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RESUME FRANÇAIS 

Ce sujet de recherche vise  mieux comprendre les processus de bio remédiation 

qui participent à la réduction des charges en polluants dans les écosystèmes aquatiques 

du type zones humides, en tant que question d’actualité en ingénierie écologique. 

L’efficacité des processus de phytoremédiation a été largement démontrée par des 

applications individuelles sur le sol et les sédiments. Cette thèse a pour objectif de 

démontrer la participation d’une population d’invertébrés dans l’efficacité de la 

réduction de polluants des sédiments aquatiques en combinant le processus de 

bioturbation avec la phytoremédiation. Les hypotheses de recherche ont été testée 

expérimentalement en conditions de laboratoire à l’aide d'une série de microcosmes 

reproduisant chacun une portion d’interface eau/ sédiments similaire aux conditions en 

zones humides. Dans nos expériences, la bioturbation est réalisée par une population 

d’oligochètes Tubificidae bien connue comme un ingénieur écologique. La 

phytoremédiation associée est effectuée par une plante aquatique Typha latifolia connue 

pour sa capacité  à extraire les polluants organiques et inorganiques des sédiments par 

l'accumulation dans leur biomasse. L’influence de cette biodiversité sur les flux et bilan 

de masse de polluants modèles, a été démontré à l’aide de 2 expériences de laboratoire 

mettant en oeuvre des séries de microcosmes contaminées avec du Cadmium en tant 

que métal trace avec une concentration initiale de 20 µg.L-1, dans l’eau surnageante, et 

de l’atrazine marquée avec une concentration de 5 µg.g-1 de sédiment frais en tant que 

micropolluant organique persistant et herbicide.  

Les résultats de ces expériences démontrent que le bio-transport créé par la 

population de tubificidae ainsi que la bioremédiation sont toujours actifs en présence de 

contamination ce qui confirme le potentiel de dévelopement de ces organismes en 

ingénierie écologique. La bioadvection du sédiment et des contaminants par les 

tubificidae est quantifiée grâce à l’utilisation de luminophores (traceurs particulaires).  

Le processus de bioconvoyage engendre l’ensevelissement et le renouvellement de la 
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quantité de polluant autour du système racinaires des Typha latifolia. Les coefficients 

d’enrichissement des racines (ECR) pour le Cadmium sont plus élevés en présence de 

bioturbation. L’interaction entre l’activité des tubificidés et la contamination par le Cd 

depusi la colonne d’eau influence le bilan de masse du cadmium. Les flux de métaux du 

sédiment vers les racines sont estimés de l’ordre de 0.02+/-0.00 et 0.07+/-0.03 µg Cd par 

jour sans et avec bioturbation, respectivement. Dans le cas de l’atrazine, l’influence de la 

bioturbation sur les propriétés chimiques du sédiment (pH, porosité, matière 

organique, etc.) explique les modifications observées au niveau du processus 

d’adsorption-désorption de l’atrazine. Il est démontré que la bioturbation par les 

tubificidae accélère la mobilité de l’atrazine et favorise sa biodisponibilité en passant de 

la forme adsorbée sur les particules de sédiment vers la forme libre dans l’eau 

interstitielle. Les coefficients d’enrichissement de l’atrazine dans les racines de typha  

sont également plus élevés en présence de bioturbation (7.16 ± 0.66) que sans 

bioturbation (5.99 ± 0.64). La biodégradation de l’atrazine est significativement plus 

avancée en présence de bioturbation comme le démontre un nombre plus élevé de 

métabolites, et une quantité de métabolites plus importante mesurés dans les racines 

Typha latifolia. 

Notre étude démontre le potentiel apporté par la bioturbation comme facteur 

d’amélioration des performances de la phytoremédiation, pour un métal lourd comme 

pour un micro-polluant organique. Les recherches futures sur la base de ces résultats 

devraient s'intéresser à mettre en évidence l’influence de la bioturbation sur les 

communautés de micro-organismes en charge de la dégradation des composés 

organiques persistants.  

Mots clés: Ingénierie écologique; bioturbation; phytoremediation; pollution 

aquatique; zone humide; cadmium; atrazine; 14C.  
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SUMMARY 

The development of efficient bioremediation techniques to reduce pollutant 

loads in aquatic ecosystems is a challenging research question for ecological 

engineering. The accuracy of phytoremediation processes has been primarily 

demonstrated by individual applications on soils or water sediments. The present Ph.D. 

aims to  demonstrate the interest of additional bioturbation combined to 

phytoremediation processes for the improvement bioremediation efficiency of aquatic 

sediments. This strategy benefits are tested experimentally in controlled laboratory 

conditions with a serie of microcosms reproducing each a portion of water/sediment 

interface such as in wetland areas. In our experiments, bioturbation was carried out by 

a conveyor-belt invertebrate population, the tubificidae oligochaetes Tubifex tubifex, well 

known as an active ecological engineer. The phytoremediation was conducted by the 

riparian plant Typha latifolia known for its ability to remove organic and inorganic 

pollutants from sediments by accumulation into its biomass. The experiments were 

managed to demonstrate the effects of this biological influence (plant and inveterbrate) 

on the mass balances and fluxes of one metal and one pesticide as models of pollutants. 

Cadmium as a heavy, inorganic and conservative metal pollutant was introduced as a 

pulse input in the overlying water of the contaminated microcosms, with a cadmium 

concentration of 20 µg.L-1 in at the initial time of the experiment that lasted one month. 

In a second experiment, atrazine was mixed in the whole sediment column at the initial 

time in order to reach a concentration of 5 µg.g-1 of fresh sediment as a source of organic 

micropollutant and herbicide in the microcosms. The pesticide was radiolabeled with 

14C. Fluxes from water to sediment, and from sediment to plants were assessed in 

experimental conditions with several treatments (+/- plants, +/- bioturbation, +/- 

pollutants) allowing to demonstrate the effects of the biological influence. 

Our results indicated that the tubificids and the related bioremediation 

influences are still efficient under cadmium and atrazine contaminations in aquatic 
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systems. Biotransport due to tubificids changed the distribution of cadmium across the 

sediment column and enhanced the pumping of cadmium from the water to surface 

sediment and then to the anoxic underlying sediment surrounding the plant roots.  

Thereby this biotransport increased the bioaccumulation of cadmium in the root system 

of Typha latifolia as demonstrated by the roots enrichment coefficients (ECR). Combining 

Cd contamination and bioturbation optimized the transport of the metal (flux) from 

sediment to plants with fluxes estimated to 0.02+/-0.00 and 0.07+/-0.03 µg Cd per day 

without and with bioturbation respectively. In the case of atrazine contamination, 

bioturbation influence on the chemical properties of sediment (pH, porosity, Organic 

matter) is explaining the adsorption-desorption behavior of atrazine in sediment, 

resulting in the acceleration of atrazine mobility and bioavailability of the pesticide. The 

transfert of pollutant that passed from attached forms onto sediment particles into a 

free fraction in pore water in the sediment column was enhanced under bioturbation. 

Consequently higher values of atrazine were measured in the roots system with ECs of 

7.16 ± 0.66 with bioturbation compared to 5.99 ± 0.64 in the treatment without 

bioturbation. The metabolization of the pesticides was also significantly increased 

under the effects of bioturbation on the sediment microbiome as demonstrated by 

enhanced number and quantity of metabolites in Typha latifolia roots in this treatments. 

Our study, therefore, highlights the potential of bioturbation addition of the 

phytoextraction for integrated bioremediation strategies of metallic and organic 

polluted sediments of aquatic ecosystems. Further researches need to take into account 

the bioturbation influence on the microorganism communities in the relationship with 

organic compounds degradation. 

Keywords: Ecological engineering; bioturbation; phytoremediation; water 

quality; wetland; atrazine, cadmium, 14C. 
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L’accumulation de polluants dans les sédiments des écosystèmes aquatiques, tels 

que les métaux et les polluants organiques persistants, est à l’origine de 

disfonctionnement des milieux naturels. Non seulement, ces polluants présentent un 

risque pour les communautés aquatiques due à leur exposition à des concentrations 

anormales, mais ces polluants peuvent également entrer dans les organismes via le 

phénomène de bioaccumulation le long des réseaux trophiques. Le défit associé à la 

qualité de la ressource en eau d’une part, la mise en évidence du rôle prépondérant des 

zones humides dans le service de regulation de la qualité de l’eau des hydrosystèmes et 

et la mise en évidence de la toxicité des polluants mesurés dans les sédiments de ces 

zones humides d’autre part, font que la contamination des sédiment attire une attention 

grandissante. Bien que la limitation de l’arrivée de polluants dans ces milieux soit la 

priorité, la recherche de solutions pour restaurer la qualité de l’eau et des sédiments 

sousjacents est une question qui relève de l’ingénierie écologique. La bioremédiation est 

la partie de l’ingénierie écologique qui vise à réduire la quantité de polluants dans un 

milieu naturel en mettant en œuvre, une population ou une communauté d’organismes 

vivants. Ce type d’ingénierie est aujourd’hui la seule solution durable pour améliorer le 

fonctionnement des zones humides, en apportant des méthodes lentes mais pérennes 

pour diminuer la charge en polluants en se basant sur les connaissances issues de 

l’écologie fonctionnelle des écosystèmes aquatiques.  

L’avancée des recherches sur la compréhension des processus biologiques 

participant aux flux de matière et d’énergie à l’interface eau-sédiment apportent une 

source d’information intéressante pour l’identification des techniques de 

bioremediation faisant participer ces processus. La démonstration de l’influence de la 

biodiversité dans les flux de matière et à l’origine de ces processus de biodegradation 

est toujours une question de recherche active. La mise en évidence des bénéfices et 

services naturels retirés du fonctionnement naturel des écosystèmes a récemment 

relancé l’attention sur ces processus. Plus précisément, le rôle de la biodiversité dans le 

service naturel de régulation de la qualité de l’eau est toujours une question de 
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rechercheà résoudre.  L’application des enseignements issus de ces recherches pour 

améliorer la qualité de l’eau des écosystèmes naturels par bioremédiation réponds à 

une véritable demande pour le maintien des services naturels. Les solutions fondées sur 

la nature sont l’illustration d’une telle démarche qui s’inspire aussi bien des processus 

d’origines biologiques et physiques pour répondre à une question de société: 

“Comment dépolluer de manière durable les milieux aquatiques”. D’une manière 

générale, les solutions fondées sur la nature participe à la résilience des écosystèmes 

dans lesquels elles sont appliquées et quelques une de ces solutions contribuent à la 

bioremédiation. Parmi les méthodes d’ingénierie écologique déjà à l’œuvre et pouvant 

s’inscrire parmi les solutions inspirées de la nature, la phytoremédiation est maintenant 

largement reconnue pour son potentiel à réduire les quantités de polluants d’un sol ou 

d’un sédiment. De nombreuses recherches ont eut pour objectif de démontrer les 

capacités d’espèces de plantes variées à extraire certains polluants des sols et sédiments, 

tels que les métaux (Ali et al., 2013; Barceló & Poschenrieder, 2003; Guo et al., 2012; 

Klink et al., 2013; Lyubenova et al., 2013; Pandey et al., 2014; Wani et al., 2017; Weis & 

Weis, 2004), et les POPs (Frazar, 2000; Ibrahim et al., 2013; Marcacci, 2004; Merini et al., 

2009; Moore et al., 2013; Pascal-Lorber et al., 2010; Tournebize et al., 2013; Wang et al., 

2015), et beaucoup reste encore à faire pour développer les applications de ces 

connaissances en milieu naturel. Cependant, les plantes ne sont parfois pas suffisante 

pour faire face au large spectre de polluants présents dans les sédiments aquatiques, et 

il devient alors intéressant de chercher des solutions pour améliorer les capacités 

épuratives de la phyto-extraction. Parmi les voies de recherche  vers une 

bioremédiation optimale, l’association avec d’autres processus naturels est une 

possibilité encore peu explorée. Cette thèse vise à mettre en évidence s’il existe un 

véritable intérêt à associer le phénomène de bioturbation avec la phytoremediation 

« classiquement » mis en œuvre. La bioturbation est un processus naturel qui a été 

étudié depuis longtemps dans les sédiments marins, d’eau douce et les sols terrestres. 

Plus précisément, la bioturbation sous l’impulsion des multiples activités des 
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invertébrés benthiques à l’interface eau-sédiment, présente la capacité d’accélérer tout 

les flux de matière à travers cette interface, de même que les transformations chimiques 

et biologiques de la matière naturelle et anthropique dans le sédiment (Anschutz et al., 

2012; Baranov et al., 2016a; Baranov et al., 2016b; Bundschuh et al., 2016; Ciutat et al., 

2007; Ciutat et al., 2006; Delmotte et al., 2007; Devault et al., 2009; Gerino et al., 1994, 

1998, 2003; Li et al., 2016; Mermillod-Blondin et al., 2001, 2002, 2003, 2004, 2005; Pigneret 

et al., 2016). Bien que son influence sur les propriétés physiques, chimiques et 

biologiques du sédiment soit internationalement reconnue, son intégration dans les 

méthodes de bioremédiation reste encore timide à ce jour (Leveque et al., 2014; 

Megharaj et al., 2011; Yu et al., 2005). 

Cette thèse est basée sur la combinaison de 2 processus connus pour leur 

capacité à générer des flux de matière dans les sédiments, la phytoextraction et la 

bioturbation. L’hypothèse principale sous-jacente à ce travail est que ces 2 processus 

peuvent être complémentaires pour faciliter la mobilisation et la réduction des 

polluants présents à l’interface eau-sédiment. Avec son influence sur les flux de 

polluants à travers l’interface eau-sédiment, il est suggéré que la bioturbation puisse 

améliorer l’arrivée des polluants en profondeur, et ainsi renouveler la quantité de 

polluant à proximité du réseau racinaire des plantes.  Si cette hypothèse est vérifiée 

alors les capacités de phytoextraction pourraient être augmentées en présence 

d’invertébrés bioturbateurs dans le même sédiment. Dans le milieu naturel dans 

lesquels la phytoextraction est mise en œuvre, les communautés d’invertébrés sont 

souvent développées de manière spontanée dans le sédiment, et il est possible que leurs 

activités participent aux résultats de phytoremediation mais leur rôle dans les 

performances mesurées ne sont jamais pris en compte. De même si ces organismes 

tendent naturellement à coloniser les sédiments des zones humides construites de type 

filtres plantés il serait alors intéressant de démontrer s’il serait utile de favoriser leur 

colonisation, voire de la provoquer.  
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La thèse présentée ici a pour but de tester cette hypothèse de travail en utilisant 2 

types de polluants: le cadmium comme modèle de métal lourd présent dans les 

sédiments de nos région, et l’atrazine, un polluant de type micro-organique persistant 

interdit en France depuis plusieurs années mais toujours présents dans de nombreux 

sédiments. Les effets de la bioturbation sur les flux et bilans de masse de ces polluants 

sont mis en évidence à l’aide d’une approche expérimentale de laboratoire utilisant une 

série de microcosmes reproduisant l’interface eau-sédiment de zones humides. 

L’influence de la biodiversité est mise en évidence, mesurée et discutée à partie de 2 

expériences visant à suivre une stratégie de complexité croissante au niveau de la 

composition des microcosmes et de leur contamination: 

-  une première expérience a été mise en oeuvre avec une contamination initiale 

et ponctuelle dans la colonne d’eau avec une concentration de 20µg de Cd/L ( Cadmium 

Nitrate – Cd(NO3)2.4H2O), le polluant étant le cadmium, représentatif d’un type de 

polluant relativement  conservatif. L’expérience a durée 30 jours et l’ensemble des 

mesures ont été réalisées au temps initial et à la fin de l’expérience.  

-  une deuxième expérience a été mise en oeuvre avec une contamination initiale 

dans la colonne de sédiment, le polluant étant l’atrazine, toujours présent en excès 

pendant toute la durée de l’expérience dans ce compartiment. Ce type de molécules 

pouvant être biotransformée durant le temps de l’expérience (26 jours), la molécule 

utilisée a été marqué au 14C. La concentration d’atrazine égale à 2 µg.g-1 de sédiment 

frais a été estimée 15 jours avant l’introduction de la biodiversité, la durée de 

l’expérience en présence de biodiversité a été de  26 jours. 

- dans ces 2 expériences, les luminophores ont été introduits à la surface du 

sédiment en tant que traceurs purement conservatifs pour mesurer le transport de 

sédiment et les polluants associés durant la durée de l’expérience.  

Cette approche expérimentale a été menée avec le même type de biodiversité 

pour représenter la source de phytoextraction et de bioturbation. Une population 
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d’oligochètes tubificidés Tubifex tufifex a été utilisée comme bioturbateurs connus pour 

être à l’origine du processus de convoyage à l’interface eau-sédiment. Pour la 

phytoextraction, c’est l’espèce de plante riparienne Typha latipholia qui a été sélectionnée 

pour ces capacités de résistance à la contamination par les herbicides et sa croissance 

rapide. Plusieurs conditions expérimentales ont été mises en place pour permettre de 

tester isolément ou en combinaison l’effet de ces organismes sur les flux de polluants. 

L’introduction de ce manuscrit présente la revue bibliographique de l’état de l’art sur 

les processus mis en jeu et les caractéristiques de polluants ciblés, La partie suivante 

correspond à la méthodologie commune au 2 experiences mises en oeuvre. La partie III 

regroupe l’ensemble des results permettant de démonstrer les conclusions de ce  

manuscript. Plus précisément, la partie 3 se decompose en 3 sous parties correspondant 

chacune a une experience 3A et 3B et enfin à la comparaison des resultats de ces 2 

experiences dans la partie 3C. L’ensemble de ces recherches a été réalisé pour répondre 

aux objectifs spécifiques enoncés ci dessous :   

 (i) l’estimation de l’influence de la population d’invertébrés sur le processus de 

phytoremédiation à partir du suivi temporel des concentrations des 2 types de 

polluants différents (Parties 3A et 3B). La mise en évidence des effets de ce couplage sur 

l’évolution des concentrations de Cd a été l’objet d’un papier publié en 2018 dans la 

revue  internationnale: Science of the Total Environment - 618 : 1284–1297; 

https://doi.org/10.1016/j.scitotenv.2017.09.237): sous le titre “Bioturbation effects on 

bioaccumulation of cadmium in the wetland plant Typha latifolia: A nature-based 

experiment” et avec les auteurs « Trung Kien Hoang, Anne Probst, Didier Organe, 

Franck Gilbert, Arnaud Elger, Jean Kallerhoff, Francois Laurent, Sabina Bassil, Thi Thuy 

Duong, and Magali Gerino ». 

(ii) évaluer l’efficacité de détoxication sous l’influence de cette biodiversité en 

utilisant 2 types de méthodes complémentaires :  
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- les mesures  directes des concentrations de polluants dans l’eau, le sédiment et 

les plantes (résultats et discussions des parties III.A and III.B) ;  

- les mesures indirectes de toxicité de l’eau surnageante dans les microcosmes et 

l’eau interstitielle des sédiments à la fin de l’expérience à l’aide de tests 

écotoxicologiques. Ces tests ont été mis en œuvre à l’aide d’une algue connue pour sa 

sensibilité à la contamination de l’eau par les POPs: Chlorella vulgaris (résultats et 

discussion de la partie III.B).  

(iii) démontrer l’effet de la  bioturbation sur la biodisponibilité des polluants vis 

a vis des plantes, en développant la mise en évidence des modifications physico-

chimiques du sédiment (pH, potentiel redox, porosité, matière organique, etc< ) sous 

l’influence de cette biodiversité, (Résultat et discussion de la partie III.B). 

(iv) évaluer l’efficacité de mitigation de la pollution par le couplage entre la 

bioturbation et la phytoremediation, sur les 2 types de polluants (métal and herbicide) 

par l’estimation de leurs bilans de masse et les flux entre compartiments (eau 

surnageante, sédiment, et plante) (Parties résultat et discussion de III.B et III.C) et en 

comparant les effets de la méthode de bioremédiation testée sur ces 2 types de polluants 

(Partie III.C du manuscrit). 
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INTRODUCTION (English version) 

Despite not being able to induce lethal effects rapidly, the accumulation of the 

contaminants, such as nutrients, metals, or organic pollutants in the water-sediment 

interface, causes long-term potentiation to the biota by direct uptake or through the 

food web. By the potential risk associated with their toxicity, the arrival of these 

contaminants in aquatic environments, as well as their becoming, requires increasing 

attention. Although the limitation of the appearance of these molecules in the natural 

environment is the priority, all the natural processes allowing the elimination of these 

molecules in the aquatic ecosystems are welcome.  

With the rise of sustainable management, the development of useful tools for 

rehabilitation of aquatic sites with contaminated water and sediment, and the 

purification of water as a vital resource for urban areas has become a considerable 

concern. Sustainable bioremediation techniques are a part of ecological engineering that 

involves biodiversity (the variety of plant and animal life in the world or in a particular 

habitat) in management strategies focusing on the reduction of pollutant loads of 

ecosystems. The demonstration of these processes participating in the essential service 

of self-purification of the soils, rivers, and wetlands and the associated biodiversity is 

still in progress in the international community. This demonstration of benefits 

belonging to increased biodiversity in aquatic systems relies not only on the capacity to 

help at the restoration of polluted sites but also as ecological engineering strategy to 

facilitate the resilience of the environments. Ecological engineering is based on the 

knowledge gained from research on the functioning of ecosystems, the role of 

biodiversity in these environments, and the associated flows of materials. The 

integration of biodiversity into know-how in bioengineering appears to be a guarantee 

of the sustainability of the functioning of the target environments. Ecological 

engineering methods, such as engineered wetland phytoremediation used in the 

purification of wastes, or bioturbation as ecosystem engineering, have been studied 

independently in an aquatic environment so far. Different types of natural processes, on 
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the other hand, can be combined to enhance the treatment efficiency from the 

advantages of individual systems, such as the integration of vertical and horizontal 

filter stages in most hybrid constructed wetlands. Current bioremediation relies on a 

multidisciplinary approach that crosses hydrological, chemical, physical, 

biogeochemical, and ecological processes. The application of a combination of several 

ecological processes could be therefore considered as a potential, and prospective trend 

to amplify the possibility of bioremediation when compared with single-process 

application performed so far.  

The present Ph.D. works are, therefore, based on the combination of two 

ecological processes, which are bioturbation and phytoremediation, known in isolation 

for their ability to generate pollutant flows and integrated into wetland restoration 

approaches. The efficiency of phytoremediation has been demonstrated as an applied 

bioremediation process for persistent pollutants, such as metals in soils and sediments 

(Ali et al., 2013; Barceló & Poschenrieder, 2003; Guo et al., 2012; Klink et al., 2013; 

Lyubenova et al., 2013; Pandey et al., 2014; Wani et al., 2017; Weis & Weis, 2004), and 

some works for TOCs and POPs (Frazar, 2000; Ibrahim et al., 2013; Marcacci, 2004; 

Merini et al., 2009; Moore et al., 2013; Pascal-Lorber et al., 2010; Tournebize et al., 2013; 

Wang et al., 2015). Bioturbation in aquatic sediments is the source of material flow and 

stimulates the activity of microbial communities (Anschutz et al., 2012; Baranov et al., 

2016a; Baranov et al., 2016b; Bundschuh et al., 2016; Ciutat et al., 2007; Ciutat et al., 2006; 

Delmotte et al., 2007; Devault et al., 2009; Gerino et al., 1994, 1998, 2003; Li et al., 2016; 

Mermillod-Blondin et al., 2001, 2002, 2003, 2004, 2005; Pigneret et al., 2016), has 

significant implications for the structure and functioning of ecosystems (Schiffers et al., 

2011), with potential to be exploited in ecological engineering. On the other hand, the 

cooperation of bioturbation as a stimulator of the phytoremediation’s efficiency has 

almost never been explored in a context of bio-elimination of inorganic and organic 

pollutants, except for previous studies on metal phytoremediation under the effect of 

earthworms (Leveque et al., 2014; Megharaj et al., 2011; Yu et al., 2005). By controlling 
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pollutant fluxes through the water-sediment interface and into the sediment, the 

present study starts from the suggestion that bioturbation should increase the 

pollutants availability for phytoremediation by the plant root system. The bioturbation 

and phytoremediation association should enhance the capacity of environmental 

restoration of polluted aquatic sites. 

The proposed Ph.D. work aims to demonstrate the influence of the combination 

of bioturbation on the efficiency of the phytoremediation of metal (cadmium) and 

pesticide (atrazine). This coupling is suggested as an innovative strategy based on the 

combination of these two ecological processes: bioturbation and phytoremediation.  

These two processes being known for their influence on pollutant behaviors in the 

aquatic sediments, the current demonstration in this Ph-D will not include the 

demonstration of the isolated processes efficiency. 

The study tackles experimentally the coupling of these two methods to enhance 

biotransport of a pollutant from overlying water into the sediment column by 

bioturbation, then from sediment to plant by the combination of both bioturbation and 

phytoremediation. The biotransport created by the benthic community activities is well 

known as a process that enhances the mixing of pollutants into the bioturbated layer. 

The bioturbation may increase not only the burial of pollutant coming from the 

overlying water but also renew the sediment and the related contaminant in the vicinity 

of the plant root system.  

The working hypotheses of the influence of the bioturbation on the efficiency of 

the phytoremediation have been tested with two types of pollutants and an inert tracer 

that are more precisely:  

- the luminophores particles, as luminescent sediment particles, used as 

conservative tracers to give evidence and quantity the biotransport under the biological 

effect of two populations of plant and invertebrate; 

- a trace metal, the cadmium, as a conservative pollutant;  
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- a pesticide, the atrazine, as a more reactive pollutant although it makes part of 

the persistent micro-organic pollutants (POP). This herbicide was radiolabeled with 14C 

for the need of the experiment, making it possible to follow the mother molecule and its 

metabolites into the different compartments under plant and invertebrate effects: 

overlying water, sediment, and plant organs.  

Using a controlled-environment experiment made of microcosms mimicking a 

wetland water-sediment interface, the detailed objectives are:  

(i) to estimate the influence of an invertebrate population in the combination of a 

species of riparian plant in the bioremediation process by using different types of 

pollutants, Cd as a model of heavy metal and atrazine as a model of herbicide. The 

results of this study were published to the Journal of Science of the Total Environment - 

618 (2018) 1284–1297; https://doi.org/10.1016/j.scitotenv.2017.09.237): “Bioturbation 

effects on bioaccumulation of cadmium in the wetland plant Typha latifolia: A 

nature-based experiment”. Trung Kien Hoang, Anne Probst, Didier Organe, Franck 

Gilbert, Arnaud Elger, Jean Kallerhoff, Francois Laurent, Sabina Bassil, Thi Thuy 

Duong, and Magali Gerino. 

 (ii) To assess the detoxication efficiency under biological influence of two 

populations of plants and invertebrates using two types of complementary method:  

- direct measure of pollutant concentrations in water, sediment, and plan (results 

and discussion of Parts III.A and III.B);  

- an indirect measure of toxicity using ecotoxicology tests (results and discussion of 

Part III.B).  

(iii) to demonstrate the impact of bioturbation on pollutants’ bioavailability for 

the plant root system in the sediment using its influences on physicochemical properties 

of the sediment, such as pH, sediment porosity, sediment organic matter, etc. affecting 

their mobility and transformation within the sediment matrix (results and discussion of 

Part III.B).  
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(iv) to compare the mitigation efficiency of this coupled bioremediation strategy 

(bioturbation and phytoremediation) on the two types of pollutants (metal and 

herbicide) via their mass balance calculation (fluxes and quantities) in the different 

experimental compartments (overlying water, sediment, and plant) (results and 

discussion of Parts III.A and III.B) and comparing the effects of the bioremediation 

method tested on these two types of pollutants (Part 3C of the manuscript). 

This bioremediation strategy has been tested with two laboratory experiments to 

set different treatments with and without plant and invertebrates effects. In our 

experiments, bioturbation is carried out by a conveyor-belt species, a Tubificidae 

Oligochaetes invertebrate species, well known as an active ecological engineer. Also, the 

associate phytoremediation is conducted by a riparian plant Typha latifolia whose ability 

to remove inorganic and organic pollutants from sediments by accumulation into their 

biomass has been previously demonstrated. At last, a deterministic model was applied 

to estimate the intensity of the sediment bio-transports to further highlight the 

oligochaetes influence on pollutant fluxes in the sediment column.  

The first experiment was run using cadmium, one heavy metal initially 

introduced in the overlying water (20µgCd/L of Cadmium Nitrate – Cd(NO3)2.4H2O) as 

a source of conservative pollution of urban hazard that bioaccumulates in plants as a 

function of time (30 days of the experiment). The second experiment was started with 

homogeneously contaminated sediment with radiolabeled-14C atrazine with an initial 

concentration of 2 µg.g-1 wet sediment, as a non-conservative and organic pollutant to 

be followed in the aquatic environment during 26 days of the experiment. The influence 

of macro-organisms on radiolabeled-14C atrazine fluxes in the multi-compartments 

setup (water, sediment, and plant) is explored to achieve a precise mass balance of this 

pollutant that may undergo biodegradation during the time of the study. At the same 

time, the effectiveness of this bioengineering was tested by ecological bioassay using 

fresh blue-green algae – Chlorella vulgaris, which is well known as a useful bioindicator 
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for water pollution, to assess the evolution of the toxicity of the overlying and 

interstitial waters due to plants and invertebrates influences. 
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PART I. BIBLIOGRAPHY SYNTHESIS   
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I.A. AQUATIC CONTAMINATION BY METALS AND 

PESTICIDES 

I.A.1 AQUATIC ECOSYSTEM 

Natural ecosystems are highly complex systems sheltering several communities 

of living organisms as called the biocenosis (plants, vertebrate, macrofauna, meiofauna, 

microorganisms) in a physical  area of the environment with similarity enough that may 

be called “habitats” or biotopes, composed with the non-living components (water, 

sunlight, soils) that they interact with. They are structured environmental complexes in 

which matter and energy exchanges arise due to the interactions between living and 

non-living organisms. Aquatic ecosystems encompass a wide variety of environments, 

all characterized by the omnipresence of water (sweet, salty, lively or slow). 

Communities of organisms have evolved and adapted to water habitats over millions of 

years, while aquatic habitats supply the food, water, shelter, and space essential for the 

survival of aquatic animals and plants.  

Table I.1.  

Comparison of the Earth surface areas and known species for freshwater, terrestrial, 

and oceanic ecosystems (McAllister et al., 1997). This table does not contain symbiotic 

species. 

Ecosystems Freshwater Terrestrial Oceanic 

The Earth surface area 0.8 % 28.4% 10.8% 

Percentage of known species 2.4% 77.5% 14.7% 

Relative diversity in species 3 2.7 0.2 

Freshwater ecosystems cover only 0.8% of the Earth’s surface (Table I.1), yet they 

are the hotspots and livelihoods not only for 2.4% of all known species but also for 

human activities with billions of people especially in developing countries (Strayer & 

Dudgeon, 2010). 

Most aquatic ecosystems have been developed, modified, and profitably used by 

humans, for various needs or environmental improvement purpose. The term 
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"anthropogenic hydro system" is sometimes used to refer to an aquatic ecosystem 

integrating the human component. Freshwaters including lakes, streams, ponds, and 

wetland ecosystems, the major types of aquatic ecosystems, are essential due to their 

incredible diversity and productivity, providing vital ecosystem services for humans 

(Hitt et al., 2015; Poff et al., 2002). According to Global Lake and Wetland Database - 

GLWD (Lehner & Döll, 2004), lakes and reservoirs cover a total of about 2.0% of the 

Earth’s surface, while wetlands are estimated to cover less than 9 %. They are, however, 

very vulnerable to changes (Prowse et al., 2006; Vincent et al., 2011) due to human 

impacts, mainly changes of biodiversity, such as the extinction and invasion of species. 

This biodiversity erosion leads to ecosystem services limitation, especially natural 

services of regulation, such as water flow and quality regulation (Martín-López et al., 

2018). Other disturbances can be global climate change and the growing radiating 

activity of ultraviolet rays (Dodds et al., 2013; Poff et al., 2002).  Conspicuously, even 

though a small area of the Earth (6.2 – 7.6%, according to Lehner and Döll (2004)) is 

covered by wetlands, they represent an extremely valuable resource of ecosystems due 

to their critical role in climate regulation, biodiversity habitats, hydrology control, and 

human health. Wetlands also provide more direct benefits to people (ecosystem 

services): food provisioning, water quality regulation as natural services by filtering out 

sediment and contaminants from the surrounding environment, flood abatement, and 

carbon management (Zedler & Kercher, 2005). However, wetland losses and 

degradation, that results in these last ecosystem services depletion (Zedler & Kercher, 

2005), are continuing worldwide and becoming one of the most threat with their global 

declined extent between 64 – 71% in the 20th century (Gardner et al., 2015). The main 

direct drivers of wetland degradation and associated biodiversity loss are the expansion 

of crop and grazing lands into native vegetation, unsustainable agricultural and 

forestry practices, climate change, and, in specific areas, urban expansion, infrastructure 

development, and extractive industry. The wetlands degradation contributes to the 

decline and eventual extinction of species and the loss of ecosystem services to 
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humanity, making avoidance, reduction, and reversal of land degradation essential for 

human well-being. Studies from Asia and Africa indicate that the cost of inaction in the 

face of land degradation is at least three times higher than the cost of action. On 

average, the benefits of restoration are ten times higher than the costs, estimated across 

nine different biomes. While challenging, the benefits of restoration include, but are not 

limited toregional biodiversity, physical, and chemical function s, such as water quality 

improvement but also increased employment, increased business spending, improved 

gender equity, increased local investment in education and improved livelihood of a 

wetland (IPBES 2018). 

Ecosystem functioning  

“Ecosystem functioning reflects the fluxes of matter an energy that are resulting 

from the collective life activities of plants, animals, and microbes,  such as production, 

consumption, and excretion, and that are influencing thephysical and chemical 

conditions of the environment.” (the statement of Ecological Society of America – ESA 

on biodiversity and ecosystem functioning, ESA 1999, p. 3) (Virginia & Wall, 2013). 

These activities are influencing the properties of the environment via biotic factors such 

as functions displayed by the species communities, and interactions between species 

(Humbert & Dorigo, 2005). Some of the tasks rendered by the ecosystem can be useful 

to humans. For examples, plant production of food and fuel. Alternatively, the cycling 

and mineralization of organic matter by active organisms in the ecosystem make it 

possible to play a purifying role and to improve the physicochemical quality of the 

water. Human has exploited freshwaters and their surroundings natural resources for 

other needs, such as drinking and irrigation water, agricultural use for plants, fish, and 

minerals harvesting or gathering, transportation, electricity generation, waste 

management (Strayer & Dudgeon, 2010). Besides, freshwater benefits evaluated as 

ecosystem services are worth estimation of USD 6.5 trillion/y, one-fifth of the global 

ecosystems’ value (Costanza et al. 1997). 
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Wetlands and riparian ecosystems are the most productive ecosystems as 

“biological supermarkets” (Thomas C. O’Keefe, 2000) providing critical ecosystem 

services, particularly in restoring the viability of cities and rural areas. Common multi-

beneficial ecosystem services from wetlands include carbon retention (Bridgham et al., 

2006; Mitsch et al., 2013), water quality improvement in watersheds (Mitsch et al., 2001; 

Verhoeven, 2006; Zedler & Kercher, 2005), coastal protection (Gedan et al., 2011; 

Temmerman et al., 2013), groundwater level and soil moisture regulation (Hefting et al., 

2004; Xiong et al., 2003), flood regulation (Acreman & Holden, 2013; Groot et al., 2002) 

and biodiversity support (Gibbs, 2000), nutrient cycling, water storage and flood 

abatement, and habitat provision (Mitsch and Gosselink, 2000). 

 

I.A.2. CONTAMINATION IN AQUATIC ECOSYSTEMS  

A healthy aquatic ecosystem is defined in such a way that human activities do 

not disturb the natural functioning (e.g., nutrient cycling) nor appreciably modify the 

system structural design (e.g., species composition). An unhealthy aquatic ecosystem, 

on the other hand, is defined with imbalanced occurred to the natural state due to 

anthropogenic impacts, either physical (e.g., streaming in abnormal hot water), chemical 

(e.g., applying toxic wastes at a concentrations where species suffer from harms or 

damages), or biological (e.g., supporting non-native species invasion).  

The aquatic environment as a whole is a very complex system which is the seat 

of some chemicals, physical and biological reactions, and this system is closely related 

to all the other systems or compartments (Westrich & Förstner, 2007). Because of the 

water cycle, aquatic ecosystems are likely to be contaminated by accidental or chronic 

pollutions. Excess of natural products and many human-made molecules are therefore 

expected to pollute aquatic ecosystems. Nutrients and contaminants transport via 

inland waters in polluted aquatic systems have been receiving increasing attention 

because these inland waters are the central support, the backbone of continuum linkage 
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between land and sea waters. In this hydraulic system of watersheds, the wetlands are 

playing an essential role as buffer zones for wastewater mitigation (Billen & Garnier, 

2007; Le et al., 2010).  

Long regarded as a passive conduit between land and ocean, inland water 

systems are significantly more complex and influential than previously believed 

(Böhlke et al., 2009). They do not only transport materials from land to sea, but they 

internally store sediments and liquid influents, support the food web of the aquatic 

environment and bring the water cleaning regulation for human needs.  

Wilson and Carpenter (1999) claimed that continental aquatic systems are in the 

middle of a tightly linked network of interests, regarding economy, politics, and 

environment, which can be proved by the numerous uses that human civilization 

harness from these systems. In contrast, those relying on the water source suffer from 

various contaminants (mineral, inorganic, and organic) during these uses. 

Sources of pollution of the aquatic environment 

As a sink for pollutants in the aquatic environment, the water-sediment interface, 

known to be one of the most vulnerable (Devault et al., 2009) receiving a hefty source of 

pollution from agricultural practices and metropolis areas. The accumulation of 

contaminants, such as nutrients, metals, or a persistent toxic organic compound (PCBs) 

in the water-sediment interface at levels that are not rapidly lethal may result in long-

term, subtle effects to the biota by direct uptake or through the food web.  

 Metallic pollution 

Trace metals, or potentially harmful elements (PHEs), among the most effective 

environmental contaminants (Bini and Bech, 2014) at the water-sediment interface, are 

raising concerns (Guo et al., 2012; Horowitz et al., 1999; Schäfer et al., 2009). They are 

considered as micro-pollutants since they are present in the various compartments of 

the environment in the trace state. Nevertheless, they are compounds that are 
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dangerous for living beings, both because of their toxicity and their persistence 

(Dirilegen, 2000; Chouteau, 2004) that drive to bioaccumulation processes.  

The metallic pollution can be due to various metals sources, such as aluminum, 

arsenic, chromium, cobalt, copper, manganese, molybdenum, nickel, zinc, cadmium, 

mercury, or lead. They are not degradable and accumulate in aquatic sediments or soils 

as very highly persistent compounds (Kermani et al., 2010). Some heavy metal ions (Pb, 

Hg, Cr, Cd, As, Mn...) are commonly found in industrial wastewater. Most metals are 

highly toxic to humans and animals. Since they are not biodegradable, they concentrate 

on the living bodies throughout the food chains. They can so reach very high rates in 

certain species consumed by the man, as the fishes. This "bioaccumulation" explains 

their extreme toxicity. The primary sources for aquatic environments are: 

- Industrial wastes (cadmium, chromium) of paper factories (mercury), 

factories of chlorine (mercury) and iron, etc... (currents and orpheline sites) 

- Agricultural fertilizers or residual muds of water-treatment plants, 

- Fungicides (mercury), 

- The fallout from atmospheric dust emitted during the incineration of waste 

(mercury) or combustion of gasoline (lead), 

- With the streaming of rainwater on roofs and roads (zinc, copper, lead) 

- Silver exploration in the rivers (mercury) 

 As very high resistant compounds, these metals cannot be reduced by chemical 

or microbial processes, so that they accumulate in the aquatic sediment or soil as a 

natural receptacle of all suspended matters that my transit by free running water. Being 

the most common toxic chemicals, PHEs such as arsenic, mercury, lead, or cadmium, 

etc. these metals are polluting aquatic systems and resulted in severe health problem to 

humans due to bioaccumulation along the trophic webs. 
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 Cadmium, as an example 

Cadmium is one of the common toxic metals found in freshwater ecosystem 

sediments that act as a final sink (N’guessan et al., 2009). Furthermore, cadmium, listed 

as a general and widespread metal pollutant that is toxic at a high level to humans and 

most plants (Barceló & Poschenrieder, 2003). The tendency of using Cd is on the rise in 

electroplating, coating, plastic manufacturing, and battery manufacturing industry. This 

metal has recently been responsible for the high risk of contracting osteoporosis and 

kidney diseases among several thousands of Tak residents (Thailand) due to the mining 

industry, which causes high levels of Cadmium reaching from 0.1 to 44 mg/kg in the 

area.  Besides, the amount of Cd in garlic and soy is also much higher than its standard 

from 12 to 126 times (Liu et al., 2005). Cadmium pollution was also recognized in some 

reservoirs that provide a primary freshwater source for daily human life. In South of 

France, Cd transfer to the downstream site of food farms is raising worries for the 

toxicity in many aquatic areas, as in the case of the Lot–Garonne-Gironde fluvial 

system. Cd concentrations in oysters from industrial zone of the Gironde estuary were 

found at 100 times higher than those oysters from non-industrial areas. The daily fluxes 

of total Cd range from 0.26 to 966 kg/day in the Lot River and from 0.31 to 1360 kg/day 

in the Garonne River (Audry et al., 2004). In Vietnam, Cd accumulation in seafood of 

estuarine site of the Cai River at Nha Trang is one of the many examples as well in this 

country. 

Micro-organic pollution 

Most of the organic pollutants are composed of primary herbicides (Dorigo et al., 

2007), which are used not only in agriculture but also for many other purposes (from 

household gardening to railway weed treatment). These herbicides can enter aquatic 

ecosystems as a result of terrestrial runoff, stormwater and to a lesser extent, of direct 

application and aerial spraying (Carter, 2000). The distribution of pesticides within the 

freshwater ecosystem depends upon the formulations in which they are carried and 
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upon the chemistry and physics of the environment where they settle down. Many 

pesticides are soluble in water. When pesticides enter the water in these forms, quick 

dispersion usually takes place. The emulsions spread throughout the water, but the 

dispersion can be affected by water currents, surface winds, and water temperature. 

Once in the water, the fate and transport of organic contaminants in aquatic systems are 

highly dependent on physical and chemical properties of the molecule (Imfeld et al., 

2009;  Suthersan et al., 2017) moreover, defined by:  

- the type and kind of external sources; 

- the transport of the substances via various elements of the hydrological cycle; 

- the chemical, biological, or biochemical transformation of these substances. 

Besides their severe risks to humans, these persistent contaminants are slowly 

reduced by chemical or microbial processes so that accumulation of mother molecules 

and metabolites may occur in the aquatic sediment, as a final receptacle, with long 

residence times (N’guessan et al., 2009). The POPs, such as pesticides, are exceptionally 

hazardous due to their toxicity to human beings by nature, their impact on non-target 

organisms, their bioaccumulation capability in the tissues of animals and humans via 

the food chain, and their long-term persistence in the environment. 

Atrazine, as an example 

Atrazine (2-chloro-4-(aminoethyl)-6-(aminoisopropyl)-s-1,3,5-triazine) is a 

photosynthesis inhibitors herbicide. It was used in pre- and post-emergence control of 

annual broad-leaved weeds and yearly grasses mainly in maize and sorghum but also 

for sugar cane, vines, lemon and banana among other crops. It is also used in non-food 

crops and at industrial sites such as roads and railways (Douglass et al., 2015; Smith et 

al., 2005). It was applied intensively during 40 years, and several tens of thousands of 

metric tonnes of atrazine are used every year in the word. Roughly 33 to 36 tones of 

atrazine are sold to the United States each year (Tillitt et al., 2010), where its 

concentrations (Henderson et al., 2006; Schreiner et al., 2016; Thelin & Stone, 2010) are 



   HOANG T.K. 2018 
 

 

37  

 

exceeding the European Union standard of 0.1 µgL-1 in surface fresh water. A monthly 

import of atrazine to Vietnam is about 250,000 USD in 2017 

(http://www.exportgenius.in/vietnam-imports-data/atrazine-import-data.php).  

Atrazine is a highly effective and moderately persistent organic pollutant. The 

average half-life of atrazine in soil (DT50) is 40 days (Kontchou & Gschwind, 1995; Sun 

et al., 2016) but depending on the various environments may be as long as 166 weeks, 

for example in sandy loam soils (Bowmer, 1991). The substance was found to be a major 

contaminant of water, polluting both surface water (Garmouna et al., 1998) and 

underground water, and finally resulting in its banning in European Union in 2004. 

Atrazine is suspected to be an endocrine disruptor, particularly in male frogs (Hayes et 

al., 2003) and to synergize the amphibian-sensitivity to virus infections, causing the 

decline of the amphibian population in the world (Forson and Storfer, 2006). 

As a moderately hydrophilic molecule (Graymore et al., 2001) used as a pre-

emergent herbicide, atrazine is moderately to highly mobile in soils, especially in soils 

having low clay and organic matter contents. Due to its low adsorption in soils or 

sediments (Koc = 128 mL.g-1) (Sun et al., 2010) and moderate aqueous solubility of 22 

mg L-1, residual atrazine, and its metabolites, show a strong potential risk of dispersion 

in aquatic environments (Gustafson, 1989).This behavious is confirmed by its persistent 

and robust occurence in aquatic environments with a weak affinity for soil organic 

matter  (Koc - the partition coefficient of the compound in organic matter over water ~ 

100 mL g-1) Even though it has been banned since several years in European Union and 

spite of its rapid disappearance from the areas sprayed, the repeated use of atrazine has 

resulted in atrazine and its metabolites accumulation in aquatic sediments. Atrazine is a 

highly efficient and moderately persistent organic herbicide (a lengthy soil half-life of 

60 to > 100 days) widely used in agriculture to control broadleaf and grassy weeds 

(Douglass et al., 2015; Smith et al., 2005), especially in the United States (Henderson et 

al., 2006; Thelin and Stone, 2010, Schreiner et al., 2016). Atrazine concentrations can 

exceed 0.1 µg L-1 in natural surface water (the European Union standard in surface fresh 
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water). In the Garonne rivers, sediment of the Malause reservoir downstream Toulouse 

Devault et al (2009) measured an average (n=19 samples) concentration of Atrazine 

0.128 (µg/g) in sediment fraction finer than 2 mm, with highest measured 

concentrations of 0.83 µg/g.  

Atrazine (ATR) is considered to break down with some difficulty in the soil 

(Kaufmann and Kearney, 1970). Microorganisms break down atrazine into 

deethylatrazine (DEA), deisopropylatrazine (DIA) and didealkylatrazine (DIDA) or 

hydroxyatrazine (HO-A), hydroxylatrazine (HA) and desethylhydroxyatrazine (DEHA) 

(Graymore et al., 2001) (Fig.I.1).  

Due to its low adsorption in soils or sediments (Koc =128 mL g-1) (Sun et al., 

2010), residual atrazine and its metabolites, such as DEA or DIA have a high potential 

to contaminate tap water, surface waters, groundwaters and adjacent soils (Kolpin et 

al., 1996; Lewis et al., 2009; Zaya et al., 2011) from agricultural soils via leaching and 

surface runoff (Douglass et al., 2017; Pascal- Lorber et al., 2011).  
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Figure I.1. Scheme of atrazine fate in the environment from fields to aquatic networks 

that shows the impact of microbial atrazine-degradation on the atrazine-residues 

transfer towards aquatic biotopes from INRA communication (Pascal-lorber & Laurent, 

in prep.) 

Atrazine has a molecular weight of 215.70 g/mol and a melting point between 

175-177 °C (Solomon et al., 1996). The water solubility of atrazine is 33µg/mL at 22 °C; 

the Log Kow is 2.68 at 25 °C (Solomon et al., 1996). This herbicide was stable to 

hydrolysis for 30 days at pH 5-9 and 25 °C. The aqueous photolysis half-life (T ½) for 

atrazine with a natural light measured was 17.5 hours at pH 7, 12 days under a Mercury 

lamp, and 45 days under a Xenon lamp (Solomon et al., 1996). The soil (Kd) and organic 

carbon partition, (Koc), coefficients for atrazine and its primary metabolites in a 

Maryland clay were reported as 2.46 and 87.0, respectively (Solomon et al., 1996). The 

presence of these biocides or their metabolites in soil, water, plants, and even the 

atmosphere, together with their potential pharmacodynamic properties, have harmful 

effects on the environment (fauna and flora) or human health. In countries belonging to 
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the European Union, regulations aim to reduce risks at the lowest level, but it is not the 

case everywhere. Some problems should now be overcome. 

Soil adsorption Coefficients 

Other indexes for atrazine adsorption and mobility in the sediment, including 

sorption coefficient (Kd) and soil organic carbon-water partitioning coefficient (Koc) 

were determined. The coefficient (Koc) has been so far used as a quantitative measure 

of the magnitude of the binding affinity of organic matter for atrazine. Also, this 

constant allows the calculation of the proportion of atrazine bound to organic matter, 

which is essential for predicting the fate of atrazine in soils and water bodies (Kulikova 

and Perminova, 2002). Soil adsorption coefficient (Kd) measures the amount of 

chemical substance adsorbed onto soil per amount of water (Linde, 1994). Since the 

adsorption occurs predominantly by a partition into the soil organic matter, it is more 

useful to determine a soil’s ability to adsorb in Koc (Linde, 1994). 

Kd (mL.g-1) =  
                               (

  

 
)

                                (
  

  
)
 

Koc (mL.g-1) = 
      

              
) 

 

Octanol/Water Partition Coefficient – Kow 

Lipophilicity of a pesticide is measured by the octanol : water partition 

coefficient (log Kow: the ratio of chemical that is soluble in octanol (organic or non-

polar solvent) divided by its concentration in water (a polar solvent)) (Linde, 1994). This 

value is a good indicator of a herbicide’s lipophilic or hydrophilic nature. 
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I.B. ECOLOGICAL ENGINEERING AS SOURCE OF 

NATURAL ATTENUATION PROCESSES FOR AQUATIC 

SYSTEMS 

I.B.1. ECOLOGICAL ENGINEERING AND ECOSYSTEM 

RESTORATION 

I.B.1.1. Ecological engineering 

 Ecological engineering is an emerging part of the environmental sciences 

integrating ecology and engineering knowledge and concerned with the design, 

monitoring, and construction of new sustainable ecosystems, which benefit of both 

human and nature  well-being (Mitsch & Jørgensen, 2004). It is also the practice of 

fitting environmental technology with ecosystems self-design for maximum 

performance (Odum & Odum, 2003), with the aim at (1) conserving and (2) restoring 

ecological systems, (3) modifying ecological systems to increase the quantity, quality, 

and sustainability of particular services they provide, or (4) building new ecological 

systems that would provide natural services. Those task without ecological engineering 

would otherwise be provided through more conventional engineering based on non-

renewable resources with high energy and economic costs (Barot et al., 2012). Thus, the 

objective of ecological engineering is to better understand the natural functioning of the 

ecosystem, to better favor their resiliences, and to seek solutions of bioremediation. In 

other words, ecological engineering plays a significant role in a sustainable society by 

providing benefits for humankind without destroying the ecological balance (Mitsch & 

Jørgensen, 2004). These approaches are seeking for solving environmental questions 

that are not only useful for our human well-being but also for aquatic systems 

conservation. 

Finding new solutions based on natural functions of ecosystems for climate 

change mitigation, pollution removal of ecosystems and others majors issues of 

environment has been recently generalized as an innovative concept of Nature-based 
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solutions (NBS) (Eggermont et al., 2015; Maes & Jacobs, 2017). Even though 

environmental management tools are now more and more numerous and complex, they 

include the simultaneous application of environmental technology, cleaner technology, 

environmental legislation, ecological engineering, and ecosystem restoration (Fig.I.2). 

Likewise, realizing nature-based solutions requires political, economic, and scientific 

challenges to be tackled (Maes & Jacobs, 2017). Ecological innovation such as ecological 

engineering is a key to designing nature-based solutions which effectively contribute to 

sustainable economic growth (Maes & Jacobs, 2017). 

 

Figure I.2. Environmental management strategy in the 21st century with the specified 

place for ecological engineering (Jørgensen & Bendoricchio, 2001) 

I.B.1.2. Restoration and rehabilitation of ecosystems 

Restoration 

The term ecological restoration has come into everyday language to describe 

operations carried out on the environment to repair damage, malfunctions, or 

improving existing ones. The standardized definition provided by the Society for 

Ecological Restoration (SER, 2004) is as follows: "Ecological restoration is the process of 
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assisting the recovery of an ecosystem that has been degraded, damaged, or destroyed". 

It also provides clear concepts, models, methodologies, and tools to assist practitioners 

in their practices to identify appropriate indicators of restoration success. Restoring 

natural processes is an intentional act, and the most effective ways accelerate ecosystem 

recovery about its specific composition, community structure, ecological functioning 

and hence resilience (Angeler et al., 2013; Spears et al., 2015). Restoration might relate 

directly to the provision of ecosystem services and securing biodiversity (Hooper et al., 

2005) and therefore “returns an ecosystem to a -as close as possible- approximation of 

its condition before disturbance” (the National Research Council – NRC, 1992).  

The benefits of restoration regarding conservation are apparent. The restoration 

of ecosystems is valuable because of its inherent capacity to offer people an opportunity 

to repair ecological damage and thus to bring economic, environmental, health, and 

food benefits to improve the human well-being (Meli et al., 2014). The focus of 

ecosystem restoration has recently shifted from pure rehabilitation objectives to both 

improving ecological functioning and the delivery of ecosystem services (Friberg et al., 

2017).  

Rehabilitation  

Rehabilitation emphasizes the repair and recovery of processes and therefore, the 

products and services of the ecosystem, while restoration also aims to restore pre-

existing biotic integrity regarding the specific composition and structure of the 

communities. Rehabilitation involves ecosystems that have undergone more significant 

degradation and for which the thresholds of biotic and even abiotic irreversibility have 

been crossed. The objective is to improve or restore specific processes or functions with 

as a model the state of the ecosystem preceding degradation. Interventions that 

influence the physical environment, such as erosion control, improved soil resources or 

terrain remodeling, are then implemented to repair degraded sites. These interventions 
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sometimes make it possible to return to the original ecosystem, but most often lead to 

an alternative state. 

I.B.2. WETLAND AS FOCUSING SITES FOR ECOLOGICAL 

ENGINEERING 

Wetlands are known for their provisioning of ecosystem services and thus have 

great potential to be used as nature-based solutions to address a variety of 

environmental, social and economic challenges (Thorslund et al., 2017). 

Ecological engineering strategies may be based on one or more of the following 

classes described by Mitsch & Jørgensen (Table I.2, 2004). Those strategies that are 

particularly suitable for wetland restoration are classes (1) and (2) below: 

(1) Ecosystems services are used to reduce or solve a pollution problem that 

otherwise would be (more) harmful to other ecosystems. A typical example is the use of 

natural wetlands for wastewater treatment.  

Natural wetlands are well known for their ability to remove sediments, 

nutrients, and other contaminants from water. They have been used as convenient 

wastewater discharge sites treatments  (Ballantine et al., 2017; Hu et al., 2017; Kadlec & 

Wallace, 2009; Zedler & Kercher, 2005). 

 (2) Ecosystems are imitated or copied to reduce or solve a pollution problem, 

leading to constructed ecosystems. Examples are artificial fishponds and constructed 

wetlands for treating wastewater or diffuse pollution sources.  

Wetlands construction to treat various wastewaters has been accelerating around 

the world since 1985 (Kadlec & Wallace, 2009) and successfully applied for decades as a 

sustainable wastewater management option worldwide (Wang et al., 2017). Constructed 

wetlands for water treatment are complex, integrated systems of water, plants, animals, 

microorganisms, and the environment (EPA, 2016). The use of natural wetlands for 

wastewater treatment has recently became limited due to being protected by Federal 
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law, while constructed wetlands provide a relatively simple and inexpensive solution 

for controlling many water pollution problems without detrimentally affecting natural 

wetlands resources (Kadlec & Wallace, 2009). Creating and restoring constructed 

wetlands is a typical example of imitating or copying an existing ecosystem by creating 

or restoring one that mimics field patterns of the ecosystem to solve a pollution problem 

(Mitsch & Gosselink et al., 2000).  

(3) The recovery of ecosystems after significant disturbances. Examples are coal 

mine reclamation and restoration of lakes, estuaries, and rivers. 

(4) The use of ecosystems for the benefit of humanity without destroying the 

ecological balance (i.e., the utilization of ecosystems on an ecologically sound basis). 

Typical examples are the use of integrated agriculture and development of organic 

agriculture; this type of ecological engineering finds wide application in the ecological 

management of renewable resources. 

Table I.2.  

Examples of ecological engineering approach for terrestrial and aquatic systems 

according to types of applications (Mitsch & Gosselink et al., 2000). 

