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Résumé en français

Les réseaux de neurones profonds jouent aujourd’hui un rôle de plus en
plus important dans de nombreux systèmes intelligents. En particulier pour
les applications de reconnaissance des objets et de traduction automatique,
les réseaux profonds, dits «deep neural networks», représentent l’état de l’art.
Cependant, inférence et apprentissage dans les réseaux de neurones profonds
nécessitent une grande quantité de calcul, qui dans beaucoup de cas limite
l’intégration des réseaux profonds dans les environnements en ressources li-
mitées. Étant donné que le cerveau humain est capable d’accomplir des tâches
complexes avec un budget énergétique très restreint, cela pose la question si
on ne pourrait pas améliorer l’efficacité des réseaux de neurones artificiels
en imitant certains aspects des réseaux biologiques. Les réseaux de neurones
évènementiels de type «spiking neural network (SNN)», qui sont inspirés par
le paradigme de communication d’information dans le cerveau, représentent
une alternative aux réseaux de neurones artificiels classiques. Au lieu de pro-
pager des nombres réels, ce type de réseau utilise des signaux binaires, appel-
lés «spikes», qui sont des évènements déclenchés en fonction des entrées du
réseau. Contrairement aux réseaux classiques, pour lequels la quantité de cal-
cul effectué est indépendante des informations reçues, ce type de réseau évè-
nementiel est capable de traiter des informations en fonction de leur quantité.
Cette caractéristique entraine qu’une grande partie d’un réseau évènemen-
tiel restera inactif en fonction des données. Malgré ces avantages potentiels,
entraîner les réseaux spike reste un défi. Dans la plupart des cas, un réseau
spike, pour une même architecture, n’est pas capable de fournir une préci-
sion d’inférence égale au réseau artificiel classique. Cela est particulièrement
vrai dans les cas où l’apprentissage doit être exécuté sur un matériel de calcul
bio-inspiré, dit matériel neuromorphique. Cette thèse présente une étude sur
les algorithmes d’apprentissage et le codage d’informations dans les réseaux
de neurones évènementiels, en mettant un accent sur les algorithmes qui sont
capables d’un apprentissage sur une puce neuromorphique. Nous commen-
çons notre étude par la conception d’une architecture optimisée pour l’ap-
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Figure 0.1: Structure basique d’une couche convolutive avec inhibition WTA entre-
carte et intra-carte. Chaque carte de charactéristiques (montrées en différentes cou-
leurs) détecte des charactéristiques dans l’image entière. Si un neurone déclenche un
évènement, tous les neurones des autres couches, se trouvant au voisinage du neu-
rone déchlenché, sont inhibés, de même que les neurones de la carte du neurone
déchlenché.

prentissage continu, qui apprend avec une règle d’apprentissage type STDP
(«spike-timing dependent plasticity», littéralement plasticité dépendant de l’ins-
tant de déclenchement). Le STDP est une règle d’apprentissage non-supervisée
qui permet, avec un mécanisme compétitif du type WTA («winner-takes-all»,
littéralement le vainqueur prend tout), une extraction des caractéristiques des
données non-étiquettées (figure 0.7). Cette règle est facilement réalisable dans
les matériels neuromorphiques. Ce mécanisme d’apprentissage nous permet
de construire un système capable d’un apprentissage interne dans une puce
neuromorphique, potentiellement avec une haute efficacité énergétique. Cette
approche est utilisée pour l’apprentissage des caractéristiques dans un CNN
(«convolutional neural network», réseau de neurones convolutif). Ce réseau
consiste en deux couches convolutives, deux couches de «pooling»(qui re-
groupent les entrées en faisant la moyenne d’une région spatiale) et une
couche entièrement connectée. Dans les approches précédentes, le mécanisme
de WTA permettait seulement une apprentissage couche par couche. En utili-
sant un modèle de neurone avec deux accumulateur (figure 0.2), nous sommes
capables d’entraîner toutes les couches du réseau simultanément. Ce modèle
de neurone représente une caractéristique innovante de notre architecture,
qui facilite largement l’apprentissage continu. De plus, nous montrons que le
choix spécifique de la règle STDP, qui mesure les temps d’évènements en fonc-
tion des dernières remises à zéro et qui n’utilise que des temps absolus, per-

II



Θinf

entrée
synaptique

STDP

inhibition latérale

évènement

(a) (b)

(c)

ΘWTA

remise
à zéro

Figure 0.2: (a) Description schématique du neurone en deux accumulateurs. Le neu-
rone intègre tous les entrées reçues simultanément dans deux accumulateurs, l’un
pour le déclenchement STDP et WTA, l’autre pour l’inférence (cela veut dire la propa-
gation d’évènements).(b) Interaction entre deux neurones liés par inhibition latérale.
Si l’intégration d’accumulateur WTA dépasse le seuil, aucun évènement n’est propagé
à la couche suivante. Cependant, le neurone déclenche STDP et l’inhibition latérale,
qui remet à zéro les intégrations des autres neurones. (c) Si l’intégration dépasse le
seuil dans l’accumulateur d’inférence, un évènement est propagé et l’intégration est
remise à zéro. Les accumulateurs d’inférence des autres neurones restent inaffectés,
ou sont alternativement influencés par une inhibition de courte distance (plus courte
que l’inhibition des accumulateurs d’apprentissage). Cela permet de contrôler com-
bien de cartes par position contribuent à la propagation des évènements.

met d’obtenir une invariance temporelle de fonctionnement du réseau. Nous
montrons que notre architecture est capable d’une extraction des caractéris-
tiques pertinentes (figure 0.3), qui permettent une classification des images
des chiffres de la base de données MNIST. La classification est faite avec une
simple couche entièrement connectée dont les neurones correspondent aux
prototypes des chiffres. Notre architecture démontre une meilleure perfor-
mance de classification que les réseaux de l’état de l’art qui consistent seule-
ment en une couche entièrement connectée, qui montre l’avantage de passer
des informations par des couches convolutives. On parvient à une précision
de classification maximale de 96, 58%, qui est la meilleure précision pour un
réseau où toutes les couches sont entrainées avec un mécanisme STDP. Nous
montrons la robustesse du réseau face aux variations du taux d’apprentissage
et le temps de présentation des stimuli. En changeant la taille des différentes
couches du réseau, nous montrons que la performance du réseau peut être
améliorée en augmentant le nombre des neurones dans la couche entièrement
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Figure 0.3: Visualization des caractéristiques apprises par les différentes couches du
réseau. Dans la première couche, les caractéristiques correspondent simplement aux
poids du noyau de convolution. On voit que cette couche apprend à détecter des dif-
férences de contraste locales. Les caractéristiques du haut niveau sont construites en
choisissant pour chaque neurone la caractéristique de la couche précédente avec le
poids le plus fort. Parce que les filtres dans des positions différentes se chevauchent,
les caractéristiques ont une apparence floue. On voit que dans la deuxième couche
convolutive, les neurones deviennent sensibles aux parties de chiffres. Finalement,
dans la couche entièrement connectée, chaque neurone a appris une caractéristique
qui ressemble à un prototype spécifique d’un chiffre faisant partie d’une des diffé-
rentes classes (chiffre de 0 à 9 de gauche à droite).

connectée et la deuxième couche convolutive. Comme extension de ces tra-
vaux, nous montrons que le réseau peut aussi être appliqué à l’apprentissage
des caractéristiques d’une base de données dynamique, N-MNIST, qui repré-
sente une version de MNIST avec des chiffres en mouvement. Avec quelques
changements mineurs des paramètres de notre architecture, il est capable
d’apprendre des caractéristiques qui maintiennent l’information du mouve-
ment (figure 0.4). En ajoutant une deuxième couche entièrement connectée
avec un classificateur supervisé, nous sommes capables d’obtenir une préci-
sion de classification de 95, 77%. Cela représente la première démonstration
d’un apprentissage de N-MNIST dans un réseau convolutif où toutes les ca-
ractéristiques sont apprises par un mécanisme STDP. Nous montrons égale-
ment que l’architecture est capable d’une inférence basée seulement sur des
sous-mouvement. Nos résultats montrent alors que notre architecture pos-
sède toutes les capacités nécessaires pour un système neuromorphique qui
doit effectuer un apprentissage sur un flux de données évènementielles.

En comparaison avec des approches supervisées fondées sur l’algorithme
BP («backpropagation», la rétro-propagation du gradient), notre architecture
démontre une performance de classification inférieure. Nous présentons une
analyse des différents algorithmes d’apprentissage pour les réseaux spike
d’un point de vue localité de l’information. Reposant sur cette synthèse, nous
expliquons que les règle d’apprentissage du type STDP, qui sont spatialement
et temporellement locales, sont limitées dans leur capacité d’apprendre cer-
taines caractéristiques nécessitant une optimisation globale du réseau. Cette
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Figure 0.4: Visualisation des caractéristiques apprises par la première couche entiè-
rement connectée du réseau.

faiblesse pourrait expliquer leurs performances inférieures par rapport aux
mécanismes d’optimisation non-locaux type rétro-propagation du gradient.

Pour dépasser ces limites du STDP, nous élaborons un nouvel outil pour
l’apprentissage dans les réseaux spike, SpikeGrad, qui représente une implé-
mentation entièrement évènementielle de la rétro-propagation du gradient.
Cet algorithme est construit à partir d’un modèle de neurone spécial possé-
dant un deuxième accumulateur pour l’intégration des informations du gra-
dient. Cet accumulateur est mis à jour d’une manière pratiquement équiva-
lente à l’accumulateur ordinaire du neurone, avec la différence que la dérivée
de la fonction d’activation est prise en compte pour le calcul du gradient.
En utilisant un accumulateur d’activation de neurone qui est pondéré par le
taux d’apprentissage, SpikeGrad est capable d’effectuer un apprentissage qui
repose uniquement sur des accumulations et des comparaisons. De plus, Spi-
keGrad possède un autre grand avantage. En utilisant un modèle de neurone
type IF («integrate-and-fire», littéralement intègre-et-déclenche) avec une fonc-
tion d’activation résiduelle, nous montrons que les activations accumulées des
neurones sont équivalentes à celles d’un réseau de neurones artificiels. Cela
permet la simulation de l’apprentissage du réseau évènementiel en tant que
réseau de neurones artificiels classique, qui est facile à effectuer avec le ma-
tériel de calcul haute performance typiquement utilisé dans l’apprentissage
profond.

Nous montrons comme cette approche peut être utilisée pour l’entraine-
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Figure 0.5: Phases de propagation et rétro-propagation dans un seul neurone dans
l’algorithme SpikeGrad. Intégration : Chaque fois qu’un signal évènementiel arrive à
une des synapses {w1, ..., wJ}, la valeur du poid est ajoutée à la variable d’intégra-
tion V ponderée par le signe de l’évènement. Après chaque mise à jour, la variable
d’intégration est comparée au seuil ±Θff et la trace synaptique x par la fonction d’ac-
tivation évènementielle s, qui décide si un évènement sera déclenché. Propagation : Si
un évènement est déclenché, il augmente la trace x par le taux d’apprentissage ±η, et
il est transmis aux connexions sortantes. L’intégration est augmentée par ±Θff selon
le signe de l’évènement. Intégration d’erreur : Des évènements signés sont reçus par
les synapses {w1, ..., wK} des connexions sortantes. La valeur du poid est ajoutée à la
variable d’intégration d’erreur U, et elle est comparée au seuil ±Θbp par la fonction
z. Propagation d’erreur : Si le seuil est dépassé, un évènement signé est émis et U est
incrémentée par ±Θbp. L’évènement est pondéré par la dérivée de la fonction d’ac-
tivation effective (qui est calculée avec V et x), et propagé à travers les connexions
entrantes. Les poids des neurones sont mis à jour en utilisant ce signal d’erreur et les
traces synaptiques des neurones de la couche précédente.

ment d’un réseau spike qui est capable d’inférer des relations entre des va-
leurs numériques et des images. Notre première démonstration concerne un
réseau qui apprend la relation A+ B = C. Nous montrons que SpikeGrad per-
met d’entraîner ce type de réseau plus rapidement, avec moins de neurones,
et avec une meilleure précision d’inférence que les approches bio-inspirés de
l’état de l’art. La deuxième tache examinée est l’apprentissage d’une version
visuelle de la relation logique XOR, sur les images de 0 et 1 de MNIST. Nous
montrons également que le réseau est capable d’une inférence visuelle dans
ce scenario, et qu’il peut produire des stimuli artificiels qui ressemblent aux
exemples qu’il a reçus pendant l’apprentissage.

La deuxième démonstration des capacités de SpikeGrad est faite sur une
tâche de classification. Il est montré que l’outil est capable d’entraîner un
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Figure 0.6: (a) Architecture du réseaux relationnel avec trois variables. Les popula-
tions d’entrée/sortie sont marquées par X, Y, Z. Les populations périphériques sont
marquées par A, B, C, et la population cachée par H. (b) Entraînement du réseau.
Pendant l’apprentissage, deux populations servent comme populations d’entrée et
fournissent un profil des taux de déclenchement désiré. La troisième population est
entraînée pour reproduire ce profil, à partir des entrées. Ces différents rôles des po-
pulations sont interchangés pendant l’apprentissage pour permettre une inférence
dans tous les sens de la relation.
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Figure 0.7: Inférence des trois variables de la relation. Les deux axes du fond
marquent les deux variables d’entrée, tandis que l’axe vertical représente la valeur
inférée. On voit que le réseau a appris à représenter précisement toutes les directions
possibles de la relation.
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Figure 0.8: Inférence des trois variables de la relation visuelle. Les stimuli inférés
sont marqués par des boîtes. On voit que le réseau a appris à représenter toutes
les directions de la relation et est capable de construire des stimuli artificiels qui
ressemblent aux autres stimuli de la base de données.

Architecture Méthode Taux Rec. (max[moyen±dev.])

Rueckauer et al. [2017] CNN converti à SNN 99, 44%
Wu et al. [2018b]* SNN entraîné avec BP float. 99, 42%
Jin et al. [2018]* Macro/Micro BP 99, 49%
Ces travaux* SNN entraîné avec BP float. 99, 48[99, 36± 0, 06]%
Ces travaux* SNN entraîné avec BP évènementiel 99, 52[99, 38± 0, 06]%

Table 0.1: Comparaison des différentes méthodes de l’état de l’art des architectures
CNN évènementielles sur MNIST. * marque l’utilisation de la même topologie (28x28-
15C5-P2-40C5-P2-300-10).

grand réseau spike convolutif, qui donne des taux de reconnaissance d’image
compétitive (figures 0.1 et 0.2). Sur MNIST, nous obtenons une précision de
classification de 99, 52%, et sur CIFAR10, nous obtenons 89, 99%. Dans les
deux cas, ces précisions sont aussi bonnes que celles des réseaux spike entraî-
nés avec la rétro-propagation en virgule flottante. Elles sont aussi comparables
avec celles des réseaux de neurones classiques possédant une architecture
comparable. De plus, nos résultats montrent que ce type de rétro-propagation
évènementielle du gradient pourrait facilement exploiter la grande parcimo-
nie qui se trouve dans le calcul du gradient. Particulièrement vers la fin d’ap-
prentissage, quand l’erreur commence à diminuer fortement, la quantité de
calcul pourrait diminuer fortement en utilisant un codage évènementiel.

Nos travaux introduisent alors plusieurs mécanismes d’apprentissage puis-
sants. La première partie de nos travaux avait comme objectif d’utiliser un
mécanisme d’apprentissage bio-inspiré pour construire un système neuro-
morphique capable d’un apprentissage continue. Pour franchir plusieurs li-
mitations de cette approche, nous avons ensuite développé une implémenta-
tion évènementielle de la rétro-propagation du gradient. Ces approches pour-
raient alors promouvoir l’utilisation des réseaux spike pour des problèmes
réels. Dans notre opinion, les approches comme SpikeGrad, qui sont basées sur
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Architecture Méthode Taux Rec. (max[moyen±dev.])

Rueckauer et al. [2017] CNN converti à SNN (avec BatchNorm) 90, 85%
Wu et al. [2018a]* SNN entraîné avec BP float. (sans «NeuNorm») 89, 32%
Sengupta et al. [2019] SNN (VGG-16) converti à SNN SNN 91, 55%
Ces travaux* SNN entraîné avec BP float. 89.72[89, 38± 0, 25]%
Ces travaux* SNN entraîné avec BP évènementiel 89, 99[89, 49± 0, 28]%

Table 0.2: Comparaison des différentes méthodes de l’état de l’art des architectures
CNN évènementielles sur CIFAR10. * marque l’utilisation de la même topologie
(32x32-128C3-256C3-P2-512C3-P2-1024C3-512C3-1024-512-10).
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Figure 0.9: Développement des précisions d’inférence de l’état de l’art sur MNIST
pendant les dernières années. On voit que les travaux initiaux utilisaient surtout
des approches STDP. Alors qu’il y a encore de la recherche sur l’amélioration des
performances des SNNs entraînés avec STDP, les meilleurs résultats des dernières
années sont fournis par des méthodes qui utilisent des approximations de la rétro-
propagation. SpikeGrad est la première méthode pour l’apprentissage interne sur
puce qui donne des précisions comparables aux méthodes d’apprentissage externes.
Veuillez noter que cette présentation est simplifiée et montre seulement les tendances
générales qui sont observables dans la domaine. Surtout, nous n’avons pas pris
en compte l’efficacité énergétique ou des différents contraintes matérielles, objectifs
d’apprentissage et méthodes. Kheradpisheh et al. [2017] est marqué comme méthode
externe à cause de l’utilisation d’un classifieur type «support vector machine».
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l’apprentissage automatique, sont les plus adaptées pour obtenir des réseaux
spike de haute performance d’inférence (figure 0.9). SpikeGrad est le premier
algorithme d’apprentissage évènementiel qui permet d’obtenir, même dans
des grands réseaux, des précisions d’inférence comparables aux réseaux évè-
nementiels entraînés avec des méthodes d’apprentissage externe.

Cependant, nous croyons que la future proche des applications des ré-
seaux spike sera plutôt l’inférence efficace que l’apprentissage continu. Bien
que l’apprentissage continu soit intéressant d’un point de vue théorique, il
est difficile aujourd’hui d’imaginer des systèmes industriels avec un tel de-
gré d’autonomie. Le problème principal des réseaux spike, qui ralentit leur
application industrielle, est l’absence d’un matériel pouvant implémenter un
tel système évènementiel d’une manière efficace. De plus, le développement
de ce genre de matériel nécessite des outils de production et des expertises
très spécialisées. Cette complexité empêche aujourd’hui une standardisation
industrielle.
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Chapter 1

Introduction

1.1 High level introduction

1.1.1 The rise of deep learning

While tremendous advances in computing power in the last decades have
lead to machines that can handle increasingly sophisticated algorithms, even
modern computers still lack the capacity to perform tasks in domains that
seem intuitive to humans, such as vision and language. Creating machines
that learn like humans from experience, and which can apply their knowl-
edge to solve these kind of problems, has for a long time been a desire with
comparably large investments of effort and relatively little practical success.

The field of artificial intelligence (AI) aims to build machines that are ca-
pable of performing exactly this type of tasks. In recent years, approaches
to AI have become increasingly dominated by a class of algorithms loosely
inspired by the human brain. Deep Learning (DL) is a class of artificial neu-
ral network (ANN) models that represents information by a hierarchy of lay-
ers of simple computational units, that are called artificial neurons. Deep
learning has nowadays become a successful and well-established method in
machine learning and provides state-of-the-art solutions for a wide range of
challenging engineering problems (for recent reviews, see LeCun et al. [2015]
or Schmidhuber [2014]). In particular, convolutional neural networks (CNNs)
and recurrent neural networks (RNNs) are now used in a huge variety of
practical applications, most notably computer vision and natural language
processing.

1.1.2 The energy problems of deep learning

The development of deep learning has tremendously profited from the paral-
lel improvement of Graphics Processing Units (GPUs). Although GPUs were
primarily developed to process the expensive matrix operations used in com-

1
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puter graphics and video game applications, it happens to be exactly the same
type of computation that is necessary to execute large artificial neural net-
work structures. The extremely high parallelism provided by this specialized
hardware has allowed the implementation of extremely powerful systems for
large-scale AI problems. While deep learning algorithms have shown im-
pressive performance, they require an extreme amount of computation, in
particular for the training procedure. The most advanced machine learning
systems have become so calculation intensive that only a small number of in-
dustrial or academic laboratories are able to perform their training (Strubell
et al. [2019]). This is why many of these systems are so far mostly used for
centralized, high performance computing applications on large-scale servers
(in the “Cloud”).

Besides the huge investments in hardware and energy that are necessary
to train deep neural networks, the calculation intensity also prevents their
integration into systems with tight resource constraints. These are for instance
Internet-of-Things (IoT) applications, autonomous systems and other systems
that process data close to where it is acquired (at the “Edge”). Modern GPUs
typically have a power consumption of several hundred Watts. Integrating
AI algorithms in resource constrained environments however requires power
consumption that is orders of magnitude lower. Recent years have seen a rise
in specialized AI chips that are able to perform operations more efficiently
by a combination of optimized processing infrastructure, precision reduction
and topology optimizations (see for instance Jacob et al. [2017] and Howard
et al. [2017]). These do however not alter the parallel, vectorized principle
of computation. In particular, they cannot easily exploit the high level of
sparsity found in many deep neural network architectures (see for instance
Loroch et al. [2018] or Rhu et al. [2018] for recent empirical studies).

1.1.3 Event-based neuromorphic systems

This leads us to the foundational idea of neuromorphic engineering, a field of
engineering that aims to construct AI systems inspired by the human brain.
Despite some loose analogies to information processing in the brain, the afore-
mentioned deep learning approaches are orders of magnitude less efficient in
performing many cognitive tasks than our very own biological hardware. To
achieve a more fundamental paradigm shift, it may thus be necessary to inves-
tigate a rather fundamental aspect in which GPU-based DL implementations
differ from the real brain: while deep learning models are based on parallel
floating point calculations, biological neurons communicate via asynchronous
binary signals. So-called spiking neural network (SNN) models, which imi-
tate this binary firing behavior found in the human brain, have emerged in
recent years as a promising approach to tackle some of the challenges of mod-
ern AI hardware. These models could potentially be more energy efficient
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due to the lower complexity of their fundamental operations, and because
their event-driven nature allows them to process information in a dynamic,
data dependent manner. The later aspect allows spiking neural networks to
exploit the high temporal and spatial sparsity that can be found in the com-
putational flow of many DL topologies, and which is difficult to be exploited
by GPUs.

Because event-based systems work so differently from standard comput-
ers, mastering this kind of systems requires considering the intimate relation-
ship between algorithm and computational substrate. The aim of this thesis
is to design algorithms that take into account these particular properties of
spiking neuromorphic systems.

1.2 Thesis outline

This thesis will present an investigation of SNNs and their training algo-
rithms. Typically these algorithms can be divided into two subcategories:
off-chip learning and on-chip learning. In the first case, the actual training
of the SNN is performed on an arbitrary computing system. The only con-
straint is that the final, trained system has to be implementable on spiking
neuromorphic hardware. The learning process therefore does not have to
be compatible with the SNN hardware infrastructure. In the second case, the
training of the system will also be performed on a spiking neuromorphic chip.
This typically complicates the optimization procedure. Most efforts to reduce
the energy footprint of both ANNs and SNNs have focused on the inference
phase, since most current applications which utilize deep neural networks are
trained on servers and then exported to mobile platforms. In the long term,
it would however be desirable to have systems with the capability to learn
on a low power budget and without the need of a working connection to a
high performance computing system. Additionally, embedded learning is in-
teresting from a theoretical perspective, since also biological brains are able
to perform learning and inference in the same system simultaneously.

This is why this thesis focuses in particular on designing learning algo-
rithms for this kind of embedded on-chip learning, with a particular focus on
learning hierarchical representations in deep networks. While we will often
talk in this context about spiking neuromorphic hardware, this thesis has a
strong focus on algorithm design. This means that we take into account the
constraints that are common to most potential spiking neuromorphic chips
regarding the type of operations that can be used and how information is
communicated between units. However, the main objective of this work is
to find rather generic algorithms that are agnostic about the exact hardware
implementation of the spiking neural network. While we try to design al-
gorithms that could be suitable for both digital and analog implementations,
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there will be a focus on digital implementations, since these allow an easier
theoretical analysis and comparison to standard ANNs. If some fundamental
aspects of the implementation depend clearly on the type of hardware that is
being used, we provide a discussion that points out the potential issues.

As our general paradigm, our approach will be bio-inspired, but not bio-
mimetic: while neuromorphic hardware is generally inspired by the human
brain, we will only consider biological plausibility where it could prove useful
from an engineering perspective. Our conceptual focus and the relationship
of our research to other domains is visualized in figure 1.1.

1.3 Document structure

The remainder of this document is structured as follows:

• Chapter 2 explains general concepts and prior work that are necessary
to understand the context of our research. It provides a brief overview of
standard artificial neural networks and the backpropagation algorithm.
It describes the basic properties of spiking neurons and how they rep-
resent information. We briefly discuss the main types of neuromorphic
hardware and approaches to computer simulation of spiking neural net-
works. Finally, we present the state of the art of training algorithms for
spiking neural networks.

• Chapter 3 presents an approach to online learning in neuromorphic sys-
tems, using a biologically inspired learning rule based on spike-timing
dependent plasticity. The chapter will close with a discussion of the
advantages and limitations of local, biologically inspired learning rules.

• Chapter 4 is concerned with the implementation of a neuromorphic ver-
sion of the backpropagation algorithm. We propose SpikeGrad, a solu-
tion for an on-chip implementation of backpropagation in spiking neural
networks.

• Chapter 5 features a discussion of all results in the context of the full
thesis and gives an outlook on promising future research directions.
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NEUROSCIENCE

HARDWARE

spiking neurons

Deep Learning Neuromorphic
engineering

MACHINE
LEARNING

This
work

Figure 1.1: Schematic outline of the relationship of this thesis with other research do-
mains. Deep learning can be seen as the application of some ideas from neuroscience
in machine learning. Neuromorphic engineering aims to build hardware that mimics
the workings of the human brain. We will focus on the utilization of artificial spik-
ing neurons, a bio-inspired neuron model, for building deep neural networks. While
this thesis has a clear focus on learning algorithm development, possible dedicated
hardware implementations are taken into account in mechanism design.

5





Chapter 2

Problem Statement and State of
the Art

This chapter gives a detailed overview over the main research problems that
are addressed by this thesis. It contains a high level, self-contained descrip-
tion of the necessary concepts in deep learning and spiking neural networks
that are necessary to understand the experiments in the later chapters of the
document. Additionally, it features a detailed discussion of prior research in
the field of spiking neural network training.

2.1 Basic properties of deep neural networks

This section gives a brief overview of traditional deep neural networks, how
they are currently used to solve machine learning problems. It introduces
the notions that are necessary to understand the differences between stan-
dard artificial neural networks and spiking neural network models, which are
the main topic of this thesis. Additionally, it features a detailed derivation
of the backpropagation algorithm that will be frequently referenced in later
chapters. From now on, we refer to standard ANNs as frame-based ANNs or
simply ANNs, while spiking neural networks are referred to as SNNs.

If not stated otherwise, the notation introduced in this chapter is based on
a local, single neuron point of view. This allows a formulation that is more
consistent with the local computation paradigm of neuromorphic hardware,
which takes the single neuron and its connections as a reference point. The
layer of a neuron is labeled by the index l ∈ {0, . . . , L}, where l = 0 cor-
responds to the input layer and l = L to the output layer of the network.
Neurons in each layer are labeled by the index i. The incoming feedforward
connections of each neuron are labeled by j and the incoming top-down con-
nections in the context of backpropagation by k. Which neurons are exactly
referenced by these indices depends on the topology of the neural network.
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2.1.1 Frame-based artificial neurons

The output (or activation) yi of a basic artificial neuron is described by the
following equation:

yi = a

(
∑

j
wijxj + bi

)
. (2.1)

The term in parentheses is a linear function of the inputs xj. The parameters
wij are called the weights. The term bi is called bias and represents the offset
of the linear function that is described by the weighted sum. The weights and
biases are the main parameters of basically every artificial neural network.
For a more compact representation, the bias value is sometimes represented
as an element of the weights that always receives an input of 1. The activation
function a is typically a non-linear function that is applied to the weighted
sum.

In standard ANNs, all these variables are typically real-valued. We explain
later that this stands in contrast to biological neurons, which typically output
a binary spike signals. The biological justification for using real numbers as
activations is based on the idea that the information propagated by the neuron
is not encoded in the individual spikes, but in the firing rate of the neuron,
which is real valued. However, ANNs used in machine learning have been
mostly detached from biology, and real valued (floating point) numbers are
simply used to represent larger variable ranges.

