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Preface

Atmospheric turbulence, generated by a temperature differential between the Earth’s
surface and the atmosphere, causes effects on optical waves that have been of great
interest to scientists for many years. During daytime, the Earth is hotter than the air,
if it this negative temperature gradient is sufficiently strong, it can result in an inverted
image known as a mirage, which is a meteorological phenomenon; also belong to this
category blue sky, rainbow, red sunset, halo, etc. Temperature gradients are positive
during nighttime hours, resulting in downward bending of light rays. This downward
bending of light rays through refraction enables one to see objects, like stars, slightly
below the horizon, a phenomenon called looming.

Day to day as atmospheric conditions vary. These varying conditions are caused
by factors like rain, snow, sleet, fog, haze, pollution, etc., that can greatly limit our
ability to view distant objects. These same factors also affect the transmission of
electromagnetic radiation through the atmosphere, particularly optical waves.

The three primary atmospheric phenomena that affect optical wave propagation
are absorption, scattering, and refractive-index fluctuations—i.e., optical turbulence.
Absorption and scattering by the constituent gases and particulates of the atmosphere
are wavelength dependent and give rise primarily to attenuation of an optical wave.

Wind blowing over an aerodynamically rough region of the Earth’s surface in the
presence of a temperature gradient creates fluctuations in the atmosphere’s refractive
index known as optical turbulence. Wavefront distortions in the optical wave induced
by atmospheric turbulence result in a spreading of the beam beyond that due to pure
diffraction, random variations of the position of the beam centroid called beam wander,
and a random redistribution of the beam energy within a cross section of the beam
leading to irradiance fluctuations. Perhaps the most well-known effect of atmospheric
turbulence is the twinkling of stars, which is an irregular change in brightness of the im-
age. In addition, the atmospheric turbulence that limits astronomical seeing gradually
destroys the spatial coherence of a laser beam as it propagates through the atmosphere.
Unfortunately, these detrimental effects have far-reaching consequences on astronom-
ical imaging, free-space optical communications, remote sensing, laser satellite com-
munication, astronomical imaging, adaptive optics, target designation, hyperspectral



vii

LiDAR, and other applications that require the transmission of optical waves through
the atmosphere. For example, the loss of spatial coherence limits the extent to which
laser beams may be collimated or focused, resulting in significant power level reductions
in optical communication and radar systems.

The behavior of a subportion of optical turbulence may be described in a statis-
tical manner, and this forms the basis of most propagation theories. Consequently,
the propagation of an optical wave through optical turbulence can also be described
by statistical quantities (IR propagation is also contained). Inherent in the methods
of analysis, theoretical studies concerning optical wave propagation through optical
turbulence are typically classified into one of two general categories—weak fluctuations
or strong fluctuations. Weak fluctuation theory is usually based on the Rytov perturba-
tion approximation, which yields relatively simple mathematical models for a number
of basic statistical quantities involving the wave field.

The experimental and theoretical results presented in this thesis are based on the
Rytov method, strong fluctuation theory is not consider here. Throughout this thesis,
we introduce the globally concept of turbulence, focusing in atmospheric turbulence.
Diverse experiments have been carried out, for instance, the propagation of two parallel
thin beam under geometrical optics condition for the study of the optical turbulence
parameters—the same optical configuration was used to investigate the best sampling
rate for optical turbulence. Furthermore, we measure evapotranspiration by remote
sensing, in which we heed the fluctuations of the refractive index through the intensities
of the turbulence. Finally, some experiences in which consider new transmitters are also
developed, such as flipped mode and supercontinuum, showing a experimental reduction
on the irradiance fluctuations induced by the turbulence. These beams have a high
performance as a transmitter of information in optical communications.
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Chapter 1

Laser Beam Propagation through

Turbulent Media

Atmospheric turbulence has received most of the attention in the last years, for it

covers a wide range of natural and engineering settings, especially today, its study is

applied for answer a wide variety of research questions in climate science. This study

is developed from the passive scalar fields point of view, on account of the nature of

the temperature. The turbulent refractive index also belongs to this class; this is not a

novelty (Tatarsk̆ı, 1961), due to the temperature fluctuations are proportional to those

of index.

Our interest in lightwave propagation through turbulent media must start here

then. That is, we have to comprehend the media before attempt a description of the

propagation itself. In the forthcoming sections we will have an overview of atmospheric

turbulence as it pertains to velocity fluctuations, temperature fluctuations, and index of

refraction fluctuations. Furthermore, the primary objectives in this chapter are: intro-

ducing various models of the power spectrum for optical turbulence that are commonly

used, a review to the stochastic Helmholtz equation as the governing partial differential

equation for a scalar field of an optical wave propagating through a random media, to-

gether with the classical methods to solving the Helmholtz equation, e.g, the Extended

Huygens-Fresnel principle, as well as Born and Rytov perturbation methods to predict

all relevant statistical parameters under weak turbulence condition.

Above we have, without more precisions, referred to the atmospheric turbulence.
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From now on, all our discussions will be targeting the atmosphere or experiments that

resemble it. Of course, this section is intent to explain what ‘turbulence’ is.

1.1 Turbulence

1.1.1 Kolmogorov Theory

Considering the atmosphere as a viscous fluid, two states of motion are differenti-

ate—laminar and turbulent. The distinction between these states lies in the fact that

mixing does not occur in laminar flow for which the velocity flow characteristics are

uniform or change in some regular fashion. In turbulent flow, the velocity field loses

its uniform characteristics due to dynamic mixing and acquires random subflows called

optical turbules or turbulent eddies.

As it is well known fluids are governed by the Navier-Stokes equation:

∂

∂t
v+ (v · ∇)v− ν △v =

1

ρ
(F−∇p) , (1.1)

v(r, t) : R3 × R+ → R
3 is the velocity field, while ν is the kinematic viscosity of the

fluid (with dimensions [ν] = L2/T ), ρ the density, p the pressure and F the external

force. It is worth noting that this equation is scale invariant. So it can be turned into

the following adimensional equation,

∂

∂t̃
ṽ+ (ṽ · ∇̃)ṽ−

(ντ
l2

)
△̃ṽ =

1

ρ̃

(
F̃− ∇̃p̃

)
, (1.2)

with l and τ the characteristic length and time of the system. The constant multiplying

the first term at the right-hand side of the latter equation introduces the Reynolds

number,

Re(l) =
vl l

ν
, (1.3)

vl is the velocity change on the scale length l. The Reynolds number is a scale depen-

dent quantity, and its magnitude measures the flow regime: it compares the non-linear

advection term (v · ∇)v against the dissipation −ν △v. While low Reynolds num-

bers, Re(l) ≪ 1, correspond to regular and laminar flows and intermediate numbers,

1 . Re(l) . 102, exhibit complex patterns, higher Reynolds numbers, Re(l) & 104,
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drive the flow to an apparent spatial disorder: parcels of fluids follow chaotic trajec-

tories. In particular, when the Reynolds number tends to infinity the flow exhibits

a fully developed turbulence. The non-linear advection is preponderant because the

dissipative term goes to zero. Close to the ground the characteristic scale size is l ∼ 2

m, characteristic wind speed is 1 to 5 m/s, and ν ∼ 0.15× 10−4 m2/s, leading to large

Reynolds numbers on the order Re(l) ∼ 105. In such cases the motion is considered

highly turbulent.

Turbulent motion of the atmosphere in the presence of moisture and temperature

gradients gives rise to disturbances in the atmosphere’s refractive index in the form

of turbulent eddies. We define optical turbulence as the fluctuations in the index of

refraction resulting from small temperature fluctuations.

It was Kolmogorov (1941) who first realized that from dimensional and reliable

heuristic arguments that the subclass of all optical turbules could be explained. His

success was to notice that the results of this analysis become universal laws in the

statistical sense. The turbulent velocity field should be thought a stochastic variable

in the ensemble’s sense of the statistical mechanics. It is independent on how the

turbulence began: it does not matter the way the energy is injected. That is, the

statistics of the chosen force has no effect over the statistics of the turbulence.

Moreover, we will also assume that a fully developed turbulence is spatially isotropic,

homogeneous, and stationary: for any linear transformation and translation the system

looks the same.

1.1.2 Velocity fluctuations. The energy cascade in isotropic

turbulence

The classical theory of turbulence developed by Kolmogorov concerns random fluctu-

ations in both the magnitude and direction of the velocity field of a fluid. His theory

was presented in terms of a set of hypotheses, based heavily on physical insight. For

sufficiently large Reynolds numbers, it was hypothesized the existence of two scales,

the small-scale and the large-scale structure of turbulence. The small-scale structure of

turbulence is statistically homogeneous, isotropic, and independent of the large-scale

structure, and further, that the motion associated with the small-scale structure is

uniquely determined by the kinematic viscosity and the average rate of dissipation of
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the turbulent energy per unit mass of the fluid.

In this section, to understand the structure of atmospheric turbulence, we will treat

the turbulence development under the direct energy injection. The source of energy is

either wind shear or convection, and it is injected by the largest disturbances of size

L0—the integral scale, called the outer scale of turbulence—corresponding to the size

of the bath, and then it is transferred towards the smallest scales. Finally a minimum

scale l0—the microscale, called the inner scale of turbulence—is reached, there the

energy is dumped by the viscosity into heat (the magnitude of the inner scale oscilates

between 10−3m and 10−2m near the ground).

The range of scales l where the energy transfer happens without loss, the flux of

energy from scale to scale is constant, is called inertial range

l0 ≪ l ≪ L.

This process can be thought as a cascade of energy, called the energy cascade theory

of turbulence due to Richardson, see Fig. 1.1, that propagates through the scales via

a succession of disturbances (eddies which are portions of fluid with size l and velocity

vl).

  

 

L0

l0

Energy Injection
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Figure 1.1: Richardson’s energy cascade, where L0 denotes the outer scale and l0 is the
inner scale. Eddies between scale sizes l0 and L0 form the inertial subrange.
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Big eddies break up smaller ones under the influence of inertial forces. These eddies

are arranged in a hierarchy according to its size, from the bigger to the smallest. Eddies

of scale sizes smaller than L0 are assumed statistically homogeneous and isotropic,

whereas those equal to L0 are generally nonisotropic and their structure is not well

defined. The family of eddies bounded above by the outer scale L0 and below by the

inner scale l0 forms the inertial subrange. Scale sizes smaller than the inner scale l0

belong to the viscous dissipation range.

By using dimensional analysis, Kolmogorov showed that the longitudinal structure

function of wind velocity in the inertial range satisfies the universal 2/3 power law

DRR(R) = 〈(V1 − V2)
2〉 = C2

VR
2/3, l0 ≪ R ≪ L0, (1.4)

where V1, V2 represent velocity components at two points separated by distance R and

C2
V , the velocity structure constant (in units of m4/3/s2), is a measure of the total

amount of energy in the turbulence. The structure constant is related to the average

energy dissipation rate ε by

C2
V = 2ε2/3.

The velocity inner scale l0, is on the order of the Kolmogorov microscale η, i.e.

l0 ∼ η =

(
ν3

ε

)1/4

. (1.5)

This shows that strong turbulence has smaller inner scales and weak turbulence has

larger inner scales. The outer scale L0 is proportional to ε1/2, and unlike the inner

scale, the outer scale increases and decreases directly with the strength of turbulence.

The behavior of the longitudinal structure function at small-scale sizes (R ≪ l0)

varies with the square of separation distance R. This quadratic behavior is easily

inferred from a Taylor series expansion of the structure function at small distances. The

constant of proportionality is chosen so that the two power laws agree when R = l0,

which, when combined with Eq. (1.4), leads to the asymptotic forms

DRR(R) =

{
C2

V l
−4/3
0 R2, 0 6 R ≪ l0,

C2
VR

2/3, l0 ≪ R ≪ L0.
(1.6)
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Because the random field of velocity fluctuations is basically nonisotropic for scale sizes

larger than the outer scale L0, no general description of the structure function can be

predicted.

