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Chapter 1

Introduction

1.1 Machine learning and the big data paradigm

Machine learning is a subfield of artificial intelligence focused on the automatic processing of
data. Given a set of data samples and a learning task, the algorithms of machine learning extract
information relevant to the task from the data set without explicit instructions. Naturally, the
performance of machine learning algorithms is limited by the size of the input data set. The rapid
growth of computational capacity has made it possible to collect and handle massive data sets
with numerous features, resulting in many successful applications of machine learning methods,
such as image classification, speech recognition and gene prediction. Even though superhuman
performance has been achieved on certain tasks thanks to the power of big data, it is mostly
done through supervised learning models and requires an immense amount of labeled samples.
The costly labeling process and the limited access to data in many areas call for more e�cient
and flexible learning approaches. To improve on the current learning methods, it is needed to
understand them on a profound level. However, the non-linear nature of the learning algorithms,
which is at source of their empirical success, makes them also theoretically di�cult to study.
Indeed, most machine learning algorithms, even the most popular ones, have been motivated by
intuitive reasoning and justified by heuristic arguments.

It has long been noticed that learning on large dimensional data presents some unique chal-
lenges, for which the term curse of dimensionality was used. Crucially, the intuitive arguments
behind the proposition of many learning algorithms are only valid in small dimensions. An
important phenomenon of the curse of dimensionality is the concentration of distances, which
refers to the tendency of pairwise “distances” between data vectors to become indistinguishable
in the limit of large dimensions. Since many learning techniques rely on the relation between
geometric proximity and class “a�nity” between data, their validity is in question under the
distance concentration phenomenon. Consequently, many counterintuitive phenomena may oc-
cur, the explanation of which calls for a deeper understanding of high dimensional learning.
Despite this strong need to unravel the learning process of large dimensional data, the theoreti-
cal research in this respect is rather underdeveloped in the literature. Most existing analyses of
learning techniques assume in particular that the number n of data samples is infinitely large in
comparison to their dimension p , i.e., n/p ! 1, an assumption that is hardly adequate when
the dimension is itself too large to be considered as negligible compared to the number of data
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CHAPTER 1. INTRODUCTION

samples. The objective of this thesis is to analyze and improve learning methods in the modern
regime of large and comparable n, p.

Since learning outcomes are random variables dependent of the input data, which only con-
verge to deterministic values at n � p, analyzing learning algorithms with comparable n, p
requires the non-trivial task of characterizing the randomness in learning results. Take linear
discriminant analysis (LDA) , a simple and standard learning method, as an example. The LDA
method approaches the learning problem by assuming that data instances (x, y), with x 2 Rp

the feature vectors and y = ±1 the class labels, follow a Gaussian mixture model with identical
covariances, which is to say, for y = (�1)k with k = {1, 2}, x ⇠ N(µk,C) (where we suppose that
C has full rank). Under this assumption, the Bayes optimal solution is to assign an observation
x to the class ±1 by the sign of �T

x�c for some threshold constant c, where � = C
�1(µ2�µ1).

Since the statistical parameters µ1, µ2 and C are normally unknown in practice, they are es-
timated from a set of training data samples (x1, y1), . . . , (xn, yn) to get � = Ĉ

�1(µ̂2 � µ̂1),
where (µ̂1, µ̂2, Ĉ) is usually the maximal likelihood estimate (MLE) of (µ1,µ2,C), or some
other estimates. While the performance of LDA is guaranteed to be optimal in the limit n � p
where (µ̂1, µ̂2, Ĉ) ! (µ1,µ2,C) for any consistent estimator (µ̂1, µ̂2, Ĉ), the same cannot be
said about the regime where n, p are commensurately large. Indeed, even with MLE, for which
we have quite simple expressions of (µ̂1, µ̂2, Ĉ) (also referred to as the sample means and the
sample covariance):

µ̂k =
1

|Ck|
X

i2Ck

xi, k = {1, 2},

where we denote i 2 Ck for i 2 {1, . . . , n} such that yi = (�1)k; and

Ĉ =
1

n

2

4
X

i2C1

(xi � µ̂1)(xi � µ̂1)
T +

X

j2C2

(xj � µ̂2)(xj � µ̂2)
T

3

5 ,

the statistical behavior of � is complicated to characterize at arbitrary n/p, mostly due to the
existence of Ĉ�1 in the expression of �.

As explained earlier, the large dimensionality of modern data induces a need for theoreti-
cally advanced studies on the performance of learning algorithms away from the conventional
asymptotic limit n/p ! 1, at which the learned parameters, such as � = Ĉ

�1(µ̂2 � µ̂1) in
the above example of LDA, become deterministic constants. Meanwhile, it actually provides
some technical advantages to place oneself under the high dimensional setting. Indeed, while
the statistical behavior of Ĉ�1, such as the distribution of its eigenvalues and the associated
eigenvectors, is so far out of reach at finite n, p, it has come to the attention of some pioneer
researchers that the statistical properties of random matrices like Ĉ

�1 are accessible for any
finite n/p ratio (bounded away from zero) in the limit of large p. Indeed, by exploring the
extra degrees of freedom provided by the large dimensionality of data, it was demonstrated first
by Marchenko and Pastur in [1] that the density histogram1 of the eigenvalues of the sample
covariance matrix with data vectors x ⇠ N(0p, Ip) converges to a certain deterministic continu-
ous distribution, now known as the Marchenko–Pastur distribution. The extension to the case

1This refers to the spectral measure defined by 1
p

Pp
i=1 ��i(t) where �i are the eigenvalues of the sample

covariance matrix.
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1.1. MACHINE LEARNING AND THE BIG DATA PARADIGM

where the population covariance is allowed to be other than the identity matrix can be found
in the works [2, 3] of Silverstein and Bai. Obviously, the knowledge of the spectral properties
of the sample cavariance matrix Ĉ is equivalent to knowing those of its inverse. As a matter of
fact, many spectral investigations on random matrices like Ĉ are conducted through technical
manipulations involving their inverse. Based on results from random matrix theory (RMT),
the performance of LDA was recently examined in [4], and its more elaborate variant QDA
(quadratic discriminant analysis) in [5].

The solution of LDA is rather convenient for conducting theoretical analyses on account
of its explicit form and the fact that its only non-linearity is due to the inverse of the sample
covariance matrix Ĉ

�1, an extensively studied object in RMT. Most learning techniques, such
as kernel methods, involve more complex non-linearities. Another complication in analyzing
learning systems is that there may not exist an explicit expression of the system outcomes.
Having no closed-form solution is actually common to a lot of widely used learning methods
such as logistic regression, support vectors machines (SVMs), and neural networks, for which
the solutions are stated as a point of minimization to some loss function. As RMT results
concern usually the statistical properties of some specific explicit random matrix models, they
are not adapted for characterizing implicit solutions to optimization problems which involve
random matrices. Other approaches are thus needed for the study of learning algorithms with
implicit solutions.

In this respect, the ‘leave-one-out’ perturbation technique has been proven e↵ective by a
series of contributions. The statistical behavior of robust regression with M-estimators, which
in general does not assume the existence of a closed form solution, is captured in [6, 7], using
such perturbation procedure. Following in the same line, the works of [8, 9] are focused on
the logistic regression method for classification. The key idea of these studies is to establish
statistical equations of learned parameters by capitalizing on the fact that the outcomes of
algorithms remain practically unchanged after excluding one sample from the training data set,
or one feature from the feature vector. This ’double leave-one-out’ approach is applied in these
works under the assumption that all data samples are centered with i.i.d. Gaussian features
(i.e., x ⇠ N(0p, Ip)), which notably justifies the ‘leave-one-feature-out’ step as all features are
statistically equivalent and independent. Contrarily to mixture models (like the one considered
in LDA), there is no natural class separation in the cluster x ⇠ N(0, Ip). In order to study
classification problems under this setting, the authors of [8, 9] imposed the existence of a class
separation signal inside the cluster x ⇠ N(0p, Ip). As such, the common classification scenarios
with distinct class patterns (which are represented by di↵erent components in mixture models)
are so far not covered by this kind of analyses.

Our contributions: The current big data paradigm lays grounds for the development of
new mathematical tools to analyze learning algorithms in the modern regime of comparably
large n, p. Unlike the existing analyses in this regime, the technical approaches developed in
this thesis exploit both advanced tools of random matrix theory and leave-one-out arguments.
As a result of combining the advantage of random matrix theory for handling structured data
and the power of leave-one-out manipulation for tackling complex learning systems, we are
able to conduct more involved analyses of machine learning algorithms under realistic mixture
models. These analyses entail important consequences in applying learning methods, some of
which have long been observed in practice without proper understanding, some are unknown
to practitioners or even in contradiction to common beliefs. As a complete characterization of
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CHAPTER 1. INTRODUCTION

the learning outcomes is available in our analyses, these problems can sometimes be directly
addressed by simple measures of correction such as normalization (or rescaling) or improved
parametrization. In some scenarios, large dimensional analyses can even spot fundamental flaws
in the design of learning algorithms, and help inspire superior approaches, as was done in [10] and
the follow-up work [11], as part of the contributions in this thesis. Remarkably, the theoretical
results derived in this thesis closely predict the learning performance on both synthetic and real
data sets, which suggests the adequacy of the mixture data models for describing the learning
scenario in real applications. This observation is notably supported by the findings of [12] and
[13] where the authors demonstrate that, under some conditions of concentration, a series of
random objects concerning the sample covariance matrix converge in the regime of large n, p to
the same limit irrespective of the actual data distribution.

1.2 Challenges for designing and understanding
learning methods

1.2.1 Semi-supervised learning problem

Depending on whether the data fed into the learning model are labelled or unlabelled, the ma-
chine learning algorithms are broadly categorized as supervised or unsupervised respectively.
The objective of unsupervised learning is to extract relevant structure or representation from
a set of observations x1, . . . ,xn, typically assumed to be drawn independently from a com-
mon distribution X. Compared to unsupervised learning, the supervised learning approach has
the advantage of being guided by the knowledge of desired outputs. Based a set of examples
(x1, y1), . . . , (xn, yn) where yi is the target output (often called the label) of xi, supervised
learning aims to construct a mapping from x to y. Again, the training samples (xi, yi) are con-
sidered as i.i.d. realizations from some underlying joint distribution X⇥ Y. The performance of
supervised-learning algorithms is normally evaluated on the basis of their generalization capacity
to unseen data points x outside the training samples.

Although the supervised approach has by now occupied a dominant place in real world ap-
plications thanks to its high level of accuracy, the cost of the labelling process, overly high
in comparison to the collection of data, compels researchers to develop techniques using unla-
belled data, as many popular learning tasks of these days, such as image classification, speech
recognition and language translation, require enormous training data sets to achieve satisfying
results.

The idea of semi-supervised learning comes from the expectation of improving the learning
performance by combining labelled and unlabelled data, which is of significant practical value
when the cost of supervised learning is too high and the performances of unsupervised approaches
is too weak. Semi-supervised learning is a more accurate modelling of actual human learning
process, and should surpass both supervised and unsupervised learning approaches as a result
of utilizing all information, labelled and unlabelled. In spite of its natural idea, semi-supervised
learning has not reached broad recognition, due to the di�cult of designing methods that exploit
properly labelled and unlabelled data at the same time. In fact, many standard semi-supervised
learning techniques were found to exhibit worse performances than their one-sided counterparts
[14, 15, 16], thereby hindering the interest for these methods.

8



1.2. CHALLENGES FOR DESIGNING AND UNDERSTANDING
LEARNING METHODS

Understandably, for semi-supervised learning to work, some assumptions should be met to
ensure that both labelled and unlabelled information are beneficial to the learning task. Already
in the supervised setting, since the requirement is to learn a mapping that generalizes well from
a finite set of training samples to a potentially infinite set of unseen data points, the smoothness
assumption that if two data representations x1,x2 are close (with respect to a certain measure),
then so are the corresponding outputs y1, y2 should hold. Without the guidance of class labels,
unsupervised learning can only aid in distinguishing di↵erent clusters of data points. For such
information to be useful in classifying data vectors, the cluster assumption that data points in
the same cluster belong to the same class should apply. A similar assumption is the low density
separation principle which states that data samples in di↵erent classes are separated by a low-
density decision boundary. It is easy to see the equivalence between the cluster assumption and
the low-density separation assumption as the division of one cluster into di↵erent classes requires
separation boundaries inside the cluster, which is a high-density region, and a decision boundary
in a high density region would certainly go through a cluster, cutting it into di↵erent classes.
Most learning algorithms can be seen as implementing one or several of these assumptions.

In a nutshell, there are two types of information in learning tasks: the global information
contained in the underlying structure of data points xi, formulated by the cluster assumption
(and the low-density separation principle); and the local information reflected by the connection
between desired outputs yi and feature vectors xi, corresponding to the smoothness assumption.
With the purpose of learning from both global and local information, the meaningfulness of the
semi-supervised approach relies on a combined version of all these assumptions [17]: two data
points that are close in a high-density region tend to be in the same class.

Note in passing that the low-density separation assumption is incorporated sometimes in
supervised learning methods, and so is the smoothness assumption in unsupervised approaches.
For instance, the SVM algorithm [18], one of the most popular supervised method, tries to find
a low-density region that separates the two classes of labelled binary data points and inside
which there are few data samples. Another example is spectral clustering [19], which finds
in an unsupervised manner a data representation by following the smoothness assumption (i.e.,
similarity in feature space implying closeness in representation space), then regroup data samples
by some standard clustering technique based on this representation.

One of the challenges in semi-supervised learning is that, depending on whether or not (and
how much) the learning process is guided by the presence of target outputs (i.e., the labels),
implementing the learning assumptions can lead to di↵erent results that need to be reconciled.
This thesis concerns specifically graph-based methods, which has been a highly active area of
research in semi-supervised learning. The graph-based approach considers data points as nodes
in a graph, connected by some edges weights wij that can be seen as a measure of similarity
between any two data vectors xi,xj . In this context, the accordance with the smoothness
assumption should be reflected by a small value of the penalty term

Qs =
1

2

nX

i,j=1

wij(yi � yj)
2 = y

T
Ly

where L = D � W is the so-called Laplacian matrix with W = {wij}ni,j=1 the weight matrix
and D the diagonal degree matrix having di =

P
n

j=1wij as its diagonal elements, and y =

[y1, . . . , yn]T the label vectors containing the desired outputs yi of data samples. In the absence
of the target outputs yi, the method of spectral clustering finds a substitution f = [f1, . . . , fn]T
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CHAPTER 1. INTRODUCTION

of y as the one minimizing Qs:

min
f

f
T
Lf

s.t. kfk2 = n.

It is easy to see that L is a symmetric and positive definite matrix. Therefore, the solution of the
above optimization is simply the eigenvector of L that is associated with the smallest eigenvalue
0. We obtain then f = ±1n, which is obviously useless for any learning tasks as it implies that
all data samples are in the same class. That is why the algorithm of spectral clustering considers
the second smallest eigenvector as its solution. It is also common practice to keep in addition a
few other eigenvectors with smallest eigenvalues to construct a low-dimensional representation
of the data samples upon which one can separate clusters using some standard low-dimensional
clustering techniques, such as the k-means or expectation-maximization (EM) algorithms.

While the unsupervised method of spectral clustering is well understood [20, 21] and shown
to achieve many empirical successes, the graph-based semi-supervised approach is less tractable.
As said in the previous paragraph, it can be challenging to reconcile the label information and
the global structure learned from the distribution of data features. Indeed, even though a smooth
data representation f can be learned from the minimization of fTLf , we still have to correlate
it with the pre-known target outputs yi of labelled points.

There are mainly two approaches to resolve this issue: the manifold-based methods and the
regularization approach. The manifold-based methods consist in selecting a certain number m
of the smallest eigenvectors v1, . . . ,vm of L expect the first one v0, then searching in the span
of v1, . . . ,vm for an output vector f such that the fi is closed to yi for all labeled points xi.
The complication about this approach is in the choice of the number m of the eigenvectors
to take. On one hand, the more eigenvectors are selected, the more loyal is f to the label
information. But choosing a greater m also means the inclusion of eigenvectors that correspond
to less small eigenvalues, leading potentially to a less smooth f . On the other hand, if only few
of the smallest eigenvectors are taken, the label information may not be su�ciently exploited.
Indeed, in the extreme scenario with m = 1, f is constrained to aligned with v1, leaving us with
the same solution as spectral clustering. To ensure both the smoothness of f and its accordance
with known labels yi, the Laplacian regularization approach chooses to minimize f

T
Lf while

constraining fi = yi (which is possible to relax by adding a penalty term to the optimization
loss). As this optimization gives a unique solution, there is no direct way to eliminate the
advantage of constant solutions c1n in minimizing f

T
Lf . Although it is expected that the

constraint fi = yi would produce enough e↵ect to pull f away from the direction of constant
solutions, the power and limit of this e↵ect remain an open question.

Due to these underlying complications induced by the step of bringing together the global
and local information, it is vital to understand separately the impact of labeled and unlabeled
data. Ideally, such understanding can be achieved through quantifying the learning performance
as a function of the sizes of the labeled and unlabeled data sets. However, even for simple
problem formulations, the solutions of which assume an explicit form, the analysis involves
complicated-to-analyze mathematical objects (for instance the resolvent of kernel matrices), as
is the case for the Laplacian regularization algorithms. As discussed in Section 1.1, the high
dimensional analysis is particularly useful for the much needed understanding of these semi-
supervised learning algorithms as it allows one to characterize the learning performance in the
regime of comparably large n, p. Here in the semi-supervised setting, n refers to the sample
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number of labelled or unlabelled set, we can thus quantify the e↵ect of labelled and unlabelled
data samples.

Moreover, since most semi-supervised algorithms are built upon low-dimensional reasoning,
they may su↵er the transition to the high dimensional setting. For example, in the ideal scenario
of graph-based learning, data points xi,xj in di↵erent classes are connected with extremely weak
weights wij ⌧ 1. Under this assumption, all class-constant vectors f for which the points in
the same class have the same value, such as the label vector y, are almost as smooth as the
constant solution 1n, as the latter yields a zero value for the smoothness penalty term Qs and
the former to a value near zero (or exactly zero if wij = 0 for all xi,xj in di↵erent classes).
Therefore, the solution of Laplacian regularization should lean towards the label vector y as
a result of imposing fi = yi. While this ideal scenario might be close to the actual situations
in low dimensions, it is far from what happens for data of high dimensionality, due to the
aforementioned distance concentration phenomenon. Since all large dimensional data vectors
are basically at the same distance, they tend to be seen in the same class on accounts of the graph
smoothness. It is then paramount to ask if the Laplacian regularization algorithm still works for
high dimensional data. And if not, what are the key points in designing e↵ective algorithms for
large dimensional semi-supervised learning. These questions bring us respectively to the studies
presented in Chapter 3 and Chapter 4. Other than identifying and correcting several important
consequences of semi-supervised Laplacian regularization algorithms, the results of Chapter 3
point out that even though it is possible to achieve non-trivial classification performance with
the Laplacian regularization approach, the method is ine�cient in extracting information from
large dimensional unlabelled data. In light of this critical remark, a new regularization approach
is proposed in Chapter 4, allowing for an enhanced semi-supervised learning on high dimensional
data.

1.2.2 Methods with implicit optimization

The previous section explained how the intricate nature of semi-supervised learning makes it
di�cult to study. It should be pointed out though that even the most basic algorithms in the
simple setting of supervised learning can be hard to analyze, due to the lack of closed-form
solution, such as the very popular methods of logistic regression and SVMs.

Indeed, recall that the objective of supervised learning is to learn a mapping G(x) = y from
the feature space of x to the target output space of y, based on the knowledge of a set of training
samples (x1, y1), . . . , (xn, yn). Usually in a particular supervised learning method, the mapping
G is restricted to the space of a family of functions, controlled by a set of parameters Sp. For
instance, the function G(x) can be constrained to take a linear form G(x) = �T

x + �0 with
� 2 Rp and �0 2 R being the parameters to be determined. Let L(G(x), y) be some pre-defined
loss between the mapped output G(x) with the target output y. The common goal of supervised
learning methods is to find the best parametrization of Sp that minimizes the expected value for
L(G(x), y) over the distribution X⇥ Y, i.e., by solving

min
Sp

E{L(G(x), y)}.

Since we generally do not have access to the distribution X⇥ Y, which makes the computation
of E{L(G(x), y)} impossible, the average loss over the training set, called empirical risk, is used
instead as an approximation of E{L(G(x), y)}. The actual optimization to solve in practice

11



CHAPTER 1. INTRODUCTION

becomes

min
Sp

1

n

nX

i=1

L(G(xi), yi).

These empirical risk minimization (ERM) algorithms are based on the convergence of the em-
pirical risk to its expectation as n/p ! 1.

A simple algorithm within this framework is the ridge regression method, which consists in
training a linear classifier G(x) = �T

x+ �0 by minimizing the average square loss L(G(x), y) =
(G(x)� y)2 over the training set, for which the solution has an explicit form2

� =
⇣
XX

T

⌘�1
X(y � �01n), �0 =

1
T
ny � 1

T
nX

T
�
XX

T
��1

Xy

n� 1TnX
T (XXT)�1

X1n

where X =
⇥
x1, . . . ,xn

⇤
. The performance analysis of this algorithm is within the reach of

currently available tools in RMT, as the random matrices involved in the above expression of
the solution have been (or similar in nature to) objects of interest in the literature.

The di�culty in understanding these seemingly elementary learning approaches is that hav-
ing a closed-form solution as the ridge regression is actually a rare case which does not apply
to some of the most popular algorithms. This is notably the case of the widely-used method of
logistic regression, which is based on the maximal likelihood principle. Consider that the data
distribution X⇥Y fits a logistic model having its conditional probability P(y|x) (where y = ±1)
given by

P(y|x) = 1

1 + e�y(xT�⇤+�⇤
0 )

for some unknown underlying parameters �⇤ 2 Rp, �⇤0 2 R. It should be noted that the Gaussian
mixture distribution N(µ1,C1), N(µ2,C2) with identical covariance matrices C1 = C2 is a
special case of the above logistic model. The logistic regression algorithm finds an estimate
(�,�0) of (�⇤,�⇤0) that maximizes the joint conditional probability over the training set. This
is equivalent to minimizing the sum of their negative log likelihood function:

min
�,�0

1

n

nX

i=1

ln(1 + e�yi(xT

i �+�0)),

which is retrieved by the ERM framework with the loss function L(G(x), y) = ln(1+e�y(xT�+�0)).
The solution of the above optimization is given in practice as the outcome of some iterative proce-
dures, making it hard to analyze using the standard tools of high dimensional statistics. Another
example is the method of support vectors machines. Its idea of finding a hyperplane xT�+�0 = 0
separating two classes of data with a maximal distance between them is implemented by

min
�,�0

1

n

nX

i=1

max{0, 1� yix
T

i � + �0)}+ �k�k2,

2Here the solution is given under the condition n > p. Otherwise, the optimization problem is ill-posed with
infinitely many solutions.
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which is a regularized version of the ERM problem with the hinge loss L(G(x), y) = max{0, 1�
yixT

i
� + �0)} and an additional ridge regularization term �k�k2.

One of the objectives of this thesis is to characterize the distribution of parameters (�,�0) for
these implicit methods in the regime of commensurately large n, p. Compared to the analyses
in the limit of n � p where the parameters (�,�0) converge to deterministic constants, our
high dimensional approach sheds light on the transitional regime where the performance of
learning algorithms is sensible to the size of input data set, described by a finite n/p ratio,
and where (�,�0) remains random. Even though comprehending what happens in the setting
of comparable n, p is crucial for finding the most e�cient way to learn from a finite set of
data samples, it remains a longstanding open question for which there exist much fewer results
in the literature than for the well understood limiting case of n � p. Indeed, admitting no
explicit solution is much more an issue when we are interested in an intermediate regime where
the parameters stay random variables dependant of the input data, instead of converging to
constant values. With the tools of high dimensional statistics, we are able to get a clear picture
of the learning behavior of implicit methods such as SVMs (analyzed in Chapter 5) and logistic
regression (study in Chapter 6) in this transitional regime, and answer a series of important
questions about the choice of hyperparameters, the bias-variance trade-o↵, the optimality of
learning performance, etc.

1.3 Outline and contributions

As mentioned earlier, this thesis aims to investigate involved learning methods like semi-supervised
learning techniques and implicit algorithms under realistic mixture models of high dimensional
data. The following chapters are organized as follows:

• On a technical level, the novelty of this thesis is the development of an approach combining
the techniques of RMT and the leave-one-out procedure, adaptable to the analysis of a
series of important learning problems as demonstrated by our main contributions. The
basic tools of RMT and the concept of the leave-one-out manipulation are presented in
Chapter 2, before the demonstration of how to combine them for more involved analyses
through an illustrative example.

• Moving to the main contributions, the first part concerns semi-supervised learning on
graphs, constituted of Chapter 3 and Chapter 4:

– In Chapter 3, we present the high dimensional analysis of a family of graph-base
semi-supervised learning algorithms, often referred to as the Laplacian regularization
methods. Our analysis explains why most of these commonly used semi-supervised
algorithms fail in high dimensions, except the one with the random walk Laplacian
matrix (also known as the PageRank algorithm). The study also reveals several
important consequences induced by the high dimensionality of data. Measures of
correction and remarks providing practical guidance are given based on these findings.
A very important conclusion from this analysis is that the performance of all the
Laplacian regularization algorithms exhibits negligible growth as the size of unlabelled
set increases. This suggests the existence of some fundamental flaw in the design of the
Laplacian regularization approach, rendering it inadequate for performing e↵ective
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semi-supervised learning on high dimensional data. The results of this chapter are
recollected from

X. Mai, R. Couillet,“A Random Matrix Analysis and Improvement of Semi-
Supervised Learning for Large Dimensional Data”, Journal of Machine Learn-
ing Research, vol. 19, no. 79, pp. 1-27, 2018.

X. Mai, R. Couillet,“The Counterintuitive Mechanism of Graph-based Semi-
Supervised Learning in the Big Data Regime”, IEEE International Confer-
ence on Acoustics, Speech and Signal Processing (ICASSP’17), New Orleans,
USA, 2017.

– Following on the last remark from the analysis of Laplacian regularization, we pro-
ceed in Chapter 4 to design a superior regularization algorithm capable of learning
e↵ectively from both labelled and unlabelled data of high dimensionality, in the sense
that the classification accuracy non-negligibly increases when one of the size ratios
n[l]/p, n[u]/p of labelled ([l]) and unlabelled sets ([u]) is larger. The proposed algo-
rithm has an indisputable advantage over the Laplacian methods as the performance
of the latter only depends on the size ratio n[l]/p of labelled set. Our new approach
involves a key centering operation on the similarities. A thorough performance analy-
sis is also conducted. The proposed method and its analysis presented in this chapter
are based on the following contributions

X. Mai, R. Couillet, “Revisiting and Improving Semi-Supervised Learning: A
Large Dimensional Approach”, IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP’19), Brighton, UK, 2019.

X. Mai, R. Couillet, “Consistent Semi-Supervised Graph Regularization for
High Dimensional Data”, submitted to Journal of Machine Learning Re-
search, 2019.

• The second part focuses on the study of implicit algorithms, with Chapter 5 devoted to
the method of SVM and Chapter 6 to logistic regression

– The method of support vectors machines owes its name to the fact that the learned
parameter � is determined by a subset of training samples, called the support vec-
tors. In fact, since we have � =

P
n

i=1 cixi where ci � 0, the training data vector
xi associated with a non-zero ci is a support vector. We characterize in Chapter 5
the behavior of support vectors in high dimensions through the statistical distribu-
tion of ci. Then we show how the statistical distribution of � is related to that of
ci, which allows us to derive a series of important conclusions about the impact of
hyperparameter in the SVM method. This analysis is presented in the article

X. Mai, R. Couillet, “Statistical Behavior and Performance of Support Vector
Machines for Large Dimensional Data”, in preparation, 2019.

– As explained in Section 1.2.2, logistic regression is one of the algorithms defined by
the empirical risk minimization principle, with a negative log likelihood loss. Since
logistic regression gives a maximum likelihood estimate of the parameters �,�0, an
often used default option in practice which is commonly believed to be optimal when
the assumption of data distribution is met, we propose to verify the optimality of
logistic regression through a joint analysis of the empirical risk minimization algo-
rithms with smooth loss function (as opposed to the non-smooth hinge loss function
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in SVMs). Remarkably, our results prove that contrary to common belief, the max-
imum likelihood based logistic regression does not produce the best classification
performance. We also devise strategies of improvement for these algorithms based on
our theoretical findings before investigating the limitations of these strategies. The
chapter gathers material from the following contributions

X. Mai, Z. Liao, R. Couillet, “A Large Scale Analysis of Logistic Regression:
Asymptotic Performance and New Insights”, IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP’19), Brighton, UK,
2019.

X. Mai, Z. Liao, “High Dimensional Classification via Empirical Risk Mini-
mization: Statistical Analysis and Optimality”, in preparation, 2019.
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Chapter 2

Technical tools

As mentioned in the introduction of Chapter 1, the analyses presented in this dissertation are
placed under the modern regime where the number n of data samples and their dimension p
are large and comparable. As a consequence of comparable n, p, random objects in this regime
exhibit di↵erent statistical properties than at the conventional asymptotic limit n � p. As an
example, consider the sample covariance matrix Ĉ = 1

n

P
n

i=1 xix
T

i
with i.i.d. Gaussian vectors

xi ⇠ N(0p,C). Even though

E{Ĉ} = C

holds for all n, p as Ĉ is an unbiased estimator of the population covariance C, the same cannot

be said about its resolvent
⇣
Ĉ� zIp

⌘�1
where z 2 C is a value di↵erent from the eigenvalues of

Ĉ. As a matter of fact, in the limit of large n, p, we have the following convergence
����E

⇢⇣
Ĉ� zIp

⌘�1
�
� (�(z)C� zIp)

�1

���� ! 0

for some �(z) dependent of the n/p ratio and di↵erent from 1 except at n/p ! 1. The resolvent
of Ĉ and other (mainly polynomial) functionals of the data matrix X = [x1, . . . ,xn] the are often
involved in the solution of machine learning algorithms such as the famous LDA method (as
explained in Chapter 1). As such, RMT can be used to study the performance of these algorithms
by determining the statistical parameters of their solution. Another focus of RMT is the spectral
properties of random matrices, e.g., the distribution of the eigenvalues. This kind of results are
notably useful in the study of eigenvector-based learning methods like principal component
analysis (PCA). In PCA, we find the directions upon which the data samples vary the most as
being the eigenvectors of the sample covariance matrix Ĉ associated with the largest eigenvalues.
To understand the principle of PCA, imagine that there are two classes, represented by the two
Gaussian distribution N(±µ, Ip), k 2 {1, 2}. In the case of the null signal (i.e., µ = 0p), it

is a well-known result in RMT that the distribution of the eigenvalues of Ĉ converges in the
limit of large n, p to a certain distribution with a bounded support S. In the presence of the
class signal µ 6= 0p, the sample covariance matrix Ĉ falls under the spiked model where the
matrix in question can be seen as the sum of a full-ranked non-informative random matrix
plus a low-ranked perturbation of interest. There exists a threshold for the signal strength kµk
under or above which we have respectively the absence or the existence of an isolated eigenvalue
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outside the bounded support S with high probability, and only the isolated eigenvector (the one
associated with the isolated eigenvalue) has a non-negligible alignment with the class signal µ.
Thus PCA is asymptotically ine↵ective for extracting the class signal µ below the threshold.
This phase transition phenomenon is well-studied in the literature of RMT, where the theorems
concerning the condition of the phase transition, the location of the isolated eigenvalue, the
alignment of the isolated eigenvector with a certain deterministic direction were established.

To sum up, the tools of RMT are applicable to the study of learning methods with explicit
solution involving random matrices (such as LDA) or those exploiting the spectral information
of random matrices (like PCA). We will present some basic concepts of these tools in Section 2.1.

In contrast, if the solution of a learning method can be expressed neither explicitly nor in
the form of spectral information, we may need to resort to other technical tools, such as the
approximate message passing (AMP) approach [7], the replica method from statistical physics
[22], and the leave-one-out procedure [6]. While the first two approaches consist in reapplying
some mathematical models previously established in other contexts to the problem at hand, the
leave-one-out procedure attacks the problem directly by adopting a basic idea of perturbation.
We focus here on the leave-one-out procedure for its flexibility ad interpretability. This technique
has been successfully employed in the study of robust regression with M-estimator [6, 23] and
in the study of logistic regression for binary classification [8]. It is important to note that in
these studies, the leave-one-out perturbation technique is conducted twice for the leave-one-
observation-out step and the leave-one-feature (or predictor)-out step, hence referred to as the
double leave-one-out procedure. A common point of these analyses [6, 23, 8] is that the solution
�̂ 2 Rp (the estimated regression vector) to the method under study is given implicitly in the
form of an equation involving non-linear functions of �̂T

xi, i 2 {1, . . . , n}, where xi are the
training samples. Due to the non-negligible dependence between �̂ and xi in the regime of
comparable n, p, there is no way to study the statistical distribution of �̂ through that of �̂T

xi

without knowing this dependence.

Generally speaking, in the double leave-one-out procedure, the leave-one-observation-out
step starts with the definition of the solution �̂(i) obtained by removing the i-th data sample

from the training process. As n ! 1, it is intuitively clear that the di↵erence between �̂(i) and

�̂ is negligible. With this argument and some standard concentration results, we can express
�̂T

xi as a function of �̂T

(i)xi, with the help of an unknown constant i. Once we replace �̂T
xi

with �̂T

(i)xi in the equation defining the solution of the learning algorithm, it is possible to study

the distribution of �̂(i) (which is practically the same as �̂) from this equation, as �̂(i) is (by
definition) independent of xi. The determination of the constant i, and more importantly, the
essential statistical properties of � was achieved in these previous studies through a leave-one-
feature-out step. We will explain that in Section 2.2 through an example of M-estimation for
regression.

Most of the arguments in the leave-one-out perturbation technique make sense when there are
numerous independent copies of the random object concerned in the leave-one-out manipulation.
Even though the leave-one-observation-out manipulation agrees with the common assumption
in machine learning that data samples are i.i.d. realizations from a certain distribution, the
double leave-one-out procedure implies also a leave-one-feature-out step, and thus relies on the
statistical equivalence and independence among the data features, i.e., among the elements of
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a data vector xi, which obviously does not apply to a lot of real-world applications. More
than that, the statistical equivalence and independence among the entries of the underlying
regression/classification signal �⇤ (the sought-for solution) should also be imposed. To work
around these restrictive conditions, we propose instead to determine the unknown constants i
with advanced tools of RMT, in place of the restrictive leave-one-feature-out approach..

2.1 Basics of random matrix theory

RMT is motivated by the fact that matrix-formed random objects can not be seen as a mere
collection of its random entries. As an example, even though we have the joint point-wise
convergence for the sample covariance matrix Ĉp (as defined in the previous paragraph) to the
identity matrix in the limit of large n, p:

max
1i,jp

����
n
Ĉ� Ip

o

ij

���� = max
1i,jp

�����
1

n

nX

k=1

xkix
⇤
kj � �ij

�����
a.s.�!0,

the convergence in spectral norm of Ĉp to Ip does not hold. One of the most important discoveries
in the early development of RMT is that as n, p grow large with the ratio n/p converging to a
positive value, the distribution of the eigenvalues of Ĉp converges weakly and almost surely to
some continuous deterministic distribution, which is spread far from 1, where the eigenvalues
of Ip are concentrated. The limiting distribution of Ĉp was mathematically formulated in [24],
under the name of Marcenko-Pastur law.

This convergence result can be derived by the moment method (Section 30 of [25]) or by
the Sieltjes transform method, the latter will be presented in this section. The basic idea of
the Sieltjes transform method is that the limiting eigenvalue distribution of a random matrix,

e.g., Ĉp, can be directly accessed from a limiting function mµ(z) of mµp(z) =
1
p
tr
⇣
Ĉp � zIp

⌘�1
,

which is the Sieltjes transform of Ĉp. The study on the spectral distribution of Ĉp is thus reduced

to finding the limit of 1
p
tr
⇣
Ĉp � zIp

⌘�1
. This brings us to another important remark (already

mentioned in the beginning of this chapter) showing that Ĉp behaves di↵erently than Ip despite

the joint point-wise convergence: 1
p
tr
⇣
Ĉp � zIp

⌘�1
does not converge to 1

p
tr (Ip � zIp)

�1 in the

limit of large n, p.

We will introduce in the following the results of the Marcenko-Pastur law, the technique of
the Sieltjes transform used in its original derivation of [24], and the definition and the derivation

of deterministic equivalents for the resolvent
⇣
Ĉp � zIp

⌘�1
of Ĉ, which gives directly the Sieltjes

transform of Ĉp.
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2.1.1 Limiting distribution of eigenvalues

Definition 2.1. For a Hermitian matrix Hp 2 Cp⇥p, we define its empirical spectral measure
µHp for its eigenvalues as

µHp(A) =
1

p

pX

i=1

1�i2A

for measurable A ⇢ R, where �1, . . . ,�p are the eigenvalues of Hp.

The Marcenko-Pastur law

Theorem 2.1.1. Consider the sample covariance matrix Ĉp =
1
n

P
n

i=1 xix
H

i
with xi 2 Cp i.i.d.

random vectors of independent entries with zero mean and unit variance. As n, p ! 1 with
n

p
! c 2 (0,1), the empirical spectral measure of Ĉp converges almost surely to a deterministic

measure µc with density fc given by

µc(dx) = (1� c�1)+1{0}(x) +
1

2⇡cx

p
(x� a)+(b� x)+dx,

for all x 2 R, where a = (1�
p
c)2 and b = (1 +

p
c)2.

The Stieltjes transform

Definition 2.2. Let µ be a probability measure. Then the Stieltjes transform mµ(z), for z 2
Supp(µ)c,1 the complex space complementary to the support of µ is defined as

mµ(z) ,
Z 1

�1

1

�� z
dµ(�).

The Stieltjes transform of the empirical spectral measure for the sample covariance matrix

Ĉp can be written as m
µ
Ĉp (z) =

1
p
tr
⇣
Ĉ� zIp

⌘�1
, since

m
µ
Ĉp (z) =

Z 1

�1

1

t� z
dµĈp(t)

=
1

p

pX

i=1

1

�i � z

=
1

p
tr
⇣
Ĉ� zIp

⌘�1

where �1, . . . ,�p are the eigenvalues of Ĉp.