2.1.2 Basic layer types

We briefly summarize the properties of the most common ANN layer types,
which are also used in almost all SNN implementations.

Fully connected

Fully connected (or “linear”) layers represent the simplest form of connectiv-
ity. All Zout neurons in a layer are connected to all Zin neurons of the previous
layer. Adding one bias value for each neuron, the number of parameters in a
fully connected layer is therefore:

Nparams = Zin · Zout + Zout. (2.2)

Fully connected layers can be used in all layers of a neural network, but are
typically found in the higher layers of a deep convolutional neural network.

Convolutional

Convolutional layers are a more specialized type of neural network layer and
particularly popular in image recognition. In contrast to fully connected lay-
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K
K

Zout

Xout

Xin

Yin

Yout

Zin

Figure 2.1: Visualization of a convolutional layer with parameters K = 3, S = 1
(without padding). The colored volume represents the weight kernel of size K2 · Zin.
The parameters K and S implicitly set the dimensions Xout and Yout based on the
dimensions Xin and Yin.

ers, they preserve spatial information in the x and y dimensions of the image.
Neurons in a convolutional layer are grouped into Zout so-called feature maps
(see figure 2.1). A feature map is parameterized by a weight kernel of size
K2 · Zin, where K is the kernel dimension in x and y direction, and Zin the
number of input channels (the z dimension of the input). For the first layer,
Zin is usually 3 (one dimension for each RGB channel). For higher layers, the
number of input channels Zin is the number of feature maps of the previous
layer. This weight kernel is shared by all neurons that are part of the same
feature map, which is called weight sharing. Each neuron in a feature map is
only connected to a sub-region of size K2 in the x and y dimensions of the
input, but to the full depth Zin in the z dimension. By connecting each neu-
ron in the feature map to a different sub-region, the same kernel is applied to
the full image. The output of a convolutional layer is of size Xout · Yout · Zout,
where Xout · Yout is the number of neurons in each feature map. While Zout
is chosen manually as a hyperparameter, Xout and Yout are given implicitly
by the dimension K of the kernel and the number of positions where it is
applied in the input. These positions are calculated by shifting the kernel by
a fixed number of pixels in the x and y directions. The number of pixels by
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Xout

P

Zout

Xin

Yin

Yout

P

Zin

Figure 2.2: Visualization of a pooling layer with parameters P = 2, S = 2. In contrast
to convolutional layers, pooling layers only connect to one feature map (represented
by the 3 colors) and thus reduce the input only in the x and y dimensions.

which the kernel is shifted is called the stride S of the convolutional layer. A
convolutional layer is therefore fully characterized by the kernel dimension K,
the stride S and the number of feature maps Zout. The number of learnable
parameters in a layer is given by the number of feature maps times the size of
the kernel, plus one bias value for each feature map:

Nparams = K2 · Zin · Zout + Zout. (2.3)

Often the input to a convolutional layer is artificially expanded by adding
constant pixel values (typically zero) in the x and y dimensions. This process
called padding is usually used to enforce certain dimensions Xout and Yout of
the convolutional layer, or to ensure that kernels size and stride fit exactly
into the input dimensions Xin and Yin. For instance, a kernel size of K = 3
with a stride of 1 is typically used with padding of 1 zero valued pixel at the
boundaries of the input. This way we obtain Xout = Xin and Yout = Yin.

Pooling

Convolutional layers are often combined with so-called pooling layers (see
figure 2.2). Pooling layers serve to reduce the size of the input, typically in
the x and y dimensions. This means that for the channel dimension of the
pooling neurons we have Zout = Zin, and each pooling neuron connects only
to neurons of a single feature map (other pooling connection patterns exist

10
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but will be omitted here). The pooling window dimension P describes the sub-
region of size P2 to which the pooling operation is applied. Like convolutional
layers, pooling layers have a stride parameter S. For most networks, pooling
windows are non-overlapping and thus P = S. We will focus here on two
types of pooling operations that are by far the most common: max pooling and
average pooling. Max pooling propagates the activity of the neuron with the
highest activity in the pooling window. Average pooling takes the average of
all neuron activations in the pooling window.

Pooling layers are different from other neural network layers as they do not
possess learnable parameters. They only perform a differentiable operation
on the output of a previous convolutional layer.

2.1.3 The backpropagation algorithm

The tremendous success of modern deep learning techniques is to a large ex-
tent boosted by the backpropagation algorithm (Rumelhart et al. [1986]). The
backpropagation algorithm can be seen as an efficient algorithm for the op-
timization of differentiable multi-layer structures. From an optimization per-
spective, it represents an implementation of the gradient descent algorithm,
which is a standard method for function optimization in machine learning.

Gradient descent optimization

Let us define an artificial neural network structure as a differentiable function
f with parameters (weights and biases) w, which maps an input vector X (the
data) to an output vector y:

y = f (w, X) (2.4)

We now wish to find the optimal parameters w to produce a desired output
of the network. For this purpose, we define a cost function C which serves as
a measure of how close we are to this objective. The optimal parameters ŵ
are those that minimize the cost function over the training patterns X:

ŵ = arg min
w

C(y(w, X), X). (2.5)

The gradient descent training algorithm tries to solve this problem by itera-
tively changing all parameters by a small amount in the negative (descending)
direction of the gradient of the cost function with respect to the corresponding
parameter:

∆w = −η
∂C(y(w, X), X)

∂w
, (2.6)
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or in a neuron based notation:

∆wl
ij = −η

∂C(y(w, X), X)

∂wl
ij

, ∆bl
i = −η

∂C(y(w, X), X)

∂bl
i

. (2.7)

The learning rate η represents the step width by which we move in the direc-
tion of descending gradient. To solve the optimization problem, we therefore
have to find these partial derivatives for all network parameters.

The standard approach is to calculate the gradient over the full training set
X (a batch). This is however computationally expensive, since the whole train-
ing set has to be processed for a single parameter update. The other extreme
is to calculate the gradient over a single, random training example, and up-
date the parameters for each of these examples. Due to the randomness of the
samples that are drawn from the training set, this approach is called stochastic
gradient descent (SGD). SGD has lower memory requirements than batch gra-
dient descent and can perform more updates given the same computational
resources (Bottou and LeCun [2004]).

The drawback of SGD is that it cannot exploit the massive parallelism of
GPUs. The gradient is therefore usually calculated with respect to a small
number of randomly drawn training examples (a mini-batch) simultaneously,
which allows parallelizing the computation. The optimal size of the mini-
batch depends on the GPU memory constraints, but can also be an important
hyperparameter of the optimization process.

Derivation of the backpropagation algorithm

Gradient descent is a general optimization algorithm that is in principle in-
dependent of the function that is optimized. As long as the function is dif-
ferentiable, gradient descent can be applied to find at least a local minimum.
We will now demonstrate that, in the case of an ANN, this derivative can be
calculated exactly and computationally efficient. The fundamental idea is to
use the chain rule from differential calculus to calculate exactly the derivative
of the cost function C with respect to each network parameter. We start in the
final layer of the network, which provides the input to the cost function:

∂C
∂wL

ij
=

∂C
∂yL

i

∂yL
i

∂wL
ij

,
∂C
∂bL

i
=

∂C
∂yL

i

∂yL
i

∂bL
i

. (2.8)

The first factor in both equations depends only on the choice of the cost func-
tion. The second term can be calculated based on the neuron model of the
layer:

yl
i = al(I l

i ), I l
i = ∑

j
wl

ijy
l−1
j + bl

i . (2.9)

12



2.1. Basic properties of deep neural networks

We call the variable I l
i the integration of the neuron, which represents the total

weighted input transmitted to the neuron. We can see that the output yl
i of

each neuron depends on the outputs yl−1
j of the previous layer. Using the

chain rule, this gives for any layer:

∂yl
i

∂wl
ij
=

∂al(I l
i )

∂I l
i

∂I l
i

∂wl
ij
= a

′l
i yl−1

j ,
∂yl

i

∂bl
ij
= a

′l
i , (2.10)

where we have used the short notation a
′l
i := ∂al(Il

i )/∂Il
i . Note that this deriva-

tive is evaluated on I l
i of the forward propagation phase, which requires us to

store the I l
i or a

′l
i for each neuron so that it is available during the backpropa-

gation phase. Substitution of (2.10) into (2.8) allows us to obtain the gradients
for the top layer:
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i . (2.11)

As an example for a cost function that can be used, consider a cost function
that consists only of the L2 loss between the yL

i of the top layer and the targets
ti:

C(yL, t) = L2(yL, t) =
1
2 ∑

i
(yL

i − ti)
2. (2.12)

This yields for the gradients (2.11):
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We now continue by calculating the gradient for the penultimate layer L− 1:
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k
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′L
k wL
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)
a
′L−1
i yL−2

j . (2.15)

A comparison of (2.15) and (2.11) shows that term ∂C/∂yL
i was replaced by

the sum in parentheses. These two terms therefore take the same role in both
equations and can be seen as an error signal. In the top layer, this error signal
is directly calculated based on the cost function. In the penultimate layer,
the error term is calculated based on a weighted sum that weights the errors
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in the top layer by the activation function derivatives a
′L
k and the connecting

weights wL
ki. The error in the top layer is therefore “back-propagated” through

the network. To write this more explicitly, we define the error in the top layer
as:

δL
i :=

∂C
∂yL

i
a
′L
i (2.16)

and for all other layers by the recursive relation:

δl
i =

(
∑
k

δl+1
k wl+1

ki

)
a
′l
i . (2.17)

Applying these definitions to equation (2.15) gives:
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This can be generalized to any layer of the network. (2.16) and (2.17) can thus
be used to obtain the expressions of the gradients in each layer:

∂C
∂wl

ij
= δl

i y
l−1
j ,

∂C
∂bl

i
= δl

i . (2.19)

This can now be substituted into (2.7) to obtain the update rule for all network
parameters:

∆wl
ij = −ηδl

i y
l−1
j , ∆bl

i = −ηδl
i . (2.20)

Backpropagation is thus a way to exactly solve the so-called credit assignment
problem, that consists in identifying the exact contribution of a learnable net-
work parameter to the output of the network. Only by identifying the con-
tribution of each parameter, it is possible to globally optimize a multi-layer
neural network to produce a desired output. We can see that the training of
an ANN can thus be described by the set of basic equations (2.9), (2.17) and
(2.20), including (2.16) for the top layer. Equations (2.9) and (2.17) describe
the operations that have to be performed by each individual neuron. Since
these operations are independent of other neurons in the same layer, they can
be performed in parallel for all neurons of a layer. The computation that has
to be performed by each neuron is in both cases a weighted sum, which is
performed in hardware as a sequence of multiply-accumulate (MAC) opera-
tions.

The power of backpropagation lies in the fact that it can, like the feed-
forward computations in ANNs, be implemented very efficiently on modern
computing hardware, in particular GPUs. This allows the optimization of
the network over many iterations of a large dataset, which is crucial for the
training of very deep artificial neural networks.

14



2.2. Spiking neurons: a bio-inspired artificial neuron model

2.2 Spiking neurons: a bio-inspired artificial neuron
model

This remainder of this chapter motivates the use of spiking neural networks,
which can be seen as an extension of ANNs that offers higher biological re-
alism (Maass [1997]). We discuss major potential advantages of using this
type of neuron, and a brief overview of hardware implementations of spik-
ing neurons. Additionally, we discuss how spiking neurons can be simulated
in computers. Finally, we present the state-of-the-art solutions for training
SNNs.

2.2.1 Biological neurons

We review in this section the basic properties of biological neurons, as pre-
sented in introductory neuroscience books (such as Bear et al. [2007]). The
description is rather high-level and omits most of the complexity associated
with biological neurons. Since our goal is to be bio-inspired rather than bio-
mimetic, we focus on those aspects of biological neurons that serve as the
inspiration for the algorithms described in the later chapters of this work.

Neurons are a special type of cells that are found, among other cell types,
in the human brain. They represent the cell type that is thought to be respon-
sible for the execution of most cognitive tasks. On a high level of abstraction,
a biological neuron consists of three fundamental parts: dendrites, soma and
axon (see figure 2.3). The dendrites represent the incoming connections of a
neuron that relay and process information received from other neurons. In
particular, the dendrites are the part of the neuron where information is re-
ceived via the synapses. Strictly speaking, a synapse does not belong to only
one neuron, but represents the point of interaction between two neurons. It
is the place where the axon of one neuron (the presynaptic neuron) connects
to the dendrites of other neurons (the postsynaptic neurons). The axon is the
single outgoing connection of a neuron, which transmits signals emitted from
the neuron body. This body of the neuron, the soma, is the place where most
of the typical cell organs are found. It can be imagined as the place where in-
coming information from the dendrites is integrated and channeled through
the axon.

Information in the neuron is stored and transmitted through electrical
charge. Changes in the synapses induced by signals from other neurons will
change the ion concentration in the neuron, and therefore its membrane po-
tential, which is produced by a charge difference between the interior of the
neuron and the surrounding environment. If the membrane potential sur-
passes a certain threshold value, a rapid discharge of the neuron takes place,
which resets the potential to its resting value. This discharge is propagated
as a cascade via the axon of the neuron to synapses connecting to other neu-
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Figure 2.3: Abstract description of a biological spiking neuron

rons. There the discharge signal will cause changes in the synapses which will
trigger an exchange of chemical neurotransmitters between the two synaptic
terminals. These neurotransmitters then again lead to electrical changes in
the receiving neuron. Additionally, synaptic plasticity may occur, which is
the change of synaptic behavior triggered by electrical and chemical interac-
tion between the sending and the receiving neuron. Due to the instantaneous,
event-like nature of the discharges of the neurons, which are observable as a
spike in the recorded membrane potential of a neuron, these signals are often
simply referred to as spikes. The important point in this description is the fact
that neurons are only able to propagate binary events. How these events are
processed and how information can be effectively communicated with them
can depend on a large number of factors, from the synaptic behavior up to
the firing dynamics of the full neural systems.

This description of biological neurons will be sufficient for most of the dis-
cussions in this thesis. Neuromorphic systems using a more detailed neuron
model exist (for example dendritic multi-compartment models such as used
in Sacramento et al. [2018]), but will be left out here for clarity.

2.2.2 The integrate-and-fire neuron

Like traditional artificial neurons, spiking neurons can be seen as an abstract
representation of biological neurons. The by far most popular mathematical
model of spiking neurons is the integrate-and-fire (IF) model. IF models de-
scribe the membrane potential by a variable V(t) that changes over time. To
abstract from the biological inspiration for V(t) as a potential, we refer from
now on to V(t) as the integration variable. This allows us to use a purely math-
ematical description without having to take physical units into account. There
is a large number of alternative formulations of the integrate-and-fire model,
which all put an emphasis on different properties of biological neurons. We
restrict ourselves in this discussion to the formulation which we consider the
most common in the related literature, and the most relevant for this thesis.
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In particular, we do not consider any spike transmission delays or refractory
periods.

Leaky integrate-and-fire neuron

The so-called leaky integrate-and-fire (LIF) neuron has the special feature that
all variables that are integrated over time are subject to leakage: they decay to
zero over time, with time constants λ and λsyn. This decay serves as a kind of
high-pass filter for incoming spike trains. A basic LIF neuron can for instance
be modeled by a differential equation of the form:

dV(t)
dt

= −λV(t) + I(t), I(t) = ∑
j

wjxj(t). (2.21)

The variables wj represent the weights of the incoming connections of the
neuron. The change of the integration variable is modeled by an input current
I(t), which is the weighted sum of so-called synaptic traces xj(t):

xj(t) = ∑
ts
j

e−λsyn(t−ts
j ). (2.22)

In the case presented here, both synaptic traces and the integration variable
are modeled as decaying variables. The traces are instantaneously increased
by 1 every time a spike arrives at a time ts

j at a synapse j, and then decay
exponentially to 0. Every time the integration variable surpasses a threshold
value Θ, a spike signal is emitted and V(t) is reset to its base value (typically
0). Since the trace has an explicit dependence on the time of presynaptic spike
arrival, this model can take into account the exact spike timing.

The LIF model is very popular for analog hardware implementations, since
the integration and decay dynamics of the neuron can easily be modeled by
the behavior of sub-threshold transistors and capacitors (see section 2.2.3).

Non-leaky integrate-and-fire neuron

While the LIF model is the most popular model for analog implementations,
it is less popular for digital implementations, since the computation of the
differential equation for every point in time can be very costly. This is es-
pecially true for the exponential function that has to be calculated for each
synaptic trace for every point in time. For this reason, spiking neuron models
for digital implementations often use an even higher abstraction of spiking
neurons, which has no leakage and is only based on accumulations:

V(t + ∆t) = V(t) + ∑
j

wjsj(t). (2.23)
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Every input spike sj(t) will lead to an instantaneous (denoted by ∆t) increase
in the membrane potential by the value of the synaptic weight wj. Spikes are
typically modeled by a step function that is 1 when the integration variable
surpasses the threshold Θ and 0 otherwise:

s (V(t)) =

{
1 if V(t) ≥ Θ
0 otherwise

. (2.24)

After each spike, the neuron is reset to 0 or decreased by a fixed value (typi-
cally Θ), which gives s (V(t)) effectively a behavior similar to a delta function.

Because of the absence of leakage terms, this model is often simply called
IF neuron or non-leaky integrate-and-fire neuron. The attractiveness of this
neuron model for digital implementations is the absence of multiplication
operations if sj(t) is the output of another IF neuron, since s (V(t)) is either
one or zero. Every input spike sj(t) will only trigger an accumulation that
increments the integration variable by the weight value wj.

2.2.3 Spiking neuromorphic hardware

Neuromorphic hardware can roughly be subdivided into analog and digital
approaches. A detailed review of neuromorphic engineering can be found in
Schuman et al. [2017].

Analog hardware

Analog hardware uses physical processes to model certain computational
functions of artificial neurons. The advantage of this approach is that op-
erations that might be costly to implement as an explicit mathematical oper-
ation can be realized very efficiently by the natural dynamics of the system.
Additionally, real valued physical variables could in principle have almost in-
finite precision. An example are the decaying potential variables or synaptic
traces in the LIF neuron model, which can be modeled by the dynamics of
discharging capacitors, as described in pioneering work of Mead [1990] on
analog neuromorphic hardware.

Analog hardware implementations differ on the degree to which analog
elements are used. Many analog implementations only perform the compu-
tation in the neuron with analog elements, but keep the communication of
spike signals digital. Examples of such mixed-signal neuromorphic hardware
can be found for instance in Moradi et al. [2018], Qiao et al. [2015], Schmitt
et al. [2017] or Neckar et al. [2019].

Major drawbacks of hardware using analog elements are high variability
due to imperfections in the designed circuits (in particular when using mem-
ristors), thermal noise and difficulties in memory retention. Many of these
problems grow with increasing miniaturization. Another problem is that the
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timescale of the physical dynamics has to be matched with the timescale of the
input, which depends for example on the size of electronic elements (Chicca
et al. [2014]). To the best of our knowledge, basically all neuromorphic analog
implementations of spiking neurons have so far been limited to the research
domain.

Digital hardware

Digital hardware represents all variables of the neuron by bits, just like a
classical computer. This means that the precision of variables depends on
the number of bits that is used to represent the variables. This precision also
strongly influences the energy consumption of the basic operations and the
memory requirements for variable storage.

The great advantage of digital designs compared to analog hardware is
that the precision of variables is controllable and guaranteed. Additionally,
digital hardware can be designed with established state-of-the-art techniques
for chip design and manufacturing.

A large number of digital designs exists for spiking neuromorphic hard-
ware. Examples of industry designs of Application Specific Integrated Cir-
cuits (ASICs) include Davies et al. [2018] and Merolla et al. [2014], while
Frenkel et al. [2018] and Lorrain [2018] represent academic research chips.
Even the industrial designs have however not yet been integrated into many
commercial products. Alternatively, due to the high production costs of
ASICs, other research groups have focused on implementing SNNs in Field
Programmable Gate Arrays (FPGAs) (for instance Yousefzadeh et al. [2017])

One drawback of digital designs is that they are suitable for the implemen-
tation of spiking neurons only to a limited extent. Classical high performance
computing hardware, such as GPUs, is highly vectorized and heavily exploits
parallelism in data processing. This kind of processing is very suitable for
the operations that have to be performed in standard artificial neural net-
works. Spiking neural networks operate however in a strongly asynchronous
fashion, with high spatial and temporal sparsity. An efficient implementation
of a spiking neural network therefore requires a design that differs strongly
from most existing high performance computing hardware. Typically, digital
neuromorphic hardware uses the so-called address-event representation (AER)
protocol, where values are communicated by events that consist of an address
and a timestamp.

A particular problem when implementing the IF neuron in digital hard-
ware is the large number of memory accesses that are necessary to update the
integration variable with each incoming spike. In particular if the memory is
not located in direct vicinity of the processing element that performs the op-
erations, the high number of memory transfers can impact the energy budget
more strongly that the computing operation itself (Horowitz [2014]).
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In this thesis, we chose to design most algorithms with a digital imple-
mentation in mind. The main reason for this are the high precision require-
ments currently imposed by most applications that use deep learning solu-
tions. Additionally, computation in digital hardware can be exactly modeled
by computer simulation. Designing algorithms for analog circuits would re-
quire us to make a large number of assumptions on the potential hardware
and its physical properties. Additionally, all state-of-the-art standard deep
neural network solutions are implemented in digital hardware. It is therefore
easier to compare a spiking network with a standard ANN in a simulated
digital framework, since this does not necessarily require an actual dedicated
hardware implementation.

2.2.4 Information encoding in spiking networks

This section briefly reviews the different approaches to encode information in
spiking neural networks. We show that the optimal coding strategy is deeply
connected to the choice of the neuron model, the hardware constraints and
the application target.

Rate coding

The probably most common and best studied approach to encode information
in SNNs is to use the firing rate. This rate can be either defined with respect
to a certain explicit physical time (e.g. events per second), as it is usually done
in neuroscience, or with respect to an implicit time (e.g. per stimulus or per
example). The basic idea is to represent information in an accumulated quan-
tity that has the same value irrespective of the exact time of spike arrival. This
implies that the information representation capacity of the spiking neuron in-
creases with the number of spikes it is able to emit in a certain time. Figure
2.4 demonstrates the principle of rate coding for different measurement inter-
val sizes. It can be seen that depending on how long the observation window
is, the measured firing rates can deviate quite strongly from each other. If the
neuron should be able to represent the same number independent of the ob-
servation time, the firing should be as regular as possible. In a counting-based
representation, where the observation window always has the same size, the
timing of spikes is irrelevant and only the total number of spikes is required
to represent a number.

In particular in digital implementations, the efficiency of rate coding de-
pends on the cost of the operation induced by a single spike. If the cost of
such an operation is rather high, a spiking network can be less efficient than
its frame-based counterpart, since many spikes may be necessary to commu-
nicate the same information. For instance, we require n spike events to enable
a neuron to represent integer numbers in the range [0, n]. To represent all pos-
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Figure 2.4: Demonstration of the rate coding principle. Blue crosses represent spike
events. Firing rates r are given for three different observation windows.

sible values of an unsigned n-bit integer variable, 2n − 1 events are required
(zero is represented by no event). This exponential growth in the number
of events that is required to represent a value, relative to communicating the
value as a single n-bit signal, means that rate coding can only be efficient if
the required precision of the activation values is not very high.

Rate coding is still an interesting coding principle since it allows to dy-
namically adjust the number of computations in the network. This has two
desirable effects: Firstly, the event-based processing of the SNN automatically
roots the computation through the network topology. For instance, neurons
that remain inactive will not trigger any operations in their outgoing con-
nections. This process automatically distributes computations to the parts
of the network that are the most relevant. The second advantage lies in the
possibility to adjust the number of computations depending on the desired
precision. In the IF model, it is possible for a signal to propagate to the next
layers independently of the activity of other neurons in the same layer. This
property is called depth-first propagation. This stands in contrast to traditional
ANNs, where processing is usually layer-wise, or breadth-first. The advantage
of depth-first processing is that all layers of the network can perform compu-
tation simultaneously. This can be an advantage in particular in a rate coding
framework, since it allows the final layer to perform approximate inference
based on the partial integration of spike signal. If only few input spikes
are available, or if an approximate, low-latency response is desired, inference
can be performed on the basis of a few output spikes. If higher precision is
required, the integration time can be extended. As already mentioned, the
condition for these dynamic precision properties to function properly is that
spikes are approximately distributed homogeneously in time for all time in-
terval sizes, i.e. the firing rate is constant.
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Figure 2.5: Demonstration of the temporal coding principle. At time ts, the value of
the synaptic trace x jumps from 0 to 1, and then decays continuously back to zero.
The value of x is unique for any time t > ts.

Temporal coding

A potentially more efficient coding strategy for SNNs is temporal coding,
which uses the exact spike timing to encode information. In principle, the
spike timing of a single spike (with respect to a reference point) is able to
encode a real number with arbitrary precision. However, in practice it has
proven to be rather difficult to build systems that use an effective temporal
coding. This has several reasons: one of the most relevant is related to hard-
ware, in particular, which type of hardware should be used for such a system.
Consider for instance the leaky integrate-and-fire neuron (2.21) from the pre-
vious section. The crucial part of the model is equation 2.22, which describes
the temporal dependency of the synaptic trace xj(t). It allows us to obtain a
value for each trace that depends on the recent spike history. As it can be seen
in figure 2.5, the trace x jumps from 0 to 1 at time ts. It then decays contin-
uously back to zero. For a single spike per synapse, the value of the trace is
thus unique for each possible presynaptic spike arrival time ts. The question
is how this trace can be computed efficiently in hardware. Using digital hard-
ware, calculating the exponential function is rather costly, and there is the risk
to lose many of the computational advantages of the temporal coding scheme.
Indeed, most of the potential advantages of temporal coding rely on the as-
sumption that the trace and neuron dynamics can be calculated efficiently by
the dynamics of a physical system. This requires the use of analog hardware,
which means that the systems has to be tolerant with respect to all the typ-
ical defects and constraints of analog systems (mismatch of electronic parts,
temperature dependence, etc.). This limits the use of analog hardware using
temporal coding for practical neuromorphic systems in many cases, despite
the large gains that could be achieved in principle. Another disadvantage of
temporal coding is that the full spike pattern might be necessary to encode a
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Figure 2.6: Visualization of spatial and temporal sparsity. Blue crosses represent
non-zero values of the neuron output.

specific stimulus, since every spike can carry relevant information. This takes
away the possibility to use only a sub-sequence of the stimulus for inference,
as it can be done with rate coding. Another specific weakness of model (2.21)
is that it is only able to high-pass filter a spike train: If a spike pattern arrives
on a timescale much slower than the synaptic or neural decay dynamics, the
trace or integration will decay to zero before integration reaches the firing
threshold. If the same pattern arrives however much faster, the neuron will
still become active, and even have a higher activity. This behavior is undesir-
able for a system that is supposed to be sensitive to a very specific timescale.

An alternative to using exact spike times is to consider only the order of
spikes. This approach was inspired by the observation that recognition in
the visual cortex seems to be too fast compared to the typical firing rates
of neurons (Thorpe et al. [1996]). Most neurons would effectively only have
the possibility to spike a few times, which makes it impossible to use their
rate for accurate information representation. This is why Thorpe et al. [2001]
suggested a coding scheme where every neuron spikes only once, and infor-
mation is encoded in the order of these spikes. Compared to the rate coding
approach, this leads to a large increase in the information that can be en-
coded using only a few spikes, since for N spikes, there are N! possible ways
to arrange their firing order.

Exploiting spatial and temporal sparsity

A fundamental advantage of spiking neural networks is their capacity to nat-
urally exploit sparsity in computation. Sparsity in this context means than
the number of operations that has to be performed is effectively much small
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than the number of operations that is theoretically possible. We will distin-
guish here two types of sparsity which are both exploitable by SNNs: the
first type of sparsity, which we call spatial sparsity, is the ratio of inactive units
compared to the total number of units that could be active at a given point in
time. In the context of an artificial neural network, this is the number of neu-
rons that produce a non-zero signal at a given point in time. In a frame-based
ANN, this means that the output of a neuron is exactly 0. In an SNN, this
means that no spike event is produced. This concept of sparsity is typically
used in linear algebra, where the sparsity of a matrix is the relative number of
elements that are equal to zero. The second type of sparsity, which we refer to
as temporal sparsity, is the number of times a specific unit is active in a given
time window, relative to the number of times it could be active in principle.
In the context of an ANN, this would be the number of times a neuron is
active for a sequence of inputs, divided by the sequence length. In an SNN,
this is the number of times a neuron emits a spike relative to the number of
times this would have been possible. Note that for an SNN, this concept is
only clearly defined if we assume discrete time with a finite number of time
points at which the neuron can be active. If time is continuous, the maximal
number of times that a neuron can be active is given implicitly by the physical
constraints of the hardware.

