20-11-16-
29(7)25(20)21(31)18-23-27(5)15-
13-24(32)26(3,4)22(27)12-17-
28(23,29)6/h10,20-25,31-33H,9,11-
18H2,1-8H3/t20-,21+,22-,23+,24-
,25-,27-,28+,29+,30+/m0/s1

[97]

styrene InChI=1S/C15H12O4/c16-10-6-
11(17)15-12(18)8-13(19-14(15)7-
10)9-4-2-1-3-5-9/h1-7,13,16-
17H,8H2/t13-/m0/s1

[296]

TPA InChI=1S/C8H6O4/c9-
7(10)5-1-2-6(4-3-5)8(11)12/h1-
4H,(H,9,10)(H,11,12)

[278, 260]

vanillin InChI=1S/C8H8O3/c1-11-8-4-6(5-
9)2-3-7(8)10/h2-5,10H,1H3

[297]

violacein InChI=1S/C20H13N3O3/c24-
10-5-6-15-12(7-10)14(9-21-
15)17-8-13(19(25)23-17)18-11-
3-1-2-4-16(11)22-20(18)26/h1-
9,21,24H,(H,22,26)(H,23,25)/b18-
13+

[298, 299]

Table 3.5 Golden dataset structures This dataset contains the compounds, structures and
references used for experimental pathway analysis presented in Results - golden set.
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3.8 Supplementary Note 1: Parameters' Role and

E�ects

The aim of this supplementary note is to detail the different parameters
available in RetroPath 3.0 and their roles and effects.

A number of methods and ideas were taken or inspired from the following
master thesis, which uses Monte Carlo Tree Search against a computer game
[300].

3.8.1 Rule selection parameters

Biological score: As described in the main text, this scores characterizes
our confidence that a sequence exists to catalyze the reaction of interest.
It is normalized between 0 and 1. Using a cut-off on this score removes
less trustworthy reaction rules. We see in Supplementary Figure 3.6 that
results do not vary between using a cut-off from 0 to 0.3, and we start losing
pathways of interest when the cut-off is superior or equal to 0.5. A cut-
off of 0.3 therefore seems to be a good trade-off between confidence in the
existence of a sequence and obtaining enough retrosynthesis results.

Figure 3.6 Impact of biological score cut-off on retrieval performance of RetroPath
3.0 We compared results between using a biological score cut-off varying between 0
and 0.9. One pathway found means that at least one pathway have been predicted.
Experimental pathway found means that the experimental pathway is from among
the predicted pathways.

Chemical score: As described in the main text, this score characterizes our
confidence that the reaction rule learned on a substrate and product from
a database of interest can truly be applied to a new substrate, based on
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similarity between substrates and products of the native reaction versus
the query reaction. We can see in Supplementary Figure 3.7 that allowing
reactions that are too different leads the tree to explore too diverse pathways,
while being too conservative leads to loss of useful reactions. 0.3 therefore
seems to be a good cut-off between confidence that the reaction rule does
apply to the compound and allowing exploration of the metabolic space.

Figure 3.7 Impact of chemical score cut-off on retrieval performance of RetroPath
3.0 We compared results between using a chemical score cut-off varying between 0
and 0.9. One pathway found means that at least one pathway have been predicted.
Experimental pathway found means that the experimental pathway is from among
the predicted pathways.

Biological and chemical score: Here we varied both the chemical and biolog-
ical scores, set at the same value. We can see in Supplementary Figure 3.8,
as in Supplementary Figures 3.6 and 3.7, that cut-offs of 0.3 provide the
best trade-off between exploration and confidence.

Diameters: Diameters characterize the degree of promiscuity we allow in a
reaction rule: higher diameters are more specific, while lower diameters are
more promiscuous. We found a good trade-off was to allow rules at different
levels of promiscuity, using diameters of 6, 10 and 16 (low, medium and high
specificity), as shown in Supplementary Figure 3.9.

UCT policy: While these policies are used to tune the exploration/exploitation
balance, we modified it to guide the search and see the importance of that
guidance on finding results. We can see in Figure 3.3 the best UCT policy
to guide our exploration of the metabolic space is our formula including the
biochemical score.
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Figure 3.8 Impact of biochemical score cut-off on retrieval performance of
RetroPath 3.0 We compared results between using chemical score cut-off and
biological score cut-off (set at the same value) varying between 0 and 0.9. One
pathway found means that at least one pathway have been predicted. Experi-
mental pathway found means that the experimental pathway is from among the
predicted pathways.

Figure 3.9 Impact of allowed rule diameters on retrieval performance of RetroPath
3.0We compared results between using different diameter sets. One pathway found
means that at least one pathway have been predicted. Experimental pathway found
means that the experimental pathway is from among the predicted pathways.
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3.8.2 Exploration parameters

Expansion width: It is the number of children a node is allowed to have.
We found 10 and 15 provided a good trade-off between exploration and
exploitation, as shown in Supplementary Figure 3.10. We usually tested
with 10 children, and expanded to 15 for failed compounds.

Figure 3.10 Impact of expansion width on retrieval performance of RetroPath 3.0
We compared results between using different expansion width (number of allowed
children per node). One pathway found means that at least one pathway have been
predicted. Experimental pathway found means that the experimental pathway is
from among the predicted pathways.

Expansion width: In our implementation, grand-children of a node can only
be explored if all his children have had at least minimalvisits visits, where
this value was set at 1 in the default settings. This allows mandatory rollout
on different branches at least once to favor exploration. We can see from
Supplementary Figure 3.11 that results are similar when not forcing this
exploration with a parameter set to 0.

Rollout: This is the rollout depth: the number of reactions performed before
analyzing the state and returning the state’s reward or penalty. Supplemen-
tary Figure 3.12 shows that rollout depth does not impact our capacity of
finding experimental results on the golden dataset. However, un-shown re-
sults (taking into account the iteration at which those results are found)
suggest best rollout values are either 2 or 3.

UCTK: This constant balances the trade-off between exploration and ex-
ploitation in the UCT formula. We can see in Supplementary Figure 3.13
that the value allowing the best retrieval rate from the golden dataset is a
constant of 2.

111



Figure 3.11 Impact of minimal visits count on retrieval performance of RetroPath
3.0 We compared results between using different minimal visit count values. One
pathway found means that at least one pathway have been predicted. Experimental
pathway found means that the experimental pathway is from among the predicted
pathways.

Virtual visits: This is the number of visits a new node starts with. The con-
cept of virtual visits is that giving an initial value to a node will return more
stable rollout results as they will be smoothed by a number less close to 0
rather than being very stochastic at low values. We can see this strategy did
not give better results in our MCTS for bioretrosynthesis in Supplementary
Figure 3.14.
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Figure 3.12 Impact of rollout depth on retrieval performance of RetroPath 3.0 We
compared results between using different rollout depths. One pathway found means
that at least one pathway have been predicted. Experimental pathway found means
that the experimental pathway is from among the predicted pathways.

Figure 3.13 Impact of exploration constant value (UCTK) on retrieval performance
of RetroPath 3.0 We compared results between using different exploration con-
stant values (UCTK). One pathway found means that at least one pathway have
been predicted. Experimental pathway found means that the experimental pathway
is from among the predicted pathways.
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Figure 3.14 Impact of virtual visits on retrieval performance of RetroPath 3.0 We
compared results between using different virtual visits numbers. One pathway
found means that at least one pathway have been predicted. Experimental pathway
found means that the experimental pathway is from among the predicted pathways.
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3.8.3 Solution rewarding

Penalty: This is the value returned when no compound of the state is within
the chassis (including at the end of rollout). We can see in Supplementary
Figure 3.15 that increasing penalty does not yield better results in our case,
and a value of -1 penalizes enough the unsuccessful rollout results.

Figure 3.15 Impact of penalty on retrieval performance of RetroPath 3.0We compared
results between using different penalties. One pathway found means that at least
one pathway have been predicted. Experimental pathway found means that the
experimental pathway is from among the predicted pathways.

Reward: Reward is the value returned when all compounds of the state are
solved, to encourage exploration of the same area of the Tree. We can see
from Supplementary Figure 3.16 that a value of 5 provides a good trade-off
between exploration of other areas of the tree and exploitation of promising
regions.

3.8.4 Other parameters - for other applications

Heavy saving: Saves search Tree state during the search instead of only at
the end. Used to analyze Search evolution.

Stop at �rst result: The search stops once a single result is found.

Fire time-out and standardization time-out: Timeouts on rule application on
a compound.

Organism name: Choose another organism from our predefined list of sinks.
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Figure 3.16 Impact of reward on retrieval performance of RetroPath 3.0 We compared
results between using different rewards. One pathway found means that at least
one pathway have been predicted. Experimental pathway found means that the
experimental pathway is from among the predicted pathways.

Complementary sink: Adding compounds to the sink as supplements. Can
also be used to provide an entirely new sink following the required format.

3.8.5 Other parameters - exploratory

Remark: No detailed comparison was performed in this article on those
parameters, contrary to the parameters presented above.

kRAV E : For balancing of Rapid Action Value Estimation. The idea is to
provide moves with results from rollouts elsewhere in the Tree, to give them
an initial value. This will decrease in importance as the node itself is visited,
but provides a fast initial value.

Biask: When using bias (for example towards toxicity), how to weight this
value.

Progressive bias:: When used in conjunction with biask, can give an initial
value to a node based on various policies: high reward, current state reward,
no reward. . . This also helps initial estimation of the node value rather than
rely only on costly rollouts.

Progressive widening: Allow a number of children different according to the
number of visits of the node. This is to avoid expanding too much in spaces
of the tree search that are actually not interesting.
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4A dataset of small molecules
triggering transcriptional and
translational cellular
responses

This work was published in Data In Brief by Mathilde Koch, Amir Pandi,
Baudoin Delépine and Jean-Loup Faulon.
Only minor modifications to the published paper have been introduced in
the Chapter below.

Detailed contribution to this thesis

The aim of this Chapter within the context of development of synthetic
metabolic circuits is the following: in combination with retrosynthetic algo-
rithms as presented in Chapters 1 and 3, a dataset of detectable compounds
can be used to find an enzymatic pathway to convert an undetectable com-
pound into a detectable one. This strategy has been used multiple times in
the second part of this PhD, in Chapters 9 and 10. This study was initially
designed by myself, B.D. and A.P. Both other authors contributed to the
literature review, and I assembled the final dataset, extended the literature
review and wrote the manuscript.

Full reference

Koch M., Pandi A., Delépine B., Faulon J.-L. (2018) A dataset of small
molecules triggering transcriptional and translational cellular responsesData
in Brief, 10.1016/j.dib.2018.02.061.

Contributions as stated in the article

Not available.
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4.1 Abstract

The aim of this dataset is to identify and collect compounds that are known
for being detectable by a living cell, through the action of a genetically en-
coded biosensor and is centered on bacterial transcription factors. Such a
dataset should open the possibility to consider a wide range of applications
in synthetic biology. The reader will find in this dataset the name of the
compounds, their InChI (molecular structure), the publication where the
detection was reported, the organism in which this was detected or engi-
neered, the type of detection and experiment that was performed as well as
the name of the biosensor. A comment field is also provided that explains
why the compound was included in the dataset, based on quotes from the
reference publication or the database it was extracted from. Manual cu-
ration of ACS Synthetic Biology abstracts (Volumes 1 to 6 and Volume 7
issue 1) was performed as well as extraction from the following databases:
Bionemo v6.0 [301], RegTransbase r20120406 [302], RegulonDB v9.0 [303],
RegPrecise v4.0 [304] and Sigmol v20180122 [305].
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Speci�cations Table

Subject area Biology
More specific subject area Synthetic biology
Type of data Table
How data was acquired Database extraction from Bionemo v6.0 [301], RegTransbase

r20120406 [302], RegulonDB v9.0 [303], RegPrecise v4.0 [304]
and Sigmol v20180122 [305] as well as manual curation ACS
synthetic biology abstracts (Volumes 1 to 6 and Volume 7
issue 1)

Data format Analyzed
Experimental factors Not applicable
Experimental features Not applicable
Data source location Github
Data accessibility Data is with this article and on Github

Table 4.1 Detectable compounds dataset specifications

Value of the data

• This dataset provides a basis for the development of new biosensing
circuits for synthetic biology and metabolic engineering applications,
e.g. the design of whole-cell biosensor, high-throughput screening ex-
periments, dynamic regulation of metabolic pathways, transcription
factor engineering or creation of sensing-enabling pathways

• This dataset provides a unique source of a broad number of compounds
that can be detected and acted upon by a cell, increasing the possibility
of orthogonal circuit design from the few usual compounds used in
those applications

• The manually curated section provides information on where the biosen-
sor has been first reported and successfully used, enabling the reader
to select trustworthy information for his application of choice

• Detectable compounds can be searched by both by name and chemical
similarity

• This dataset is an update of 10.6084/m9.figshare.3144715.v1 [77]
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4.2 Data

The aim of this dataset is to identify and collect compounds that are known
for being detectable by a living cell, through the action of a genetically
encoded biosensor and is centered on bacterial transcription factors. The
dataset should allow the synthetic biology community to consider a wide
range of applications. The reader will find in this dataset the name of
the compounds, their InChI (molecular structure), the publication where
the detection was reported, the organism in which this was detected or
engineered, the type of detection and experiment that was performed as
well as the name of the biosensor. A comment field is also provided that
explains why the compound was included in the dataset, based on quotes
from the reference publication or the database it was extracted from. Manual
curation of ACS synthetic biology abstracts (Volumes 1 to 6 and Volume 7
issue 1) was performed as well as extraction from the following databases:
Bionemo v6.0 [301], RegTransbase r20120406 [302], RegulonDB v9.0 [303],
RegPrecise v4.0 [304] and Sigmol v20180122 [305].

This dataset is available online on GitHub to allow for further updates as
well as community contributions.

4.3 Experimental design, materials and methods

4.3.1 Manual curation of ACS synthetic biology (Volume 1

to 6 and Volume 7 issue 1)

All abstracts of ACS Synthetic biology (Volume 1 to 6 and Volume 7 issue
1) were read and information relevant to this dataset was extracted from
those abstracts. The aim of this manual curation was to establish a list
of detectable compounds whose detection method was already successfully
implemented in a synthetic circuit, providing a good basis for further im-
plementation for synthetic biologists.

4.3.2 Bionemo v6.0 [301]

The Structured Query Language (SQL) request used to create this dataset
is:
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SELECT DISTINCT substrate.id\_substrate, minesota\_code,
name FROM substrate

INNER JOIN complex\_substrate ON complex\_substrate.id\_substrate =
substrate.id\_substrate
INNER JOIN complex ON complex.id\_complex =

complex\_substrate.id\_complex
WHERE activity=’REG’;

4.3.3 RegTransbase r20120406 [302]

The SQL request used to create this dataset is:

SELECT DISTINCT a.pmid, e.name, r.name
FROM regulator2effectors AS re
INNER JOIN exp2effectors AS ee ON ee.effector_guid=re.effector_guid
INNER JOIN dict_effectors AS e ON e.effector_guid=ee.effector_guid
INNER JOIN regulators AS r ON r.regulator_guid=re.regulator_guid
INNER JOIN articles AS a ON a.art_guid=ee.art_guid
ORDER BY e.name;

RegTransbase was not maintained anymore at the time of writing of this
manuscript.

4.3.4 RegulonDB v9.0 [303]

The SQL request used to create this dataset is:

SELECT c.conformation_id, c.final_state, e.effector_id, e.effector_name,
tf.transcription_factor_id, tf.transcription_factor_name,

p.reference_id, xdb.external_db_name
FROM effector AS e
INNER JOIN conformation_effector_link AS mm_ce ON

mm_ce.effector_id=e.effector_id
LEFT JOIN conformation AS c ON

c.conformation_id=mm_ce.conformation_id
LEFT JOIN transcription_factor AS tf ON

tf.transcription_factor_id=c.transcription_factor_id
LEFT JOIN object_ev_method_pub_link AS x ON

x.object_id=c.conformation_id OR
x.object_id=tf.transcription_factor_id OR
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x.object_id=e.effector_id
LEFT JOIN publication AS p ON p.publication_id=x.publication_id
LEFT JOIN external_db AS xdb ON xdb.external_db_id=p.external_db_id
WHERE c.interaction_type IS Null OR c.interaction_type!=’Covalent’;

4.3.5 RegPrecise v4.0 [304]

The RegPrecise website was accessed (version v4.0) and all relevant data
was extracted from the effector pages of the website.

4.3.6 Sigmol v20180122 [305]

Sigmol was accessed on 16/02/2017 and all effector data was retrieved from
the unique Quorum Sensing Signaling Molecule page. In the "detected by"
column, we provide the class of signaling compounds the compound be-
longs to. The comment field reads ’Extracted from Sigmol v20170216 –
Uniq_QSSM_"number"’.

4.3.7 Data overview

In Table 4.2 are presented some characteristics of each data source: number
of compounds without a structure from this source, total number of com-
pounds with a structure from this source and number of compounds with
a structure found only in this source. The last column in particular shows
that around half the compounds are found in more than one data source.
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Source Compounds
without struc-
ture

Compounds
with structure

Unique com-
pounds with
structure

RegPrecise 136 418 73
BioNemo 5 499 8
RegTransBase 683 2057 63
RegulonDB 12 245 23
Sigmol 2 175 135
ACS synthetic
biology

44 287 73

All sources 882 3681 729
Table 4.2 Contribution of each data source The first column contains the data source,

the second column the number of compounds found without a structure in that
source, the third column the number of compounds with a structure (InChI) and
the last column the number of compounds with a structure found only in that
source.

Figure 4.1 shows the repartition of the type of experiment (in vivo, unspec-
ified or other), as well as the repartition of Biosensor type (Transcription
factor, riboswitch or unspecified) in the full dataset and the manually cu-
rated dataset from ACS synthetic biology.

Figure 4.1 Type of experiment and biosensor type in the full dataset and the man-
ually curated dataset. A: Full dataset – detection method. B: Full dataset –
biosensor type. C: ACS dataset – detection method. D: ACS dataset – biosensor
type. A and C: other in detection method corresponds to in silico, in vivo and
cell-free detections. B and D: ACS dataset is the dataset obtained from manual
curation of ACS synthetic biology with compounds that have available structures.
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5
Large scale
active-learning-guided
exploration to maximize
cell-free production

This work was submitted for publication by Olivier Borkowski *, Mathilde
Koch *, Agnès Zettor, Amir Pandi, Angelo Cardoso Batista, Paul Soudier
and Jean-Loup Faulon. It is available on BioArchive.
Only minor modifications to the submitted paper have been introduced in
the Chapter below.
* stands for equal contributions.

Detailed contribution to this thesis

Within this Chapter, I tackled another aspect of circuit design and combi-
natorial space exploration. The question was the following: given a protein
of interest (but this could be a metabolite, as long as it is detectable in a
high throughput manner), how do we select components of the cell-free mix
to maximize this production? While the combinatorial space is much too
large to be explored exhaustively, active learning algorithms, which suggest
the next round of experiments to optimize a metric of interest are per-
fectly adapted to such a problem. Therefore, I developed an active learning
method, coupled with liquid handling robots for experiments, to optimize
protein production in cell-free extracts. The conceptual question is similar
to the problem of retrosynthesis when both are considered as algorithms for
combinatorial space exploration, as presented in the introduction. Moreover,
from the practical standpoint, improving lysate quality leads to better ex-
perimental results when testing the designed circuits in cell-free systems.
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Full reference

Borkowski O.*, Koch M.*, Zettor A., Pandi A., Cardoso Batista A., Soudier
P. and Faulon J-L. (2019) Large scale active-learning-guided exploration to
maximize cell-free production BioArchive 10.1101/751669
* stands for equal contributions.

Contributions as stated in the article

O.B, M.K and J-L F designed experiments. O.B performed experiments.
M.K developed and performed model simulations and liquid handler pro-
gramming. O.B and M.K performed data analysis. O.B and A.Z collected
data. O.B, A.P, A.C.B and P.S provided lysates. A.P cloned and maxi
prep the plasmid. O.B, M.K, A.Z and J-L F wrote the paper. All authors
approved the manuscript.

5.1 Abstract

Lysate-based cell-free systems have become a major platform to study gene
expression but batch-to-batch variation makes protein production difficult
to predict. Here we describe an active learning approach to explore a com-
binatorial space of ' 4,000,000 cell-free compositions, maximizing protein
production and identifying critical parameters involved in cell-free produc-
tivity. We also provide a one-step-method to achieve high quality predictions
for protein production using minimal experimental effort regardless of the
lysate quality.

5.2 Results and Discussion

Cell-free systems, especially lysate-based systems, are major platforms for
both prototyping of genetic circuits and understanding of fundamental pro-
cesses [306, 74, 307, 308, 67, 309, 310]. They provide fast gene expression
kinetics, low reaction volumes, allowing high-throughput measurements and
simplified gene characterization via decoupling protein production from host
physiology [44, 311, 174, 68, 312]. Cell-free systems could disseminate among
laboratories and be standard methods for molecular biology if efficient and
predictable protein productions were guaranteed. Ribosomes, native poly-
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merases and cofactors concentrations remain arduous to control as they
are provided by the lysate [64, 313], making the efficiency of cell-free sys-
tems variable. A great challenge is to develop a lysate-specific optimization
method for cell-free composition to maximize protein production. Using a
Design of Experiment approach, Caschera et al [64] explored cell-free com-
positions by varying one compound concentration at a time and obtained
a 10 fold increase of protein production in a lysate-based cell-free system.
Such results reveal the considerable margins of improvement of protein ex-
pression in such systems.
Here, we use an active learning approach [95, 314] to explore, optimize and
understand the impact of cell-free composition on protein production in
cell-free systems. We demonstrate that sufficient amount of data can be
obtained to train a machine learning algorithm, achieve high quality predic-
tions and increase protein production by 34 times. We next show that only
20 informative compositions are enough to train our machine learning model
and obtain accurate predictions. This approach enables to maximize protein
production on different cell lysates with minimal experimental effort.
To study cell-free systems productivity, we developed an automatable strat-
egy coupling an acoustic liquid handling robot (Echo 550, Labcyte, USA)
and a plate reader (Infinite MF500, Tecan, USA) to measure '4000 cell-free
reactions (including controls and triplicates) and provide data to train a
machine learning model. The lysate was obtained by sonication and sup-
plemented with compounds described in Figure 5.1a. The reference con-
centrations is based on the protocol developed by the Noireaux laboratory
[68] (see Methods, Supplementary Figure 5.3). We fixed 4 concentration
levels for each of the 11 compounds leading to a combinatorial space of
4,194,304 possible compositions (Figure 5.1a). Protein production was mea-
sured using the fluorescence level from the expression of sfgfp under control
of a constitutive promoter (Figure 5.1b, Supplementary Table 5.1). In order
to compare measurements between plates, we maximized a relative fluores-
cence level named yield hereafter (Figure 5.1b). The yield is defined as the
ratio of the fluorescence produced with a chosen composition divided by
the fluorescence obtained with the reference composition (Figure 5.1b). To
explore our vast combinatorial space, we used an active learning strategy
[95], combining both exploration and exploitation to increase the yield and
reduce model uncertainty (Figure 5.1c). Each iteration started with 102
new cell-free compositions to be tested. The fluorescence level was mea-
sured in a plate reader and fed to an ensemble of neural networks (Figure
5.1c, see Methods). Our active learning loop was initiated with a training
set of 102 cell-free compositions (see methods: 22 chosen and 80 random
compositions, Figure 5.1c). The first iteration already led to a maximum of
10 fold improvement of the yield (Figure 5.1d). As expected, the prediction
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accuracy was very low (Figure 5.1e). After 7 iterations, we reached a max-
imum for both the yield (Figure 5.1d) and the prediction accuracy (Figure
5.1e). Eventually, we stopped at 10 iterations as we were not able to in-
crease neither the yield nor the prediction accuracy of our model (Figure
5.1d, Figure 5.1e, see methods). Throughout our workflow, we measured
fluorescence levels in 1017 cell-free compositions and validated the efficiency
of our method with a high quality predictions score (R2 = 0.93) and a
maximum of 34 fold increase of the yield. The 1017 cell-free compositions
were sorted, from low to high yields, to observe the relationship between
yield and composition (5.1f). An increase of Mg-glutamate, K-glutamate,
Amino Acids and NTPs concentrations and a decrease of cAMP, spermidine
and 3-PGA concentrations can be noticed with increasing yield (5.1f). We
used a mutual information analysis (see Methods) to reveal the dependence
between our 11 compounds concentration and the yield. Mg-glutamate, K-
glutamate, Amino Acids, cAMP, spermidine, 3-PGA and NTPs exhibit a
score between 0.25 and 0.75, confirming that a variation of their concen-
trations strongly impacts protein production (5.1g). Variation of tRNA,
CoA, NAD and Folinic Acid concentrations have little impact on the yield
(5.1g).
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Figure 5.1 Active learning loop to explore the composition of a cell-free system
a List of chemicals added to the cell-free mix in addition to PEG-8000, HEPES
and the lysate. Four concentrations have been chosen for each chemical. The
concentration in red is the highest concentration, then orange, light green, dark
green stand for 50%, 30% and 10% of the highest concentration. b An example
of fluorescence obtained using 4 cell-free compositions with our plasmid (10 nM).
The autofluorescence value is measured with the reference composition without
DNA and subtracted from every measurement in the plate. The yield is the ratio
between the fluorescence of a composition x and the reference composition. c
Illustration of the active learning approach used to explore the combinatorial space
of cell-free composition and trained an ensemble of 25 machine learning models.
d Yield evolution among 10 iterations. The green dots are the mean yields of 3
replicates obtained in the same plate with the same composition. The vertical
grey lines stand for the standard deviation of the 3 replicates. The horizontal
black line is the median value of all the yields obtained during an iteration. The
Arrows represent the evolution of the maximal yields value. e Quantification of
the predictive accuracy of the model using a 5-fold cross validation. f Cell-free
compositions tested in the study sorted by yield level. A row stand for one mix
composition, the color code is the same as in panel a. g Results of a mutual
information analysis, using the 1017 compositions, of the relationship between the
yield and each chemical compound.

129



Next, we investigated whether protein production in cell-free using lysates
made in other conditions (different experimentalists, using a different strain
or supplemented with antibiotics) could be quickly predicted with a one-step
method (Figure 5.2a). We selected 102 cell-free compositions representative
of the 1017 already tested with the original lysate (see methods, Supplemen-
tary Figure 5.4a). Among the 102 compositions, 20 were used to train the
model and 82 to test its predictive accuracy (Figure 5.2a). The challenge
lies in the model’s ability to accurately predict a large diversity of yields
based on a small training dataset. The 20 compositions (magenta dots in
Figure 5.2) were chosen to be highly informative (see methods, Supplemen-
tary Figure 5.4b). We used the same 20 and 82 compositions to train and
test our model with all the lysates used in Figure 5.2. With new lysates pre-
pared by other experimentalists (labeled lysatePS and lysateAB), similar
cell-free compositions led to different yields but the compounds exhibit-
ing a high impact on protein production remained the same (Figure 5.1g
and Supplementary Figure 5.5). The maximum yield among the 102 tested
compositions differs from one lysate to another, with a maximum yield at 23
and 26 for the lysatePS and lysateAB respectively (Figure 5.2a,b). The 102
yields obtained with the original lysate, labeled lysateORI , are presented in
Supplementary Figure 5.6a. The yield used previously is a relative mea-
surement (Figure 5.2 and Supplementary Figure 5.7) which does not allow
absolute comparison between our cell-free systems. We calculated a global
yield (calculated with the lysateORI as a global reference, Supplementary
Figure 5.6b) and observed a maximum global yield 1.5 times higher with
lysatePS than lysateAB (Supplementary Figure 5.6c). These results high-
light the variability in lysates quality even when they are prepared in the
same laboratory with the same strain and protocol. Despite these differ-
ences, we achieved high quality predictions with both lysates (Figure 5.2
a,b). We obtained a R2 ' 0.9 for both lysates and linear fits with intercepts
of 0.2 / 0.1 and slopes of 0.8 / 1.01 with lysatePS , lysateAB respectively
(Figure 5.2 a,b). These results validate our approach to both maximize pro-
tein production and accurately predict protein production regardless of the
experimentalists who prepared the lysate.

We then challenged our method by interfering with the transcription or
translation processes to mimic lysates of lower quality. By adding rifaximin
(Figure 5.2c) or spectinomycin (Figure 5.2d) to the cell-free mix, we inter-
fered with the transcription or translation apparatuses respectively. The
two antibiotics led to a strong decrease in absolute protein production (Sup-
plementary Figure 5.6c) but opposite behaviors can be observed (high ver-
sus low room for yield improvement, Figure 5.2 c,d, Supplementary Figure
5.7c,d). When the transcription process is impaired, we obtained a predic-
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Figure 5.2 One-step method to predict protein yield in cell-free systems. a Illustra-
tion of the method used to predict the yield of protein expression with a new lysate,
labeled PS, made by another experimentalist. The training of the model is based
on yield measurements of 20 compositions (Magenta circles). The choice of the 20
combinations leading to the best predictions is described in the methods. The yield
obtained with 82 compositions (Green circles) were measured and compared to the
model predictions to test its accuracy (R2 value). The yield is specific to each lysate
as the reference composition used the same chemicals concentration as in Figure
5.1 but with different lysate. b Comparison of the yields obtained with the lysate
AB (made by a third experimentalist) vs the model predictions. c Comparison of
the yields obtained with the lysate, of panel a supplemented with 0.25 mg ·mL−1

of rifaximin vs the model predictions. d Comparison of the yields obtained with
the lysate, of panel a, supplemented with 0.5 mg ·mL−1L of spectinomycin vs the
model predictions. e Comparison of the yields obtained with a lysate obtained from
the stain DH5α vs the model predictions. In all panels, the model predictions are
based on a model trained with the same 20 compositions and the same test set of
82 compositions only lysate differs. In all panels, the horizontal grey lines stand
for the standard deviation of 3 replicates. The vertical grey lines stand for the
standard deviation of 25 predictions.

tion of high accuracy with a R2 of 0.91 and linear fit intercepts of 0.2 and
slopes of 0.9 (Figure 5.2c). The cell-free containing rifaximin exhibits a high
leeway for yield improvement (Figure 5.2c and Supplementary Figure 5.7c)
with a maximum yield of 35 among the 102 cell-free compositions. When
the translation process is impaired, the yield is capped to a maximum im-
provement of 15 (Figure 5.2d, Supplementary Figure 5.7d). The R2 value
observed in Figure 5.2d is lower but the linear fit exhibit an intercept of 0.1
and slopes of 0.9. Thus, we obtained accurate prediction for the low and
high yields value but the intermediate yields remains difficult to estimate.
Such predictions stay powerful to maximize protein production as extreme
values are captured and provide precious information concerning the lysate
quality (Supplementary Figure 5.8, Supplementary Note 1).

131



Eventually, we tested our method with a lysate prepared using the strain
DH5α. As observed with the lysate supplemented with spectinomycin, the
R2 value is low but the linear fit of the data exhibits an intercept of 0.07
and slopes of 0.96. The maximum global yield obtained with this lysate
was low, as expected for a strain not optimized for protein production [315]
(Supplementary Figure 5.6c). Nevertheless, with half of the tested cell-free
compositions, the LysateDH5α-based cell-free exhibits a high global yield
(Supplementary Figure 5.6c). The yield exhibits a similar behavior as the
lysate supplemented with spectinomycin, suggesting an impaired translation
process (little room for yield improvement, Figure 5.2d,e, Supplementary
Figure 5.7d,e), but with a higher level of protein production.
Our method enables a fast lysate-specific optimization of the cell-free com-
position to predict and maximize protein production (Figure 5.2, Supple-
mentary Figure 5.9, Supplementary Note 2). Our results suggest that the
optimization of the cell-free composition mainly improves the efficiency of
the translation apparatus as we observed a limited improvement with an
impaired translation. On the contrary, a damaged transcription machin-
ery can be balanced by the optimization of the cell-free composition. Our
approach gives precious information about the room for protein production
improvement of a home-made cell-free system, the impact of each compound
on cell-free productivity and the efficiency of the transcription and trans-
lation processes. Our method, based on the measurements of green fluo-
rescent protein (GFP) production with the same 20 cell-free compositions
used in this work to train the model provided, can be easily extended to
any other bacterial-based cell-free [308, 316, 317] to investigate cell-free op-
timization beyond E. coli cell-free systems. As our model is not based on
mechanistic hypotheses, our method can be extended to cell-free systems
using other organisms as yeast, insect, plant or human cells after perform-
ing new explorations to find the 20 most informative compositions for those
cell-systems.

5.3 Methods

5.3.1 Bacterial strains and DNA constructs

Strains BL21 DE3 and DH5α were used to prepare the different lysates in
this study. Our sfgfp plasmid was obtained by modification of the RBS of the
plasmid pBEAST-J23101-sfGFP9. We used PCR amplifications using the
reverse primer GCGGTCTCACATCTACTATTTCTCCTCTTTCTCTACTAGC-
TAGC and forward primer GCGGTCTCAGCTTACTTTATCTGAGAATAGTC
with the backbone, and reverse primer p CCGGTCTCAAAGCTTATCATCATTTG-
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TACAGTTCATCC and GCGGTCTCAGATGCGTAAAGGCGAAGAG forward
primer with the sfgp sequence. The PCR amplifications was followed by a golden
gate assembly using BsaI and T4 ligase (New England Biolab) and transformed
into chemically competent E. coli top10.

5.3.2 Plasmid preparation

We noticed with preliminary experiments that the same cell-compositions gave
different results when we used plasmid DNA from miniprep done on different days
using the same kit. The whole project was done using aliquots from the same initial
batch of sfgfp plasmid. The plasmid was extracted from a 600 ml LB of E. coli
top 10 using the Plasmid DNA purification NucleoBond Xtra Maxi of Macherey-
Nagel. The 500 µL aliquots were stored at -80 ◦C. The whole project was done using
aliquots from the same initial batch of DNA. The final sfgfp plasmid concentration
in every reaction was 10 nM.

5.3.3 Cell-free reagents preparation

As the reagents preparation can have a significant impact on cell-free efficiency
[318], all our reagents except spermidine and Mg-glutamate (we run out of those
two compounds during the study) came from aliquots of the same initial batch. We
did not see an impact on our control when the spermidine and Mg-glutamate were
renewed.

5.3.4 Cell lysate mix preparation and reactions

The cell lysate preparation is based on the protocol of Sun et al. [68]. Briefly,
the protocol of Sun et al. [68] is a 5 days protocol in three phases: harvest cells
(colonies grow on plate overnight at 37 ◦C, 50 mL preculture at 37 ◦C for 8h, 12
liters of cultures at 37 ◦C until OD600= 1.5), lysate preparation (multiple pellet
washing followed by beads-beating to obtain an lysate). The protocol was modified
by using sonication instead of use of a bead beater to obtain BL21 or DH5α cell
lysates. After washing the cells as following the sun et al. protocol (Day 3 step 18)
with S30A buffer (14 mM Mg-glutamate, 60 mM K-glutamate, 50 mM Tris, 2 mM
DTT, pH 7.7), the cells were centrifuged 2000g for 8 min at 4 ◦C.

The pellet was re-suspended in S30A (pellet mass (g) x 0.9 mL). The solution was
split in 1.5 mL aliquots in 2 mL Eppendorf tubes. Eppendorf tubes were placed in
a cold block and sonicated using Vibracell 72408 (from Bioblock scientific) using
the following procedure: 20s ON - 1 min OFF - 20 s ON - 1 min OFF - 20 s
ON. Output frequency 20 kHz, amplitude 20%. The remaining protocol followed
the procedure of the Sun et al. protocol for day 3, step 37. mRNA and protein
synthesis are performed by the molecular machinery present in the lysate, with no
addition of external enzymes. Reactions take place in 10.5 µL volumes at 30 ◦C in
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384-well plate. Note that we kept the 50 mM HEPES and 2% PEG-8000 fixed in
every reaction.

LysateORI , LysatePS and LysateAB were obtained from the same E. coli strain
BL21 in the same laboratory with the same sonicator and centrifuge. The LysateORI
came from one-batch prepared from 12 Liters of BL21 culture. The 12 liters culture
were separated in 4 Liters culture. The culture were inoculated, grown and their pel-
lets were washed on different 3 days then freeze and stock at -80 ◦C. Then, the pel-
lets were weighed, re-suspended in S30 buffer, pooled, sonicated, centrifuged, mixed
and aliquoted on an extra day. The Lysates LysatePS , LysateAB and LysatePS and
LysateDH5α were each obtained from 2 liters culture. For the Lysatespectinomycin
and Lysaterifaximin, the final concentration of rifaximin and spectinomycin were
0.25 mg ·mL−1 and 0.5 mg ·mL−1 respectively. They were added to the cell-free
reactions using LysatePS .

5.3.5 sfGFP puri�cation

The sfGFP was produced in E. coli culture. After a 10 min centrifuge at 4000g, the
pellet was re-suspended in 20 mM Tris (Ph8), 0.2 M NaCl and sonicated (Output
frequency 20 kHz, amplitude 40 % with the Vibracell 72408). After sonication,
the solution was centrifuged (400g, 15 min). The proteins in the supernatant were
purified and fractionated using ammonium sulfate. The sfGFP was isolated at
more than 70% saturation. The solution was centrifuged (4000g, 15 min) and
the pellet re-suspended in 20 mM Tris (Ph8), 100 mM NaCl. The solution was
dialysed overnight in 20 mM Tris (Ph8), 100 mM NaCl. Eventually, for the last
step of purification, we used a Mono Q anion exchange chromatography column (GE
Healthcare) and obtained a solution of 90 % sfGFP. The final solution dialyse in a
solution 0 mM Tris (Ph8), 100 mM and 50% glycerol leading to a final concentration
of 7.62 mg ·mL−1. To obtain an absolute quantification of the protein production
in cell-free, we measured the sfGFP fluorescence in wells containing 10.5 µL of
sfGFP solution at different concentration. The G-yield values are calculated as
described in Supplementary Figure 5.6b with the fluorescence measured from sfGFP
and no autofluorescence divided by the cell-free mix lysateORI autofluorescence
and the reference fluorescence obtained from our plasmid in a cell-free mix with
lysateORI .

5.3.6 myTXTL commercial kit

We used the commercial kit: myTXTL from Arbor Biosciences (Sigma 70 Master
Mix Kit, (USA). We used both our plasmid (10 mM final concentration) and the
control plasmid, pTXTL-P70a(2)-deGFP (20 nM final concentration) provided by
Arbor Biosciences. The 2 plasmids were expressed with the reactions provided
with myTXTL kit and with the optimized cell-free reaction with the lysateORI
Supplementary Figure 5.9b.
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5.3.7 Fluorescence quanti�cation

We used a plate reader Infinite MF500 (Tecan) to measure fluorescence in 384-well
plates (Nunc 384-well optical bottom plates, Thermo-Scientific). The excitation
wavelength was fixed at 425 nm, the emission at 510 nm and the gain at 50. We
measured 5 fluorescence values for each well as a quality control of the plate reader
measurements. The fluorescence was measured from the top of the 384-well plates
with no lid.