Ecological Engineering Approaches Terrestrial 

Examples 

Aquatic Examples 

1. Using ecosystems to solve a 

pollution problem 

Phytoremediation Wastewater 

wetland 

2. Imitating or copying ecosystems to 

reduce or solve a problem 

Forest restoration Replacement 

wetland 

3. Recovering an ecosystem after 

significant disturbance 

Mine land 

restoration 

Lake restoration 

4. Existing ecosystems are modified in 

an ecologically sound way 

Selective timber 

harvest 

Biomanipulation 

5. Using ecosystems for benefit 

without destroying the ecological 

balance 

Sustainable agro-

ecosystems 

Multi-species 

aquaculture 
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I.B.3. PHYTOREMEDIATION 

The use of plants for bioremediation purposes notably relies on their ability to 

degrade or extract some contaminants (Moore et al., 2013; Murphy & Coats, 2011; Qu et 

al., 2017; Vangronsveld et al., 2009). Phytoremediation is defined as the use of plants to 

contain, degrade, remove, or transform pollutants into less toxic compounds (Fulekar, 

2012). Although plants have long been used for soil decontamination, significant 

scientific discoveries over the last decade have contributed to improve the process and 

extend its scope. It can be used to clean up metals, pesticides, solvents, explosives, 

crude oil and other contaminants from soils, water (surface and underground water), 

and gaseous pollutants. When the plants have absorbed and accumulated 

contaminants, they can be harvested and discarded. 

 

Figure I.3. Different types of phytoremediation process 

Phytoremediation of inorganic and organic pollutants may involve several 

processes (Paz-Ferreiro et al.,  2014): 
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(I) phytoextraction: use of plants to extract contaminants from the soil and 

concentrate them in harvestable plant’s tissues. Phytoextraction is the absorption and 

translocation of contaminants by plant roots into the portions of the plants (shoots) that 

can be harvested and burned energy and recycling the metal from the ash. 

(II) rhizofiltration: use of roots to absorb and sequester pollutants from 

contaminated water, 

(III) phytostabilization: use of plants to prevent erosion and to immobilize 

pollutants by limiting their mobility and availability in the surface layers, in particular 

avoiding their migration to the surface and underground water, 

(IV) phytovolatilization: use of plants to extract pollutants from the soil and 

convert them into volatile compounds 

(V) phytodegradation: use of plants to degrade soil organic pollutants by plant 

tissues. 

(VI) rhizodegradation (phytostimulation): use of plants to degrade organic 

contaminants in the rizhosphere thanks to microbial activity surrounding the roots.  

(VII) phytodesalination: use of plants to remove excess salts from saline soils by 

halophytes. 

In these ways, plants may be viewed as hyperaccumulators, with several species 

known to accumulate >100 mg.kg-1 Cd, Cr, Co or Pb; or >1000 mg.kg-1 Ni, Cu, Se, As or 

Al; or >10 000 mg.kg- Zn or Mn in their above-ground biomass (dry weight) (Gifford et 

al., 2007). Phytoremediation was demonstrated to be efficient in removing both 

inorganic and organic compounds contaminated waters (Favas et al., 2014; Lyubenova 

& Schröder, 2011), sediments (Klink et al., 2013; Pandey et al., 2014; Sasmaz et al., 2008; 

Weis & Weis, 2004) or soils (Leveque et al., 2013).  
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Biomechanism of heavy metal removal by plants 

During plants' lifespan, both macronutrients like N, P, K, S, Ca, and Mg, and 

micronutrients such as Fe, Zn, Mn, Ni, Cu, and Mo are considered essential. Plants have 

undergone evolution to develop mechanisms in which they absorb, distribute, and store 

the nutrients at various levels. An example is a protein, which serves as transportation 

for metal through plants' membranes. Another characteristic of these mechanisms is 

selectiveness. Metal ions are kept concentrated at the cell level, and in plants process of 

ions uptake, some ions types are more preferred than others.  

 Roots make up 20 - 50% of plant biomass; it absorbs the elements in plant tissues 

(except carbon) from the soil and transports them to the above-ground biomass. The 

mobility of metallic elements in the soil is following different pathways: 

 - Molecules which complex with metals may exist in the form of complexes in the 

root and soluble metals in the soil. The process of extracting metals by plants is 

primarily performed by complexion (Dang, 2009). 

 - The roots can reduce the concentration of metal ions in the soil as a response to a 

special need for the plant metabolism, and the agent may increase the beneficial 

properties of the metal. Deficiency of Fe or Cu elements in Pea plants, for example, 

increased the ability to remove Cu2+ and Fe3+ ions from soil (Dang, 2009). 

 - By soil acidification, the roots can dissolve heavy metals in the soil and push the 

metal ions from the complex (Dang, 2009). 

 - The roots can coordinate with rhizosphere microorganisms (mycorrhizal fungi 

or bacteria living on the roots) to enhance the absorption ability of metals in the soil. 

Microbial populations are higher in the rhizosphere than in the root-free soil. This 

results from a symbiotic relationship between soil microorganisms and plants. This 

symbiotic relationship can enhance some bioremediation processes. Plant roots also 

may provide surfaces for sorption or precipitation of metal contaminants (Sas-

Nowosielska et al., 2008). 
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 Typha latifolia – a suitable wetland plant for metal and pesticides 

bioaccumulation 

Among aquatic macrophytes, Typha latifolia is a common wetland plant that 

grows broadly in tropical and warm regions with a high capacity for uptaking heavy 

metals into its body. Sasmaz et al., (2008) indicated that the Typha latifolia L. root system 

was suitable for metal bioaccumulation. His results also showed that T. latifolia L. in 

contaminated water and sediments or soil could also be used as bio-monitoring for Zn, 

Ni, Cu, Pb, Co, Mn and Cd (Sasmaz et al., 2008). T. latifolia also has capable of 

significantly remove atrazine molecules generating flows between the soil and the root 

system (Moore et al., 2013), or convert atrazine to other metabolites, such as 

hydroxyatrazine, DEA, and DIA (Mezzari & Schnoor, 2006). 

 

I.B.4. BIOTURBATION 

Bioturbation is driven by the activities of invertebrates in the sediment. It is a 

natural process defined as “all transport processes carried out by animals that directly 

or indirectly affect sediment matrices” (Kristensen et al., 2012). Bioturbation is the 

source of significant changes in biological and physicochemical properties of soils and 

sediments (Baranov et al., 2016; Kristensen et al., 2012; Peterson et al., 1996), as well as 

several types of biotransports (Gerino et al., 2003).  

I.B.4.1. Different types of bioturbation 

The bioturbation processes include particle reworking and burrow ventilation 

(Delmotte et al., 2007; Kristensen et al., 2012) depending on the species or functional 

group of bioturbators. Four major types of particle reworking conducted by benthic 

fauna in aquatic environments are being identified that are common in marine and 

freshwater sediment (François et al., 2002; Gerino et al., 2003) (Fig. I.4):  
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(A)Biodiffusors: Organisms with activities that usually result in a constant and 

random local sediment biomixing over short distances resulting in transport of particles 

analogous to molecular diffusion.  

 (B)Upward conveyors: Vertically oriented head-down species at depth in the 

sediment. They transport particles from deep horizons to the sediment surface. The 

particles are returned to bottom by gravity under fecal pellets accumulation at the 

sediment surface 

 

Figure I.4. Four main categories of particle reworking by bioturbation (François et al., 

2002). 

 (C)Downward conveyors: Vertically oriented head-up feeders actively select 

and ingest particles at the surface and egest this non-locally as feces in deeper sediment 

strata  
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(D)Regenerators: excavators that dig and continuously maintain burrows in the 

sediment and by doing so transfer sediment from depth to the surface  

I.B.4.2 Tubificid worms – a typical example of bioturbation in aquatic systems 

Among the benthic invertebrate community that inhabits the freshwater 

wetland, the oligochaetes are the organism among the most resistant to chemical 

perturbations.  It is widely known that Tubificid Oligochaeta (ITIS - Integrated 

Taxonomic Information System), is at the source of bioturbation processes that are 

related to conveying biotransport of sediment in the majority of the freshwater deposit 

sediment with fine granulometric (McCall & Fisher, 1980). Tubificids are described as 

small (vertically) burrowing worms (which are often about 2-5 cm long and roughly 1 

mm in diameter), living in the sediment-water environments. They have located 

vertically in the surface muddy sediments with a head-down orientation so that they 

are feeding at depth in the sediment and are continuously egesting its fecal pellets at the 

surface of the sediment. With large densities of tubificids in aquatic sediment, they are 

generating the conveyor belt phenomena. During their activities, they consume and 

dispose sediment particles from the bottom layers to the superficial sediment layers 

(Cunningham et al., 1999) in a typical conveying process with related bioadvection of 

the surrounding sediment.  Bioadvection is a process with the similarity of the natural 

sedimentation but with higher rates of sediment burial due to the tubificids that 

defecate at the sediment surface so that the surface sediment in buried under deposition 

of large quantities of fecal pellets. This bioadvection is a downward advection of the 

water-sediment interface under the influence of large densities of the tubificid 

population, as head-down deposit feeders. This biotransport modifies the distribution 

of fine particles that increases in the surface layer where fecal pellets accumulate (Ciutat 

et al., 2006). 

 

http://en.wikipedia.org/wiki/Oligochaeta
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I.B.4.3 Influence of bioturbation on the fate of aquatic pollutants 

Bioturbation and related biotransports may significantly influence the 

physicochemical properties of sediment (Mermillod-Blondin et al., 2001, 2002, 2003, 

2004; Pigneret et al., 2006), and the contaminant incorporation into the sediment 

(Delmotte et al., 2007; Devault et al., 2009). In most cases, bioturbation effects on the 

physical, chemical, and biological properties of sediment-water result in increased 

mineralization rate of organic matters in marine sediment (Gerino et al., 1998). By 

changing the ratio between sediment and water, bioturbation also possibly modify the 

vertical distribution of pollutants in the sediment column (Anschutz et al., 2012; Ciutat 

et al., 2007, 2006; Delmotte et al., 2007; Gerino et al., 2014; Hoang et al., 2018; Hölker et 

al., 2015; Kristensen et al., 2012; Teal, Parker, & Solan, 2013). Bioturbation, generated by 

invertebrates’ benthic activities, therefore is controlling the fluxes of organic matter and 

nutrients through water-sediment interface, and the contaminant incorporation into the 

sediment.  

The redistribution of the sediment particles due to bioturbation could lead to a 

change in its grain size in different sediment layers. The bioturbation activity can 

modify the vertical granulometric distribution of the sediment. Other conveyors 

organisms are responsible for a granulo-reclassification of particles: they ingest the 

finest particles at depth and reject the fecal pellets on the surface, resulting in a 

depletion of fine particles in depth and enrichment in the surface layers. This is the case 

of the polychaetes Arenicola marina (Rasmussen et al., 2000) and Naineris laevigata in the 

marine environment; tubificids in freshwater (McCall & Fisher, 1980; Ciutat et al., 2006); 

and earthworms in the terrestrial environment. Fecal pellets produced by conveyor 

organisms are often agglomerated by mucus, generating larger particles that increase 

the porosity of this layer of fecal pellets and, together, the fluxes through the interface 

by simple diffusion. It is important to emphasize that these fecal pellets contain a 

relatively high proportion of low-density organic matter. Also, the balls are not bonded 

together, thus reducing the compactness and cohesively compared to the non-
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bioturbated sediment, depending on the type of bottom (sandy or muddy) considered. 

This layer of fecal pellets is systematically more abundant in water, which will facilitate 

its resuspension by currents or other organisms (McCall & Fisher, 1980; Rhoads & 

Young, 1970). Downward transport of the surface sediment results from the 

accumulation of fecal pellets at the sediment surface, simultaneously with sediment 

depression in deeper layers due to sediment ingestion by the worm feeding (Anschutz 

et al., 2012; Ciutat et al., 2006). Consequently, bioturbation creates two distinct layers in 

the bioturbated sediment: a top layer corresponding to the fecal pellets accumulation 

from ingested anoxic sediment, and a bottom layer of with increasing particle size 

(Anschutz et al., 2012). 

Some burrowing species can generate resuspension of sediment particles during 

the construction of their burrows: this is the case of Hexagenia rigida larvae in freshwater 

(Saouter, 1990) or the amphipod Corophium volutator in an estuarine environment 

(Ciarelli et al. 1999). The presence of galleries and burrows leads to an increase in the 

contact surface between the sediment and supernatant water (Charbonneau & Hare, 

1998) and therefore a potential increase in the exchange of matter between these two 

compartments. The digging of the galleries increases the porosity and the water content 

of the sediment. Compaction, the roughness of the bottom surface, ease of erosion, or 

permeability is also modified (McCall, 1979; McCall & Fisher, 1980; Sandnes et al. 2000). 

The biological activity will, therefore, involve both transport of particles and molecules 

associated with them and the transport of interstitial water and solutes. Bioirrigation of 

burrows will increase the potential for exchange of material between interstitial water 

and the water column (Figure I.5.), for example, by increasing the depth of the oxic 

zone. This will profoundly alter the chemistry of bioturbated sediment layers, especially 

when mixing between areas with different redox potentials, as well as interface 

chemistry, which is the critical area for flow control between the column of water and 

sediments.  
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Bioadvection, on the other hand, will bring into contact two geochemically very 

different zones: a deep reduced zone and the oxidized surface zone (Fisher & Matisoff, 

1981). Bioturbation increases the area of the oxic-anoxic interface leading to the 

alteration of the redox zonation geometry and potential increase of the number of sites 

suitable for coupled nitrification-denitrification reactions (Fig.I.5). 

 

Figure I.5. Influence of bioturbation and bioirrigation on redox reaction in the sediment 

matrix (stimulated by Aller, 1994) 

The bioturbation process, carried out by the invertebrate species, Oligochaetes 

Tubificidae Tubifex tubifex, generates vertical material flow by biotransport and 

stimulating the activity of microbial communities (Ciutat et al., 2007; Devault et al., 

2009; Anschutz et al., 2012). A previous study showed that tubificids increased 

cadmium scavenging into the sediment because of the renewal of the adsorption site at 

the sediment surface (Ciutat et al. 2005). Anschutz et al., (2012) showed that 

bioadvection by tubificid was a pump of dissolved sulfate from the surface to the anoxic 

sediment. Influence of bioturbation and bioirrigation on redox reaction in the sediment 

matrix was reported by Aller et al. (1994). Bioturbation also can control the fate of 

organic matter and nutrients as well as fluxes of nutrients between sediments and water 

(Hölker et al., 2015) and therefore facilitate the transformation of pollutants (Gerino et 

al., 2014; Hölker et al., 2015; Monard et al., 2008). 
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I.B.4.4 Resistance and tolerance of invertebrate animals towards pollutants 

Some invertebrate oligochaetes are very widely distributed and frequently 

dominant in freshwater benthic communities; they have a high level of resistance to 

unfavorable treatments, especially organic pollution associated with severe hypoxic 

treatments (McCall & Fisher, 1980). An indoor microcosm carried out by Ciutat et al., 

(2005) tested the bioaccumulation kinetics of Cd in tubificids worms during a 56-day 

exposure period. As a consequence, high bioaccumulation levels could be found in the 

worms (50 mg.g_1 dry wt.) concerning with their detoxification or sequestration 

processes under polluted environment. Whitley (1967) reported that tubificids had high 

tolerance limits for solution contaminated by Pb and Zn. The median tolerance limit for 

Pb and Zn was 49 and 46 mg/1, respectively. Several authors have described resistance 

to high metal accumulation levels for other Oligochaeta species, based on efficient 

detoxification mechanisms, such as intracellular compartmentalization, involving 

lysosomes, sphero crystals, and/or metal-containing granules (Brown, 1982); metal 

inactivation by binding to metalloproteins (Dallinger, 1994) or metallothionein-like 

proteins (Gillis et al., 2002). 

For organic compounds, both acute and chronic toxicity has been investigated in 

some invertebrate worms. Dad et al., (1982) reported that tubificids worms (a mixture of 

T. tubifex and L. hoffmeisteri) were able to tolerate high concentrations of insecticides 

with Presumable Harmless concentration of Furadan 3G found to be at 4.3742 and 

3.2167mg/l, respectively.   

Earthworms in general (especially E. fetida) are highly resistant to many chemical 

contaminants including heavy metals and organic pollutants in soil and have been 

reported to bio-accumulate them in their tissues. Earthworms which ingested TCDD 

(2,3,7,8-tetrachlorodibenzo-p-dioxin) contaminated soils were shown to bio-accumulate 

dioxin in their tissues and concentrate it on average 14.5 fold (Satchell, 1983).  

 



   HOANG T.K. 2018 
 

 

56  

 

I.B.5. COMBINED EFFECTS OF BIOTURBATION AND 

PHYTOREMEDIATION AS A BIOLOGICAL PROCESS FOR 

POLLUTANTS REMOVAL IN AQUATIC SYSTEMS 

  With the rise of sustainable management, the development of useful tools for 

rehabilitation of aquatic sites with contaminated water and /or sediment, and the 

purification of water as a vital resource for urban areas has become a significant 

concern. Investigation of innovative solutions based on natural functions of ecosystems 

to develop safer and cleaner technologies is one of the current challenges of ecological 

engineering. Sustainable bioremediation techniques are a part of ecological engineering 

that involves biodiversity in management strategies focusing on the reduction of 

pollutant loads of ecosystems. Although current bioremediation relies on a 

multidisciplinary approach that crosses hydrological, chemical, physical, 

biogeochemical and ecological processes (Gifford et al., 2007), the integration of 

different ecological engineering methods, such as bioturbation and phytoremediation 

was seldom explored so far.  

Bioturbation has been proved to promote pollutant fluxes in aquatic sediments, 

while phytoremediation was demonstrated to be efficient in removing both inorganic 

and organic compounds contaminated waters, sediments or soils. However, 

investigation of innovative bioremediation strategies for polluted aquatic sites based on 

the combination of these two processes to enhance the efficiency of contaminant 

removal has not been performed thoroughly. Up to now, few combined solutions are 

recognized within the international scientific community. Few ecological researches, 

however, has focused on structure and relative abundance of invertebrate communities, 

as a source of bioturbation, in associations with phytoremediation by riparian plants 

(Hann, 1995) or influences of these both ecological tools on biogeochemical processes 

(Mermillod-Blondin et al., 2008; Thomaz et al., 2008)) rather than their interactions in 

aquatic pollutants removal.  Mermillod-Blondin et al. (2008), who studied on relative 

influences of Tubifex tubifex and Myriophyllum spicatum (a submersed riparian plant), 
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suggested that the bioirrigation process by the invertebrate species and radial oxygen 

loss due to the macrophyte plant’s activity are major functional traits affecting 

biogeochemical functioning at the water-sediment interface of wetlands. 

Recently, positive and complementary influences of aquatic bioturbation 

combined with phytoremediation process for enhancing cadmium fluxes from 

overlying water to sediment and then into plant’s root system have been demonstrated 

(Hoang et al., 2018). The efficiency of phytoremediation has been largely demonstrated 

as a bioremediation engineer on heavy metal such as lead, cadmium, copper, arsenic 

(Leveque et al., 2013; Lyubenova & Schröder, 2011; Pandey et al., 2014), but with more 

seldom demonstrations on  the organic compounds, such as atrazine (Ibrahim et al., 

2013). Phytoremediation of persistent organic pollutants (POP) notably relies on their 

ability to take up, accumulate, or detoxify organic compounds or their indirect role in 

stimulating the soil microbial or fungal activities in the breakdown of organic 

compounds (Pascal-Lorber et al., 2011). Stated otherwise, although invertebrates and 

riparian plants often are both key players in biogeochemical processes occurring at the 

water-sediment interface of aquatic ecosystems, the impacts of the invertebrate 

bioturbation on the transfer and transformation of the pollutants, such as inorganic 

and/or organic compounds by riparian plants for bioremediation purpose are still 

remains understudied.  

I.B.5.1 The potential to inorganic pollutants remediation 

 Most of the toxic metals belong to an insoluble form and are difficult to move 

freely in the vascular system of plants. Most of them exist in the form of complexes, 

such as sulfate, carbonate or phosphate precipitates. Toxicity of metals in soil depends 

not only on the environment and soil pH, flooding and organic matter content, but it is 

also affected by the initial chemicals already existing in the sediment and other forms of 

existence of fauna and flora in the soil system. 
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Note that biogeochemical processes, including the exchange of materials 

between the water-sediment interface as well as their transport within the sediment 

(Liu et al., 2006), which are considerably impacting on contaminants behavior in aquatic 

environment, are playing an essential role in designing and developing remediation 

systems (Piwoni & Keeley, 1990; Suthersan et al., 2017). In the other hand, sediment-to-

plant mobility of pollutants, such as potentially harmful elements, or plant’s 

phytoremediation potential, which can be assessed by using enrichment coefficients 

(EC) (Ravanbakhsh et al., 2016), transfer coefficient (Coumar et al., 2016), or transfer 

factor (Cheng et al., 2015), etc., depends not only on characteristics of plant species or 

plant parts, but also on physicochemical properties of sediment matrix (Antoniadis et 

al., 2017). Within the sediment matrix, the pore water is the most active component 

where the transfer and transformations of contaminants are taken place (Li et al., 

2016b). Plants only uptake/accumulate metals in soluble (bioavailable) forms as free 

metal ions, soluble metal complexes, or adsorbed form to inorganic soil constituents 

(Sheoran et al., 2016). Bioavailability refers to the ability of a chemical to be absorbed by 

an organism. It can exist in three different forms: (1) dissolved, (2) sorbed to biotic or 

abiotic components and suspended in the water column or deposited on the bottom, 

and (3) incorporated (accumulated) into the organisms (EPA, 2000). According to 

Sposito (1989), a chemical element is bioavailable if it is present as, or can be 

transformed readily to, the free-ion species, if it can move to plant roots on a time scale 

that is relevant to plant growth and development, and if once absorbed by the root, it 

affects the life cycle of the plant. Bioavailability of metals to plant roots is considered as 

the critical factor limiting the efficiency of phytoextraction (Felix, 1997). Metal(loid) 

bioavailability is influenced by biokinetics, organism behavior and physiology, and 

sediment chemistry, particularly factors that impact the partitioning between aqueous 

and solid phases and metal speciation (Simpson & Batley, 2007).  

Previous studies have demonstrated that bioturbation enhances the 

bioavailability of inorganic pollutants by affecting physicochemical properties of the 
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water-sediment interface as well as sediment matrix, habitat for aquatic invertebrate 

animals. Indeed, bioturbation modifies sediment particle size, porosity, water content, 

nutrient content, turbidity, TOC, etc., of the overlying water and sediment (Anschutz et 

al., 2012; Ciutat et al., 2006; Mermillod-Blondin et al., 2008). On the other hand, the 

bioturbation of sediments by large benthic invertebrates alters sediment redox 

chemistry by mixing pre-stratified zones in the sediment, and increasing the 

penetration of electron acceptors, such as dissolved O2, NO3- and SO42- into anoxic 

sediment (Aller et al., 2001). The geochemical changes in bioturbated sediment can 

affect the behavior of metals (Gilbert et al., 2007). Redox changes can alter metal binding 

affinities between the solid and dissolved phases, significantly modifying the speciation 

and bioavailability of most metals in sediments (De Jonge et al., 2012). The changes in 

redox potential, pH, organic matter, and porosity under bioturbation effects can 

influence the sorption capacity of the pollutant on the sediment particles and thus 

change the solid/liquid partition equilibrium of metals, e.g. Zn and Cd (Cheng & Wong, 

2002; Shaheen et al., 2016; Shaheen et al., 2014; Yu et al., 2005). Via its influence on 

physicochemical properties of sediment, bioturbation shifts the metal binding affinities 

between the solid and dissolved phases and can also significantly modify the speciation 

and bioavailability of most metals in sediments (De Jonge et al., 2012; Remaili et al., 

2015). Combining the bioadvection effect with the Cd source in the overlying water 

results in doubling the pollutant loading in sediment due to the bioturbation effect 

(Ciutat et al., 2005, 2006, 2007). Li et al., (2016b) demonstrated that Pb distribution and 

migration in the contaminated sediment is due to the changing of sediment structure 

and sediment particles caused by tubificid bioturbation. Delmotte et al., (2007) reported 

that cadmium was found within the surface layers of sediments (few millimeters from 

the surface) under bioturbation conditions, and then via bioadvection was transferred 

into the deeper layer. Consequently, bioturbation generates material fluxes via 

biotransportation of sediment and associated contaminants through the water-sediment 

interface and inside the inhabited layer that are estimated to double the incorporation of 
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these contaminants into the sediment (Anschutz et al., 2012; Ciutat et al., 2006; Ciutat et 

al., 2007; Delmotte et al., 2007; Gerino et al, 2014; Hölker et al., 2015; Kristensen et al., 

2012; Teal et al., 2013).  

I.B.5.2 The potential to organic pollutants remediation 

Translocation of organic compounds in sediment is governed by lipophilic 

properties such as the octanol-water partition coefficient, Kow. Herbicide with a low log 

Kow value such as 0.6 is more water-soluble (hydrophilic or polar), while a herbicide 

with a high log Kow value, such as 2.61 (atrazine) is more lipid soluble (lipophilic). 

Pesticides absorption by plant roots is typically characterized by rapid initial entry to 

the tissue. Root absorption capacity is often expressed regarding the root concentration 

factor (ECR). ECR value < 1.0 indicates incomplete permeation of the tissue, whereas a 

value > 1.0 indicates accumulation in the tissue.  

Atrazine, for example, has a log Kow of 2.56 at 25 °C,  and Topp et al. (1986) 

indicated a positive correlation between initial absorption rates, enrichment coefficient 

of pesticides for plant root (ECR) and lipophilicity (Kow coefficient). Polar compounds 

enter the root cells less rapidly and are initially restricted to the free space, resulting in 

ECR of 0.6 – 1.0. Lipophilicity compounds, on the other hand, enter the root cells rapidly 

and can accumulate in lipid-rich domains in the tissue, resulting in a greater value of 

ECR (Topp et al., 1986). Sorption of organic compounds to organic matter lowers its 

bioavailability for a plant (Binet et al., 2006). Partition coefficient (Koc) has been so far 

used as a quantitative measure of the magnitude of the binding affinity of organic 

matter for pesticides. This constant allows measuring the mobility of a substance in soil 

or sediment (from sediment particles to sediment pore water) when calculating the 

proportion of the substance bounding to organic matter thus predicting the fate of 

organic compounds in soils and water bodies (Kulikova & Perminova, 2002). A very 

high value of Koc means it is strongly adsorbed onto soil and organic matter and does 

not move throughout the soil. A very low value means it is highly mobile in soil. It has 
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been demonstrated that bioturbation can control the fate of organic matter and 

nutrients via digestion (Hölker et al., 2015; McCall & Fisher, 1980; Mermillod-Blondin et 

al., 2001) and therefore facilitate the mobility (Farenhorst et al., 2000a, 2000b) and 

transformation of pollutants (Gerino et al., 2014).  

On the other hand, plants provide a substrate (roots, stems, and leaves) as a 

habitat for microorganisms that they can grow, break down organic materials, and 

uptake heavy metals. Degradation of pesticides can include photolysis, chemical 

transformations and biological transformation (Stangroom et al., 2000), of which 

microbial processes usually dominate (Vink & Van der Zee, 1997). The interactions 

between the plants and microorganisms that live in the soil can also contribute to 

phytoremediation, often called rhizosphere bioremediation. The importance of the 

rhizosphere microbial communities for the breakdown of organic contaminants was 

described by Anderson et al, (1994). 

The degradation of the organic compounds such as herbicides mostly occurs in 

wetland areas (Mudhoo & Garg, 2011) or in topsoils (Douglass et al., 2015), where a 

physical (photo-oxidation), chemical and biological degradation processes may occur. 

Atrazine-degrading microbial communities (Krutz et al., 2012), as well as other 

important chemical factors (soil pH, organic material, and moisture) exerting controls 

on the plant up taking, (Wehtje et al., 1983), have been considered as the primary mode 

of the attenuation. Soil microbial communities play a crucial role in biodegradation of 

the s-triazine herbicides such as atrazine into metabolites (Udiković-Kolić et al., 2012; ). 

As a growth substrate (C and/or N source), atrazine is used by microorganisms via 

catabolic pathways of xenobiotic due to atz/trz genes coding for the enzymes 

responsible for the mineralization (Udiković-Kolić et al., 2012). Atrazine-degrading 

bacteria typically include members of genera Pseudomonas, Acinetobacter, Agrobacterium, 

Arthrobacter, Rastonia and Norcardioides (Strong et al., 2012), as well as some fungi such 

as Aspergillus, Rhizopus, Fusarium, Penicillium, Phanerochaete (Mougin et al., 1994; Islas-

Pelcastre et al., 2013).  
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Typha latifolia, with rapid growth and high resistance in polluted environments, 

shows the capacity to significantly remove atrazine molecules by generating flows 

between the soil and the root system (Moore et al., 2013). This plant, as other species 

also converts atrazine to other metabolites, such as hydroxyatrazine, DEA, and DIA 

(Mezzari & Schnoor, 2006). The bioturbation type, carried out by the conveyor species 

(Gerino et al. 2003), such as Oligochaetes Tubificidae, generate vertical material flow by 

biotransport and stimulate the activity of natural heterotrophic microbial communities 

(Gerino et al., 2007, Ciutat et al., 2007; Devault et al., 2009; Anschutz et al., 2012), and the 

processing of organic matter in aquatic sediments (McCall & Fisher, 1980; Mermillod-

Blondin et al., 2001). The flux dispersion by the oligochaetes also enhanced both aerobic 

and anaerobic microbial activities (Mermillod-Blondin et al., 2001), in which 

heterotrophic bacteria in the sediment has a significant correlation with the presence of 

tubificid worms (McMurtry et al., 2011). Likewise, the organic matter modification by 

earthworms during the soil bioturbation also positively impacted biodegradation by 

increasing atrazine adsorption on their microsites (Farenhorst et al., 2000; Kersanté et 

al., 2005). Starting from this evidence, previous studies with contaminated aquatic 

sediment began to show how bioturbation could also facilitate the transformation of 

micro-organic pollutants (Gerino et al., 2014). Previous studies also reported the 

modification of size, structure, and activity of the indigenous atrazine-degrading 

bacteria group (Monard et al., 2008) or acceleration of atrazine mineralization in 

bioaugmented soil in a relationship with earthworms bioturbation (Kersanté et al., 

2005).  

These both microbial and chemical factors that directly influence the 

biodegradation of the pesticide can be positively altered by the presence of 

independently natural processes, such as bioturbation (Hölker et al., 2015; Monard et 

al., 2008), phytoremediation (Moore et al., 2013; Murphy & Coats, 2011; Qu et al., 2017). 

The bioturbation process, carried out by the invertebrate species, Oligochaetes Tubificidae, 

has a capacity of not only generating vertical material flow by biotransport, but also 
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stimulating the activity of microbial communities (Anschutz et al., 2012; Ciutat et al., 

2007; Devault, Delmotte, et al., 2009). Previous studies also reported the modification of 

size, structure, and activity of indigenous atrazine-degrading bacteria (Monard et al., 

2008) or acceleration of atrazine mineralization in bioagmented soil in a relationship 

with earthworms bioturbation (Kersanté et al., 2005). 

I.B.5.3 What’s about the terrestrial systems? 

Similar to aquatic invertebrate, soil bioturbator animals (earthworms) can also 

modify the soil characteristics through their bioturbation activities such as burrow 

creation, production of cast thus the mixing of litter and soil (Nahmani et al., 2007).  

Besides the accumulation in their tissues and their survivability in metals (Cd, Cu, Zn 

and Pb), pesticides, and lipophilic organic micropollutants like the polycyclic aromatic 

hydrocarbons (PAH) from contaminated soils, some earthworms could show the ability 

to biodegrade the chemicals contaminants by stimulating soil microbial activity 

(Morgan et al., 1989; Sinha et al., 2009). Earthworms have thus been recognized as 

typical ecosystem engineers (Farenhorst et al., 2000a, 2000b; Jones et al., 2008; Monard et 

al., 2008), and a potential partner for humans in managing ecosystem services (Byers et 

al., 2006).  They are also potential providers of hot spots (in their gut) for microbial 

communities, specifically the bacterial degrading function (Sinha et al., 2009) and 

indirect biodegrade organic contaminants through enhancing microbial activities (Ma et 

al., 1995). Bacterial species associated with the intestine and vermicasts of the 

earthworms, such as Pseudomonas, Paenibacillus, Azoarcus, Burkholderia, Spiroplasm, 

Acaligenes, and Acidobacterium were reported by Singleton et al. (2003).  The digestion by 

earthworms during the soil bioturbation also positively impacted biodegradation by 

increasing atrazine adsorption on their microsites concerning with organic matter 

modification (Farenhorst et al., 2000b; Kersanté et al., 2005).  

It is also well-known that soil to plant transfer of metals depends strongly on 

pollutant compartmentalization and speciation that are directly concerning soil 
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properties such as soil organic matters or pH (Shahid et al., 2014). Significant 

improvement in the soil quality was observed where the worms inhabited. This change 

was explained by worms effects on leading the mobility of metal and thus increase its 

bioavailability (Capowiez et al., 2011; Sizmur & Hodson, 2009) in the soil through their 

burrowing activity, thereby improving the efficiency of phytoremediation (Cheng & 

Wong, 2002).  

Recently, Leveque et al. (2014) documented the investigation of the earthworm 

activity’s influence on the phytoavailability of metals from soil. The study indicated that 

earthworms resulted in significant increases metal phytoavailability by creating soil 

macroporosity and producing casts near the plant roots, in which physical impact of the 

earthworm’s bioturbation appears to be the principal mechanism (Fig.I.6). 

 

Figure I.6. Proposed mechanisms to explain the increase of metals phytoavailability in 

relation to earthworms’ activities (Leveque et al., 2014) 

An application of a novel combination between bioturbation and 

phytoremediation processes could be therefore considered as a potential and 

prospective study with the aim of amplifying the possibility of bioremediation if 

compared with single-process application performed so far. 
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PART II. METHODOLOGY  
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II. A. MICROCOSM STRUCTURE AND EXPERIMENTAL 

DESIGN 

 

                                

       

Figure II.1 Microcosm design of two experiments mimicking wetland patterns 

(a) 1st experiment using cadmium as a conservative pollutant; (b) 2nd experiment using atrazine 

as a non-conservative pollutant 

 

Our bioremediation strategy benefits were tested with 02 controlled laboratory 

experiments mimicking natural-based patterns; these experiments were using a series of 

microcosms with different treatments with and without biological effects of plant and 

invertebrate. Each microcosm consists of a mixed biotope “water column/sediment” 

interface as in wetland areas (Fig. II.1). This pattern was used for the two different 

experiments (Fig. II.1). 

The 1st experiment (Fig. II.1a) was run using Cadmium, one heavy metal initially 

introduced in the overlying water as a source of conservative pollution and representative 

of urban hazard. The experimental condition was set to allow the metal pollutant 

(a) 

(b) 
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bioaccumulating in plants as a function of time (30 days of the experiment). The 2nd 

experiment was started with homogeneously contaminated sediment with 

radiolabeled-14C atrazine as a non-conservative and organic pollutant to be followed in the 

aquatic environment during 26 days of the experiment. 

Depending on the size of each experiment, the microcosms were set up in 

experimental pails made by plastic or glass material, and designed as follows for each 

microcosm: 

- 1st experiment (Fig II.1a): sediment surface area = 0.6 dm2; sediment volume = 

5.4 dm3; water volume = 4.8 dm3; experimental pail made by plastic material 

- 2nd experiment (Fig II.1b): sediment surface area = 0.1 dm2; sediment volume = 

0.76 dm3; water volume = 0.28 dm3; experimental pail made by glass material 

 

II. A.1  SAMPLING SITE AND PROCESSING OF SEDIMENT AND 

PLANTS 

The Aussonnelle River catchment - the studied site, where water, sediment, and 

plant samples were collected, is a first rank tributary and a small watershed of just 0.28 

km2 of Garonne River (Selery area, Colomier, France). The part of this watershed 

upstream Selery area is essentially covered by residential and green areas. This first 

rank little river is an affluent of the Aussonnelle River that is itself an affluent of the 

Garonne (Fig. II.2). 

The sediment was defaunated firstly by incubating sediment for 40 days in a 

room at 40°C into closed tanks to perform anaerobic condition in the sediment. 

Secondly by a mechanical mixing process of the sediment, using a motor-mixer, which 

eliminated the last macro fauna and homogenized the sediment at the same time. Then, 

the defaunated sediment was introduced into each experimental bucket (pail, 13 liters), 
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and then de-chlorinated tap water was carefully added to the upper part of the pails to 

avoid disturbances at the sediment surface.  

 
Figure II.2. Aerial view of the Aussonnelle basin, the watershed study, and location of 

sampling point (Blue Square) for water and sediment located on the site of Sélery.  

Source: adapted from Google map 

 

II. A.2 EXPERIMENTAL DESIGNS 

II. A.2.1 Cadmium experiment – a conservative pollutant case study (1st experiment) 

Plants manipulation 

 

Figure II.3. Acclimating the Typha latifolia in the experimental room (1st experiment). The 

individual biomass was homogenised before starting the experiment by cutting some 

rhizome excess.  

In the 1st experiment, a set of 32 microcosms was displayed in one thermostatic 

experimental room. Each microcosm was filled with sediment and water and additional 
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biological factors (plant and invertebrate) and cadmium depending on the treatment to 

be imposed.  

The collected Typha latifolia individual plants (Fig II.3) were stored a thermostatic 

experimental room for acclimatisation for 60 days until the start of the experiment. 

Healthy plants showing no signs of rotting and having approximately the same height 

were selected for experiments. One individual was taken and prepared for analyses to 

have the reference information of metal content. Just before starting the experiment, the 

roots and rhizomes of the other T. latifolia plants were carefully cleaned up with tap 

water to completely remove field non-manipulated sediments and then precisely cut to 

achieve, as far as possible, homogeneous biomass among the plants. From these plants, 

three were selected randomly (at t=0) for initial metal analysis. The remaining were 

planted into microcosms (one by the bucket) and collected on the last day of the 

experiment (t=30).  

Experimental design 

 

Figure II.4. 1st experimental treatments 
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A full-factorial design was used, crossing three tested factors: Cd concentration 

(Cd-enriched or not), plant influence (presence/absence of T. latifolia) and macrofauna 

influence (presence/absence of tubificid worms) (see Table II.1).  

All possible combinations of the different levels of each factor were thus tested 

and distributed into the different microcosms (Fig II.1a and II.4). Three replicates per 

combination were performed. The experimental units were distributed in four blocks, 

each including one replicate of each combination of the three tested factors. The 

position of the microcosms within each block was randomly determined to avoid any 

location effects. Tap water was supplemented in each microcosm every few days 

(approximately 3% of the total water volume per day) to compensate for evaporation 

and to keep the water level constant. Microcosms were set-up in a thermostatic 

experimental room with homogeneous physicochemical conditions (T°C, light, 

sediment, water). 

Table II.1 

Main acronyms for different experimental treatments used in the cadmium experiment  

Treatments noted Time (day) Description 

Field t = - 60 Samples collected from the field (before 

starting the experiment) 

Initial t = 0 Initial samples (at the beginning of the 

experiment) 

{Control} t = 30 Control treatment (no plant added, no metal 

added, no invertebrate added) 

{Typ} t = 30 No metal added, with plant added, no 

invertebrate added 

{Tub} t = 30 No metal added, no plant added, with 

invertebrates added 

{Typ.Tub} t = 30 No metal added, with plant added, with 

invertebrates added 

{Cd} t = 30 With metal added, no plant added,  no 

invertebrate added 

{Cd.Typ} t = 30 With metal added, with plant added, no 

invertebrate added 

{Cd.Tub} t = 30 With metal added, no plant added, with 
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invertebrates added 

{Cd.Typ.Tub} t = 30 With metal added, with plant added, with 

invertebrates added 

Typ: T.latifolia plant; Cd: cadmium; Tub: tubificids invertebrates 

 

Light provided by three electric bulbs (400 Watts each), 12h of light each day, 

room temperature at 18°C. Photon fluence rate (the unit concerning the light in the 

plant production) in the experimental room was 18.1 ± 2.4 µmol.m-2.s-1 at the surface of 

the overlying water and 28.0 ± 2.2 µmol.m-2.s-1 at the top of T. latifolia plants. 

Two weeks after worm introduction, cadmium provided as cadmium nitrate 

(Cd(NO3)2.4H2O), with an initial contamination level of 20µg Cd/L was gently added to 

the overlying water. This concentration was selected from the previous experiment with 

cadmium and tubificid worms (Ciutat et al., 2005b) considering that this concentration 

is frequent in contaminated waters by mining wastes (Salvarredy-Aranguren et al., 

2008) or industrial sites (Andres et al., 1999). In order to avoid any bias resulting from 

nitrate addition in the metal-treated pails, a neutral salt in the form of calcium nitrate 

Ca(NO3)2.4H2O, with the same nitrate concentration (20µg Ca/L), was added in 

microcosms not contaminated by cadmium.  

The experiment lasted 30 days after the introduction of the contaminant in the 

overlying water on the first day (t=0). This is the time which was considered needed to 

allow: (i) plant growth, (ii) bioturbation, and (iii) metal transfer within each 

compartment as well as their bioaccumulation in the plant system, without having 

extra-environmental disturbances. Water, plants, and sediment were sampled on the 

last day (t=30). 
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II. A.2.2. Atrazine experiment – a non-conservative pollutant case study (2nd 

experiment) 

The 2nd experiment was also performed in controlled laboratory conditions with 

a series of 24 microcosms, each copying a portion of the water/sediment interface as in 

wetland areas. Each microcosm was enriched or not with additional worms and 

contaminant depending on the selected treatment, including 3 tested factors, which are 

atrazine concentration (atrazine or not), plant influence (presence/absence of T. latifolia), 

and macrofauna influence (presence/absence of tubificids worms) (Fig II.5 and Table 

II.2). They were set up through four blocks, each including one replicate of each 

combination of the three tested factors. These blocks were placed in a climatic chamber, 

primarily devoted to radiolabeled experiment (UMR Toxalim, INRA, Toulouse, France), 

under controlled conditions 16 h day photoperiod ( light provided by a mix of low-

pressure and high-pressure sodium lamps of 400 watt each, at 24 °C during the day and 

20 °C during the night under a 16 h photoperiod. 

 

 

Figure II.5. 2nd experimental room with block design 
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Table II.2 

Main acronyms for different experimental treatments used in the atrazine experiment  

Treatments noted Time (day) Description 

{Atr} t = 26 No plant added,  no invertebrate added, with 

atrazine added 

{Atr.Tub} t = 26 No plant added,  with invertebrate added, 

with atrazine added 

{Typ} t = 26 With plant added,  no invertebrate added, no 

atrazine added 

{Atr.Typ} t = 26 With plant added,  no invertebrate added, 

with atrazine added 

{Typ.Tub} t = 26 With plant added,  with invertebrate added, 

no atrazine added 

{Atr.Typ.Tub} t = 26 With plant added,  with invertebrate added, 

with atrazine added 

Atr: atrazine; Typ: T.latifolia plant; Tub: tubificids invertebrates 

 

Two weeks (t= -15 days) before starting the experiment, water from the 

Ausonelle River was spiked with radiolabeled [14C]-atrazine and then homogeneously 

introduce in the sediment with an initial concentration of 2 µg.g-1 wet sediment, as a 

non-conservative and organic pollutant. The experiment lasted for 26 days at the 

laboratory of UMR TOXALIM, INRA, Toulouse.  

Plants manipulation  

They were watered every second day with running tap water.  

 

   

Typha latifolia collected from ALISHMA 
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Acclimating the Typha at laboratory (INRA2, Toxalim, France) 

 

Selecting the best Typha for experiment at T=0 

Figure II.6. Collecting and acclimating the Typha latifolia in the experimental room (2nd 

experiment) 

In this 2nd experiment, T. latifolia plants were provided by ALISMA commercial 

farm (France) and then stored about one month in the climatic chamber in order to keep 

it growing after the collecting. Before putting them into the experimental pails (at t= 0), 

their root and rhizome systems were cleaned with tap water to remove un-defaunated 

sediments completely.  

 

II. A.3 ECOLOGICAL ENGINERING TOOLS USED  

II. A.3.1 Tubificids worms 

The biological model used as bioturbation generating organism is Tubifex 

tubifex (Oligochaeta Tubificidae), a species of tubificid worms that inhabits the 

sediments of lakes and rivers on several continents. The batches of tubifex worms were 

bought to GREBIL company and the delivered organisms consisted of a mixture of 

different tubificid species.  
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Figure II.7. Oligochaetes tubificidae worms and their mode of bioturbation.  

a. a tangled ball of tubificid worms in an aquatic medium without sediment for their 

burrowing; b. an individual worm burrowing in sediment; c. particle reworking model 

of tubificid worms as a conveyor-belt species. 

  

These worms, usually in red (their blood contains a pigment close to 

hemoglobin), are described as small burrowing worms which are often about 2-5 cm 

long and roughly 1 mm in diameter when fully mature (Aston, 1973; Cunningham et 

al., 1999). They do not have eyes. 

They can constitute a large part of the benthic fauna of continental aquatic 

ecosystems and represent one of the main bioturbating agents of these systems (McCall 

& Fisher, 1980). Their natural maximal densities in the sediment can reach up 104 to 105 

individuals.m-2, or even to 60,000 individuals.m-2 (Ciutat et al., 2005; McCall & Fisher, 

1980). They are resistant to high concentrations of organic matter, anoxia (transient 

anaerobic metabolism possible), heat and dehydration; they constitute a dominant 

group within benthic invertebrate communities in disturbed environments (chemical 

pollution). Their lifespan is a few years.  

The tubificids worms usually inhabit muddy substrates with their anterior ends 

(prostomium) buried and tails (pygidium) protruding and undulating in the water 

above (Aston, 1973). During their activity, they ingest sediment particles at depth and 

deposit undigested materials at the sediment-water interface in the form of fecal balls, 
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after having extracted a part of the assimilable organic matter. This process leads to 

downward sediment migration and thus induces a recovery of the oxidized sediment of 

the surface by reduced sediment coming from lower horizons. Through the feeding 

zone, such sediment could be recycled many times before ultimate burial below the 

deepest feeding zone (Matisoff et al., 1999). By its metabolism on prevention of the 

establishment of the anoxic layer at the top of the sediment, tubificids have a significant 

effect on the exchange of redox-sensitive species across the sediment-water interface 

(Anschutz et al., 2012). 

Fecal pellets contain material with high oxygen demand (FeS for example), 

whereas the oxidized sediment of the interface is progressively reduced during its 

burial (McCall & Fisher, 1980). This type of bioturbation is bioadvection; tubificids are 

conveyor-belt organisms (Rhoads, 1974). Oligochaetes do not irrigate their burrows 

(McCall & Fisher, 1980). Their resistance to low concentrations of dissolved oxygen is an 

adaptation related to this ecological niche.  

The tubificid worms used in this study were provided by the GREBIL Company 

(Arry, France). In each microcosm with tubificids, the worms were introduced at the 

surface of the sediment with the density varying a bit between both experiments (Table 

II.3) 

Table II.3. Tubificids worms’ density and fresh biomass 

Experiment surface of an 

experimental pail (dm2) 

Number of worms 

in a pail 

Density  

(ind.dm-2) 

Fresh biomass  

(g per microcosm) 

Cd experiment 6 800 133 17.80 ± 3.1 

ATR experiment 1 100 100 4.45 ± 0.53 

 

II. A.3.2 Riparian plant - Typha latifolia 

The Broadleaf Cattail (Typha latifolia), also known as the cane reed, rauche, or 

cattail in Canada, is a plant of the family Typhaceae. It is the most common species of 
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the genus Typha, a tall monocot that forms dense and highly productive monospecific 

stands in wetlands (Rocha & Goulden, 2009). 

T. latifolia contains rhizomes that are buried in sediment, submerged under 

water, and often shaded by a dense layer of litter and existing plants. Initial leaf growth 

is supported by carbohydrates that are either mobilized from rhizomes or translocated 

from older leaves. Depending on sediment thickness and water depth, and the density 

of the litter layer and existing canopy, the lower (younger) 50–100 cm of a Typha leaf 

may experience almost total darkness (Rocha & Goulden, 2009). 

This riparian plant has a large distribution under various hydrological conditions 

(Aulio, 2015), with populations found in temperate, tropical, humid coastal, and dry 

continental climates, or in both flooded and non-flooded conditions (Pandey et al., 

2014). On the other hand, the cattail riparian plant reveals a rapid growth and high 

resistant characteristics in polluted sites with a high capacity for uptaking metals into 

its body, particular their root systems. In spite of non-essential element for the growth 

of plants (Williams et al., 2000), Cd is well uptaken by roots and translocated into leaves 

in many plants species (Manousaki et al., 2008). It’s also reported that the Typha 

latifolia’s root system can be used as bio-indicator or bio-accumulator for water and 

sediments polluted by metals, such as Zn, Ni, Cu, Pb, Co, Mn and Cd (Sasmaz et al., 

2008; Klink et al., 2013). Also, the capable of significantly remove organic molecules 

generating flows between the soil and the root system (Matthew T. Moore, Tyler, & 

Locke, 2013), or convert pesticide, such as atrazine to other metabolites, such as 

hydroxyatrazine, DEA, and DIA (Mezzari & Schnoor, 2006) has been documented. 

Clearly, T.latifolia is well known as a key species for the restoration of some essential 

wetland functions (Wild et al., 2001) and also a valuable tool to mitigate nutrient 

enrichment in impacted wetlands (Chua et al., 2012; Zhao et al., 2012) or pollutants for 

phytoremediation purpose (Aulio, 2015; Ciotir et al., 2013; Favas et al., 2014; Klink et al., 

2013; Moore et al., 1999; Moore et al., 2013; Pandey et al., 2014; Sasmaz et al., 2008; Xu et 

al., 2011). 
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II.B. METHODOLOGICAL TOOLS 

The method of sampling and luminophore addition were almost the same in the 

two experiments. The few difference of procedure is pointed out below.  

II.B.1 CORING SEDIMENT AND SAMPLING OF INTERSTITIAL 

WATERS AND SEDIMENT PARTICLE 

 

 

Figure II.8. Procedure for overlying water collection and slicing sediment cores by 

pushing from underneath of microcoms with a sediment extractor device 

At the end of the first experiment, sediment samples were collected by coring 

and then cut into different layers depending on the purpose of each experiment. The 

water column was first gently sucked with a pipe (siphoning) and then with a large 

syringe (Figure II.8). A plexiglass cylinder 5.3 cm in diameter was embedded in the 

sediment and then removed with the sediment core inside. The thickness of the 

sediment slices was defined by a system of stops spaced 0.5 cm apart. The sediment 

slices were cut with disposable plastic knives, which were changed after each slice to 

prevent contamination from one slice of sediment to another. 

II.B.2 BIOTURBATION ACTIVITY MEASUREMENTS 

The bioturbation activity of tubificids in the two experiments was quantified 

using the fluorescent inert tracer technique (Gerino et al., 1994; Lagauzère et al. 2011). 

Luminophores are natural sand particles coated with pink fluorescent paint with size 
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ranging from 63 – 125 µm (Partrac Ltd, UK). Twenty-four hours after worm 

introduction (the time needed for the worms to restore from handling), luminophores 

were homogeneously deposited at the sediment surface in the form of a 3-mm-thick 

frozen mud cake (a mixture of 30g of the same sediment with 4g of the tracers). At the 

end of the experiment (t=30 days), the sediment was cut into twelve layers (0.5-cm thick 

layers from the surface down to 3 cm depth, then 1-cm thick layers down to 9 cm depth) 

to assess the vertical distribution of luminophores in the sediment column. Each layer 

of fresh sediment was homogenized before sub-sampling. Detection of luminophores 

was performed with a Synergy Microplate reader (Biotek, USA) according to a protocol 

adapted from Lagauzère et al. 2011. Fluorescence reading was used with 565 nm as 

excitation and 602 nm as emission wavelength. After estimation of the luminophore 

concentrations along with depth in the sediment column, the bioadvection–biodiffusion 

model (Gerino et al., 1994; Officer and Lynch, 1982) was applied to fit the measured 

tracer profiles: 

 

                     (eq. 1)  

 

With t as the time, z as the depth, and C as the tracer concentration.  

This model allows to estimate the theoretical concentration of tracers under the 

effects of the two biotransport parameters: V (cm.y-1) as the bioadvective velocity or bio-

sedimentation rate that represents the downward transfer of the tracers and Db (cm2.y-1) 

as the biodiffusion coefficient that reflects the dispersion rate of the tracers in 

omnidirectional directions. This model was first developed by Officer and Lynch (1982) 

and then used for describing marine (Gerino et al., 1994) and freshwater bioturbation 

using luminophores (Delmotte et al., 2007). Estimation of bioadvection and biodiffusion 

rates in the experiment was performed by fitting the theoretical concentrations obtained 
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with the bioturbation model to the measured luminophore concentrations with a least-

squares procedure for each microcosm. 

 

II.B.3 CADMIUM MEASUREMENT 

II.B.3.1. Water, sediment, and plant sampling and pre-treatment for Cd analysis 

The overlying water was sampled at the beginning (t=0) and the end (t=30) of the 

experiment. In order to determine dissolved cadmium concentration in water, 40mL 

from each sample was filtered with a mesh of standard pore diameter of 0.22 µm. 

Solutions were acidified using a 65% ultra pure HNO3 solution to maintain metal in 

solution and then kept in cold and dark conditions (5oC) before the measurements. All 

materials used (filtration devices, pipettes, box filters, etc.) were plastic made to avoid 

any metal contamination of samples. 

The sediment was sampled three times during the experiment, after the 

defaunation process: initial samples (t=-60), at the beginning (t=0) before adding 

contaminant into the overlying water, and on the last day (t=30). For the samples at 

t=30, the sediment column was carefully removed from the microcosm and then cut into 

two layers (L1 and L2) connected to the bioturbation process by worms: L1 (0 – 1cm) 

corresponds to a surface zone composed entirely of fecal pellets ejected and L2 (1 – 5 

cm) corresponds to an ingested area of particles (Ciutat et al., 2006). All sediment 

samples were kept in plastic bottles and stored frozen.  

The sediments from the bottles were then spread into plastic Petri dishes and 

dried in an oven at 40°C, with smooth manipulation (without crushing minerals, sand, 

gravel, etc...) during drying to avoid aggregation. Once the sediment was dry, and the 

main organic debris removed with clean plastic tweezers, they were sieved through a 

plastic mesh sieve to get the fraction < 63µm (accounting for 26.3 ± 1.7% of the total 
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fraction), subsequently used for Cd analysis. This fraction is supposed to be the most 

metal enriched and available for plants (Förstner & Solomons, 1980; Probst et al., 2003).  

The Typha latifolia, collected before the experiment (field sample, at t= -60) at the 

initial (t=0) and the end of the experiment (t=30), were cut into the following parts: the 

above part (stem and leaves), the rhizome, and the roots. Before analysis, plant 

materials were carefully cleaned with distilled water and cut to a constant weight 

between samples. To ensure the efficiency of the dissolution procedure of the different 

plant compartments before analysis, they were carefully cut into pieces using a ceramic 

knife and then ground in liquid nitrogen using a pestle and mortar. 

II.B.3.2. Solid sample dissolution procedure and Cd analysis  

The sediment fraction (< 63 µm) used for ICP-MS analysis was dissolved by a 

well-calibrated procedure in the EcoLab cleanroom (ISO 7) (N’guessan et al., 2009). 

Approximately 100 mg of homogenized plant or sediment material was inserted into a 

Teflon reactor (Savillex) with a clean plastic spatula and subsequently digested with a 

mixture of concentrated supra pure HNO3 and HF at 90 °C overnight. The solution was 

then evaporated and hydrogen peroxide solution H2O2 was added to destroy the 

organic matter. The procedure was defined with different steps repeated until the 

dissolution is complete. Finally, after evaporation, 11 ml miliQ water was added.  

All samples were transferred to tubes and were diluted so that the element 

concentrations were lower than 0.8 g/l in order to avoid ICP-MS saturation during the 

analysis. The samples were then acidified with nitric acid (HNO3 69%) to obtain a 2% 

HNO3 solution. Finally, Indium/Rhenium (In/Re, conc. 0.4037ppm) was added to 

samples in order to control the machine deviation during the analytical process.  

The analytical data quality was checked by including simultaneously in the 

procedure the blank samples and two standards (SRM-1515 apple leaves, from National 

Institute of Standards and Technology, USA, and STSD-1 Stream Sediment Reference 

materials, from Canada Certified Reference Materials Project – CCRMP, Canada) to 
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verify accuracy and reproducibility of the dissolution process for plant and sediment 

samples. 

Cd concentration was analyzed in water, plants (root and above parts) and 

sediment samples by spectrometry using a Q-ICP-MS (Perkin-Elmer ELAN 6000) at the 

OMP-GET (Geoscience Environment Toulouse, Observatoire Midi-Pyrénées, Toulouse, 

France). Detection limits for Cd were between 10-3 to 10-2 µg.L-1. The concentrations of 

some elements measured in the two standards were used for the analytical recovery 

(QA/QC) calculation by comparison with their reference values. For most elements, the 

recovery of the reference material SRM-1515 ranged between 112% and 166%, in which 

Cd element was at 124%. Because the standard STSD-1 is not certified for Cd element, 

we used the sediment samples collected in the Aussonnelle River, (initial sample of the 

study) for comparison with the sediment samples, which were collected in the same 

station (Aussonnelle, Garonne river bank) by Proffit & Probst (2007) and with the 

Gascogne river studied by N’guessan et al., (2009). Our results showed that the initial 

sediment Cd concentrations in the present study were in the same range as those 

measured by these authors. The mean concentrations of cadmium in the Gascogne 

stream sediments (fraction <63 µm) and in the Gascogne bedrock (Molasse) samples 

were 0.30 and 0.20 µg.g-1, respectively (N’guessan et al., 2009), while the Cd 

concentration in sediment from this study averaged 0.21 ± 0.02 µg.g-1. 