In an ANN, both types of sparsity are potentially difficult to exploit. Spa-
tial sparsity is difficult to exploit since most ANN hardware is optimized to
perform the operations of all neurons in parallel. As we have mentioned be-
fore, (2.17) and (2.9) are usually calculated for all neurons of a layer in parallel.
The computation is always performed in the same way, even if most or all of
the inputs to the neuron are zero. Checking for each neuron which inputs are
inactive would break the homogeneity of computation and destroy many of
the benefits of high parallelism. It is therefore usually faster to perform the
useless multiplications of the zero elements. Temporal sparsity is difficult to
exploit since this would require an additional operation that checks at each
point in time if the output of a neuron is zero or not. If most of the network
is inactive, this requires a large number of these control operations.

SNNs can exploit both types of sparsity in a natural way. A computation
is only triggered if a specific neuron at a specific time emits a spike event. A
low number of active neurons at a specific point in time, or a low activity of a
neuron in a specific time window, will therefore automatically lead to a lower
number of operations in the network compared to an ANN.

We want to note here that this discussion is simplified and does not take
into account many of the potential subtleties of actual hardware implementa-
tions. It serves only as a high-level description of the type of problems that
are related to exploiting sparsity in hardware that can be addressed by spik-
ing neurons. In particular, we do not take into account potential mechanisms
in ANNs to ignore zero values (such as Aimar et al. [2019]).
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Matching learning objective with hardware and coding strategy

These different coding mechanisms demonstrate the importance of matching
the coding mechanism of a spiking neural networks with application objec-
tive, input encoding and hardware constraints.

For instance, a network using an exact time coding is necessarily sensitive
to the time scale of the input. While this is exactly what is desired for the
detection of a specific temporal pattern, it may be undesirable in the case of
an input which is characterized by spatial rather than temporal dependencies,
such as an image. Even in the case of patterns where some dynamic informa-
tion is desired, it may be more useful to encode information in accumulated
spike patterns over characteristic time windows rather than using the exact
spike times. This is actually the case for the LIF neuron (2.21) and learning
algorithms that learn on the values of accumulated synaptic traces rather than
the exact spike times. The exponentially decaying synaptic trace loses tem-
poral information as soon as several spikes can arrive at a synapse, since its
value is simply a sum of the temporally weighted contributions of each spike.
An almost infinite number of spike patterns can lead to the same value of the
synaptic trace at a specific point in time. The learning algorithm thus has no
possibility to distinguish the contribution of each spike if it is only provided
the value of the trace, without the explicit timing information. In this case,
the trace is rather a presentation of a short-term presynaptic firing rate. This
is desirable for scenarios where the system should be sensitive to a specific
timescale of the input signal, which is however still encoded in noisy short-
term firing rates, rather than exact spike times. This is the type of input that is
typically provided by event-based visions sensors, such as described by Posch
and Wohlgenannt [2008] and Lichtsteiner et al. [2008].

For all presented event-based information encoding mechanisms, a major
advantage is the possibility to naturally perform event-based processing, i.e.
communication and computation that is solely driven by external input stim-
uli. The system remains idle if no stimulus is provided, which can be a key
element in achieving low power consumption.

2.3 Simulating event-based computation on classi-
cal computers

While the algorithms developed in this thesis are designed for dedicated spik-
ing neuromorphic hardware, our aim is to stay as agnostic as possible to the
specific type of hardware implementation. Additionally, since the field is still
developing rapidly, a general hardware that would allow us to easily imple-
ment these algorithms does not exist. We therefore rely on computer simula-
tions to test the performance of the algorithms. We analyze two approaches.
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Figure 2.7: Processing in an event-based simulator. Two spike are emitted by the first
layer at t = t1 and t = t3. The second events leads to a spike in the second layer at
t = t3 + ∆t.

2.3.1 Event-based simulation

Event-based simulators explicitly simulate each event that is triggered in the
network using a type of AER protocol. Each event, with its address and
timestamp, is propagated to all neurons that connect to the emitting neuron.
These neurons are updated and then potentially emit events by themselves.
This recursive propagation of events is continued until all events have been
propagated and no new events are triggered. The event-based simulator is
therefore highly sequential. Additionally, it simulates realistically the event-
based spike routing of a spiking neuromorphic system. A visualization can be
seen in figure 2.7: two spike events arrive from the lowest layer at times t = t1
and t = t3. During t2, no events are triggered and the system remains inactive.
The second event at t3 triggers an event in the second layer at t3 + ∆t. ∆t
represents the minimal time it takes for a neuron to respond to an incoming
spike. In hardware, there can be a minimal response time imposed by the
constraints of the hardware system or by transmission delays.

An event-based simulation offers the advantage that the timing of spikes
can be represented with very high precision. Additionally, the number of
computational operations is proportional to the number of events. This can
however become a problem when the number of events becomes very large.
Also, because of their sequential nature, event-based simulators are difficult
to parallelize and have problems leveraging the speedups brought by GPUs.

In general, it can be said that event-based simulators are very suitable
for simulations of small networks, with a small number of events, which re-
quire high temporal precision. This can be for instance the simulation of
networks using temporal coding or neuromorphic hardware with complex
event-based learning rules. The event-based simulation paradigm loses its
beneficial properties if the simulation requires operations that are not event-
based, but simultaneously performed for a large number of neurons (e.g. the
continuous integration of synaptic traces in (2.21)).

26



2.3. Simulating event-based computation on classical computers

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0
0

0

0

0

0

0

0

0

0

0

0

0
0

0

0

1

0

0

0

0

t = t1 t = t2 t = t4

0

0

1

0
0

0

0

0

0

0

0

0

t = t3

Figure 2.8: Processing in a clock-based simulator. Spikes are emitted by the first
layer at t = t1 and t = t3, and by the second layer at t = t4. At each time step,
sparse matrices are propagated through the network, where 1 indicates an event and
0 indicates that no event was emitted.

2.3.2 Clock-based simulation

By far the largest number of spiking neural network simulators are clock-
based (see Hazan et al. [2018] for an overview). Time is discretized into a
finite number of points when all neurons are updated simultaneously. Spikes
are propagated in the form of binary matrices that contain 1s and 0s (see
figure 2.8).

Clock-based simulators are highly parallel and their computational com-
plexity scales linearly with the number of time steps. At the same time, their
computational complexity is independent of the number of events per time
step. Because of the propagation of spike matrices, clock-based simulations
are structurally similar to simulating a frame-based ANN. This is why many
clock-based simulators are built on-top of existing deep learning frameworks.
In particular if activations are sparse, a large number of redundant operations
is performed, since many of the matrix elements will be zero. Also, the num-
ber of operations can be very large if high temporal precision and many time
steps are required. In figure 2.8 at time t = t3, no spike events are triggered in
the network. The simulator will however still process all the zeros, although
they do not necessarily change the neuron state variables.

Clock-based simulators are useful for simulating large networks, in par-
ticular when a large number of events is triggered. They are very efficient in
cases where the temporal resolution can be rather coarse, since then only a
small number of time steps is required. This makes them suitable for sim-
ulation of large spiking networks based on a rate or accumulation code as
discussed in 2.4. Because of their high parallelism, they can profit from GPU
acceleration. Clock-based simulators are also advantageous if the network
is not fully event-based. This can be for instance the case when the neuron
integration variable is described by a differential equation which has to be
integrated over time for all neurons in the network (for instance the neuron
model (2.21)).
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2.3.3 Our implementation choices

Which simulator is optimal depends on the type of network that should be
simulated. In particular for counting-based spike processing, where no exact
temporal information is required and a large number of spikes is emitted,
the clock-based simulator is much faster. The current version of the N2D2
library of Bichler et al. [2019], which we used for all simulations in this work,
contains an event-based simulator for spiking networks. This is why our first
experiments in chapter 3 use an event-based simulator for the static MNIST
dataset. During these experiments, we became aware of the limitations of the
event-based simulator for this type of experiments, and a CUDA accelerated
clock-based simulator was implemented. This simulator was then used for
the dynamic dataset. Even for the comparably small networks used in chap-
ter 3, we found a speedup when using the clock-based simulator, even when
no parallelization over mini-batches was used. For the simulation of the algo-
rithm in chapter 4, we further accelerated the simulation by switching from
hand-designed CUDA kernels to the specialized operations provided by the
cuDNN library (Chetlur et al. [2014]). The clock-based simulation paradigm
allows us to use the cuDNN primitives for convolutions and average pooling.
All other matrix operations are directly implemented with cuBLAS. This lead
again to a considerable speedup of the simulation.

2.4 Training algorithms for deep spiking networks

In the previous section, we explained the types of coding mechanisms that
can be used to represent information in spiking neural network. This leaves
the open question how such a representation can be learned.

The main purpose of this section is to give the context of the problems
we consider in the remainder of this thesis and how our work can be posi-
tioned with respect to previous results. It will present a high level discussion
of the current state of the art for learning (hierarchical) representations in
spiking networks. Since in this thesis we do only consider image recognition
problems, we limit the discussion here to results on the MNIST and CIFAR10
benchmarks.

The number of learning rules for spiking neurons that has been conceived
in the context of theoretical neuroscience is enormous. We will limit our dis-
cussion here to learning rules that have been demonstrated to be suitable for
multi-layer neural networks and which are thus interesting for deep learning
problems. For an alternative presentation of the state of the art of deep learn-
ing in spiking neural networks, the reader can refer to recent review articles
of Pfeiffer and Pfeil [2018], Tavanaei et al. [2019] and Bouvier et al. [2019].
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2.4.1 Off-chip training

Off-chip training describes the training of a network using a different comput-
ing infrastructure than the neuromorphic chip that implements the network
after training. For instance, training is performed on a high-performance
computing cluster and the network is subsequently deployed on a substrate
with low power consumption. The advantage of off-chip training is that the
optimization algorithm can be computationally much more complex than the
computation that has to be performed during inference. The obvious draw-
back of this approach is that learning is impossible once the system is de-
ployed on the chip. The SNN can therefore not adapt its parameters without
access to the system used for optimization.

Conversion of ANNs to SNNs

One of the oldest approaches for training SNNs is to train an ANN with back-
propagation and map the parameters of the ANN to the SNN after training
(see for instance Diehl et al. [2015], Esser et al. [2016], Neil and Liu [2016],
Cao et al. [2015], Rueckauer et al. [2017] and Sengupta et al. [2019]). This
approach is often called “spike transcoding” or “spike conversion”. The main
advantage of this approach is that the optimization process can be performed
on an ANN. This permits the use of state-of-the-art optimization procedures
and GPUs for training. The best results for most benchmark tasks are cur-
rently provided by this approach. A simulation of the exact spike dynamics
in a large network can be computationally expensive, in particular if high fir-
ing rates and precise spike times are required (see section 2.3). This is why
training an SNN as an ANN is so far the only approach that allows to scale
SNNs to complex benchmark tasks that require large networks, such as Ima-
geNet (Russakovsky et al. [2015]), since only the test phase has to be explicitly
simulated with spikes. The main disadvantage of this approach is that some
particularities of SNNs, which do not exist in the corresponding ANN, cannot
be taken into account during training. For this reason the inference perfor-
mance of the SNN is typically lower than that of the original ANN.

Most conversion approaches are based on the firing rate. Rueckauer and
Liu [2018] present a conversion approach based on exact spike time coding
and demonstrate that the number of spikes can be greatly reduced by this
approach, however with a certain loss in accuracy.

Gradient descent on simulated spike dynamics

The most popular optimization algorithm for ANNs is gradient descent using
backpropagation of errors. Because of the success of the backpropagation
algorithm in training of standard ANNs, the recent years have seen a large
increase in methods trying to apply backpropagation directly to SNNs.
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Architecture Method Rec. Rate

Diehl et al. [2015] CNN converted SNN 99.12%
Rueckauer et al. [2017] CNN converted to SNN 99.44%
Rueckauer and Liu [2018] CNN converted to SNN (temporal coding) 98.53%

Table 2.1: Comparison of different state-of-the-art spiking architectures converted
from ANNs, and their inference performance on MNIST.

Architecture Method Rec. Rate

Esser et al. [2016] CNN converted to SNN 89.32%
Rueckauer et al. [2017] CNN converted to SNN (with BatchNorm) 90.85%
Sengupta et al. [2019] CNN (VGG-16) converted to SNN 91.55%

Table 2.2: Comparison of different state-of-the-art spiking CNN architectures con-
verted from ANNs, and their inference performance on CIFAR10.

Backpropagation based on accumulated information This class of algorithms
uses quantities that are accumulated over several spikes and maps them to the
parameters of an ANN. One of the main problems in applying backpropaga-
tion to spiking networks is the non-differentiability of the activation function.
Take for instance the IF model (2.2.2). Both the integration variable V(t) and
the activation s(t) are discontinuous when a spike is fired. Most of these
algorithms use therefore a form of approximation of the derivative of the ac-
tivation function to circumvent this problem. This allows to backpropagate
gradient information through the whole network just as in a standard deep
neural network. Lee et al. [2016] and Panda and Roy [2016] use the integration
variable as a surrogate for the neuron activation and ignore the discontinu-
ities at spike time. O’Connor and Welling [2016] use the total accumulated
input. Yin et al. [2017] and Neftci et al. [2017] use a so-called straight-through
estimator (see Bengio [2013] for the original use in stochastic neural networks
and Yin et al. [2019] for a theoretical analysis). Zenke and Ganguli [2018],
Huh and Sejnowski [2018], Wu et al. [2018a], Samadi et al. [2017] and Wu
et al. [2019b] use smooth surrogates defined on the integration variable. An
alternative approach is used by Severa et al. [2019]: instead of using a surro-
gate derivative, the network starts with a continuous activation function that
is slowly transformed into a step function during training. Binas et al. [2016],
Wu et al. [2019a] and Tavanaei and Maida [2019] use the accumulated neuron
outputs as a representation of the activation function during backpropagation.

This class of approaches generally achieves good classification accuracy
on static benchmark tasks, such as image recognition. One advantage is that
some particularities of the spike coding can be taken into account (for in-
stance the typical firing rates or activation ranges that are possible). These
approaches do however not take explicit timing into account, since they op-
erate only on quantities accumulated during forward propagation. Therefore
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they cannot learn temporal patterns. They can be said to emphasize the dy-
namic precision and sparse coding aspect of SNNs.

Backpropagation using temporal information Another axe of research tries
to view spiking neural networks as recurrent neural networks (RNN). This
term is used here for all neural network types where the state of a neuron
depends on its previous states. The discretized dynamics of recurrent neural
networks have to be set into relationship with the timescale of the input,
which is typically presented in the form of frames (i.e. arrays of numbers).
This is exactly the same process which is used in the discrete time clock-
based simulation of SNNs. It is therefore natural to model the discrete time
dynamics of an SNN as a recurrent neural network. In the case of an IF
neuron, the dependency on previous network states is represented by the
previous values of the integration variable and the reset term. The reset value
can be modeled by a (learnable) recurrent weight. By using backpropagation
through time (BPTT), the recurrent weights can be trained by unrolling the
temporal dynamics of the SNN, just like it is usually done in RNNs (see for
instance Wu et al. [2018a], Wu et al. [2018b], Bellec et al. [2018] and Neftci et al.
[2019]). Huh and Sejnowski [2018] map an SNN to an RNN that is modeled
by differential equations and use control theory to derive the gradient. Zenke
and Ganguli [2018], Jin et al. [2018] and Shrestha and Orchard [2018] represent
approaches that include spike history into the gradient calculation. As in the
case of non-recurrent SNNs, these approaches have to deal with the non-
differentiability of the activation function. This is typically done in a similar
way as in the non-temporal case, by using a differentiable surrogate.

The number of learning algorithms that are capable of using continuous
time to represent information is much more limited. Bohte et al. [2000],
Mostafa [2017], Mostafa et al. [2017] and Liu et al. [2017] use approximations
of the backpropagation algorithm directly defined on the spike times, while
Shrestha and Orchard [2018] use learnable transmission delays. The main
difficulty is the need to find a learning algorithm that is compatible with
the neuron model that is imposed by the hardware constraints. In particu-
lar, gradient descent optimization requires all operations to be differentiable.
The large advantage of these networks is that they can utilize very sparse
codes based on a few spikes. However, the strong constraints imposed on the
learning mechanism often lead to lower inference performance compared to
models based on firing rates. Additionally, while rate codes can still perform
an approximate inference with a low number of spikes, temporal networks
often rely on the full spike pattern to perform inference correctly.
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Architecture Method Rec. Rate

Panda and Roy [2016] Unsupervised/direct BP 99.08%
Lee et al. [2016] BP rate coding 99.31%
Yin et al. [2017] BP rate coding 99.44%
Liu et al. [2017] BP temporal coding 99.1%
Wu et al. [2018a] BP rate/temporal coding 99.42%
Jin et al. [2018] BP rate/temporal coding 99.49%
Shrestha and Orchard [2018] BP rate/temporal coding 99.36%

Table 2.3: Comparison of different state-of-the-art spiking architectures trained offline
on MNIST.

Architecture Method Rec. Rate

Panda and Roy [2016] Unsupervised/direct BP 70.16%
Wu et al. [2018b] BP rate/temporal coding (no NeuNorm) 89.32%
Wu et al. [2018b] BP rate/temporal coding (NeuNorm) 90.53%

Table 2.4: Comparison of different state-of-the-art spiking architectures trained offline
on CIFAR10.

Other off-chip optimization techniques

Like frame-based ANNs, the parameters of an SNN can be found with a
large number of alternative optimization procedures. This encompasses prob-
abilistic methods, genetic algorithms or even analytically exact solutions. In
particular the computational neuroscience literature contains a large number
of methods that find an optimal configuration of a frame-based or spiking
neural network for a specific task (for an introductory presentation, see for
instance Dayan and Abbott [2001]). However, most of these methods are com-
putationally expensive and do not scale as well to large networks as gradient
descent techniques using the backpropagation algorithm. We will therefore
not present an extensive analysis of these approaches in this thesis.

2.4.2 On-chip training

On-chip training methods are designed to be applicable on the same chip ar-
chitecture that is used for inference. They therefore have to be compatible
with its hardware constraints. Since typically neuromorphic chips are de-
signed to be applicable in resource constrained environments, this imposes
strong restrictions on the type of learning mechanism that can be used.

Hardware constraints for on-chip learning

Designing dedicated hardware is a complex process which requires to take
into account a large number of interdependent considerations. In this thesis,
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we restrict our analysis to a number of constraints that are typically required
to make an on-chip implementation of an algorithm at least plausible:

• Memory: Spiking neural networks tend to have high memory require-
ments, since at least the integration variable of each neuron has to be
saved. If any other additional variables are used, such as synaptic traces,
these requirements increase.

• Calculation infrastructure: One of the main objectives of spiking neural
networks, in particular in digital implementations, is to avoid multipli-
cation operations. On-chip algorithms should therefore use additions
and comparisons only, or operations that can be easily implemented by
analog computation.

• Communication: Spiking networks communicate by events, which typi-
cally have a polarity and a timestamp. We therefore constrain the range
of values that can be communicated by an event to {−1, 0, 1}, where
0 represents no event. Many implementations restrict spike events to
binary values only, which is an even stronger constraint.

Biologically inspired approaches

For many years, spike-timing dependent plasticity (STDP) has been the algo-
rithm of choice for the implementation of machine learning tasks in spiking
neuromorphic systems. STDP is a phenomenon observed in the brain (Bi and
Poo [1998]) and describes how the efficacy (loosely speaking, the weight) of a
synapse changes as a function of the relative timing of presynaptic and post-
synaptic spikes (see figure 2.9 for a visualization). A presynaptic spike in this
context is the spike arriving at the synapse of the neuron. The postsynap-
tic spike is the spike emitted by the neuron itself. The mechanism of STDP is
based on the idea that those synapses that are likely to have contributed to the
firing of the neuron should be reinforced. Similarly, those synapses that did
not contribute, or contributed in a negative way, should be weakened. This
selection is performed, as the name of the mechanism suggests, on the basis
of temporal correlation. The temporal signature of presynaptic and postsy-
naptic spiking is therefore used as a proxy for causality. In this aspect STDP,
differs from another well-known learning paradigm from theoretical neuro-
science that is also based on the reinforcement of correlated firing: Hebbian
learning (Hebb [1949]). The basic concept of Hebbian learning is often sum-
marized with the quotation: “What fires together, wires together”, and is based
on the correlation of firing rates between neurons with respect to an arbitrary
reference window. All information regarding the exact timing of spikes is
lost. STDP, on the other hand, tries to take into account the timing of every
spike in the learning rule. The obvious advantage of this approach is that

33



2. Problem Statement and State of the Art

tpost − tpre

∆w

Figure 2.9: Schematic description of STDP. ∆w describes the change of the synaptic
weight, which depends on the relative timing of presynaptic and postsynaptic spike
times tpre and tpost. In the version shown here, synapses that received a spike before
the postsynaptic spike of the neuron are strengthened, while synapses that receive a
spike afterwards are weakened. The rule therefore can be seen as reinforcing causal-
ity.

the potential information representation capacity is significantly higher, since
temporal spike coding can be used.

The popularity of STDP in the neuromorphic community has several rea-
sons: first of all, the field of neuromorphic computing has traditionally been
inspired by biology. This is the reason why early approaches for learning
in neuromorphic hardware have been inspired by mechanisms observed in
the brain. Additionally, STDP is easy to implement in analog neuromorphic
hardware. The time dependence of STDP is often modeled by an exponen-
tial decay, which can easily be calculated by analog electronic elements. This
is why many early works on learning in neuromorphic hardware have used
STDP for feature extraction. Based on the particular learning objective and
hardware implementation that is envisioned, architectures using STDP can
differ to a large extent, which makes their comparison difficult. In the context
of memristive and analog implementations, Querlioz et al. [2011], Querlioz
et al. [2015], Bichler et al. [2011] and Diehl and Cook [2015] use determinis-
tic versions of the LIF neuron in combination with a winner-takes-all (WTA)
mechanism. In the framework of stochastic neurons, Nessler et al. [2013],
Habenschuss et al. [2012] and Habenschuss et al. [2013] show that a specific
version of STDP in a winner-takes-all circuit can approximate the Expectation
Maximization algorithm. More recent spiking deep network models trained
with STDP have as objective to train multi-layer spiking networks with in-
creasing precision. The deep spiking architectures of Kheradpisheh et al.
[2016], Kheradpisheh et al. [2017], Panda et al. [2017], Mozafari et al. [2019a],
Mozafari et al. [2019b], Tavanaei et al. [2016] and Tavanaei and Maida [2017]
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Architecture Method Rec. Rate

Querlioz et al. [2011] Shallow FC network 93.5%
Neftci et al. [2014] Shallow FC network (contrastive divergence) 91.9%
Diehl and Cook [2015] Shallow FC network 95.0%
Kheradpisheh et al. [2017] Deep Conv. network + SVM 98.4%
Tavanaei and Maida [2017] Deep Conv. network + SVM 98.36%
Mozafari et al. [2019a] Deep Conv. network + R-STDP 97.2%

Table 2.5: Comparison of different STDP-based state-of-the-art spiking architectures
on MNIST.

use a simplified unsupervised STDP rule in combination with a WTA mech-
anism to extract hierarchical features in CNN-like architectures. This enables
them to process large-scale images of natural objects (for instance handwritten
digits or human faces). These networks use STDP however only for learning
the features of the convolutional layers. For the final layer, a more complex
supervised classifier, based on an SVM or reinforcement learning, is trained
on the extracted features. While most of these approaches are only imple-
mented as computer simulations, Yousefzadeh et al. [2017] demonstrate for
instance the possibility to extract simple features with competitive STDP in
an FPGA implementation of a spiking neural network.

While we have focused our analysis here on visual recognition, reservoir
computing (Lukoševičius and Jaeger [2009]) using STDP has also been used
successfully for speech recognition (see for instance Jin and Li [2016] and Jin
et al. [2016]).

Stochastic sampling approaches

Alternative optimization procedures for spiking networks, that are to some
extent bio-inspired, include so-called sampling approaches. The theory of these
approaches is based on a stochastic interpretation of neuron firing. Examples
of this approach include Petrovici et al. [2013], Neftci et al. [2014] and Probst
et al. [2015].

Gradient-based approaches

Several works have explored training shallow spiking networks on-chip with
gradient descent (for instance Nair et al. [2017]). As long as only one layer
has to be trained, the gradient does not have to be propagated through the
network. The propagation of the gradient in backpropagation implies sev-
eral challenges in SNN-like hardware, which are discussed in more detail
in chapter 4. While the forward processing of an SNN operates on asyn-
chronous, binary events, the backpropagation step requires the propagation
of high-precision floating point numbers. Using events also for propagation
of the gradient could however be a promising way to reduce the energy foot-
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print of the backpropagation algorithm. Additionally, it would allow using
the same hardware infrastructure for processing of the forward pass and for
backpropagation.

In this spirit, Neftci et al. [2017], Samadi et al. [2017] and Kaiser et al. [2018]
have developed event-based versions of the backpropagation algorithm that
operate directly on spikes. Errors are propagated directly through random
feedback weights to each layer of the network. These algorithms therefore
offer the possibility to train an SNN fully using spikes as the only means of
communication. Additionally, these mechanisms are considered more bio-
logically plausible, since errors do not have to be propagated in the inverse
direction of synapses.

A disadvantage of these methods is that they remain limited in the pre-
cision of the optimization procedure. While the error that is propagated
through random weights seems to provide an approximation of the gradi-
ent that is sufficient for convergence on simple problems, it is questionable
if the gradient propagated this way is precise enough for large networks (see
for instance Bartunov et al. [2018] for a review of biologically inspired back-
propagation techniques in ANNs). O’Connor and Welling [2016] demonstrate
that the gradient can be discretized into spikes and backpropagated through
the network using bidirectional synapses. However, the feasibility is only
demonstrated for a rather small, fully connected network.

2.4.3 Performance comparison

Tables 2.3 and 2.1 show the results of the state-of-the-art off-chip training
methods on the MNIST dataset (LeCun et al. [1998]). It can be seen that
in recent years, inference performance of SNNs has increased continuously
and is basically on-par with ANNs for the MNIST benchmark when using
similar network architectures (typically around 99.4%). However, the MNIST
benchmark is nowadays considered extremely easy because its elements have
little resemblance to natural images. This is why recent implementations have
shifted their focus towards the more challenging CIFAR10 benchmark, which
consists of RGB images of 10 classes of real world objects. Tables 2.4 and 2.2
show the state-of-the-art results of SNNs for the CIFAR10 benchmark. Also
in this case, SNNs are able to yield performances comparable to ANNs with a
similar architecture. The gap to the best performing ANNs is however larger
as in the case of MNIST. This is mainly because modern architectures on CI-
FAR10 use layer types and mechanisms that are difficult to implement in spik-
ing neural networks, such as max pooling and Batch Normalization (Ioffe and
Szegedy [2015]), or are extremely large and therefore difficult to simulate as
an SNN (the currently best result on CIFAR10 is 99.0% by Huang et al. [2019]
using a network with 557 Mio. parameters). This gap becomes even larger
for realistic image recognition benchmarks such as ImageNet (Russakovsky
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et al. [2015]) where, despite recent improvements, SNNs still have difficulties
to approach the state of the art (Sengupta et al. [2019]).

Comparing the results of STDP-based algorithms with the results obtained
by gradient descent optimization shows that STDP fails to match the perfor-
mance of the latter. It will be discussed in chapter 4 why this is the case.
However, due to the lack of adequate algorithms that can be implemented on
neuromorphic hardware, STDP is typically the algorithm of choice for spik-
ing systems with on-chip learning. It is easy to implement and has been
demonstrated to be able to learn hierarchical representations in convolutional
spiking networks. Our first approach to building a deep network for on-
line learning on-chip, which is presented in the following chapter, therefore
uses STDP. In the subsequent chapter, we demonstrate how to obtain a high-
performance on-chip implementation of backpropagation in SNNs.
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Chapter 3

Online Learning in Deep Spiking
Networks with Spike-Timing

Dependent Plasticity

The work in this chapter is published in Thiele et al. [2017a], Thiele et al.
[2018a] and Thiele et al. [2018b].