The 2/3 power law behavior of the structure function in the inertial range is equiv-

alent to the power spectrum in three dimensions given by

ΦRR(κ) = 0.066 ε2/3κ−11/3

= 0.033C2
V κ

−11/3, 1/L0 ≪ κ≪ 1/l0,
(1.7)

where κ is the spatial wave number, also called the scalar spatial frequency (in units

of rad/m). Observe that the power spectrum exhibits a −11/3 power law, which

corresponds to a one-dimensional spectrum with a −5/3 power law. The validity of the

power laws for the structure function and for the power spectrum have been established

over a wide range of experiments. However, a number of works suggest a modest change

in the power law behavior of the structure function, such small changes have little effect

on second order statistical quantities, but may be important in higher-order statistics.

1.1.3 Temperature fluctuations

The basic ideas of Kolmogorov concerning velocity fluctuations have also been applied

to passive scalar fields, such as potential temperature∗ (rather than absolute tempera-

ture). Temperature fluctuations are considered passive because they do not exchange

energy with the velocity turbulence, i. e., fluctuations do not affect the dynamic state

of the system. The inertial range for the temperature fluctuations is known as the

inertial-convective range, in which two scales are distinguished—the inner scale l0 and

outer scale L0. Also, the dissipation mechanism for temperature is molecular diffusion,

not viscosity as in the case of velocity fluctuations. By extending the Kolmogorov

theory of structure functions given above to statistically homogeneous and isotropic

temperature fluctuations, we are led to the same power law relations as found with

∗The potential temperature θ is related to absolute temperature T by θ = T + αah, where αa is
called the adiabatic rate and h is height above the Earth’s surface. For a small range of height, we
can neglect αa and treat T as a passive scalar as we do here.
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longitudinal velocity fluctuations, viz.,

DT (R) = 〈(T1 − T2)
2〉 =

{
C2

T l
−4/3
0 R2, 0 6 R ≪ l0,

C2
TR

2/3, l0 ≪ R ≪ L0,
(1.8)

where T1, T2 denote the temperature at two points separated by distance R and C2
T , the

temperature structure constant (in units of deg2/m2/3). The inner scale for temperature

is of the same order of magnitude as the inner scale for velocity fluctuations

l0 = 5.8

(
D3

ε

)1/4

, (1.9)

where D is the diffusivity of heat in air (in units of m2/s). Based on the 2/3 power

law behavior of the structure function in the inertial-convective range, the three-

dimensional of temperature fluctuations takes the −11/3 power-law form

ΦT (κ) =
1

4π
βχε1/3κ−11/3

= 0.033C2
Tκ

−11/3, 1/L0 ≪ κ≪ 1/l0,
(1.10)

where β is the Obukhov-Corrsin constant and χ is the rate of dissipation of mean-

squared temperature fluctuations.

1.1.4 Refractive index fluctuations

The index of refraction n, is one of the most significant parameters of the atmosphere

for optical wave propagation. It is (almost) directly proportional to temperature fluctu-

ations. At a point R in space and time t, the index of refraction can be mathematically

expressed by

n(R, t) = n0 + n1(R, t), (1.11)

where n0 = 〈n(R, t)〉 ∼= 1 is the mean value of the index of refraction and n1(R, t)

represents the random deviation of n(R, t) from its mean value; thus, 〈n1(R, t)〉 = 0.

Time variations in the refractive index are often suppressed in the treatment of op-

tical wave propagation. This means that the wave maintains a single frequency as it
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propagates. Finally, it is customary to express Eq. (1.31) in the form

n(R) = 1 + n1(R),

where n(R) has been normalized by its mean value n0. Fluctuations in the index

of refraction are related to corresponding temperature and pressure fluctuations. In

particular, the index of refraction for the atmosphere can be written for optical and IR

wavelengths according to (Owens, 1967; Andrews and Phillips, 1998)

n(R) = 1 + 77.6× 10−6(1 + 7.52× 10−3λ−2)
P (R)

T (R)

∼= 1 + 79× 10−6P (R)

T (R)
,

(1.12)

where λ is the optical wavelength, P is the pressure in millibars, and T is the tem-

perature in kelvin. The wavelength dependence is small for optical frequencies, so we

have set λ = 0.5 µm as typical in the equation above. Because pressure fluctuations

are usually negligible, we see that index of refraction fluctuations associated with the

visible and near-IR region of the spectrum are due primarily to random temperature

fluctuations. Moreover, humidity fluctuations only contribute in the far-IR region.

Changes in the optical signal due to absorption or scattering by molecules or aerosols

are not considered here.

The statistical description of the random field of turbulence-induced fluctuations

in the atmospheric refractive index is similar to that for the related random field of

turbulent velocities. In particular, an inertial subrange exists between the outer scale L0

and the inner scale l0. Thus, the properties of statistical homogeneity and isotropy are

inherited by the field of refractive-index fluctuations within the corresponding inertial

subrange.

Because of n1(R) properties, the covariance function of n(R) can be expressed as

Bn(R1,R2) ≡ Bn(R1,R1 +R) = 〈n1(R1)n1(R1 +R)〉,

which, if the random field of refractive-index fluctuations is statistically homogeneous,

is a function of R = R1 − R2. If the random field is both statistically homogeneous

and isotropic, the covariance function further reduces to a function of only the scalar
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distance R = |R1 −R2|2. For statistically homogeneous and isotropic turbulence, the

related structure function can be written as

Dn(R) = 2[Bn(0)−Bn(R)] =

{
C2

nl
−4/3
0 R2, 0 6 R ≪ l0,

C2
nR

2/3, l0 ≪ R ≪ L0,
(1.13)

where C2
n is the index of refraction structure constant (in units of m−2/3), sometimes

called the structure parameter. The inner scale is l0 = 7.4 η = 7.4 (ν3/ε)1/4. The

refractive-index structure constant C2
n is a measure of the strength of the fluctuations

of the refractive index, and its behavior at a point along the propagation path can be

deduced from the temperature structure function obtained from point measurements of

the temperature. In this case, values of C2
n are connected to the temperature structure

constant C2
T , through Eq. (1.12)

C2
n =

(
79× 10−6 P

T 2

)2

C2
T. (1.14)

Path-averaged values of C2
n and inner scale l0 can be obtained simultaneously by optical

measurements over a short path length, typically 150m, using an instrument called a

scintillometer—see (Barillé et al., 2016) and references therein.

Values of C2
n typically range from 10−14 m−2/3 or less for conditions of “weak tur-

bulence” and up to 10−12 m−2/3 or more when the turbulence is “strong”. Over short

time intervals at a fixed propagation distance and constant height above the ground it

may be reasonable to assume that C2
n is essentially constant. However, for vertical and

slant propagation paths the refractive index structure parameter varies as a function

of height above ground.

1.2 Spectra for the flucutations of the refractive in-

dex.

As before, we are dealing with an homogeneous and isotropic turbulence. The energy

is then constant throughout space. Thus, when we consider the transport of turbulent

energy, this will be in wavenumber, κ, rather than in the coordinate space. So, the
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spatial power spectral density of refractive index fluctuations, Φn(κ), is related to the

covariance function by the three-dimensional Fourier transform

Φn(κ) =
1

(2π)3

∫ ∫ ∫ ∞

−∞
Bn(R) exp[−i κ ·R] d3R

=
1

2π2κ

∫ ∞

0

Bn(R) sin(κR)R dR,

(1.15)

where spherical symmetry has been used to obtain the last integral and κ = |κ| is
the scalar wave number. By properties of the inverse Fourier transform we can obtain

Bn(R), and consequently, the structure function

Dn(R) = 2[Bn(0)−Bn(R)]

= 8π

∫ ∞

0

κ2Φn(κ)

[
1− sin(κR)

κR

]
dκ.

(1.16)

For optical wave propagation, refractive index fluctuations are caused almost ex-

clusively by small fluctuations in temperature. Therefore, the functional form of the

spatial power spectrum of refractive index fluctuations is the same as that for tem-

perature and, further, that temperature fluctuations obey the same spectral laws as

velocity fluctuations. Based on the inertial subrange and its 2/3 power law expression

for the structure function, in Eq. (1.13), it can be deduced that the associated power

spectral density for refractive index fluctuations satisfies

Φn(κ) = 0.033C2
nκ

−11/3, 1/L0 ≪ κ≪ 1/l0. (1.17)

The equation above it is the well known Obukhov-Kolmogorov (OK) spectrum.

Because of its relatively simple mathematical form, it is widely used in theoretical

calculations. Nonetheless, this spectrum model is theoretically valid only over the

inertial subrange 1/L0 ≪ κ ≪ 1/l0. To justify its use in certain calculations over all

wave numbers, it is ordinarily assumed that the outer scale is infinite and the inner

scale is negligibly small. However, Eq. (1.17) is acceptable, if and only if the integrals

that contain Φn(κ) are convergent.

Other spectral models have been proposed for making calculations when scale ef-

fects cannot be ignored. For purposes of mathematical convenience, it is suggested



1.2 Spectra for the flucutations of the refractive index. 11

a Gaussian function that essentially truncates the spectrum at high wave numbers,

obtaining (Tatarsk̆ı, 1961; Andrews and Phillips, 1998):

Φn(κ) = 0.033C2
nκ

−11/3 exp

(
− κ2

κ2m

)
, κ≪ 1/L0, κm = 5.92/l0. (1.18)

This spectrum is widely called the Tatarsk̆ı spectrum. Like the Kolmogorov spectrum,

the Tatarsk̆ı spectrum has a singularity at κ = 0 or L0 → ∞. This means, that the

structure function Dn(R) can be calculated but the covariance function Bn(R) cannot.

Although atmospheric turbulence is almost always locally homogeneous and isotropic,

the spatial power spectrum is isotropic only in the inertial subrange or dissipation

range for which κ > 1/L0.

There is a third spectrum which allows wave numbers in the input range κ < 1/L0,

i. e., κ→ 0:

Φn(κ) =
0.033C2

n

(κ2 + κ20)
−11/6

, 0 ≤ κ≪ 1/l0, κ0 = 2π/L0. (1.19)

The spectrum above is called von Kármán†. Finally, modifications of the Tatarsk̆ı

and von Kármán spectrum let that the turbulence can be modeled as if it were sta-

tistically homogeneous and isotropic over all wave numbers. This spectrum is named

modified von Kármán spectrum, and is given by:

Φn(κ) =
0.033C2

n

(κ2 + κ20)
−11/6

exp

(
− κ2

κ2m

)
, 0 ≤ κ <∞. (1.20)

Both spectra are reduced to the Kolmogorov spectrum in the inertial subrange. These

models are based in mathematical convenience and they are widely used.

Another spectrum model with outer scale parameter is the exponential spectrum

Φn(κ) = 0.033C2
nκ

−11/3

[
1− exp

(
− κ2

κ20

)]
, 0 ≤ κ≪ 1/l0. (1.21)

Here κ0 is related to outer scale in general by κ0 = C0/L0, where the scaling constant

†Due to the outer scale is not well defined, the numerator can change. Therefor, we can find: 1,
4π up to 8π (Andrews and Phillips, 1998)
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C0 is chosen differently depending on the application.

However, from the experimental data appear the non-Kolmogorov (non-K) turbu-

lence. Non-K turbulence is the name given for all kind of turbulences which do not

present the classical behavior κ−11/3 in the inertial range.‡ Furthermore, it is considered

non-K turbulence those ones where its structure function does not fulfill the behavior

r2/3. Therefore, there are spectra which feature a physical background, e.g., modified

atmospheric—it is an spectrum defined for all wave numbers, 0 ≤ κ < ∞. More-

over, there is a generalized (non-K ) von Kármán spectrum in function of the Hurst

parameter, introduced by Toselli et al. (2007)

Φn(κ) =
sin(πH)Γ(2H + 2)

4π2
C2

n

exp [−κ2/κ2m]
(κ2 + κ20)

H+3/2
, 0 < H 6 1/3. (1.22)

Nowadays, there is a generalized spectrum for any kind of turbulence OK or not

called the quasi-wavelet spectra (Pérez and Funes, 2015).