5.3.8 Echo liquid handler

We used the Echo software Cherry Pick to program the Echo 550 liquid handler.
The software was programmed using CSV (comma separated values) files that gave
machine-readable instructions: namely the well it had to take liquid from (con-
taining pure reagents), the well the liquid was destined to and the volume that
was to be taken. It allows us to program the content of each individual well sepa-
rately. We calculated the concentrations of our chemical compounds stocks so the
final volumes sent to the destination well were multiples of 2.5 nL (the droplet size
managed by the Echo machine). The scripts generating the CSV file are presented
below in concentrations to instructions workflow. We chose our stock volumes so
that the minimal volume to transfer was 12.5 (=5 droplets). The chemical com-
pounds were dispensed using BP2 fluid class except for K-glutamate and 3PGA
(CP fluid class).

5.3.9 General script descriptions

All scripts mentioned below were written in Python (version 3.6.5), executed in
Jupyter notebooks (version 1.0.0). Scripts are available online on github. The
libraries numpy and csv were used to handle files between different scripts. We
used scitkit-learn [279] (version 0.19.1) for all model training.

5.3.10 Concentrations to instructions work�ow

The details of those scripts are described in the READme file of the ECHO-
handling-scripts of our code. Roughly, it proceeds in 4 steps:

1. Complete concentrations: Taking as input a file containing only concen-
trations of interest for the machine learning algorithm, it adds information
of values that are constant across all conditions, such as the lysate quantity.

2. Concentration to volume: This file converts a csv file concentrations -to
a file of volumes one wants to test (in triplicates). This is due to the fact
that the ECHO liquid handler needs volumes as inputs.
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3. Optional: we sorted those volume files according to water content. This
allows us later to manually pipet important water volumes so that the robot
only adjusts small volumes.

4. Volume to echo: This file converts a set of transfer volume quantities to
the csv file expected by the ECHO liquid handler (instructions files). It also
provides a file containing the name of the wells with their corresponding
transfer volumes. This file is used to match the well compositions with the
fluorescence measurements obtained later with the plate reader. The amino
acids and water were pipetted manually (for volumes > 1 µL).

5. Named volumes to concentrations: maps the volumes and the associ-
ated well name to a concentration file with the associated well name, for
integration with the fluorescent plate reader at the next step.

The script matched the named concentration with the yield value as described in
see Data analysis of those methods.

5.3.11 Data analysis

We provide a script to map the fluorescence quantification (see fluorescence quan-
tification above) to the tested concentrations with well names (last step of concen-
trations to instructions workflow above). We performed outlier removal based on
the following criteria: if the coefficient of variation, among 3 replicates, was higher
than 30%, we removed the value farthest from the other 2. This concerned 27 val-
ues of our 1017 values tested during the active learning. Those are identified in the
online data on Github with the third value of fluorescence is set to -1. This script
also outputs csv files allowing for visualization of where the outliers are, in order
to spot potential border effects. It also separately outputs the outliers for further
analysis.

5.3.12 Data normalization

We normalized using the following equation:

Y ieldcomposition == Fluorescencecomposition − autofluorescence
F luorescencereference − autofluorescence

Where autofluorescence is the fluorescence measured in the cell-free reaction sup-
plemented with water and using the reference composition. The yield exhibited in
Figure 5.2 used a cell-free reaction with the new lysate to measure the autofluores-
cence and the fluorescence with the reference composition. In supplementary Figure
5.6, all the yields are calculated with autofluorescence and reference fluorescence
of the LysateORI .
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5.3.13 Quality controls

In every 384-well plates we measured 13 control compositions (in triplicate) includ-
ing the reference composition with and without DNA. In each 384-well plate, we
used 2 rows of controls: A and P. The controls in row A never changes. The controls
in row P changed throughout the workflow. We used the compositions leading to
higher yields in the previous iteration. When analyzing our controls, we checked
whether the yields were identical from plate to plate (R2 > 0.75 between new plate
and all previous plates on yield of controls). Plates with R2 >0.75 when compared
to all previous plates, or systematically above or below other plates are discarded
and the same combinations were tested again.

5.3.14 Initialization of the Machine learning

For the first plate of the active learning, we proceeded as follows. We chose 22
concentrations that we wished to test: fixing all reagents at the maximum allowed
concentration, except one which was at the lowest (11 combinations) and fixing
all reagents at the minimum allowed concentration except one which was at the
highest (11 combinations). The rest (80 compositions) was filled randomly.

5.3.15 Model training

The models were trained as follows.

1. Input data is normalised: each component maximum concentration is 1,
and the other values take discrete values of 0.1, 0.3, or 0.5 as described in the
legend of Figure 5.1. While unnormalized inputs could be used, we strongly
encourage normalization due to scale differences between the inputs.

2. We train an ensemble of n models where n = 25. For each model, we
train it 10 times (modelsnumber) using the whole dataset at the moment
(e.g. 3x102 values at the 3rd iteration). Training the model multiple times
allows for optimizing for random weight initialization of the model. We keep
the best model (with the highest regression from scitkit-learn R2 score).

3. Multilayer perceptrons give the best results (random forests and linear re-
gressions were also investigated early on). They are trained with the default
parameters from scitkit-learn except the following parameters: maximum it-
eration of 20000, adaptive learning rate, adam solver, early stopping and the
following layers: (10, 100,100, 20)

4. We obtain mean and standard error from our predictions by taking the mean
and standard error from the n results generated by our ensemble of n models.
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5.3.16 Active learning

The workflow used the data from all the available plates as an input. It trains an
ensemble of 25 models and returns instructions for the following round. Here is the
detailed process:

1. For N times (N= 100,000):

a) Randomly sample a composition in the composition space (Figure 5.1a)
b) If a composition was drawn previously (either in a previous experiment

or during current selection), neglect it.

2. Predict mean and standard deviation for all 100,000 points using the ensemble
of 25 models previously trained.

3. Select the best set of compositions, according to the following Upper Con-
fidence Bound (UCB) formula: exploitation ∗ yieldpredmean + exploration ∗
yieldpredstd , with exploitation = 1 and exploration = 1.41. Our scripts out-
put the best 500 compositions based on the mean and std predictions of the
yields. A high std value stands for an uncertain yield value. We output
compositions for full exploitation, full exploration and maximization of the
above formula but use the third option for the rest of the workflow. We are
therefore querying points with both high yield and uncertainty.

5.3.17 Model statistics

For model statistics presented in Figure 5.1e, we used the same models as described
in the active learning section above, but using 5 fold cross validation instead of the
whole training set. The full dataset is separated into 5 subsets then the 25 models
are trained on 4 subsets, and used to predict the 5th, where scores are obtained.
This is done 5 times, once on each subset. The scores presented in Figure 5.1e are
the mean and standard deviation of those 5 scores.

5.3.18 Mutual information calculation

Mutual information is a method to quantify the mutual dependence between two
variables. This concept is intrinsically linked to the concept of entropy and is es-
pecially useful to quantify non-linear relationships between variables. More infor-
mation on the theory behind this method can be found in the review estimation of
mutual information [319] and in sci-kit learn documentation [279]. It was calculated
using the feature-selection.mutual-info-regression function from scitkit-learn [279]
(version 0.19.1) between each feature and the yield (compounds.effect.analysis
/mutual.information.analysis Jupyter notebook) with default parameters.
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5.3.19 Identi�cation of informative points

To identify the most informative points, we proceeded in the following manner: We
did 1000 iterations of the following procedure:

1. Randomly sample n combinations from the dataset (n=20 out of a dataset
of 102 values for Figure 5.2)

a) Train models on those points using the strategy presented in model
training for each lysate

b) Predict on the other points (82 for Figure 5.2) for each lysate
c) Obtain the average score on all lysates

2. Keep those combinations if this average is better
3. Note: Data is saved every 100 iterations

5.3.20 Maximization of the protein production for future

users

Users must do the following experiments:

1. Maxiprep a LB culture of our plasmid (or MyTXTL plasmid)
2. Measure the yields (or absolute fluorescence) in the 20 cell-free compositions

described in Figure 5.2a

Then, in order to apply our method to a new extract, a Jupyter notebook called
predictfornewlysate is available. It takes as input a csv file containing the 20
tested concentrations and the 20 corresponding yields and standard error values. It
provides as an output a file to maximize exploration, exploitation or a combination
of both as in the active learning loop. For obtaining the highest possible yield, it is
recommended to take the exploitation results, which contain the highest predicted
yields. It must be noticed that several cell-free compositions can be predicted to
reach maximum yield or values in the same range. The algorithm provides mean
yields value with standard deviation errors and so several yields will be equivalent
to the maximum value. During this study we provided yield values to our training
algorithms but absolute fluorescence can also be used if a user does not need to
compare fluorescence values measured on different 384-well plates.
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5.4 Supplementary Data

Figure 5.3 Preliminary calibration of the cell-free composition The lysate is usually
only calibrated for Mg-glutamate, K-glutamate levels. Here we show the end point
after overnight cell-free reactions with the lysateORI used in Figure 5.1. Then,
we fixed the maximum concentration for: a, Mg-glutamate concentration at 4 mM
and b, K-glutamate at 80 mM. The error bars stand for the standard deviation of
3 replicates performed on the same day.

Figure 5.4 The choice of 102 cell-free compositions for training and testing of our
model. a Distribution of the yields obtained with the 102 training cell-free compo-
sitions along the 1017 cell-free compositions tested in Figure 5.1. The 102 cell-free
compositions were chosen based on the highest R2 obtained by training on 102
points and predicting on the 915 remaining points. The vertical error bars stand
for the standard deviation of 3 replicates. The horizontal error bars stand for the
standard deviation of 25 predictions. b Comparison of the prediction efficiency of
the model when trained with a training set of 8, 16, 20 or 24 cell-free compositions,
for prediction on the reminder of the 102 points. The training set is chosen among
the 102 cell-free compositions fixed in panel a. The training set leading to the
highest mean R2 among the 3 lysates has been selected.
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Figure 5.5 Mutual Information analysis based on the 102 compositions tested with
lysatePS, lysateAB and lysateDH5α Mutual information analysis of the relation-
ship between the yield and each chemical compound, using the yields measured in
cell-free reactions using 102 cell-free compositions and a, lysatePS , b, lysateAB , c,
lysateDH5α.

Promoter
J23101

tttacagctagctcagtcctaggtattatgctagc

RBS B0034 aaagaggagaaa
sfgfp atgcgtaaaggcgaagagctgttcactggtgtcgtccctattctggtggaac

tggatggtgatgtcaacggtcataagttttccgtgcgtggcgagggtgaagg
tgacgcaactaatggtaaactgacgctgaagttcatctgtactactggtaaa
ctgccggtaccttggccgactctggtaacgacgctgacttatggtgttcagt
gctttgctcgttatccggaccatatgaagcagcatgacttcttcaagtccgc
catgccggaaggctatgtgcaggaacgcacgatttcctttaaggatgacggc
acgtacaaaacgcgtgcggaagtgaaatttgaaggcgataccctggtaaacc
gcattgagctgaaaggcattgactttaaagaagacggcaatatcctgggcca
taagctggaatacaattttaacagccacaatgtttacatcaccgccgataaa
caaaaaaatggcattaaagcgaattttaaaattcgccacaacgtggaggatg
gcagcgtgcagctggctgatcactaccagcaaaacactccaatcggtgatgg
tcctgttctgctgccagacaatcactatctgagcacgcaaagcgttctgtct
aaagatccgaacgagaaacgcgatcatatggttctgctggagttcgtaaccg
cagcgggcatcacgcatggtatggatgaactgtacaaatga

rrnB T1
terminator

ccaggcatcaaataaaacgaaaggctcagtcgaaagactgggcctttcgttt
tatctgttgtttgtcggtgaacgc tctc

Table 5.1 Sequence of the plasmid used in this study The sfgfp is under control of the
promoter J23101 and RBS B0034. The plasmid contains the gene of ampicillin
resistance and the origin of replication PBR322.
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Figure 5.6 Global comparison between the yields obtained with different lysates a
Comparison of the yields obtained with the lysate original (same as Figure 5.1)
vs the model predictions for the 102 cell-free compositions used in Figure 5.2, b
Formula of the global yield compared to the local yield. In contrary to the Yields
presented in Figure 5.2, the Global yield always use the same reference yield from
the lysate of Figure 5.1 named LysateORI . The Global yield, noted Gyield, allows
comparison between yields obtained with our different lysates. c, The 102 cell-free
compositions were ranked from low to high values based on the yields obtained
with the LysateORI . The same ranking of the same 102 cell-free compositions
was used for each lysate. Linear fit is used for LysateORI , LysatePS , LysateAB
and LysatePS + Riflaximin. Michaelis-Menten like fit is used for LysatePS +
Spectinomycin and LysateDH5α.

Figure 5.7 Comparison between the behavior of the local yields measured with dif-
ferent lysates and the yields measured with the lysateORI Comparison be-
tween the yields measured with lysateORI and a, LysatePS . b, LysateAB . c,
LysatePS + rifaximin. d, LysatePS + spectinomycin. e, LysateDH5α. The blue
lines stand for linear fit and the dot lines stand for the perfect correlation (in-
tercept 0 and slope 1). We used the same 102 cell-free compositions for all the
measurements. The error bars stand for the standard deviation of 3 replicates.
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Figure 5.8 A decrease in ribosome availability is sufficient to explain the saturation
of the yields with LysateSpectinomycin a Comparison between the yield obtained
with LysatePS and the yield obtained with LysatePS supplemented with Spectino-
mycin (same data as Supplementary Figure 5.7d). We used a Michaelis-Menten like
function to fit the data. b, We used the well described Michaelis-Menten [141] like
relationship between translation efficiency and available ribosomes concentration
(Rfree). We assumed that a change in cell-composition impact the translation effi-
ciency via a change of Vmax and KM . At a fixed Rfree concentration (blue arrow),
an increase of Vmax, KM values lead to an increasing translation efficiency. c, As
the spectinomycin binds to the 30S sub-unit of the ribosome to inhibit the trans-
lation process, its activity can be represented by a decrease in Rfree concentration
(red arrow). The impact of less ribosomes will lead to a decrease in translation ef-
ficiency (blue vs red line in the second plot). d, Relationship between a translation
efficiency with spectinomycin versus a translation efficiency without spectinomycin
(see supplementary note 1). The yield as the protein production results from the
translation but also the transcription process. The relationship between Translation
efficiency and yields is described in supplementary note 1.
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Figure 5.9 Absolute measurements in cell-free reaction a Relationship between purified
sfGFP and the Global yield. (See supplementary note 2). b Comparison between
the yield obtained with our best cell-free composition with lysateORI and the com-
mercial kit myTXTL from Arbor (pTXTL-P70a(2)-deGFP). We used both our
plasmid and myTXTL plasmid. Noted that the y-axis with sfGFP concentration
is used only for the measurements with our plasmid as myTXTL plasmid produce
deGFP and not sfGFP.
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5.4.1 Note 1: Deterministic model of protein production

behavior in cell-free system with an impaired

translation process (Supplementary Figure 5.8)

Assumption 1: Adding spectinomycin lead to a similar impact on the translation
process as a decrease in concentration of the available ribosome. Spectinomycin
binds to the 30S sub-unit stopping protein synthesis. Thus, a subset of ribosomes
should be unavailable for translation.

[Rfree]spec = [Rfree]− cst

Assumption 2: We simplified our calculation by considering that a variation in
cell-free composition has a similar impact on both Vmax and KM .

Vmax = cst2 ∗KM

Assumption 3: The relationship of transcription efficiencies (noted TxE) between
lysates is modeled by a linear relationship with a negligible intercept. We ob-
served such a linear relationship (with an intercept close to 0) between yields from
lysates with and without a damage transcription machinery in Supplementary Fig-
ure 5.7c.

TxEspec = cst3 ∗ TxE

Assumption 4: The variation in cell-free composition mainly impact the trans-
lation process. We observed in Supplementary Figure 5.7d that a lysate with a
damaged translation machinery is poorly improved by a change in cell-free com-
position. The opposite is observed with a damaged transcription machinery in
Supplementary Figure 5.7c suggesting that the efficiency of the translation machin-
ery is the limiting factor for cell-free improvement and not the efficiency of the
transcription machinery.

TxE = cst4

(TxE is independent of the variations in cell-free compositions)

We used the well-defined model of the translation efficiency (T lE) based on a
Michaelis-Menten equation [172].

T lE = Vmax.[Rfree]
KM + [Rfree] (5.1)

T lEspec = Vmax.[Rfree]spec
KM + [Rfree]spec

(5.2)
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where Vmax andKM values depends on the RBS sequence and the cell-free composi-
tion. [Rfree] stands for the concentration in available ribosomes. Using assumption
1 and equation 5.2: [Rfree]spec = [Rfree]− cst, we obtain:

T lEspec = Vmax.[Rfree]− cst
KM + [Rfree]− cst (5.3)

Using assumption 2 (Vmax = cst2 ∗KM ) and equations 5.1 and 5.3:

T lE = cst2 ∗KM .[Rfree]
KM + [Rfree] (5.4)

T lEspec = cst2 ∗KM .[Rfree]− cst
KM + [Rfree]− cst (5.5)

Thus,
5.4⇔ KM = T lE.[Rfree]

cst2 ∗ [Rfree]− T lE (5.6)

5.5&5.6⇔ T lEspec =
cst2.

TlE.[Rfree]
cst2.[Rfree]−TlE .([Rfree]− cst)
TlE.[Rfree]

cst2.[Rfree]−TlE + [Rfree]− cst

⇔ T lEspec = cst2.T lE.[Rfree].([Rfree]− cst)
T lE.[Rfree] + ([Rfree]− cst).(cst2.[Rfree]− T lE)

⇔ T lEspec = cst2.T lE.[Rfree].([Rfree]− cst)
T lE.cst+ ([Rfree]− cst).cst2.[Rfree]

⇔ T lEspec =
cst2.[Rfree].([Rfree]−cst)

cst .T lE

T lE + cst2.[Rfree].([Rfree]−cst)
cst

⇔ T lEspec = A.T lE

T lE +A

(5.7)

with
A = cst2.[Rfree].([Rfree]− cst)

cst
(5.8)

The protein production (and so the yield) is the result of the expression of sfgfp by
the transcription and translation processes.

Y ield = [DNA].TxE.T lE (5.9)

Y ieldspec = [DNA].TxEspec.T lEspec (5.10)
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Using assumption 3 (TxEspec = cst3 ∗ TxE), and the fact that the DNA concen-
tration is the same in every cell-free reaction ([DNA] = cst5):

5.10⇔ Y ieldspec = cst5.cst3.TxE.T lEspec (5.11)

Using assumption 4 (TxE = cst4), we have:

5.9⇔ Y ield = cst5.cst4.T lE (5.12)

5.9⇔ Y ieldspec = cst5.cst3.cst4.T lEspec (5.13)

Then,
5.12⇔ T lE = Y ield

cst5.cst4
(5.14)

and
5.13⇔ T lEspec = Y ieldspec

cst5.cst4.cst3
(5.15)

Then,
5.7&5.15⇔ Y ieldspec

cst5.cst4.cst3
= A.T lE

T lE +A
(5.16)

Then,

5.12&5.16⇔ Y ieldspec
cst5.cst4.cst3

=
A. Y ield

cst5.cst4
Y ield

cst5.cst4
+A

⇔ Y ieldspec =
cst5.cst4.cst3.A.

Y ield
cst5.cst4

Y ield
cst5.cst4

+A

⇔ Y ieldspec = cst5.cst4.cst3.A.Y ield

Y ield+A.cst5.cst4

⇔ Y ieldspec = B.Y ield

Y ield+ C

(5.17)

With
B = cst5.cst4.cst3.cst2.[Rfree].([Rfree]− cst)

cst

and
C = cst5.cst4.cst2.[Rfree].([Rfree]− cst)

cst

Eventually, we obtained a Michaelis-Menten equation for the relationship between
Y ield and Y ieldspec (eq. 5.17) which explain the data in Supplementary Figure
5.8a. Despite the multiple assumptions (that are difficult to verify by experimental
measurements) this model gives a simple explanation of our observations.

5.4.2 Note 2: Commercial kit and absolute sfGFP

measurements (Supplementary Figure 5.9)

Both plasmids (our plasmid and myTXL plasmid) led to similar yield when the
lysateORI with the optimized composition (max yield in Figure 5.2) and myTXTL
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mix are used. This result suggests that pTXTL-P70a(2)-deGFP can also be used,
instead of our plasmid to optimize cell-free composition. The higher Global yield
come from the higher fluorescence obtained with this plasmid. The pTXTL-P70a(2)-
deGFP seems to be a derivative of the pBEST-OR2-OR1-Pr-UTR1-eGFP-Del6-
229-T500 [320] optimize for expression in cell-free reaction. We don’t have access
to the cell-free composition of myTXTL mix but we assumed that it was optimized
to obtain a maximum protein production and that the lysate was prepared from
a modified strain of E. coli. The quality of the result obtained with our lysate-
specific optimization compared to the commercial kit is a validation of our method
efficiency. The protein concentration obtained from the expression of our plasmid
with lysateORI is at 0.22 µM sfGFP equivalent. We can notice, with the arbor
plasmid, that the the 7 µM sfGFP equivalent is irrelevant as the plasmid produce
deGFP.

148



Part II
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6Custom-Made Transcriptional
Biosensors for Metabolic
Engineering

This work was published in Current Opinion in Biotechnology by Mathilde Koch *,
Amir Pandi *, Olivier Borkowski, Angelo Cardoso Batista and Jean-Loup Faulon.
Only minor modifications to the published paper have been introduced in the Chap-
ter below.
* stands for equal contributions.

Detailed contribution to this thesis

This Chapter describes advances in transcriptional biosensors for metabolic engi-
neering. Transcriptional biosensors form an essential part of any circuit in synthetic
biology, as they allow for output detection. This is the reason why I also studied
those biosensors in the context of this thesis. Given the number of reviews pub-
lished on the topic, my first contribution to this article was to define an outline
that would point out the next challenges and opportunities in the field that are less
often mentioned in other review, namely using mathematical modeling for fine tun-
ing of biosensor properties and the importance of developing biosensors with and
for the cell-free systems branch of synthetic biology. I then did the bibliographical
research and wrote the text of the article, while A.P. did the figures, O.B. and
A.C.B. did the cell-free experiments presented in Figure 6.3 and all authors read
the manuscript and approved it for publication.

Full reference

Koch M., Pandi, A., Borkowski O., Cardoso Batista A., Faulon J.-L. (2019) Custom-
made transcriptional biosensors for metabolic engineering Current Opinion in Biotech-
nology, 10.1016/j.copbio.2019.02.016.

Contributions as stated in the article

Not available.
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6.1 Abstract

Transcriptional biosensors allow screening, selection or dynamic regulation of metabolic
pathways, and are therefore an enabling technology for faster prototyping of metabolic
engineering and sustainable chemistry. Recent advances have been made, allow-
ing for routine use of heterologous transcription factors, and new strategies such
as chimeric protein design allow engineers to tap into the reservoir of metabolite-
binding proteins. However, extending the sensing scope of biosensors is only the first
step, and computational models can help in fine-tuning properties of biosensors for
custom-made behavior. Moreover, metabolic engineering is bound to benefit from
advances in cell-free expression systems, either for faster prototyping of biosensors
or for whole-pathway optimization, making it both a means and an end in biosensor
design.

Figure 6.1 Graphical abstract for biosensor review

6.1.1 Highlights

• Successful examples of transcriptional biosensor implementations are pre-
sented

• Various engineering strategies extend the space of detectable chemicals
• Novel strategies exist to transform metabolite-responding proteins into biosen-

sors
• Mathematical models of varying complexity can help tune biosensor proper-

ties
• Biosensors using or designed for cell-free systems are presented

6.2 Introduction

Metabolic engineering allows the production of value-added compounds from renew-
able sources, therefore making it a key discipline for a greener and more sustainable
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chemistry. As the domain of synthetic biology has matured, numerous techniques
have been developed and applied in metabolic engineering, allowing for cheaper and
faster DNA synthesis, sequencing and assembly. It is nowadays faster to design and
build constructs than to characterize them as testing often involves expensive mass
spectrometry analyses. This has led to an increased interest in biosensors, which
can allow fast and real-time screening, selection or dynamic regulation engineer-
ing of metabolic pathways. Cells harboring fluorescent proteins as the reporter of
the biosensor allow screening of a huge number of variants, both for experimental
growth conditions or genetic constructs (enzymes, RBS, promoters). Moreover, dy-
namic regulation can be used to monitor intermediates, final products or quorum
molecules, allowing for optimal pathway balancing and resource consumption.
The advantages of using biosensors in metabolic engineering have been extensively
reviewed before [321, 322, 323]and will not be detailed further. Moreover, a wide ar-
ray of techniques now exists to develop biosensors, from Förster Resonance Energy
Transfer (FRET) [324] to riboswitches [325, 326]: the interested reader is referred
to those two excellent reviews that cover the strengths and limitations of the above-
mentioned technologies [327, 328]. In this review, we will focus on transcriptional
biosensors in three different aspects. First, we will review techniques for discovery
and engineering of transcriptional biosensors for new compounds, second, we will
present how computer-assisted modeling can facilitate the tuning of biosensors for
custom-made behavior, and third we will review the advances and advantages of
using cell-free systems for biosensor characterization and metabolic engineering.

6.3 Designing a transcriptional biosensor to

detect a compound of interest

6.3.1 Engineering allosteric transcription factors

The first step to engineer a biosensor, whether homologous or heterologous, is to
identify the transcription factor (TF) and promoters that respond to it. Strate-
gies involving transcriptional micro-arrays and identification of the up- or down-
regulated genes in response to the ligand of interest provide first leads. These ap-
proaches can suffer from important limitations for metabolic engineering use: the
identified genes can be either indirectly regulated by the ligand of interest, or very
unspecific. This strategy has been successfully applied for 1-butanol detection [329].
Another strategy for identification of potential TF-promoter pair comes from Zhang
et al. [330] who identified pairs that could detect lactam derivatives: the authors
used a cheminformatics approach to reveal operons listed in BRENDA [133] that
detected similar chemicals, and identified the gene likely coding the transcription
factor. We recently published [76] (Chapter 4) a dataset of detectable metabolites
(6.2a). This dataset, includes a manually curated list of experimentally validated
detectable metabolites and information from databases of regulation, which contain
known or putative detectable metabolites. Other strategies for mining parts have
been discussed in a previous review [331].
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Figure 6.2 Different strategies to develop a TF based biosensor for a given metabo-
lite. There is either an existing TF for a metabolite a or it could be engineered
using evolved TF b, chimeric protein c, or a metabolic pathway (SEMP) d A
designed biosensor could be implemented in whole-cell or cell-free system e Ab-
breviations: TF: Transcription Factor, LBD: Ligand Binding Domain, DBD: DNA
Binding Domain, SEMP: Sensing-Enabling Metabolic Pathways.

Compound
Original organ-
ism

Implementation
organism

Design strategy
Biosensor ap-
plication

Reference

Itaconic
acid

Yersinia pseudotu-
berculosis

E. coli

Identified TF and
promoter from
catabolism path-
ways

Used for enzyme
improvement in
pathway proto-
typing

[332]

Vanillin E. coli E. coli

Natural E. coli reg-
ulator tuned with
mathematical mod-
eling

Used for library
screening

[333]

SyringaldehydeE. coli E. coli

Natural E. coli reg-
ulator tuned with
mathematical mod-
eling

Used for library
screening

[333]

Muconic
acid

Acinetobacter sp.
ADP1

Saccharomyces
cerevisiae

Identified from a
previous publica-
tion

Used for selec-
tion of high pro-
ducing strains

[334]

Pinocembrin
Herbaspirillum
seropedicae

E. coli
Tuned with the
help of a mathe-
matical model

Can be used for
metabolic engi-
neering

[171]
(Chap-
ter 7)

Pamamycin
Streptomyces al-
boniger

Streptomyces al-
boniger

Improved from
native genetic
elements

Can be used for
metabolic engi-
neering

[335]
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p-coumaric
acid

Bacillus subtilis E. coli

Identified from lit-
erature and library
design of RBS to
tune the repressor
properties

Used for screen-
ing a pro-
ducer strain
in microfluidic
droplets

[336]

Formaldehyde E. coli E. coli
Optimized from na-
tive regulatory ele-
ments.

Used to iden-
tify promising
enzymes for
methanol assim-
ilation

[337]

N-
acetylneuraminic
acid

E. coli E. coli
Modularization of
the native biosens-
ing system

Used for screen-
ing high-
producing
strains

[338]

Putrescine E. coli E. coli
Modularization of
the native biosens-
ing system

Used for screen-
ing high-
producing
strains

[339]

L-
phenylalanine

E. coli E. coli
Modularization of
the native biosens-
ing system

Used for screen-
ing high-
producing
strains

[340]

Shikimic
acid

Corynebacterium
glutamicum

Corynebacterium
glutamicum

Using the promoter
from native genetic
elements, consider-
ing the transcrip-
tion factor to be
naturally expressed

Used for screen-
ing high-
producing
strains

[341]

Cellobiose Thermobifida fusca E. coli
Identified from
literature and
expressed in E. coli

Used to identify
promising cellu-
lases

[342]

Naringenin
Herbaspirillum
seropedicae

E. coli

Identified from lit-
erature, modular-
ized and expressed
in E. coli

Can be used for
metabolic engi-
neering

[343]

Naringenin
Acinetobacter sp.
ADP1

Saccharomyces
cerevisiae

Identified from lit-
erature, modular-
ized and expressed
in E. coli

Used for path-
way prototyping
- screening

[344]

Various
aromatic
blocks

Sphingobium sp.
SYK-6

E. coli

Identified from lit-
erature, modular-
ized and expressed
in E. coli

Used to screen
for lignin
degrading en-
zymes

[345]
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Various
macrolides

MphR, isolated
from wastewater
treatment plant

E. coli

Directed evolution
and random muta-
genesis to improve
selectivity

Can be used for
metabolic engi-
neering

[346]

Table 6.1 Successful homologous and heterologous biosensor design based identi-
fied on transcription factor/promoter pairs.

Once a potential TF/promoter pair is identified, the bio-engineering workflow in-
volves modifying the promoter, RBS and binding sites to improve selectivity, dy-
namic, operational range, fold change and leakiness. A number of successful biosen-
sors have been developed in recent years, including heterologous TF despite the
challenges faced to adapt the transcriptional machinery. This technology is be-
coming increasingly mature, as shown by the numerous examples in Table 6.1. In
addition, engineering of specific biosensors for Malonyl-CoA is reviewed by Johnson
et al. [347], while Ambri [348] describes in details an implementation of bacterial
TF in yeast. Voigt’s group recently published an E. coli strain containing twelve
genomically integrated small molecule sensors, using a directed evolution strategy.
It has been developed as a synthetic biology tool but the presented methods are
applicable to metabolic engineering [349].
However, the above-mentioned strategies are only applicable if a natural transcrip-
tion factor-biosensor pair exists for a given compound. We will now review strate-
gies to extend the chemical scope of transcriptional biosensors.

6.3.2 Extending the chemical space for biosensors

A strategy to extend the chemical scope is to start from a known transcription
factor and apply rounds of protein engineering to change its specificity (6.2.b).
For example, to design a biosensor for lactulose, LacI was altered using saturation
mutagenesis, with rounds of selection to ensure specificity to lactulose [350]. Tay-
lor et al. [351] used computer-assisted protein design, followed by saturation or
random mutagenesis to modify LacI to sense either fucose, gentiobiose, lactitol or
sucralose. The promiscuous MphR transcription factor has been modified with a
similar strategy to change its selectivity towards various macrolides [346]. Despite
their successes, these examples still rely on well-known transcription factors and
labor-intensive mutagenesis or computationally assisted protein design to change
the specificity of a transcription factor to, still, a chemically similar molecule.
Several groups have tried radical approaches, fusing DNA Binding Domain (DBD)
to determine ligand binding domains in different ways (6.2.c). This strategy has
been successfully applied to maltose [352] and benzoate [353] by testing various
linkers and DBD systematically. Another strategy, also applied to maltose, was
to randomly insert the DBD into the metabolite binding protein, using transposon
insertion reaction, to select constructs presenting biosensor-like behavior [354]. In a
recent study [355], the authors use a ligand dependent stabilization strategy, fusing
LacI (respectively MphR) to the Zif268 DBD and ribonucleic acid (RNA) poly-
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merase ω-sub-unit transcription-activating domain. Those constructs are quickly
degraded unless the ligand is present. The authors managed to engineer biosensors
responding to Isopropyl β-D-1-thiogalactopyranoside (IPTG) and D-glucose with
satisfying dose-response (respectively erythromycin with a modest response). How-
ever, to underline the difficulty of this approach, they report that in two structurally
similar periplasmic binding proteins, a similar mutation did not confer ligand de-
pendent stabilization. Another similar approach was developed recently, it uses
both ligand dependent stabilization and protein dimerization: two ligand binding
domains (that can homodimerize, but bind different ligands) are fused respectively
to the activation domain and the DBD. Upon ligand binding, the two proteins are
stable and can homodimerize, resulting in biosensing. This system allows for better
range tuning and possible orthogonal biosensing of different ligands [356].
Other known metabolite responsive proteins are two-component systems, which
have also been used as biosensors. By fusing the transmembrane sensing domain
of another species detecting methanol with the cytoplasmic phosphorylation do-
main of E. coli, binding of methanol activates a phosphorylation cascade enabling
biosensing [357]. In an elegant study, transmembrane and cytosolic receptors for
caffeine were built by fusing single-domain antibodies to monomeric DBDs [358].
Different DBDs were used, proving the scalability of the method. These two plat-
forms should allow bio-engineers to tap into the vast reservoir of two-component
systems and antibodies to design new sensors.
A radically different approach to engineer the sensing scope of bacteria was coined
Sensing-Enabling Metabolic Pathways (SEMP) (6.2.d). The principle of this method
is to metabolically convert an undetectable ligand into an already detectable one.
This method makes the most of existing biosensors as well as of the impressive
accumulated knowledge on metabolic reactions. It has been successfully applied
in a metabolic engineering project to produce 3-hydroxypropionate [359], and its
modularity was shown by Libis et al. [262]. A web-server is now available to design
SEMP for compounds of interest [77].

6.4 Computer-assisted �ne-tuning of biosensor

properties

While the scientific community agrees that biosensors need to be fine-tuned for
selectivity, sensitivity and dynamic range, tuning strategies are usually based on
labor-intensive and costly rounds of selection and mutagenesis. Controlling those
properties is especially interesting for metabolic engineering as the specifications of
a biosensor needed during various stages of the process will change, from detecting
micromolar amounts before pathway optimization to g · L−1 titers in later devel-
opment stages. Therefore, after engineering a biosensor with new specificity, its
properties also need to be fine-tuned to match the metabolic engineer’s needs.
A detailed mechanistic model of the ArsR arsenic biosensor was developed by Berset
et al. [143], which recapitulates the sensor behavior under various circuit configura-
tions, different ArsR alleles, promoter strengths, and presence or absence of arsenic
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efflux in the bio-reporters. This model was then used to predict a circuit variant
with steeper response at low arsenite concentrations. A thermodynamical model
was developed in a recent study [360], which was used to tune the dynamic range
of ligand-inducible promoters (mainly AraC and LasR), using binding energies cal-
culated for different promoter sequences. Both studies proved that with sufficiently
detailed models, tailoring biosensor properties for custom-made behavior can be
achieved. Another interesting study based on the Lac system and involving exten-
sive phenomenological modeling sought to find theoretical constraints for biosensor
design, notably a maximum achievable dynamic range and exposing tunable pa-
rameters for orthogonal control of dynamic range and response threshold [361]. As
impressive as these studies are, they are based on well-characterized and known
systems and such modeling cannot be applied easily to a new biosensor.
However, a simpler formalism (Michaelis-Menten) for mathematical modeling was
used to tune a biosensor used for selection of lignin transforming enzymes, giving
insights on parameters influencing sensitivity, such as TF concentrations or copy
number [333]. The role of plasmid copy number on sensitivity and fold-change of
a pinocembrin and naringenin biosensor was investigated through a mathematical
modeling [171] (Chapter 7), using the common Hill framework, allowing for bet-
ter understanding of the biosensor behavior and suggestions for further tuning of
properties according to desired outputs. Landry et al. [362] used mathematical
modeling with Hill formalism to tune the detection range of a two-component sys-
tem. They successfully applied it to improve their detection threshold up to two
orders of magnitude. These later studies showed that simple mathematical models
can help to understand and tune specific properties of a biosensor, even in less
known systems.
Computer-assisted design does not always yield the expected results, as current
models are often more explicative a posteriori than predictive a priori. There-
fore, we believe investing the time needed to develop reliable models for a library
of constructs can only be worthwhile in the long run for designing biosensors, as
formalized knowledge is more easily translatable to other situations.

6.5 Custom-made biosensors' new application

domain: cell-free metabolic engineering

Despite the advances presented in this review, biosensor design still necessitates
rounds of trial and error. This limitation can be significantly sped up by using
cell-free systems (6.2.e). Moreover, cell-free systems, are poised to become a key
characterization tool in the metabolic engineering workflow before in vivo imple-
mentation. Cell-free systems lead to quicker responses, simpler cloning and larger
combinatorial libraries screening, without requiring transformation steps. These
systems can also be an appropriate platform for production because of lower noise
and toxicity and absence of resource competition between pathway and cell growth.
To date, cell-free systems have been applied to implement pathways for violacein
[363], 4-BDO [364], polyhydroxyalkanoates bioplastics [365], mevalonate [52] [71],
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n-butanol [72] and raspberry ketone [366], using either transcription-translation
(TX-TL) systems, over-expressed enzymes in the crude extract or purified enzymes.
Advantages and possibilities of cell-free systems for metabolic engineering has been
reviewed elsewhere [367], and a methods chapter for pathway prototyping in cell-
free systems has recently been published [368].
Cell-free biosensors for various applications have been reviewed elsewhere [369] and
we will focus on strategies applicable to metabolic engineering. In a recent study,
a vanillin biosensor was developed in cell-free systems [70]. The authors first used
computational protein design and then rapid cell-free prototyping to develop a
biosensor for this toxic effector, which was subsequently used in dynamic control
loops in vivo to alleviate toxicity.
Another use of cell-free systems for biosensor engineering is discussed by Halleran
et al. [73]: to develop complex consortia for pathway distribution among cell pop-
ulations, metabolic engineers need reliable quorum sensing systems. This study
characterized cross-talk between cell-free system and in vivo and discovered sig-
nificant correlation between cell-free and in vivo measurements, validating the use
of cell-free systems as a successful and fast characterization testbed. Recently, we
have proposed a method to optimize the response of TF-based cell free biosensors.
We also proved that SEMP are modularly implementable in cell-free systems, and
exhibit high sensitivity, fast response times and broad dynamic range [173].
For this review, we implemented our in vivo-characterized pinocembrin biosensor
[171] (Chapter 7) in a cell-free system (Figure 6.3.a). The cell-free biosensor ex-
hibited a linear correlation between input concentration and fluorescence intensity
as well as a wider dynamic and operational range (Figure 6.3.b) compared to its
in vivo counterpart [171] (Chapter 7). These tools could be used for real-time
screening and speed up the DBTL workflow for metabolic engineering.