3.1 Introduction

3.1.1 Problem statement

The series of experiments described in this chapter treats the problem of on-
line learning in spiking network. Our definition of an online learning scenario
in this context is the following: learning should be possible in an autonomous
way, in the sense that the system should be able to perform learning con-
tinuously on an event stream, while being provided a minimum of structural
information about the dataset. It treats the question how a network of spiking
neurons, equipped with a biologically inspired learning rule, can learn hier-
archical representations in such a scenario. Due to the choice of the learning
mechanism, it can be seen in the tradition of biologically motivated neuro-
morphic engineering. Our main concern is the possibility to implement our
network on an event-based neuromorphic hardware platform, and we consid-
ering biological plausibility mainly where it could offer potential benefits to
our architecture.

This kind of autonomous learning requires that the system should use a
minimum of external feedback. One principal constraint therefore is that fea-
tures shall be extracted without any label information. For this reason, we
decide to use an unsupervised spike-timing dependent plasticity (STDP) (Bi
and Poo [1998]) learning rule. STDP has several advantageous properties: it

39



3. Online Learning in Deep Spiking Networks with Spike-Timing Dependent
Plasticity

is one of the few unsupervised algorithms for spiking neural networks that
has been shown to be able to extract hierarchical features. At the same time, it
is a learning algorithm that has been extensively studied for on-chip learning
(see for instance Querlioz et al. [2011] and Qiao et al. [2015]). A large number
of previous studies, that have already been presented in the previous chapter,
have thus focused on unsupervised learning frameworks using STDP. Most
notably, Kheradpisheh et al. [2017] demonstrate how a simplified unsuper-
vised STDP rule in combination with a winner-takes-all (WTA) mechanism
is able to extract hierarchical features in a CNN-like architecture. The best
classification results for this type of network are provided by Kheradpisheh
et al. [2017], Tavanaei and Maida [2017]. However, these architectures are
not fully compatible with the event-driven online learning paradigm. For in-
stance, Kheradpisheh et al. [2017] and Tavanaei and Maida [2017] use a super-
vised support vector machine classifier on the extracted features to evaluate
final classification performance. In a more neuromorphic fashion, a super-
vised spike-based classifier, based on reinforcement learning, was tested in
the same framework by Mozafari et al. [2019a].

However, learning of hierarchical features in these previous works has
mostly been investigated in the database centered framework of standard
deep learning systems. Most of the aforementioned unsupervised architec-
tures are trained in a greedy-layer wise fashion, where each layer is optimized
for unsupervised feature extraction on the full dataset, before the next layer is
trained in the same way. This only partially exploits the properties of neuro-
morphic systems that could be interesting for learning online from continuous
sensor data in real-world settings. For instance, it takes away the possibility
to perform approximate inference already during the learning process. It also
limits the possibility to use the output of higher layers to influence the fea-
tures learned in the layers below, making it for instance difficult to combine
the network with mechanisms that involve feedback from higher layers to
lower ones. Almost all existing STDP-based deep networks are in this sense
still based on the classical machine learning paradigm, where classification
performance is optimized over multiple iterations of a possibly fully labeled
dataset, with well separated training examples of fixed presentation time.

3.1.2 Our approach

In contrast to these previous works, we focus on an event-based online learn-
ing setting, i.e. a scenario where the network receives a continuous and asyn-
chronous stream of unlabeled event-based data, from which it extracts fea-
tures and performs approximate online classification. This requires a system
that is able to learn features from a constantly changing scene with objects
appearing at different timescales. By introducing a mechanism to decou-
ple WTA dynamics from spike propagation, all layers of our network can be
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trained simultaneously. This enables us to perform approximate inference
during the learning process. Furthermore, we introduce a STDP learning
mechanism which removes any notion of absolute time from our network,
such that all spike times are measured relative to the dynamics of postsynap-
tic spikes. This makes our network fully event-based and timescale invariant.
We show that it is possible to perform feature learning without providing
any information about the structure of the input data (such as the number of
classes) and treating the training set as a continuous stream of event-based
input. This also includes implicit information, such as the duration of image
presentation. We demonstrate the high convergence speed and robustness of
learning with respect to some of the typical problems that might occur in an
online learning setting. Despite these constraints, our network yields a test
accuracy of (96.58± 0.16)% on the spike-converted MNIST benchmark after a
single presentation of the training set, using only a single neuron spike count
classifier. This demonstrates the high specificity of neurons in the top layer
and is the highest reported score so far for a network where all connections
up to the final features are trained solely with unsupervised STDP.

Additionally, we show that the same architecture, with minor modifica-
tions, can perform feature extraction directly from an AER data stream. This
is demonstrated using the event-based N-MNIST dataset by Orchard et al.
[2015]. Also in this context of dynamic data, the architecture remains solely
accumulation-based and is able to learn without having to be adapted to the
input timescale. We show how the extracted features preserve dynamic infor-
mation up to the highest hierarchical level, where the full object prototypes
can be used for online inference or movement analysis. For this purpose, we
introduce a simple event-based supervised classifier for the top level features,
which reaches a maximal test set performance of 95.77%. This demonstrates
that the extracted dynamic features allow effective discrimination of the ex-
amples in the dataset.

All mechanisms used in the network are constructed to be simple and
generic, and should therefore be compatible with a large number of neuro-
morphic learning platforms. Together with the parallel work of Iyer et al.
[2018], our network is the first neuromorphic architecture able to extract hi-
erarchical features directly from a stream of AER data in an unsupervised
online-learning setting. Additionally, it is the first neuromorphic system
which can be used to learn complex hierarchical features unsupervised from
a continuous stream of AER data, operating outside of a database framework
and on multiple timescales.
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3.2 Methodology

The notation in this chapter is the same as used in chapter 2. To simplify
notation, we omit the layer index l in the following description.

3.2.1 Online learning constraints

A main objective of our approach is to make the system completely event-
driven and remove any notion of absolute time. In particular, this means that
the network should not be given any explicit or implicit knowledge about the
timescale of the input data. This includes for example the long term firing
rates of individual pixels as well as the information when a training example
is exchanged for the next one. This has several consequences for the setup of
our network:

• No leakage currents: we use a simple integrate-and-fire neuron

• No refractory periods: the firing of a neuron is solely driven by its inte-
gration, spike and reset dynamics

• No inhibitory refractory periods: WTA inhibition directly reduces the
integration variable of other neurons to prevent them from firing

• No reset of neuron values when a new training example is presented,
since this provides the network with implicit information about the
training set

• No restriction of neuron firing that relates to the presentation of a train-
ing examples, for instance the restriction of neuron firing to once per
training example

• No homeostatic mechanisms that use implicit knowledge of the training
set statistics, for example constraining the neurons in the last layer to
have equal firing rates

• No additional preprocessing of stimuli (for instance input normaliza-
tion). The network has to be able to deal with strongly varying numbers
of spikes for each stimulus.

These changes allow our network to be only driven by the timescale of its in-
put, which can in principle even change during the learning process, without
affecting the network dynamics. The only requirement for the network to be
able to learn from input spikes is that sufficient spikes are produced in the net-
work to trigger the STDP mechanism. Our network therefore fully embraces
the paradigm of asynchronous event-based processing without depending on
a clock-based mechanism.

42



3.2. Methodology

3.2.2 Neuron model and STDP learning rule

All layers of the architecture use a simple version of the non-leaky integrate-
and-fire neuron. The integration variable Vi is updated every time a presy-
naptic spike arrives at time t at neuron i via synapse j, which leads to an
increase of the integration variable by the weight value wij:

Vi ← Vi + wij, tpre
ij ← t. (3.1)

Subsequently, tpre
ij is set to t, such that it always reflects the time of last spike

arrival at synapse j. This update rule is fully event-based and only driven by
the time of presynaptic events. If an event leads to the integration variable
surpassing the threshold Θ of the neuron at time tpost

i , the neuron triggers a
postsynaptic spike.

As weight update rule, we use a variant of the STDP learning rule intro-
duced in Querlioz et al. [2011]. Every time a neuron triggers a postsynaptic
spike at time tpost

i , its weights are updated as follows:

∆wij =

 α+ · exp
(
−β+ · wij−wmin

wmax−wmin

)
if tref

i < tpre
ij < tpost

i

α− · exp
(
−β− · wmax−wij

wmax−wmin

)
otherwise

, (3.2)

with learning rates α+ > 0 and α− < 0 and damping factors β−, β+ ≥ 0.
Synapses that received a spike at time tpre

ij since the reference time tref
i are

potentiated, and depressed otherwise. Afterwards, the integration variable is
reset to 0 and the reference time tref

i of the neuron is set to the time of the
postsynaptic spike:

Vi ← 0, tref
i ← tpost

i . (3.3)

Since the integration variable of the postsynaptic neuron is reset after each
spike, this ensures that only neurons that directly contributed to the current
postsynaptic spike are potentiated.

Our experiments show that this learning rule works best if we use a rather
strong damping of β+ = 3 for the LTP (long-term potentiation) term and no
damping (β− = 0) for LTD (long-term depression):

∆wij =

{
α+ · exp (−β+ · wij) if tref

i < tpre
ij < tpost

i

α− otherwise
. (3.4)

Weights are constrained to be in the range [0, 1]. In contrast to Querlioz et al.
[2011], we do not use an explicit STDP time window to decide between LTP
and LTD. A similar learning mechanism was used in Kheradpisheh et al.
[2017], however with a different weight dependence. The main reason for
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adding the exponential weight dependence is the tendency of STDP to con-
verge too quickly to the minimal and maximal weight values. As argued in
Querlioz et al. [2011], the computationally expensive exponential function in
our learning rule could be implicitly implemented by the device physics of a
memristive synapse. Besides these practical considerations, our experiments
show that the architecture does not depend too strongly on the exact details of
the STDP rule and also works with minor performance losses with a simpler
version, which does not include the exponential weight dependency.

The rule (3.4) is qualitatively very similar to the optimal STDP rule for
stochastic neurons introduced by Nessler et al. [2013] and explored in more
detail by Habenschuss et al. [2012] and Habenschuss et al. [2013]. This simi-
larity has been pointed out already by Querlioz et al. [2015] in their analysis of
rule (3.2), in the context of a memristive hardware implementation. Although
the optimality condition does not strictly apply here due to the non-stochastic
firing dynamics of the spiking neurons, it is interesting that this very similar
rule seems to empirically yield the best results in our network. Tavanaei et al.
[2016] demonstrate for a similar learning rule a probabilistic interpretation of
the weights, which converge to the log odds of the firing probability of the
neuron. We observed that only the ratio of α+ and α− seems to influence
the quality of the learned features (with the absolute values still guiding the
speed of learning). A similar behavior has been observed in Kheradpisheh
et al. [2017] and Querlioz et al. [2015], which indicates that this could be a
general property of this class of simple postsynaptic STDP learning rules. An
interesting observation is that the same learning rule with the same ratios can
be applied to all convolutional layers, as well as the fully connected layer at
the top of the network. Only the magnitudes of the ratios have to be adapted
to account for the different learning speed of each layer, which is a conse-
quence of the different number of spikes that is triggered in each layer. Since
our rule is driven by postsynaptic spikes, the number of spikes caused in a
layer will strongly influence the learning speed. We observed that there is
a strong connection between the ratio of the rates and the threshold values
of the neurons. Since our learning rule only distinguishes between synapses
that have spiked after tref and those which have not, a high threshold value
will allow more synapses to contribute before the postsynaptic spike is trig-
gered. To obtain a feature that is sensitive to spikes from those synapses that
actually spike more often, we will have to use a learning rate with rather
strong depression, since there will be statistically only a few situations where
a synapse did not spike at all and is therefore subject to LTD. The inverse
is true for a low threshold value, where only a few synapses will contribute
on average to a postsynaptic spike and depression is therefore the more com-
mon scenario for a synapse, which is why it should be rather weak. For
our choice of parameters, we found that a ratio of α+ = −8α− works best
in practice. This leads to a learning rule with high LTP for small weight
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spike
intra-map
inhibition

inter-map
inhibition

Figure 3.1: Basic structure of a convolutional layer with inter-map and intra-map
WTA. Each feature map (shown in different colors) detects features in an overlapping
manner over the full image. If a neuron spikes in a feature map, it inhibits neurons in
all feature maps around a small neighborhood of its position, and all other neurons
in the same feature map.

values that is strongly damped if the value increases. Already for a weight
value above w = −1/β+ log(−α−/α+) ≈ 0.7, depression becomes on aver-
age stronger than potentiation, which will effectively prevent weights from
saturating. This behavior is important for the online learning capabilities of
our architecture, since a saturation of weights could prevent the system from
learning on additional examples. At the same time, the learning rule stays
highly sensitive even if the weight is close to zero, which allows the system to
adapt to changing input statistics.

In contrast to Querlioz et al. [2011] and Diehl and Cook [2015], our net-
work does not use a homeostatic mechanism to adjust the firing rates of the
neurons. Although such a mechanism was shown to greatly improve perfor-
mance on this classification task for one-layered networks, we decided against
such a mechanism since it makes implicit assumptions about the statistics of
the training set. For instance, enforcing equal firing rates for neurons over
long timescales, which is a typical objective for homeostatic mechanisms,
imposes that the features represented by each neuron occur approximately
equally often. This is in general not true for an online learning task and in
particular the intermediate level features learned by the convolutional layers
do not have equal probability of occurrence.
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3.2.3 Network topology and inhibition mechanism

The setup of our network is similar to other competitive convolutional archi-
tectures trained with STDP (such as Kheradpisheh et al. [2017], Panda et al.
[2017], Tavanaei and Maida [2017] and Mozafari et al. [2019a]). We use two
convolutional layers with a varying number of feature maps, depending on
the experiment (for a general overview over ANN topologies, please refer to
chapter 2). If not stated otherwise, all simulations use by default 16 feature
maps in the first and 32 maps in the second convolutional layer, as well as
1000 neurons in the fully connected top layer (see figure 3.3). Both convo-
lutional layers use a filter size of 5× 5 with a stride of 1. The neuron firing
threshold values are 8 (first convolutional layer), 30 (second convolutional
layer) and 30 (fully connected layer) respectively. The first type of inhibition
is a intra-map WTA mechanism, that inhibits all other neurons in a feature
map at different positions as soon as one neuron in the map releases a spike
(see figure 3.1). Inhibition is performed by resetting the integration variables
and reference times tref of the inhibited neurons (such that spike times are
always measured with respect to the last reset of the integration variable).
This mechanism prevents a single map from dominating the learning com-
petition at all position of the input volume by learning a feature that is too
general. The second inhibitory mechanism acts in an identical way between
feature maps (inter-map) and inhibits neurons in a small neighborhood of
the position of the spiking neuron in all feature maps. This neighborhood
will typically be chosen such that all neurons whose filters strongly overlap
with the filter of the firing neuron will be inhibited (in our case the two next
neighbors). This competitive mechanism is essential to diversify the features
learned by different feature maps.

After each convolutional layer, the network performs a pooling operation
over non-overlapping windows of size 2× 2 in each feature map to reduce
the dimensionality of the input. In contrast to the architecture introduced in
Kheradpisheh et al. [2017], where a form of max-pooling is performed that
only propagates the first spike in a pooling window, our pooling layer propa-
gates all spikes that are emitted in the pooling window. This is necessary if the
network should be defined independent of the input timescale, since else we
would have to define a point at which the pooling neuron is unlocked again
(which is usually done when a new example is presented). Additionally, this
allows propagation of a more flexible number of spikes to the following lay-
ers. In our implementation, the pooling neurons are not actual neurons since
they simply propagate all spikes from a certain input region, but in princi-
ple the pooling neurons could be replaced by a more complex neuron model
which has a more specific selectivity or a threshold value. The basic module
of convolutional layer followed by pooling layer can in principle be arbitrarily
copied to form a multi-layer deep network.
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Figure 3.2: (a) Schematic description of the dual-accumulator neuron. The neuron
integrates all inputs it receives simultaneously in two accumulators, one for STDP
triggering and WTA, and the second one for inference (i.e. spike propagation). (b)
Interaction between two neurons coupled via lateral inhibition. If the integration in
the WTA accumulator reaches the threshold value, no actual spike is propagated to
the next layer. However, the neuron will trigger STDP and lateral inhibition, which
resets the WTA accumulator of the other neuron. (c) If integration reaches the thresh-
old value in the inference accumulator, a spike will be propagated and integration
will be reset. The inference accumulators of other neurons remain unaffected or, as
in this work, can be subject to a small range inhibition (smaller than the inhibiton in
the learning accumulator), to control how many maps at this position contribute to
spike propagation.

Similar to frame-based convolutional neural networks, the convolutional
layers are followed by a fully connected layer, which is trained with the same
STDP mechanism as the convolutional layers. It merges the features from
all positions and features maps to learn global, position independent rep-
resentations of the classes present in the input data. This distinguishes our
architecture from other multi-layer competitive CNN architectures and makes
the last layer conceptually similar to the single layer networks of Diehl and
Cook [2015] and Querlioz et al. [2011]. This type of representation enables us
to obtain spikes in the last layer which are direct indicators of the class the
network detects.

3.2.4 Dual accumulator neuron

To make our architecture suitable for online learning, another paradigm has
to be reconsidered that was present in previous work. A major problem when
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training all layers simultaneously comes from the WTA mechanism. Although
inhibition is necessary to diversify the learned features in each layer, it sig-
nificantly reduces the number of spikes that is emitted by the neurons and
prevents spikes from different maps at the same input position. This lim-
its the amount of information that is received by the higher layers and also
prevents the propagation of spike codes that are a combination of several fea-
tures maps. In the layer-wise training approach, this problem is resolved by
disabling inhibition after the layer has been trained and then training the next
layer on the output of all lower layers.

In our work, we take a different approach, which enables us to maintain
lateral inhibition and still obtain sufficient spikes to train higher layers. We
introduce a second integration accumulator in the neuron, which receives the
same input, but is not affected by lateral inhibition and whose “spikes” do
not trigger STDP updates (see figure 3.2). This corresponds to a separation
of the competitive learning dynamics from the inference dynamics. Since the
inference accumulator receives the same feedforward input as the learning
accumulator, the spiking of the inference accumulator is still a good represen-
tation of how well the input matches the receptive field of the neuron. Both
accumulators can in principle have different threshold values. By tuning the
threshold of the inference accumulator, the firing rate of the neurons can be
adjusted without affecting the learning mechanism. More spikes will gener-
ally lead to faster convergence in higher layers and higher inference precision,
but also require more computational resources.

Our experiments show that it can still be beneficial for learning in higher
layers to enable some inter-map inhibition between inference accumulators.
It also helps to regulate the total number of spikes in the layer. This mostly
depends on the need to have several features contributing to the emitted spike
code at a particular position or only the most salient feature. It therefore en-
ables us to smoothly switch between a one-hot feature representation, where
only one feature can be active at a given position, and a more continuous
representation, where multiple features can contribute partially. The dual ac-
cumulator neuron allows us to treat the competitive aspects of learning and
coding independently.

3.3 Experiments

3.3.1 Learning on a converted dataset

The first series of experiments is performed on a classic machine learning
benchmark, the MNIST dataset (LeCun et al. [1998]). The dataset consist
of a collection of 70000 grayscale images of handwritten digits of size 28×
28. 60000 of these images are used for training, while the remaining 10000
represent the test set.
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input
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Figure 3.3: Configuration of the basic convolutional network architecture used for the
experiments, showing all kernel sizes, strides and number of feature maps for each
layer.

Experimental setup

Training The network is trained on a single randomly ordered presentation
of the full MNIST training dataset of 60000 digits (i.e. no digit was shown
twice to the network). No preprocessing is performed.

Simulation All simulation results for the MNIST dataset are obtained with
a modified version of the N2D2 open source deep learning library by Bichler
et al. [2019], using an extension of its event-based spiking neural network
simulator.

Input spike encoding To become a suitable input for a spiking neural net-
work, the MNIST images have to be converted into spike signals. Each image
is converted into noisy periodic spike trains with mean firing rates propor-
tional to the absolute value of the pixel values, which are converted to lie in
the range [0, 1]. Each spike train is randomized by drawing the mean firing
rate from a Gaussian distribution centered around the pixel value, and ad-
ditionally multiplying the constant inter-spike interval length with a random
number in the range [0, 1] every time an event is created. However, our ex-
periments show that the feature learning does not depend significantly on
this particular conversion of the images to firing rates, as long as the firing
rates grow approximately with pixel intensity. In the standard experiment, all
images are presented for a fixed time to the network. Note that the timescale
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Layer Description Parameter Value

Conv1 Threshold STDP Θinh,STDP 8
Threshold propagation Θinh,prop 8
Inter-map inhibition radius STDP (in nearest neighbors) rinh,STDP 2
Inter-map inhibition radius propagation (in nearest neighbors) rinh,prop 0
Ration LTP vs. LTD α+/α− −8
Filter size K 5
Stride S 1
Initial weights with STD (normally distributed) winit N (0.8, 0.1)

Conv2 Threshold STDP Θinh,STDP 30
Threshold propagation Θinh,prop 30
Inter-map inhibition radius STDP (in nearest neighbors) rinh,STDP 2
Inter-map inhibition radius propagation (in nearest neighbors) rinh,prop 0
Ration LTP vs. LTD α+/α− −8
Filter size K 5
Stride S 1
Initial weights with STD (normally distributed) winit N (0.8, 0.1)

Fc Threshold STDP Θinh,STDP 30
Threshold propagation Θinh,prop 30
Ration LTP vs. LTD α+/α− −8
Initial weights with STD (normally distributed) winit N (0.67, 0.1)

Table 3.1: Network parameters used for the simulations on MNIST. An inhibition
radius of 0 indicates that only neurons at exactly the same position in other maps are
inhibited

here is only necessary for the spike generator and therefore only influences
the number and dynamics of the spikes emitted by each training example.
The processing of the network only requires the relative timing of spikes. If
not stated otherwise, the presentation time is set such that each training ex-
ample emits approximately between 1400 and 3500 spikes in total, depending
on the average value of all pixels in the image.

Testing procedure After training, the 60000 digits of the training set are used
to label the neurons in the final layer and in a second pass, the test perfor-
mance is evaluated on all 10000 test images. Since the learning mechanism is
unsupervised, we still need a simple classifier to assign to each neuron in the
final layer the label of its preferred class. This is simply done by presenting
each training image to the network and assigning to each neuron the corre-
sponding label if it is the neuron with the highest response for this image. The
preferred label of a neuron is the label which was most often assigned to it via
this process. For inference, we only check if the preferred label of the neuron
which fired the most during presentation of the test sample corresponds to
the label of the presented image. If this is the case, the classification is consid-
ered as correct. This mechanism can be seen as a minimal classifier that only
uses the prediction of the most active neuron for classification. It is there-
fore a valid measure of the class specificity of the neurons in the last layer.
In particular, it does not influence the learned features themselves, but only
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their interpretation. This distinguishes it for example from a more complex
classifier such as a Support Vector Machine, which performs a classification
based on a weighted combination of neuron outputs of the last convolutional
layer, with parameters trained in a supervised fashion. Our approach corre-
sponds to the more realistic unsupervised learning scenario where generally
much fewer labels than training stimuli are available and therefore the labels
can only be used to assess the network performance, but cannot be used for
feature learning. An analysis of how the number of labels affects the classifi-
cation performance can be seen in figure 3.7. We can see that a few labels are
sufficient for approximate classification, but using more labels of the training
set further improves the performance. This makes it possible to train the net-
work without providing labels but still use them to improve the classification
in the final layer if they become available. We restricted ourselves here to
a simple classifier to obtain a meaningful measure of the quality of the top
level features. Depending on the complexity of the hardware implementa-
tion, a more complex supervised classifier could be used for the top layer to
improve inference performance (see for example Stromatias et al. [2017] for a
supervised classifier trained with gradient descent on spike histograms).

Results

In this section, we present the main results of our simulations and investigate
several properties of the architecture that could be of interest for an unsuper-
vised online learning application.

Feature learning and inference performance Our first experiment looks at
feature learning and classification on a single run of the network over the full
MNIST data set. The network configuration can be seen in figure 3.3. This is
what we refer to in the rest of the chapter as the reference simulation.

A visualization of the final features can be seen in figure 3.4. An inter-
esting property of the final weight matrices (figure 3.5) is their sparsity and
basically binary weight configuration. The sparsity of the weight matrices
is caused by the sparse input and sparse responses of each layer due to the
WTA mechanism. The binarization is caused by the STDP learning mecha-
nism which enforces correlations. Synapses which receive consistently input
that causes postsynaptic spikes will quickly saturate to the maximal weight
value. During learning, this effect is attenuated by the exponential weight
damping, which prevents overly fast convergence of the weights to their max-
imal value. The fact that the final weights are almost binary could leave
the possibility to binarize the weights fully after the learning phase without
changing the representations significantly. Depending on the concrete hard-
ware implementation, this would fully binarize the network’s computations
and may yield additional processing efficiency.
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Figure 3.4: Visualization of the preferred features learned in the different layers of the
network. For the first layer, the preferred feature corresponds simply to the weight
kernels. We can see that this layer learns filter patches which detect local contrast
differences. The higher layer features are constructed by choosing for each neuron in
the feature map the feature in the lower layer to which it has the maximum average
connection strength. Note that due to the overlapping nature of the weight kernel
of each position, the features have a somewhat blurred appearance. As we can see
for the second convolutional layer, the neurons become sensitive to parts of digits.
Finally, in the fully connected layer, each neuron has learned a highly class specific
version of a particular digit prototype (digits 0 to 9 from left to right).

0.0 0.2 0.4 0.6 0.8 1.0

100

101

102

N
um

be
r

in
0.

01
ra

ng
e

conv1

0.0 0.2 0.4 0.6 0.8 1.0

Weight value

101

102

103

104
conv2

0.0 0.2 0.4 0.6 0.8 1.0

103

104

105

fc

Figure 3.5: Weight distributions for the different layers of the network. A large num-
ber of weights converges to 1 or 0. In the higher layers, the weights become increas-
ingly sparse.

Even without a homeostatic mechanism and despite the similar learning
rule, the maximal performance of our network (figure 3.8) is higher than for
the network of Querlioz et al. [2015] for all neuron numbers in the fully con-
nected layer. By increasing the number of features in the convolutional layers,
the network is able to yield (96.58± 0.16)% accuracy on the test set in the con-
figuration with 16 and 256 maps in the convolutional layers. It is also better
than the architecture of Diehl and Cook [2015], which uses besides a homeo-
static mechanism several other mechanisms to stabilize learning and improve
performance (such as divisive weight normalization, tuning of the input firing
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Figure 3.6: Demonstration of the simultaneous emergence of features in the different
layers of the network. We can see that even if the features in the lower layers are
not fully converged yet, the higher layer is able to assemble them to a more complex
feature. The error plot shows the development of the running average error on the
training set (averaged over a sliding window of 1000 examples). We can see that even
with the fuzzy features the top layer is able to perform an approximate inference,
which continuously improves with the quality of the features.

rates and reset of neuron values for each example) as well as more synapses
and iterations over the training set (4.2 Mio. adjustable synapses vs. 5 Mio.
and 1 presentation vs. 15 presentations of the full MNIST data set). Another
main advantage of a convolutional architecture, as we have chosen it for this
work, is that in contrast to these shallow networks, we can exploit transla-
tional invariance. Networks consisting only of a fully connected layer will fail
to recognize a class if it is presented slightly shifted compared to the training
set.

We also tested how strongly the online learning constraints affects the
result. In the standard configuration, shown in figure 3.3, the performance
of the network is (95.2± 0.2)%. If we reset the neurons after each example
presentation, the performance increases slightly but insignificantly to (95.24±
0.26)%. The same is true if we use a layer-wise training approach, where
every layer is only trained on the full training set after the lower layers have
been trained, which yields (95.27 ± 0.23)% test set accuracy. We can thus
conclude that our network does not seem to be significantly affected by these
constraints relating to a database framework.

Robustness to input variation and sparsity In a follow-up experiment, we
tested the robustness of learning with respect to input presentation time varia-
tions. This feature is important for a real-world application, where we cannot
be sure that all classes and objects will be presented to the network for the
same fixed time. We therefore varied the presentation time of each digit ran-
domly by a factor between 0.1 and 1.9, such that the total presentation time
is on average equivalent to our other simulations. We observe that the final
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classification performance of the network seems to be insignificantly affected
by these variations, yielding an accuracy of 95.13% compared to 95.33% with
the same parameters and constant stimulus duration.