 

II.B.4. PHYSICOCHEMICAL VARIABLES OF SEDIMENT AT THE 

END OF THE EXPERIMENTS 

1st experiment with cadmium 

Grain-size of the sediment particles was measured with a Laser Scattering 

Particle Size Distribution Analyser – LA – 950V2 (HORIBA Japan), for sizes ranging 

from 0.01 to 3000 µm. The Wentworth’s classification (Wentworth, 1922) was used to 

define the various grain-size fractions of four experimental treatments {control}, {Tub}, 
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{Cd}, and {Cd.Tub}: fine silts and clays (< 15 µm), medium silts (15– 30 µm), coarse silts 

(30–63 µm), very fine sands (63– 125 µm), fine sands (125 –250 µm), medium sands (250 

– 500 µm) and coarse sands (> 500 µm). This analysis also provided the mean size of 

sediment particles, which is an integrative parameter allowing to compare the grain size 

of a given sediment layer in different treatments. 

To study the influence of different treatments on the physicochemical sediment 

properties, pH value, and pore water content were measured in fresh sediment samples 

from 4 distinguishable layers collected. These layers thickness were defined according 

to tubificid worms activity, trying to selectively sample the fecal pellets layer, then the 

bioturbated layer and finally the non-bioturbated sediment (see §2.4.1). The pore water 

content and porosity were assessed by drying sediment samples overnight at 105°C, 

while pH was measured in a water suspension (1.5; v/v) according to the norm ISO 

10390. 

2nd experiment (atrazine treatment) 

Some physical-chemical parameters that affect the degradation of atrazine in 

sediment including organic matter, organic carbon, and pH were measured vertically in 

three distinguishable sediment layers (1st layer – L1: 0-1cm; 2nd layer – L2: 1-3cm; 3rd 

layer – L3: 3-8cm) from two experimental treatments without radioactivity at t=26days: 

{Typ} and {Typ.Tub}. While sediment porosity was determined in fresh sediment 

samples from the ten distinguishable layers as in the bioturbation activity 

measurement. Organic matter content in the sediment has been measured through a 

semi-quantitative method based upon the indiscriminate removal of all organic matter 

followed by gravimetric determination of sample weight loss after sample burning(loss-

on-ignition method) (ASTM, 2000).  

II.B.5. ATRAZINE AND ITS METABOLITES MEASUREMENTS 

[14C]-(Atrazine, metabolites) concentrations in all treatments in the 2nd 

experiment having the contaminant added at initial time were measured in vertical 
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profile with ten different layers: 0-0.5; 0.5-1; 1-1.5; 1.5-2; 2-2.5; 2.5-3; 3-4; 4-5; 5-6; and 6-8 

cm. 

 

Figure II.9. Sampling procedure to collect total sediment, pore water, and 

sediment particles fractions for samples of the atrazine experiment 

 

II.B.5.1. Reagents and chemicals 

[U-ring-14C]Atrazine was purchased from Institute of Isotopes Co Ltd, Hungary 

(specific activity of 545.45 pg/DPM, radiochemical purity of > 98%). The analytical 

standard for atrazine was obtained from Sigma-Aldrich (Saint-Quentin Fallavier, 

France). Solvents used for extractions and radio-RP-HPLC analyses were provided by 

Cluseau Info lab (Ste Foy La Grande). Unless otherwise specified, all other chemicals 

were of analytical grade. 
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II.B.5.2. Atrazine and its metabolites concentrations determination 

Total concentrations of atrazine residues [14C]-(atrazine + metabolites) in each 

constitutive compartment (water, sediment, and plant) were determined in the four 

experimental treatments having atrazine contamination: {Atr.Typ.Tub}, {Atr.Typ}, 

{Atr.Tub}, and {Atr} at initial time (t = 0 day) and at the end of the experiment (t= 26 

days). The total concentration of [14C]-atrazine was determined in overlying water and 

the ten distinguishable sediment layers. The activity measurement of the layers was 

estimated after partitioning liquid and solid phases by centrifugation: the pore waters 

and the sediment particles.  

II.B.5.3. Determination of Radioactivity 

For quantification of [14C] radioactivity in overlying water and pore water, 1 mL 

of each prepared sample was mixed with 10 mL of liquid scintillation cocktail (Ultima 

Gold™) before measuring with a liquid scintillation counter (LSC) (Packard Tri-CarbR 

2910TR, PerkinElmer Life and Analytical Sciences, Courtaboeuf, France). For the 

sediment particles and plant part samples, approximately 300 mg of homogenized 

subsamples were used for oxidative combustion to convert [14C] radioactivity to [14C]-

CO2 using a Sample Oxidizer Packard 307 (PerkinElmer Life and Analytical Sciences). 

The resulting [14C]-CO2 was trapped in a scintillation cocktail (Permafluor/Carbosorb, 

10:7, v/v), and then the detection of radioactivity was performed by LSC. The efficiency 

of the oxidizer was measured by combustion of 14C-labeled standard, and the recoveries 

of radioactivity from samples were adjusted to allow for the efficiency of the oxidizer. 

Quantity of ΣATR was calculated from the specific activity of [14C]-atrazine. 

Liquid scintillation principles 

Figure II.10 provides a graphic illustration of the way the emitted radiation 

interacts with the cocktail (a mixture of a solvent and a solute) leading to a count being 

recorded by the system. 
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Figure II.10. Liquid Scintillation Counting 

 

The 6 steps for the radioactivity measurements are detailed below:  

Step 1. Beta particle (e-) is emitted in radioactive decay.  

Step 2. For 14C, the kinetic energy of beta particles is relatively low, from 0 to 156 

Kev. In the relatively dense liquid, the 14C beta particle travels only short 

distances before all of its kinetic energy is dissipated. The energy is absorbed by 

the medium in 3 forms: heat, ionization, and excitation. Some of the beta energy 

is absorbed by solvent molecules making them excited (not ionized). 

Step 3. The energy of the excited solvent is emitted as UV light and the solvent 

molecule returns to ground state. The excited solvent molecules can transfer 

energy to each other and to the solute. The solute is a fluor. An excited solvent 

molecule which passes its energy to a solute molecule disturbs the orbital 

electron cloud of the solute raising it to a state of excitation. As the excited orbital 

electrons of the solute molecule return to the ground state, a radiation results, in 

this case, a photon of UV light. The UV light is absorbed by fluor molecules 

which emit blue light flashes upon return to ground state. Nuclear decay events 

produce approximately 10 photons per keV of energy. The energy is dissipated 

in a period of time on the order of 5 nanoseconds. The total number of photons 

from the excited fluor molecules constitutes the scintillation. The intensity of the 

light is proportional to the beta particle’s initial energy. 
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Step 4. Blue light flashes hit the photocathode of the photomultiplier tube (PMT). 

Electrons (proportional in number the blue light pulses) are ejected producing an 

electrical pulse that is proportional to the number of blue light photons. An LSC 

normally has two PMT’s. The amplitude of the PMT pulse depends on the 

location of the event within the vial. An event producing 100 photons will be 

represented by a larger pulse if the event is closer to the PMT than if the event is 

more remote. The signal from each PMT is fed into a circuit which produces an 

output only if the two signals occur together, that is within the resolving time of 

the circuit, approximately 20 nanoseconds (coincidence circuit). By summing the 

amplitude of the pulses from each PMT, an output is obtained, which is 

proportional to the total intensity of the scintillation. This analog pulse rises to its 

maximum amplitude and falls to zero. 

Step 5. The amplitude of the electrical pulse is converted into a digital value and 

the digital value, which represents the beta particle energy, passes into the 

analyzer where it is compared to digital values for each of the LSC’s channels. 

Each channel is the address of a memory slot in a multi-channel analyzer which 

consists of many storage slots or channels converting the energy range from 0-

156 keV. 

Step 6. The number of pulses in each channel is printed out or displayed on a 

CRT. In this manner, the sample is analyzed and the spectrum can be plotted to 

provide information about the energy of the radiation or the amount of 

radioactive material dissolved in the cocktail. 

II.B.5.4. Extractable and Un-extractable Residues 

After harvested, T. latifolia was cut in two parts, roots and shoots (aerial part). 

Each part was weighed and dried for 48 h at 60°C in the oven. Then, samples were 

ground in ball grounder.  
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Ground samples were transferred in centrifuge tubes of 25 mL (screw cap Corex) 

containing a methanol/dichloromethane/water mixture (2:1:0.8, v/v/v) (8 mL g−1 DW). 

The sample was homogenized every 15 min for four h in a vortex, stored overnight at 4 

°C then it was sonicated with an ultrasonic cell disrupter (Branson sonifier 450, Fischer 

Bioblock, Illkirch, France) for 5 min. Homogenate was centrifuged at 10,000g for 10 min. 

The pellet was washed twice with the solvent mixture. The three supernatants, which 

contained the soluble (extractable) residues, were combined and evaporated under 

vacuum to remove organic solvents. Samples were then evaporated under nitrogen to 

100−200 µL (to avoid any metabolite loss) and brought to the volume of the injection 

with solvent A before HPLC analysis. The pellets, which consisted of the unextractable 

residues, were allowed to air-dry for 24 h at room temperature to remove organic 

solvents and then freeze-dried for 60 h to remove the water before weighed and 

oxidative combustion.  

 

II.B.5.5. Radio-HPLC analysis of atrazine and its metabolites in T. latifolia 

Atrazine and its metabolites are mostly formed through biodegradation 

(Graymore et al., 2001). A reversed-phase high-performance liquid chromatography 

(RP-HPLC) method was used to determine [14C]-atrazine and its [14C]-metabolites in 

two different parts (roots and shoots) of the plant using radioisotope detection and 

liquid scintillation counting quantitation. Liquid chromatography was performed on a 

Spectra-Physics (Les Ulis, France) P4000 apparatus equipped with a Rheodyne model 

7125 injector (Rheodyne, Cotati, CA). The flow rate was 1 mL.min-1 at 40°C. The column 

consisted of a C18 Bischoff reverse-phase column (Prontosil Eurobond, Interchim, 

Montluçon, France) (250 x 4.6 mm, 5 µm) coupled to a C18 guard precolumn (10 x 4.6 

mm, 5 µm, Interchim). The column was equilibrated with 100% mobile phase A 

(water/acetonitrile/acetic acid, 95/5/0.001). Elution conditions were performed as 

follows: gradient from 100% at T= 0 to 100% mobile phase B (acetonitrile/acetic acid, 
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100/0.001) followed by isocratic phase of 10 min at 100% phase B. The HPLC system was 

connected for on-line radioactivity detection to a Packard Flo-One β A500 instrument 

(cell volume, 0.5 mL; scintillation cocktail ratio, 2 mL of scintillation liquid/ mL of 

HPLC effluent) (PerkinElmer Life and Analytical Sciences) using Flo-Scint II as the 

scintillation cocktail (PerkinElmer Life and Analytical Sciences) to establish the atrazine 

profile or to a Gilson model FC-204 fraction collector set at 2 fractions per minute 

(Gilson Medical Electronics, Middleton, WI) for atrazine and its metabolites 

identification. An aliquot of each fraction was counted after mixing with 2 ml in a 

scintillation counter to monitor radioactivity. In this condition, a run time of standard 

atrazine was 20.5 min.   

 

II.B.6. CALCULATIONS AND DATA TREATMENTS 

II.B.6.1 Enrichment coefficient and Translocation factor 

The effectiveness of atrazine bioaccumulation in T. latifolia was evaluated by 

using ECs (enrichment coefficients) and TF (transfer factor) values as follows: 

ECR = ratio of the concentration of metal or pesticide in roots over the 

concentration of metal or pesticide in sediment (fraction< 63 µm only for the Cd 

experiment) 

ECL = ratio of the concentration of metal or pesticide in leaf over the 

concentration of metal or pesticide in sediment (fraction< 63 µm only for the Cd 

experiment) 

TF = ratio of the concentration of metal or pesticide in leaf over the 

concentration of metal or pesticide in roots 

II.B.6.2 Statistical analysis 

Data collected from the 1st experiment 
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To evaluate statistically any significant difference between mean values among 

all experimental treatments at the beginning (at t=0) and at the end of the experiment 

(t=30), Cd concentrations in plant samples, enrichment factors (EC), transfer factors 

(TF), bioadvective (V) and biodifusive rates (Db), percentage of relative recovery, and 

cadmium fluxes between experimental compartments were firstly compared using one-

way ANOVA. Prior to ANOVA tests, homoscedasticity and normality of the residues 

were checked with Bartlett and Shapiro-Wilk tests, respectively. Following ANOVAs, 

the mean values of each treatment were compared with each other using Tukey HSD’s 

method. Dunnett test was also used for comparing data at t=30 days with initial values 

(t=0 day) used as references. 

Secondly, the possible interactive effects of cadmium enrichment and tubificids 

on the bioaccumulation of T. latifolia and cadmium fluxes – F3 (from sediment to plant) 

were studied by using two-way ANOVA. Two-way ANOVAs were also performed on 

the average size of sediment particles separately for each sediment layer, to assess the 

impact of bioturbation and cadmium enrichment on sediment texture.  

Three-way ANOVA was applied on the bioturbation bioadvective rates - V and 

the cadmium concentrations, and the cadmium quantities in the sediment samples to 

investigate for possible interactive influences of worm addition, cadmium enrichment, 

and plant presence/absence on bioturbation activities, cadmium behavior in sediment, 

and cadmium mass balance.  

Data collected from the 2nd  experiment 

To evaluate statistically any significant difference among all experimental 

treatments (t = 26), the mean values of bioadvective rate (V); biodiffusive rate (Db), 14C-

∑(atrazine, metabolites) concentrations and quantities in water, sediment, plant 

samples; water content in the sediment; Kd, Koc, percentage of relative recovery, and 

percentage inhibitions of C.vulgaris at 72h were first compared using one-way ANOVA. 

Following ANOVAs, the mean values of the various treatments were compared with 
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each other using Tukey HSD test. Dunnett test was also used for comparing the total 

quantity of [14C]-(atrazine, metabolites) in experimental compartments: water, fresh 

sediment, plant, and whole test-system at t=226 days with that at t= -15 days used as 

references. 

To investigate the single and interactive effects of atrazine and tubificids on the 

bioadvective rates, the mean values in the treatments including plants (i.e. {Typ}, 

{Typ.Tub}, {Atr.Typ}, and {Atr.Typ.Tub}) were compared using two-way ANOVA. 

Another two-way ANOVA was conducted on all the atrazine-contaminated treatments 

(i.e.  {Atr}, {Atr.Tub}, {Atr.Typ}, and {Atr.Typ.Tub}) to evaluate the single and 

interactive effects of plants and tubificids on bioadvective rates. Likewise, two-way 

ANOVA was also used to assess the influences of T. latifolia plants and worms on the 

changes of the quantity in water (ΔQ1), sediment (ΔQ2), microcosm (ΔQ), and 

percentage of relative recovery, respectively. 

Student t-test was applied to the mean values of organic matter, organic carbon, 

C:N ratio, pH in the sedimentary layers, enrichment factors (EC), transfer factors (TF) in 

T. latifolia and [14C]-(atrazine, metabolites) quantities in root and leaf parts of T. latifolia 

at t = 26 days to evaluate statistically significant differences between experiment 

treatments with and without worms: {+Tub} and {-Tub}. 

Significance of the observed effects was assessed at the p ≤ 0.05, 0.01, 0.001, and 

0.0001 levels. All analyses were performed using the statistical software R, version 3.0.2 

(2013-09-25), and statistical GraphPad Prism software, version 6.01. 

 

II. C. ASSESSMENT THE EFFICIENCY OF THE COMBINED 

BIOREMEDIATION TOOLS BY USING TOXICOLOGICAL 

BIOASSAY 

Phytoplankton communities have been considered to be indicators of the 

bioactivity of industrial wastes, and they vary in their response to a variety of toxicants 
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(Ma et al., 2002) as well as herbicide contaminations among the living aquatic 

microorganisms (Leboulanger et al., 2001). Chlorella vulgaris is green unicellular alga 

and a significant primary producer of the aquatic environment and has been widely 

used to evaluate the toxicity of chemicals present in water as a bioindicator of water 

pollution (Naessens et al., 2000; Shitanda et al., 2005). Herbicides can affect the structure 

and function of aquatic communities by altering the species composition of an algal 

community (Ma et al., 2002). 

To assess the toxicity of the water in our experiments, the ecotoxicological 

method was applied by using phyotoplankton bioassay test under experimental 

conditions. Overlying water and sediment interstitial waters samples contaminated 

with atrazine, collected from the experimental microcosm, were undertaken using 

single species algal microplate bioassay. The tests were based on the use of 

exponentially growing cells of Chlorella vulgaris that were exposed for 72h in a 96-well 

microplate filled up with the of liquid solutions. The test procedure consists of three 

main steps as below (Fig. II.11): 

 

Figure II.11. Summary of the three steps procedure followd to make the ecotoxicity test 

using Chlorella vulgaris 

 

II.C.1. MICROALGAE STRAIN AND CULTIVATION.  

The green algae Chlorella vulgaris culture was used run in the thermostatic room 

ECOLAB in the University Paul Sabatier - 4R1 building). The microalgae were 

cultivated using CB nutrient medium and incubated under controlled experimental 
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conditions of temperature and light using the incubation chamber. Several previous 

tests were undergone in order to identify the best conditions to run the ecotoxicological 

tests and to allow their reproducibility. 

 

II.C.2. MEDIUM  

CB medium has the following composition (in milligrams per liter of deionized 

distilled water): Ca(NO3)2.4H2O, 150; KNO3, 100; MgSO4.7H20, 40; β - sodium 

glycerophosphate, 50; bicine, 500; biotin, 0.0001; vitamin B12, 0.0001; and thiamine 

hydrochloride, 0.01, with 3 ml of PIV metals. PIV metals consisted of the following (in 

milligrams per 100 ml of deionized distilled water): FeCl3 6H20, 19.6; MnCl2.4H20, 3.6; 

ZnSO4.7H20, 2.2; CoCI2.6H20, 0.4; Na2MoO4.2H20, 0.25; and disodium EDTA 2H20, 100. 

The pH of the CB medium was adjusted to 9.0. 

 

II.C.3. DETERMINATION OF CHLORELLA GROWTH CURVE FROM 

DIFFERENT GENERATIONS 

To determine the best-cultivated age for the microalgae to be used for toxicity 

tests, Chlorella vulgaris solutions made with different culture generations (Table II.3) 

were tested in 96-well microplate at 5 different times during 96h (Fig. II.12). In order to 

determine the best cultivated old age the test microalgae for toxicity testing, the 

Chlorella vulgaris solutions at different generations (table II.4) were collected from the 

incubation chamber for their growth evaluation. These algae solutions were put into 

plastic 96-wells microplate under the same condition as in the incubation progress with 

controlled temperature, lighting, and nutrient regimes. The growth curve of the selected 

Chlorella solutions was determined via its density using Spectrophotometric method at 

682nm (optimal wavelength for Chlorella vulgaris). The produce test includes: test 

format: 96-wells microplate, five replicates per each dilution; well volume content: 

220µL (same volume as in a toxicity test afterward); growth determination: OD682nm at 
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24h and 0, 24, 48, 72, and 96h. Due to high variability of initial OD682 values caused by 

different generations between Chlorella solutions, the dilution step of these 04 solutions 

by CB medium was performed to set a similar initial optical density for the growth 

evaluation starting from the beginning (t = 0h) (Table II.4). 

Table II.4  

Different generations of the tested Chlorella vulgaris 

 Microalgae Cultivated old 

age (days) 

Code 

sample 

Initial OD682 OD682 at 0h after 

dilution 

1 Chlorella 

vulgaris 

55 Ch7 1.43 ± 0.01 0.18 ± 0.00 

2 Chlorella 

vulgaris 

41 Ch9 1.31 ± 0.03 0.17 ± 0.00 

3 Chlorella 

vulgaris 

25 Ch10 0.91 ± 0.04 0.15 ± 0.00 

4 Chlorella 

vulgaris 

6 Ch11 0.16 ± 0.00 0.00 

 

 

Figure II.12. Growth curves of Chlorella vulgaris at different generations 
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Figure II.13. Growth curves of Chlorella vulgaris at different generations after the 

dilution 

  

Figure II.14. Growth phases of algal cultures: Lag (1), Exponential (2), Declining growth 

rate (3), Stationary (4), Death (5), according to Fogg (1965). 

 

Fig.II.14 showed the theorethical growth of algae culture in different phases, 

under controlled conditions of light, temperature, and nutrients. After inoculation into 

growth medium with a fixed number of physiologically-active cells, population growth 

patterns normally include: (1) lag or introduction phase: little increase in cell density 

occurs; (2) exponential phase: cell density increase as a function of time; (3) phase of 

declining relative growth: Cell division slows down when nutrients, light, pH, carbon 

dioxide or other physical and chemical factors begin to limit growth; (4) stationary 

phase: balance of growth rate resulting in a constant cell density due to limit factors; (5) 



   HOANG T.K. 2018 
 

 

96  

 

death phase: depletion of nutrient and water quality leads to a rapid decrease in cell 

density. 

Data in Fig.II.12 indicated that the youngest Chlorella vulgaris strain Ch11, 6 days 

of old age, continuously and steadily increased during 96h of the incubation. While the 

older C. vulgaris cultures, Ch10, Ch9, and Ch7 with their old ages of 25, 41, and 55 days, 

respectively, displayed a constant the balance or even decline of OD growth rate due to 

their state out of exponential growth phase (Fig.II.14). 

As can be gleaned from Fig.II.13, different tested Chlorella straints were diluted to 

set up similar OD at the initial time (0h). Then the comparison of growth speed between 

these Chlorella strains during 96h of incubation provided more evidence that help in 

selecting the best one with the highest growth speed. The obtained result indicated that 

the youngest algal taken from 6 days old growth culture (Ch11), belonging to the 

exponential phase with the increase of optical density as a function time, also indicated 

the highest growth speed in comparison with the other older C. vulgaris cultures. 

From our previous test, it was concluded that for the successful conduct of 

phytotoxicity tests, it was imperative to use as inoculum cells from algal stocks which 

are in exponential phase (4-8 days old cells). This ensures a shortened lag phase and 

optimal growth rates leading to cell densities that will allow adequate comparisons 

between control and sample-exposed growth at the end of the exposure period (Walsh, 

1988). 

II.C.4. CHLORELLA TEST WITH PURE ATRAZINE SOLUTION. 

This series of test aims to optimize the protocol for the toxicity tests to find the 

best dilution with optimal sensibility range of testing, based on endpoint determination, 

for the real samples contaminated by atrazine.  

Under ideal conditions, a phytotoxicity test should include 1) a concentration 

that will have no effect on algal growth (0% growth inhibition), 2) a concentration that 
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will induce an intense or total algistatic effect (90-100% growth inhibition), 3) two 

concentrations below a 50% growth effect and 4) two concentrations above a 50% 

growth effect (Blaise and Vasseur, 2005). However, since the toxicity of the (overlying 

and pore water) samples tested is unknown, selecting test concentrations for samples 

should start with the high concentration that could be found from the experiment. The 

highest concentration of the pure atrazine solution was therefore selected at 2500µg/l 

(the atrazine concentrations in overlying water and pore water samples at the initial 

time of the experiment were determined at 3600 and 1950 µg/l, respectively). 

Preparing pure atrazine solution for testing 

The testing stock atrazine solution was prepared by dissolving 2500 µg pure 

atrazine power with a little acetone (5ml) and then filled up by distilled water in 200ml. 

In the next step, 10ml of the stock solution was taken and filled up by DW in order to 

get a final concentration of 2500µg/l. The media of C. vulgaris were treated with various 

atrazine concentrations from 2500µg/l (T1) and then diluted to 1250 (T2), 500 (T3), 100 

(T4), 75 (T5), 50 (T6), 25 (T7), 10(T8), 5 (T9) and 1 (T10) µg/l (see protocol #1). For running 

the test, 200 µL of each specific test solution concentration was introduced into a pre-

defined well to which are also added 10 µL of nutrient spike and 10 µL of algal 

inoculum. 

Protocol #1: Experimental configuration of a 96-well microplate for toxicological  

testing with pure atrazine solution 
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Note:  

- The assay was run with six replicates for each of the 10 tests concentrations with 

initial Chlorella and control wells located in rows A and E, respectively. 

- IC - Initial Chlorella: 220 µL Chlorella (4-6 days cultivated old ages, before 

centrifugation) 

- NC1 - Negative control 1:  200µL DW + 10µL CB 11X nutrient spike + 10µL 

Chlorella inoculum 

- NC2- Negative control 2: 200µL DW having Aceton as used for atrazine 

preparation + 10µL CB 11X nutrient spike + 10µL Chlorella inoculum 

- PC - Positive control: 200µL formaldehyde + 10µL CB 11X nutrient spike  + 10µL 

Chlorella inoculum 

- T1, T2, T3,...,T10 -  Test solutions: 200µL atrazine solution with diffrent 

concentrations + 10µL CB 11X nutrient spike  + 10µL Chlorella inoculum. 

Preparation of the algal inoculum solution 

The Chlorella, cultivated at 4-8 day old ages, was collected from growth culture 

for making the algal inoculum (withdraw 30 mL of the stock culture algae with a 10 mL 

pipette and dispense into 15 mL plastic centrifuge tubes). At the initial OD682nm 

determined to be 0.197 ± 0.006, these stock solutions then were centrifuged at 2000 RMP, 

rotor 8-well for the tube of 15 mL in 20 min at 20oC, after which the supernatant is 

poured off and replaced with a few mL (5mL) of buffered water. Buffered water 

solution or water-bicarbonate solution (15mg/L NaHCO3) is essentially used as a 

reagent during the centrifugation of algal cells in order to concentrate their numbers 

and to wash them to prepare an algal inoculum for testing. The capped tubes were 
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shaken vigorously by hand (or vortex) to resuspend the algae and determine the 

density of the solution after centrifugation. The most suitable wavelength to use for 

monitoring culture growth of C. vulgaris was fixed at 682 nm after scanning the 

absorption of wavelength ranging from 540 to 750 nm. The selected wavelength was 

close to the Kasai et al., (1993) that reported on the strong correlation between cell 

numbers and OD680nm. Growth of algal cells was calculated indirectly using 

spectrophotometric data. 

Note that the algal inoculum is prepared no more than 2-3 h prior to testing. 

Endpoint determination 

In the algal toxicity tests, the determination of the estimated sample 

concentration, at which a specified percent reduction in growth occurs compared to 

control algae, is a recommended endpoint. The inhibitor concentration - IC50, represents 

the concentration of atrazine, at which Chlorella’s growth rate is reduced twofold – 50%. 

It was used as an endpoint (Blaise and Vasseur, 2005). In this study, percentage 

inhibition values, relative to growth or cell density of C. vulgaris in control systems, 

were calculated using spectrophotometric data (Fig. II.15). 

Growth-inhibiting toxicity values as representative of 10 atrazine concentrations 

were used to plot a dose-response curve based on percent growth or cell density 

inhibition of Chlorella tested (y-axis) versus test atrazine concentration (x-axis). The 

GraphPad Prism software, version 6.01, was used to determine the endpoint (IC50). 
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Figure II.15. The test procedure of Chlorella with pure atrazine solution 

The test system makes use of exponentially growing cells the Chlorella that is 

exposed for 72 h in a 96-well microplate to varying concentrations of atrazine solutions 

under the same condition as in the incubation progress with controlled experimental 

conditions of temperature and light. The experimental configuration included control 

wells with different variants; 10 serial dilutions of the atrazine test solution, each with 

five replicates (see Protocol #1). Chlorella’s growth was measured after 72h by 

spectrophotometric measurement at 682nm (optimal wavelength of Chlorella vulgaris). 

The reference toxicant (positive control) was a formaldehyde solution.  

Figure II.17 showed the effect of atrazine (pure solutions) in different 

concentrations starting from the lowest concentration (1µg/L) that has no effect on algal 

growth. A similar value of Delta OD682nm (0.266) was recognized at the lowest 

concentration of atrazine (1µg/L) when compared to the control samples having DW or 

DW and acetone (OD682nm = 0.273 and 0.267, respectively). These concentrations have not 

given any effect on the algal growth, with a mean value of 0.38% of growth inhibition 

(Fig.II.17). While, the highest concentration of atrazine at 2500 µg/L induced an intense 
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or total algistatic effect (the property of inhibition algal growth) to C. vulgaris, with 

Delta OD682nm of 0.036 (Fig. II.16) and the growth inhibition of 74.47% (Fig.II.17). The 

concentrations of 500, 100, 75, and 50 µg/L induced effects that below 50% with the 

growth inhibition values of 43.48, 43.7, 36.23, and 32.20, respectively. 

Percent growth inhibition (Blaise and Vasseur, 2005) 

I = [(ODc – OD) ÷ ODc] x 100 

where: 

I = the percent inhibition in algal growth 

ODc = the OD682nm for control algae after 72h 

OD = the OD682nm for each testing sample after 72h 

 

Toxicological test of Chlorella vulgaris on pure atrazine solutions 

 

Figure II.16. Growth curves estimated by Delta OD 682nm of Chlorella vulgaris treated 

by atrazine solutions. Delta OD682 is the difference of DO between initial time and after 72 h. 

The dose-response curve obtained for the 72-h duration of the inhibitor atrazine 

is presented in Fig.II.17. For C.vulgaris, the atrazine dose-response curve provided the 

IC50 of 60.41 µg/L with 95% confidence intervals ranging from 59.27 to 70.68 µg/L, 

according to the Graphpad’ calculation. The EC50 of C.vulgaris was found to be at 42 

µg/L (Leboulanger et al., 2001) when the algae were exposed to atrazine, which is 

consistent with our finding. The concepts of IC50 and EC50 are fundamental to 

pharmacology. IC50 is used in case there is an essay in which the inhibitor generates a 
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decline by half in activity of the response. The EC50 is the effective concentration of a 

drug that gives half-maximal response, and it is used for dose-response curves that go 

up hill. In some cases, it is also used for a curve that goes downhill. While IC: means 

inhibitory concentration, so is used for dose-response curves that go downhill, because 

the drug inhibits a response.  

 

Figure II.17. Dose–response curve for tested C.vulgaris and atrazine as an inhibitor after 

72h (mean of % inhibition ± SD, n=6). The values for this curve were obtained from the 

GraphPad Prism software (version 6.01) with the endpoint (IC50)  

 

The obtained results were consistent with the previous studies on the toxicity of 

Atrazine toward Chlorella vulgaris as well as useful for validating the toxicological 

method for further tests with the real water samples or pore water (collected from 

sediment) contaminated by atrazine 

 

II.C.5. APPLICATION ON SAMPLES FROM EXPERIMENTAL 

MICROCOSMS. 

After collecting sediment samples by coring for bioturbation and pesticide 

concentration measurements, the rest of the sediment in each experimental pail (Fig.II.9) 

were used for ecotoxicology test with Chlorella vulgaris species using the 

spectrophotometric method. Overlying water and sediment samples were collected at 
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the end of the experiment. The collected sediment samples were centrifuged at 5000 

rmp, 10 minutes for collecting pore water. The filtration step (by filter paper - 0.22 µm) 

was carried out to completely remove the sediment particles in both the overlying and 

pore water samples. These prepared samples were used for the ecotoxicology test using 

the same test procedure as in the test of pure atrazine on 96-wells microplates (Fig. 

II.18). 

 

 

Figure II.18. Sampling and processing of overlying water and sediment interstitial 

waters samples from the 2nd experiment. The number of replicate per each sample was 

04 and controlled sampled were run simultaneously. 

 

For running the test, 200 µL of each test solution (overlying water or sediment 

interstitial water) was introduced into a pre-defined well to which are also added 10 µL 

of nutrient spike and 10 µL of algal inoculum (see protocol #2). 
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Protocol# 2: Chlorella testing with the real samples 

 

- Algal inoculum (by centrifugation): 10µL Chlorella vulgaris 

- NC - Negative control :  200µL DW  + 10µL CB medium 11X  + 10µL Chlorella 

- PC - Positive control:  200µL formaldehyde   + 10µL CB medium 11X   + 10µL 

Chlorella 

- TS - Test sample:  200µL testing sample  + 10µL CB medium 11X   + 10µL 

Chlorella 
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PART III. RESULTS AND DISCUSSION 
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This part presents and discusses the results obtained from the two experiments 

mimicking in situ wetlands ecosystems. By focusing on this type of ecosystems, the 

objective was to use the biodiversity of this habitat to question the efficiency of the 

innovative strategy based on the combination of bioturbation and phytoremediation 

process. This strategy efficiency was tested with two different types of pollutants: one 

type of heavy metal (cadmium, 1st experiment), also used in these researches as a model 

of conservative pollutant to be able to quantify the fluxes in our experimental systems, 

and secondly, one micro-organic pollutant (atrazine, 2nd experiment) as a non-

conservative contaminants. Fluxes of two types of pollutant were followed between the 

different compartments of the experimental system under the biological and physical 

processes. In addition, it was expected that the micro-organic pollutant might undergo 

biodegradation process during the period of the experiment. In order to precisely 

measure the contaminant fluxes of atrazine and its metabolites in this framework, a 

radiolabelled atrazine was used in the second experiment.  

The first chapter III.A is devoted to the study of bioturbation and 

phytoremediation combined effects on the removal of cadmium from the water and 

sediment, with pollutant initially introduced in the overlying water of our experiment 

microcosm. This metal is representative of urban hazard that bioaccumulates in T. 

latifolia as a function of time (during 30 days of the 1st experiment).  

 The second chapter III.B shows the results and discusses the influence of the 

bioturbation on the efficiency of the phytoremediation of the radiolabeled-[14C] atrazine 

initially introduced in the sediment compartment. This contamination was 

homogenized in the whole sediment column previous to the starting of the experiment.  

 The third chapter III.C, is devoted to the comparison of the mitigation efficiencies 

measured in the second experiment with these two types of pollutants (metal - 

conservative and herbicide – non conservative) via their mass balance calculation 
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(based on quantities and fluxes) of contaminants in the four different experimental 

compartments (overlying water, sediment, plant, and worms). 
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CHAPTER III.A. INFLUENCE OF COMBINED 

BIOTURBATION AND PHYTOREMEDIATION ON 

CONSERVATIVE POLLUTANT (CADMIUM AS AN 

EXAMPLE) IN AQUATIC SEDIMENT 

 

The conveyor belt species of invertebrates Oligochaeta tubificidae, are known as an 

active ecological engineer to be able to generate continuous vertical flows of matter 

between water-sediment interfaces. This bioturbation is viewed as a source for 

contaminants burial, via biotransport. Bioturbation mechanisms on metal bioavailability 

in the water-sediment condition are well described previously. Cadmium is expected to 

be transferred into the depth of sediment via bioadvection by tubificid worms. Our 

study starts from the hypothesis that bioturbation favors the burial and bioaccessibility 

of cadmium in aquatic sediment for the plant, thus optimizes their bioaccumulation in 

the plant. 

This chapter, therefore, examines the influence of combined bioturbation and 

phytoremediation on cadmium removal in aquatic sediment. A population of the 

tubificid worms was used as a bioturbation source. Phytoremediation was carried out 

by a riparian plant species, Typha latifolia is known for its ability to accumulate the metal 

in their roots system from sediment. Cadmium, a conservative pollutant of an urban 

hazard was initially introduced in overlying water of microcosms reproducing a 

portion of water/sediment as in wetland condition. Principal results presented in this 

chapter highlighted the role of plant and invertebrate of the observed fluxes in the 

microcosms. 

By comparison Cd concentration bioaccumulated in T. latifolia as a function of 

time (30 days of the 1st experiment) with and without bioturbation, the first part (III.A.1) 

purposes to estimate the putative increase of phytoremediation potential under 

sediment bioturbation. In the second part (III.A.2), calculation of cadmium quantity in 

each experimental treatment makes it possible to estimate mass balance and fluxes 
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through both major interfaces water/sediment and sediment/plant. From the estimation, 

the change in flows under the effect of the plant and invertebrate will be highlighted. 

Toxic effect of cadmium on a population of tubificid worms as well as the possibility to 

apply the bioturbation to remediate other metals will be discussed in the last part of this 

chapter (III.A.3). 
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III.A.1. BIOTURBATION EFFECT ON T. LATIFOLA’S 

BIOACCUMULATION RATES  

 

The results of this study were published to the Journal of Science of the Total 

Environment - 618 (2018) 1284–1297; https://doi.org/10.1016/j.scitotenv.2017.09.237): 

“Bioturbation effects on bioaccumulation of cadmium in the wetland plant Typha 

latifolia: A nature-based experiment”. Trung Kien Hoang, Anne Probst, Didier 

Organe, Franck Gilbert, Arnaud Elger, Jean Kallerhoff, Francois Laurent, Sabina Bassil, 

Thi Thuy Duong, and Magali Gerino. 



Bioturbation effects on bioaccumulation of cadmium in thewetland plant
Typha latifolia: A nature-based experiment

Trung Kien Hoang a,b,⁎, Anne Probst a, Didier Orange c,e, Franck Gilbert a, Arnaud Elger a, Jean Kallerhoff a,
François Laurent d, Sabina Bassil a, Thi Thuy Duong b,e,f, Magali Gerino a,e,⁎⁎
a Laboratoire Écologie Fonctionnelle et Environnement (EcoLab), University of Toulouse, UMR5245, CNRS, INPT, UPS, Toulouse, France
b Institute of Environmental Technology, Vietnam Academy of Science and Technology, Hanoi, Viet Nam
c Eco&Sols, University of Montpellier, UMR210-IRD, INRA, CIRAD, Supagro, Montpellier, France
d Toxalim, UMR 1331, INRA, INPT, UPS, Toulouse, France
e USTH, Vietnam France University, Vietnam Academy of Science and Technology, Hanoi, Vietnam
f Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Viet Nam

H I G H L I G H T S

• A nature-based solution for metal biore-
mediation in sediments is proposed.

• Ecological engineering relies on combined
bioturbation and phytoremediation.

• Tubificids are transporting Cd downward
in sediments surrounding the plant roots.

• Cd bioaccumulation increases in T.latifolia
roots with bioturbation.

• Combining Cd contamination and worm
bioturbation optimizes Roots Enrichment
(ECR).
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The development of efficient bioremediation techniques to reduce aquatic pollutant load in natural sediment is
one of the current challenges in ecological engineering. A nature-based solution for metal bioremediation is
proposed through a combination of bioturbation and phytoremediation processes in experimental indoormicro-
cosms. The invertebrates Tubifex tubifex (Oligochaeta Tubificidae) was used as an active ecological engineer for
bioturbation enhancement. The riparian plant species Typha latifolia was selected for its efficiency in phyto-
accumulating pollutants from sediment.
Phytoremediation efficiency was estimated by using cadmium as a conservative pollutant known to bio-
accumulate in plants, and initially introduced in the overlying water (20 μg Cd/L of cadmium nitrate –
Cd(NO3)2·4H2O). Biological sediment reworking by invertebrates' activity was quantified using luminophores
(inert particulates).
Our results showed that bioturbation caused by tubificid worms' activity followed the bio-conveying transport
model with a downward vertical velocity (V) of luminophores ranging from 16.7± 4.5 to 18.5± 3.9 cm·year−1.
The biotransport changed the granulometric properties of the surface sediments, and this natural process was
still efficient under cadmium contamination. The highest value of Cd enrichment coefficient for plant roots
was observed in subsurface sediment layer (below 1 cm to 5 cm depth) with tubificids addition.
We demonstrated that biotransport changed the distribution of cadmium across the sediment column as well as
it enhanced the pumping of this metal from the surface to the anoxic sediment layers, thereby increasing the
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bioaccumulation of cadmium in the root system of Typha latifolia. This therefore highlights the potential of bio-
turbation as a tool to be considered in future as integrated bioremediation strategies of metallic polluted sedi-
ment in aquatic ecosystems.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

The accumulation of contaminants at the water-sediment interface,
in particular for potentially harmful elements (PHEs), is raising
concerns (Guo et al., 2012; Horowitz et al., 1999; Schäfer et al., 2009).
Metals and metalloids such as arsenic, mercury, lead, or cadmium are
the most common toxic chemicals involved in soil and water contami-
nation and result in serious health problem to humans (Simmons
et al., 2005; Teeyakasem et al., 2007). These metals are not degradable
and accumulate in aquatic sediment or soils as very highly persistent
compounds (Kermani et al., 2010). Among those, cadmium is a wide-
spread trace element that is extremely toxic to living organisms, such
as aquatic animals (Bur et al., 2010; Nair et al., 2013) and most of the
plant species (Barceló and Poschenrieder, 2003; Liu et al., 2005).
Human populations are exposed to Cd via drinking water and contami-
nated food (Byrne et al., 2009; EFSA, 2012), resulting in adverse health
effects, such as neurologic, metabolic, carcinogenic and immunological
disorders (Breton et al., 2013; Go et al., 2014). A European citizen
absorbs cadmium orally between 0.29 and 1.17 μg·kg−1·day−1

(EFSA, 2012).
The natural abundance of Cd in the terrestrial crust is 0.11 mg/kg

(Kabata-Pendias, 2011). Indeed, Cd is frequently found in river bed
sediment, which acts as a final sink of natural and anthopogenic sources
(N'guessan et al., 2009). The tendency of using Cd is on the rise in
electroplating, coating, plastic and battery manufacturing industry.
Cadmium contamination was also evidenced in some reservoirs that
provide a major fresh water source for domestic use, e.g. in Milluni
Grande lake, the main reservoir of water supply for La Paz, where Cd
content reaches N30 times the WMO guideline value (Salvarredy-
Aranguren et al., 2008). In France, such contamination occurs as a con-
sequence of leaching from mining exploration: daily fluxes of total Cd
range from 0.26 to 966 kg/day in the Lot River (a tributary of the Ga-
ronne River) and from 0.31 to 1360 kg/day in the downstream Garonne
River itself (Audry et al., 2004).

Faced to such metal accumulations and toxicity risks, several
methods are already being used to clean up the environment from
such environmental contaminants. But most of them are costly and far
away from their optimal performance. In parallel, the nature-based so-
lutions (Eggermont et al., 2015) inspired strategies for pollution biore-
mediation and water resource sustainability. The ecological processes
of phytoremediation and bioturbation were studied independently
up-to-now. They are both known to be efficient within ecological engi-
neering to promote pollutant fluxes in aquatic sediment. Although the
influence of bioturbating mechanisms on metal bioavailability in
the water-sediment conditions is now relatively well understood,
phytoremediation applications coupled with bioturbation have not yet
been investigated for pollutant removal strategies.

The application of knowledge of nature-based solutions might in-
spire future options for pollution attenuation (Eggermont et al., 2015).
Up to now, few solutions are recognized within the international scien-
tific community. Among them, phytoremediation is highlighted as an
efficient and sustainable way to stabilize and/or remove commonly en-
countered pollutants occurring in the environment (EPA, 2012).
Phytoremediation is a method using plants to remove contaminants,
such as metals, from soils and sediment without destroying soil struc-
ture (Ghosh and Singh, 2005; Zhang et al., 2010). Phytoremediation
was demonstrated to be efficient in removing metals such as lead, cad-
mium, copper, arsenic, uranium from contaminatedwaters (Favas et al.,

2014; Lyubenova and Schröder, 2011), sediment (Klink et al.,
2013; Pandey et al., 2014; Sasmaz et al., 2008; Weis and Weis, 2004)
or soils (Leveque et al., 2013) by accumulation in plant organs. It
is a cost-effective, efficient, friendly-environmentally, and in-situ
applicable remediation strategy for environmental restoration
(Barceló and Poschenrieder, 2003; LeDuc and Terry, 2005; Sinha et al.,
2009). The mitigation of metal contamination by plants through
phytoremediation process involves themechanisms of phytoextraction,
phytostabilisation, rhizofiltration, and phytovolatilization (Prasad, and
Freitas, H. M. de O., 2003; Vangronsveld et al., 2009). Up to now, N450
existing species of “metal hyperaccumulator” plants have been discov-
ered in the world (Ghosh and Singh, 2005; Prasad, and Freitas, H. M.
de O., 2003). Their efficiency depends on many factors, in which avail-
ability and mobility of PHEs are very important factors contributing to
the success of the phytoremediation technology (Antoniadis et al.,
2017; Felix, 1997). Broadleaf cattail, or Typha latifolia, is one of the
more commonwetland plant species for phytoremediation application,
with a large distribution under various hydrological conditions, both
flooded and non-flooded (Aulio, 2015) and under various climates in
temperate, tropical, humid coastal and dry continental ones (Pandey
et al., 2014). Typha latifolia reveals a rapid growth and resistant charac-
teristics in polluted sites with a high capacity for metal uptake into its
organs, particular in the root system. The root system can be used as a
bio-indicator or bio-accumulator for waters and sediment polluted by
metals, such as Zn, Ni, Cu, Pb, Co, Mn and Cd (Klink et al., 2013;
Sasmaz et al., 2008). However, although non-essential for the growth
of plants (Williams et al., 2000), Cd is well uptaken by roots and
translocated into leaves of many plant hyperaccumulators, without
displaying harmful effects to growth and development (Manousaki
et al., 2008).

Bioturbation is driven by the activities of invertebrates in the
sediment. It is a natural process defined as: “all transport processes
carried out by animals that directly or indirectly affect sediment matri-
ces” (Kristensen et al., 2012). These processes include particle
reworking and burrow ventilation, so that bioturbation is the source
of significant changes in biological and physico-chemical properties of
soils and sediment (Baranov et al., 2016; Kristensen et al., 2012;
Peterson et al., 1996), as well as several types of biotransports (Gerino
et al., 2003). Consequently, bioturbation generates material fluxes via
biotransportation of sediment and associated contaminants through
the water sediment interface and inside the inhabited layer that are es-
timated to double the incorporation of these contaminants into the sed-
iment (Anschutz et al., 2012; Ciutat et al., 2007; Ciutat et al., 2006;
Delmotte et al., 2007; Gerino et al., 2014; Hölker et al., 2015;
Kristensen et al., 2012; Teal et al., 2013). One specific type of bioturba-
tion called bioadvection is produced by conveyors-belt species like tubi-
ficids that feed at sediment depth and defecate at the sediment surface.
This bioadvection is a downward advection of thewater sediment inter-
face when the tubificids population, as head-down deposit feeders, feed
at depth in the sediment and egest faecal pellets at the sediment surface.
This biotranport modifies the distribution of fine particles into the sed-
iment column that increases in the surface layer where feacal pellets
accumulate (Ciutat et al., 2006). The dimension of theworms' prostomi-
um limits the sediment particle size that can be ingested and this will
thereafter be transported to the surface by the turbificid guts
(Anschutz et al., 2012; Ciutat et al., 2006). Besides their survival in
metal contaminated soils, some invertebrate animals (earthworms)
can accumulate metals, such as Cd, Cu, Zn, and Pb, in their tissues
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(Morgan et al., 1989). The geochemical changes in bioturbated sedi-
ment are able to affect the behaviour of metals (Gilbert et al., 2007).
For instance, the changes in redox potential, pH, OM, and porosity
under bioturbation effects can influence the sorbtion capacity of the pol-
lutant on the sediment particles and thus change the solid/liquid parti-
tion equilibrium of metals, e.g. Zn and Cd (Cheng and Wong, 2002;
Rinklebe et al., 2016; Shaheen et al., 2016; Yu et al., 2005). Via its influ-
ence on phisicochemical properties of sediment, bioturbation shifts the
metal binding affinities between the solid and dissolved phases and can
also significantly modify the speciation and bioavailability of most
metals in sediment (Remaili et al., 2015). Therefore combining the
bioadvection effect with the Cd source in the overlying water, results
in doubling the pollutant loading in sediment due to the bioturbation ef-
fect (Ciutat et al., 2005a, 2006, 2007). This should alows metal transfer
and availability into the sediment surrounded by the plant's root system
(Yu et al., 2005), and therefore bioturbation, by tubificids in the pres-
ence of cadmium, might simultaneously favor metal uptake by plants.
The experiment described in this paper was perfomed in order to test
whether bioturbation could be a source of improvement of the efficien-
cy of phytoextraction.

Our research aimed to give evidence of the potential of combined
bioturbation and phytoremediation for the remediation of cadmium-
contaminated sediment by mimicking field patterns of aquatic systems
contamination from the water during a flood event. Our experimental
study involves these two methods to enhance cadmium transfer from
water into sediment and from sediment into plant organs. Using a
controlled-environment experiment, the objectives were: (i) to evalu-
ate the putative increase of phytoremediation potential under sediment
bioturbationwith tubificid's conveyors, (ii) to estimate themetal bioac-
cumulation dynamic by a riparian plant coupled to tubificid worms'
activity.

2. Materials and methods

2.1. Sampling and processing of sediment and plants

Sediment samples and Typha latifolia species were collected from
the Aussonnelle River catchment, a first rank tributary of the Garonne
River (Sélery area, Colomiers, France) in January 2013, 60 days before
starting the experiment. The sediment was firstly defaunated by incu-
bating for 40 days at 40 °C into closed tanks in order to generate anaer-
obic conditions in the sediment, and secondly by a mechanical mixing
process of the sediment using a motor-mixer to both mechanically kill
the last alive macrofauna and homogenize the sediment. The
defaunated sediment was then introduced into each microcosm
(a pail of 13 L-volume, see Fig. 1). Each microcosm roughly consisted

of a sediment layer of 9 cm depth (approximately 7.3 kg of sediment)
and of a water column of 8 cm height of de-chlorinated tap water
(approximately 4.8 L of overlying water) (Fig. 1).

After collecting T. latifolia from the field, individual plants were
stored in a thermostatic experimental room for acclimatation during
60 days until the start of the experiment. Healthy plants showing no
signs of rotting and having approximately the same height were select-
ed for experiments. One individualwas taken and prepared for analyses
in order to have the reference information of metal content. Just before
starting the experiment, the roots and rhizomes of the other T. latifolia
plants were carefully cleaned up with tap water to completely remove
field non-manipulated sediment and then carefully cut to achieve, as
far as possible, a homogeneous biomass among the plants. From these
plants, threewere selected randomly (at t= 0) for an initial metal anal-
ysis. The remaining were planted into microcosms (one by bucket) and
collected on the last day of the experiment (t = 30).

2.2. Experimental design and microcosm setup

A full-factorial designwas used, crossing 3 tested factors: Cd concen-
tration (Cd-enriched or not), plant influence (presence/absence of
T. latifolia), and macrofauna influence (presence/absence of tubificid
worms) (see Table 1). All possible combinations of the different levels
of each factor were thus tested and distributed into the different
microcosms (Fig. 1). Three replicates per combination were performed.
The experimental units were distributed in four blocks each including
one replicate of each combination of the 3 tested factors. The
position of the microcosms within each block was randomly deter-
mined. Tap water was supplemented in each microcosm every few
days (approximately 3% of the total water volume per day) to compen-
sate for evaporation and to keep the water level constant. Microcosms
were set-up in a thermostatic experimental room with homogeneous
physico-chemical conditions (T°C, light, sediment, water): light
provided by 3 electric bulbs (400 W each), 12 h of light each
day, room temperature at 18 °C, photon fluence rate (the unit
concerning the light in the plant production) in the experimental
room was 18.1 ± 2.4 μmol·m−2·s−1 at the surface of the overlying
water and 28.0 ± 2.2 μmol·m−2·s−1 at the top of T. latifolia plants.

The tubificid worms used were provided by the GREBIL Company
(Arry, France). In each microcosm with tubificids, approximately 800
worms were introduced at the surface of the sediment corresponding
to approximately 135 worms·dm−2, with a fresh biomass of 17.8 ±
3.1 g per microcosm. Two weeks after worms introduction, cadmium
provided as cadmiumnitrate (Cd(NO3)2·4H2O), with an initial contam-
ination level of 20 μg Cd/L was gently added to the overlyingwater. This
concentration was selected from the previous experiment with

Fig. 1.Microcosm experimental design (see Table 1 for acronym definitions corresponding to the different treatments).
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cadmium and tubificid worms (Ciutat et al., 2005b) considering that
this concentration is frequent in contaminatedwaters byminingwastes
(Salvarredy-Aranguren et al., 2008) or industrial sites (Andres et al.,
1999). In order to avoid any bias resulting from nitrate addition in
the metal-treated pails, a neutral salt in form of calcium nitrate
Ca(NO3)2·4H2O, with the same nitrate concentration (20 μg Ca/L),
was added in microcosms not contaminated by cadmium.

The experiment lasted 30 days after the introduction of the
contaminant in the overlying water on the first day (t = 0). This is the
time which was considered needed to allow: (i) plant growth, (ii) bio-
turbation, and (iii) metal transfer within each compartment as well as
their bioaccumulation in the plant system, without having extra-
environmental disturbances.Water, plants, and sedimentwere sampled
on the last day (t = 30).

2.3. Bioturbation activity measurements

The bioturbation activity of tubificids was quantified using the fluo-
rescent inert tracers technique (Gerino et al., 1994; Lagauzère et al.,
2011). Luminophores are natural sand particles coated with pink fluo-
rescent paint with size ranging from 63 to 125 μm (Partrac Ltd., UK).
Twenty-four hours after worms introduction (the time needed for the
worms to restaure from handling), luminophores were homogeneously
deposited at the sediment surface in the form of a 3-mm-thick frozen
mud cake (a mixture of 30 g of the same sediment with 4 g of the
tracers). At the end of the experiment (t = 30 days), the sediment
was cut into twelve layers (0.5-cm thick layers from the surface down
to 3 cm depth, then 1-cm thick layers down to 9 cm depth) in order to
assess the vertical distribution of luminophores in the sediment column.
Each layer of fresh sediment was homogenized before sub-sampling.
Detection of luminophores was performed with a Synergy Microplate
reader (Biotek, USA) according to a protocol adapted from Lagauzère
et al., 2011. Fluorescence reading was used with 565 nm as excitation
and 602 nm as emission wavelength. After estimation of the
luminophore concentrations along depth in the sediment column, the
bioadvection–biodiffusion model (Gerino et al., 1994; Officer and
Lynch, 1982) were applied to fit the measured tracer profiles:

δC
δt

¼ Db
δ2C
δz2

−V
δC
δz

ð1Þ

with t as the time, z as the depth, and C as the tracer concentration.
This model allows to estimate the theoretical concentration of

tracers under the effects of the two biotransports parameters: V
(cm·y−1) as the bioadvective velocity or bio-sedimentation rate that
represents the downward transfert of the tracers and Db (cm2·y−1) as
the biodiffusion coefficient that reflects the dispersion rate of the tracers
in omnidirectional directions. This model was first developped by
Officer and Lynch (1982) and then used for describing marine (Gerino
et al., 1994) and freshwater bioturbation (Delmotte et al., 2007).

Estimation of bioadvection and biodiffusion rates in the experiment
was performed by fitting the theoretical concentrations obtained with
the bioturbation model to the measured luminophore concentrations
with a least-squares procedure for each microcosm.

2.4. Cadmium measurements

2.4.1. Water, sediment, and plant sampling and pre-treatment for Cd
analysis

The overlying water was sampled at the beginning (t = 0) and the
end (t= 30) of the experiment. In order to determine dissolved cadmi-
um concentration in water, 40 mL from each sample was filtered with a
mesh of standard pore diameter of 0.22 μm. Solutions were acidified
using a 65% ultra pure HNO3 solution to maintain metal in solution
and then kept in cool and dark conditions (5 °C) before the measure-
ments. All materials used (filtration devices, pipettes, box filters, etc.)
were plastic made to avoid any metal contamination of samples.

The sediment was sampled three times during the experiment,
after the defaunation process: initial samples (t = −60), at the begin-
ning (t = 0) before adding contaminant into the overlying water, and
on the last day (t=30). For the samples at t=30, the sediment column
was carefully removed from the microcosm and then cut into two
layers (L1 and L2) connected to the bioturbation process by worms:
L1 (0–1 cm) corresponds to a surface zone composed entirely of feacal
pellets ejected and L2 (1–5 cm) corresponds to an ingested area of par-
ticles (Ciutat et al., 2006). All sediment sampleswere kept in plastic bot-
tles and stored frozen.

The sediment from the bottles were then spread into plastic Petri
dishes and dried in an oven at 40 °C, with smooth manipulation (with-
out crushing minerals, sand, gravel, etc.) during drying to avoid aggre-
gation. Once the sediment was dry, and the main organic debris
removedwith clean plastic tweezers, theywere sieved through a plastic
mesh sieve to get the fraction b63 μm(accounting for 26.3±1.7% of the
total fraction), subsequently used for Cd analysis. This fraction is sup-
posed to be the most metal enriched and available for plants (Förstner
and Solomons, 1980; Probst et al., 2003).

The Typha latifolia, collected before the experiment (field sample, at
t=−60) at the initial (t=0) and at the end of the experiment (t=30),
were cut into the following parts: the above part (stem and leaves), the
rhizome, and the roots. Prior to analysis, plant materials were carefully
cleaned with distilled water and cut to a constant weight between sam-
ples. To ensure the efficiency of the dissolution procedure of the differ-
ent plant compartments before analysis, they were carefully cut into
pieces using a ceramic knife and then ground in liquid nitrogen using a
pestle and mortar.

2.4.2. Solid sample dissolution procedure and Cd analysis
The sediment fraction (b 63 μm) used for ICP-MS analysis was dis-

solved by a well-calibrated procedure in the EcoLab cleanroom (ISO 7)
(N'guessan et al., 2009). Approximately 100 mg of homogenized plant
or sediment material was inserted into a Teflon reactor (Savillex) with
a clean plastic spatula and subsequently digestedwith amixture of con-
centrated supra pure HNO3 and HF at 90 °C overnight. The solution was
then evaporated, and hydrogen peroxide solution H2O2 was added to
destroy the organic matter. The procedure was defined with different
steps repeated until the dissolution is complete. Finally, after evapora-
tion, 11 mL miliQ water was added.