Figure 6.3 Pinocembrin cell-free biosensor. Cell-free reaction consists of TX-TL cell
lysate, reaction buffer and DNA plus inducer for the biosensor a. b The graph
shows a dose response red fluorescent protein (RFP) fluorescence after 9 hours in-
cubation in a plate reader at 30 ◦C. 40 nM of biosensor plasmid is added with 0, 1,
2, 10, 20, 100, 200 or 1000 µM of pinocembrin in 10.5 µL of cell-free reaction. RFP
fluorescence points and error bars are the mean and standard deviation of three
measurements.

Cell-free systems provide fascinating new opportunities for metabolic engineering,
both for faster biosensor development, notably for toxic products, but also for
prototyping whole pathways. Cell-free based metabolic engineering can benefit
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from all advantages of biosensor-based screening or dynamic regulation engineering,
as does traditional metabolic engineering.

6.6 Conclusion

Thanks to extensive efforts by the research community, it has never been easier
to develop transcriptional biosensors for new compounds, either from existing TF
or engineering strategies. We believe the next frontier in custom-made biosensor
design resides in efficient fine-tuning of properties, which is greatly advanced by
modeling efforts. Moreover, metabolic engineering might be entering a new phase,
with cell-free systems enabling faster prototyping of biosensors and even whole
pathways. The current advances in biosensors for high-throughput screening will
truly allow the field to move from the Design-Build-Test cycle to the Design-Build-
Test-Learn cycle.
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7
Building a minimal and
generalisable model of
transcription factor-based
biosensors: Showcasing
flavonoids

This work was published in the Journal of Biotechnology and Bioengineering by
Heykel Trabelsi *, Mathilde Koch * and Jean-Loup Faulon.
Only minor modifications to the published paper have been introduced in the Chap-
ter below. Supplementary data facilitating reading of my contributions was included
where mentioned in the text, and noted as being originally Supplementary Figures.
* stands for equal contributions.

Detailed contribution to this thesis

As stated previously, biosensors are an essential part of any circuit in synthetic
biology, as they allow for signal detection. This is the reason why developing, mod-
eling and analyzing biosensors is the first step of the development of analysis tools
for more complex circuits, as the signal detection layer determines all that can be
understood of processes that appear upstream of the detection.
My main contribution was in the mathematical analysis and modeling of our biosen-
sors. More precisely, I observed in our data that changing plasmid copy number
of our biosensors not only modified the fold change of the biosensor, as is to be
expected, but also their sensitivity. I therefore chose an adapted modeling strategy
based on a modified Hill equation, that accounts for plasmid copy number through
transcription factor and binding sites numbers, which is our system’s degree of free-
dom. After fitting this model on available data and verifying parameter consistency
using sampling from parameter estimations, the model was then used to suggest
modifications for changing the biosensor behavior to attain desired criteria, such as
higher or lower sensitivity, by modifying plasmid copy number, DNA - transcription
factor binding strength or transcription factor - inducer binding strength.

161



Full reference

Trabelsi H *, Koch M *, Faulon J-L. (2018) Building a minimal and generalisable
model of transcription factor–based biosensors: Showcasing flavonoids. Biotechnol-
ogy and Bioengineering, 10.1002/bit.26726.
* stands for equal contributions.

Contributions as stated in the article

H. T., M. K., and J.-L. F. designed the study. H. T. designed, built, and char-
acterized the biosensors. M. K. performed the chemical structure analysis, the
mathematical analysis, and the modeling. All authors participated in the interpre-
tation of the results and in the preparation of the manuscript.

7.1 Abstract

Progress in synthetic biology tools has transformed the way we engineer living
cells. Applications of circuit design have reached a new level, offering solutions
for metabolic engineering challenges that include developing screening approaches
for libraries of pathway variants. The use of transcription factor-based biosen-
sors for screening has shown promising results, but the quantitative relationship
between the sensors and the sensed molecules still needs more rational understand-
ing. Herein, we have successfully developed a novel biosensor to detect pinocembrin
based on a transcriptional regulator. The FdeR TF, known to respond to narin-
genin, was combined with a fluorescent reporter protein. By varying the copy
number of its plasmid and the concentration of the biosensor TF through a com-
binatorial library, different responses have been recorded and modeled. The fitted
model provides a tool to understand the impact of these parameters on the biosen-
sor behavior in terms of dose–response and time curves and offers guidelines to
build constructs oriented to increased sensitivity or ability of linear detection at
higher titers. Our model, the first to explicitly take into account the impact of
plasmid copy number on biosensor sensitivity using Hill-based formalism, is able to
explain uncharacterized systems without extensive knowledge of the properties of
the TF. Moreover, it can be used to model the response of the biosensor to different
compounds (here naringenin and pinocembrin) with minimal parameter refitting.

7.2 Introduction

Trends in metabolic engineering approaches to produce bio-based chemicals in cell
factories are still under continuous improvements. The main developments include
over-expressing the enzymes of the rate-limiting steps [370], deletion of competing
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pathways [371], balancing cofactor and precursor metabolites [372, 373], implement-
ing synthetic feedback loops [374, 375], and biosensor-based dynamic regulation
[376].
One current challenging task is to set up a reliable method to screen for the best
producing strains among a wide genetic diversity. The use of biosensors responsive
to intracellular chemicals has opened doors to solving this pressing issue. Such sen-
sory regulatory devices, mainly TFs, have successfully been used to detect the pres-
ence of metabolites, but also for quantification and even high throughput screen-
ing [377]. Furthermore, biosensors can also play an important role in regulating
pathway fluxes by sensing the level of a key intermediate and then promoting its
synthesis or its downstream conversion [376]. To overcome the limited number of
naturally occurring metabolite responsive TFs available, progress has been made
through their heterologous use, which includes transplantation of prokaryotic tran-
scriptional activators into the eukaryotic chassis [344]. Additionally, it was recently
shown that it is possible to expand the detection abilities by adding one or more
enzymatic steps to transform a non-detectable compound into a detectable one
[77, 262]. This latest tool considerably expands the scope of chemicals that can be
sensed via transcriptional regulators.
One of the interesting metabolic pathways implemented with relative success is the
flavonoid pathway [225]. The industrial demand for some flavonoids is increasing,
and among the top promising chemicals is (2S)-pinocembrin, which is a plant sec-
ondary metabolite and the main starting point for the synthesis of other flavonoid
molecules. This compound has a broad range of interesting characteristics such as
antioxidant [378], antibacterial [379], antifungal [380], inhibitor of atherosclerosis
[381], and neuroprotection in neurodegenerative diseases [382, 383]. To produce
pinocembrin from glucose, four heterologous genes have to be implemented in E.
coli. First, phenylalanine ammonia lyase converts phenylalanine into cinnamic acid,
which is then converted by coumarate-CoA ligase into cinnamoyl-CoA. Then, chal-
cone synthase condensates cinnamoyl-CoA and three molecules of malonyl-CoA
to produce pinocembrin chalcone, which will be then converted into pinocembrin
through chalcone isomerase (Figure 7.1). As of today, pinocembrin is produced at
a low titer from glucose ([384]; only 40 mg · L−1), and work still needs to be carried
out to increase productivity, most likely through the building of combinatorial li-
braries with various enzyme sequences and regulatory elements (promoters, RBS).
Such libraries could be quickly screened with a pinocembrin biosensor, where the
level of the reporter gene (i.e., fluorescence) is proportional to the pinocembrin titer.

Chemical structure similarity considerations of detectable flavonoids led us to choose
as our candidate FdeR TF, a transcriptional activator based biosensor from Herbaspir-
illum seropedicae SmR1, shown to respond to naringenin [385, 386]. Here, we have
focused on developing and modeling the FdeR TF to shed light on the way we
could design TF-based biosensors to overcome issues of measurable quantification
of metabolite production and to monitor an adequate sensing response. We have
built different constructs varying most notably in plasmid copy number, changing
both the concentration of the TF and the number of binding sites for the activated
complex, and modeled the impact of this varying number on the sensitivity of the
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Figure 7.1 Pinocembrin biosynthesis pathway PAL, TAL, 4CL, CHS and CHI refer to
phenylalanine ammonia lyase, tyrosine ammonia lyase, coumarate-CoA ligase, chal-
cone synthase, and chalcone isomerase, respectively

response. We provide a modeling strategy based on Hill functions to understand
the impact of plasmid copy number and compound binding affinity to FdeR on our
biosensor behavior, for both the dose-response and time curves, for a TF that has
not been well characterized before.

7.3 Materials and methods

7.3.1 Plasmids and strains

All plasmids and strains used in this study are listed in the Supporting Information
Table 7.5. E. coli strain DH5 (Life Technologies, Darmstadt, Germany) and Mach
1 strain (Invitrogen Technologies, Carlsbad, CA) were used for cloning. E. coli
strain BL21 (DE3) was used for enzyme expression. All the primers (P1–P9) were
purchased from Eurofins genomics (Ebersberg, Germany) and are listed in the Sup-
porting Information Table 7.6. All our constructs were built by Gibson assembly us-
ing the NEBuilder HiFi DNA Polymerase Kit from New England Biolabs (Ipswich,
Massachussets, MA). All plasmids were sequenced at the GATC Biotech (Kon-
stanz, Germany). We performed all cloning and transformations as per standard
protocols. Antibiotics were used at the following concentrations: ampicillin (Ap),
50 µg ·mL−1; chloramphenicol (Cm), 25 µg ·mL−1; kanamycin (Km), 30 µg ·mL−1;
and spectinomycin (Sp), 50 µg ·mL−1.
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7.3.2 Pinocembrin sensor library construction

Sixteen pinocembrin biosensors were constructed by varying the plasmid copy num-
ber and the RBS strength.
First, primers P1 and P2 were used to amplify the plasmid backbones with different
copy numbers from pACYCDuet-1, pCDFDuet-1, pETDuet-1, and pRSFDuet-1
(Supporting Information Table 7.7). Second, the RFP under the control of the
responsive promoter to pinocembrin was amplified from the plasmid pV20 (Sup-
porting Information Table 7.5) using the primers P3 and P4. Third, the FdeR TF
with its constitutive promoter J23100 was amplified also from the plasmid pV20
with the four couples of primers P5/P9, P6/P9, P7/P9, and P8/P9 to generate
the FdeR fragment with an RBS sequence 1, 2, 3, and 4, respectively. Finally,
the 16 possible combinations were assembled in one step by Gibson assembly and
confirmed by colonies PCR and sequencing (Figure 7.2). All the constructs of
pinocembrin biosensors are highlighted in Supporting Information Table 7.8.

Figure 7.2 Schematic representation of the pinocembrin biosensor module: A pro-
moter and a RBS precede each gene. A terminator is located downstream of each
gene. Resistance refers to chloramphenicol resistance, spectinomycin resistance,
ampicillin resistance, or kanamycin resistance. RFP

7.3.3 Biosensor dose-response characterization

For each biosensor strain, an isolated colony of BL21(DE3) harboring the appro-
priate plasmid was inoculated in 2 mL Luria Broth (LB) media containing the
appropriate antibiotics and grown overnight at 37 ◦C. The culture was then diluted
1:100 in fresh LB containing the appropriate antibiotics as well as different con-
centrations of pinocembrin, naringenin, or cinnamic acid (previously dissolved in
ethanol) ranging from 1 to 500 µM. All the sensor cells were grown then for 24 h
with agitation at 37 ◦C in microplate reader BioTek. Absorbance at 600 nm and
fluorescence (Exc: 580 nm /Em: 610 nm) were measured. All experiments were
repeated at least three times.
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7.3.4 Chemical structure similarity

Compound InChI was obtained from PubChem [387]. Chemical structure analysis
was performed using the KNIME [223] analytics platform and RDKit nodes [194].
Tanimoto scores were computed using MACCS keys fingerprints [120].

7.3.5 Data normalization

RFP fluorescence reading was normalized by optical density (OD) to obtain values
that are proportional to per cell fluorescence. For fold change data, values obtained
with inducers were divided by values obtained without inducers:

foldchange(inducer) = RFP/OD(inducer)
RFP/OD(inducer = 0) (7.1)

7.3.6 Simulation tools

All data analyses and simulations were run on R (version 3.2.3, [388]). Time evolu-
tion curves were simulated using the DeSolve package (version 1.14, [389]) and the
rk4 algorithm, implementing the fourth-order Runge-Kutta method. For random
parameter sampling around the best fit, values were sampled from within ±1.96
standard deviation of the parameter estimate.

7.3.7 Parameter �tting

All parameters that could be found in the literature are highlighted in Table 7.1.
The other parameters (n, Km, and Kdsingle) were fitted using the nls (nonlinear
square, from Package stats version 3.2.3) function using weighted least squares
and the port algorithm [390], which allows for boundaries on the search space.
The time evolution parameters (kdeg and α) were fitted using the optim function
(from Package stats version 3.2.3, using the L-BFGS-B method implementing the
Limited-Memory Broyden Fletcher Goldfarb Shanno Algorithm, which is a quasi-
Newton method). Model function parameters were fitted locally to each data set of
n = 3 replicates per data point unless otherwise stated. The final parameters used
in the model are presented in Table 7.1 and Supporting Information Table 7.2.
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Parameter name
Parameter
value

Parameter descrip-
tion

Method of acquisi-
tion

ncopy for 157 10
Copy number for the
157 construct

Novagen (Supplier)

ncopy for 257 20
Copy number for the
257 construct

Novagen (Supplier)

ncopy for 357 40
Copy number for the
357 construct

Novagen (Supplier)

ncopy for 457 100
Copy number for the
457 construct

Novagen (Supplier)

n
1.847 ± 0.168 (di-
mensionless)

Cooperativity constant
of the Hill model

Fitted on pinocembrin
data

ratio for 157
0.142 ± 0.015
(AU)

Dynamic range of the
construct divided by its
copy number

Fitted on pinocembrin
data

ratio for 257
0.707 ± 0.035
(AU)

Dynamic range of the
construct divided by its
copy number

Fitted on pinocembrin
data

ratio for 357
1.767 ± 0.022
(AU)

Dynamic range of the
construct divided by its
copy number

Fitted on pinocembrin
data

ratio for 457
0.417 ± 0.011
(AU)

Dynamic range of the
construct divided by its
copy number

Fitted on pinocembrin
data

Correcting factor for
naringenin

1.3 (dimension-
less)

Correcting fold change
factor

Estimated by averag-
ing the correcting fac-
tors for individual con-
structs

Kdsingle
887.84 ± 120.68
(µM)

The Hill constant, Kd,
for a single plasmid

Fitted on pinocembrin
data

Km for pinocembrin 1 (dimensionless)

Ratio between the bind-
ing constants of the in-
ducer and the transcrip-
tion factor

By definition

Km for naringenin
2.142 ± 0.206 (di-
mensionless)

Ratio between the bind-
ing constants of the in-
ducer and the transcrip-
tion factor

Fitted on naringenin
data

nTF 2 (dimensionless)
The transcription factor
forms dimers

Naringenin dose-
response [385, 386]

Table 7.1 Pinocembrin and naringenin parameters: Parameters, their values, and ref-
erences
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Parameter
name

Parameter
value

Parameter de-
scription

Method of acquisition

OD0 0.099 Starting OD
From data (100 µM of pinocembrin
in the construct 357)

ODm 1.0026± 0.0021
Maximum capac-
ity

Fitted to 100 µM of pinocembrin in
the construct 357

k
0.0001743 ±
1.342e− 06 s−1

Exponential
growth constant
of logistic model

Fitted to 100 µM of pinocembrin in
the construct 357

kdeg 3.205e− 05 s−1 Degradation con-
stant

Fitted to 100 µM of pinocembrin in
the construct 357

α
0.0019373 (Arbi-
trary Units (AU))

Term accounting
for production
and fluorescence

Fitted to 100 µM of pinocembrin in
the construct 357

Table 7.2 Parameters, their value and references for the time-course model. Sup-
plementary in the original article.

7.3.8 Sensitivity, fold change, and cooperativity of the

di�erent biosensors

To characterize the different biosensor dose-response curves, they were fitted to the
following standard Hill function [155]:

foldchange(inducer) = RFP/OD(inducer)
RFP/OD(inducer = 0) (7.2)

where I is the concentration of the considered inducer (in µM; Kd is the concentra-
tion that allows for half-maximum induction (in µM as well), also termed IC50; n
is the Hill coefficient that characterizes the cooperativity of the induction system;
and ratio is the dynamic range (in arbitrary units).

7.4 Results

7.4.1 Choice of the TF

Recently, Raman and colleagues were able to convert the intracellular presence
of some flavonoids into a fitness advantage for the cell by combining the TtgR-
responsive domain (a regulatory gene of the multidrug efflux pump operon, ttgABC)
to a TolC membrane protein (an E. coli outer membrane protein) necessary for
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survival under selective conditions. The strategy was successful in the screening of
targeted genome-wide mutagenesis for naringenin high-producing strains [391]. It
is very useful in evolution experiments looking to enrich the culture with evolved
variants and counter-select the false positives but is not a first-choice strategy when
planning to screen libraries and pinpoint the response of every single clone. Our
objective is to combine a TF with a fluorescent response to sense pinocembrin, which
has not been previously reported. The use of Sensipath webserver [77] has shown
the need to transform pinocembrin to succinate or S-adenosyl-L-homocysteine to
be sensed by a transcription regulator. This would not be relevant from a metabolic
engineering point of view, where the main objective is to increase the titer of the
final product and not to consume it in some other auxiliary reactions even for
a screening purpose. Direct detection in this case is more valuable. In a previous
work, [386] have already characterized FdeR and Qdor, two TFs from H. seropedicae
SmR1 and Bacillus subtilis shown to be responsive in E. coli to naringenin and
kaempferol, respectively. Since these two compounds belong like pinocembrin to
the flavonoid group, we have therefore performed a chemical structure similarity
search in this family of chemicals. We have shown using the Tanimoto score that
naringenin is the closest detectable compound to pinocembrin (see Section 7.3.4).
We then decided to use FdeR as a potential candidate to develop a pinocembrin
biosensor (Table 7.3).

7.4.2 Biosensor design and construction

[385] have identified the fde operon, associated with the degradation of aromatic
compounds, mainly naringenin. The expression of this operon, under the regulation
of the FdeR TF, is induced by naringenin. Thus, we have built a plasmid containing
FdeR under a constitutive promoter and an RFP under the control of the responsive
promoter from the fde operon. To build our combinatorial library to identify the
best biosensors, we chose to build the constructs using four different plasmid copy
numbers and four different RBS sequences for the FdeR gene (Figure 7.2).

7.4.3 Biosensor characterization

To benchmark our design, E. coli cells harboring the different constructs were grown
for 24 h in the absence and presence of increasing concentrations of pinocembrin or
naringenin ranging from 1 to 500 µM, and red fluorescence was monitored in paral-
lel with cell growth (Figure 7.3a). As expected, the different biosensor constructs
were active in E. coli in the presence of naringenin. More interestingly, the different
constructs were able to detect pinocembrin, and most of them have shown a high
expression level of RFP exceeding in all cases the level of expression in the presence
of naringenin. Moreover, FdeR appears to be more sensitive to pinocembrin than
naringenin, as is evident from the steeper slope in Figure 7.3a. The results have
shown that the minimal concentration of pinocembrin required to activate the TF
ranges between 1 and 5 µM. The fold change is also shown to reach 60 folds in con-
struct 156 for instance. In some cases, we highlighted a decrease in the fluorescence
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when we exceed 300 µM, which is probably due to the toxicity of the compound.
This toxicity could also explain the difficulty in reaching high titer of pinocembrin
in metabolic engineering experiments, where, as mentioned previously, the record
is around 40 mg · L−1 [384].
To validate this biosensor as a potential candidate for screening purposes, we tried
to evaluate the specificity of FdeR. The sensor detects pinocembrin, but what about
its biosynthesis intermediates? The work of [385] has shown that this TF is not
activated by phenylalanine or tyrosine, which are the precursors of pinocembrin
and naringenin, respectively. Next, we investigated the effect of cinnamic acid, a
key intermediate in the pinocembrin pathway. One of the most sensitive constructs
(156, see list of constructs in the Supporting Information Table 7.8) was grown
in the presence of increasing concentrations of cinnamic acid. The results show no
detection of this compound (Figure 7.3b). As a conclusion, none of the major inter-
mediates are detectable by FdeR. These data support our choice of using the FdeR
biosensor as a tool to screen for pinocembrin- or naringenin-producing cells.

7.4.4 Choosing an adapted modeling strategy

The FdeR TF has been studied in only a few previous publications [385, 386], which
means although it is characterized enough to know which inducers will or might
bind to it and induce a response in E. coli, there is no quantitative data avail-
able on the binding strengths of the inducers to the TF or of the complex to the
promoter. We had the choice among three main modeling approaches: statistical
physics model [392, 393], mechanistic modeling [143], or variations on Hill modeling
[153, 158].
The statistical modeling approach makes use of extensive knowledge of the pro-
moter, its inducer, and the TF. For instance, after reviewing several published
works, [392] have highlighted the need of the following constants to model a tran-
scriptional activator: different binding energies (RNA polymerase to the promoter,
TF to the promoter, binding interaction between the two, RNA polymerase to the
rest of the genome) as well as knowledge of the number of binding sites on the
promoter or the number of promoters. This does not include yet the effect of the
binding of the inducer to the TF or of the genetic context (e.g., if there is a DNA
binding loop for repression). This kind of modeling has been applied to the Lac
operon but remains elusive for less-characterized systems such as our novel biosen-
sor.
The mechanistic approach models all possible interactions in the system, or at least
most, with an important number of parameters ([143]; 21 for the ArsR biosensor).
This approach, although interesting, necessitates a lot of biological knowledge to
minimize the number of unknown parameters, as well as knowledge of the interac-
tions that do occur or not. This can therefore only be carried out in a relatively
well-known system. Those parameters are then fitted using system biology ap-
proaches and different optimization algorithms to avoid the main issue these mod-
els face: their sloppiness. Sloppiness characterizes the fact that different sets of
parameters can model the data due to high interdependency between parameters.
For example, when two parameters are used to model a forward and a backward
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reaction, which is actually at equilibrium given the time scale considered, an infinite
number of parameters, whose ratio is the equilibrium constant of the reaction, will
fit the data.
The Hill class of models does not necessitate a priori knowledge of the exact inter-
actions between the species involved, although knowledge of the broad behavior of
the interactions is necessary. This model has been, for example, extended to take
into account resource competition [153], model both the binding with the inducer
and complex binding to the promoter in the Lux system [158] or any switch-like
behavior. Therefore, we decided to extend the Hill model to account for a key
tunable parameter in synthetic biology: plasmid copy number. Our aim was to
have a model with as little free parameters as possible that could account for this
effect.

7.4.5 E�ects of plasmid copy number that we intend to

model

(a) (b)

Figure 7.3 Dose responses of different biosensor constructs. a Constructs 457, 156, 159,
157, 257, and 357 were cultivated for 24 h in the presence of increasing concentra-
tions of pinocembrin (blue) and naringenin (red) ranging from 1 to 500 µM. Error
bars are based on the standard deviation of a minimum of biological triplicate. b
Biosensor 156 was cultivated for 24 h in the presence of increasing concentrations of
pinocembrin (blue), naringenin (red), and cinnamic acid (green) ranging from 1 to
500 µM. Error bars are based on the standard deviation of a minimum of biological
triplicate
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(a) (b)

Figure 7.4 Effect of copy number variation on data fold change for pinocembrin
a and naringenin b. In colors are represented the different constructs. The
assumed copy numbers are as follows: 10 for 157, 20 for 257, 40 for 357 and 100
for 457. Concentration of the inducer are expressed in µM and vary from 0 to 500.
Error bars represent standard deviation.
Supplementary Table in original article.

As can be seen in Figure 7.3a (or the Supporting Information Figure 7.4), increasing
the copy number leads to increased production, as expected, except for construct
457 (very high copy number), showing a decline in production after 100 µM con-
centration of pinocembrin or naringenin. The constructs behave similarly for both
compounds, although the biosensor is slightly more effective for pinocembrin detec-
tion than for naringenin detection, which is somewhat unexpected given that narin-
genin is its natural reported activator. Another interesting aspect is the effect of
copy number on IC50 (concentration at which the biosensor reaches half-maximum
induction: it corresponds to Kd in the standard Hill function). We can see that
effect both in the figure where the induction starts at smaller concentrations of
the inducer and in biosensor characterization (Supporting Information Table 7.4),
where IC50 diminishes with copy number of the construct. We therefore decided
to take that effect into account in our modeling effort.
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Compound
Plasmid con-
struct

n ratio IC50 (or Kd)

pinocembrin 156 1.63± 0.12 56.62± 2.24 71.02± 5.57
naringenin 156 1.49± 0.04 42.52± 0.64 49.30± 2.18
pinocembrin 157 1.89± 1.26 1.27± 0.24 65.87± 24.16
naringenin 157 1.77± 0.34 1.14± 0.05 43.47± 5.93
pinocembrin 159 2.04± 0.18 46.95± 0.82 27.97± 2.45
naringenin 159 1.51± 0.06 37.66± 0.90 50.63± 2.71
pinocembrin 257 1.56± 0.12 17.70± 0.80 73.68± 6.41
naringenin 257 1.68± 0.45 6.02± 0.37 53.25± 5.86
pinocembrin 357 1.96± 0.20 63.24± 1.48 23.07± 2.38
naringenin 357 1.51± 0.07 61.57± 1.09 58.82± 2.51
pinocembrin 457 1.92± 0.17 42.37± 1.38 9.62± 0.66
naringenin 457 1.91± 0.57 30.17± 4.59 22.53± 7.62

Table 7.4 Biosensors characteristics. Supplementary Table in original article

7.4.6 Derivation of the dose-response model: Accounting

for copy number

We aim to show here a dose-response model that can account for the effect of copy
number on both pinocembrin- and naringenin-responding constructs. We need to
take into account two effects of plasmid copy number.

1. The number of binding sites for the TF-inducer complex increases propor-
tionally to the plasmid copy number, meaning that intuitively, to reach half-
maximum saturation, there needs to be that many more TF-inducer com-
plexes

2. The TF is produced constitutively from the biosensor plasmid, so TF number
scales with plasmid copy number.

We consider that all following processes are at equilibrium since chemical binding is
a fast process compared with transcription and translation, and we are considering
dose-response curves for the time being.

Formation of the TF-inducer complex

We consider that the TF forms nTF multimers to derive our equations. According
to the literature, FdeR forms dimers [386], which means nTF = 2 will be used
when simulating the data. Since the exact binding configuration with the induc-
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ers (naringenin and pinocembrin) is not known, we will start by considering the
following equilibrium (Equation 7.3). Other neglected cooperativity effects will be
accounted for in the Hill cooperativity constant (Equations 7.4, 7.5 and 7.6):

nTFTF + I −−−⇀↽−−−
Kdis

T cF (7.3)

Ignoring the order of binding, which is not important for the final equilibrium but
only for the kinetics, not considered here, given the time scales of the considered
processes, we have Equation 7.4, where TF is the concentration of the TF, T cF , of
the TF complexes and Kdis is the dissociation constant of the complex:

T cF = I × TnT F

F

Kdis
(7.4)

Note that Kdis depends on the inducer considered here, either pinocembrin or
naringenin, and it is the dissociation constant of the considered reaction. We first
consider a classical Hill binding equation for the induction due to the TF before
improving on this equation. The classical equation is Equation 7.5, where n is the
cooperativity constant and ratio represents the maximum induction or the dynamic
range. Kd is the TF-inducer complex concentration needed for half-maximum in-
duction:

Pfold = (T cF )n

(Kd)n + (T cF )n × ratio× ncopy (7.5)

However, we want to consider the fact that the plasmid copy number changes the
number of binding sites for the TF (proportional to the number of plasmids in our
construct, as there might be cooperativity and therefore more than one binding
site per plasmid). We propose the following modification to Equation 7.5, which
accounts for the fact that to reach half-maximum saturation of a higher number of
binding sites, the number of binding complexes also needs to be that much higher:

Pfold = (T cF )n

(Kd × ncopy)n + (T cF )n × ratio× ncopy (7.6)

When replacing Equation 7.4 into Equation 7.6, we obtain:

Pfold = (I)n

(Kd×Kdis×ncopy

T
nT F
F

)n + (I)n
× ratio× ncopy (7.7)

174



Let Km = Kdis(compound)/Kdis(pinocembrin) in Equation 7.8 be the ratio be-
tween the dissociation constant of the compound of interest divided by the one
for pinocembrin, where the dissociation constant in itself is unknown. Therefore,
Km = 1 for pinocembrin and Km = Kdis(naringenin)/Kdis(pinocembrin) for narin-
genin. Introducing this parameter allows us to only consider the difference of bind-
ing strength between FdeR and naringenin or pinocembrin instead of the absolute
binding values, which would add one sloppy parameter to our model. Moreover,
since the TF is produced under a constitutive promoter on the plasmid, we can
assume it is produced proportionally to the plasmid copy number. The proportion-
ality constant is included into the Kdsingle constant, as well as Kdis (pinocembrin),
leading to Equation 7.8. We can note here that given our hypothesis (number of
TFs and binding sites scaling with the copy number), no effect would be obtained
in our model if FdeR were not a dimer:

Pfold = (I)n

(Kdsingle ×Km × n1−nT F
copy )n + (I)n

× ratio× ncopy (7.8)

7.4.7 Analysis of the dose-response model

Model �tting of pinocembrin

The model was fitted to the data according to the procedure presented in materials
and methods. The fitted parameters were Kdsingle , n and ratio, as by definition
Km = 1 for pinocembrin. The obtained parameters are listed in Table 7.1. Since we
intend to model the effect of copy number variations, we chose to use constructions
sharing the same RBS sequence for our parameter fitting: 157, 257, 357, and 457.

We chose to represent both the best fit (Figure 7.5a) and 100 simulations (Figure
7.5b), where parameters were randomly sampled from the estimated distribution of
parameters (see materials and methods for more details). We can see when looking
at the random parameters that there is some leeway in the estimation, allowing for
a rather wide dose-response curve. However, the expected behavior is maintained,
even accounting for uncertainty in the estimation of the parameters. We chose to
use the same cooperativity constant n, as well as the sameKdsingle, constant, which
would be the IC50 for a single plasmid, and hence its name. However, as mentioned
in the data analysis section, the dynamic range does not scale proportionally with
the plasmid copy number. For this reason, ratios varying from 0.14 to 1.76 were
obtained and used in this study, instead of using a single parameter for this effect.
This is due to a host of factors: higher plasmid copy number diverts more resources
from the cell, the replication machinery is not the same for the different plasmids,
which have different replication origins, and the cells do not divert resources to
plasmids proportionally to their copies. Moreover, an interesting feature of the
data is that production from the very high copy number construct (457) is initially
higher than with the high copy number (357) until concentrations cross a threshold.
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(a) (b)

Figure 7.5 Model fitting to pinocembrin data for varying copy numbers. a Best fit
parameters for pinocembrin. b 100 random simulations from parameter fitting for
pinocembrin. Error bars represent standard deviation

We can imagine that the demand on the cell from our constructs becomes too high
in the 457 construct, and the cell activates a "stress response". This is observed
when using both compounds for induction.

Model �tting of naringenin

(a) (b)

Figure 7.6 Model fitting to naringenin data for varying copy number without cor-
recting parameter. a Best fit parameters for naringenin. b 100 random sim-
ulations from parameters fitting for naringenin. Error bars represent standard
deviation.
Supplementary Figure in original article.
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(a) (b)

Figure 7.7 Model fitting to naringenin data for varying copy numbers. a Best fit
parameters for naringenin. b 100 random simulations from parameter fitting for
naringenin. Error bars represent standard deviation

We were interested to determine whether the model could reproduce the features
observed in the naringenin data: globally lower fold change of induction than for
the pinocembrin induction, but the same overall behavior on sensitivity. Our aim
was to account for the compound change using only our Km parameter, which
represents the ratio between the dissociation constants of inducers to the TF (Km

=Kdis(naringenin)/Kdis (pinocembrin)). The results of this modeling strategy,
when fitting only Km, give the results presented in Supporting Information Fig-
ure 7.6. However, as mentioned in Section 7.4.7, we chose to model fold change
variation with a single parameter (multiplied by the copy number). Therefore, our
model can capture changes in sensitivity due to both copy number increases and
compound changes, but since this is included in our Hill function, variations of
fold change at saturating amounts of substrates cannot be captured. Therefore, we
added a correcting factor for all naringenin models, reducing all ratio values in our
models by 1.3. This factor was chosen as a weighted average of correcting factors
for the different constructs. The results obtained by this strategy can be seen in
Figure 7.7.
The global behavior of the biosensor is respected for all sensors, meaning that the
same model does apply to this data. The shift in dose response can be explained
by the Km parameter, which shifts the curve toward less sensitivity by doubling
IC50. This is confirmed by the data for 357 and 457 constructs, which are the
constructs with the least variability on IC50 estimation. We can also observe that
the dynamic range is slightly lower, meaning that our modification of the ratio
parameter by the same correcting factor is justified (for naringenin concentrations
up to 100 µM). This could be explained by an effect that is not taken into account
in our model, such as higher load, or some different toxicity between pinocembrin
and naringenin. Km(naringenin) is bigger than one, which means that the dissoci-
ation of FdeR dimer with naringenin is higher than the one with pinocembrin. In
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other words, at the same TF and inducer concentration, there is more TF bound
with pinocembrin than would be with naringenin. This is surprising given the fact
that FdeR was identified in the fde operon from Herbaspirillum seropedicae, which
is involved and was identified for its implication in naringenin degradation. This
means that we expected it to be evolved for naringenin detection, but that it de-
tects pinocembrin at least as well.
All this indicates that our model, although very simple and based on broad knowl-
edge of the sensor rather than precise chemical constant values, manages to suc-
cessfully capture our system′s behavior.

7.4.8 Time-course model assumptions and derivation

Once we had a satisfying dose-response model, we chose to model the time-dependent
response of our biosensor, to determine the delay between the signal and the fluores-
cence production. We considered a relatively simple time-course model, consisting
of a production term and a degradation term for the protein. Results are presented
in the Supplementary. This time-course modeling partially allowed us to under-
stand the impact of initial dilution on the biosensor′s behavior and emphasized the
need to wait for it to reach steady state for it to be fully functional and decipher
between different inducer concentrations. The shortcomings of this time-course
modeling confirm that although it is interesting to see the delay in response of
the biosensor signal, modeling the dose-response curve is more important to show
characteristics of the biosensor, such as changes to the dose-response curve when
used for screening pinocembrin-producing strains.