Additionally, we learned the whole training set with a constantly different
presentation time and evaluated the performance (while adjusting the learn-
ing rates to account for the smaller number of spike events). We can see in
figure 3.7 that, as long as the presentation time stays within a certain range,
the result is largely unaffected by the presentation time. This is in particular
true for feature learning, which seems to be mostly unaffected by the presen-
tation time of a single image. We noted however that the presentation time
is important for the inference phase. The performance of our spike count
classifier drops significantly if the number of spikes triggered in the top layer
becomes only a tenth of the original number. However, if we use the stan-
dard presentation time for the labeling and testing phase, the classification
accuracy is still around 93.72%. It therefore seems that the drop in infer-
ence performance is mainly due to a failure of the classifier, which requires
a certain number of spikes to label the neurons and classify correctly. This
indicates that the network is able to learn features even with a presentation
time per image that is one order of magnitude lower than the presentation
time we chose for the reference simulation. For this presentation time, there
will be only approximately 100 to 500 input spikes for a single training ex-
ample and the spikes triggered in the top layer are only in the order of 10.
The total number of spikes triggered in the full network will be in the order
of 1000− 2000 depending on the image (if pooling neurons, input spikes and
“pseudo-spikes” by the learning accumulators are discounted). For an image
size of 28× 28 = 784, this means that most pixels with a value significantly
higher than 0 will spike only once or twice per examples and potentially very
unregularly. If we half the presentation time again to 5% of the original time,
inference performance finally begins to drop strongly, although the feature
learning mechanism still extracts meaningful features. For this presentation
time, every image will be represented by only 40 to 100 spike events, which
seems barely enough to give a meaningful representation of the 784 pixel
digit. The drop in performance is therefore probably also caused by this dis-
cretization limit of the digit. Our results demonstrate that even with this noisy
and sparse input, our architecture is able to extract useful features.

Scaling We also analyzed the scaling behavior of our network, which is an
important property for the potential of the architecture to be extended to more
complex data. In a first experiment, we investigated how the size of the fully
connected top layer affects the classification performance. Similar as Querlioz
et al. [2011] and Diehl and Cook [2015], we could observe that an increase in
the number of neurons in this layer leads to a higher classification accuracy.
However, for our network, the performance increases substantially faster than
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Figure 3.7: (a) Increase of test set performance as a function of the number of training
set labels used to label the top layer neurons. (b) Influence of presentation time on
training and labeling phase. Times are given relative to the presentation and labeling
time we used for the reference simulation. green: test performance if presentation
time during labeling and testing phase is same as during training. red: performance
if labeling and testing time is independent of the training phase presentation time
and equal to the time represented by 1.0.

for their architectures and our network yields higher or equal scores for all
layer sizes (see figure 3.8). This indicates that the preprocessing done by the
convolutional layers indeed helps the fully connected layer to extract more
general and useful digit prototypes, as compared to the case where the layer
is directly connected to the input layer. Furthermore we trained on far less
iterations over the MNIST set and did not use any homeostatic mechanisms
in our fully connected layer. Querlioz et al. [2011] observed in their work
that homeostasis substantially improves the performance of their network by
balancing the competition between neurons. The fact that our architecture
performs better even without this mechanism and less iterations could in-
dicate that the preprocessing of the convolutional layers produces a spiking
output which is easier to process for the fully connected layer and increases
the stability of the learning process.

In a next step, we also investigated the scaling properties of the convolu-
tional layers by increasing the number of feature maps (see figure 3.8), while
leaving all other neuron variables untouched (in particular also the thresholds
of higher layers). Our results show that an increase in the number of maps
in the second layer consistently leads to an increase in classification perfor-
mance. This is not the case for the first convolutional layer. We suspect this
could be caused by the relatively high redundancy between the maps of the
first convolutional layer (see figure 3.4). Since the competitive mechanism
for the inference accumulators is rather weak, many similar maps can release
a spike for the same input position and trigger a spike in the layer above
(whose thresholds were not changed in the scaling process). This reduces the
complexity of the features that can be learned in the higher layers and could
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therefore be responsible for the slight decrease in classification performance.
Since the maps in the second convolutional layer are more complex, redun-
dancy is lower and similar features dominate less the competition, which is
why scaling seems to be more beneficial here.

It seems that our architecture can consistently profit from scaling, in par-
ticular in higher layers, where feature complexity is high. Note that for both
the fully connected and the convolutional layers we had to increase learning
rates since the training time scales approximately linearly with the number of
inhibited entities (i.e. maps for the convolutional layers and neurons for the
fully connected ones), which is a consequence of the winner-takes-all dynam-
ics. This is only necessary to achieve convergence on a single presentation of
the MNIST dataset and would not be a problem in an online learning setting,
where unlabeled training data is abundant.
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Figure 3.8: Scaling behavior of different layers of the network. (a) Scaling of the
network performance with fixed number of top layer neurons and variable number
of feature maps in the convolutional layers. (b) Increase in test set performance as
a function of the number of neurons in the fully connected top layer (with number
of feature maps fixed to 16 and 32 in the convolutional layers). The last point of
Querlioz et al. [2015] is not exactly reported, but likely lies between 94% and 95%.

Robustness to learning rate variation While adjusting the learning rate for
the scaling experiments, we observed that our architecture seems to be very
robust against a change in the absolute values of the learning rates (while
leaving the ratio between LTP and LTD constant). Figure 3.9 shows the infer-
ence performance on a sliding window of 1000 examples of the training set
and the test set performance as a function of the learning rate variation. Our
experiments show that the network performance is remarkably stable with
respect to the absolute value of the learning rates. In a learning rate range
spanning an order of magnitude, we can observe stable online training er-
ror convergence. A learning rate which is too low does not converge on a
single presentation of the MNIST dataset (however if it is presented multiple
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times or if there would be more images). If the learning rate is very high,
the online classification performance becomes unstable after an initial steep
increase. This is probably mainly due to the online labeling mechanism which
is used for classification. A high learning rate will alter the learned features
of the neuron continuously and therefore the labeling mechanism fails. This
could explain why the test performance is only affected to a comparably small
extent, since before testing, neurons are labeled while learning is disabled.

In contrast to many ANN implementations that are optimized for classifi-
cation performance, we did not implement a learning rate decay policy. Such
a policy would have to be defined over a fixed number of iterations over the
dataset and thus would violate the online learning paradigm. Our results
show that even a constantly high learning rate can lead to robust conver-
gence. Depending on the specific application, the learning rate could be very
high, allowing a fast adaption to changing input stimuli, or very low, which
allows to include more information from training examples into the weights
and therefore might lead to better generalization. We could also imagine a
mechanism that changes the learning rate depending on the online classifica-
tion performance. If the performance drops suddenly, the learning rate can
be set to a higher value to enable the network to adapt to possibly unseen
inputs.

Both the stability of the architecture for high learning rates and the promis-
ing scaling behavior have beneficial consequences for the parameter tuning
process in a practical application. This is true in particular if the optimal
architecture cannot be found easily by an optimization process over a fixed
training and test set. Initially, we could set the learning rates very high and
use only a small number of feature maps to check if these converge quickly to
a meaningful solution. This requires only a small unlabeled dataset with ap-
proximately the same properties as the online learning data. Such a solution
could be easily identified given the intuitive local and hierarchical representa-
tions of the network and the ability to assess classification performance with
only a few labels necessary for the spike-count classifier. If the features seem
to converge or the online inference error decreases, the learning rates can be
set to a low value and the network scaled up for the high precision online
learning task.

3.3.2 Extension to dynamic data

The results on the static MNIST dataset demonstrate the capability of the net-
work to learn in an online learning scenario. However, converting the MNIST
dataset into spikes is a very artificial procedure, and might not necessarily
reflect the input that the network would receive from an event-based vision
sensor (such as Lichtsteiner et al. [2008] or Posch and Wohlgenannt [2008]).
In the following part, we show how to extend the architecture to extract hi-
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Figure 3.9: (a) Influence of the variation of the learning rate on test performance in
the fully connected layer, measured relative to the learning rate that enables stable
convergence over a single dataset iteration. (b) Online training performance (aver-
aged over a sliding window of 1000 examples). Neurons are labeled online during
the learning process. A learning rate that is too low will not converge over a single
presentation of the MNIST dataset, while a very high learning rate leads to instabili-
ties.

erarchical features from such a stream of event-based vision data in an un-
supervised fashion and online. It is demonstrated how our network is able
to learn translational invariant features, that preserve dynamic information
in the data, from the event-based N-MNIST dataset of Orchard et al. [2015].
Despite the dynamic nature of the input data, the architecture remains solely
accumulation-based and is able to learn without having to be adapted to the
input time-scale. We show how the extracted features preserve dynamic in-
formation up to the highest hierarchical level, where the full object prototypes
can be used for online inference or movement analysis based on the moving
digit prototypes.

Adaptation of the topology

Since the dataset has changed to N-MNIST, we have to adapt the parameters
3.1 to the new learning task. The principal changes that are necessary are an
adaptation of the thresholds to account for a different number of input spikes
and adding a classification layer on top of the network. The threshold values
are changed to 8 (first convolutional layer), 50 (second convolutional layer)
and 60 (fully connected layer) respectively. We observe that all other param-
eters can be left unchanged. This is probably because the N-MNIST dataset
was designed such that each moving digit has the same size (in pixel) as in the
original MNIST dataset. The enlargement of the input volume from 28× 28
to 34× 34 is necessary because of the movement of the digit in the volume,
but does not change the absolute size of the digit. Being a convolutional ar-
chitecture, our network is invariant to a translation of the object and therefore
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the parameters of the network do not have to be changed. In addition to the
changes of parameters on existing network elements, we introduce a second
fully connected layer on top of the first fully connected layer, which is trained
with a supervised classifier. We demonstrate that the first layer allows us
to obtain neurons that respond to digit prototypes with a specific movement
direction. The second fully connected layer has a number of neurons equiv-
alent to the number of classes in the training set and learns to merge several
moving digit prototypes from the fully-connected layer below.

Event-based supervised classifier

Since the STDP feature extraction mechanism is purely unsupervised, we
need to place a simple classifier on the top level features to perform infer-
ence. For training on the static MNIST dataset, a simple spike count classifier
was used, since the top level neurons represent full digit prototypes. Due to
the different movements direction of each digit in the N-MNIST dataset (see
feature visualization in figure 3.11), we now require a classifier that is able
to merge the neural responses that occur for the different saccades during an
example presentation. We decided to use a simple supervised classifier that
operates on spikes only and requires only the storage of an additional floating
point variable for each class, which represents the current error estimate. In
this way, we obtain an event-based classifier that uses an approximate super-
vised error estimate, while still being compatible with the local, neuromorphic
processing paradigm. The learning rule with error term Ei(t) is given by:

∆wij(t) = η · Ei(t) · Spre
j (t), (3.5)

where η is the learning rate. The presynaptic term Spre
j (t) = 1 if synapse j

transferred a spike at time t and Spre
j (t) = 0 otherwise. We thus obtain the

simple presynaptic event-based update rule:

∆wij = η · Ei(t), (3.6)

which is applied every time a spike arrives at neuron i through synapse j. Ei
is updated for all neurons every time a neuron in the classification layer fires:

∆Ei = (m− 1) · Ei +

{
Ri − 1 if i fired
Ri otherwise

. (3.7)

The variables Ri represent the targets of the network. They are initialized
for each training example in a one-hot fashion, such that Ri = 1 if i is the
class of the training example and Ri = 0 otherwise. This rule ensures that
Ei(t) moves towards zero if the neurons respond correctly. The error term
will become negative if a neuron spikes that should have remained silent and
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positive if a neuron that should have spiked did not. The term m ∈ [0, 1]
ensures that information from previous error updates is not lost too quickly.

This learning rule calculates an approximation of the error based on the
event-driven response of the network, without the need to set an explicit tar-
get firing rate. Learning rule 3.6 will only stop weight updates if the gating
term Ei(t) is exactly 0. This can only happen if Ei(t) is driven to zero by
its update rule 3.7. For m 6= 0 this will require several updates, which are
themselves driven by postsynaptic spikes. A low postsynaptic firing rate will
therefore also slow down the error updates and therefore prevent a situa-
tion where learning stops. A large postsynaptic firing rate will lead to more
updates of Ei(t) and a better estimation of the current error. The precision
of Ei(t) therefore scales dynamically with the postsynaptic response of the
network, which is directly related to the timescale of the input signal.

Like the unsupervised feature extractor, the supervised classifier is trained
online while the network is receiving the stream of inputs. The difference is
that the classifier is provided with external label information. Every time a
new class is presented, the Ri are updated and all Ei and integration variables
of the classifier neurons are reset to 0. During the testing phase, no database
information is transmitted to the network, and classification is solely based
on the strongest response of the neuron during the time window in which
the example is presented (also no resets of classifier integration variables take
place). This way, we obtain a system that can use label information to train
the classifier whenever it is available. At the same time, it delivers a spiking
response that can be used for approximate inference, without having to be
informed explicitly that a new classification phase starts.

Experimental setup

Simulation All simulations on the event-based dataset are performed with
the N2D2 open source deep learning framework by Bichler et al. [2019]. The
library was extended for this purpose with a CUDA accelerated spiking neu-
ral network simulator. Training is performed on Nvidia TitanX graphics cards.
Although the clock-based simulation requires the definition of a timescale and
a corresponding time step, all mechanisms were designed to not depend on
their absolute values.

Event-based input The network was trained on a single randomly ordered
presentation of the full N-MNIST dataset by Orchard et al. [2015] of 60000
digits. The N-MNIST dataset consists of event-based recordings of the MNIST
benchmark. The training examples consist of AER recordings of the ATIS
(Posch and Wohlgenannt [2008]) sensor for digits moving on a screen. Each
example digit is presented in 3 saccades of 100 milliseconds. During each of
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these saccades, the digit moves slightly in a fixed direction and causes the
ATIS sensor to emit on and off events.

Testing procedure After training on the 60000 training examples of the N-
MNIST dataset, the classification performance of the network is evaluated on
the 10000 test examples. As before, all simulations were performed on a single
iteration over the dataset in order to simulate an online learning scenario
where no example is encountered twice.

Results

Feature extraction Our first experiment tries to optimize the network for
maximum performance on a single run of the full MNIST data set. The net-
work configuration can be seen in figure 3.10 and a visualization of the final
features can be seen in figure 3.11. We can see that the first fully connected
layer of the network extracts digit prototypes with their corresponding typical
pattern of on and off events. Due to the convolutional structure of the net-
work, these prototypes can be recognized in a translational invariant fashion,
while maintaining the information of their movement direction.

input
2(34× 34)

conv1
16(30× 30)

pool1
16(15× 15)

conv2
128(11× 11)

pool2
128(5× 5)

fc1
1024

fc2
10

Figure 3.10: Configuration of the convolutional network architecture used for the
experiments, showing all kernel sizes, strides and number of feature maps for each
layer (in short notation: 34x34x2-16C5-P2-128C5-P2-1024-10).

Full example and single saccade inference One advantage of the type of
features learned by the network is that we can train different classifiers on
the top level, depending on the application in mind. For example, we could
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Figure 3.11: Visualization of the preferred features learned in the first fully connected
layer of the network. Preferred features are constructed by recursively patching the
lower level feature with maximal weight into the corresponding positions of a filter
kernel. The kernel overlaps give these features a blurry appearance, which reflects
their translational invariance.

imagine a classifier which only recognizes a digit if it passes the camera in
a certain movement direction. That means it responds if the corresponding
prototype activates. Alternatively, we can train a classifier to merge several
prototypes and their corresponding movement directions. This way the typi-
cal movements of an object can be used to improve classification.

The most straightforward way to use the classifier is to test it in the same
way as it was trained, i.e. on all three saccades of a test example. We present
each test example and count the number of spikes that is emitted by each clas-
sifier neuron. If the neuron with the highest number of spikes corresponds to
the presented class (equality is decided via the maximal integration value), the
classification is considered as correct. With the configuration shown in figure
3.10, we reach a maximal classification accuracy of 95.77%. Table 3.2 com-
pares several results on the N-MNIST benchmark and their corresponding
architectures. It can be seen that our architecture is one of the few approaches
that is able to perform STDP-based unsupervised feature extraction on the
N-MNIST dataset.
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Architecture Training algorithm Performance

Shallow SNN Orchard et al. [2015] SKIM 83.44%
Shallow SNN Cohen et al. [2016] SKIM 92.87%
Converted CNN Neil and Liu [2016] ANN converted to SNN 95.72%
Spiking CNN Lee et al. [2016] BP 98.74%
Spiking CNN Yin et al. [2017] BP 96.33%
Spiking CNN Wu et al. [2018a] BP 98.78%
Spiking CNN Jin et al. [2018] BP 98.88%
Event-histograms Sironi et al. [2018] HATS 99.10%
Spiking CNN Shrestha and Orchard [2018] BP 99.20%
Frame ANN Iyer et al. [2018] BP on acc. events 99.23%
Spiking CNN Iyer et al. [2018] STDP 91.78%
Spiking CNN (this work) STDP/event-based classifier 95.77%

Table 3.2: Comparison of different architectures used for classification on the N-
MNIST benchmark.

We now investigate the possibility to use the network also on single sac-
cades after it was trained on the N-MNIST dataset. In the dataset, each train-
ing example contains three saccades, which represent different movement di-
rections of the digit. When training the network on a stream of real-world
data, we can however not be sure that each object will always be represented
by exactly three saccades and their particular movement directions. We there-
fore want to test if the trained network is also able to classify a digit if it is
only confronted with single saccades. For this purpose, we split each training
example in its three saccades and test the response of the trained network
under different conditions (see figure 3.12). In a first experiment, we train
features and the classifier on all 3 saccades and only performed the inference
on a single one. Our results show that the network is still able to correctly
classify most digits based on only one of the saccades. We however observe
a drop in precision. This is to be expected, since three saccades provide the
network with more information about the digit. In the second experiment, we
use the same saccade 3 times for each inference. As expected, this increases
the classification accuracy, since a higher number of spikes allows more ac-
curate inference. The performance is however still lower than inference with
three different saccades. In the last experiment we train the classifier on three
times the same saccade and therefore optimize it for recognition of this partic-
ular saccade. As we can see, for saccade 1 and 2, this improves the accuracy,
while for saccade 3, the result is slightly worse. For all three saccades, the
change is however insignificant in the range of statistical error. It seems there-
fore that the better results when using all three saccades is indeed due to the
higher information content of 3 saccades. For saccade 3, the classification re-
sults are generally worse than for saccade 1 and 2. This is possibly caused
by the particular horizontal movement direction of saccade 3 (see figure 3.13),
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which contains less information than the diagonal movements of saccade 1
and 2.

This demonstrates that our network can use a flexible number of saccades
for classification, independent of the number of saccades that were used for
training. It also shows that, independently of feature extraction, the classifier
can be optimized for certain inference objectives.
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Figure 3.12: (a) Demonstration of the timescale invariance of the network. Each
example was scaled such that it fits exactly into a time window which is a multiple
of the standard time window we use for the other simulations. green: Test accuracy
if training and testing are performed on the same timescale. red: Test accuracy if
training is performed on the default timescale 1 and only the testing timescale is
changed. (b) Single saccade classification performance. The horizontal axis labels the
single saccade which was used. green: Performance on the test set if only one saccade
is used for inference. red: Performance of the network if one saccade is used 3 times
for inference. blue: Performance of the network if training of the classifier is also
performed on 3 times the same single saccade.

Timescale invariance Due to the accumulation-based nature of the network,
it should be able to recognize a digit independently of the timescale of its
spike representation. To test this, we train the network for different timescales
and then perform the testing in the training timescale as well as in a several
different timescales. Figure 3.12 shows that the results are basically the same
in the overall range of fluctuations caused by slightly different initial values
of the simulation. We also test if the network and classifier trained on a
particular timescale are able to classify correctly if the patterns are presented
in a different timescale than the one which was used for training. Our results
show that this is indeed the case, in the range of typical fluctuations caused
by different initial conditions.

Stimulus response patterns Figure 3.13 shows the typical response of the
trained network for the presentation of a single training example. We can
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easily identify the saccadic movements in the spiking input to the network.
Up to the highest layer, the whole network responds rapidly to the input
while remaining quiet if no input is presented to the network. Note that
the network has no explicit knowledge when a saccade or image begins or
ends, i.e. no resets of the integration variables are performed between these
bursts of input activity. Even without any leakage currents or explicit resets,
the network closely follows the dynamics of the input activity and quickly
returns to a silent mode if the input activity stops. Additionally, activity
becomes increasingly sparse in higher layers, which reflects the specificity of
the high level features.

3.4 Discussion

3.4.1 Analysis of the architecture characteristics

Fully event-based multi-layer learning

The multi-layer training capabilities of our architecture make it accessible to
learning mechanisms that involve multi-layer top-down feedback. In particu-
lar, the online predictions of our network could be used for a reinforcement
learning scheme, which could modulate STDP learning with a reward signal
which is propagated through the network. Additionally, multi-layer training
is more compatible with an online learning paradigm, where it is not possible
to receive a stimulus a second time. This could be problematic for a layer-
wise training mechanism, since higher layers would be trained on different
inputs than the layers below. Finally, in contrast to other deep architectures
that perform feature extraction in the final layer with a more complex classi-
fier to improve performance, the spiking output of the fully connected layers
in our network is highly specific and presents full digit prototypes. It could
therefore be used directly for a higher level spike-based processing stage (see
for instance Eliasmith et al. [2012] and Diehl and Cook [2016] for functional
spiking models of higher cortical processing).

The fact that little changes are necessary to adapt the architecture from
static to dynamic data could make it possible to gauge most parameters of the
network on a spike-converted dataset with objects similar to those that have
to be learned in the online learning task. Such a preliminary simulation could
reduce the risk of choosing a neuromorphic implementation that is unable to
perform the online learning task.

Timescale invariance of the learning rule

Intuitively, we can understand the STDP mechanism the following way: the
threshold of the neurons of a layer describes a type of implicit timescale,
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Figure 3.13: Typical firing patterns in convolutional and fully connected layers during
the presentation of a single N-MNIST example. Each image is presented as 3 saccades
separated by silent phases. In all layers up to the top fully connected layer, the
saccades are clearly visible as bursts of spiking activity.

which is the time until one of the neurons has integrated enough information
to emit a spike. All neurons that are connected to this neuron by inhibitory
connections are subject to a reset of their integration variable and their relative
timescale. As long as the long term input dynamics change much slower than
this implicit timescale, there will be a consistent causal relationship between
a certain synaptic input and the response of a neuron. Since the time until the
threshold is reached depends only on the total integrated input signal, this
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implicit timescale is directly set by the timescale of the input. If spikes arrive
very rapidly, the threshold will be reached in a short time. If spikes arrive
rather slowly, also the absolute time until the threshold is reached becomes
longer. In a model that uses a leakage current or refractory times, these times
would have to be adjusted to the timescale of the input signal. Since our STDP
rule only depends on the relative timing of postsynaptic spikes, and therefore
on this implicit timescale, we are able to use the causality reinforcement prop-
erties of STDP without defining an explicit reference time.

One-hot representations for event-based image recognition

The type of features learned by a WTA-based algorithm are so-called one-
hot representations. This means that for a given input, only one or a few
of the features will be activated, yielding a sparse code. On the other hand,
representations learned by the backpropagation algorithm are typically dis-
tributed, which means that for a given input, a large number of neurons will
be activated and represent the input through their combined activity. In the
computational framework in which ANNs are typically used and with the
ability to use high precision floating point numbers, distributed representa-
tions are usually superior since they use less neurons. Additionally, GPUs
can process quickly the dense matrix multiplications that arise in this type of
feature encoding. In a spiking network however, a high precision output of a
neuron can only be obtained if we use a large number of spikes (at least as
long as we use a rate code). In this case, the highly representative and sparse
features of a one-hot representation enable us to encode complex informa-
tion with much fewer spikes and only a few active neurons, while the other
neurons remain completely silent (Kheradpisheh et al. [2017] showed that at
most one spike per neuron per image can be sufficient). The price we have
to pay for this sparsity is a kind of inefficient representation, which requires
a large number of neurons (i.e. feature maps). We still think that it is a suit-
able way to encode sparse representations in event-based systems. In such a
system, neurons are only activated by external input and a large number of
neurons does not necessarily produce a higher total activity, since most of the
neurons will remain inactive. We can thus profit from sparse activity and its
computational benefits even if the number of features (and therefore neurons)
becomes very large.

The features extracted from N-MNIST resemble snapshots taken from the
moving objects. We believe that such an approach is well suited for image
recognition if the observed object does mainly change its position, but not the
relative position of the pixel values. The competitive mechanism used during
learning extracts features that reflect the possible movement directions of the
presented object. The same would be true for different object sizes or view-
points. This means that the number of neurons that are necessary to represent
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a class is approximately proportional to the degrees of freedom in the move-
ment of the observed object. This could lead to a strong increase in the num-
ber of maps that are necessary to represent the data. Note that in standard
deep learning architectures, these transformations also can be problematic. If
a particular view of an object should be recognized, it has to be present in the
training set and the capacity of the model has to be large enough to account
for this transformation. One difference is that the one-hot features learned
in our architecture are more specific than the distributed features typically
learned in a convolutional neural network trained with gradient descent. It
is therefore more difficult to reuse them for representing a large number of
transformations.

One of the main advantages of convolutional architectures is that they
make object recognition invariant to translational transformation of the ob-
jects. However, this also means that potential movement information is lost
in the classification process. Our architecture is able to utilize the power of
convolutional representations, including translational invariance, while main-
taining the movement information up to the full class prototypes. The price
we have to pay for this ability is an increase in the number of neurons (i.e. the
number of feature maps) in our network to account for the different move-
ment directions. As long as the number of classes is rather small, this does not
represent a big problem. Additionally, the increase in the number of neurons
is likely to occur mainly in the higher, class specific layers. In the lower layers,
the possibility to reuse simpler features for several movement directions of an
objects allows us to use less feature maps.

Classification by using movement information

The fact that we obtain representations in the fully connected layer that rep-
resent different movement directions and (possibly) viewpoints of an object
opens interesting possibilities to improve classification. In this work, we sim-
ply used the supervised classifier to merge the responses of the network for
different saccades. This allowed us to improve the classification by collecting
more information about the presented digit. This approach however does not
explicitly use the movement information in the fully connected layer. In con-
trast to this, we could also imagine a classifier that uses a distinct movement
pattern to recognize an object. For example, our network would be able to
distinguish a falling object from an ascending one. Also, it could be possi-
ble to recognize trajectories of complex objects only by a sequence of a few
spikes in the fully connected layer. This would be an interesting way to extend
our work with existing spike-based approaches for classifying and learning
sequential information (see for instance Bichler et al. [2011]).
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Hybrid supervised and unsupervised learning

The main purpose of the supervised classifier is to merge different movement
directions for the N-MNIST dataset. We think that hybrid architectures, which
combine unsupervised feature extraction in lower layers with a supervised
classifier in the top layer, could represent a good compromise for neuromor-
phic systems. Low level features tend to be very similar for most objects and
it may not be necessary to use a supervised feedback signal to learn useful
features for higher level processing. For the final high level features, it may
be desirable to use a supervised learning mechanism. Usually the high level
features will be already very representative of a class and therefore training a
classifier does not require many labels to yield good accuracies.

Hardware implementation aspects

Our network is fully event-driven and therefore potentially energy efficient
if implemented on an event-based neuromorphic hardware platform. Differ-
ences in timescale between inputs and hardware can be a problem for neuro-
morphic systems if they shall operate on natural stimuli in real time, and the
timescale of a neuromorphic system is often a design choice depending on
the potential application (see for instance Qiao et al. [2015] and Petrovici et al.
[2017] for a real time and faster than real time analog neuromorphic hard-
ware framework). Due to the fully event-based nature of our architecture, the
network circumvents this problem and is able to operate on any timescale,
with computations being only driven by external input. Together with the
simplicity of the neuron and synapse model, our architecture could be easily
scaled up and implemented on a wide range of energy efficient neuromorphic
hardware platforms. Such event-based vision systems could be interesting for
resource constrained applications that have to adapt to new inputs continu-
ously.