All samples were transferred to tubes and were diluted so that the
element concentrations were lower than 0.8 g/l in order to avoid ICP-
MS saturation during the analysis. The samples were then acidified
with nitric acid (HNO3 69%) to obtain a 2% HNO3 solution. Finally, Indi-
um/Rhenium (In/Re, conc. 0.4037 ppm) was added to samples in order
to control the machine deviation during the analytical process.

The analytical data qualitywas checked by including simultaneously
in the procedure the blank samples and two standards (SRM-1515
apple leaves, from National Institute of Standards and Technology,

Table 1
Main acronyms for different experimental treatments used in the experiment.

Treatments
noted

Time
(day)

Description

Field t =−60 Samples collected from the field
(before starting experiment)

Initial t = 0 Initial samples (at the beginning of experiment)
{Control} t = 30 Control treatment (no plant, no metal, no invertebrates)
{Typ} t = 30 No metal, with plant, no invertebrates
{Tub} t = 30 No metal, no plant, with invertebrates
{Typ.Tub} t = 30 No metal, with plant, with invertebrates
{Cd} t = 30 With metal, no plant, no invertebrates
{Cd.Typ} t = 30 With metal, with plant, no invertebrates
{Cd.Tub} t = 30 With metal, no plant, with invertebrates
{Cd.Typ.Tub} t = 30 With metal, with plant, with invertebrates

Typ: T. latifolia plant; Cd: cadmium; Tub: tubificid invertebrates.
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USA, and STSD-1 Stream Sediment Reference materials, from Canada
CertifiedReferenceMaterials Project– CCRMP, Canada) to verify accura-
cy and reproducibility of the dissolution process for plant and sediment
samples.

Cd concentration was analyzed in water, plants (root and above
parts) and sediment samples by spectrometry using a Q-ICP-MS
(Perkin-Elmer ELAN 6000) at the OMP-GET (Geoscience Environment
Toulouse, Observatoire Midi-Pyrénées, Toulouse, France). Detection
limits for Cd were between 10−3 to 10−2 μ·L−1. The concentrations of
some elementsmeasured in the two standardswere used for the analyt-
ical recovery (QA/QC) calculation by comparison with their reference
values. For most elements, the recovery of the reference material
SRM-1515 ranged between 112% and 166%, in which Cd element was
at 124%. Because the standard STSD-1 is not certified for Cd element,
we used the sediment samples collected in the Aussonnelle River,
(initial sample of the study) for comparisonwith the sediment samples,
which were collected in the same station (Aussonnelle, Garonne river
bank) by Proffit and Probst (2007) and with the Gascogne river studied
by N'guessan et al. (2009). Our results showed that the initial sediment
Cd concentrations in the present study were in the same range as those
measured by these authors. Themean concentrations of cadmium in the
Gascogne stream sediment (fraction b63 μm) and in the Gascogne bed-
rock (Molasse) samples were 0.30 and 0.20 μg·g−1, respectively
(N'guessan et al., 2009), while the Cd concentration in sediment from
this study averaged 0.21 ± 0.02 μg·g−1.

2.5. Texture, pH, and pore water content analyses of sediment at the end of
the experiment

Grain-size of the sediment particles wasmeasuredwith a Laser Scat-
tering Particle Size Distribution Analyser – LA – 950 V2 (HORIBA Japan),
for sizes ranging from 0.01 to 3000 μm. The Wentworth's classification
(Wentworth, 1922) was used to define the various grain-size fractions
of four experimental treatments {Control}, {Tub}, {Cd}, and {Cd.Tub}:
fine silts and clays (b15 μm), medium silts (15–30 μm), coarse silts
(30–63 μm), very fine sands (63–125 μm), fine sands (125–250 μm),
medium sands (250–500 μm)and coarse sands (N500 μm). This analysis
also provided the mean size of sediment particles, which is an integra-
tive parameter allowing to compare the grain size of a given sediment
layer in different treatments.

To study the influence of different treatments on the physico-
chemical sediment properties, pH value, and pore water content were
measured in fresh sediment samples from 4 distinguishable layers.
These layers were defined according to tubificid worms' activity (see
Section 2.4.1). The pore water content and porosity were assessed by
drying sediment samples overnight at 105 °C, while pH was measured
in a water suspension (1.5; v/v) according to the norm ISO 10390.

2.6. Calculations and data treatment

2.6.1. Enrichment coefficient and translocation factor
The enrichment coefficient for roots (ECR), enrichment coefficient

for leaf parts (ECL) and transfer factor (TF) were calculated as follows:
ECR = concentration of metal in roots / concentration of metal in

sediment (fraction b 63 μm)
ECL = concentration of metal in leaf / concentration of metal in sed-

iment (fraction b 63 μm)
TF= concentration of metal in leaf / concentration of metal in roots

2.6.2. Statistical analysis
To evaluate statistically any significant difference between mean

values among all experimental treatments at the beginning (at t = 0)
and at the end of the experiment (t = 30), Cd concentrations in plant
samples, enrichment factors (EC), transfer factors (TF), bioadvective
(V) and biodifusive rates (Db) were firstly compared using one-way
ANOVA. Prior to ANOVA tests, homoscedasticvity and normality of the

residueswere checkedwith Bartlett and Shapiro-Wilk tests, respectively.
Following ANOVAs, the mean values of each treatment were compared
with each other using Tukey HSD's method. Dunnett test was also used
for comparing data at t = 30 days with initial values (t = 0 day) used
as references.

Secondly, the possible interactive effects of cadmium enrichment
and tubificids on the bioaccumulation of T. latifolia were studied by
using two-way ANOVA. Two-way ANOVAs were also performed on
the average size of sediment particles separately for each sediment
layer, to assess the impact of bioturbation and cadmium enrichment
on sediment texture.

Three-way ANOVA was applied on the bioturbation bioadvective
rates - V and the cadmium concentration in the sediment samples to in-
vestigate for possible interactive influences of worms addition, cadmi-
um enrichment, and plant presence/absence on bioturbation activities
and cadmium behaviour in sediment.

Statistical analyses were performed using the statistical GraphPad
Prism (version 6.01) and R software (version 3.2.5).

3. Results

3.1. Sediment particle bioturbation

In sediment without tubificids (Fig. 2, black dots), about 70% of
luminophores remained in the surface layer (0–0.5 cm) after 30 days.
The remaining luminophore particles were located below the sediment
surface (about 25% and 5% of the tracers were found at the layers from
0.5 to 1.0 cm and from 1.0 to 1.5 cm, respectively). The luminophore
concentration profiles recorded under the influence of the tubificids
provided evidence of sediment biotransport (Fig. 2, white dots): 30 to
40% of the tracers, initially deposited at the sediment surface, were
spread down to rather than 2 cm depth with a concentration peak of
luminophore particles at 2 cmdepth after 30 days. The experiment indi-
cates a significant increase of the bioadvective rates (V) in presence of
worms (three-way ANOVA, F1,16 = 160.05, P b 0.0001) (Table 2).

The bioadvective rates were significantly and consistently different
between treatments with or without tubificids addition (Tukey HSD
test; Fig. 3). The mean values, for sediment with tubificids, ranged
from 16.7 ± 4.5 to 18.5 ± 3.93 cm·year−1, while it varied only from
0.6 ± 0.5 to 2.5 ± 3.1 cm·year-1 .when they were absent (Fig. 3). No
other factor had any significant influence on V, either alone or in inter-
action with the presence of tubificids (Table 2). The corresponding
biodiffusion coefficients (Db) did not significantly vary among treat-
ments but tended to be higher in presence of worms (from 1.0 ± 0.6
to 1.6 ± 0.3 cm2·year−1) compared to abiotic controls (from 0.8 ±
0.1 to 1.4 ± 0.5 cm2·year−1) (Fig. 3). It is particularly remarkable that
no significant difference for either V or Dbwas observed when compar-
ing sediment with or without added cadmium.

3.2. Physico-chemical sediment properties with and without bioturbation

Themean grain-size and the percentage of each sediment fraction in
the two sediment layers (L1 (0–1 cm) and L2 (1–5 cm)) at the end of the
experiment are given in Table 3 for the four experimental conditions:
{Control}, {Tub}, {Cd}, and {Cd.Tub}. After 30 days, when no tubificids,
the smallest particles (fine silt, clay, medium silt, and coarse silt with
grain-size fraction b63 μm) accounted for up to 54.7 and 49.6% of the
sediment volume in L1 and L2, respectively in {Control} unit. The grain
size distributions were almost similar in both treatments ({Control}
and {Cd} treatments). When worms were present, the relative propor-
tion of the sediment fractions b63 μm increased significantly at the
end of the experiment to 84.5 and 87.1% in the top layer (L1) of the
two treatments ({Tub} and {Cd.Tub}), respectively. At the same time,
in a consistent way, the relative proportion of the sediment fractions
b63 μm decreased in the second layer (L2) to 33.6 and 38.9% for these
treatments. In contrast, the largest particles (notably coarse, medium
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and fine sands) recorded in L1 for these two treatments were signifi-
cantly less abundant compared with those without worms (Table 3).

A significant effect of tubificids addition was recorded in the first
layer (L1)with a lowering of themean grain size of particles, and the re-
verse for the second layer (L2), as evidenced by using two-way ANOVA
(F1,32 = 179.4 and 26.97, respectively, P b 0.0001) (Table 4). The effect
of cadmium enrichment was significant, although to a lesser extent
only on the mean grain size in layer 2 (two-way ANOVA, F1,32 =
4.951, P = 0.0333). No significant interaction between the two factors
tested (Cd enrichment and tubificids addition) was found for any of
the two layers (Table 4).

For the treatment {Cd.Typ}, the porosity of sediment in the column
varied from 33.5% to 25.7%, respectively for L1 and L2. With addition
of worms, the porosity has only increased in the first layer L1 with a
mean of 47.4%. Fig. 4 shows the pH variation according to the depth in
the microcosms for {Cd.Typ} and {Cd.Typ.Tub} treatments. The pH of

Fig. 2. Vertical profiles of luminophores in the sediment after 30 days for treatments with and without tubificids bioturbation. White and black dots are mean values of the measured
luminophore concentrations (%); Solid lines are theoretical profiles of the tracer concentrations obtained by using bioadvective (V) and biodiffusive (Db) rates calculated
independently for each microcosm; The part in grey color is the thickness of the bioturbated layer in the treatments with tubificids (see Table 1 for the acronym definitions
corresponding to the different treatments).

Table 2
Three-way ANOVA performed on the bioadvective rates (V). ***: significant difference for
V at P ≤ 0.001; ns: non significance according to three-way ANOVA.

Factors F1,16 P

Cd enrichment 0.0668 0.7994ns

T. latifolia treatment 0.1427 0.7106ns

Tubificids addition 160.0475 b0.0001⁎⁎⁎

Cd:typ interaction 0.4304 0.5211ns

Cd:tub interaction 0.0232 0.8808ns

Typ:tub interaction 0.4842 0.4965ns

Cd:typ:Tub interaction 0.3173 0.5810ns

The bold in the table is to highlight the significant difference of V (bioadvective rate), com-
pared to the other factors.

Fig. 3. Bioadvective rates (V) estimated after 30 days for the different experimental
treatments; different letters indicate the significant differences (P b 0.05) of V
between treatments as analyzed by TUKEY HSD multiple comparison tests. Values are
mean ± SD, n = 3 per treatment group (see Table 1 for the acronym definitions used
for the different treatments).
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the overlyingwaterwere found to be at 8.03 and 8.20 in conditionswith
andwithout bioturbation, respectively. The bioturbation effect was only
detectable in the surface sediment layers (from 0 to 4 cm)where the pH
decreased from 8.03 ± 0.05 to 7.73 ± 0.02 under tubificids' influence.
Without bioturbation effect, the pH is even lower and reaches 7.47 ±
0.06 at 2 cm depth (Fig. 4).

3.3. Cadmium concentrations in overlying water

Dissolved cadmium concentration in the overlying water of the mi-
crocosms contaminated by Cd was initially introduced at 20 μg·L−1

(corresponding to a total amount of 95.6 μg Cd per microcosm).
Few hours after the contaminant introduction (t = 0), the average dis-
solved cadmium concentrations were found to be 1.01 ± 0.31 μg·L−1

and 0.01 ± 0.00 μg·L−1 (means ± SD, n = 3) in the treatments with
{+Cd} and without cadmium enrichment {−Cd} respectively. Thirty
days after the beginning of the experiment, the Cd concentration in
water was very low, ranging from 0.01 ± 0.00 to 0.03 ± 0.01 μg·L−1

in all experimental conditions, with no significant difference between
all contaminated treatments.

3.4. Cadmium concentrations in sediment

Before adding the contaminant into the overlying water, Cd concen-
trations in sediment ranged from 0.195 ± 0.014 (layer L2) to 0.202 ±
0.003 μg.g−1 dry wt. (layer L1) (Fig. 5A). At t = 30 days, Cd concentra-
tion in the sediment of {Control} microcosms and the microcosms with
T. latifolia only {Typ} ranged from 0.180 to 0.205 μg·g−1 dry wt. and
were similar to the initial conditions, in both sediment layers. For all
these treatments, no significant difference in Cd concentration was
found between top (L1) and deeper (L2) layers.

In the absence of worms (Fig. 5A), but with Cd addition, i.e. {Cd} and
{Cd.Typ}, the average Cd concentrations significantly increased in the
first layer (0.331 and 0.339 μg·g−1 dry wt., respectively) compared to
control units, while in the second layer the values remained the same
as in the control microcosms {Control} (0.180 and 0.196 μg·g−1 dry
wt., respectively). The Cd concentrations did not differ significantly de-
pending on the presence or absence of T. latifolia.

Whenwormswere present (Fig. 5B) without Cd enrichment ({Tub},
{Typ.Tub}), compared with the control {Initial} unit at t = 0, and
{Control} and {Typ} units at t = 30 days, Cd concentrations increased
in L1 (to 0.325 and 0.336 μg.g−1 dry wt.), and decreased in L2
(to 0.138 and 0.145 μg.g−1 dry wt.) in {Tub}, {Typ.Tub}, respectively.

When both worms and Cd were present, the highest concentrations
of Cd were found in the layer L1 (0.498 and 0.459 μg·g−1 dry wt., in
{Cd.Tub} and{Cd.Typ.Tub} respectively), and there was no significant
difference in the presence or absence of T. latifolia. Cd concentrations
in the layer L2 of these two treatments were found to be 0.168 and
0.179 μg·g−1 dry wt., respectively (Fig. 5), again independently of
T. latifolia presence.

The different levels of Cd concentrations between the first and the
second layer, expressed as specific ratio R observed in all experimental
treatments, ranged from 1.0 to 1.8 in the absence of worms' activities
(Fig. 5A) and from 2.3 to 3.0 when worms are present in the sediment
(Fig. 5B).

The effects of both cadmium enrichment and tubificids addition on
Cd concentrations in the top layer were analyzed using the three-way
ANOVA (F1,11 = 56.12, P b 0.0001 and, F1,11 = 39.97, P b 0.0001,
respectively) as well as the effect of tubificids only in the second layer
(three-way ANOVA, F1,11 = 12.56, P = 0.0046) (Table 5). There
were no significant interactions between these factors (three-way
ANOVA, P N 0.05).

3.5. Cadmium concentrations in T. latifolia organs

The mean Cd concentration in the roots and leaves of Typha latifolia
in field sample collected 60 days before the beginning of the experiment
and in the different treatments at initial set up and and end of
experiment is reported in Fig. 6. The concentrations in the leaf parts
(Fig. 6B) averaged 0.158 ± 0.063 μg·g−1 dry wt. in {Typ} to 0.248 ±
0.222 μg·g−1 dry wt. in {Cd.Typ.Tub} treatments and was much
lower by a factor 10 than in the roots for all treatments. No significant
differences (P N 0.05) in Cd concentrations were observed in the leaf
parts of any treatment at the beginning and at the end of the
experiment, despite a slight increase observed in the presence of
worms ({Cd.Typ.Tub}). In the roots (Fig. 6A), there were significant
differences in average Cd concentrations among treatments at the be-
ginning (t = 0) and at the end of the experiment (t = 30) when mea-
sured values were analyzed all together (one-way ANOVA, F4,10 =
4.67, P = 0.0219). The mean value of all the treatments at the end of
the experiment (t = 30) significantly differed from the average
initial Cd concentration (t = 0) (from the Dunnett multiple compari-
sons, P N 0.05 in all cases) (Fig. 6A). However, a significant effect of cad-
mium enrichment on Cd bioaccumulation by T. latifolia roots (F1,8 =
17.37, P = 0.0030) and to a lesser extent of the interaction between
the two tested factors (Cd and tubificids) in interaction (F1,8 = 6.569,
P=0.0335), were evidenced by a two-way ANOVA (Table 6). Cadmium
concentration increased significantly in the roots during the

Table 3
Percentages of the various size-fractions of particles and mean grain-size in each sediment layers (mean ± SD, n = 9) at t = 30 days.

Grain-size fraction
(%)

1st layer (L1) 2nd layer (L2)

Grain size
(μm)

Control.t30 Tub.t30 Cd.t30 Cd.Tub.t30 Control.t30 Tub.t30 Cd.t30 Cd.Tub.t30

Fine silt and clay b15 33.2 ± 3.2 55.9 ± 2.9 29.7 ± 2.5 58.7 ± 4.0 28.2 ± 2.2 15.4 ± 2.1 30.5 ± 1.7 18.8 ± 2.3
Medium silt 15–30 11.1 ± 0.8 15.4 ± 0.6 10.4 ± 1.2 16.2 ± 1.6 10.3 ± 0.6 6.5 ± 0.5 10.8 ± 0.7 7.6 ± 1.2
Coarse silt 30–63 10.4 ± 0.6 13.2 ± 0.8 10.7 ± 1.6 12.1 ± 1.1 11.2 ± 0.6 11.7 ± 1.7 10.7 ± 1.3 12.5 ± 1.7
Fine sediment (particles b 63) 54.7 ± 4.0 84.5 ± 2.2 50.8 ± 4.2 87.1 ± 1.8 49.6 ± 3.1 33.6 ± 2.8 51.9 ± 2.3 38.9 ± 4.4
Very fine sand 63–125 13.5 ± 0.9 11.0 ± 1.4 14.5 ± 1.6 9.2 ± 0.9 14.8 ± 0.9 12.5 ± 0.9 14.5 ± 1.0 12.3 ± 0.9
Fine sand 125–250 12.9 ± 0.9 3.8 ± 0.9 14.6 ± 0.6 3.0 ± 0.5 14.7 ± 0.5 18.1 ± 2.4 15.1 ± 0.6 17.7 ± 1.7
Medium sand 250–500 14.2 ± 1.8 0.7 ± 1.0 14.7 ± 2.2 0.6 ± 0.7 15.9 ± 1.7 25.5 ± 3.3 15.1 ± 1.6 25.3 ± 3.1
Coarse sand N500 4.7 ± 3.1 0.0 ± 0.0 5.4 ± 3.9 0.1 ± 0.4 5.0 ± 2.1 10.3 ± 6.2 3.3 ± 1.3 5.9 ± 2.5
Mean grain size (μm) 107.82 ± 21.26 28.64 ± 4.18 126.14 ± 33.35 26.15 ± 5.41 125.03 ± 17.33 207.34 ± 70.62 112.44 ± 11.96 162.99 ± 21.48

The bold in the table is to make the highlights of the worms' effects on fine sediment fraction.

Table 4
Effect of bioturbation and cadmium enrichment and their interactions performed on the
mean grain size of sediment particles, using two-way ANOVA.

Factors 1st layer (L1) 2nd layer (L2)

F1,32 P F1,32 P

Cadmium enrichment 1.40 0.2456ns 4.95 0.0333*
Tubificids addition 179.40 b0.0001*** 26.97 b0.0001***
Interaction 2.42 0.1295ns 1.54 0.2235ns

(⁎) and (⁎⁎⁎) indicate significance at p ≤ 0.05 and 0.001, respectively; ns: non significance
according to two-way ANOVA.
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experiment, when both cadmium and worms were together
({Cd.Typ.Tub}), when compared with the treatment having
worms only {Typ.Tub} (Tukey HSD, P = 0.0060) (Fig. 6A). A significant
increase was also observed with bioturbation {Cd.Typ.Tub} (mean =
2.90 μg·g−1 dry wt.) compared to {Typ} (mean = 1.41 μg.g−1

dry wt.) treatments at t = 30 (Tukey HSD, P = 0.0307). No significant
difference was observed between the two conditions {Cd.Typ} and
{Cd.Typ.Tub} (P = 0.1575) neither between the two conditions
{Cd.Typ} and {Typ} (P = 0.6630) according to Tukey post-hoc test
(Fig. 6A).

3.6. Indicators of phytoremediation potential

Plant phytoremediation potential can be assessed by using the en-
richment coefficient (EC) and translocation factor (TF). In Table 7 and
Fig. 7, two EC values, that do not consider the reference conditions
(field sample (t = −60) and initial samle (t = 0)), were calculated

for the two experimental sediment layers (L1 and L2) for roots (ECR)
and for leaves (ECL). As indicated in Table 7, mean values of ECL ranged
from 0.54 to 0.86 in top layer L1 and from 0.85 to 1.39 in layer L2,
whereas the ECR showed higher values, with average ranging from
2.65 to 8.27 (Fig. 7A) and from 6.15 to 16.24 (Fig. 7B) in L1 and L2, re-
spectively. The TFwas smaller than 1 and varied between 0.02 and 0.12.

The enrichment coefficient for the leaf parts (ECL-L1 and ECL-L2) and
the transfer factor (TF) (Table 7) did not show any significant difference
among experimental treatments at the beginning (t = 0) and at
the end (t = 30) of the experiment (one-way ANOVA, F4,10 = 0.7450,
P = 0.5830; F4,10 = 0.3955, P = 0.8075; F4,10 = 1.417, P = 0.2976, re-
spectively). In contrast, the enrichment coefficient for the roots
(Fig. 7) showed significant differences among compared treatments at
the beginning and at the end of the experiment (ECR-L2, ANOVA test,
F4,10 = 4.354, P = 0.0270) and among treatments at t = 30 (ECR-L1,
ECR-L2, one-way ANOVA test, F3,8 = 6.4, P = 0.0161, F3,8 = 7.075, P =
0.0122, respectively).

Fig. 4.Comparision of pHprofiles in theoverlyingwater and sediment column for treatmentswith (white dots) andwithout tubificids (black dots) bioturbation. Values aremean±SD, n=3
per treatment group (see Table 1 for the acronym definitions used for the different treatments).

Fig. 5.Mean concentrations of cadmium (μg·g−1 dry wt.) in the sediment layers (fraction b63 μm) at the initial: t = 0, mean± SD (n=3), and at the end: t = 30, mean ± SD (n= 2);
(L1 = surface layer of sediment: 0–1 cm; L2 = deeper layer of sediment: 1–5 cm); R = ratio between concentration of Cd in L1 over concentration of Cd in L2. (A) - treatment
group without tubificids, (B) - treatment group having tubificids (see Table 1 for the acronym definitions corresponding to the different treatments).
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Significant interactions between Cd enrichment and tubificids addi-
tion were observed in the enrichment coefficients for roots in both
the layer L1 and layer L2 (two-way ANOVA, F1,8 = 11.10, P = 0.0104;
F1,8 = 5.985, P = 0.0402, respectively) (Table 7). However, the ECR

values were differently influenced by the various factors in the two
layers: there was a significant effect of tubificids addition in the layer
L1 (two-way ANOVA, F1,8= 5.564, P=0.0460) and of cadmiumenrich-
ment in the layer L2 (two-way ANOVA, F1,8 = 13.07, P = 0.0068)
(Table 7). Although the enrichment factors for the roots (ECR) did not
reveal any significant difference between the two compared treatments
{Cd.Typ} and {Typ}, nor between {Cd.Typ} and {Cd.Typ.Tub} for the L1
(Tukey HSD post hoc test, P values ranging from 0.0918 to 0.8990)
(Fig. 7A), the bioaccumulation capacity of T. latifolia in the roots was sig-
nificantly increased for the L2 in the presence of both cadmium and
worms (Fig. 7B). The Tukey's multiple comparisons tests indicated the
significant differences between {Cd.Typ.Tub} and {Typ.Tub} treatments
in ECR-L1 and ECR-L2 (P = 0.038, 0.0114, respectively), and between
{Cd.Typ.Tub} and {Typ}treatments in ECR-L2 (P = 0.0288).

4. Discussion

4.1. Influence of bioturbation on particle mixing

In control plots without Tubifex worms (Fig. 2), no particle mixing
occurred since 70% of luminophore tracers remained at the surface of
the sediment. Some luminophore particles were found in the deeper
layers probably due to inherent tracer movments during experimenta-
tion or because of the activity of some smaller invertebrates that sur-
vived to the initial sediment defaunating process. A significant

bioadvection of sediment occured during the experiment only under
the worms' activities as attested by the stastitistical analysis (Table 2).

In the presence of tubificidwormswith adensity of 135worms·dm−2

(equivalent to a fresh biomass of 17.8 ± 3.1 g per microcosm), a subsur-
face peak of tracers in the 2 cm layer indicated that a conveying transport
was created by the tubificids with average rates of 16.7 ± 4.5 to 18.5 ±
3.93 cm·year−1. This downward transport of the surface sediment result-
ed from the accumulation of faecal pellets at the sediment surface, simul-
taneously with sediment depression in deeper layers due to sediment
ingestion by the worms feeding activities (Anschutz et al., 2012; Ciutat
et al., 2006). Since coarse particles as luminophores and sand particles
are too large to be ingested by tubificidworms, at depth, the same feeding
behaviour induces a decrease of the silt-clay fraction, since worms are
avoiding larger sand particles (Rodriguez et al., 2001). Consequently, bio-
turbation creates 2 distinct layers in the bioturbated sediment (Fig. 2): a
top layer corresponding to the faecal pellets accumulation from ingested
anoxic sediment and a bottom layer of with increasing particle size
(Anschutz et al., 2012). The maximal ingestion depth was located below
3 cm and the bioturbated layer was estimated to be from 0 to N3 cm
since luminophores occurred down to this level (Fig. 2) after 30 days.
The obtained rates of bioadvection in presence of tubificids (Fig. 3) were
in the same order of magnitude of those estimated by other previous au-
thors with tubificids population of various densities (Ciutat et al., 2005b;
McCall and Fisher, 1980;Matisoff et al., 1999). Indeed, Ciutat et al. (2005a,
2005b) who studied bioadvection under a tubificids population of 600
worms.dm−2 reported an ingestion zone in the 3–5-cm layer and an ad-
vection rate of 42 cm2·year−1. The higher density in the previous studies
explains the differences in the bioadvection rates obtained in our experi-
ment (16.7±4.5 to 18.5±3.93 cm·year−1). Compared to control exper-
imental units, the recycled material at the end occurs as several
centimetre-thick (N3 cm) surface layers enriched in water content (as
observerd by Anschutz et al., 2012 with higher value of porosity found
in surface that was close to 85%). This layer was characterized by a signif-
icant concentration of dissolved nitrate and sulphate, depleted in oxygen

Table 5
Effects of Cd enrichment and tubificids on cadmium concentrations in the top sediment
layer (L1) and in the deeper layer (L2) to investigate the interactions between experimen-
tal treatments.

Experimental treatments Cd conc. in layer 1 (L1) Cd conc. in layer 2 (L2)

F1,11 P F1,11 P

Cadmium enrichment 56.12 1.21 × 10–5 ⁎⁎⁎ 1.08 0.319763
T. latifolia treatment 0.32 0.5834 0.02 0.878950
Tubificids addition 39.97 5.66 × 10–5 ⁎⁎⁎ 12.56 0.004593⁎⁎

Cd:Typ interaction 0.22 0.6455 0.95 0.348630
Cd:Tub interaction 0.14 0.7169 2.83 0.120637
Typ:Tub interaction 0.16 0.6966 0.16 0.693625
Cd:Typ:Tub interaction 0.40 0.5421 0.29 0.598204

(**) and (***) indicate significance at p ≤ 0.01 and 0.001, respectively; (ns)-non signifi-
cance according to three-way ANOVA.

Fig. 6.Mean concentrations of cadmium in Typha latifolia roots (A) and leaves (B) for each experimental condition, before the experiment (field sample on t=−60), at the initial time (t=0),
and at the end of the experiment (t = 30). Values are means ± S.D., replicate (n) = 3 per treatment group, except for the field sample (n = 1). Different superscript letters indicate the
significant differences for Cd concentrations in the root parts between conditions at p b 0.05 level as analyzed by Tukey HSD test. No significant difference was observed among the leaf
parts of the various experimental treatments. The vertical scales used in root and leaf's Cd contents are different. (See Table 1 for the meaning of acronyms corresponding to the different
treatments.)

Table 6
Two-way ANOVA performed on cadmium concentration in T. latifolia to investigate the in-
teraction between experimental treatments.

Microcosms Cd conc. in root Cd conc. in leaf

F1,8 P F1,8 P

Cadmium enrichment 17.73 0.0030** 0.1979 0.6682ns

Tubificids addition 0.6568 0.4411ns 0.4956 0.5014ns

Interaction 6.569 0.0335* 0.1240 0.7339ns

(*) and (**) indicate significance at P ≤ 0.05 and 0.01, respectively; (ns)-non significance
according to two-way ANOVA.
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and slightly increased in pHaccording to Anschutz et al. (2012) for similar
worms population conditions.

4.2. Influence of bioturbation processes on cadmium behaviour in sediment

During the experiment, there were no significant physical processes
occuring, such as sediment compaction, that might affect the contami-
nant distribution with time. This is supported by (i) the similar Cd con-
centration profiles between the three control treatments, at t = 0
(before adding the contaminant into the overlying water), the control
treatment {Control} (t = 30), and the experimental unit having
T. latifolia treatment only {Typ} at t= 30,with an average Cd concentra-
tion ranging from 0.180 to 0.205 μg·g−1 dry wt. (Fig. 5A); (ii) the sim-
ilar specific ratio of Cd concentrations (R) close to 1 between L1 and L2
of sediment among these three conditions. This highlights also the rele-
vance of the reference conditions as it is consistent with previous con-
centrations measured on the same sediment (Probst and Guilloux, in
prep.) and in the rivers from the area (N'guessan et al., 2009).

After 30 days, the rapid adsorption of Cd on surface sediment parti-
cles following Cd addition in the overlying water at t = 0 was attested
by the decreased of the initial concentration (20 μg·L−1) in the overly-
ingwater to an average of 1.01 μg·L−1 for the contaminated treatments
{+Cd}. The strong and rapid adsorption process of Cdwas explained by
the high pH conditions (N7.5) of carbonate sediment in the sampling
area (N'guessan et al., 2009; Pokrovsky et al., 2012). Cd adsorption
was demonstrated to be a fast process (N95% of the adsorption took
place within the first 10 min) (Santillan-Medrano and Jurinak, 1975).

In the presence of only cadmium (Fig. 5A), physical processes of Cd
adsorption on the surface sediment occurred, as indicated by the

recorded profiles obtained after 30 days. In the aquatic environment,
cadmiumwas found dissolved in the pore water or adsorbed on to par-
ticles (Mustafa et al., 2004). Molecular diffusion of Cd2+ was estimated
between 189 and 220 cm2·year−1 for temperature ranging between 18
and 25 °C (Shackelford and Daniel, 1991; Delmotte et al., 2007). The
mobility and fate of metals in the sediment environment are directly
related to their partitioning between free and solid fractions
(Sakultantimetha et al., 2009). The presence of trace metals on to the
solid phase is a result of precipitation (with sulfides), co-precipitation
(with Fe hydroxides), adsorption, complexation to sediment compo-
nents (clay minerals, organic matter), those processes being highly pH
dependent (Lukman et al., 2013) and indirectly affected by redox poten-
tial (EH) (Du Laing et al., 2009). The estimated partition coefficients Kd
for Cd ranges from 8 to 4000mL/g and depends on the pH, here ranging
from 5 to 8 (EPA, 1999). Because it is sensitive to pH, the Cd adsorption
and desorption in the sediment of our microcosm depends on pH and
redox condition, that are shown to vary under bioturbation effects in
the sediment (Bradl, 2004; Fu and Allen, 1992). Indeed, the hydrogen
ions affect the surface charge of the adsorbent, the degree of ionization,
and the speciation of the adsorbate (Lee et al., 1996), which explains the
high dependence of Cd (II) adsorption on pH. Moreover, the metal
adsoption is also dependant on the active surface of sediment particles
(Gerth et al., 1993; Naidu et al., 1997), the higher adsoption capacity
occuring with larger specific surface area (Ljung et al., 2006) of sedi-
ment with fine particle size (Gong et al., 2014; Sutherland, 2003). The
adsorption of cadmium onto riverbed sediment was reported to range
from 30% at pH 2.0 to 80% at pH 7.0 for the coarser sediment fraction
(210± 250mm) (Palheiros et al., 1989). These processes lead to higher
values of R in the {Cd} and {Cd.Typ} plots (1.8 and 1.7, respectively). The

Table 7
Cadmium transfer factors and enrichment coefficients for root (ECR) and leaf parts (ECL) of Typha latifolia for thefield sample (t=−60), and in the different conditions at the beginning (t=0),
and at the end (t = 30) of the experiment.

Treatments ECR-L1 ECR-L2 ECL-L1 ECL-L2 TF

Field sample (t = −60) (n = 1) 4.15 4.29 0.79 0.82 0.19
t = 0 (n = 3) 8.27 ± 4.20 8.55 ± 4.34 0.86 ± 0.17 0.89 ± 0.17 0.12 ± 0.07
{Typ} t = 30 (n = 3) 6.89 ± 0.84a 7.77 ± 0.94ab 0.79 ± 0.00a 0.87 ± 0.35a 0.11 ± 0.04a

{Typ.Tub} t = 30 (n = 3) 2.65 ± 0.81b 6.15 ± 1.88b 0.55 ± 0.37a 1.28 ± 0.86a 0.02 ± 0.07a

{Cd.Typ} t = 30 (n = 3) 5.59 ± 1.32ab 9.72 ± 2.30abc 0.49 ± 0.19a 0.85 ± 0.33a 0.09 ± 0.02a

{Cd.Typ.Tub} t = 30 (n = 3) 6.32 ± 1.89ac 16.24 ± 4.85c 0.54 ± 0.48a 1.39 ± 1.24a 0.09 ± 0.09a

P value two-way ANOVA
Cadmium enrichment 0.1499ns 0.0068⁎⁎ 0.4875ns 0.9326ns 0.0976ns

Tubificids addition 0.0460⁎ 0.1788ns 0.6921ns 0.3291ns 0.2519ns

Interaction 0.0104⁎ 0.0402⁎ 0.5211ns 0.8907ns 0.3649ns

Values are means ± S.D., n = 3 per treatment group.; different superscript letters indicate significant differences for ECR between treatments at t = 30, assessed separately at the two
different sediment layers (L1 and L2) (Tukey HSD tests); * and ** indicate the significance of F values at P ≤ 0.05 and 0.01, respectively, according to two-way ANOVA.

Fig. 7. Enrichment coefficients for the roots (ECR) of Typha latifolia at two different sediment layers ((A): L1; (B): L2). Values are means ± S.D., n= 3 per treatment group, except for the
field sample (n = 1). (#) indicates significant differences between a given treatment at t = 30 and the initial ECR value (Dunnett test); Different superscript letters indicate significant
differences for ECR between treatments at t = 30, assessed separately at the two sediment layers (Tukey HSD test). See Table 1 for the meaning of acronyms corresponding to the
different treatments.
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deposition of Cd from the overlying water was thus possible in the sur-
face sedimentwhere about 80%of Cdwas trapped due to higher pH con-
ditions (Bradl, 2004) with the value of 7.52 ± 0.04 in the surface
sediment (Fig. 4).

In the treatment with tubificids and without Cd addition ({Tub} and
{Typ.Tub} units, Fig. 5B), a significant increase of the cadmium concen-
tration in L1 was closely related to bioturbation phenomenon and
linked to the change of texture (84.5 to 87.1% of fine particle in the
top layer, Table 3), and physico-chemistry of the environment by
worms effects. A similar effect was previously mentionned by Ciutat
et al. (2007)whoobserved the remobilization and bioavailability of cad-
mium fromhistorically contaminated sediment. That the Cd enrichment
in this layer is the result of the accumulation of fine fraction made of
rejected feacal pellets which have a free surface area larger that the
coarse particles. This was evidenced by the increase of Cd concentration
in this layer and of R values (2.4 and 2.3 in {Tub} and {Typ.Tub} units, re-
spectively). These results were in agreement with previous studies that
showed how tubificids bioturbation changes the distribution of metals
in the sediment column, as well as, the chemical speciation in pore wa-
ters (Ciutat et al., 2007, 2006; Peterson et al., 1996).

In sediment inhabited by tubificids, Ciutat et al. (2003 and 2006) also
observed cadmiumassociatedwith the faecal pellets in the surface layer
whosemean grain sizewas 20 μm in diameter and including 78% of par-
ticles b63 μm in diameter. Thus, redistribution of the sediment particles
by bioturbation leads to a vertical change in its grain size and the redox
conditions in the sediment layers where the tubificid worms act
(Table 3) (McCall and Fisher, 1980). Moreover, tubificids through their
activity continuously renew anoxic sediment particles coming from
the depth to the sediment surface (Ciutat et al., 2005a).We demonstrat-
ed here that tubificids influenced significantly the mean grain size of
sediment particles in the bioturbation layer, and how this might affect
Cd enrichment (Table 4). In the case of cadmium enrichment, grain
size also encreased significantly in the first layer, indicating that ecolog-
ical engineering by bioturbation is active even under such level of the
metal contamination.

The sameworms' influence in addition to the physico-chemical pro-
cesses of adsoption and molecular diffusion was observed in all treat-
ments with worms and Cd addition ({Cd.Tub} and {Cd.Typ.Tub}) as
indicated the highest values of R (3 and 2.6, respectively). This phenom-
enonmainly results from ingestion of anoxic sediment at depth by tubi-
ficids. When this sediment reaches the surface, the redox condition of
the newly arrived sediment is favoring the adsoption with conse-
quences on the solid/liquid partitionning of Cd. Thus, the adsoption
that was observed in the surface layer of abiotic plots is increased by
the bioturbation effect that continuously supplies the sediment surface
with new anaerobic sediment with low Cd concentrations.

Likely, the effect of tubificids on Cd partitionning could favor the
trapping of Cd from the overlyingwater into the top layermade of feacal
pellets. The bioadvection, evidenced by luminophores, could transport
surface sedimentwith associated Cd at depth until the bottom of the in-
gestion zone estimated to be 3 or 4 cm in average from previous studies
(Ciutat et al., 2006; Delmotte et al., 2007). The metal accumulation in
the new layer of faecal pellets may, therefore, be extended deeper
than L1, but the choice of having the second layer thickness from 1 to
5 cmhas limited this observation. This burial of contaminants is supply-
ing the vicinity of the plant root system with Cd.

At depth, when worms are present, a lower pH (Fig. 4), anoxic con-
ditions, and higher redox potential may also favor the desorption of Cd
into the pore water. The release dynamics and mobilization of Cd in a
water saturated sediment appeared to be positively related to redox po-
tential (EH) as governed by the behaviour of dissolved organic carbon
and SO4

2− concentrations under oxidizing conditions (Rinklebe et al.,
2016; Shaheen et al., 2016), while pH commonly shows a negative rela-
tion with dissolved Cd (Rinklebe et al., 2016). Generally, metal cations
are released from organicmatter and other sorbents such as clayminer-
al surfaceswhen pH decrease (Du Laing et al., 2009; Frohne et al., 2014).

This contributed to increasing the Cd mobility and thus bioavailability
(Lee et al., 2009; Wang et al., 2016) in the deeper layers. By changing
the water-sediment ratio, redox conditions in the sediment (Anschutz
et al., 2012), and the physico-chemical conditions of the sediment
(surface area, oxidation, organic matter digestion, etc..) (McCall and
Fisher, 1980; Kristensen et al., 2012; Simpson and Batley, 2003), the
presence of tubificids increased ammonia concentrations in interstitial
water (Kikuchi and Kurihara, 1977) leading to a decrease of pH gradient
in the sediment (Fisher and Matisoff, 1981; Fu and Allen, 1992). Conse-
quently, metal solubility (Probst et al., 2009) and speciation (Ciutat
et al., 2007, 2006; Weis and Weis, 2004) increased at depth as a conse-
quence of shifting redox conditions (Du Laing et al., 2009). Finally, even
if not considered in this study, it can also be supposed that Cd might
compete with other metals present in this “natural” field sediment in
term of adsorption/desorption and complexation processes, which
might influence Cd behaviour and other physico-chemical parameters
(Liao et al., 2007).

The absence of interaction between cadmium enrichment and tubi-
ficids addition (three-way ANOVA, Table 5) indicated that the effects of
worms bioturbation on Cd concentration in sediment not depend on
Cd-enriched or not. In the absence of Cd-enriched, bioturbation
influence, linked to the change of sediment texture, on Cd partitionning
is still existing in {Tub} and {Typ.Tub} plots (Fig. 5B) due to the
amount of Cd that was available in the sediment before starting the ex-
periment (the Cd concentrations ranged from 0.195± 0.014 to 0.202±
0.003 μg.g−1 dry wt.). The effect of worms was similar when combined
with Cd-enriched (the treatments {Cd.Tub} and {Cd.Typ.Tub}) is
interpreted by the assumption of tubificids' tolerance to metal toxicity
(Ciutat et al., 2005b).

4.3. Phytoremediation potential with bioturbation

The values of Cd concentration in Typha latifolia plants (Fig. 6) were
in agreement with previous studies, as well as the overall trend of cad-
mium and almost other metals in the different organs (roots N leafs)
(Klink et al., 2013; Pandey et al., 2014; Sasmaz et al., 2008; Singh
et al., 2010). Our study showed higher Cd concentrations in roots of
the contaminated treatments ({Cd.Typ} and {Cd.Typ.Tub}) than those
of plants growing in the uncontaminated microcosms - {Typ} and
{Typ.Tub} (although the difference in both cases was only significant
for one of them – {Cd.Typ.Tub} unit) (Fig. 6A). Such a pattern was also
reported by Singh et al. (2010) for Cd as well as other metals. It is well
known that Typha latifolia has a dense root mat leading to a high effec-
tive rhizosphere surface area, which favors metal uptake (Pandey et al.,
2014). For many plants growing in metal contaminated soils, roots are
the specific metal storage compartment, which acts as a barrier to pre-
vent metal transfer to the upper parts (Probst et al., 2009; Liu et al.,
2005).

The enrichment for the roots was enhanced when both cadmium
and tubificids were occurring together, in comparison with the other
treatments without tubificids. The significant effects of cadmium in in-
teraction with tubificids for Cd concentrations in the roots (Fig. 6A and
Table 6) indicated that bioturbation generated by worms is favoring
the phytoremediation. This phenomenon is only efficient if tubificids
transfer the cadmium to deeper layers in the sediment column with a
flux that is important enough to change the concentration in the roots
of T. latifolia. This also confirmed that the depth of the bioturbated
layer was deep enough to correspond to the depth of the root system
that was estimated to range from 0 to 6 cm. The bioingestion zone
should get deeper in the sediment column with time when the
tubificids population increases in biomass and organisms size. This
extention of the bioingestion zone should allow the burial of contami-
nants coming from the overlyingwater in an extended bioturbated sed-
iment down to 5 cm, 7 cm, and even 13 cm after 24, 38, and 93 days,
respectively (Ciutat et al., 2006). This vertical extention of the
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bioturbation zone should also favor the access to bioavailable Cd in the
environment of an extending root system in the sediment column.

Enrichment coefficients for plant roots and vegetative parts (ECR and
ECL, respectively) (Table 7) indicated the sediment-to-plant mobility of
the metal element as well as plant accumulation capacity for
phytoremediation purpose. These indexes depend not only on both
characteristics of plant species or plant parts and physico-chemical
properties of sediment matrix, but also the nature of metal elements
(Antoniadis et al., 2017). Metals with high pK values tend to have the
higher mobility in the sediment-to-plant system (i.e., Cd (10.1), Ni
(9.9), Co (9.7), Zn (9.0)) (Antoniadis et al., 2017). Availability of PHEs
to plant roots is considered as the key factor limiting the efficiency of
phytoextraction (Felix, 1997). Plants only uptake/accumulate metals
in solube (bioavailabe) forms as free metal ions, solube metal com-
plexes, or adsorbed form to inorganic soil constituents (Sheoran et al.,
2016). In our study, significant highest ECR values in layer L2 in the con-
dition {Typ.Cd.Tub} at t=30 (Table 7) provided evidence of an effective
improvement of cadmium bioavailability and thus bioaccumulation in
the plant's root under the influence of tubificids bioturbation. Therefore,
this result demonstrated that bioturbation plays a significant role on the
modification of physico-chemical properties of the sediment matrix
which influences on cadmium bioaccumulation efficiency. Cd concen-
tration in the deeper layer of the bioturbated zone, L2, is not so impor-
tant since more Cd effectively arrived into this layer due to tubificids
biotransport, but the Cd is stimultaneously removed by plant roots in
this horizon.

These results also demonstrated that bioturbation is able to create
changes in sediment properties that enhance metal bioaccumulation in
T. latifolia roots when cadmium addition occurs from the overlying
water. Worms were indeed able to resist to Cd contamination and to
maintain a significant bioturbation activity in contaminated sediment.
Ecological engineers should be able to handle toxicity of the environment
where they are supposed to participate at the bioremediation process.

Our results on the bioturbation effect on Cd incorporation and
partitioning in the sediment according to depth are in agreement with
previous research studies with tubificids populations (Anschutz et al.,
2012; Ciutat et al., 2007, 2006; Gerino et al., 2014). Those studies demon-
strated complementary effects of bioturbation by this invertebrate spe-
cies on the physico-chemical properties of sediment. The originality of
the results from the present study relies on the positive influence of the
bioturbation on phytoremediation performance. We demonstrated here
that tubificids create a biological burial of sediment and incorporated
contaminant such Cd that renews the pollutant loads in the immediate
environment of plants' root system. Consequently, at depth, metal pass-
ing from bound to soluble forms, from sediment to pore water (Ciutat
et al., 2005a), occurs and thus promotes the absorption by plants (Weis
andWeis, 2004), as well as enhances the efficiency of phytoremediation.

TF is an important asset to recognize the phytostabilization potential
(preventing the lateral or verticalmigration of toxicmetals by leachating)
of the desired plant (Ma et al., 2001). TF value b1.0means that a plant has
poor translocation efficiency of metals from root to rhizome, or from the
rhizome to leaf, and can be used preferentially for phytostabilization
purposes (Garba et al., 2013; Mendez and Maier, 2008). The low values
of TF observed for all Cd-treated samples at t = 30 ({Cd.Typ} and
{Cd.Typ.Tub}) (Table 7), indicated that T. latifolia has a poor translocation
efficiency of Cd from its roots to its upper parts. Itmay also happen a non-
proportional translocation into the upper parts, with this Cd behaviour,
being previously observed when plants are grown on contaminated sub-
strates by comparing with natural background substrate conditions
(Probst et al., 2009). These results are in agreementwith previous studies
that aldready showed the lowvalue of TF given by T. latifolia. Sasmaz et al.
(2008) reported the ECR and TF factors of T. latifolia collected frompollut-
ed sites by Water Treatmen (Kehli Stream, Elazig, Turkey) ranging from
0.78 to 3.95 and from 0.21 to 0.7, respectively. According to Probst &
Guilloux (in prep), T. latifolia plants collected from natural background
sediment, preferentially store Cd, Cr, Pb, As and U in roots than in their

upper parts (leaves, stems; TF factors ≪ 1). This is also confirmed by
Pandey et al. (2014) study where TF values of T. latifolia growing in
flooded and non-flooded areas, were lower than 1.0 for all metals except
Mn.

Our study indicated that T. latifolia has an important capacity to ac-
cumulate cadmium in roots, and its ability to concentrate the metal is
enhanced under bioturbation process. Although the transportation of
cadmium to the leaves is not so high, in some cases, the absolute quan-
tity ofmetal stored in leaf partsmight be higher than in the root system,
even if relative concentrations are not significantly different, due to the
main advantage of this riparian plant of having a high biomass of above
parts (leaves, steams) compared to the root system (Probst & Guilloux,
in prep.).

5. Conclusion

Our preliminary experiment reproduces field conditions where bio-
turbation caused by tubificid worms' activities in the presence of plants
follows the bio-conveying transport model with significant
bioadvective rates. This natural process is still efficient under cadmium
contamination of 20 μ/L−1 in the overlying water. The present study
suggests that biotransport enhanced cadmium pumping from the sur-
face to deeper anoxic sediment layers, modified the distribution and
speciation of cadmium in the sediment column thereby increasing the
bioaccumulation possibility by Typha latifolia. It was demonstrated
here that bioturbation improves the phytoremediation by the plant's
root system. Indeed, more investigations should be done such as metal
partitioning among the phases and more precise depth definition in
the bioturbation effect and root system. Besides, the efficiency of biotur-
bation on phytoremediation processes could be tested with different
cadmium contamination levels to find the limit of the worms' efficiency
as ecological engineers can tolerate. The comparison of Cd bioaccumula-
tion in T. latifolia with and without tubificids influence permitted to
estimate the positive and complementary influences of benthic faunal
bioturbation combined with phytoremediation. This first preliminary
and multidisciplinary experiment was positive enough on the
advantages of the coupling strategy between bioturbation and
phytoremediation to open the door for further estimation of biodiversi-
ty influence on cadmium fluxes from overlying water to sediment and
from sediment to plants. This study should be carried out via a whole
metal budget in the different experimental compartments: overlying
water, pore water and sediment, worms, roots and leaves as parts of
the plants. Additionally, further research is required to verify the ob-
servedmobilization kinetics of Cdwith naturalwater and sediment con-
taminated with Cd under field conditions. In particular, the role of
bioturbation on EH, pH, and other governing factors changes (i.e., DOC,
Mn, Fe, SO4

2−), thus affecting Cd solubility and uptake in theflooded sys-
tems should be elucidated more precisely.
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III.A.2. EFFECTS OF TUBIFICID WORMS AND T. LATIFOLIA PLANT 

ON CADMIUM MASS BALANCE AND FLUXES  

The water-sediment interface, known to be one of the most vulnerable (Devault 

et al., 2009), is often assumed to act as a sink receiving a hefty source of pollution from 

agricultural practices and metropolis areas that may cause long-term effects to the biota 

by direct uptake or through the food web. Metal contaminants are differentially 

associated with the three compartments of the water-sediment interface that are the 

particulate and pore waters fractions of the sediment and overlying waters. The amount 

of metal in each of this compartment is depending on the partition coefficient Kd of the 

metal - the ratio of sorbed metal concentration to a dissolved metal concentration that is 

dependent upon various geochemical characteristics of the soil and its porewater 

(Reible et al., 1996). By mimicking in-field source ofcontamination from water, our 

closed experimental system was set up to test the efficiency of the bioremediation on 

cadmium fluxes between water, sediment, and plant. The previously obtained results 

(section III.A.1) demonstrated that the phytoremediation potential is enhanced under 

sediment bioturbation by tubificid’s conveyors as well as the metal bioaccumulation 

temporal dynamic of T. latifolia when it is coupled with bioturbation. Tubificid activity 

was proved to generate a downward bioadvection of Cd into the sediment surrounding 

the T. latifolia’s roots and thus favoring the Cd bioaccumulation into the roots system. 

However, after the demonstration of bioturbation influence on cadmium concentrations 

in the different compartments, it may be then relevant to study the variations of the 

metal quantities between these compartments in the same experimental conditions. The 

comparison of Cd quantities in water, sediment, with and without the worms and the 

plant influences will permit to quantify the influence of the biodiversity on the 

cadmium fluxes through the compartment interfaces. These fluxes are making part of 

the Cadmium mass balance in the different treatment conditions. 

The mass balance concept has been important to the development of science in 

general, and it has played an especially significant role in the environmental sciences 
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(Groffman et al., 2004). A mass balance study essentially accounts for all sources, 

pathways, transformation, and sinks for a particular pollutant in a given area. The mass 

balance approach traces the flow of a pollutant through an area, in which a chemical, 

physical, or ecological interaction and a mass flow rate are quantified. 

The mass balance for any material in an ecosystem in one compartment can be 

represented by a general equation (Groffman et al., 2004):  

Input + generation – Output – consumption = Change of stored or accumulated 

quantity  

It should be noticed that generation and consumption terms refer only to the 

generation of products and consumption of reactants as a result of a chemical reaction. 

In case of no chemical reaction as for the Cadmium these terms are zero. 

Mass balance studies were thus applied to estimate metal fluxes that flow 

through each of the interfaces of water and sediment and sediment to plant within the 

closed experimental aquatic system under effects of tubificids worm’s bioturbation and 

T. latifolia plant. 

III.A.2.1. Calculation of mass balance and percentage relative recovery of cadmium in 

experimental compartments. 

In overlying water compartment 

Mass of cadmium in overlying water was calculated based on the following 

formula:  

Mass of cadmium in overlying water (µg) = total concentrations (dissolved and 

particulate fractions) of cadmium in overlying water (µg/L) x volume of overlying 

water column (L).  

Since cadmium concentration was determined in the dissolved fraction only, the 

concentrations of the particulate fraction was estimated based on the research of Ciutat 

et al., (2005), who performed the same type of experiment, with the same source of Cd 



   HOANG T.K. 2018 
 

 

127  

 

as experimental contaminant with initial concentration of 20 µg.L-1, in the overlying 

water. Ciutat et al. (2005) recorded the proportion of dissolved and total concentration 

of cadmium in  the overlying water of microscosms with and without tubificid addition. 

The author indicated that mean dissolved Cd concentration represented 86% and 98.4% 

of total Cd concentrations of  this compartment with and without tubificidsrespectively. 

In sediment compartment 

Mass of cadmium in sediment was calculated based on the following formula:  

The mass of cadmium in bulk sediment (µg) = total cadmium concentrations of 

all the different fraction sizes in the bulk sediment (µg/kg dry wt.) x weight of the bulk 

dried sediment (kg dry wt.).  

The weight of bulk sediment (kg dry wt.) = volume of sediment (cm3) x sediment 

density (g dry wt.cm-3)/1000. Densities of sediment were determined in different 

sedimentary layers with and without bioturbation (see Annex 2). 

Since the cadmium concentration was determined only in fine sediment (fraction 

< 63µm), the cadmium concentration in the bulk sediment was calculated based on the 

Distribution Factor (DFx) given by Acosta et al., (2009) following the formula: 

DFx = Xfraction/X bulk 

in which: Xfraction and Xbulk are contents (mg.kg-1) of heavy metal in a given 

fraction and into the bulk sample, respectively. This factor was used to estimate in 

which size fraction the heavy metals are preferentially enriched. According to Gong et 

al. (2014), the smallest fractions (<53µm) occupied only 5.08 to 9.57 %, and they had the 

highest distribution factor (DF) of 3.5 for cadmium. 

The total cadmium concentrations in bulk sediment were therefore calculated 

following the formula: 
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The total cadmium concentration in bulk sediment (µg/kg) = total cadmium 

concentration in fine sediment (fraction < 63 µm) (µg/kg) / Distribution Factor of 3.5 

(DF).  

In plant compartment 

Mass of cadmium in the plant was calculated based on the following formula:  

Mass of cadmium in the plant (µg) = sum of the mass of cadmium in each plant’s 

part (leaves + rhizome + root) (µg/kg dw.).  

Mass of cadmium in each plant’s part = cadmium concentration in plant’s part 

(µg/kg dw.) x biomass of plant’s part (kg dw.) 

Since the cadmium concentration in T. latifolia was determined only in leave and 

root parts, the cadmium concentrations in the rhizome part were calculated based on 

the ratio of Cd accumulation in the different part of the Typha latifolia under the non-

flooded condition given by (Pandey et al., 2014). In this study Cd concentration in the 

rhizome was estimated about 57% of total cadmium concentration in root systems. 

In the worms:   

In the experimental treatments having Cd-enriched from overlying water 

({Cd.Tub} and {Cd.Typ.Tub}), Cd quantity bioaccumulated in the tubificid worms was 

estimated based on the bioaccumulation rate of about 50 µgCd.g-1 dry wt of worms 

during 56 days as previously estimated by Ciutat et al., (2005), who performed the same 

type of experiment, with an initial concentration of 20 µg.L-1 introduced from overlying 

water. This estimation took into account the experimental duration of 30 days as well as 

the tubificid population of 135 worms.dm-2, compared to 56 days and 600 worms.dm-2 

carried out in the study of Ciutat et al. (2005).  

In the absence of Cd-enriched ({Tub} and {Typ.Tub} treatments), the amount of 

Cd lost after the experiment was mainly allocated to the worms accumulation and to 

the attachment by plastic material of the experimental pail wall. In this case, Cd 
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quantities incorporated to plastic material (ΔQ5, Fig. III.1) were calculated based on the 

difference in total Cd quantities in each microcosm between before (t=0day) and after 

(t=30 days) the experiment, after having taken into account the Cd amount lost due to 

quantities accumulated in the worms. 

In microcosm 

The mass of cadmium in one microcosm is estimated as the sum of cadmium 

mass in all compartments : water, sediment, plant, and worms. The percentage of 

relative recovery of cadmium is the total mass of cadmium in each microcosm at the 

end of the experiment (t = 30) divided by the total cadmium mass that was added at the 

initial time (t = 0). These data are provided in Table III.1. 