7.4.9 Leveraging our model for biosensor design

improvement

Having constructed a satisfying dose-response model, it becomes interesting to use
it to make predictions for future improvements of our design. We therefore con-
sidered three parameters that synthetic biologists can tune and study their effect
on half-maximum induction (IC50), used as a proxy for sensitivity. A higher IC50

means shifting the sensitivity of the biosensor toward higher concentrations and
therefore can be used to screen higher producing strains. A lower IC50 means
shifting it toward lower concentrations and more sensitivity to trace amounts of
pinocembrin. The three parameters whose effects we decided to study are the fol-
lowing: plasmid copy number, DNA and TF binding strength, and TF and inducer
binding strength. Plasmid copy number can easily be tuned by choosing the repli-
cation origin of the plasmid, DNA-TF affinity can be modified either by random
mutagenesis of the promoter or by protein engineering (and measured through gel
retardation assays), and TF–inducer affinity can be tuned by protein engineering.
In Figure 7.8, we represent fold change compared with current fitted constants
for TF and inducer binding strength. DNA and TF dissociation constant being
captured by our Hill equation, it is proportional to our Kdsingle constant, so the
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(a) (b)

Figure 7.8 Copy number model predictions: Effect on biosensor sensitivity of varying
copy numbers, DNA, and TF binding affinities or transcription factor and inducer
binding affinities. Half-maximum induction (IC50), used as a proxy for sensitivity,
is represented in colors ranging from white (low IC50, high sensitivity) to dark blue
(high IC50, low sensitivity) on a log scale. Binding constants are represented as
fold-change compared with current fitted constants. a Comparison of the effect of
changing TF and DNA binding constants and TF and inducer binding constant.
b Comparison of the effect of changing plasmid copy number and TF and inducer
binding constant

binding strength is proportional to the inverse of Kdsingle, and we are also repre-
senting fold changes around this constant. The copy number, on the other end,
is represented as the desired value for copy number, as that can be achieved by
choosing a correct replication origin to achieve the desired copy number. We can
see in Figure 7.8a that increasing the binding constant between TF and DNA or
TF and the inducer has similar consequences: increasing it leads to lower IC50

or higher sensitivity, whereas decreasing it leads to higher IC50, allowing one to
detect higher titers of pinocembrin. This suggests that random mutagenesis at the
promoter might be a better first approach to tune the biosensor′s behavior to an
experimentalist′s needs, since it is easier to engineer rather than engineering the
binding strength of the TF and its inducer, and both have similar consequences.
Figure 7.8b, on the contrary, shows the impact of changing plasmid copy number
or binding affinity of the TF for the inducer. As seen in our experimental data,
increasing the copy number (which leads to higher expression) also increases sen-
sitivity, allowing for better detection of the inducer but at lower concentrations.
Reducing the copy number enables detection at higher titers, but reduces the fold
change of the biosensor. On the contrary, augmenting the affinity of the TF to the
inducer boosts sensitivity but does not allow differentiating different responses at
high concentrations of the inducer. Therefore, our model suggests possibilities to
further engineer our system, whether to sense high titers of pinocembrin to increase
the biosensor′s sensitivity.
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7.5 Discussion

The use of TF-based biosensors is expanding in many fields, ranging from environ-
mental, biomedical to industrial biotechnology applications and more specifically as
a fast and reliable screening tool to address the problems of high-throughput limits
of the other approaches [394, 395]. Some successful attempts have been reported de-
scribing strategies leading to the fine-tuned response dynamics and dynamic ranges
by engineering tunable biosensors [396, 397]. TFs have a ligand-binding domain
most likely to be promiscuous. In this study, we showcased the potential of chem-
ical structure similarity scoring to select TF starting candidates to develop or en-
gineer biosensors for small molecules. We have constructed a biosensor to detect
pinocembrin with a fold change of around 60. FdeR appears unexpectedly to be
more sensitive to pinocembrin than to naringenin, its natural effector, and has the
required specificity to discriminate against the intermediates in the pinocembrin
biosynthetic pathway. Indeed, the first report of this TF in [385] identifies FdeR as
the TF responsible for the regulation of a naringenin degradation operon. However,
our experiments prove that FdeR senses pinocembrin at least as well, suggesting
that this operon could also be involved in pinocembrin degradation. Two possible
degradation pathways were identified by [385] based on in silico analysis of the
enzymes found in the operon. One started by opening the C-ring of naringenin,
whereas the other opened the A-ring. In both cases, since pinocembrin differs from
naringenin by a group on the B-ring, it could also be degraded by these pathways.
A recent study performed by [330] was also successful in generating a new biosen-
sor for specific lactam compounds using a chemoinformatics approach inspired by
small-molecule drug discovery. Methodologies based on the structural analysis of
compounds could offer an alternative to some heavy strategies based on the de-
sign of new TFs for non-natural ligands [398, 399, 400] or by random mutagenesis
[401, 402, 403].
To extend our knowledge of the rules governing the sensitivity, specificity, and dose
responses of biosensors, we have also built different sensor constructs varying the
copy number and the RBS to scan different response patterns that could serve as a
template for modeling and to help extract rational understanding of the biosensor
behavior.
Although simple, the model developed in this paper allows us to explain the behav-
ior of our biosensor to both naringenin and pinocembrin with a single parameter
that accounts for the binding variability between these two compounds and the TF.
It also accounts for variations of copy number on the sensitivity of the biosensor
starting from a simple idea: if there are more binding sites, there is a need for
proportionally more activators to reach half-maximum saturation. This is a sim-
ple but useful addition to the synthetic biology modeler′s toolbox when working
on poorly characterized systems where more robust modeling approaches, such as
mechanistic or statistical modeling, are not possible to use. Our model allows us
to not only describe trends but also quantitatively correct values.
An interesting effect we managed to capture is the effect of copy number on IC50.
This effect was already observed in a previous work of [158] although the authors
did not investigate the link between copy number and IC50. Although they have
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an IC50 that increases with copy number (although the relationship is not linear),
the way they model their binding renders a numerical comparison impossible.
In the present paper, we have two different effects when increasing copy number:
we increase the number of binding sites (increasing IC50) but we also increase the
number of available TFs, allowing for more binding even with less inducer, thereby
reducing the IC50. According to our model, if the TF concentration was not in-
creasing, we would also see a reduced sensitivity, as found in [158], which confirms
our biosensor design idea.
As we have seen, the time evolution model is not fully satisfying. A few strate-
gies could help make it closer to the data, but they all present the disadvantage of
adding new free parameters: adding a lag time for protein production as the in-
troduced dilution does not seem to be enough and add some toxicity or load effect
when copy number, TFs, and inducers are in too great numbers. These were not
implemented as our aim was to present a model with a minimal set of parameters
that explained the data well enough.
Another interesting feature of our model is to suggest further modifications of our
design depending on the desired application: increasing its sensitivity, its dynamic
range, or being able to sense higher titers of pinocembrin, by capturing the effects
of changing copy number, DNA-TF binding affinity, or TF-inducer binding affinity.
As a conclusion, we have presented a simple model with a minimal number of pa-
rameters that allows us to capture the effects of both copy number and inducer
variations on our biosensors′ behaviors and most notably on sensitivity, which are
effects that have not been addressed as such and especially never with such a simple
formalism. This model, based on a simple Hill equation, has the advantage of being
very versatile and easy to use on previously uncharacterized systems.
The development of the pinocembrin biosensor, its modeling, and understanding
its behavior open doors to generate more transcription-factor-based biosensors to
meet the increasing demands of screening and dynamically regulating metabolic
pathways in industrial strains.
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Name InChI Tanimoto

Luteolin 1S/C15H10O6/c16−8−4−11(19)15−12(20)6−13(21−14(15)5−
8)7− 1− 2− 9(17)10(18)3− 7/h1− 6, 16− 19H 0.8125

Apigenin 1S/C15H10O5/c16− 9− 3− 1− 8(2− 4− 9)13− 7− 12(19)15−
11(18)5− 10(17)6− 14(15)20− 13/h1− 7, 16− 18H 0.8965

Genkwanin 1S/C16H12O5/c1 − 20 − 11 − 6 − 12(18)16 − 13(19)8 − 14(21 −
15(16)7− 11)9− 2− 4− 10(17)5− 3− 9/h2− 8, 17− 18H, 1H3 0.7812

Chrysin 1S/C15H10O4/c16−10−6−11(17)15−12(18)8−13(19−14(15)7−
10)9− 4− 2− 1− 3− 5− 9/h1− 8, 16− 17H 0.8965

Flavone 1S/C15H10O2/c16− 13− 10− 15(11− 6− 2− 1− 3− 7− 11)17−
14− 9− 5− 4− 8− 12(13)14/h1− 10H 0.7241

Quercetin 1S/C15H10O7/c16 − 7 − 4 − 10(19)12 − 11(5 − 7)22 −
15(14(21)13(12)20)6−1−2−8(17)9(18)3−6/h1−5, 16−19, 21H 0.8125

Fisetin 1S/C15H10O6/c16 − 8 − 2 − 3 − 9 − 12(6 − 8)21 −
15(14(20)13(9)19)7−1−4−10(17)11(18)5−7/h1−6, 16−18, 20H 0.7812

Kaempferol 1S/C15H10O6/c16−8−3−1−7(2−4−8)15−14(20)13(19)12−
10(18)5− 9(17)6− 11(12)21− 15/h1− 6, 16− 18, 20H 0.8387

Galengin 1S/C15H10O5/c16 − 9 − 6 − 10(17)12 − 11(7 − 9)20 −
15(14(19)13(12)18)8− 4− 2− 1− 3− 5− 8/h1− 7, 16− 17, 19H 0.8387

Kaempferid
1S/C16H12O6/c1 − 21 − 10 − 4 − 2 − 8(3 − 5 − 10)16 −
15(20)14(19)13 − 11(18)6 − 9(17)7 − 12(13)22 − 16/h2 − 7, 17 −
18, 20H, 1H3

0.7647

Eriodictyol 1S/C15H12O6/c16−8−4−11(19)15−12(20)6−13(21−14(15)5−
8)7−1−2−9(17)10(18)3−7/h1−5, 13, 16−19H, 6H2/t13−/m0/s1 0.9062

Naringenin 1S/C15H12O5/c16− 9− 3− 1− 8(2− 4− 9)13− 7− 12(19)15−
11(18)5− 10(17)6− 14(15)20− 13/h1− 6, 13, 16− 18H, 7H2 0.9655

Isosakurametin1S/C16H14O5/c1−20−11−4−2−9(3−5−11)14−8−13(19)16−
12(18)6− 10(17)7− 15(16)21− 14/h2− 7, 14, 17− 18H, 8H2, 1H3 0.875

Flavanone 1S/C15H12O2/c16− 13− 10− 15(11− 6− 2− 1− 3− 7− 11)17−
14− 9− 5− 4− 8− 12(13)14/h1− 9, 15H, 10H2 0.7586

Pinocembrin 1S/C15H12O4/c16−10−6−11(17)15−12(18)8−13(19−14(15)7−
10)9− 4− 2− 1− 3− 5− 9/h1− 7, 13, 16− 17H, 8H2/t13/m0/s1 1

Table 7.3 Flavonoids similarity to pinocembrin: Tanimoto scores for flavonoid com-
pounds
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7.6 Supplementary Data

7.6.1 Tables for biological data

Characteristics Source or Reference
Strains
E. coli
BL21
(DE3)

C> B F− ompT gal dcm lon hsdSB(r−Bm
−
B) λ(DE3 [lacI

lacUV5-T7p07 ind1 sam7 nin5]) [malB+]K − 12 (λS)
[225]

E. coli DH5
α

C> F− endA1 glnV44 thi-
1recA1relA1gyrA96deoRnupGpurB20φ80dlacZ∆M15
∆(lacZYA-argF)U169, hsdR17(r−Km

+
K), λ−

[225]

Mach 1
∆recA1398 endA1 tonA Φ 80∆lacM15 ∆lacX74
hsdR(r−Km

+
K)

Invitrogen Technology.

Plasmids
pACYC pACYC Duet / cat + / CmR / P15A rep /LacI Novagen (EMD Millipore)

pCDF
pCDFDUet / aad+ / SpecR / CDF /T7 Prom / LacO
/ LacI

Novagen (EMD Millipore)

pCOLA pCOLA Duet / kan+ / KanR / ColA / lacI Novagen (EMD Millipore)
pET pETDuet / bla / ApR / pBR322 / lacI Novagen (EMD Millipore)
pV20 pSB1A3-FdeR-RFP/ Amp/ FdeR + responsive RFP This study ( Data not shown)

Table 7.5 Strains and plasmids

Primer 5’->3’ Sequence
P1 ACGTCAGGTGGCGCTGACGTCGGTACC

P2 CAACAACGGAGCTCGACCGATGCCCTTGAG

P3 CTCAAGGGCATCGGTCGAGCTCCGTTGTTGTGCTTGTTC

P4 GCTAGCACTGTACCTAGGACTGAGCTAGCCGTCAACTGCAGGAAGACGCAACTAG

P5 CTAGCTCAGTCCTAGGTACAGTGCTAGCCGCCTTTAATATACAAATTTACGTACTCCACTATGCGTTTCAACAAGCTCGAC

P6 CTAGCTCAGTCCTAGGTACAGTGCTAGCTCCCTTTTTAAGCATAGATAAGTAGCCATATTATGCGTTTCAACAAGCTCGAC

P7 CTAGCTCAGTCCTAGGTACAGTGCTAGCACCCTATCTATATATAAGCCTCTAATTCATGCGTTTCAACAAGCTCGAC

P8 CTAGCTCAGTCCTAGGTACAGTGCTAGCACATTTTCACACCTCTCAAGGAGCACACTATGCGTTTCAACAAGCTCGAC

P9 GGTACCGACGTCAGCGCCACCTGACGTCTAAGAAAC

Table 7.6 Primers list
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Plasmid name
Referenced copy
number

Used copy number

PACYC-Duet 10 10
PCDF-Duet 20 – 40 20
PET-Duet 40 40
PRSF-Duet > 100 100

Table 7.7 Copy numbers of the used plasmids
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Construct
name

Plasmid back-
bone

Origin of repli-
cation

RBS sequence
Resistance Cas-
sette

156 PACYC-Duet p15A
1 (designed in
primer P5)

Chloramphenicol

157 PACYC-Duet p15A
2 (designed in
primer P6)

Chloramphenicol

158 PACYC-Duet p15A
3 (designed in
primer P7)

Chloramphenicol

159 PACYC-Duet p15A
4 (designed in
primer P8)

Chloramphenicol

256 PCDF-Duet CDF
1 (designed in
primer P5)

Spectomycin

257 PCDF-Duet CDF
2 (designed in
primer P6)

Spectomycin

258 PCDF-Duet CDF
3 (designed in
primer P7)

Spectomycin

259 PCDF-Duet CDF
4 (designed in
primer P8)

Spectomycin

356 PET-Duet pBR322
1 (designed in
primer P5)

Ampicillin

357 PET-Duet pBR322
2 (designed in
primer P6)

Ampicillin

358 PET-Duet pBR322
3 (designed in
primer P7)

Ampicillin

359 PET-Duet pBR322
4 (designed in
primer P8)

Ampicillin

456 PRSF-Duet RSF
1 (designed in
primer P5)

Kanamycin

457 PRSF-Duet RSF
2 (designed in
primer P6)

Kanamycin

458 PRSF-Duet RSF
3 (designed in
primer P7)

Kanamycin

459 PRSF-Duet RSF
4 (designed in
primer P8)

Kanamycin

Table 7.8 Pinocembrin-sensor constructs list

7.6.2 Time-course model assumptions and derivation

Once we had a satisfying dose-response model, we chose to model the time-dependent
response of our biosensor, to see the delay between the signal and the fluorescence
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production. We consider a relatively simple time-course model, consisting of a pro-
duction term and a degradation term for the protein. messenger RNA (mRNA) is
not explicitly taken into account here as models explicitly taking it into account
do not provide better fits to the data but add unnecessary parameters (results not
shown).

dRFP

dt
= P (inducer, construct)− k(RFP ) (7.9)

where P (inducer, construct) is a function that describes the production depending
on the inducer concentration I and the chosen construct, and k is a term that en-
compasses both dilution and degradation processes. RFP here represents the RFP
produced by an individual cell, therefore it corresponds to the normalized RFP
data. inducer concentration is considered to be the external inducer concentra-
tion.

Modeling dilution and degradation:

(a) (b)

Figure 7.9 Time course modeling of construct 357. a OD data. b RFP divided by OD
data. Solid lines represent mean of the experimental data and dashed lines 95%
confidence intervals. Different colors represent varying concentrations as indicated
on the Figure.

As can be seen in the time evolution of our constructs (Supplementary Figure 7.9)
represents time evolution of the construct 357 for OD (a) and RFP/OD (b)), dilu-
tion plays an important role during the first hours, which correspond to exponential
growth phase. When cells reach stationary phase (after 30 to 40 thousand seconds,
or 8 to 11 hours), RFP that has been accumulating also reaches a steady state con-
centration in the cell when degradation compensates for production. Therefore, we
have to take into account both these phenomena when modeling the time response
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of our biosensors, instead of using a constant term for k as is usually done. We
therefore chose to model it that way:

k(RFP ) = (kdil(t) + kdeg)×RFP (7.10)

where kdeg is an unknown constant that will be fitted to the data and kdil(t) is
a function that accounts for dilution, as we consider first-order degradation and
not more complex mechanisms such as Michaelis-Menten degradation. Our aim
here was not to fully account for this phenomenon, since we were focusing on
characterizing and modeling the effect of copy number. Therefore, we chose a
logistic growth as a simple model for modeling bacterial growth:

OD(t) = ODm ×OD0 × expk(t)

ODm +OD0 × (expk(t) − 1)
(7.11)

kdil(t) = k × ODm −OD0

ODm +OD0 × (expk(t) − 1)
(7.12)

(a) (b)

Figure 7.10 Growth model fitting to construct 357. a Model (in red) and data (in black)
with 95% confidence interval. b Model (in black) and varying concentrations rang-
ing from 1 µM to 500 µM using the same parameters.

This model was fitted to the OD on one set of experiments (construct 357, con-
centration of 100 µM of pinocembrin, (Supplementary Figure 7.10a) and then used
to model all other concentrations (Supplementary Figure 7.10b). The growth rates
of different constructs are similar and independent of the resistance cassette cho-
sen (Supplementary Figure 7.11). As we can see, this model represents rather well
growth for low concentrations but is not built to account for toxicity at higher con-
centrations. Therefore, the first hours of the time evolution are imperfectly fitted
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as this was not fitted for individual constructs and experiments. The aim here was
to use only one set of parameters for all constructs and experiments, where another
approach would have been to fit the logistic growth model to all individual exper-
iments and then use these parameters. Since the values we are interested in for a
biosensor are steady state values, and more precisely does-response curves, using
the same set of parameters for growth instead of separately fitting this model to
OD data is not an issue. Moreover, these dilution parameters mostly account for
what happens at the beginning of the induction, since it is obvious from the dilution
equation that limt→∞ kdil(t) = 0. This confirms that using the same parameters
is not an issue as the values we are interested in for a biosensor are steady state
values.

Figure 7.11 Growth rate of constructs with varying resistance markers Solid lines rep-
resent mean of the experimental data and error bars standard deviation. Different
colors represent different constructs as indicated on the Figure.

Steady state- transfer function

Before focusing on the production term that was our main interest in the previous
sections, we will show how we derive dose-response equations from the time-course
model. As can be seen from the dilution equation, limt→∞ kdil(t) = 0. Therefore,
at steady state,

lim
t→∞

RFP = P (inducer, construct)
kdeg

, which justifies why we could study steady-state without considering time evolu-
tion.
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Production term

The production term is classically derived as

P = α× basal × (1 + Pfold(inducer, construct)) (7.13)

where α takes into account the production, fluorescence intensity and gain of
the measurement apparatus. basal represents the basal production for the dose-
response curve, or the production without induction: it is 1 when we are considering
already normalized data (by fold change). The transfer function is the one that
accounts for the variations between constructs and the effect of the inducer, which
was developed and analyzed in the previous sections.
Therefore, the only 2 parameters that need fitting are kdeg and α. This was done
on construct 357, with a concentration of 100 µM of pinocembrin according to the
procedure presented in materials and methods. We then simulated the expected
dose-response from this time simulation and compared it to the steady-state model
and the dose-response curve.
We can see in Supplementary Figure 7.12 that the model and the data are in rather
good agreement when steady-state behavior is reached, but that the initial dilution
is not well taken into account. This is even worse when no time-dependent dilu-
tion is included (data not shown) as the curve has to be monotonous and therefore
cannot account for the drop in normalized fluorescence. The dose response curves
are also in agreement, although the time-evolution is still slightly above the data
because of the exponential modeling of the degradation.

The same parameters were then used to simulate the time evolution of the same
construct with an induction by naringenin instead of pinocembrin and the results
are presented in Supplementary Figure 7.13 7(A, B). The overshooting tendency of
the simulated data is even more pronounced. This time-course modeling partially
allows us to understand the impact of initial dilution on the biosensor’s behavior,
and emphasizes the need to wait for it to reach steady-state in order for it to be
fully functional and decipher between different inducer concentrations. This initial
dilution, although not fully accounted for here, partly explains the delay between
the signal (present in the media) and the biosensor’s full response. The model
also allows us to suggest biological consequences of our constructs that were not
accounted for and could be of interest to explain more thoroughly this time-delay:
a lag-time in protein production or some toxicity effects of our constructs. The
shortcomings of this time-course modeling confirm that although it is interesting to
see the delay in response of the biosensor signal, modeling the dose-response curve
is more important to show characteristics of the biosensor such as changes to the
dose-response curve when used for screening pinocembrin-producing strains.
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(a) (b)

Figure 7.12 Time response and dose-response of time-course model for pinocembrin.
a RFP divided by OD data. Solid lines represent mean of the data and dashed
lines 95% confidence intervals. Model is represented as dotted lines. Different colors
represent varying concentrations as indicated on the Figure. b Dose response curve.
In black solid line is mean of the data, in black dashed line is the 95% confidence
interval. In blue is the model simulating only the dose-response and in red in the
model taking into account time evolution.

(a) (b)

Figure 7.13 Time response and dose-response of time-course model for naringenin. a
RFP divided by OD data. Solid lines represent mean of the data and dashed lines
95% confidence intervals. Model is represented as dotted lines. Different colors
represent varying concentrations as indicated on the Figure. b Dose response curve.
In black solid line is mean of the data, in black dashed line is the 95% confidence
interval. In blue is the model simulating only the dose-response and in red in the
model taking into account time evolution.
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8Models for Cell-free Synthetic
Biology: Make Prototyping
Easier, Better and Faster

This work was published in Frontiers in Bioengineering and Biotechnology by
Mathilde Koch, Jean-Loup Faulon and Olivier Borkowski.
Only minor modifications to the published review have been introduced in the
Chapter below.

Detailed contribution to this thesis

Cell-free systems offer various advantages over in vivo systems, especially in the
case of synthetic metabolic circuits development. First of all, they allow for much
faster prototyping. Then, in the context of building complex circuitry, they allow
for much finer control of parts such as DNA concentration, which is a feature that
was essential in the circuits presented later in this thesis (Chapters 9 and 10). When
wanting to develop and analyze cell-free systems, a first step is to asses what the
state of the art in modeling is in those systems, which is presented in this review
Chapter.

Full reference

Koch M., Faulon J.-L., Borkowski O. (2018) Models for Cell-free Synthetic Biol-
ogy: Make Prototyping Easier, Better and Faster Frontiers in Bioengineering and
Biotechnology, 10.3389/fbioe.2018.00182.

Contributions as stated in the article

All authors listed have made a substantial, direct and intellectual contribution to
the work, and approved it for publication.
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8.1 Abstract

Cell-free TX-TL is an increasingly mature and useful platform for prototyping,
testing and engineering biological parts and systems. However, to fully accomplish
the promises of synthetic biology, mathematical models are required to facilitate the
design and predict the behavior of biological components in cell-free extracts. We
review here the latest models accounting for transcription, translation, competition
and depletion of resources as well as genome scale models for lysate-based cell-free
TX-TL systems, including their current limitations. These models will have to find
ways to account for batch-to-batch variability before being quantitatively predictive
in cell-free lysate-based platforms.

8.2 Introduction

All the processes required to produce proteins in bacteria can be performed by
adding DNA to a cell-free platform. After lysis of living cells, transcription, trans-
lation, degradation and protein folding continue to operate as they do in vivo
[310, 68, 404]. Metabolic pathways like glycolysis or pentose phosphate pathway
remain active and are used to regenerate ATP and maximize protein production
over time [405, 406]. Protein production outside of the cell simplifies gene expres-
sion with well-defined parameters, easy to control inputs, faster time scale and
less numerous unknown interactions. As a result, many laboratories use cell-free
as a prototyping platform to characterize expression of single proteins or complex
metabolic pathways [309, 407, 44]. Mathematical models dedicated to cell-free
emerged to predict protein production and understand the limits of this new plat-
form. Cell-free properties are close to living organisms as the same processes take
place in both systems, yet significant differences exist. For example, molecular
crowding [408] and resources distribution [68] are significantly altered in cell-free
and there is no resource competition with the host. Such differences oblige synthetic
biologists to adapt the models already developed for living cells. This short review
focuses on the recent deterministic models developed to understand lysate-based
cell-free platforms and used to predict the behavior of simple or complex pathways
8.1. Those models pave the way for efficient metabolic engineering in the emerging
field of cell-free synthetic biology.

Modeling
strategy

Problems
tackled

Level of
detail

Description Strength Weakness References

ODE
Protein
production
in cell-free

Simple*

Michaelis-Menten for
the translation pro-
cesses, s well as for
degradation

Simple,
quantitative

Parameters
values are
experiment
dependent

[311]
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ODE
Protein
production
in cell-free

Simple*

Simple description
of the transcription
and translation
processes. One pa-
rameter summarizes
each

Simple, qual-
itative

Parameters
values are
experiment
dependent

[409, 410]

ODE

Protein
production
in cell-free.
Resource
compe-
tition in
cell-free

Complex*

Detailed modeling:
Particular focus
on the transla-
tion process and
the competition
for the translation
machinery

General,
quantitative

Parameters
values are
experiment
dependent

[411, 44]

ODE

Protein
production
in cell-free.
Resource
compe-
tition in
cell-free

Simple*

Binding, unbind-
ing and elongation
bundled in one
parameter. Ac-
counts for number
of RNA polymerase
(RNAP), ribosomes,
and promoter/RBS
strengths

Easily
adaptable
to a new
situation or
phenomena

Necessitates
parameter
determina-
tion for new
situation

[412, 413,
173] (and
Chapter 9)

ODE

Protein
production
in cell-free.
Resource
depletion
in cell-free

Complex*

Accounts for all
known processes,
including nucleoside
triphosphate (NTP)
consumption and
degradation

Models bio-
chemical
phenomena
precisely so
generalisable

Important
parameter
identifica-
tion/estimation
needed

[414, 415,
416, 417,
308]

Constraint
based

Protein
production
in cell-free.
Metabolism
in cell-free

Complex*

Modification of E.
coli metabolic model
to account for cell-
free constraints

Accounts
for the full
metabolism,
can use
constraints
based meth-
ods such as
FBA

Defining the
objectives,
require deeper
knowledge of
reactions in
cell-free

[418]

Table 8.1 Deterministic models developed to understand cell-free: Star Simple stands
for one protein produced and limited amount of parameters (less than 10) Complex
stands for more than one protein produced or/and large amount of parameters
(more than 10)
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8.3 Translation and transcription processes in

cell-free

Lysate-based cell-free consists of a crude cell extract supplemented with buffer,
amino acids, deoxyribonucleotide triphosphate (dNTP), nicotinamide adenine din-
ucleotide (NAD), polyethylene glycol (PEG), transfer ribonucleic acid (tRNA) and
metabolic intermediates [68]. A major advantage of cell-free is the absence of host
regulations [310], allowing circuits to function in isolation and an easy quantitative
description of gene expression. A constitutively expressed gene in cell-free exhibits
specific patterns at the translation and transcription levels. Protein production
can be divided in 4 phases: in phase 1, the production rate increases over time, in
phase 2, the production rate is constant during around 30 min- 1 h, in phase 3 the
production rate decreases slowly and eventually in phase 4 the production rate is
null [410] (Figure 8.1A). A similar 4 phases pattern is observed with the mRNA
concentration [410] (Figure 8.1B). ordinary differential equation (ODE) models de-
scribing transcription, translation, mRNA and protein degradation processes at
various scales have been successfully used to predict mRNA and protein dynamics
in lysate-based systems [409, 415, 410, 416, 417, 44, 308]. DNA concentrations
are usually considered constant: degradation is neglected as plasmid DNA or pro-
tected linear template are used, and replication is considered not to happen since
no dNTPs are added to the reaction mix.

Figure 8.1 Production of a constitutively expressed gene in cell-free A Protein con-
centration over time in a cell-free platform. 1 the production rate increase over
time 2 the production rate is constant 3 the production rate decreases 4 the
production rate is null B mRNA concentration over time in a cell-free platform
1 the concentration increases over time 2 the concentration is constant 3 the
concentration decreases over time 4 the concentration is close to zero

Numerous models, with varying degrees of complexity, try to reproduce those pro-
duction phases observed in cell-free reactions.
A simple model based on only 4 reactions and ten parameters is sufficient to fit
the full mRNA and protein dynamics during the first hours of reaction [311]. The
transcription process is reduced to one step in which the RNA polymerase binds
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to the DNA; the rate of mRNA production depends only this binding rate and the
DNA length. Similarly, the translation process is described as one binding step of
the ribosome on the mRNA with the rate of protein production depending only
on the binding rate and the mRNA length. This model is appropriate for the first
hours before the consumption of resources and/or the waste accumulation (e.g.
ATP degradation, toxic metabolites. . . ) cause the reaction to stop [410]. A simple
way to simulate the slow decay in synthesis is the consumption of the NTP over
time. The transcription reaction slows down and eventually stops [415, 409]. The
decrease in the NTP concentration [405, 419, 308] is an efficient method to obtain a
decreasing transcription over time and simulate protein and mRNA production in
cell-free but no experimental data either confirms or denies this approach. The ac-
cumulation of inactive RNA polymerase/ribosome, [308, 420], accumulation of toxic
metabolites [421], or increase of the relative RNases concentration compare to the
total amount of mRNA [410] are possible other explanations of the arrest of protein
production after 8 hours. [173] (and Chapter 9) added terms corresponding to de-
creasing resources for protein production and accumulation of toxic by-products as
a reduction in production rates parameterized by a Michaelis-Menten like ratio, as
an elegant way to account for the slowing production rate. As all cell-free models
trying to account for the end of production after 8 hours, the main issue is identi-
fying the exact cause for decreasing production.
Models using Michaelis-Menten kinetics also succeed to capture protein production
pattern in cell-free [409]. Those models precisely captured the observable mRNA
and proteins dynamics in cell-free while remaining relatively coarse-grained. The
model of [415] add extra steps in the transcription (and translation) process with
a reversible binding of the RNA polymerase (ribosome) on the DNA (mRNA) fol-
lowed by a reversible binding of the first NTP (amino acid) and eventually an
irreversible elongation step. [308] also developed a model accounting for reversible
binding, unbinding and elongation steps, sharing the NTP energy source. Those
more detailed descriptions of the transcription and translation processes lead to
accurate predictions of the data obtained in cell-free and capture additional prop-
erties [409, 415, 44, 308]. For example, the non-additive cost of protein production
when several genes are expressed requires higher level of complexity to be predicted
[44].
While all models presented in this section described transcription and translation
processes, the main challenge they faced is proper parameter identification, as bio-
chemical parameters can vary widely from batch to batch and from in vivo to cell-
free systems. Currently, models often used components concentration measured in
vivo and estimated their concentration based on the dilution factor of the E. coli
cytoplasm after the lysate extraction protocol, which is not entirely satisfactory.

8.4 Resource competition in cell-free

Resource competition is an important phenomenon that impacts circuit behavior
in cell-free systems and should be accounted for in modeling approaches.
As a fixed amount of resources is present in the cell-free extract, competition has
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been measured between synthetic circuits [410, 44, 308]. Some of the previously
described models take into account the limitation of each resource and include a
fixed amount of transcription and translation machineries to predict the impact of
resource competition in cell-free (Figure 8.2A) [414, 44, 308].

Figure 8.2 Resource competition in cell-free A Competition for resources between two
genes expressed in cell-free. The transcription and translation machineries amounts
are fixedB Production of energy and amino acids via the core metabolic network de-
scribing glycolysis, pentose phosphate pathway, the tricarboxylic acid cycle (TCA)
cycle and the Entner-Doudoroff pathway

A maximal protein production is measured after a few hours before resources deple-
tion and degradation (Figure 8.1). This upper limit on production rate is the result
of one or several limited resources (RNA polymerase, NTP, ribosome, elongation
factors, amino acids, chaperone, tRNA synthetase or tRNA). DNA, NTP, amino
acids and T7 RNA polymerase are directly added to the mix so their impacts
on the protein production can be easily measured. Increasing DNA concentra-
tion leads to an increase of protein production until a saturation point is reached
[410, 44, 173] (and Chapter 9), and toxicity can be observed with high DNA con-
centration [44]. T7 polymerase [410], amino acids, tRNA and nucleotides [320] are
present in excess in the cell-free mix causing no noticeable competition for these
resources. Eventually, high NTP concentration negatively affects the translation
process [422]. Natural transcription and translation machineries are less controlled
as they are added via the crude extract. Indirect measurements using competition
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for resources between two plasmids are used to deduce competition for transcription
and translation machineries [411, 410, 412, 44, 308]. The main source of competi-
tion can be at the transcription and/or translation level depending of the extract
and the level of protein produced [411, 410, 423, 412, 44, 308, 173] (and Chapter 9).
Parameterization of the models using the appropriate RNA polymerase and ribo-
somes concentrations and binding/unbinding rates allows an accurate description
of the resource competition and to fit properly the production of several proteins
expressed concurrently in cell-free [410, 44, 308]. Accounting for RNAPs and ri-
bosomes sharing between parts can also be leveraged to minimize the number of
experiments required to fit parameters and obtain a predictive model [413]. While
not the main focus of this review, parameter estimation or identification is a major
hurdle of detailed models, and techniques from systems biology (e.g. [424]) can be
used to tackle this issue.
The models presented in this sections, while being able to account for transcrip-
tion, translation and resource competition from a lack of generalisability due both to
variability in experimental conditions as batches can differ greatly, and to scarcity
of biochemical work measuring those parameters in cell-free setting as has been
estimated from in vivo measurements.

8.5 Metabolism in cell-free

The models presented in this section are constraint based, so as to take the whole
metabolism into account and not the circuit in isolation as done in the previous
sections.
In cell-free platforms, translation and transcription are not the only active pro-
cesses. Glycolysis, pentose phosphate pathway, TCA cycle, Entner-Doudoroff path-
way and amino acid biosynthesis are still producing ATP, reducing equivalents and
amino acids [405, 425, 426]. The previously described models account for the re-
sources competition for a fixed amount of transcription and translation resources
and usually do not include any metabolite production or consumption. Such an
approach is quite limiting for metabolic pathway prototyping as those circuits also
compete for metabolites [407, 44]. Constraint-based models have been used to sim-
ulate metabolites production and consumption when various proteins are produced
at different levels [418] (Figure 8.2B). This model coupled transcription and trans-
lation processes with the availability of metabolic resources. Flux balance analysis
was adapted to cell-free conditions with the objective function being the maximiza-
tion of the protein translation rate. Growth associated reactions were removed
and cell-free specific deletions were added from E. coli metabolic model, leading
to 264 reactions and 146 species [418]. The stoichiometric network was adjusted
to cell-free and fluxes were constrained by experimental measurements of glucose,
nucleotides, amino and organic acid consumption and production rates. The tran-
scription and translation were bound by Michaelis-Menten formula with a maximum
transcription and translation rate depending on RNA polymerase concentration,
RNA polymerase elongation rate, gene length, promoter strength and the ribosome
concentration, a polysome amplification constant, the ribosome elongation rate, the
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protein length, and the RBS strength respectively. The energy efficiency was calcu-
lated using the ATP cost by transcription and translation processes. Transcription
and translation rates are subject to resource constraints encoded by the metabolic
network (Figure 8.2B). This model efficiently predicts proteins production and sim-
ulates optimal flux distribution in cell-free metabolic network. It makes predictions
possible for metabolic engineering in cell-free as metabolites produced or consumed
by a pathway will be accounted for via its energy efficiency.
Constraint based modeling for cell-free systems is an interesting field that would
need further developments from the research community, both to include cell-free
specific constraints and reactions, as well as to account for dynamic behavior such
as metabolite exhaustion in cell-free systems.

8.6 Conclusion

Cell-free appeared as the ideal platform for circuits prototyping. It accelerates char-
acterization and avoids the impact of the host on the circuit behavior. Models can
be easily parameterized and predictions are easier and more accurate than in vivo,
for qualitative behavior. Parameterization for quantitative behavior can be tackled
using techniques from systems biology. Simple models succeed to accurately predict
the simultaneous production levels of multiple proteins and the competition for the
limited amount of resources in cell-free. A certain level of complexity is necessary
to capture competition for metabolites but produces a powerful tool for metabolic
engineering. The main limit for lysate-based cell-free in metabolic engineering and
modeling remains extract preparation: extract efficiency can differ strongly depend-
ing on the experimentalist leading to variability of protein production and necessity
of robust controls for each new batch, as well as uncertain parameters that vary
with each batch for the modeler. Preliminary control of the extract quality and
tuning of model parameters on each batch is required to obtain accurate predictions
and precludes generalization. A way forward to both increase reproducibility and
predictive modeling in cell-free systems would be a higher degree of automation in
the extract production providing robust lysate preparation at affordable price.
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9
Plug-and-Play Metabolic
Transducers Expand the
Chemical Detection Space of
Cell-Free Biosensors

This work was originally published in Nature Communications by Peter L. Voyvodic,
Amir Pandi , Mathilde Koch, Ismael Conejero, Emmanuel Valjent, Philippe Courtet,
Eric Renard, Jean-Loup Faulon and Jerome Bonnet.
The main focus of this article is to showcase the development of biosensors in
cell-free using metabolic transducers. Mathematical modeling was therefore only a
small part of the original article, presently mainly in Supplementary. The text or-
dering has therefore been modified so as to highlight results concerning this thesis.
Supplementary data not concerning mathematical modeling is appended at the end
of this Chapter.

Detailed contribution to this thesis

In this article, an implementation of cell-free metabolic transducers, designed used
tools presented in Part I, is presented. First, a biosensor is developed and optimized,
tuning both transcription factor DNA and reporter DNA. My first contribution to
this work was therefore to model this assay using Hill equations. Then, transducers
(signal conversion using enzymes) were implemented in those cell-free systems, for
hippuric acid and cocaine. A major point of interest in those 2 transducers for
modeling was that the signal peaked before decreasing at intermediate enzyme DNA
concentrations, showing that resource competition has an important role in our
observed effects. Therefore, I proceeded in 2 steps, by first modeling the hippuric
acid transducer including resource competition, and applying the same framework
to cocaine, accounting for differences in promoter strengths. This modeling was
then experimentally verified by analyzing a shift in peak signal of the hippurate
transducer when varying transcription factor DNA, thereby increasing resource
competition.
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9.1 Abstract

Cell-free transcription-translation systems have great potential for biosensing, yet
the range of detectable chemicals is limited. Here we provide a workflow to expand
the range of molecules detectable by cell-free biosensors through combining syn-
thetic metabolic cascades with transcription factor-based networks. These hybrid
cell-free biosensors have a fast response time, strong signal response, and a high
dynamic range. Additionally, they are capable of functioning in a variety of com-
plex media, including commercial beverages and human urine, in which they can
be used to detect clinically relevant concentrations of small molecules. This work
provides a foundation to engineer modular cell-free biosensors tailored for many
applications.

9.2 Introduction

There is currently an urgent need for low-cost biosensors in a variety of fields
from environmental remediation to clinical diagnostics [427, 428, 358]. The abil-
ity of living organisms to detect signals in their environment and transduce them
into a response can be utilized to create cheap, novel sensors with high sensitivity
and specificity. By leveraging the ability of transcription factors to control gene
expression, synthetic biologists have genetically engineered microbes to detect a
wide range of compounds, from clinical biomarkers to environmental pollutants
[429, 288, 430, 431].
Cell-free TX-TL systems have great promise as the next generation of synthetic
biology-derived biosensors. They are cheap to produce [68], abiotic, and can be
lyophilized such that they are stable at room temperature for up to one year: a
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vital necessity for point-of-care applications such as low-resource nation and home
diagnostic use [74]. Cell-free TX-TL toolboxes have been designed that support the
operation of many of the circuits previously engineered in vivo [432, 433]. Encap-
sulated cell extracts can also be used in combination with living cells to produce
new sensing modalities [434]. Cell-free biosensors were engineered to successfully
detect Zika virus in rhesus macaques and an acyl homoserine lactone, 3OC12-HSL,
from Pseudomonas aeruginosa in human clinical samples [435, 23]. However, cur-
rent cell-free biosensors have been limited to detection of nucleic acid sequences,
via toehold displacement, or well-characterized transcription factor ligands.

Here we put forward a generalized, modular workflow utilizing metabolic trans-
ducers to rapidly expand the chemical space detectable by cell-free biosensors in
a plug-and-play manner. We then illustrate our workflow with a proof-of-concept
example: the transcription factor BenR, which is activated by benzoic acid, and
two metabolic modules, HipO and CocE, which convert hippuric acid and cocaine,
respectively, into benzoic acid. Each component is individually cloned into a cell-
free vector, such that the DNA concentrations can be titrated over three orders
of magnitude to optimize sensor performance. Finally, we demonstrate that these
sensors can function in complex solutions, detecting benzoic acid in commercial
beverages and hippuric acid and cocaine in human urine.