3.4.2 Comparison to other approaches

As other systems trained purely with STDP, our network underperforms com-
pared to purely supervised methods trained with the backpropagation algo-
rithm on the MNIST benchmark (see chapter 2 for a summary). For the N-
MNIST dataset, almost all existing approaches are also based on backpropaga-
tion (table 3.2). Some of these approaches are trained on the N-MNIST dataset
directly, while others are trained on MNIST offline with backpropagation and
then converted to a spiking network, which is then tested on N-MNIST. The
network of Shrestha and Orchard [2018] provides the best classification score
of an SNN for the N-MNIST dataset so far, with a maximal score of 99.20%.
Iyer et al. [2018] provide competitive results by training an ANN on the accu-
mulated spikes. It is not surprising that the precision of these architectures is
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superior to ours. In the supervised deep learning framework, all features of
these networks are optimized to yield a high classification performance. This
is not the case for an unsupervised architecture as the one we presented in
this work, whose objective is merely to extract the statistically most relevant
features of the training set given the constraints imposed by the architecture
and the learning rules. Additionally, most of these approaches are not trained
in the online learning scenario that we consider in this chapter. In addition
to these conceptual differences, it is questionable how these implementations
of backpropagation could be implemented in typical neuromorphic hardware
platforms for on-chip learning. One exception is the implementation of Neftci
et al. [2017], that demonstrates the possibility to train a deep network on-chip
with an event-based version of the random backpropagation algorithm. Re-
cent results of Kaiser et al. [2018] demonstrate the ability of this approach to
learn from a DVS (Dynamic Vision Sensor) event-stream.

In contrast to these supervised approaches, our architecture does not re-
quire labels for feature learning (in the case of MNIST) or uses them only
to train the classifier at the top of the network (in the case of the N-MNIST
dataset). Otherwise, the training data can be treated as a continuous stream
of events. In contrast to backpropagation, STDP is a local algorithm, in the
sense that it can function without requiring a feedback or error signal from
higher layers. This is advantageous because it enables us to perform learn-
ing massively parallel, event-based and asynchronously. These properties are
beneficial for the online learning problem that we have discussed in this chap-
ter. A similar approach for unsupervised learning on N-MNIST, which was
developed in parallel with our work, is provided in Iyer et al. [2018]. They
use a similar classifier in the top layer as we have used for MNIST, which is
probably the reason why they achieve lower classification performance. In
our experiments, we also found it difficult to achieve good performance with
the spike count classifier on the N-MNIST dataset, which is why we decided
to use a more complex classifier in the top layer to increase performance.

As an approach alternative to neural networks, the HATS network in
Sironi et al. [2018] performs unsupervised feature extraction on the N-MNIST
dataset, achieving superior performance than most spiking neural network
approaches. Although a neuromorphic implementation is claimed to be pos-
sible, it is not explicitly demonstrated how efficiently their algorithm could be
implemented in neuromorphic hardware, in particular for on-chip learning.

3.4.3 Future outlook

Like other recent work in the field of spike-based learning rules, our work can
be seen as a proof of concept, which demonstrates that multi-layer learning
of hierarchical features with STDP is possible. Our work extends current
approaches by its ability to train all layers simultaneously, and other features
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that make it more suitable for a systems that performs simultaneous learning
and inference on a continuous stream of data.

Like most machine learning systems, the precision of the network could
probably be improved by extended training time and a higher number of
training examples. For simulation purposes, this could be done by dataset
augmentation, for example by transforming saccades to produce additional
movement directions. In an online learning setting, the training examples
would simply be the sensor input, and training could be extended by exposing
the system to input for a longer time.

We believe the main limit of our approach is the lack of an exact multi-layer
optimization framework such as provided by the backpropagation algorithm.
Despite the recent advances discussed in section 2.4.2, a high performance on-
chip version of the backpropagation algorithm does not exist yet for spiking
neural networks. STDP remains one of the few mechanism so far that have
been shown to be able to extract sufficiently good hierarchical features in
CNN topologies under neuromorphic hardware constraints. An algorithm
for inter-layer feedback, compatible with large scale spiking neuromorphic
systems, could however prove essential to enable extraction of more complex
features and increase inference performance.
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Chapter 4

On-chip Learning with
Backpropagation in Event-based

Neuromorphic Systems

Considering the weaknesses of STDP discussed in the previous chapter, it
seems desirable to use an algorithm that is more motivated by machine learn-
ing considerations. In particular, it would be extremely useful to be able to
use the backpropagation algorithm to train SNNs on-chip. In this chapter, we
discuss how the backpropagation algorithm can be adapted to be more consis-
tent with the constraints found in neuromorphic systems. As a first step, we
analyze which properties of the backpropagation algorithm are problematic
for a spiking neuromorphic hardware implementation.

4.1 Is backpropagation incompatible with neuromor-
phic hardware?

Despite recent successes for off-chip training of spiking neural networks with
the backpropagation algorithm, the backpropagation algorithm has tradition-
ally been omitted for on-chip learning in neuromorphic implementations. The
main reason is that backpropagation is generally considered biologically im-
plausible (see Baldi et al. [2017] and Baldi et al. [2018] for a more extensive
analysis). Since neuromorphic hardware is inspired by the processing con-
straints of the human brain, BP is also considered incompatible with these
kind of hardware systems. It would however be desirable to enable on-chip
learning in neuromorphic chips using the power of the backpropagation al-
gorithm, while transferring the advantages of spike-based processing to the
backpropagation phase. In this section, we analyze the principal arguments
that are given for the biological implausibility of backpropagation. We focus
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on the most relevant points in the context of spiking neuromorphic hardware,
and analyze which properties do actually impose a constraint on a potential
hardware design.

4.1.1 Local vs. non-local learning algorithms

One major issue with the backpropagation algorithm is non-locality. A local
learning algorithm is a learning algorithm that relies only on information im-
mediately available at the neuron. This includes for instance information in
its synapses and integration variable. Non-locality can be spatial or temporal.
Spatial non-locality means in this context that the neuron requires informa-
tion that is unavailable at the neuron or the synapses. Temporal non-locality
means that the information could in principle be provided, but is not avail-
able at the right time. It is important to note that the principle of locality in
this context is related to the physical implementation of the system, i.e. if and
how information can be communicated.

From a biological perspective, STDP is spatially and temporally fully local.
To see this, consider the STDP learning rule (3.4) from chapter 3, which is
triggered every time a postsynaptic spike is emitted by neuron i:

∆wij =

{
α+ · exp (−β+ · wij) if tref

i < tpre
ij < tpost

i

α− otherwise
. (4.1)

All variables that are necessary for learning in this context are available at
the neuron and its synapses. In particular, besides lateral inhibition that can
be modeled as a constant synapse, no information from other neurons or
an external error signal is necessary. Learning can be triggered immediately
when the neuron fires a postsynaptic spike. From an implementation per-
spective, this is a huge advantage since it does not require synchronization
of the input and the learning signal. All neurons can learn simultaneously
and asynchronously based only on the input they receive and their response.
Constructing a deep spiking network with such a local learning rule was our
main objective in designing the system in chapter 3.

However, locality also fundamentally restricts the representations that can
be learned. In Baldi and Sadowski [2016], it is argued that this kind of local
learning algorithms, where there is no possibility to obtain information from
higher layers, cannot learn certain multi-layer representations. In particular, if
the whole network is to be optimized for a specific task, purely local learning
rules are not able to optimize all layers simultaneously. The STDP learning
rule is only capable of unsupervised learning of representations that do not
depend on the output of the network. As we have discussed in 2.1, this pro-
cess of identifying the contribution of each weight value to the final network
output is called credit assignment. Backpropagation solves the multi-layer
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credit assignment problem by explicitly propagating the error signal through
all layers of the network. To demonstrate this, we revisit the backpropagation
learning rule 2.20:

∆wl
ij = −ηEl

i a
′l
i yl−1

j , El
i = ∑

k
δl+1

k wl+1
ki . (4.2)

The factors yl−1
i and a

′l
i describe intuitively a correlation between an input

and the response of the neuron. These quantities are local and require only
information directly accessible to the neuron. This correlation is however ad-
ditionally weighted by the external error signal El

i . This error depends on
other error signals δl+1

k from higher levels of the network, which are back-
propagated through the synapses.

The first thing to notice is that this learning rule is temporally non-local,
since it requires the simultaneous availability of the external error signal El

i
from the backpropagation phase, and the local variables a

′l
i and yl−1

j from
the forward propagation phase. Temporal non-locality is a problem in bi-
ology, since it requires an exact synchronization of forward and backward
propagation. However, in an artificial system, temporal non-locality can be
rather easily implemented if there is a clear distinction between prediction
and learning phase. We therefore assume that temporal non-locality is not
necessarily a problem that has to be considered for a practical neuromorphic
implementation. From a spatial viewpoint, the learning rule is not necessar-
ily non-local. Despite the fact that the error signal (4.2) depends on error
information provided by other neurons, the rule is only non-local if this infor-
mation is provided in a way that does not involve the synapses of the neuron,
or requires using a communication method that is incompatible with the sub-
strate. If the error signal can reach a neuron like the signals of the forward
pass, it can be considered a spatially local variable. It can be seen in (4.2) that
the error signal arrives in a very similar way to forward propagation, however
through weights of another neuron. We could therefore say that for standard
ANNs, backpropagation is spatially local, if neurons in a layer also have ac-
cess to outgoing weights. In a biological systems, this would be the case if the
signal can be received in reverse direction through the axon of the neuron.

4.1.2 The weight transport problem

The backpropagation of errors in (4.2) requires the propagation of a signal
in the reverse direction of synapses, dendrites and axons, which is consid-
ered impossible in biological neurons. Therefore, in a system with biological
constraints, backpropagation would be also a spatially non-local algorithm.
This leaves the question how an error signal with sufficient information about
the gradient, in particular when taking into account all weight values, can
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be “transported” to a neuron. Several suggestions to solve this problem have
been proposed in the literature, and there is now a huge body of work re-
lated to the biological plausibility of backpropagation (see for instance Baldi
and Sadowski [2016], Baldi et al. [2017] or Sacramento et al. [2018]). One
of the earliest solutions that has been proposed is feedback alignment by Lilli-
crap et al. [2016]. Feedback alignment relaxes the weight symmetry condition
by propagating errors through fixed random synapses during the backward
propagation phase. The approximate error Êi is obtained by multiplying the
backpropagated error δl+1

k with a layer-specific, fixed random number gl+1
ki :

Êi = ∑
k

δl+1
k gl+1

ki . (4.3)

An even more radical extension is direct feedback alignment by Nøkland [2016],
which propagates errors from the top layer directly to lower layers through
fixed random weights gl

ik:

Êi = ∑
k

δL
k gl

ki. (4.4)

These approaches, which are sometimes summarized as random backpropaga-
tion, are more compatible with biology and are therefore considered more
suitable for neuromorphic hardware. However, they sacrifice the exactness
of the backpropagated gradients. Classification results for these algorithms
show that at least for simple benchmarks, deep networks can be trained with-
out a large degradation in performance. However, according to Baldi and
Sadowski [2016], backpropagation represents from an algorithmic perspective
the optimal way to communicate gradient information to all neurons in the
network. The exact impact of these approximations on learning performance
is subject of current research efforts (see Bartunov et al. [2018] and Xiao et al.
[2019] for two recent experimental studies that come to different conclusions).
It however seems that it may be difficult with these approaches to reach the
performance of networks trained with the exact backpropagation algorithm
that propagates through symmetric weights.

Since we are mostly interested in improving classification performance,
we therefore decide to regard the avoidance of weight transport as a prob-
lem that is mostly relevant from a viewpoint of biological plausibility. Based
on our analysis, we however consider that using symmetric weights may be
required from an optimality perspective. Neuromorphic hardware does not
necessarily distinguish as strictly as biological neurons between dendrites and
axon. Symmetric synapses, that are accessible from neurons in both sending
and receiving layer, may therefore be potentially unproblematic to implement.
This is why we decide to use symmetric weight propagation in the algorithm
developed in this chapter.
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Method spat. local temp. local bio. plausible exact obj. multi-layer opt.

STDP X X X (X)
Random spiking BP X (X) X (X) X
Single layer GD X (X) X X
Exact float BP X X
This work (SpikeGrad) X (X) X X

Table 4.1: Comparison of different learning algorithms in SNNs. Locality in this
context refers to neuromorphic constraints. Parentheses indicate limited viability, or
viability under certain conditions.

4.1.3 Coding the gradient into spikes

The main requirement of an implementation of backpropagation in an SNN is
therefore that the error has to be backpropagated in the form of spikes. This
can be done for instance by the gradient-based on-chip methods of Neftci et al.
[2017], Samadi et al. [2017] and Kaiser et al. [2018] that we discussed in section
2.4.2, which propagate the gradient directly to each layer. Besides establish-
ing spatial locality, these methods also try to produce temporal locality by
propagating an approximate error already during forward propagation. As a
solution that uses symmetric weights, O’Connor and Welling [2016] demon-
strate that a small multi-layer fully connected network can be trained using
gradients discretized into spikes. All these solutions are therefore compatible
with the event-based communication infrastructure of SNNs.

4.1.4 Method comparison and implementation choice

Table 4.1 compares several learning methods for SNNs from a viewpoint of lo-
cality, biological plausibility and their capacity to optimize an objective func-
tion in a multi-layer structure. All algorithms that either do not communi-
cate an error (STDP), or communicate it in the form of spikes, are spatially
local from a spiking (not bio-mimetic) neuromorphic hardware perspective.
Most of these algorithms are also temporally local, if an approximate error is
already (partially) propagated during forward propagation. Biological plau-
sibility is given for STDP, or for methods where the error does not have to
be propagated through symmetric weights. Some implementations of STDP
optimize an exact objective (for instance Nessler et al. [2013]), but most of
them are rather heuristic. Random BP propagates an error signal based on an
exact objective function, which is however distorted by random values. Only
backpropagation based methods are able to globally optimize a multi-layer
network.

We believe that for a practical application, being able to exactly optimize
a multi-layer structure is the most crucial capability of an algorithm. Spatial
locality is necessary for an efficient hardware implementation that uses the
same communication infrastructure for forward and backward propagation.
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The main objective of the approach presented in this chapter is to compromise
some aspects of biological plausibility (temporal locality, weight symmetry)
in order to bring the performance of spiking neural networks closer to their
traditional counterparts. This is done while maintaining event-based com-
munication properties during error propagation, which makes the approach
suitable for an on-chip implementation.

4.2 The SpikeGrad computation model

We propose that backpropagation can be made coherent with typical neuro-
morphic constraints by discretizing the propagated error into signed spike
signals. Discretization is done by an additional integration compartment U
in each neuron, which integrates errors from higher layers. If a threshold
Θbp is reached, the error signal is propagated in the form of a negative or
positive “spike” signal to the layers below. In comparison to O’Connor and
Welling [2016], the forward and backward compartments of our network use
independent threshold values. This allows us to rescale activations and gra-
dients, which can be essential in tackling the vanishing gradient problem in
deep networks with many layers. Using this novel framework, which we call
SpikeGrad, we are able to demonstrate that even for deep networks, the gradi-
ents can be discretized sufficiently well into spikes if the gradient is properly
rescaled. As for the forward pass, this allows us to exploit the dynamic pre-
cision and sparsity provided by the discretization of all operations into asyn-
chronous spike events. We first demonstrate how this framework can be used
to train a network for multi-directional inference of relations. Subsequently,
we show that this form of spike-based backpropagation enables us to achieve
equivalent or better accuracies on the MNIST and CIFAR10 dataset than com-
parable state-of-the-art spiking neural networks trained with full precision
gradients and comparable to the precision of standard ANNs with the same
architecture. The framework is therefore particularly well adapted to neuro-
morphic implementations in spiking neural networks, since it is possible to
use a similar communication infrastructure for forward and backward prop-
agation. Since the algorithm is only based on accumulation and comparison
operations, it is in particular suitable for digital neuromorphic platforms (as
discussed in chapter 2). Based on our review of the literature, our work pro-
vides for the first time an analysis of how the sparsity of the gradient during
backpropagation can be exploited within a large-scale spiking CNN process-
ing structure. Additionally, this is the first time competitive classification
performances are reported on a large-scale spiking CNN where training and
inference are fully implemented with spike operations.

Besides its potential to train an SNN more effectively than previous on-
chip learning algorithms, SpikeGrad has another advantage. Recent works of
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Binas et al. [2016] and Wu et al. [2019a] have discussed how forward process-
ing in an SNN could be mapped to an ANN. Our work extends this analysis
to the backward propagation pass. We show that using a special implemen-
tation of the integrate-and-fire neuron in SpikeGrad allows us to describe the
accumulated activations and errors of the spiking neural network in terms of
an equivalent artificial neural network. This allows us to largely speed up
training compared to an explicit simulation of all spike events, since we can
simply simulate the equivalent ANN on high-performance GPUs.

The content of this chapter and preliminary results have been published
in Thiele et al. [2018c], Thiele et al. [2019a] and Thiele et al. [2019b].

4.2.1 Mathematical description

Neuron model

We use the following notation for integration times: for each training example
or mini-batch, integration is performed from t = 0 to t = T for the forward
pass and from t = T + ∆t to t = T in the backward pass. Since no explicit
time is used in the algorithm, ∆t symbolically represents the (very short) time
between the arrival of an incoming spike and the response of the neuron,
which is only used here to describe causality.

The architecture consists of multiple layers (labeled by l ∈ [0, L]) of integrate-
and-fire (IF) neurons with integration variable V l

i (t) and threshold Θff:

V l
i (t + ∆t) = V l

i (t)−Θffsl
i(t) + ∑

j
wl

ijs
l−1
j (t), V l

i (0) = bl
i . (4.5)

The variable wl
ij is the weight and bl

i a bias value. The spike activation function

sl
i(t) ∈ {−1, 0, 1} is a function that triggers a signed spike event depending

on the internal variables of the neuron. It will be shown later that the specific
choice of the activation function is fundamental for the mapping to an equiv-
alent ANN. After a neuron has fired, its integration variable is decremented
or incremented by the threshold value Θff, which is represented by the second
term on the r.h.s. of (4.5).

As a representation of the neuron activity, we use a trace xl
i(t) that accu-

mulates spike information over an example presentation:

xl
i(t + ∆t) = xl

i(t) + ηsl
i(t). (4.6)

The trace is updated every time a postsynaptic spike is triggered in a neu-
ron. Since sl

i(t) is a ternary function, the trace is simply a weighted activity
counter. This trace will also play a role in the weight update rule (4.13) that
is derived later, where it will serve as a representation of the total received
input by a synapse. By weighting the activity with the learning rate η, we
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avoid performing a multiplication when weighting the total activity with the
learning rate. This ensures that integration and neuron dynamics are com-
pletely multiplication free, and only based on temporal accumulations and
comparisons of state variables.

Implementation of implicit ReLU and surrogate activation function deriva-
tive

It is possible to define an implicit activation function based on how the neuron
variables affect the spike activation function sl

i(t). In our implementation,
we use the following fully symmetric function to represent linear activation
functions (used for instance in pooling layers):

sl,lin
i (t) :=


1 if V l

i (t) ≥ Θff

−1 if V l
i (t) ≤ −Θff

0 otherwise
(4.7)

The following function corresponds to the rectified linear unit (ReLU) activa-
tion function:

sl,ReLU
i (t) :=


1 if V l

i (t) ≥ Θff

−1 if V l
i (t) ≤ −Θff and xl

i(t) > 0
0 otherwise

. (4.8)

This represents another utilization of the trace xl
i(t). If xl

i(t) ≤ 0, that means
if the total propagated output is negative, no negative spike can be triggered.
This ensures that the total propagated output is always positive. In contrast
to most implementations of spiking neural networks, we however allow for
the propagation of negative spikes, even in the case of the ReLU activation
function. If we restrict the model to positive spikes, the output of the neuron
has a strong dependence on the order of spike arrival. To give an example,
assume that weight values can be positive or negative. If there are two spikes
which arrive at the neuron, one of them increasing V l

i (t) by 1 and the other
one decreasing V l

i (t) by −1, the net change of the integration variable will be
0. However, if the positive contribution is integrated first and the integration
passes the threshold value, the neuron will emit a spike, which would not be
the case if the negative contribution is integrated first. By allowing negative
spikes, spikes propagated in excess can be corrected by a subsequent negative
spike if the integration drops below the negative threshold −Θff (and the total
integration becomes smaller than 0). The response of the neuron is therefore
similar to a dynamically discretized version of the rectified linear unit (ReLU).
Negative input will trigger no activation (spikes), while positive input will
increase the firing rate linearly. In a discrete time simulation or a physical
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implementation, there can be an additional limit imposed on the achievable
firing rate.

The pseudo-derivative of the activation function is denoted symbolically
by S

′l
i . Several solutions have been proposed to approximate the derivative

of the discontinuous spike activation function, that have been discussed in
chapter 2. We use S

′l,lin
i (t) := 1 for the linear case. For the ReLU, we use a

surrogate of the form:

S
′l,ReLU
i (t) :=

{
1 if V l

i (t) > 0 or xl
i(t) > 0

0 otherwise
. (4.9)

These choices are based on the accumulated activity of the neuron and will
be motivated in the following sections. We choose here that the derivative
is also 1 if xl

i(t) = 0, but V l
i (t) > 0. In this way learning can also take

place even if no spikes are triggered as long as the membrane potential is
larger than 0. We observed additionally that setting the derivative to 0 for
activations above the maximal firing rate of the network can be important
for stable convergence. This is because otherwise the optimization algorithm
will push the firing rate higher and higher without the network being able
to represent the number, which results in a potential infinite increase of the
weights. In principle the derivatives are defined for all t. To be able to exactly
approximate the backpropagation algorithm, we use the derivatives defined
on the final states of the forward pass at time T.

Discretization of gradient into spikes

We just described how the IF neuron model can be seen, under certain con-
ditions, as a dynamic discretization of a standard frame-based neuron. Given
the rather symmetric propagation of feedforward and backpropagated sig-
nals in ANNs, this raises the questions if the same principle can be applied
to error propagation in SNNs. In particular, if it is possible to propagated
the error and perform learning event-based and without the need to perform
multiplications.

For this purpose, it may be helpful to revisit the equations of the back-
propagation algorithm. It is easy to see that the feedforward input in (2.9)
has structural similarity with the backpropagated error (4.2). Both equations
are simply weighted sums of inputs from other layers. In the spiking neuron
model (4.5), the multiply-accumulate operations are discretized into several
accumulation operations over time. We apply now the same idea to the in-
tegration of the error signal, by introducing a second compartment in the
neuron with a threshold Θbp, which integrates error signals analogously to
(4.5). The process discretizes errors in the same fashion as the forward pass
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discretizes an input signal into a sequence of signed spike signals:

Ul
i (t + ∆t) = Ul

i (t)−Θbpzl
i(t) + ∑

k
wl+1

ki δl+1
k (t). (4.10)

To this end, we introduce a ternary error spike activation function zl
i(t) ∈ {−1, 0, 1}

that is defined in analogy to (4.7), using the error integration variable Ul
i (t)

and the backpropagation threshold Θbp:

zl
i(t) =


1 if Ul

i (t) ≥ Θbp

−1 if Ul
i (t) ≤ −Θbp

0 otherwise
. (4.11)

In the same way as V l
i (t) represents a spike discretization of the feedforward

input, Ul
i (t) represents a spike discretization of the error (4.2). Forward and

backward propagation are therefore highly symmetric in their corresponding
discretization mechanisms.

The local error is then obtained by gating this ternarized function zl
i(t)

with one of the surrogate activation function derivatives of the previous sec-
tion (linear or ReLU):

δl
i (t) = zl

i(t)S
′l
i (t). (4.12)

This is also a ternarized function if S
′l
i (t) is ternary.

Weight update rule

This ternary spike signal is backpropagated through the weights to the lower
layers and also applied in the update rule of the weight increment accumulator
ωl

ij:

ωl
ij(t + ∆t) = ωl

ij(t)− δl
i (t)xl−1

j (t), (4.13)

which is triggered every time an error spike signal δl
i (t) is backpropagated.

Since δl
i (t) is discretized into spikes signals, this can also be written as:

∆ωl
ij(t + ∆t) =


−xl−1

j (t) if δl
i (t) = 1

xl−1
j (t) if δl

i (t) = −1

0 otherwise

. (4.14)

For an implementation that corresponds to standard backpropagation, all
weight updates are accumulated in ωl

ij during backpropagation and only ap-
plied to update the weight after the backpropagation phase has finished. It
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would however also be possible to apply the weight increments ∆ωl
ij directly

every time a spike passes the synapse. This would reduce the memory re-
quirements of the algorithm since we would not have to store ωl

ij. On the
other hand, it introduces a systematic error in the backpropagation process,
since backpropagated errors have to be calculated using the same weight val-
ues as during the forward pass.

To obtain the exact implementation of backpropagation, we also have to
use the final values xl−1

j (T), V l
i (T) and S

′l
i (T) during the error propagation

phase. In another variant of the algorithm, errors could already be propa-
gated during the forward pass and weights would be updated based on the
current values of xl−1

j (t), V l
i (t) and S

′l
i (t). This would be more biologically

plausible, since no strict synchronization is required, and would make the
algorithm temporally local. It however only approximates the true value of
the gradient and requires that the firing statistics of the neurons in the net-
work are approximately constant during propagation. O’Connor and Welling
[2016] tested a similar mechanism in a small network and found that the error
seems to be rather small compared to standard BP. Since our aim was to im-
plement backpropagation exactly, and additionally not to depend on constant
firing rates, we did not test how this variation affects the performance of our
algorithm.

The initial error signal is generated in the output layer and propagated
continuously over a certain time span, just like during forward propagation.
This enables us to obtain an error signal with dynamic precision. By encoding
the error into more spikes and performing error propagation for a longer time,
the precision of the propagated error can be increased.

Additional learning mechanisms

Learning rate decay In our simulations, we found it useful to implement
learning rate decay, which can easily be done by changing the value of the
increment η in (4.6).

Momentum To smooth the gradient and speed up learning, momentum is a
popular method used for gradient descent based trained of DNNs (Sutskever
et al. [2013]). Momentum modifies the gradient descent update rule (2.6) by
including information from the last weight increment v in the weight update:

∆w = µ∆wprev − η
∂C
∂w

, (4.15)

where µ ∈ [0, 1] is used to choose the fraction of the previous update that
should be included. In the framework of the SpikeGrad algorithm, one possible
implementation is to introduce a second trace x̂l

i , which accumulates gradient
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weight updates that are additionally weighted by µ:

x̂l
i(t + ∆t) = x̂l

i(t) + µηsl
i(t). (4.16)

The corresponding weight accumulator is given by:

ω̂l
ij(t + ∆t) = ω̂l

ij(t)− δl
i (t)x̂l−1

j (t). (4.17)

Using momentum thus requires one additional accumulator x̂l−1
j per neuron

if multiplications are to be avoided. In both the case of SpikeGrad and a normal
ANN, momentum requires us to additionally save the (accumulated) weight
increments from the last gradient descent update. In SpikeGrad, the variable
ω̂l

ij(T̂ ) (were T̂ presents the time when the previous BP phase has terminated)
is added to the weights when the regular weight update is performed at time
T .

Weight initialization Due to the similarity of the IF neuron with the ReLU
activation function, we use an initialization method proposed for deep net-
works using this type of activation function by He et al. [2015]:

w ∼ N (0,
√

2/nin), (4.18)

where nin is the number of incoming connections of the neuron.

4.2.2 Event-based formulation

In the previous section, all equations were described in the context of a time-
stepped simulation. The SpikeGrad algorithm can also be expressed in a purely
event-based formulation, described in algorithms 1, 2 and 3. This formula-
tion is closer to how the algorithm would be implemented in an actual SNN
hardware system. Figure 4.1 shows the algorithm as an abstract computation
graph.