III.A.2.2. Estimated mass balance and percentage relative recovery of cadmium  

Table III.1 shows the total quantity of Cd in the whole microcosm before (t=0) 

and after (t=30) the experiment. A marginal loss of the metal estimated to 5.8 %, with 

about 94.20% of relative recovery was observed in the {control} treatment, with the 

absence of any abiotic factor, i.e. worms and plant. This implied that this loss was due 

to the Cd attachment to the experimental containers’ walls which are made of plastic 

material. Similar levels of relative recovery were also observed with no significant 

differences of the values (P > 0.05, Dunnett’s multiple tests, Table III.1) between the 

other treatments without tubificid addition ({Typ} and {Cd.Typ} treatments) and the 

{Control} treatment, except for the {Cd} treatment (P <0.05 Dunnett’s multiple test, Table 

III.1). 

A significant difference in the relative recovery was observed in the {Cd} 

treatment with the percentage of 79.13%, compared to the value of the {control} 

treatment that could be explained by the physical sorption of Cd to the containers made 

of plastic. In this case, presumably, Cd remained a longer period of time in the 

overlying water after the enrichment to the overlying water at the initial time. The 

experiment lasted for 30 days under steady-state conditions without any magnitude 
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mixture or transport from the water into the sediment or another compartment due to 

the absence of bioturbation or plant. The only transport from water to sediment was 

due to the physical process of the molecular diffusion into the interstitial water of the 

surface sediment. Plastic-metal interactions have been described previously as a 

consequence of the adsorption of chemical contaminants, such as organic compounds 

(Rochman et al., 2013), or metals (Holmes et al., 2012), by plastic debris from 

surrounding water. The loss of trace metals on container walls during experimental 

manipulations (sampling, handling, storing) of aqueous solutions has been reported by 

(Massee, et al., 1981; Struempler, 1973). According to these authors, the amount of trace 

metals, including Silver, Arsenic, Lead, Zinc, or Cadmium was lost on an experimental 

container made of plastic material has a close correlation with aqueous pH medium. 

These studies also confirmed that no sorption of Cd on polyethylene container occurs 

below pH 2 (Struempler, 1973) and pH 4 (Massee et al., 1981). Shendirkar et al., (1976) 

did not observe significant sorption of Cd at pH below the value of 7, while (Gardiner, 

(1974) reported a 10% loss of cadmium from the natural water on the same material at 

pH 7.5-8.0. Massee et al., (1981) indicated that not only pH but also the ratio – R 

between the inner container surface and the volume of the solution (unit of cm-1) are the 

dominant factors controlling the sorption of cadmium. Accordingly, his experiment set 

up during 28 days at pH 8.5 resulted at 12% and 56 % of Cd lost with the ratio - R of 1.4 

and 3.4, respectively. Our experiment was carried beyond the 30-day period, the 

amount of Cd lost from the plastic container in the {Cd} treatment was estimated to 

16.11% at pH in overlying water of 8.2 (Fig. 4, section III.A.1) with the ratio - R of 0.37 

cm-1 (inner surface of container = 1789.94 cm2; volume of water = 4783.85 cm3). The 

calculated Cd lost was about an order of magnitude higher than that reported by 

Massee et al., (1981) with at pH 8.5 and R 1.4. This data calculation was taken into 

account the amount of Cd physically accumulated to sediment particles at the surface 

(layer L1: 0 – 1cm, Fig III.1) from the overlying water. 
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Table III.1 

Cadmium mass balance and percentage of relative recovery of cadmium after the 

experiment in microcosms. 

Treatments time total quantity of Cd in 

microcosm (µg)  

(mean ± SD, n =3) 

Relative recovery (%) 

(mean ± SD, n =3) 

P value 

{Control} 0 day 417.37 ± 20.82 - - 

{Tub} 0 day 417.37 ± 20.82 - - 

{Typ} 0 day 419.26 ± 21.84 - - 

{Typ.Tub} 0 day 419.26 ± 21.84 - - 

{Cd} 0 day 513.34 ± 20.81 - - 

{Cd.Tub} 0 day 513.34 ± 20.81 - - 

{Cd.Typ} 0 day 515.23 ± 21.83 - - 

{Cd.Typ.Tub} 0 day 515.23 ± 21.83 - - 

{Control} 30 days 393.59 ± 32.65 94.20 ± 3.13 - 

{Tub} 30 days 304.64 ± 9.55 73.04 ± 1.36*** 0.0007 

{Typ} 30 days 388.93 ± 38.14 92.62 ± 4.28ns 0.9994 

{Typ.Tub} 30 days 320.66 ± 29.65 76.37 ± 3.10** 0.0036 

{Cd} 30 days 407.22 ± 54.26 79.13 ± 7.37* 0.0136 

{Cd.Tub} 30 days 384.85 ± 10.48 75.00 ± 1.00** 0.0019 

{Cd.Typ} 30 days 439.32 ± 19.09 85.26 ± 0.26ns 0.2134 

{Cd.Typ.Tub} 30 days 404.16 ± 72.93 78.14 ± 10.85** 0.0084 

ns indicates nonsignificant differences and *, **, *** indicate significant differences at P < 0.05, 0.01, and 

0.001, respectively of relative recovery between a given treatment and the {Control} treatment at t=30 

(Dunnett’s multiple comparison test). See Table II.1 for the definitions of acronym corresponding to the 

different treatments 

 

III.A.2.3. Cd quantity in sediment and transport of the contaminant under bioturbation 

Environmental Cd quantity in sediment was found at 417 ± 20 µg before adding 

the contaminant into the overlying water. At t = 30 days, the amounts in the sediment of 

microcosms without Cd-enriched were lower than the initial condition, mainly in 

deeper layers (from 1 to 9 cm, layers L2 + L3), probably due to the loss of Cd to the 

experimental containers as denoted by the increase of ΔQ5b values in the Fig. III.1.  

In the absence of Cd-enriched, a negligible amount of Cd from the surface 

sediment (layer L1) was released into the overlying water by physical diffusion of the 

contaminant from a region of high concentration (sediment) to a region of low 

concentration (overlying water), with the small values of ΔQ1 increased in the overlying 
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water in {Control}, {Tub}, {Typ}, and {Typ.Tub} treatments. Small levels of contaminant 

fluxes – F2 from sediment to the overlying water in these microcosms were, therefore, 

calculated that indicated a negligible mobilization from sediment to water for Cd.  

About treatments having worms’ addition ({Tub} and {Typ.Tub}), previous 

studies revealed a significant release of cadmium-induced by bioturbation from the 

sediment to the overlying water, mostly in the particulate form (Ciutat et al., 2007; 

Rasmussen et al., 2000). Schaller (2014) indicated that bioturbation caused by 

invertebrate Chironomus plumosus strongly affects remobilization from sediment into the 

water column for some metal elements, such as Mg, Ca, Sr, Mo, and U. For some other 

elements, such as Mn, Ni, As, or Cd, the remobilization was mentioned to release them 

to water when the invertebrates were burrowing (Schaller, 2014). His experiment 

reported a significant remobilization rise of Cd concentrations in the overlying water 

during the first 5h under bioturbation at 5 times orders of magnitude higher than that 

in the control treatment and then followed by a decrease after one day. In the absence of 

bioturbation, Cd was observed to be released from the sediment in dissolved form, by 

molecular diffusion (Ciutat et al., 2007). Accordingly, the remobilization from sediment 

to the overlying water for Cd could, therefore in our experiment, be explained by either 

the molecular diffusion or bioturbation. A higher quantity of Cd was observed in the 

enriched L1 in the treatment with tubificid but without Cd addition ({Tub} and 

{Typ.Tub}) that was explained previously (see §4. Discussion, section III.A.1) with the 

same pattern being observed about the concentrations in this surface layer. Bioturbation 

process modifies sediment texture to finer particles (84.5 to 87.1 % of fine particle in the 

top layer, Table 4, section III.A.1) in the top layer, thus results in an increase of Cd 

quantity due to higher adsorption surface of finer sediment particles for Cd. 

When Cd was present, after 30 days, the rapid adsorption of Cd on surface 

sediment particles followed Cd-introduction in overlying water at t=0. This rise was 

again confirmed by the amount of Cd in the top layer as indicated by the positive value 
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of ΔQ2a in the enriched layer - L1 for the microcosms having Cd in the treatments ({Cd}, 

{Cd.Tub}, {Cd.Typ}, and {Cd.Typ.Tub} units).  

At the same time, significant decreases of the initial Cd quantity (96 µg) in the 

overlying water with the negative values of ΔQ1 being equal to  95.88, 95.86, 95.84, and 

95.67 µg were observed in microcosms having Cd treatments ({Cd}, {Cd.Tub}, {Cd.Typ}, 

and {Cd.Typ.Tub} units, respectively). The rapid adsorption process of Cd on the 

surface sediment was previously discussed (see §4. Discussion, section  III.A.1) as 

influenced by the high pH conditions (> 7.5) (N’guessan et al., 2009; Pokrovsky et al., 

2012; Santillan-Medrano and Jurinak, 1975).  

Budgets of Cd in the microcosm are the descriptions of Cd flux from one 

compartment to another (Fig.III.1). Without bioturbation, the flux F1 of 1.79 ±1.48 

µg/day from water to sediment was observed in the treatment having both Cd and 

plant addition ({Cd.Typ}}. This flux was estimated higher than the one of 0.78 ±0.43 

µg/day estimated in the {Cd} treatment where only physicochemical processes of 

adsorption and molecular diffusion of Cd were occurring. The fluxes difference 

between {Cd.} and {Cd.Typ} is allocated to the effects of the plant that can only uptake 

Cd in pore water. So that it is suspected that plant uptake in pore water, leads to an 

increase the concentration gradient between sediment and water and therefore increase 

the fluxes from overlying water to sediment.   

The effect of tubificids on the fluxes of Cd from overlying water to sediment is 

demonstrated in treatments having both worms and Cd addition ({Cd.Tub} and 

{Cd.Typ.Tub}). The highest values of fluxes – F1 from overlying water to sediment of 

2.83+/-0.00 µg/day were observed in both cases (two-way ANOVA) with bioturbation. 

These higher fluxes values with bioturbation lead to increases in metal quantity in the 

sediment when bioturbation is happening. This phenomenon is explained by the 

accumulation of fecal pellets at the sediment surface that results from ingestion of 

anoxic sediment at depth by tubificids. When this sediment reaches the surface, the 
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redox condition of the newly arrived sediment is favoring the adsorption with 

consequences on the solid/liquid partitioning of Cd. Thus, the adsorption that was 

observed in the surface layer of abiotic plots is increased by the bioturbation effect that 

continuously supplies the sediment surface with new anaerobic sediment with low Cd 

concentrations.  

ΔQ2b are representative of the amounts of Cd lost from the sediment during the 

experimental duration. With negative values of ΔQ2b estimated to  60.69 ± 11.10 and 

40.53 ± 59.62 µg Cd in both {Cd.Tub} and {Cd.Typ.Tub} treatments, respectively.  These 

losses are explained as mainly due to worms bioaccumulation and physical attachment 

to the plastic containers in {Cd.Tub}(Fig.III.1), and with T. latifolia uptake in addition in 

case of {Cd.Typ.Tub} treatments. 
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Figure. III.1. Change (ΔQ) in Cd quantity before (t=0 day) and after the experiment (t=30 

days) and estimated fluxes of total Cd between experimental compartments. 
F1, F2, F3, F4 are fluxes from water (blue block) to sediment (black block), from sediment to water, from 

sediment to plant (tan block), from sediment to worms body, respectively.  

White and black solid arrows represent transport of Cd from sediment to water and water to sediment 

compartments, respectively. Green arrows represent the fluxes of Cd from sediment to plant 

compartment. Blue and red broken line arrows represent lost of the contaminant out of the microcosm due 

to: (1) attachment to pail’s wall, (2) worms bioaccumulation.  

ΔQ1,2a,2b,3,4,5a,5b values (mean ± SD) in each compartment (water, n=3; sediment, n=2; plant, n=3) imply 

the estimated change in Cd quantity between t = 30 and at t = 0 day in water, sediment, plant, worms, 

experimental containers from water and from sediment, respectively. 
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Table III.2.  

 Effects of Cd enrichment, tubificids, and plant occurrence on Cadmium quantities in the 

top layer (0 to 1 cm) and in the deeper layer (1-9 cm) to investigate the interactions 

between experimental treatments. 

Experimental 

treatments 

Cd quantity in layer 1  

(0-1cm) 

Cd quantity in layer 2  

(1-5cm), and layer 3 (5-9cm) 

 F1,8 P F1,8 P 

Cadmium enrichment 22.552 0.001447** 2.7856 0.13366 

T. latifolia treatment 0.0087 0.927811 0.4144 0.53775 

Tubificid addition 0.7234 0.419769 7.3939 0.02628* 

Cd:Typ interaction 0.0898 0.772012 0.2523 0.62897 

Cd:Tub interaction 0.2688 0.618166 1.5541 0.24779 

Typ:Tub interaction 0.0947 0.766185 0.0260 0.87593 

Cd:Typ:Tub interaction 0.1716 0.689608 0.1240 0.73383 

(*) and (**) indicate significance at p ≤ 0.51 and 0.01, respectively; (ns)-non significance 

according to three-way ANOVA 

The effects of cadmium enrichment (F1,8 = 22.552, P < 0.01), tubificid and T. 

latifolia addition on Cd quantities in the top layer – L1 and the deeper layers L2 and L3 

were analyzed using the three-way ANOVA (Table III.2). There were no significant 

interactions between these factors (three-way ANOVA, P > 0.05).  Although tubificids 

can enhance Cd incorporation into the sediment surface layer (F1,11 = 7.39, P < 0.05) 

where worms fecal pellets accumulate at the sediment surface and then creating 

changes of the sediment properties in this area (Table 4 and 5, section III.A.1). The 

increased amount of Cd (ΔQ2a in layer L1 in all treatments) at the end of  the experiment 

(t=30) are dependent on not only the new arrival of Cd from the overlying water but 

also on the transport from surface to deeper sediment layers generated by bioturbation 

and the loss by worms’ bioaccumulation on their tissue. The bioadvection, evidenced by 

luminophores, transported surface sediment with associated Cd at depths until the 

bottom of the ingestion zone estimated to be 3 or 4 cm in average from previous studies 

(Ciutat et al., 2006; Delmotte et al., 2007). The metal accumulation in the new layer of 

fecal pellets may, therefore, be extended deeper than layer L1, but the choice of having 

the second layer thickness from 1 to 5 cm has limited this observation. This metal 
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accumulation is known from treatment with without Cd-enrichment, where the 

significant increase (ΔQ2a in layer L1 of {Tub} and {Typ.Tub} units), mainly due to 

initially existing cadmium in natural sediment was associated with the fecal pellets 

accumulation created by bioturbation, although to a lesser extent. This obtained result, 

all together, explained why bioturbation effects on the Cd quantity are only observed in 

the deeper zone, but not in the top layer, according to the three-way ANOVA (table 

III.2). 

Table III.3.  

Two-way ANOVA performed on cadmium fluxes-F3 (from sediment to T. latifolia plant) 

to investigate the interaction between experimental treatments having plant. 

Experimental treatments Fluxes - F3  

 F1,8 P 

Cadmium enrichment 8.308 0.0204* 

Tubificid addition 0.9231 0.3648 

Cd:Tub interaction 14.77 0.0049** 

(*) and (**) indicate significance at p ≤ 0.05 and 0.01, respectively; (ns)-non significance 

according to two-way ANOVA 

 

Table III.4.  

 Tukey’s multiple tests performed on cadmium fluxes-F3 (from sediment to T. latifolia 

plant) to compare the experimental treatments having plants. 

Experimental treatments Fluxes - F3  

 P Significance 

{Typ} vs. {Cd.Typ} 0.9021 ns 

{Typ} vs. {Typ.Tub} 0.2513 ns 

{Typ} vs. {Cd.Typ.Tub} 0.0991 ns 

{Cd.Typ} vs. {Typ.Tub} 0.5553 ns 

{Cd.Typ} vs. {Cd.Typ.Tub} 0.0381 * 

{Typ.Tub} vs. {Cd.Typ.Tub} 0.0063 ** 

(*) and (**) indicate significance of P ≤ 0.05 and 0.01, respectively; (ns)-non significance 

according to two-way ANOVA 

 

The transport of Cd from sediment to the plant was noted as the fluxes - F3 

(µg.day-1) calculated in all treatments having T. latifolia ({Typ}, {Typ.Tub}, {Cd.Typ}, and 

{Cd.Typ.Tub}, Fig.III.1). Significant effect of cadmium enrichment on the Cd fluxes – F3 
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from sediment to T. latifolia (F1,8 =8.308, P<0.05) as well as a greater extent of the 

interaction between the two tested factors (Cd and tubificid) (F1,8 =14.77, P<0.01), were 

evidenced by a two-way ANOVA (Table III.3). The Cd fluxes increase significantly in 

the treatment having both cadmium and worms ({Cd.Typ.Tub}), compared with the 

treatment having tubificid only ({Typ.Tub}) (Tukey HSD, P < 0.01, Table III.4). When Cd 

was enriched, a significant increase of the plant uptake was also observed with 

bioturbation ({Cd.Typ.Tub} treatment), when compared with treatment having no 

bioturbation ({Cd.Typ}) (Tukey HSD, P <0.05, Table III.4). No significant difference was 

observed between the two treatments {Cd.Typ} and {Typ} (P >0.05) according to Tukey 

posthoc test (Table III.4). Although, the amount of Cd transferred from sediment to 

plant in the presence of tubificid worms ({Cd.Typ.Tub} treatment) was estimated much 

lower than the loss due to the worms’ bioaccumulation (Fig. III.1), our results, at least, 

demonstrated the influence of bioturbation on changing sediment properties that 

enhance the Cd bioaccumulation in T. latifolia when cadmium addition occurs from the 

overlying water. In addition to the significant role on the physic-chemical properties 

modification of the sediment matrix (see §3. Results - Cd concentration in sediment, 

section III.A.1) which influences on cadmium bioaccumulation efficiency and sediment-

to-plant mobility (see §3. Results - Indicators of phytoremediation potential, section III.A.1), 

tubificid worms were proved to be able to accumulate Cd as a rapid and efficient 

process to resist to Cd contamination in aquatic sediment (will be discussed in the next 

part III.A.3). These results also demonstrated that the transport of Cd from sediment to 

the plant is only enhanced if both cadmium and tubificid were added together (Fig. 

III.1). The worms bioaccumulation is influencing cadmium mass balance also to the 

plant uptake so that the two processes occur in parallel. 
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III.A.3. TOXICITY OF CADMIUM AND THE POSSIBILITY TO APPLY 

THE BIOTURBATION AS A BIOREMEDIATION STRATEGY 

All aquatic invertebrates are known to accumulate trace metals in their tissue, 

whether essential or not (Eisler, 1981), either from the aquatic medium or from food 

with the vast range of accumulated trace metal concentrations (Rainbow, 2002). Several 

benthic invertebrates such as freshwater oligochaetes worms, widely distributed in 

contaminated surficial sediments, have been proved to be tolerant to pollution. Due to 

an affinity for sulfur and nitrogen molecules (Nieboer and Richardson, 1980) containing 

in amino acids, trace metals the have potential to bind to proteins within living cells 

(Rainbow, 2002). Toxicity of a trace metal to aquatic invertebrates will depend on their 

accumulation pathways as either a metabolically available or detoxified types which are 

induced by either essential or non-essential meals (Rainbow, 2002).  Cadmium, a non-

essential metal for aquatic invertebrates, which is defined as in the detoxified category, 

is suspected to represents no danger to the metabolism of the animal to a certain 

threshold of concentrations in the surrounding environment Rainbow (2002) 

furthermore mentioned that he trace metals may undergo detoxified forms of cadmium, 

lead, or mercury with no requirement of minimum concentration and need to be 

detoxified. They might be accumulated by invertebrates with no threshold of total metal 

concentration as well as no relationship between total body metal concentration and 

toxicity (Rainbow, 2002). Toxic effects as well as bioaccumulation of Cd in oligochaetes 

organisms such as Tubifex worms (Bouche et al., 2000; Bervoets et al., 1997; Ciutat et al., 

2005), Lumbriculus variegatus (Ankley et al., 1994), have been previously studied.  

III.A.3.1. Toxic effects and bioaccumulation of cadmium in oligochaete worms  

Toxicity of Cd in oligochaetes worms have been reported in various cases. 

Bouche et al. (2000), studying the acute toxicity of Cd in Tubifex tubifex, indicated that 

sublethal toxicity with morphology impacts, starting mortality, and complete mortality 

(after 3 days) were observed at 10, 20, and 100 µg.L-1 Cd, respectively. Previous studies 

also indicated that difference in test conditions, such as water or sediment environment, 
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pH, O2 saturation, or water hardness, etc. may significantly influence the test results. 

Acute toxicity tests studied by Brkovic-Popovic and Popovic (1977), Bouche et al., 

(2000), and Chapman et al., (1982) under different conditions using distilled water or 

hardness-water as a dilution medium for Cd exposure presented various Cd 

concentrations as LC50 after 96h for Tubifex worms, of 0.003 and 0.03 mg.L-1, 0.32 mg.L-1 

(hardness of 5.3mg.L-1CaCO3). Some other authors presented higher LC50 values for 

Tubifex after 96h, at 1.032 mg/L (Fargasova, 1994), or 47.5 mg/L (Khangarot, 1991). 

In our experiment, the tubificid worms consisted of a mixture of three species: 

Tubifex tubifex, Limnodrilus hoffmeisteri, and Limnodrilus claparedeianus. Sediment 

reworking intensity by these invertebrate species was quantified using luminophores as 

conservative tracers. After the introduction of the worm at the surface of the sediment, 

cadmium was added into the overlying water with the initial concentration of 

20µgCd/L (see §2.2. Experimental design and microcosm setup, section III.A.1). No 

significant difference for the bioadvective rates - V was observed when comparing 

experimental treatments with or without Cd-enriched (Fig. 3, section III.A.1). The 

absence of interaction between cadmium enrichment and tubificid addition factors 

(three-way ANOVA, Table III.3) also confirmed that the effects of worms bioturbation 

on the biological reworking in sediment via the bioadvective rates do not depend on 

Cd-enrichment or not. The obtained rates of bioadvection in presence of tubificids (Fig. 

3, section III.A.1) were also in the same order of magnitude of those estimated by other 

previous authors with tubificids population of various densities (Ciutat et al., 2005b; Mc 

Call and Fisher, 1980; Matissof et al., 1999).  

In a special case, with Oligochaeta Linnodrilus hoffmeisteri worms inhibiting the 

Foundry Cove site (Hudson River, New York, USA), one of the most severely Cd 

contaminated site in the world, this species was observed to survive a 28-day exposure 

to extremely high level of Cd in sediment ranged from 500 to more than 200,000 µg.g-1 

dry wt. (Klerks and Bartholomew, 1991; Knutson et al., 1987; Wallace et al., 1998). These 
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authors also reported the great ability of the worms to accumulate Cd until 1800 µg.g-1 

dry wt. (Klerks and Bartholomew, 1991; Wallace et al., 1998). Regulating, storing, and 

detoxifying trace metals were found related to higher metallothionein-like (MT) protein 

and metal-rich granules (MRG) possessed in the worms that make them resistant to 

trace metals, such as cadmium, mercury, zinc, copper, gold, and silver (Klerks and 

Bartholomew, 1991; Roesijadi, 1992). A genetic study by Martinez and Levinton (1996) 

indicated that the resistance of the Oligochaete Linnodrilus hoffmeisteri worms evolved 

within 4 to 36 generations. 

Likewise, Cd bioaccumulation by aquatic invertebrates depends on the dose, 

duration of exposure, and environmental concentrations (sediment or water-only 

conditions) (Rainbow, 2002). Cd bioaccumulation in Tubifex worms was found 

significantly correlated to the metal concentrations in both sediment and overlying 

water (Łuszczek-Trojnar et al., 2014). Cd accumulated by the worms is a rapid and 

efficient process with bioaccumulation rates of 80.4 and 189.5 µg.g-1 dry wt. depending 

on the exposure concentration of 5 and 10 µg.L-1 Cd from water, respectively (Bouche et 

al., 2000). In sediments, the highest Cd concentrations (1.1 ± 0.002 mg/kg) were 

observed in Tubifex worms after 7 days of exposure to 2.5 mg Cd/kg (Łuszczek-Trojnar 

et al., 2014). In agreement with the present study (with the same Cd concentration 

contaminated and similar type of tubificid worms used), results by Ciutat et al., (2005) 

also noted the high level of Cd bioaccumulation in tubificids worms at 47.1 ± 8.9 

µgCd.g-1 dry wt. after 56 days of exposure to a constant Cd concentration in the 

overlying water of 20 µg/L. The study also suggested the relation of detoxification/ 

sequestration processes to the resistance of the tubificid worms. Based on the 

bioaccumulation rate of about 50 µgCd.g-1 dry wt. estimated by Ciutat et al., (2005), we 

calculated the Cd quantity accumulated in the experimental worms might reach about 

83.97 ± 10.21 µg Cd (Figure III.1). This amount was, therefore, applied to our microcosm 

having Cd-enrichment as denoted by the positive value of ΔQ4 presented in the 

{Cd.Tub} and {Cd.Typ.Tub} treatments (Figure III.1). This calculation took into account 
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the experimental duration of 30 days as well as the tubificid population of 135 

worms.dm-2, compared to 56 days and 600 worms.dm-2 carried out in the study of 

Ciutat et al., (2005). In the absence of Cd-enrichment ({Tub} and {Typ.Tub} treatments, 

the calculated Cd quantities accumulated in the worms was estimated to  88.95 ± 0.57 

and 74.83 ± 4.02 µg Cd, respectively, and were found in the agreement with the 

estimated value from Ciutat et al., (2005). 

III.A.3.2. Possibility to apply tubificid worms as a bioremediation strategy in metal 

polluted aquatic systems. 

Tubificid worms are typically found in heavily polluted rivers and lakes with 

high densities of over a million individuals per square meter (Appleby and Brinkhurst, 

1970). Some species are not only able to regulate respiration at low oxygen 

concentrations, but also to carry out other vital activities under these conditions (Aston, 

1973). 

Although toxicity test was not conducted in the present study to give evidence 

on the epersistence of the tubificid worms to cadmium in different levels, at least, our 

study implied that bioturbation still remains active in natural aquatic sediments that do 

not exceed the used concentration at 20µg/L which is frequently found in contaminated 

waters from mining wastes (Salvarredy-Aranguren et al., 2008) or industrial sites 

(Andres et al., 1999). The involvement of efficient detoxification mechanisms explained 

why tubificids worms can accumulate more significant amounts of Cd without 

exhibiting any toxic symptoms.  

To handle pollution in aquatic systems contaminated by multiple metals, 

bioremediation strategy relied on the bioturbation process should take into account the 

accumulation patterns for different trace metals. Non-essential metals (for invertebrates 

metabolism) in detoxified forms like Cd, such as Pb, Hg would have no required 

minimum concentration and need to be detoxified (Rainbow, 2002). For essential 

metals, such as Zn or Cu, a certain amount is required to play essential roles in 
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metabolisms, such as an enzyme or respiratory protein operation. An extra amount of 

such metals accumulated has the potential to be toxic to invertebrates, initially 

sublethal, but eventually lethal (Rainbow, 2002).  

The study of Back (1990) on Cd and Zn accumulation in Tubifex and Limnodrilus 

worms indicated that Cd (non-essential metal) was more enriched than Zn (essential 

metal) in both worms biomass. On the other and, an increase in bioavailability of a trace 

metal will cause an increase in the uptake rate of that metal into the aquatic 

invertebrates body (Rainbow, 2002). The median tolerance limit (i.e. the concentration at 

which 50% of the worms survived for 24 h) for lead (Pb) was 49 ppm at a pH of 6.5 and 

27.5 ppm at a pH of 8.5. For zinc, the median tolerance limit was 46.0 ppm at a pH of 

7.5. The combination of copper and lead ions has been examined by (Jones, 1938) with 

the decrease of toxicity to Tubifex tubifex as an antagonism. 

On the other hand, the possibility to apply bioturbation as a bioremediation 

strategy for trace metals also needs to take into consideration their mobility within a 

solid and liquid matrix. Solid/liquid partition coefficient - Kd for the metal in sediment 

indicates mobility of trace metals between water and sediment as well as its 

bioavailability for the bioremediation purpose. The index depends not only on 

physicochemical properties of a material (suspended matter, sediment, or soil, etc.) but 

also the nature of metal elements. Accordingly, the patterns of decreasing Kd for metals 

in sediment was reported by Allison et al. (2005) in the order: Pb > Hg > CrIII > Cu > Ni > 

Zn > Cd > Ag > Co > As. Metals with higher mean Kd values, such as Cu (Kd = 4.2), Cd 

(Kd = 3.6) (Table 1, EPA, 2005) tend to have the higher capacity of the mobility and thus 

higher capacity to be transported (pump) due to tubificids between water and 

sediment, compared to As (lower Kd = 2.5) (Allison and Allison, 2005).  Moreover, 

progress of decreasing affinity for sorption material has also been exhibited in the 

following order: suspended matter > sediment > soil by Allison and Allison (2005). 
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CHAPTER III.B. INFLUENCE OF COMBINED 

BIOTURBATION AND PHYTOREMEDIATION ON A 

MICRO-ORGANIC POLLUTANT: ATRAZINE  

III.B.1. INTRODUCTION 

The actual study mainly tackles the pivotal role of faunal biodiversity of aquatic 

habitat via bioturbation processes for bioremediation and how it influences the atrazine 

fluxes and biodegradation at the water-sediment interface. This study aims to 

demonstrate the influence of bioturbation (caused by invertebrate worms Oligochaeta 

Tubifex tubifex) alone and its combination with phytoremediation (conducted by a 

riparian plant Typha latifolia) to enhance water and sediment quality. The natural 

environment was reproduced in a series of 24 microcosms that mimics the wetland 

bottom conditions with sediment, plants, and invertebrates. Six different treatments 

crossing three tested factors were applied to allow the test of different research 

hypotheses (Table II.2): presence/absence of atrazine as a source of organic compound 

contamination; presence/absence of plant influence (T. latifolia); and presence/absence of 

invertebrate influence (tubificid worms). The experiment was started with 

homogeneously contaminated sediment with radiolabeled [14C]-atrazine at an initial 

time with an initial concentration of 2µg/g wet sediment 15 days before starting the 

experiment. The experiment with plant and invertebrate in the microcosms lasted 

during 26 days (see §II.A.2.2). The radiolabeled pesticide allowed tracking the 

distribution of the total quantity of pesticide (mother molecule and metabolites) within 

all experimental compartments: water, sediment, and plant. Concentrations of [14C]-

atrazine were explored in each physical compartment (free water, interstitial, water and 

particles of sediment, and plant) to estimate the changes of concentrations and fluxes 

under the effects of bioturbation by the species of invertebrate tubificidae. The success 

of the bioremediation was made evident in two complementary ways: 

- The direct measurement of 14C-[atrazine, metabolites] concentrations in the 

different compartments at an initial time and the end of the experiment to demonstrate 
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the dynamics of the pesticide during the experiment lag of time. By following the 

concentrations changes of atrazine and its metabolites in the different compartments, it 

is possible to emphasize the pathways and behavior of the molecule and its metabolites 

in the aquatic model; 

- Indirect measurements of the water quality (free and interstitial water) by using 

ecotoxicological bioassay to assess the toxicity of the water. This toxicity evolution with 

time in our microcosms should permit to assess the efficiency of the bioremediation. 

Chlorella vulgaris, the green algal, was used as a model organism, well known for its 

sensitivity to micro-organic pollutants (Naessens et al., 2000; Shitanda et al., 2005). The 

methodology of these tests is given in detail in Chapter II. Methodology.  

This study tackles experimentally the coupling of bioturbation and 

phytoremediation to enhance atrazine biodegradation and transfer from sediment 

compartments into the plant organs. The objectives of the study are:  

(i) to estimate the influence of the bioturbation on a labeled [14C]-organic 

pollutant behavior within the sediment compartment using a controlled-

environmental experiment. The effects of bioturbation is given in evidence 

through the exploration of the biotransport intensity and the related effects on the 

physicochemical properties of the sediment (porosity, OM, OC, C:N, pH, Koc, and 

Kd). The influence of oligochaetes on the atrazine partitioning in the sediment 

column (pore water and solid fractions) in these conditions is demonstrated by 

comparison of the vertical distributions of [14C]-atrazine concentrations in water 

and sediment with and without bioturbation. The biotransport intensity and type 

is estimated under these conditions that also allow studying the influence of 

pesticide contamination and plant occurrence on the bioturbation process; This 

part (i) is making the contents of one future paper whose title is “Bioturbation 

effects on atrazine behavior in aquatic sediments” and included in the Annex 13. 
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This paper is planned to be submitted in the Journal of Ecotoxicology and 

Environmental Safety.  

(ii) to observe the influence of invertebrate (tubificid worms) (relationships 

with microbial consortium) on the biotransformation of atrazine into metabolites. 

Since metabolites were only searched into the plant biomass during the duration 

of this Ph.D., the influence of the bioturbation on the transformation of atrazine in 

the sediment is estimated by comparing the metabolites composition in the plants 

in treatment with and without bioturbation. Further measurements of metabolites 

in sediment samples are now running at INRA so that this information will be 

included in the next papers extracted from this study. 

(iii) to discuss the bioavailability of atrazine and its metabolites for plant from 

the sediment compartment by comparison of atrazine and metabolites 

concentrations in porous water and particles fractions  

(iv) to estimate the plant effect (phytoremediation) in the pesticides 

attenuation in the contaminated sediment by comparison of the labeled atrazine 

(concentration, metabolites, quantity, mass balance) in the treatments with and 

without plant ({Atr.Typ} and {Atr} treatments, Fig. II.5);  

(v) to estimate the influence of plant and bioturbation combination on 

atrazine and metabolites (concentration, quantity, fluxes, and, mass balance) by 

comparison with and without the combination of plant and worms in the 

bioremediation treatments. The first working hypothesis is that combination effect 

is higher than bioturbation effect alone or phytoremediation alone; the second 

(even better) hypothesis is that combination effect is higher than the sum of 

bioturbation and phytoremediation effects ({Atr} and {Atr.Typ.Tub} treatments, 

Fig. II.5);  

(vi) to assess atrazine toxicity mitigation by bioremediation engineering via 

toxicity tests of the interstitial and overlying water in different treatments. The 

comparison of the toxicity at the beginning and the end of the experiment allows 
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elucidating the evolution of this toxicity with time under plant and invertebrate 

influence.  

 

III.B.2. RESULTS 

III.B.2.1. Sediment reworking measurement 

 

Figure. III.2. Vertical profiles of luminophores in the sediment after 26 days for 

treatments with and without tubificids introduction.  Dots are mean values of the relative 

luminophore concentrations (%) measured in treatments with (white) and without (black) tubificid 

introduction; (see Table II.2 for the definitions of acronym corresponding to the different treatments). 

The bioturbation zone is defined by the maximum depth where luminophores were found at the end of the 

experiment.  

 

In the sediment without Tubifex worms (Fig. III.2), no particle mixing occurred 

since most of the luminophore tracers (80%) remained at the surface of the sediment (0-

0.5cm), and about 10% were located below the surface (0.5 - 2 cm, respectively) after the 

experiment (black dots). Some luminophore particles (about 2%) were found in the 

deeper layers probably due to inherent tracer movements during experimentation or 
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because of the activity of some smaller invertebrates that survived to the initial 

sediment after the defaunating process.  

Table III.5 

Two-way ANOVA assessing the influences of atrazine and worms on bioadvective 

rates (V) performed with all treatments. ****: significant difference for V at P ≤ 0.0001; ns: 

non significance. 

Factors F1,17 P  

Atrazine contamination 2.536 0.6631ns 

Tubificid addition 392.4 <0.0001**** 

Atrazine x  tubificid interaction 0.005214 0.9433ns 

 

Table III.6 

Two-way ANOVA assessing the influences of T. latifolia plants and worms on 

bioadvective rates (V) performed with all treatments. ****: significant difference for V at P 

≤ 0.0001; ns: non significance according to two-way ANOVA. 

Factors F1,17 P  

T.latifolia treatment 2.333 0.11450 ns 

Tubificid addition 434.5 <0.0001**** 

T.latifolia : tubificid interaction 0.5536 0.4670 ns 

 

Luminophore profiles (Fig. III.2) showed an increase in the depth location of the 

maximal luminophore concentration with bioturbation. In the presence of worms, the 

tracers (about 10 to ~ 60%) were mostly grouped in the sediment layer between 1 and 3 

cm. This profile attests of the biotransport of tracers downward in the sediment under 

fecal pellets accumulation at the sediment surface, and it is typical of bioadvective 

processes under tubificids bioturbation (white dots) with the conveyor-belt process. 

These deposit feeder invertebrates ingest sediment at depth in the sediment and egest 

fecal pellets at the sediment surface. The accumulation of fecal pellets at the sediment 

surface induces the burial of the tracers that migrate downward in the sediment with a 

vertical velocity depending on the worms density. Once luminophores reached the 

ingestion layer, they are transferred upward again for the smallest particles. Some 
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others remain at depth since they are too large particle to be ingested by oligochaetes. 

The deepest occurrence of luminophores in the sediment (5 cm) at the end of the 

experiment indicated the depth of the sediment ingestion layer.  

  

Figure. III.3. (A): bioadvective rates -V,  and (B): biodiffusive rates - Db, estimated after 

26 days for the different experimental treatments. For each parameter, the same letters at the 

top of the bars indicate treatments that were not significantly different (P < 0.05) as analyzed by TUKEY 

HDS multiple comparison test. Values are means ± SD, n = 4, except for {Typ.Tub}, {Atr.Tub}, 

{Atr.Typ.Tub} with n =3. (see Table II.2 for the definitions of acronym corresponding to the different 

treatments). 

A significant effect of tubificids addition on bioadvective rates was evidenced by 

using two-way ANOVA, either when crossing this factor with atrazine (F1,17 = 392.4, P < 

0.0001, Table III.5) or with the presence of T. latifolia plants (F 1,17 = 434.5, P < 0.0001, 

Table III.6). None of the other factors tested (atrazine or T. latifolia plant) had any 

significant influence on V, either alone or in interaction with the presence of tubificid 

(Table III.5 and III.6). 

 In the treatment having worm addition, the bioadvective rates (V) obtained by 

using the bioadvection–biodiffusion model (Gerino et al. 1994) corresponded to a rate 

ranging from 15.00 to 26.50 cm.y-1 for a tubificid density of 10,000 individuals.m-2, while 

it varied only from 0.00 to 3.00 cm.year-1 when the worms were absent (Fig. III.3A). Only 

the bioadvective rates showed a significant difference between treatments with or 

without tubificid addition, while biodiffusion remained constant in the same conditions 

(Tukey HSD test; Fig. III.3A). It is particularly remarkable that no significant difference 

for either V (Fig. III.3A) or Db (Fig. III.3B) was observed when comparing 
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corresponding experimental treatments with or without added atrazine (Table III.5), 

and with or without plant (Table III.14). 

III.B.2.2. [14C] ∑(atrazine, metabolites) concentration in compartments 

 Overlying-water 

Two weeks before starting the experiment (at t = - 15 days), [14C]-(atrazine, 

metabolites) concentration in the overlying water was found to be at 3681.55 ± 71.30 

µg.L-1 (mean ± SD, n = 2). Twenty-six days after the beginning of the experiment with 

plant and invertebrate in the microcosms (t = 26 days), the [14C]-(atrazine, metabolites) 

concentration was deficient, ranging from 66.54 ± 17.90 to 211.09 ± 7.13 µg.L-1 (mean ± 

SD, n=4). Tubificid addition had a significant effect on the concentrations in the 

overlying water (F1,11 = 16.57, P < 0.01, see Annex 3) and the interaction between the 

tubificids and T. latifolia (F1,11 = 28.99, P < 0.001, see Annex 3) was also highly significant 

as evidenced by two-way ANOVA performed on the concentrations of all pesticide 

contaminated treatments: {Atr}; {Atr.Tub}; {Atr.Typ}; and {Atr.Typ.Tub} (Fig. III.4). 

 

Figure. III.4. [14C]-(atrazine + metabolites) concentrations in the overlying water of all 

contaminated treatments at the end of the experiment (t = 26 days). Values are means ± 

S.D., replicate (n) = 4 per treatment group (except for {Atr.Typ.Tub} with n=3). (**) and (***) indicate 

significant (p<0.01) and (p<0.001) effect of worms addition and interaction with plants according to two-

way ANOVA (performed on the replicate concentrations of the four treatments). Different superscript 

letters indicate the significant differences for the mean values of the concentrations between the 

experimental treatments as analyzed by post-hoc Tukey HSD test. (see Table II.2 for the definitions of 

acronym corresponding to the different treatments). 
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Figure. III.5. [14C]-(atrazine + metabolites) concentrations according to depth and 

experimental treatments for different sediment fractions (A1 and A2: fresh sediment (or bulk 

sediment: being the sum of sediment particles and interstitial water); B1 and B2: sediment particles; C1 

and C2: overlying water and pore water) at the end of the experiment (t=26). Values are means ± S.D., 

replicate (n) = 4 per treatment group. (*), (**), (***), and (****) indicate significance effects of worms 

addition at P ≤ 0.05, 0.01, 0.001, and 0.0001 respectively according to the two-way ANOVA (The test 

were performed on the concentrations of the four treatments: {Atr}, {Atr.Typ}, {Atr.Tub}, and 

{Atr.Typ.Tub}). Similarity, the number of Δ and α indicate the level of significance of T. latifolia effect 

the level of the two factors interactions, respectively at different levels of P values according to the two-

way ANOVA (see Table II.2 for the definitions of acronym corresponding to the different treatments). 

During the experiment, [14C]-(atrazine, metabolites) concentrations increased 

significantly in the overlying water when tubificids were occurring ({Atr.Tub}) and 

when both worms and T. latifolia were together {Atr.Typ.Tub}, when compared with the 
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treatment having T. latifolia only {Atr.Typ} (Tukey HSD, P = 0.0461 and 0.0002, 

respectively) (Fig. III.4). A significant increase was also observed with bioturbation only 

({Atr.Tub}) compare to treatment having T. latifolia only ({Atr.Typ}) at t = 26 days 

(Tukey HSD, P = 0.0183). In the other hand, [14C]-(atrazine + metabolites) concentrations 

decreased significantly in the treatment having T. latifolia ({Atr.Typ}) compared to 

treatment without T. latifolia ({Atr.}) (Tukey HSD, P = 0.0092) (Fig. III.4). 

Bulk sediment (total fraction) 

Two weeks before starting the experiment, mean value of [14C]-(atrazine, 

metabolites) concentration in the fresh sediment (total fraction or bulk fraction) was 

found to be 1.95 ± 0.02 µg.g-1 fresh wt (weight of fresh sediment). At the end of the 

experiment, the concentrations in the sedimentary layers in the absence of worms 

ranged from 3.18 ± 0.10 to 4.40 ± 1.20 µg.g-1 fresh wt. and from 2.59 ± 1.75 to 4.31 ± 0.65 

µg.g-1 fresh wt. (total fraction), respectively in {Atr} and {Atr.Typ} treatments 

(Fig.III.5A). Significant effect of tubificids were recorded in the upper layers (0-0.5, 0.5-

1.0, 1.0-1.5 cm, with P < 0.0001, 0.001, and 0.01, respectively) where lower concentrations 

were measured with bioturbation, and higher concentration in the deeper layer (4-5 cm, 

P < 0.05) as evidenced by the performed two-way ANOVA (Fig. III.5A) (see Annex 4 for 

the P values).  

Impact of the interactions between bioturbation and plant on [14C]-(atrazine, 

metabolites) quantities in the bulk sediment were estimated by using Tukey HSD test 

focusing on the three sedimentary layers as defined in § III.B.4.1 according to the 

bioturbation depth: the fecal pellets zone (0-2 cm), the ingestion zone (2-5 cm), and the 

“no worm activity” zone (5-8 cm). These layers thickness were defined based on the 

luminophores distribution under bioturbation (Fig. III.2). The post-hoc test was used to 

compare, between treatments, the pesticide quantities mean values in these layers at the 

end of the experiment (Fig. III.6A). In the fecal pellets zone, a significant depletion of 

[14C]-(atrazine, metabolites) quantity was observed in the presence of worms, when 
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comparing between {Atr} and {Atr.Tub}, between {Atr} and {Atr.Typ.Tub}, between 

{Atr.Typ} and {Atr.Tub}, and between {Atr.Typ} and {Atr.Typ.Tub} treatments (Tukey 

HSD, P=0.0149, 0.0013, 0.0087, and 0.0008, respectively, see Annex 8). The quantity did 

not differ independently on the presence or absence of T. latifolia in the top layer with 

any significant difference between treatments (Tukey HSD, P > 0.05, Fig. III.6A). In the 

ingestion zone (2-5 cm), the values remained the same in all treatments (Tukey HSD, P > 

0.05, Fig. III.6B). The significant lower quantity was only found in the deepest layer (5-8 

cm) (Tukey HSD, P = 0.0239, Fig. III.6C) of the treatment {Atr.Typ} when compared with 

{Atr.Typ.Tub}. 

Sediment particles 

A significant effect of tubificids on [14C]-(atrazine, metabolites) concentrations of 

sediment particles was observed only in the two layers from 0.5 to 1.0 and from 4.0 to 

5.0 cm (two-way ANOVA, P = 0.032 and 0.0138, respectively) (Fig. III.5B) where lower 

concentrations were observed with bioturbation. Any significant effects of T. latifolia on 

the concentrations were observed in all layers of sediment particles as evidenced by the 

two-way ANOVA test (P > 0.05, Fig. III.5B) (see Annex 5 for the P values).  

A similar consequence of tubificid addition on the quantity of [14C]-(atrazine, 

metabolites) in the fecal pellets layers (0-2 cm) of fresh sediment was also recorded in 

the sediment particle fraction with significant depletion of the quantity in the presence 

of worms. By comparing the quantities, the post-hoc Tukey HSD tests also showed 

significant lower quantities in treatments having the worms {Atr.Tub}; {Atr.Typ.Tub}; 

and {Atr.Tub} compared to the treatments without the worms {Atr}, {Atr.Typ} 

(Fig.III.6B). The quantities again showed independence on the presence or absence of T. 

latifolia in the top layer with any significant difference between treatments (Tukey HSD, 

P > 0.05, Fig. III.6B). No significant difference was found between treatments in the 

deeper layers (from 2 to 8 cm) (Tukey HSD, p > 0.05, Fig. III.6B) (see Annex 9 for the P 

values).  



   HOANG T.K. 2018 
 

 

154  

 

Pore water 

 

Figure. III.6. HSD Tukey test performed on 14[C]-(atrazine + metabolites) quantities in 

the sedimentary layers defined by bioturbation depth in different sediment fractions. 

Values are means ± S.D., replicate (n) = 4 per treatment group. Different superscript letters indicate the 

significant differences for the mean values of the concentrations between the experimental treatments as 

analyzed by post-hoc Tukey HSD test. (see Table II.2 for the definitions of acronym corresponding to the 

different treatments). 

At the end of the experiment, the effects of tubificids addition were significant 

from the surface sediment until 2.5 cm depth with higher [14C]-(atrazine, metabolites) 

concentrations in pore water with bioturbation. The effect of the plants was also 

significant in the same layers, but with lower concentrations when T. latifolia was 

occurring, except for the layer from 1.5 to 2.0 cm (two-way ANOVA, Fig.III.5C, see 

Annex 6). A significant interaction between the two tested factors was only found for 

layer from 1.0 to 1.5 cm (Fig.III.5C) (see Annex 6 for the P values).  

In the presence of tubificid worms only ({Atr.Tub} treatment), the quantity of 

[14C]-(atrazine, metabolites) in the fecal pellets layer (0-2 cm) increased significantly 
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compared to treatments without the worms addition ({Atr} and {Atr.Typ}, respectively) 

(Tukey HSD tests, P < 0.0001, Fig.III.6C).  No significant difference of the quantities 

between treatments was found for either the ingestion or the no-bioturbation zones 

(Fig.III.6C) (see Annex 10 for the P values).  

III.B.2.3. Porosity of experimental sediment   

 

 

Figure. III.7. Sediment porosity profiles of (A): {Atr} and {Atr.Tub}; (B): {Atr.Typ} and 

{Atr.Typ.Tub} treatments versus sediment depth at the end of the experiment. Values are means ± 

S.D., replicate (n) = 4 per treatment group. (*), (***), and (****) indicate significant effects of worms 

addition at p ≤ 0.05, 0.001, and 0.0001 respectively according to two-way ANOVA (effects of worms and 

T. latifolia treatment performed on the percentage of water content in these four treatments); Δ indicate 

significant effect of T. latifolia at p ≤ 0.05 according to the two-way ANOVA test. No significant 

interaction between these two tested factors was observed among the treatments of all the layers (see 

Table II.2 for the acronym definitions corresponding to the different treatments). 

At the end of the experiment, the effect of bioturbation on the water content in 

sediment column was significantly (P < 0.05, 0.001, 0.001) at all depth from surface until 

2.5 cm, excepted for the layers from 2.0 to 2.5 cm, as evidenced by the two-way ANOVA 

(Fig. III.7). Significant effect of T. latifolia on the change was observed only in the layer 

from 3.0 to 4.0 cm (P > 0.05, two-way ANOVA, Fig. III.7).  However porosity increased 

under worms effects in the surface layers from 0 to 2 cm, and inversely, the porosity 

was lower in the deeper layers, as analyzed by Tukey HSD multiple comparison test 

(Fig. III.7 and III.8, see Annex 7 for the P values)  
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Figure. III.8. HSD Tukey test performed on sediment porosity in each sedimentary layer of all 

experimental treatments. Values are means ± S.D., replicate (n) = 4 per treatment group. Different 

superscript letters indicate the significant differences for the mean values of the concentrations between 

the experimental treatments as analyzed by post-hoc Tukey HSD test. (see Table II.2 for the definitions 

of acronym corresponding to the different treatments). 
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  In the absence of worms ({Atr} and {Atr.Typ} treatments), the porosity of 

sediment varied from 43 ± 6% to 53 ± 4% in the sediment column (Fig. III.7A and III.7B), 

with no significant difference between the two treatments (P > 0.05, Tukey HSD test, 

Fig. III.8) (see Annex 11 for the P values).  

III.B.2.4. Organic matter, carbone, C/N, pH, and partition coefficients   

  

  

Figure. III.9. Physico-chemical variables at t=26 days with (A): organic matter content; (B): 

organic carbon; (C): C/N ratio; (D): pH (see Table II.2 for the definitions of acronym corresponding to 

the different treatments). (*), (**), and (***) indicate significance at p ≤ 0.05, 0.01 and 0.001, 

respectively according to unpaired Student t-test. 

In the presence of the worms, organic matter contents (Fig III.9A) significantly 

decreased after 26 days in the upper sediment layers (0-1 cm) and in bottom layers (2 – 

8 cm) (p < 0.01, Student t-test) in the treatment {+Tub}, compared to the treatment 

without the worms. Similarity, organic carbon content showed a significant decrease in 

the layer from 2 to 8 cm with worms ({+Tub} treatment (p < 0.05, Student t-test), but the 

higher C contents were found mostly in the upper layer (1-2 cm) (Fig. III.9B). This leads 

to a significant decrease of organic carbone C:N ratio in the presence of the worms 
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({+Tub}) in the top layer (0-1 cm) at the end of the experiment, but a significant 

increased in the bottom layer (2-8 cm) compared to treatment without worms addition 

({-Tub}, Fig. III.9C). The pH level became significantly higher in whole sediment 

column when the worms were occurring, by comparison with the treatment without 

bioturbation (P < 0.0001 and 0.05, Student t-test, Fig. III.9D). 

 

III.B.2.5. Partition coefficients  

Worms and T. latifolia significantly affected soil adsorption coefficient  Kd in 

bioturbated layers from 0 to 5 cm, as evidenced by two-way ANOVA test performed on 

the values of all treatments contaminated with atrazine (p < 0.001 and 0.0001, 

respectively, Fig. III.10). A significant effect of worms for water partitioning coefficient 

was observed only in the fecal pellets zone (0-2.0cm) (p < 0.001, two-way ANOVA, Fig. 

III.10), while T. latifolia significantly affected the whole bioturbated layers from 0 to 5 

cm (p < 0.0001, two-way ANOVA, Fig. III.10). 

   

 

Figure. III.10. Soil adsorption coefficients – Kd and organic carbon-water 

partitioning coefficients – Koc affecting the mobility of atrazine and its metabolites in 

sediment. Values are means ± S.D., replicate (n) = 4 per treatment group. (*), (***), and (****) indicate 

significant effects of worms addition and T.latifolia treatment as well as a significant interaction between 

the two factors tested  at p ≤ 0.05, 0.001, and 0.0001 respectively according to two-way ANOVA; ns – no 

significant difference. 
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Lower values of this sorption coefficient (Kd) and water partitioning coefficient 

(Koc) were also observed in the presence of worms ({Atr.Tub} treatment) compared to 

treatments without worms addition ({Atr} and {Atr.Typ}, respectively) with significant 

differences in the bioturbated layers (0 – 5.0 cm) for Kd (Tukey HSD test, Fig. III.10) and 

in the fecal pellets layer for Koc (Tukey HSD test, Fig.III.10). 

III.B.2.6. Atrazine and its metabolites in T. latifolia root systems 

The typical radio-reverse-HPLC chromatogram in Fig. III.11A displayed the 

presence of atrazine authentic standard peak (Atr) with the retention time - tR - equal to 

24.00 minutes. Identification of atrazine compounds in the plant samples of treatments 

{Atr.Typ} and {Atr.Typ.Tub} was achieved by comparison with the obtained retention 

time in the radio-reverse-HPLC chromatogram of the authentic standard. This atrazine 

peak (Atr) was tentatively assigned to atrazine by coelution in HPLC with an authentic 

standard. 

The chromatogram of atrazine and its metabolites in the T. latifolia root system 

(Fig.III.11B and Fig.III.11C) showed the presence of peaks of several metabolites in 

addition to the atrazine authentic standard. After the experiment, besides the atrazine 

peak, some metabolites appeared on the radio-HPLC profiles of both treatments with 

and without bioturbation ({Atr.Typ} and {Atr.Typ.Tub} treatments), such as the peaks 

with tR of 15.70 and 16.70 minutes. Identification of the metabolites of [14C]-atrazine was, 

however, not performed. Several new metabolites, which could not be detected in the 

condition without worms treatment {Atr.Typ}, were found only in the treatment with 

worm addition ({Atr.Typ.Tub}) (peaks 1, 2, 3, 4 with tR = 17.60, 17.90, 18.60, and 20.90 

min, respectively) by comparison of their retention times in HPLC with the atrazine 

authentic standard (Fig. III.11B).  
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Figure. III.11.  Chromatograms showing retention time of atrazine standard (A), 

atrazine and its metabolites in T. latifolia root part of two experimental treatments: (B) 

without worms {Atr.Typ} treatment and (C) with worms {Atr.Typ.Tub} treatment. Atr is 

the peak of atrazine; 1, 2, 3, and 4 are metabolites peaks among new ones formed in the 

{Atr.Typ.Tub} treatment after the experiment. 
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Figure. III.12. [14C]-(atrazine, metabolites) quantities in root and leaf parts of T. latifolia 

at t = 26 days with and without bioturbation in contaminated treatments. (A1), (A2), (A3) 

are the quantities determined in the root part; (B1), (B2), (B3) are the quantities determined in the leaf 

parts. (*) indicates significance at p ≤ 0.05 and ns indicates no significant difference (P > 0.05) according 

to unpaired Student t-test. 

 

Quantity of atrazine and its metabolites were calculated based on peak areas 

obtained from the radio-HPLC profiles (Fig.III.12). No significant difference in the total 

quantity of [14C]-(atrazine, metabolites) were found either in T. latifolia’s root system 

and the leaves of {Atr.Typ.Tub} and {Atr.Typ} microcosms (Fig.III.12A1). Twenty-six 

days after the plant and invertebrate addition in the microcosms, the quantities found 

in the leaves were lower than in the root systems.  The quantity of pure atrazine in the 

roots, as representative of the parent compound, was significantly lower in the 

treatment having worms when compared with conditions without bioturbation (P < 

0.05, Student t-test) (Fig.III.12A2). The percentages of atrazine in the roots systems, 

related to the total quantities found in each part of the plants, accounted for 28.74 and 

54.34% with and without worms, respectively. In the leaf parts, the atrazine accounted 

for 16.30 and 13.22% of the total pesticides in the presence or absence of worms, 

respectively, and these pesticide expressed in quantities did not significantly differ (P > 

0.05, Student t-test) (Fig.III.12B). Biodegradation of atrazine into metabolites appeared 
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on both treatments with and without worms {Atr.Typ.Tub} and {Atr.Typ}. Derivatized 

products of atrazine accounted for high amounts, with 71.26% and 45.66% in roots, 

respectively, and 83.70 and 86.78% in leaves of both treatments, respectively.  The 

quantities of the metabolites showed a significant increase under the worm treatment (P 

< 0.05, Student t-test) in the root parts only, with no noticeable changes observed in the 

leaves parts (Fig.III.12A3).  

III.B.2.7. Phytoremediation potential indicators 

  Plant phytoremediation potential for pesticide can be assessed by using the 

enrichment coefficient (EC) and transfer factor (TF). Fig. III.13 indicated the EC values 

for root (ECR) and leaves (ECL) and TF estimated for the two experimental treatments 

{Atr.Typ} and {Atr.Typ.Tub}. The enrichment coefficient for the leaves part (ECL) did 

not show any significant difference between the two treatments after 26 days of the 

experiment (p > 0.05, Student t-test), with averages ranging from 5.32 ± 4.57 {Atr.Typ} to 

7.55 ± 1.59 {Atr.Typ.Tub}.  