1.3 Random fields and atmospheric temporal

statistics

An electromagnetic wave which propagates through the atmosphere is identified as a

random field or stochastic field. It is the spatial variation in the complex random field

that concerns us most in our applications involving optical wave propagation through a

random medium. For that reason, we will suppress the time dependency of the random

field in our subsequent treatment.

The statistical averages of the random field discussed in this chapter are called

ensemble averages, which are connected with temporal averages. The bond between

the two types of statistical averaging in our physical model of the atmosphere, is given

by the so-called frozen turbulence hypothesis of Taylor. This hypothesis says that

temporal variations of meteorological quantities at a point are produced by advection

of these quantities by the mean wind speed flow and not by changes in the quantities

themselves. Thus, with knowledge of the mean wind speed, we can directly convert

‡Here, non-Kolmogorov turbulence is referred exclusively to the modification of the exponents in
the spectrum and not another phenomenons, such as loss of Gaussianity and frozen turbulence.
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from spatial statistics to temporal statistics.

We note that in the atmosphere there are essentially two time scales of concern;

one that is due to motion of the atmosphere across the path of observation and the

other resulting from dynamics of the turbulent eddies. The first time scale, that due to

advection, can be estimated by L0/V⊥, where L0 is the outer scale of turbulence and V⊥

is the mean wind speed transverse to the observation path. This time scale is typically

on the order of 1 s. The second time scale, associated with the eddy turnover time, is

typically on the order of 10 s. Because the second time scale is much slower than the

first, it can ordinarily be neglected in comparison with the mean wind flow. Hence,

under the Taylor frozen turbulence hypothesis, turbulent eddies are treated as frozen

in space and moved across the observation path by the mean wind speed component.

However, Taylor’s hypothesis fails when V⊥ is considerably less than the magnitude of

turbulent fluctuations in wind velocity, such as occurs when the mean wind speed is

parallel/near parallel to the line of sight.

1.4 Free space propagation of optical waves

Let us denote the electromagnetic field by u(R, t), which is a function of R = (x, y, z)

and time t that satisfies the wave equation

∇2u =
1

c2
∂2u

∂t2
, (1.23)

where ∇2 is the Laplacian and c represents the speed of the propagating wave in the

medium, for our study it corresponds to the speed of light. In this chapter, we look

for solutions where the time variations in the field are sinusoidal, usually called a

monochromatic wave, this is u(R, t) = U0(R)e−iωt; where ω is the angular frequency

and U0(R) is the complex amplitude of the wave. The substitution of this solution

form into the wave equation leads to the time-independent reduced wave equation, or

Helmholtz equation

∇2U0 + k2U0 = 0, (1.24)

where k is the optical wave number related to the optical wavelength λ by

k = 2π/λ = ω/c.
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The classical approaches to solve the Helmholtz equation are: paraxial approxima-

tion, extended Huygens Fresnel principle, and Feynman path integral, the last one is

not consider here; see Andrews and Phillips (1998) and Charnotskii (2015).

1.4.1 Paraxial wave equation

We can further reduce the Helmholtz equation to what is called the paraxial wave

equation. Under the paraxial approximation is based on the notion that the propaga-

tion distance for an optical wave along the z-axis is much greater than the transverse

spreading of the wave. From which we obtain the paraxial wave equation

1

r

∂

∂r

(
r
∂V

∂r

)
+ 2ik

∂V

∂z
= 0. (1.25)

where we replaced V (r, z) = U0(r, z)e
−ikz assuming cylindrical symmetry. The slowly

varying field envelope is denoted by V (r, z) and e−ikz depicts the fast oscillating phasor.

There are basically two methods of solution of the paraxial wave equation, one called

the direct method and the other relying on the classical Huygens-Fresnel principle, also

called Huygens-Fresnel integral (Andrews and Phillips, 1998).

1.4.2 Extended Huygens–Fresnel principle

The Extended Huygens-Fresnel principle provides a method of analysis for the Helmholtz

equation. This principle is the most common technique used in theoretical studies of

the optical propagation, including turbulence. Henceforth, the complex amplitude at

propagation distance z from the source will be represented by the Huygens-Fresnel

integral

U0(r, z) = −2ik

∫ ∫ ∞

−∞
G(s, r; z) U0(s, 0) d

2s, (1.26)

where U0(s, z) is the optical wave at the source plane and G(s, r; z) is the free-space

Green’s function. In general, the free-space Green’s function is a spherical wave which,

under the paraxial approximation,

G(s, r; z) =
eik|R−S|

4π|R− S| ≃
1

4πz
exp

[
ikz +

ik

2z
|s− r|2

]
. (1.27)
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therefore,

U0(r, z) ≃ − ik

2πz
exp[ikz]

∫ ∫ ∞

−∞
U0(s, 0) exp

[
ik

2z
|s− r|2

]
d2s. (1.28)

this result will be fundamental in the following chapters.

1.5 Stochastic wave equation

Optical wave propagation in an unbounded continuous medium with smoothly varying

stochastic refractive index; is governed by a differential equation with random coeffi-

cients which is called stochastic wave equation

∇2E+ k2n2(R)E+ 2∇[E · ∇ log n(R)] = 0, (1.29)

we are assuming that time variations in the refractive index are sufficiently slow that a

quasi steady-state approach can be used, which permits us to treat n(R) as a function

of position only.

The stochastic wave equation can be reduced by imposing a simple set of fundamen-

tal assumptions on the propagating wave. Backscattering and depolarization effects

are neglected, because the wavelength for optical radiation is much smaller than the

inner scale of turbulence. As a further consequence, the term relating to the change

in polarization of the wave as it propagates is negligible. By dropping this term, Eq.

(1.29) simplifies to

∇2E+ k2n2(R)E = 0.

If we let U(R) denotes one of the scalar components that is transverse to the direction

of propagation along the positive z-axis, the approximate stochastic wave equation is

replaced by the scalar stochastic Helmholtz equation

∇2U(R) + k2n2(R)U(R) = 0. (1.30)

Then again, we assume that the refractive index is delta correlated in the direc-

tion of propagation. This leaves both, the well known Markov approximation in the



1.5 Stochastic wave equation 16

statistically homogeneous covariance function and the refractive index expressed as:

n(R) = n0 + n1(R), (1.31)

where n0 = 〈n(R)〉 ∼= 1, and n1(R) is a small random quantity with mean value zero,

thus 〈n1(R)〉 = 0.

Even with the above simplifications, Eq. (1.30) has proven difficult to solve. His-

torically, the first approach to solving the problem was based on the method of Green’s

function, reducing it to an equivalent integral equation. Some more fruitful early at-

tempts to solve scalar stochastic Helmholtz equation were based on the geometrical

optics method (GOM), which ignores diffraction effects, and on two perturbation the-

ories widely known as the Born and Rytov approximation. Both of these perturbation

theories are restricted to regimes of weak irradiance fluctuations.

To solve Eq. (1.30) under small random fluctuations of the index of refraction, we

first write its square as

n2(R) = [n0 + n1(R)]2 ≃ 1 + 2n1(R), |n1(R)| ≪ 1. (1.32)

Then, the optical field can be expressed as sum of terms

U(R) = U0(R) + U1(R) + U2(R) + . . . , (1.33)

U0(R) denotes the unperturbed portion of the field in the absence of turbulence and

the remaining terms represent perturbations caused by random inhomogeneities. It

is generally assumed that |U2(R)| ≪ |U1(R)| ≪ |U0(R)|. The Born approximation

method reduces the Eq. (1.30) to a system of differential equations with constant

coefficients. The procedure we use is to substitute Eq. (1.32) and Eq. (1.33) into Eq.

(1.30) and then equate term of the same order, thus

∇2U0 + k2U0 = 0, (1.34)

∇2U1 + k2U1 = −2k2n1(R)U0(R), (1.35)

∇2U2 + k2U2 = −2k2n1(R)U1(R), (1.36)

The solution of the homogeneous Eq. (1.34), is simply the unperturbed field U0(R)
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studied in Sec. 1.4. Each of the nonhomogeneous equations can be solved by the

method of Green’s function.

The solution of Eq. (1.35) can be expressed in the integral form

U1(R) =

∫ ∫ ∫

V

G(S,R)[2k2n1(S)U0(S)]d
3S (1.37)

where U0(R) is known and G(S,R) ≡ G(R,S) is the Green’s function. From the

conditions proposed in 1.5, and to use the Eq. (1.27) at 1.4.2, the first-order perturbation

takes the specific form

U1(r, L) =
k2

2π

∫ L

0

dz

∫ ∫ ∞

−∞
d2s exp

[
ik(L− z) +

ik|s− r|2
2(L− z)

]
U0(s, z)

n1(s, z)

L− z
. (1.38)

Because 〈n1(s, z)〉 = 0 by definition, it follows that the ensemble average of the first-

order Born approximation also vanishes, i.e., 〈U1(r, L)〉 = 0. Next, recursively the

mth-order perturbation term can be expressed as

Um(r, L) =
k2

2π

∫ L

0

dz

∫ ∫ ∞

−∞
d2s exp

[
ik(L− z) +

ik|s− r|2
2(L− z)

]
Um−1(s, z)

n1(s, z)

L− z
.

(1.39)

where m = 1, 2, 3, . . . .

A different perturbational approach to solving Eq. (1.30), is called the Rytov ap-

proximation. Restricted to weak fluctuation conditions, the Rytov method consists of

writing the field of the electromagnetic wave as

U(R) ≡ U(r, L) = U0(r, L) exp[ψ(r, L)], (1.40)

where ψ is a complex phase perturbation due to turbulence that takes the form

ψ(r, L) = ψ1(r, L) + ψ2(r, L) + . . . . (1.41)

ψ1(r, L) and ψ2(r, L) represent the first-order and second-order complex phase pertur-

bations, respectively. Straightforward, we can relate these perturbation terms directly

to the Born perturbations already calculated. To do so, it is convenient to introduce
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the normalized Born perturbations defined by

Φm(r, L) =
Um(r, L)

U0(r, L)
, m = 1, 2, 3, . . . . (1.42)

By equating the first-order Rytov and first-order Born perturbations according to

U0(r, L) exp[ψ1(r, L)] = U0(r, L) + U1(r, L)

= U0(r, L)[1 + Φ1(r, L)]
(1.43)

the perturbations at first-order are equal under

ψ1(r, L) = ln[1 + Φ1(r, L)] ∼= Φ1(r, L), |Φ1(r, L)| ≪ 1 (1.44)

therefore, the normalized perturbation is given by

Φ1(r, L) =
U1(r, L)

U0(r, L)

=
k2

2π

∫ L

0

dz

∫ ∫ ∞

−∞
d2s exp

[
ik(L− z) +

ik|s− r|2
2(L− z)

]
U0(s, z)

U0(r, L)

n1(s, z)

(L− z)
.

(1.45)

As before, recursively, the integral representation for the second-order of the normalized

Born perturbation, is obtained from Eq. (1.39), thus

Φ2(r, L) =
U2(r, L)

U0(r, L)

=
k2

2π

∫ L

0

dz

∫ ∫ ∞

−∞
d2s exp

[
ik(L− z) +

ik|s− r|2
2(L− z)

]
U0(s, z)

U0(r, L)

Φ1(s, z)n1(s, z)

L− z
.

(1.46)

by equating the Born and Rytov perturbations through second-order terms, we see

that

U0(r, L) exp[ψ1(r, L) + ψ2(r, L)] = U0(r, L)[1 + Φ1(r, L) + Φ2(r, L)]. (1.47)

if besides we assume |Φ2(r, L)| ≪ 1 and from Eq. (1.44) we can writing the equality of
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perturbations at second-order

ψ2(r, L) = Φ2(r, L)−
1

2
Φ2

1(r, L). (1.48)

The first-order perturbation is sufficient for calculating several of the statistical

quantities of interest, such as the log-amplitude variance, phase variance, intensity

and phase correlation functions, and the wave structure function. However, to obtain

any of the statistical moments of the optical field from the Rytov theory, including the

mean value 〈U(r, L)〉, it is necessary to incorporate the second-order perturbation ψ2 in

addition to the first-order perturbation ψ1. Hence, both Rytov perturbation terms will

play a major role in our later calculations involving the second-order and fourth-order

moments of the field.