Importantly, the convergence of m
µ
Ĉp (z) to the Stieltjes transform mµ(z) of a deterministic

probability measure implies the convergence of µĈp to µ.

1The support of Supp(µ) of a probability measure µ with density f is defined as the closure of the set {x 2
R|f(x) > 0}.
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Theorem 2.1.2. Let µ1, µ2, . . . be a series of probability measures with bounded support. If
there exists a probability measure µ such that

mµp(z) ! mµ(z)

for z 2 D with D a subset of C+ = {z 2 C|=z > 0} containing a limit point, then

µp(A) ! µ(A)

for A ⇢ R.

The inverse mapping from the Stieltjes transform to the corresponding probability measure
is given in the below theorem.

Theorem 2.1.3. If a, b are continuity points of µ, i.e. µ({a}) = µ({b}) = 0, then

µ([a, b]) =
1

⇡
lim

y!0+

Z
b

a

= [mµ(x+ iy)] dx.

And for all x 2 R,

µ({x}) = lim
y!0+

y= [mµ(x+ iy)] .

With the above properties of the Stieltjes transform, we can study the convergence of the

empirical spectral measure µĈp by working on the convergence of its Stieltjes transformm
µ
Ĉp (z),

which can be achieved by finding a deterministic equivalent (as will be defined in the following

subsection) of the resolvent
⇣
Ĉ� zIp

⌘�1
.

2.1.2 Deterministic equivalents

Definition 2.3. Consider a series of Hermitian random matrices A1,A2, . . . with Ap 2 Cp⇥p.
A deterministic equivalent of Ap is a series of deterministic matrices B1,B2, . . . with Bp 2 Cp⇥p,
such that for a deterministic matrix C of bounded spectral norm and deterministic vectors a,b
of bounded norms, we have

1

p
trCAp �

1

p
trCAp

a.s.�!0

a
⇤
Apb� a

⇤
Bpb

a.s.�!0

We will use the notation Ap $ Bp to stand for the fact that Bp is a deterministic equivalent
of Ap.

As an example, here we are interested in the deterministic equivalent of the resolvent

Q(z) =
⇣
Ĉ� zIp

⌘�1
(2.1)

for the sample covariance matrix Ĉ = 1
n

P
n

i=1 xix
H

i
with i.i.d. random vectors xi = C

1
2 zi for

C 2 Cp⇥p some Hermitian deterministic matrix, zi 2 Cp⇥1 random vectors of i.i.d. entries with
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zero mean, unit variance and finite fourth order moment. It was shown in [26] that Q(z) has
a deterministic equivalent Q̄(z), for which we have kQ̄(z) � E{Q(z)}k = o(1). We refer the
interested readers to Section 6.2 of [27] for more detailed results and a presentation of the Bai
and Silverstein method that can be used to prove these results. Here we present a quick way
to obtain the expression of Q̄(z) through simple manipulations involving the lemmas below.
The first lemma concerns a rank-1 perturbation of the resolvent Q, obtained by the Sherman-
Morrison formula.

Lemma 2.1. Define Q�i =
⇣

1
n

P
j 6=i

xjx
H

j
� zIp

⌘�1
, we have

Q = Q�i �
1

n

Q�ixix
H

i
Q�i

1 + 1
n
xH

i
Q�ixi

The particularity of Q�i is that it is independent of xi. The second lemma states the
convergence of xH

i
Q�ixi, which is a standard concentration result in RMT, known as the trace

lemma.

Lemma 2.2. For Q�i defined in Lemma 2.1, we have

1

n
x
H

i Q�ixi �
1

n
trCQ̄�i ! 0

1

n
trCQ̄�i �

1

n
trCQ̄ ! 0

With the above lemmas, we get

Ip =E
(
Q

 
1

n

nX

i=1

xix
H

i � zIp

!)

=
1

n

nX

i=1

E
n
Qxix

H

i

o
� zE{Q}

=
1

n

nX

i=1

E
(

Q�ixix
H

i

1 + 1
n
xH

i
Q�ixi

)
� zE{Q}

=E{Q}
 

C

1 + 1
n
trCQ̄

� zIp

!
+ ok·k(1) (2.2)

Therefore,

Q̄ =

 
C

1 + 1
n
trCQ̄

� zIp

!�1

.

We summarize these results in the below theorem.

Theorem 2.1.4. Let Q(z) be given by (2.1) for some z 2 C such that Ĉ � zIp is invertible,
then

Q(z) $ Q̄(z) =

✓
C

1 + �(z)
� zIp

◆�1
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where �(z) satisfies the equation

�(z) =
1

n
trC

✓
C

1 + �(z)
� zIp

◆�1

(2.3)

for all such z.

Note that (2.3) can admit more than one solution of �(z). In fact, some other constraints
should be imposed on �(z) (or a functional of �(z)) to ensure the uniqueness of solution, again
we refer to Section 6.2 of [27] for more information on this issue. In some cases, the uniqueness
of �(z) is easy to see. For instances, when n > p (i.e., the limit c of n/p ratio is greater than 1),
we can take z = 0, Equation 2.3 then becomes

� = c�1(1 + �),

which assumes a unique solution � = c

c�1 .

The derivation of the theoretical results in Chapter 4 relies mainly on the RMT tools (rank-1
perturbation, concentration arguments like the trace lemma, etc), while the analyses of Chap-
ters 4–6 resort to the leave-one-out procedure (which will be presented in the next section), in
addition to the usage of a manipulation similar to (2.2) for finding the deterministic equivalents
of some random matrices involved in these analyses.

2.2 Leave-one-out procedure for handling implicit solutions

2.2.1 General framework

Consider x1, . . . ,xn 2 Rp the feature vectors of training samples and y1, . . . , yn the corresponding
target outputs (yi = ± for binary classification methods like logistic regression and SVMs, or
yi 2 R in the case of regression). A large family of learning methods consists in finding a vector
� 2 Rp and a residual term �0 that minimize the empirical loss

1

n

nX

i=1

⇢(�T
xi + �0, yi)

for some loss function ⇢. It is often desired that � has a small norm, which is achieved by adding
a ridge regularization term to the minimization problem:

min
�,�0

1

n

nX

i=1

⇢(�T
xi + �0, yi) +

�

2
k�k

where � � 0 is a preset hyperparameter that controls the level of regularization (the unregular-
ized solution, if well-defined, is simply retrieved at � = 0).

In general, such learning methods do not admit an explicit solution. We consider thus the
following framework of implicit solutions that is satisfied by several most important learning
algorithms.
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�� =
1

n

nX

i=1

cixi (2.4)

where ci is given by (2.5) or (2.6) as detailed below, and for which we have
P

n

i=1 ci = 0.

When ⇢(�T
xi + �0, yi) is di↵erentiable with respect to �T

xi + �0, we simply have

ci =  (�T
xi + �0, yi) (2.5)

where  (�T
xi + �0, yi) = �@⇢(t,yi)

@t
|t=�Txi+�0 .

Since �T
xi = ⌘T(�i)xi + cikxik with ⌘(�i) =

1
n

P
j 6=i

cjxj , we get ci =  (⌘T(�i)xi + cikxik, yi),
which entails second expression of ci:

ci = gkxik2(⌘
T

(�i)xi + �0, yi) (2.6)

where

gkxik2(⌘
T

(�i)xi + �0, yi) =
proxkxik2(⌘

T

(�i)xi + �0, yi)� ⌘T(�i)xi + �0

kxik2

with the proximal mapping

proxt(a, b) = argmina02R

✓
⇢(a0, b) +

(a� a0)2

2t

◆
. (2.7)

The advantage of (2.6) is that it is well defined for non-di↵erentiable ⇢ by introducing a proximal
mapping.

This framework covers the methods studied in Chapters 4–6. For starters, in the logistic
regression method and other algorithms of empirical loss minimization with smooth convex loss
functions analyzed in Chapter 6, we have ci directly given by (2.5).

In the SVM method investigated in Chapter 5, we recover the solution with ci given by (2.6)
for the hinge loss

⇢(�T
xi + �0, yi) = max{0, 1� yi(�

T
xi + �0)},

which is a non-smooth loss function.

For the kernel method discussed in Chapter 4, the framework (2.4) is satisfied not with xi, but
with a known functional (mapping) of xi. We stick here to the notation of xi for convenience.
As a semi-supervised learning method involving labelled and unlabelled data, its solution is
retrieved by letting ci = yi if xi is labelled with yi = ±1 and ci = �T

xi (i.e., with �0 = 0) if
xi is unlabelled, in which case ci is the sought-for solution allowing for the classification of xi.
Additionally, it is interesting to note that in the unsupervised method of PCA, the solution �,
which is an eigenvector of the matrix 1

n

P
n

i=1 xix
T

i
, is also covered by this framework with � the

largest eigenvalue of 1
n

P
n

i=1 xix
T

i
and ci = �T

xi.

The objective of this section is to explain the main arguments in the application of the
leave-one-out procedure for studying the implicit solutions under the above framework, without
going into the details of rigorous proofs.
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2.2.2 Common step: leave-one-observation-out

Assumption 2.1. The training data samples x1, . . . ,xn 2 Rp are i.i.d. observations from a

common distribution D. For all i 2 {1, . . . , n}, xi � E{xi} = C

1
2
i
zi for some random vector

zi 2 Rp of i.i.d. entries with zero mean, unit variance and finite fourth order moment, Ci 2 Rp⇥p

some symmetric matrix with kCik = O(1) and kC�1
i

k = O(1), and kE{xi}k = O(1).

The ratio c = n

p
is uniformly bounded in (0,+1) for arbitrarily large p.

In the analyses of this thesis and other works falling under the common large dimensional
setting described by Assumption 2.1, where the data vectors xi 2 Rp have non-negligible, inde-
pendent variations in all p directions, and with the number n of the data samples comparable
to p, it is found that � is a random vector for which k� � E{�}k remains non-negligible, while
�0 converges to a deterministic constant. Therefore, we can treat �0 as a deterministic constant
when studying the statistical behavior with the help of (2.4), then find the value of �0 with
the condition 1

n

P
n

i=1 ci = 0. For convenience, we let here �0 = 0 so that �T
xi + �0 can be

simplified as �T
xi. The general discussion on � with arbitrary �0 follows exactly the same

reasoning. Again, to improve readability we consider here ci given by (2.5) (for di↵erentiable ⇢).
The derivation for the more general form (2.6) can be done with a similar reasoning, leading to
results of the same nature.

The main di�culty of studying � with (2.4) lies in the statistical characterization of the left-
hand term in (2.4). Imagine that if � was independent of xi , then the statistical distribution
of the left-hand term was known as a function of the statistical distributions of (xi, yi) and �.
Obviously, this is a false statement as � is implicitly dependent of xi. Thus a crucial task in
these analyses is to characterize this implicit dependence between xi and �.

The key idea of the leave-one-observation-out step is to introduce a leave-one-observation-out
version �(�i) of the solution �, obtained by removing a training sample xi from the learning
process. Precisely, �(�i) is the solution given by the minimization below

min
�

1

n

X

j 6=i

⇢(�T
xj , yj) +

�

2
k�k2.

Thus �(�i) is by definition independent of xi. As there are numerous data samples, it makes
sense that2

�(�i) ' �.

While �T

(�i)xi is understandably quite di↵erent from �T
xi due to the independence between

�(�i) and xi, for other data vectors xj still included in the training of �(�i), we should have

�T

(�i)xj ' �T
xj , j 6= i.

To better understand this remark, it helps to point out that � � �(�i) ' 1
n
sixi for some scalar

si (as will be demonstrated in the following). Clearly, as xT

i
xi � x

T

i
xj for j 6= i, (� � �(i))

T
xi

is not negligible even when (� � �(i))
T
xj are so.

2The notation ' is understood as follows. For two sequences s1(p), s2(p) of scalars, s1 ' s2 if |s1 �
s2|/min{|s1|, |s2|} ! 0. As to the multidimensional objects, we write v1 ' v2 when v1(p),v2(p) 2 Rp are
two sequences of vectors with kv1 � v2k/min{kv1k, kv2k} ! 0, and for M1(p),M2(p) 2 Rp⇥p two sequences of
matrices, M1 ' M2 indicates tr(M1 �M2)

2
/min{tr(M1)

2
, tr(M2)

2} ! 0.
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Since

��(�i) =
1

n

nX

j 6=i

 (�T

(�i)xj , yj)xj ,

subtracting the above equation from (2.4), we get

�
�
� � �(�i)

�
=

1

n

nX

j 6=i

h
 (�T

xj , yj)�  (�T

(�i)xj , yj)
i
xj +

1

n
cixi

=
1

n

nX

j 6=i

@ (�T
xj , yj)

@�Txj

(�T
xj , y)xjx

T

j

�
� � �(�i)

�
+

1

n
cixi.

It follows that

� � �(�i) =

0

@�Ip +
1

n

nX

j 6=i

djxjx
T

j

1

A
�1

1

n
cixi

where dj =
@ (�T

(�i)xj ,yj)

@�T

(�i)xj
> 0 (due to the convexity of ⇢). Then,

�T
xi � �T

(�i)xi =
1

n
cix

T

0

@�Ip +
1

n

nX

j 6=i

djxjx
T

j

1

A
�1

xi.

Since xi is independent of the matrix �Ip +
1
n

P
n

j 6=i
djxjx

T

j
, standard results from RMT such as

the trace lemma (Lemma 2.2) suggest the following convergence (under some conditions on ⇢
and the data distribution)

1

n
x
T

0

@�Ip +
1

n

nX

j 6=i

djxjx
T

j

1

A
�1

xi ! i.

for some deterministic constant i = O(1). This amounts to

�T
xi ' �T

(�i)xi + ici,

and consequently

ci '  (�T

(�i)xi + ici, yi).

In the end, we get

ci = gi(�
T

(�i)xi, yi)

where

gi(�
T

(�i)xi, yi) =
proxi(�

T

(�i)xi, yi)� �T

(�i)xi

i
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with the proximal mapping proxt(a, b) given by (2.7).

As such, the leave-one-observation-out step allows us to express ci as a function of the product
�T

(�i)xi of two independent random vectors �(�i) and xi, parametrized by a certain constant i
(the value of which remains to be determined). As a result, (2.4) becomes

�� ' 1

n

nX

i=1

gi(�
T

(�i)xi, yi)xi. (2.8)

2.2.3 Establishing systems of equations: double leave-one-out method with
a second leave-one-feature-out step

After dealing with the statistical dependence inside ci =  (�T

(�i)xj , yj) by approximating it

with gi(�
T

(�i)xi, yi) in the above leave-one-observation-out step, we shall try to address the

dependence between ci and xi for a further treatment of the left-hand term in (2.4). Other than
that, recall that we still need to determine the value of i.

In the double leave-one-out method with a second leave-one-feature-out step (employed in
[6, 23, 8]), these two aforementioned objectives are achieved by mathematical manipulations
relying on the condition that the entries of � have a symmetric role, which entails the same
condition on the feature vectors xi and the underlying classification/regression signal �⇤ that
we hope to find. For instance, this can be achieved by assuming that xi ⇠ N(0p, Ip) and �⇤ = 0p

(as in [23]) or �⇤ has almost i.i.d. entries (as in [8]).

We show here the example of the M-estimation regression method discussed in [6], with more
rigorous results subsequently given by [23]. The regression problem of [6] is formulated as

min
�

1

n

nX

i=1

⇢(yi � �T
xi)

for some convex loss function ⇢ and with continuous yi 2 R given by

yi = x
T

i �
⇤ + ✏i

where �⇤ 2 Rp is a deterministic vector and ✏i 2 R a random scalar independent of xi. It su�ces
to take � = 0 and

ci =  (yi � �T
xi) = �⇢0(yi � �T

xi)

for the solution of the M-estimation problem to be expressed by (2.4). Here we do not consider
the case of n < p, where the above repression problem is clearly not well defined.

Conforming to the assumptions required for the leave-one-feature-out manipulation in [6],
we let �⇤ = 0p and xi ⇠ N(0p, Ip). Under these conditions, the entries of the solution � play
symmetric roles. Recall also that i is the limiting value of

1

n
x
T

0

@ 1

n

nX

j 6=i

 0(yj � �T

(�i)xj)xjx
T

j

1

A
�1

xi.
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As xi ⇠ N(0p, Ip), the above term is approximated by

1

n
tr

0

@ 1

n

nX

j 6=i

 0(yj � �T

(�i)xj)xjx
T

j

1

A
�1

,

and it is easy to see that all i have the same value . Without loss of generality, we focus on
the first entry �(1) of �. By considering separately �(1) and the vector of remaining entries
�(S1) = �(2, . . . , p), (2.4) becomes

1

n

nX

i=1

cixi(1) = 0

1

n

nX

i=1

cixi(S1) = 0p�1. (2.9)

The main concept of the leave-one-feature-out step is to bring in the notion of a solution
⌫ 2 Rp�1 obtained by removing one element (e.g., the first) from the feature vectors xi, i.e.,

1

n

nX

i=1

 (yi � xi(S1)
T⌫)xi(S1) = 0. (2.10)

The interest of  (yi � xi(S1)T⌫), in contrast to ci, is that  (yi � xi(S1)T⌫1) is (by definition)
independent of xi(1). We hope then to relate ci to  (yi�xi(S1)T⌫), in an attempt to characterize
the dependence between ci and xi(1).

Intuitively, in the regime of large p, we have

⌫Txi(S1) ' �T
xi,

implying that

ci '  (yi � xi(S1)
T⌫).

Therefore, by subtracting (2.10) from (2.9), we get
"
1

n

nX

i=1

� 0(yi � xi(S1)
T⌫)xi(S1)xi(S1)

T

#
(�(S1)� ⌫)�

"
1

n

nX

i=1

 0(yi � xi(S1)
T⌫)xi(S1)xi(1)

#
�(1)

' 0.

Then,

⌫ � �(S1) '
"
1

n

nX

i=1

 0(yi � xi(S1)
T⌫)xi(S1)xi(S1)

T

#�1 "
1

n

nX

i=1

 0(yi � xi(S1)
T⌫)xi(S1)xi(1)

#
�(1).

(2.11)

Similarly, the first line of (2.9) reads

1

n

nX

i=1

cixi(1) '
1

n

nX

i=1

 (yi � xi(S1)
T⌫)xi(1)

+
1

n

nX

i=1

 0(yi � xi(S1)
T⌫)

h
xi(S1)

T (⌫ � �(S1))� �(1)xi(1)
i
xi(1)

' 0.
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Substituting (2.11) into the above equation, we get

1

n

nX

i=1

cixi(1) '
1

n

nX

i=1

 (yi � xi(S1)
T⌫)xi(1)� ⇠1�(1) ' 0

where

⇠r1 = u
T

1


D(�1) �D(�1)U(�1)

⇣
U

T

(�1)D(�1)U(�1)

⌘�1
U

T

(�1)D(�1)

�
u1

with

u1 =
1p
n
[x1(1), . . . ,xn(1)]

T 2 Rn

U(�1) =
1p
n
[x1(S1), . . . ,xn(S1)]

T 2 Rn⇥(p�1)

D(�1) = diag
h
 0(y1 � x1(S1)

T⌫), . . . , 0(yn � xn(S1)
T⌫)

i
2 Rn⇥n.

As U(�1) and D(�1) are evidently independent of u1, experience from the trace lemma
(Lemma 2.2) of RMT suggests that

⇠r1 ' 1

n
tr


D(�1) �D(�1)U(�1)

⇣
U

T

(�1)D(�1)U(�1)

⌘�1
U

T

(�1)D(�1)

�
! ⇠

for some deterministic constant ⇠ = O(1). Finally, we get

1

n

nX

i=1

cixi(1) '
1

n

nX

i=1

 (yi � xi(S1)
T⌫)xi(1)� ⇠�(1) ' 0.

Hence, the average of cixi(1), which is the product of two dependent random variables ci and
xi(1) can be asymptotically replaced by the average of  (yi � xi(S1)T⌫)xi(1), where  (yi �
xi(S1)T⌫) is independent of xi(1), minus a rescaling of �(1). This remark is similar in spirit to
the key result �T

xi ' �T

(�i)xi + ci in the leave-one-observation-out step.

Since

⇠�(d) ' 1

n

nX

i=1

 (yi � xi(Sd)
T⌫)xi(d), d 2 {1, . . . , p}, (2.12)

we have by the central limit theorem that � follows asymptotically a normal distribution
N(0p,

�
2

p
Ip) for some deterministic (positive) constant � = O(1) satisfying

�2 ' k�k2 ' 1

⇠
E{ (yi � xi(S1)

T⌫)2} ' 1

⇠
E{c2i } ' 1

⇠
E{g(yi � �T

(�i)xi)
2}

' 1

⇠
E{g(yi � �zi)

2} (2.13)

for some random variable zi ⇠ N(0, 1) independent of yi.
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Now it remains to study the unknown deterministic constants  and ⇠. Notice first that

D(�1) �D(�1)U(�1)

⇣
U

T

(�1)D(�1)U(�1)

⌘�1
U

T

(�1)D(�1) = D

1
2
(�1)

⇥
In �P(�1)

⇤
D

1
2
(�1)

where

P(�1) = D

1
2
(�1)U(�1)

⇣
U

T

(�1)D(�1)U(�1)

⌘�1
U

T

(�1)D
1
2
(�1)

is a projection matrix of rank p� 1.

Using the rank-one perturbation result in Lemma 2.1 (an application of the Sherman-
Morrison formula), we have the following development for the diagonal elements P(�1)(i, i)
of P(�1):

P(�1)(i, i) =
1

n
 0(y1 � x1(S1)

T⌫)xi(S1)
T

⇣
U

T

(�1)D(�1)U(�1)

⌘�1
xi(S1)

=

1
n
 0(y1 � x1(S1)T⌫)xi(S1)T

⇣P
j 6=i

 0(yj � xj(S1)T⌫)xj(S1)xj(S1)T
⌘�1

xi(S1)

1 + 1
n
 0(y1 � x1(S1)T⌫)xi(S1)T

⇣P
j 6=i

 0(yj � xj(S1)T⌫)xj(S1)xj(S1)T
⌘�1

xi(S1)
.

With the concentration arguments already given in the previous discussion, we note that

1

n
 0(y1 � x1(S1)

T⌫)xi(S1)
T

0

@
X

j 6=i

 0(yj � xj(S1)
T⌫)xj(S1)xj(S1)

T

1

A
�1

xi(S1)

' 1

n
 0(y1 � x1(S1)

T⌫) tr

0

@
X

j 6=i

 0(yj � xj(S1)
T⌫)xj(S1)xj(S1)

T

1

A
�1

'  0(y1 � x1(S1)
T⌫).

Therefore,

P(�1)(i, i) '
 0(y1 � x1(S1)T⌫)

1 +  0(y1 � x1(S1)T⌫)
.

Since P(�1) is a projection matrix of rank p� 1, we have the following equation of :

1

n

nX

i=1

P(�1)(i, i) '
1

n

nX

i=1

 0(y1 � x1(S1)T⌫)

1 +  0(y1 � x1(S1)T⌫)
' p

n
.

Recall that

⌫Txi(S1) ' �T
xi ' �T

(�i)xi + ci ' �T

(�i)xi + g(�
T

(�i)xi, yi),

we get

E
(

1

1 +  0(yi � �T

(�i)xi + g(yi � �T

(�i)xi))

)
' n� p

n
. (2.14)
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Furthermore, as

1

n
trD

1
2
(�1)

⇥
In �P(�1)

⇤
D

1
2
(�1) '

1

n

nX

i=1

 0(y1 � x1(S1)T⌫)

1 +  0(y1 � x1(S1)T⌫)
' 1



p

n
,

we get the following relation between  and ⇠:

⇠ ' 1



p

n
. (2.15)

Combining the two equations (2.15)–(2.14) of  and ⇠ with the final result (2.13) given in
the end of the leave-one-feature-out reasoning, we can determine the parameter � in the limiting
distribution N(0p,

�

p
Ip) of � by the following system of equations on � and :

�2 = cE{g(yi � �zi)
2}

E
⇢

1

1 +  0(yi � �zi + g(yi � �zi))

�
= 1� c�1

for some random variable zi ⇠ N(0, 1) independent of yi.

2.2.4 Establishing systems of equations: our approach with advanced RMT
tools

In this thesis, we consider more general settings than the assumptions required for the leave-
one-feature-out manipulation explained in the previous section. The generalization is twofold:
1) there is no constraint on the correlations between features, i.e., the covariance matrix of the
feature vectors xi is of arbitrary form; 2) to better describe real-world classification problems,
we allow the feature vectors xi to have di↵erent statistical behaviors according to their classes
by considering a Gaussian mixture model where

xi ⇠ N(µk,Ck), for xi 2 Ck (2.16)

with C1, . . . ,CK standing for the K classes. Even though the learning methods studied in this
dissertation are for classification, we stick to the example of M-estimation for regression discussed
in the previous section for better readability.

As explained in the beginning of Section 2.2.3, to further study the statistical behavior of
� after the leave-one-observation-out step (presented in Section 2.2.2), there are two remaining
tasks: determining i and treating the dependence between ci and xi in the sum of cixi.

We consider the Gaussian mixture data model (2.16), with nk be the count of xi 2 Ck for
k 2 {1, . . . ,K}. Also, we use the notations µ(i) = µk and C(i) = Ck for xi 2 Ck, i 2 {1, . . . , n}.
Remark first that under the Gaussian mixture model (2.16), we have

i '
1

n
x
T

0

@ 1

n

nX

j 6=i

 0(yj � �T
xj)xjx

T

j

1

A
�1

xi '
1

n
trCk

0

@ 1

n

nX

j 6=i

 0(yj � �T
xj)xjx

T

j

1

A
�1

' 1

n
trCk

 
1

n

nX

i=1

 0(yi � �T
xi)xix

T

i

!�1

! [k]

31



CHAPTER 2. TECHNICAL TOOLS

for xi 2 Ck, k 2 {1, . . . ,K}. As i can have K di↵erent values [1], . . . ,[K], the mathematical
arguments of Section 2.2.3 are no longer enough to determine all the [k]. We use here the
RMT tool of deterministic equivalents discussed in Section 2.1.2. Denote R̄ the deterministic
equivalent of

R =

 
1

n

nX

i=1

 0(yi � �T
xi)xix

T

i

!�1

,

and let

R(�i) =

0
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.

Using Lemmas 2.1–2.2, we have the following development similar to (2.2)
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L
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xi) for xi 2 Ck, k 2 {1, . . . ,K}. Hence,
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We get thus these K equations on [1], . . . ,[K]:
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, k 2 {1, . . . ,K}.

We now turn our attention to the dependence between ci and xi in the product cixi. Since
ci ' gi(yi ��T

(�i)xi) (an approximation from the leave-one-observation-out step), we approach

this problem by treating the dependence between �T

(�i)xi and xi. As a matter of fact, the
properties of Gaussian vectors allow us to decompose xi into an independent random vector of
�T

(�i)xi and a dependent part, as stated in the following lemma.

Lemma 2.3. Let w 2 Rp be a centred Gaussian vector with Cov{w} = C and v 2 Rp some
deterministic vector. Then,

w
0 = w � v

T
w

vTCv
Cv

is independent of vT
w.
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Lemma 2.3 is proven as follows: since all elements of w0 are jointly Gaussian with v
T
w and

E{(vT
w)w0} = E{(vT

w)w}� E
⇢
(vT

w)2

vTCv
Cv

�
= E{ww

T}v � v
TE{ww

T}v
vTCv

Cv = 0p,

the independence between the entries of w0 and v
T
w is thus proven by the property that two

uncorrelated jointly Gaussian variables are also independent.

Let us write

xi = µ(i) +wi = µ(i) +
�T

(�i)wi
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C(i)�(�i) +w

0
i, (2.17)

then we have, by Lemma 2.3, that w0
i
is independent of �T

(�i)wi (conditioned on �(�i)), thus also

independent of �T

(�i)xi. Substituting (2.17) into
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Hence, by treating the dependence between ci and xi in
P

n

i=1 cixi with Lemma 2.3, we show that
� can be approximately expressed as a deterministic vector plus a sum of gi(yi��T

(�i)xi)w0
i
with

gi(yi � �T

(�i)xi) independent of w0
i
(conditioned on �(�i)). This reminds us of a similar result

(2.12) given in the leave-one-feature-out derivation of the previous section, for xi ⇠ N(0p, Ip).

It can be shown from (2.18) (as an extension of the central limit theorem) that � follows
asymptotically a multivariate normal distribution. Notice also from (2.18) that

E{�} '
"

KX

k=1

nk

n
E{r[k]}Ck

#�1 
KX

k=1

nk

n
E{c[k]}µk

!

Cov{�} '
"

KX

k=1

nk

n
E{r[k]}Ck

#�1 
1

n2

nX

i=1

E{gi(yi � �T

(�i)xi)
2}E{w0

iw
0T
i }

!"
KX

k=1

nk

n
E{r[k]}Ck

#�1

'
"

KX

k=1

nk

n
E{r[k]}Ck

#�1 
1

n

KX

k=1

nk

n
E{c2[k]}Ck

!"
KX

k=1

nk

n
E{r[k]}Ck

#�1

.

33



CHAPTER 2. TECHNICAL TOOLS

In view of the above discussion, the limiting distribution of � is given as
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with the parameters ✓k,↵k, �k determined by the following system of equations: for k 2 {1, . . . ,K},
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some random vector independent of (x1, y1), . . . , (xn, yn).

As such, by combining the leave-one-out method with advanced RMT results, we can under-
stand how the structured distribution of data samples is reflected by that of �, providing thus
more insightful remarks on the interaction between the statistical parameters of data features
and the learning performance.
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Semi-supervised learning on graphs
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Chapter 3

Large dimensional behavior of
semi-supervised Laplacian
regularization algorithms

3.1 Introduction of graph-based semi-supervised learning

Graph-based methods are an important subset of semi-supervised learning. In these, one con-
siders data instances x1, . . . ,xn 2 Rp as vertices on a graph with edge weights wij encoding
their similarity, which is usually defined through a kernel function h, as with radial kernels of
the type wij = h(kxi � xjk2/p) which we shall focus on in this chapter. The motivation follows
from one’s expectation that two instances with a strong edge weight tend to belong to the same
class and thus vertices of a common class tend to aggregate. Standard methods for recovering
the classes of the unlabelled data then consist in various random walk [28] or label propagation
[29] algorithms on the graph which softly allocate “scores” for each node to belong to a partic-
ular class. These scores are then compared for each class in order to obtain a hard decision on
the individual unlabelled node class. A popular, and widely recognized as highly performing,
example is the PageRank approach [30].

Many of these algorithms also have the particularity of having a closed-form and quite in-
terrelated expression for their stationary points. These stationary points are also often found
to coincide with the solutions to optimization problems under constraints, independently estab-
lished. This is notably the case of [31] where the pre-known labels are imposed on the labelled
nodes or of [32] where a relaxation approach is used instead to allow for modifications of the
value of labelled nodes – this ensuring that erroneously labelled data or poorly informative la-
belled data do not hinder the algorithm performance. These algorithms are also known as the
semi-supervised Laplacian regularization methods. As is often the case in graph-related opti-
mization, a proper choice of the matrix representative of the inter-data a�nity is at the core
of scientific research and debates and mainly defines the di↵erences between any two schemes.
In particular, [33] suggests the use of a standard Laplacian representative, where [34] advises
for a normalized Laplacian approach. These individual choices correspondingly lead to di↵erent
versions of the label propagation methods on the graph, as discussed in [30].

There also exists another branch of manifold based semi-supervised learning [35, 36, 37]. In
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contrast to the methods discussed in this chapter, these approaches involve a step of manifold
learning, which plays a decisive role in the success of the learning task. These methods have been
theoretically investigated in [38, 39, 37, 40]. Another recent line of alternative works consider
SSL from a graph signal processing perspective [41, 42, 43, 44], where the classification scores
are viewed as smooth signals on the similarity graph and the learning task then consists in
recovering a bandlimited (understood in the graph Fourier transform domain) graph signal from
its known sample values.

3.2 Motivation and main findings

A likely key reason for the open-ended question of a most natural choice for the graph repre-
sentative arises from these methods being essentially built upon intuitive reasoning arising from
low dimensional data considerations rather than from mostly inaccessible theoretical results.
Indeed, the non-linear expression of the a�nity matrix W as well as the rather involved form
assumed by the algorithm output (although explicit) hinder the possibility to statistically evalu-
ate the algorithm performances for all finite n, p, even for simple data assumptions. The present
analysis is placed instead under a large dimensional data assumption, thus appropriate to the
present big-data paradigm, and proposes instead to derive, for the first time to the best of the
authors’ knowledge, theoretical results on the performance of the aforementioned algorithms in
the large n, p limit for a certain class of statistically distributed data x1, . . . ,xn 2 Rp. Precisely
due to the large data assumption, as we shall observe, most of the intuition leading up to the
aforementioned algorithms collapse as n, p ! 1 at a similar rate, and we shall prove that few
algorithms remain consistent in this regime.

Specifically, recall that the idea behind graph-based semi-supervised learning is to exploit
the similarity between data points and thus expect a clustering behavior of close-by data nodes.
In the large data assumption (i.e., p � 1), this similarity-based approach su↵ers a curse of
dimensionality. As the span of Rp grows exponentially with the data dimension p, when p is
large, the data points xi (if not too structured) are in general so sparsely distributed that their
pairwise distances tend to be similar regardless of their belonging to the same class or not.
The Gaussian mixture model that we define in Subsection 3.3.2 and will work on is a telling
example of this phenomenon; as we show, in a regime where the classes ought to be separable
(even by unsupervised methods as shown by [45]), the normalized distance kxi�xjk/

p
p of two

random di↵erent data instances xi and xj generated from this model converges to a constant ⌧
irrespective of the class of xi and xj in the Gaussian mixture and, consequently, the similarity
defined by wij = h(kxi � xjk2/p) is asymptotically the same for all pairs of data instances.
This phenomenon of high dimensional data is known under the name of distance concentration,
studied in many works [46, 47, 48, 49, 50]. The distance concentration of large dimensional data
should invalidate the notion of similarity, hence likely render graph-based methods ine↵ective. As
a direct consequence, the predicted outputs for classification, here referred to as scores, are flat
in the sense that they have the same asymptotic values, irrespective of the class. Nonetheless,
we will show that provided that appropriate amendments to the classification algorithms are
enforced, sensible classification on data sets generated from this model can still be achieved,
thanks to the information contained in the small fluctuations around these flat asymptotic
limit of scores. This flat limit is reminiscent of the work by [51] where the authors show that
the scores indeed share the same limit, irrespective of the class, in the presence of infinitely
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many unlabelled samples but for p � 2 fixed. Yet, despite the scores flatness, the authors
experimentally observed non-trivial classification in binary tasks thanks to the small di↵erence
between scores; they however did not provide any theoretical support for such behavior, for their
analysis failed to recover the small fluctuations.

In the same spirit as [30], we consider here a common framework for semi-supervised Lapla-
cian regularization algorithms, with the help of a normalization parameter � which allows ones
to retrieve commonly used algorithms by choosing specific values of �. The generalized opti-
mization framework is presented in Section 3.3.

The main contribution of the present chapter is to provide a quantitative performance
study of the generalized graph-based semi-supervised algorithm for large dimensional Gaussian-
mixture data and radial kernels, technically following the random matrix approach developed
by [45]. Our main findings are summarized as follows:

• Irrespective of the choice of the data a�nity matrix, the classification outcome is strongly
biased by the number of labelled data from each class and unlabelled data tend to be
classified into the class with most labelled nodes; we propose a normalization update of
the standard algorithms to correct this limitation.

• Once the aforementioned bias corrected, the choice of the a�nity matrix (and thus of the
parameter �) strongly impacts the performances; most importantly, within our framework,
both standard Laplacian (� = 0 here) and normalized Laplacian-based (� = �1

2) methods,
although widely discussed in the literature, fail in the large dimensional data regime. Of
the family of algorithms discussed above, only the PageRank approach (� = �1) is shown
to provide asymptotically acceptable results.

• The scores of belonging to each class attributed to individual nodes by the algorithms
are shown to asymptotically follow a Gaussian distribution with mean and covariance
depending on the statistical properties of classes, the ratio of labelled versus unlabelled
data, and the value of the first derivatives of the kernel function at the limiting value ⌧
of 1

p
kxi � xjk2 (which we recall is irrespective of the genuine classes of xi,xj). This last

finding notably allows one to predict the asymptotic performances of the semi-supervised
learning algorithms.

• From the latter result, three main outcomes unfold:

– when three classes or more are considered, there exist Gaussian mixture models for
which classification is shown to be impossible;

– despite PageRank’s consistency, we further justify that the choice � = �1 is not in
general optimal. For the case of 2-class learning, we provide a method to approach
the optimal value of �; this method is demonstrated on real data sets to convey
sometimes dramatic improvements in correct classification rates.

– for a 2-class learning task, necessary and su�cient conditions for asymptotic consis-
tency are: h0(⌧) < 0, h00(⌧)h(⌧) > h0(⌧)2; in particular, Gaussian kernels, failing to
meet the last condition, cannot deal with the large dimensional version of the “con-
centric spheres” task where the classes have the same means for the Gaussian mixture
model.
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In this chapter, theoretical results and related discussions are confirmed and illustrated with
simulations on Gaussian-mixture data as well as the popular MNIST data [52], which serves as
a comparison for our theoretical study on real world data sets. The consistent match of our
theoretical findings on MNIST data, despite their departing from the very large dimensional
and Gaussian-mixture assumption, suggests that our results have a certain robustness to these
assumptions and can be applied to a larger range of data. We indeed believe that, while only
the limiting behavior of Gaussian mixture inputs is characterized in this chapter (mostly for
technical reasons), the analysis reveals certain properties inherent to graph-based SSL methods,
which extend well beyond the Gaussian hypothesis.

3.3 Problem formulation

3.3.1 Optimization framework

Let x1, . . . ,xn 2 Rp be n data vectors belonging to K classes C1, . . . ,CK . The class association
of the n[l] vectors x1, . . . ,xn[l]

is known (these vectors will be referred to as labelled), while the
class of the remaining n[u] vectors xn[l]+1, . . . ,xn (n[l] +n[u] = n) is unknown (these are referred
to as unlabelled vectors). Within both labelled and unlabelled subsets, the data are organized
in such a way that the n[l]1 first vectors x1, . . . ,xn[l]1

belong to class C1, n[l]2 subsequent vectors
to C2, and so on, and similarly for the n[u]1, n[u]2, . . . first vectors of the set xn[l]+1, . . . ,xn. Note
already that this ordering is for notational convenience and shall not impact the generality of
our results.