 

Figure. III.13. (A) Enrichment coefficients for the roots (ECR); (B) Enrichment coefficients 

for the leaves (ECL); (C) transfer factor (TF) of Typha latifolia for the two different 

experimental treatments at the end of the experiment. (*) indicates significance at p ≤ 0.05; ns: 

non significance according to unpaired Student t.test 

 In contrast, the enrichment ECR of the roots (Fig. III.13A) showed a significant 

difference between the two treatments (Fig. III.13B), with higher values of 7.16 ± 0.66 

found with bioturbation ({Atr.Typ.Tub} treatment) compared to lower values of 5.99 ± 

0.64 in the {Atr.Typ} treatment. Means of the transfer factor were found at the low level 
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(< 1) in both conditions, with values being equal to 0.71 ± 0.55 in the {Atr.Typ.Tub} 

treatment and 0.88 ± 0.25 in the {Atr.Typ} treatment, and no significant differences 

between the two treatments (P > 0.05, Student t-test, Fig.III13C). 

III.B.2.8. Atrazine and its metabolites mass balance 

Quantity of [14C]-(atrazine, metabolites) was estimated at 3,310.02 ± 279.95 µg 

after adding the contaminant into the microcosm at t = -15 days (table III.7). Table III.7 

showed the total quantity of [14C]-(atrazine, metabolites) in the water, sediment, plant 

compartments, and in the whole test-system at the initial time (t = -15days) and the end 

of the experiment (t = 26 days). These first estimations of the total quantities in the 

microcosm as used for the relative recovery calculation were only based on 

measurements in the water, sediment and plant, without including the quantities in 

worm biomass. No significant differences (P > 0.05, Dunnett test, table III.7) in quantity 

of [14C]-(atrazine, metabolites) in the whole microcosm of experimental treatments 

without worms ({Atr} and {Atr.Typ}) after the experiment compared to that in initial 

condition (t = -15 days) were observed. At the end of the experiment (t=26 days), 

marginal losses of the atrazine and its metabolites in these treatments, followed the 

relative recoveries, Re.(A), and Re.(C), equal to 93.52 ± 5.82 and  93.99 ± 3.26 %, 

respectively, presented in the Fig. III.14. 
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Fig. III.14. Mass balance of [14C]-(atrazine, metabolites) at t = 26 days after the plant and 

invertebrate introduction in experimental microcosms: (A) {Atr}, (B) {Atr.Tub}, (C) 

{Atr.Typ}, and (D) {Atr.Typ.Tub} treatments. All fluxes (F1 to F4) are expressed as µg 

per day.  

  ΔQ1A,B,C,D, ΔQ2A,B,C,D represent differences of quantities of total [14C]-(atrazine, metabolites) in the 

water (Q1) and sediment (Q2) compartments of the 04 microcosms, between t = -15days and the 

end of the experiment (at t=26 days); ΔQ3,C,D  represents changes in the quantity in plant for the 

two microcosms having T. latifolia, respectively. ΔQ4,C,D  represents changes in the quantity in 

worms biomass for the two microcosms having tubificid, respectively. (-) and (+) before ΔQ 

indicate decrease and increase of the quantity in the compartment during the 26 days of the 

experiment duration. Arrows represent transport of the pesticides between the compartments. 

F1A,B,C,D are fluxes of total [14C]-(atrazine, metabolites) in the 04 treatments, respectively from 

water (blue block) to sediment compartments (black block). F2B,D are fluxes from sediment 

contaminant into overlying-water in the 02 treatments having worms, these fluxes in the other 
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treatment being considered as neglectable. F3C,D are fluxes in the 02 treatments having T. 

latifolia added, from sediment to plant compartment (light green block). F4B,D are fluxes of the 

contaminants from sediment into the worms biomass. Percentages of relative recovery 

(Re.(A),(B),(C),(D) of the 04 treatments, respectively) is the total amount of [14C]-(atrazine, 

metabolites) in each microcosm (without taking into account the worms biomass) at t=26 days 

divided by the quantity that was added at initial time (t = -15 days).  Black and broken line 

arrows are figuring contaminant fluxes of from overlying water out of the microcosms due to 

volatilization.  

 

Table III.7 

Total quantity of [14C]-(atrazine, metabolites) in experimental compartments: water, 

fresh sediment, plant, and whole test-system (mean ± SD, n = 4, except for initial sample 

(n=2)). (*) and (**) indicate significant difference at P < 0.05, 0.01, respectively according 

to the Dunnett’s multiple comparison test between each treatment with {initial} (at t= - 

15 days) treatment. 
Treatments time Water 

(µg) 

Sediment 

(µg) 

Plant,  

(µg) 

Microcosm 

(µg) P value 

{initial} (n=2) -15 days 523.29 ± 10.13 2787 ± 290 - 3,310.02 ± 279.95  

{Atr} 26 days 26.20 ± 5.82 3075 ± 223 - 3,095.38 ± 227.09 0.4077 

{Atr.Tub} 26 days 26.10 ± 7.89 2613 ± 165 - 2,631.16 ± 168.36** 0.0014 

{Atr.Typ} 26 days 11.00 ± 4.55 3053 ± 113 46.30 ± 12.40 3,110.94 ± 107.93 0.4697 

{Atr.Typ.Tub} 26 days 24.10 ± 0.45 2740 ± 540 52.60 ± 38.30 2,816.47 ± 37.69* 0.0147 

 

Table III.8 

Two-way ANOVA assessing the influences of T. latifolia plants and worms on the 

changes of the quantity in water (ΔQ1), Sediment (ΔQ2), the microcosm (ΔQ), and 

Relative recovery, respectively. Relative recovery does not include the quantities 

estimated in the worms biomasses.  ***: significant difference for the values at P ≤ 0.001; ns: 

non significance according to two-way ANOVA. 

 ΔQ1 in Water ΔQ2 in Sediment ΔQ in Microcosm Relative recovery 

Factors F1,11 P  F1,12 P  F1,12 P  F1,12 P  

T.latifolia 0.4201 0.5302 0.4828 0.5004 1.736 0.2123 1.735 0.2123 

Tubificid  2.671 0.1305 25.87 0.0003*** 24.76 0.0003*** 24.78 0.0003*** 

Interaction 5.730 0.0356 0.9629 0.3458 1.240 0.2874 1.237 0.2879 
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 At t = 26 days, the total amounts in the whole test-system having bioturbation 

({Atr.Tub} and {Atr.Typ.Tub} treatments) were significantly lower than the initial 

condition (P < 0.01 and 0.05, Dunnett test, Table III.7), mainly due to the loss of atrazine 

and its metabolites from the water and sediment compartment as denoted by the 

negative values of ΔQ1 and ΔQ2 Fig. III.15). However, the increases of the pesticide 

quantity in the sediment compartment were observed in the treatments without worms 

({Atr} and {Atr.Typ}) with the positive values of ΔQ2 (Fig. III.14). Fluxes of the 

contaminant from water to sediment (F1, Fig. III.15) occurred in all treatments having 

atrazine addition and indicated the occurrence of physical transport of the contaminant 

from water to sediment. These fluxes from overlying water into the sediment were 

understood as a consequence of adsorption processes of the organic compound from 

water to sediment particle during the whole experiment duration (15 days of 

contamination plus 26 days having plant and worms treatments). The transport of the 

pesticide from sediment to water could be found in the treatments having worms only 

({Atr.Tub} and {Atr.Typ.Tub}), as denoted by the similar values of F1b in both cases 

(Fig. III.15). 

 A significant difference in the total quantity of [14C]-(atrazine, metabolites) before 

and after the experiment was, however, observed in the experimental treatments having 

worms addition ({Atr.Tub} and {Atr.Typ.Tub}, P < 0.01 and 0.05, respectively, Dunnett 

test, Table III.7). Significant effect of tubificid worms on changes of the sediment 

quantity in the sediment (ΔQ2), in microcosms quantities (ΔQ), and relative recovery 

(Re.) were evidenced by two-way ANOVA (P < 0.001, Table III.8). Relative recovery in 

the treatment having atrazine and worms only ({Atr.Tub}) (Re(B) = 79.49 ± 5.09 %) was 

significant lower than that in the {Atr} treatment (Re(A) = 93.52 ± 6.86 %) (P < 0.01, 

Tukey HSD test, see Annex 12) and in the {Atr.Typ} treatment (Re(C) = 93.99 ± 3.26 %) 

(P < 0.01, Tukey HSD test, see Anne 12), and this point indicated along with a loss of 

atrazine and its metabolites from the previously investigated compartments (water, 

sediment, and plants) in the presence of bioturbation. 
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 In the presence of plants ({Atr.Typ} and {Atr.Typ.Tub} treatments), after 26 days, 

atrazine and its metabolites were transported into plants biomass as resulted in the 

positive values of ΔQ3 as well as the fluxes F2 from sediment to plant (Fig.III.14). No 

significant difference of the atrazine quantities (ΔQ3), as well as the fluxes (F2) between 

these two treatments with and without bioturbation, were observed (P = 0.7668, 

unpaired Student t-test, data not shown) during the time duration of our experiment. 

 

III.B.3. DISCUSSION 

III.B.3.1. Influence of bioturbation on particle mixing and tubificid resistance to 

atrazine 

In the presence of tubificid worms with a density of 100 worms.dm-2 (equivalent to 

fresh biomass of 4.45 ± 0.53 g per microcosm), a subsurface peak of tracers in the 2 cm 

layer indicated that  conveying transport were created by tubificids. This downward 

transport of the surface sediment resulted from the accumulation of faecal pellets at the 

sediment surface, simultaneously with sediment depression in deeper layers due to 

sediment ingestion by the worm feeding activities (McCall & Fisher, 1980; Matisoff et al. 

1999; Anschutz et al., 2012; Ciutat et al., 2006). Selective feeding behavior by tubificid 

worms based on particle size, avoiding coarse particles, such as luminophores and sand 

particles, induces a decrease of the silt-clay fraction at depth (Rodriguez et al., 2001). 

Consequently, bioturbation creates two distinct layers in the bioturbated sediment: a 

surface layer corresponding to the fecal pellets accumulation from ingested anoxic 

sediment with an enhanced fine fraction, and a bottom layer with increasing particle 

size (Anschutz et al., 2012). Our results (Fig.III.2) indicated that bioturbation caused by 

worm activities followed the bio-conveying transport model and allowed us to identify 

three distinguishable layers: (i) a surface bioturbated zone (0 - 2.0 cm) composed entirely 

of fecal pellets resulting from the conveying process, with about 75% of the 

luminophore tracers initially deposited at the sediment surface buried down to 2.0 cm 

depth at the end of the experiment (Fig.III.2); (ii) an ingestion zone (2.0 – 5.0 cm) which 
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indicates the maximal ingestion depth by the worms; and (iii) a deep zone (5.0 – 8.0 cm) 

where no worm activity has been detected. The maximal ingestion depth found in this 

study was located below 2.0 cm, and the bioturbated layer was thus estimated to be 

from 0 to more than 5 cm since luminophores occurred down to this level (Fig. III.2) 

after 26 days. Depending on the bioturbating time, the thickness of the surface zone 

could be extended to about more than 4 cm after 93 days having the same species 

treatment at a higher density of 620 ± 40 worms.dm-2 (Ciutat et al., 2006). The obtained 

rates of bioadvection in the presence of tubificids (Fig. III.2) were in the same order of 

magnitude of those estimated by other previous authors with tubificid population of 

various densities (Ciutat et al., 2005; Hoang et al., 2018). 

 The estimation of the interactive effect between atrazine and tubificid addition 

on bioadvective rates (two-way ANOVA, Table III.13) indicated that bioturbation was 

not altered by atrazine-contamination. There was no significant difference of V among 

the experimental treatments having worms with or without added atrazine {Typ.Tub}, 

{Atr.Tub}, {Atr.Typ.Tub} (Tukey HSD test, P > 0.05, Fig. III.3A). This result is in 

agreement with previous studies that found out, using Cd-spiked aquatic sediment, 

that bioadvective rates were not affected by Cd enrichment (Anschutz et al., 2012; 

Ciutat et al., 2005; Hoang et al., 2018). Although, few studies previously tested the 

bioadvection rates under contamination with pesticides such as atrazine, oligochaete 

worms could be therefore considered as ecological engineers with high resistance to 

both inorganic and organic contaminants from the aquatic environment. Indeed, some 

invertebrate oligochaetes, which are very widely distributed and frequently dominant 

in freshwater benthic communities, show a high level of resistance to unfavorable 

treatments, especially organic pollution associated with severe hypoxic treatments 

(Brinkhurst and Cook, 1974). An indoor microcosm was carried out by Ciutat et al., 

(2005) to test the bioaccumulation kinetics of Cd, added to the water column at 20 µg/L, 

in tubificid worms during a 56-day exposure period with bioaccumulation levels as 

high as 50 mg.g_1 dry wt. found in the worms. The resistance of these organisms was 
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related to their detoxification or pollutant sequestration abilities under polluted 

environments. Whitley (1967) reported that tubificids showed high tolerance limits for 

water contaminated by Pb and Zn, with the median tolerance limit at 49 and 46 mg/L, 

respectively. Both acute and chronic toxicity of organic compounds has been previously 

investigated in some invertebrates. Dad et al., (1982) reported that tubificid worms (a 

mixture of T. tubifex and L.hoffmeisteri) were able to tolerate high insecticides 

concentrations of with presumed harmless concentrations of Furadan 3G (carbofuran) 

and Malataf 50E found to be at 4.37 and 3.22 mg/L, respectively. Although atrazine is 

considered as highly toxic for freshwater aquatic invertebrates (US Environmental 

Protection Agency, 2003), the hydrophobic chemical was bioaccumulated across the 

body wall of benthic Oligochaeta Lumbriculus variegatus with a wide range of 

bioaccumulation factors (BAFs), from 0.19 to 19.56 after 240 h of exposure (Jantunen et 

al., 2008). Although this study does not give an evidence on the persistence of the 

worms to the high level of the pesticide with concentration as high as 6.4 µg/g 

(compared with 17 µg/L) which is normally found out in natural sediment in rural pond 

in Canada (Frank et al., 1990), our study implied that bioturbation should remain active 

in natural sediments with relatively high concentration, the used concentration of 2µg/g 

in the present experiment did not exceeding the concentration of 5 µg/L in the previous 

studies with the same invertebrate group. 

III.B.3.2. Influence of biotransport by tubificid on behavior and mobility of atrazine 

within the sediment 

  Tubificids affect physical and chemical characteristics, including sediment 

particle size, porosity, water content, nutrient content, turbidity, TOC, etc., of the 

sediment and overlying water near the water-sediment interface (Anschutz et al., 2012; 

Ciutat et al., 2006; Cunningham et al., 1999; Hoang et al., 2018; Mermillod-Blondin et al., 

2013; Mermillod-Blondin et al., 2008). The significant increase of water content observed 

in the top sediment layers (0-2 cm) when the worms were occurring in the experimental 

treatment {Atr.Tub} (Fig. III.2 and Fig. III.7) is explained by the physical effect of 
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tubificid worms. Through the conveying activity, worms accumulate their fecal pellets 

made with smaller particles (fine fraction extracted at depth) at the surface of the 

sediment. This phenomenon due to bioturbation led to a vertical change in the 

distribution of sediment grain sizes in the sediment layers where the tubificid worms 

occurred. As a consequence, the mean grain size of sediment particles became smaller 

in the upper layer (0-1 cm) and greater in the deeper layers (Hoang et al., 2018). 

Additionally, fecal pellets getting a larger diameter than sediment particles, this fact is 

leading to increased sediment porosity in the surface layer. This porosity promoted 

water and solute exchanges thought the water-sediment interface by simple molecular 

diffusion. That also explained the significant decrease of water content in the deepest 

layers when worms were present ({Atr.Tub} treatment, Fig. III.7) along with the least 

abundance of small particles (fine silt, clay, medium silt, and coarse silt) and more 

higher abundance of larger particles (coarse, medium and fine sands) in agreement with 

previous observations of Ciutat et al., (2006) and Hoang et al. (2018). Other types of 

bioturbation may leas to increased water fluxes through the water-sediment interface 

by bio-irrigation such as Wood et al., (1975) reported that the tubificid Limnodrillus 

hoffmeisteri generates a burrow flushing rate of 9.5–15 L water per worm per hour 

(20°C). At typical densities of 104 –105 ind. m-2, this would result in the exchange of 25 L 

m-2 d-1.   

The increase of water content in the top sediment also explained the significant 

depletion of the total [14C]-(atrazine, metabolites) concentrations and quantity in upper 

layers with worms ({Atr.Tub}) (Fig. III.5 and III.6). The enhanced porosity caused a 

dilution of the total atrazine and metabolites concentrations in the upper bioturbated 

sediment layers. When the surface zone is composed entirely of worms’ fecal pellets, it 

also extends the thickness of the layer (Ciutat et al., 2006), the difference of volume is 

explained by the enhanced water content.   

Aquatic sediments are one of the largest reservoirs of organic matter (Breithaupt 

et al., 2012). Organic matter in sediment consists of a heterogeneous mixture of carbon 
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and nutrients, notably in the form of carbohydrates, proteins, fats, and nucleic acids 

(Zonneveld et al., 2009). Bacteria, as heterotrophic microorganisms living in carbon-rich 

sediments, play an essential role in the transformation and mineralization of organic 

matter in aquatic sediments (Boudreau, 1992). Tubificid worms play a significant role in 

the processing of organic matter in aquatic sediments by direct ingestion of by 

microbial gardening (McCall & Fisher, 1980; Mermillod-Blondin et al., 2001). During 

feeding activities of Tubifex worms, the fecal pellets accumulated at the sediment 

surface are covered by worm’s digestive mucus that increases the colonizable area for 

bacteria. In this study, tubificid worms consequently modified the organic matter 

distribution in the sedimentary layers (Fig. III.5A and III.5B), with a significant increase 

in the surface layer due to fecal pellets arrival with mucus made of exopolysaccharides, 

and a depletion of the organic matter content in deeper layers (2-8 cm) to ingestion. The 

depletion of C and OM observed in the top sediment is explained by the new fecal 

pellets arrival, where the microbial community didn’t get the time to develop yet. The 

burial over time of these pellets will be followed by the development of microbial 

biofilm that explains the OM matter inversion at the bottom of the surface layer. A 

similar profile of organic carbon content, hence, could be found in the presence of 

tubificid worms (Fig. III.9).  

In addition to these physicochemical parameters, pH is also considered as an 

important factor controlling the adsorption of atrazine in the soil/sediment. Gradually, 

positive mobilization of herbicides, such as atrazine and metribuzin in soil has been 

reported to increase as the pH increased (James et al., 1976). When pH decrease, the 

molecules became protonated that led to complex the triazine molecules with H+ on the 

clay surface (Weber, 1970). In our experiment, the relatively high pH (8.03) in overlying 

water along was observed together with the significant increase of water content in the 

surface sediment layers (Fig. III.7) due to the intrusion of overlying water in the 

interstitial space of the fecal pellet layers (Fig. III.9D). This leads to the increase of pH in 

this boundary layer as observed in the {Atr.Tub} treatment. Under the conveying 
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process, the new pH conditions are spread down into the whole bioturbated sediment. 

Previous studies also reported sediment pH increase under bioturbation, which was 

explained by an accelerated removal of acid metabolites from sediment (Yingst and 

Rhoads, 1980). 

Soil organic carbon-water partitioning coefficient (Koc) has been so far used as a 

quantitative measure of the magnitude of the binding affinity of organic matter for 

atrazine. Also, soil adsorption coefficients (Kd) are interesting indices for predicting 

pesticide mobility in the aquatic environment (Kulikova and Perminova, 2002). Study of 

sorption affinities of 101 soil samples from New Zealand was reported by Ahmad and 

Rahman (2009) with sorption coefficients (Kd) ranging from 0.7 to 52.1 mL.g-1, and by 

Kookana et al. (2008) with the values in 31 soils ranging from 0.51 to 5.48 mL.g-1.  

Bioavailability and mobility of pesticides in natural environments under 

bioturbation are strongly affected by their solubility variations (sorption to soil particles 

and organic matter, dissolution in pore water, or uptake by plants). Pesticides with low 

Koc or low distribution coefficient have the highest potential for movement; they are 

highly water soluble, relatively persistent, and not readily sorbed to soil particles. In 

contrast, the higher the Koc value, the more strongly the pesticide is sorbed onto soil 

and organic matter, which lowers its bioavailability (Binet et al., 2006). It has been 

shown that atrazine adsorption is associated with fine particle fraction consisting of clay 

minerals and organic matter. Koc, however, is a more important factor affecting the 

sorption than particle size. Atrazine binding to soil organic matter is not extremely 

strong (Koc~128 mL.g-1, the moderate water solubility of 33 mg.L-1, average field half-

life 60 days) (Lesan and Bhandari, 2000) leading to the high potential for movement 

from particles to dissolved state. This becomes obvious when compared with benomyl, 

a systemic agricultural fungicide having low movement rating with the solubility of 2 

mg.L-1 and Koc of 1,900 mL.g-1. A wide variation of partitioning coefficient (Koc), from 

30 to 680 mL.g-1 (Kookana et al., 2008), with a mean of 126.9 mL.g-1, was also found by 

Ahmad and Rahman (2009). The Koc coefficients in our study (Fig. III.10) were in the 
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same order of magnitude as the data provided by the authors cited above, with the 

means varying from 265 ± 131.76 to 537 ± 114.50 mL.g-1. The two coefficients generally 

increased with soil organic carbon content (Fig. III.10).  

It is suggested that the significant depletion of organic matter in the surface and 

deeper sediment layers under the influence of tubificid worms ({Atr.Tub} treatment) 

contributed to the higher desorption/movement of atrazine and its metabolites from 

organic matter to the pore water, compared to the treatments without worms ({Atr} 

treatment, Fig. III.5C and Fig. III.9A). Organic matter degradation due to worm activity 

consequently increased [14C]-(atrazine, metabolites) concentration in pore water and 

thus released more free fraction of atrazine and its metabolites into the interstitial 

environment (Fig.III.16B). Therefore, in the sediment column, bioturbation accelerates 

the mobility of atrazine (and presumably its metabolites) from attached forms (onto 

sediment particles) into a free fraction (in pore water) with lower values of Kd, Koc. 

III.B.3.3. Influence of tubificids oligochetes on the biotransformation of atrazine and 

the bioavailability for plant 

Due to its low adsorption in soils with Koc of 128 mL g-1 (Sun et al., 2010), 

residual atrazine and its metabolites, such as deethylatrazine (DEA) or 

deisopropylatrazine (DIA) have a high potential to contaminate surface waters, 

groundwaters and adjacent soils (Kolpin et al., 1996; Lewis et al., 2009; Zaya et al., 2011) 

from agricultural soils via leaching and surface runoff (Douglass et al., 2017; Pascal- 

Lorber et al., 2011). The degradation of the herbicide mostly occurs in wetland areas 

(Mudhoo and Garg, 2011) or in topsoils (Douglass et al., 2015), where a physical (photo-

oxidation), chemical and biological degradation processes may occur. Atrazine-

degrading microbial communities (Krutz et al., 2012), as well as other important 

chemical factors (soil pH, organic material, and moisture) exerting controls on the plant 

up taking, (Wehtje et al., 1984), have been considered as the primary mode of the 

attenuation. Soil microbial communities play a crucial role in biodegradation of the s-
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triazine herbicides such as atrazine into metabolites (Udiković-Kolić et al., 2012). As a 

growth substrate (C and/or N source), atrazine is used by microorganisms via catabolic 

pathways of xenobiotic due to atz/trz genes coding for the enzymes responsible for the 

mineralization (Noor et al., 2014; Udiković-Kolić et al., 2012). Atrazine-degrading fungi 

normally include members of genera Pseudomonas, Acinetobacter, Agrobacterium, 

Arthrobacter, Rastonia and Norcardioides (Strong et al., 2002) as well as some mycorrhizae 

such as Aspergillus, Rhizopus, Fusarium, Penicillium, Phanerochaete (Mougin et al., 1994; 

Islas-Pelcastre et al., 2013).  

 

Figure III.15. Atrazine degradative pathways (Govantes et al., 2009). Catalyzing atrazine to 

the common intermediate cyanuric acid by enzymatic steps. AC, atrazine chlorohydrolase; HAEA, 

hidroxyatrazine ethylaminohydrolase; IAIA, N-isopropylammelide isopropylamidohydrolase; TC, s-

triazine chlorohydrolase; AM, atrazine monooxygenase; DEAM, deethylatrazine monooxygenase; DIHA, 

deisopropyhidroxylatrazine amidohydrolase; EAA, N-ethylammelide amidohydrolase, TH, s-triazine 

hydrolase.  

 

Since this transformation occurs at depth in the sediment, the microbial 

community involvement is suspected as a significant effect compared to chemical or 

physical influences (Kerle et al., 2007) and this biotransformation should be led by the 

microbial consortium in the sediment surrounding the plant roots.  Also, the water and 
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organic matter contain in the bioturbated layer (5 cm) was modified that was suspected 

to be at the source of an acceleration of the atrazine and its metabolites mobility from 

sediment particles to pore water (lower the values of Kd, Koc) under bioturbation, thus 

promoting the uptake by the plant. Bioturbation is creating fluxes of sediment and 

related OM that influences the vertical distribution of organic matter. Since organic 

matter is controlling the atrazine adsorption capacity in the solid fraction, bioturbation 

is suspected to influence the adsorption capacity depending on the depth in the 

sediment column. Besides, C/N ratio is increasing with depth in the sediment under 

bioturbation of the sediment column; C/N ratio and organic matter variation together 

attest of enhancement of the organic matter-mineralizing by heterotrophic microbial 

degradation pathways in bioturbated sediment.  

Octanol/Water partition coefficient (Kow) is an indicator of the environmental fate 

of a pesticide. Due to a very high polarity of water, the more polar a molecule is, the 

more soluble it will be in water (Linde, 1994). A pesticide with a low log Kow value such 

as 0.6 is more water-soluble (hydrophilic or polar), while pesticide with a high log 

Kow value, such as 2.61 (atrazine) is more lipid soluble (lipophilic). Our results on the 

mobilization of atrazine and its metabolites in the sediment fractions under the impact 

of bioturbation were illustrated in Fig. III.5. By stimulating organic content degradation, 

tubificids favored the mobility of atrazine and its metabolites from sediment particles 

(organic matter) to pore water in the sedimentary layers of {Atr.Tub} microcosms. This 

release of the atrazine and related compounds in the free fractions, that were then taken 

up by the plant, was demonstrated by the significant increase of 14C-(atrazine, 

metabolites) concentrations in the pore water of the fecal pellets zone between the 

treatments having a plant with and without bioturbation {Atr.Typ} and {Atr.Typ.Tub} 

(Fig.III.6C). Effects of worms and plants were significant on Kd and Koc coefficients in 

the fecal pellets zones of the two experimental treatments (Fig. III.10). Inversely the high 

values of Kd and Koc in the presence of the plant only in the lower layers indicated the 
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strong adsorption or immobilization of residual pesticides molecules onto sediment 

particles and organic matter in these conditions. 

Uptake of lipophilic compounds like atrazine depends mainly on their ability to 

partition into cell membranes. Atrazine penetrates the plant by a simple phenomenon 

of passive diffusion (McCloskey et al., 1997). When tissues or cells of plant are exposed 

to atrazine (nonpolar or lipophilic, high log Kow) and its metabolites such as DEA, 

DEHA, DIA, DIHA (less polar), the molecules quickly permeates the tissue via the 

xylem vascular system (apoplastic movement) and remains into cytoplasm of cells, 

resulting in the passive absorption and accumulation in the cells. Equilibrium between 

the cytoplasm and chloroplast thus will be established (Shimabukuro and Swanson, 

1969). In contrast, polar molecules slowly flow across lipophilic cell membranes, even 

not pass into the cells. Although rapid to cross the cell membranes, the lipophilic 

organic compounds are still adsorbed by organic matter in the sediment. It causes the 

competition between organic compounds complexes formation with atrazine and 

organic matter and their phyto bioavailability. The more organic matter content in the 

sediment, the less organic compounds are available for plant uptake. However, the 

depletion of organic matter according to the depth of the sediment ({Typ.Tub} in the 

microcosm, Fig. III.10) and due to bioturbation affected this competition in favor of the 

bioavailability for the plants. This process together with the move of atrazine and its 

metabolites from sediment particle to pore water (lower the values of Kd, Koc), thus 

promoted the taken up by plants.  

On the other hand, the metabolism of atrazine is very complex in the sediment 

and the plant and may result in the involvement of 15 to 20 different compounds (Fig. 

III.15). The atrazine metabolization under the impact of tubificids worms was 

illustrated in Fig. III.11 with the increased number of less polar metabolites in the root 

system of plants in treatment with bioturbation {Atr.Typ.Tub} compared to without 

bioturbation {Atr.Typ}. Although total quantity of [14C]-(atrazine, metabolites) were not 

different when the worms were occurring, the quantity of [14C]-metabolites significantly 
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increased (P < 0.01, t.test) along with significant decrease of [14C] atrazine quantity (P 

<0.001, t.test) in the plant root system of the treatment having worms ({Atr.Typ.Tub}, 

when compared to that in the treatment without bioturbation ({Atr.Typ}) (Fig. III.12). 

Sensitive plants, such as oats, cucumber, and alfalfa, are unable to detoxify atrazine 

resulting in chlorosis and death (Hull 1967), while resistant plant species, such as T. 

latifolia accumulate and metabolize atrazine to hydroxyatrazine and amino acid 

conjugates (Ronald, 1989). Beside the ability of T. latifolia to accumulate atrazine and 

convert them into the derivatized product by themselves, the present study thus 

demonstrated that bioturbation ({Atr.Typ.Tub} treatment) considerably enhanced the 

accumulation and metabolization process of atrazine that started into the sediment 

under microbial processes and thus resulted in increases metabolites in the plant roots 

system.  

One more consequence of bioturbation works in the direction of pesticides 

biodegradation in the sediment: atrazine metabolization requires additional nutrients 

and carbon to feed the micro-organisms. By increasing flux dispersion, the oligochaetes 

also enhanced the nutrient availability in all microenvironments of the columns, 

stimulating both aerobic and anaerobic microbial activities. Mermillod-Blondin et al., 

(2001) and McMurtry et al., (2011) also reported a significant correlation between the 

abundance of heterotrophic bacteria in sediments and tubificid preference. 

 

III.B.3.4. Plant influence on bioturbation intensity and pesticide attenuation 

Several studies have revealed the plant influences on aquatic bioturbation 

intensity in aquatic sediment notably for large bioturbators such as ghost shrimps 

(Berkenbusch et al., 2007) and the polychaete Nereis diversicolor (Hughes et al., 2000). 

Interaction between belowground biomass of the seagrass Zostera and burrowing 

bioturbators activities have been investigated previously with negative effects of root 

density on the intensity and mode of sediment particle mixing by benthic infaunal 
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activities in the coastal environment (Bernard et al., 2014). These findings, however, are 

not consistent with the present study that revealed the independence of bioturbation 

intensity with the occurrence of the riparian T. latifolia plant. Neither significant 

difference in bioadvective rate (V) (Fig. III.3A) and biodiffusive rate (Db) (Fig. III.9B) 

nor the interaction between plant occurrence and worm treatment (Table III.14) were 

observed.  

It should be noticed that the contradictory results from that obtained in the 

present study might be due to the differences in bioturbation modes, in types of aquatic 

environment studied, or in species/ functional type of aquatic plant selected. This 

suggested that the bioturbation type of biotransport produced by tubificid worms still 

remains active and is not affected by the plant treatment, when other types of 

bioturbation as biodiffusion of regeneration made by large crustacean may be affected 

with the proximity of plants.  

Moreover, the fact of using individual species of bioturbators rather than a whole 

community, as well as longer time duration for carrying out this experiment (26 days) 

could lead to different observations of the interactions between plants and invertebrates 

bioturbators. 

III.B.3.5 Mass balance and contaminant fluxes between experimental compartments 

 Due to the low adsorption of atrazine to solid (Koc =128 mL g-1) (Sun et al., 2010) 

compared to a rapid uptake by plant root (in the soluble form only), the sediment 

column was homogeneously contaminated at initial time of the experiment with a 

water solution containing [14C]-atrazine and that was 15 days before the introduction of 

the worms and plant to the microcosm. The choice to work in the present experiment 

with contaminating sediment, instead of only contaminated overlying water as in the 

previous experiment with cadmium (see Chapter III.A), was made in order to get a 

completed adsorption of atrazine first to the sediment, and before it might be impacted 

by other processes, including bioturbation and phytoremediation. On the other hand, 
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the effects of tubificids on the biotransportion of pollutant is considered as already done 

in the previous study. Furthermore, the present study is more focusing on 

biogeochemical properties modifications in the sediment compartment where the 

changes of pesticide concentration and fluxes might be observed. Atrazine and its 

metabolites were however explored in all physical compartments, including free water, 

interstitial water, sediment particles, and plants, except in the worm’s biomass.  

In the absence of worms in {Atr} and {Atr.Typ} treatments, the decrease of [14C]-

(atrazine, metabolites) quantities in the overlying water (negative values of ΔQ1A and 

ΔQ1B at t = 26 days) along with the increase of the quantity in the sediment 

compartment (positive values of ΔQ2A and ΔQ2C, Fig.III.14A) were observed as a 

consequence of completed adsorption of atrazine from free water to sediment particles 

during 31 days of contamination (including the 15 days before biodiversity 

introduction). Atrazine, with a Koc > 100 ml/g and capable of donating and accepting 

hydrogen bonds (Welhouse et al., 1993), can interact and sorbt to sediment organic 

matter by multiple mechanisms depending on its organic content (Guo et al., 2016). In 

the presence of worm ({Atr.Tub} and {Atr.Typ.Tub} treatments), the significant 

depletion of [14C]-(atrazine + metabolites) concentrations in the first 2 cm of sediment 

(Fig.III.9A) as well as the negative values of ΔQ2B and ΔQ2D (Fig.III.14A) are explained 

by the sediment porosity increase and the occurrence of fluxes (F1B and F1D, Fig.III.14) 

from sediment to water due to the bioturbation.  

The calculated fluxes of atrazine and its degradation products from water to 

sediment in {Atr.Tub}, {Atr.Typ}, {Atr.Typ.Tub} treatments (F1B,C,D, Fig.III.14) showed 

no significant differences compared to that in the control ({Atr} treatment) (P > 0.05, 

Dunnett multiple test, data not shown). Tubificid activity impacted the sorption and 

desorption of the moderate hydrophobic atrazine between attached-particles and free 

fractioning forms within sediment compartment with an increase of the concentrations 

of the molecules in the pore water that is partly explained by the organic matter 

reduction under tubificids feeding. The influences of bioturbation by tubificids on these 
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chemical properties of sediment have consequences on the adsorption-desorption 

behavior of the herbicide in the sediment compartments, without affecting the total 

fluxes from water to sediment.  

The relative recovery, (i.e., the total amount of [14C]-(atrazine, metabolites) in the 

whole test-system (overlying water, sediment, and plant) at the end of the experiment 

divided by that added at the beginning of the experiment), was calculated in each 

treatment with and without bioturbation ({Atr.Tub} and {Atr}; {Atr.Typ.Tub} and 

{Atr.Typ}). This allows the assessment of the faunal biodiversity influence in the 

bioremediation process. The obtained data from the treatment having tubificid worms 

({Atr.Tub} and {Atr.Typ.Tub} treatments), indicated relative recovery approximately 

equal to 79.5 % and 84.9%, respectively. This values suggested additional pesticide loss 

or uptake. This additional process might be worms’ bioaccumulation or enhanced 

pesticides mineralization under higher bioturbation. While, a marginal loss of the 

pesticide, approximately 93.5% and 94% of relative recovery observed in the absence of 

the worms ({Atr} and {Atr.Typ} treatments, respectively) (Fig.III.14), implied (1) a 

volatilization of atrazine to the air phase via the mineralization into CO2 or (2) an 

adsorption to experimental pail walls. This finding was consistent with the previous 

study of Bundschuh et al., (2016) on the role of pesticide properties on remobilization 

from sediment to the overlying water phase. 

 

III.B.3.6. Phytoremediation potential on the pesticide attenuation under bioturbation 

process 

The remediation of atrazine by plants has been proved in previous studies 

(Ibrahim et al., 2013; Murphy and Coats, 2011; Susarla et al., 2002). Herbicide absorption 

by plant roots is typically characterized by rapid initial entry into the tissues. Root 

absorption capacity is often expressed in terms of the root concentration factor (ECR). 

Initial absorption rates and ECR are positively correlated with lipophilicity 

(octanol/water partition coefficient, Kow) (Top et al., 1986). Polar compounds enter the 
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root cells less rapidly and are initially restricted to the free space, resulting in ECR 

ranging from 0.6 to 1.0 (uncompleted permeation). Lipophilicity compounds, on the 

other hand, enter rapidly the root cells and can accumulate in lipid-rich domains of the 

tissues, resulting in a greater value of ECR, higher than 1.0 (Top et al., 1986). Significant 

increase of ECR with a mean value of 7.55 ± 1.59 (Fig. III.14) when the worms were 

added in {Atr.Typ.Tub} microcosms indicated that bioaccumulation of T. latifolia was 

increased in the roots in the presence of bioturbation. 

The water content was consistently lower at depth than in the upper layers in 

profiles of the treatments having both worms and T. latifolia (Fig. III.7B). The tubificids 

effects were obvious along the whole bioturbation zones, and with any noticeable 

interactions effects between worms and Typha. However the significant reduction of 

the water contains was only observed in the layer 3-4 cm that indicated the role of a 

plant during their solution uptake at the depth where root is located.  

 

III.B.3.7. Toxicological test using Chlorella vulgaris 

Toxicological test of Chlorella vulgaris on experimental pore water samples 

 It was indicated in Fig. III.5C that there were more atrazine and its metabolites 

in the first 2cm of sediment pore water when the worms are occurring, in both 

conditions with and without plants. Under the activities of worms, bioturbation may 

increase the bioavailability of the atrazine and its metabolites via the depletion of 

organic matter by feeding activity and microbial degradation. These changes the 

equilibrium between the complexes of pesticides and organic matter and thus promote 

the release of less polar molecules of herbicides and metabolites into the pore water.  As 

a result, higher concentrations and quantities of atrazine and metabolites in the pore 

water are observed, particularly in the condition {Atr.Tub}. However, lower 

concentration of the herbicides could be found in the upper layers in the presence of the 

plant {Atr.Typ.Tub} that are explained by the Typha’s root system uptake. 
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Figure III.16. Percentage of inhibitions of C. vulgaris in experimental pore water samples 

collected in different layers of microcosms sediment at t = 26 days [A]: 1st layer from 0 to 

1cm; [B]: 2nd layer from 1 to 2 cm; [C]: 3rd layer from 2 to 8cm at 72h. Different superscript letters 

indicate the significant differences for the percentage of inhibition between experimental 

treatments at P≤ 0.05 level as analyzed by Tukey HSD test. Values are means ± SD (n = 4, except 

for {Atr}, {Atr.Typ}, {Atr.Typ.Tub} at the 2nd layer, n = 3 and for {Atr.Typ.Tub} at the 3rd layer, n 

=3). No significant difference was observed among the treatments of the 3rd layer. (see Table II.2 

for the definitions of acronym corresponding to the different treatments). 

 

Table III.9.  

Effects of T. latifolia and tubificids on the percentages of inhibition of C. vulgaris in 

experimental pore water of different sedimentary layers, using two-way ANOVA 

Factors 1st layer (0-1cm) 2nd layer (1-2cm) 3rd layer (2-8cm) 

F (1,12) P F (1,9) P F (1,11) P 

T.latifolia treatment 6.143 0.029* 0.08252 0.7804ns 0.2155 0.6515ns 

Tubificid addition 42.96 <0.0001**** 17.04 0.0026** 4.485 0.0578ns 

T.latifolia : tubificid 

interaction 

0.0781 0.7846ns 0.08889 0.7724ns 3.709 0.0804ns 

(*), (**), and (****) indicate significance at P≤ 0.05, 0.01, and 0.0001 respectively; (ns)-non 

significance according to the two-way ANOVA tests. (see Table II.2 for the definitions of 

acronym corresponding to the different treatments). 

 

At the end of the experiment, atrazine concentrations in overlying water and 

pore water of our microcosm were found to be at about 200 and 400µg/L, respectively 

(Fig. III.9). The concentrations were not consistent with actual environmental 

concentrations in Europe because of the herbicide’s prohibition set in European Union 

since 2004 and actual measured level in natural waters not exceeding to 28 µg/L (Munz 

et al., 2013). However, the ecotoxicological results using Chlorella vulgaris with the IC50 

found to be at 60.41 µg/L (Fig.III.16) showed % of inhibition lower than 50% obtained 
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and these results with to be consistent with the estimated herbicides levels in our 

microcosm.  

As can be gleaned from Fig. III.16A, by comparing with and without worms 

treatments ({Atr} and {Atr.Tub}, Tukey HSD test), the pore water is significantly more 

toxic in the sediment layers when the worms are occurring. This pattern was always 

observed in all the 3 investigated layers from 0 to 8 cm, where the bioturbation is acting. 

For the conditions having the plant treatments ({Atr.Typ} and {Atr.Typ.Tub}, Tukey 

HSD test, Fig. III.16B), the pore water was also significantly more toxic in the top and 

bottom layers when the worms were occurring in the experimental conditions. While 

the decrease of toxicity in the layer from 1.0 to 2.0 cm having worm treatment is likely 

due to the plant root.  

This higher toxicity of the porous water when bioturbation is acting is explained 

by 1. the enhanced pesticides concentrations in the interstitial water in treatment with 

tubificids and the higher toxicity of the metabolites for the algae species. Although the 

toxicity was not significantly lower when Typha latifolia was acting. the plant effects were 

still significant when tested by the ANOVA. This last point underlined the double and 

opposite effects of the Tubificids on the toxicity of the porous water : i. the worms are  

increasing the water toxicity, probably due to the influence on the microbial 

degradation into more harmful metabolites, and ii) the plant effects that slightly lower 

the toxicity by uptaking the harmful compounds into its root system. These results 

about the plant capacity of atrazine removal are consistent with previous observations 

from other authors, like Moore et al. (2013) and (Mezzari and Schnoor, 2006) who 

observed that high resistant aquatic plant in a polluted environment, are capable of 

significantly atrazine molecules removal. This removal is generating flows between the 

soil and the root system or transfer of atrazine into other metabolites, such as 

hydroxyatrazine, DEA, and DIA.  
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On the other hand, the bioturbation is proved to be a positive ecological tool 

which significantly impacts on the contaminant incorporation into the sediment (Ciutat 

et al., 2007 Delmotte et al., 2007; Devault et al., 2009;). Bioturbation also can control the 

fate of organic matter and nutrients as well as fluxes of nutrients between sediments 

and water (Anschutz et al., 2012; Hölker et al., 2015) and therefore facilitate the 

transformation of pollutants by the microorganisms communities (Gerino et al., 2014). 

The pore water toxicity was increased in the bioturbated conditions that might be 

explained by the increase of the metabolites’ bioavailability (more atrazine and its 

metabolites concentrations in pore water). The decrease of toxicity in the layer from 1.0 

to 2.0cm (Fig. III.16B and Fig.III.16D) having worms treatment and in the deepest layer 

(2.0 – 8.0cm) in the conditions without worm treatment ({Atr.Typ} and {(Atr}) might be 

due to the plant root’ activity in the middle layer of the sediment column.  

On the one hand, bioturbation is known to promote microbial activity that may 

support the degradation of such compounds, but on the other hand, the release of this 

compound under bioturbation effect may increase its toxicity to these organisms. Thus, 

in the same time, the bioturbation is facilitating the biodegradation of persistent 

pollunant by way of interaction with sedimentary micro-organisms, but also 

simultaneously enhance the toxicity in the surface layers where the plants are not 

extracting the pesticides yet. The superimposition of these processes in the bioturbated 

layer may lead to controversy if the details of the mechanism behind the toxicity 

evolution are not explained with the help of the other results.  

  



   HOANG T.K. 2018 
 

 

185  

 

III.B.4. CONCLUSION 

In aquatic systems, atrazine is among the most largely occurrent herbicides in the 

continental sediments within deposition areas such as wetlands and ponds. Its 

moderate hydrophobic character makes it a sensitive candidate to investigate its 

behavior at the water-sediment interface as a response to biodiversity-related processes 

such as bioturbation. Our experimental study using radiolabeled [14C]-atrazine showed 

that bioturbation is still maintained in contaminated sediment with or without plants. 

Under worm activities, the overall depletion of atrazine and its metabolite 

concentrations in the surface sedimentary layers was observed together with the 

redistribution of organic matter and C:N ratio in the sediment column. The influences 

of bioturbation by tubificids on these chemical properties of sediment have 

consequences on the adsorption-desorption behavior of the herbicide. Therefore 

bioturbation accelerates the mobility of atrazine (and presumably its metabolites) from 

attached forms (onto sediment particles) into a free fraction (in pore water) with lower 

values of Kd, Koc. The change of the partition balance gets consequences on the toxicity 

of the sediment pore water that is globally enhanced under bioturbation and with a 

more advanced bioavailability for microbial communities and plant uptake. This 

indirect bioturbation influence on the partitioning of atrazine in sediment suggests that 

atrazine should be more available for the other organisms that live in the sediment.  

The bioaccumulation (ECs) and metabolization of the pesticides were 

significantly enhanced when the worms were present as observed in T. latifolia roots. 

This mobility should also increase its toxicity towards some other organisms (microbes, 

and invertebrates) that live in the sediment layer, but may also promote its uptake by 

other plants. Bioturbation has effects on biogeochemical cycle inside the sediment 

compartment by changing the organic matter content where the worms’ feeding and 

gardening are happening. Phytoremediation then played an important role in the 

process by up taking the released available toxic molecules in the pore water. In this 

sequence of the process, the phytoextraction efficiency looks favored by the 
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bioturbation because a more accessible quantity of pesticide is made available in the 

pore water in the surrounding sediment of the roots systems. The production of more 

toxic metabolites under bioturbation may be counteracted by the uptake of the whole 

compounds by the plants.  

The role of microorganism communities in the degradation of atrazine in 

bioturbated sediment should be addressed in the next studies. Further analytical works, 

i.e. identification of atrazine metabolites in sedimentary layers and in the plant system 

as well as polarity determination of new metabolites (via Kow values) which is formed 

in the plant are also needed to test the hypotheses of metabolization process under the 

bioturbation. 
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CHAPTER III.C. COMPARISON OF BIOREMEDIATION 

EFFECTS ON TWO DIFFERENT TYPES OF POLLUTANTS  

 

The impact of human activity on the aquatic ecosystems has produced a global 

limitation of water resource availability and quality in many places in the word. Water 

resources scarcity and risks to ecological health such as water contamination call for 

new solutions that help to sustain the wetlands ecosystem as all other types of aquatic 

ecosystems. For the restoration of wetlands, environmental engineering goals identify 

contaminant behaviors, prevent its bioavailability and try to reduce pollution loads in 

human-made and natural systems, and, above all, attempt to minimize the negative 

impact, or ecological footprint, of contaminants accumulation on all aquatic systems 

(Dresp-Langley, 2008). Several examples of constructed wetlands utilize ecologically 

engineered systems to treat, recycle, and permit the reuse of wastewater (Todd et al., 

2003). Prior methods development applied to treat most frequent pollution such as 

nutrients excess, coliforms and excess of sediment build-up, with lots of emphasizes on 

the wetland capacity to reduce nitrate and ammonia (Prior and Johnes 2002). The plants 

are a critical element in most of these technologies, as attested the actual large display of 

planted filters over the world to treat waste water before getting in the natural 

environment. Their roots provide surface areas and nutrient support for microbial 

communities, some nutrient uptake, and they shade/inhibit suspended algae in the 

wetlands. Two major processes involved in the phytoremediation are depending on 

whether the pesticide processing takes place outside or within the plant. These 

processes are rhizodegradation and phytoextraction. In the first case, the root system 

acts as a support for the soil microflora. The root exudates, consisting of sugars, amino 

acids, and organic acids, enhance the development of a cortege of bacteria and fungi 

forming the rhizosphere that leads to an increase of the microbial biomass versus a not 

planted soil (Bowen and Rovira, 1999; Weyens et al., 2009).  

The effectiveness of bacteria and fungi in the degradation of organic compounds 
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has long been used in remediation processes (Pothuluri and Cerniglia, 1994). In 

phytoremediation, the use of soil microflora in the rhizodegradation process, therefore, 

consists in enhancing bacterial or fungal development to increase the capacity of the soil 

to break down pesticides (Anderson et al., 1993). The ability to phytoextract metals from 

sediment was largely demonstrated (Leveque et al., 2013; Lyubenova and Schröder, 

2011; Pandey et al., 2014). More recently, micro-organic pollutants in the wetland water 

raised more concerns and difficulties to reduce this type of pollution due to the 

resistance of the compounds to microbial degradation. Few methods were tested to 

address bioremediation strategy towards micropollutants for removing persistent 

organic pollutants (POPs) such as pesticides, PCBs, PAHs and PPCPs from wastewater 

with plants or other strategies. Most of the tested methods are related to various 

microorganisms’ capacity to breakdown the complex compounds through 

biodegradation, biostimulation, or bioaugmentation process (Gaur et al., 2018).  

Facing the refractory character of these anthropic molecules and their harmful 

effects on human and natural health, ecological engineering is providing a set 

ofpossibilities that is worth it to explore. Furthermore, bioremediation that involves the 

capabilities of microorganisms or plants in the removal of pollutants is the most 

promising, relatively efficient, cost-effective and sustainable methods for natural 

polluted aquatic systems. However, the current bioremediation approaches suffer from 

a number of limitations which include the poor capabilities of microbial communities in 

the field, lesser bioavailability of contaminants on spatial and temporal scales, and 

absence of benchmark values for efficiently testing the bioremediation for its 

widespread application in the field (Megharaj et al., 2011). Furthermore, the 

combination of different methods, or natural processes, to influence the fate of 

contaminants, are still poorly investigated and remained question-unknown. This 

Ph.D.’s objective is, therefore to question an innovative strategy based on the 

combination of bioturbation and phytoremediation processes to increase the removing 

efficiency of pollution in aquatic sites. These strategy benefits were tested with two 
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controlled laboratory experiments with the two types of pollutants (metal - conservative 

and herbicide – non-conservative).  

Our results indicate that bioturbation process has been undergoing with regular 

intensities in the presence of cadmium in the overlying water and atrazine in the 

sediment, with pollutants concentration representative of the aquatic system under high 

chemical pressures. With cadmium contamination from the water, bioturbation has 

been active at conveying sediment from the surface to deeper layers under worms 

feeding activity. This activity results in two significant processes that were influencing 

the metal behavior: (1) at the sediment surface, the metal was continuously adsorbed on 

new sediment particles coming from deeper layers; (2) the metal was then transported 

downward by bioadvection from the surface into the anoxic sediment at depth. These 

two processes together, thereby significantly increased or renewed the concentration of 

metal in the sediment surrounding the root system of T. latifolia (see Chapter III.A). 

With atrazine contamination starting from the sediment, the bioturbation was occurring 

with a regular intensity, but the fact that initial contamination was homogenously 

mixed in the sediment column didn’t allow to get noticeable effects of the biotransport 

on the atrazine vertical distribution in the sediment column. It is however suspected 

that the concentrations in the vicinity of the roots were certainly renewed in 

microcosms with bioturbation. In this case of micro-organic pollution in the sediment, 

the bioturbation effects are more likely to be given in evidence on the process of 

biodegradation by the microorganisms. Bioturbation phenomena are well known, not 

only to create biotransport of particles, but also to influence the microbial composition 

and activities by changing the sediment properties patterns and the supply of solutes in 

the pore water (Aller et al., 1994; Anschultz et al. 2012). If the microbial capacities to 

breakdown persistent micro-organics are demonstrated in many studies, on the other 

hand, bioturbation is able to indirectly influence the microbial patterns, community 

composition, richness, abundance, and turn-over in the sediment column (Yao et al., 

2017). The results of this invertebrates and microbial relationships in the contaminated 
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sediment is a metabolization of atrazine into derivatives (Monard et al., 2008; Hölker et 

al., 2015) products via microbial biodegradation, including atrazine-degrading bacteria 

and fungies (Krutz et al., 2012).  In the present study, one of our main questions is 

related to how the bioturbation influence on the microbial consortium may contribute 

to bioremediation towards a refractory herbicide.  

The influence of bioturbation on microbial community breakdown of pesticide 

was suspected in this study since the number of metabolites found in the sediment was 

increased in the plants roots of microcosms with bioturbation. Some authors also 

mentioned the capacity of worms to increase the microbial community evolution, in the 

way that the richness turnover of the bacteria community composition was increased. 

The renewal of the community consortium of the sediment is explained by the filtering 

of microbial species produced during the transit through the worms’ guts. By 

increasing the turnover of the microbial community composition, the invertebrate 

grazing of the biofilm lying on the sediment particle is enhancing the capacity of the 

microbial community to evolve with species adapted to the chemical composition of the 

environment. Some authors further mentioned that worm internal microbial 

consortium is playing as inoculum in the natural communities (Kauppi et al., 2018).  

In these microcosms, the bioturbation displayed a second type of effects with 

consequences on bioremediation efficiency due to the influence of worms on the 

physical properties of the sediment.  The bioavailability of the atrazine’s metabolites 

may be increased due to a bioturbation effect on sediment porosity that  may enhance 

atrazine and metabolites molecules bioavailability. This process gets incidences on the 

disponibility of the pollutant for uptake by the plant roots that was certainly also 

occurring into the microcosms sediment with bioturbation.  

Finally, the bioturbation involvement in the bioremediation efficiency results from 

its ability to change the physical properties, but also the chemical and biological 

composition of the sediment and to generate biotransports of sediment. For non-
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conservative pollutants such as POPs, all these processes are possibly occurring 

simultaneously with relative incidence depending on the location of the source of 

contamination. For conservative pollutant, all except biodegradation will be playing   

(see Chapter III.B). 

The third chapter – III.C, complementary to the first and second one, is devoted 

to comparing the mitigation efficiency of this bioremediation strategy towards the two 

types of pollutants (metal - conservative and herbicide – non-conservative) by studying 

their mass balance fluxes between overlying water, sediment, and plant compartments.  

III.C.1.  TRANSPORT AND BIOAVAILABILITY OF POLLUTANTS 

EXAMPLES OF CADMIUM AND ATRAZINE  

III.C.1.1. Mobility of the pollutants within the sediment 

Our bioremediation studies were mimicking natural-based patterns of wetland 

at the interfaces between the overlying water and the sediment. In this habitat, the 

oligochaetes community may reach high species richness and densities, and tubificids 

are a ubiquitous group that usually inhabits wetland sediment in the word. 

Bioturbation caused by tubificid worms’ activities (with or without plants) follows the 

regular bio-conveying transport model with significant bioadvective rates.  

The present study demonstrated that biotransport affected mobility and fate of 

the pollutants within the sediment and thus created enhanced pollutant fluxes between 

water, sediment, and plant compartments. Bioturbating mechanisms influencing the 

mobilization depend upon not only on the type of pollutants (conservative or non-

conservative) but also on the design of the applied experiments. Tubificids affect 

physical and chemical characteristics of sediment and overlying water near the water-

sediment interface, including sediment particle size, porosity, water content, pH, 

nutrient content, turbidity, TOC, etc., (Anschutz et al., 2012; Ciutat et al., 2006; 

Cunningham et al., 1999; Hoang et al., 2018; Mermillod-Blondin et al., 2008; 2013). The 

mobilization and bioavailability of PHEs - Potential Harmful Elements (Rinklebe et al., 
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2016; Shaheen et al., 2016) as well as adsorption and desorption of pesticide in a water-

saturated sediment strongly correlated to these physicochemical parameters, in which 

pH and OM content are considered as important factors (Bradl, 2004; Fu and Allen, 

1992).  

Worm activity transferred reduced particles and pore water at the sediment 

surface during the feeding process of the tubificids population. This recycled material 

results in a several centimeter-thick layers enriched in water content, dissolved nitrate 

and sulphate, and depleted in oxygen, ammonium and dissolved Mn(II) (Ciutat et al., 

2006; Anschutz et al., 2012). Oxygen penetration depth is usually shallower in this type 

of bioturbated sediments, as mentioned by the same authors, because, tubificids do not 

irrigate their burrows (McCall & Fisher, 1980). The presence of tubificids increases 

ammonia concentrations in interstitial pore water that leads to a decrease of pH with 

depth in the sediment when compared to the water-sediment interface, where cadmium 

accumulated in the sediment of our microcosms from the beginning of the 1st 

experiment. The pH value decreased from 7.9 ± 0.01 in the top layer of 0.5 cm and 7.73 ± 

0.02 in the layer of 4 cm under tubificids influence (Fig. 4, section III.A.1). The influence 

of tubificids bioturbation on pH distribution therefore directly drives the mobility of the 

heavy metals. The pH influence on the solid/liquid partition coefficient - Kd for the 

metal in the sediment is driving the mobility of tracer metals between water and 

sediment as well as its bioavailability for the bioremediation purpose. The estimated 

partition coefficients Kd for Cd ranges from 8 to 4000 mL/g as a function of pH from 5 

to 8 (EPA 1999). When pH increases, the partition will be in favor of the particulate 

fraction so that the dissolved Cd precipitated in the surface oxic layer.  When fecal 

pellets arrive at the sediment surface, the transfer of anoxic sediment, with low pH, to 

contact with the overlying water, with higher pH, creates a change of the sediment 

physicochemical properties. This change certainly favors the adsorption of Cd from the 

overlying water onto the particles of sediment. When this contaminated sediment is 

buried downward, bioturbation process thus causes new and inverse shifting of the 
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redox conditions (Du Laing et al., 2009) along with the release of protons H+ (Fisher and 

Matisoff, 1981; Fu and Allen, 1992) in the sediment. In non-bioturbated sediment, the 

pH gets even lower at depth, so that adsorbed metals may also release into the pore 

water. However the surface process of Cd trapping being absent without bioturbation, 

the final transfer of Cd at depth in the sediment remains minimal without worms 

conveying, so that the release in these microcosms sediment remained also poor. 