The first-order spectral respresentation is accomplished in part by writing the index-

ofrefraction fluctuation in the form of a two-dimensional Riemann-Stieltjes integral

(Tatarsk̆ı, 1971, Chp. 1, Sec. 4).

n1(s, L) =

∫ ∫ ∞

−∞
exp[iκ · s] dν(κ, z) (1.49)

where dν(κ, z) is the random amplitude of the refractive-index fluctuations and κ =

(κx, κy, 0) is the three dimensional wave vector with κz = 0.

For the case of particular interest to us, the unperturbed field U0(r, L) at propaga-

tion distance L is described by the Gaussian-beam wave

U0 (r, z) = (Θ− iΛ) exp

[
ikz +

ik

2z

(
Θ+ iΛ

)
‖r‖2

]
(1.50)

where Θ = 1−Θ, Θ− iΛ = 1/(Θ0 + iΛ0), with

Θ0 = 1− z

F0

, and Λ0 =
2z

kW 2
0

(1.51)

the curvature and Fresnel parameters, respectively. Replacing Eqs. (1.49) and (4.5)
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into Eq. (1.45), we get the first-order spectral representation

ψ1(r, L) = Φ1(r, L) =

= ik

∫ L

0

dz

∫ ∫ ∞

−∞
dν(κ, z) exp

[
iγκ · r− iκ2γ

2k
(L− z)

]
.

(1.52)

where κ = |κ| and γ = γ(z) is the complex path amplitude weighting parameter defined

by

γ =
Θ0(z) + iΛ0(z)

Θ0(L) + iΛ0(L)
=

1 + iα0z

1 + iα0L
=
p(z)

p(L)
, (1.53)

α0 =
2

kW 2
0

+ i
1

F0

. (1.54)

W0 and F0 are respectively the effective beam radius and radius of curvature at the

input or transmitter plane—see Andrews and Phillips (1998, Sec. 5.4.1) for details.

Under the same procedure, we begin by inserting Eqs. (1.49) and (4.5), and Eq. (1.52);

into Eq. (1.46). On doing so, we are led to the second-order spectral representation for

the normalized second order Born perturbation given by

Φ2(r, L) = ψ2(r, L) +
1

2
ψ2
1(r, L) =

= −k2
∫ L

0

dz

∫ z

0

dz′
∫ ∫ ∞

−∞

∫ ∫ ∞

−∞
dν(κ, z)dν(κ′, z′)

× exp

[
iγ(κ+ γ′κ′) · r− iγ|κ+ γ′κ′|2

2k
(L− z)− iγ′κ′2

2k
(z − z′)

]
.

(1.55)

where γ′ = (1 + iα0z
′)/(1 + iα0z).

Before to defining the statistical moments, we need to introduce the strength of

turbulence and how it is classified.

1.5.1 Weak and strong fluctuation conditions

Theoretical studies of optical wave propagation are traditionally classified as belonging

to either weak, moderate or strong fluctuation theories. When using the Kolmogorov

spectrum—see Sec. 1.2, in the study of plane wave that has propagated over a path of

length L, represented by U0(r, L) = A0 exp(iϕ0 + ikL)—with amplitude A0, phase ϕ0,
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and optical wave number denoted by k. It is customary to distinguish between these

cases by values of Rytov variance

σ2
R = 1.23 C2

n k
7/6 L7/6, (1.56)

where C2
n is the refractive index structure parameter. Fluctuations are classified as

follows:

σ2
R =





< 1 weak

≃ 1 moderate

> 1 strong

For a Gaussian-beam wave and arbitrary refractive-index spectral model, weak

fluctuations are also described by

q < 1 and qΛ < 1

where the parameter q = L/kρ2pl and ρpl is the plane wave spatial coherence radius—

see Andrews and Phillips (1998, Sec. 6.4.1) for details. The diffraction parameter is

denoted by Λ = 2L/kW 2 with W is the free space beam radius at the receiver.

1.5.2 Statistical moments

Optical wave propagation through a random medium characterized by small fluctua-

tions in the refractive index, cause spreading of the beam beyond that due to pure

diffraction, random wandering of the instantaneous beam center, loss of spatial coher-

ence, and random fluctuations in the irradiance and phase. Scale sizes larger than

the beam diameter cause beam wander, whereas scale sizes on the order of the first

Fresnel zone are the primary cause of irradiance fluctuations. These detrimental effects

are embedded in the behavior of the beam throughout the turbulence. Knowledge of

the behavior of an optical wave in turbulence is important in optical communications,

laser radar, imaging, adaptive optics, target designation, ranging, and remote sensing,

among other areas. The beam behavior is described by the statistical moments.

Throughout this thesis, ψ is considered as a Gaussian random variable, and it fulfills

〈exp[ψ(r, L)]〉 = exp

[
〈ψ(r, L)〉+ 1

2

(
〈ψ(r, L)2〉 − 〈ψ(r, L)〉2

)]
. (1.57)
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Therefore, the probability density function (PDF) for the complex phase perturbation

of the field due to random inhomogeneities, is completly defined by gaussian function

with parameters, such as the mean and the variance.

From previous results—see Sec. 1.5, we have that 〈ψ1(r, L)〉 = 〈Φ1(r, L)〉 = 0 as

a consequence of 〈n1(r, L)〉 = 0. Ensemble averages of second-order approximations,

however, do not vanish. Thus, if we let r1 and r2 denote two points in the transverse

plane at z = L, it is notationally expedient in our following work to define the three

second-order statistical moments:

E1(r, r) ≡ 〈Φ2(r, L)〉 = 〈ψ2(r, L)〉+
1

2
〈ψ2

1(r, L)〉, (1.58)

E2(r1, r2) ≡ 〈Φ1(r1, L)Φ
∗
1(r2, L)〉 = 〈ψ1(r1, L)ψ

∗
1(r2, L)〉, (1.59)

E3(r1, r2) ≡ 〈Φ1(r1, L)Φ1(r2, L)〉 = 〈ψ1(r1, L)ψ1(r2, L)〉. (1.60)

The asterisk in the previous equations, refers to the complex conjugate of the quantity.

1.6 Second and fourth moment

In the following sections we develop tractable expressions for various specializations

of the second-order field moment associated with line-of-sight propagation. Here we

derive our results using weak-fluctuation theory. Most analytic expressions obtained

in the next chapters (and sections) are based on a constant refractive-index structure

parameter C2
n, characteristic of a near-ground horizontal propagation path.

1.6.1 Angle-of-Arrival fluctuations

In most applications we characterize the received wave in terms of statistical moments

of the random optical field U(r, L), where L is the propagation distance along the

positive z-axis from the emitting aperture of the transmitter to the receiver and r is a

vector in the receiver plane transverse to the propagation axis. The mutual coherence

function (MCF) of the wave is defined by the second moment

Γ2(r1, r2, L) = 〈U(r1, L)U∗(r2, L)〉 = Γ0
2(r1, r2, L) exp[2E1(0, 0) + E2(r1, r2)] . (1.61)
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where r1 andr2 are observation points in the receiver plane and U∗(r, L) denotes the

complex conjugate field. Γ0
2(r1, r2, L) is the free-space MCF given by the unperturbed

fields—Γ0
2(r1, r2, L) = U0(r1, L)U

∗
0 (r2, L). For identical observation points, the MCF

determines the mean irradiance from which turbulence-induced beam spread is de-

duced. Also obtained from the MCF is the modulus of the complex degree of coherence

that describes the loss of spatial coherence of an initially coherent wave.

As is reviewed in Andrews and Phillips (1998, Sec. 6.5), further from the MCF can

be calculated the wave structure function (WSF)—D(r1, r2, L) = Re[△(r1, r2, L)]—Re

denotes the real part. The WSF is actually a sum of the log-amplitude structure func-

tion—Dχ(r1, r2, L) and the phase structure function—DS(r1, r2, L), the latter being

the dominant component. These statistical quantities have important consequences on

beam wave propagation applications such as imaging, lasercom, laser radar, etc.

Angle-of-arrival fluctuations of an optical wave in the plane of the receiver aper-

ture are associated with image jitter (dancing) in the focal plane of an imaging system.

Fluctuations in the angle of arrival βa can be described in terms of the “phase structure

function”. To understand this, let ∆S denote the total phase shift across a collecting

lens of diameter 2WG and ∆l the corresponding optical path difference. These quanti-

ties are related by k∆l = ∆S. Under geometrical optics condition—sin(βa) ≃ βa and

further assuming the mean 〈βa〉 = 0, the variance of the AoA remains,

〈β2
a〉 =

DS(2WG, L)

(2kWG)2
(1.62)

where DS(2WG, L) is the phase structure function. In the case of a spherical wave and

Kolmogorov spectrum, Eq. (1.62) reduces to

〈β2
a〉 =

{
1.09C2

nLl
−1/3
0

[
1− 0.72(κ0l0)

1/3
]
, 2WG ≪ l0,

1.09C2
nL(2WG)

−1/3
[
1− 0.72(2κ0WG)

1/3
]
, 2WG ≫ l0.

(1.63)

we have approximated the phase structure function by the WSF and included the

effects of both inner and outer scale. Notice that Eq. (1.63) is independent of optical

wavelength—however, this is true only if the Fresnel zone is sufficiently small compared

with the receiver aperture diameter, i.e;
√
L/k ≫ 2WG.

Although the mean angle-of-arrival, or tilt angle, is zero, it is useful to introduce
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the notion of the root-mean-square (rms) angle-of-arrival, defined by
√
〈β2

a〉. It is wise
introducing the rms image displacement, which is defined as the rms AoA multiplied

by the focal length f of the collecting lens of the receiver. This yields, for Eq. (1.63)

rms image jitter =





f

√
1.09C2

nLl
−1/3
0 [1− 0.72(κ0l0)1/3], 2WG ≪ l0,

f
√
1.09C2

nL(2WG)−1/3 [1− 0.72(2κ0WG)1/3], 2WG ≫ l0.

(1.64)

1.6.2 Beam wander

The propagation of a laser beam in a free-space produces angular spread in the far-

field due to natural diffraction, of the order of λ/D, where D is the beam diameter. In

presence of optical turbulence, however, a finite optical beam will experience random

deflections as it propagates, leading further spreading of the beam by large-scale inho-

mogeneity of the atmosphere, therefore the “hot spot” or instantaneous center of the

beam will be randomly displaced in the receiver plane, producing what is commonly

called beam wander.

Beam wander at the receiver plane can be modeled as a random tilt angle arising at

the transmitter plane, similar to angle-of-arrival fluctuations of a reciprocal propagating

wave with the receiver diameter replaced by the transmitter beam diameter as in

Andrews and Phillips (1998, Sec. 6.6). Moreover, beam wandering is mostly caused

by a large-scale turbulence near the transmitter where the outer scale of turbulence

forms an upper bound on the inhomogeneity size. For this reason, the analysis often

follows the Geometrical Optics (G.O) condition, where natural diffraction effects are

neglected.