9.3 Results

9.3.1 Design work�ow for cell-free biosensors

Synthetic metabolic cascades have been used by the synthetic biology commu-
nity for a wide range of applications, including production of biofuels, pharma-
ceuticals, and biomaterials [184, 436, 437]. As such, there is a wide variety of
well-characterized enzymes catalyzing various reactions transforming one molecule
into another. Our framework harnesses this power by using metabolic enzymes as
transducers to allow us to ’plug in’ a given enzyme into our characterized biosen-
sor modules to detect a ligand with no known transcription factor analog (9.1a).
Specifically, the metabolic enzyme converts the undetectable molecule into one for
which we have an existing transcription factor-based genetic circuit (9.1b). We
used the SensiPath webserver that we previously designed and validated in vivo to
determine the required metabolic cascade [262, 77].
The workflow to engineer a cell-free biosensor detecting a novel molecule is straight-
forward (9.1c). First, possible metabolic pathways to convert the molecule of in-
terest into a detectable ligand are identified using SensiPath. Second, the genes
coding for the metabolic transducer enzyme, the TF sensor, and the reporter mod-
ule are synthesized and cloned into cell-free expression vectors. Finally, the DNA
concentration of each plasmid is titrated in cell-free reactions to optimize signal
strength and dynamic range in response to the molecule of interest (9.1c).
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Figure 9.1 A modular design workflow for engineering scalable cell-free biosensors.
a Cell-free biosensors are composed of three modules: a generic sensor module
linked to an output module and a metabolic transducer module transforming dif-
ferent molecules into ligands detectable by the sensor module. b An undetectable
ligand is converted into a detectable ligand by the enzyme from the transducer
module. Binding to the transcription factor controls the sensor module and down-
stream gene expression. c The biosensor design workflow starts with retrosynthetic
pathway design using the SensiPath server [77]. Once the transducer and sensor
modules are determined, the genes encoding enzymes, transcription factors, and tar-
get promoters driving a reporter are cloned into cell-free expression vectors. The
sensor is calibrated by titrating the concentrations of each plasmid to maximize
signal output and dynamic range.

As a proof-of-concept example of this system, we engineered a sensor for benzoic
acid using the transcription factor BenR and expanded its detection capabilities
with two different metabolic transducers: one for hippuric acid using the HipO
hippurate hydrolase and one for cocaine using the CocE cocaine esterase.
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9.3.2 Optimization of cell-free benzoic acid sensor

BenR is a member of the AraC/XylS family of transcription factors, originally from
Pseudomonas putida . In the presence of benzoate, BenR binds to the PBen pro-
moter and activates transcription (9.2a). To engineer a benzoate cell-free biosensor,
we cloned BenR under the control of the OR2-OR1-Pr promoter, a modified version
of the lambda phage repressor promoter Cro, known to express strongly in cell-free
systems [320]. The PBen promoter driving super-folder GFP (sfGFP) was cloned in
a separate plasmid. After initial pilot tests demonstrated that BenR was functional
in a cell-free environment, we optimized the BenR biosensor by titrating the DNA
concentration of the TF and reporter plasmids.

Figure 9.2 Calibration of sensor and output modules for benzoate detection. a
BenR binds to the PBen promoter in the presence of benzoate and activates gene
expression. Here BenR is cloned in the pBEAST plasmid (a derivative of pBEST 20
) and driven by a strong constitutive promoter, OR2-OR1-Pr. The PBen promoter
is cloned into another pBEAST backbone and drives expression of the superfolder
green fluorescent protein. Because the system operates without a cellular boundary,
multiple plasmids encoding different components of the network can easily be used
simultaneously. Plasmid concentrations can then be fine tuned to identify optimal
operating conditions. b Optimization of the BenR sensor and reporter modules.
Cell-free reactions of 20 µL containing different concentrations of the BenR and
reporter plasmids were prepared and their response to different concentrations of
benzoic acid were monitored. The white square represents the optimal condition
(100 nM reporter and 30 nM BenR plasmid) with the highest relative fluorescence.
(see 9.9 Supplementary Figure 2 and 9.6 Supplementary Table 1 ). Reactions were
run in sealed 384 well-plates in a plate-reader at 37 ◦C for at least eight hours. The
heat maps represent the signal intensity after four hours. Data are the mean of
three experiments performed on three different days and all fluorescence values are
expressed in Relative Expression Units (REU) compared to 100 pM of a strong,
constitutive sfGFP-producing plasmid. See methods for more details. c Upper
panel : The BenR sensor can detect benzoic acid over three orders of magnitude
and at concentrations as low as 1 µM. Shaded area around curves corresponds to
± SD from the mean of the three experiments. Lower panel : GFP expression in
response to the same range of concentrations of benzoic acid as in the upper panel
is easily detectable by eye on a UV table.

One advantage of working in a cell-free framework is that the DNA concentration
is directly controlled by pipetting. As such, the process of finding an optimal DNA
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concentration is relatively straightforward: we created a matrix of DNA concentra-
tions for TF and reporter plasmids between 0 nM and 100 nM and induced these
different cell-free reactions using four different concentrations of benzoic acid: 0 µM,
10 µM, 100 µM and 1000 µM (9.2b, 9.6).
Encouragingly, the system had extremely low background signal in the absence of
benzoic acid, indicating that the P Ben promoter has very little ’leakiness’ in a
cell-free environment. When benzoic acid was added to the reaction, the sfGFP
output signal was clearly detectable and fluorescence intensity was correlated with
increasing reporter plasmid concentration. However, the signal reached a plateau
for increasing concentrations of TF plasmid at 30 nM. We hypothesize that this
plateau is due to competition for transcriptional and translational resources be-
tween transcription factor and reporter plasmid. This plateau is also observed in
a mathematical model of cell-free biosensors (See section 9.6 and Fig 9.3). Based
on these data, we set the optimal plasmids concentrations to 30 nM for the TF
plasmid and 100 nM for the reporter plasmid.

Figure 9.3 Modeling titration of transcription factor and reporter plasmids. Condi-
tions for reporter and BenR DNA concentrations used in Figure 9.2 were modeled
using ordinary differential equations to capture qualitative trends in the data. Sim-
ulations were rescaled to use the same scale as data. The heat-map represents GFP
model signal after four hours.
This Figure was originally in Supplementary data

Compared to its in vivo counterpart [262], the cell-free benzoic acid biosensor is
faster (maximum signal reached in four hours, 9.9), has a much higher sensitivity
and dynamic range, and has a maximum fold change of over 200 (vs. '10-fold in
vivo) (9.2c). These results exemplify the advantages of cell-free systems for rapidly
engineering biosensors with optimal properties.
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9.3.3 Expansion of benzoic acid sensor with hippuric acid

and cocaine metabolic modules

With the sensor and output modules optimized, we demonstrated the ability of our
system to expand its chemical detection space using different metabolic transducer
modules. HipO is an enzyme from Campylobacter jejuni and CocE is an esterase
from Rhodococcus sp. that convert hippuric acid and cocaine into benzoic acid,
respectively. We cloned each enzyme into the cell-free expression vector and, using
the optimized DNA concentrations of TF and reporter plasmids, titrated different
concentrations of metabolic transducer DNA for a range of inducer inputs (Figure
9.4a, Table 9.7). Interestingly, we observed a clear peak in sfGFP signal corre-
sponding to a particular concentration effectiveness: 3 nM for HipO and 10 nM for
CocE. We built several mathematical models based on different assumptions that
could reproduce the observed bell-shaped response to enzyme DNA concentration
as well as its shift between the two enzymes (Figure 9.6). Based on these models,
we hypothesized that the observed bell-shaped response is likely due to competition
between the different modules, leading to an important and unnecessary enzyme
production at high DNA concentrations that divert resources such as RNA poly-
merase, ribosomes, and energy from sfGFP transcription and translation, as well
as generating toxic byproducts. Moreover, we provide evidence that the shift-
ing peak between the two setups is most likely due to lower expression of CocE
(Detailed analysis follows, in Supplementary Text and Figure 9.7). Additionally,
the model hypothesized that using a higher TF concentration would necessitate
a higher level of metabolic enzyme without an increase in overall signal, a shift
that we subsequently saw experimentally (Supplementary Text and Supplementary
Figure 9.8).

A key observation is that even at very high levels of inducer, there is very little signal
in the absence of DNA encoding the metabolic transducer. These data indicate that
the metabolic enzyme is essential for sensor selectivity and differentiation between
hippuric acid and cocaine from benzoic acid and that they have minimal off-target
binding to BenR. Strikingly, both the hippuric acid and cocaine biosensors exhibit
fold change and detection range highly similar to that of the benzoic acid sensor,
demonstrating the high conversion rate of the metabolic transducer (Figure 9.4b).
The conversion also appears to be extremely fast as no significant difference was
observed in response kinetics with or without the metabolic transducer, although
the lower incubation temperature of the cocaine biosensor showed slightly slower
kinetics ( Figures 9.9, 9.10 and 9.11).

205



Figure 9.4 Expanding the chemical detection space of cell-free biosensors by plug-
ging various metabolic transducers into an optimized sensor module. a
Hippurate or cocaine can be detected using different metabolic transducers. Plas-
mids encoding the HipO or CocE enzymes, which convert hippuric acid or cocaine
into benzoic acid, were mixed at different concentrations with optimal BenR and
reporter plasmids concentrations as determined in Figure 9.2 (30 nM and 100 nM,
respectively). These reactions were then incubated with increasing concentrations
of inducer for at least eight hours. The heat maps represent the signal intensity
after four hours (Figure 9.10, Figure 9.11 and Table 9.7). Asterisks denote the
optimal DNA concentration for the metabolic module. Data are the average of
three experiments performed on three different days and all fluorescence values are
expressed in Relative Expression Units (REU) compared to 100 pM of a strong,
constitutive sfGFP-producing plasmid. b Optimized cell-free biosensors incorpo-
rating a metabolic transducer module exhibit comparable performance to the BenR
sensor module (from Figure 9.2c ). All data are the mean of three experiments per-
formed on three different days. Shaded area around curves corresponds to ± SD
from the mean of the three experiments. See methods for more details. Lower
panel: GFP expression in cell-free reactions in response to various concentrations
of inducer visualized on a UV table.
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9.3.4 Detection of benzoic acid, hippuric acid, and cocaine

in complex samples

While the results of our new optimized biosensing were promising, the intended fi-
nal environment in which they should operate is far more complex. We thus sought
to test their capabilities for real-world applications. Benzoic acid and sodium ben-
zoate are widely used food additives for preservation. While classified as Generally
Recognized As Safe (GRAS) by the United States Food and Drug Administration,
their maximal levels in foodstuffs are limited to 0.1%. Additionally, some people
respond poorly to their consumption, particularly patients suffering from chronic in-
flammation or orofacial granulomatosis, who are frequently placed on benzoate-free
diets by their physicians [438, 439]. Lastly, there is evidence that when benzoates
are added to beverages in the presence of ascorbic acid, they can be converted into
low levels of benzene, a strong carcinogen [440, 441]; this reaction is enhanced by
increased temperatures which frequently occur during transportation. In this con-
text, a simple assay for detecting benzoic acid could be useful.
To test if our benzoic acid sensor could function in a monitoring capacity in the
food industry, we procured several different carbonated orange and energy drinks
from a local supermarket. The nutritional information of each beverage included
benzoic acid, sodium benzoate, or no benzoates. Strikingly, after adding 2 µL of the
beverages directly to 20 µL reactions of our optimized benzoic acid sensor, we were
able to distinguish which beverages contained benzoates with 100% accuracy after
only one hour of incubation (Figure 9.12). The beverages were composed of two
categories: carbonated orange drinks and Monster®energy drinks. Despite similar-
ities between the non-benzoate ingredients in each class, our cell-free benzoic acid
biosensor rapidly produced sfGFP in beverages with listed benzoate ingredients
with fold changes up to ' 180.
While our system has the ability to quickly detect benzoates by directly adding the
beverages to the reaction, we noticed that there was up to 75% inhibition to some
of the cell-free reactions when comparing expression of a constitutive promoter to a
control (Figure 9.13). Therefore, to test our sensor’s ability to quantify benzoates,
we performed an experiment with a 1:10 dilution, which showed minimal reac-
tion interference (Figure 9.13), and converted the resulting fluorescence intensities
to concentrations using a calibration curve from a benzoic acid standard (Figure
9.14). These results were compared against measurements from LC-MS (Figure
9.5b , Table 9.8). Seven of the ten drinks showed very strong agreement between
the quantitative results from our sensor and the LC-MS results. Three of the bev-
erages (Monster®Zero, Monster®Ultra, and Monster®Ultra Red) had diminished
cell-free values relative to those from LC-MS. Taken together, these results demon-
strate that our sensors can remain functional in commercial products and rapidly
detect and quantify benzoates.
We then wanted to test if our hippuric acid sensor could detect endogenous levels
in a clinical context. Hippuric acid has long been known to be regularly excreted
by humans in urine as the end product of several different aromatic compounds,
including benzoates, that are converted in the liver [442]. While it has been cor-
related with higher levels of toluene exposure in some operational conditions [443],
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following recent research by [25] it has recently become an interesting biomarker
in a Phase 1/2a clinical trial. In the publication, a synthetic strain of modified
E. coli Nissle, SYNB1618, is used to treat phenylketonuria, a neurotoxic disease
characterized by the inability to process the amino acid phenylalanine [25]. Briefly,
the bacteria are consumed orally where they can convert phenylalanine into trans-
cinnamate, which is subsequently converted to hippuric acid by the liver. In the
study, hippuric acid in the urine is used as a biomarker for treatment efficacy. We
thus wanted to test if our sensor could detect clinical levels of endogenous hippuric
acid in human urine. When adding 2 µL of a 1:10 dilution to a 20 µL reaction
(1% cell-free reaction concentration) in the presence of an RNase inhibitor, we
found little interference from urine to expression of a constitutive GFP plasmid
relative to the positive control (Figure 9.15). When testing the urine for hippuric
acid, we observed little to no response from our benzoic acid sensor (without the
HipO-expressing plasmid) (Table 9.9), but the complete hippuric acid sensor gave
levels that fell within our calibration curve (Figure 9.16). Urinary hippuric acid
concentrations estimated using our cell-free biosensor closely matched the values
determined byLC-MS (R2 = 0.98, Figure 9.17; 9.5c, Table 9.10). These data are
a promising step toward developing cell-free biosensors for biomarker detection in
clinical samples.
Finally, we aimed to detect cocaine in clinically relevant conditions. Cocaine rapidly
enters the bloodstream after ingestion and is subsequently detectable in the urine
for up to 10 hours [444]. To determine if our system could detect clinically-relevant
cocaine levels, we spiked urine samples with increasing concentrations of cocaine
and added 2 µL to 20 µL cell-free reactions with our optimized cocaine biosensor.
Our initial experiment showed small, but detectable sfGFP signal at urinary con-
centration of 1000 µM, but our system was unable to show adequate fold-change
at lower, clinically relevant concentrations (Figure 9.18). We found that cell-free
reactions produce increasing low levels of noise over time in the GFP fluorescence
channel (9.19) and hypothesized that we could increase our signal-to-noise ratio
by changing our reporter to luciferase. We cloned the firefly luciferase gene under
control of the PBen promoter and in an initial test we indeed observed an increase
in signal-to-noise ratio (Figure 9.20). We then added increasing cocaine concen-
trations into six different samples containing our cell-free cocaine sensor with the
luciferase reporter (Figure 9.5d). Five of the six sample showed strong fold change,
with detectable fold changes of 4.3-8.8 at previous clinically detected cocaine con-
centrations in urine [445] (40.13 µg ·mL−1 or 118 µM cocaine concentration in urine,
corresponding to a 11.8 µM final concentration in the cell-free reaction when using
2 µL urine in a 20 µL reaction). One sample (U3) showed minimal fold change due
to high background signal that was also observed using the benzoic acid sensor
(Figure 9.21). As the urine samples were supplied by subjects from the endocrinol-
ogy department, it is possible that the medical condition of this patient results in
the presence in their urine of interfering metabolites that can activate the BenR
system. This background signal was minimal when we detected for hippuric acid in
urine, likely because of the urine samples dilution step (Table 9.9). In conclusion,
these data demonstrate that our cell-free biosensors can be used to detect clinically
relevant levels of drugs and endogenous metabolites in pure, unprocessed clinical
samples.
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Figure 9.5 Detecting benzoic acid, hippuric acid, and cocaine in complex samples.
a Cell-free benzoic acid sensor can detect benzoates in commercial beverages. Ad-
dition of an array of different orange and energy drinks to the optimized benzoic
acid biosensor produces up to ' 180-fold change response relative to the negative
control after one hour incubation at 37 ◦C. The test showed 100% specificity and
sensitivity to detection of benzoates based on their inclusion in the ingredient la-
bel using a fold-change of 5 as the cut-off point. b Benzoic acid sensor is capable
of quantifying the concentration of benzoic acid in different beverages. Beverages
were added at 1:10 dilution to cell-free reactions and the benzoic acid concentration
was determined using a calibration curve (Figure 9.14) after four hours. Results
were compared to those determined by liquid chromatography-mass spectrometry
(LC-MS). cEndogenous hippuric acid in urine can be quantified with a cell-free
biosensor. Clinical urine samples (U1-U6) were diluted 1:10 and added to the opti-
mized hippuric acid sensor for four hours at 37 ◦C after which endogenous hippuric
acid concentration was determined using a calibration curve (Figure 9.16). Re-
sults were compared to those determined by LC-MS. d Cocaine can be detected
in clinical urine samples at previously clinically detected concentrations. Cocaine
titrations were added to clinical human urine samples (U1-U6) and cell-free cocaine
luciferase-output biosensors and incubated at 30 ◦C for 8 hours. Subsequently, a
luciferase assay was performed to determine the presence of cocaine. The col-
ored region represents the concentration of cocaine previously measured in human
clinical samples from hospitalized patients (40.13 µg ·mL−1 or 118 µM cocaine con-
centration in urines, corresponding to a 11.8 µM final concentration in the cell-free
reaction- 2 µL urine in a 20 µL reaction) 28 . All curves are plotted for the mean of
three experiments performed on three different days. Error bars correspond to ±
SD from the mean of the three experiments. See methods for more details.
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9.4 Discussion

This work demonstrates that we can engineer modular, cell-free biosensors that can
be easily calibrated to have high signal strength and dynamic range and can function
in complex detection environments. Upon engineering a novel cell-free biosensor for
benzoic acid, we show that the system can be scaled by using different metabolic
transducer modules to expand the chemical space that each sensor/reporter pair
can detect. In addition, we provide a three order-of-magnitude titration for each
DNA component to optimize cell-free biosensor performance along with a mathe-
matical model enabling a better understanding of the parameters governing cell-
free biosensors response which will help future optimization of such devices . By
demonstrating that these sensors can function in samples from the food and bever-
age industry, as well as complex clinical samples such as human urine, we provide
an example for their potential outside the lab in real-world applications. This is
the first time, to our knowledge, that cell-free biosensors have been used to detect
endogenous molecules in unprocessed samples.
Using our workflow, this process should be applicable to a wide range of other sen-
sor/reporter pairs. One constraint of our system is that the transcription factor
must respond only to the product of the enzymatic reaction and not the substrate.
Such potential crosstalk can easily be checked by running a control reaction with-
out the metabolic transducer module. We computed that 1205 disease-associated
biomarkers from HMDB could be converted into detectable molecules by one enzy-
matic reaction (Supplementary Note 1 and Supplementary Data 1) . Additionally,
64 HMDB metabolites could be transformed into benzoate and thus theoretically
connected via a metabolic transducer to our optimized sensor (Supplementary Note
1 and Supplementary Data 2).
Further improvements to our platform could include exploring sample pre-processing
methods that could improve sensor robustness [446, 447] together with adaptation
into an off-the-shelf format more amenable to point-of-care applications [74, 448].
Also, while we could detect clinically relevant concentrations of cocaine, this ap-
plication will likely require achieving higher sensor dynamic range, for example
through the use of downstream genetic amplifiers [22].
In summary, by rapidly expanding the number of detectable compounds and re-
maining functional even in complex samples, cell-free biosensors using plug-and-play
metabolic transducers could be used to address many challenges such as environ-
mental detection, drug enforcement, and point-of-care medical diagnostics.

9.5 Methods

9.5.1 Molecular biology

All clones were based on a previously characterized cell-free expression plasmid
(pBEST-OR2-OR1-Pr-UTR1-deGFP-T500 was a gift from Vincent Noireaux [Ad-
dgene plasmid # 40019] [320]). To better facilitate cloning with a range of tech-
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niques and any future component insertion into larger gene circuits, the construct
was modified by adding 40 base pair spacers and an upstream terminator and
renamed pBEAST. Clones were created via Gibson or Golden Gate assembly in
DH5αZ1 chemically competent E. coli where the deGFP was replaced by BenR
or HipO. For CocE, the promoter was changed to another strong constitutive pro-
moter, J23101, and RBS, B0032. The reporter plasmid for PBen used native RBS
from Pseudomonas putida and superfolder-GFP as the output, which was found to
give a stronger, faster signal in cell-free reactions at 37 ◦C. For experiments test-
ing cocaine levels in urine, the sfGFP output was changed to firefly luciferase via
Gibson assembly cloning. DNA for cell-free reactions was prepared from overnight
bacterial cultures using Maxiprep kits (Macherey-Nagel). Plasmids used in this
paper will be available from Addgene.

9.5.2 Extract preparation

Cell-free E. coli extract was produced using a modified version of existing protocols
[68, 449]. An overnight culture of BL21 Star (DE3)::RF1-CBD 3 E. coli was used
to inoculate 660 mL of 2xYT-P media in each of six 2 L flasks at a dilution of
1:100. The cultures were grown at 37 ◦C with 220 rpm shaking for approximately
3.5 hours until the OD 600 = 2.0. Cultures were spun down at 5000 x g at 4 ◦C
for 12 minutes. Cell pellets were washed twice with 200 mL S30A buffer (14 mM
Mg-glutamate, 60 mM K-glutamate, 50 mM Tris, pH 7.7), centrifuging afterwards
at 5000 x g at 4 ◦C for 12 minutes. Cell pellets were then re-suspended in 40 mL
S30A buffer and transferred to pre-weighed 50 mL Falcon conical tubes where they
were centrifuged twice at 2000 x g at 4 ◦C for 8 and 2 minutes, respectively, remov-
ing the supernatant after each. Finally, the tubes were reweighed and flash frozen
in liquid nitrogen before storing at -80 ◦C.
Cell pellets were thawed on ice and re-suspended in 1 mL S30A buffer per gram
cell pellet. Cell suspensions were lysed via a single pass through a French press
homogenizer (Avestin; Emulsiflex-C3) at 15000-20000 psi and then centrifuged at
12000 x g at 4 ◦C for 30 minutes to separate out cellular cytoplasm. After centrifu-
gation, the supernatant was collected and incubated at 37 ◦C with 220 rpm shaking
for 60 minutes to digest remaining mRNA with endogenous nucleases [68]. Subse-
quently, the extract was re-centrifuged at 12000 x g at 4 ◦C for 30 minutes, and the
supernatant was transferred to 12-14 kDa MWCO dialysis tubing (Spectrum Labs;
Spectra/Por4) and dialyzed against 2 L of S30B buffer (14 mM Mg-glutamate, 60
mM K-glutamate, ' 5 mM Tris, pH 8.2) overnight at 4 ◦C. The following day, the
extract was re-centrifuged at 12000 x g at 4 ◦C for 30 minutes. The supernatant was
optionally concentrated using a 10,000 MWCO centrifuge column (GE Healthcare;
Vivaspin20) based on total protein levels from a Bradford assay (ThermoScientific)
to obtain concentrations above 15 mg ·mL−1, aliquoted, and flash frozen in liquid
nitrogen before storage at -80 ◦CC.
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9.5.3 Cell-free sensor optimization reactions

Cell-free reactions were prepared by mixing 33.3% cell extract, 41.7% buffer, and
25% plasmid DNA, any inducer, and water. Buffer composition was made such
that final reaction concentrations were as follows: 1.5 mM each amino acid except
leucine, 1.25 mM leucine, 50 mM HEPES, 1.5 mM ATP and GTP, 0.9 mM CTP
and UTP, 0.2 mg ·mL−1 tRNA, 0.26 mM CoA, 0.33 mM NAD, 0.75 mM cAMP,
0.068 mM folinic acid, 1 mM spermidine, 30 mM 3-PGA, and 2% PEG-8000. Ad-
ditionally, the Mg-glutamate (0-6 mM), K-glutamate (20-140 mM), and DTT (0-3
mM) levels were serially calibrated for each batch of cell-extract for maximum sig-
nal. Benzoic acid, hippuric acid, and cocaine hydrochloride were purchased from
Sigma-Aldrich. Permission to purchase cocaine hydrochloride was given by the
French drug regulatory agency (Agence Nationale de Sécurité du Médicament et
des Produits de Santé) to allow development of a new biosensor. Inducers were
dissolved in ethanol and final reactions contained 0.5% ethanol for all inducer con-
centrations including the negative control. Reactions were prepared in PCR tubes
on ice and 20 µL were transferred to a black, clear-bottom 384 well plate (Ther-
moScientific), sealed, and the reaction was carried out in a plate reader (Biotek;
Cytation3 or Synergy HTX) to measure both endpoints and reaction kinetics. The
subsequent data were processed and graphs created using custom Python scripts or
Microsoft Excel. Reactions for the representative images in Figures 9.2c and 9.4b
were incubated in PCR tubes at 37 ◦C for four hours and imaged on a UV table
with either a Sony α6000 camera (benzoic and hippuric acid sensors) or a cell phone
camera (cocaine sensor) and background subtracted with Adobe Photoshop.

9.5.4 Cell-free reactions with commercial beverages or

human urine

Cell extract and buffer conditions were maintained from those used in optimization
reactions. For the benzoic acid beverage sensor, 10% reaction volume of either 1x or
0.1x (diluted in water) of each beverage was added, in addition to 30 nM pBEAST-
BenR and 100 nM pBen-sfGFP plasmids to 20 µL reactions containing extract and
buffer. All beverages were purchased at a local supermarket. For the hippuric acid
urine sensor, each reaction contained 10% volume of 0.1x urine, pre-diluted in water.
Human urine samples were obtained from the Endocrinology Department at the
University of Montpellier in accordance with ethics committee approval (#190102).
Additionally, each reaction was supplemented with 0.8 U · µL−1 of murine Rnase
Inhibitor (New England Biolabs).
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9.5.5 Benzoic acid and hippuric acid quanti�cation from

cell-free biosensors

In order to quantify fluorescent outputs from our cell-free benzoic and hippuric
acid biosensors in complex samples as a measurement of concentration, we created
calibration curves by adding a range between 0 µM and 1000 µM of inducer con-
centrations to 20 µL cell-free reactions. Hippuric acid reactions were supplemented
with 0.8 U · µL−1 RNase inhibitor to match reaction conditions. The subsequent
calibration curves were fit to a Hill plot in Python using:y = ymax∗xn

Kn
D

+xn , where y is
the fluorescence intensity, x is the inducer concentration, ymax is the maximum
fluorescence intensity, KD is the concentration of ligand needed for half-maximum
binding occupation at equilibrium, and n is the Hill slope. Commercial beverage
benzoic acid and urine hippuric acid concentrations were then calculated by using
the fluorescent values from those experiments as y and solved for the inducer con-
centration x. Undiluted concentrations were increase by a factor of 100 to account
for the 1:10 sample dilution and 10% reaction volume contribution (i.e. 2 µL sample
in a 20 µL total reaction volume).

9.5.6 Chemical analysis of beverage and urine by LC-MS

The following procedure was developed for detection of benzoic and hippuric acid
by UHPLC-MS / MS. The analysis was carried out using an LCMS-8050 mass
spectrometer (Shimadzu, Japan) coupled to a NexeraX2 UHPLC chain (Shimadzu,
Japan). The column is a Nucleodur pyramid (1.8 µm, 50 × 2.0 mm, Macherey-
Nagel) maintained at 40 ◦C. The eluents used were:H2O with 0.1% formic acid (A),
acetonitrile with 0.1% formic acid (B). The flow rate was set to 0.5 mL ·min−1. The
injection volume was 5 µL and all the analytes were eluted over a 5 minute binary
gradient with a starting composition percentage of 100/0 (A / B). The LCMS-
8050 is a three-quadrupole mass spectrometer with a heated electrospray ionization
(ESI) source. The analytes were detected in negative MRM mode. The samples
were diluted by 20 in water before injection. Dihydrobenzoic acid was used as an
internal standard.

9.5.7 Cell-free reactions detecting cocaine via luciferase

output

To test our luciferase-output cocaine biosensor, 20 µL cell-free reactions containing
CocE, TF, and reporter plasmid concentrations, 0.8 U · µL−1 RNase inhibitor, co-
caine inducer gradient, 2 µL of undiluted human urine samples, extract and buffer
were incubated at 30 ◦C for 8 hours. Samples were then transferred to white 96-well
plates and 50 µL of Luciferase Assay Reagent (Promega) was added and mixed by
manual orbital agitation. The plates were sealed and luciferase levels were mea-
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sured in a plate reader two minutes after addition of the reagent. Fold change was
calculated relative to the 0 µM cocaine negative control.

9.5.8 Reaction models

Coarse-grained modeling was performed using ordinary differential equations, simu-
lated using the R software. Briefly, the model combines Michaelis-Menten kinetics
for the transducer module and resource competition for RNA polymerases and
ribosomes to account for varying DNA concentration effects. Michaelis-Menten
equations are used for promoter activation. Production of toxic byproducts as
well as energy consumption for mRNA production were also included. Full model
derivation can be found in the supplementary materials, or section 9.6.2 of this
thesis.

9.5.9 Chemical identi�ers

In order to allow easier parsing of our article by bio-informatics tools, we provide
here the identifiers of our chemical compounds:

1. Benzoic acid: InChI=1S/C7H6O2/c8-7(9)6-4-2-1-3-5-6/h1-5H,(H,8,9)
2. Hippuric acid: InChI=1S/C9H9NO3/c11-8(12)6-10-9(13)7-4-2-1-3-5-7/h1-5H,6H2,(H,10,13)(H,11,12)
3. Cocaine: InChI=1S/C17H21NO4/c1-18-12-8-9-13(18)15(17(20)21-2)14(10-12)22-

16(19)11-6-4-3- 5-7-11/h3-7,12-15H,8-10H2,1-2H3/t12-,13+,14-,15+/m0/s1

9.5.10 Code availability

Simulation scripts are available on GitHub. Custom python scripts used to process
data are available upon request to the authors.
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9.6 Mathematical Modeling of Cell-Free

Biosensors

9.6.1 Main model features description

We built a mathematical model to gain a better understanding of the behavior
of our system using the metabolic transducer module. Our aim was to derive a
relatively coarse-grained model that could recapitulate key behaviors observed in
this dataset. The first step was to model the TF/reporter DNA assay (in Figure
9.3). We then analyzed the behaviors we wanted to reproduce in the hippurate
transducer dataset, which included:

• increasing concentrations of hippurate led to increased signal
• at low HipO DNA concentrations, increasing enzyme DNA concentrations

led to higher signal
• at high HipO DNA concentrations, the system reaches a peak where increas-

ing enzyme DNA concentration leads to lower signal

Details of the full model derivation are available in Full model derivation section
and scripts are available on Github . Summary of the main model features are
given here:

dbenzoate

dt
= enz ∗ kcat ∗ inducer

inducer +KM

dinducer

dt
= −enz ∗ kcat ∗ inducer

inducer +KM

TFactivated = TF ∗ benzoate

benzoate+Kinducer
d

+ 0.0005

ε = TFactivated
TFactivated +Kactivated

d

for BenR

ε = 1 for constitutive expression
dmRNA

dt
= γ ∗ n ∗ ε x

x+ χ
∗ Ktox

Ktox + tox
∗ RmRNA
RmRNA +KmRNA

− δ ∗mRNA

dprot

dt
= π ∗mRNA ∗ y

y + k
∗ Ktox

Ktox + tox
− λ ∗ prot

where the variables are defined as follows:

The rest of the notation is standard, with three species for mRNA and protein
considered: the enzyme, the transcription factor, and the sfGFP. Spontaneous
transformation is also included in the inducer production rate for cocaine.
Increasing benzoic acid leading to increased signal was expected and we modeled
this using Michaelis-Menten [141] equations for the activation of the transcription
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kcat, KM , enz Enzyme Michaelis-Menten constants, enzyme
concentration

TF , TFactivated Inactivated transcription factor, transcription
factor activated by benzoic acid

Kinducer
d ,

Kactivated
d

Hill activation constant for the TF activation by
benzoic acid/ promoter activation by TF

ε Fraction of activated promoter for induced or
constitutive promoters

γ, π mRNA and protein production rates
χ, k Affinity of the RNAP/ribosome for the pro-

moter/RBS
x, y Free RNAP and ribosome
tox, RmRNA Accumulated toxic by-product, available re-

sources for mRNA production

factor and of the promoter. The fact that signal was low at low TF DNA concen-
tration and increased with increasing TF DNA concentration meant that increasing
enzyme concentration led to increased signal, which would not happen if all reac-
tions were catalyzed on very fast time scales (i.e. the enzyme concentration would
not matter). We therefore had to include enzyme kinetics in our model. At high
DNA concentrations, resource competition effects meant that too many resources
were diverted towards enzyme production instead of GFP production, which led
to a decrease in signal. We also decided, as we know these effects exist in cell-
free systems, to include resource depletion and production of toxic byproducts that
would inhibit reactions in our model. For enzyme kinetics, we used the Michaelis-
Menten equation [141] with parameters obtained from BRENDA, whereas we used
the framework developed by [154] for modeling resource competition, based on com-
petition between DNA and mRNA for RNAP and ribosomes, respectively. More
details on the methods employed, as well as a full model derivation, are presented
in the full model derivation section.
The results obtained for HipO-hippurate heat-map are presented in Figure 9.6. No
parameter fitting was performed, and minimal parameter tuning was involved, as
most parameters were taken from or derived from the literature. Constants linked
to resource depletion or toxic byproduct production were manually chosen so as to
best capture the data, as well as ribosome or RNAP quantity. This, however, only
quantitatively changed the data, but did not change the data qualitatively when
parameters remained in a realistic range. Therefore, we managed to qualitatively
reproduce the three effects we wanted to account for with this model, supporting
our hypothesis regarding the main factors underpinning the biological effects in our
HipO data.

Next, we decided to apply our model to the CocE data. We changed the enzyme
kinetic parameters, as well as transcription and translation rates linked to the
length of the gene; however, this failed to reproduce our experimental data, as
significant signal was obtained for CocE DNA = 0.1 nM (data was very similar
to HipO, despite the above-mentioned parameter changes, results not shown). We
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Figure 9.6 Modeling metabolic transducer behavior for HipO and CocE. Hippurate
or cocaine can be detected using different metabolic tranducers. Conditions for
inducer and DNA concentrations used in Figure 9.4 were modeled using ordinary
differential equations to capture qualitative trends in the data. Simulations were
rescaled to use the same scale as data. The heat-map represents GFP model signal
after four hours.

hypothesized that this was because the CocE promoter was weaker (∼3x at four
hours, 9.7). This shifted the peak but significant signal was still obtained for CocE
DNA = 0.1 nM. However, thanks to the model, we postulated another cause due
to a weaker translation initiation rate, as we were using different RBSs for the two
enzymes. Using the RBS calculator [450], which takes context into account, we
found that CocE translation initiation rate was predicted to be much slower than
HipO initiation rate, which we transcribed in our model as a weaker affinity of the
RBS for ribosomes. Results obtained through this strategy are presented in 9.6.

Using this RBS affinity change and the changed promoter strength, we managed to
capture two of the three differences in the HipO and CocE datasets: signal for low
CocE value starts at higher enzyme DNA concentrations (which we attribute to
lower enzyme production due to a weaker promoter and putatively weaker RBS);
and signal at 100 nM is higher as there are fewer resources diverted into unneces-
sary enzyme production (or less toxicity and resource exhaustion by unnecessary
enzymes). However, we do not capture quantitative values, which could be due to
the fact that measurements were performed in a different set-up or that another
component our model is lacking. Moreover, the CocE experiment was performed at
30 ◦C as it is the optimal temperature for this enzyme. Our modeling assumption
was that this impacted only kinetic parameters, which is therefore included in our
model. However, it might also affect the benzoic acid reporter which the model
does not account for.
This shows that with our model, changing only parameters linked to the new en-
zyme sequence, we accurately captured the differences we aimed to capture in the
two setups. Therefore, our model, without any parameter fitting and minimal

217



(a)

(b)

Figure 9.7 Superfolder-GFP expression with J23101 and pBEST promoter (OR2-
OR1-Pr). Expression levels of J23101 and OR2-OR1-Pr promoters were compared
in a cell-free reaction to provide comparative strength data for our computer model.
Reactions were conducted at 6.5 ng · µL−1 at 37 ◦C for fifteen hours and data at the
four hour time point showed that J23101 is approximately three times weaker than
OR2-OR1-Pr in our cell-free system.

parameter tuning within reasonable ranges, achieves satisfying qualitative repro-
duction of our data. Despite these successes, our model has limitations.
We can see that our model does not adequately capture the resource competition or
exhaustion at enzyme concentration of 100 nM (although there is indeed no signal
in our model if we increase the concentration of the simulated DNA to 300 nM,
results not shown). To correct this limitation, including more resource exhaustion
could be the answer. Moreover, although we only tried to qualitatively capture the
data, the ease of explanation of CocE data after preliminary work on HipO only led
us to suggest improvements that could be made to explain the data quantitatively:
including GFP maturation kinetics to become fluorescent, as well as including pa-
rameters from the plate reader. However, complete quantitative modeling seems
unrealistic on cell-free systems based on extracts rather than individual compo-
nents, as a number of parameters still vary from batch to batch and will therefore
hardly be realistically estimated for predictive modeling of the time course of the
data produced on those setups without complementary experiments on each batch
to determine batch-dependent relevant parameters. Qualitative predictions seem
more relevant in that type of set-up at the moment. Moreover, as long as no defi-
nite hypothesis emerges as to why cell-free systems stop functioning (amino acid or
nucleotide depletion, energy depletion, toxic byproduct accumulation or any other,
as well as any combination of those hypotheses), different models encompassing
these hypotheses will be derived mathematically, and capture some effects in the
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data, but no definite answer on what modeling strategy is the best can be found
before this question is experimentally answered.

9.6.2 Model Prediction Experimental Demonstration

In order to demonstrate that the predictions made by our model were trustworthy,
and to test how altering the optimal TF/reporter DNA concentrations determined
in the benzoic acid sensor affects the metabolic hybrid sensors, we designed a sim-
ple experimental verification. The model predicted that increasing the TF DNA
concentration from our optimized concentration (30 nM) to another concentration
that also gave good fold change from our initial TF reporter DNA assay (100 nM)
would result in a shift of the dose-response curve of fluorescence to high transducer
DNA concentration. Indeed, the unnecessary resources consumed to increase TF
production would be diverted from the enzyme production that is necessary for
efficient conversion of the inducer to benzoic acid. This effect is competing with
the increased signal that could come from having higher TF levels, but the model
predicts it to be the dominant effect, which was experimentally demonstrated using
1000 µM hippuric acid and varying the HipO concentration in two set ups, with TF
concentrations either at 30 nM or 100 nM, while keeping the reporter concentration
at 100 nM (Supplementary Figure 5: add the figure here). This verification
leads us to have greater confidence in model predictions on effects linked to resource
competition.