The a�nity relation between the vectors x1, . . . ,xn is measured from the weight matrix W

defined by

W ⌘
⇢
wij = h

✓
1

p
kxi � xjk2

◆�n

i,j=1

for some non-negative function h. The matrix W may be seen as the adjacency matrix of the
n-node graph indexed by the vectors x1, . . . ,xn. We further denote by D the diagonal matrix
with {D}ii ⌘ di =

P
n

j=1wij the degree of the node associated to xi.

We next define a score matrix F = {fik} i=1,...,n
k=1,...,K

with fik representing the evaluated score

for xi to belong to Ck. In particular, following the conventions typically used in graph-based
semi-supervised learning [53], we shall a↵ect a unit score fik = 1 if xi is a labelled data of class
Ck and a null score for all fik0 with k0 6= k. In order to attribute classes to the unlabelled data,
scores are first a↵ected by means of the resolution of an optimization framework. We propose
here

F = argminF2Rn⇥k

KX

k=1

nX

i,j=1

wij

���d�i fik � d�
j
fjk

���
2

s.t. fik =

(
1, if xi 2 Ck

0, otherwise
, 1  i  n[l], 1  k  K (3.1)

where � 2 R is a given parameter. The interest of this generic formulation is that it coincides
with the standard Laplacian-based approach for � = 0 and with the normalized Laplacian-based
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approach for � = �1
2 , both discussed in Section 3.2. Note importantly that Equation (3.1) is

naturally motivated by the observation that large values of wij (thus “close” xi and xj) enforce
close values for fik and fjk, while small values for wij allow for more freedom in the choice of
fik and fjk.

By denoting

F =


F[l]

F[u]

�
, W =


W[ll] W[lu]

W[ul] W[uu]

�
, and D =


D[l] 0
0 D[u]

�

with F[l] 2 Rn[l] , W[ll] 2 Rn[l]⇥n[l] , D[l] 2 Rn[l]⇥n[l] , one easily finds (since the problem is a convex
quadratic optimization with linear equality constraints) the solution to (3.1) is explicitly given
by

F[u] =
⇣
Inu �D

�1��
[u] W[uu]D

�

[u]

⌘�1
D

�1��
[u] W[ul]D

�

[l]F[l]. (3.2)

Once these scores are a↵ected, a mere comparison between all scores fi1, . . . , fiK for unlabelled
data xi (i.e., for i > n[l]) is performed to decide on its class, i.e., the allocated class index Ĉxi

for vector xi is given by

Ĉxi = C
k̂
for k̂ = argmax1kK fik.

Note in passing that the formulation (3.2) implies in particular that

F[u] = D
�1��
[u] W[uu]D

�

[u]F[u] +D
�1��
[u] W[ul]D

�

[l]F[l] (3.3)

F[l] = {�xi2Ck
}1in[l]

1kK

(3.4)

and thus the matrix F is a stationary point for the algorithm constituted of the updating rules
(3.3) and (3.4) (when replacing the equal signs by a↵ectations). In particular, for � = �1,
the algorithm corresponds to the standard label propagation method found in the PageRank
algorithm for semi-supervised learning as discussed in [30], with the major di↵erence that F[l]

is systematically reset to its known value while in the study of [30], F[l] is allowed to evolve (for
reasons related to robustness to pre-labeling errors).

The technical objective of the chapter is to analyze the behavior of F[u] in the large n, p
regime for a Gaussian mixture model for the data x1, . . . ,xn. To this end, we shall first need
to design appropriate growth rate conditions for the Gaussian mixture statistics as p ! 1 (in
order to avoid trivializing the classification problem as p grows large) before proceeding to the
evaluation of the behavior of W, D, and thus F.

3.3.2 Model and Assumptions

In the remainder of the chapter, we shall assume that the data x1, . . . ,xn are extracted from a
Gaussian mixture model composed of K classes. Specifically, for k 2 {1, . . . ,K},

xi 2 Ck , xi ⇠ N(µk,Ck).

Consistently with the previous section, for each k, there are nk instances of vectors of class Ck,
among which n[l]k are labelled and n[u]k are unlabelled.
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As pointed out above, in the regime where n, p ! 1, special care must be taken to ensure
that the classes C1, . . . ,Ck, the statistics of which evolve with p, remain at a “somewhat constant”
distance from each other. This is to ensure that the classification problem does not become
asymptotically infeasible nor trivially simple at arbitrarily large p. Based on the earlier work
[45] where similar considerations were made, the behavior of the class means, covariances, and
cardinalities will follow the prescription below:

Assumption 3.1 (Growth Rate). Data samples x1, . . . ,xn are i.i.d. observations from a gen-
erative model such that, for k 2 {1, . . . ,K}, P(xi 2 Ck) = ⇢k, and

xi 2 Ck , xi ⇠ N(µk,Ck).

The ratios c0 = n

p
, c[l] =

n[l]

p
and c[u] =

n[u]

p
are uniformly bounded in (0,+1) for arbitrarily

large p. Besides,
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k
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k
= O(

p
p)

and tr (C�
k
)2 = O(

p
p).

It will also be convenient in the following to define

tk ⌘ 1
p
p
trC�

k

Tkk0 ⌘
1

p
trCkCk0

as well as the labelled-data centered notations

µ̃k ⌘ µk �
KX

k0=1

n[l]k0

n[l]
µk0

C̃k ⌘ Ck �
KX

k0=1

n[l]k0

n[l]
Ck0

t̃k ⌘ 1
p
p
tr C̃k.

Here are some remarks to interpret the conditions imposed on the data means µk and co-
variance matrices Ck in Assumption 3.1. Firstly, as the discussion is placed under a large
dimensional context, we need to ensure that the data vectors do not lie in a low dimensional
manifold; the fact that kCkk = O(1) along with kC�1

k
k = O(1) guarantees non-negligible varia-

tions in p linearly independent directions. Other conditions controlling the di↵erences between
the class statistics kµ�

k
k = O(1),trC�

k
= O(

p
p), and tr (C�

k
)2 = O(

p
p) are made to ensure

non-trivial scenarios where the classification of unlabelled data does not become impossible or
overly easy at extremely large values of p.

Note also that, unlike in the previous works [51, 40] where the number of labelled data n[l]

and data dimension p are considered fixed and the number of unlabelled data n[u] is supposed
to be infinite, we assume a regime where n[l], n[u] and p are simultaneously large. Letting p
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large allows us to investigate SSL in the context of large dimensional data. Further imposing
that n[l], n[u] grow at a controlled rate with respect to p (here at the same rate) allows for an
exact characterization of the limiting SSL performances, as a function of the hyperparameters
�, f and data statistics µk,Ck, in non-trivial classification scenarios (i.e., when classification is
neither asymptotically perfect nor impossible), instead of solely retrieving consistency bounds
as a function of growth rates in p, n[l], n[u]. This in turn allows for possible means of precise
parameter setting to reach optimal performances (which is not possible with results based on
bounds). While it may be claimed that SSL in practice often handles scenarios where n[u] � n[l],
assuming that n[u], n[l] are of the same order but that n[u] is multiple times n[l] actually maintains
the validity of our results so long that n[l] is not too small.

As a by-product of imposing the growth constraints on the data to ensure non-trivial clas-
sification, Assumption 3.1 induces the following proposition of distance concentration, easily
justified by a simple concentration of measure argument.

Proposition 3.3.1. Define ⌧ = 2
p
trC�. Under Assumption 5.1, we have that, for all i, j 2

{1, . . . , n},
1

p
kxi � xjk2 = ⌧ +O(p�

1
2 ). (3.5)

Equation (3.5) is the cornerstone of our analysis and states that all vector pairs xi,xj are
essentially at the same distance from one another as p gets large, irrespective of their classes.
This striking result evidently is in sharp opposition to the very motivation for the optimization
formulation (3.1) as discussed in the beginning of this chapter. It thus immediately entails that
the solution (3.2) to (3.1) is bound to produce asymptotically inconsistent results. We shall see
that this is indeed the case for all but a short range of values of �.

This being said, Equation (3.5) has an advantageous side as it allows for a Taylor expansion
of wij = h(1

p
kxi�xjk2) around h(⌧), provided h is su�ciently smooth around ⌧ , which is ensured

by our subsequent assumption.

Assumption 3.2 (Kernel function). The function h : R+ ! R+ is three-times continuously
di↵erentiable in a neighborhood of ⌧ .

Note that Assumption 3.2 does not constrain h aside from its local behavior around ⌧ . In
particular, we shall not restrict ourselves to matricesW arising from nonnegative definite kernels
as standard machine learning theory would advise [54].

The core technical part of the chapter now consists in expanding W, and subsequently all
terms intervening in (3.2), in a Taylor expansion of successive matrices of non-vanishing operator
norm. Note indeed that the magnitude of the individual entries in the Taylor expansion of W
needs not follow the magnitude of the operator norm of the resulting matrices;1 rather, great care
must be taken to only retain those matrices of non-vanishing operator norm. These technical
details call for advanced random matrix considerations and are discussed in the appendix and
in [45].

1For instance, kInk = 1, k1n1
T

nk = n, and kXk = O(
p
n) for X 2 Rn⇥n with i.i.d N(0, 1) entries, despite all

three matrices having entries of similar magnitude.
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3.4 Performance analysis on large dimensional data

In the course of this section, we provide in parallel a series of technical results under the proposed
setting (notably under Assumption 3.1) along with simulation results both on a 2-class Gaussian
mixture data model with µ1 = [4; 0p�1], µ2 = [0; 4; 0p�2], C1 = Ip and {C2}i,j = .4|i�j|(1+ 3p

p
),

as well as on real data sets, here images of eights and nines from the MNIST database [52], for
h(t) = exp(� t

2), i.e., the classical Gaussian (or heat) kernel. For reasons that shall become clear
in the following discussion, these figures depict the (size n) vectors of centered scores

n
F
�
[u]

o

·k
⌘
�
F[u]

 
·k �

1

K

KX

k0=1

�
F[u]

 
·k0

for k 2 {1, 2}. Obviously, the decision rule on F
�
[u] is the same as that on F[u].

Our first hinging result concerns the behavior of the score matrix F in the large n, p regime,
as per Assumption 3.1, and reads as follows.

Proposition 3.4.1. Let Assumptions 3.1–3.2 hold. Then, for i > n[l] (i.e., for xi an unlabelled
vector),

fik =
n[l]k

n

"
1 + (1 + �)

h0(⌧)

h(⌧)

tkp
p
+ zi

| {z }
O(n� 1

2 )

+O(n�1)

#
(3.6)

where zi = O(n� 1
2 ) is a certain random variable, function of xi, but independent of k.

Proposition 3.4.1 provides a clear overview of the outcome of the semi-supervised learning
algorithm. First note that fik = c[l]k + O(n� 1

2 ). Therefore, irrespective of xi, fik is strongly
biased towards c[l]k. If the values n[l]1, . . . , n[l]k di↵er by O(n), this induces a systematic asymp-
totic allocation of every xi to the class having largest c[l]k value. Figure 3.1 illustrates this
phenomenon, observed both on synthetic and real data sets, here for n[l]1 = 3n[l]2.

Gaussian mixture MNIST (8 and 9)

C1 C2

{F�
[u]}·1

{F�
[u]}·2

{F�
[u]}·1

{F�
[u]}·2

Figure 3.1: {F�
[u]}·1 and {F�

[u]}·2 for 2-class data, n = 1024, p = 784, nl/n = 1/16, n[u]1 = n[u]2,
n[l]1 = 3n[l]2, � = �1, Gaussian kernel.

Pursuing the analysis of Proposition 3.4.1 by now assuming that n[l]1 = . . . = n[l]K , the

comparison between fi1, . . . , fiK next revolves around the term of order O(n� 1
2 ). Since zi only

44



3.4. PERFORMANCE ANALYSIS ON LARGE DIMENSIONAL DATA

depends on xi and not on k, it induces a constant o↵set to the vector {F}
i·, thereby not

intervening in the class allocation. On the opposite, the term tk is independent of xi but
may vary with k, hereby possibly intervening in the class allocation, again an undesired e↵ect.
Figure 3.2 depicts the e↵ect of various choices of � for equal values of n[l]k. This deleterious

outcome can be avoided either by letting h0(⌧) = O(n� 1
2 ) or � = �1+O(n� 1

2 ). But, as discussed
in the study of [45] and later in the chapter, the choice of h such that h0(⌧) ' 0, if sometimes of
interest, is generally inappropriate.

The discussion above thus induces two important consequences to adapt the semi-supervised
learning algorithm to large data.

1. The final comparison step must be made upon the normalized scores

f̂ik ⌘ n

n[l]k
fik (3.7)

rather than upon the scores fik directly.

2. The parameter � must be chosen in such a way that

� = �1 +O(p�
1
2 ).
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Figure 3.2: {F�
[u]}·1, {F

�
[u]}·2 for 2-class data, n = 1024, p = 784, nl/n = 1/16, n[u]1 = n[u]2,

n[l]1 = n[l]2, Gaussian kernel.
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Under these two amendments of the algorithm, according to Proposition 3.4.1, the perfor-
mance of the semi-supervised learning algorithm now relies upon terms of magnitude O(n�1),
which are so far left undefined. A thorough analysis of these terms allows for a complete un-
derstanding of the asymptotic behavior of the normalized scores f̂ik, as presented in our next
result.

Theorem 3.4.1. For xi 2 Cb an unlabelled vector (i.e., i > n[l]), let F̂ = {f̂ik} i=1,...,n
k=1,...,K

with f̂ik

given by (3.7), and � = �1 + �p
p
for � = O(1). Then, under Assumptions 3.1–3.2,

p{F̂}i· = p(1 + zi)1K + gi + oP (1)

gi ⇠ N(mb,⌃b)

where zi is as in Proposition 3.4.1 and

{mb}a = �2h0(⌧)

h(⌧)
µ̃T

a µ̃b +

✓
h00(⌧)

h(⌧)
� h0(⌧)2

h(⌧)2

◆
t̃at̃b +

n�

n[l]

h0(⌧)

h(⌧)
ta (3.8)

{⌃b}a1a2 = 2

✓
h00(⌧)

h(⌧)
� h0(⌧)2

h(⌧)2

◆2

Tbbta1ta2 + 4
h0(⌧)2

h(⌧)2


µ�T
a1
Cbµ

�
a2

+ �a1a2
Tb,a1

⇢a1c[l]

�
. (3.9)

Besides, there exists A ⇢ �({{x1, . . . , xn[l]
}, p = 1, 2, . . .}) (the �-field induced by the labelled

variables) with P (A) = 1 over which (3.8)–(3.9) also hold conditionally to {{x1, . . . , xn[l]
}, p =

1, 2, . . .}.

Note that the statistics of gi are independent of the realization of x1, . . . ,x[l] when � =

�1 + O( 1p
p
). This in fact no longer holds when ↵ is outside this regime, as pointed out by

Theorem A.1.1 in the appendix which provides the asymptotic behavior of {F̂}i· for all values
of � (and thus generalizes Theorem 3.4.1).

Since the ordering of the entries of {F̂}i· is the same as that of {F̂}i· � (1 + zi)1K , Theo-
rem 3.4.1 amounts to saying that the probability of correctly classifying unlabeled vectors xi

genuinely belonging to class Cb is asymptotically given by the probability of {gi}b being the
maximal element of gi. This is formulated in the following corollary.

Corollary 3.1. Let Assumptions 3.1–3.2 hold. Then, under the notations of Theorem 3.4.1,

P (xi ! Cb|xi 2 Cb)� P
✓
{gi}b > max

a 6=b

({gi}a) |xi 2 Cb

◆
! 0.

In particular, for K = 2, and a 6= b 2 {1, 2},

P
✓
{gi}b > max

a 6=b

{gi}a|xi 2 Cb

◆
= �(✓ab ), with ✓ab ⌘ {mb}b � {mb}ap

{⌃b}bb + {⌃b}aa � 2{⌃b}ab

where �(u) = 1
2⇡

R
u

�1 e�
t2

2 dt is the Gaussian distribution function.

Corollary 3.1 allows us to approach the empirical classification accuracy as approximating
it with the probability of correct classification given in the corollary. Figure 3.3 displays a
comparison between simulated accuracy from various pairs of digits from the MNIST data

46



3.4. PERFORMANCE ANALYSIS ON LARGE DIMENSIONAL DATA

against our theoretical results; to apply our results, a 2-class Gaussian mixture model is assumed
with means and covariances equal to the empirical means and covariances of the individual
digits, evaluated from the full 60 000-image MNIST database. It is quite interesting to observe
that, despite the obvious inadequacy of a Gaussian mixture model for this image database, the
theoretical predictions are in strong agreement with the practical performances.

Remarkably, by substituting Equations 3.8–3.9 into the expression of the asymptotic perfor-
mance given in Corollary 3.1, we conclude that with an optimally chosen �, the high dimensional
probability of correct classification increases with larger c[l] = n[l]/n, while exhibiting a negli-
gible growth with respect to c[u]. This suggests an ine�cient learning from the information of
unlabelled data. We refer to Section 3.6 and Chapter 4 for further discussion on this issue.
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Figure 3.3: Theoretical and empirical accuracy as a function of � for 2-class MNIST data (top:
digits (0,1), middle: digits (1,7), bottom: digits (8,9)), n = 1024, p = 784, n[l]/n = 1/16,
n[u]1 = n[u]2, Gaussian kernel. Averaged over 50 iterations.
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3.5 Consequences

3.5.1 Semi-Supervised Learning beyond Two Classes

An immediate consequence of Corollary 3.1 is that, for K > 2, there exists a Gaussian mixture
model for which the semi-supervised learning algorithms under study necessarily fail to classify
at least one class. To see this, we consider K = 3 and let µ3 = 3µ2 = 6µ1, C1 = C2 = C3,
n1 = n2 = n3, n[l]1 = n[l]2 = n[l]3. First, it follows from Corollary 3.1 that,

P (xi ! C2|xi 2 C2)  P ({gi}2 > {gi}1|xi 2 C2) + o(1) = �(✓12) + o(1)

P (xi ! C3|xi 2 C3)  P ({gi}3 > {gi}1|xi 2 C3) + o(1) = �(✓13) + o(1)

Then, under Assumptions 3.1–3.2 and the notations of Corollary 3.1,

✓12 = sgn(h0(⌧))
µ2
1p

{⌃2}22 + {⌃2}11 � 2{⌃2}12

✓13 = �sgn(h0(⌧))
15µ2

1p
{⌃3}33 + {⌃3}11 � 2{⌃3}13

so that h0(⌧) < 0 ) ✓12 < 0, h0(⌧) > 0 ) ✓13 < 0, while h0(⌧) = 0 ) ✓12 = ✓13 = 0. As such,
the correct classification rate of elements of C2 and C3 cannot be simultaneously greater than 1

2 ,
leading to necessarily inconsistent classifications.

It is nonetheless easy to check that this kind of inconsistency cannot occur if µ1,µ2 and µ3

are mutually orthogonal (which is often bound to occur with large dimensional data). Indeed,
note that all first three terms at the right-hand side of (3.8) can be viewed as products of some
centered vectors ṽk = vk �

P
K

k0=1 rk0vk0 where
P

K

k0=1 rk0 = 1. Inconsistency occurs to class
k if there exist a, b 6= k such that ṽ

T

k
ṽb > ṽ

T

k
ṽk > ṽ

T

k
ṽa. To better understand the cause of

this inconsistency, let us consider two extreme scenarios: (i) the vk di↵er by ‘intensity’, i.e.,
vk = ekv for k 2 {1, . . . ,K}, or (ii) the vk di↵er by ‘direction’, i.e, vk = v+uk with orthogonal
uk’s. In scenario (i), let emin = argmink2{1,...,K} ek and smax = argmaxk2{1,...,K} ek; then, for

k 6= {emin, emax}, min{ṽT

k
ṽemin , ṽ

T

k
ṽemax} < ṽ

T

k
ṽk < max{ṽT

k
ṽemin , ṽ

T

k
ṽemax} and inconsistency is

thus observed for classes k 6= {emin, emax}. Contrarily, in scenario (ii), for all k 6= k0 2 {1, . . . ,K},
ṽ
T

k
ṽk � ṽ

T

k
ṽk0 since ṽ

T

k
ṽk � 0 and ṽ

T

k
ṽk0  0. As such, inconsistency is less likely to occur if

the vk’s have very di↵erent directions.

3.5.2 Choice of h and Suboptimality of the Heat Kernel

As a consequence of the previous section, we shall from here on concentrate on the semi-
supervised classification of K = 2 classes. In this case, it is easily seen that,

(K = 2) 8a 6= b 2 {1, 2}, kµ̃bk2 � µ̃T

b µ̃a, t̃2b � t̃at̃b

with equalities respectively for µa = µb and ta = tb. This result, along with Corollary 3.1,
implies the necessity of the conditions

h0(⌧) < 0, h00(⌧)h(⌧) > h0(⌧)2
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to fully discriminate Gaussian mixtures. As such, from Corollary 3.1, by letting � = �1, semi-
supervised classification of K = 2 classes is always consistent under these conditions.

A quite surprising outcome of the necessary conditions on the derivatives of h is that the
widely used Gaussian (or heat) kernel h(t) = exp(� t

2�2 ), while fulfilling the condition h0(t) < 0
for all t (and thus h0(⌧) < 0), only satisfies h00(t)f(t) = h0(t)2. This indicates that discrimination
over t1, . . . , tK , under the conditions of Assumption 3.1, is asymptotically not possible with a
Gaussian kernel. This remark is illustrated in Figure 3.4 for a discriminative task between
two centered isotropic Gaussian classes only di↵ering by the trace of their covariance matrices.
There, irrespective of the choice of the bandwidth �, the Gaussian kernel leads to a constant
1/2 accuracy, where a mere second order polynomial kernel selected upon its derivatives at
⌧ demonstrates good performances. Since p-dimensional isotropic Gaussian vectors tend to
concentrate “close to” the surface of a sphere, this thus suggests that Gaussian kernels are not
inappropriate to solve the large dimensional generalization of the “concentric spheres” task (for
which they are very e�cient in small dimensions). In passing, the right-hand side of Figure 3.4
confirms the need for h00(⌧)h(⌧)� h0(⌧)2 to be positive (there |h0(⌧)| < 1) as an accuracy lower
than 1/2 is obtained for h00(⌧)h(⌧)� h0(⌧)2 < 0.

Gaussian kernel Polynomial kernel of degree 2
f(t) = exp(� t

2�2 ) h(⌧) = h00(⌧) = 1

2�5 2�2 21 24

0.5

0.75

1

�
2
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h
00(⌧)h(⌧) > h

0(⌧)2

h
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Figure 3.4: Empirical accuracy for 2-class Gaussian data with µ1 = µ2, C1 = Ip and C2 =
(1 + 3p

p
)Ip, n = 1024, p = 784, nl/n = 1/16, n[u]1 = n[u]2, n[l]1 = n[l]2, � = �1.

3.6 Summary and remarks

This chapter is part of a series of works evaluating the performance of kernel-based machine
learning methods in the large dimensional data regime [45, 55, 56]. Relying on the derivations
of [45] that provide a Taylor expansion of radial kernel matrices around the limiting common
value ⌧ of 1

p
kxi�xjk2 for i 6= j and at large p, we observed that the choice of the kernel function

h merely a↵ects the classification performances through the successive derivatives of h at ⌧ . Of
importance is the finding that, under a heat kernel assumption h(t) = exp(� t

2�2 ), the studied
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semi-supervised learning method fails to classify Gaussian mixtures of the type N(0,Ck), which
unsupervised learning or LS-SVMs are able to do [45, 55]. This paradox may deserve a more
structural way of considering together methods on the spectrum from unsupervised to supervised
learning.

The very fact that the kernel matrix W is essentially equivalent to the matrix h(⌧)1n1Tn
(the n ⇥ n matrix filled with h(⌧) values), strongly disrupting the expected natural behavior
of kernels. It is also quite instructive to note that, from the proof of our main results, the
terms remaining after the expansion of D�1��

[u] W[uu]D
�

[u] appearing in (3.2) almost all vanish,

strongly suggesting that similar results would be obtained if the inverse matrix in (3.2) were
discarded altogether. This implies that the intra-unlabelled data kernel W[uu] is of virtually no
asymptotic use, leading to a vanishing classification rate at c[l] ! 0. This consequence entails
that even the (unsupervised) clustering performance obtained by [45] is not achieved, despite
the presence of possibly numerous unlabelled data. A promising avenue of investigation would
consist in finding a proper approach to ensure that W[uu] is e↵ectively used in the algorithm,
which is the objective of the next chapter
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Chapter 4

Improved semi-supervised learning
with centering regularization

4.1 Motivation: inconsistency of existing algorithms on high
dimensional data

In the analysis of semi-supervised Laplacian regularization algorithms presented in the above
chapter, we proved that, regardless of the choice of Laplacian matrix, all these algorithms fail to
learn e↵ectively from large dimensional unlabelled data. This causes them to be surpassed by the
unsupervised method of spectral clustering, hence the inconsistency issue raise in Section of the
previous chapter. The objective of the present chapter is to search for a new graph regularization
approach allowing for a consistent semi-supervised learning on very high dimensional data.
To focus more on the question of consistency, we choose here to concentrate on the binary
classification problem to avoid irrelevant details at this stage. Correspondingly, rather than a
score matrix F, we define here a vector f = [f1, . . . , fn]T 2 Rn of scores with fi being the score
of xi. Let f = [f[l]; f[u]] where f[l] stands for the score vector of labelled set and f[u] for that
of unlabelled set. To eliminate the bias discussed in the previous chapter, we shall use in the
remainder of this chapter a class-balanced f[l] defined as

f[l] =

✓
In[l]

� 1

n[l]
1n[l]

1
T

n[l]

◆
y[l] (4.1)

where y[l] = [y1, . . . , yn[l]
]T is the label vector with yi = (�1)k if xi 2 Ck for i = {1, . . . , n[l]},

k = {1, 2}. Then, from the optimization framework presented in (3.1), we have the solution of
Laplacian regularization given by

f[u] = L
(�)�1
[uu] D

�1��
[u] W[ul]D

�

[l]f[l] (4.2)

where L
(�)
[uu] is the unlabelled subset of the generalized Laplacian matrix

L
(�) = In �D

�1��
WD

� .

Namely,

L
(�)
[uu] = In[u]

�D
�1��
[u] W[uu]D

�

[u].
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To gain more perspective on the cause of the ine�cient learning from unlabelled data, we
start with a discussion linking the issue to the data high dimensionality.

From a graph-signal processing perspective [57], since L(�)
[uu] is the Laplacian matrix on the

subgraph of unlabelled data, and a smooth signal s[u] on the unlabelled data subgraph typically

induces large values for the inverse smoothness penalty s
T

[u]L
(�)�1
[uu] s[u], we may consider the

operator Pu(s[u]) = L
(�)�1
[uu] s[u] as a “smoothness filter” strengthening smooth signals on the

unlabelled data subgraph. The unlabelled scores f[u] can be therefore seen as obtained by a
two-step procedure:

1. propagating the predetermined labelled scores f[l] through the graph with the �-normalized

weight matrix D
�1��
[u] W[ul]D

�

[l] through the label propagation operator

Pl(f[l]) = D
�1��
[u] W[ul]D

�

[l]f[l];

2. passing the received scores at unlabelled points from the above label propagation step

through the smoothness filter Pu(s[u]) = L
(�)�1
[uu] s[u] to finally get f[u] = Pu

�
Pl(f[l])

�
.

It is easy to see that the first step is essentially a supervised learning process, whereas the second
one makes it possible to capitalize on the global information contained in unlabelled data. How-
ever, as a consequence of the distance concentration phenomenon stated in Proposition 3.3.1, the
similarities (weights) wij between high dimensional data vectors are dominated by the constant
value h(⌧) plus some small fluctuations:

1

p
kxi � xjk2 = ⌧ +O(p�

1
2 ),

which results in the collapse of the smoothness filter:

Pu(s[u]) = L
(�)�1
[uu] s[u] '

✓
In[u]

� 1

n
1n[u]

1
T

n[u]

◆�1

s[u] = s[u] +
1

n[l]
(1Tn[u]

s[u])1n[u]
,

meaning that at large values of p, only the constant signal direction 1n[u]
is amplified by the

smoothness filter Pu.

To understand this behavior, we recall that constant signals with the same value at all points
are always considered to be the smoothest signal on the graph. This comes from the fact that all
weights wij have non-negative values, so the smoothness penalty term Q(s) =

P
i,j

wij(si � sj)2

is minimized at the value of zero if all elements of the signal s have the same value. Notice also
that in perfect situations where the data points in di↵erent class subgraphs are connected with
zero weights wij , class indicators (i.e., signals with constant values within class subgraphs which
are di↵erent for each class) are just as smooth as constant signals for they also minimize the
smoothness penalty term to zero. Even though such scenarios almost never happen in real life,
it is hoped that the inter-class similarities are su�ciently weak so that the smoothness filter Pu

is still e↵ective. What is problematic for high dimensional learning is that, when the similarities
wij tend to be indistinguishable due to the distance concentration issue of high dimensional
data vectors, constant signals have overwhelming advantages to the point that they become the
only direction privileged by the smoothness filter Pu, with almost no discrimination between all
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other directions. Consequently, there is nearly no utilization of the global information in high
dimensional unlabelled data through Laplacian regularizations.

In this chapter, a novel semi-supervised graph regularization algorithm is proposed to address
the aforementioned inconsistency problem of the traditional Laplacian approach with respect to
unlabelled data. The proposed improvement is simple to implement and e↵ective. To support
the proposition of this new approach, we present a rigorous theoretical analysis placed under
the large dimensional random matrix setting of large and numerous data (similar to the previ-
ous work [10] or to [58] in the context of spectral clustering). The proposed method is shown
by the analysis to induce a consistent semi-supervised learning from high dimensional data,
with labelled and unlabelled data learning e�ciency lowered bounded respectively by Laplacian
regularization and spectral clustering. As a matter of fact, the proposed method, featuring a
tuning hyperparameter, consistently relates semi-supervised learning to both unsupervised and
supervised learning in showing that, at the two extremes in the selection of the hyperparameter,
the performance of unsupervised spectral clustering and that of Laplacian regularization, which
is essentially a supervised learning method in high dimensions, are exactly recovered. With
the hyperparameter optimally set somewhere between these two extremes, the algorithm fulfills
precisely the semi-supervised learning goal of surpassing one-sided learning schemes by properly
combining them, resulting in a significant advantage over the traditional Laplacian regulariza-
tion. Beyond theoretical conclusions, the superiority of the new regularization method is also
illustrated by simulations on various real data sets.

4.2 Semi-supervised graph regularization with centered similar-
ity matrix

Based on the discussion of the previous section, we shall try to eliminate the dominant advantages
of constant signals in terms of graph smoothness, in an attempt to render the smoothness filter
Pu e↵ective in extracting class-structured signals from other non-informative directions. As
constant signals always have a smoothness penalty of zero, a very easy way to break their
optimal smoothness is to introduce negative weights in the graph so that the values of the
smoothness regularizer can go below zero. More specifically, when the intra-class similarities
are positive on average and the inter-class similarities are negative on average, class-structured
signals are bound to have a lower smoothness penalty than constant signals. However, the
implementation of such an idea using both positive and negative similarities is hindered by the
fact that the positivity of the data points degrees di =

P
n

j=1wij is no longer ensured, and having
negative degrees can lead to severely unstable results. Take for instance the label propagation
step Pl(f[l]) = D

�1��
[u] W[ul]D

�

[l]f[l], at an unlabelled point xi, the sum of the received scores

after that step equals to d�1��
i

Pn[l]

j=1(wijd
�

j
)fj , the sign of which obviously changes dramatically

with the signs of the degree of that point and those of labelled data, thus leading to extremely
unstable classification results.

To cope with this problem, we propose here the usage of centered similarities ŵij , for which
the positive and negative weights are balanced out at any data point, i.e., for all i 2 {1, . . . , n},
di =

P
n

j=1wij = 0. Given any similarity matrix W, its centered version Ŵ = {ŵij}ni,j=1 is
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easily obtained by applying a projection matrix P =
�
In � 1

n
1n1

T
n

�
on both sides:

Ŵ = PWP.

As a first advantage, the centering approach allows us to remove the degree matrix altogether
(for the degrees are exactly zero now) from the updated smoothness penalty

Q̂(s) =
nX

i,j=1

ŵij(si � sj)
2 = �s

T
Ŵs, (4.3)

securing thus a stable behavior of graph regularization with both positive and negative weights.

Another merit of using centered similarities is that the distance between the intra-class sim-
ilarities and inter-class similarities in the previous graph is preserved, in the sense that the
average of inter-class similarities minus the average of inter-class similarities stays unchanged
after centering. Since the total sum of centered similarities ŵij amounts to zero, the average
of intra-class similarities is always positive while that of inter-class similarities negative as long
as the former are greater on average than the latter, which remains a necessary condition for a
functional semi-supervised graph regularization. Furthermore, in the common situations where
the similarity matrices W are constructed through a kernel function, e.g., through the popu-
lar radial basis function (RBF) kernel wij = e�kxi�xjk2/t, there exists (by definition of kernel
functions) a mapping x 7! �(x) such that

wij = �(xi)
T�(xj).

Since

ŵij =

 
�(xi)�

1

n

nX

t=1

�(xt)

!T 
�(xj)�

1

n

nX

t=1

�(xt)

!
,

the centering operation is equivalent to translating the feature vectors �(xi) by moving their
center to the origin, meaning that the relative positions between feature vectors remain intact
after the centering step.

This being said, a problematic consequence of regularization procedures employing positive
and negative weights is that the convexity of the optimization problem is no longer ensured. In
fact, the optimization may have an infinite solution. To deal with this issue, we add a constraint
on the norm of the solution. Letting f[l] be given by (4.1), the new optimization problem may
now be posed as follows:

min
f[u]2R

n[u]
�f

T
Ŵf

s.t.kf[u]k2 = n[u]e
2. (4.4)

Naturally, the optimization can be solved by introducing a Laplacian multiplier ↵ to the
norm constraint kf[u]k2 = n[u]e

2 and the solution is given by

f[u] =
⇣
↵In[u]

� Ŵ[uu]

⌘�1
Ŵ[ul]f[l] (4.5)
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Algorithm 1 Semi-Supervised Graph Regularization with Centered Similarities

1: Input: n[l] pairs of labelled points and labels {(x1, y1), . . . , (xn[l]
, yn[l]

)} with yi 2 {�1, 1}
the class label of xi, and n[u] unlabelled data {xn[l]+1, . . . ,xn}.

2: Output: Classification of unlabelled data {xn[l]+1, . . . ,xn}.
3: Compute the similarity matrix W.
4: Compute the centered similarity matrix Ŵ = PWP with P = In � 1

n
1n1

T
n , and define

Ŵ =

"
Ŵ[ll] Ŵ[lu]

Ŵ[ul] Ŵ[uu]

#
.

5: Set f[l] =
⇣
In[l]

� 1
n[l]

1n[l]
1
T
n[l]

⌘
y[l] with y[l] the vector containing labelled yi.

6: Compute the class scores of unlabelled data f[u] =
⇣
↵In[u]

� Ŵ[uu]

⌘�1
Ŵ[ul]f[l] for some

↵ > kŴ[uu]k.
7: Classify unlabelled data {xn[l]+1, . . . ,xn} by the signs of f[u].

where ↵ is determined by ↵ > kŴ[uu]k and kf[u]k2 = n[u]e
2. In practice, ↵ can be used directly

as a parameter for more convenient implementation. We summarize the method in Algorithm 1.

The proposed algorithm induces almost no extra cost to the classical Laplacian approach,
except for the addition of the parameter ↵ controlling the norm of f[u]. As will be demonstrated
in the next section on performance analysis, the existence of this parameter, aside from making
the regularization with centered similarities a well-posed problem, actually allows one to adjust
the combination of labelled and unlabelled information in search for an optimal semi-supervised
learning performance.

4.3 Performance Analysis

With the proposition of the centered similarities regularization intuitively justified in Subsec-
tion 4.2, the main purpose of this section is to provide mathematical support for its e↵ective
high dimensional learning capabilities from not only labelled data but also from unlabelled data,
allowing for a theoretically guaranteed performance gain over the classical Laplacian approach
(through an enhanced utilization of unlabelled data). The theoretical results also point out that
the learning performance of the proposed method has an unlabelled data learning e�ciency that
is at least as good as spectral clustering, as opposed to Laplacian regularization.

We first enunciate the central theorem providing the statistical characterization of unla-
belled data scores f[u] obtained by the proposed updated algorithm. As the new algorithm will
be shown to draw both on labelled and unlabelled data information, the complex interactions
between these two types of data generate more intricate outcomes than in [10]. To facilitate the
interpretation of the theoretical results without cumbersome notations, we restrict the theorem
to the homoscedastic case as considered in linear discrimination analysis (i.e., the class covari-
ances are taken equal, C1 = C2 = C), without a↵ecting the key messages of the conclusions
given subsequently. We refer the interested reader to the appendix for an extended version of
the theorem along with its proof.

Theorem 4.3.1. Let Assumption 5.1 hold with C1 = C2 = C, h be three-times continuously
di↵erentiable in a neighborhood of ⌧ , and f[u] be the solution of (4.4) with fixed norm n[u]e

2.

55



CHAPTER 4. IMPROVED SEMI-SUPERVISED LEARNING WITH CENTERING
REGULARIZATION

Then, for n[l] + 1  i  n (i.e., xi unlabelled) and xi 2 Ck,

fi = gi + oP (1)

where
gi ⇠ N

⇣
(�1)k(1� ⇢k)m,�2

⌘

for some m,�2 > 0. More precisely, defining

✓ =
c[u]m

2c[l]
(4.6)

and letting s : (0, kC+ ⇢1⇢2(µ1 �µ2)(µ1 �µ2)Tk) ! (0,+1) be the injective function given by

s(⇠) = ⇠⇢1⇢2(µ1 � µ2)
T

n
Ip � ⇠

h
C + ⇢1⇢2(µ1 � µ2)(µ1 � µ2)

T

io�1
(µ1 � µ2). (4.7)

the values of m and �2 are determined by ⇢1⇢2m2 + �2 = e2 and

�2

m2
=

"
1�

✓
✓

1 + ✓

◆2 q(✓)

(⇢1⇢2)2c[u]

#�1"
!(✓) +

✓
✓

1 + ✓

◆2 q(✓)

⇢1⇢2c[u]
+

✓
1

1 + ✓

◆2 q(✓)

⇢1⇢2c[l]

#
(4.8)

where

q(✓) =
tr
⇥
(Ip � s�1(✓)C)�1C

⇤2

p [(µ1 � µ2)T(Ip � s�1(✓)C)�1(µ1 � µ2)]
2

!(✓) =
(µ1 � µ2)T(Ip � s�1(✓)C)�1

C(Ip � s�1(✓)C)�1(µ1 � µ2)

[(µ1 � µ2)T(Ip � s�1(✓)C)�1(µ1 � µ2)]
2 .