This phenomenon can be characterized statistically by the variance of the hot spot

displacement along an axis or by the variance of the magnitude of the hot spot displace-

ment. To develop an analytic expression for the variance of beam wander fluctuations,

we will use the long-term spot size

WLT ≡ W
√
1 + T (1.65)

where T is the on-axis mean irradiance. This term arises from the effects of turbulent
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cells or ”eddies” of all scale sizes, it can be split into different terms

WLT = W 2(1 + T ) = W 2 +W 2 TSS +W 2 TLS (1.66)

where we have partitioned the term T = TSS + TLS into a sum of small-scale (SS)

and large-scale (LS) contributions. Doing so, we can interpret the first term as that

due pure diffraction spreading W , the first and middle terms as the defining ”beam

breathing” and the short-term beam radius W 2
ST = W 2 TSS, and the last term as that

describing ”beam wander” or the variance of the instantaneous center of beam in the

receiver plane 〈r2c 〉 = W 2 TLS. Because it arises from large-scale turbulence, the last

term is model by the expression

〈r2c〉 = W 2 TLS =

= 4π2k2W 2

∫ L

0

∫ ∞

0

κ Φn(κ)HLS(κ, z)

(
1− exp

[
−κ

2L

k
Λξ2
])

dκ dz (1.67)

where ξ = 1−z/L and we have introduced the large-scale filter function—see Andrews

and Phillips (1998, Chp. 6) and references therein,

HLS(κ, z) = exp
[
−κ2W 2(z)

]
= exp

[
−κ2W 2

0 [(1− z/F0)
2 + (2z/kW 2

0 )
2
]

(1.68)

where W0 and F0 are respectively the effective beam radius and radius of curvature at

the input or transmitter plane. W (z) is the free space beam radius at variable distance

z (0 < z < L) from the transmitter. The Gaussian filter function—Eq. (1.68) only

permits random inhomogeneities equal to the beam size and larger to contribute to

beam wander, thereby eliminating small-scale effects that lead to the second term in

Eq. (1.66).

To emphasize the refractive nature of beam wander, we drop the diffractive term

in Eq. (1.68) and use the geometrical optics approximation

1− exp

[
−κ

2L

k
Λξ2
]
≃ ΛLκ2ξ2

k
, Lκ2/k ≪ 1 (1.69)

Some special cases we identify here, e.g. for an infinite outer scale—κ0 = 0, and for
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the exponential spectrum model—see Sec. 1.2, the integral in Eq. (1.67) yields

〈r2c〉 = 2.42C2
nL

3W
−1/3
0 2F1

(
−1

3
, 1; 4; 1− |Θ0|

)
(1.70)

Eq. (1.70) emphasizes the close connection between beam wander in the receiver plane

and the tilt angle variance 〈β2
a〉 at the transmitter of a reciprocal propagating plane

wave—see Andrews and Phillips (2005, Eq. 83 at Sec. 6.5). The equation above is

for a collimated, divergent, and convergent beam. For collimated beam (Θ0 = 1) the

hypergeometric function in Eq. (1.70) is unity, and the expression is reduced to

〈r2c 〉 = 2.42C2
nL

3W
−1/3
0 (1.71)

from which we deduce 〈r2c〉 ≃ L2〈β2
a〉 by equating WG = W0—see Sec. 1.6.1. If f is

the focal length, the angle-of-arrival is recovered after divided by it—see Sec. 1.6.1.

Therefore, it is well known that at first approximation, the variance of the angle-of-

arrival fulfills the relation

σ2
AoA = 2.8375C2

nδhD
−1/3. (1.72)

where D = 2W0 is the diameter and δh is the thickness of the turbulent layer.

1.6.3 Scintillation index

Fluctuations in the irradiance of the field are described by the cross-coherence function

of the field or fourth-order moment

Γ4(r1, r2, r3, r4, L) = 〈U(r1, L)U∗(r2, L)U(r3, L)U
∗(r4, L)〉 =

= Γ2(r1, r2, L)Γ2(r3, r4, L) exp[E2(r1, r4) + E2(r3, r2) + E3(r1, r3) + E∗
3(r2, r4)] .

(1.73)

where Γ(·) is the MCF and U∗(r, L) denotes the complex conjugate field. Specializa-

tions of the fourth moment lead to the second moment of irradiance that, along with

the mean irradiance, is used to define the scintillation index.

The irradiance fluctuations in the receiver plane resulting from optical turbulence
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are commonly described as scintillation, and they are estimated by the refractive index

structure parameter C2
n. Turbulent eddies with sizes at the scale of the order of the first

Fresnel zone are the primary cause of irradiance fluctuations. These fluctuations include

the temporal variation in the received irradiance, such as star twinkle, and spatial

variations within a receiver aperture, such as speckle. In the weak fluctuation regime,

it is natural to work with the log amplitude variance σ2
χ rather than the irradiance

variance itself σ2
I , because the logarithm of the amplitude of an optical wave is assumed

to follow a Gaussian statistical law in this regime.

The covariance function of irradiance at the same point in the space, is reduced to

the scintillation index (Andrews and Phillips, 1998, Chp. 8)

σ2
I (r, L) =

〈I2(r, L)〉
〈I(r, L)〉2 − 1 (1.74)

Eq. (1.74) is related to the log-amplitude variance, when the last one is sufficiently

small (σ2
χ ≪ 1)

σ2
I (r, L) ≃ 4σ2

χ = 2 Re[E2(r, r) + E3(r, r)] (1.75)

where E2(r, r) and E3(r, r) are the statistical moments defined in Sec. 1.5.2—Re de-

notes the real part. Therefore, we can write for a Gaussian beam

σ2
I (r, L) = 8π2k2L

∫ 1

0

∫ ∞

0

κ Φn(κ) exp

[
−κ

2L

k
Λξ2
]

× Re

{
I0(2Λrξκ)− exp

[
−ıκ

2L

k
ξ (1− (1−Θ) ξ)

]}
dξ dκ

(1.76)

the diffraction and refraction parameter are denoted by Λ and Θ, respectively—I0(·)
is the modified Bessel function of the first kind, k = 2π/λ with wavelength λ, and L

is the beam path length (m). Usually, for interpretation purpose, it is convenient to

express the scintillation index as a sum of radial and longitudinal components, leading

to σ2
I (r, L) = σ2

I,r(r, L)+σ
2
I,l(L). The quantity σ

2
I,r(r, L) is the radial component of the

scintillation index and describes physically the off-axis contribution to the fluctuations

of the intensity and σ2
I,l(L) is called the longitudinal component of the scintillation

index and corresponds to the on-axis scintillation index.

For the special case of a Kolmogorov spectrum—see Eq. (1.17) in Sec. 1.2, and in the
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limiting cases of a plane wave (Θ = 1, Λ = 0) and a spherical wave (Θ = Λ = 0), the

Eq. (1.76) is reduced, respectively, to the well-known results (Solignac, 2009; Andrews

and Phillips, 1998; Tatarsk̆ı, 1971, Chp. 3),

σ2
I,pl(L) = σ2

R = 1.23C2
nk

7/6L11/6 plane wave, (1.77)

σ2
I,sp(L) = 0.4 σ2

R = 0.5C2
nk

7/6L11/6 spherical wave. (1.78)

where σ2
R is the Rytov variance.



Chapter 2

Parameters of the Optical

Turbulence

Light-wave propagation through a turbulent medium has been investigated during over

forty years. In this chapter we are going develop a series of experiments to study and de-

termine several parameters of the turbulence, such as the inner and outer scale, through

the application of new procedures. Also, we introduce a technique for establishing the

best sampling rate for any type of optical turbulence without the requirement of a

theoretical model.

2.1 Differential Laser Tracking Motion Meter

(DLTMM)

Based in the studies developed by Consortini and O’Donnell (1991, 1993) we obtained

an insight for the new configuration. In particular, Consortini and O’Donnell (1991)

introduced one of the simplest and less expensive techniques available today, capable of

capturing several parameters of the optical turbulence. It is based in a Geometric Op-

tics (GO∗) model, developed by them, for the propagation of twin thin-beams through

a turbulent media; particularly, for their covariances. Experimental measurements of

these correlations allowed the determination of the scales of turbulence.

∗The geometrical optics approximation means that diffraction effects are negligible. It is generally
characterized by the limiting case in which wavelength λ → 0
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As a result of the fluctuating nature of the refractive index in a turbulent medium

any laser beam that propagates through it experiments deflections. These displace-

ments are always perpendicular to the initial unperturbed direction of propagation,

and arise from the beam phase fluctuations. This phenomenon is commonly known

as laser beam wandering because of the dancing the beam performs over a screen.

Since it is very sensitive to the turbulence nature, it has been used in different exper-

imental configurations to measure the characteristic scales and parameters related to

it (Masciadri and Vernin, 1997; Innocenti and Consortini, 2005; Pérez et al., 2012).

The implications of a non-Kolmogorov turbulence on the wandering statistics for

any propagation distance have been studied by Pérez and Funes (2012). Specifically,

they were most interested in short path propagation, and partially filled paths: condi-

tions frequently observed in the laboratory.

In this section we introduce both an improved experimental setup and refined

analyses techniques. A new version of the Differential Laser Tracking Motion Meter

(DLTMM) employs cross-polarized laser beams that allows us to inspect more carefully

distances in the range of the inner-scale, thus even superimposed beams can be dis-

criminated. Moreover, in this experimental setup the convective turbulence produced

by electrical heaters (see Section 2.1) previously used was superseded by a chamber

that replicates isotropic atmospheric turbulence—anisotropic turbulence is also repro-

ducible. Therefore, we are able to replicate the same state of the turbulent flow,

specified by Rytov variance, for every separation between beams through the course

of the experience. In this way, we are able to study the change in our Multi-fractal

Detrended Fluctuation Analysis (MFDFA) quantifiers with different strengths of the

turbulence, and their relation with better known optical quantities. The movements

of the two laser beams are recorded at 6 kHz; this apparent oversampling is crucial for

detecting the turbulence’s characteristics scales under improved MFDFA techniques.

The estimated characteristic scales and multi-fractal nature detected by this experi-

ment provides insight into the non-Gaussian nature of propagated light.

The purpose of this work is to experimentally check these results, and corroborate

that the simple covariances defined by the geometrical optics (GO) approximation are

insufficient to describe the state of turbulent media. New statistical quantifiers are

required to complete the classical methods: the MFDFA will provide insight in the

development state of the turbulence.
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Beam A polarized in z
Beam B polarized in x

Movable platform

Beam B is not reflected

Intensity A and B 100% originals

Optical turbulence

Beam B is not reflected

Beam A is not transmitted

Movable platform

Figure 2.1: Optical configuration. It is composed by two identical lasers polarized in
perpendicular directions to the propagation direction; and also, there are two movable
plataforms which change the distance of beam A with respect to beam B. Beam B is
fixed.

In Chile we have had a new task, it involves the improvement of a technique,

DLTMM. Fig. 2.1 (Pérez, 2010), is an optical configuration for DLTMM, used as a

robust device to determine many optical parameters related to atmospheric turbulence.

It consisted of two thin laser beams, each beam is perpendicular polarized to the

propagation distance—linearly polarized light is not affected by the turbulence. The

beam B is fixed whereas the platform in which beam A is placed remains movable,
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as well as the platform where the detector for beam A is positioned—its separations

can be modified. Every beam splitter are positioned with the Brewster’s angle to

avoid the polarized beam coming from laser A going into the detector B. The beams

propagate through convective air, then each random wandering was registered with

position detectors, sampled at 800 Hz.

The experiment above presents a lot of limitations, for example, it is prone to

mechanical vibrations and misalignments to name a few. However, one of the main

problems found have been the dimensions of the instrumental optics, e.g., the dis-

placement of the platform at the limit distance (zero), instruments at both emitter

and receptor collide between them—see figure 7. in Consortini and O’Donnell (1991).

Besides, we did not have two identical lasers. Those defects have not made possible to

carry out the experiment at that moment in Chile.

Thereafter, we were designated to build a new optical setup for DLTMM—a more

compact one, stable and efficient to averting the limitations previously mentioned. The

propagation of the beams was through an optical turbulence simulator.

2.1.1 Generator of turbulence

The turbulent media was created by a turbulator—see Fig. 2.2, a device introduced by

Keskin et al. (2006). A turbulator is a turbulence generator based in the dynamic mix-

ing of two air fluxes at different temperatures, the technique is statistically repeatable.

Figure 2.2: Sketch’s Turbulator.

Real optical turbulence only appears when a temperature gradient appears in a tur-
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bulence flux (i.e., air in turbulence motion). This can be achieved mixing two colliding

fluxes of air at different temperatures in a confined space: the turbulence chamber.

Two opposite tunnels produce turbulent air, with the same statistical properties, while

in one entrance the air is heated (hot intake) the other is at ambient temperature (cold

intake), the velocity of the fluxes is the same in both tunnels. In our device the optical

turbulence extending over a 37 cm channel is the product of the collision of two masses

of air pushed by identical fans through honeycombs placed opposite each other at the

sides of this chamber.