4.2.3 Reformulation as integer activation ANN

As discussed in section 2.3, the computational complexity of the simulation
of the temporal dynamics of spikes increases with the number of events. In
particular, assuming integer activation values, the required number of time-
steps in a clock-based simulation scales linearly with the absolute value of an
activation. It would therefore be extremely beneficial if we were able to map
the SNN to an equivalent ANN that does not simulate explicitly the spike dy-
namics and can therefore be trained much faster on standard DL hardware.
In this section, we demonstrate that it is possible to find such an ANN using
the forward and backward propagation dynamics described in the previous
section.
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Algorithm 1 Forward
function Propagate([l, i, j], s)

V l
i ← V l

i + s · wl
ij

sl
i ← sl

i(V
l
i , xl

i) . spike activation function
if sl

i 6= 0 then
V l

i ← V l
i − sl

i ·Θff
xl

i ← xl
i + ηsl

i . update output trace
for neuron k in layer l + 1 connected to neuron i do

Propagate([l + 1, k, i], sl
i)

Algorithm 2 Backward
function Backpropagate([l, i, k], δ)

Ul
i ← Ul

i + δ · wl+1
ki

zl
i ← zl

i(U
l
i ) . error activation function

δl
i ← zl

i · S
′l
i

if zl
i 6= 0 then
Ul

i ← Ul
i − zl

i ·Θbp
for neuron j in layer l − 1 connected to neuron i do

Backpropagate([l − 1, j, i], δl
i )

ωl
ij ← ωl

ij − δl
i · xl−1

j . weight update accumulator

Algorithm 3 Training of single example/batch
init: V ← b, U ← 0, x← 0, ω← 0 . variables in bold describe all neurons
in network/layer
while input spikes sin

i do
for neuron k in l = 0 receiving sin

i do . spikes of training input
Propagate([0, k, i], sin

i )

S′ ← S′(V , x) . calculate surrogate derivatives
UL ← α · ∂L/∂V L . calculate classification error
for neuron i in l = L do

while |UL
i | ≥ Θbp do . backpropagate error spikes

Backpropagate([L, i,−], 0) . last layer receives no error
w← w + ω . update weights with weight update accumulator
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Figure 4.1: Forward and backward phase in a single neuron in the SpikeGrad algo-
rithm. Forward integration: Every time a spike signal arrives at one of the synapses
{w1, ..., wJ}, the value of the weight is added to the integration variable V (4.5),
weighted by the sign of the spike. After each such event the integration variable
is compared to the threshold value ±Θff and the synaptic trace x by the function s,
which decides if a spike is triggered. Forward propagation: If the conditions im-
posed by s are satisfied, a spike is triggered. This spike increases the trace x (4.6) by
the learning rate ±η. Additionally, it is sent to the outgoing connections. The signal
also applies ±Θff to V depending on the sign of s (4.5). Error integration: Signed er-
ror spikes are received through the synapses {w1, ..., wK} of the outgoing connections.
The value of the weight is added to the error integration variable U (4.10). After each
such signal, U is compared to ±Θbp by the function z (4.11). Error propagation: If
the threshold is crossed, a signed error spike is emitted. U is incremented by ±Θbp.
The error spike signal is gated by the surrogate activation function derivative (4.9)
(which is calculated based on V and x) and backpropagated through the incoming
connections. The weights of the neuron are updated (4.13) using this error signal,
and the traces (4.6) from the neurons in the layer below.
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Spike discretization error We start our analysis with equation (4.5). We re-
order the terms and sum over the increments ∆V l

i (t) = V l
i (t + ∆t) − V l

i (t)
every time the integration variable is changed either by a spike that arrives
at time ts

j ∈ [0, T] via connection j, or by a spike that is triggered at time

ts
i ∈ [0, T]. With the initial conditions V l

i (0) = bl
i , sl

i(0) = 0, we obtain the final
value V l

i (T):

V l
i (T) = ∑

ts
j ,t

s
i

∆V l
i = −Θff ∑

ts
i

sl
i(t

s
i ) + ∑

j
wl

ij ∑
ts
j

sl−1
j (ts

j) + bl
i (4.19)

By defining the total transmitted output of a neuron as Sl
i := ∑ts

i
sl

i(t
s
i ) we

obtain:

1
Θff

V l
i (T) = Sl

i − Sl
i , Sl

i :=
1

Θff

(
∑

j
wl

ijS
l−1
j + bl

i

)
(4.20)

The same reasoning can be applied to backpropagation of the gradient.
We define the summed responses over error spike times τs

j ∈ [T + ∆t, T ] as

Zl
i := ∑τs

i
zl

i(τ
s
i ) to obtain:

1
Θbp

Ul
i (T ) = Zl

i − Zl
i , Zl

i :=
1

Θbp

(
∑
k

wl+1
ki El+1

k

)
(4.21)

El+1
k = ∑

τs
k

δl+1
k (τs

k ) = ∑
τs

k

S
′l+1
k (T)zl+1

k (τs
k ) = S

′l+1
k (T)Zl+1

k . (4.22)

In both equations (4.20) and (4.21), the terms Sl
i and Zl

i are equivalent to the
output of an ANN with signed integer inputs Sl−1

j and El+1
k . 1/Θff and 1/Θbp

can be interpreted as scaling factors of activation and gradient. If gradients
are not to be explicitly rescaled, backpropagation requires Θbp = Θff. The
values of the residual integrations 1/ΘffV l

i (T) and 1/ΘbpUl
i (T ) therefore repre-

sent the spike discretization error SDEff := Sl
i − Sl

i or SDEbp := Zl
i − Zl

i between
the ANN outputs Sl

i and Zl
i and the accumulated SNN outputs Sl

i and Zl
i .

Since we know that V l
i (T) ∈ (−Θff, Θff) and Ul

i (T ) ∈ (−Θbp, Θbp), this gives
bounds of |SDEff| < 1 and |SDEbp| < 1.

So far we can only represent linear functions. We now consider an imple-
mentation where the ANN applies a ReLU activation function instead. The
SDE in this case is:

SDEReLU
ff := ReLU

(
Sl

i

)
− Sl

i . (4.23)
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We can calculate the error by considering that (4.8) forces the neuron in one
of two regimes (note that xl

i > 0 ⇔ Sl
i > 0): In one case, Sl

i = 0, V l
i (T) < Θff

(this includes V l
i (T) ≤ −Θff). This implies Sl

i = 1/ΘffV l
i (T) and therefore

|SDEReLU
ff | < 1 (or even |SDEReLU

ff | = 0 if V l
i (T) ≤ 0). In the other case,

Sl
i > 0, V l

i (t) ∈ (−Θff, Θff), where (4.8) is equivalent to (4.7).
This equivalence motivates the choice of (4.9) as a surrogate derivative for

the SNN: the condition (V l
i (T) > 0 or xl

i(T) > 0) can be seen to be equivalent
to Sl

i(T) > 0, which is the condition for a non-zero value of a ReLU. Finally,
for the total weight increment ∆wl

ij, it can be seen from (4.6) and (4.13) that:

xl
i(T) = ∑

ts
i

∆xl
i(t

s
i ) = ηSl

i , ⇒ ∆wl
ij(T ) = ∑

τs
i

∆ωl
ij(τ

s
i ) = −ηSl−1

j El
i , (4.24)

which is exactly the weight update formula of an ANN defined on the ac-
cumulated variables. We have therefore demonstrated that the SNN can be
represented by an ANN by replacing recursively all S and Z by S and Z and
applying the corresponding activation function directly on these variables.
The error that will be caused by this substitution compared to using the accu-
mulated variables S and Z of an SNN is described by the SDE. This ANN can
now be used for training of the SNN on GPUs. The SpikeGrad algorithm for-
mulated on the variables s, z, δ and x represents the algorithm that would be
implemented on an event-based spiking neural network hardware platform.
We will now demonstrate how the SDE can be further reduced to obtain an
ANN and SNN that are exactly equivalent.

ANN response equivalence For a large number of spikes, the SDE may be
negligible compared to the activation of the ANN. However, in a framework
whose objective it is to minimize the number of spikes emitted by each neu-
ron, this error can have a potentially large impact.

One option to reduce the error between the ANN and the SNN output is
to constrain the ANN during training to integer values. One possibility is to
round the ANN outputs:

S
l,round
i := round[Sl

i ] = round

[
1

Θff

(
∑

j
wl

ijS
l−1
j + bl

i

)]
, (4.25)

The round function here rounds to the next integer value, with boundary
cases rounded away from zero. This behavior can be implemented in the SNN
by a modified spike activation function which is applied after the full stimulus
has been propagated. To obtain the exact response as the ANN, we have to
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take into account the current value of Sl
i and modify the threshold values:

sl,res
i (T) :=


1 if V l

i (T) > Θff/2 or (Sl
i ≥ 0, V l

i (T) = Θff/2)

−1 if V l
i (T) < −Θff/2 or (Sl

i ≤ 0, V l
i (T) = −Θff/2)

0 otherwise
. (4.26)

Because this spike activation function is applied only to the residual values,
we call it the residual spike activation function. The function is applied to a
layer after all spikes have been propagated with the standard spike activation
function (4.7) or (4.8). We start with the lowest layer and propagate all resid-
ual spikes to the higher layers, which use the standard activation function.
We then proceed by setting the next layer to residual mode and propagating
the residual spikes. This is continued until we arrive at the last layer of the
network. By considering all possible rounding scenarios, it can be seen that
(4.26) indeed implies:

Sl
i + sl,res

i (T) = round[Sl
i + 1/ΘffV l

i (T)] = round[Sl
i ]. (4.27)

In particular, the boundary cases are rounded correctly: for Vi = Θff, we
obtain S = Si + 0.5. For Si ≥ 0, this should be rounded to round[S] = Si + 1
and for Si < 0, we should obtain round[S] = Si. Similarly, for Vi = −Θff, we
obtain S = Si − 0.5. For Si ≤ 0, this should be rounded to round[S] = Si − 1
and for Si > 0, we should obtain round[S] = Si. The same principle can be
applied to obtain integer-rounded error propagation:

Z
l,round
i := round

[
Zl

i

]
= round

[
1

Θbp

(
∑
k

wl+1
ki El+1

k

)]
. (4.28)

We have to apply the following modified spike activation function in the SNN
after the full error has been propagated by the standard error spike activation
function:

zl,res
i (T ) :=


1 if Ul

i (T )) > Θbp/2 or (Zl
i ≥ 0, Ul

i (T ) = Θbp/2)

−1 if Ul
i (T ) < −Θbp/2 or (Zl

i ≤ 0, Ul
i (T ) = −Θbp/2)

0 otherwise
, (4.29)

which implies:

Zl
i + zl,res

i (T ) = round[Zl
i + 1/ΘbpUl

i (T )] = round[Zl
i ]. (4.30)

Therefore the SNN will, after each propagation phase, have exactly the same
accumulated responses as the corresponding ANN. The same principle can
be applied to obtain other forms of rounding (e.g. floor and ceil), if (4.26) and
(4.29) are modified accordingly.
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4.2.4 Compatible layer types

Our proposed backpropagation scheme and neuron model can be applied to
most layer types that are commonly used in deep neural networks, since it
operates on the fundamental elements every artificial neural network using
backpropagation needs to possess. In particular, our scheme is formulated on
the local level of a single neuron, and is therefore agnostic of the connectivity
structure. We discuss here briefly the implementation in some common layer
types.

Convolutional layers

In the case of convolutional layers, the inputs to a neuron represent the (par-
tial) inputs of a neuron in a feature map. The error signals represent the
(partial) errors that arrive from the layer above. The assignment of input and
backpropagated signals to neurons is done in exactly the same fashion as in
a non-spiking convolutional neural network. As typical for convolutional ar-
chitectures, weights between all neurons in one feature map are shared, and
therefore the weight update of a neuron affects the weights of all other neu-
rons in the same feature map. Note that the fully connected layer is simply a
subtype of the convolutional layer, where each neuron presents a feature map
whose kernel covers the full input volume.

Pooling layers

Max pooling During the forward pass, a max pooling neuron only transmits
a spike if it is emitted by the most active neuron in the pooling window, and its
firing count is constrained to be lower or equal to the activity of this neuron.
During the backward pass, the error is only propagated to the neuron in the
pooling window that had the maximal activity during the forward pass. We
therefore have to perform a dynamic approximation to select the neuron in the
pooling window with highest activity. For this purpose, we use the following
activation function (assuming that η is the same for all layers):

sl
i(t) =


1 if xl

i(t) < xl,max
i (t)

−1 if xl
i(t) > xl,max

i (t)
0 otherwise

. (4.31)

The variable xl,max
i (t) is updated dynamically to represent the current maxi-

mal xl−1
j (t) of all incoming neurons in the pooling window P l

i :

xl,max
i (t) = max

(
xl−1

j (t)
)

, j ∈ P l
i . (4.32)
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For backpropagation, we treat the pooling neuron as in a standard ANN. The
error is only propagated to the input neuron in the pooling window with
maximal activity.

Average pooling Forward propagation in an average pooling layer outputs
the average of all neurons in the pooling window. For backpropagation, the
error is divided by the size of the pooling window and propagated to all
neurons in the pooling window. Both operations can simply be implemented
as an IF neuron with linear activation function (4.8) and constant weights:

wl
ij =

1
(Pl)2 , (4.33)

where Pl is the size of the pooling window. Because average pooling does not
require dynamic estimation of the maximal firing rate, it is easier to imple-
ment in SNNs. This is why we use average pooling in all simulations.

Dropout

Dropout (Srivastava et al. [2014]) can be implemented by an additional gating
variable which randomly removes some neurons during forward and back-
ward propagation. During learning, the activations of the active neurons have
to be rescaled by the inverse of the dropout probability 1/(1− pdrop). This
can be implemented in the SNN framework by rescaling the threshold values
by (1− pdrop).

4.3 Experiments

We now demonstrate the capabilities of the SpikeGrad algorithm on two dif-
ferent machine learning tasks.

4.3.1 A network for inference of relations

Artificial neural networks are mostly known for their feedforward process-
ing capacities, where a well-defined input X leads to a well-defined output
Y. This is however different to the processing paradigm of the human brain.
Even pathways that are often characterized by their feedforward structure,
such as the visual system, possess a large level of recurrent connectivity be-
tween different levels of processing (Binzegger et al. [2004]). This type of
recurrent connectivity allows the brain to do inference not only in a one-
directional feedforward fashion, but in an associative, relational way, poten-
tially involving several hierarchical levels (Felleman and Van Essen [1991]).
Stimuli that are related with each other produce correlated activity patterns,
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and presentation of any of these stimuli will also produce high activity in
an area representing other, related stimuli. This enables neural networks to
perform relational inference, i.e. to relate different stimuli with each other in
a multi-directional way.

In this section, we present an approach to train a network of spiking neu-
rons with the aforementioned multidirectional inference capabilities, using
SpikeGrad. In previous work on biologically inspired implementations of re-
lational networks (such as Deneve et al. [2001], Diehl and Cook [2016], Thiele
et al. [2017b]), connections are either hardwired or were learned with biolog-
ically inspired learning rules, such as spike-timing dependent plasticity. Our
work can be seen as an extension of these previous approaches for training
relational networks of spiking neurons. We demonstrate that our training
mechanism achieves superior performance compared to the biologically in-
spired approaches. We show additionally that our network is able to process
more complex visual stimuli and set them in relationship with each other.
This is demonstrated by learning relational inference on the visual XOR task,
using images from the MNIST dataset. The use of spiking neurons in this
context is particularly interesting, since the low-power properties of SNNs
are predestined for the use in sensor fusion applications on mobile platforms.

The experiments on inference of relations use a simplified version of the
SpikeGrad framework, that does not propagate residual spikes.

Relational network topology

We now describe the basic structure and properties of the relational network
topology that is trained with SpikeGrad. The relational network allows to fuse
several inputs and set them in relation with each other. Based on a subset
of input stimuli, the network is able to recreate the missing ones in the form
of artificial patterns that possess similar structural properties as the original
ones.

To represent a relation with n variables in a relational network, we couple
n + 1 populations. n of these populations will learn to represent the n input
variables, while population n + 1 will set these representations in relationship
with each other. We distinguish 3 types of populations (see figure 4.2):

• Input-output (IO) populations: These populations provide the input pat-
terns to the network or reconstruct the missing input, depending on the
inference direction.

• Peripheral populations: These populations process the input from IO-
populations to find a high level representation, or use the hidden popu-
lation output to generate a representation for an IO-population.

• Hidden population: The hidden population receives the processed input
from the peripheral populations, processes it further and sends it to
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Figure 4.2: (a) Relational network architecture with three variables. IO-populations
are labeled X, Y, Z. Peripheral populations are labeled A, B, C and the hidden
population H. (b) Training of the network. During learning, two populations serve
as input populations and provide a firing pattern. The third population is trained to
reproduce a target firing pattern based on this input. The roles of the populations
are interchanged during training to enable inference for all variable combinations.

other peripheral populations. It therefore sets the different inputs from
the peripheral populations in relation with each other.

The basic relational network of 3 variables can in principle be extended to
arbitrarily complex structures by coupling several of these basic networks,
since any of the populations can simply be replaced by another relational
network.

Our network has the same inter-population connectivity structure as the
relational network in Diehl and Cook [2016], with the difference that addi-
tionally the IO-populations have feedforward input from the peripheral pop-
ulations. The peripheral populations receive connections from their corre-
sponding IO-populations and the hidden population. The hidden population
receives feedforward input from all peripheral populations. In contrast to
the network in Diehl and Cook [2016], all connections are bidirectional in
the sense that they allow the backpropagation of an error signal. The over-
all topology however remains equivalent regarding which population is con-
nected with each other. Our architecture requires no recurrent connections
between neurons in a population.
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Symbol Description Value

Θff Threshold for forward propagation 1.0
Θbp Threshold for backpropagation 1.0
η Learning Rate 0.00005
rmax Maximal input firing rate 0.12
texpl. Example presentation time 100
tBP BP presentation time 10
∆t Simulation time step 1
Ntrain # relation samples used for training 10000
NA,B,C # neurons in peripheral populations 256
NH # neurons in hidden population 128

Table 4.2: Parameters used for relational network training

Experimental setup

We now train the relational network topology on two relational inference
tasks: a periodic addition and a visual XOR task. If not stated otherwise,
we use the parameters given in table 4.2. Since our simulation does not re-
quire the definition of an explicit time scale, all time related variables are
given in relative units.

All simulations are performed with a custom clock-based simulator based
on the N2D2 open source machine learning library by Bichler et al. [2019].
Training is performed on Nvidia TitanX graphics cards.

Loss function For our experiments, each branch of the relational network is
trained to predict a desired spike output pattern of a variable, given as an
input the two other. We use the simple L2 loss function:

L =
1
2 ∑

i
(yi − ti)

2 (4.34)

where yi is the accumulated activity of the inferring population and ti the
target spike pattern activity. We therefore encode information in accumulated
spike activity. In our implementation, we use yi = SL

i + VL
i to enable learning

even if there is no spike in the final layer. This loss yields the following error
for the final layer at the beginning of the backpropagation phase:

dL
dyi

= yi − ti. (4.35)

In the inferring layer, it is directly transferred to the error integration variable
UL

i of each neuron in the final layer. Note that this way it is possible that
|UL

i | > Θbp. In our implementation, the neuron will produce a spike at every
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time step and decrease UL
i by Θbp according to (4.10) as long as the integration

variable exceeds the threshold.

Training procedure The network is trained in a supervised fashion, in the
sense that a subset of the variables of the relation are provided as an input,
while all other variables serve as targets. n− 1 of the IO-populations provide
input spike trains, while the remaining population is trained to reproduce
the spike pattern of the missing variable (figure 4.2). A subset of all possible
connections is enabled so that for each variable the network functions as a
feedforward network. This mechanism is rotated so that each input popula-
tion serves as output populations equally often during training. This way, all
relations are simultaneously represented in the network weights. All feedfor-
ward connections leading to the hidden population are simultaneously op-
timized for all inference directions of the relation (for instance in figure 4.2,
the weights X → A, A → H are optimized for inference of Y and Z, Y → B,
B → H for inference of X and Z, and Z → C, C → H for inference of X and
Y).

Input encoding The input values are converted into deterministic spike trains
with equally sized inter-spike intervals. The set of input spike times for a
neuron in the interval [tstart, tstop] during which an example is presented is
defined by:

Ti = {tin : tin = tstart + a
1
ri

, tin ≤ tstop, a ∈N}. (4.36)

For the neurons in the IO-populations, the spike behavior in a time stepped
simulation with time step ∆t is therefore imposed as:

si(t) =

{
1 if ∃ tin ∈ Ti : t− ∆t < tin ≤ t
0 otherwise

(4.37)

This deterministic coding is used to facilitate the representation of the num-
bers, but our experiments show that the scheme also works well with a more
stochastic type of coding, as long as the firing rate is representative of the
pixel value. A typical firing rate pattern induced in a neuron population by
this kind of coding can be seen in figure 4.4.

Note that we used an explicit time in the definition of the spike input
pattern. For a static pattern, which is used for the demonstrations in this
work, this discretization seems kind of artificial. It is used here to reflect the
fact that in the general case, the input will be arriving from a sensor which
produces a dynamic number of spike events which arrive at different points
in time. Additionally, as argued in 4.4.1, this type of regular encoding leads
to a lower number of spikes in the network.
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Figure 4.3: Relational inference for all three output variables. The two bottom axes
describe the two input variables, while the vertical axis is the value inferred using
(4.40). We can observe that the network has learned to represent all possible direc-
tions of the relation accurately. The root-mean-squared error (RMSE) averaged over
the three populations is 0.0154
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Figure 4.4: Activity profiles produced by the different populations during inference.
Y and Z have activity profiles imposed to represent the two input variables, while
X produces an activity profile based on this input, which presents the third number
of the relation. The blue vertical lines represent the target numbers, the green line
the number inferred by the population (based on (4.40)). The inferred profile of X
is slightly noisier than the input firing rate profiles, but it presents accurately the
desired profile (correct inferred value and overall shape).

If the IO-population is used as an output population during inference, this
input encoding mechanism is disabled and the population receives only input
from the corresponding peripheral population via the incoming synapses.

Implementing periodic addition

As a first test of the architecture, we implement an addition with periodic
boundaries:

γ = α + β− bα + βc . (4.38)
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To implement relations between numbers, we use a similar approach as Diehl
and Cook [2016] and encode each number as a firing rate profile of the input
population. The numbers α, β, γ ∈ [0, 1] represent the numbers encoded by
the IO-populations X, Y and Z. Each variable ξ ∈ {α, β, γ} is converted into
a spike profile by assigning each of the N neurons of a IO-populations a
constant firing rate based on its index i:

ri(ξ) =
rmax

N
|N − 2|Nξ − i|| . (4.39)

These rates are converted into spike trains using the method outlined in sec-
tion 4.3.1. We use an IO-population size of 100 neurons, which allows us to
represent ξ up to a theoretical precision of ±0.005.

Inference of the estimated value ξ̂ is performed based on the firing pat-
tern of the inferring population. For the visual inference task, the firing rate
pattern of the inferring IO-population is directly taken (after a rescaling) as
pixel values of the inferred image. For the mathematical relation, the inferred
number ξ̂ ∈ [0, 1] is derived from the firing rate pattern of the N neurons by
finding the index of the neuron that minimizes the activity weighted distance
to all other neurons in the same population:

ξ̂ =
1
N

arg min
i

∑
j

xjdN[i, j] (4.40)

using the periodic distance function:

dN[i, j] :=

{
|i− j| if |i− j| ≤ N/2
N − |i− j| if |i− j| > N/2

. (4.41)

The response plots in figure 4.3 show that the network learns to accurately
represent the relation. Each of the two input populations can be used to
infer the value of the variable represented by the third population. The root-
means-squared error (RMSE) is with 0.0154 considerably lower than the errors
obtained by Diehl and Cook [2016] and Thiele et al. [2018a]. Additionally, the
network can reproduce the approximate firing rate profile of the encoded
input, since each IO-population was explicitly trained to do so (4.4). This
means the network can in particular reproduce an output that has the same
scale as the original input.

Visual XOR

We now apply the network to a more challenging task, which requires the
network to find abstract representations of the input data before setting them
in relation with each other. For this purpose, we let the network learn the
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Figure 4.5: Visual relational inference for all three variables of relation (4.42). The
inferred stimuli are marked by boxes. We can observe that the network has learned to
represent all possible directions of relation (4.42) accurately and it is able to produce
artificial stimuli that are similar to other stimuli of the dataset.

visual XOR task. The inputs X, Y, Z are now spike-encoded examples of the
MNIST dataset representing the handwritten digits 0 and 1:

l(Z) = l(X)⊕ l(Y). (4.42)

The function l ∈ {0, 1} is the function that maps the images encoded by the
IO-populations X, Y and Z to their corresponding labels. We chose in this
case only examples of the dataset that represent the numbers 1 and 0, which
will represent the boolean values true and false respectively. Note that this
can also be seen as an addition mod 2 of integers with 0 and 1 as possible
values and is therefore in a sense similar to the previous task.

The samples used for training are randomly selected images from the
MNIST training set of 60000 digits (number 0 to 9), with the condition that
they are consistent with the relation. This means that the number of possible
samples is extremely large (in the order of 4 · 60003) and it is almost impossible
for the network to memorize the training set. The inferences shown in figure
4.5 are still performed on images from the test set, and therefore demonstrate
true generalization of the task.

For spike encoding of the images, each pixel will be assigned to a neuron
of the IO-population and its firing rate is related to the assigned pixel value
pi ∈ [0, 1] via a factor rmax by ri = pirmax. For images of size 28× 28, this
gives an IO-population size of 784.

In figure 4.5, it can be seen that the network has learned to replace all
missing parts of the relation by an output that resembles an artificial stimulus.
The network has therefore learned to set the abstract meaning of the images
in relationship with each other.
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Comparison to previous implementations of the relational network

The network of Diehl and Cook [2016] uses bio-inspired learning algorithms
(different variants of STDP), which are applied on populations of inhibitory
and excitatory leaky integrate-and-fire neurons. Learning in their implemen-
tation is not split into several phases where the roles of the IO-populations
change, but all populations are treated equivalently during example presen-
tation. This is possible because learning is solely based on correlated activity
patterns of neurons. This leads however to a problem during inference: ac-
tivity in the network tends to attenuate strongly, since the network was not
trained on patterns where no input is provided to one of the populations.
While this is not a problem for the rather simple inference of relations of
numbers represented by the weighted mean of the output pattern, it might
become a problem if the scale of the inferred pattern is relevant for inference,
or if the network is very deep and activity dies out completely before it ar-
rives at the inferring population. This problem is partially avoided by using a
high number of neurons with self-regulating recurrent connectivity. The high
level of recurrent connectivity can however lead to attractor states that are
detrimental for learning. This problem can be solved with a wake-sleep type
algorithm (Thiele et al. [2017b]). Nevertheless, the architecture still requires a
high number of neurons and careful parameter tuning for good performance.
Additionally, although the approach is bio-inspired, it is not necessarily easy
to implement in neuromorphic hardware due to the complex nature of the
STDP rules and several tricks that are used to stabilize learning (i.e. regular
weight normalization).

Our algorithm is much simpler than the more biologically inspired ap-
proaches in the sense that it requires less parameters tuning. As it can be
seen in table 4.2, the only network parameters that have to be tuned addi-
tionally compared to a standard ANN are the threshold values (which in our
case are set to 1). In contrast to the STDP based approaches, our algorithm
optimizes the network using gradient descent on an exact objective function
(4.34). One limitation of our approach is that for training and inference, the
network has to decide in advance which variables it wants to infer and disable
the corresponding synapses (as visualized in figure 4.2). It therefore requires
a kind of attention mechanism. This attention mechanism could for example
be implemented by observing which subset of the populations receives the
largest number of input spikes, and enabling all connections that belong to
the corresponding inference direction.

As all implementations of backpropagation, our learning rule is non-local,
in the sense that learning requires the presence of a feedback signal exter-
nal to the neuron. However, this non-locality exists in any other architecture
where the neural ensembles have to process external information which does
not directly arrive at the neuron. This includes the STDP-based architecture
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of Diehl and Cook [2016], where this information is implicitly communicated
by the inter-population connections. Also in our approach, errors are commu-
nicated as spikes between populations, which allows us to see this external
information simply as another form of special synaptic input that arrives at
the neuron at a different time. As we have explained before, the temporal
non-locality of SpikeGrad, which arises from the synchronization of forward
and backward propagation, could be potentially lifted if approximate errors
were allowed to propagate through the network during the forward pass. The
general advantage of our approach is that spikes have a clear interpretation:
they encode an approximation of the backpropagated error. This allows us to
use the power of backpropagation while maintaining spike-based communi-
cation between populations. The main difference to biologically inspired ar-
chitectures such as Diehl and Cook [2016] is that we require bidirectional and
symmetric synapses if we want to represent the gradient accurately. However,
as for other ANN implementations using the backpropagation algorithm, this
condition might be lifted by using an approximation based on randomized
weights, such as (direct) feedback alignment (Lillicrap et al. [2016]).

4.3.2 MNIST and CIFAR10 image classification

In this section, we apply the SpikeGrad algorithm on the standard machine
learning task of image classification, similar as is chapter 3. For all experi-
ments, the means, errors and maximal values are calculated over 20 simula-
tion runs.

Experimental setup

Simulation All experiments are performed with custom CUDA/cuDNN ac-
celerated C++ code based on the open source N2D2 deep learning framework.
Training is performed on Nvidia RTX 2080 Ti graphic cards.