In the special cases where C1 = C2 = �2Ip, the above theorem admits a much simpler form.

Corollary 4.1. Under the conditions and notations of Theorem 4.3.1, let C1 = C2 = �2Ip.
Then the values of m, �2 are given by ⇢1⇢2m2 + �2 = e2 and

�2

m2
=

"
1�

✓
✓

1 + ✓

◆2 �4

kµ1 � µ2k4(⇢1⇢2)2c[u]

#�1"
�2

kµ1 � µ2k2
+

✓
✓

1 + ✓

◆2 �4

kµ1 � µ2k4⇢1⇢2c[u]

+

✓
1

1 + ✓

◆2 �4

kµ1 � µ2k4⇢1⇢2c[l]

#
. (4.9)

Like the centered similarities regularization, the random walk normalized Laplacian algo-
rithm, which is the only one ensuring non-trivial classification results among existing Laplacian
algorithms for high dimensional data (as we recall from Section4.3 of Chapter3), also gives
gi ⇠ N

�
(�1)k(1� ⇢k)m0,�02

�
for some other m0,�02 > 0 under the homoscedasticity assump-

tion of C1 = C2. We shall use the variance over square mean ratio r = �2/m2 as the inverse
performance measure (i.e., lower r indicates better classification results for high dimensional
data) in the following discussion. Denote by rlap the ratio of the random walk normalized
Laplacian algorithm, which is obtained from Theorem 3.4.1 in Chapter3 as

rlap =
(µ1 � µ2)TC(µ1 � µ2)

kµ1 � µ2k4
+

trC2

pkµ1 � µ2k4⇢1⇢2c[l]
(4.10)
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and by rctr the ratio for the centered similarities method, the expression of which has a rather
complicated form given by (4.8).

Note importantly that the quantity ✓(e) in fact reflects the ratio between the labelled data
scores f[l] and the unlabelled data scores f[u] as

✓ =
c[u]m

2c[l]
'

s
kE{f[u]}k2
kf[l]k2

.

We observe notably that, when kf[l]k2 � kE{f[u]}k2, ✓ goes to zero, at which value the unlabelled
data over dimension ratio c[u] = n[u]/p disappears from the expression of rctr, suggesting the
performance relies solely on the labelled data. Inversely, if ✓ goes to infinity, then it is the
labelled data ratio c[l] = n[l]/p that will be left out from (4.8), and the learning is only guided by
the unlabelled data. In other words, the quantity ✓ can be seen as a variable tuning the impacts
of the two types of data on the learning process, which is modified by changing the parameter e
in the equality constraint kf[u]k = n[u]e

2 of the optimization problem (4.4).

As stated in Subsection 4.2, the proposed method can be more conveniently implemented
by Algorithm 1, with f[u] computed by f[u] =

�
↵In[u]

� Ŵ[uu]

��1
Ŵ[ul]f[l] for some ↵ > kŴ[uu]k.

Obviously, the norm of f[u] is controlled by the hyperparameter ↵ with large ↵ implying small
kf[u]k2, and consequently small ✓, indicating that the labelled data information is emphasized at
great values of ↵. By the same reasoning, the unlabelled data information becomes more influ-
ential as ↵ gets close to its minimal limit ↵inf = kŴ[uu]k. Actually, taking ↵ 2

�
kŴ[uu]k,+1

�

infinitely near the two extremes of its admissible range allows to retrieve respectively the per-
formances of Laplacian regularization and spectral clustering, as will be demonstrated in the
following.

Firstly, following the argument in Subsection 4.2 that using centered similarities should
cause no loss of information as the di↵erence between the intra-class and inter-class similarities
is preserved, we indeed find, by comparing (4.8) and (4.10), that

lim
✓!0

rctr = rlap,

meaning that the performance of the classical Laplacian regularization can be perfectly retrieved
with the centered similarities approach by letting its learning process be completely guided with
labelled data. In practice, this is achieved by letting ↵! +1, at which kE{f[u]}k2 < kf[u]k2 ! 0,
leading to ✓ ! 0. We thus remark that, with an appropriately set ↵, the performance of the
proposed method is lowered bounded by that of Laplacian regularization.

After ensuring the superiority of the new regularization method over the original approach,
we now proceed to provide further guarantee on its unlabelled data learning e�ciency by com-
paring it to spectral clustering, the standard unsupervised graph learning technique.

Recall that the regular graph smoothness penalty term Q(s) of a signal s can be written as
Q(s) = s

T
L
(�)

s. In an unsupervised spectral learning manner, we therefore seek the unit-norm
vector that minimizes the smoothness penalty, which is the eigenvector of L associated with
the smallest eigenvalue. However, as Q(s) reaches its minimum at the trivial solution vector
s = D

��
1n, the sought-for solution is provided by the eigenvector associated with the second
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smallest eigenvalue. Instead, by (4.3), the updated smoothness penalty term with centered
similarities, that is Q̂(s) = s

T
Ŵs, does not achieves its minimum for “flat” signals, and thus

the eigenvector associated with the smallest eigenvalue is here a valid solution. Among the
two common choices of Laplaican matrices in spectral clustering, the unnormalized Laplacian
matrix L = D�W has long been known to behave unstably [20], as opposed to the symmetric

normalized Laplacian Ls = In � D
� 1

2WD
� 1

2 , so fair comparison should be made versus Ls

rather than L.

Let us define dinter(v) as the inter-cluster distance operator that takes as input a real-
valued vector v of dimension n, then returns the distance between the centroids of the clusters
formed by the set of points {vi|1  i  n,xi 2 Ck}, for k 2 {1, 2}; and dintra(v) be the intra-
cluster distance operator that returns the standard deviation within clusters. As the purpose
of clustering analysis is to produce clusters conforming to the intrinsic classes of data points,
with low variance within a cluster and large distance between clusters, the following proposition
(see the proof in the appendix) shows that the performance of the classical normalized spectral
clustering is practically the same as the one with centered similarities for high dimensional
data. In other terms, the high dimensional performance of Laplacian spectral clustering on data
samples of size n[u] is retrieved from the limiting results in Theorem 4.3.1 at ✓ ! +1 (when
spectral clustering leads to non-trivial partitioning). This remark is subsequently validated on
simulations in Figure 4.2, where the empirical performance of Laplacian spectral clustering is
found to closely match the theoretical performance of the centered similarity approach when
letting the learning process guided completely by unlabelled data.

Proposition 4.3.1. Under the conditions of Theorem 4.3.1, let vlap be the eigenvector of Ls

associated with the second smallest eigenvalue, and vctr the eigenvector of Ŵ associated with
the largest eigenvalue. Then,

dinter(vlap)

dintra(vlap)
=

dinter(vctr)

dintra(vctr)
+ oP (1)

for non-trivial clustering with dinter(vlap)/dintra(vlap), dinter(vctr)/dintra(vctr) = O(1) .

As explained before, the solution f[u] of the centered similarities regularization can be ex-

pressed as f[u] =
�
↵In[u]

� Ŵ[uu]

��1
Ŵ[ul]f[l] for some ↵ > kŴ[uu]k. Clearly, as ↵ # kŴ[uu]k, f[u]

tends to align to the eigenvector of Ŵ[uu] associated with the largest eigenvalue, and we thus
retrieve the performance of spectral clustering on the unlabelled data subgraph.

It is worth pointing out that, according to the results of [58], it may occur that the solution
v[u] obtained by spectral clustering be pure noise, i.e., E{v[u]} ' 0n[u]

for all large n, p. For
example, with C1 = C2 = I, we have E{v[u]} ' 0n[u]

unless

c[u] >
1

(⇢1⇢2)2kµ1 � µ2k4
,

suggesting that there exists a threshold for c[u] under which spectral clustering performs equally
as random guess. This behavior of spectral clustering relates to an important phase transition
phenomenon on spiked random matrix models discussed in [58] (see, e.g., [59, 60]). The phase
transition phenomenon imples that the proposed semi-supervised learning scheme cannot pro-
duce reasonable classification results (i.e., bounded values of rctr) by solely relying on unlabelled
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Figure 4.1: Asymptotic probability of correct classification as a function of ✓ with ⇢1 = ⇢2,
p = 100, µ1 = �µ2 = [�1, 0, . . . , 0]T, {C}i,j = .1|i�j|. Left: various c[u] with c[l] = 1. Right:
various c[l] with c[u] = 8. Optimal values marked in circle.

data information (i.e., ✓ ! +1) below the phase transition threshold. Indeed, we observe from
(4.8) in the appendix that rctr has a well-defined positive value only when the following condition
on ✓ is satisfied:

1�
✓

✓

1 + ✓

◆2 q(✓)

(⇢1⇢2)2c[u]
> 0. (4.11)

Letting ✓ ! +1 in the case of C1 = C1 = C, for which q(✓) = 1/kµ1�µ2k4 according to (4.9),
we find the inequality condition (4.11) of c[u] to coincide with the phase transition threshold
in (4.3), as expected. Generally speaking, a certain value ✓0 of ✓ is attainable through the
adjustment of ↵ if the inequality (4.11) is satisfied at ✓ = ✓0. As such, we note importantly that
the attainable range of ✓ can only enlarge with greater c[u].

It is obvious by looking at (4.8) that, at the same value of ✓, rctr is a strictly decreasing
function of both c[l] and c[u]. Combining this observation with the remark that the attainable
range of ✓ can only broaden with larger c[u] and is not a↵ected by the value of c[l], we deduce
straightforwardly that, with an appropriately chosen ↵, the performance of the proposed method
consistently benefits from the addition of input data, whether labelled or unlabelled, as illustrated
in Figure 4.1.

The following conclusion summarizes the main remarks obtained above.

Conclusion 1. The proposed centered similarities regularization, implemented by Algorithm 1
with the hyperparameter ↵, allows one to

1. recover the high dimensional performance of Laplacian regularization at ↵! +1;

2. recover the high dimensional performance of spectral clustering at ↵ # kŴ[uu]k;
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3. accomplish a consistent high dimensional semi-supervised learning for ↵ set between the
two extremes, thus leading to an increasing performance gain over Laplacian regularization
with greater amounts of unlabelled data.

4.4 Experimentation

This section provides empirical evidence to support the proposition of centered similarities regu-
larization, by comparing it with Laplacian regularization through simulations under and beyond
the settings of the theoretical analysis.

4.4.1 Validation on Finite-Size Systems

We first validate the asymptotic results of the previous section on finite data sets of relatively
small sizes (n, p ⇠ 100). Recall from Section 4.3 that the asymptotic performance of Laplacian
regularization and spectral clustering are recovered by centered similarities regularization at
extreme values of the hyperparameter ✓. In other words, the high dimensional accuracies of
Laplacian regularization and spectral clustering are given by Equation (4.8) of Theorem 4.3.1,
respectively in the limit ✓ = 0 and ✓ = +1 (when spectral clustering yields non-trivial solutions);
this is how the theoretical values of both methods are computed in Figure 4.2. The finite-sample
results are given for the best (oracle) choice of the hyperparameter � in the generalized Laplacian
matrix L

(�) = I�D
�1��

WD
� for Laplacian regularization and spectral clustering, and for the

optimal (oracle) choice of the hyperparameter ↵ for centered similarities regularization.

Under a non-trivial Gaussian mixture model setting (see caption) with p = 100, Figure 4.2
demonstrates a sharp prediction of the average empirical performance by the asymptotic analysis.
As revealed by the theoretical results, the Laplacian regularization fails to learn e↵ectively from
unlabelled data, causing it to be outperformed by the purely unsupervised spectral clustering
approach (for which the labelled data are treated as unlabelled ones) for su�ciently numerous
unlabelled data. The performance curve of the proposed centered similarities regularization, on
the other hand, is consistently above that of spectral clustering, with a growing advantage over
Laplacian regularization as the number of unlabelled data increases.

Figure 4.2 also interestingly shows that the unsupervised performance of spectral clustering is
noticeably reduced when the covariance matrix of the data distribution changes from the identity
matrix to a slightly disrupted model (here for {C}i,j = .1|i�j|). On the contrary, the Laplacian
regularization, the high dimensional performance of which relies essentially on labelled data, is
barely a↵ected. This is explained by the di↵erent impacts labelled and unlabelled data have
on the learning process, which can be understood from the theoretical results of the previous
section.

4.4.2 Beyond the Model Assumptions

After verifying the advantage of the proposed centered similarities regularization in a finite (and
not so large) sample setting, we are now interested in examining the extent of its superiority
beyond the analysis framework.
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Figure 4.2: Empirical and theoretical accuracy as a function of c[u] with c[l] = 2, ⇢1 = ⇢2, p = 100,

�µ1 = µ2 = [�1, 0, . . . , 0]T, C = Ip (left) or {C}i,j = .1|i�j| (right). Graph constructed with

wij = e�kxi�xjk2/p. Averaged over 50000/n[u] iterations.

As thoroughly discussed in Subsection 4.2, the key element causing the unlabelled data
learning ine�ciency of Laplacian regularization is the negligible distinction between inter-class
and intra-class similarities, induced by the distance concentration of high dimensional data. It
is important to understand that this concentration phenomenon is essentially independent of
the Gaussianity of the data. Proposition 3.3.1 can indeed be generalized to a wider statistical
model by a mere law of large numbers; this is the case for instance of all high dimensional

data vectors xi of the form xi = µk + C

1
2
k
zi, for k 2 {1, 2}, where µk 2 Rp, Ck 2 Rp⇥p are

means and covariance matrices as specified in Assumption 5.1 and zi 2 Rp any random vector
of independent elements with zero mean, unit variance and bounded fourth order moment.

As a side comment, it worth pointing out that the k�nearest neighbors (KNN) graphs,
constructed by letting wij = 1 if data points xi or xj is among the k nearest (k being the
parameter to be set beforehand) to the other data point, and wij = 0 if not, are not covered
by the present analytic framework. Our study only deals with graphs where wij is exclusively
determined by the distance between xi and xj , while in the KNN graphs, wij is dependent of all
pairwise distances of the whole data sets. Nonetheless, KNN graphs evidently su↵er the same
problem of distance concentration, for they are still based on the distances between data points.
It is thus natural to expect that the proposed centering procedure may also be advantageous on
KNN graphs.

Upon the above remarks, we expect the advantage of the proposed method to manifest itself
on practical datasets, whenever a weak di↵erence between inter-class and intra-class similarities
is observed (and whenever the data themselves or the relevant features to classify are obviously
not too far from a mixture model). The exact convergence of all distances to a common limit is
of course an extreme mathematically ideal scenario; to gain an actual sense of how the Laplacian
regularization and the proposed centered similarities approaches behave under di↵erent levels of
distance concentration, we provide first, as a real-life example, simulations on datasets from the
standard MNIST database of handwritten digits [52]. These are depicted in Figures 4.3–4.4.
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Figure 4.3: Top: distribution of normalized pairwise distances kxi � xjk2/�̄ (i 6= j) with �̄
the average of kxi � xjk2 for 2-class MNIST data. Bottom: average accuracy as a function
of n[u] with n[l] = 10, computed over 1000 random realizations with 99% confidence intervals
represented by shaded regions.
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As the performance of the methods tends to depend on the similarity graph, for a fair and
extensive comparison of Laplacian and centered similarities regularizations, the results displayed
here are obtained on their respective best performing graphs, selected among commonly used
graphs including KNN graphs with various numbers of neighbors k = {21, . . . , 2q}, for q the
largest integer such that 2q < n, and graphs constructed by Gaussian (also called RBF) ker-
nels, i.e., wij = e�kxi�xjk2/�2

, with bandwidth � set to the average data vector distance. The
hyperparameters of the Laplacian and centered similarities regularization approaches are set
optimally within the admissible range.1

Figure 4.3 shows that high classification accuracy is easily obtained on MNIST data, even
with the classical Laplacian approach. However, it exhibits an unsatisfactory learning e�ciency
when compared to our proposed method. We also find that the benefit of the proposed algorithm
is more perceptible on the classification task displayed in the right of Figure 4.3 (digits 3 versus
5) than on the left (digits 8 versus 9), for which the di↵erence between inter-class and intra-class
distances is more significant (and thus, in our setting, too “trivial”). To further evidence the
impact of non-trivial classification, Figure 4.4 presents situations where the learning problem
becomes more challenging in the presence of additive noise. Understandably, the distance con-
centration phenomenon is more acute in this noise-corrupted setting, and so is the performance
gain generated by the centered similarities approach; this is indeed corroborated by Figure 4.4,
demonstrating extremely large performance gains produced by the proposed method. In the
right of Figure 4.4 where the similarity information is seriously disrupted by the noise, we ob-
serve the anticipated saturation e↵ect when increasing n[u] for the Laplacian regularization, in
contrast to the growing performance of the proposed approach. This suggests, in conclusion,
that the centered similarities approach is a privileged solution in all situations, but is especially
meaningful when the distinction between intra-class and inter-class similarities is quite subtle.

In order to further illustrate the advantage of the proposed method on more challenging
datasets, we subsequently compare the Laplacian and centered similarities regularization meth-
ods on the popular Cifar10 database [61]. To obtain meaningful results, the data went through
a feature extraction step using the standard pre-trained ResNet-50 network [62]. Other exper-
imental settings are the same as for the above MNIST data. The simulations are reported in
Figure 4.5, where the findings confirm again the superiority of the proposed centered similarities
approach.

4.5 Concluding Remarks

The key to the proposed semi-supervised learning method lies in the replacement of conventional
Laplacian regularizations by a centering operation on similarities. The motivation behind this
operation is rooted in the large dimensional concentration of pairwise-data distances and thus
likely to extend beyond the present graph-based semi-supervised learning schemes. It would
in particular be interesting to know whether other advanced learning models involving Lapla-
cian regularizations benefit from the same update. A specific example is Laplacian support
vector machines (Laplacian SVMs) [63], which is another widespread semi-supervised learning
algorithm. Answering this question about Laplacian SVMs is however not a straightforward

1Specifically, the hyperparameter � of Laplacian regularization is searched among the values from�2 to 0 with a
step of 0.02, and the hyperparameter ↵ of centered similarities regularization within the grid ↵ = (1+10t)kŴ[uu]k
where t varies from �3 to 3 with a step of 0.1. The results outside these ranges are observed to be non-competitive.
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Figure 4.4: Top: distribution of normalized pairwise distances kxi � xjk2/�̄ (i 6= j) with �̄ the
average of kxi � xjk2 for noised MNIST data (8,9). Bottom: average accuracy as a function
of n[u] with n[l] = 10, computed over 1000 random realizations with 99% confidence intervals
represented by shaded regions.
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Figure 4.5: Average accuracy on two-class Cifar10 data as a function of n[u] with n[l] = 10,
computed over 1000 random realizations with 99% confidence intervals represented by shaded
regions.

extension of the present analysis. Unlike the outcomes of Laplacian regularization, Laplacian
SVMs are learned through an optimization problem without an explicit solution; additional
technical tools, such as those recently devised in the work of [6] and in the subsequent chapters,
to deal with implicit objects are required for analyzing their performance.

As already anticipated by the theoretical results, it is not surprising that the proposed cen-
tered similarities regularization empirically produces large performance gains over the standard
Laplacian regularization when the aforementioned distance concentration problem is severe on
the experimented data. However, it is quite illuminating to observe that even on datasets with
weak distance concentration, for which the standard Laplacian approach exhibits a clear perfor-
mance growth with respect to unlabelled data, the advantage of the proposed algorithm is still
preserved. This attests to the general potential of such high dimensional studies for improving
machine learning algorithms by identifying and settling some underlying issues compromising
their learning performance, which would be di�cult to spot if not through high dimensional
analyses.
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Chapter 5

Statistical properties of high
dimensional support vector machines

5.1 Introduction

Support vector machines (SVMs), originally proposed in [18], are one of the most popular
classification tools in machine learning, thanks to their highly competitive performance in various
real-world applications such as face recognition, image processing, and text mining, as well as
their easy implementation and computational e�ciency. The idea of SVMs is quite simple: given
a set of input training data vectors x1, . . . ,xn 2 Rp with class labels yi = ±1, i = {1, . . . , n},
SVMs aim to find a hyperplane defined by �T

x+�0 = 0 which separate the two classes of input
training vectors with largest distance between them, in order to maximize the generalization
ability on unseen data (the optimization problem is as formulated in Equation 5.1 of Section 5.2).
It was demonstrated that only a part of the training data, the so-called support vectors which
determine the margin between the classes, have to be taken into account when constructing the
decision function. As a matter of fact, the decision direction � is of the form � = 1

n

P
n

i=1 ciyixi

where the non-negative weights ci are usually learned through a dual formulation of the original
SVM optimization. We thus refer to them as the dual coe�cients. Besides, by the properties
of the dual optimization, ci is zero unless xi is a vector on the margin. The SVM method is
also extended to data sets that are not linearly separable by allowing some data vectors to fall
inside the margin, with a hyperparameter ⌧ controlling the penalty of the data vectors inside
the margin. The mathematical formulation of this extension is presented in (5.2). From the
standpoint of empirical risk minimization [64], SVMs can be seen as a special case with a hinge
loss function and a L2 regularization term weighted by 1/⌧ (see details in Section 5.4).

The present investigation is placed instead under a very generic form of mixture models,
providing a more intuitive proof approach as well as additional consequences. Our study notably
generalizes the work of [22], where the authors exploit a (non formally rigorous) statistical physics
approach to evaluate the asymptotic SVM performance in a specific Gaussian mixture model
with a spiked covariance matrix and constraint on the direction of the class signal. Remarkably,
although it was found by [22] that the performance is maximized at trivial, overly regularized
solutions, the general results in this chapter show that this conclusion is actually a consequence
of the specific data model in the study of [22], which no longer holds in a broader setting.
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Our main findings are summarized as follows:

• The decision direction � is asymptotically a multivariate normal vector whose mean ⌫
and covariance matrix ⌃ can be expressed as [⌫,⌃] = G(⌫,⌃) for some function G de-
pendent of the statistical distribution of the data vectors, the size ratio n/p and the SVM
hyperparameters, which is defined in this chapter.

• To obtain more interpretable results, we find especially that under the Gaussian mixture
data model with arbitrary means µ1,µ2 and covariance matricesC1,C2 for the two classes,
⌫ and⌃ have rather simple and insightful expressions controlled by five variables related to
the statistical distribution of the dual coe�cients ci. From this result unfold the following
remarks.

– If C1 = C2 = Ip, or C1 = Ip + P1 and C1 = Ip + P2 with P1,P2 some low rank
matrices and µ2 � µ1 being one of the eigenvectors of both P1 and P2 (which is the
case in the analysis of [22]), the SVM algorithm achieves its optimal performance at
a trivial solution where � is just the average sum of the vectors yixi, i 2 {1, . . . , n},
obtained in the limit of ⌧ ! 0.

– Still in the case C1 = Ip + P1 and C1 = Ip + P2, but with µ2 � µ1 being partially
aligned with the eigenvectors of P1,P2, the hyperparameter ⌧ allows to realize a
trade-o↵ between the bias and the variance of �. The optimal solution is thus found
at a non-trivial setting with non-negligible ⌧ .

– When µ2 �µ1 lives simultaneously in the eigenspaces of C1 and C2, the tuning of ⌧
only a↵ect the variance of �. Interestingly, the variance does not necessarily changes
monotonically with ⌧ . As will be detailed in Section 5.4, depending on some condition
on C1, C2 and µ2 � µ2. the variance is minimized either at non-trivial ⌧ or in the
limit of ⌧ ! 0

• The statistical distribution of the dual coe�cients ci is asymptotically determined by the
distribution of � and that of the data samples, through a simple, explicit relation given in
this chapter.

5.2 Preliminaries

As in the common setting of supervised classification, we dispose of n observations (xi, yi) with
xi 2 Rp being the feature vectors and yi 2 {�1, 1} their associated binary class labels, for
i = {1, . . . , n}. Support vector machines aim to construct a hyperplane defined by the subset of
points x 2 Rp satisfying �T

x + �0 = 0, which separates the set of training data by their class
into two subsets with a maximal gap between them. The problem is formulated as

min
�,�0

k�k2

s.t. 8i 2 {1, . . . , n}, yi(�
T
xi + �0) � 1. (5.1)

The n inequalities constrain the training data samples in two class-areas bounded by the two
parallel hyperplanes defined by �T

x + �0 = �1 (any xi of the class labelled by �1 is on or
“below” this boundary), and �T

x + �0 = 1 (any xi of the class labelled by 1 is on or “above”
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this boundary). The region between these hyperplanes is conventionally referred to as themargin
and vectors x falling on the two bordering hyperplanes as the support vectors.

It may occur that there exists no hyperplane that perfectly separates the training samples
according to their classes, in which case the optimization problem (5.1) is not solvable. To
extend SVMs to these cases, one usually resorts to a “soft-margin” alternative that allows
training samples to lie inside the margin (unlike in the “hard-margin” problem (5.1)). The
problem is then cast as

min
�,�0

1

2
k�k2 + ⌧

n

nX

i=1

✏n

s.t. 8i 2 {1, . . . , n}, yi(�
T
xi + �0) � 1� ✏i, ⇠i � 0. (5.2)

with the hyperparameter ⌧ controlling how much we penalize training samples falling inside the
margin.

For both cases, a Lagrange multipliers approach gives the dual problem:

max
c1,...,cn

nX

i=1

ci �
1

2n

nX

i,j=1

cicjyiyjx
T

i xj

s.t. 8i 2 {1, . . . , n}, 0  ci  ⌧,
nX

i=1

ciyi = 0 (5.3)

the solution (if it exists) for the hard-margin problem (5.1) being retrieved at ⌧ = +1 .

With the dual solutions ci, the hyperplane direction � is obtained as

� =
1

n

nX

i=1

yicixi. (5.4)

Additionally, by the Karush-Kuhn-Tucker conditions, we have the following relations
8
><

>:

ci = 0 for yi(�T
xi + �0) > 1

0 < ci < ⌧ for yi(�T
xi + �0) = 1

ci = ⌧ for yi(�T
xi + �0) < 1.

(5.5)

Evidently, � is determined solely by the data vectors xi on the borders of margin (i.e., with
yi(�T

xi + �0) = 1) or inside the margin (i.e., with yi(�T
xi + �0) < 1), the so-called support

vectors. Note interestingly that

ci = �⌧

 
1� yi

1
n

P
j 6=i

cjyjxT

j
xi � yi�0

kxik2

!

with

�⌧ (t) =

8
><

>:

0 for t < 0

t for 0 < t < ⌧

⌧ for t > ⌧

(5.6)
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where ⌧ is the penalty hyperparameter in (5.2).

After the separating hyperplane is determined by either the primal or dual optimization,
the final step consists in classifying a new coming data x by the sign of the decision function
f(x) = �T

x+ �0.

We consider here a general high dimensional data model presented in the following assump-
tion.

Assumption 5.1. The training samples (x1, y1), . . . , (xn, yn) are independently drawn from a
distribution D of a mixture model such that, for k 2 {1, 2}, P(yi = (�1)k) = ⇢k, and

yi = (�1)k ,

xi = µk +C

1
2
k
zi

for µk 2 Rp, Ck 2 Rp⇥p positive definite , and zi 2 Rp some random vector of i.i.d. entries with
zero mean, unit variance and bounded forth moment.

Besides, for arbitrarily large p, the ratio of training data number over dimensionality c0 ⌘ n

p

is uniformly bounded in (0,+1), and we have the controls kCkk = O(1), kC�1
k

k = O(1),
kµ2 � µ1k = O(1) (with O(·) notation with respect to p).

For notational convenience, in the following we denote by Ck, k 2 {1, 2} the set of i 2
{1, . . . , n} with yi = (�1)k. It is worth pointing out that the growth-rate controls on the data
means µk and covariance matrices Ck in Assumption 5.1 are imposed for two reasons: 1) to
ensure that the data vectors xi are not intrinsically low dimensional by enforcing variations of
similar magnitude in the entries of xi through the conditions kCkk = O(1) and kC�1

k
k = O(1),

and 2) to enforce a “non-trivial” learning scenario by controlling the distance kµ2�µ1k = O(1)
between classes, so that the classification is neither overly di�cult nor overly easy for data of
large dimension p.

5.3 Statistical characterizations

As explained before, a special property of SVMs is that they are determined only by a part of
the training data (the support vectors). Whether a training data xi is a support vector and how
much it a↵ects the direction of theseparating hyperplane is reflected by its corresponding dual
coe�cient ci determined by (5.3), since � = 1

n

P
n

i=1 yicixi. Also, the relative position of data
vector xi with respect to the separating hyperplane described by the training score

Ri = yi(�
T
xi + �0), i 2 {1, . . . , n}, (5.7)

has some relations with ci as described in (5.5). Even though we can get easily from ci to � by
the equation � = 1

n

P
n

i=1 yicixi, not much can be said directly about the relation between their
statistical behaviors since we do not have an explicit expression for ci nor �. Our first step is to
relate the statistical distribution of ci and Ri to that of the separating hyperplane parameters
(�,�0) in high dimensions, by using the results presented in the following proposition.
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Figure 5.1: Comparison between the density histogram of Ri� ⇠kci and the distribution of ri as
defined in Proposition 5.3.1 with p = 200, n = 600. Left: Bernouilli distributed data features

with C1 = C2 =
(
p
p�2)(

p
p+2)

4p Ip µk =
p
p+(�1)k2
2
p
p

[1p/2; 0p/2] +
p
p�(�1)k2
2
p
p

[0p/2; 1p/2], k = {1, 2},
⇢1 = ⇢2; ⌧ = 10. Right: normal distributed data features with C1 = Ip, {C2}ij = .4|i�j|,
µk = (�1)k[1; 0p�1], k = {1, 2}, ⇢1 = 3⇢2; ⌧ = 1.

Proposition 5.3.1. Under Assumption 5.1, let

{⇠1, ⇠2} = F

✓
1

n

X

i2C1

1(0,⌧)(ci),
1

n

X

j2C2

1(0,⌧)(cj)

◆

where F (t1, t2) = {s1, s2} is a mapping from R⇤⇥R⇤ to R⇤⇥R⇤ with {s1, s2} the unique solution
of

sk =
1

n
trCk

 
Ip +

2X

a=1

s�1
a taCa

!�1

, k 2 {1, 2}. (5.8)

Then, 8i 2 {1, . . . , n} with i 2 Ck, k 2 {1, 2},

(Ri � ⇠kci)� ri = oP (1), where ri
L
= yi(�

T
x
0
i + �0) (5.9)

for x
0
1, . . . ,x

0
n independent copies of x1, . . . ,xn.

Note that the random variables ri defined in Proposition 5.3.1 follow the same distribution as
yi(�T

x
0
i
+ �0), which are the prediction scores of some new coming data vectors x0

i
independent

of the training samples. Since the new data vectors x0
i
are not involved in the training process,

the ri reflect the generalization performance of SVMs , in contrast to the training performance
given by the Ri.

Importantly, the crucial di↵erence between ri and Ri resides in fact that the former is
statistically independent of �, while the latter is obviously not. Therefore, unlike Ri, the
statistical distribution of which is inaccessible due to the implicit dependence between � and
xi, the probability distribution of ri is known as a function of that of � and data model.
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As a numerical evidence to Proposition 5.3.1, we compare the density histogram of Ri� ⇠kci
and the distribution of ri obtained upon one realization of the SVM algorithm. The close matches
displayed in Fig 5.1 demonstrate the validity of the high dimensional results of Proposition 5.3.1
on data sets of moderate size (p, n ⇠ 100).

Remark also that it can be derived from (5.5) and (5.6) that

�⌧

✓
1� (Ri � ⇠kci)

⇠k

◆
= ci.

As a direct consequence of Proposition 5.3.1 and the above equation, we have the following
corollary which establishes statistical relations between ci and � in the high dimensional setting,
by expressing ci through a function of ri.

Corollary 5.1. Under the conditions and notations of Proposition 5.3.1, we have, 8i 2 {1, . . . , n}
with i 2 Ck, k 2 {1, 2},

ci � �⌧

✓
1� ri
⇠k

◆
= oP (1)

.

Proposition 5.3.2. Let Assumption 5.1 hold. Under the notations of Proposition 5.3.1, we
have

kg(�)� ⌫k = oP (1)

where

g(�) = � +
2X

a=1

⇢aEx0
i

⇢
�⌧

✓
1� yi�T

x
0
i
� yi�0

⇠a

◆
yi(x

0
i � µa)

���� yi = (�1)a
�

(5.10)

⌫ ⇠ N

✓
⌘µ,

⇢1�1C1 + ⇢2�2C2

n

◆

with
⌘ = E{ci}, �k = E{c2i |i 2 Ck}, k 2 {1, 2}.

Proposition 5.3.2 states that in the large dimensional regime, there exists a transformation
g(�) of �, given by (5.10), that follows a multivariate normal distribution with statistical pa-
rameters given as functions of the first and second moments of ci. As such, Proposition 5.3.2
provides in fact, in addition to Proposition 5.3.1, a second way to link the distribution of �
back to that of ci. Combining the results in Proposition 5.3.1-5.3.2 should allow to determine,
from the statistical properties of the data model, the statistical distribution of the learned pa-
rameters for high dimensional SVMs. However, the expectation term in the expression (5.10) of
g(�) makes it computationally di�cult to apply these results. Also, in terms of interpretability,
it is hard to comment on the learning behavior and performance of SVMs from the results of
Proposition 5.3.1-5.3.2.

Remarkably, we find that under the normality of data, g(�) has a rather convenient form:

g(�) =

0

@Ip +
2X

a=1

Ex0
i

n
�⌧

⇣
1�yi�Tx0

i�yi�0

⇠a

⌘
yi(x0

i
� µa)T�

��� yi = (�1)a
o

�TCa�
Ca

1

A�,
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allowing us to derive, from Proposition 5.3.1 and 5.3.2, the high dimensional distribution of �
parametrized by five variables, as presented in the following theorem.

Theorem 5.3.1. Let Assumption 5.1 hold for multivariate normally distributed xi. Defining
µ = (µ2 � µ1)/2, we have

k� � �̃k = oP (1)

where
⇣
Ip + ⇢1✓̃1C1 + ⇢2✓̃2C2

⌘
�̃ ⇠ N

✓
⌘̃µ,

⇢1�̃1C1 + ⇢2�̃2C2

n

◆

with (✓̃1, ✓̃2, ⌘̃, �̃1, �̃2) 2 R5
+ determined by the following system of five fixed-point equations

⌘̃ = ⇢1E{c̃[1]}+ ⇢2E{c̃[2]}, �̃k = E{c̃2[k]}, ✓̃k =
E{1(0,⌧)(c̃[k])}

⇠̃k
, k 2 {1, 2}, (5.11)

where

c̃[a] ⇠ �⌧

 
1� yi�̃0 � yi�̃T

x
0
i

⇠̃a

!
, for i 2 Ca, a 2 {1, 2}

with x
0
i
⇠ xi independent of �̃, and �̃0, ⇠̃1, ⇠̃2 jointly given by

{⇠̃1, ⇠̃2} = F

✓
⇢1E{1(0,⌧)(c̃[1])}, ⇢2E{1(0,⌧)(c̃[2])}

◆

⇢1E{c̃[1]} = ⇢2E{c̃[2]}.

Moreover, ci � c̃i = oP (1) where c̃i ⇠ c̃[k], for i 2 Ck, k 2 {1, 2}; and �0 � �̃0 = oP (1).

The statistical equations in Theorem 5.3.1 allow one to obtain, from the data model, the
sample number over dimension ratio n/p and the soft-margin hyperparameter ⌧ , the asymptotic
distribution of �. To check its reliablity on finite dimensonal data sets, we contrast in Figure 5.2
the statistical distribution of � obtained on data sets of size p = 60 with its high dimensional
equivalence �̄ as defined by Theorem 5.3.1. The statistical properties of � is empirically esti-
mated from 500 independent realizations. The estimated expectation E{�} of � is shown on the
top of Figure 5.3.1 to coincide with E{�̄}; and the displays on the bottom support the result
that the random part � � E{�} of � follows practically the same distribution as �̄ � E{�̄} by

illustrating the statistical closeness between the elements of Cov{�̄}�
1
2 (��E{�}) and standard

normal variables.

It is evident that, from the high dimensional distribution of the SVM parameters determined
by Theorem 5.3.1, we directly obtain the probability of correct classification (i.e., the expected
classification accuracy) on unseen data, given in the following corollary.

Corollary 5.2. Under the conditions and notations of Theorem 5.3.1, we have that, for some
(x, y) ⇠ D independent of the training samples (x1, y1), . . . , (xn, yn) with y = (�1)k, k 2 {1, 2},

P{y(�T
x+ �0) > 0|�,�0} = Q

0

@ y(⌘̃µT
Gµk + �0)q

⌘̃2µTGCkGµ+ 1
n

P2
a=1 ⇢a�̃a trCaGCkG

1

A+ oP (1)

(5.12)
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Figure 5.2: Comparison between empirical (estimated over 500 realizations) and theoretical
(from Theorem 5.3.1) statistical distribution of � for multivariate normal distributed data with
p = 60, n = 120. Case 1: �µ1 = µ2 = 3

2
p
p
[1p/3; �12p/3]; C1 = diag([1p/3; 81p/3; 41p/3]),

C2 = diag([41p/3; 81p/3; 1p/3]), ⇢1 = ⇢2, ⌧ = 2. Case 2: �µ1 = µ2 = 1p
p
[1p/3; �12p/3],

C1 = diag([12p/3; 41p/3]), C2 = diag([41p/3; 12p/3]), ⇢1 = ⇢2, ⌧ = 4.
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Figure 5.3: Comparison between empirical (averaged over 200 runs) and theoretical accuracy
(given by Corollary 5.2) for multivariate normal distributed data of p = 200. Left: accuracy as
a function of ⌧ with �µ1 = µ2 = 1p

p
1p, C1 = C2 = Ip +

12
p
[1p/2; 0p/2][1p/2; 0p/2]

T, ⇢1 = ⇢2,

n = 200. Right: accuracy as a function of n/p with �µ1 = µ2 =
1p
p
1p, C1 = Ip, {C2}ij = .4|i�j|,

⇢1 = ⇢2, ⌧ = 1.

where G =
⇣
Ip + ⇢1✓̃1C1 + ⇢2✓̃2C2

⌘�1
, and Q(t) ⌘ 1p

2⇡

R1
t

e�u
2
/2du is the Q-function of the

standard Gaussian distribution.