Any device that produces optical turbulence is characterized its refractive index

structure constant. There exists a basic and simple experiment that is capable of giving

such constant, method of angle-of-arrival (AoA) for instance. For the characterization

of the turbulator we use the method described in Section 1.6.1, and it is schematized

in Fig. 2.3.

Figure 2.3: AoA setup from Pérez (2010).

The spot wandering is measured, and the angle-of-arrival is calculated from Eq. (1.72)

at Sec. 1.6.2. In our laboratory we perform these tests as follows:

1. The velocity of the air flux is fixed, and at a given difference of temperature we

perform the AoA measuremente for different pupil sizes. The focal distance is

f = 450 mm, and the diameter range is between 1 and 10 cm.

2. With this focal distance the systems is very sensitive, we perform the focal point

spot wandering at 1000FPS.
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3. Then for each temperature difference we extrapolate the structure constant from

the log-log fitting of the angle-of-arrival formula.

After an laborious measurement and analysis, the following Fig. 2.4 shows the

(linear) relation between the structure constant and ∆T :

Figure 2.4: C2
n vs ∆T . Characterization of the turbulator. Figure from Pérez (2010).

The black line fit is without fixing the point ∆T = 0 to C2
n = 0, its equation is

C2
n(∆T ) = 3.038(±0.1835)× 10−10∆T + 4.036(±1.2380)× 10−9; R = 0.987, (2.1)

while the purple line is obtained fixing the origin: the slope is exactly the same. This

line, completely typifies our turbulator. This device produces turbulence with strength

given by the structure constant, C2
n, in the range 2.93–8.63× 10−9 m−2/3.

2.1.2 Experimental setup

For the new DLTMM setup we used two platforms, a heavier one for the emitter

(Thorlabs XT95 − 5000)—photo 2.5, with two bigger drop-on right angle carriages
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(Thorlabs XT95P2); and a lighter platform for the receptor (Throlabs XT66 − 500),

pictured below—photo 2.6, with a pair of rail carriages (Throlabs XT66P2/M). The

useful area for these is 48× 48 mm.

Figure 2.5: Platform XT95-5000. Figure 2.6: Plataform XT66-5000.

As part of the emitter platform a 35mW laser diode (λ = 635nm, DL5038-021,

Thorlabs TLD001 driver) is employed, and collimating optics is setup to maintain the

beam waist around 3mm along the propagation path; additionally, a λ/4 wave plate

turns it a circular polarised beam (CCP). As sketched in Fig. 2.7, this laser beam is

split by a 50/50 polarising cube beam splitter (PCBS), fixed to the platform. The two

departing beams now are cross-polarised. The reflected beam has two more reflections

(M1,M2) until exiting the emitter platform, while the transmitted beam reflects in a

pellicle beam splitter (MPBS), fixed to a moving platform on a rail system, exiting the

platform parallel to the first one. This system provides separations between the beams

ranging from 0 to 300 mm; ultimately, the maximum separation available is 100 mm

because of the limited size of the optical windows of the turbulator. Once the beams

output the turbulator, at the end of the propagation a second platform is setup to

measure the wandering of both beams simultaneously. Two position sensitive detectors,

with an area of 1cm2 (UDT SC-10 D) measure the centroid position of the impinging

laser beam—with relative accuracy of 2.5µm, so very small position deflections can be

measured. The first detector (D1) was mounted in a moving platform like the PBS

splitter, but the second detector (D2) was placed out of the beam trajectory, a fixed

pellicle beam splitter (FPBS) reflected the beam back to D2. With this setup we

avoided the physical constrains imposed by the size of the detectors; thus, allowing

us to measure simultaneously the wandering of the two beams separated by distances
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under 20 mm.
ˆ

d

Turbulator

LD

CCP

PCBS

M1

M2

MPBS

FPBS

D1

D2

P

P

A)

B)

Figure 2.7: The emitter platform produces two cross polarised beams running parallel
to each other as they pass through the turbulator. The laser diode (LD) beam is
collimated and pass trough a λ/4-wave plate (CCP) then the thin beam is split in two
cross-polarised beams: a beam reflecting in two mirrors (M1 and M2), and a second
on a movable pellicle beam splitter (MPBS). These two thin beams emerge parallel to
each other. A) for small distances the fixed pellicle beam splitter allow detection of
wandering for small separations of position detectors D1 and D2, the polarisers (P)
forbid position detection mixing. B) for separations over 20 mm both detectors receive
direct light from the emitter platform.

Finally, we have had to place the platforms over tripods. Henceforth, we designed

two mounts in AutoCad which were molded in Argentina by a milling machine. The

platforms look like in photos 2.8 and 2.9.
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Figure 2.8: Emitter platform. Figure 2.9: Receptor platform.

The experimental measurements were performed in controlled conditions: the tur-

bulent media was created by the turbulator—see Sec. 2.1.1.

For the experiment we chose the following set of 25 distances: 0, 1, 2, 3, 4, 5, 6, 7, 8, 18,

19, 20, 21, 22, 23, 24, 25, 30, 40, 50, 60, 70, 80, 90, and 100 millimetres. The total propa-

gation distance for the twin-beam is 1.29 m, but only 0.37 m are inside the turbulent

medium, thus the factor from the inactive air is p ≃ 0.71.

Both detectors were interfaced to a computer which allowed an acquisition rate of

6000 samples per second. Twenty five consecutive records of 60000 pairs of centroid

laser beam coordinates, a total of 300,000 data, were obtained for each separation dis-

tance between the two beams—each record was acquired in ∼ 50 s. The four coordi-

nates were stored in a hard disk, and the statistical analysis was performed afterwards.

Eight identical experiments were made at different turbulence strength, changing

temperature differential between the hot and cold air fluxes: 2.930 × 10−9(@40◦C),

4.830×10−9(@80◦C), 5.780×10−9(@100◦C), 6.731×10−9(@120◦C), 7.206×10−9(@130◦C),

7.681×10−9(@140◦C), 8.156×10−9(@150◦C) and 8.631×10−9(@160◦C)m−2/3. For each

intensity we collected the beam wandering data for each designated separation. Ad-

ditionally, we have performed complete acquisitions for each separation studied with

the hot source is off; thus, both mass of air just collide generating turbulence where

the perturbations to the refractive index are negligible. They can be considered as

background measurements that quantify the mechanical, electronic, and other noises

produced by this particular experimental arrangement.

The final setup is presented at the picture below 2.10.
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Figure 2.10: Optical configuration for twin beam propagation.

2.1.3 Twin beam covariance for generalized spectra for par-

tially filled paths

The model of Consortini and O’Donnell (1991, 1993) is devised to study thin beams

propagating in turbulence along large paths. This approximation is not suited to

analyse the small distances usually found in the laboratory. Moreover, it is unable

to model deviations from the OK theory. Our extension of their work is capable of

handling the situations we have found in our experiment. First note, that on- and

off-plane covariances can be reduced to adimensional forms separating the effects of

the different scales from the geometric constrains of the problem. Therefore, under the

non-Kolmogorov von Kármán (nKvK) model, the on- and off-plane covariance for two

beams propagating (partially) across a turbulent region—see Fig. 2.11
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Figure 2.11: Twin beam sketch. Two parallels thin beams propagating in a turbulent
media. The turbulent region is confined to the zone of length S, after that the beams
propagate in a region of length P without being deflected. Originally, the beams are
separated a distance d, and the arrival position with respect to the original trajectory
is given by (η0, ζ0) and (ηd, ζd). Figure from Pérez and Funes (2012).

and results Pérez and Funes (2012),

Bx(d) = 〈ηdη0〉 =

= L5/2
m

[∫ 1

0

g̃n(u, δ)

(
2

3
− u+

u3

3

)
du− p2

∫ 1

0

g̃n(u, δ)

(
u+

2

3
p

)
du

]
,

(2.2)

with p = P/L the fraction of inactive turbulence (taking a region of length P ) in

the propagation path of length L, Lm = κmL represents the adimensional propagation

distance, a function of κm = 2π/ℓ0 the inner-scale cut-off, and

g̃n(u, δ) =
sin(πH)Γ(2H + 2)

πκ2H+2
m

C2
n

∫ ∞

0

k exp (−k2)
(q2 + k2)H+3/2

[
k3/2J3/2

(
kLm

√
u2 + δ2

)

(u2 + δ2)3/4

]
dk

(2.3)

where δ = d/L is the separation between beams relative to the propagation distance,

the relative separation. Observe that the second term in Eq. (2.2) can be thought

as a correcting term function of p; moreover, when p is small its contribution to the
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covariance is negligible. On the other hand, the on-plane covariance is functionally

dependent of g̃n, so it can be defined from Eq. (2.2) and the covariance difference

∆(d) = Bx(d)−By(d) =

= δ2L7/2
m

[∫ 1

0

h̃n(u, δ)

(
2

3
− u+

u3

3

)
du− p2

∫ 1

0

h̃n(u, δ)

(
u+

2

3
p

)
du

]
, (2.4)

with

h̃n(u, δ) =
sin(πH)Γ(2H + 2)

πκ2H+2
m

C2
n

∫ ∞

0

k exp (−k2)
(q2 + k2)H+3/2

[
k5/2J5/2

(
kLm

√
u2 + δ2

)

(u2 + δ2)5/4

]
dk.

(2.5)

In both definitions, g̃n and h̃n, are obtained from the adimensional form of the non-

Kolmogorov von Kármán spectrum—see Eq. (1.22) at Sec. 1.2, the scale ratio q =

ℓ0/L0 controls the size of the inertial range, and the Hurst parameter H establishes

the degree of development of the turbulence, while C2
n quantifies the strength of the

turbulence—beware that the structure constant must have dimensions compatible with

the power spectrum of the inertial range. These covariances are analytically intractable

for propagation distances comparable with the beam separation; that is, δ = d/L≪ 1

for the conditions given in Consortini and O’Donnell (1991) be valid regardless of the

value of Lm and q. Pérez and Funes (2012) have presented a detailed treatment of this

property. In particular, they have found that separation for which the maximum of

∆(d) is reached behaves as

d = p(H)
ℓ0

cosh

[
m(H)

(
ℓ0
L0

)c(H)
] , (2.6)

where

p(H) = 7.645(±3.664)H2 + 1.907(±0.921)H + 3.470(±0.045),

c(H) = −0.5989(±0.599)H2 − 0.3902(±0.376)H + 0.6082(±0.029),

m(H) = 1.39(±1.000)H2 + 0.765(±0.361)H + 1.023(±0.026);

the changes in H accounts up to 25% in the determination of the inner-scale from the
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position of the maxima, for small values of q. Therefore, it is required some previous

knowledge of the scale-ratio (q) and Hurst exponent (H) for the determination of the

inner-scale from Eq. (2.6). On the other hand, the axis cut-off provides a more complex

relation: even the for the smallest values of variation on scale-ratio gives very different,

and non-linear, functions of Lm. Therefore, the axis-cut should be excluded as a valid

method for estimating the outer-scale.

2.1.4 The stochastic nature of the turbulent refractive index

fluctuations

Scale invariance and self-similarity for time series can be associated with a single type

of structure characterized by a single exponent, H, or by composition of several sub-

structures with certain local exponent, h. The former is called mono-fractal and the

latter multi-fractal. The statistical characteristics (correlations for instance) of these

series are dominated by these local exponents, being the first a special case of the latter.

In recent years, a widely adopted method used for the determination of the fractal

scaling properties and detection of long-range correlations in noisy and non-stationary

time series is the multifractal detrended fluctuation analysis (MFDFA)—It is a highly

robust and easy to implement technique. The local exponent is a continuous function of

the order s which is associated, roughly speaking, to the size of the fluctuations in the

original series. The value h at s = 2 is equal to the well-known Hurst exponent in the

case of stationary series. If the local exponent remains constant then we are observing

a mono-fractal; that is, all the scales have the same (statistical) self-similarity law.