Figure 9.8 Model-predicted shift in HipO concentration for peak biosensor signal
at high concentrations of TF plasmid and inducer. Increasing TF plasmid
concentration results in a right-shift of HipO plasmid concentration for optimal per-
formance. Left panel: Model calculations for sfGFP output for a range of pBEST-
HipO concentrations for TF plasmid concentrations at 30 nM and 100 nM. Right
panel: Experimental results to examine if the same right-shift could be seen ex-
perimentally. Results are the mean from three experiments on three different days
and error bars represent the standard deviation. For all experiments and model
calculations, reporter plasmid concentration was fixed at 100 nM and a hippurate
inducer concentration of 1000 µM was used. All fluorescence values have relative
expression unit (REU) compared to the four hour level for 100 pM of a strong,
constitutive sfGFP-producing plasmid.
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This text was originally in the supplementary information of the paper Plug-and-
Play Metabolic Transducers Expand the Chemical Detection Space of Cell-Free
Biosensors published in Nature Communications.

9.7 Mathematical model derivation

We will base our time model on classical models of transcription and translation
and Michaelis-Menten kinetics [141]. Resource competition is mostly inspired from
[154], except used at each time step instead of at steady-state. Resource exhaustion
accounts for energy depletion and byproducts secretion. We will first present our
assumptions and then expose the model as such.

9.7.1 Hypothesis

We will make the following assumptions:
Equilibrium of fast processes compared to transcriptional and translational elonga-
tions:

• Binding and unbinding of RNAP to DNA is on a much faster scale than
elongation so considered at equilibrium

• Binding and unbinding of the transcription factor to DNA is on a much faster
scale than elongation so considered at equilibrium

• Binding and unbinding of the inducer to the transcription factor is on a much
faster scale than elongation so considered at equilibrium

• Binding and unbinding of ribosomes to mRNA is on a much faster scale than
elongation so considered at equilibrium

Steady flow of production
We will consider the flow of RNAP and ribosomes to be at steady state. That is,
we will neglect the first minutes of elongation at the start of the process before
steady-state flow of production, consider that the production rate is constant and
use effective production rates as explained in the subsection. Elongation itself is
fast but RNAP and ribosomes are shared between processes and therefore modeling
elongation and its impact on the available RNAP and ribosomes is key to modeling
resource competition.

Using the same framework as [154] for modeling resource competition, we will
therefore also adopt their notations. For the sake of the reader’s best understanding,
we will nonetheless fully derive the model of resource competition before making
further simplifications, as well as presenting our accounting of resource exhaustion
and enzyme kinetics that are absent from their model.
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9.7.2 Derivation of the resource competition model

The circuits described will consist of two types of modules: constitutively expressed
ones (enzymes and the BenR transcription factor) and inducible ones (GFP), in-
duced upon the binding by the active transcription factor u (benzoic acid/BenR
complex). The promoter complex bind is formed by u binding to the empty pro-
moter b∗ind of the gene encoding the protein pind (that appears in the translation
derivation). The binding of the available RNAP x can therefore form the active
transcriptional complex cind, producing the mRNA mind, encoding pind at a rate
γind (encompassing all elongation reactions and accounting for the global transla-
tion rate). This mRNA decays at a rate δind, and all these processes encompassing
transcription steps are exemplified below:

u+b∗ind
µ+

−−⇀↽−−
µ−

bind, bind+x
κ+

−−⇀↽−−
κ−

cind, cind
γind−−−→ bind+x+mind and mind

δind−−−→ ∅

For the constitutive expression, the model is simpler and is summarized by the
following reactions:

bconst + x
κ+

−−⇀↽−−
κ−

cconst, cconst
γconst−−−−→ bconst + x+mconst and mconst

δconst−−−−→ ∅

The translation processes are identical for constitutive and inducible promoters,
initiated by the binding of the ribosome y to the ribosome binding site (RBS)
of the mRNA m, forming the transitionally active complex d. We consider that
bound mRNA fragments cannot be degraded by RNases. Protein p is produced at
a rate π encompassing elongation and production, and is degraded at a rate λ. The
translation reactions are therefore:

m+ y
k+

−−⇀↽−−
k−

d, d
π−→ m+ y + p and p

λ−→ ∅
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The corresponding ODE system is given by equations (9.1) for induced proteins:

dbind
dt

= (µ+ub∗ind − µ−bind)− (κ+xbind − κ−cind) + γcind

dcind
dt

= (κ+xbind − κ−cind)− γcind
dmind

dt
= γcind − δmind − (k+ymind − k−dind) + πdind

ddind
dt

= (k+ymind − k−dind)− πdind
dpind
dt

= πdind − λpind

(9.1)

and by the following equations (9.2) for constitutive ones:

dcconst
dt

= (κ+xbconst − κ−cconst)− γcconst
dmconst

dt
= γcconst − δmconst − (k+ymconst − k−dconst) + πdconst

ddconst
dt

= (k+ymconst − k−dconst)− πdconst
dpconst
dt

= πdconst − λpconst

(9.2)

9.7.3 RNAP and ribosome demands

Notations

We assume DNA concentration ni is constant for each species. We will introduce
some notations that will allow us to simplify our problem given the assumptions
presented in 9.7.1

κi = κ−i + γi

κ+
i

, ki = k−i + πi

k+
i

, and hi = γini
δi

We also introduce µ = µ−

µ+ , and

ε =
u
µ (1 + x

κ )
1 + u

µ (1 + x
κ )

As was done in [154], we use ε to describe the fraction of induced promoters for our
inducible gene.

For our BenR biosensor modeling, we used
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TF activated = TF ∗ inducer

inducer +Kinducer
d

+ 0.0005

ε = TF activated

TF activated +Kactivated
d × 1000

The first equation represents transcription factor activation by the inducer, includ-
ing some leaky activation, while the second equation represents the activation of
the promoter by the activated transcription factor.

Simpli�cation and resolution

Using the assumptions presented in 9.7.1, we can consider that

db

dt
= 0

dc

dt
= 0

dd

dt
= 0

(9.3)

This allows us to neglect binding events and consider the system to be at equilib-
rium for binding/unbinding events on time scales inferior to the production and
degradation of mRNA and proteins. Therefore, the RNAP and ribosomes are al-
ways split between genes and mRNAs and can be solved using the same technique
as in [154], considering resource conservation.

Using dc
dt = 0, and then db

dt = 0 we obtain:

dc

dt
= 0⇔ (κ+xb− κ−c)− γc = 0

⇔ c = xbκ+

κ+γ

⇔ c = xb

κ

(9.4)

db

dt
= 0⇔ (µ+ub∗ − µ−b)− dc

dt
= 0

⇔ (µ+ub∗ − µ−b) = 0

b∗ = µ−b

µ+u

(9.5)
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Using DNA conservation, i.e.: n = c+ b+ b∗, we have:

n = c+ b+ b∗

= xb

κ
+ b+ µ−b

µ+u

= (x
κ

+ 1 + µ−

µ+u
)b

b = n
x
κ + 1 + µ−

µ+u

c = xb

κ

= x

κ

n
x
κ + 1 + µ−

µ+u

= xn

κ

1
x
κ + 1 + µ

u

= xn

κ

u

µ

1
1 + u

µ (1 + x
κ )

= n
x

κ

x+ κ

x+ κ

u

µ

1
1 + u

µ (1 + x
κ )

= n
x

x+ κ

x+ κ

κ

u

µ

1
1 + u

µ (1 + x
κ )

= n
x

x+ κ

u

µ

x+κ
κ

1 + u
µ (1 + x

κ )

= n
x

x+ κ
ε

(9.6)

Therefore,

dm
dt = γnε x

x+κ − δm

For constitutive expression, derivation is much simpler, and we easily obtain c =
n x
x+κ , or c = nε x

x+κ with ε = 1, considering all promoters are active. Using the
same strategy, considering dd

dt = 0, we obtain d = ymf

k , wheremf is the free mRNA.
Considering that mRNA production and degradation is constant on the time scale
of ribosome binding, and that the total amount of mRNA is m (both bound and
unbound, the product of transcription from the previous steps), applying the same
derivation to m = mf + d instead of n = c+ b leads to d = m y

y+k , and

dp

dt
= πm

y

y + k
− λp

Our time evolution model is therefore

dm

dt
= γnε

x

x+ κ
− δm
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dp

dt
= πm

y

y + k
− λp

.

Repartition between genes and mRNAs

This model allows us to account for resource competition by calculating the repar-
tition of ribosomes and RNAP among different processes at each time step.

The explanation will be done for RNAP (x) and is similar for ribosomes (y). We
consider the conservation law for RNAP:

Xtot = x+ cGFP + cenz + cBenR

. We look for an integer x minimizing the error so that

Xtot ' x+ ε× nGFP
x

x+ κGFP
+ nenz

x

x+ κenz
+ nBenR

x

x+ κBenR

which is the optimal RNAP repartition at this time step.

9.7.4 Accounting for resource depletion and toxicity

We decided to account for the exhaustion of the cell-free system in two different
ways. First, we consider that there are a limited number of mRNAs that can be
produced due to limited nucleotides supply or energy. This is done by multiply-
ing transcription rates by resources

resources+Kresource
d

We do not consider a limit on amino
acids as they are supplemented in the cell-free system, and mRNA production has
been shown to stop rapidly in cell-free systems. Each mRNA produced consumes
its length in nucleotides. Moreover, we consider that producing proteins also ac-
cumulates toxic byproducts, which slow down reactions for both translation and
transcription, by multiplying transcription and translation rates by a function of
the form Ktox

d

Ktox
d

+ToxicProduct . We consider that each produced protein contributes to
this effect, rather than amino acids, as we consider toxicity to be due to the fully
formed proteins producing by-products or slowing down the extract. Our aim is to
reproduce the exhaustion effect qualitatively.

9.7.5 Enzymatic steps

For modeling enzymatic steps, i.e. the conversion of the inducer (either cocaine or
hippurate) into benzoic acid, we use Michaelis-Menten kinetics [141]:

rate = enzyme ∗ kcat
substrate

substrate+KM
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9.7.6 Typical range of biochemical parameters

Considerations on cell-free systems

The experimental set-up (cell-free system) allows us to consider nominal DNA con-
centration values instead of having to consider plasmid copy number as would have
to be done in vivo. Moreover, the rates will be derived here for in vivo systems and
will be divided by 10 for simulations, as reactions have been shown to be slower
in cell-free compared to in vivo [414] and an order of magnitude of difference is
suggested in [411] and [416]. Final parameters used for numerical simulations can
be found in Table 9.5.

Production rates

We will derive all rates as if it were in vivo and divide them by 10 for cell-free
modeling.

According to [451], the mRNA chain elongation rate is ≈ 50 nucleotides per sec.
The mRNA production rate γ in minutes is therefore γprotein = 50

lengthprotein
∗ 60.

Moreover, the peptide chain elongation rate is ≈ 15 amino acids per sec, which
means the protein production rate π in minutes is therefore πprotein = 15

lengthprotein
∗

60.

Protein name Length in
nucleotides

Length in
amino acids γ π

GFP 720 240 4.2 /min 3.75 /min
BenR 954 318 3.35 /min 2.83 /min
HipO 1200 400 2.5 /min 2.25 /min
CocE 1700 560 1.76 /min 1.61 /min

Table 9.1 In vivo transcription and translation rates.

Degradation rates

Since the mRNA half-life is measured to be about 15 minutes in cell-free systems
[410], we use δ = 0.05 /min. For in vivo systems, mRNA half-life is shorter, around
4 min, so we use δ = 0.2 /min.

The protein half-life is approximately 1 hour in vivo [452]. As our system is purified
from extract, we consider that proteases are still present and we use λ= 0.0016 /min
(in vivo rate divided by 10). Changing it affects time evolution but not the effect
of DNA and inducer concentrations at 240 min that were studied in this article
(results not shown).

226



Transcription and translation rates

According to [453], there can be a transcription initiation every 5 seconds on a DNA
strand. Using the fact that the mRNA chain elongation rate is ≈ 50 nucleotides per
sec, there are, on the same DNA, at most ω RNAP, with ω = round( lengthprotein

50∗5 )+1.
We will rather consider the genes to be present in ω ∗ n numbers and being able to
recruit only 1 RNAP.

In the same manner, we have to account for the fact that multiple ribosomes can
be translating the same mRNA strand, but we will assume the average distance
between ribosomes to be around 80 nucleotides. We then have at most χ ribosomes
on a strand, where χ = round( lengthprotein

80 ) + 1, and we will consider mRNA to be
able to bind a single ribosome, with an effective protein production rate of χ ∗ π
for each mRNA.

Protein name Length in
nucleotides ω χ

GFP 720 4 10
BenR 954 5 13
HipO 1200 6 16
CocE 1700 8 22

Table 9.2 Number of RNAP/ ribosomes per DNA/ mRNA strand

Protein name χ π Effective in vivo π Effective cell-free π
GFP 10 3.75 37.5 3.75
BenR 13 2.83 36.79 3.679
HipO 16 2.25 36 3.6
CocE 22 1.61 35.42 3.542

Table 9.3 Effective translation rates in vivo and in cell-free

Enzymes' catalytic constants

For the two enzymes considered, CocE and HipO, the values used from BRENDA
are listed in Table 9.4 [454]. The exact values in our cell-free system may differ from
the values in BRENDA as these are often measured in vitro and vary according to
the organism the enzyme is taken from and the organism or cell-free extract it is
expressed in. However, we believe they should still be accurate within an order of
magnitude and we expect small changes to have minimal effect on simulation end
results due to their fast kinetics related to the other system components. Moreover,
despite their possible disadvantages, we prefer using literature values when possible
so as to leave a minimum number of parameters free.
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Protein name kcat, 1/min KM in µM
HipO 5880 764
CocE 3060 5.7

Table 9.4 Enzymes’ catalytic constants.

Handling of RBS and DNA binding

Using the same order of magnitude for RNAP binding constants as [154], we used:
κGFP = 100 nM; κHipO = κBenR = 3000 nM, as these are expressed constitutively
under the same promoter. Since CocE was on a promoter that was weaker than
that of HipO (See Supplementary Figure 3), we used κCocE = 4500 nM.

Following the same reasoning, we use kGFP = 1 µM, and kBenR = kHipO = 10 µM.
Moreover, using the RBS calculator [455], we found that using gene context and the
RBS, initiation of CocE is slower than initiation of HipO. Knowing that the RBS
calculator is more trustworthy for trends than qualitative values, we implemented
that using kCocE = 30 µM, i.e.: less efficient in binding ribosomes, since initial
elongation rate does not appear in our modeling framework. This value was chosen
at it recapitulates our data well.

9.7.7 Numerical simulations

Parameters

Parameters used for the final simulations are presented in Table 9.5. A constant
value of 0.05 is added to account for background on all data points.

9.7.8 Computational methods

Software tools

All scripts were done in R (version 3.2.3, [388]), using RStudio as an integrated
development environment (version 0.99.903, [456]). The ODE solver used is ode
from de deSolve package (version 1.14, [389]). For visualization, packages reshape2
[457] and ggplot2 [458] are used.

Availability

Scripts are available on Github at https://github.com/brsynth.
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Parameter Value Unit
κGFP 100 nM
κBenR 3000 nM
κHipO 3000 nM
κCocE 4500 nM
γGFP 0.42 min−1

γBenR 0.335 min−1

γHipO 0.25 min−1

γCocE 0.176 min−1

kGFP 1 µM
kBenR 10 µM
kHipO 10 µM
kCocE 30 µM
πGFP 3.75 min−1

πBenR 3.679 min−1

πHipO 3.6 min−1

πCocE 3.542 min−1

lengthmRNAGFP 720 nucleotides
lengthmRNABenR 954 nucleotides
lengthmRNAHipO 1200 nucleotides
lengthmRNACocE 1700 nucleotides

kHipOcat 5880 min−1

kCocEcat 3060 min−1

kHipOM 764 mM
kCocEM 5.7 mM

SpontaneoushydrolisationHipO 0 µM
SpontaneoushydrolisationCocE 0.0001 µM

ωGFP 4 No unit
ωBenR 5 No unit
ωHipO 6 No unit
ωCocE 8 No unit
Kinducer
d 100 µM

Kactivated
d 50 µM
δ 0.05 min−1

λ 0.0016 min−1

nGFP 100 nM
nBenR 30 nM
X 30 nM
Y 30 nM
Ktox
d 100 nM

KmRNA
d 10 nucleotides

Initialresource 10000000 nucleotides
Table 9.5 Numerical parameters used during simulations
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9.7.9 Supplementary Figures: time courses and real world

application

Figure 9.9 Time course of the benzoic acid biosensor response to varying concentra-
tions of inducer. Kinetics of optimized benzoic acid sensor at 37 ◦C, where the
TF plasmid concentration was 30 nM and the reporter plasmid concentration was
100 nM. Data are the average, with standard deviation, of three technical repeats
from three experiments performed on three different days and all fluorescence val-
ues have REU compared to the four hour level for 100 pM of a strong, constitutive
sfGFP-producing plasmid. Fold change measurements were taken from the four
hour time point.

Figure 9.10 Time course of the hippuric acid biosensor response to varying concen-
trations of inducer. Kinetics of optimized hippuric acid sensor at 37 ◦C, where
the HipO plasmid concentration was 3 nM and the TF and reporter plasmids were
maintained at the same concentrations as the optimized benzoic acid sensor (30 nM
and 100 nM, respectively). Data are the average, with standard deviation, of three
experiments performed on three different days and all fluorescence values have
REU compared to the four hour level for 100 pM of a strong, constitutive sfGFP-
producing plasmid. Fold change measurements were taken from the four hour time
point.

230



Figure 9.11 Time course of the cocaine biosensor response to varying concentrations
of inducer. Kinetics of optimized cocaine biosensor at 30 ◦C, in which the CocE
plasmid concentration was 10 nM and the TF and reporter plasmids were main-
tained at the same concentrations as the optimized benzoic acid sensor (30 nM
and 100 nM, respectively). Data are the average, with standard deviation, of three
experiments performed on three different days and all fluorescence values have
REU compared to the four hour level for 100 pM of a strong, constitutive sfGFP-
producing plasmid. Fold change measurements were taken from the four hour time
point.
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(a)

(b)

Figure 9.12 Time course of the benzoic biosensor response to 1x and 0.1x beverages.
Kinetics of sfGFP expression at 37 ◦C using our optimized benzoic acid biosensor
to detect benzoates in commercial beverages. The top panel depicts kinetics in
response to addition of 2 µL of unaltered beverage to a 20 µL cell-free reaction. The
bottom panel depicts kinetics after the samples were first diluted 1:10 in water
before being added to the reaction. ’Orangina Original’ and ’Monster Original’
include sodium benzoate and benzoic acid, respectively, in their list of ingredients.
’Monster The Doctor’ lists no benzoates in the ingredients. Water was used in
place of the beverage for the negative control. Data depict the mean of three
experiments conducted on three different days and error bars represent the standard
deviation. Fluorescence intensity y-axis scale was adjusted for the weaker signal
dilution experiment to enable adequate visualization of the kinetics.
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(a)

(b)

Figure 9.13 Interference of 0.1x and 1x beverages on cell-free reaction with consti-
tutive sfGFP plasmid. Ten-fold dilution of inducing beverage in water greatly
reduces their interference in cell-free reactions. 2 µL of either 1x (top panel) or 0.1x
(bottom panel) beverages were added to 20 µL cell-free reactions containing 10 nM
of the strong constitutive GFP plasmid pBEAST-sfGFP. Fluorescence intensities
at four hours were normalized to a negative control containing water instead of
the commercial beverage. Data are mean values from three experiments on three
different days and error bars represent the standard deviation.
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Figure 9.14 Hill plot fit of a standard gradient of benzoic acid to calibrate sensor. A
standard gradient of benzoic acid concentration was added to our optimized benzoic
acid sensor at 37 ◦C for four hours. The fluorescence intensity values were fit to
a Hill plot function in order to convert fluorescence measurements of benzoates in
beverages into sample concentration. The data are the mean of three experiments
on three different days and error bars represent the standard deviation.

Figure 9.15 Interference of human urine on cell-free reaction with constitutive sfGFP
plasmid. Ten-fold dilution in urine in the presence of an RNase inhibitor minimizes
interference of human urine on cell-free production. Urine samples from six patients
(U1-U6) were diluted 1:10 in water and 2 µL were added to20 µL cell-free reactions
(1 % final concentration) containing 10 nM of the strong constitutive GFP plasmid
pBEAST-sfGFP and 0.8 U · µL−1 of a murine RNase inhibitor. Fluorescence inten-
sities at four hours were normalized to a negative control containing water instead
of urine. Data are mean values from three experiments on three different days and
error bars represent the standard deviation.
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Figure 9.16 Hill plot fit of a standard gradient of hippuric acid to calibrate sensor.
A standard gradient of hippuric acid concentration was added to our optimized
hippuric acid sensor with 0.8 U · µL−1 of a murine RNase inhibitor at 37 ◦C for four
hours. The fluorescence intensity values were fit to a Hill plot function in order to
convert fluorescence measurements of hippuric acid in urine samples into sample
concentration. The data are the mean of three experiments on three different days
and error bars represent the standard deviation.

Figure 9.17 Correlation between cell-free biosensor and LC-MS measurements of en-
dogenous hippuric acid levels in human urine. Quantified cell-free biosensor
values of hippuric acid measurement were determined using a Hill plot fit to our
standard curve (9.16) and cell-free data are the mean of three experiments on three
different days (error bars represent standard deviation). LC-MS measurements are
from a single measurement. R2 value was calculated by a linear regression fit.
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Figure 9.18 Detection of cocaine spiked into clinical urine samples with sfGFP output
module. A standard gradient of cocaine hydrochloride was added with 2 µL of a
human urine sample to20 µL cell-free reactions containing our optimized cocaine
biosensor with 0.8 U · µL−1 of a murine RNase inhibitor and incubated at 30 ◦C for
eight hours. Fold change was calculated relative to the 0 µM cocaine inducer. Data
are from a single pilot experiment.

Figure 9.19 Cell-free reactions accumulate autofluorescent products in the GFP
channel even in the absence of DNA. Data are from one 20 µL cell-free reaction
containing only buffer, extract, and water incubated at 37 ◦C for 12 hours.
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Figure 9.20 Use of firefly luciferase as an output module enhances benzoic acid sensor
fold change. The firefly luciferase gene was cloned under the PBen promoter and
added to 20 µL cell-free reactions at the same plasmid concentrations previously
used with sfGFP (TF = 30 nM; Reporter = 100 nM). Reactions were incubated
at 37 ◦C for eight hours and subsequently luciferase activity was measured on a
plate reader after addition of 50 µL luciferase assay reagent. Data (purple line)
was normalized to the 0 µM benzoic acid concentration and are from a single pilot
experiment. Superfolder GFP curve (green line) is from FIGURE 2c and used as
visual comparison.
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(a)

(b)

Figure 9.21 Comparison of benzoic acid and cocaine biosensor expression in response
to urinary cocaine gradient. A standard gradient of cocaine hydrochloride
was added with 2 µL of human urine sample to 20 µL cell-free reactions containing
either our optimized benzoic acid sensor or cocaine sensor with0.8 U · µL−1 RNase
inhibitor as in FIGURE 4d . After incubatation at 30 ◦C for eight hours, the samples
were transferred to white 96-well plates and 50 µL of luciferase assay reagent was
added. The plates were subsequently read on a plate reader two minutes after
adding the reagent and luciferase measurements in arbitrary units (AU) are shown
above for both the benzoic acid sensor (top panel) and cocaine sensor (bottom
panel). Data are mean values from three experiments on three different days and
error bars represent the standard deviation.
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9.7.10 Supplementary Tables

Fluorescence results from calibration of TF and reporter plas-
mids. Values represent those in Fig 9.2b and are the mean ± standard
deviation for three experiments on three different days.
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Cell-Free Biosensor
Concentration (µg ·mL−1)

LC-MS
Concentrations

Beverage
Name

Replicate
1

Replicate
2

Replicate
3

Mean ± St.
Dev.

(µg ·mL−1)

Orangina®
Bottle

170.5 143.3 197.8 170.6 ± 22.3 154.23

Orangina®
Can

10.3 3.4 9.6 7.7 ± 3.1 2.86

Orangina®
Zero

16.6 11.8 12.3 13.6 ± 2.2 1.65

Generic
Brand

18.1 13.8 10.3 14.1 ± 3.2 Not detectable

Monster®
Original

304.4 172.5 217.4 231.4 ± 54.8 211.52

Monster®
Absolutely
Zero

147.8 139.0 193.9 160.2 ± 24.1 718.97

Monster®
Ultra

172.3 150.9 154.6 159.3 ± 9.3 326.88

Monster®
Ultra Red

191.1 169.0 208.4 189.5 ± 16.1 664.35

Monster®
’The Doctor’

19.0 15.6 11.0 15.2 ± 3.3 1.61

Monster®
Punch

575.9 157.4 196.3 309.9 ± 188.8 315.60

Table 9.8 Benzoate concentration in commercial beverages determined from three
replicates of our cell-free biosensor and LC-MS. Values represent those in
Fig 9.5b . Cell-free biosensor replicates are from three experiments performed on
three separate days.

Balnk Benzoic Acid Sensor Fluorescence (AU)
Urinary Sample Replicate 1 Replicate 2 Replicate 3 Mean ± St. Dev.
U1 148 148 144 147 ± 2.31
U2 155 157 165 159 ± 5.29
U3 167 193 210 190 ± 21.7
U4 137 136 129 134 ± 4.36
U5 150 116 131 132 ± 17.04
U6 132 118 136 129 ± 9.45
Negative Control 152 121 134 13 ± 15.6

Table 9.9 Benzoic acid sensor shows minimal activation in response to human urine
without HipO metabolic transducer. Replicates are from three experiments
performed on three separate days.
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(a)

(b)
Fluorescence results from calibration of HipO and CocE metabolic
transducer plasmids. Values represent those in Figure 9.4a and are the
mean pm standard deviation for three experiments on three different days.

Cell-Free Biosensor Hippuric Acid
Concentration (µg ·mL−1)

LC-MS
Concentrations

Urine Sample Replicate
1

Replicate
2

Replicate
3

Mean ± St.
Dev.

(µg ·mL−1)

Urine 1 367.1 570.1 800.9 579.4 ± 177.2 368.90
Urine 2 97.6 167.8 152.2 139.2 ± 30.1 145.98
Urine 3 218.5 342.7 471.3 344.2 ± 103.2 261.91
Urine 4 218.5 331.3 394.3 314.7 ± 72.7 305.49
Urine 5 47.3 72.6 125.1 81.6 ± 32.4 100.47
Urine 6 697.3 840.1 2142.5 1226.6 ± 650.2 700.91

Table 9.10 Endogenous hippuric acid concentration in human urine samples deter-
mined from three replicates of our cell-free biosensor and LC-MS. Values
represent those in Fig 9.5c . Cell-free biosensor replicates are from three experi-
ments performed on three separate days.
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9.7.11 SensiPath Metabolic Space Analysis

In order to probe how many biosensors could be engineered using our workflow, we
downloaded the HMDB database [459] as of 25/05/2018. A set of 1445 biomarkers,
with a molecular weight <500 atomic mass units (amu), was compiled for which at
least one disease was identified (Supplementary Data 1).
Next, we used the RetroPath algorithm [138] embedded in the SensiPath web server
[77]. RetroPath finds metabolic pathways linking analytes (source set) to effectors
(sink set), i.e. small molecules activating or inhibiting transcription factors. Tak-
ing as a sink set of 727 effectors taken from a database we recently released [76],
RetroPath was run using 20845 metabolic reaction rules extracted from MetaNetX
[202]. We found that 192 out of 1445 biomarkers were effectors and could thus
directly be detected by transcription factors. We also found that 1205 out of 1445
biomarkers could be transformed into 392 effectors through ∼80000 one-step path-
ways. We observed that several biomarkers could be transformed into the same
effector while other biomarkers could be transformed into different effectors (see
Supplementary Data 1). Finally, we found that ∼25 % of biomarkers were shared
by at least two diseases. Therefore, while one can develop biosensors and re-purpose
them for several diseases, biosensors can also be designed for a panel of biomarkers
specific to a given disease. Altogether these results show a great potential for our
workflow to engineer many biosensors detecting several pathological biomarkers.
We also probed to which extend our benzoate sensor could be used to detect var-
ious biomarkers. To that end, we computed how many HMDB metabolites could
be connected to benzoate via RetroPath applying reverse reaction rules (computed
from MetaNetX) to benzoate. We found that 64 HMDB metabolites could be
transformed into benzoate via a one-step enzymatic transformation (Supplemen-
tary Data 2).
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10Metabolic Perceptrons for
Neural Computing in
Biological Systems

This work was published in Nature Communications by Amir Pandi *, Mathilde
Koch *, Peter Voyvodic, Paul Soudier, Jérôme Bonnet, Manish Kushwaha and
Jean-Loup Faulon.
Only minor modifications to the published paper have been introduced in the Chap-
ter below.
* stands for equal contributions.

Detailed contribution to this thesis

In this article, complex synthetic biology circuits were developed using design tools
presented in Part I and modeling and analysis tools to learn from previous de-
signs and improve the circuits. More precisely, in a first step, the biosensors and
metabolic transducers were modeled using custom Hill functions. Then, in a second
step, behavior when combining those transducers was predicted in silico and tested
in vivo and in cell-free systems. Our aim was first build weighted adders, which can
then be modified to make a perceptron, the most basic machine learning algorithm,
which is essentially a digitalized weighted sum. The control my colleagues and I
require on part quantity (notably enzyme) was only possible to achieve in cell-free
systems. My model was used to predict the enzyme quantities necessary to achieve
the logic gates we wished to implement in our cell-free perceptrons. Therefore,
my contribution to this project involved data analysis, modeling and prediction for
further experimental designs.

Full reference

Pandi A.*, Koch M.*, Voyvodic P., Soudier P., Bonnet J., Kushwaha M. and Faulon
J.-L. (2019) Metabolic perceptrons for neural computing in biological systems Na-
ture Communications, 10.1038/s41467-019-11889-0.
* stands for equal contributions.
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Contributions as stated in the article

A.P., M.Ko., M.Ku. and J.-L.F. designed the project. A.P. designed and cloned
the constructs, and performed the whole-cell experiments. A.P., P.L.V., and J.B.
designed cell-free experiment platform. A.P., P.L.V., and P.S. performed cell-free
experiments. MKo. performed computational model simulations. All authors con-
tributed to the manuscript write-up and approved the final manuscript.

10.1 Abstract

Synthetic biological circuits are promising tools for developing sophisticated systems
for medical, industrial, and environmental applications. So far, circuit implemen-
tations commonly rely on gene expression regulation for information processing
using digital logic. Here, we present a new approach for biological computation
through metabolic circuits designed by computer-aided tools, implemented in both
whole-cell and cell-free systems. We first combine metabolic transducers to build an
analog adder, a device that sums up the concentrations of multiple input metabo-
lites. Next, we build a weighted adder where the contributions of the different
metabolites to the sum can be adjusted. Using a computational model fitted on
experimental data, we finally implement two four-input ’perceptrons’ for desired bi-
nary classification of metabolite combinations by applying model-predicted weights
to the metabolic perceptron. The perceptron-mediated neural computing intro-
duced here lays the groundwork for more advanced metabolic circuits for rapid and
scalable multiplex sensing.

10.2 Introduction

Living organisms are information-processing systems that integrate multiple input
signals, perform computations on them, and trigger relevant outputs. The multi-
disciplinary field of synthetic biology has combined their information-processing ca-
pabilities with modular and standardized engineering approaches to design sophis-
ticated sense-and-respond behaviors [33, 32, 31]. Due to similarities in information
flow in living systems and electronic devices [460], circuit design for these behaviors
has often been inspired by electronic circuitry, with substantial efforts invested in
implementing logic circuits in living cells [460, 19, 18]. Furthermore, synthetic bi-
ological circuits have been used for a range of applications including biosensors for
detection of pollutants [20, 21] and medically-relevant biomarkers [22, 23], smart
therapeutics [24, 25] and dynamic regulation and screening in metabolic engineer-
ing [26, 75] (and Chapter 6).
Synthetic circuits can be implemented at different layers of biological information
processing, such as: (i) the genetic layer comprising transcription [29] and transla-
tion [74], (ii) the metabolic layer comprising enzymes [47, 461] and (iii) the signal
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transduction layer comprising small molecules and their receptors [462, 5]. Most
designs implemented so far have focused on the genetic layer, developing circuits
that perform computations using elements such as feedback control [54], memory
systems [463, 464], amplifiers [465, 466], toehold switches [467], or CRISPR machin-
ery [468, 469]. However, gene expression regulation is not the only way through
which cells naturally perform computation. In nature, cells carry out parts of
their computation through metabolism, receiving multiple signals and distributing
information fluxes to metabolic, signaling, and regulatory pathways [47, 48, 46].
Integrating metabolism into synthetic circuit design can expand the range of input
signals and communication wires used in biological circuits, while bypassing some
limitations of temporal coordination of gene expression cascades [41, 42].
The number of inputs processed by synthetic biological circuits has steadily in-
creased over the years, including physical inputs like heat, light, and small molecules
such as oxygen, IPTG, anhydrotetracycline (aTc), arabinose and others. However,
most of these circuits process input signals using digital logic, which despite its
ease of implementation lacks the power that analog logic can offer [33, 52, 53]. The
power of combining digital and analog processing is exemplified by the ’perceptron’,
the basic block of artificial neural networks inspired by human neurons [470] that
can, for instance, be trained on labeled input datasets to perform binary classifica-
tion. After the training, the perceptron computes the weighted sum of input signals
(analog computation) and makes the classification decision (digital computation)
after processing it through an activation function.
Here we describe the development of complex metabolic circuitry implemented us-
ing analog logic in whole-cell and cell-free systems by means of enzymatic reactions.
For circuit design, we first employ computational design tools, Retropath [138] and
Sensipath [77], that use biochemical retrosynthesis to predict metabolic pathways
and biosensors. We then build and model three whole-cell metabolic transducers
and an analog adder to combine their outputs. Next, we transfer our metabolic
circuits to a cell-free system [471, 308] in order to take advantage of the higher tun-
ability and the rapid characterization it offers [72, 70, 472], expanding our system
to include multiple weighted transducers and adders. Finally, using our integrated
model fitted on the cell-free metabolic circuits we build a more sophisticated de-
vice called the ’metabolic perceptron’, which allows desired binary classification of
multi-input metabolite combinations by applying model-predicted weights on the
input metabolites before analog addition, and demonstrate its utility through two
examples of four-input binary classifiers. Altogether, in this work we demonstrate
the potential of synthetic metabolic circuits, along with model-assisted design, to
perform complex computations in biological systems.
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10.3 Results

10.3.1 Whole-cell processing of hippurate, cocaine and

benzaldehyde inputs

To identify the metabolic circuits to build, we use our metabolic pathway design
tools, Retropath [138] and Sensipath [77]. These tools function using a set of sink
compounds at the end of a metabolic pathway, here metabolites from a dataset
of detectable compounds [76], and a set of source compounds that can be used as
desired inputs for the circuit. The tools then propose pathways and the enzymes
that can catalyze the necessary reactions, allowing for promiscuity. Our metabolic
circuit layers are organized according to the main processing functions: transduc-
tion and actuation (Figure 10.1a). Transducers are the simplest metabolic circuits
that function as SEMP [262], consisting of one or more enzymes that transform an
input metabolite into a transduced metabolite. The transduced molecule, in turn,
is detected through an actuation function that is implemented using a transcrip-
tional regulator.
We used benzoate as our transduced metabolite, its associated transcriptional ac-
tivator BenR, and the responsive promoter pBen to construct the actuator layer
of our whole-cell metabolic circuits [473]. To compare the shape of the response
curve, we constructed the actuator layer in two formats: (i) an open-loop circuit
(Figure 10.1b) and (ii) a feedback-loop circuit (Figure 10.7). When compared
to the open-loop format, the feedback-loop circuit has previously been shown to
exhibit a linear dose-response to input [54, 474]. We found that while the feedback-
loop format does linearize the actuator response curve, it also reduces its dynamic
range (Supplementary Figure 10.7). Furthermore, the growth inhibition observed
at high concentrations makes it difficult to recover the lost dynamic range by fur-
ther addition of benzoate (Supplementary Figure 10.12). Therefore, we selected the
open-loop format due to its higher dynamic range of activation in the tested range
of benzoate concentration (Figure 10.1c), setting the maximum concentration of
benzoate used in this work to the saturation point of this open-loop circuit.
We have previously implemented sensing-enabling metabolic pathways in whole-
cells for detection of molecules like cocaine, hippurate, parathion and nitroglycerin
[331]. Building on that work, here we implemented three upstream transducers that
convert different input metabolites into benzoate for detection by the actuator layer
already tested. The transducer layers were composed of enzymes HipO for hippu-
rate (Figure 10.1d), CocE for cocaine (Figure 10.1e), and an amidase coded by vdh
gene for benzaldehyde (Figure 10.1f). Compared to the benzoate output signal, we
found that the transduction capacities of the three transducers were 99.6%, 49.2%,
and 77.8%, respectively (10.8), indicating a partial dissipation in signal.
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Figure 10.1 Whole-cell actuator and metabolic transducers. a Designed synthetic
metabolic circuits using Retropath [138] or Sensipath [77] consist of a transducer
layer and an actuator layer. b Open-loop circuit construction of the benzoate ac-
tuator, which is used downstream of transducer metabolic circuits in this work.
For the open-loop circuit, the gene encoding the TF is expressed constitutively un-
der control of the promoter J23101 and RBS B0032. c Dose-response plot of the
open-loop circuit for the benzoate actuator. The gray curve is a model-fitted curve
(see Methods section) for the open-loop circuit. d, e, f Whole-cell metabolic trans-
ducers for hippurate d, cocaine e and benzaldehyde f represented in dose-response
plots (orange circles) and their associated dose-response when there is no enzyme
present (blue circles). The blue dotted lines refer to the maximum signal from the
actuator c. The transducer output benzoate is reported through the open-loop
circuit actuator. The genes encoding the enzymes are expressed under constitutive
promoter J23101 and RBS B0032. All data points and the error bars are the mean
and standard deviation of normalized values from measurements taken from three
different colonies on the same day.
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10.3.2 A Whole-cell metabolic concentration adder

A metabolic concentration adder is an analog device composed of more than one
transducer that converts their respective input metabolites into a common trans-
duced output metabolite. For our whole-cell concentration adder, we combined
two transducers to build a hippurate-benzaldehyde adder actuated by the benzoate
circuit (Figure 10.2a). Unlike digital bit-adders that exhibit an ON-OFF digital
behavior, our metabolic adders exhibit a continuous analog behavior that is natu-
ral for metabolic signal conversion [475] (Figure 10.2b and Supplementary Figure
10.9). Increasing the concentration of one of the inputs at any fixed concentration
of the other shows an increase in the output benzoate, and thus in the resulting
fluorescence (Figure 10.2b and Supplementary Figure 10.9).
The maximum output signal for our analog adder, when hippurate and benzalde-
hyde were both at the maximum concentration of 1000 µM, was lower than the
maximum signal produced by hippurate and benzaldehyde transducers alone (Sup-
plementary Figure 10.8). However, as seen above, the difference between the max-
imum signal of their transducers and the actuator was smaller. The dissipation
in signal could either be because of resource competition (as a result of adding
more genes) or because of enzyme efficiency (as a result of poorly balanced enzyme
stoichiometries). To test these two hypotheses, we investigated the effect of the
enzymes on cellular resource allocation. For this purpose, the cocaine transducer
and the hippurate-benzaldehyde adder were characterized by adding benzoate to
these circuits (Supplementary Figures 10.10 and 10.11). Comparing the results of
these characterizations with the benzoate actuator reveals that dissipation in signal
from the transducers to the actuators is due to enzyme efficiency (Supplementary
Figure 10.10), whereas that from the adders to the actuators is due to resource
competition (Supplementary Figure 10.11). The effect of the metabolic circuits on
cell physiology are presented as the specific growth rate (µ) of the cells harboring
the circuits at different concentrations of inputs (Supplementary Figures 10.12 and
10.13). Compared to the specific growth rate of cells containing empty plasmids
(µ = 1.05 ± 0.32 h−1), adding the metabolic circuits alone results only in a mild
growth reduction. However, adding the metabolic circuits with their input metabo-
lite(s) has a much more pronounced effect on growth reduction, particularly at high
concentrations.
In order to gain a quantitative understanding of the circuits’ behavior, we empir-
ically modeled their individual components to see if we were able to successfully
capture their behavior. We first modeled the actuator (gray curve in Figure 10.1c)
using Hill formalism [155] as it is the component that is common to all of our
outputs and therefore constrains the rest of our system. We then modeled our
transducers, considering enzymes to be modules that convert their respective in-
put metabolites into benzoate, which is then converted to the fluorescence output
already modeled above. This simple empirical modeling strategy would be able to
explain our transducer data, including the effects of enzyme efficiency, but not to
account for observations made in Supplementary Figure 10.11, which is why we also
included resource competition is our models to explain circuits with one or more
transducers. To this end, we extended the Hill model to account for resource com-
petition following previous works [153, 158], with a fixed pool of available resources
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for enzyme and reporter protein production that is depleted by the transducers.
This extension is further presented in the Methods section. We fitted our model on
all transducers, with and without resource competition (i.e. individual transducers,
or transducers where another enzyme competes for the resources). This model (pre-
sented in gray lines in Figure 10.1d,e,f and Figure 10.2c), which was not trained on
adder data but only on actuator, transducer, and transducers with resource com-
petition data, recapitulates it well. This indicates that the model accounts for all
important effects underlying the data. The full training process is presented in the
Methods section, and a table summarizing scores of estimated goodness of fit of
our model is presented in Supplementary Table 10.3.