Accordingly, PHEs cations are released from organic matter and other sorbents, such as 

clay mineral surfaces when pH decrease (Du Laing et al., 2009; Frohne et al., 2014) and 

consequently increase the Cd mobility and bioavailability for the plants (Lee et al., 2009; 

Wang et al., 2016) in the deeper layers. With the conveyor-belt process generated by the 

tubificids, this upward and downward biotransport is occurring continuously in the 

boundary layer of the bioturbated sediment in the wetlands. It is thus suggested here 

that bioturbation in natural wetland may continuously act as a pump of metal from the 

water into the sediment, for those metals and other pollutants that gets similar Kd 

coefficients to Cd. However, partition coefficients of trace metals are all different so that 

other metals behavior facing pH change under bioturbation is very specific to each 

metal and difficult to anticipate. Nevertheless, Alison & Alison (2005) ranked the metal 

in the sediment according to their specific Kd with the order:  

Pb>Hg>Cr>Cu>Ni>Zn>Cd>Ag>Co>As 

Mobilization of herbicides in the soil, by changing the free/adsorbed balance in 

favor of the free fraction, has been reported to increase as the pH increased (James et al., 

1976). When pH decreases, the molecules became protonated that could have led to 

complex the triazine molecules with H+ on the clay surface (Weber, 1970). In the 2nd 

experiment, the physical impact of tubificid led, similarly to the first experiment, to the 

significant increase of pH in sediment (section III.B), when compared to non-

bioturbated sediment (Fig. III.9). Thus bioturbation may favor the bioavailability of the 

herbicide as well even if atrazine was initially introduced and adsorbed in the 

contaminated sediment since the beginning of the beginning.  In our two different 
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experiments (with Cd and atrazine), the pH profiles displayed the same patterns with a 

lower value in the sediment than in the overlying water, but the pH remaining higher 

in the sediment with tubificids than without  (Fig.4 - section III.A.1 and Fig.III.9 - 

section III.B). Besides, it is also suggested that the significant depletion of organic matter 

content in the surface (0-1 cm) and deep sediment layers (2-8 cm) under the biofilm and 

detritus grazing by tubificid worms enhanced desorption/movement of atrazine and its 

metabolites from organic matter to the pore water (Fig. III.5C and Fig. III.9A). Depletion 

of organic matter due to worm feeding probably acted in the complement of the pH 

pattern changes in bioturbated sediment and both processes resulted in the acceleration 

of the mobility of atrazine (and its metabolites) from attached forms into a free fraction 

in pore water (Fig. III.17). 

It is concluded that in both cases of conservative metal or non-conservative 

persistent herbicide, the influence of the tubificids bioturbation on the biochemistry of 

the sediment is acting in favor of a contaminant flux from the overlying water into the 

sediment, and from adsorbed on sediment particles to free form in the pore water.  

Also, the conveying of sediment in the bioturbated layer continuously transports 

downward sediment and pollutants from the surface layer until depth where the plants' 

roots system is occurring. This conveying is poorly influencing the atrazine distribution 

because of the homogeneous contamination of the sediment column but probably 

worked at renewing the sediment and its related contaminant loads in the vicinity of 

the roots during the experiment lapse of time.  

III.C.1.2. Bioavailability for plant 

Mechanisms of bioturbation on PHEs bioavailability in the water-sediment 

conditions are now relatively well investigated in the literature. Likewise, the 

bioavailability of pesticides, correlated with its solubility, is strongly affected by the 

bioturbation effects on sediment physicochemical properties. As mentioned above 

(III.C.1.1), pH changing and organic matter depletion due to tubificid activity are main 
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factors controlling mobilization and thus bioavailability of atrazine in the sediment for 

the plant. Via its influence on these sediment properties, bioturbation shifts metal 

binding affinities between the solid and dissolved phases and can thus modify the 

speciation and bioavailability of most metals in sediments (Remaili et al., 2015). That 

promotes the absorption of PHEs by plant with the increase of bioaccumulation 

possibility by T. latifolia as demonstrated in our study (section III.A.1). Due to an 

important role of PHEs’ mobility and bioavailability on the phytoremediation 

technology, efficiency of applications coupling phytoremediation and bioturbation for 

the PHEs removal should be therefore enhanced.  

Unlike cadmium, atrazine, however, as a non-conservative pollutant can be 

degraded into many different metabolites (about 15 to 20 compounds). The polarity of 

atrazine and its metabolites affect their penetration capacity into the plants. By 

enhancing the metabolization of atrazine, our study with the 2nd experiment indicated 

that bioturbation enhanced bioaccumulation of the pesticides metabolites with lower 

polarity molecules in the plant roots (see III.B.4.2).  

 

Figure III.17. Scheme of bioturbation processes affecting behavior and mobility of (A) -

cadmium and (B) atrazine within sediment compartment  

 

In many cases, the impacts of bioturbation on the bioavailability of these 

pollutants follow different pathways depending on the possibility of biodegradation of 

these compounds. For the conservative pollutant, the efficiency of phytoremediation 
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also depends on metal concentrations in plant and the sediment. In the plant, the 

capacity to phytoextract is dependent on the quantity that is previously bioaccumulated 

(Sumiahadi & Acar, 2018). In the sediment, the plant root system is potentially efficient 

at removing the metal in the direct environment of the roots. Hence phytoextraction 

should slow down proportionally to the decontamination of the immediate 

surrounding sediment when this sediment is immobile. Bioturbation thereby provides 

an additive impact on the phytoremediation process by changing the distribution of the 

pollutant across the sediment column when creating the pumping of this pollutant from 

the surface to the anoxic sediment layers. In case of pesticides, phytoremediation relies 

on the ability of plants to take up (phytoextraction), adsorb to their roots 

(rhizofiltration), degrade directly (phytotransformation, contaminant inside plant 

tissues can be transformed by plant enzymes), or degrade indirectly (rhizoremediation 

by microbes) the contaminants (Van Aken, 2008). Bioturbation is known to promote 

microbial activity that may also support the degradation of the pesticides (Yao et al., 

2017) (Krutz et al., 2012). 

On the other hand, the accumulation in a plant strongly depends on the 

hydrophobicity of the micro-organic compounds with an optimum log Kow around 2 

(Briggs et al., 1982). This coefficient largely varies among mother compounds and its 

derivative products that may occur in natural sediments. In the present study, 

bioturbation significantly enhanced the metabolization of atrazine in a sediment into 

the pore water and then uptaken by plants. 

III.C.1.3. Pollutant transport between compartments 

Transport and dispersion of the pollutants in experimental compartments (water, 

sediment, plant) in our two experiments followed different pathways. The two 

experiments setup was different on the contaminant source compartments:  cadmium 

initially in the overlying water, while atrazine was homogeneously contaminated with 

water and sediment. Indeed, transport of cadmium from water to sediment was due to 



   HOANG T.K. 2018 
 

 

197  

 

the physical process of the molecular diffusion and adsorption in the absence of 

bioturbation. With bioturbation, physical processes still occurred, but biotransport due 

to tubificid worms enhanced adsorption and diffusion rates and thus results into 

cadmium pumping from the surface to deeper sediment layers as attested by 

significantly higher fluxes of cadmium from overlying water to sediment (F1) in the 

treatments having worms (Fig.III.1). Worms almost double the fluxes of Cd from 

overlying-water into the sediment as estimated by the change of Cd Quantities in the 

surface sediment, in agreement with results by Ciutat et al. (2005).  

The physical adsorption and diffusion were not directly measured in our study, 

but the estimated Cd fluxes from water to sediment permitted to suggest that physical 

processes involved in the Cd integration into the sediment were certainly enhanced 

under bioturbation. Inversely, remobilizations of cadmium from sediment to water (F2) 

under bioturbation were found to be negligible after 30 days of the 1st experiment in 

treatment with Cd (Fig.III.1). Schaller (2014) indicated that metal remobilization from 

sediment due to bioturbation/bioirrigation depend on chemical characteristics of the 

element. Cd remobilization is highly influenced by bioturbation, especially at the start 

of the experiment when worms dig into the sediment and afterward sharply decrease 

(Schaller, 2014). In our experiment, the effects of the tubificids on Cd remobilization 

was measured in the treatment without Cd contamination.  

In these conditions, the metal gradient was low enough in the overlying water so 

that remobilization from natural sediment was detectable, in agreement with the 

previous observation of Ciutat et al. 2007.  In the presence of worms, the transport of 

cadmium between experimental compartments was mainly following a downward flow 

following the sequence:  

(i)  Overlying water → sediment → plant (Fig.III.1). 

In the 2nd experiment, transport of atrazine under bioturbation followed the 3 

different pathways: 
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(1) Overlying water → sediment particle (adsorption) → pore water 

(desorption) →  plant (phytoremediation) 

(2)  Sediment → worm (bioaccumulation) 

(3) Sediment → overlying water (remobilization) → atmosphere (volatilization) 

 

Figure III.18. Different processes of atrazine experiment duration 

 

Before starting the experiment, (t = -15days), atrazine was mixed with the humid 

sediment before the introduction into the microcosm. Sedimentation process afterward 

in the microcosm created two distinguished compartments: the overlying water with a 

concentration estimated to 3.68 ± 0.07 µg.L-1 and sediment column with a concentration 

estimated to 1.95 ± 0.02 µg.g-1 before introducing the plant and invertebrate. However, 

due to low absorption rates of atrazine in soil and sediment (Koc =128 mL g-1) (Sun et 

al., 2010), adsorption of atrazine from overlying water to sediment particles was 

processed slowly after the sedimentation that resulted in the transport of the 

contaminant from water to sediment (flux - F1C, {Atr.Typ} treatment, Fig. III.14). In the 

presence of worms,   bioturbation process began at t = 0 day and last during 26 days of 

the experiment (Fig. III.18).  

Without bioturbation, the plant uptake rate (phytoremediation) of atrazine and 

metabolite (F3C on Fig. III.14.) was estimated to be equal to 1.78 ± 0.48 µg.day-1 in 

{Atr.Typ}.  Under the effect of the worms, the plant uptake following pathway (1), 

resulting in the fluxes F3D on figure Fig. III.14., was estimated to 2.02 ± 1.47 µg.day-1 in 
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{Atr.Typ.Tub} treatments. Besides, another type of transports of atrazine was occurring 

in the microcosm environment in addition to the plant uptake.  

Atrazine fluxes that transferred by the pathway (3) from sediment to water could 

be estimated to 6.70 ± 6.34 µg.day-1 in {Atr.Tub} (F2B) and 1.71 ± 2.09 µg.day-1 in 

{Atr.Typ. Tub} in (F2D Fig. III.14). This finding was consistent with the previous study 

of Bundschuh et al., (2016) on the role of pesticide properties on remobilization from 

sediment to the overlying water phase. 

After making the sum of 14C labeled pesticides in all compartments, there 

remained a marginal loss of atrazine at the end of the experiment as estimated by 

calculation of the relative recovery (Fig.III.14). This 14C-atrazine and metabolites loss in 

the treatments without bioturbation {Atr} and {Atr.Typ}, approximately 93.5%, and 

94%, respectively was explained by the volatilization of atrazine into the air phase via 

the mineralization into CO2. The relative recovery estimated with tubificid worms in 

{Atr.Tub} and {Atr.Typ.Tub}, approximately 79.5%, and 84.9% respectively, suggested 

pesticide losses due to not only mineralization [pathway (3)], but also the 

bioaccumulation into the worm's’ body - [pathway (2)]. The transport of the 

contaminant via the pathway (2) is resulting in the positive value of ΔQ4B and ΔQ4D 

estimated in the treatments having tubificids added {Atr.Tub} and {Atr.Typ.Tub}, 

respectively. It is concluded that the tubificids also directly interfered with the atrazine 

and metabolites distribution by bioaccumulation in the worm biomass. This 

bioaccumulation was estimated to be with a rate of 17.85 ± 2.26 µg.day-1 (F4B in {Atr. 

Tub}) and 11.33 ± 2.70 µg.day-1 (F4D in {Atr.Typ.Tub} of figure III.14) as estimated in the 

conditions having worms and atrazine contamination, respectively.  
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III.C.2. COMPARISON OF BIOREMEDIATION OF WATER AND 

SEDIMENT TOXICITY BETWEEN NON-CONSERVATIVE AND 

CONSERVATIVE POLLUTANTS 

III.C.2.1. Effects of the pollutants on tubificid resistance 

Our results from the cadmium and atrazine experiments demonstrated that the 

biological reworking of sediment by tubificid worms as estimated via the bioadvective 

rates do not depend on pollutant-enrichment or not. The bioadvective rates obtained in 

all treatments having tubificids (Fig. 3, section III.A.1, and Table III.10) were in the same 

order of magnitude of those estimated by other previous authors with tubificids 

population of various densities (Anschutz et al., 2012; Ciutat et al., 2005b; Mc Call and 

Fisher, 1980). In both case, these natural processes are still efficient under cadmium 

contamination of 20µg.L-1 in the overlying water or atrazine 5µg.g-1 in the sediment. 

Oligochaete worms could be therefore considered as ecological engineers with high 

resistance to both inorganic and organic contaminants from the aquatic environment 

and therefore good candidates for being displayed into bioremediation of polluted 

sediments. 

Table III.10. 

Biomass of tubificid worms in our two experiments, and estimated bioaccumulated 

quantity during the experimental duration, 30 days for Cd and 26 days for atrazine  
Exp. surface of 

microcosm 

(dm-2) 

Number of 

worms per 

microcosm 

Fresh 

biomass (g) 

per 

microcosm 

Density 

(worms.dm-2) 

Bioadvection 

rate 

(cm.year-1) 

Estimated 

accumulated 

quantity (µg) 

Cd 6.00 800 17.8 ± 3.1 133 16.7 to 18.5 83.97 ± 10.21 

Atrazine 1.00 100 4.45 ± 0.53 100 15.0 to 26.5 from 294.47 ± 

70.24 to 464.22 ± 

58.63 

 

NA: not available 
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III.C.2.2. Comparison of pollutant removal rates by the plants  

The efficiency of phytoremediation has been primarily demonstrated as a 

bioremediation engineering on heavy metal such as lead, cadmium, copper, arsenic 

(Leveque et al., 2013; Lyubenova & Schröder, 2011; Pandey et al., 2014), but with more 

seldom demonstrations on the organic compounds, such as atrazine (Ibrahim et al., 

2013). For metal contaminants, plants show the potential for uptake and recovery of 

contaminants into above-ground biomass (phytoextraction), filtering metals from water 

onto root systems (rhizofiltration), or stabilizing waste sites by erosion control and 

evapotranspiration of large quantities of water (phytostabilization) (Williams, 2002). 

Phytoremediation of organic chemical notably relies on plant ability to take up, 

accumulate, or detoxify organic compounds to less toxic metabolites or their indirect 

role in stimulating the soil microbial or fungal activities in the breakdown of organic 

compounds (Pascal-Lorber et al., 2010). Impact of bioturbation, as mentioned above, on 

behavior and transport of the cadmium and of atrazine follows different mechanisms, 

and it consequently enhanced phytoremediation efficiency in different pathways. The 

phytoextraction rates measured in our experiment was estimated to 7.30 ± 0.00 µg.year-1 

for Cd without bioturbation ({Cd.Typ} treatment) that corresponds to 5.5% of relative 

uptake of cadmium from sediment at the end of the experiment (Table III.11). In the 

presence of tubificids, these uptakes rates were estimated to be 730 ± 350.4 µg.year-1 in 

agreement with the flux of 0.07 ± 0.03 µg.day-1 of Cd from sediment to plant (F3 in 

Fig.III.1) and the relative uptake of 9.7 % estimated in the treatment {Cd.Typ.Tub} 

(Table III.11). Bioturbation process significantly increased Cd uptake in our 

experimental conditions. However, these rates remain much lower than the previous 

uptake rates estimated in the literature by other experiments with Typha latifolia or other 

riparian plant species (Table III.12). This difference is explained by the specific 

experimental conditions of each author that remains differences in temperature, light, 

plant biomass, or experimental duration, etc. with consequences on the obtained 

removal rates. Our removal rates were indeed not optimal due to some lack of expertise 
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on the phytoextraction that did lead to optimal rates. Our plant growth rate may have 

suffered from some limiting factors such as nutrients or light during the duration of the 

experiment. However, the most important point is that the experimental conditions 

were similar for all the treatments, with randomization of the microcosm location, so 

that the observed difference between treatments was possibly allocated to the 

biodiversity composition (plant and invertebrate) that made the difference. In other 

terms, although the absolute uptake rates were not optimal, the main goal of this 

research was to provide evidence of the bioturbation effects on these rates that were 

different according to the treatments.  

The enrichment coefficient for the root (ECR) with Cd when compared the two 

treatments with and without added tubificid, is also useful to give evidence of the 

changes of efficiency under bioturbation (Table III.11). Enrichment coefficients were 

significantly higher for both type of pollutants when investigated in the root when the 

enrichment coefficient remained unchanged in the leaves. These results may be 

explained by the duration of the experiment that did not last long enough to get the 

pollutant to migrate until the leaves. This point as the whole set of fluxes estimated in 

this experiment need not be validated with longer experimental times.  

In the case of atrazine, uptake rates of 1.78 ± 0.48 µg.day-1 were estimated in 

{Atr.Typ}, with removal efficiency of 1.40 ± 0.37 %.  Under the effect of the worms, the 

plant uptake was estimated to 2.02 ± 1.47 µg.day-1 in {Atr.Typ.Tub} treatments, with a 

removal efficiency of 1.59 ± 1.16 %, that remain quite similar from the uptake potential 

estimated without bioturbation. The lack of difference with and without bioturbation is 

explained by the fact that the sediment column was homogeneously contaminated with 

pesticide during the experiment duration so that the effects of the biotransport by the 

tubificids were not efficient in that special experimental design. In the second 

experiment, the bioturbation effects were more evident in the process of biodegradation 

by the microorganisms, but this fact is only a consequence of the experimental design. 

Besides the influence of worms on the physicochemical properties of sediment that 
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caused higher mobility of atrazine within the sediment, the major impact of 

bioturbation in this second experiment was demonstrated on the microbial community 

breakdown capacity for pesticide. This fact was suspected in this study with the 

increase of a number of metabolites in microcosms with bioturbation.  Similarly to 

Cadmium, the removal efficiency measured with the atrazine experiment is much lower 

than previous measurements found in the literature with T. latifolia and other aquatic 

plants. This fact suggests limitation of the plant growth during the time of the 

experiment the again, but also raise a question on the experimental duration that was 

much lower in our study that in the literature experiment. Without changing our 

positive conclusions on the efficiency of the plant and invertebrate on the tested 

bioremediation, this comparison rise motivation to run new experiments with more 

attention paid at the experimental conditions, in order to test the influence of 

bioturbation in optimal conditions.  

Table III.11  

Removal efficiency, enrichment coefficients, and transfer factor calculated from two 

experiments 

Treatments cadmium atrazine 

Plant removal rates  

 µg.day-1 µg.year-1 Relative 

uptake, 

‰ 

µg.day-1 µg.year-1 removal 

efficiency, 

% 

Without 

bioturbation 

0.02 ± 0.00 7.30 ± 0.00 5.5 1.78 ± 0.05 649.7 ± 18.25 1.40 ± 0.37 

 

With bioturbation 

2.00 ± 0.96 730 ± 350.4 9.7 2.02 ± 1.47 737.3 ± 536.55 1.59 ± 1.16 

Enrichment coefficients 

  ECR ECL TF ECR ECL TF 

Without 

bioturbation 

8.98 ± 2.13 0.78 ± 0.31 0.09 ± 0.02 5.99 ± 0.64 5.17 ± 1.24 0.88 ± 0.25 
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With bioturbation 13.83 ± 4.13 1.18 ± 1.06 0.09 ± 0.09 7.16 ± 0.66 5.32 ± 4.66 0.76 ± 0.92 

Relative uptake: ratio of total Cd content of plant over sediment after treatment; 

Removal efficiency: ratio of total atrazine and its metabolites content taken up by plant over 

sediment at initial time; 

ECR: enrichment coefficient for root= root/sediment; 

ECL: enrichment coefficient for leaf= leaf/sediment; 

TLF: transfer factor = leaf/root 

 

 

Table III.12  

Removal efficiency, enrichment coefficients, and transfer factor of cadmium from 

literatures 

Initial 

conc. 

(mg.kg-1 

dry wt.) 

Plants 

species 

Removal 

rates 

(µg.day−1) 

Relative 

uptake 

‰ 

ECR ECL TF In lab/ 

in 

field 

duration References 

50 E. japonicus 10.87 ± 2.75 9.13    lab  84 days Guo et al. 

2012 

50 P. tobira 5.07 ± 3.69  12.74    lab  84 days  

50 C. Blue Ice 8.54 ± 2.13  7.17    lab  84 days  

0.23 T. latifolia   2.47 1.16 0.47 field  Sasmaz. et 

al 2008 

0.77 ± 0.84 T. latifolia   6.60 0.05 0.01 field  Klink et al. 

2013 

0.47 ± 1.41 navel orange   7.75 0.73 0.09   Cheng et 

al., 2015 
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Table III.13  

Removal efficiency, enrichment coefficients, and transfer factor of atrazine from 

literature 

initial 

concentration 

(mg.kg-1 dry wt. 

or μg.L-1 

Plants species removal 

efficiency % 

In lab/ in field duration References 

100 µg/L Azolla 

caroliniana 

6.56 lab (greenhouse) 6 days GUIMARÃES, F.P. 

et al. 2011 

100 µg/L L. gibba 5.07 lab (greenhouse) 6 days GUIMARÃES, F.P. 

et al. 2011 

100 µg/L S. minima 5.60 lab (greenhouse) 6 days GUIMARÃES, F.P. 

et al. 2011 

1000 µg/L Azolla 

caroliniana 

0.43 lab (greenhouse) 6 days GUIMARÃES, F.P. 

et al. 2011 

1000 µg/L L. gibba 0.38 lab (greenhouse) 6 days GUIMARÃES, F.P. 

et al. 2011 

1000 µg/L S. minima 0.45 lab (greenhouse) 6 days GUIMARÃES, F.P. 

et al. 2011 

0.5 mg/kg P. crispus 91.0 ± 3.2 lab 45 days  

20 µg/L T. latifolia 35 ± 8 lab 6h  

1 mg/kg Lolium 

multiflorum 

50.00 lab 21 days Merini et al., 2009 

3.5 mg/L Acorus calamus 57.00  6 days Marecik 2012 

4 mg/L Iris pseudacorus 75.60 hydroponic 

system 

 20 days Wang  et al., 2012 

4 mg/L Lythrum 

salicaria 

65.50 hydroponic 

system 

 20 days Wang  et al., 2012 

4 mg/L Acorus calamus 61.80 hydroponic 

system 

 20 days Wang  et al., 2012 
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73 and 147 µg/L  52 

(transformed) 

constructed 

wetland 

35 days Moore et al., 2000 

0.005 µg/L Phragmites 

australis, 

Eleocharis 

sphacelata, 

Schoenoplectus 

validus, Baumea 

articulate, 

Typha orientalis 

60.00 constructed 

wetland 

(0.11km2) 

 28 days Page et al., 2011 

9.2 ± 0.8 µg/L Typha latifolia 53 ± 1.9 

decrease 

storm runoff 4 hours 

retention 

time 

Moore et al., 2017 

12 ± 0.4 µg/L S. americanum 25% ± 16 storm runoff 

(4 hours) 
 Moore et al., 2017 

3.1 ± 0.2 µg/L L. oryzoides 51 ± 6.1 storm runoff 

(4 hours) 
 Moore et al., 2017 
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PART IV. CONCLUSIONS AND 

PERSPECTIVES 
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Although the influence of bioturbating mechanisms on pollutant bioavailability 

at the water-sediment boundary layer in now relatively well understood, applications 

of phytoremediation combined with bioturbation for pollutants removal strategies in 

aquatic sites were not investigated yet previously to this Ph.D. The mission of the 

present work is thus to precisely separate the individual roles of worms and plant as 

well as their combined actions in order to understand the advantage of their 

combination on pollutant fate. Our experiments reproducing field conditions aimed to 

test the purification capacity associated with two populations representative of the 

wetland biodiversity (plant and invertebrate) and concerning two different types of 

pollutants in order to begin to face the many varieties of contaminants stored in 

sediment through nature-based solutions. The main conclusions that may be drawn 

after the completion of these two experiments are listed below:  

 The tubificids group, as represented by the T. tubifex population seems to be 

a good candidate as a population of ecological engineers able to develop a 

significant conveying of sediment and associated pollutants downward into 

the contaminated sediment. The intensity of the bioadvection was still 

efficient (and similar to biotransport by this species in non-bioturbated 

medium), under cadmium and atrazine contaminations in aquatic systems of 

20 µg.L-1 in overlying water and 5µg.g-1 in sediment, respectively. 

 The tubificids population maybe also involved in the pollutant removal 

process by bioaccumulation. This uptake is well known for the metal, but 

few have been demonstrated about this process for the pesticide as atrazine 

so far.  

 The plant species that were selected to drive these experiments seem to be 

resistant enough to the same contaminations to be an interesting source of 

phytoextraction. The uptake rates of this plant for trace metals and cadmium 

was previously emphasized in the literature, but few researches tested the 
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capacity of this plant species to maintain its phytoextraction towards an 

herbicide.  

 The interaction between plants and invertebrates were given in evidence 

using the Typha latifolia and Tubifex t. species, chosen as model species, so 

that it is suspected that other species of plant and invertebrate might 

contribute to these types of interaction as well.  

 The recorded uptake rates are in the lower part of the uptake rates 

previously measured in the literature for trace metals. This fact is explained 

by the experimental conditions that may not have been optimal during the 

first experiment.  More particularly, a lack of light or nutrients may have 

acted as a limiting factor for better growth and metabolism of the plants 

during the experimental period. However, this point does not change the 

main conclusion about the efficiency of the coupling strategy since the 

experimental conditions were similar for all the treatments. The conclusion 

about combination efficiency rose up from the main comparison between 

treatments with and without faunal biodiversity. 

 The bioturbation influence displayed by the conveyor belt species is favoring 

the burial of the surface sediment and the newly incorporated pollutant 

coming from the overlying water so that the bioturbation is increasing the 

arrival of pollutants in the vicinity of the plant root systems. This conclusion 

is right for the metal, and the pesticides tested so that it is possible to write 

that bioturbation improved phytoremediation of cadmium and atrazine by T. 

latifolia’s root systems. 

 Bioturbation by tubificids continuously influenced physicochemical 

properties of the 5 first centimeters of sediment and thus adsorption-

desorption behavior of atrazine in sediment, resulting in acceleration of 

atrazine delivery in the interstitial water by mobility from attached forms 
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(onto sediment particles) into a free fraction (in pore water) under pH 

variations.   

 The bioavailability, the bioaccumulation in the roots as evidenced by the 

enrichment factors (ECs) and the metabolization of the tested pesticide were 

significantly enhanced in T. latifolia roots when the worms were occuring.  

 The ecotoxicological tests did show that the toxicity after the biological 

influence of plant and invertebrate was not lower, but even high than toxicity 

level at the initial time. This fact is explained by the toxicity of the produced 

metabolites that is higher than the mother compound. This fact does not 

modify the conclusion about the bioremediation strategy efficiency for 

removing pollutants. It is, however, raising new questions on the toxicity 

related to metabolites that are continuously produced in the fields under the 

effects of natural biodiversity.  

The present work by reproducing field conditions is innovative for the scientific 

field by providing more useful scientific knowledge and evidence of biodiversity 

involvement in the biodegradation, bioremediation, and attenuation of pollutants in 

aquatic systems. These first preliminary and multidisciplinary experiments were 

positive enough on the advantages of the coupling strategy between bioturbation and 

phytoremediation to open the door for further estimation of plant and invertebrate 

influence on aquatic pollutants. Additionally, these research results might be relevant to 

society with the expectation of applying technology and scientific knowledge on 

ecological engineering in real wetland bioremediation. By increasing the biodiversity 

(plants, invertebrates, and microbial consortium), the application of combined natural 

processes (bioturbation and phytoremediation) also contributes to the improvement of 

bioremediation strategy in nature-based solutions or constructed wetlands facing 

inorganic and organic pollutants contaminations. Enhanced biodiversity designs of 

ecological engineering methods for the rehabilitation of natural or constructed wetland 
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should lead to improve the water quality at the outlet of the sites.  Cases of sewage 

water to be treated in this type of natural or semi natural systems are world wide 

spreaded and contamination is mots of the time a cocktail of heavy metals and/ or 

pesticides due to urban, industrial, or agricultural activities. Enhanced biodiversity 

treatment system should be developed in order to contribute to the establishment of 

sustainable water resources management. 

 

The variety of contaminated biotopes, as the number of pesticides to depurate, is 

huge. This means that many researches still need to be developed that may improve the 

ecological engineering based on the coupling of invertebrate and plants (1), or by 

coupling with other ecological engineering tools (2): 

 Many other plants are good candidates, and the plant choice must be done 

according to pollutant properties and with roots depth in agreement with 

bioturbation depth. High variability of plant tolerances does make this 

choice even more difficult. Three types of plants are particularly useful: 

graminae in buffer zones, trees such as poplar or willow in riparian zones 

or phytoremediation processes due to large evapotranspiration capacities, 

and aquatic plants for waste depuration processes. The difficulties to find a 

polyvalent wild plant, lead to the search for new methods to select plants 

more efficiently. 

 Many bioremediation tools may be combined to address the broad 

spectrum of harmful molecules and sites to be restored. We tried to 

combine the bioturbation with the phytoextraction, with one first species of 

invertebrate as a model of bioturbation. Other bioremediation strategies are 

searching to develop new genetic engineering technologies. Bioremediation 

via genetic engineering relies on the enhancement of bacterial growth to 

improve the degradation of the contaminants. The complementarity of 
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these technologies (bioturbation and genetic engineering) should supply 

possible opportunities to broaden the scope of ecological engineering even 

more. Two strategies are usually listed as useful, the biostimulation that 

supplies limiting nutrients like nitrogen or carbon to enhance the 

development of indigenous microorganisms, and bioaugmentation, which 

provides non-indigenous strains able to metabolize the contaminants. 

 It is clear from the present studies that the easiest way to combine 

bioturbation with genetic engineering should be via biostimulation to favor 

the development of indigenous micro-organisms species adapted to the 

breakdown of the harmful molecules. This is undoubtedly the process that 

we already observed in our experiment with atrazine and a higher number 

of metabolites attesting of more advanced biodegradation in bioturbated 

sediment. The combination of previously tested biostimulation techniques 

with bioturbation should certainly bring interesting results in the future. 

 Many other invertebrate species are good candidates for bioturbation. 

Natural wetlands are sheltering benthic communities with a large 

biodiversity richness. Those benthic communities are indeed the source of 

many other bioturbators as  ecological engineers to be combine with the 

phytoextraction. Benthic organisms with similar sediment mixing modes in 

sediment have been classified according to their bioturbation functions 

(Gerino et al., 2003). T invertebrate community of wetlands is composed of 

functional groups that drive other types of biotransports such as 

biodiffusion, bioregeneration or non-local biotransports. These other 

biotransports may generate other effects on the pollutants behaviors at the 

water-sediment interface, with some favoring the resuspension of 

pollutants, other more inclined to increase the burial of pollutants into the 

sediment column. 
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 Since functional bioturbators have different modes of sediment reworking 

and irrigation, we hypothesize that they also have different influences on 

the dynamics of pollutants and then their potential phytoextraction. 

Biodiffusers, for example, induce a diffusive transport of sediment by 

randomly moving particles over short distances, while gallery-diffusers 

move particles from the surface sediment directly to the bottom of the 

burrow.  Anyway the super-imposition of several types of bioturbation in 

the wetland boundary layers should contribute to maintain the sediment 

surface biologically active, with nutrients, organic matter vertical fluxes, . 

The bioturbation not only influence s the microbiological composition, but 

the different biotransport of solutes and particles   also contribute  

overall positively on the biological succession of the invertebrate 

community with time. The bioturbaytion is supposed to be one of the main 

driver for the benthic boundary layer resilience towards more natural 

colonisation by fauna and plants. We demonstrated that bioturbation 

stimulates the phytoextraction by the plants and together with bioturbation 

involvement in the ecological succession, it is suggested that exploration of 

this phenomenon should bring useful insights for the restoration strategies 

of contaminated sites. 

 Some researches are also required to find out the role of microorganism 

communities in the biodegradation of organic pollutants under 

bioturbated conditions. Further analytical works concerning the 

identification of atrazine metabolites in sedimentary layers and the plant 

system, as well as the polarity of new metabolites (via Kow values) 

formed in the plant, thus also need to be carried to evidence 

metabolization process under the bioturbation. 

 Bioturbation is known to promote microbial activity and its turn over for 

more adapted species to the pollutant cocktail they are facing. That may 
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support the degradation of such compounds. The release of these 

compounds under bioturbation, however, may increase the toxicity of the 

interstitial water for invertebrates. Her is a feedback loop that slow down 

the bioturbation effects until a certain shreshold where the water quality 

does not allow any inbertebrates colonization any more.  

  There was a risk in the selection of the atrazine for this Ph.D. demonstration since 

the exposure of macrophytes to atrazine in the amounts observed in watercourses causes 

a significant reduction in their biomass. 

Authors mentioned that this decline might follow acute exposure after a period of 

substantial leaching, for example, or at smaller chronic doses (Cunningham et al., 1984; 

Kettle et al., 1987). We demonstrated that with relative moderate atrazine concentration 

the phytoextration with Typha was still possible. One possible research development 

would be to explore the maximum exposure concentrations that this plant may handle to 

sustain bioremediation. A threshold certainly exists where the strategy may not be any 

more efficient. The same concern  have been already addressed towards the invertebrates 

as a source of bioturbation. It is suggested here as a conclusion of this work that 

bioturbation combination with phytoextraction may get its limits of application where 

both types of organisms are getting the threshold of exposures. 

Our project aimed to demonstrate the efficiency of bioturbation and 

phytoremediation combination to remove metal and a persistent micro-organic 

pollutant from out of aquatic sediments. The next experiments will be run in Vietnam to 

complete the demonstration of the efficiency of bioremediation by the Oligochaeta 

Tubificidae, Typha latifolia, and other aquatic species. The next experiments will be run at 

the Institute of Environmental Technology IET from the VAST-Vietnam  Academy of 

Sciences and Technology, in the cooperation with UMR ECOLAB and Toxalim from 

Toulouse (France), UMR INRA Agroecology at Dijon, USTH and IBT-Vast (Vietnam). 

These next researches on ecological engineering will be funded with the help of 
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financial support obtained for two years from IFS (International Foundation for 

Sciences). A part of this fund is allocated to the analytical measurements of atrazine and 

the microbial communities in the cooperation with UMR from INRA Toxalim from 

Toulouse and Agroécologie from France, and IBT-Vast (Vietnam).   

The application of these researches is already taking place in the project and 

concept of Smart Clean Garden, that aims to develop these ecological engineering in 

water treatment technology of planted filters, especially in tropical countries. This 

project is completed in cooperation with UMR ECO&SOLS (IRD, CIRAD, INRA et 

SupAgro Montpellier), UMMISCO (IRD), the USTH, the VAST, the IRD, and a 

toulousain firm EPURTECK.  The technology of water reuse is answering a rising 

request from society, and this project is using the university campus as demonstration 

sites. In the Smart Clean Garden, the water treatment technology is secured with the 

association of innovating technology sensors for water quality and properties survey 

(Internet Of Things) in the filters. The first filter is now being implemented (2018/19) to 

treat the waste water coming on the VAST campus of Hanoi. With three replicates 

filters working in en parallel, this device is supplying an ideal experimental platform 

for the continuity of these researches in bioremediation, especially with the opportunity 

to test other biodiversity combinations.  
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CONCLUSIONS en français:  

 Bien que l’influence de la bioturbation sur les proprieties des sediments soit 

rlativement biencomprise maintenant, son application pour améliorer les performances 

de phytoextraction n’avait pas encore été explore jusque là. L’objectif des rechercehs 

menées dans cette thése a été de s’apuyer sur les connaissances déjà disponibles sur les 

processus individuel de bioturbation et de phytoextraction pour mettre en evidence les 

interaction possible et leur influence su rle devenir des pollluants après leur arrive à 

l’interface eau-sédiment. Nos experiences , en reproduisant une portion de zones 

humide avec une biodiversité simplifiée en microcosms ont permi de commencer a 

tester l’efficacité d’une combinaison d’espèces plante-invertebré pour 2 differents type 

de polluants particulièrement rémanent. Nos premieres resultat offre une premiere 

demonstration de l’intêret de developer ces approches fnctionnelles en croisant des 

groups fonctionels distincts pour faire face à la multiplicité des pollutants presents dans 

les zones  humides naturelles ou construites. L’amplification de la biodiversité 

invertébrés au memetre titre que l’augmentation des communauté microbiennes dans 

les zones humides pour améliorer les processus de bioremediation fait partie des 

solutions inspirées de la nature qui peuvent venir améliorer l’efficacité des procédés 

d’épuration des eaux usées en vue de leur recyclage. 

Les principales conclusions dressées à l’issue de cette thèse sont : 

- Les oligochètes tubificidae mis en oeuvre dans nos expériences avec une 

contamination par le cadmium et l’atrazine de 20 µg.L-1 dans l’eau surnageante et de 

5µg.g-1 dans le sédiment, respectivement, ont maintenu une vitesse de biotransport par 

bioadvection similaire à celle sans contamination. Ce résultat indique que ce groupe 

d’invertébrés d’eau douce est un bon candidat comme source de bioturbation pour 

accompagner la bioremédiation dans les sédiments contaminés. 

- la bioturbation par les tubificidae convoyeurs influence continuellement les propriétés 

physico-chimiques dans les 5 premiers centimètres de sédiment. Ce processus a des 
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conséquences sur les capacités d’adsorption et désorption des polluants testés, 

notamment en déplaçant l’équilibre en faveur des formes libres dans l’eau interstitielle 

en profondeur dans la colonne de sédiment. 

La bioturbation mesurée met en évidence un ensevelissement des polluants dans la 

couche de sédiment dans laquelle se trouve également le système racinaire des plantes. 

Ce phénomène accompagné du déplacement de l’équilibre vers les formes libres à pour 

conséquence de favoriser la biodisponibilité des polluants pour les plantes. 

- La plante ryparienne Typha latipholia est restée active et a démontrer une capacité de 

bioaccumulation significative au niveau du système racinaire pendant la durée 

expérimentale, pour les 2 types de polluants utilisés. Si les performances de cette plante 

vis à vis de la phytoextraction du cadmium, comme d’autres métaux lourds était déjà 

reconnue, sa résistance et ses capacités en présence d’une contamination par un 

herbicide n’était pas démontrée jusque là. 

- La biodisponibilité, la bioextraction et la métabolisation de l’atrazine par les racines de 

T. latifolia est plus importante dans les sédiment bioturbés, ces résultats sont démontrés 

par un nombre de métabolites plus grands et une quantité de métabolites de l’atrazine 

significativement plus élevée dans le système racinaire en présence de bioturbation. 

- Les taux de phytoextraction de métaux mesurés expérimentalement restent faible 

comparés aux taux mis en évidence dans la littérature par ailleurs, mais la comparaison 

avec les témoins sans contamination nous permet de conclure qu’il s’agit probablement 

d’un alea des conditions expérimentales (ex manque de lumière et de nutriment 

pendant la durée de l’expérience) qui a entrainé un taux de croissance et/ou un niveau 

de santé des plantes non optimaux. Cette faiblesse au niveau des plantes utilisées ne 

change pas les résultats sur l’influence de la biodiversité testée, car la démonstration est 

basée sur la comparaison de traitements expérimentaux avec et sans biodiversité, tous 

exposées à des conditions expérimentales uniformes. 
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- Les tests d’écotoxicologues n’ont pas permis de mettre en évidence une baisse de la 

toxicité après l’application de la stratégie de bio remédiation testée, mais au contraire 

une augmentation de la toxicité de l’eau interstitielle de manière généralisée en 

présence de biodiversité. Ces résultats sont expliqués par le niveau de toxicité des 

métabolites formés qui pourrait vraisemblablement être plus élevé que celui de la 

molécule mère. 

- L’évaluation de la toxicité des molécules métabolisées en présence de bioturbation et 

l’évolution de la composition de la communauté microbienne responsable de ces 

réactions de biodégradation en présence de bioturbation est l’étape suivante pour la 

continuité de ces recherches. 

- Si les interactions invertébrés benthiques et plantes se sont trouvées favorables envers 

l’amélioration des possibilités des capacités de phytoextraction avec les 2 premières 

espèces testées Tipha l. et Tubifex t., il est possible qu’il existe d’autres espèces animales 

et végétales qui puissent être associées pour optimiser l’efficacité de bio remédiation. 

Non seulement d’autres espèces, par exemple avec d’autres modes de bioturbation qui 

peuvent générer d’autres biotransports plus favorable à la phytoextraction, ou pour 

d’autres polluants, mais plus encore l’association de plusieurs espèces de bioturbateurs 

peut être un véritable atout pour faire face à la multitude de formes de pollution qui 

arrive dans les milieux naturels. Il est également probable que d’autres type 

d’interactions existent avec d’autres combinaisons d’espèces vivant à l’interface eau-

sediment et leurs interventions en ingenierie écologique restent à être testées. 

- Enfin, l’association des 2 outils de bioremédiation testés s’est avérée fructueuse ce qui 

laisse présager d’autres associations bénéfiques au rendement de bioremédiation. Par 

exemple, la bioamplification pour le développement de communautés de micro-

organismes adaptées à la dégradation de certaines polluants pourrait certainement 

participer à l’amélioration des performances de bioremédiation par phytoextraction et 

bioturbation. 
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Cette thèse avait pour objectif de réaliser les premiers tests pour examiner la 

pertinence d’intégrer la bioturbation dans les outils de bioremédiation par 

phytoextraction, la démonstration étant concluante, d’autres expériences vont suivre en 

particulier au Vietnam pour compléter cette démonstration avec les oligochaetes 

Tubificidae, et les plantes Typha latifolia mais aussi avec d’autres plantes aquatiques. Les 

prochaines expériences se tiendront en conditions de laboratoire à l’IET - Institute of 

Environmental Technology IET à Hanoi, un institut de la VAST (Vietnamese academic 

of Sciences and Technologie), en coopération avec les UMR ECOLAB, les UMR de 

l’INRA Toxalim à Toulouse, et l’UMR Agroécologie à Dijon, et au Vietnam à l’IBT-Vast 

et à l’USTH (Université des Sciences et Technologie de Hanoi). Les prochaines 

recherches seront financées en partie par l’ISF (International Sciences Foundation) 

pendant 2019 et 2020. Une partie de ces financements seront notamment alloués à 

l’analyse des communautés microbiennes impliquées dans la dégradation de l’atrazine 

en coopération avec l’UMR Agroécologie, de Dijon et l’Institut de Biotechnologie de la 

VAST (IBT-Vast -Vietnam).   

L’application de ces recherches prend déjà place dans le concept et projet de 

Smart Clean Garden dont l’objectif est de déployer ces innovations d’ingénierie 

écologiques dans l’adaptation des technologies d’assainissement par filtres plantés  

dans les pays tropicaux. Ce projet est réalisé en coopération avec les UMR  ECO&SOLS 

(IRD, CIRAD, INRA et SupAgro Montpellier), l’UMR UMMISCO (IRD), l’USTH, la 

VAST, l’IRD et l’entreprise toulousaine EPURTECK.  La technologie de réutilisation des 

eaux usées traitées réponds à une demande sociale grandissante, et ce projet vise à 

utiliser les campus universitaires comme sites de démonstration prioritaires. Dans le 

Smart Clean Garden, la technologie d’assainissement des eaux est sécurisée par 

l’association de technologie innovante au niveau des capteurs de surveillance de la 

qualité de l’eau, niveau d’eau, pH, etc..  en développant la puissance des IOT ( Internet 

des Objets) dans les filtres plantés. Un premier filtre a été inauguré  en 2019 à Hanoi sur 

le campus de la VAST dans le cadre de ce projet  pour traiter une partie des eaux usées 
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domestiques du campus de la VAST. Avec ces 3 dispositifs/répliquas en parallèle, ces 

filtres apportent une plateforme expérimentale idéale pour la continuité des recherches 

en bio remédiation, notamment avec la possibilité de tester d’autres combinaison de 

biodiversité sur les eaux usées d’un bâtiment de recherche.  
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ANNEX 1. Liste des publications et communications 

 

Hoang Trung Kien, Probst Anne, Orange Didier, Gilbert Franck., Elger Arnauld, Kallerhoff 

Jean, Laurent François, Sabina Bassil, Duong Thi Thuy, Gerino Magali. Bioturbation effects on 

bioaccumulation of Cadmium in the wetland plant Typha latifolia: a mesocosm experiment. 

Science of the Total Environment - 618 (2018) 1284–1297; 

https://doi.org/10.1016/j.scitotenv.2017.09.237) 

 

Hoang Trung Kien, Laurent François, Orange Didier, Sophie Lorber, Arnaud Elger, Frederic 

Julien, Sabina Bassil, Duong Thi Thuy, Gerino Magali. Bioturbation effects on atrazine behavior 

in aquatic sediments (will be submitted in Journal of Ecotoxicology and Environmental Safety on 

July 2019) 

 

Hoang Trung Kien, Laurent François, Orange Didier, Duong Thi Thuy, Bassil Sabina, Gerino 

Magali. Ecological engineering for humid polluted systems: coupled bioturbation and 

phytoremediation. ICEEA 2017 8th International Conference on Environmental Engineering and 

Applications July 2017.  

 Awards: Best presenter in the section of Environmental Adaptation and Ecosystem Management 

 

Nereis Park 2014. Bioturbation poster / Poster Sự xáo trộn sinh học. Vietnamese version, Edition 

by ECOLAB. 

http://www.nereispark.org/divers/NPretsop/sretsop/Vietnamese45f23/A0%20Bioturbation%20V

I.pdf 
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ANNEX 2. Density measurement of sediment samples used in the 1st 

(cadmium) experiment. 

Experimental 

treatment 

g sediment dry wt./cm3 

Layer 1 (0-1cm) Layer 2 (1-5cm) Layer 2 (5-10cm) 

Without bioturbation 1.03 1.41 1.41 

With bioturbation 0.74 1.40 1.40 
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ANNEX 3. Two-way ANOVA assessing the influences of T. latifolia plants 

and worms on [14C]-(atrazine + metabolites) concentrations in the overlying 

water 

 

 SS DF MS F (DFn, DFd) P value 

Interaction 27337 1 27337 F (1, 11) = 28.99 0.0002 

Worms 15622 1 15622 F (1, 11) = 16.57 0.0019 

Typha latifolia 6.880 1 6.880 F (1, 11) = 0.007297 0.9335 

Residual 10372 11 942.9   

 



   HOANG T.K. 2018 
 

 

253  

 

ANNEX 4. Two-way ANOVA assessing the influences of T. latifolia plants 

and worms on [14C]-(atrazine + metabolites) concentrations in bulk 

sediment 

Layer 1 (0-0.5cm) 

ANOVA table SS DF MS F (DFn, DFd) P value 

Interaction 0.1561 1 0.1561 F (1, 12) = 0.9232 P = 0.3556 

Worms 7.800 1 7.800 F (1, 12) = 46.12 P < 0.0001 

Typ 0.1272 1 0.1272 F (1, 12) = 0.7519 P = 0.4029 

Residual 2.029 12 0.1691   

 

Layer 2 (0.5-1.0cm) 

ANOVA table SS DF MS F (DFn, DFd) P value 

Interaction 0.1038 1 0.1038 F (1, 12) = 0.3417 P = 0.5697 

Worms 8.545 1 8.545 F (1, 12) = 28.14 P = 0.0002 

Typha 0.3121 1 0.3121 F (1, 12) = 1.028 P = 0.3307 

Residual 3.644 12 0.3037   

 

Layer 3 (1.0-1.5cm) 

ANOVA table SS DF MS F (DFn, DFd) P value 

Interaction 0.01217 1 0.01217 F (1, 12) = 0.03312 P = 0.8586 

Worms 4.817 1 4.817 F (1, 12) = 13.11 P = 0.0035 

Typha 1.739 1 1.739 F (1, 12) = 4.732 P = 0.0503 

Residual 4.411 12 0.3676   

 

Layer 4 (1.5-2.0cm) 

ANOVA table SS DF MS F (DFn, DFd) P value 

Interaction 0.002355 1 0.002355 F (1, 12) = 0.005696 P = 0.9411 

Worms 0.2201 1 0.2201 F (1, 12) = 0.5325 P = 0.4796 

Typha 0.03697 1 0.03697 F (1, 12) = 0.08943 P = 0.7700 

Residual 4.961 12 0.4134   

Layer 5 (2.0-2.5cm) 

ANOVA table SS DF MS F (DFn, DFd) P value 

Interaction 1.556 1 1.556 F (1, 12) = 3.805 P = 0.0749 

Worms 0.04083 1 0.04083 F (1, 12) = 0.09984 P = 0.7575 

Typha 0.06805 1 0.06805 F (1, 12) = 0.1664 P = 0.6905 

Residual 4.908 12 0.4090   
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Layer 6 (2.5-3.0cm) 

ANOVA table SS DF MS F (DFn, DFd) P value 

Interaction 0.6042 1 0.6042 F (1, 12) = 0.8094 P = 0.3860 

Worms 0.7996 1 0.7996 F (1, 12) = 1.071 P = 0.3211 

Typha 0.6126 1 0.6126 F (1, 12) = 0.8206 P = 0.3828 

Residual 8.957 12 0.7465   

 

Layer 7 (3.0-4.0cm) 

ANOVA table SS DF MS F (DFn, DFd) P value 

Interaction 0.02375 1 0.02375 F (1, 12) = 0.07623 P = 0.7872 

Worms 0.3931 1 0.3931 F (1, 12) = 1.262 P = 0.2832 

Typha 0.06813 1 0.06813 F (1, 12) = 0.2187 P = 0.6484 

Residual 3.738 12 0.3115   

 

Layer 8 (4.0-5.0cm) 

ANOVA table SS DF MS F (DFn, DFd) P value 

Interaction 0.04586 1 0.04586 F (1, 11) = 0.2678 P = 0.6151 

Worms 1.241 1 1.241 F (1, 11) = 7.248 P = 0.0209 

Typha 0.01070 1 0.01070 F (1, 11) = 0.06251 P = 0.8072 

Residual 1.884 11 0.1713   

 

Layer 9 (5.0-6.0cm) 

ANOVA table SS DF MS F (DFn, DFd) P value 

Interaction 0.1173 1 0.1173 F (1, 8) = 0.4058 P = 0.5419 

Worms 0.2006 1 0.2006 F (1, 8) = 0.6938 P = 0.4290 

Typha 0.01125 1 0.01125 F (1, 8) = 0.03892 P = 0.8485 

Residual 2.313 8 0.2891   
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ANNEX 5. Two-way ANOVA assessing the influences of T. latifolia plants 

and worms on [14C]-(atrazine + metabolites) concentrations in sediment 

particle 

Layer 1 (0-0.5cm) 

ANOVA table SS DF MS F (DFn, DFd) P value 

Interaction 12.59 1 12.59 F (1, 12) = 5.469 P = 0.0375 

Worms 0.6640 1 0.6640 F (1, 12) = 0.2884 P = 0.6011 

Typha 8.571 1 8.571 F (1, 12) = 3.723 P = 0.0777 

Residual 27.63 12 2.302   

 

Layer 2 (0.5-1.0cm) 

ANOVA table SS DF MS F (DFn, DFd) P value 

Interaction 1.219 1 1.219 F (1, 12) = 0.6416 P = 0.4387 

Worms 11.18 1 11.18 F (1, 12) = 5.886 P = 0.0320 

Typha 1.531 1 1.531 F (1, 12) = 0.8059 P = 0.3870 

Residual 22.80 12 1.900   

 

Layer 3 (1.0-1.5cm) 

ANOVA table SS DF MS F (DFn, DFd) P value 

Interaction 0.6912 1 0.6912 F (1, 12) = 0.3918 P = 0.5431 

Worms 3.479 1 3.479 F (1, 12) = 1.972 P = 0.1856 

Typha 6.605 1 6.605 F (1, 12) = 3.744 P = 0.0769 

Residual 21.17 12 1.764   

 

Layer 4 (1.5-2.0cm) 

ANOVA table SS DF MS F (DFn, DFd) P value 

Interaction 0.2733 1 0.2733 F (1, 12) = 0.1204 P = 0.7346 

Worms 4.664 1 4.664 F (1, 12) = 2.055 P = 0.1772 

Typha 0.04653 1 0.04653 F (1, 12) = 0.02050 P = 0.8885 

Residual 27.23 12 2.269   

Layer 5 (2.0-2.5cm) 

ANOVA table SS DF MS F (DFn, DFd) P value 

Interaction 7.627 1 7.627 F (1, 12) = 3.524 P = 0.0850 

Worms 1.379 1 1.379 F (1, 12) = 0.6372 P = 0.4402 

Typha 0.002380 1 0.002380 F (1, 12) = 0.001100 P = 0.9741 

Residual 25.97 12 2.164   
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Layer 6 (2.5-3.0cm) 

ANOVA table SS DF MS F (DFn, DFd) P value 

Interaction 2.133 1 2.133 F (1, 12) = 0.7735 P = 0.3964 

Worms 5.093 1 5.093 F (1, 12) = 1.847 P = 0.1991 

Typha 1.423 1 1.423 F (1, 12) = 0.5160 P = 0.4863 

Residual 33.09 12 2.757   

 

Layer 7 (3.0-4.0cm) 

ANOVA table SS DF MS F (DFn, DFd) P value 

Interaction 0.003428 1 0.003428 F (1, 12) = 0.003666 P = 0.9527 

Worms 0.0008478 1 0.0008478 F (1, 12) = 0.0009068 P = 0.9765 

Typha 0.03809 1 0.03809 F (1, 12) = 0.04074 P = 0.8434 

Residual 11.22 12 0.9349   

 

Layer 8 (4.0-5.0cm) 

ANOVA table SS DF MS F (DFn, DFd) P value 

Interaction 0.8433 1 0.8433 F (1, 11) = 1.126 P = 0.3113 

Worms 6.407 1 6.407 F (1, 11) = 8.557 P = 0.0138 

Typha 0.01453 1 0.01453 F (1, 11) = 0.01940 P = 0.8917 

Residual 8.236 11 0.7488   

 

Layer 9 (5.0-6.0cm) 

ANOVA table SS DF MS F (DFn, DFd) P value 

Interaction 9.846 1 9.846 F (1, 7) = 0.6258 P = 0.4549 

Worms 11.84 1 11.84 F (1, 7) = 0.7525 P = 0.4144 

Typha 11.32 1 11.32 F (1, 7) = 0.7194 P = 0.4244 

Residual 110.1 7 15.73   
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ANNEX 6. Two-way ANOVA assessing the influences of T. latifolia plants 

and worms on [14C]-(atrazine + metabolites) concentrations in pore water 

Layer 1 (0-0.5cm) 

ANOVA table SS DF MS F (DFn, DFd) P value 

Interaction 4667 1 4667 F (1, 12) = 1.908 P = 0.1923 

Worms 16675 1 16675 F (1, 12) = 6.819 P = 0.0227 

Typ 57532 1 57532 F (1, 12) = 23.53 P = 0.0004 

Residual 29344 12 2445   

 

Layer 2 (0.5-1.0cm) 

ANOVA table SS DF MS F (DFn, DFd) P value 

Interaction 1904 1 1904 F (1, 12) = 1.314 P = 0.2739 

Worms 32024 1 32024 F (1, 12) = 22.11 P = 0.0005 

Typha 19098 1 19098 F (1, 12) = 13.19 P = 0.0034 

Residual 17380 12 1448   

 

Layer 3 (1.0-1.5cm) 

ANOVA table SS DF MS F (DFn, DFd) P value 

Interaction 10145 1 10145 F (1, 12) = 12.97 P = 0.0036 

Worms 30782 1 30782 F (1, 12) = 39.36 P < 0.0001 

Typha 4118 1 4118 F (1, 12) = 5.266 P = 0.0406 

Residual 9384 12 782.0   

  

Layer 4 (1.5-2.0cm) 

ANOVA table SS DF MS F (DFn, DFd) P value 

Interaction 176.1 1 176.1 F (1, 12) = 0.1611 P = 0.6952 

Worms 13017 1 13017 F (1, 12) = 11.91 P = 0.0048 

Typha 347.9 1 347.9 F (1, 12) = 0.3183 P = 0.5830 

Residual 13116 12 1093   

 

 

Layer 5 (2.0-2.5cm) 

ANOVA table SS DF MS F (DFn, DFd) P value 

Interaction 60.93 1 60.93 F (1, 12) = 0.1185 P = 0.7367 

Worms 3100 1 3100 F (1, 12) = 6.027 P = 0.0303 

Typha 2895 1 2895 F (1, 12) = 5.629 P = 0.0352 

Residual 6172 12 514.3   



   HOANG T.K. 2018 
 

 

258  

 

 

Layer 6 (2.5-3.0cm) 

ANOVA table SS DF MS F (DFn, DFd) P value 

Interaction 1470 1 1470 F (1, 12) = 0.8798 P = 0.3667 

Worms 5.291 1 5.291 F (1, 12) = 0.003166 P = 0.9561 

Typha 2521 1 2521 F (1, 12) = 1.509 P = 0.2429 

Residual 20052 12 1671   

 