As can be observed from (5.12), in the cases of finite n/p ratios, the classification accuracy
of SVMs stabilizes around a deterministic constant at su�ciently large p, irrespective of the
realization of the training samples (x1, y1), . . . , (xn, yn). The results in Figure 5.3 show that the
asymptotic accuracy given by (5.12) predicts with great precision the average accuracy on data
sets of relatively small n, p (⇠ 100), providing thus an adequate quantitative characterization of
the learning performance which changes with the tuning of the hyperparameter ⌧ (as shown on
the left of Figure 5.3) or when more data samples are fed into the training process (as presented
on the right of Figure 5.3).

5.4 Insights into the learning process: the bias-variance decom-
position

We notice from Theorem 5.3.1 that under data normality, the high dimensional equivalence �̃
of � has a quite interesting form of distribution, which can help shed light on the bias-variance
trade-o↵ controlled by the hyperparameter ⌧ .

Before our discussion, it is worth pointing out that SVMs can be seen as a special case from
the family of the empirical risk minimization (ERM) algorithms, the general idea of which is to
find a mapping h(x) of the data vector x that minimizes the sum of a certain loss L(h(x), y)
between h(x) and the desired output y over the training samples. Indeed, the SVM optimization
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formulation (5.2) can be rewritten as

min
�,�0

1

n

nX

i=1

Lhinge(�
T
xi + �0, yi) +

⌧�1

2
k�k2

where Lhinge denotes the hinge loss function Lhinge(t, y) ⌘ max{0, 1� ty}. The SVM algorithm
gives in fact a regularized solution of a empirical risk minimization with the hinge loss. Since
adding regularization terms is commonly accepted as a means of reducing the variance at the
cost of an increased bias, the hyperparameter ⌧ , a small value of which reflects a high level of
regularization, is expected to yield solutions of high bias and low variance at its large values
and conversely at its small values. However, as we shall see in the following discussion, this
statement is only partially correct.

Returning to our initial discussion, a preferable solution of � should create a better separation
between classes, meaning that its projection �T

x on some new coming data vector x (with
underlying class label y = ±1) has a small ratio of the variance within classes to the variance
between classes. We then consider a measure of noise-to-signal ratio for each class:

Hk =
Var{�T

x|y = (�1)k}
(E{�}Tµ1 � E{�}Tµ2)

2 , k = {1, 2}.

To conduct a bias-variance investigation of �, we decompose � as its expectation E{�} plus
a non-informative random part ��E{�} = ✏, and rewrite Hk as Hk = Bk+Vk where we retrieve
a bias penalty term for �

Bk =
Var{E{�}Tx|y = (�1)k}
(E{�}Tµ1 � E{�}Tµ2)

2

depending only on the expectation of �, and a measure of its variance

Vk =
Var{✏Tx|y = (�1)k}

(E{�}Tµ1 � E{�}Tµ2)
2 .

which concerns the random part ✏ of � and goes to zero in the limit of n � p. Under the
notations of Theorem 5.3.1, we get

Bk =
µT

GCkGµ

(2µTGµ)2
+ oP (1), Vk =

2X

a=1

�̃a
⌘̃2

trCaGCkG/n

(µTGµ)2
+ oP (1), k{1, 2}.

where we recall that

G =
⇣
Ip + ⇢1✓̃1C1 + ⇢2✓̃2C2

⌘�1
.

The bias and variance of � are thus controlled by �̃1/⌘̃2, �̃2/⌘̃2, ✓̃1 and ✓̃2.

Remark first that as ci follows essentially the same distribution as c̃i (as defined in Theo-
rem 5.3.1) in high dimensions, these variables can be in fact estimated from the dual coe�cients.
Precisely, let

⌘̂ =
1

n

nX

i=1

ci, �̂k =
1

nk

X

i2Ck

c2i , ✓̂k =
1

nk⇠k

X

i2Ck

1(0,⌧)(ci), k 2 {1, 2}, (5.13)
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where {⇠1, ⇠2} = F

✓
1
n

P
i2C1

1(0,⌧)(ci),
1
n

P
j2C2

1(0,⌧)(cj)

◆
with F as defined in Proposition 5.3.1,

we have the following proposition establishing the above empirical quantities as consistent esti-
mators of these variables.

Proposition 5.4.1. Under the conditions and notations of Theorem 5.3.1, (✓̂1, ✓̂2, ⌘̂, �̂1, �̂2)
given by (5.13) is a consistent estimator of (✓̃1, ✓̃2, ⌘̃, �̃1, �̃2).

We observe from (5.13) that �̂1/⌘̂2 and �̂2/⌘̂2 measure the variability of the dual coe�cients
ci for each class. Note from (5.5) that when the training vectors are all inside the margin, all ci
have the same deterministic value ci = ⌧ , in which case �̂1/⌘̂2, �̂2/⌘̂2 are both minimized to 1.
Since smaller values of ⌧ give rise to larger margins as can be understood from the optimization
problem (5.2), �̂1/⌘̂2, �̂2/⌘̂2 attain their minimum at su�ciently small ⌧ .

Let nBk, k = {1, 2}, denote the numbers of training data vectors xi labelled with yi = (�1)k

which are on the border, i.e.,

nBk =
nX

i=1

1(0,⌧)(ci).

For k = {1, 2}, ✓̂k is determined by (nB1, nB2), and has a value of zero if nBk = 0. Understand-
ably, (nB1, nB2) are both zero in the limit of ⌧ ! 0, where the margin is so large that all the
training vectors are inside it and there is no training vector that falls on the border.

Since (✓̂1, ✓̂2, ⌘̂, �̂1, �̂2) estimates consistently (✓̃1, ✓̃2, ⌘̃, �̃1, �̃2), we obtain the following con-
clusions that will be useful in the subsequent discussion:

• In the limit of really small ⌧ , �̃1/⌘̃2 and �̃2/⌘̃2 tend to their minimum 1.

• The variables ✓̃1, ✓̃2 are also minimized to 0 as ⌧ ! 0.

A first remark to be made about the bias terms of � is that they remain unchanged for high
dimensional data if µ is a common eigenvector of both C1 and C2, since

µT
GCkGµ

(2µTGµ)2
=

µT
Ckµ

4kµk2 , k = {1, 2},

indicating a constant bias irrespective of ✓̃1 and ✓̃2.

When µ does not live in the eigenspace of Ck for k = {1, 2}, we note importantly that

min
G

µT
GCkGµ

(2µTGµ)2
=

µT
C

�1
k

µ

(2µTC
�1
k

µ)2
,

which is attained only at G / C
�1
k

. Therefore, a larger value of ✓̃k tends to lower the bias term
Bk as it pulls G closer towards a proportion of C�1

k
. Particularly, in the homoscedastic case

with C1 = C2 = C, for which we have B1 = B2 = B and

G =
⇣
Ip + ✓̃C

⌘�1
, with ✓̃ = ⇢1✓̃1 + ⇢2✓̃2.
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The bias term B is thus a decreasing function of ✓̃, and it can be shown from the above results
that ✓̃ increases with nb =

P
n

i=1 1(0,⌧)(ci), which equals the total number of support vectors on

the border. Moreover, ✓̃ tends to infinity as nb approaches the dimension p, the bias term B
hence goes to its minimum in this limit.

We move now to the discussion about the variance of �. It is easy to see that smaller values
of �̃1/⌘̃2 and �̃2/⌘̃2 are beneficial at all times as they always lead to reduced variances. Since
�̃1/⌘̃2 and �̃2/⌘̃2 are minimized at su�ciently small ⌧ , choosing a small ⌧ has a positive e↵ect
for decreasing the variance of � on that account. However, it is easy to see that, unlike with
�̃1/⌘̃2 and �̃2/⌘̃2, the variance of � can increse or decrease with ✓̃1 and ✓̃2.

An interesting scenario is when C1 and C2 are identity matrices plus some low-rank pertur-
bations, i.e.,

Ck = I+
mX

d=1

�2[k]mv[k]mv
T

[k]m, k = {1, 2},

for some m = O(1) and v
T

[k]dv[k]d0 = �dd0 , in which case

trCaGCkG/n = (1 + ⇢1✓̃1 + ⇢2✓̃2)
�2(p/n) + oP (1)

(µT
Gµ)2  (1 + ⇢1✓̃1 + ⇢2✓̃2)

�2kµk2

where the equality of the second line is reached at ✓̃1 = ✓̃2 = 0. Since ✓̃1, ✓̃2 go to their minimum
0 as ⌧ ! 0, and so do �̃1/⌘̃2, �̃2/⌘̃2 to a minimal value of 1 , we conclude that under the spiked
model for C1, C2, the variance terms V1, V2 are minimized in the extreme of low ⌧ , conforming
to the common belief that small ⌧ leads to decreased variance.

Since the bias remains unchanged with respect to ⌧ when µ is an eigenvector of both C1

and C2, in this case, the performance only depends on the variance, which is optimized at small
⌧ under the spiked model. However, if the condition of µ being an eigenvector of both C1,C2

does not hold, the tuning of ⌧ allows one to search for an optimal trade-o↵ between the bias
and the variance. Namely, when µ is either aligned with or orthogonal to the eigenvectors of
C1,C2, the classification accuracy goes to its maximum at ⌧ ! 0 where � is proportional toP

n

i=1 yixi, a trivial solution. Otherwise, there exist a non-trivial value of ⌧ at which we achieve
optimal performance. These two remarks are illustrated in Figure 5.4, where we display the
case of µ being completely aligned with the eigenvector on the left side and that of µ being
only partially aligned with the eigenvector on the right side. Notice that our conclusions are
consistent with the observation of [22] that the best performance is attained at small ⌧ , as the
analysis of [22] is restricted to the spiked model with µ being either aligned with or orthogonal
to the eigenvectors.

Evidently, the statement that insignificant values of ⌧ induce minimized variance does not
apply generally to arbitrary C1, C2 since the variance terms V1, V2 do not necessarily go to their
minimum at ✓̃1, ✓̃2 = 0. To gain more insights on how V1, V2 change with ✓1, ✓2 = 0, consider
that C1 = C2 = C, under which condition we have V1 = V2 = V . From the expression of the
variance terms given above, we observe that in the limit of large p, V is an increasing function

80



5.5. CONCLUDING REMARKS

2�6 2�4 2�2 20 22 24 26

0.7

0.72

0.74

0.76

0.78

0.8

⌧

C
la
ss
ifi
ca
ti
on

ac
cu

ra
cy

n/p = 1

n/p = 2

n/p = 4

2�5 2�3 2�1 21 23 25 27

0.76

0.78

0.8

0.82

0.84

⌧

n/p = 1

n/p = 2

n/p = 4

Figure 5.4: Classification accuracy (computed from Corollary 5.2) as a function of ⌧ for
multivariate normal distributed data of p = 200. Left: �µ1 = µ2 = [3/2; 0p�1], C1 =
C2 = Ip + 4[1; 0p�1][1; 0p�1]T, ⇢1 = ⇢2. Right: accuracy as a function of n/p with
�µ1 = µ2 = [3/2; 0p�1], C1 = C2 = Ip + 2[1; 1; 0p�2][1; 1; 0p�2]T, ⇢1 = ⇢2.

of ✓̃ = ⇢1✓̃1 + ⇢2✓̃2 if

trCGCG/n

(µTGµ)2
=

1
n
tr


C

⇣
Ip + ✓̃C

⌘�1
�2


µT

⇣
Ip + ✓̃C

⌘�1
µ

�2

increases with ⌧ , or the other way around. Roughly speaking, the above term tends to decrease
with respect to ✓̃ when µ lives in the span of the eigenvectors of C associated with large
eigenvalues, and conversely. As an example, we let C = {.4|i�j|}p

i,j=1 and trace in Figure 5.5
trCGCG/n

(µTGµ)2
as a function ✓ for µ being the eigenvector of C associated with small (shown on the

left) or large (displayed on the right) eigenvalues. When the variance term V reduces as ✓ grows
larger, it is minimized at a certain non-trivial value of ⌧ where an optimal compromise between
diminishing �̃1/⌘̃2, �̃2/⌘̃2 and increasing ✓ is found. Since the bias is constant when µ is an
eigenvector of C, the classification performance is maximized when the variance is minimized.
We hence observe the behavior of the variance with respect to ⌧ from the curves of classification
accuracy given in Figure 5.6.

5.5 Concluding remarks

The purpose of this chapter is to study high dimensional SVMs in the regime of finite n/p ra-
tios. Under a general high dimensional model, we established two statistical equations linking
the distribution of the dual coe�cients ci with that of the parameters (�,�0) of the separating
hyperplane. Combining these two statistical equations gives access to a full statistical charac-
terization of SVMs. The interest of the regime with finite n/p is that the learned direction �
of the separating hyperplane remains a random vector, the statistical distribution of which is

81



CHAPTER 5. STATISTICAL PROPERTIES OF HIGH DIMENSIONAL SUPPORT
VECTOR MACHINES

10�3 10�2 10�1 100 101 102

0.2

0.4

0.6

✓

tr
C
G

C
G

/
n

(µ
T
G

µ
)2

d = 1
d = 50
d = 100

10�2 10�1 100 101 102 103
0.5

1

1.5

2

2.5

✓

d = 160
d = 180
d = 200

Figure 5.5: trCGCG/n

(µTGµ)2
as a function of ✓ with n = 400, p = 200, C = {.4|i�j|}p

i,j=1, and µ = vd

where vd is the normalized eigenvector of C associated with its d-th smallest eigenvalue.

2�5 2�3 2�1 21 23 25

0.78

0.8

0.82

0.84

0.86

⌧

C
la
ss
ifi
ca
ti
on

ac
cu

ra
cy

d = 1
d = 50
d = 100

2�5 2�3 2�1 21 23 25
0.64

0.66

0.68

0.7

0.72

0.74

⌧

d = 160
d = 180
d = 200

Figure 5.6: Classification accuracy (computed from Corollary 5.2) as a function of ⌧ for mul-
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i,j=1, and
�µ1 = µ2 = vd where vd is the normalized eigenvector of C associated with its d-th small-
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sensitive to the addition of training samples and the tuning of the hyperparameter ⌧ . This is
in contrast to the regime n � p where � converges to a deterministic value. Besides, under the
normality of data, the distribution of � has a remarkably insightful form, linking the statistical
parameters of � to those of the dual coe�cients through simple relations.

By exploiting this quantitative analysis of SVMs, we conducted a detailed discussion on the
bias-variance trade-o↵ and discovered more precise consequences of choosing large or small ⌧
beyond the general conclusions of the current literature. The application of our analysis to the
study of the bias-variance decomposition is a telling example that demonstrates how our results
can provide exhaustive details on the behavior of SVMs. Future investigations are envisioned
to take advantage of the remarks drawn from this highly informative analysis for a more clever
practical usage of the SVM method.
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Chapter 6

A joint analytical framework for
logistic regression and other
empirical risk minimization
algorithms

6.1 Introduction

In this chapter, we consider the following general classification problem: given a training set
of n pre-labelled samples with feature vectors of dimension p, the objective is to predict the
class label y (e.g., y = ±1) of a new observation x based on the knowledge of these training
samples. The basic setup of a large number of classification algorithms is to obtain the class
label y of a new instance by combining its feature vector x with a vector of weights � 2 Rp

such that y = sign(�T
x). The weight vector � is usually learned by fitting the known class of

training samples, for example, by minimizing the classification error (also known as the 0–1 loss)
on the given training set. Despite being a natural choice, the minimization of the non-convex
0–1 loss is known to be NP-hard [65]. To address this issue, the empirical risk minimization
(ERM) principle [64] suggests to obtain � by minimizing a certain convex surrogate of the 0–1
loss on the training set. Within this framework, the comparison between di↵erent designs of
loss functions has been long discussed in the literature [64, 66, 67], mostly in the setting where
the number of training data n largely exceeds their dimension p (i.e., p is considered small while
n goes to infinity). Besides computational convenience, the usage of convex loss functions is
also supported by their property of leading to the same Bayes optimal solution that minimizes
the 0–1 loss in the limit of n � p [66]. In spite of this remark, the classification accuracy can
significantly depend on the choice of the loss function when n is not exceedingly larger than p.
While it is crucial to know in practice which loss function to use for a given number of training
samples, little is known in the regime of finite n/p.

In this chapter, we derive, in the regime of large n, p with finite n/p ratios, a unified stochastic
description of the (generally implicit) optimization solution obtained from minimizing the empir-
ical risk of any convex and smooth loss, under a high dimensional mixture model of multivariate
normal feature vectors. Through this convenient and informative stochastic representation of
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the learned parameters, our analysis allows notably one to discover the possibilities of improve-
ment and comment on the optimality of this empirical risk minimization approach, as briefly
summarized in the following paragraph.

To begin with, the maximal likelihood principle [68, 69, 70] states that the maximal likelihood
solution �̂ML given by the negative log-likelihood loss function is a consistent estimator of the
true parameter vector �⇤ underlying the conditional class probability P (y|x), and often provides
the best e�ciency compared to other loss functions when n � p. However, it is empirically
observed (in simulations that will be shown subsequently) that at finite n/p: 1) �̂ML is a
biased estimator of �⇤, up to a factor depending on n/p; 2) higher classification accuracy can
be achieved with other losses, going against the natural use of maximal likelihood methods
in high dimensions. These empirical evidences raise the questions on the possibility of bias-
correcting as well as of an optimal choice of the loss function for finite n/p. From an ensemble
learning perspective, it is also found that the classification accuracy can be improved by linearly
combining solutions learned with di↵erent loss functions, as long as the weights assigned to
the member solutions are properly chosen. It would thus be of interest to investigate on the
conditions and the limitations of this improvement. Driven by these empirically motivated
questions, our main findings are summarized as follows:

• Besides �̂ML, all solutions �̂ within the present framework are aligned with �⇤ in ex-
pectation. The rescaling factor ↵ that renders ↵�̂ an unbiased estimator of �⇤ in high
dimensions is given as an explicit function of �̂ and the training samples.

• The square loss, rather than the negative log-likelihood loss, is proved to yield the best clas-
sification accuracy for the high dimensional mixture model under study. This optimality
holds universally for all n/p ratios and is irrespective of the model parameters.

• The performance gain from linearly combining di↵erent solutions can be achieved through
an optimal strategy given in this chapter. Our further investigation leads however to
an instructive remark that the classification accuracy attained by this ensemble learning
approach is upper bounded by the accuracy that is produced solely by the solution of
square loss.

In the remainder of the chapter, we introduce the objects of interest in Section 6.2. Our main
technical results are presented in Section 6.3, based on which we propose the aforementioned
high dimensional improvements. In Section 6.4 we discuss the optimal choice of loss function
and the limitations of the ensemble method. To complete our theoretical results, we provide
in Section 6.5 an asymptotic deterministic description of the system performance. The chapter
closes with concluding remarks and envisioned extensions in Section 6.6.

6.2 Preliminaries

As commonly supposed in popular statistical methods as linear discriminant analysis and logistic
regression, each data instance (x, y), with feature vector x 2 Rp and class label y = ±1, is
considered here to be drawn independently from a distribution D of the following mixture
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model:

y = �1 , x ⇠ N(�µ,C),

y = +1 , x ⇠ N(+µ,C),

with balanced class priors for some mean µ 2 Rp and positive definite covariance C 2 Rp⇥p.
The training set {(x1, y1), . . . , (xn, yn)} is composed of n independent observations from the
aforementioned model. Let X = [x1, . . . ,xn] 2 Rp⇥n be the feature matrix of training set, and
y = [y1, . . . , yn]T 2 Rp the class label vector.

This model satisfies the hypotheses of both logistic regression and linear discriminant anal-
ysis, and has its conditional class probability given by:

P (y = +1|x) = P (y = +1)P (x|y = +1)
P2

k=1 P (y = (�1)k)P (x|y = (�1)k)

=
1

1 + e�2µTC�1x
= s(�T

⇤ x)

with s(t) = 1
1+e�t the logistic sigmoid function and

�⇤ = 2C�1µ. (6.1)

As such, we shall refer to �⇤ as the vector of true parameters throughout this chapter, which
recovers the exact conditional class probability for a given x.

To ensure a non-trivial misclassification rate in the high dimensional setting (i.e., the mis-
classification probability is neither 0 nor 1 for large p), we shall (as in [71]) work under the
following assumptions.

Assumption 6.1 (Growth rate). The sample ratio n/p is uniformly bounded in (1,+1) for
arbitrarily large p. Also, kµk = O(1), kCk = O(1) and kC�1k = O(1) with respect to p.

Following the empirical risk minimization principle, we consider the optimization problem

�̂ = min
�2Rp

1

n

nX

i=1

⇢(yix
T

i �) (6.2)

with ⇢ : R 7! R some nonnegative loss function satisfying the following property,

Assumption 6.2 (Loss function). The function ⇢ is convex and at least twice di↵erentiable
with ⇢00(t) bounded away from zero except at t = 1.

In particular, with the logistic loss ⇢(t) = ln(1 + e�t) that gives the maximum likelihood
estimate of �⇤, we obtain the logistic regression classifier. The least squares classifier is given
by the square loss ⇢(t) = (t � 1)2. Another popular choice is the exponential loss ⇢(t) = e�t,
widely used in boosting algorithms [72, 73].

It is worth noting that, in the high dimensional setting of Assumption 6.1, the existence of
the unique solution to (6.2) is not guaranteed for all n, p. A simple example is the case n < p
(as excluded from Assumption 6.1), for which one can show that (6.2) has multiple solutions.
Furthermore, it was shown in [74] that, in the case of logistic regression, k�̂k is finite if and only
if some dimensionality condition is met. The discussion on the existence condition is out of the
scope of this work and we assume here that the learned classifier is “well-behaved” in the sense
that the optimization problem (6.2) is well defined with a unique solution �̂ of finite norm and
bounded prediction scores xT

i
�̂ = O(1) for training data vectors xi.
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6.3 Main results and improvements

Before introducing the main theoretical results, we define some random elements that will appear
in the theorem. By cancelling the derivative of the convex loss function ⇢, we obtain from (6.2)
that Xc = 0 with

c = [c1, . . . , cn]
T ⌘ [y1 (y1x

T

1 �̂), . . . , yn (ynx
T

n �̂)]
T, (6.3)

where we denote  (t) ⌘ �d⇢(t)
dt

the negative derivative of the loss function ⇢. Additionally, let

r = [r1, . . . , rn]
T ⌘ [xT

1 �̂ � c1, . . . ,x
T

n �̂ � cn]
T, (6.4)

with

 =
1

n

nX

i=1

x
T

i
Qxi/n

1 +  0(yixT

i
�̂)xT

i
Qxi/n

, (6.5)

where Q =
⇣
� 1

n

P
n

i=1  
0(yixT

i
�̂)xix

T

i

⌘�1
. We denote by rc a recentered version of r given as

rc = �
✓
In � 1

n
yy

T

◆
r. (6.6)

With the above notations, we are now in position to introduce the main technical result of
this chapter, which concerns a stochastic description of the classifier �̂ defined in (6.2), in the
following theorem.

Theorem 6.3.1. Let Assumptions 6.1 and 6.2 hold. Then,

k�̂ � �̃k = oP (1), �̃ =
1

↵

✓
�⇤ +

2
p
pkck

cTy
C

� 1
2u

◆

for �⇤, c, rc defined respectively in (6.1), (6.3) and (6.6), u 2 Rp a random vector uniformly
distributed on the unit sphere and

↵ =
2ncTrc
cTykrck2

. (6.7)

Theorem 6.3.1 gives a high dimensional equivalence �̃ for the optimization solution �̂, so that
the high dimensional performance of �̂ can be studied via �̃. Indeed, consider the probability
of misclassification

P (yxT� < 0|�) ⌘ MC(�) (6.8)

for some (x, y) ⇠ D independent of �; we deduce from Theorem 6.3.1 that

MC(�̂) = Q

0

@ µT
C

�1µq
µTC�1µ+ pkck2

(cTy)2

1

A+ oP (1), (6.9)

where Q(t) ⌘ 1p
2⇡

R1
t

e�u
2
/2du denotes the Q-function of the standard Gaussian distribution.

As shown in Figure 6.1, the approximation of classification performance MC(�̂) given by (6.9) is
of high precision for moderately large n, p. Note also from Theorem 6.3.1 that�̃ is proportional

to the true parameter �⇤ = 2C�1µ in expectation, with an random “noise” term
2
p
pkck

cTy
C

� 1
2u

that is of no use to the classification.1 Clearly, one shall maximize the signal-to-noise ratio of �̃
by minimizing kck

|cTy| . This conclusion can also be easily reached from (6.9).

1Remark that ↵ and
p
pkck/cTy are both finite and away from zero with high probability.
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Figure 6.1: Comparison between the expected classification error MC and its approxima-
tion in (6.9) for p = 256, with µ = [1,0p�1], C = 2Ip, ⇢(t) = ln(1 + e�t) (left) and
µ = [1p/2,�1p/2]/

p
2p, Cij = 0.1|i�j|, ⇢(t) = (t� 1)2/2 (right).

Even though the maximal likelihood solution �̂ML obtained from ⇢(t) = ln(1+e�t) estimates
exactly �⇤ in the limit of n � p, it is biased in the high dimensional setting with finite n/p.
Indeed, by estimating the expectation of �̂ML with the empirical mean �̂avg

ML obtained over 500

independent realizations, we observe in Figure 6.2 that �̂avg
ML is proportional, and clearly not

equal, to the true parameter vector �⇤. According to Theorem 6.3.1, we can render the high
dimensional solution unbiased by multiplying ↵ given in (6.7). As corroborating evidence, the
estimated expectation ↵�̂avg

ML of ↵�̂ML is observed in Figure 6.2 to coincide with �⇤.

Although correcting the aforementioned bias with the rescaled solution ↵�̂ML does not change
the classification accuracy, it helps improve the conditional class probability estimation, which is
required in many applications, e.g., the risk management in the domain of finances. We propose
here an improvement strategy consisting in rescaling any solution �̂ (besides �̂ML) with its bias-
correcting factor ↵ for a more accurate class probability estimation, theoretically supported by
the following corollary.

Corollary 6.1. With the assumptions and notations of Theorem 6.3.1, we have

kE[↵�̂]� �⇤k = oP (1).

Consider now the expected square loss of class probability estimation of a classifier � given
by

ME(�) = E[s(xT�)� s(xT�⇤)|�]2 (6.10)

where (x, y) ⇠ D is independent of �, and s(t) = 1
1+e�t . We demonstrate in Figure 6.3 the

utility of the proposed rescaling strategy with the significant performance gains measured by
ME(�̂ML) � ME(↵�̂ML), which are especially large at small n/p ratios. Moreover, note that
both c, rc (and thus ↵) are fast computed once �̂ is obtained from solving (6.2). Therefore, the
proposed rescaling scheme is computationally e�cient in the sense that it induces little extra
cost to the training of the original classifier �̂.
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Figure 6.2: Comparison of the maximum likelihood estimate �̂ML (averaged over 500 realiza-
tions), the true parameter �⇤ and the rescaled classifier ↵�̂ML defined in Theorem 6.3.1 with
µ = [1p/3,�1p/3,

3
41p/3]/

p
p, C = 2Ip, for p = 60 and n = 300.
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Figure 6.3: Performance gain ME(�̂ML) �ME(↵�̂ML) with a width of ±1 standard deviation
(generated from 500 trials) for µ = [1,0p�1], C = Ip and p = 256.
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Figure 6.4: Comparison between the expected classification errors of the ensemble classi-
fier MC(�̂ES) and its approximation MC(�̃ES) as a function of W. For ⇢1(t) = ln(1 + e�t),
⇢2(t) = e�t, µ = [1,0p�1], C = 2Ip (left) and ⇢1(t) = (t � 1)2/2, ⇢2(t) = ln(1 + e�t),
µ = [1p/2,�1p/2]/

p
2p, Cij = 0.1|i�j| (right), p = 256, n = 10p.

Corollary 6.1 indicates that all rescaled classifiers ↵�̂ are equally e�cient in expectation. It
is then pertinent to ask whether it is possible to reduce the variance. One of the basic strategies
in this respect is to linearly combine several (rescaled) classifiers ↵k�̂k learned with di↵erent
loss functions, to form an ensemble classifier [75]. In the following theorem we give a stochastic
characterization of such ensemble classifier.

Theorem 6.3.2. Let Assumptions 6.1 and 6.2 hold, and �̂1, . . . , �̂m stand respectively for clas-
sifiers learned with loss functions ⇢1, . . . , ⇢m, m being some positive integer. For any set of m
real-valued coe�cients {w1, . . . , wm} such that

P
m

k=1wk = 1, define the ensemble classifier

�̂ES =
mX

k=1

wk↵k�̂k (6.11)

with ↵k the rescaling factor of �̂k given in (6.7). Then,

k�̂ES � �̃ESk = oP (1),

with

�̃ES = �⇤ + 2
p
pkcESkC� 1

2u
0

for u
0 2 Rp a random vector uniformly distributed on the unit sphere and

cES =
mX

k=1

wkck

cT
k
y

(6.12)

for ck defined in (6.3) with respect to the loss function ⇢k and the training set (X,y).
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In Figure 6.4 we consider the ensemble classifier �̂ES = w↵1�̂⇢1 +(1�w)↵2�̂⇢2 from di↵erent
loss functions ⇢1, ⇢2, and compare its classification performance with its high dimensional equiv-
alent �̃ES given in Theorem 6.3.2 as a function of the weight w. A close match is observed in
both settings with di↵erent combinations of loss functions, suggesting that the optimal weights
can be estimated with great precision from the vector c of its member classifiers. Indeed, The-
orem 6.3.2 entails that the optimal weights wk yielding the best performance can be obtained
by minimizing kcESk. This remark is formally stated in the following corollary, where we also
provide a necessary and su�cient condition under which �̂ES is guaranteed to surpass all its
(rescaled) member classifiers ↵k�̂k in terms of both classification accuracy and class probability
estimation.

Corollary 6.2. With the assumptions and notations in Theorem 6.3.2, the optimal ensemble
classifier is given by

�̂opt
ES =

mX

k=1

wopt
k
↵k�̂k

with
{wopt

1 , . . . , wopt
m } = argmin{w1,...,wm} kcESk, (6.13)

then, with high probability,

M(�̂opt
ES ) � max

k2{1,...,m}
M(↵k�̂k) (6.14)

for M = MC or ME as defined in (6.8) and (6.10), respectively. Furthermore, the inequality in
(6.14) is strict if and only if, there exists k 2 {1, . . . ,m} such that,

|cT
k
ck⇤ |

|yTck|
6= |ck⇤ |2

|yTck⇤ |
, k⇤ = argmink02{1,...,m}

kck0k
|yTck0 |

.

The simulations in Figure 6.5 confirm the benefits of this ensemble approach. Compared
to its member classifiers, the ensemble classifier with the optimal weights wopt

k
given by (6.13)

produces a similar e↵ect as adding p/5 training samples in reducing classification error.

In this section we discussed two improvement strategies for the high dimensional classification
problem: 1) the rescaling method for obtaining an unbiased estimator of the true parameter
vector �⇤, when the feature dimension p is comparable to the sample size n and 2) the ensemble
scheme that helps improve the classification and estimation performance by linearly combining
several classifiers obtained from di↵erent loss functions. Numerical evidences are also provided
to support the advantages of these two methods. A natural question to ask then, is whether
there exists a performance upper bound for these methods and when it can be attained. We
answer this question in the next section.

6.4 Optimality of the empirical risk minimization appraoch

It has been shown in Corollary 6.1 that, regardless of the choice of loss function ⇢, the true
parameter vector �⇤ is reached by the rescaled classifier ↵�̂, for ↵ given by (6.7), in the limit of
n � p. Yet, it is still unclear which choice of ⇢ is optimal (if any) at finite n/p, which is a far
more interesting question to provide guidance in practice.
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Figure 6.5: Comparison of classification error rate between the logistic loss ⇢(t) = ln(1+e�t), the
square root loss ⇢(t) =

p
(t� 1)2 + 1 and the associated ensemble classifier given in Corollary 6.2

for µ = [0.6,0p�1], C = Ip and p = 250.

A default option, which is commonly believed to yield optimal learning results, would be to
apply the maximal likelihood solution �̂ML, obtained here with the logistic loss ⇢(t) = ln(1+e�t).
However, as can be observed in Figure 6.6 where the classification performance of the maximal
likelihood solution (in blue) is provided along with the results produced by the square loss
⇢(t) = (t � 1)2/2 (in red), the maximum likelihood classifier is consistently surpassed by the
least squares classifier, for n/p ranging from 4 to 10. In light of this empirical evidence which
contradicts the maximal likelihood principle for not too large n/p, one may ask whether this
observed superiority of square loss over logistic loss holds for all n/p ratios, or more generally,
whether there exists a loss function providing the best high dimensional classification results for
any given size of training samples.

To answer these questions, note first that since ↵�̂ is asymptotically equivalent to ↵�̃ in
high dimensions, it is straightforward to see (from the remarks following Theorem 6.3.1) that,
with high probability,

argmin⇢M(↵�̂) = argmin⇢
kck
|cTy|

where M can be either the classification error function MC given by (6.8) or the estimation error
function ME in (6.10).

To put it di↵erently, the search for the optimal loss function ⇢ can be reduced to the min-
imization of kck

|cTy| with respect to ⇢. Now notice that we always have Xc = 0 from (6.2) and

X 2 Rp⇥n is of rank p for n > p with probability one. Then consider the singular value
decomposition

X = U⌃V
T

where u 2 Rp⇥p, v 2 Rn⇥n are some unitary matrices such that ⌃ =
⇥
S 0

⇤
with S 2 Rp⇥p
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Figure 6.6: Comparison of the expected classification error rate between the logistic loss
⇢(t) = ln(1 + e�t) and the square loss ⇢(t) = (t� 1)2/2 with a width of ±1 standard deviation
(generated from 500 trials) for µ = [1,0p�1], C = Ip and p = 256.

a diagonal matrix with positive diagonal entries. Write V =
⇥
V1 V2

⇤
with v1 2 Rn⇥p and

v2 2 Rn⇥(n�p). It follows from Xc = 0 that v
T
1 c = 0. The vector c 2 Rn thus lies in the

subspace spanned by the column vectors of v2, i.e., for vector c⇢ from any ⇢, there exists a
vector ⌘⇢ 2 Rn�p such that

c⇢ = v2⌘⇢. (6.15)

Since kc⇢k
|cT⇢y|

= k⌘⇢k
|⌘T

⇢v
T

2y|
and that k⌘⇢k

|⌘T
⇢v

T

2y|
is minimized at ⌘⇤ = avT

2 y for any non zero a 2 R, we
infer that if there exists a loss function ⇢opt for which the vector c is of the form

copt = av2v
T

2 y, (6.16)

then the high dimensional performance (for both classification and class probability estimation)
is optimized by the rescaled classifier ↵�̂ obtained with ⇢ = ⇢opt.

As a matter of fact, with the square loss function2 ⇢(t) = (t�1)2/2, the optimization problem
in (6.2) is of explicit solution

�̂LS = (XX
T)�1

Xy,

which is the least squares classifier. We obtain from (6.3) that

cLS = y �X
T�̂LS = v2v

T

2 y, (6.17)

meeting the optimality condition given in (6.16). This remark, combined with the above argu-
ments, leads to the following proposition on the optimal choice of the loss function.

2It can be shown that any square loss function of the type ⇢(t) = (t � a)2/2 for a > 0 yields the same
classification performance. We consider a = 1 without loss of generality.
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Proposition 6.4.1. Let Assumptions 6.1 and 6.2 hold. Denote by �̂LS the solution of (6.2)
with the square loss function ⇢(t) = (t� 1)2/2, �⇢0 the solution with some loss function ⇢0, and

↵LS,↵⇢0 respectively the rescaling factor of �̂LS, �̂⇢0 given in (6.7). Then, for any given µ,C and
n/p ratio, we have that

M(↵LS�̂LS)  M(↵⇢0�̂⇢0)

with high probability, for M = MC or ME, regardless of the choice of ⇢0.

As we recall, the true parameter vector �⇤ is given by �⇤ = 2C�1µ, which can also be consis-
tently estimated by the linear discriminant analysis (LDA) classifier discussed in the introduction
of Chapter 1

�̂LDA = 2Ĉ�1µ̂ (6.18)

where µ̂ = 1
n
Xy, Ĉ = 1

n
XX

T � µ̂µ̂T are respectively consistent estimators of the true mean µ
and covariance C. Actually, since

�̂LDA =
h
1� µ̂T(XX

T/n)�1µ̂
i�1

�̂LS,

with µ̂T(XX
T/n)�1µ̂ = µ̂TĈ�1µ̂

1+µ̂TC�1µ̂
< 1 by Sherman-Morrison formula, we observe that �̂LDA

is in fact proportional to �̂LS. As such, �̂LDA leads to the same classification results as �̂LS.
However, when it comes to the prediction of class probability P (y = ±1|x), the estimation error
can be significantly reduced by using ↵LS�̂LS instead of �̂LDA, thanks to the bias-correcting
e↵ect (as stated in Corollary 6.1) of the rescaling factor ↵LS for finite n/p. This remark is
confirmed in Figure 6.7, where the performance gain of ↵LS�̂LS over �̂LDA in class probability
estimation is reported.

After answering the question of optimality for individual classifiers, we move on to discuss
the learning e�ciency of the ensemble learning classifiers �̂ES described in Theorem 6.3.2. As
shown in Figure 6.5, the ensemble classifier yields superior results when compared to all of its
member classifiers. However, since the learning process is always performed on the same training
set, there exists certainly a limit for the performance gain achieved by this approach. To inquire
into this limit, we develop the arguments below.

Similarly to the performance discussion on (rescaled) individual classifiers, it can be derived
from Theorem 6.3.2 that

argmin�̂ES
M(�̂ES) = argmin�̂ES

|cES|

with high probability, for M = MC or ME. According to (6.12) and (6.15), we have

cES =
mX

k=1

wkck/(c
T

ky) =
mX

k=1

wk⌘k/(u
T

kV
T

2 y)

with
P

m

k=1wk = 1. By decomposing ⌘k as the sum of its projection and orthogonal projection
on v

T
2 y, we have

cES =
v
T
2 y

|vT
2 y|2

+
mX

k=1

wk

✓
⌘k

⌘T
k
vT
2 y

� v
T
2 y

|vT
2 y|2

◆
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Figure 6.7: Performance gain ME(�̂LDA) �ME(↵�̂LS) with a width of ±1 standard deviation
(generated from 500 trials) for µ = [1,0p�1], C = Ip and p = 256.

where ⌘k

⌘T

kv
T

2y
� vT

2y

|vT

2y|2
is orthogonal to v

T
2 y. Therefore,

|cES| �
1

|vT
2 y|

.