Training No preprocessing is used on the MNIST dataset. We separate the
training set of size 60000 into 50000 training and 10000 validation examples,
which are used to monitor convergence. Testing is performed on the test
set of 10000 examples. For CIFAR10, the values of all color channels are di-
vided by 255 and then rescaled by a factor of 20 to trigger sufficient activation
in the network. The usual preprocessing and data augmentation is applied:
images are padded with the image mean value by two pixels on each side
and random slices of 32× 32 are extracted. Additionally, images are flipped
randomly along the vertical axis. We separate the training set of size 50000
into 40000 training and 10000 validation examples, which are used to monitor
convergence. Testing is performed on the test set of 10000 examples. The
hyperparameters for training can be seen in tables 4.3 and 4.4. The maximal
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Parameter Value

Epochs 60
Batch size 128
Θff 1.0
Θbp 1.0
Base learning rate η 0.1
Momentum 0.9
Decay policy mutliply by 0.1 every 20 epochs
Dropout (fc1 only) 0.5

Table 4.3: Parameters used for training on MNIST.

Parameter Value

Epochs 300
Batch size 16
Θff 1.0
Θbp 1.0
Base learning rate η 0.001
Momentum 0.9
Decay policy multiply by 0.1 after 150 epochs
Dropout (all except pool and top) 0.2

Table 4.4: Parameters used for training on CIFAR10.

inference performances in the results were achieved with α = 100 for MNIST
and α = 400 for CIFAR10. Final scores were obtained without retraining on
the validation set.

Loss function and error scale We use the cross entropy loss function in the fi-
nal layer applied to the Softmax of the total integrated signal VL

i (T) (no spikes
are triggered in the top layer during inference). This requires more complex
operations than accumulations, but is negligible if the number of classes is
small. To make sure that sufficient error spikes are triggered in the top layer,
and that error spikes arrive even in the lowest layer of the network, we apply
a scaling factor α to the error values before transferring them to UL

i . This
scaling factor also implicitly sets the precision of the gradient, since a higher
number of spikes means that a large range of values can be represented. To
counteract the relative increase of the gradient scale, the learning rates have
to be rescaled by a factor 1/α.
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Figure 4.6: Network topology used for the MNIST dataset (28x28-15C5-P2-40C5-P2-
300-10 in short notation).
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Figure 4.7: Network topology used for the CIFAR10 dataset (32x32-128C3-256C3-P2-
512C3-P2-1024C3-512C3-1024-512-10 in short notation).

Input encoding As pointed out by Rueckauer et al. [2017] and Wu et al.
[2018b], it is crucial to maintain the full precision of the input image to obtain
good performances on complex standard benchmarks with SNNs. One pos-
sibility is to encode the input in a large number of spikes (such as Sengupta
et al. [2019]). Another possibility, which has been shown to require a much
lower number of spikes in the network, is to multiply the input values directly
with the weights of the first layer (just like in a standard ANN). The drawback
is that the first layer then requires multiplication operations. The additional
cost of this procedure may however be negligible if all other layers can profit
from spike-based computation. This problem does not exist for stimuli that
are natively encoded in spikes.
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Architecture Method Rec. Rate (max[mean±std])

Rueckauer et al. [2017] CNN converted to SNN 99.44%
Wu et al. [2018a]* SNN training float BP 99.42%
Jin et al. [2018]* Macro/Micro BP 99.49%
This work* SNN training float BP 99.48[99.36± 0.06]%
This work* SNN training spike BP 99.52[99.38± 0.06]%

Table 4.5: Comparison of different state-of-the-art spiking CNN architectures on
MNIST. * indicates that the same topology (28x28-15C5-P2-40C5-P2-300-10) was used.

Architecture Method Rec. Rate (max[mean±std])

Rueckauer et al. [2017] CNN converted SNN (with BatchNorm) 90.85%
Wu et al. [2018b]* SNN training float BP (no NeuNorm) 89.32%
Sengupta et al. [2019] VGG-16 converted to SNN 91.55%
This work* SNN training float BP 89.72[89.38± 0.25]%
This work* SNN training spike BP 89.99[89.49± 0.28]%

Table 4.6: Comparison of different state-of-the-art spiking CNN architectures on CI-
FAR10. * indicates that the same topology (32x32-128C3-256C3-P2-512C3-P2-1024C3-
512C3-1024-512-10) was used.

Classification performance

Tables 4.5 and 4.6 compare the state-of-the-art results for SNNs on the MNIST
and CIFAR10 datasets. It can be seen that in both cases our results are com-
petitive with respect to the state-of-the-art results of other SNNs trained with
high precision gradients. Compared to results using the same topology, our
algorithm performs at least equivalently.

The final classification performance of the network as a function of the
error scaling term α in the final layer can be seen in figure 4.8. Previous
work on low bit-width gradients by of Zhou et al. [2018] found that gradients
usually require a higher precision than both weights and activations. Our
results also seem to indicate that a certain minimum number of error spikes
is necessary to achieve convergence. This strongly depends on the depth of
the network and if enough spikes are triggered to provide sufficient gradient
signal in the bottom layers. For the CIFAR10 network, convergence becomes
unstable for approximately α < 300. As soon as the number of operations
is large enough for convergence, the required precision for the gradient does
not seem to be extremely high. On the MNIST task, the difference in test
performance between a gradient rescaled by a factor of 50 and a gradient
rescaled by a factor of 100 becomes insignificant. In the CIFAR10 task, this
is true for a rescaling by 400 or 500. Also the results obtained with the float
precision gradients in tables 4.5 and 4.6 demonstrate the same performance,
given the range of the error.
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Sparsity in backpropagated gradients

To evaluate the potential efficiency of the spike coding scheme relative to an
ANN, we use the metric of relative synaptic operations. A synaptic operation
corresponds to a multiply-accumulate (MAC) in the case of an ANN, and a
simple accumulation (ACC) in the case of an SNN. This metric allows us to
compare networks based on their fundamental operation. The advantage of
this metric is the fact that it does not depend on the exact implementation of
the operations (for instance the number of bits used to represent each num-
ber). Since an ACC is however generally cheaper and easier to implement
than a MAC, we can be sure that an SNN is more efficient in terms of its op-
erations than the corresponding ANN if the number of ACCs is smaller than
the number of MACs.

In figure 4.8 it can be seen that the number of operations (which is indica-
tive of the number of spikes) decreases with increasing inference precision of
the network. This is a result of the decrease of error in the classification layer,
which leads to the emission of a smaller number of error spikes. Numbers
were obtained with the integer activations of the equivalent ANN to keep
simulation times tractable. As explained in 4.4.1, the integer response of the
equivalent ANN represents the best case scenario for the SNN, with the low-
est number of spikes. The number of events and synaptic operations in an
actual SNN may therefore slightly deviate from these numbers. Figure 4.9
demonstrates how this minimal number of operations during the backpropa-
gation phase is distributed in the layers of the network (float precision input
layer and average pooling layers were omitted). While propagating deeper
into the network, the relative number of operations decreases and the error
becomes increasingly sparse. This tendency is consistent during the whole
training process for different epochs.

4.4 Discussion

4.4.1 Computational complexity estimation

Note that we have only demonstrated the equivalence of the accumulated
neurons responses. However, for each of the response values, there is a large
number of possible combinations of 1 and −1 values that lead to the same re-
sponse. The computational complexity of the event-based algorithm depends
therefore on the total number n of these events. The best possible case is when
the accumulated response value Sl

i is represented by exactly |Sl
i | spikes. In the

worst case, a large number of additional redundant spikes is emitted which
sum up to 0. The maximal number of spikes in each layer is bounded by the
largest possible integration value that can be obtained. This depends on the
maximal weight value wl

max, the number of connections Nl
in and the number
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Figure 4.8: Minimal number of relative synaptic operations during backpropagation
for different error scaling factors α as a function of the epoch. Numbers are based
on activation values of the equivalent ANN. Test performance with error is given for
each α. (a) MNIST (learning rate decay at epoch 20). (b) CIFAR10 (learning rate decay
at epoch 150).
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Figure 4.9: Minimal number of relative synaptic operations during backpropagation
in each layer (connections in direction of backpropagation) for different epochs. (a)
MNIST with α = 100. (b) CIFAR10 with α = 500.

of spike events nl−1 each connection receives, which is given by the maximal
value of the previous layer (or the input in the first layer):

nl
min = |Sl

i |, nl
max =

⌊
1

Θff
Nl

inwl
maxnl−1

max

⌋
. (4.43)

The same reasoning applies to backpropagation. Our experiments show that
for input encodings where the input is provided as a constant rate, and weight
values that are on average much smaller than the threshold value, the devia-
tion from the best case scenario is rather small. This is because in this case the
sub-threshold integration allows to average out the fluctuations in the signal.
This way, the firing rate stays rather close to its long term average and few
redundant spikes are emitted. For the total number of spikes n in the full
network on the CIFAR10 test set, we obtain empirically (n−nmin)/nmin < 0.035.
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4.4.2 Hardware considerations

Several implementation possibilities exist depending on the desired substrate
and the hardware constraints. For both forward and backward propagation,
SpikeGrad requires a similar communication infrastructure between neurons,
which facilitates a spiking hardware implementation. Another major advan-
tage of our implementation is that no explicit spike time has to be communi-
cated. This removes the need to propagate and save timestamps. The spike
signals can directly be propagated as events that encode the sign in a 1 bit
variable. A digital implementation can additionally profit from the fact that
all required operations are either accumulations or comparisons. Since the
only information required about V during backpropagation is included in the
spike activation function derivative, the two integrators V and U used in the
description of the backpropagation algorithm could even be represented by
the same integration variable. In the case of an analog implementation, the
neuron and synapse models probably have to be adapted to reflect more ac-
curately the dynamics of analog neurons. The main restriction of SpikeGrad is
the need for negative spikes, which could be problematic depending on the
particular hardware that is used.

4.4.3 Conclusion and future outlook

In this chapter, we introduced SpikeGrad, a neuromorphic version of the back-
propagation algorithm. As a first application scenario, we showed that it can
be used to train a network for relational inference. Our results show that this
implementation can be advantageous compared to previous STDP-based im-
plementations in several aspects. Additionally, we showed that our network
is able to learn a visual XOR task based on images of handwritten digits. This
could make our approach promising for low power mobile platforms, where
several sensor outputs have to be processed and set into relationship with
each other. In the work presented here, we focused on relations of stimuli
of the same type, but in principle our network could be extended to merge
stimuli of different nature, such as visual, audio or numeric stimuli. In fu-
ture work, we would like to investigate if our approach can be scaled to more
complex relationships between stimuli. Additionally, it would be interesting
to adapt the algorithm to analog or mixed signal neuromorphic implementa-
tions (such as Moradi et al. [2018]), which would allow processing even closer
to the sensor.

Using an image classification task, we demonstrated that competitive in-
ference performance can be achieved with spiking networks trained with the
SpikeGrad algorithm. Additionally, gradient backpropagation seems partic-
ularly suitable to leverage spike-based processing by exploiting high signal
sparsity. In particular, the topology used for CIFAR10 classification is how-
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ever rather large for the given task. We decided to use the same topologies
as the state-of-the-art to allow for better comparison, but the same task could
probably also be performed by a smaller network. In an ANN implemen-
tation, it is in general undesirable to use a network with a large number of
parameters, since it increases the need for memory and computation. The
relatively large number of parameters of the model may, to a certain extent,
explain the very low number of relative synaptic operations that we observed
during backpropagation. In an SNN, a large number of parameters is less
problematic from a computational perspective, since only the neurons which
are activated by input spikes will trigger computations. A large portion of the
network will therefore remain inactive. It would still be interesting to inves-
tigate signal sparsity and performance of SpikeGrad in ANN topologies that
were explicitly designed for minimal computation and memory requirements.
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Chapter 5

Summary and Future Outlook

This chapter summarizes the results of our experiments and discusses possi-
ble future developments in the field of deep spiking networks.

5.1 Summary of our results

In this thesis, we presented two principal solutions for on-chip learning in
spiking neural networks. Both were designed considering the same basic con-
straints of neuromorphic systems. However, due to the different application
scenarios for which they were envisioned, different choices were made regard-
ing the learning algorithm. The STDP-based system was designed from the
viewpoint of full spatial and temporal locality. Additionally, feature learning
should be performed only based on the event-based input, without the need
for a labeled dataset. This can only be realized by the use of an unsuper-
vised algorithm. By using a simplified STDP rule, we were able to satisfy
these constraints. Our approach is in particular suitable for data that is en-
coded in relative firing rate values (e.g. spatial pixel correlations), but whose
information content is independent of the timescale. However, our work also
demonstrated first-hand the typical problems and limitations that are encoun-
tered using this type of bio-inspired learning rules. Due to its unsupervised
and local nature, STDP is not able to jointly optimize all layers of the network
for an explicit global learning objective, which eventually negatively affects
classification performance.

We therefore shifted our focus to optimization methods that are closer
to training algorithms for deep networks that are used in machine learning.
In this context, we presented SpikeGrad, an event-based version of the back-
propagation algorithm, which is adapted to be compatible with the typical
hardware constraints of neuromorphic systems. Our results demonstrate that
this mechanism is capable of exploiting the high sparsity of the gradient dur-
ing backpropagation by using the dynamic precision properties of spiking
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neurons. A spike coding solution therefore seems particularly suitable for
the gradient. The algorithm was tested in two different application scenar-
ios: multi-directional inference of numeric and visual relations, and a typical
image classification task. The latter case demonstrated that the algorithm is
able to scale to large-scale convolutional network structures, yielding classifi-
cation accuracy as good as methods using real valued gradients (in the range
of statistical error). SpikeGrad delivers two main contributions to the research
community: firstly, it shows that spikes can be used as an effective means to
train large convolutional neural networks. Secondly, it greatly facilitates this
training by the introduction of an equivalent ANN, that can be trained much
faster than an SNN whose spike dynamics are simulated explicitly. These con-
tributions enable us to investigate the scaling of SNN performance on large
scale problems, which is crucial for the transfer of SNNs from research to
practical applications.

Due to the extensive computational resources that are necessary to train
large scale SNNs, we were not yet able to test the performance of our learn-
ing mechanisms on more complex datasets than CIFAR10. Even SpikeGrad,
which has in principle the same computational complexity for training as the
equivalent ANN, would potentially take over a week for training on the Ima-
geNet benchmark. Given that we cannot use the same hyperparameters that
are used in standard ANNs, optimizing performance on such a benchmark
task would potentially take several weeks or months to yield sufficient accu-
racy. Performing such an extensive optimization procedure was therefore out
of the scope of this work. Investigating the scaling properties of SpikeGrad
on this type of datasets represents however a crucial future step in verifying
the viability of our approach for solving practical machine learning problems.
The fact that SpikeGrad can train an SNN in equivalent time as a comparable
ANN makes such a simulation at least possible in principle, which is not the
case for most other fully event-based on-chip algorithms.

5.2 The future of SNNs

5.2.1 Training by mapping SNNs to ANNs

This paradigm shift from bio-inspired learning rules towards adaptation of
machine learning algorithms to SNNs seems to be indeed the general ten-
dency that could be observed in the field in recent years (see figure 5.1). Also
our work demonstrates that in this way it is possible to solve more complex
problems than by using rather heuristic STDP rules. We believe that the best
way to achieve high performance on SNNs is to try to map them to structures
that can be optimized with mathematically well-defined optimization algo-
rithms. This can either be done by explicitly simulating the SNN dynamics,
or by optimizing an ANN that represents the SNN.

110



5.2. The future of SNNs

Our work is in line with previous research that analyses how an exact
ANN equivalent can be found for specific types of SNN models (Binas et al.
[2016] and Wu et al. [2019a]). This presents an extension to the traditional
approach that converts ANNs to SNNs. While the traditional conversion ap-
proach uses an ANN that was trained without knowledge of the spike coding,
these novel approaches allow optimization of an ANN that explicitly takes
into account the constrained representation capacities of the SNN (e.g. inte-
ger activation values). This way, a performance loss can be avoided when the
parameters of the equivalent ANN are used in an SNN implementation.

The problems considered in this thesis did not possess temporal dynamics,
or these were not explicitly exploited by our algorithms. We however believe
that also for sequential, temporal data, finding a mapping between an RNN
and an SNN (as described in Wu et al. [2018a], Neftci et al. [2019] or Bellec
et al. [2018]) is probably the most promising approach for effective training.

In cases where an exact mapping between SNNs and ANNs is not possi-
ble, approximations may still be necessary. We think however that the most
promising approach is to start from a model that is as close as possible to a
known ANN description and then analyze possible approximations that are
necessary to make the mechanism compatible with SNN constraints. This
way it can be easier to quantify the approximation errors that are introduced
by the SNN realization.

5.2.2 On-chip vs. off-chip optimization

While this thesis has a focus on on-chip learning algorithms for SNNs, the
future development of on-chip learning applications is difficult to anticipate.
In a cluster-based, high-performance computing environment, an energy ef-
ficient implementation of the backpropagation algorithm is in principle a de-
sirable objective, since the energy cost for training large deep learning models
can be tremendous (Strubell et al. [2019]). In this situation, SNNs have the
advantage that activations and errors in deep networks become increasingly
sparse with the number of (back)propagation levels. Since the systems used
for training are usually designed for very high data loads and continuous use,
SNNs might however not be able to profit fully from temporal sparsity. It is
questionable if, in these cases, activation sparsity is high enough to set off the
disadvantages which arise from the higher hardware complexity of SNNs.

Due to their event-based nature, SNNs are more suitable for applications
where relevant inputs are observed rarely and the system remains inactive
most of the time. This makes them predestined candidates for autonomous
systems. Online learning, that can be performed on-chip, seems indeed very
interesting from an artificial intelligence perspective, since most natural sys-
tems learn by continuous observation of their environment. However, we
think that there are many potential caveats that currently prevent online learn-
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ing from being used in practical industry applications. The additional de-
gree of autonomy provided by online learning is not actually desired in most
modern technology. Even most “autonomous” systems require a rather pre-
dictable response. The response of an intelligent system depends however
strongly on the training process and the data that is used. Online learning
could lead to unexpected responses that can represent a security risk that
is difficult to anticipate. It is therefore more practical for most applications
to disable learning in the system during operation, and update the system
occasionally and under strictly controlled conditions.

These are the reasons why we believe that the short-term future of SNNs
lies more likely in off-chip optimization with subsequent hardware deploy-
ment. ANN topologies that are optimized for resource constrained environ-
ments, such as MobileNets by Howard et al. [2017], already play a huge role
in designing AI applications for low power chips, such as the Google Edge TPU
or the Nvidia Jetson Nano. SNNs are likely to become a part of these special-
ized solutions. While SNNs will probably not generally replace ANNs in all
application scenarios, they could be interesting for problems that have high
temporal and spatial sparsity. This could be for instance the detection of rare
events with an event-based vision systems, or event-based speech recognition.
Although the main objective of the SpikeGrad algorithm was to allow efficient
training of SNNs, it would be also possible to only code the forward pass in
spikes and optimize the network off-chip with a full precision gradient. This
would pose less constraints on the layer types and cost functions that can
be used, and therefore potentially allow better optimization of the SNN for
efficient inference.

5.2.3 Hardware complexity as a major bottleneck of SNNs

The main efficiency argument for digital SNNs is that the complex multipli-
cation operation can be replaced by a sequence of event-based additions. This
permits to scale computation in the network dependent on spatial and tem-
poral sparsity, and allocate computing resources dynamically to active parts
of the network. As mentioned in 2.2.3, this relies however on the assump-
tion that certain hardware operations and the allocation mechanism can be
implemented efficiently. A particular problem of SNNs is the large quantity
of memory that is required to store the state variables, and the large number
of memory accesses that are necessary to update these variables with each
event. This is particularly true for spike coding mechanism that are based on
the number of spikes. Also the dynamic allocation of computing resources
could be a problem in digital hardware if events arrive in a highly irregular
fashion.

We believe that the main bottleneck in bringing SNNs to practical applica-
tions is the lack of appropriate hardware. In principle, the field now knows
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Figure 5.1: Development of the state of the art inference accuracies on the MNIST
dataset. It can be seen that early works mostly used STDP. While there is still re-
search on improving the performance of SNNs trained with STDP, the best results
in recent years are provided by methods that use approximations of the backpropa-
gation algorithm. Our work (SpikeGrad) represents an on-chip learning method that
yields accuracies comparable to off-chip training methods. Please note that this pre-
sentation is simplified and only shows the general tendencies that are observable in
field. In particular, we do not take into account energy efficiency or slightly varying
hardware constraints, objectives and methods. Kheradpisheh et al. [2017] is counted
as an off-chip method due to the use of an SVM classifier in the final layer.

a sufficient number of algorithms that are able to train SNNs effectively for
simple applications. It remains to show that a dedicated hardware can be
built for such an application that allows to be more efficient than a standard
ANN solution, while maintaining the same performance. This requires an ef-
ficient spike coding mechanism and a specialized hardware that is optimized
exactly for this type of encoding. Most SNN hardware is still in a research
or prototype stage and generally not as optimized as hardware for traditional
ANNs. Additionally, the necessity to co-design hardware and algorithms re-
quires a large amount of specialized knowledge, which increases the difficulty
of building systems for productive industrial environments. We believe that
this complexity is the main obstacle that currently prevents SNNs from being
used in practical applications.

113





Bibliography

Alessandro Aimar, Hesham Mostafa, Enrico Calabrese, Antonio Rios-
Navarro, Ricardo Tapiador-Morales, Iulia-Alexandra Lungu, Moritz B.
Milde, Federico Corradi, Alejandro Linares-Barranco, Shih-Chii Liu, and
Tobi Delbrück. Nullhop: A flexible convolutional neural network acceler-
ator based on sparse representations of feature maps. IEEE Trans. Neural
Netw. Learning Syst., 30(3):644–656, 2019.

Pierre Baldi and Peter Sadowski. A theory of local learning, the learning
channel, and the optimality of backpropagation. Neural Networks, 38:51–74,
2016.

Pierre Baldi, Peter Sadowski, and Zhiqin Lu. Learning in the machine: The
symmetries of the deep learning channel. Neural Networks, 95:110 – 133,
2017.

Pierre Baldi, Peter Sadowski, and Zhiqin Lu. Learning in the machine: Ran-
dom backpropagation and the deep learning channel. Artificial Intelligence,
260:1 – 35, 2018.

Sergey Bartunov, Adam Santoro, Blake A. Richards, Geoffrey E. Hinton, and
Timothy P. Lillicrap. Assessing the Scalability of Biologically-Motivated
Deep Learning Algorithms and Architectures. In Advances in Neural Infor-
mation Processing Systems (NIPS), 2018.

Mark F. Bear, Barry W. Connors, and Michael A. Paradiso. Neuroscience: ex-
ploring the brain. Lippincott Williams & Wilkins, 3 edition, 2007.

Guillaume Bellec, Darjan Salaj, Anand Subramoney, Robert Legenstein, and
Wolfgang Maass. Long short-term memory and learning-to-learn in net-
works of spiking neurons. In Advances in Neural Information Processing Sys-
tems (NIPS), 2018.

115



Bibliography

Yoshua Bengio. Estimating or propagating gradients through stochastic neu-
rons. arXiv:1308.3432v1, 2013.

Guo-qiang Bi and Mu-ming Poo. Synaptic Modifications in Cultured Hip-
pocampal Neurons : Dependence on Spike Timing , Synaptic Strength ,
and Postsynaptic Cell Type. The Journal of Neuroscience, 18(24):10464–10472,
1998.

Olivier Bichler, Damien Querlioz, Simon J Thorpe, Jean-philippe Bourgoin,
and Christian Gamrat. Unsupervised Features Extraction from Asyn-
chronous Silicon Retina through Spike-Timing-Dependent Plasticity. In In-
ternational Joint Conference on Neural Networks (IJCNN), pages 859–866, 2011.

Olivier Bichler, David Briand, Victor Gacoin, Benjamin Bertelone, Thibault
Allenet, and Johannes C. Thiele. N2D2 - Neural Network Design & De-
ployment. Manual available on Github, 2019.

Jonathan Binas, Giacomo Indiveri, and Michael Pfeiffer. Deep counter net-
works for asynchronous event-based processing. arXiv:1611.00710v1, NIPS
2016 workshop ”Computing with Spikes”, 2016.

Tom Binzegger, Rodney J. Douglas, and Kevan A. C. Martin. A Quantitative
Map of the Circuit of Cat Primary Visual Cortex. The Journal of Neuroscience,
24(39):8441–8453, 2004.

Sander Bohte, Joost N. Kok, and Johannes A. La Poutré. Spikeprop: backprop-
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Titre : L’apprentissage profond dans les systèmes évènementiels, bio-inspirés

Mots clés : réseaux de neurones évènementiels ; apprentissage bio-inspiré ; algorithme de rétro-propagation ;
matériel bio-inspiré ; apprentissage profond

Résumé :
Inférence et apprentissage dans les réseaux de
neurones profonds nécessitent une grande quantité
de calculs qui, dans beaucoup de cas, limite leur
intégration dans les environnements limités en res-
sources. Les réseaux de neurones évènementiels de
type �spike� présentent une alternative aux réseaux
de neurones artificiels classiques, et promettent une
meilleure efficacité énergétique. Cependant, entraı̂ner
les réseaux spike demeure un défi important, parti-
culièrement dans le cas où l’apprentissage doit être
exécuté sur du matériel de calcul bio-inspiré, dit
matériel neuromorphique. Cette thèse constitue une
étude sur les algorithmes d’apprentissage et le co-
dage de l’information dans les réseaux de neurones
spike.
A partir d’une règle d’apprentissage bio-inspirée,
nous analysons quelles propriétés sont nécessaires
dans les réseaux spike pour rendre possible un
apprentissage embarqué dans un scénario d’ap-
prentissage continu. Nous montrons qu’une règles
basée sur le temps de déclenchement des neurones
(type �spike-timing dependent plasticity�) est ca-
pable d’extraire des caractéristiques pertinentes pour

permettre une classification d’objets simples comme
ceux des bases de données MNIST et N-MNIST.
Pour dépasser certaines limites de cette approche,
nous élaborons un nouvel outil pour l’apprentissage
dans les réseaux spike, SpikeGrad, qui représente
une implémentation entièrement évènementielle de la
rétro-propagation du gradient. Nous montrons com-
ment cette approche peut être utilisée pour l’entrai-
nement d’un réseau spike qui est capable d’inférer
des relations entre valeurs numériques et des images
MNIST. Nous démontrons que cet outil est capable
d’entrainer un réseau convolutif profond, qui donne
des taux de reconnaissance d’image compétitifs avec
l’état de l’art sur les bases de données MNIST et CI-
FAR10. De plus, SpikeGrad permet de formaliser la
réponse d’un réseau spike comme celle d’un réseau
de neurones artificiels classique, permettant un en-
traı̂nement plus rapide.
Nos travaux introduisent ainsi plusieurs mécanismes
d’apprentissage puissants pour les réseaux
évènementiels, contribuant à rendre l’apprentissage
des réseaux spike plus adaptés à des problèmes
réels.

Title : Deep learning in event-based neuromorphic systems

Keywords : spiking neural network ; spike-timing dependent plasticity ; backpropagation algorithm ; neuromor-
phic hardware ; deep learning

Abstract : Inference and training in deep neural net-
works require large amounts of computation, which
in many cases prevents the integration of deep net-
works in resource constrained environments. Event-
based spiking neural networks represent an alterna-
tive to standard artificial neural networks that holds
the promise of being capable of more energy efficient
processing. However, training spiking neural networks
to achieve high inference performance is still challen-
ging, in particular when learning is also required to be
compatible with neuromorphic constraints. This thesis
studies training algorithms and information encoding
in such deep networks of spiking neurons.
Starting from a biologically inspired learning rule, we
analyze which properties of learning rules are neces-
sary in deep spiking neural networks to enable em-
bedded learning in a continuous learning scenario.
We show that a time scale invariant learning rule ba-
sed on spike-timing dependent plasticity is able to per-
form hierarchical feature extraction and classification
of simple objects of the MNIST and N-MNIST dataset.

To overcome certain limitations of this approach we
design a novel framework for spike-based learning,
SpikeGrad, which represents a fully event-based im-
plementation of the gradient backpropagation algo-
rithm. We show how this algorithm can be used to
train a spiking network that performs inference of re-
lations between numbers and MNIST images. Addi-
tionally, we demonstrate that the framework is able
to train large-scale convolutional spiking networks to
competitive recognition rates on the MNIST and CI-
FAR10 datasets. In addition to being an effective and
precise learning mechanism, SpikeGrad allows the
description of the response of the spiking neural net-
work in terms of a standard artificial neural network,
which allows a faster simulation of spiking neural net-
work training.
Our work therefore introduces several powerful trai-
ning concepts for on-chip learning in neuromorphic
devices, that could help to scale spiking neural net-
works to real-world problems.
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