Under the assumption that the refractive index perturbations due to the turbulence

are Gaussian. Using the classical definition given to wave-front phase, in weak regime,

it can be shown that index perturbations from a partially developed turbulence with

Hurst exponent H produce phase fluctuations with exponent equal to H + 1
2
—5/6

for the Kolmogorov case. This is the expected exponent controlling the time-series

obtained in each coordinate axis.
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2.1.5 Analysis of the measurements

After the data recollection the on- and off-plane covariances can be evaluated; neverthe-

less, without preparation, effects due either to electronic or mechanical noise notably

affect the results. As observed in Fig. 2.12, the covariances and their difference, ∆(d),

although similar to the theoretical curves, present unexpected behaviours: at the origin

d = 0 on- and off-plane covariances should match, there is a mismatch not attributable

to experimental error; then, for distances above 30 mm the asymptotic trend to zero

is notably slowed.
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Figure 2.12: Unfiltered covariances: (Top) the normalised on- (�) and off-plane (•)
covariances are displayed for the weakest and stronger turbulence available. (Bottom)
the covariance difference produced by unfiltered data, the deviations from the theo-
retical model are so strong that fits are unsatisfactory—particularly, for temperature
differences above 100◦C.

Fitting these data is possible, but huge inconsistencies between the fits for each

covariance function at a given temperature are found—the parameters Lm and q are
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quite different in each variance fit. Regardless of the mechanical quality of the setup,

we have confirmed through wavelet analysis that some energy levels (in the wavelet

decomposition—see (Mallat, 2009)) are spurious contributions unrelated to the turbu-

lence dynamics.
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Figure 2.13: (Top) the noise observed in the energy levels of the wavelet decomposition
in the second detector when the hot source is off. (Middle) energy spectrum for the
weakest turbulence in our experiment; the effects of turbulence in the signal are clearly
distinguished. (Bottom) as for the weakest turbulence, the strongest analysed presents
the same characteristic energy spectrum. The noise is present in all the spectra in the
lowest and highest energy levels.

In Fig. 2.13 (Top), we observe the noise of the system in the detected wandering

generated by the turbulator when no optical turbulence is generated. For all the

turbulence strength levels a consistent signature is found in level range (−14,−4):
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this is obviously product of the optical turbulence, see Fig. 2.13 (Middle, Bottom).

Therefore, the signal is reconstructed from the energy levels in this range; therefore,

cutting out the contributions from the system noises.

As Fig. 2.14 shows, the value at the origin for both covariances is exactly the same;

originally attributed to some anisotropic phenomena, the mismatch was a product of

noise and nonlinearities of the original setup. Nevertheless, the fat-tails fail to be

corrected by this approach. Above 30 mm there is a slower decay that is not produced

by the experiment setup, thus it is an effect of this specific turbulence.
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Figure 2.14: Filtered covariances: (Top) the normalised on-(�) and off-plane (•) co-
variances are displayed for the weakest and stronger turbulence available; the solid
lines correspond to the best fit, with dashed lines the the 95% prediction bounds are
shown. (Bottom) the covariance difference (H) produced by filtered data, the fits from
theoretical model are satisfactory for any value of C2

n, excluding the tails.

To understand the peculiarities found in the classical analysis more powerful tools

are needed. To this effect, we analyse the series produced by the DLTMM experiment

with MFDFA3 as follows: we produce two differential time series from the detectors

original pair, xt(0) − xt(d) and yt(0) − yt(d), and split them in 10 series of 30, 000
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data-points each in order to obtain a mean value of the Hurst exponent, h (2) = H

(with error given by its standard deviation). The detrending algorithm employed in

the estimation of H uses a polynomial of degree 3, thus the acronym MFDFA3. The

fitting range for the exponent estimation was carefully chosen studying the fluctuation

functions and their log-log derivative.
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Figure 2.15: A) Hurst exponent as a function of the difference d for the on-plane
wandering series; the left image portrays the whole range, on the right the zoomed
region where inflection occurs. B) Hurst exponent as a function of the difference d for
the off-plane wandering series; the left image portrays the whole range, on the right
the zoomed region where inflection occurs. Observe that both references have H values
near 1/2.

Fig. 2.15 shows the results of this procedure. For every given ∆T (associated with a

unique C2
n), the Hurst exponent reveals a function of the beam separation. In both axis
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we observe values around 0.5 (brownian motion) for references; this is the noise of the

system dynamics. For all the temperature differences studied (greater than zero) the

behaviour is exactly the same. Long-range correlations appear to occur for ∼ 20 mm

and above, and with the given error bars one could guess this is the same phenomena

observed for different temperatures. Moreover, values for the off-plane axis are slightly

greater than those for on-plane axis indicating anisotropies (known to exist) in the

turbulator.

Now, the saturation of the Hurst exponent is a phenomenon of the distance: the

average curve starts at 0.7, and reaches a minimum (around the 3 mm, see Fig. 2.15

left), then an inflection point occurs that leads to a saturation in H. We associate

this change in convexity to the occurrence of a change in the dynamics of the optical

turbulence. Under this method the determination of the inflection point should be

related to the inner-scale. We proceed by fitting the averaged exponent with a rational

functions (R-square 0.98)—see Fig. 2.16, and estimate the inflection distance. From

this we obtain ℓ0 = 0.620±0.046 cm for the on-plane wandering series, and ℓ0 = 0.459±
0.026 cm for the off-plane series. Notoriously, the on plane scale is the closest to the

previously estimated inner-scale.
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Off-plane H

Fit for On-plane H

Fit for Off-plane H

Pred. Bnd. On-plane H

Pred. Bnd. Off-plane H

d

H

Figure 2.16: Fits for the averaged Hurst exponents estimated for each turbulence
strength are displayed. The anisotropy is clearly observed, and the inflection points
can be estimated.
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Each of the eight turbulent strengths present similar values for the adimensional

propagation distance and the scale-ratio, see Table 2.1, but due to the tails huge

uncertainties are observed. Moreover, as discussed in Pérez and Funes (2012) the free-

space propagation should be relevant, but for the on- and off-plane covariances fits a

good fit was only obtained for p ≃ 0.35 instead of 0.71, an important deviation from

the experimental fraction. On the other hand, the maxima method proposed originally

by Consortini and O’Donnell (1991) is quite stable under any circumstance. In this

case, good fits for the covariance difference are found for p around 0.71. The inner-scale

is determined from Eq. (2.6) for the maxima given by the best fit, ℓ0 = 0.69± 0.04 cm.

Also, the outer-scale can be estimated from these fits, and results L0 = 13.21±2.36 cm;

this is to be expected since the width of the camera where the turbulent mixing occurs

is 17 cm.

∆T
40◦C 80◦C 100◦C 120◦C

By
Lm 267.9± 44.1 214± 57.7 229.5± 36.2 202.1± 22.4
q 0.0067± 0.0037 0.0115± 0.0090 0.0109± 0.0045 0.0173± 0.0079

Bx
Lm 280.3± 93.2 251.8± 34.2 246.3± 24.3 270.4± 11.2
q 0.0212± 0.0173 0.0206± 0.0080 0.0210± 0.0065 0.0154± 0.0037

130◦C 140◦C 150◦C 160◦C

By
Lm 206.1± 30.6 233.5± 42.7 247.3± 58.1 224.5± 34.8
q 0.0153± 0.0085 0.0104± 0.0064 0.0100± 0.0073 0.0154± 0.0054

Bx
Lm 249± 17.9 261.4± 21.1 267.1± 28.7 279.5± 22.8
q 0.0170± 0.0053 0.0156± 0.0046 0.0119± 0.0046 0.0120± 0.0048

Table 2.1: Best Fit adimensional parameters for different values of C2
n.

2.2 Optimal sampling rate for laser beams

propagation through atmospheric turbulence

Fig. 2.13 shows the band where the turbulence is active, which is different from the

band where the noise is located. That figure pushed us to investigate a new procedure.

Sampling rate and frequency content determinations for optical quantities related to

light propagation through turbulence are still unsettled experimental problems. Many
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works about estimating properties of the optical turbulence seem to use some ad hoc

assumptions to set the sampling frequency used; without further analysis, this chosen

sampling rate is assumed good enough to perform a proper measurement. On the

other hand, other authors estimate the optimal sampling rate via Fourier transform

of the data series associated to the experiment, specifically the fast Fourier transform

algorithm (FFT), defining a cut-off frequency with an arbitrary criterion—that may be

related to an underlying model. However, these theoretical developments require the

exact knowledge of the turbulence properties, which is unreachable experimentally. For

instance, to obtaining the variance of angle-of-arrival and the aperture diameter, the

inner-scale knowledge is required. In this way, one measurement supports the other one.

The aim of this section is to propose an alternative, and practical, method to estimate

a proper sampling rate. By means of the discrete wavelet transform, this approach can

prevent any loss of information and, at the same time, avoid oversampling. Moreover,

it is independent of the statistical model imposed on the turbulence.

Frequency content of fluctuations of lightwave parameters in turbulent media was

first determined by Tatarsk̆ı (1967). By using the frozen turbulence hypothesis and the

Obukhov-Kolmogorov (OK) model, he showed that the phase and amplitude frequency

spectra of a wave propagating through turbulent media span up to a frequency that

linearly depends on the mean transverse flow velocity. According to (Andrews and

Phillips, 1998)—see Sec. 1.3, the previous result is valid within the weak turbulence

regime, i.e., when the Rytov variance is much less than one, σ2
R ≪ 1.

As the Nyquist-Shannon sampling theorem asserts, sampling rate is directly related

to the frequency content; therefore, any experiment should warrant that all the relevant

frequencies of the observed quantities are included for the chosen sampling rate. In

the last decades several authors have performed experiments to measure fluctuations

in lightwave parameters, but the choice of a specified sampling rate—fs, is rarely clear

or directly specified. Usually, its choice is unjustified, or there are technical limita-

tions precluding its selection (sampling frequency limits on the measurement device,

interface, lack of computing power, etc.). Ultimately, the frequency content due to the

optical turbulence depends on the experimental arrangement, thus its determination

is subject to measurement aspects. Some authors have estimated, through the fast

Fourier transform (FFT), that the spectral range of turbulence extends from 20 to

200Hz. These values are directly related to the turbulent quantity under study, and,
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consequently, they can not be employed in other experiments.

Wavelet analysis was first introduced in seismology to provide a temporal scale to

seismic data, since Fourier analysis was unable to cope with transient events (Mallat,

2009). Wavelets were used ever since in various fields with very good performance for

non-stationary signal analysis and processing. Fourier transform decomposes signals

through plane waves, thus it is specially suited for periodic or non-localized stationary

data. As turbulent data seem to be composed of coherent structures with a well-

defined scale hierarchy, wavelets naturally become more appropriate to study it. The

wavelet transform allows the analysis of intermittent behaviour commonly present in

turbulent signals. This is possible since it yields scale-time information, while the

Fourier transform is only able to show the frequency content of the signal.

The discrete wavelet transform (DWT, or Mallat Algorithm) decomposes a sig-

nal into low- and high-frequency components by convolution with low- and high-pass

filters, respectively, generated from a special function of compact support, mother

wavelet, and its dilations—see Mallat (2009). The global features of the signal are kept

by low-frequency components, approximation coefficients, whereas the local features

are retained by the high-frequency ones, detail coefficients. The DWT is a versatile

tool for extracting features and information from any given signal. For instance, the

detail coefficients can be examined by bands to detect transient events, and specific

denoising algorithms can be applied to eliminate spurious noise. Also, the DWT can be

particularly useful in estimating the normalized energy content per frequency bands.

A wavelet decomposition requires of a mother wavelet function fulfilling the follow-

ing properties:

∫ ∞

−∞
ψ(u)du = 0, (2.7)

∫ ∞

−∞
ψ(u)2du = 1, (2.8)

Through dilations and translations it is possible to generate an orthonormal basis of

L2(R): {
ψj,n(u) =

1√
2j
ψ

(
u− 2jn

2j

)}

(j,n)∈Z2

(2.9)

This orthonormal wavelet bases, carry characteristic of the signal with a resolution of
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2−j. From here arises the multiresolution analysis.