Moreover, since 1
|vT

2y|
= kcLSk

|cTLSy|
with cLS given in (6.17), we deduce that the norm of cES reaches

its minimum at �̂ES = ↵LS�̂LS, and thus conclude on the performance limit of ensemble learning
classifier as follows.

Proposition 6.4.2. Let Assumptions 6.1 and 6.2 hold, and �̂ES be any ensemble learning
classifier of the form (6.11). Denote by �̂LS the solution of (6.2) with the square loss function
⇢(t) = (t� 1)2/2, and ↵LS its rescaling factor as defined in (6.7). Then, for any given µ,C and
n/p ratio, we have

M(↵LS�̂LS)  M(�̂ES)

with high probability, for M = MC or ME.

6.5 Asymptotic deterministic description of the learning per-
formance

As discussed in Section 6.3, the high dimensional classification performance of �̂ can be com-
puted with the associated random vector c via (6.9). The distribution of c thus provides a
direct access to the classification performance of �̂ for any loss function. However, as c is a
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function of the predicted scores xT
1 �̂, . . . ,x

T
n �̂ on all training samples, its statistical behavior is

di�cult to capture since �̂ depends on x1, . . . ,xn in a (generally) implicit manner through the
optimization problem in (6.2). Nonetheless, by considering the regime of large n, p, one can link
the distribution of c (and that of the random vector r defined in (6.4)) to the predicted score of
new data as specified in the following theorem.

Theorem 6.5.1. Let Assumptions 6.1 and 6.2 hold, then there exist two positive constants m,�

such that yxT�̂
D! N(m,�2) for some (x, y) ⇠ D independent of �̂. For random vectors c, r

defined in (6.3) and (6.4), we have that for all i 2 {1, . . . , n},

(yiri, yici)
D! (r, ḡ(r))

with r ⇠ N(m,�2), the function ḡ : R 7! R defined as

ḡ(t) ⌘  (prox̄(t)) (6.19)

where we denote the proximal operator (with respect to ⇢) prox̄(t) ⌘ argminz2R
�
̄⇢(z) + 1

2(z � t)2
�

for ̄ the unique positive solution of the following fixed point equation

̄ =
p/n

(p/n� 1)E [ 0(prox̄(r))]

for  0(t) the derivative of  (t). Moreover, m,� can be determined by the following system of
equations

m =
E[ḡ(r)]�2

mE[ḡ(r)]� E[rḡ(r)]
µT

C
�1µ, (6.20)

� =
mp

µTC�1µ
+

r
p

n

�2
p
E[ḡ(r)2]

mE[ḡ(r)]� E[rḡ(r)]
. (6.21)

Since m,� introduced in Theorem 6.5.1 are given as the solutions of the two deterministic
equations (6.20) and (6.21), we can obtain the high dimensional classification performance di-
rectly from the parameters of the data model and the n/p ratio without the actual training of
the classifier.

Corollary 6.3. Under the conditions and notations of Theorem 6.5.1, the expected classification
error rate is given by

MC(�̂) = Q
⇣m
�

⌘
+ oP (1)

where we recall that Q(t) ⌘ 1p
2⇡

R1
t

e�u
2
/2du. Similarly, the training (classification) error is

given by

P
⇣
yix

T

i �̂ < 0
⌘
= P (prox̄(r) < 0) + oP (1).

In Figure 6.8 we compare the empirical distribution of yiri and yici with the theoretical
predictions in Theorem 6.5.1. A close match is observed for p = 256 and n = 6p which confirms
our theoretical results. In Figure 6.9 we plot, as a numerical validation of Corollary 6.3, the
classification error rate MC and the associated values of Q

�
m

�

�
as a function of the n/p ratio,

for logistic and square losses.
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Figure 6.8: Comparison between the empirical distribution of yiri and yici with their theoretical
prediction given in Theorem 6.5.1. For logistic loss ⇢(t) = ln(1 + e�t), µ = [1,0p�1], C = 2Ip
and p = 256, n = 6p.
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Figure 6.9: Comparison of classification error rate between the logistic loss ⇢1(t) = ln(1+ e�t),
the square loss ⇢2(t) = (t� 1)2/2 and the theoretical results given in Corollary 6.3 with a width
of ±1 standard deviation (generated from 500 trials) for µ = [1p/2,�1p/2]/

p
p, C = Ip and

p = 256.
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6.6 Concluding remarks

In this chapter, we investigated the problem of high dimensional classification within the general
framework of empirical risk minimization. We showed that, for the high dimensional mixture
model under consideration, all classifiers �̂ given in (6.2) are aligned in expectation to the
oracle direction, however with di↵erent scaling factors that depend on the ratio n/p. Based on
this result, we proposed a rescaling method to render high dimensional solutions unbiased for
an enhanced class probability estimation. We demonstrated subsequently that the square loss
solution, instead of the maximal likelihood solution given by the negative log-likelihood loss (i.e.,
the logistic loss), yields the best results in both classification and class probability estimation
after being corrected by the proposed rescaling strategy. Our analysis furthermore served to
statistically characterize linear combinations of classifiers learned with di↵erent loss functions,
allowing us to conclude on the possibilities and limitations of this ensemble learning approach.

The proposed analysis framework is generalizable to more generic mixture models of non-
Gaussian feature vectors (in a similar manner to the results of SVMs given in Chapter 5), however
at the cost of the readability and interpretability of the theoretical results. Indeed, under the
data model of this chapter, we were able to obtain a convenient statistical representation for
the ERM solutions, which was notably useful for deriving the conclusions on the optimality of
the empirical risk minimization approach. It is interesting to see if these insightful remarks
generalize to other more elaborate settings in future investigations, which may be conducted by
further developing the results and the mathematical approach of this chapter.

The extension to non-smooth and non-convex loss functions is on the other hand more
technically challenging. The hinge loss function, arguably the most known of the non-smooth
loss functions, is used in the SVM method, which is studied in the previous chapter and can be
seen as a regularized version of the empirical risk minimization technique. The present study
can also be further developed to encompass regularized solutions, as a means to explore the joint
e↵ect of loss functions and regularizations (e.g., `1 or `2 regularization).
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Chapter 7

Conclusions and perspectives

Up to now, the field of machine learning has been largely driven by engineering techniques. The
understanding of these techniques, or more essentially, the understanding of the learning process
itself remains unsatisfactory. This lack of understanding is at the root of the fact that, so far,
the most performing classifiers often owe their impressive, sometimes superhuman, performance
to the power of massive amounts of input data. Precisely, when the methods of machine learning
are said now to achieve superhuman performance in certain learning tasks, it usually refers to the
regime n � p, which certainly does not imply that these methods can compare to the human
level of learning e�ciency with relatively less data samples. To reach the next stage in the
development of artificial intelligence, we clearly need to turn our attention to learning scenarios
with comparable n, p in search for improved learning e�ciency. This is where the overarching
ambition of this research project lies.

A deep analysis of the learning process is however far from being an easy task. In fact,
empirical successes almost always exceed theoretical advances in the domain of machine learning.
Motivated by the big data paradigm, we place ourselves in the setting of large and comparable
n, p. The high dimensionality of modern data actually happens to be theoretically convenient
for analyzing the regime of finite n/p. In this dissertation, we merged the advanced techniques
of random matrix theory and the leave-one-out perturbation strategy which allow us to conduct,
on structured data, more elaborate analyses than provided by the state of the art.

The potential of such high dimensional analyses is in particular demonstrated by our contri-
bution in semi-supervised graph-based learning. By fully characterizing the learning outcomes
as a function of the size ratio n/p in the limit of large p, we discovered that the currently used
Laplacian regularization algorithms are flawed as they fail to e↵ectively extract information
from the unlabelled data. In view of this finding, we proposed a novel approach as a solution,
which we proved to have a consistent performance growth when the size of the unlabeled set
increases, while maintaining a labeled data learning e�ciency lower-bounded by that of the
Laplacian regularization approach. A fundamental observation about this proposed method is
that its advantage over the Laplacian approach appears to extend beyond the high dimensional
data model, evidencing the prospect of improving the general e�ciency of machine learning
approaches (even for small dimensional data) through large dimensional studies.

Another important contribution of this thesis is to show that, even in the well developed
area of supervised learning, there still remains a lot to be discovered. The power of our new
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technical approach allows one to address the issue of admitting no explicit solution, and enables
us to analyze the widely used methods of SVMs and logistic regression, under realistic mixture
models. Thanks to an insightful statistical description of the learned parameters, we were able to
deduce surprising remarks about the bias-variance trade-o↵, the maximum likelihood principle
and the limitations of ensemble learning, which are not covered in the literature, some even in
contradiction with common belief.

It is worth noting that for the study of the kernel methods, we concentrated in this thesis on
kernels of the form h(kxi � xjk2/p) with some su�ciently smooth function h. Since, under our
high dimensional assumption, the value of h(kxi � xjk2/p) converges to the same limit h(⌧) for
any pair of data vectors xi,xj , we analyzed the performance of the kernel methods by developing
the small fluctuations around this limit. It is should be pointed out that in the development of
h(kxi � xjk2/p) around h(⌧), there are some smaller terms left out in our analyses that can be
useful to the learning task. However, for these smaller terms to have a non-negligible impact on
the learning performance, the larger terms (that are kept in our analyses) should be somehow
“made smaller” in order of magnitude. This idea was for example investigated in [76], where
the authors analyzed the performance of kernel spectral clustering for kernel functions h with
h0(⌧) = O(p�

1
2 ), a condition that is required for the learning method to access information in

smaller terms. We can envision the same extension to the analyses of this thesis in order to
further understand the role of the kernel function in the methods under study.

This thesis opens up many future directions in the line of high dimensional research. One
direction is to go deeper in the study of semi-supervised learning, where our first works turned
out to be instrumental in understanding and improving this rather underdeveloped field of ma-
chine learning. Since our technical tools allow one to examine learning methods with implicit
solutions, they can be applied to a large range of more complex semi-supervised learning al-
gorithms than those studied in this thesis, which have explicit solutions. For instance, as an
extension of SVMs in the semi-supervised learning setting, the method of transductive support
vector machines (TSVMs) [77] aims to construct a separating hyperplane on a low-density region
of the whole data set with labelled and unlabelled examples that divides the labelled instances
according to their classes. Like SVMs, the TSVM algorithm admits no closed-form solution.
More than that, the convexity of the optimization problem is no longer ensured as a result
of including unlabeled data. Despite some successful applications, it is observed that TSVMs
yield in certain scenarios roughly the same performance as SVMs or even worse, arguably due
to the di�culty of finding the global optimum. With the help of high dimensional analyses,
we can provide a complete description of all the local and global solutions to the TSVM op-
timization. A first question that the high dimensional results can help answer is how many
labelled data are required or how much weight should be associated to them so that the TSVM
optimization can lead to reasonable solutions. Based on the properties of the local and global
solutions revealed by the high dimensional study of TSVMs, it would also be possible to design
improved strategies to guide more e�ciently the optimization algorithms towards the global
minimum. Instead of implementing the low-density separation principle over the entire set of
labelled and unlabelled data, Laplacian SVMs [63] incorporate the unlabelled information by
adding a Laplacian regularization term into the original SVM optimization, and have the advan-
tage of preserving the convexity of the optimization problem. Since Laplacian SVMs share the
same Laplacian regularization terms as the semi-supervised Laplacian regularization algorithms
studied in Chapter 3, it is natural to wonder if they su↵er also the same high dimensional conse-
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quences. By conducting large dimensional analyses, we can find out the answer to this question,
and more generally understand how imposing the smoothness of class scores on graph through
Laplacian regularization a↵ects the original SVM solution, which might provide guidance on the
choice of hyperparameters or even inspire superior alternatives.

A closely related research area to semi-supervised learning is active learning, which involves
also labelled and unlabelled data, but is focused on improving the learning performance by
finding the optimal set of unlabelled data to label [78]. Semi-supervised learning and active
learning are di↵erent in what they care most about unlabelled data: the former is concerned
with what can be learned from unlabelled data, whereas the latter is interested in the uncertainty
of unlabelled instances. For example, self-training is a standard semi-supervised technique that
trains first a classifier with the labelled data set, then uses it to classify unlabelled data before
feeding the most confidently classified unlabelled samples into the training set, and repeats
the process. In contrast, a basic concept in active learning is to select the least confident
unlabelled instances to label. Active learning can be seen as a complementary technique to
semi-supervised learning, and we can push further the high dimensional study on semi-supervised
learning methods by investigating the possibility of enhancing their performance through active
learning. Indeed, based on the statistical characterization of learning outcomes given by high
dimensional analyses, we can derive the distribution of updated results after applying a certain
active learning technique. By doing so, we can shed light on the impact of active learning
algorithms, discuss their limitations as well as search for optimal strategies.

Another major direction of exploration to apply these high dimensional statistical tools
concerns learning methods involving multiple sources of information like transfer learning (see,
e.g., [79] for an overview). The idea of transfer learning is to improve the results of a target
learning task by exploiting the knowledge gained from a source task where the data samples are
much more abundant compared to the target task. A major complication about transfer learning
is that since it concerns multiple learning tasks, data samples are no longer considered to be
drawn from the same distribution as commonly assumed in machine learning. Understandably,
how to take advantage of the relation between the source task and the target task is the key
question in transfer learning. In fact, negative transfer can happen when using data samples of
the source task decreases the performance of the target task, as empirically evidenced by [80].
To avoid negative transfer, one needs to study and characterize the relatedness between tasks.
As high dimensional analyses give rise to quantitative descriptions of learning systems, they
might be used to design a measure of transferability between tasks, which can help practitioners
decide when and which transfer learning techniques to apply. On a more precise level, since
lots of transfer learning methods admit some hyperparameters to control the emphasis on the
data of the source task, the quantification of transferability on high dimensional data would
allow one to determine the exact optimal weight to assign to the information from the source
task. Although sharing some similarity with semi-supervised learning, transfer learning requires
a more elaborate modeling of the data distribution for theoretical studies than those considered
in a semi-supervised learning setting, as the latter are only meant to describe a single learning
task.

Even though we focused in this dissertation on analyzing each learning method individually,
the technical approach, even some of our results, can be straightforwardly used in the study
of ensemble learning or distributed learning. Actually, in Chapter 6 we already applied the
joint framework of the empirical risk minimization (ERM) algorithms to investigate the simple
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ensemble learning technique that linearly combines several ERM classifiers with di↵erent loss
functions, trained on the same data set. We showed how our high dimensional results can be
employed to estimate the optimal weights to assign to each member classifier. More interestingly,
we found that, under the Gaussian-mixture models with identical covariances considered in the
analysis, the performance of this elementary ensemble learning technique is upper bounded by
that of a single least squares classifier. This remark is illustrative of the importance of theoreti-
cal studies. Indeed, when looking only at empirical results, the practitioner might be under the
impression that this ensemble learning method was beneficial to the improvement of the learn-
ing performance, although in reality this improvement is only observed when the optimal loss
function (here the square loss) is not used. It is interesting to examine the extent of this remark
by studying more sophisticated ensemble learning techniques under more involved data models.
It is also possible to apply our high dimensional results to the design of better distributed learn-
ing strategies. Distributed learning is based on several learning models, each of them learning
from subsets of the data samples, which can be of di↵erent sizes. Understandably, the optimal
weights for combining the individual learning models are dependent, however not necessarily in
an obvious way, of their input data size. Since the results of analyses with comparably large
n, p are quantitative in the sense that they capture the exact e↵ect of the data size, they can be
used to design consistent estimators of the optimal weights that maximize the performance of
distributed learning in the limit of very large dimensions.

In addition to investigating general learning methods, the approach of large dimensional
analyses can be used to study any particular task in big data mining. After mathematically
modeling the learning problem, we can examine, with the help of high dimensional statistical
tools, the adequacy of current techniques for handling the data of this learning task, provide
guidance on how to employ them in practice, and eventually search for superior alternatives
based on the insights drawn from the performance analysis. Naturally, the key to this kind
of research work is a proper mathematical modeling of the learning problem which captures
the essential properties of the data type and reflects the real di�culties faced in practice. All
this requires a solid grasp of the learning task, built upon extensive empirical observations.
Once the high dimensional analysis is carried out under a presumably appropriate statistical
model of the data samples, we can discover which statistical properties of data are captured
by which learning strategies and with how much e�ciency, then answer important questions
about whether or not the intended purpose of the learning strategies is fulfilled and under which
conditions. These remarks will in turn enable us to choose wisely the learning technique to use
according to the specific data set at hand and the requirements of the learning task. Eventually,
the findings of the high dimensional study can help devise better learning procedures, e.g., by
smartly combining several learning techniques that capitalize on di↵erent sets of data statistical
properties, or by inventing new learning tools exploiting the aspects in the data structure that
are not put to use (or not with enough e�ciency) by existing techniques.

By comparing the theoretical results with empirical outcomes obtained from executing the
learning task, the high dimensional analysis will further allow one to check the validity of the
presumed data model. It should be noted that a close match between the theoretical results and
the empirical outcomes does not necessarily imply that the actual data distribution is very similar
to the one assumed in the analysis. However, it does suggest that the learning algorithm under
study treats data instances of this particular learning task as if they were drawn from the assumed
data distribution. Recall for instance from Chapter 3 that the theoretical performance of semi-
supervised Laplacian regularization obtained under high dimensional Gaussian mixture models
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is remarkably close to the actual performance on the MNIST data sets, even though the MNIST
data are nowhere near appropriately described by a Gaussian mixture model. This observation
tells us that the semi-supervised Laplacian regularization algorithms extract information from
MNIST data in a manner similar to Gaussian data vectors, the distribution of which is fully
determined by its first and second moments. If we later found a method that yields a learning
performance higher than the theoretical value obtained under high dimensional Gaussian mixture
models, this would mean that this other method captures more complicated data structure than
Gaussian mixture models. The process of fitting the performance of this method would help
the refinement of the data model. Conversely, if a relatively simple data model gives essentially
the same level of approximation for the actual performance as a more complicated model, it is
preferable to use the simpler model that produces more straightforward results from which it is
easier to extract meaningful messages. As such, the high dimensional analysis provides a way
to deepen the understanding of data structures and also to improve its statistical modeling.
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Appendix A

Supplementary material of Chapter 4

A.1 Generalized theorem

We begin with some additional notations that will be useful in the proofs.

• For xi 2 Ck, !i ⌘ (xi � µk)/
p
p, and ⌦ ⌘ [!1, · · · ,!n]T

• jk 2 Rn is the canonical vector of Ck, in the sense that its i-th element is 1 if xi 2 Ck or 0
otherwise. j[l]k and j[u]k are respectively the canonical vectors for labelled and unlabelled
data of Ck.

•  i ⌘ k!ik2 � E[k!ik2],  ⌘ [ 1, · · · , n]T and ( )2 ⌘ [( 1)2, · · · , ( n)2]T.

With these notations at hand, we introduce next the generalized version of Theorem 3.4.1
for all � = O(1) (rather than � = �1 +O(1/

p
n)).

Theorem A.1.1. For xi 2 Cb an unlabelled vector (i.e., i > n[l]), let f̂ia be given by (3.7) with
F defined in (3.2) for � = O(1). Then, under Assumptions 3.1–3.2,

p{F̂}i· = p(1 + zi)1K + gi + oP (1)

gi ⇠ N(mb,⌃b)

where zi is as in Theorem 3.4.1 and

(i) for {F}i· considered on the �-field induced by the random variables x[l]+1, . . . ,xn, p =
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1, 2, . . .,

[mb]a = Hab +
1

n[l]

KX

d=1
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+ (1 + �)
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[⌃b]a1a2 =

 
(��2 � �)n� n[l]
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(ii) for Fi· considered on the �-field induced by the random variables x1, . . . ,xn,

{mb}a = Hab +
1

n[l]

KX

d=1

(�nd + n[u]d)Had + (1 + �)
n

n[l]

"
�a � �
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tatb

#
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+ �a2a1
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(1 + �)2n2
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+
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!
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4h0(⌧)2

h(⌧)2
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Cbµ

�
a2

with Hab given in (A.3) and �a in (A.4).

Let P(xi ! Cb|xi 2 Cb,x1, · · · ,xn[l]
) denote the probability of correct classification of xi 2 Cb

unlabelled, conditioned on x1, . . . ,xn[l]
, and P(xi ! Cb|xi 2 Cb) the unconditional probability.

Recall that the probability of correct classification of xi 2 Cb is the same as the probability of
{F̂}ib > maxa 6=b{F̂}ib, which, according to the above theorem, is asymptotically the probability
that [gi]b is the greatest element of gi. Particularly for K = 2, we have the following corollary.

Corollary A.1. Under the conditions of Theorem 1, and with K = 2, we have, for a 6= b 2
{1, 2},

(i) Conditionally on x1, · · · ,xn[l]
,

P
⇣
xi ! Cb|xi 2 Cb,x1, · · · ,xn[l]

)� �(✓ab

⌘
! 0

✓ab =
[mb]b � [mb]ap

[⌃b]bb + [⌃b]aa � 2[⌃b]ab

where �(u) = 1
2⇡

R
u

�1 exp(�t2/2)dt and mb, ⌃b are given in (i) of Theorem A.1.1.
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(ii) Unconditionally,

P (xi ! Cb|xi 2 Cb)� �(✓ab ) ! 0

✓ab =
[mb]b � [mb]ap

[⌃b]bb + [⌃b]aa � 2[⌃b]ab

where here mb, ⌃b are given in (ii) of Theorem A.1.1.

The remainder of the appendix is dedicated to the proof of Theorem A.1.1 and Corollary A.1
from which the results of Section 3.4 directly unfold.

A.2 Proof of the generalized theorem

The proof of Theorem A.1.1 is divided into two steps: first, we Taylor-expand the normalized
scores for unlabelled data F̂[u] using the convergence

1
p
kxi�xjk2

a.s.�!⌧ for all i 6= j; this expansion

yields a random equivalent F̂eq
[u] in the sense that p(F̂[u]� F̂

eq
[u])

a.s.�!0. Proposition 3.4.1 is directly

obtained from F̂
eq
[u]. We then complete the proof by demonstrating the convergence to Gaussian

variables of F̂eq
[u] by means of a central limit theorem argument.

A.2.1 Step 1: Taylor expansion

In the following, we provide a sketch of the development of F[u]; most unshown intermediary
steps can be retrieved from simple, yet painstaking algebraic calculus.

Recall from (3.2) the expression of the unnormalized scores for unlabelled data

F[u] = (Inu �D
�1��
[u] W[uu]D

�

[u])
�1

D
�1��
[u] W[ul]D

�

[l]F[l].

We first proceed to the development of the terms W[ul], W[uu], subsequently to D[l],D[u], to

then reach an expression for F[u]. To this end, owing to the convergence kxi � xjk2/p
a.s.�!⌧ for

all i 6= j, we first Taylor-expand Wij = h(kxi � xjk2/p) around h(⌧) to obtain the following
expansion for W, already evaluated by [45],

W = W
(n) +W

(
p
n) +W

(1) +O(n� 1
2 ) (A.5)
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where kW(n)k = O(n), kW(
p
n) = O(

p
n) and kW(1)k = O(1), with the definitions
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diag(jb)
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KX
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p
jbj

T

a + 2  T

�
+ (f(0)� h(⌧) + ⌧h0(⌧))In.

As W[ul], W[uu] are sub-matrices of W, their approximated expressions are obtained directly
by extracting the corresponding subsets of (A.5). Applying then (A.5) in D = diag(W1n), we
next find

D = nh(⌧)


In +

1

nh(⌧)
diag(W(

p
n)
1n +W

(1)
1n)

�
+O(n� 1

2 ).

Thus, for any � 2 R, (n�1
D)� can be Taylor-expanded around h(⌧)�In as

(n�1
D)� = h(⌧)�


In +

�1

nh(⌧)
diag((W(

p
n) +W

(1))1n) +
�(� � 1)

2n2h(⌧)2
diag2(W(

p
n)
1n)

�

+O(n� 3
2 ) (A.6)

where diag2(·) stands for the squared diagonal matrix. The Taylor-expansions of (n�1
D[u])

�

and (n�1
D[l])

� are then directly extracted from this expression for � = �, and similarly for
(n�1

D[u])
�1�� with � = �1� �. Since

D
�1��
[u] W[ul]D

�

[l] =
1

n
(n�1

D[u])
�1��

W[ul](n
�1

D[l])
�

it then su�ces to multiply the Taylor-expansions of (n�1
D[u])

� , (n�1
D[l])

� , and W[ul], given
respectively in (A.6) and (A.5), normalize by n and then organize the result in terms of order
O(1), O(1/

p
n), and O(1/n).

The term D
�1��
[u] W[uu]D

�

[u] is dealt with in the same way. In particular,

D
�1��
[u] W[uu]D

�

[u] =
1

n
1n[u]

1n[l]
+O(n� 1

2 ).
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Therefore, (In[u]
�D

�1��
[u] W[uu]D

�

[u])
�1 may be simply written as

✓
In[u]

� 1

n
1n[u]

1n[u]
+O(n� 1

2 )

◆�1

= In[u]
+

1

n[l]
1n[u]

1n[u]
+O(n� 1

2 ).

Combining all terms together completes the full linearization of F̂[u].

This last derivation, which we do not provide in full here, is simpler than it appears and
is in fact quite instructive in the overall behavior of F[u]. Indeed, only product terms in the

development of (In[u]
�D

�1��
[u] W[uu]D

�

[u])
�1 and D

�1��
[u] W[ul]D

�

[l]F[l] of order at least O(1) shall
remain, which discards already a few terms. Now, in addition, note that for any vector v,
v1

T
n[l]

F[l] = v1
T

k
so that such matrices are non informative for classification (they have identical

score columns); these terms are all placed in the intermediary variable z, the entries zi of which
are irrelevant and thus left as is (these are the zi’s of Proposition 3.4.1 and Theorem 3.4.1). It

is in particular noteworthy to see that all terms of W(1)
[uu] that remain after taking the product

with D
�1��
[u] W[ul]D

�

[l]F[l] are precisely those multiplied by h(⌧)1n[u]
1
T
n[l]

F[l] and thus become
part of the vector z. Since most informative terms in the kernel matrix development are found
in W

(1), this means that the algorithm under study shall make little use of the unsupervised

information about the data (those found in W
(1)
[uu]). This is an important remark which, as

discussed in Section 6.6, opens up the path to further improvements of the semi-supervised

learning algorithms which would use more e�ciently the information in W
(1)
[uu].

All calculus made, this development finally leads to F[u] = F
eq
[u] with, for a, b 2 {1, . . . ,K}

and xi 2 Cb, i > n[l],

n
F̂
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o

ia

= 1 +
1

p

"
Hab +
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KX
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Had(�nd + n[u]d)

#
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h00(⌧)
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!
tap
p
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2h0(⌧)

h(⌧)
p
p
µ�
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+
h0(⌧)
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(1 + �)n

n[l]n[l]a
 T

[l]j[l]a +
4

n[l]a
j
T

[l]a⌦[l]!i

!
+ zi (A.7)

where Hab is as specified in (A.3), �a as in (A.4), and zi = O(
p
p) is some residual random

variable only dependent on xi. Gathering the terms in successive orders of magnitude, Propo-
sition 3.4.1 is then straightforwardly proven from (A.7).

A.2.2 Step 2: Central limit theorem

The focus of this step is to examine g̃i = p
n
F̂
eq
o

i·
� (1+ zi)1K). Theorem A.1.1 can be proven

by showing that g̃i = gi + oP (1).

First consider Item (i) of Theorem A.1.1, which describes the behavior of F̂[u] conditioned
on x1, . . . ,xn[l]

. Recall that a necessary and su�cient condition for a vector v to be a Gaussian
vector is that all linear combinations of the elements of v are Gaussian variables. Thus, for given
x1, . . . ,xn[l]

deterministic, according to (A.7), g̃i is asymptotically Gaussian if, for all s1 2 R,
s2 2 Rp, s1 i + s

T
2 !i has a central limit.
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Letting !i =
C

1
2
bp
p
r, with r ⇠ N(0, Ip), s1 i + s2!i can be rewritten as rTAr+ b

T
r+ c with

A = s1
Cb
p
, b = Cb

p
s2, c = �s1

trCb
p

. Since A is symmetric, there exists an orthonormal matrix U

and a diagonal ⇤ such that A = U
T⇤U. We thus get

r
T
Ar+ b

T
r+ c = r

T
U

T⇤Ur+ b
T
U

T
Ur+ c = r̃

T⇤r̃+ b̃r̃+ c

with r̃ = Ur and b̃ = bU
T. By unitary invariance, we have r̃ ⇠ N(0, Ip) so that s1 i + s2!i is

thus the sum of the independent but not identically distributed random variables qj = �j [r̃]2j +

[b̃]j [r̃]j , i = 1, . . . , p. From Lyapunov’s central limit theorem [81, Theorem 27.3], it remains

to find a � > 0 such that
P

j E|qj�E[qj ]|2+�

(
P

j Var[qj ])
1+�/2 ! 0 to ensure the central limit theorem. For � =

1, we have E[qj ] = �j , Var[qj ] = 2�2
j
+ [b̃]2

j
and E

⇥
(qj � E[qj ])3

⇤
= 8�3

j
+ 6�j [b̃]2j , so that

P
j E[|qj�E[qj ]|3]

(
P

j Var[qj ])
3/2 = O(n� 1

2 ).

It thus remains to evaluate the expectation and covariance matrix of g̃i conditioned on
x1, . . . ,xn[l]

to obtain (i) of Theorem A.1.1. For xi 2 Cb, we have

E{[g̃i]a} = Hab +
1

n[l]

KX

d=1

(�nd + n[u]d)Had

+ (1 + �)
n

n[l]

"
�a +
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h0(⌧)

h(⌧)
 T

[l]j[l]a � �
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h(⌧)2
tatb

#

Cov{[g̃i]a1 [g̃i]a2} =

 
(��2 � �)n� n[l]

n[l]

h0(⌧)2

h(⌧)2
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h00(⌧)

h(⌧)

!2

Tbbta1ta2

+ �a2a1
h0(⌧)2

h(⌧)2
4c0Tba1

c[l]a1
+

4h0(⌧)2

h(⌧)2
µ�
a1
Cbµ

�
a2

+ o(1).

From the above equations, we retrieve the asymptotic expressions of [mb]a and [⌃b]a1a2 given
in (A.1) and (A.2). This completes the proof of Item (i) of Theorem A.1.1. Item (ii) is easily
proved by following the same reasoning.
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Appendix B

Supplementary material of Chapter 5

B.1 Generalization of the main theorem and proof

B.1.1 Generalized Theorem

We first present an extended version of Theorem 4.3.1 for the general setting where C1 may
di↵er from C2.

Theorem B.1.1. Let Assumption 5.1 hold, h be three-times continuously di↵erentiable in a
neighborhood of ⌧ , and f[u] be the solution of (4.4) with fixed norm n[u]e

2. Then, for n[l] + 1 
i  n (i.e., xi unlabelled) and xi 2 Ck,

fi = gi + oP (1)

where
gi ⇠ N

⇣
(�1)k(1� ⇢k)m,�k

⌘

for some m,�2
k
> 0. More precisely, defining

✓ =
c[u]m

2c[l]
,

letting

⌫k =
⇥p

�2h0(⌧)µT

k

p
h00(⌧) trCk/

p
p
⇤T

⌃k =


�2h0(⌧)Ck 0p⇥1

01⇥p 2h00(⌧) trCk
2/p

�

and s : (0, k(⇢1⌃1 + ⇢2⌃2) + ⇢1⇢2(⌫1 � ⌫2)(⌫1 � ⌫2)Tk) ! (0,+1) be the injective function

s(⇠) = ⇠⇢1⇢2(⌫1 � ⌫2)T
n
Ip+1 � ⇠

h
(⇢1⌃1 + ⇢2⌃2) + ⇢1⇢2(⌫1 � ⌫2)(⌫1 � ⌫2)T

io�1
(⌫1 � ⌫2),

the values of m and �2
k
are determined by the equations

e2 = ⇢1⇢2m
2 + ⇢1�

2
1 + ⇢2�

2
2

�2
k

m2
= !k(✓) +

✓
✓

1 + ✓

◆2 q(✓)

⇢1⇢2c[u]

✓
1 +

⇢1�21 + ⇢2�22
⇢1⇢2m2

◆
+

✓
1

1 + ✓

◆2 q(✓)

⇢1⇢2c[l]
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where

q(✓) =
tr
�
Q(✓)�1

⌃̄
�2

p [(⌫1 � ⌫2)TQ(✓)�1(⌫1 � ⌫2)]2

!k(✓) =
(⌫1 � ⌫2)TQ(✓)�1

⌃kQ(✓)�1(⌫1 � ⌫2)
[(⌫1 � ⌫2)TQ(✓)�1(⌫1 � ⌫2)]2

with ⌃̄ = ⇢1⌃1 + ⇢2⌃2, Q(✓) = Ip+1 � s�1(✓)⌃̄ (s�1 being the functional inverse of s).

B.1.2 Proof of the generalized theorem

The proof of Theorem B.1.1 relies on a leave-one-out approach, in the spirit of [6], along with
arguments from previous related analyses [58, 10] based on random matrix theory .

Main idea

The main idea of the proof is to first demonstrate that for unlabelled data scores fi (i.e., with
i > n[l]),

fi = ��(i)T�c(xi) + oP (1) (B.1)

where � is a finite constant, �c a certain mapping from the data space that we shall define, and
�(i) a random vector independent of �c(xi). Additionally, we shall show that

�(i) =
1

p

nX

i=1

fi�c(xi) + ✏ (B.2)

with k✏k/k�(i)k = oP (1).

As a consequence of (B.1), the statistical behavior of the unlabelled data scores can be
understood through that of �(i), which itself depends on the unlabelled data scores as described
by (B.2). By combining (B.1) and (B.2), we thus establish the equations ruling the asymptotic
statistical behavior (i.e., mean and variance) of the unlabelled data scores fi.

Detailed arguments

Here the big O notation O(un) is understood in probability. We specify that when multidimen-
sional objects are concerned, O(un) is understood entry-wise. The notation Ok·k is understood
as follows: for a vector v, v = Ok·k(un) means its Euclidean norm is O(un) and for a square
matrix M, M = Ok·k(un) means that the operator norm of M is O(un).

First note that, as wij = h(kxi � xjk2/p) = h(⌧) + O(p�
1
2 ), Taylor-expanding wij around

h(⌧) gives (see Appendix B.3 for a detailed proof) Ŵ = Ok·k(1) and

Ŵ =
1

p
�̂

T
�̂+ [h(0)� h(⌧) + ⌧h0(⌧)]Pn +Ok·k(p

� 1
2 ) (B.3)
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where Pn = In � 1
n
1n1

T
n , and �̂ = [�̂(x1), . . . , �̂(xn)] = [�(x1), . . . ,�(xn)]Pn with

�(xi) =
⇥p

�2h0(⌧)xT

i

p
h00(⌧)kxik2/

p
p
⇤T

.

Define ⌫k = E{�(xi)}, ⌃k = cov{�(xi)} for xi 2 Ck, k 2 {1, 2}, and let Z = [z1, . . . , zn]
with zi = �(xi) � ⌫k (i.e., E{zi} = 0). We also write the labelled versus unlabelled divisions

� =
⇥
�[l] �[u]

⇤
, Z =

⇥
Z[l] Z[u]

⇤
and �̂ =

h
�̂[l] �̂[u]

i
.

Recall that f[u] =
⇣
↵In[u]

� Ŵ[uu]

⌘�1
Ŵ[ul]f[l]. To proceed, we need to show that 1

n
1
T
n[u]

f[u] =

O(p�
1
2 ). This follows from (B.3) and the results in [58]. Specifically, applying (B.3), we can

express f[u] as

f[u] =
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� 1

p
�̂

T

[u]�̂[u] +
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n
1n[u]
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n
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1
T

n[l]

◆
f[l] +O(p�

1
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where ↵̃ = ↵�h(0)+h(⌧)� ⌧h0(⌧), r = h(0)�h(⌧)+ ⌧h0(⌧). Since 1T[l]f[l] = 0 from its definition

given in (4.1),

f[u] =

✓
↵̃In[u]

� 1

p
�̂

T
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n
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1
T
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◆�1 1

p
�̂

T

[u]�[l]f[l] +O(p�
1
2 ). (B.4)

Write �̂[u] = E{�̂[u]}+ Z[u] � (Z1n/n)1Tn[u]
. Evidently, E{�̂[u]} = (⌫1 � ⌫2)sT where s 2 Rn[u]

with si = (�1)k(n � nk)/n for xi 2 Ck, k 2 {1, 2}. By the large number law, s = e + O(p�
1
2 )

where e 2 Rn[u] with ei = (�1)k(1� ⇢k) for xi 2 Ck, therefore
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p
�̂

T
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[u]Z[u] + (1TnZ
T
Z1n/n
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p
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h
e Z

T
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Z
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664

k⌫1 � ⌫2k2 1 0 0
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0 0 (1TnZ

T
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c0
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775 .

Invoking Woodbury’s identity[82], we get
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� 1

p
�̂
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n
1n[u]
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RU)�1UT
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where R =
⇣
↵̃In[u]

� 1
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Z
T
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⌘�1
. Note also that
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117



APPENDIX B. SUPPLEMENTARY MATERIAL OF CHAPTER 5

Similarly to the results of [58, Equation 7.6], UT
RU is of the form

U
T
RU =


A 02⇥2

02⇥2 B

�
+Ok·k(p

� 1
2 ) (B.7)

for some matrices A,B 2 R2⇥2 of O(1)-operator norm and p�
3
2 kUT

RZ
T

[u]Z[l]f[l]k = O(p�
1
2 ).

Substituting (B.5) and (B.6) into (B.4) and using the fact that p�
3
2 kUT

RZ
T

[u]Z[l]f[l]k = O(p�
1
2 )

allows us to obtain
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with

K = U
T
RU+U

T
RU(N�1 �U

T
RU)�1

U
T
RU.