Layer 7 (3.0-4.0cm) 

ANOVA table SS DF MS F (DFn, DFd) P value 

Interaction 2276 1 2276 F (1, 12) = 0.7064 P = 0.4171 

Worms 3496 1 3496 F (1, 12) = 1.085 P = 0.3181 

Typha 2420 1 2420 F (1, 12) = 0.7513 P = 0.4031 

Residual 38655 12 3221   

 

Layer 8 (4.0-5.0cm) 

ANOVA table SS DF MS F (DFn, DFd) P value 

Interaction 919.9 1 919.9 F (1, 11) = 1.011 P = 0.3364 

Worms 596.7 1 596.7 F (1, 11) = 0.6555 P = 0.4353 

Typha 99.70 1 99.70 F (1, 11) = 0.1095 P = 0.7469 

Residual 10012 11 910.2   

 

Layer 9 (5.0-6.0cm) 

ANOVA table SS DF MS F (DFn, DFd) P value 

Interaction 59.90 1 59.90 F (1, 8) = 0.01037 P = 0.9214 

Worms 18880 1 18880 F (1, 8) = 3.270 P = 0.1082 

Typha 5384 1 5384 F (1, 8) = 0.9324 P = 0.3625 

Residual 46195 8 5774   

ANNEX 7. Two-way ANOVA assessing the influences of T. latifolia plants 

and worms on [14C]-(atrazine + metabolites) concentrations in sediment 

porosity 

Layer 1 (0-0.5cm) 

ANOVA table SS DF MS F (DFn, DFd) P value 

Interaction 41.44 1 41.44 F (1, 12) = 0.7666 P = 0.3985 

Worms 1324 1 1324 F (1, 12) = 24.50 P = 0.0003 

Typha 0.8154 1 0.8154 F (1, 12) = 0.01508 P = 0.9043 

Residual 648.7 12 54.06   
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Layer 2 (0.5-1.0cm) 

ANOVA table SS DF MS F (DFn, DFd) P value 

Interaction 0.01550 1 0.01550 F (1, 12) = 0.0009365 P = 0.9761 

Worms 712.4 1 712.4 F (1, 12) = 43.04 P < 0.0001 

Typha 12.85 1 12.85 F (1, 12) = 0.7761 P = 0.3956 

Residual 198.6 12 16.55   

  

Layer 3 (1.0-1.5cm) 

ANOVA table SS DF MS F (DFn, DFd) P value 

Interaction 0.5289 1 0.5289 F (1, 12) = 0.05942 P = 0.8115 

Worms 577.9 1 577.9 F (1, 12) = 64.93 P < 0.0001 

Typha 11.36 1 11.36 F (1, 12) = 1.277 P = 0.2806 

Residual 106.8 12 8.901   

  

Layer 4 (1.5-2.0cm) 

ANOVA table SS DF MS F (DFn, DFd) P value 

Interaction 11.61 1 11.61 F (1, 12) = 1.027 P = 0.3310 

Worms 445.4 1 445.4 F (1, 12) = 39.38 P < 0.0001 

Typha 11.78 1 11.78 F (1, 12) = 1.041 P = 0.3276 

Residual 135.7 12 11.31   

 

 

Layer 5 (2.0-2.5cm) 

ANOVA table SS DF MS F (DFn, DFd) P value 

Interaction 4.444 1 4.444 F (1, 12) = 0.2535 P = 0.6237 

Worms 22.05 1 22.05 F (1, 12) = 1.258 P = 0.2839 

Typha 4.045 1 4.045 F (1, 12) = 0.2308 P = 0.6396 

Residual 210.3 12 17.53   

 

Layer 6 (2.5-3.0cm) 

ANOVA table SS DF MS F (DFn, DFd) P value 

Interaction 0.1607 1 0.1607 F (1, 12) = 0.02515 P = 0.8766 

Worms 59.40 1 59.40 F (1, 12) = 9.300 P = 0.0101 

Typha 2.821 1 2.821 F (1, 12) = 0.4416 P = 0.5189 

Residual 76.65 12 6.387   

 

Layer 7 (3.0-4.0cm) 



   HOANG T.K. 2018 
 

 

260  

 

ANOVA table SS DF MS F (DFn, DFd) P value 

Interaction 12.94 1 12.94 F (1, 12) = 3.154 P = 0.1011 

Worms 118.9 1 118.9 F (1, 12) = 28.98 P = 0.0002 

Typha 37.04 1 37.04 F (1, 12) = 9.028 P = 0.0110 

Residual 49.24 12 4.103   

 

Layer 8 (4.0-5.0cm) 

ANOVA table SS DF MS F (DFn, DFd) P value 

Interaction 23.12 1 23.12 F (1, 11) = 4.762 P = 0.0517 

Worms 28.59 1 28.59 F (1, 11) = 5.889 P = 0.0336 

Typha 1.311 1 1.311 F (1, 11) = 0.2700 P = 0.6136 

Residual 53.40 11 4.855   

 

Layer 9 (5.0-6.0cm) 

ANOVA table SS DF MS F (DFn, DFd) P value 

Interaction 109.1 1 109.1 F (1, 8) = 0.6759 P = 0.4348 

Worms 0.03780 1 0.03780 F (1, 8) = 0.0002342 P = 0.9882 

Typha 28.47 1 28.47 F (1, 8) = 0.1764 P = 0.6856 

Residual 1291 8 161.4   
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ANNEX 8. Tukey’s multiple comparisons test performed on *14C]-(atrazine 

+ metabolites) quantity in bulk sediment 

Treatments Adjusted P Value 

 Fecal pellets zone 

(0-2cm) 

Ingestion zone 

(2-5cm) 

No bioturbation zone 

(5-8cm) 

{Atr} vs. {Atr.Typ} 0.9897 0.2770 0.1655 

{Atr} vs. {Atr.Tub} 0.0149 0.9066 0.8993 

{Atr} vs. {Atr.Typ.Tub} 0.0013 0.7892 0.6705 

{Atr.Typ} vs. {Atr.Tub} 0.0087 0.6184 0.0528 

{Atr.Typ} vs. {Atr.Typ.Tub} 0.0008 0.0630 0.0239 

{Atr.Tub} vs. {Atr.Typ.Tub} 0.4979 0.4143 0.9672 
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ANNEX 9. Tukey’s multiple comparisons test performed on *14C]-(atrazine 

+ metabolites) quantity in sediment particle 

 

Treatments Adjusted P Value 

 Fecal pellets zone 

(0-2cm) 

Ingestion zone 

(2-5cm) 

No bioturbation zone 

(5-8cm) 

{Atr} vs. {Atr.Typ} 0.9659 0.3348 0.9076 

{Atr} vs. {Atr.Tub} 0.0098 0.4597 0.8135 

{Atr} vs. {Atr.Typ.Tub} 0.0017 0.8136 0.2447 

{Atr.Typ} vs. {Atr.Tub} 0.0044 0.9941 0.9962 

{Atr.Typ} vs. {Atr.Typ.Tub} 0.0008 0.0862 0.5328 

{Atr.Tub} vs. {Atr.Typ.Tub} 0.7376 0.1306 0.6484 
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ANNEX 10. Tukey’s multiple comparisons test performed on *14C]-

(atrazine + metabolites) quantity in pore water 

 

Treatments Adjusted P Value 

 Fecal pellets zone 

(0-2cm) 

Ingestion zone 

(2-5cm) 

No bioturbation zone 

(5-8cm) 

{Atr} vs. {Atr.Typ} 0.4521 0.4292 0.9860 

{Atr} vs. {Atr.Tub} < 0.0001 0.4123 0.9929 

{Atr} vs. {Atr.Typ.Tub} 0.6272 > 0.9999 0.3615 

{Atr.Typ} vs. {Atr.Tub} < 0.0001 > 0.9999 0.9999 

{Atr.Typ} vs. {Atr.Typ.Tub} 0.0731 0.4474 0.2358 

{Atr.Tub} vs. {Atr.Typ.Tub} < 0.0001 0.4301 0.2588 
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ANNEX 11. Tukey’s multiple comparisons test performed on sediment 

porosity 
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ANNEX 12. Tukey’s multiple comparisons test performed on percentage of 

relative recovery calculated from atrazine experiment 

 

Treatments Adjusted P Value 

{Atr} vs. {Atr.Typ} > 0.9999 

{Atr} vs. {Atr.Tub} 0.0061 

{Atr} vs. {Atr.Typ.Tub} 0.1342 

{Atr.Typ} vs. {Atr.Tub} 0.0047 

{Atr.Typ} vs. {Atr.Typ.Tub} 0.1041 

{Atr.Tub} vs. {Atr.Typ.Tub} 0.5080 
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ANNEX 13. Bioturbation effects on atrazine behavior in aquatic 

sediments 

 

Hoang Trung Kien1,2*, Francois Laurent4, Didier Orange3, Sophie Lorber4, Arnaud Elger1, 

Fredéric Julien1, Sabina Bassil1, Duong Thi Thuy3,5, Magali Gerino1 
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Abstract: 

Bioturbation driven by the activities of invertebrates is a natural process with a 

potentially large implication in ecological engineering. Our work aims to test the effect of 
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bioturbation, carried out by a sediment-dwelling Tubificidae Oligochaeta invertebrate species, on 

atrazine behavior in the sediment under controlled laboratory conditions. A series of 

microcosms reproducing each a portion of water/sediment interface such as in wetland areas 

was displayed with homogeneously spiked sediment with [14C]-atrazine at an initial 

concentration of 2µg/g wet sediment, to be monitored during 26 days. Concentrations of [14C]-

atrazine were explored in each sedimentary fraction to estimate the physicochemical influences 

of the aquatic invertebrates. Bio-conveying transport by tubificid worms was independent on 

the atrazine contamination (bioadvection rate ranged from 15.00 to 26.50 cm.year-1 for 100 

Tubifex tubifex worms.dm-2). Three distinguishable layers were identified: (a) (0-2.5 cm) feacal 

pellets accumulation zone; (b) (2.5-5 cm) sediment ingestion layer; and (c) (5-8 cm) no activity of 

worms. The significant depletion of [14C]-(atrazine + metabolites) concentration in the first 2 cm 

of sediment is explained by the sediment porosity increase due to the bioturbation. Tubificid 

activity impacted the  sorption and desorption of the moderate hydrophobic atrazine between 

attached-particles and free fractioning fomrs within sediment compartment with an increase of 

the molecules concentration in the pore water, that is partly explained by the organic matter 

reduction under tubificids feeding.  

 

Keywords: bioturbation, atrazine, ecological engineering, aquatic sediment. 

 

1. Introduction: 

Bioturbation, caused by the activities of invertebrates, is proved to create significant 

impacts on the physicochemical properties of sediment (Baranov, Lewandowski, Krause, et al., 

2016; Kristensen et al., 2012). Sediment particles reworking and biotransports by bioturbators in 

aquatic sediment can be categorized as different types, including biodiffusor, conveyor, and 

regenerator (François et al., 1997, Gerino et al. 2003). These modes cause different effects on 

vertical distribution of organic matter, particle sorting, and grain size distribution in sediment 

column (Kristensen et al., 2012) and consequently may generates contaminant fluxes throught 

the water sediment interface during or their deposition in the sediment compartment (Ciutat et 

al., 2007). These fluxes should be at the source of a remobilization or resuspension of pollutants 

from the sediment into the overlying water (Bundschuh et al 2016) (Schaller, 2014, 

Sommerfreund et al. 2010 ) or in an opposite direction, bioturbation could also increase 

pollutant incorporation and burial into the sediment (Hoang et al. 2018). The remobilization or 

the burial of the contaminant largely depends on their hydrophobicity, and the type of 

bioturbation that is playing in the sediment. The bioturbation process carried out by conveyor 

invertebrate species, Oligochaeta Tubificidae, can generate continuous vertical material flow 

through upward and downward biotransports and stimulate the activity of microbial 

communities (Ciutat et al., 2007; Devault et al., 2009; Anschutz et al., 2012). Previous studies 

showed that bioturbation can also control the fate of organic matter and nutrients as well as 

fluxes of nutrient pollutant transports between sediments and water (McCall and Fisher, 1980; 

Hölker et al., 2015; Florian Mermillod-Blondin et al., 2001), and therefore facilitate the 

transformation of pollutants (Gerino et al., 2014). Likewise, the digestion by earthworms during 
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the soil bioturbation positively impacted biodegradation by increasing atrazine adsorption on 

their microsites concerning with organic matter modification (Farenhorst et al., 2000; Kersanté 

et al., 2005). Bioturbation activity by tubificid worms could also stimulate organic matter 

mineralization and the release of pollutants in storm water sediment (Mermillod-Blondin et al., 

2005). Previous studies also reported the modification of size, structure and activity of 

indigenous atrazine-degrading bacteria (Monard et al., 2008) or acceleration of atrazine 

mineralization in bioaugmented soil in a relationship with earthworms bioturbation (Kersanté 

et al., 2005). Recently, positive and complementary influences of bioturbation combined with 

phytoremediation process for enhancing cadmium fluxes from overlying water to sediment and 

then into the plant root system have been demonstrated (Hoang et al., 2018). 

Atrazine is a highly efficient and moderately persistent organic herbicide (a lenghthy 

soil half-life of 60 to > 100 days) widely used in agriculture to control broadleaf and grassy 

weeds (Douglass et al., 2015; Smith et al., 2005), especially in the United States (Henderson et 

al., 2006; Thelin and Stone, 2010, (Schreiner et al., 2016). As a moderately hydrophilic molecule 

(Graymore et al., 2001) used as a premergent herbicide, atrazine is moderately to highly mobile 

in soils, especially in soils having low clay and organic matter contents. Due to its low 

adsorption in soils or sediments (Koc =128 mL g-1) (K. Sun et al., 2010), residual atrazine and its 

metabolites, such as deethylatrazine (DEA) or deisopropylatrazine (DIA) have a high potential 

to contaminate tap water, surface waters, groundwaters and adjacent soils (Kolpin et al., 1996; 

Lewis et al., 2009; Zaya et al., 2011) from agricultural soils via leaching and surface runoff 

(Douglass et al., 2017; Pascal- Lorber et al., 2011). Atrazine concentrations can exceed 0.1 µg L-1 

in natural surface water (the European Union standard in surface fresh water).  

The water-sediment interface, known to be one of the most vulnerable (Devault et al., 

2009) receiving a hefty source of such hydrophophic chemicals (Jantunen et al., 2008) from 

agricultural practices and urban areas that may cause long-term effects to the biota by direct 

uptake or through the food web. Several physical, chemical and biological methods, involving 

activated carbon adsorption, air stripping, catalytic degradation, membrane filtration, and 

biological treatments could recently provide capacity to remove these molecules from aquatic 

systems. However, they were still limited due to the cost with high capital expenditure and 

manpower (Susarla et al., 2002; Guo et al., 2007). Bioengineering strategies advantage in 

providing sustainable methods with low cost of functioning for natural waters. Pesticides are 

degraded by microbial activity, chemical activity, or sunlight. The degradation of the herbicide, 

mostly occur in top soils (Douglass et al., 2015) or in wetland areas (Mudhoo & Garg, 2011) 

where atrazine-degrading microbial communities (Krutz et al., 2012) and other critical chemical 

factors for plant uptake, such as soil pH, organic matter and moisture (Wehtje et al., 1983), have 

been considered as the primary mode of attenuation. These microbial and chemical factors that 

directly influence the biodegradation of the pesticide can be positively influenced by the 

presence of bioturbation (Monard et al., 2008; Hölker et al., 2015) and an active use of 

phytoremediation (Murphy and Coats, 2011; Moore et al., 2013; Qu et al., 2017).  

Since plants are part of the natural environment of the wetland, it makes part of natural 

component that may influence the bioturbation intensity. The plant root system is viewed as a 

part of the sediment compartment that may modulate or inhibit the bioturbation intensity and 

type of sediment particle mixing (Bernard et al., 2014). As a natural component of the 

biodiversity of the wetlands, a plant species was introduced in the experimental microcosm to 
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simulate the natural conditions. Broadleaf cattail (Typha latifolia) is one of the commonest 

wetland plant species with a large distribution under various hydrological conditions (Aulio, 

2015). T. latifolia reveals rapid growth and high resistance in polluted environments with the 

ability to bioaccumulate both inorganic (Lyubenova et al., 2013) and organic pollutants (Langan 

& Hoagland, 1996).  

The objective of this paper is to estimate the bioturbation intensity and physicochemical 

effects (porosity, OM, OC, C:N, pH, Koc, and Kd) on a pesticide behaviour within sediment 

contaminated by a labeled [14C]-organic pollutant using a controlled-environmental experiment. 

The natural environment was reproduced in a serie of microcosm that mimics the wetland 

buttom conditions with sediment, plants and invertebrate. The bioturbation intensity and type 

(biotransport by bioadvection) was estimated under these conditions to study the influence of 

pesticide contamination and plant occurrence on the bioturbation process. The influence of 

oligocheates on the atrazine partitioning in the sediment (pore water and solid fractions) in 

these condition is also demonstrated by comparison of the labeled-[14C]-atrazine concentrations 

in water and sediment with and without bioturbation. In particular, this paper discusses the 

pivotal role of the tubificids on water and sediment quality using atrazine as a model of POPs in 

realistic aquatic habitat.  

 

2. Materials and methods:  

2.1. Experimental design and microcosm setup 

The experiment was carried out in controlled laboratory conditions with a series of 24 

microcosms, each mimicking a portion of water/sediment interface as in wetland areas. Three 

factors were considered in the experimental setup: organic compound contamination 

(presence/absence of atrazine) plant influence (presence/absence of T. latifolia), and invertebrate 

influence (presence/absence of tubificid worms) (Table 1). Due to space limitation, the choice 

was made to not use a full-factorial design, but to focus on the treatments necessary to assess (1) 

the influence of atrazine and worms on the bioturbation process and (2) the influence of worms 

and T. latifolia plants on the fate of atrazine in water and sediment layers. The microcosms were 

set-up in a thermostatic experimental room with similar physico-chemical conditions (light 

provided by six electric bulbs of 400 Watt each, 12h of light each day, temperature at 18°C, light 

intensity in the experimental room of 6000 ÷ 8000 lux (120 ÷160 µmol.m-2.s-1) at the top of T. 

latifolia plants). They were arranged in four blocks, each including one replicate of the different 

combinations of factors tested..  

Table 1 

Main acronyms for different experimental treatments used in the experiment  

Treatments noted Time (day) Description 

{Typ} t = 26 With plant,  no invertebrate, no atrazine 

{Typ.Tub}  t = 26 With plant,  with invertebrate, no atrazine 
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{Atr} t = 26 No plant,  no invertebrate, with atrazine 

{Atr.Tub} t = 26 No plant,  with invertebrate, with atrazine 

{Atr.Typ} t = 26 With plant,  no invertebrate, with atrazine 

{Atr.Typ.Tub} t = 26 With plant,  with invertebrate, with atrazine 

Typ: T. latifolia plant; W: tubificids worms; Atr: Atrazine 

 

The sandy-muddy sediment samples were collected from the Aussonnelle River 

catchment, a first rank tributary of the Garonne River (Sélery area, Colomiers, France). A 

mechanical mixing process of the sediment was performed by using a motor-mixer to eliminate 

the antecedent macrofauna and to homogenise the sediment. Then, the defaunated sediment 

was introduced into each microcosm, which roughly consisted of a sediment layer of 8 cm 

depth (approximately 0.6 kg of fresh sediment) and of a water column of 3 cm height of 

dechlorinated tap water (approximately 0.2 L of overlying water). 

Tap water was supplemented in each microcosm every few days (approximately 3% of 

the total water volume per day) to to keep a constant level of water despite evaporation and 

transpiration by the plant. T. latifolia plants were provided by ALISMA commercial farm 

(Plantes aquatiques, Taurignan Castet, France) in June 2015 and then stored about one month at 

the thermostatic experimental room in order to keep it growing after the delivery. Before 

putting them into the experimental pails (at t=0), their root and rhizome systems were cleaned 

with tap water to completely remove un-defaunated sediments.  

Two weeks (t= -15 days) before starting the experiment, radiolabeled [14C]-atrazine 

solution was mixed within water from the Garonne River and then homogeneously 

contaminated sediment with an initial concentration of 2 µg.g-1 wet sediment, as a non-

conservative and organic pollutant to be followed in the aquatic environment during 26 days of 

the experiment.  

Invertebrate Oligochaeta Tubifex tubifex (tubificid worms), well known as active 

ecological engineers, used as a source of bioturbation, were provided by the GREBIL Company 

(ARRY, France). The tubificid worms were introduced into the microcosms at the surface of the 

sediment at the initial time of the experiment (t=0) with a density of 10,000 individuals.m-2, 

corresponding to a fresh biomass of 2.13 ± 0.06 g per microcosm. 
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Fig. 1. Microcosm experimental design (see Table 1 for the acronym definitions corresponding 

to the different treatments). The four replicates for each treatment were arranged in four 

separate blocks to avoid any confounding effect due to possible variations of environmental 

parameters within the thermostatic room. 

 

2.2. Bioturbation activity measurements 

The bioturbation activity of tubificids was quantified using fluorescent inert tracer 

technique (Gerino et al., 1994; T.K. Hoang et al., 2018). About 2g of luminophores tracers 

(natural sand and particles coated with pink fluorescent paint with size ranging from 63 to 

125µm (Partrac Ltd., UK) were deposited at the sediment surface by spraying method one day 

after tubificid introduction. At the end of the experiment (t=26), the sampling of sediment along 

with the deposited tracer was carried out by sub-coring in the microcosms. Then sediment core 

was cut into ten layers with high definition: 0.5-cm thick layers from the surface down to 3 cm 

depth, then 1-cm thick layers down to 6 cm depth, and 2-cm thick layers down to 8cm depth.  

Detection of luminophores was performed with a Synergy Microplate Reader (Biotek, 

USA) according to a protocol adapted from Majdi et al. (2014). After estimation of the 

luminophore concentrations along depth in the sediment column, the bioadvection–

biodiffusion model (Officer & Lynch, 1982; Gerino et al., 1994, Ciutat et al 2005, Delmotte et al . 

2007 ) was applied to fit the measured tracer profiles: 

  

  
   

   

     
  

  
                     (eq. 1)  

 

With t as the time, z as the depth, and C as the tracer concentration. This model allows to 

estimate the theoretical concentration of tracers under the effects of the two biotransports 

parameters: V (cm.y-1) as the bioadvective velocity or bio-sedimentation rate that represents the 

downward transfert of the tracers under conveying bioturbation and Db (cm2.y-1) as the 

biodiffusion coefficient that reflects the mixing rate of the tracers in omnidirectional directions 

in the sediment.  

2.3. Physico-chemical analyses of sediments 
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Two experimental treatments with and without bioturbation (no contamination, no 

plant addition): {-W} and {+W} were set up using similar experimental design in order to 

determine physico-chemical factors affecting the degradation of atrazine in sediment. Organic 

matter, organic carbon, C/N ratio, and pH were measured vertically in three distinguishable 

sediment layers (0-1; 1-3; 3-8cm), excepted for pH with four layers (0-1; 1-3; 3-5; 5-8 cm). 

Sediment porosity was determined in fresh sediment samples from the 10 distinguishable layers 

with high definition as in the bioturbation measurement (section 2.2). Organic matter content in 

the sediment was measured through a semi-quantitative method based upon the indiscriminant 

removal of all organic matter followed by gravimetric determination of sample weight loss 

using muffle furnace at 500oC during 4h (loss-on-ignition method) (ASTM, 2000). Organic 

carbon and C/N ration were determined using Elemental Analyzers - FLASH 2000 (Thermo 

Scientific). Sediment pH was measured using a pH probe Multi 3420 WTW. 

 

2.3. Atrazine and its metabolites concentration determination 

Total concentration of [14C]-(atrazine + metabolites) in the two experimental treatments 

having atrazine contamination: {Atr} and {W,Atr} was determined in overlying water and in the 

ten distinguishable sediment layers  at the beginning (t=0) and at the end of the experiment (t = 

26days). These layers were defined as in the bioturbation activity measurement partitioning 

liquid and solid phases: the pore waters and the sediment particles.  

For quantification of [14C] radioactivity in overlying water and pore water, 1 mL of each 

prepared sample was mixed with 2 mL of liquid scintillation cocktail (Ultima Gold™) before 

measuring with a liquid scintillation counter (LSC) (Packard Tri-CarbR 2910TR, PerkinElmer 

Life and Analytical Sciences, Courtaboeuf, France). For the sediment particles and plant part 

samples, approximately 300 mg of homogenized subsamples were used for oxidative 

combustion to convert [14C] radioactivity to 14CO2 using a Sample Oxidizer Packard 307 

(PerkinElmer Life and Analytical Sciences). The resulting 14CO2 was trapped in a scintillation 

cocktail (Permafluor/Carbosorb, 10:7, v/v), and then the detection of radioactivity was 

performed by LSC. The efficiency of the oxidizer was measured by combustion of 14C-labeled 

standards, and the recoveries of radioactivity from samples were adjusted to optimize the 

efficiency of the instrument. Atrazine and its metabolites were considered together through a 

global quantification, and their quantity was calculated from the specific activity of [14C]-

atrazine. 

Didier’s comment: And nothing about the metabolites concentration ? Do you determine 

the metabolite such as DEA and DIA ?  

 

2.4. Calculations and data analysis 

Sediment adsorption Coefficients 

Sorption coefficient (Kd) and soil organic carbon-water partitioning coefficient (Koc), as 

indexes for respectively atrazine adsorption and its mobility into the sediment were calculated. 

The Koc coefficient has been so far used as a quantitative measure of the magnitude of the 

binding affinity of atrazine for organic matter. This constant allows the calculation of the 

proportion of atrazine bound to organic matter which is essential for predicting atrazine fate in 
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sediments and water bodies (Kulikova and Perminova, 2002). The sorption coefficient (Kd) 

measures the amount of chemical substance adsorbed onto sediment per amount of water 

(Linde, 1994). Since the adsorption occurs predominantly by a partition into the soil organic 

matter, it is more useful to determine a soil’s ability to adsorb through Koc (Linde, 1994). 

Kd (mL.g-1) =  
                                   

  

 
 

                                   
  

  
 
 

 

Koc  (mL.g-1) = 
       

                
 

Statistical analysis 

To evaluate statistically any significant difference among all experimental treatments (t = 

26), the mean value of bioadvective rate (V) and biodiffusive rate (Db) obtained from the eq.1 

were first compared using one-way ANOVA. Following ANOVAs, the mean values of the 

various treatments were compared with each other using Tukey HSD test. To investigate the 

single and interactive effects of atrazine and tubificids on the bioadvective rates, the mean 

values in the treatments including plants (i.e. {Typ}, {Typ,W}, {Typ,Atr}, and {Typ,W,Atr}) were 

compared using two-way ANOVA. Likewise, another two-way ANOVA  was conducted on all 

the atrazine-contaminated treatments (i.e.  {Atr}, {W,Atr}, {Typ,Atr}, and {Typ,W,Atr}) to 

evaluate the single and interactive effects of plants and tubificids on bioadvective rates.  . 

Student t-test was applied on the mean values of 14C-∑(atrazine, metabolites) 

concentrations in overlying water and sediment,  as well as the mean values of water content, 

organic mater, organic carbon, and C:N ratio, Kd, Koc in the sedimentary layers to evaluate 

statistically significant differences between experiment treatments with and without worms: 

{W,Atr} and {Atr}. 

Significance of the observed effects were assessed at the p ≤ 0.05, 0.01, 0.001, and 0.0001 

levels. All analyses were performed using the statistical software R, version 3.0.2 (2013-09-25) 

and statistical GraphPad Prism software, version 6.01. 

 

3. Results:  

3.1. Sediment reworking measurement  
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  Fig. 2. Mean values and their standart error (horizontal bars)  of the luminophore concentrations in the 

sediment after 26 days for treatments with and without tubificids (black and grey dots, 

respectively); (see Table 1 for the definition of acronyms corresponding to the different treatments). 

 

In the sediment without Tubifex worms (Fig. 2), no particle mixing occurred since most 

of luminophore tracers (70-80%) remained at the surface of the sediment (0-0.5cm), and about 

20%, and 5% were located below the surface (0.5-1.5 cm, 1.5-2 cm, respectively) after the 

experiment (grey profile). Some luminophore particles were found in the deeper layers 

probably due to inherent tracer movements during experimentation or because of the activity of 

some smaller invertebrates that survived to the initial sediment defaunating process.  

Luminophore profiles (Fig. 2) showed an increase in the depth location of the maximal 

luminophore concentration under the conditions with and without bioturbation. In the presence 

of worms, the tracers (about 20 to 45%) mostly distributed at the 2-3 cm sediment layer with 

bioturbation (black profile) evidenced sediment bioadvective processes induced by tubificids. 

Since luminophores were too large to be ingested by oligochetes, their transfert upward was not 

possible once they reached the ingestion layer. The deepest occurrence of luminophores in the 

sediment (5 cm) at the end of the experiment indicated the depth of the sediment ingestion 

layer.  
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Fig. 3. (A): bioadvective rates -(V, ) and (B): biodiffusive rates - (Db,) estimated after 26 days for 

the different experimental treatments. For each parameters, thevariable same letters at the top 

of the bars indicate treatments that were not significantly different (P < 0.05) as analyzed by 

TUKEY HDS multiple comparison test. Values are means ± SD, n = 4, excepted for {Typ.Tub}, 

{Atr.Tub}, {Atr.Typ.Tub} with (n =3) . (see Table 1 for the definitions of acronym corresponding to the 

different treatments). 

 In the treatment having worm addition, the bioadvective rates (V) obtained by using the 

bioadvection–biodiffusion model corresponded to a rate of 21.53 ± 1.74 to 23.63 ± 2.49 cm.year-1 

for a tubificid density of 10,000 individuals.m-2, while it varied only from 0.26 ± 0.36 to 2.03 ± 

0.88 cm.year-1 when the worms were absent (Fig. 3). Only the bioadvective rates showed 

significant difference between treatments with or without tubificid addition (Tukey HSD test; 

Fig. 3A). 

It is particularly remarkable that no significant difference for either V (Fig. 3A) or Db (Fig. 

3B) was observed when comparing corresponding experimental treatments with or without 

added atrazine, and with or without plant. 

Table 2 

Two-way ANOVA assessing the influences of atrazine and worms on bioadvective rates (V) 

(performed on the treatments with plants, i.e. {Typ}, {Typ.Tub}, {Atr.Typ} and {Atr.Typ.Tub}). 

****: significant difference for V at P ≤ 0.0001; ns: non significance. 

 

 

Factors F1,10 P  

Atrazine contamination 0.2014 0.6631ns 

Tubificid addition 214.3 <0.0001**** 

Atrazine x tubificid interaction 0.7001 0.6631ns 

 

Table 3 

Two-way ANOVA assessing the influences of T. latifolia plants and worms on bioadvective 

rates (V) (performed on the treatments with atrazine, i.e. {Atr}, {At.Tubr}, {Atr.Typ}, 
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{Atr.Typ.Tub}). ****: significant difference for V at P ≤ 0.0001; ns: non significance according to two-

way ANOVA. 

Factors F1,10 P  

T.latifolia treatment 2.078 0.1800 ns 

Tubificid addition 879.3 <0.0001**** 

T.latifolia : tubificid interaction 1.827 0.2062 ns 

 

 A significant effect of tubificid addition on bioadvective rates was evidenced by using 

two-way ANOVA , either when crossing this factor with atrazine  (F 1,10 = 214.3, P < 0.0001, Table 

2) or with the presence of T. latifolia plants (F 1,10 = 879.3, P < 0.0001, Table 3). None of the other 

factors tested (atrazine or T.latifolia plant) had any significant influence on V, either alone or in 

interaction with the presence of tubificids (Tables 2 and 3).  

3.2.[ 14C]-(atrazine, metabolites) concentration in overlying-water and sediment  

At the initial time (two weeks before starting the experiment), [14C]-(atrazine, 

metabolites) concentration in the overlying water was found to be at 3.68 ± 0.07 µg.mL-1 (mean ± 

SD, n=2). Twenty-six days after the beginning of the experiment, the total concentrations were 

very low, ranging from 0.16 ± 0.04 to 0.18 ± 0.03 µg.mL-1 (mean ± SD, n=4), with no significant 

difference between the pesticide-contaminated treatments {Atr} and {Atr.Tub} (data not shown). 
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Fig. 4. [14C]-(atrazine + metabolites) concentrations according to depth  and experimental 

treatments for different sediment fractions (A1 and A2: fresh sediment (or bulk sediment: being the 

sum of sediment particles and interstitial water); B1 and B2: sediment particles; C1 and C2: overlying 

water and pore water) at the end of the experiment (t=26). Values are means ± S.D., replicate (n) = 4 

per treatment group. (*), (**), (***), and (****) indicate significance effects of worms addition at P ≤ 

0.05, 0.01, 0.001, and 0.0001 respectively according to the two-way ANOVA (The test were 

performed on the concentrations of the four treatments: {Atr}, {Atr.Typ}, {Atr.Tub}, and 

{Atr.Typ.Tub}). Similarity, the number of Δ indicates the level of significance of T. latifolia effect 

and α the level of the two factors interactions, respectively at different levels of pP values 

according to the two-way ANOVA (see Table 1 for the definitions of acronym corresponding to the 

different treatments). 

 

Bulk sediment (total fraction) 

Two weeks before starting the experiment, mean values of [14C]-(atrazine, metabolites) 

concentration in the fresh sediment (total fraction or bulk fraction) was found to be 1.95 ± 0.02 

µg.g-1 fresh wt (weight of fresh sediment).. At the end of the experiment, the concentrations in the 

sedimentary layers in absence of worms  ranged from 3.18 ± 0.10 to 4.40 ± 1.20 µg.g-1 fresh wt. 

and from 2.59 ± 1.75 to 4.31 ± 0.65 µg.g-1 fresh wt. (total fraction), respectively in {Atr} and 

{Atr.Typ} treatments (Fig.4A). Significant effect of tubificids were recorded in the upper layers 

(0-0.5, 0.5-1.0, 1.0-1.5 cm, with p < 0.0001, 0.001, and 0.01, respectively) where lower 

concentrations were measured with bioturbation, and higher concentration in the deeper layer 

(4-5 cm, pP < 0.05) as evidenced by the performed two-way ANOVA  (Fig. 4A).  

Impact of the interactions between bioturbation and plant on [14C]-(atrazine, 

metabolites) quantities was estimated by using Tukey HSD test focusing on the three 

sedimentary layers as defined in § III.B.4.1 according to the bioturbation depth : the fecal pellets 

zone (0-2 cm), the ingestion zone (2-5 cm), and the “no worm activity” zone (5-8 cm). These 

layers thickness were defined based on the luminophores distribution  under bioturbation (Fig. 

2).  

Sediment particles 

A significant effect of tubificids on [14C]-(atrazine, metabolites) concentrations of 

sediment particles was observed only in the two layers: from 0.5 to 1.0 and from 4.0 to 5.0 cm 

(two-way ANOVA, P =0.032 and 0.0138, respectively) (Fig. 4B) where lower concentrations were 

observed with bioturbation. Any significant effects of T. latifolia on the concentrations was 
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observed in all layers of sediment particles as evidenced by the two-way ANOVA test (P > 0.05, 

Fig. 4B). 

A similar consequence of tubificid addition on quantity of [14C]-(atrazine, metabolites) in 

the fecal pellets layers (0-2 cm) of fresh sediment was also recorded in the sediment particle 

fraction with significant depletion of the quantity in the presence of worms.  

Pore water 

At the end of the experiment, effects of tubidicids addition were significant from the 

surface sediment until 2.5 cm depth with higher [14C]-(atrazine, metabolites) concentrations in 

pore water with bioturbation. The effect of the plants was also significant in the same layers, but 

with lower concentrations when  Typha was occuring, except for the layer from 1.5 to 2.0 cm 

(two-way ANOVA, Fig.4C). Significant interaction between the two tested factors  was only 

found for layer from 1.0 to 1.5 cm  (Fig.4C). 

 

3.3. Porosity of experimental sediments  

    

Fig. 5. Sediment porosity profiles of (A): {Atr} and {Atr.Tub}; (B): {Atr.Typ} and {Atr.Typ.Tub} 

treatments versus sediment depth at the end of the experiment. Values are means ± S.D., replicate 

(n) = 4 per treatment group. (*), (***), and (****) indicate significance effects of worms addition at p 

≤ 0.05, 0.001, and 0.0001 respectively according to two-way ANOVA (effects of worms and T. 

latilolia treatment performed on the percentage of water content in these four treatments); Δ 

indicate significant effect of T. latifolia at p ≤ 0.05 according to the two-way ANOVA test. No 

significant interaction between these two tested factors  was observed among the treatments of 

all the layers (see Table II.2 for the acronym definitions corresponding to the different treatments). 

 

At the end of the experiment, effect of bioturbation on water content in sediment column 

was significantly (P < 0.05, 0.001, 0.001) at all depth from surface until 2.5 cm, excepted for the 

layers from 2.0 to 2.5 cm , as evidenced by the two-way ANOVA (Fig. 5). Significant effect of T. 

latifolia on the change was observed only in the layer from 3.0 to 4.0 cm (P > 0.05, two-way 

ANOVA, Fig. 5).  However porosity increased under worms effects in the surface layers from 0 

to 2 cm, and inversely, the porosity was lower in the deeper layers, as analyzed by Tukey HSD 

multiple comparison test (see Annex)  
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In the absence of worms ({Atr} and {Atr.Typ} treatments), the porosity of sediment 

varied from 43 ± 6% to 53 ± 4% in the sediment column (see Annex), with no significant 

difference between the two treatments (P > 0.05, Tukey HSD test, see Annex). 

3.4. Physicochemical factors affecting the mobility of atrazine and its metabolites  

 

 

  

  

 Fig. 6. Physico-chemical variabless at t=26 days with (A): organic matter content; (B): organic 

carbone; (C): C/N ratio; (D): pH (see Table 1 for the definitions of acronym corresponding to the 

different treatments). (*), (**), and (***) indicate significance at p ≤ 0.05, 0.01 and 0.001, 

respectively according to unpaired Student t-test. 

In the presence of the worms, organic matter contents (Fig III.6A) significantly decreased 

after 26 days in the upper sediment layers (0-1 cm) and in bottom layers (2 – 8 cm) (p < 0.01, 

Student t-test) in the treatment {+Tub}, compared to the treatment without the worms. 

Similarity, organic carbon content showed a significant decrease in the layer from 2 to 8 cm with 

worms ({+Tub} treatment (p < 0.05, Student t-test), but the higher C concents were found mostly 

in the upper layer (1-2 cm) (Fig. III.6B). This leads to a significant decrease of organic carbone 

C:N ratio in the presence of the worms ({+Tub}) in the top layer (0-1 cm) at the end of the 

experiment, but a significant increased in the bottom layer (2-8 cm) compared to treatment 

without worms addition ({-Tub}, Fig. III.6C). The pH level became significantly higher in whole 

sediment column when the worms were occurring, by comparison with the treatment without 

bioturbation (P < 0.0001 and 0.05, Student t-test, Fig. III.6D). 
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Fig. 7. soil adsorption coefficient – Kd and organic carbon – water partitioning 

coefficient – Koc affecting mobility of atrazine and its metabolites in sediment. Values are means 

± S.D., replicate (n) = 4 per treatment group. (*), (***), and (****) indicate significance effects of 

worms addition and T.latifolia treatment as well as significant interaction between the two 

factors tested  at p ≤ 0.05, 0.001, and 0.0001 respectively according to two-way ANOVA; ns – no 

significant difference 

 

Worms and T. latifolia significantly affected soil adsorption coefficient  Kd in bioturbated 

layers from 0 to 5 cm, as evidenced by two-way ANOVA test performed on the values of all 

treatments contaminated with atrazine (p < 0.001 and 0.0001, respectively, Fig.7). A significant 

effect of worms for water partitioning coefficient was observed only in the fecal pellets zone (0-

2.0cm) (p < 0.001, two-way ANOVA, Fig.7), while T. latifolia significantly affected the whole 

bioturbated layers from 0 to 5 cm (p < 0.0001, two-way ANOVA, Fig.7). 

Lower values of this sorption coefficient (Kd) and water partitioning coefficient (Koc) 

were also observed in the presence of worms ({Atr.Tub} treatment) compared to treatments 

without worms addition ({Atr} and {Atr.Typ}, respectively) with significant differences in the 

bioturbated layers (0 – 5.0 cm) for Kd (Tukey HSD test, Fig.7) and in the fecal pellets layer for 

Koc (Tukey HSD test, Fig.7). 

 

4. Discussion: 

4.1. Influence of bioturbation on particle mixing and tubificid resistance to atrazine 

In the presence of tubificid worms with a density of 10,000 worms.m-2 (equivalent to a 

fresh biomass of 4.45 ± 0.53 g per microcosm), a subsurface peak of tracers in the 2 cm layer 

indicated that a conveying transport was created by tubificids. This downward transport of the 

surface sediment resulted from the accumulation of faecal pellets at the sediment surface, 
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simultaneously with sediment depression in deeper layers due to sediment ingestion by the 

worm feeding activities (Anschutz et al., 2012; Ciutat et al., 2006). Selective feeding behaviour 

by tubificid worms based on particle size, avoiding larger coarse particles, such as 

luminophores and sand particles induces a decrease of the silt-clay fraction at depth(Rodriguez 

et al., 2001). Consequently, bioturbation creates two distinct layers in the bioturbated sediment: 

a surface layer corresponding to the faecal pellets accumulation from ingested anoxic sediment, 

and a bottom layer with increasing particle size (Anschutz et al., 2012). Our results (Fig. 2) 

indicated that bioturbation caused by worm activities followed the bio-conveying transport 

model and allowed us to identify three distinguishable layers: (i) a surface zone (0 - 2.0 cm) 

composed entirely of fecal pellets resulting from the bioadvective transport process with about 

75% of the luminophore tracers, initially deposited at the sediment surface, were spread down 

to 2.0 cm depth at the end of the experiment (Fig. 2); (ii) an ingestion zone (2.0 – 5.0 cm) which 

indicates the maximal ingestion depth by the worms; and (iii) a deep zone (5.0 – 8.0 cm) where no 

worm activity has been detected. The maximal ingestion depth found in this study was located 

below 2.0cm and the bioturbated layer was thus estimated to be from 0 to more than 5 cm since 

luminophores occurred down to this level (Fig. 2) after 26 days. Depending on the bioturbating 

time, thickness of the surface zone could be extended to about more than 4 cm after 93 days 

having the same species treatment at higher density of 62,000 ± 4,000 worms.m-2 (Ciutat et al., 

2006). The obtained rates of bioadvection in presence of tubificids (Fig. 3) were in the same 

order of magnitude as those estimated by other authors with tubificid populations at various 

densities (Ciutat et al., 2005; Hoang et al., 2018). 

 The absence of interactive effect of atrazine and tubificid addition on bioadvective rates 

(two-way ANOVA, Table 2) indicated that bioturbation was not altered by atrazine-

contamination. Indeed, there was no significant difference in V among the experimental 

treatments having worms but with or without atrazine added {Typ.Tub}, {Atr.Tub}, 

{Atr.Typ.Tub} (Tukey HSD test, P > 0.05, Fig. 3A). This result is in line with previous studies 

that found out, using Cd-spiked aquatic sediment, that bioadvective rates were not affected by 

Cd enrichment (Anschutz et al., 2012; Ciutat et al., 2005; Hoang et al., 2018). Oligochaete worms 

could be therefore considered as ecological engineers with a high resistance to both inorganic 

and organic contaminants from aquatic enviroment. Indeed, some invertebrate oligocheates, 

which are very widely distributed and frequently dominant in freshwater benthic communities, 

show a high level of resistance to unfavorable treatments, especially organic pollution 

associated with severe hypoxic treatments (Brinkhurst and Cook, 1974). An indoor microcosm 

carried out by Ciutat et al., (2005) to test the bioaccumulation kinetic of Cd, added to the water 

column at 20 µg/L, in tubificid worms during a 56-day exposure period with bioaccumulation 

levels as high as 50 mg.g_1 dry wt found in the worms. The resistance of these organisms was 

related to their detoxification or sequestration abilities under polluted environment. Whitley 

(1967) reported that tubificids showed high tolerance limits for water contaminated by Pb and 

Zn, with the median tolerance limits at 49 and 46 mg/L, respectively. Both acute and chronic 

toxicity of organic compounds has been previously investigated in some invertebrate worms. 

Dad et al., (1982) reported that tubificid worms (a mixture of T. tubifex and L.hoffmeisteri) were 

able to tolerate high insecticide concentrations with presumed harmless concentrations of 

Furadan 3G (carbofuran) and Malataf 50E found to be at 4.37 and 3.22 mg/L, respectively. 

Although atrazine is considered highly toxic to freshwater aquatic invertebrates (US 

Environmental Protection Agency, 2003), the hydrophobic chemical was bioaccumulated across 
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the body wall of benthic oligochaeta Lumbriculus variegatus with a wide  range of 

bioacumulation factors (BAFs) from 0.19 to 19.56 after 240 h of exposure (Jantunen et al., 2008).  

Although this study does not give an evidence of worm persistence at high pesticide levels, 

with concentration as high as 6.4 µg/g (compared with 17 µg/L)  which is normally found in 

natural sediment in rural ponds in Canada (Frank et al., 1990), our study implied that 

bioturbation should remain active in natural sediments that does not exceed the used 

concentration (at 2µg/g, compared with 5 µg/L). 

 

4.2. Plant influence on bioturbation intensity 

Several studies have revealed plant influences on aquatic bioturbation intensity in 

aquatic sediment. Interactions between nbelowground biomass of the seagrass Zostera and 

burrowing bioturbator’s activities have been investigated previously, with negative effects of 

root density on the intensity and mode of sediment particle mixing by benthic infaunal 

activities in coastal environment (Bernard et al., 2014), notably for large bioturbators such as 

ghost shrimps (Berkenbusch et al., 2007) and the polyochaete Nereis diversicolor (Hughes et al., 

2000). These findings, however, are not consistent with the present study that revealed the 

independence of bioturbation intensity to the occurence of the riparian T.latifolia plant. Neither 

significant difference in bioadvective rate (V) (Fig. 3A) and biodiffusive rate (Db) (Fig. 3B) nor 

interaction between plant occurrence and worm treatment (Table 3) were observed when 

comparing experimental treatments with or without worms and plant added. This suggested 

that burrowing bioturbation by tubificid worms still remains active and is not affected by the 

plant treatment.  

It should be noticed that the contradictory results from that obtained in the present 

study might be due to the differences in biotubation modes, in types of aquatic environment 

studied, or in species / functional type of aquatic plant selected. Moreover, the fact of using 

individual species of bioturbators rather than a whole community, as well as a short time 

duration for carrying out this experiment (26 days) could have led to incomplete observations 

to evidence these expecting influences. 

 

4.3. Influence of biotransport on behavior and mobility of atrazine in sediment 

Tubificids affect physical and chemical characteristics, including sediment particle size, 

porosity, water content, nutrient content, turbidity, TOC, etc., of the sediment and overlying 

water near the water-sediment interface (Anschutz et al., 2012; Ciutat et al., 2006; Cunningham 

et al., 1999; Hoang et al., 2018; Mermillod-Blondin et al., 2013; Mermillod-Blondin et al., 2008). 

The significant increase of water content observed in the top sediment layers (0-2 cm) when the 

worms were occurring in the experimental treatement {Atr.Tub} (Fig. 5) is explained by the 

physical effect of tubificid worms. Through the burrowing activity, worms create the 

accumulation of feacal pellets in the surface layer. The redistribution of sediment particles due 

to feacal pellets and undigested sediment particle accumulation by bioturbation led to a vertical 

change in grain size in the sediment layers where tubificid worms occured. Faecal pellet getting 

a larger diameter than sediment particles, this increased sediment porosity. This porosity 

change promoted water and solute exchanges thought the water sediment interface by simple 

molecular diffusion. As a consequence, mean grain size of sediment particles became smaller in 
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the upper layer (0-1 cm) and greater in the deeper layers (Hoang et al., 2018). That explained the 

significant decrease of water content in the deepest layers (3-8 cm) when worms were present 

({Atr.Tub} treatment, Fig. 5) along with the least abundance of small particles (fine silt, clay, 

medium silt, and coarse silt) and higher abundance of larger particles (coarse, medium and fine 

sands) according to Ciutat et al., (2006) and Hoang et al. (2018). Wood et al., (1975) reported that 

the tubificid Limnodrillus hoffmeisteri generates a burrow flushing rate of 9.5–15 L water per 

worm per hour (20°C). At typical densities of 104 –105 ind m-2, this would result in exchange of 

25 L m-2 d-1. 

The increase of water content in the top sediment also explained the significant 

depletion of total [14C]-(atrazine, metabolites) concentration in upper layers in case of worm 

addition ({Atr.Tub}) (Fig. 4A) due to bioturbation effect. The physical impact of worm activity 

caused a dilution of this total concentration at the interface between overlying water and 

sediment. When the surface zone is composed entirely of faecal pellets ejected by worms, it also 

extends the thickness of the layer (Ciutat et al., 2006), the difference of volume being explained 

by the enhanced water content.   

Aquatic sediments are one of the largest reservoirs of organic matter (Breithaupt et al., 

2012). Organic matter in sediment consists of heterogeneous mixture of carbon and nutrients, 

notably in the form of carbohydrates, proteins, fats and nucleic acids (Zonneveld et al., 2009). 

Bacteria, as heterotrophic microorganisms living in carbon-rich sediments, play an important 

role in the transformation and mineralization of organic matter in aquatic sediments (Boudreau, 

1992). Tubificid worms play a significant role in the processing of organic matter in aquatic 

sediments (McCall and Fisher, 1980; Florian Mermillod-Blondin et al., 2001). During feeding 

activities of Tubifex worms, the downward transport of the surface sediment resulted from the 

accumulation of faecal pellets at the sediment surface (0-2.5 cm, Fig. 2) simulatneously to 

sediment  ingestion at depth. The faecal pellets are covered by worm’s digestive mucus  that 

increase the colonizable area for bacteria. By increasing flux dispersion, oligochaetes also 

enhanced the nutrient availability in all microenvironments of the columns, stimulating both 

aerobic and anaerobic microbial activities (Florian Mermillod-Blondin et al., 2001, McMurtry et 

al., (2011) also reported a significant correlation between the abundance of heterotrophic aerobic 

bacteria in sediments and tubificid preference. In this study, tubificid worms consequently 

modified  the organic matter distribution in the sedimentary layers (Fig. 6A and 6B), with a 

significant increase of feacal pellet contribution at the bottom of the surface layer and a 

depletion of the organic matter content in deeper layers (2-8 cm). The depletion of C and OM 

observed in the top sediment is explained by the new faecal pellet arrival, where the microbial 

community didn’t get the time to develop yet. The burial over time of these pellets will be 

followed by the developpment of microbial biofilm that explains the OM matter inversion at the 

bottom of the surface layer. Similar profile of organic carbon content, hence, could be found in 

the presence of tubificid worms (Fig. 6B). In addition to these physicochemical parameters, pH 

is also considered as an important factor controlling adsorption of atrazine in soil/sediment. 

Gradually, positive mobilization of herbicides, such as atrazine and metribuzin in soil has been 

reported to increase as the pH increased (James et al., 1976). The adsorption of triazine 

molecules on soil matters is influenced by the pH at which the molecules became protonated at 

pH decrease that attributed to complexing of the triazine molecules with H+ on the clay surface 

(Weber, 1970). In our experiment, the high pH (8.03) in overlying water, along with the 
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significant increase of water content (Fig. 5), leads to the increase of pH in surface sediment 

layers as observed in the {W,Atr} treatment. This is due to the intrusion of overlying water in 

the interstitial space of the faecal pellet layers (Fig. 6D). Under conveying process the new pH 

conditions are spread into the whole bioturbated sediment. Previous studies also reported 

sediment pH increase under bioturbation, which was explained by an accelerated removal of 

acid metabolites from sediment (David, 1974; Yingst & Rhoads, 1980). 

Soil organic carbon-water partitioning coefficient (Koc) has been so far used as a 

quantitative measure of the magnitude of the binding affinity of organic matter for atrazine. In 

addition, soil adsorption coefficients (Kd) are indices for pesticide mobility in the aquatic 

environment, which are important for predicting the fate of atrazine in soils and waterbodies 

(Kulikova and Perminova, 2002). Study of sorption affinities of 101 soil samples from New 

Zealand were reported by Ahmad and Rahman (2009) with sorption coefficients (Kd) ranging 

from 0.7 to 52.1 mL.g-1, and by Kookana et al. (2008) with the values in 31 soils ranging from 

0.51 to 5.48 mL.g-1.  

Bioavailability and mobility of pesticides, determined via their fate in the environment 

under natural processes like bioturbation are strongly affected by the solubility (sorption to soil 

particles and organic matter, dissolution in pore water, or uptake by plants). Pesticides that are 

highly water soluble, relatively persistent, and not readily sorbed to soil particles (low Koc or 

low distribution coefficient) have the greatest potential for movement. In contrast, the higher 

the Koc value, the more strongly the pesticide is sorbed onto soil and organic matter which 

lowers its bioavailability (Binet et al., 2006). It has been shown that atrazine adsorption is 

associated with fine particle fraction consisting of clay minerals and organic matter (Paya-Perez 

et al., 1992). Koc, however, is a more important factor affecting the sorption than particle size 

(Rao 1983). Atrazine binding to soil organic matter is not extremely strong (Koc~128 mL.g-1, 

moderate water solubility of 33 mg.L-1, average field half-life 60 days) (Lesan and Bhandari, 

2000; Burnett et al., 2000) leading to high potential for movement from particle to dissolved 

state. This becomes obvious when compared with benomyl, a systemic agricultural fungicide 

having low movement rating with solubility of 2 mg.L-1 and Koc of 1,900 mL.g-1. A wide 

variation of partitioning coefficient (Koc), from 30 to 680 mL.g-1  (Kookana et al., 2008), with a 

mean of 126.9 mL.g-1, was also found by Ahmad and Rahman (2009). The Koc coefficients in our 

study (Fig.7) were in the same order of magnitude as the data provided by the authors cited 

above, with the means varying from 265.0 ± 131.8 to 537.0 ± 114.5 mL.g-1. The two coefficients 

generally increased with soil organic carbon content (Fig. 7A and 7B).  

It is suggested that the significant depletion of organic matter in the surface and deep 

sediment layers under the influence of tubificid worms ({Atr.Tub} treatment) contributed to the 

higher desorption/movement of atrazine and its metabolites from organic matter to pore water, 

compared to the treatments without worms ({Atr} treatment, Fig. 5C and Fig. 6A). Organic 

matter degradation due to worm activity consequently increased [14C]-(atrazine, metabolites) 

concentration in pore water and thus released more free fraction of atrazine and its metabolites 

into the interstitial environment. 

The relative recovery, i.e. the total amount of [14C]-(atrazine, metabolites) in the whole 

test-system (overlying water and sediment) at the end of the experiment divided by that added 

at the beginning of the experiment, was calculated in each treatment with and without 
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bioturbation ({Atr.Tub} and {Atr}). This will allow to estimate the influence of faunal 

biodiversity in the bioremediation process. The obtained data from the treatment having 

tubificid worms ({Atr.Tub}), approximately 79.7 %, suggested a pesticide loss a a consequence 

of bioaccumulation to the worms’ body. While, a marginal loss of the pesticide, approximately 

93.7% of relative recovery, observed in the asbsence of worms {Atr} (data not shown), implied 

(1) a volatilization of atrazine to the air phase via the mineralization into CO2 or (2) an 

adsorption to experimental pail walls. These finding was consistent with previous study of 

Bundschuh et al., (2016) on the role of pesticide properties on remobilization from sediment to 

overlying water phase. 

 

5. Conclusion: 

In aquatic systems, atrazine is among the most largely occurent herbicides in the 

continental sediments within deposition areas such as wetlands and ponds. Its moderate 

hydrophobic character makes it a sensitive candidate to investigate its behavior at the water 

sediment interface as a response to biodiversity-related processes such as bioturbation. Our 

experimental study using radiolabeled [14C]-atrazine showed that bioturbation is still 

maintained in contaminated sediment with or without plants. Under worm activities, a 

biological mixture between water-sediment interfaces was created, causing the depletion of 

atrazine and its metabolite concentrations in the surface sedimentary layers and the 

redistribution of organic matter and C:N ratio in the sediment column. The influences of  

bioturbation by tubificids on these chemical properties of sediment have consequences on the 

adsorption-desorption behavior of the herbicide. Therefore bioturbation accelerates the mobility 

of atrazine (and presumably its metabolites) from attached forms (onto sediment particles) into 

a free fraction (in pore water) with lower values of Kd, Koc. This indirect bioturbation influence 

on the partitioning of atrazine in sediment suggests that atrazine should be more available for 

the other organisms that live in the sediment. This mobility should increase its toxicity towards 

some other organisms (microbes and invertebrates) that live in the sediment layer, but may also 

promote its uptake by plants.  

The role of microorganism communities in the degradation of atrazine in bioturbated 

sediments should be addressed in next studies. On the one hand bioturbation is known to 

promote microbial activity that may support the degradation of such coupounds, but on the 

other hand, the release of this coumpound under biotubation may increase its toxicity to these 

organisms. Further analytical works concerning the identification of atrazine metabolites in 

sedimentary layers and the plant system, as well as the polarity of new metabolites (via Kow 

values) formed in the plant, also need to be carried to evidence metabolization process under 

the bioturbation. 
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