Figure 10.2 Whole-cell metabolic adder of hippurate and benzaldehyde. a Hippurate
and benzaldehyde transducers are combined to build a metabolic adder producing
a common output, benzoate, which is reported through the benzoate actuator.
The genes encoding the enzymes are expressed in one operon under control of
constitutive promoter J23101 and RBSs B0032 for HipO and B0034 for vdh. b
Heat-map representing the output of the adder while increasing the concentration
of both inputs, hippurate and benzaldehyde. All data points are the mean of
normalized values from measurements taken from three different colonies on the
same day. c Model simulations for experimental conditions presented in b. The
model was fitted on transducer data and resource competition data.
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10.3.3 Cell-free processing of multiple metabolic inputs

Cell-free systems have recently emerged as a promising platform [471] that provide
rapid prototyping of large libraries by serving as an abiotic chassis with low suscep-
tibility to toxicity. We took advantage of an E. coli cell-free system with the aim of
increasing the computational potential of metabolic circuits in several ways (Figure
10.3a). Firstly, a higher number of genes can be simultaneously and combinatorially
used to increase the complexity and the number of inputs for our circuits. Secondly,
the lower noise provided by the absence of cell growth and maintenance of cellu-
lar pathways [476] improves the predictability and accuracy of the computation.
Thirdly, having genes cloned in separate plasmids enables independent tunability
of circuit behavior by varying the concentration of each part individually. Finally,
cell-free systems are highly adjustable for different performance parameters and
components. In all, these advantages of cell-free systems enable us to develop more
complex computations than the whole-cell analog adder.
Following from our recent work [173] (and Chapter 9), we first characterized a cell-
free benzoate actuator to be used downstream of other metabolic transducers. Fig-
ure 10.3a shows a schematic of the cell-free benzoate actuator composed of a plas-
mid encoding the BenR transcriptional activator and a second plasmid expressing
sfGFP reporter gene under the control of a pBen promoter. This actuator showed
a higher operational range than the whole-cell counterpart (Figure 10.1c). The op-
timal concentration of the TF plasmid (30 nM) and the reporter plasmid (100 nM)
were taken from our recent study [173]. Following successful implementation of the
actuator, we proceeded to build five upstream cell-free transducers for hippurate,
cocaine, benzaldehyde, benzamide, and biphenyl-2,3-diol (Figure 10.3c,d,e,f,g) that
convert these compounds to benzoate. Each of the five transducers used 10 nM of
enzyme DNA per reaction, except the biphenyl-2,3-diol transducer that used two
metabolic enzymes with 10 nM DNA each.
Compared to its whole-cell counterpart (Figure 10.1f), in the cell-free transducer
reaction (Figure 10.3e) benzaldehyde appears to spontaneously oxidize to benzoate
without the need of the transducer enzyme vdh. This behavioral difference between
the whole-cell and cell-free setups could be due to the difference in redox states in-
side an intact cell and the cell-free reaction mix [477, 478]. Furthermore, benzamide
and biphenyl-2,3-diol transducers exhibit reduction in fluorescence outputs at very
high (1000 µM) input concentrations.
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Figure 10.3 Cell-free actuator and metabolic transducers. a Implementing benzoate
actuator and transducers in E. coli TX-TL cell-free system. Cell-free reactions are
composed of cell lysate, reaction buffer (energy source, tRNAs, amino acids, etc.)
and DNA plasmids. b Dose-response plot of the benzoate actuator in the cell-free
system with 30 nM of TF-plasmid (constitutively expressed BenR) and 100 nM of
reporter plasmid (pBen-sfGFP) per reaction. The data points represent the dose-
response of the actuator to different concentrations of benzoate and the gray curve
is a model-fitted curve on actuator data c, d, e, f, g Cell-free transducers coupled
with the benzoate actuator for hippurate c, cocaine d, benzaldehyde e, benzamide
f, and biphenyl-2,3-diol g, which is composed of two enzymes. All enzymes are
cloned in a separate plasmid under the control of a constitutive promoter J23101
and RBS B0032. 10 nM of each plasmid was added per reaction. The bars are the
response of the circuits to different concentrations of input with (transducers, black
bars) and without enzyme (red bars). All data are the mean and the error bars are
the standard deviation of normalized values from measurements taken from three
independent cell-free reactions on the same day (RFU: Relative Fluorescence Unit).
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10.3.4 Cell-free weighted transducers and adders

After characterizing different transducers in the cell-free system that enable build-
ing a multiple-input metabolic circuit, we sought to rationally tune the transducers.
Cell-free systems allow independent tuning of each plasmid by pipetting different
amounts of DNA. We applied this advantage to weight the flux of enzymatic re-
actions in cell-free transducers (Figure 10.4a). The concentration range we used
was taken from our recent study [173], in order to have an optimal expression with
minimum resource competition. We built four weighted transducers for hippurate
(Figure 10.4b), cocaine (Figure 10.4c), benzamide (Figure 10.4d) and biphenyl-
2,3-diol (Figure 10.4e). Increasing the concentration of the enzymes produces a
higher amount of benzoate from the input metabolites, and hence higher GFP flu-
orescence. Compared to the others, the hippurate transducer reached higher GFP
production at a given concentration of the enzyme and the input, and biphenyl-2,3-
diol reached the weakest signal. For the biphenyl-2,3-diol transducer built with two
enzymes (Figure 10.4e), both enzymes are added at the same concentration (e.g.,
1 nM of ’enzyme DNA’ indicates 1 nM each of plasmids encoding enzymes bphC
and bphD). For a given concentration of the input there is a range within which
the concentration of the enzyme DNA(s) can be varied to tune the weight of the
input (Supplementary Figure 10.14).

Data in Figure 10.4 shows that similar output levels can be achieved for differ-
ent input concentrations, provided the appropriate transducer concentrations are
used. In the next step, we applied this finding to build hippurate-cocaine weighted
adders by altering either the concentration of the enzymes or the concentration
of the inputs (Figure 10.5a). The fixed-input adder is an analog adder in which
the concentration of inputs, hippurate and cocaine, are fixed to 100 µM and the
concentration of the enzymes is altered (top panel in Figure 10.5b). In this device,
the weight of the reaction fluxes is continuously tunable. We then characterized
a fixed-enzyme adder by fixing the concentration of the enzymes’ DNA (1 nM for
HipO, 3 nM for CocE; the cocaine signal is weaker, which is why a higher concen-
tration of its enzyme is used) and varying the inputs, hippurate and cocaine (top
panel in Figure 10.5c). However, it is important to note that the observed GFP is
not a direct output from the weighted adders. Instead, the adder output is trans-
formed by the actuator to produce the GFP signal. Since the benzoate actuator
has a sigmoidal response curve (Figure 10.3b), the transformation by the actuator
layer makes the visible output appear more switch-like (ON / OFF).
In order to have the ability to build any weighted adder with predictable results, we
developed a model that accounts for the previous data. We first empirically modeled
the actuator (gray curve in Figure 10.3b) since all other functions are constrained
by how the actuator converts metabolite data (benzoate) into a detectable signal
(GFP). We then fitted our model with individual weighted transducers (Supple-
mentary Figure 10.15) and predicted the behaviors of the weighted adders (bottom
panel in Figure 10.5b,c). The results shown in Figure 10.5b,c indicate that our
model describes the adders well, despite being fitted only on transducer data. Sup-
plementary Table 10.4 summarizes the different scores to estimate the goodness
of fit of our model. Briefly, the model quantitatively captures the data but tends
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to overestimate values at intermediate enzyme concentration ranges and does not
capture the inhibitory effect observed at the high concentration of benzamide or
biphenyl-2,3-diol, as this was not accounted for in the model.
Using the above strategy, we can build any weighted adder for which we have pre-
calculated the weights using the model on weighted transducers. We use this ability
in the following section to perform more sophisticated computation for a number
of classification problems.
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Figure 10.4 Cell-free weighted transducers characterized by varying the concentra-
tion of the enzyme DNA. a In the cell-free system, the circuits can be tuned by
varying the amount of each enzyme pipetted per reaction. Weighted transducers
are characterized by varying the concentration of the enzymes in transducers which
then are reported through the benzoate actuator. The range of the concentrations
was varied to get optimal expression and minimum resource competition. b, c,
d, e Heat-maps representing weighted transducers at different concentrations of
input molecules and enzymes DNA for hippurate b, cocaine c, benzamide d and
biphenyl-2,3-diol e. For the biphenyl-2,3-diol weighted transducere, concentrations
represent those of each metabolic plasmid (e.g., 1 nM of ’enzyme DNA’ refers to
1 nM of bphC plus 1 nM of bphD). See Supplementary Figure 10.15 for model re-
sults of each weighted transducer. All data are the mean of normalized values from
three measurements. (RFU: Relative Fluorescence Unit).
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Figure 10.5 Multiple transducers are combined to shape an adder while weighting
inputs or enzymes. a Cell-free adder characterization by varying the concentra-
tion of either inputs or enzymes producing different levels of fluorescence through
the actuator. b Heat-map showing fixed-input adder in which the inputs, hip-
purate and cocaine, are fixed to 100 µM and concentrations of associated enzyme
are altered by altering the concentration of plasmid DNA encoding them. Top:
Cell-free experiment of hippurate-cocaine fixed-input (weighted) adder. Bottom:
Model simulation (prediction) of hippurate-cocaine fixed-input (weighted) adder.
c Fixed-enzyme adder with fixed concentrations of the enzyme DNA, 1 nM for
HipO and 3 nM for CocE, and various concentrations of the inputs, hippurate and
cocaine. Top: Cell-free experiment of hippurate-cocaine fixed-enzyme adder. Bot-
tom: Model simulations (prediction) of hippurate-cocaine fixed-enzyme adder. All
data are the mean of normalized values from three measurements. (RFU: Relative
Fluorescence Unit).
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10.3.5 Cell-free perceptron for binary classi�cations

The perceptron algorithm was first developed to computationally mimic the neu-
ron’s ability to process information, learn, and make decisions [479]. Perceptrons
are the basic blocks of artificial neural networks enabling the learning of deep pat-
terns in datasets by training the model’s input weights [480]. Like a neuron, the
perceptron receives multiple input signals (xi) and triggers an output depending on
the weighted (wi) sum of the inputs [470]. A perceptron can be used to classify a
set of input combinations after it is trained on labeled data. In binary classification,
the weighted sum is first calculated (

∑
wi.xi) and an activation function (f), cou-

pled with a decision threshold d, finally makes the decision: ON if f(
∑
wi.xi) > d,

OFF otherwise (Figure 10.6a). The activation function can be linear or non-linear
(Sigmoid, tanh, ReLU, etc.) depending on the problem [481], although a sigmoid
is generally used for classification.
Since our weighted transducer models have already been fitted on the cell-free ex-
perimental data, we checked if we could use them to calculate the weights needed
to classify different combinations of two inputs: hippurate and cocaine. We tested
our model on five different 2-input binary classification problems (Supplementary
Figure 10.16). For each problem, the two types of data were represented as a cluster
of dots on the scatter plot, with the axes representing the two inputs. The fitted
model was then used to identify weights needed to be applied to the weighted trans-
ducers such that a decision threshold d exists to classify the two clusters into red
(ON, > d) or blue (OFF, <= d). In each binary classification, three iso-fluorescence
lines threshold the data into the binary categories: ON and OFF (Supplementary
Figure 10.16). These theoretical classification problems demonstrate the ability of
our perceptron model to successfully carry out binary classification. It is worth
noting that a binary classifier whose input(s) and output are binary values can also
be represented as a logic gate. Therefore, the theoretical classification functions
implemented here can also be interpreted as logic gate functions. For example, the
third classifier in the figure can also be represented as the equivalent logic function
(H OR C) (Supplementary Figure 10.16c).
Using the integrated model from our weighted transducers and adders, we next
sought to design four-input binary classifiers using a metabolic perceptron, and
test them experimentally. Our metabolic perceptron is a device enabling signal in-
tegration of multiple inputs with associated weights, represented by enzyme DNA
concentrations (Figure 10.6b). The 4-input adder performs the weighted sum and
the benzoate actuator acts as the activation function of the metabolic perceptron.
Similar to the 2-input binary classifications above (Supplementary Figure 10.16),
the weights of the four inputs can be adjusted to implement different classifica-
tion functions. To illustrate the potential of building perceptrons with metabolic
weighted adders, we computed adder weights using our model for two different
classifiers: a simple classifier equivalent to a ’full OR’ gate (Figure 10.6c), and a
more complex classifier. To define the second classifier, we used our fitted model
to simulate with different weights various 4-input functions that combined AND
and OR behaviors. Our simulation outcomes were most reliable for hippurate and
cocaine inputs since we had previously verified our model predictions on the fixed
enzyme and fixed input adders (Figures 10.4 and 10.5). Consequently, we decided
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to test the classification function equivalent to a ’[cocaine AND hippurate] OR ben-
zamide OR biphenyl-2,3-diol’ gate (Figure 10.6d). Weight calculation methods are
reported in the Methods section.
Finally, we used the cell-free system to implement the classifiers using the calcu-
lated weights and to execute the computations. While our perceptrons are trained
in silico, they are executed in the cell-free system to predict the outcome of a given
set of input signals. This is comparable to how computational perceptrons also
proceed in the two phases of training and prediction. For the classifiers, the input
metabolites are fixed to 100 µM, as it allows the best ON-OFF behavior for all
inputs and weight-tuning according to model simulations. The model accurately
predicted weights to obtain the simple ’full OR’ classifier behavior (Figure 10.6d),
as well as cocaine, benzamide, and biphenyl-2,3-diol weights for the second complex
classifier. The initial weights computed by the model are presented in Supplemen-
tary Figure 10.17. The optimal weight of HipO (hippurate transducing enzyme)
was calculated to be 0.1 nM of its DNA plasmid, which leads to higher signals than
predicted, particularly for the ’ON’ behavior with only hippurate. To further char-
acterize the HipO weights at still lower concentrations of the enzyme, we performed
an additional complementary characterization (Supplementary Figure 10.18). Our
aim here was to find a weight for HipO through which a classifier outputs a low
signal (’OFF’) with only hippurate and high signal (’ON’) when coupled with other
inputs. We arrived at 0.03 nM DNA for HipO enzyme which exhibited this shifting
behavior between ’OFF’ and ’ON’ (Figure 10.6d and Supplementary Figure 10.18).
Using our model-guided design and rapid cell-free prototyping on the HipO weight,
we were able to design two 4-input binary classifiers. In Figure 10.6c,d red circles
are the weights predicted with 0.03 nM for HipO and the bars are experimental
results. As noted earlier, the sigmoidal nature of the benzoate actuator’s response
curve (Figure 10.3b) is key to achieving the ’OFF’ and ’ON’ behavior exhibited
by our binary classifiers. All actual values of the model and the experiments are
provided in Supplementary Table S7 provided online.
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Figure 10.6 Cell-free perceptron enabling development of classifiers. a A perceptron
scheme showing the inputs and their associated weights, the computation core, and
the output. The perceptron computes the weights and actuates the weighted sum
through an activation function. b Metabolic perceptron integrating multiple inputs
and actuating an output. The benzoate actuator acts as the activation function of
the perceptron reporting the sum of benzoate produced by the metabolic percep-
tron. Hippurate, cocaine, benzamide, and biphenyl-2,3-diol are the inputs of the
metabolic perceptron fixed to 100 µM. The weights of the perceptron are the con-
centration of the enzymes calculated using the model made on weighted metabolic
circuits (red circles). These weights are calculated to develop two classifiers using
the metabolic perceptron and benzoate actuator.
’Full OR’ classifier c, ’[cocaine (C) AND hippurate (H)] OR benzamide (B) OR
biphenyl-2,3-diol (F)’ classifier d are the two classifiers built using this metabolic
perceptron. The ’Full OR’ classifier (c) classifies to ’OFF’ when none of the inputs
is present and it passes an arbitrary threshold to ’ON’ when any of the inputs or
their combinations are present. The second classifier d performs a more complex
computation. The shading represents the arbitrary threshold that allows for per-
ceptron decision making and the panel of ’OFF’ and ’ON’ at the top of the bars
are the expected output of the classifiers. All data are the mean and the error bars
are the standard deviation of normalized values from three measurements and red
circles are the model predictions. (RFU: Relative Fluorescence Unit).
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10.4 Discussion

Computing in synthetic biological circuits has largely relied on digital logic-gate
circuitry for almost two decades [19, 482], treating inputs as either absent (0) or
present (1). While such digital abstraction of input signals provides conceptual
modularity for circuit design, it is less compatible with the physical-world input
signals that vary between low and high values on a continuum [52]. As a result,
digital biological circuits must carefully match input-output dynamic ranges at each
layer of signal transmission to ensure successful signal processing [32, 46]. More re-
cently, the higher efficiency of analog computation on continuous input has been
recognized [483], and some analog biological circuits have started emerging [54]. In
this regard, using metabolic pathways for cellular computing seems like a natural
progression for analog computation in biological systems [54, 46].
In this study, we investigated the potential of metabolism to perform analog com-
putations using synthetic metabolic circuits. To that end, we first established a
benzoate actuator to report the output from our metabolic circuits in both whole-
cell and cell-free systems (Figures 10.1c and 10.3b). Upstream of the actuator,
we constructed hippurate, cocaine, and benzaldehyde transducers in the whole-
cell system (Figures 10.1d,e,f) and a metabolic analog adder by combining the
benzaldehyde and hippurate transducers (Figure 10.2). Similarly, we constructed
hippurate, cocaine, benzaldehyde, benzamide, and biphenyl-2,3-diol transducers in
the cell-free system (Figures 10.3c,d,e,f,g) and weighted adders by combining them
(Figure 10.5). Compared to the numerous digital biological devices, which com-
pute through multi-layered genetic logic circuits, the metabolic adder is a simple
one-layered device with fast execution times.
Our computational models fitted only on the actuator and transducer data pre-
dicted adder behaviors with high accuracy (Supplementary Tables 10.4 and 10.3).
This further enabled us to calculate the required weights for more complex ’metabolic
perceptrons’ that compute weighted sums from multiple inputs and use them to
classify the multi-input combinations in a binary manner (Figures 10.6 and Sup-
plementary Figure 10.17). Although we used fixed concentrations of inputs to
demonstrate the ability of our perceptrons to classify, models fitted on character-
ization data from weighted transducers should enable one to build classifiers for
other concentrations in the operational range of the transducers (Supplementary
Figure 10.19). Indeed, as shown in Figures 10.4 and 10.5, for different input con-
centrations in the operational range the weight of the input can be tuned through
the concentration of the enzyme DNA. To the best of our knowledge, the metabolic
adders and perceptrons presented in this work are the first engineered biological
circuits that use metabolism for analog computation.
Unlike genetic circuits that experience expression delays [32], metabolic circuits
have the advantage of faster response times since the genes have already been ex-
pressed in the system. Yet, metabolic circuits can be connected with the other
layers of cellular information processing (like genetic or signal transduction layers)
when needed, to build more complex sense-and-respond behaviors. The actuator
layer of our perceptrons is a good example of this, where the calculated weighted
sum is converted to fluorescence output via the genetic layer. In addition, we took
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advantage of the properties of cell-free systems, such as higher tunability and lack
of toxicity [173, 484], to rapidly build and characterize multiple combinations of
transducer-actuator circuits. Cell-free systems can be lyophilized on paper and
stored at ambient temperature for < 1 year for diagnostic applications [74]. This
expands the potential scope of cell-free metabolic perceptrons for use in multiplex
detection of metabolic profiles in medical or environmental samples [74, 173].
Here, we have built a single-layer perceptron, with positive weights, that can clas-
sify different profiles of input metabolites by applying different weights to each
transducer. In the future, by adding competing or attenuating reactions that re-
duce the concentration of the transduced metabolite in response to an input, it may
be possible to expand the training space by applying negative weights to certain
inputs [485]. Furthermore, a single-layer perceptron can only classify data that
is linearly separable [486], which means that it should be possible to draw a line
between the two classes of data points in order for the perceptron to classify them
(Supplementary Figure 10.16). In contrast, multi-layer perceptrons can approxi-
mate any function [487] and can be used for more complex pattern recognition tasks
[488]. With the use of bio-retrosynthesis-based computational tools for metabolic
pathway design, like Retropath [138] and Sensipath [77], it is theoretically possible
to build multi-layer metabolic perceptrons that can classify complex patterns of
metabolic states in vivo, or identify different metabolite concentrations in analyti-
cal samples (Supplementary Figure 10.20). Finally, it may also be possible to apply
in situ learning (within the whole-cell or cell-free environment) by applying winner
selection strategies on successful classifiers [489].
However, the use of the metabolic layer for biological computing is currently under-
explored. To expand the computing potential of metabolic circuits, many more
metabolic parts and devices (transducers, adders, and actuators) will need to be
exhaustively characterized and databases built with descriptions of activities, dy-
namic ranges, cross-talk, chassis dependence, cell-free composition dependence, and
other functional parameters. Here, we provide a detailed method for the identifica-
tion of novel parts and the step-wise building of new devices, and make our scripts
available. These can form the stepping-stone for building a larger framework for
fully automated design of metabolic circuits, similar to the Cello tool for automated
genetic circuit design [29].

10.5 Methods

10.5.1 Designing synthetic metabolic circuits

Retropath [138] and Sensipath [77] were used to design the metabolic circuits be-
tween potential input metabolites and detectable metabolites as outputs [76]. These
tools function using a set of sink compounds, a set of source compounds, and a set
of chemical rules [116] implementing enzyme-mediated chemical transformations.
They then use retrosynthesis to propose pathways and the enzymes that can cat-
alyze the necessary reactions, allowing promiscuity, between compounds from the
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sink and compounds from the source. To design the adder, the Retropath software
was used with a set of detectable compounds as the sink and the molecules we wish
to use as circuit inputs as the source. The results were potential pathways and the
associated enzymes, which were then analyzed for feasibility. The sequences of the
enzymes were codon-optimized, synthesized and implemented in E. coli or taken
from a previous study.

10.5.2 Molecular biology

All plasmids were made using Golden Gate assembly in E. coli Mach1 chemically
competent cells (strainW, genotype: F−φ80(lacZ)∆M15 ∆lacX74hsdR(rK−mK+)
∆recA1398endA1tonA). Whole-cell constructs were cloned in BioBrick standard
vectors pSB1K3 (kanamycin resistance, pMB1 replication origin, high-copy plas-
mid, ∼32 plasmids per genome [490]) and pSB4C5 (chloramphenicol resistance,
pSC101 replication origin, low-copy plasmid, ∼3.4 plasmids per genome [490]) and
the genes encoding TF and all the enzymes were expressed under constitutive pro-
moter J23101 and RBS B0032. All cell-free plasmids were cloned in pBEAST52 (a
derived vector from pBEST [320], ampicillin resistance, pMB1 replication origin,
high-copy plasmid, ∼32 plasmids per genome [490]). BenR cell-free plasmid and
its cognate responsive prompter, pBen, expressing super-folder GFP were taken
from our recent work [173]. All other cell-free enzymes were cloned under consti-
tutive promoter J23101 and RBS B0032. Sequence and source of all the genes and
parts are available in Supplementary Table S5 online and the plasmids used in this
study (Addgene deposit) are listed in Supplementary Table S6 online. Synthetic
sequences were provided by Twist Bioscience. Enzymes for cloning including Q5
DNA polymerase, BsaI, and T4 DNA ligase were purchased from New England Bio-
labs. DNA plasmids for cell-free reactions were prepared using the Macherey-Nagel
maxiprep kit.

10.5.3 Characterization of whole-cell circuits

For each circuit separate colonies of E. coli TOP10 (strain K-12) strains harbor-
ing the circuit plasmids were cultured overnight at 37 ◦C in LB with appropriate
antibiotic. The next day each culture was diluted 100x in LB with antibiotics.
95 µL of fresh cultures were distributed in 96-well plate (Corning 3603) and the
plate was incubated to reach the OD600 ∼ 0.1 in a plate reader (Biotek Synergy
HTX). Then 5 µL of the input metabolites (100x ethanol solutions 5x diluted in LB)
were added and the plate was incubated for 18 hours at 37 ◦C. During the incuba-
tion, the OD600 and GFP fluorescence (gain: 35, ex: 458 nm, em: 528 nm) were
measured. Benzoate, hippurate, cocaine hydrochloride, benzaldehyde, benzamide
and biphenyl-2,3-diol (2,3-dihydroxy-biphenyl) were purchased from Sigma-Aldrich.
Permission to purchase cocaine hydrochloride was given by the French drug reg-
ulatory agency (Agence Nationale de Sécurité du Médicament et des Produits de
Santé). For all chemicals, serial dilutions of 100x concentrations were prepared in
ethanol. The formula presenting the results of the circuits’ characterization is shown
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in data normalization section. The mean and standard deviation of all normalized
data are provided in Supplementary Table S7 available online.

10.5.4 Cell-free extract and bu�er preparation

Cell-free E. coli extract was produced as previously described [173, 68, 449]. Briefly,
an overnight culture of BL21 Star (DE3)::RF1-CBD3 E. coliwas used to inoculate
4L of 2xYT-P media in six 2 L flasks at a dilution of 1:100. The cultures were grown
at 37 ◦C with 220 rpm shaking for approximately 3.5-4 hours until the OD600 =
2-3. Cultures were centrifuged at 5000 x g at 4 ◦C for 12 minutes. Cell pellets
were washed twice with 200 mL S30A buffer (14 mM Mg-glutamate, 60 mM K-
glutamate, 50 mM Tris, pH 7.7), centrifuging after each wash at 5000 x g at 4 ◦C
for 12 minutes. Cell pellets were then re-suspended in 40 mL S30A buffer and trans-
ferred to pre-weighed 50 mL Falcon conical tubes where they were centrifuged twice
at 2000 x g at 4 ◦C for 8 and 2 minutes, respectively, removing the supernatant after
each. Finally, the tubes were reweighed and flash frozen in liquid nitrogen before
storing at −80 ◦C.
Cell pellets were thawed on ice and re-suspended in 1 mL S30A buffer per gram
of cell pellet. Cell suspensions were lysed via a single pass through a French press
homogenizer (Avestin; Emulsiflex-C3) at 15000-20000 psi and then centrifuged at
12000 x g at 4 ◦C for 30 minutes to separate out cellular cytoplasm. After cen-
trifugation, the supernatant was collected and incubated at 37 ◦C with 220 rpm
shaking for 60 minutes. The extract was re-centrifuged at 12000 x g at 4 ◦C for 30
minutes, and the supernatant was transferred to 12-14 kDa MWCO dialysis tubing
(Spectrum Labs; Spectra/Por4) and dialyzed against 2 L of S30B buffer (14 mM
Mg-glutamate, 60 mM K-glutamate, ∼ 5 mM Tris, pH 8.2) overnight at 4 ◦C. The
following day, the extract was re-centrifuged one final time at 12000 x g at 4 ◦C for
30 minutes, aliquoted, and flash frozen in liquid nitrogen before storage at −80 ◦C.
The buffer for cell-free reactions is composed such that final reaction concentra-
tions were as follows: 1.5 mM each amino acid except leucine, 1.25 mM leucine,
50 mM HEPES, 1.5 mM ATP and GTP, 0.9 mM CTP and UTP, 0.2 mg ·mL−1

tRNA, 0.26 mM CoA, 0.33 mM NAD, 0.75 mM cAMP, 0.068 mM folinic acid, 1 mM
spermidine, 30 mM 3-PGA, and 2% PEG-8000. Additionally, the Mg-glutamate
(0-6 mM), K-glutamate (20-140 mM), and DTT (0-3 mM) levels were serially cali-
brated for each batch of cell-extract for maximum signal. One batch of buffer was
made for each batch of extract, aliquoted, and flash frozen in liquid nitrogen before
storage at −80 ◦C.

10.5.5 Characterization of cell-free circuits

Cell-free reactions were performed in 15.75 µL of the mixture of 33.3% cell ex-
tract, 41.7% buffer, and 25% plasmid DNA, input metabolites, and water. The
reactions were prepared in PCR tubes on ice and 15 µL of each was pipetted into
384-well plates (Thermo Scientific 242764). GFP fluorescence out of each circuit
was recorded in the plate reader at 30 ◦C (gain: 50, ex: 458 nm, em: 528 nm). The

262

https://www.nature.com/articles/s41467-019-11889-0#Sec25


background (cell-free reaction without any plasmid) corrected fluorescence data
were normalized by 20 ng · µL−1 of a plasmid expressing strong constitutive sfGFP
(under OR2-OR1-Pr promoter [173]) and were plotted after 8 hours incubation.
The mean and standard deviation of all normalized data are provided in Supple-
mentary Table S7 available online.

10.5.6 Data normalization

For whole-cell data, we use the following normalization:

Fluorescence(input) = GFP (input)−GFP (LB)
OD(input)−OD(LB) −

GFP (empty − plasmid)−GFP (LB)
OD(empty − plasmid)−OD(LB)

Reference: cells harboring empty plasmids

For cell-free data, we consider Relative Fluorescence Unit (RFU):

RFU(input) = GFP (input)−GFP (extract)
GFP (reference)−GFP (extract)

Reference: 20 ng · µL−1 of a plasmid expressing the constitutive sfGFP under OR2-
OR1-Pr promoter [173].

10.5.7 Simulation tools and parameter �tting

All data analysis and simulations were run on R (version 3.2.3). Dose-response
curves were fitted using ordinary least squares errors and the R optim function (from
Package stats version 3.2.3, using the L-BFGS-B method implementing the Limited-
memory Broyden Fletcher Goldfarb Shanno algorithm, which is a quasi-Newton
method). For the random parameter sampling around the mean fit, values were
sampled from within±1.96 standard error of the mean of the parameter estimation.
The seed was set so as to ensure reproducibility. All simulations were run in the
Rstudio development environment. All parameters are presented in Supplementary
Tables 10.6 and 10.5.

10.5.8 Whole-cell model

The whole-cell model is composed of three parts: the actuator, the transducers
(which all obey the same law) and the resource competition.
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Actuator(total) = ( totalhilla

Khilla
M + totalhilla

∗ fc + 1) ∗ basal

where total is the concentration of the considered input (in µM), KM is the concen-
tration that allows for half-maximum induction (in µM), also termed IC50, hilla
is the Hill coefficient that characterizes the cooperativity of the induction system,
fc is the dynamic range (in AU) and basal is the basal GFP fluorescence without
input (benzoate).

Transducer(input) = input ∗ rangeenz

Where input is the input concentration in µM and rangeenz is a dimensionless
number characterizing the capacity of the enzyme to transduce the signal. When
combining transducers with the actuator, transducer results are added before being
fed into the actuator equation, just as benzoate concentrations are added before
being converted to a fluorescent signal in the cell.

To account for resource competition, given our experimental results where there
is little competition with one enzyme and significant competition with two, we
used an equation including cooperativity of resource competition. This reduces
the fold change of the actuator as there are less resources available for producing
transcription factors and GFP.

Result(out) = rangeres ∗ out ∗ ( Enr

Enr + (coce+ benz + ratio ∗ hipo)ns )

where out is the result of the actuator transfer function before accounting for re-
source competition, rangeres, E, nr characterize the Hill function that accounts
for competition, coce, benz and hipo are the enzyme plasmid concentrations. ratio
accounts for the differences in burden from different enzymes, its value around 0.8
is close to the ratio between enzyme lengths (1500 for benzaldehyde transducing
enzyme and 1200 for HipO).

10.5.9 Cell-free model

The model is composed of two parts: the actuator and the transducers.

Actuator(total) = ( totalhilla

Khilla
M + totalhilla

∗ fc + 1) ∗ basal + lin ∗ 0.0001 ∗ total
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where total is the concentration of the considered input metabolite (in µM), KM

is the concentration that allows for half-maximum induction (in µM), also termed
IC50, hilla is the Hill coefficient that characterizes the cooperativity of the induction
system, fc is the dynamic range (in AU) and basal is the basal GFP fluorescence
without input (benzoate). lin accounts for the linearity observed in the actuator
behavior at concentrations saturating the Hill transfer function.

Transducer(input) = rangeenzyme ∗
EnE

KnE

E + EnE
∗ inputninput

K
ninput

I + inputninput

Where rangeenzyme is a dimensionless number characterizing the capacity of the
enzyme to transduce the signal. The activity of the enzyme is characterized by a Hill
function as increasing concentrations do not lead to a linear increase but enzymes
saturate (E is the enzyme quantity in nM, KE and nE are its Hill constants), and
similarly, input is the input metabolite concentration in µM with KI and ninput as
its Hill constants.

When combining transducers, transducer results are added before being fed into the
actuator equation, just as benzoate concentrations are added before being converted
to the fluorescent signal in the cell.

10.5.10 Model parameters �tting process

Our fitting process is detailed in the Readme files supporting our modeling scripts
provided in GitHub and is summarized here. It is done in the two steps presented
here: first fitting of the actuator then fitting of the transducers.
As the first step, the actuator transfer function model (benzoate transformed into
fluorescence) is fitted 100 times on the actuator data (Figures 10.1c and 10.3b), with
all actuator parameters allowed to vary. The mean, standard deviation, standard
error of the mean and confidence interval were saved at 95% of the estimation of
those parameters. For transducer fitting (all transducers in cell-free and all except
cocaine in whole-cell, data from Figures 10.1d and 10.1f, resource competition from
Figures 10.2b and 10.2c , 10.4b, 10.4c, 10.4d, 10.4e), we constrained the actuator
characteristics in the following way: upper and lower allowed values are within the
95% confidence interval (or plus or minus one standard deviation from the mean
for fold change and baseline in cell-free as it allowed a wider range, accounting
for the decrease in actuator signal in transducer experiments without affecting the
shape of the sigmoid). The initial values for the fitting process were sampled from a
Gaussian distribution centered on the mean parameter estimation and spread with
a standard deviation equal to the standard error of this parameter estimation. We
then allowed fitting of all transducer parameters freely and of the actuator param-
eters within their 95% confidence interval.
Once this is done, all common parameters (actuator transfer function and resource
competition) were sampled using the same procedure and fitting on the cocaine
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transducer was performed. To show that parameters are well constrained (prov-
ing they minimally explain the data from Figure 10.1e), Supplementary Figures
10.21 and 10.22 show results of sampling parameters from the final parameters
distribution (without fitting at that stage) and how they compare to the data.

10.5.11 Objective functions and model scoring

In order to evaluate and compare our models, we used the following functions.

RMSD =
√

(
∑n

1 (ytruei − ypredi )2

n
)

It measures how close the model is to the experiments. It allows for comparison of
different models on the same data, the one with the smaller RMSD being better,
but does not allow comparison between experiments.

R2 = 1−
∑n

1 ((ytruei − ypredi )2)∑
1n((ytruei − ytruemean)2)

R2 allows measuring the goodness of fit. When the prediction is only around the
sample mean, R2 = 0. When the predictions are close to the real experimental
value, R2 gets closer to 1, whereas it can have important negative values when the
model is really far off.

WeightedR2 = 1−

∑n
1 ( (ytrue

i −ypred
i

)2

std2
i

)∑
1n( (ytrue

i
−ytrue

mean)2

std2
i

)

It is a variant of R2 that weights samples according to their experimental error,
giving more weight or more certain samples. It otherwise has the same properties
as R2.