Since U
T
RU is of the form (B.7), we find from classical algebraic arguments that K is also of

the same diagonal block matrix form. We thus finally get from (B.8) that 1
n
1
T
n[u]

f[u] = O(p�
1
2 ).

Now that we have shown that 1
n
1
T
n[u]

f[u] = O(p�
1
2 ), multiplying both sides of (B.4) with

↵̃In[u]
� 1

p
�̂
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n
1n[u]
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from the left gives
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[u]�̂[u]f[u] +
1

p
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Decomposing this equation for any i > n[l] (i.e., xi unlabelled) leads to

↵̃fi =
1

p
�̂(xi)

T
�̂f +O(p�

1
2 ) (B.9)

↵̃f{i}[u] =
1

p
�̂

{i}T
[u] �̂(xi)fi +
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[u] �̂[l]f[l] +O(p�

1
2 ) (B.10)

with f
{i}
[u] standing for the vector obtained by removing fi from f[u], �̂

{i}
[u] for the matrix obtained

by removing �̂(xi) from �̂[u].

Our objective is to compare the behavior of the vector f[u] decomposed as {fi, f{i}[u] } to the

“leave-xi-out” version f
(i)
[u] to be introduced next. To this end, define the leave-one-out dataset

X(i) = {x1, . . . ,xi�1,xi+1, . . . ,xn} 2 R(n�1)⇥p for any i > n[l] (i.e., xi unlabelled), and Ŵ
(i) 2

R(n�1)⇥(n�1) the corresponding centered similarity matrix, for which we have, similarly to Ŵ,

Ŵ
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p
�̂

(i)T
�̂
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2 ) (B.11)

where �̂
(i) = [�̂(i)(x1), . . . , �̂(i)(xi�1), �̂(i)(xi+1), . . . , �̂(i)(xn)] = [�(x1), . . . ,�(xi�1),�(xi+1),

. . . ,�(xn)]Pn�1. Denote by f
(i)
[u] the solution of the centered similarities regularization on the

“leave-one-out” dataset X(i), i.e.,

f
(i)
[u] =

⇣
↵In[u]�1 � Ŵ

(i)
[uu]

⌘�1
Ŵ

(i)
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Substituting (B.11) into (B.12) leads to

↵̃f (i)[u] =
1

p
�̂

(i)T
[u] �̂

(i)
[u]f

(i)
[u] +

1

p
�̂

(i)T
[u] �̂[l]f[l] +O(p�

1
2 ) (B.13)

where �̂(i) =
h
�̂

(i)
[l] �̂

(i)
[u]

i
. From the definitions of �̂(i)

[u] and �̂
{i}
[u] , which essentially di↵er by the

addition of the O(1/p)-norm term �(xi)/n to every column, we easily have

1

p
�̂

(i)T
[u] �̂

(i)
[u] �

1

p
�̂

{i}T
[u] �̂

{i}
[u] = Ok·k(p

�1). (B.14)

Thus, subtracting (B.13) from (B.10) gives

M (i)
⇣
f
{i}
[u] � f

(i)
[u]

⌘
=

1

p
�̂

(i)T
[u] �̂(xi)fi +O(p�

1
2 ) (B.15)

with

M (i) = ↵̃I(n[u]�1) �
1

p
�̂

(i)T
[u] �̂

(i)
[u].

Set � = 1
p
�̂f = Ok·k(1), the unlabelled data “regression vector”, and its “leave-one-out” version

�(i) = 1
p
�̂

(i)
F(i) with F(i) =

h
f[l] f

(i)
[u]

i
. Applying (B.14) and (B.15), we get that

� � �(i) =

✓
Ip +

1

p
�̂

(i)
[u]

⇣
M (i)

⌘�1
�̂

(i)T
[u]

◆
1

p
fi�̂(xi) +Ok·k(p

�1) = Ok·k(p
� 1

2 ). (B.16)

By the above result, Equation (B.9) can be expanded as

↵̃fi =�
(i)T�̂(xi) +

1

p
�̂(xi)

T

✓
Ip +

1

p
�̂

(i)
[u]

⇣
M (i)

⌘�1
�̂

(i)T
[u]

◆
�̂(xi)fi +O(p�

1
2 ). (B.17)

To go further in the development of (B.17), we first need to evaluate the quadratic form

i ⌘
1

p
�̂(xi)

TT (i)�̂(xi)

where

T (i) = Ip +
1

p
�̂

(i)
[u]

⇣
M (i)

⌘�1
�̂

(i)T
[u] .

Since T (i) = Ok·k(1) [27, Theorem 7.1] and �̂(xi) is independent of T (i), it unfolds from the “trace
lemma” [27, Lemma 14.2] that i = O(1) and that i converges almost surely to a deterministic
limit  independent of i at large n, p. Equation (B.17) then becomes

fi = ��(i)T�̂(xi) +O(p�
1
2 ). (B.18)

where � = (↵̃� )�1.

We focus now on the term �(i)T�̂(xi) in (B.18). To discard the “weak” dependence between
�(i)T and �̂(xi), let us define

�c(xi) = (�1)k(1� ⇢k)(⌫2 � ⌫1) + zi.
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As nk/n = ⇢k +O(n� 1
2 ), by the law of large numbers, E{�̂(xi)} = (�1)k[(n�nk)/n](⌫2�⌫1) =

E{�c(xi)} + Ok·k(n
� 1

2 ). Remark that, unlike �̂(xi), �c(xi) is independent of all xj with j 6= i,

and therefore independent of �(i). We thus now have

�(i)T�̂(xi) = �
(i)T

✓
E{�̂(xi)}+ zi �

1

n

nX

m=1

zm

◆
= �(i)T�c(xi) +

1

n
�T

Z1n +O(p�
1
2 ).

We get from (B.16) that 1
n
�(i)T

Z1n = 1
n
�T

Z1n +O(p�
1
2 ), leading to

fi = ��(i)T�c(xi) +
1

n
�T

Z1n +O(p�
1
2 ). (B.19)

Since �c(xi) is independent of �(i), according to the central limit theorem, �(i)T�c(xi) asymp-
totically follows a Gaussian distribution.

To demonstrate that 1
n
�T

Z1n is negligibly small, notice fist that, by summing (B.19) for all
i > n[u], we have

1

n
1
T

n[u]
f[u] =

1

n

nX

i=n[l]+1

�(i)T�c(xi) + c[u](�
(i)T

Z1n/n) +O(p�
1
2 ).

Since 1
n
1
T
n[u]

f[u] = O(p�
1
2 ), it su�ces to prove 1

n

P
n

i=n[l]+1 �
(i)T�c(xi) = O(p�

1
2 ) to consequently

show that 1
n
�T

Z1n = O(p�
1
2 ) from the above equation. To this end, we shall examine the

correlation between �(i)T�c(xi) and �(j)T�c(xj) for i 6= j > n[l]. Consider �(ij), �̂(ij)
[u] ,M

(ij)

obtained in the same way as �(i), �̂(i)
[u],M

(i), but this time by leaving out the two unlabelled

samples xi,xj . Similarly to (B.16), we have

�(i) � �(ij) =

✓
Ip +

1

p
�̂

(ij)
[u]

⇣
M (ij)

⌘�1
�̂

(ij)T
[u]

◆
1

p
fj�̂(xj) +Ok·k(p

�1) = Ok·k(p
� 1

2 ). (B.20)

It follows from the above equation that, for i 6= j > n[l],

E{�(i)T�c(xi)�
(i)T�c(xj)}� E{�(i)T�c(xi)}E{�(j)T�c(xj)}

= E{�(ij)T�c(xi)�
(ij)T�c(xj)}� E{�(i)T�c(xi)}E{�(j)T�c(xj)}+O(p�1)

= E{�(ij)T�c(xi)}E{�(ij)T�c(xj)}� E{�(i)T�c(xi)}E{�(j)T�c(xj)}+O(p�1)

= O(p�1), (B.21)

leading to the conclusion that 1
n[u]

P
n

i=n[l]+1 �
(i)T�c(xi) =

1
n[u]

P
n

i=n[l]+1 E{�(i)T�c(xi)}+O(p�
1
2 ) =

O(p�
1
2 ). Hence, 1

n
�T

Z1n = O(p�
1
2 ). Finally, we have that, for i > n[l],

fi = ��(i)T�c(xi) +O(p�
1
2 ), (B.22)

indicating that, up to the constant �, fi asymptotically follows the same Gaussian distribution
as �(i)T�c(xi).
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Moreover, taking the expectation and the variance of the both sides of (B.22) for xi 2 Ck

yields

E{fi|i > n[l], x 2 Ck} = �E{�(i)T}(�1)k(1� ⇢k)(⌫2 � ⌫1) +O(p�
1
2 )

var{fi|i > n[l], x 2 Ck} = �2tr
⇥
cov{�(i)}⌃k

⇤
+ �2E{�(i)}T⌃kE{�(i)}+O(p�

1
2 ).

Since � � �(i) = Ok·k(p
� 1

2 ) as per (B.16), we obtain

E{fi|i > n[l], x 2 Ck} = �E{�T}(�1)k(1� ⇢k)(⌫2 � ⌫1) +O(p�
1
2 ) (B.23)

var{fi|i > n[l], x 2 Ck} = �2tr
⇥
cov{�}⌃k

⇤
+ �2E{�}T⌃kE{�}+O(p�

1
2 ). (B.24)

After linking the distribution parameters of unlabelled scores to those of � with Equation
(B.23) and Equation (B.24), we now turn our attention to the statistical behaviour of �. Sub-
stituting (B.22) into � = 1

p
�̂f yields

� =
1

p

n[l]X

i=1

fi�̂(xi) +
1

p

nX

i=n[l]+1

��(i)T�c(xi)�̂(xi) +Ok·k(p
� 1

2 )

=
1

p

n[l]X

i=1

fi�c(xi) +
1

p

nX

i=n[l]+1

��(i)T�c(xi)�c(xi) +Ok·k(p
� 1

2 ). (B.25)

For i > n[l] and xi 2 Ck, we decompose �c(xi) as

�c(xi) = E{�c(xi)}+
⌃k�(i)

�(i)Tzi
+ z̃i (B.26)

where

z̃i = zi �
⌃k�(i)

�(i)Tzi
.

By substituting the expression (B.26) of �c(xi) into (B.25) and using the fact that � � �(i) =

Ok·k(p
� 1

2 ), we obtain

✓
Ip � �c[u]

2X

a=1

⇢a⌃a

◆
� =

1

p

n[l]X

i=1

fiE{�c(xi)}+
1

p

nX

i=n[l]+1

��(i)T�c(xi)E{�c(xi)}

+
1

p

n[l]X

i=1

fizi +
1

p

nX

i=n[l]+1

��(i)T�c(xi)z̃i +Ok·k(p
� 1

2 ). (B.27)

Recall that f[l] is a deterministic vector (given in (4.1)) and note that

E{�(i)T�c(xi)z̃i} = E{�(i)T
zi[zi �⌃k�

(i)/(�(i)T
zi)]} = E{�(i)T

zizi}�⌃kE{�(i)} = 0.
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Taking the expectation of both sides of (B.27) thus gives

✓
Ip � �c[u]

2X

a=1

⇢a⌃a

◆
E{�}

=
1

p

n[l]X

i=1

fiE{�c(xi)}+
1

p

nX

i=n[l]+1

�E{�(i)}TE{�c(xi)}E{�c(xi)}+Ok·k(p
� 1

2 )

=
1

p

n[l]X

i=1

fiE{�c(xi)}+
1

p

nX

i=n[l]+1

�E{�}TE{�c(xi)}E{�c(xi)}+Ok·k(p
� 1

2 ). (B.28)

Let Q = Ip � �c[u]⌃̄ with ⌃̄ = ⇢1⌃1 + ⇢2⌃2 and denote m ⌘ �(⌫2 � ⌫1)TE{�}. With these
notations, we get directly from the above equation that

m = �⇢1⇢2(2c[l] +mc[u])(⌫2 � ⌫1)TQ�1(⌫2 � ⌫1) + oP (1). (B.29)

With the notation m, (B.23) notably becomes

E{fi|i > n[l], x 2 Ck} = (�1)k(1� ⇢k)m+O(p�
1
2 ).

In addition, we get from (B.28) that

�2E{�}T⌃kE{�} =
⇥
�⇢1⇢2(2c[l] +mc[u])

⇤2
(⌫2 � ⌫1)TQ�1

⌃kQ
�1(⌫2 � ⌫1). (B.30)

Furthermore, we have from (B.27) and (B.28)

tr[cov{�}⌃k] = E
n
(� � E{�})T⌃k(� � E{�})

o

=
1

p2

n[l]X

i=1

f2
i E{zTi Q�1

⌃kQ
�1

zi}+
1

p2

nX

i=n[l]+1

�2E{(�(i)T�c(xi))
2
z̃
T

i Q
�1

⌃kQ
�1

z̃i}

+O(p�
1
2 ).

Since 1
p
z
T

i
Q

�1
⌃kQ

�1
zi =

1
p
tr(Q�1

⌃̄)2+O(p�
1
2 ) and 1

p
z̃
T

i
Q

�1
⌃kQ

�1
z̃i =

1
p
tr(Q�1

⌃̄)2+O(p�
1
2 ),

by the trace lemma [27, Lemma 14.2] and Assumption 5.1,

�2tr[cov{�}⌃k] =�
2
⇥
⇢1⇢2(4c[l] +m2c[u]) + c[u]

2X

a=1

⇢avar{fi|i > n[l], x 2 Ca}
⇤1
p
tr(Q�1

⌃̄)2

+O(p�
1
2 ). (B.31)

Using the shortcut notation �2
k
⌘ var{fi|i > n[l], x 2 Ck} for k 2 {1, 2}, we get by substituting

(B.30) and (B.31) into (B.24) that

�2k =
⇥
⇢1⇢2(2c[l] +mc[u])

⇤2
(⌫2 � ⌫1)TQ�1

⌃kQ
�1(⌫2 � ⌫1)

+ �2
⇥
⇢1⇢2(4c[l] +m2c[u]) + c[u]

2X

a=1

⇢a�
2
a

⇤1
p
tr(Q�1

⌃̄)2 + oP (1). (B.32)
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Additionally, letting ⇠ ⌘ c[u]�, we get from (B.28)

E{�} = 2c[l]⇢1⇢2

"
Ip � ⇠

 
2X

a=1

⇢a⌃a + ⇢1⇢2(⌫2 � ⌫1)(⌫2 � ⌫1)T
!#

(⌫2 � ⌫1) +O(p�
1
2 ),

leading directly to

✓ =⇠⇢1⇢2(⌫2 � ⌫1)T
"
Ip � ⇠

 
2X

a=1

⇢a⌃a + ⇢1⇢2(⌫2 � ⌫1)(⌫2 � ⌫1)T
!#

(⌫2 � ⌫1) + oP (1) (B.33)

where ✓ = c[u]m/2c[l].

Finally, the equations of Theorem B.1.1 are retrieved by gathering (B.29), (B.32) and (B.33)
and by ignoring the vanishing terms. This completes the proof.

B.2 Proof of Proposition 4.3.1

As the eigenvector of Ls associated with the smallest eigenvalue is D
1
21n, we consider

L
0
s = nD� 1

2WD
� 1

2 � n
D

1
21n1

T
nD

1
2

1TnD1n
.

Note that kL0
sk = O(1) as demonstrated by [58], and if v is an eigenvector of Ls associated

with the eigenvalue u, then it is also an eigenvector of L0
s associated with the eigenvalue �u+1,

except for the eigenvalue-eigenvector pair (n,D
1
21n) of Ls turned into (0,D

1
21n) for L

0
s. The

second smallest eigenvector vlap of Ls is the same as the largest eigenvector of L0
s.

From the random matrix equivalent of L0
s given by [58, Theorem 1] and that of Ŵ expressed

in (B.3), we have

Ŵ = h(⌧)L0
s +

5h0(⌧)2

4
  T +O(p�

1
2 )

where  = [ 1, . . . , n]T with  i = kxik2 � E[kxik2].

For k 2 {1, 2}, define jk 2 Rn the indicator vector of class k with [jk]i = 1 if xi 2 Ck,
otherwise [jk]i = 0. Then, we have

dinter(v) = |jT1 v/n1 � j
T

2 v/n2|
dintra(v) = kv � (jT1 v/n1)j1 � (jT2 v/n2)j2k/

p
n

for some v 2 Rn.

Denote by �lap the eigenvalue of h(⌧)L0
s associated with vlap, and �ctr the eigenvalue of Ŵ as-

sociated with vctr. Under the condition of non-trivial clustering upon vlap with dinter(vlap)/dintra(vlap) =
O(1), we have jT

k
vlap/

p
nk = O(1) from the above expressions of dinter(v) and dintra(v). The fact

that jT
k
vlap/

p
nk = O(1) implies that the eigenvalue �lap of h(⌧)L0

s remains at a non vanishing

distance from other eigenvalues of h(⌧)L0
s [58]. The same can be said about Ŵ and its eigenvalue

�ctr.

123



APPENDIX B. SUPPLEMENTARY MATERIAL OF CHAPTER 5

Let � be a positively oriented complex closed path circling only around �lap and �ctr. Since

there can be only one eigenvector of L0
s (Ŵ, resp.) whose limiting scalar product with jk for

k 2 {1, 2} is bounded away from zero [58, Theorem 4], which is vlap (resp.,vctr), we have, by
Cauchy’s formula [83, Theorem 10.15],

1

nk

(jTkvlap)
2 = � 1

2⇡i

I

�

1

nk

j
T

k (h(⌧)L
0
s � zIn)

�1
jkdz + oP (1)

1

nk

(jTkvctr)
2 = � 1

2⇡i

I

�

1

nk

j
T

k (Ŵ � zIn)
�1

jkdz + oP (1)

for k 2 {1, 2}. Since Ŵ is a low-rank perturbation of L̂, invoking Sherman-Morrison’s formula
[84], we further have

j
T

k (Ŵ � zIn)
�1

jk = j
T

k (h(⌧)L
0
s � zIn)

�1
jk �

(5h0(⌧)2/4)
�
j
T

k
(h(⌧)L0

s � zIn)�1 
�2

1 + (5h0(⌧)2/4) T(h(⌧)L0
s � zIn)�1 

+ oP (nk).

As 1p
nk
j
T

k
(h(⌧)L0

s � zIn)�1 = oP (1) [58, Equation 7.6], we get

1

nk

j
T

k (Ŵ � zIn)
�1

jk =
1

nk

j
T

k (h(⌧)L
0
s � zIn)

�1
jk + oP (1),

and thus

1

nk

(jTkvlap)
2 =

1

nk

(jTkvctr)
2 + oP (1),

which concludes the proof of Proposition 4.3.1.

B.3 Asymptotic Matrix Equivalent for Ŵ

The objective of this section is to prove the asymptotic matrix equivalent for Ŵ expressed in
(B.3). Some additional notations that will be useful in the proof:

• for xi 2 Ck, k 2 {1, 2}, !i ⌘ xi � µk, and ⌦ ⌘ [!1, · · · ,!n]T;

• µ�
k
= µk � 1

n

P2
k0=1 nk0µk0 , tk =

⇣
trCk � 1

n

P2
k0=1 nk0trCk0

⌘
/
p
p;

• jk 2 Rn is the canonical vector of Ck, i.e., [jk]i = 1 if xi 2 Ck and [jk]i = 0 otherwise;

•  i ⌘
�
k!ik2 � E[k!ik2

�
/
p
p,  ⌘ [ 1, · · · , n]T and ( )2 ⌘ [( 1)2, · · · , ( n)2]T.
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As wij = h(kxi�xjk2/p = h(⌧)+O(p�
1
2 ) for all i 6= j, we can Taylor-expand wij = h(kxi�xjk2/p

around h(⌧) to obtain the following expansion for W, which can be found in [58]:

W = h(⌧)1n1
T

n +
h0(⌧)
p
p

"
 1Tn + 1n 

T +
2X

b=1

tbjb1
T

n + 1n

2X

a=1

taj
T

a

#

+
h0(⌧)

p

"
2X

a,b=1

kµ�
a � µ�

bk2jbjTa � 2⌦
2X

a=1

µ�
aj

T

a + 2
2X

b=1

diag(jb)⌦µ�
b1

T

n

� 2
2X

b=1

jbµ
�T
b ⌦

T + 21n

2X

a=1

µ�
a

T
⌦

Tdiag(ja)� 2⌦⌦
T

#

+
h00(⌧)

2p


( )21Tn + 1n[( )

2]T +
2X

b=1

t2bjb1
T

n + 1n

2X

a=1

t2aj
T

a

+ 2
2X

a,b=1

tatbjbj
T

a + 2
2X

b=1

diag(jb)tb 1
T

n + 2
2X

b=1

tbjb 
T + 2

2X

a=1

1n 
Tdiag(ja)ta

+ 2 
2X

a=1

taj
T

a + 2  T

�
+ (h(0)� h(⌧) + ⌧h0(⌧))In +Ok·k(p

� 1
2 ).

Applying Pn =
�
In � 1

n
1n1

T
n

�
on both sides of the above equation, we get

Ŵ = PnWPn

=
�2h0(⌧)

p

"
2X

a,b=1

(µ�T
a µ�

b)jbj
T

a +Pn⌦

2X

a=1

µ�
aj

T

a +
2X

b=1

jbµ
�T
b ⌦

T
Pn +Pn⌦⌦

T
Pn

#

+
h00(⌧)

p

"
2X

a,b=1

tatbjbj
T

a +
2X

b=1

tbjb 
T
Pn +Pn 

2X

a=1

taj
T

a +Pn  
T
Pn

#

+ (h(0)� h0(⌧) + ⌧h00(⌧))Pn +O(p�
1
2 )

=
1

p
�̂

T
�̂+ (h(0)� h(⌧) + ⌧h0(⌧))Pn +Ok·k(p

� 1
2 )

where the last equality is justified by

1

p
�̂

T
�̂ =

�2h0(⌧)

p

"
2X

a,b=1

(µ�T
a µ�

b)jbj
T

a +Pn⌦

2X

a=1

µ�
aj

T

a +
2X

b=1

jbµ
�T
b ⌦

T
Pn +Pn⌦⌦

T
Pn

#

+
h00(⌧)

p

"
2X

a,b=1

tatbjbj
T

a +
2X

b=1

tbjb 
T
Pn +Pn 

2X

a=1

taj
T

a +Pn  
T
Pn

#
.

Equation (B.3) is thus proved.
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Appendix C

Supplementary material of Chapters
6-7

Here the big O notation O(un) and the small O notation o(un) are understood in probability
when speaking about random variables. Additionally, when multidimensional objects are con-
cerned, O(un) and o(un) are understood entry-wise. The notation Ok·k is understood as follows:
for a vector v, v = Ok·k(un) means its Euclidean norm is O(un) and for a square matrix M,
M = Ok·k(un) means that the operator norm of M is O(un). We follow the same rules for the
notation ok·k.

C.1 Proofs of the theoretical results in Chapter 6

C.1.1 Proof of Proposition 5.3.1

Let

⌘(�i) =
1

n

X

j 6=i

yjcjxj , (C.1)

we have

ci = �⌧
⇣
(1� yi⌘

T

(�i)xi � yi�0)/(n
�1kxik2)

⌘
(C.2)

for �⌧ (t) = max{0,min{t, ⌧}}.

First note for future reference that, through concentration inequality arguments, we imme-
diately have n�1kxik2 = n�1 trCk + O(p�

1
2 ) for all i 2 {1, . . . , n} with yi = (�1)k, where

k 2 {1, 2}.

According to (C.2), the key to understanding the statistical behavior of ci in the large
dimensional regime lies in the characterization of ⌘T(�i)xi. Since ⌘(�i) depends on xi in an

intricate, implicit manner through the dual optimization problem (5.3), not much can be said
about ci directly from (C.2) at this stage.

Let (�(�i),�(�i)0) be the SVM solution obtained from (5.2) with all data except xi, and
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c(�i)j as the dual problem coe�cients obtained from (5.3) with all data except xi. Then

�(�i) =
1

n

X

j 6=i

yjc(�i)jxj . (C.3)

Although the expression (C.1) of ⌘(�i) is very similarly to that of �(�i) given in (C.3), the two
vectors are critically di↵erent in the fact that �(�i) is independent of xi, while ⌘(�i) is not. The

goal of the leave-one-observation-out step is to establish a relation between ⌘T(�i)xi and �T

(�i)xi.

To this end, first note from (C.2) that, for all j 6= i,

cj � c(�i)j = �⌧

 
1� n�1P

l 6=i,j
yjylclxT

l
xj � n�1yjyicixT

i
xj � yj�0

n�1kxjk2

!

� �⌧

 
1� n�1P

l 6=i,j
yjylc(�i)lx

T

l
xj � yj�(�i)0

n�1kxjk2

!
. (C.4)

Evidently, for any t1, t2 2 R, there exists a constant d 2 [0, 1] such that �⌧ (t1) � �⌧ (t2) =
d(t1 � t2). We denote then by d(�i)j the constant within the interval [0, 1] that satisfies

cj � c(�i)j =
d(�i)j

⇥
� n�1P

l 6=i,j
yjyl(cl � c(�i)l)x

T

l
xj � n�1yjyicixT

i
xj � yj(�0 � �(�i)0)

⇤

n�1kxjk2
.

Set x̄i = yixi/
p
n. For all j 6= i such that d(�i)j 6= 0, denote by X̄(�i) the data matrix with

yjxj/
p
n as column vectors, �c(�i) the vector composed of the di↵erences cj � c(�i)j , y(�i) the

vector of labels yj and D(�i) the diagonal matrix of the non-zero d(�i)j . Define diag(A) as the
operator that returns the diagonal matrix having the same diagonal elements as the input square
matrix A. Then, the previous expression entails

h
D(�i)X̄

T

(�i)X̄(�i) + diag
⇣
X̄

T

(�i)X̄(�i) �D(�i)X̄
T

(�i)X̄(�i)

⌘i
�c(�i)

‘ =� ciD(�i)X̄
T

(�i)x̄i �
�
�0 � �(�i)0

�
D(�i)y(�i), (C.5)

where

�c(�i) = �M
�1
(�i)

h
ciX̄

T

(�i)x̄i +
�
�0 � �(�i)0

�
y(�i)

i

with

M(�i) = X̄
T

(�i)X̄(�i) + diag
⇣
D

�1
(�i)X̄

T

(�i)X̄(�i) � X̄
T

(�i)X̄(�i)

⌘
.

Note importantly that M(�i) is indeed invertible and that M
�1
(�i) = Ok·k(1), demonstrated as

follows. Equations (5.5) and (C.4) imply that d(�i)j = 1 if and only if yj(�T
xj + �0) = 1

and yj(�T

(�i)xj + �(�i)0) = 1; in other words, xj is on the hyperplane with or without the i-th
training sample left out. Since training samples are generated independently, we remark that
any p + 1 data samples define uniquely (if possible) two parallel hyperplanes in the space of
Rp. As the optimization (5.2) of SVMs implements a condition of maximal margin, the number
of the samples on (or infinitesimally close to) the boundary is smaller than p + 1, otherwise
the probability of satisfying simultaneously (5.5) and

P
n

i=1 ciyi = 0 is zero. Without loss of
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generality, let us now write X̄(�i) =
⇥
X̄B(�i) X̄C(�i)

⇤
where X̄C(�i) is composed of the x̄j for

which d(�i)j bounded away from 1. From our previous reasoning, the dimension of the square

matrix X̄
T

B(�i)X̄B(�i) is no greater than p with probability 1 and X̄
T

B(�i)X̄B(�i) is thus full rank

with eigenvalues bounded away from zero (from [85, 86]). Combining this fact with standard
algebraic arguments, we deduce that kvk2/vT

M(�i)v = O(1) for any vector v. Therefore,

M
�1
(�i) = Ok·k(1).

Define D(�i) the set of indices j 2 {1, . . . , i � 1, i + 1, . . . , n} such that d(�i)j 6= 0, and let
nD(�i)

= |D(�i)|, which is obviously an integer between 1 and n (with high probability). It
is also clear that nD(�i)

is the dimension of the square matrix M(�i). Since
P

i
yici = 0 andP

j 6=i
yjc(�i)j = 0 by the optimization constraints of (5.3),

y
T

(�i)�c(�i) + yici = �ciy
T

(�i)M
�1
(�i)X̄

T

(�i)x̄i � (�0 � �(�i)0)y
T

(�i)M
�1
(�i)y(�i) + yici = 0.

Seeing that x̄i = yixi/
p
n is independent of X̄(�i), it is easily shown again by concentration

inequalities) that ciyT

(�i)M
�1
(�i)X̄

T

(�i)x̄i = O(
q
nD(�i)

/n). Hence,

(�0 � �(�i)0) =
ciyT

(�i)M
�1
(�i)X̄

T

(�i)x̄i � yici

yT

(�i)M
�1y(�i)

= O(1/nD(�i)
).

as the above display reduces to (�0 � �(�i)0)y
T

(�i)M
�1
(�i)y(�i) +O(1) = 0. Notice then

kM�1
(�i)X̄

T

(�i)x̄ik2 = O(nD(�i)
/n)

k
�
�0 � �(�i)0

�
M

�1
(�i)y(�i)k2 = O(1/nD(�i)

),

leading to

�c(�i) = �ciM
�1
(�i)X̄

T

(�i)x̄i �
�
�0 � �(�i)0

�
M

�1
(�i)y(�i) = Ok·k(

q
max{nD(�i)

/n, 1/nD(�i)
})

= Ok·k(1).

Furthermore,

⌘(�i) � �(�i) =
1p
n
X̄(�i)�c(�i) = � 1p

n
ciX̄(�i)M

�1
(�i)X̄

T

(�i)x̄i �
1p
n

�
�0 � �(�i)0

�
X̄(�i)M

�1
(�i)y(�i)

= Ok·k(
q
max{nD(�i)

/n2, 1/nnD(�i)
})

= Ok·k(n
� 1

2 )

and

yix
T

i (⌘(�i) � �(�i)) = �cix̄
T

i X̄(�i)M
�1
(�i)X̄

T

(�i)x̄i �
�
�0 � �(�i)0

�
x̄
T

i X̄(�i)M
�1
(�i)y(�i)

= �cix̄
T

i X̄(�i)M
�1
(�i)X̄

T

(�i)x̄i +O(1/
p
nnD(�i)

).

The above approximation of yi⌘T(�i)xi allows us to replace yi⌘T(�i)xi in (C.2) with yi�T

(�i)xi,
giving rise to

�T
xi � ⇠ri ci = �

T

(�i)xi +O(1/
p
nnD(�i)

)

ci = �⌧
⇣
(1� yi�

T

(�i)xi � yi�0)/⇠
r

i

⌘
+O(1/

p
nnD(�i)

)
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where

⇠ri = x̄
T

i

⇣
Ip � X̄(�i)M

�1
(�i)X̄

T

(�i)

⌘
x̄i = O(1).

The concentration arguments suggest that ⇠r(�i)j goes to a value independent of xi in the limit
of large n, p. Before further investigation, we keep it for the moment under this random form.

As such, we managed to “break” the non-trivial dependence within the term ⌘T(�i)xi by a

convenient replacement with the inner product �T

(�i)xi of independent vectors �(�i) and xi.
However, we introduced ⇠r

i
in the process, which remains to be investigated. To this end, we

first need to better characterize the values d(�i)j for the case where the number of non-zero
d(�i)j is comparable to n (otherwise we have simply ⇠r

i
= n�1kxik + o(1)). Note that, by a

Taylor expansion, for t 2 R \ {0, ⌧}, �⌧ (t + �t) � �⌧ (t) = �0⌧ (t)�t + O(�t2) with �0⌧ (t) = 0 for
t 2 (�1, 0) [ (⌧,+1) and �0⌧ (t) = 1 for t 2 (0, ⌧). Recall from the above discussion that

c(�i)j = �⌧

 
1� n�1P

l 6=i,j
yjylc(�i)lx

T

l
xj � yj�(�i)0

n�1kxjk2

!

= �⌧
⇣
(1� yj�

T

(�ij)xj � yj�(�ij)0)/⇠
r

(�i)j

⌘
+O(1/

p
nnD(�ij)

).

where ⇠r(�i)j = x̄
T

j

⇣
Ip � X̄(�ij)M

�1
(�ij)X̄

T

(�ij)

⌘
x̄j . Note here and in the following that the nota-

tion (�ij), similarly to the notation (�i), refers to mathematical objects obtained by leaving
out the i-th and the j-th data samples. Thus, by letting

t(�i)j = (1� yj�
T

(�ij)xj � yj�0)/⇠
r

(�i)j ,

we have d(�i)j = �0⌧ (t(�i)j) +O(n� 1
2 ) for t(�i)j 2 R \ {0, ⌧}.

Remark that the probability of t(�i)j = 0 or t(�i)j = ⌧ is zero. To see this, notice first that

as ci  ⌧ = O(1) and � = 1
n

P
n

i=1 cixi, � = Ok·k(1) has its energy “evenly” distributed among
its elements, in the sense that for any subset A ✓ {1, . . . , p} with its cardinality comparable
to p, k�k2/

P
d=A{�}2d = O(1). Therefore, as �(�ij) is independent of xj , by the principle of

the central limit theorem, we can write �T

(�ij)xj = wj + w0
j
where wj follows asymptotically

a continuous (normal) distribution, independent of (and non-negligible when compared to) w0
j
.

We conclude thus that the probability of t(�i)j = 0 or t(�i)j = ⌧ is zero.

On account of these arguments, we obtain that

⇠ri = x̄
T

i

h
Ip � X̄B(�i)

(X̄T

B(�i)
X̄B(�i)

)�1
X̄

T

B(�i)

i
x̄i +O(n� 1

2 ).

with X̄B(�i)
composed of the yjxj/

p
n, j 6= i, for which c(�i)j 2 (0, ⌧) (i.e., t(�i)j 2 (0, ⌧)). We

define additionally B(�i) the index set of j such that c(�i)j 2 (0, ⌧) and nB(�i)
the cardinality of

B(�i). The notations B and B(�ij) are understood in the same way as B(�i), for respectively
the whole data set and the data set without the i-th and the j-th data samples.

Now we move to discuss the convergence of ⇠r
i
. By the “trace lemma” [27, Lemma 14.2], we

have that, for yi = (�1)k,

⇠ri =
1

n
trCk

h
Ip � X̄B(�i)

(X̄T

B(�i)
X̄B(�i)

)�1
X̄

T

B(�i)

i
+ o(1)

=
1

n
trCk

h
Ip � X̄B(X̄

T

BX̄B)
�1

X̄
T

B

i
+ o(1)
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where the second equality is justified by the definition of X̄B and X̄B(�i)
and the fact that

�c(�i) = Ok·k(1).

Let

Q = Ip � X̄B(X̄
T

BX̄B)
�1

X̄
T

B,

we notice that

Q = Ip � lim
z!0+

X̄B(zInb + X̄
T

BX̄B)
�1

X̄
T

B

= lim
z!0+

z(zIp + X̄BX̄
T

B)
�1

= lim
z!0+

z

 
zIp +

1

n

X

i2B
xix

T

i

!�1

,

leading to

⇠ri = lim
z!0+

z
1

n
trCkQ(z) + o(1)

for

Q(z) =

 
zIp +

1

n

X

i2B
xix

T

i

!�1

.

The matrix
�
zIp +

1
n

P
i2B xix

T

i

��1
is in fact a standard object of study in random matrix

theory, referred to as the resolvent of 1
n

P
i2B xix

T

i
. Remark that 1

n

P
i2B xix

T

i
can be seen as

a sort of empirical covariance matrix, the limiting form of its resolvent was investigated in [26].
Based on the results of [26], we get that,

1

n
trCkQ(z) ! 1

n
trCkQ̃(z) ⌘ ⇠k(z)

where

Q̃(z) =


Ip +

✓
1

z + ⇠1(z)

nB1

n
C1 +

1

z + ⇠2(z)

nB2

n
C2

◆��1

with nBk
the count of i 2 {1, . . . , n} such that ci 2 (0, ⌧) and yi = (�1)k, for k 2 {1, 2}. Taking

the limit z ! 0+, we obtain

1

n
trCkQ ! 1

n
trCkQ̃ ⌘ ⇠k

where

Q̃ =


Ip +

✓
1

⇠1

nB1

n
C1 +

1

⇠2

nB2

n
C2

◆��1

.

We demonstrate thus that

F
⇣nB1

n
,
nB2

n

⌘
= {⇠1, ⇠2}
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for F a mapping from R⇤ ⇥ R⇤ to R⇤ ⇥ R⇤ defined in (5.8), and

�T
xi � ⇠kci = �

T

(�i)xi + o(1)

for yi = (�1)k. Since k� � �(�i)k2 = o(1), �T

(�i)xi follows asymptotically the same law as �T
x
0
i

for some random vector x0
i

L
= xi, independent of �. Proposition 5.3.1 is thus proven. And so is

Corollary 5.1, which is demonstrated by

ci = �⌧

 
1� yi�T

(�i)xi � yi�0

⇠k

!
+ o(1) (C.6)

Additionally, it is interesting to points out that the above equation implies that nD(�i)
is in

fact comparable to n. To show this, remark first that, for any a, b 2 R with b > a, and some

(x, y)
L
= (xi, yi), independent of �.

1

n

nX

i=1

1(a,b)(yi�
T

(�i)xi) ! E{1(a,b)(y�T
x)} = P{y�T

x 2 (a, b)}

where we recall from the previous discussion on the statistical behavior �T

(�i)xi that P{y�T
x 2

(a, b)} is comparable to 1 if b� a = O(1). The convergence is proven by

1

n
E{1(a,b)(yi�T

(�i)xi)} = P{y�T
x 2 (a, b)}+ o(1)

and

Var{ 1
n

nX

i=1

1(a,b)(yi�
T

(�i)xi)}

=
1

n2

nX

i,j=1

h
E{1(a,b)(yi�T

(�i)xi)1(a,b)(yj�
T

(�j)xj)}� E{1(a,b)(yi�T

(�i)xi)}E{1(a,b)(yj�T

(�j)xj)}
i

=
1

n2

nX

i,j=1

h
E{1(a,b)(yi�T

(�ij)xi)1(a,b)(yj�
T

(�ij)xj)}� E{1(a,b)(yi�T

(�i)xi)}E{1(a,b)(yj�T

(�j)xj)}
i
+ o(1)

=
1

n2

nX

i,j=1

h
E{1(a,b)(yi�T

(�ij)xi)}E{1(a,b)(yj�T

(�ij)xj)}� E{1(a,b)(yi�T

(�i)xi)}E{1(a,b)(yj�T

(�j)xj)}
i
+ o(1)

=o(1).