Error − percentage = abs(y
true
i − ypredi

ytruei

) ∗ 100

This measures the percentage of error for each point. We present the average on
all experiments in Supplementary Tables 10.4 and 10.3.
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10.5.12 Perceptron weights calculation

In order to calculate the weights for the classifiers presented in Figure 10.6, we fol-
lowed the following procedure. First, we defined the expected results (expressed in
’OFF’s and ’ON’s). We also defined a list of weights to test for each enzyme (here,
between 0.1 nM and 10 nM, as tested in our weighted transducers). Then, for each
combination of enzyme weights, we simulated the outcome of the classifiers for all
possible input combinations using our previously fitted model. We then tested var-
ious possible thresholds and kept the enzyme combinations for which a threshold
exists that allows for the expected behavior. As the last step, we manually ana-
lyzed the classifier to keep the ones both a high difference between ON and OFF,
and a minimal enzyme weight to prevent resource competitions issues that could
arise as we are adding more genes than previous experiments. In order to perform
clustering presented in Supplementary Figure 10.17, we sampled values uniformly
within the stated ranges ([0, 2 µM] for low values and [80, 100 µM] for high values).
We then simulated the results to assess the robustness of our designs. The best set
of weights from this procedure to achieve the desired classification function (the
’trained’ weights) are then used for the cell-free implementation.
The difference between our metabolic perceptron and an in silico perceptron is that
the latter exhibits a perfect activation behavior: digital (0 / 1), sigmoidal, ReLU,
or another activation function; its weights can be tuned exactly as desired. In our
implementation of the cell-free metabolic circuits, many biological details compli-
cate the relationship between the inputs and the activator output. We therefore
used more detailed step-wise empirical modeling to account for the biology in our
system rather than an off-the-shelf perceptron code that would be unable to capture
all the subtleties in our data.

10.5.13 Binary clustering experiments

In order to perform the binary/2D clustering experiments, we sampled values
uniformly within the stated ranges ([0, 2 µM] for low values and [80, 100 µM]
for high values). For different weight (HipO and CocE) values, we simulated
the fluorescence output of each of those cocaine-hippurate combinations. More-
over, for different threshold values (3, 3.5 and 4, as presented in Supplementary
Figure 10.16), we numerically solved for the benzoate concentration such that
transfer(benzoate) = fluorescence − threshold and then for values of cocaine
and hippurate such that transducer(cocaine) + transducer(hippurate) = benzoate

This equation with two unknowns gives us a curve of cocaine and hippurate values
that would lie on our decided threshold for this set of weights. All combinations
on the top right of that curve will be classified to ’ON’ and all combinations below
will be classified as ’OFF’.

267



10.5.14 Data availability

Source data for main and supplementary figures are provided in the supplemen-
tary materials. Other raw data are available from the corresponding authors upon
reasonable request.

10.5.15 Code availability

All scripts and data for generating results presented in this paper are available on
GitHub.

10.5.16 Biological and chemical identi�ers

In order to allow easier parsing of our article by bio-informatics tools, we provide
here the identifiers of our biological sequences and chemical compounds.

Compound
name

InChI

Benzoate (Ben-
zoic acid)

InChI=1S/C7H6O2/c8-7(9)6-4-2-1-3-5-6/h1-5H,(H,8,9)

Hippurate (Hip-
puric acid)

InChI=1S/C9H9NO3/c11-8(12)6-10-9(13)7-4-2-1-3-5-7/h1-
5H,6H2,(H,10,13)(H,11,12)

Cocaine
InChI=1S/C17H21NO4/c1-18-12-8-9-13(18)15(17(20)21-2)14(10-12)22-
16(19)11-6-4-3-5-7-11/h3-7,12-15H,8-10H2,1-2H3/t12-,13+,14-,15+/m0/s1

Benzaldehyde InChI=1S/C7H6O/c8-6-7-4-2-1-3-5-7/h1-6H
Biphenyl-2,3-diol InChI=1S/C12H10O2/c13-11-8-4-7-10(12(11)14)9-5-2-1-3-6-9/h1-8,13-14H
Benzamide InChI=1S/C7H7NO/c8-7(9)6-4-2-1-3-5-6/h1-5H,(H2,8,9)

Table 10.1 Chemical structures for compounds used in this work.
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Gene Description Specy
Identifier
(UniPro-
tKB)

BenR
Benzoate sensitive transcrip-
tion factor

Pseudomonas putida Q9L7Y6

HipO
Hippurate hydrolase (EC:
3.5.1.32)

Campylobacter jejuni P45493

CocE Cocaine esterase (EC: 3.1.1.84 Rhodococcus sp. Q9L9D7

vdh
Aryl-aldehyde oxidase (EC:
1.2.3.9)

Acinetobacter johnsonii
SH046

D0RZT4

bphC
Biphenyl-2,3-diol 1,2-
dioxygenase (EC: 1.13.11.39)

Pseudomonas sp. P17297

bphD
2-Hydroxy-6-oxo-6-
phenylhexa-2,4-dienoate
hydrolase (EC: 3.7.1.8)

Pseudomonas putida Q52036

Benzamide trans-
forming enzyme

Amidase (EC: 3.5.1.4) Rhodococcus erythropolis B4XEY3

Table 10.2 Sequences identifiers for parts used in this work.

Sequence and source of all the genes and parts are available in Supplementary Table
S5 available online and the plasmids used in this study (Addgene deposit) are listed
in Supplementary Table S6 available online and at Addgene 1 and Addgene 2.

10.6 Supplementary data

10.6.1 Circuit design

10.6.2 Detailed data from Figures 10.1 and 10.2
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Figure 10.7 Feedback-loop circuit design of the benzoate actuator. a The open-loop
circuit (Figure 10.1b) versus a feedback-loop circuit for the benzoate actuator. In
the feedback-loop actuator the gene encoding TF is expressed under its responsive
promoter, pBen, in a low copy plasmid and sfGFP reporting the signal in a high
copy plasmid [54]. b The dose-response of the feedback-loop versus the open-loop
circuit (Figure 10.1c) to different concentrations of benzoate. All data points and
the error bars are the mean and standard deviation of normalized values from
measurements taken from three different colonies on the same day.

Figure 10.8 Comparison of the maximum signals of whole-cell circuits. Comparison
of the maximal signal of hippurate, benzaldehyde, and cocaine transducers (beige)
as well as hippurate-benzaldehyde adder (orange) with benzoate actuator (blue).
The maximum signal of all the circuits are at the maximum concentration of their
inputs (1000 µM). The percentage in each bar represents its value with regard to
the maximum signal of benzoate in benzoate actuator. The actuator (blue) and
transducer (beige) data and error bars are from the results presented in Figure 10.1.
The adder (orange) data and error bars are from the results presented in Figure
10.2.
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Figure 10.9 2D plots for the data presented in heat-map in Figure 10.2b. These 14
plots help visualize the linearity of metabolic addition. At the top of each plot the
columns/rows corresponding to the heat-map in Figure 10.2b have been labeled.
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10.6.3 Analyzing resource competition

Figure 10.10 Examining the effect of resource competition versus enzyme efficiency
on the whole-cell cocaine transducer. To study these effects on the single-
enzyme metabolic circuit, the following experiment was performed: cocaine trans-
ducer (with the highest signal dissipation among the three tested in Figure 10.1)
was supplied with benzoate input, to test the effect of enzymes on only cellular
resource allocation but not the conversion of inputs to benzoate. The cocaine
transducer (+ benzoate actuator) with benzoate input shows a behavior similar or
close to the benzoate actuator alone. All data points and the error bars are the
mean and standard deviation of normalized values from measurements taken from
three different colonies on the same day.

Figure 10.11 Examining the effect of resource competition versus enzyme efficiency on
the whole-cell cocaine transducer. To study these effects on the two-enzyme
metabolic circuit (adder) the following experiment was performed: hippurate-
benzaldehyde adder was supplied with benzoate input, to test the effect of enzymes
on only cellular resource allocation but not the conversion of inputs to benzoate.
The adder (+ benzoate actuator) with benzoate input shows a behavior similar to
the adder (+ benzoate actuator) with hippurate and benzaldehyde inputs. All data
points and the error bars are the mean and standard deviation of normalized values
from measurements taken from three different colonies on the same day.
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Figure 10.12 The specific growth rate (µ) values of the whole-cell circuits presented
in Figure 10.1. a The schematic of the calculation of the specific growth rate
(µ) values from OD600 kinetic values over time. It is calculated as the slope of the
line drawn in the range of exponential phase of the growth when log (OD600) is
plotted over time. The specific growth rate (µ) values of the cells harboring circuits
for benzoate actuator b, hippurate c, cocaine d and benzaldehyde e transducers
presented in Figure 10.1. The OD data were collected from cells exposed to the
input metabolite for 2-4 hours and growing at 37 ◦C in a 96-well plate using a plate
reader (Biotek Synergy HTX). All data points and the error bars are the mean
and standard deviation of normalized values from measurements taken from three
different colonies on the same day.
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10.6.4 Analysing growth rates

Figure 10.13 The specific growth rate (µ) values of the whole-cell adder presented
in Figure 10.2b. The OD data were collected from cells exposed to the input
metabolites for 2-4 hours and growing at 37 ◦C in a 96-well plate using a plate reader
(Biotek Synergy HTX). The schematic of the calculation of the specific growth rate
(µ) values from OD600 kinetic values over time is presented in Figure 10.12a. It
is calculated as the slope of the line drawn in the range of the exponential phase
of growth when log (OD600) is plotted over time. All data points are the mean
of normalized values from measurements taken from three different colonies on the
same day.
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10.6.5 Weighted cell-free transducers

Figure 10.14 The dose-response of cell-free transducers to different concentrations of
the associated enzyme DNA (weights) for weighted transducers. The
behavior of the cell-free transducers at constant concentration of inputs (100 µM)
while the weights (concentration of the enzyme DNA) are varied for hippurate (a),
cocaine (b), benzamide (c) and biphenyl-2,3-diol (d) transducers. These are plotted
using the data in the third column of the heat-maps in Figure 10.4 as the average,
and the error bars as SD from measurements taken from three independent cell-free
reactions on the same day (RFU: Relative Fluorescence Unit).
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Figure 10.15 Weighted transducers model results. The model simulations for experimental
conditions presented in Figure 10.4. (a,b,c,d) Heat-maps representing model simu-
lations for weighted transducers at different concentrations of input molecules and
enzymes DNA for hippurate (a), cocaine (b), benzamide (c) and biphenyl-2,3-diol
(d).
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10.6.6 Binary clustering experiments

Figure 10.16 Five different binary classification problems using a metabolic percep-
tron for hippurate and cocaine. (A to E). For each problem, the scatter plot
shows multiple data points that represent a combination of input values of cocaine
and hippurate. The concentrations for those points are sampled between 0 and
2 µM for low values and 80 µM and 100 µM for high values. The data points in
each problem belong to two different sets that can be separated by a threshold
line into two separate clusters. The trained model is then used to identify weights
needed to be applied to the weighted transducers such that a decision threshold ’d’
classifies the two clusters into red (ON, >d) or blue (OFF, <= d). The thresh-
old lines shown in the plots represent three iso-fluorescence lines that successfully
classify the data into the binary categories: ON and OFF.
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10.6.7 Classi�er modeling

Figure 10.17 Model simulations for classifiers in Figure 10.6. Predictions associated with
a the full OR classifier (Figure 10.6c) and b the first calculation for "[cocaine (C)
AND hippurate (H)] OR benzamide (B) OR biphenyl-2,3-diol (F)" classifier with
0.1 nM HipO weight with (instead of 0.03 as experimentally tested and presented
in Figure 10.6d). In order to perform the clustering, we sampled values uniformly
within the stated ranges ([0, 2 µM] for low values and [80 µM, 100 µM] for high
values). We then simulated the results to assess the robustness of our designs. Two
blue lines refer to the thresholds separating "OFF" and "ON" states. The panel of
"OFF" and "ON" at the top of the plots are the expected outputs. (RFU: Relative
Fluorescence Unit).
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10.6.8 Further experimental characterization

Figure 10.18 Further characterization of HipO enzyme (hippurate transforming en-
zyme) at lower concentrations of the enzyme and 100 µM hippurate. HipO
enzyme which for its weight led to higher signals than predicted, needed to be fur-
ther characterized at concentrations lower than the minimum concentration used
for the weighted metabolic circuits (0.1 nM). For this characterization, this figure
shows the effect of 100 µM hippurate input alone and its additive effect when cou-
pled with 100 µM cocaine at the weight (CocE enzyme concentration) of 0.1 nM.
All data are the mean and the error bars are the standard deviation of normalized
values from measurements taken from two or three independent cell-free reactions
on the same day. (RFU: Relative Fluorescence Unit).

Figure 10.19 Exploring Hippurate-Cocaine ON-OFF behavior with different weights
and input concentrations for hippurate. All these experiments were done
while Cocaine is at a concentration of 100 µM and weight of 0.1 nM CocE. The
beige bars are for hippurate (µM Hippurate – nM HipO) and the orange bars are
for Hippurate (µM Hippurate – nM HipO) + Cocaine (100 µM Cocaine – 0.1 nM
CocE) as inputs. All data are the mean and the error bars are the standard devia-
tion of normalized values from measurements taken from two independent cell-free
reactions on the same day. (RFU: Relative Fluorescence Unit).
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10.6.9 Design of a multi-layer perceptron

Figure 10.20 Strategies for multi-layer perceptron implementation. The schematic
presents how computation is performed in a single-layer perceptron: inputs (xi−n)
are converted into a common metabolite using enzymes that allow for weighting
(wi) each input (xi) individually. The common metabolite is then converted into
output O1 using a non-linear activation layer (using a transcription factor =TF).
Right: A single-layer metabolic perceptron composed of multiple input metabo-
lites (x1−4) and metabolic enzymes (E1−4) transforming the inputs into a common
metabolite. The common metabolite then activates the gene expression, repre-
senting the actuator function. (b) The schematic presents how computation is
performed in a multi-layer perceptron (Top) and a possible implementation of a
multi-layer metabolic perceptron (Bottom). In a multi-layer perceptron, the out-
puts of the first perceptron layer are used as inputs for the second layer. We suggest
a potential strategy for such implementation. (1) A TF actuator outputs enzyme
E8 (O1,1) from the first layer that behaves as an input (I2,1) for the second layer,
in turn producing a metabolite needed as effector in the next perceptron layer. (2)
Similarly, another TF actuator outputs enzyme E9 (O1,2) from the first layer that
behaves as an input (I2,2) for the second layer, also producing the same effector
metabolite needed in the next perceptron layer. Weights on the second perceptron
layer can be applied by tuning the concentrations of the substrate metabolites for
E8 and E9. This strategy is the converse of what we did in the first layer, where
enzyme DNA concentrations were weights and input metabolites were ’0’ or ’1’.
Here, the enzymes E8 and E9 are ’0’ or ’1’, as they are outputs from sigmoidal
functions, whereas the metabolite concentrations are the weights.
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Figure 10.21 Simulations from the random sampling of estimated parameters in
whole-cell system. Representation of the experimental data with SEM (n = 3) in
black, and in blue, the results from 100 simulations of the model with parameters
drawn from the final parameters estimation without refitting. The combination
of various parameters within our estimations correctly recapitulates the data. A
benzoate actuator, B benzaldehyde transducer, C cocaine transducer, and D hip-
purate transducer. Scripts provided in GitHub also allow for visualization of those
results for each axis of the adder in Figure 10.2.
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10.6.10 Random sampling for model evaluation

Figure 10.22 Simulations from the random sampling of estimated parameters in the
cell-free system. Representation of the experimental data with SEM (n = 3) in
black, and in blue, the results from 100 simulations of the model with parameters
drawn from the final parameters estimation without refitting. The combination
of various parameters within our estimations correctly recapitulates the data. A
benzoate actuator, B benzamide transducer, C biphenyl-2,3-diol transducer, D
cocaine transducer, and E hippurate transducer. The simulation of the transducers
were performed with 100 µM of the input metabolites as will be used in the classifier
experiments. Scripts provided in GitHub also allow for the visualization of those
results for other axis of the various heat-maps in Figure 10.4. (RFU: Relative
Fluorescent/expression Unit of GFP).
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10.6.11 Goodness of �t scores

Score Correlation Weighted
R squared R squared Error per-

centage
Fit or pre-
diction

Actuator 0.999 0.999 0.999 NA Fit
Benzaldehyde
transducer 0.995 0.992 0.980 NA Fit

Hippurate
transducer 0.997 0.990 0.983 NA Fit

Cocaine trans-
ducer 0.965 0.950 0.924 NA Fit

Adder - com-
plete 0.958 0.982 0.916 16.8 %

Fit (on inducer
=0) and pre-
diction

Adder - both
inputs present 0.947 0.931 0.889 15.3 % Prediction

Table 10.3 Goodness of fit scores for the whole-cell models. The correlation (from
the R cor function), Weighted R squared and R squared between the experimental
data and the model. Exact definition of the weighted R squared and the R squared
are provided in the Methods section, as well as the Root-Mean-Square Deviation
(RMSD) that is used to compare models.

Score Correlation Weighted
R squared R squared Error per-

centage
Fit or pre-
diction

Actuator 0.990 0.999 0.980 NA Fit
Cocaine Trans-
ducer 0.923 0.999 0.574 NA Fit

Hippurate
Transducer 0.984 0.999 0.962 NA Fit

Benzamide
Transducer 0.946 0.991 0.659 NA Fit

2,3 biphenyl
Transducer 0.965 0.998 0.762 NA Fit

Table 10.4 Goodness of fit scores for the cell-free models. The correlation (from the R
cor function), Weighted R squared and R squared between the experimental data
and the model. Exact definition of the weighted R squared and the R squared are
provided in the Methods section, as well as the RMSD that is used to compare
models.
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10.6.12 Model parameters

Parameter Mean Value ± 95% Confi-
dence Interval

Hilla 2.2± 0.1
Km 8.40± 9.e−3

Fc 137± 1.84(sd : 9.41)
Basal 3.29.e−2 ± 4.e−4(sd : 2.e−3)
Lin 8.19± 9.3.e−2

RangeHipO 488± 35
KHipO 0.396± 0.022
Khippurate 245± 29
nHipO 1.82± 0.052
nhippurate 1.205± 0.046
RangeCocE 337± 28
KCocE 0.799± 0.00017
Kcocaine 54.4± 5.04
nCocE 1.713± 0.055
ncocaine 1.44± 0.047
rangebenzamid.enz 234± 20
Kbenzamid.enz 3.73± 0.27
Kbenzamid 48.6± 5.5
nbenzamid.enz 0.683± 0.072
nbenzamid 0.906± 0.087
rangebiphenyl.enz 63.7± 4.79
Kbiphenyl.enz 8.63± 0.31
Kbiphenyl 56.3± 4.92
nbiphenyl.enz 1.25± 0.067
nbiphenyl 3.05± 0.192

Table 10.5 Parameter estimations for cell-free model Parameters with value ± 95% Con-
fidence Interval (Standard Deviation for fold change (fc) and baseline)
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Parameter Mean Value ± 95% Confi-
dence Interval

Hilla 1.34± 1.e−6

Km 114± 1.e−4

Fc 20.6± 3.e−5

Basal 130± 2.e−4

RangeBenZ 1.1± 1.e−6

RangeHipO 0.787± 1.e−6

RangeCocE 0.201± 2.97.e−3

E 4.22± 0.193
Ratio 0.776± 3.7.e−3

nr 1.956± 4.56.e−2

Rangeres 1.973± 0.107
Table 10.6 Parameter estimations for in vivo model Parameters with value ± 95% Con-

fidence Interval.
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Conclusion & perspectives

Design tools for metabolic circuits

The first Part of this thesis was focused on utilizing efficient algorithms for navi-
gating complex combinatorial spaces, applied to the design of synthetic metabolic
circuits.
The first application case of interest was bio-retrosynthesis, which tackles the follow-
ing problem: given a target compound one wishes to produce, what enzymes (and
therefore chemical reactions) should be encoded in the genome of the chassis of in-
terest to produce it from the chassis’ metabolism? Retrosynthesis algorithms work
backwards, by iteratively simplifying a compound into smaller structures that are
simpler to produce, until all starting compounds are found to belong to an ensemble
of interest (a database of chemicals that can be bought for chemical retrosynthesis,
and the metabolism of the chassis organism of interest for bioretrosynthesis). Meth-
ods and algorithms from tools previously developed by the team were presented in
the Methods Chapter Enzyme Discovery: Enzyme Selection and Pathway Design
(more specifically in the Pathway Design part which is my main contribution) and
Chapter Molecular structures enumeration and virtual screening in the chemical
space with RetroPath2.0 (in which I developed a set of reaction rules for organic
molecules isomer enumeration). In those two examples, the biochemical reactions
catalyzed by enzymes are described using reaction rules, learned from data taking
into account more or less of the chemical context around the reaction center, al-
lowing us to encode enzymatic promiscuity. One of the main limits of the tools
presented in these two chapters is the brute force algorithm that is used to perform
the search, as such a huge combinatorial space necessitates better algorithms.
This is the whole aim of the RetroPath3.0 software. While the way the reactions
are encoded remained identical, the search algorithm was drastically changed using
a similarity-guided Monte Carlo Tree Search (MCTS). MCTS works by building
its search tree iteratively, balancing exploration and exploitation and evaluating
potential pathways of interest through random sampling to assess their value for
the aim of the search. Our algorithm was guided by a score that encompasses
both the likelihood that the chemical reaction can apply to the new substrate of
interest, and the likelihood that an enzyme exists that can catalyze this reaction.
This algorithm was successfully applied to bio-retrosynthesis, allowing us to re-
trieve pathways described in the literature for 19 compounds out of 20 tested, and
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finding a pathway for 83% of cases on a dataset of successful metabolic engineering
projects. This tool was designed to be as versatile as possible, with various ways
to guide or bias the search towards favorable compounds, chemical reactions or
pathways. This modularity and versatility was designed to help expert users input
their knowledge into the retrosynthetic search. This is a way to acknowledge the
current limitation of purely automatic workflows for metabolic engineering projects,
as it is well-known from industrial ventures that expert knowledge from biologists
and years of strain optimization are necessary to successfully produce a compound
of interest. Moreover, the two datasets that accompany the article (the manually
curated golden dataset of exact experimental pathways and the computationally
curated lit of successful metabolic engineering projects) will hopefully give a basis
to build standards to test new bio-retrosynthesis algorithms in the future of the
field. The CASP (Critical Assessment of protein Structure Prediction) challenge
is a great example from the field of protein structure prediction that should be
taken up by the metabolic engineering community as an example of collaborative
community projects for better science.
Despite the algorithmic advances showcased in RetroPath 3.0, a number of chal-
lenges still need to be addressed for improving bio-retrosynthesis tools. Two such
examples are the quantification of enzyme availability and enzyme promiscuity.
More precisely, while RetroPath 3.0 is guided by a score conceived to describe en-
zyme availability, this metric is broad and does not account for the availability of
the enzymatically-catalyzed chemical reaction within the chassis of interest, which
could be overcome by accounting for phylogenetic distance to the best candidates,
or the quantity of articles describing this function as the end-user of retrosyn-
thetic tools is a biologist that needs precise biological information from referenced
publications. Prediction of enzyme promiscuity is another major issue for current
bioinformaticians interested in metabolic engineering. Being able to reliably eval-
uate such a feature would allow retrosynthetic tools to select the allowed degree of
promiscuity based on knowledge rather than choosing the most conservative solu-
tion. Obviously, reaching this goal would also necessitate intense data reporting
and curation efforts from the community in order to have a standard to test promis-
cuity prediction tools on.
Alternative algorithms to what has been implemented in this thesis could be used,
notably to guide the search. In our MCTS implementation, best chemical reac-
tions are scored through chemical similarity, but should ideally be ranked accord-
ing to their capacity to help produce compounds of interest: rather than evaluating
whether the rule is realistic or not as was done here, something more relevant to
retrosynthesis would be to know if the rule allows us to solve the search for this
compound. An example of other guiding strategies comes from the game of Go.
The latest version of AlphaGo [82] combines two major evolution: it uses MCTS to
evaluate the state of a Go board, and reinforcement learning to guide the search.
For guiding the selection of moves to apply in a given position of pieces on the board,
the authors use a neural network to guide towards the most promising moves. More
precisely, in the latest version, they use reinforcement learning to train this neural
network: moves that lead to wins for the players are more likely to be played later
in the game, contrary to the previous version that trained this neural network on
a dataset of Go games played by human players. The reinforcement-guided version

288

https://en.wikipedia.org/wiki/CASP


beats the human games-guided one 100 to 0. However, both those approaches are
complicated to implement in metabolic engineering at the moment. First of all,
given our chemical knowledge on enzymatic reactions, it is not because a move ap-
plies in silico that the chemical reaction can be performed experimentally, whereas
this issue does not arise in Go or chess. Secondly, huge datasets for training are
not available. A dataset similar to the US patent database could already provide a
huge leap forward in the metabolic engineering community.
In order to run such retrosynthesis algorithms for designing metabolic circuits,
which require a detectable output, a detectable compounds dataset is required. I
therefore provide, make publicly available and regularly update a dataset of de-
tectable metabolites, presented in Chapter 4.
With Chapter 5, I tackled another aspect of circuit design and combinatorial space
exploration. The question of this Chapter was the following: given a protein of in-
terest (but this could be a metabolite, as long as it is detectable in a high throughput
manner), how do we select components of the buffer to maximize its production?
While the combinatorial space is much too large to be explored exhaustively, active
learning algorithms, which suggest the next round of experiments to optimize a
metric of interest, are perfectly adapted to such a problem. Therefore, I developed
an active learning method, coupled with liquid handling robots for experiments,
to optimize protein production in cell-free extracts. Such methods will become
more and more common as robots become easier to pilot and cheaper. I there-
fore hope the method I helped develop will become broadly adopted to tackle the
lysate efficiency issue of cell-free extracts. The conceptual question tackled here
was algorithmically similar to the problem of retrosynthesis, as presented in the
introduction. Moreover, from the practical standpoint, improving lysate quality
leads to better experimental results when testing the designed circuits in cell-free
systems. The method presented in this thesis can therefore be used to improve
metabolic circuits implemented in cell-free extracts, as well as production of any
protein that is detectable in a high-throughput manner.

Analysis and modeling tools for metabolic

circuits

While the first Part of this thesis was focused on building different tools to design
metabolic circuits, the second Part was focused on analysis and modeling tools for
such circuits.
The first issue for analyzing circuits is that their output needs to be detected. This
has been tackled in the design part as I ensure that the last compound of the circuits
is a metabolite present in my detectable compounds dataset. The first Chapter of
this second Part reviews methods to build biosensors for such detectable output,
and notably transcriptional biosensors, to allow reporting of signal from the circuit.
In Chapter 7, we saw the development and modeling of an in vivo biosensor for
pinocembrin and naringenin. More precisely, I observed in our data that chang-
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ing plasmid copy number of our biosensors not only modified the fold change of
the biosensor, as is to be expected, but also their sensitivity. I therefore chose
an adapted modeling strategy based on a modified Hill equation, that accounts
for plasmid copy number through transcription factor and binding sites numbers,
which is our system’s degree of freedom. After fitting this model on available data
and verifying parameter consistency using sampling from parameter estimations,
the model was then used to suggest modifications for changing the biosensor be-
havior to attain desired criteria, such as higher or lower sensitivity, by modifying
plasmid copy number, DNA - transcription factor binding strength or transcription
factor - inducer binding strength. One of the factors of interest that was observed
during this work but not modeled was the effect of resource competition, where
very high plasmid copy number seemed to be too demanding on cellular resources.
This was investigated more in depth in the chapters that followed.
While the work presented in the previous Chapter was performed in vivo, my col-
leagues and I identified several advantages of working in cell-free systems for the
rest of the design and analysis of synthetic metabolic circuits, and notably the fine-
tuning of enzyme concentration that proved paramount to the success of our most
complex circuits. I therefore presented in Chapter 8 a review on cell-free models
for state of the art modeling in cell-free systems before my last 2 chapters that
implemented metabolic circuits in cell-free systems.
The next step before building complex metabolic circuits is to implement simple
functions, which we call transducers, that convert an input of interest into a de-
tectable one, using tools presented in Part I. I present results from this approach
in Chapter 9. First, a biosensor is developed and optimized, tuning both tran-
scription factor DNA and reporter DNA. My first contribution to this work was to
model this assay using Hill equations. Then, two transducers were implemented in
those cell-free systems, for hippuric acid and cocaine. A major point of interest in
those two transducers for modeling was that the signal peaked before decreasing
at intermediate enzyme DNA concentrations, showing that resource competition
has an important role in our observed effects. Therefore, I proceeded in two steps,
by first modeling the hippuric acid transducer including resource competition, and
applying the same framework to cocaine, accounting for differences in promoter
strengths. This modeling was then verified by analyzing a shift in peak signal of
the hippurate transducer when varying transcription factor DNA, thereby increas-
ing resource competition. Therefore, this Chapter presents two interesting additions
to the biosensor modeling presented in Chapter 7, as it accounts for the effect of
resource competition, and includes and models novel steps towards the building of
our synthetic circuits.
Finally, the last Chapter of this thesis builds on all previous developments to de-
velop synthetic metabolic circuits, implementing more sophisticated circuitry and
calculations. Design was performed using tools presented in the first Part of this
thesis. In a first modeling step, the biosensors and metabolic transducers were mod-
eled using custom Hill functions. Then, in a second step, behavior when combining
those transducers was predicted in silico and tested in vivo. Our aim was first
to build weighted adders, which can then be modified to make a perceptron, the
most basic machine learning algorithm, which can essentially be implemented with
a weighted sum followed by a sigmoidal function. The model was used to predict
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the enzyme quantities necessary to achieve the classifiers we wished to implement
in our cell-free perceptrons, before experimental implementation of those classifiers
in cell-free systems. Therefore, my contribution to this project involved data anal-
ysis, modeling and prediction for further experimental designs. This project builds
on previously developed tools to suggest a novel way to perform computation in
synthetic biology.
In Chapters presented in the Analysis and Modeling part of my thesis, different
methods were chosen, each best adapted to the question at stake: effect of copy
number, of burden, of enzyme DNA concentration... The main idea driving each of
those implementations was, as presented in the Introduction of this thesis, to model
the system’s degree of freedom that I wanted to work on in the project of interest.
While one could argue all those projects could have been merged into one, using
detailed mechanistic modeling, I believe the questions arising from such detailed
modeling - parameters choice, fitting, constraining - render it inconvenient at the
moment for design of practical applications as was the aim in this thesis. While pro-
cesses such as binding, unbinding of inducer to transcription factor, transcription
factor to DNA, and all other phenomenons we currently know in transcription and
translation could (and often have) been modeled, from a practical standpoint, those
could not be controlled in our setting of choice, and including them would therefore
surely add more uncertainty to our predictions while not necessarily improving pre-
diction quality. For example, many different measures of enzyme catalytic strength
are available in enzymatic databases, spanning order of magnitudes in some cases,
and usually measured in vitro: while making the best of this information is a sci-
entific endeavor that is both interesting and useful, methods based on empirical
modeling do seem more practical when predicting circuit outcomes is the objective.
This is however a very pragmatic point of view. For example, while circuit burden
and resource usage were formerly not included in modeling projects, it is now be-
coming more and more common place to do so as it has been recognized a major
problem in circuit development in the synthetic biology community. A number of
topics otherwise interesting are not currently investigated by the community, in part
because of lack of data in published articles on this topic. For example, while we
know resource competition affects short-term circuit output, we also know it affects
long term circuit behavior throughout generations due to genetic drift. However,
since we do not have data of circuit duration (in generations) in most publications,
deriving design principles and modeling for this topic is possible but can hardly be
evaluated.
The modeling tools presented in this thesis present limitations, as we have seen
previously, both in scope of modeling and predictive power. However, I would like
to point out the importance of modeling for reasons beyond the aim of this thesis.
Current modeling efforts in the synthetic biology community often lead to useful
insights, and probably just as often do not. However, modeling should be valued
for itself, as it is a way of formalizing knowledge that allows us as a community to
present in a concise and mathematical manner our current knowledge on a topic.
Failures and lacks in models allow us to identify our current knowledge gaps and
could be a major driver of biological research, by identifying where the limits to
our knowledge lie.
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Acronyms

E. coli Escherichia coli.
4CL coumarate-CoA ligase.

AAM atom–atom mapping.
amu atomic mass units.
aTc anhydrotetracycline.
ATP adenosine triphosphate.
AU Arbitrary Units.

BDA 1,4-Butanediol diacrylate.
BLAST Basic Local Alignment Search

Tool.
BRENDA Braunschweig Enzyme

Database.

CAS Chemical Abstract Service.
CHI chalcone isomerase.
CHS chalcone synthase.
CoMFA Comparative MolecularField

Analysis.
CRISPR clustered regularly inter-

spaced short palindromic re-
peats.

DBD DNA Binding Domain.
DBTL Design–Build–Test–Learn.
DNA deoxyribonucleic acid.
dNTP deoxyribonucleotide triphos-

phate.
DOGS Design of Genuine Structures.

EC Enzyme Commission.
ECFP Extended Connectivity Finger-

Print.

FBA Flux Balance Analysis.
FIFO First In First Out.
FRET Förster Resonance Energy

Transfer.

GFP green fluorescent protein.
GPCR G protein-coupled receptor.
GRAS Generally Recognized As

Safe.

HMDB Human Metabolome
Database.

InChI IUPAC International Chemical
Identifier.

IPTG Isopropyl β-D-1-thiogalactopyranoside.

LB Luria Broth.
LBD Ligand Binding Domain.
LC-MS liquid chromatography-mass

spectrometry.
LOO Leave-One-Out.

MCS Maximum Common Substruc-
ture.

MCTS Monte-Carlo Tree Search.
MDL Molecular Design Limited.
MIC Minimum Inhibitory Concentra-

tion.
mRNA messenger RNA.
MS Mass Spectrometry.

NAD nicotinamide adenine dinu-
cleotide.

NADP Nicotinamide Adenine Dinu-
cleotide Phosphate.

NTP nucleoside triphosphate.

OD optical density.
ODE ordinary differential equation.

PAL phenylalanine ammonia lyase.
PEG polyethylene glycol.
PSSM position-specific scoring matri-

ces.

QSAR Quantitative Structure Activity
Relationship.

QSPR Quantitative Structure Property
Relationship.

RBS ribosome binding site.
RDT Reaction Decoder Tool.
REU relative expression unit.
RFP red fluorescent protein.
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RMSD Root-Mean-Square Devia-
tion.

RNA ribonucleic acid.
RNAP RNA polymerase.

SBML Systems Biology Markup Lan-
guage.

SBOL Synthetic Biology Open Lan-
guage.

SEMP Sensing-Enabling Metabolic
Pathways.

sfGFP super-folder GFP.

SMARTS SMILES arbitrary target
specification.

SMILES Simplified Molecular Input
Line Entry System.

SQL Structured Query Language.

TAL tyrosine ammonia lyase.
TCA tricarboxylic acid cycle.
TF transcription factor.
tRNA transfer ribonucleic acid.
TX-TL transcription-translation.
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Modélisation pour la conception et l’analyse de circuits métaboliques synthétiques. 

Mots clés : modélisation, bio-informatique, rétrosynthèse, biosenseurs, biologie synthétique. 

Résumé : Les buts de cette thèse sont doubles, et concernent 

les circuits métaboliques synthétiques, qui permettent de 

détecter des composants chimiques par transmission de 

signal et de faire du calcul en utilisant des enzymes. 

La première partie a consisté à développer des outils 

d’apprentissage actif et par renforcement pour améliorer la 

conception de circuits métaboliques et optimiser la 

biodétection et la bioproduction. Pour atteindre cet objectif, 

un nouvel algorithme (RetroPath3.0) fondé sur une 

recherche arborescente de Monte Carlo guidée par similarité 

est présenté. Cet algorithme, combiné à des règles de 

réaction apprises sur des données et des niveaux différents 

de promiscuité enzymatique, permet de focaliser 

l’exploration sur les composés et les chemins les plus 

prometteurs en bio-rétrosynthèse. Les chemins obtenus par 

rétrosynthèse peuvent être implémentés dans des cellules ou 

des systèmes acellulaires. Afin de concevoir le meilleur 

milieu pour optimiser la productivité du système, une 

méthode d’apprentissage actif qui explore efficacement 

l’espace combinatoire des composants du milieu a été 

développée. 

La deuxième partie a consisté à développer des méthodes 

d’analyse, pour générer des connaissances à partir de 

données biologiques, et modéliser les réponses de 

biocapteurs. Dans un premier temps, l’effet du nombre de 

copies de plasmides sur la sensibilité d’un biocapteur 

utilisant un facteur de transcription a été modélisé. Ensuite, 

en utilisant des systèmes acellulaires qui permettent un 

meilleur contrôle des variables expérimentales comme la 

concentration d’ADN, l’utilisation des ressources a été 

modélisée pour assurer que notre compréhension actuelle 

des phénomènes sous-jacents est suffisante pour rendre 

compte du comportement du circuit, en utilisant des 

modèles empiriques ou mécanistiques. Couplés aux outils 

de conception de circuits métaboliques, ces modèles ont 

ensuite permis de développer une nouvelle approche de 

calcul biologique, appelée perceptrons métaboliques.  

Dans l’ensemble, cette thèse présente des outils de 

conception et d’analyse pour les circuits métaboliques 

synthétiques. Ces outils ont été utilisés pour développer une 

nouvelle méthode permettant d’effectuer des calculs en 

biologie synthétique. 
 

 

Computational modeling to design and analyze synthetic metabolic circuits. 

Keywords: mathematical modeling, bioinformatics, retrosynthesis, biosensors, synthetic biology. 

Abstract: The aims of this thesis are two-fold, and centered 

on synthetic metabolic circuits, which perform sensing and 

computation using enzymes. 

The first part consisted in developing reinforcement and 

active learning tools to improve the design of metabolic 

circuits and optimize biosensing and bioproduction. In order 

to do this, a novel algorithm (RetroPath3.0) based on 

similarity-guided Monte Carlo Tree Search to improve the 

exploration of the search space is presented. This algorithm, 

combined with data-derived reaction rules and varying 

levels of enzyme promiscuity, allows to focus exploration 

toward the most promising compounds and pathways for 

bio-retrosynthesis. As retrosynthesis-based pathways can be 

implemented in whole cell or cell-free systems, an active 

learning method to efficiently explore the combinatorial 

space of components for rational buffer optimization was 

also developed, to design the best buffer maximizing 

cell-free productivity. 

The second part consisted in developing analysis tools, to 

generate knowledge from biological data and model 

biosensor response. First, the effect of plasmid copy number 

on sensitivity of a transcription-factor based biosensor was 

modeled. Then, using cell-free systems allowing for broader 

control over the experimental factors such as DNA 

concentration, resource usage was modeled to ensure our 

current knowledge of underlying phenomenons is sufficient 

to account for circuit behavior, using either empirical 

models or mechanistic models. Coupled with metabolic 

circuit design, those models allowed us to develop a new 

biocomputation approach, called metabolic perceptrons.  

Overall, this thesis presents tools to design and analyse 

synthetic metabolic circuits, which are a novel way to 

perform computation in synthetic biology. 
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