As a result of this convergence, we obtain

nB

n
=
1

n

nX

i=1

1(0,⌧)(ci) =
1

n

nX

i=1

1(0,⌧)

"
�⌧

 
1� yi�T

(�i)xi � yi�0

⇠k

!#
+ o(1)

=
1

n

X

i2C1

1(1+�0�⇠1⌧,1+�0)(yi�
T

(�i)xi) +
1

n

X

j2C2

1(1��0�⇠2⌧,1��0)(yj�
T

(�j)xj) + o(1)

=
n1

n
P{y�T

x 2 (1 + �0 � ⇠1⌧, 1 + �0)|y = �1}+ n2

n
P{y�T

x 2 (1 + �0 � ⇠2⌧, 1 + �0)|y = 1}

+ o(1)
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for some (x, y)
L
= (xi, yi), independent of �. Hence, nB/n is comparable to 1. Since nB(�i)

=
nB + o(n) and nD(�i)

� nB(�i)
, nD(�i)

is comparable to n.

In summary, we have the following approximation results (which will be useful for the deriva-
tion in the next section):

�0 � �(�i)0 = O(n�1) (C.7)

�c(�i) = �ci(X̄
T

B(�i)
X̄B(�i)

)�1
X̄

T

B(�i)
x̄i + o(n� 1

2 ) = O(n� 1
2 ) (C.8)

� � �(�i) =
cip
n

h
Ip � X̄B(�i)

(X̄T

B(�i)
X̄B(�i)

)�1
X̄

T

B(�i)

i
x̄i + ok·k(n

� 1
2 ) = Ok·k(n

� 1
2 ). (C.9)

Moreover, letting

F

✓
nB(�i)1

n
,
nB(�i)2

n

◆
= {⇠(�i)1, ⇠(�i)2},

we have then

⇠(�i)k = ⇠k +O(n� 1
2 ), k 2 {1, 2} (C.10)

as a consequence of nB(�i)k
/n = nBk

/n + O(n� 1
2 ), k 2 {1, 2}, which is given by ci � c(�j)i =

O(n� 1
2 ).

C.1.2 Proof of Proposition 5.3.2 and Theorem 5.3.1

In this proof, we make use of the results in Proposition 5.3.1 and Corollary 5.1, . Some arguments
in the proof of Proposition 5.3.1 are also employed. In the following, we denote Ck with k 2 {1, 2}
the set of indices i 2 {1, . . . , n} such that yi = (�1)k.

Let us begin by writing � as

� =
1

n

nX

i=1

cixi =
1

n
ciµ(i) +

1

n
ciC(i)zi

=

0

@ 1

n

X

i2C1

ci

1

Aµ1 +

0

@ 1

n

X

j2C2

cj

1

Aµ2 +C1

0

@ 1

n

X

i2C1

cizi

1

A+C2

0

@ 1

n

X

j2C2

cjzj

1

A .

We focus thus on the terms 1
n

P
i2Ck

ci,
1
n

P
i2Ck

cizi, k 2 {1, 2}.

Recall from (C.6) and (C.8) in the previous subsection that, for i 2 C1, k 2 {1, 2},

ci = �⌧

 
1� yi�T

(�i)xi � yi�0

⇠k

!
+ o(1)

c(�j)i = �⌧

 
1� yi�T

(�ij)xi � yi�0

⇠k

!
+ o(1)

ci � c(�j)i = O(n� 1
2 ).
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Moreover, we obtain from (C.7) and (C.10) that

�⌧

 
1� yi�T

(�ij)xi � yi�0

⇠k

!
= �⌧

 
1� yi�T

(�ij)xi � yi�(�ij)0

⇠(�ij)k

!
+ o(1)

It follows then that, for yi = (�1)k, yj = (�1)k
0
with k, k0 2 {1, 2},

Cov{ci, cj}
=E{cicj}� E{cj}E{ci} = E{c(�j)ic(�i)j}� E{ci}E{cj}+ o(1)

=E
(
�⌧

 
1� yi�T

(�ij)xi � yi�(�ij)0

⇠(�ij)k

!
�⌧

 
1� yi�T

(�ij)xj � yi�(�ij)0

⇠(�ij)k0

!)
� E{cj}E{ci}+ o(1)

=E
(
�⌧

 
1� yi�T

(�ij)xi � yi�(�ij)0

⇠(�ij)k

!)
E
(
�⌧

 
1� yi�T

(�ij)xj � yi�(�ij)0

⇠(�ij)k0

!)
� E{cj}E{ci}+ o(1)

=o(1)

where the jump from the second line to the third is supported by the fact that �(�ij), �(�ij)0

and ⇠(�ij)k are independent of xi and xj . Therefore,

Var

8
<

:
1

n

X

i2Ck

ci

9
=

; =
1

n2

X

i2Ck

Var{c2i }+
1

n2

X

i 6=j2Ck

Cov{ci, cj} = o(1),

we get thus

1

n

X

i2Ck

ci =
nk

n
E{ci|yi = (�1)k}+ o(1), k 2 {1, 2}.

We proceed now to study 1
n

P
i2Ck

cizi. To begin with, notice that

1

n

X

i2Ck

cizi =
1

n

X

i2Ck

c̃izi + ok·k, k 2 {1, 2}.

for

c̃i = �⌧

 
1� yi�T

(�i)xi � yi�(�i)0

⇠(�i)k

!
= ci + o(1).

Let us define

e[k] = [e[k]1, . . . , e[k]p] =
1

n

X

i2Ck

(c̃izi � Exi{c̃izi}) , k 2 {1, 2}

Obviously,

E{e[k]} = 0p.
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Denoting

c̃(�j)i = �⌧

 
1� yi�T

(�ij)xi � yi�(�ij)0

⇠(�ij)k

!
,

for which we have from the earlier arguments that

c̃(�j)i = c̃i +O(n� 1
2 ) and Cov(xi,xj){c̃(�j)i[zi]d, c̃(�i)j [zj ]d} = 0,

we show then Var{e[k]d} = O(n�1) with the following development:

Var{e[k]d} =
1

n2

X

i2Ck

Varxi{(c̃i[zi]d)2}+
1

n2

X

i 6=j2Ck

Cov(xi,xj){c̃i[zi]d, c̃j [zj ]d}

=
1

n2

X

i2Ck

Varxi{(c̃i[zi]d)2}+
1

n2

X

i 6=j2Ck

Cov(xi,xj){c̃(�j)i[zi]d, c̃(�i)j [zj ]d}+O(n�1)

= O(n�1).

For k 2 {1, 2}, we define Ak a subset of {1, . . . , p} such that 8d 2 Ak, [Ck�]d = O(n� 1
2 ), and

Ac

k
= {1, . . . , p} \ Ak the complement of Ak . Since kCkk = O(1) and kC�1

k
k = O(1), we have

|Ac

k
| = O(1). As Var{e[k]d} = O(n�1), the overall behavior of e[k] can be studied by focusing on

the entries e[k]d with d 2 Ak.

Note that as k� � �(�i)k = O(n� 1
2 ), for all d 2 Ak with k 2 {1, 2},

⇥
Ck�(�i)

⇤
d
= O(n� 1

2 ) if

[Ck�]d = O(n� 1
2 ). Therefore, for d 2 Ak, i 2 Ck,

c̃i = �⌧

 
1� yi�T

(�i)µk � yi�T

(�i)Ckzi � yi�(�i)0

⇠(�i)k

!

= �⌧
⇣
t{d}
i

⌘
+ �0⌧

⇣
t{d}
i

⌘ ⇥Ck�(�i)

⇤
d
[zi]d

⇠(�i)k
+O(n�1)

where

t{d}
i

=
1� yi�T

(�i)µk � yi
P

d0 6=d

⇥
Ck�(�i)

⇤
d0
[zi]d0 � yi�(�i)0

⇠(�i)k
.

It is important to remark that t{d}
i

is independent of [zi]d. Moreover, for j 6= i, t{d}
i

can be

divided into two parts: one independent of [zj ]d and one of order o(n� 1
2 ). To see this, observe

from the results in the previous subsection that, for j 2 Ck,

�(�i) =�(�ij) +
c(�i)j

n

h
Ip � X̄B(�ij)

(X̄T

B(�ij)
X̄B(�ij)

)�1
X̄

T

B(�ij)

i
xj + ok · k(n� 1

2 )

=�(�ij) +
�⌧

⇣
t{d}(�i)j

⌘

n

h
Ip � X̄B(�ij)

(X̄T

B(�ij)
X̄B(�ij)

)�1
X̄

T

B(�ij)

i
Ck[zj(1), · · · , zj(d� 1), 0,

zj(d+ 1), · · · , zj(p)]T + ok · k(n� 1
2 )
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where

t{d}(�i)j =
1� yj�T

(�ij)µk � yj
P

d0 6=d

⇥
Ck�(�ij)

⇤
d0
[zj ]d0 � yj�(�ij)0

⇠(�ij)k
.

The aforementioned conclusion is thus deduced by considering an approximation of ⇠(�i)k defined
with respect to the approximation of �(�i) given in the second line of the above equation,

which is thus independent of [zj ]d and at a distance of o(n� 1
2 ) from ⇠(�i)k, and recalling that

�(�i)0 � �(�ij)0 = O(n�1).

Notice hence that

1

n

X

i2Ck

c̃i [zi]d =
1

n

X

i2Ck

�⌧
⇣
t{d}
i

⌘
[zi]d +

1

n

X

i2Ck

�0⌧

⇣
t{d}
i

⌘ ⇥Ck�(�i)

⇤
d
[zi]

2
d

⇠(�i)k
+O(n�1)

where

1

n

X

i2Ck

�0⌧

⇣
t{d}
i

⌘ ⇥Ck�(�i)

⇤
d
[zi]

2
d

⇠(�i)k
=

1

n

X

i2Ck

⇥
Ck�(�i)

⇤
d
E

8
<

:
�0⌧

⇣
t{d}
i

⌘
[zi]

2
d

⇠(�i)k

9
=

;+ o(n� 1
2 )

according to the discussion in the above paragraph on statistical independences between t{d}
i

and [zj ]d. This convergence entails that

e[k]d =
1

n

X

i2Ck

�⌧
⇣
t{d}
i

⌘
[zi]d + o(n� 1

2 )

as

1

n

X

i2Ck

Exi{c̃i [zi]d} =
1

n

X

i2Ck

⇥
Ck�(�i)

⇤
d
E

8
<

:
�0⌧

⇣
t{d}
i

⌘
[zi]

2
d

⇠(�i)k

9
=

;+ o(n� 1
2 ).

We get then

Var{e[k]d} =
1

n2

X

i2Ck

E
⇢
�⌧

⇣
t{d}
i

⌘2�
+ o(n�1)

=
1

n2

X

i2Ck

E
�
c2i
 
+ o(n�1).

To demonstrate that e[k]d follows asymptotically a normal distribution, we consider a solution
�{�d} that is independent of all [zi]d, i 2 {1, . . . , n}, obtained on the data set where we replace

all the [zi]d with i 2 Ck with some independent copies [z0
i
]
d

L
= [zi]d. Let c{�d}i, i 2 {1, . . . , n}

stand for the corresponding dual solutions. Similarly to the discussion between ci and c(�j)i, it

can be derived that c{�d}i � ci = O(n� 1
2 ). Since c{�d}i are independent of all [zi]d with i 2 Ck ,
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we obtain that

E

8
<

:

0

@ 1

n

X

i2Ck

�⌧
⇣
t{d}
i

⌘
[zi]d �

1

n

X

i2Ck

c{�d}i [zi]d

1

A
29=

;

=E

8
<

:

0

@ 1

n

X

i2Ck

�⌧
⇣
t{d}
i

⌘
[zi]d

1

A
29=

;+ E

8
<

:

0

@ 1

n

X

i2Ck

c{�d}i [zi]d

1

A
29=

;

� 2E

8
<

:

0

@ 1

n

X

i2Ck

�⌧
⇣
t{d}
i

⌘
[zi]d

1

A

0

@ 1

n

X

i2Ck

c{�d}i [zi]d

1

A

9
=

;

=
1

n2

X

i2Ck


E
⇢
�⌧

⇣
t{d}
i

⌘2�
+ E

n
c2{�d}i

o
� 2E

n
�⌧

⇣
t{d}
i

⌘
c{�d}i

o�

� 2

n2

X

i 6=j2Ck

E
n
�⌧

⇣
t{d}
i

⌘
[zj ]d

o
E
�
c{�d}i

 
E {[zi]d}

=O(n� 3
2 ),

leading to

e[k]d =
1

n

X

i2Ck

c{�d}i [zi]d + o(n� 1
2 ).

As c{�d}i [zi]d, i 2 Ck, are i.i.d random variables, we conclude by the central limit theorem that

e[k]d = ẽ[k]d + o(n� 1
2 )

where

ẽ[k]d ⇠ N
⇣
0,
⇢k
n
E{c2i |i 2 Ck}

⌘
.

We retrieve thus the results of Proposition 5.3.2.

To obtain Theorem 5.3.1, it su�ces to use Lemma 2.3, according to which we have that,
conditioned on �(�i),

zi �
�T

(�i)zi

�T

(�i)C(i)�(�i)

is independent of �T

(�i)zi under the Gaussianity of zi. Therefore,

Exi{c̃izi} = Exi

(
c̃i�T

(�i)zi

�T

(�i)C(i)�(�i)

)
+ Exi{c̃i}Exi

(
zi �

�T

(�i)zi

�T

(�i)C(i)�(�i)

)

= Exi

(
c̃i�T

(�i)zi

�T

(�i)C(i)�(�i)

)
= Exi

(
c̃i�T

(�i)zi

�T

(�i)C(i)�(�i)

)
,

which concludes the proof of Theorem 5.3.1.
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C.2 Sketch of proofs for Chapter 7

The theoretical results in Chapter 6 can in fact be proven by following a almost exact reasoning
employed in the proofs for Chapter 5. Here we build the derivation upon the mathematical
arguments in the previous section.

Recall that we are interested in the presumed case where �̂ is unique with finite norm and
the classification scores �̂T

xi of training samples are bounded, allowing for simplified proofs. As
in the development of the previous section, we shall connect xT

i
�̂ to ci by establishing a “leave-

one-out” version of �̂ that is independent of xi, yi. To this end, we denote �̂(�i) the solution
of the original optimization problem in (6.2) for X(�i)y(�i) ⌘ [x1y1, . . . ,xi�1yi�1,xi+1yi+1,

. . . ,xnyn] 2 Rp⇥(n�1), all training data except the pair (xi, yi), such that by cancelling the
derivative we obtain

1

n

X

j 6=i

yj (yjx
T

j �̂(�i))xj = 0. (C.11)

Recall the definition of c in (6.3) and the fact that 1
n

P
n

i=1 cixi = 0, a simple subtraction from
(C.11) yields

1

n

X

j 6=i

⇣
cj � yj (yjx

T

j �̂(�i))
⌘
xj +

1

n
cixi = 0. (C.12)

Since ⇢ is a convex function, there exists a value d(�i)j < 0 between  0(yjxT

j
�̂(�i)) and  

0(yjxT

j
�̂)

such that

cj � c(�i)j = d(�i)jyjx
T

j (�̂ � �̂(�i))

where we denote c(�i)j ⌘ yj (yjxT

j
�̂(�i)). Plugging the above estimate back into (C.12) we

deduce

�̂ � �̂(�i) =
1

n
ci

✓
� 1

n
X(�i)D(�i)X

T

(�i)

◆�1

xi

with D(�i) 2 Rn�1 a diagonal matrix with d(�i)j being its diagonal entries. As d(�i)j is bounded

away from infinity or zero, 1
n
X(�i)D(�i)X(�i) is indeed invertible for n/p > 1 and

✓
� 1

n
X(�i)D(�i)X

T

(�i)

◆�1

= Ok·k(1).

We observe thus that

�̂ � �̂(�i) = Ok·k(n
� 1

2 ).

Consequently,
yi�̂

T
xi � iyici = yi�̂

T
xi � i (yi�̂

T
xi) = yi�̂

T

(�i)xi (C.13)

with

i =
1

n
x
T

i

✓
� 1

n
X(�i)D(�i)X

T

(�i)

◆�1

xi.
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Hence,

yi�̂
T
xi = proxi(yi�̂

T

(�i)xi)

where proxi(t) ⌘ argminz2R
�
i⇢(z) +

1
2(z � t)2

�
. Letting

�⌧ (t) =
prox⌧ (t)� t

⌧
,

we get that

ci = yi�i(yi�̂
T

(�i)xi).

Notice also that, as

x
T

j (�̂ � �̂(�i)) =
1

n
cix

T

j Q(�i)xi = O(n� 1
2 )

cj � c(�i)j =  0(yjx
T

j �̂(�i))yjx
T

j (�̂ � �̂(�i)) +O(n�1) = O(n� 1
2 ),

implying that

d(�i)j =  0(yjx
T

j �̂(�i)) +O(n� 1
2 ).

We note thus that

i =
1

n
x
T

i Q(�i)xi +O(n� 1
2 )

with

Q(�i) =

0

@� 1

n

X

j 6=i

 0(yjx
T

j �̂(�i))xjx
T

j

1

A
�1

.

As Q(�i) is independent of xi, we obtain from the trace lemma ([27, Lemma 14.2]) that

1

n
x
T

i Q(�i)xi =
1

n
trCQ(�i) +O(n�1) =

1

n
trCQ+O(n�1)

where we denote

Q ⌘
 
� 1

n

nX

i=1

 0(yix
T

i �̂)xix
T

i

!�1

.

From this we remark that all i, i{1, . . . , n}, have asymptotically the same value  = frac1n trCQ.

With the above arguments, Theorem 6.3.1 and Theorem 6.3.2 can be demonstrated with
the same manipulation as in Subsection C.1.2. To derive further the results of Theorem 6.5.1,
it su�ces to find the deterministic limit ̄ of . To this end, we look now for a deterministic
matrix Q̄ = R

�1 such that

1

n
(trCQ� trCQ̄) = o(1).
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As A�1 �B
�1 = A

�1(B�A)B�1 for any two square matrices A,B of the same dimension, we
observe that

1

n
(trCQ� trCQ̄) =

1

n
trCQ

 
R+

1

n

nX

i=1

 0(yix
T

i �̂)xix
T

i

!
Q̄

=
1

n
trCQRQ̄+

1

n2

nX

i=1

trCQ 0(yix
T

i �̂)xix
T

i Q̄

=
1

n
trCQRQ̄+

1

n2

nX

i=1

trC
Q�i 0(yixT

i
�̂)xix

T

i

1�  0(yixT

i �̂)
n

xT

i
Q(�i)xi

Q̄+ o(1)

=
1

n
trCQRQ̄+

1

n2

nX

i=1

 0(yixT

i
�̂)

1�  0(yixT

i �̂)
n

trCQ(�i)

trCQ(�i)xix
T

i Q̄+ o(1)

=
1

n
trCQRQ̄+

1

n2

nX

i=1

 0(yixT

i
�̂)

1�  0(yixT

i
�̂)

trCQCQ̄+ o(1). (C.14)

Since

 0(yix
T

i �̂) =  0
⇣
prox(yi�̂

T

(�i)xi)
⌘
+ o(1),

by the same concentration arguments in the proofs of Chapter 5, we have that

1

n

nX

i=1

 0(yixT

i
�̂)

1�  0(yixT

i
�̂)

= Er

⇢
 0 (prox(r))

1�  0 (prox(r))

�
+ o(1)

for some random variable r independent of  and r
L
= �̂T

x with x ⇠ N(µ,C) independent of �̂.
It then follows from (C.14) that

1

n
(trCQ� trCQ̄) = o(1) , 1

n
trCQ

✓
R� Er

⇢
 0 (prox(r))

1�  0 (prox(r))
C

�
Q̄

◆
= o(1).

In view of this result, we obtain that

R = E
⇢

� 0 (prox̄(r))

1�  0 (prox̄(r)) ̄

�
C

with ̄ > 0 uniquely given by

̄ =
1

n
trR�1

C.

With the above equation of ̄ at hand, we thus deduce Theorem 6.5.1.
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Appendix D

Résumé (Français)

L’apprentissage automatique est un sous-domaine de l’intelligence artificielle centré sur le traite-
ment automatique des données. À partir d’un ensemble d’échantillons de données et d’une tâche
d’apprentissage, les algorithmes d’apprentissage automatique extraient des informations perti-
nentes pour la tâche à partir de l’ensemble de données sans instructions explicites. Naturelle-
ment, les performances des algorithmes d’apprentissage automatique sont limitées par la taille du
jeu de données en entrée. L’augmentation rapide de la capacité de calcul a permis de collecter et
de manipuler des ensembles de données volumineux dotés de nombreuses fonctionnalités, ce qui a
permis le succès de nombreuses applications de méthodes d’apprentissage automatique, telles que
la classification d’images, la reconnaissance de la parole et la prédiction de gènes. Même si des
performances surhumaines ont été obtenues sur certaines tâches grâce à la puissance du big data,
elles sont principalement réalisées à l’aide de modèles d’apprentissage supervisés et nécessitent
une quantité considérable d’échantillons étiquetés. Le processus d’étiquetage coûteux et l’accès
limité aux données dans de nombreux domaines appellent des approches d’apprentissage plus ef-
ficaces et plus flexibles. Pour améliorer les méthodes d’apprentissage actuelles, il est nécessaire
de les comprendre à un niveau profond. Cependant, la nature non linéaire des algorithmes
d’apprentissage, qui est à l’origine de leur succès empirique, les rend également théoriquement
di�ciles à étudier. En e↵et, la plupart des algorithmes d’apprentissage automatique, même
les plus populaires, ont été motivés par un raisonnement intuitif et justifiés par des arguments
heuristiques.

Depuis longtemps, on s’aperçoit que l’apprentissage sur de grandes données présente des
défis uniques pour lesquels le terme malédiction de la dimensionnalité a été utilisé. Les ar-
guments intuitifs qui sous-tendent la proposition de nombreux algorithmes d’apprentissage ne
sont valables que pour des données de petites dimensions. Un phénomène important de la
malédiction de la dimensionnalité est la concentration des distances, qui fait référence à la ten-
dance des ”distances” paire-à-paire entre les vecteurs de données à devenir indiscernables dans
la limite des grandes dimensions. Étant donné que de nombreuses techniques d’apprentissage
reposent sur la relation entre la proximité géométrique et l’a�nité entre les données, leur va-
lidité est remise en question par ce phénomène de concentration des distances. Par conséquent,
de nombreux phénomènes contre-intuitifs peuvent se produire, dont l’explication appelle une
compréhension plus profonde de l’apprentissage en grande dimension. Malgré cette nécessité
impérieuse de dévoiler le processus d’apprentissage des grandes données, la recherche théorique
à cet égard est plutôt sous-développée dans la littérature. La plupart des analyses existantes de
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techniques d’apprentissage suppose notamment que le nombre n d’échantillons de données est
infiniment grand par rapport à leur dimension p, c’est-à-dire n/p ! 1, une hypothèse qui ne
convient guère lorsque la dimension est elle-même trop importante pour être considérée comme
négligeable par rapport au nombre d’échantillons de données. L’objectif de cette thèse est
d’analyser et d’améliorer les méthodes d’apprentissage dans le régime moderne des n, p grands
et comparables.

Puisque les résultats d’apprentissage sont des variables aléatoires dépendant des données
d’entrée, qui ne convergent vers des valeurs déterministes que lorsque n � p, l’analyse des
algorithmes d’apprentissage pour des n, p comparables nécessite la tâche non triviale de car-
actériser leur caractère aléatoire. Prenons l’exemple de l’analyse discriminante linéaire (LDA),
une méthode d’apprentissage simple et standard. La méthode LDA aborde le problème de
l’apprentissage en supposant que les instances de données (x, y), avec x 2 Rp les vecteurs de
caractéristiques et y = ±1 les étiquettes de classe, suivent un modèle de mélange gaussien avec
des covariances identiques, c’est-à-dire pour y = (�1)k avec k = {1, 2}, x ⇠ N(µk,C) (où
nous supposons que C est de rang complet). Sous cette hypothèse, la solution Bayes-optimale
consiste à a↵ecter une observation x à la classe ±1 par le signe de �T

x � c pour une con-
stante de seuil c, où � = C

�1(µ2 � µ1). Comme les paramètres statistiques µ1, µ2 et C sont
normalement inconnus en pratique, ils sont estimés à partir d’un ensemble d’échantillons de
données (x1, y1), . . . , (xn, yn) pour obtenir � = Ĉ

�1(µ̂2 � µ̂1), où (µ̂1, µ̂2, Ĉ) est généralement
l’estimation de la probabilité maximale (MLE) de (µ1,µ2,C) ou d’autres estimations. Bien
que les performances de LDA soient garanties optimales dans la limite n � p où (µ̂1, µ̂2, Ĉ) !
(µ1,µ2,C) pour tout estimateur consistant (µ̂1, µ̂2, Ĉ), on ne peut pas en dire autant du régime
où n, p sont proportionnellement grands. En e↵et, même avec le MLE, pour lequel nous avons des
expressions assez simples de (µ̂1, µ̂2, Ĉ) (également appelés moyenne et covariance empiriques):

µ̂k =
1

|Ck|
X

i2Ck

xi, k = {1, 2},

où on note i 2 Ck pour i 2 {1, . . . , n} tels que yi = (�1)k; et

Ĉ =
1

n

2

4
X

i2C1

(xi � µ̂1)(xi � µ̂1)
T +

X

j2C2

(xj � µ̂2)(xj � µ̂2)
T

3

5 ,

le comportement statistique de � est compliqué à caractériser pour des rapports n/p non trivi-
aux, principalement en raison de l’existence de Ĉ

�1 dans l’expression de �.

Comme expliqué précédemment, la grande dimensionnalité des données modernes induit le
besoin d’études théoriques avancées sur les performances des algorithmes d’apprentissage, loin
de la limite asymptotique conventionnelle n/p ! 1, à laquelle les paramètres appris, tels que
� = Ĉ

�1(µ̂2 � µ̂1) dans l’exemple ci-dessus du LDA, deviennent des constantes déterministes.
Néanmoins, cette grande dimensionalité o↵re en fait des avantages techniques. En e↵et, bien
que le comportement statistique de Ĉ

�1, tel que la distribution de ses valeurs propres et des
vecteurs propres associés, soit di�cile d’accès pour des n, p modérés, un certain nombre de
chercheurs pionniers se sont intéressés aux propriétés statistiques de matrices aléatoires telles
que Ĉ�1 dans la limite où p est large et n/p reste non trivial. En e↵et, en explorant les degrés de
liberté supplémentaires fournis par la grande dimensionnalité des données, Marchenko et Pastur,
dans [1], ont tout d’abord démontré que l’histogramme des valeurs propres de la covariance
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empirique1 issue de vecteurs de données x ⇠ N(0p, Ip) converge vers une certaine distribution
continue déterministe, maintenant appelée distribution de Marchenko–Pastur. L’extension au
cas où la covariance population est autorisée à être autre que la matrice d’identité peut être
trouvée dans les travaux [2, 3] de Silverstein et Bai. Évidemment, connâıtre les propriétés
spectrales de la matrice de covariance empirique Ĉ équivaut à connâıtre celles de son inverse.
En fait, de nombreuses investigations spectrales sur des matrices aléatoires telles que Ĉ sont
e↵ectuées par le biais de manipulations techniques impliquant leur inverse. Sur la base des
résultats de la théorie des matrices aléatoires (RMT), la performance de LDA a récemment été
examinée dans [4], et sa variante plus élaborée QDA (analyse discriminante quadratique) dans
[5].

La solution de LDA est plutôt pratique pour e↵ectuer des analyses théoriques en raison de sa
forme explicite et du fait que sa seule non-linéarité est due à l’inverse de la matrice de covariance
empirique Ĉ

�1, un objet largement étudié en RMT. La plupart des techniques d’apprentissage,
telles que les méthodes à noyau, impliquent des non-linéarités plus complexes. Une autre com-
plication dans l’analyse des systèmes d’apprentissage est qu’il peut ne pas exister d’expression
explicite des résultats du système. L’absence de solution close est en réalité commune à de
nombreuses méthodes d’apprentissage largement utilisées telles que la régression logistique, les
machines à vecteurs de support (SVM) et les réseaux de neurones, pour lesquels les solutions
sont définies comme un point de minimisation (local ou global) d’une certaine fonction de perte.
Comme les résultats de RMT concernent généralement les propriétés statistiques de certains
modèles de matrices aléatoires explicites spécifiques, ils ne sont pas adaptés pour caractériser
des solutions implicites à des problèmes d’optimisation impliquant ces mêmes matrices aléatoires.
D’autres approches sont donc nécessaires pour l’étude d’algorithmes d’apprentissage à solutions
implicites.

À cet égard, la technique de perturbation “leave-one-out” s’est avérée e�cace par une série
de contributions. Le comportement statistique de la régression robuste avec M-estimateurs, qui
ne suppose généralement pas l’existence d’une solution de forme close, est décrit dans [6, 7], en
utilisant cette procédure de perturbation. Dans le même ordre d’idées, les travaux de [8, 9] sont
axés sur la méthode de régression logistique pour la classification. L’idée principale de ces études
est d’établir des équations statistiques des paramètres appris en capitalisant sur le fait que les
résultats des algorithmes restent pratiquement inchangés après avoir exclu (i) un échantillon de
l’ensemble de données d’apprentissage ou (ii) une caractéristique du vecteur de caractéristiques.
Cette approche “double leave-one-out” est appliquée dans ces travaux en supposant que tous
les échantillons de données sont centrés avec les entités i.i.d. gaussiennes (c’est-à-dire, x ⇠
N(0p, Ip)), ce qui justifie notamment l’étape ‘leave-one-feature-out’ car toutes les caractéristiques
sont statistiquement équivalentes et indépendantes. Contrairement aux modèles mixtes (comme
celui considéré dans LDA), il n’y a pas de séparation de classe naturelle dans l’unique classe
x ⇠ N(0p, Ip). Afin d’étudier les problèmes de classification dans ce contexte, les auteurs de [8, 9]
ont imposé l’existence d’un signal de séparation de classe à l’intérieur du groupe x ⇠ N(0, Ip).
En tant que tels, les scénarios de classification courants avec des modèles de classe distincts
(représentés par des composants di↵érents dans les modèles de mélange) ne sont jusqu’à présent
pas couverts par ce type d’analyse.

Contributions et organisation:

1Ceci fait référence à la mesure spectrale définie par 1
p

Pp
i=1 ��i(t) où �i sont les valeurs propres de la matrice

de covariance empirique.
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APPENDIX D. RÉSUMÉ (FRANÇAIS)

Le paradigme actuel du big data jette les bases du développement de nouveaux outils
mathématiques pour l’analyse des algorithmes d’apprentissage dans le régime moderne où n, p
sont de taille comparable. Contrairement aux analyses existantes dans ce régime, les ap-
proches techniques développées dans cette thèse exploitent à la fois des outils avancés de la
théorie des matrices aléatoires et des arguments de type “leave-one-out”. Grâce à la combi-
naison des avantages de la théorie des matrices aléatoires pour la manipulation de données
structurées et de la puissance de la manipulation “leave-one-out” pour traiter des systèmes
d’apprentissage complexes, nous sommes en mesure de mener des analyses plus complexes
d’algorithmes d’apprentissage automatique dans des modèles de mélanges réalistes. Ces anal-
yses entrâınent des conséquences importantes dans l’application de méthodes d’apprentissage,
dont certaines sont observées depuis longtemps sans avoir été bien comprises, d’autres inconnues
des praticiens, voire contraires aux idées reçues. Nos analyses étant caractérisées de manière
complète par les résultats de l’apprentissage, ces problèmes peuvent parfois être directement
résolus par de simples mesures de correction, telles que la normalisation (ou le rééchelonnement)
ou l’amélioration de la paramétrisation. Dans certains scénarios, des analyses en grandes di-
mensions peuvent même détecter des défauts fondamentaux dans la conception des algorithmes
d’apprentissage et inspirer des approches supérieures, comme cela a été fait dans [10] et dans
le travail qui a suivi [11], dans le cadre des contributions de cette thèse. De manière remar-
quable, les résultats théoriques dérivés au cours de la thèse prédisent de près les performances
d’apprentissage sur des ensembles de données à la fois synthétiques et réels, ce qui suggère
l’adéquation des modèles de données de mélange pour décrire le scénario d’apprentissage dans
des applications réelles. Cette observation est notamment corroborée par les conclusions de [12]
et de [13], où les auteurs démontrent que, sous certaines hypothèses (très légères) de “mélanges
de données concentrées”, une série d’objets aléatoires concernant la matrice de covariance em-
pirique converge dans le régime des grands n, p vers une même limite, et ce quelle que soit la
distribution des données.

Voici les contributions principales de cette thèse organisées en chapitres:

• Sur le plan technique, l’apport de cette thèse réside dans le développement d’une approche
combinant les techniques de RMT et de la procédure de “leave-one-out”, adaptable à
l’analyse d’une série de problèmes d’apprentissage importants, comme en témoignent nos
études présentées dans cette thèse. Les outils basiques de RMT et l’idée fondamentale de la
manipulation “leave-one-out” sont présentés dans Chapitre 2, avant une démonstration sur
comment les combiner pour des analyses plus complexes à l’aide d’un exemple illustratif.

• Passant aux contributions principales, la première partie concerne l’apprentissage semi-
supervisé sur des graphes, constitués de Chapter 3 et Chapter 4:

– Dans Chapter 3, nous présentons l’analyse de grande dimension sur une famille
d’algorithmes d’apprentissage semi-supervisés basés sur des graphes, souvent ap-
pelés méthodes de régularisations laplaciennes. Notre analyse explique pourquoi la
plupart de ces algorithmes semi-supervisés couramment utilisés échouent en grande
dimension, à l’exception de celui avec la matrice laplacienne de la marche aléatoire
(également appelé algorithme PageRank). L’étude révèle également plusieurs conséquences
importantes induites par la grande dimensionnalité des données. Des mesures de cor-
rection et des conseils pratiques sont données en vue de ces résultats. Une conclusion
très importante de cette analyse est que les performances de tous ces algorithmes
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manifestent une croissance négligeable de performance avec l’ajout des données non-
étiquetées. Ceci suggère l’existence d’un défaut fondamental dans l’approche de
régularisation laplacienne, qui la rend inadéquate pour réaliser un apprentissage semi-
supervisé e�cace sur des données de grande dimension. Les résultats de ce chapitre
sont rappelés de

X. Mai, R. Couillet,“A Random Matrix Analysis and Improvement of Semi-
Supervised Learning for Large Dimensional Data”, Journal of Machine Learn-
ing Research, vol. 19, no. 79, pp. 1-27, 2018.

X. Mai, R. Couillet,“The Counterintuitive Mechanism of Graph-based Semi-
Supervised Learning in the Big Data Regime”, IEEE International Confer-
ence on Acoustics, Speech and Signal Processing (ICASSP’17), New Orleans,
USA, 2017.

– Suite à la dernière remarque de l’analyse des régularisations laplaciennes, nous pro-
posons dans Chapitre 4 un nouvel algorithme de régularisation capable d’apprendre
e�cacement à la fois des données étiquetées et non-étiquetées de grande dimen-
sion, dans un sens que l’exactitude de la classification augmente d’une manière non-
négligeable lorsque un des ratios n[l]/p, n[u]/p de taille pour les données étiquetées
([l]) et les données non-étiquetées ([u]) est plus grand. L’algorithme proposé présente
un avantage indiscutable sur les méthodes laplaciennes, car les performances de ces
dernières ne dépendent que de n[l]/p, la taille relative à la dimension des données
étiquetées. Notre nouvelle approche implique une opération de centrage sur les
similitudes. Une analyse approfondie des performances est également e↵ectuée. La
méthode proposée et son analyse de performance présentée dans ce chapitre sont
basées sur les contributions suivantes

X. Mai, R. Couillet, “Revisiting and Improving Semi-Supervised Learning: A
Large Dimensional Approach”, IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP’19), Brighton, UK, 2019.

X. Mai, R. Couillet, “Consistent Semi-Supervised Graph Regularization for
High Dimensional Data”, submitted to Journal of Machine Learning Re-
search, 2019.

• La deuxième partie est consacrée à l’étude des algorithmes sans solution explicite, Chapitre 5
étant dédié à la méthode de SVMs et Chapitre 6 à la régression logistique.

– La méthode des machines à vecteurs de support doit son nom au fait que le paramètre
appris � 2 Rp est déterminé par un sous-ensemble d’échantillons d’apprentissage,
appelés vecteurs de support. En fait, puisque nous avons � =

P
n

i=1 cixi où ci � 0,
un vecteur xi de données d’entrâınement associé à un non-nul ci est un vecteur de
support. Nous caractérisons dans Chapitre 5 le comportement des vecteurs de support
en grandes dimensions via la distribution statistique de ci. Ensuite, nous montrons
comment la distribution statistique de � est liée à celle de ci, ce qui nous permet de
tirer des remarques importantes sur l’impact de l’hyperparamètre dans la méthode
SVM. Cette analyse est présentée dans l’article

X. Mai, R. Couillet, “Statistical Behavior and Performance of Support Vector
Machines for Large Dimensional Data”, in preparation, 2019.
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APPENDIX D. RÉSUMÉ (FRANÇAIS)

– La régression logistique est l’un des algorithmes définis par le principe de la minimi-
sation du risque empirique, avec une perte de vraisemblance logarithmique négative.
Comme la régression logistique donne une estimation du maximum de vraisemblance
pour les paramètres �,�0, option par défaut et généralement considérée comme op-
timale lorsque l’hypothèse de distribution des données est satisfaite, nous proposons
de vérifier l’optimalité de la régression logistique par une analyse conjointe des al-
gorithmes de la minimisation du risque empirique avec fonctions lisses de perte.
De manière remarquable, nos résultats prouvent que, contrairement à la conviction
générale, la régression logistique basée sur la maximization de vraisemblance ne pro-
duit pas la meilleure performance de classification. Nous élaborons également des
stratégies d’amélioration de ces algorithmes à partir de nos résultats théoriques avant
d’en discuter les limites. Le chapitre est basé sur les contributions suivantes

X. Mai, Z. Liao, R. Couillet, “A Large Scale Analysis of Logistic Regression:
Asymptotic Performance and New Insights”, IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP’19), Brighton, UK,
2019.

X. Mai, Z. Liao, “High Dimensional Classification via Empirical Risk Mini-
mization: Statistical Analysis and Optimality”, in preparation, 2019.
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