This last application provides a fast and practical estimation of the optimal sam-

pling rate: henceforth called wavelet energy spectrum (WES)—see Funes et al. (2013).

The scale band frequency employed in the wavelet decomposition for the WES is de-

fined by a dyadic scaling of the sampling rate—see Eq. (2.9), 2Jfs, where J goes from

Jmin to −1, with Jmin determined by the length of the signal to be analysed. In general,

each band is composed of frequencies from 2(J−1)fs to 2Jfs—for example, the J = −1

band contains frequencies from 2−2fs to 2−1fs. The WES is obtained by evaluating

EJ =

∑
k CJ(k)

2

∑
J,k CJ(k)2

, (2.10)

with CJ(k) the detail coefficients, and k is the sampling time index. The detail coeffi-

cients can be obtained from the energy conservation condition for the DWT, thus

‖S‖2 = ‖W‖2 =
∑

J,k

CJ(k)
2. (2.11)

where S is the column vector and it represents the signal, W is the matrix for the

wavelet transform and it is written as

W = W̃ ⊗ S. (2.12)

with W̃ as the matrix which contains the dilations and translations of the mother

wavelet.

The power spectral density (PSD) is the Fourier analogue to the WES. Usually, the

determination of the sampling rate through the PSD is bound to an arbitrary criterion,

i.e.: locating the frequency at which 90% of the power is contained, and then estimat-

ing the sampling rate as twice this frequency (Nyquist). Alternatively, the inverse of

the cross-temporal correlation’s half-life time can provide another estimate. Although

arbitrary, these criteria are still very powerful tools. Unfortunately, they are only valid

for stationary series. The optical turbulence (like many natural phenomena) is promi-

nently non-stationary; therefore, a criterion based on the wavelet energy spectrum

should be more robust. Naturally, it presents a significant fraction of energy located

in those bands where the turbulent phenomenon is more active. We particularly argue
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that if the energy of the highest band (E−1) is quite different from zero, some activity

may be missing—the spectrum may appear slashed. That is, there are unaccounted for

features at higher frequencies disregarded by the actual sampling rate: the recorded

data is undersampled.

2.2.1 Experimental configuration

To demonstrate this procedure we have performed a conceptually simple experiment

of laser propagation through turbulent media at different sampling rates (0.8, 2, 6, and

12 kHz). Basically, it consists in the propagation of a Gaussian thin beam (635nm,

and 1/e2 beam diameter of 3mm) through artificial turbulence. The beam propagates

through the optical setup described at Sec. 2.1.2—see Fig. 2.2 and picture 2.10.

The experience is dynamic. The first 20 seconds consist of keeping the hot air flow

at room temperature. Afterwards, the temperature difference between the two fluxes

is increased. When reached the highest temperature possible, the cooling process is

achieved by lowering the temperature at the hot flow. A continuous measurement

of seven and a half minutes is obtained. Although, temperature differences up to

150◦C are achieved, the turbulence is weak, with σ2
R = 0.02 and structure constant

C2
n = 6 × 10−10 m−2/3 at its highest point (σ2

R = 0.003 and C2
n = 9 × 10−11 m−2/3 at

the end)—see Fig. 2.17. Air flow velocity is fixed so the turbulence characteristics are

only due to the temperature difference.

C
2 n
(m

−
2
/
3
)

Time (s)

Figure 2.17: Values of the structure parameter during the experiment. This figure
features a fast heating and a slow cooling due to the thermal inertia. Graph from Funes
(2014).
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2.2.2 Analysis

In order to analyse the recorded data we use the DWT algorithm with a Haar basis,

this is the simplest mother wavelet. It is very well localized in time, but poorly in

frequency, thus making it well suited to detect sudden changes. Computationally, it

has been proven to be fast when examining large amount of data. Because of the

disadvantage of the Haar basis, we have also estimated the WES with other wavelet

basis for some reference data series and found no major discrepancies. Therefore, the

use of more complex mother wavelets is unjustified for our purposes. The wavelet

spectrum for different sampling rates for horizontal displacements can be observed in

Fig. 2.18—the vertical displacements behave alike and would not be shown here.

Figure 2.18: WES for the horizontal displacements for different sampling rates showing
the temporal evolution.

At the beginning of the experiment the WES shows a maximum of energy around

the highest frequency band; this is related to spurious noise caused by the detector.
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Figure 2.19: a) WES and b) PSD at a sampling rate of 800Hz, c) and d) idem for 2kHz,
e) and f) idem for 6kHz, g) and h) idem for 12kHz. The frequencies were delimited for
the WES. The time index is 80s.
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As the experiment progresses the frequency content related to the turbulence be-

comes predominant; signal to noise ratio increases, and this peak vanishes. The energy

distribution per frequency remains unchanged: the bell-shaped WES is centered around

the same frequency bands. This is in good agreement with theoretical results since the

flow velocity is fixed (Tatarsk̆ı, 1967; Andrews and Phillips, 1998).

Fig. 2.19 shows the comparison between the estimated WES and PSD for the same

data series at a given sampling rate, again for horizontal displacements, at time index

around 80s. The very first two wavelet spectra obtained (at 0.8 and 2kHz) present

considerable contribution to the energy at the highest frequency band: there is miss-

ing information from the turbulence under study. Although for the second in a lesser

extent, both sampling rates can be considered as improper since the original signal

is undersampled, and our aim is to have a complete view of the frequency spectrum.

On the other hand, the measurements performed at 6 and 12kHz clearly provide full

information of the horizontal wandering. Therefore, a lower bound for the sampling

frequency should be around 3kHz. A higher sampling frequency is unnecessary since

it would carry no new information about the turbulence, thus we are avoiding over-

sampling. Finally, as the sampling rate increases, the PSD (Fig. 2.19, left column)

reveals the occurrence of a knee around 1kHz. It is unclear if the turbulence ceased to

be active or the signal-to-noise ratio is too high. Either way, what naturally appears

in the WES would require a deeper inspection of the PSD—if a theoretical model is

unavailable, it could be unfathomable.

2.3 Conclusions

In this chapter we have carried out two experiments based in the same optical config-

uration. In the first one, we have presented a thorough exposition of the Geometrical

Optics approach for non-Kolmogorov turbulence. It presents some drawbacks to note,

from the theoretical point of view it is model dependent, and the exact value of H is

unknown. The experimental approach is more challenging, electronic and mechanical

noise certainly affects the correlations. Moreover, anisotropies and inhomogeneities are

observed with larger separations, such anisotropies are not caused by the experimental

arrangement. Although this is inherent to the turbulent nature of the fluid dynam-

ics inside the turbulator, real turbulence should commonly presents such anomalies.
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Therefore, additional information should be recollected to solve some of these issues,

such as scintillation measurements. In order to have a more suitable interpretation of

these results the GO model must be replaced by one based on the physical optics.

Noises present in the system can be greatly mitigated by a wavelet filtering proce-

dure. The signals obtained after filtering are more robust; particularly, the covariance

difference can pass the best-fit procedure with R-square above 60%, and inner- and

outer- estimated values are in accordance with expected values for this device—the

values reported here are similar to those seen in Keskin et al. (2006). Nevertheless,

some inconsistencies remain, such as the fat tails observed in both covariances and the

high correlation for d = 0.

Finally, a new method for estimating the inner-scale is proposed: the determination

of the inflection point in the Hurst exponent estimated under the multifractal detrended

fluctuation analysis. Not only successfully provides values for the inner-scale, but also

provides the first hints to an anisotropic inner-scale in optical turbulence. On the other

hand, the exponent H obtained in this way differs from the expected values: once the

threshold of the inner-scale has been exceeded the asymptotic values should be near

5/6, as discussed in Sec. 2.1.4. The excess in this value is unaccounted through classical

models, or even single scale non-Kolmogorov extensions. Further research on whether

this is the product of temporal correlations or the existence of a non-Gaussian statistics

should be performed.

The latter experiment, two main considerations should be used to determine an op-

timal sampling rate from the WES: the bell-shaped energy distribution corresponding

to the optical turbulence must be completely visible for a given fs; and the lowest and

highest bands, associated to mechanical and electronic noise, should have a negligible

signature in the spectrum—observe the temporal evolution of the WES in Fig. 2.18,

for 6 and 12kHz. Under these conditions we can obtain a practical estimation of the

optimal sampling rate without losing any information regarding the original dynamics.

The advantage of this method is twofold. It permits to isolate noise from signal and

be applied indistinctly to both stationary and non-stationary series. Furthermore, this

procedure is independent from any theoretical model or ad hoc hypotheses regarding

the optical turbulence (Funes et al., 2013).



Chapter 3

Thin Laser Beam Wandering and

Intensity Fluctuations Method for

Evapotranspiration Measurement

Laser beam propagation through a random medium can be applied to many areas,

such as free space optical (FSO) communication systems, laser radar, imaging, remote

sensing, to name a few. In this chapter we enlarge the scope of applications and we

extend us to a new area: “evapotranspiration”. The corresponding heat flux values

are sensed by the optical wave propagation in its path, which allows us to obtain the

vegetation evapotranspiration. Straightforward, we propose a new device to measure

the heat fluxes and we compared it with a well-known and calibrated eddy-covariant

instrument.

3.1 Evapotranspiration process

In general, evapotranspiration is the sum of evaporation and transpiration and it is

defined as the water lost to the atmosphere from the ground surface, evaporation from

the capillary fringe of the groundwater table, and the transpiration of groundwater by

plants whose roots tap the capillary fringe of the groundwater table. Here we will not

include evaporation from surface water.

The transpiration aspect of evapotranspiration is essentially evaporation of water
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from plant leaves. Plants put down roots into the soil to draw water and nutrients up

into the stems and leaves. Some of this water is returned to the air by transpiration.

Transpiration rates vary widely depending on weather conditions, such as temperature,

humidity, sunlight availability and intensity, precipitation, soil type and saturation,

wind, and land slope. During dry periods, transpiration can contribute to the loss of

moisture in the upper soil zone, which can have an effect on vegetation and food-crop

fields.

Plant transpiration is pretty much an invisible process, which changes the atmo-

sphere natural conditions. Just because we cannot see the water does not mean it is

not being put into the air. One way to visualize transpiration is propagate a beam and

to study its fluctuations of intensity.

The amount of water that plants transpire varies greatly geographically and over

time. There are a number of factors that determine transpiration rates:

(i) Temperature: Transpiration rates go up as the temperature goes up, especially

during the growing season, when the air is warmer due to stronger sunlight and

warmer air masses. Higher temperatures cause the plant cells which control the

openings (stoma) where water is released to the atmosphere to open, whereas

colder temperatures cause the openings to close.

(ii) Relative humidity : As the relative humidity of the air surrounding the plant rises

the transpiration rate falls. It is easier for water to evaporate into dryer air than

into more saturated air.

(iii) Wind and air movement : Increased movement of the air around a plant will

result in a higher transpiration rate. Wind will move the air around, with the

result that the more saturated air close to the leaf is replaced by drier air.

(iv) Soil-moisture availability : When moisture is lacking, plants can begin to senesce

(premature ageing, which can result in leaf loss) and transpire less water.

(v) Type of plant : Plants transpire water at different rates. Some plants which

grow in arid regions, such as cacti and succulents, conserve precious water by

transpiring less water than other plants.

Evapotranspiration, as well as precipitation, condensation, evaporation, and amount

other process, contributing to the global water cycle.
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3.2 Introduction to the experiment

Climate change and water demand are increasing over the past years. Water resource

management is becoming essential for agriculture. One of the long term solutions

lies in understanding how one can improve the efficiency with which water is used to

reduce wastage. As water use for agriculture is subject to increasing scrutiny from

policy makers and environmentalists, the result is that agriculture is under growing

pressure to demonstrate that water is being used efficiently. Numerous methods are

available to provide informations on crop water use (or evapotranspiration, ET), crop

irrigation requirements, and efficiency with which crops area produced, or water use

efficiency. Of these, field level methods (e.g., lysimeters, Eddy covariance, Bowen

Ratio, surface renewal, scintillometry, soil water balance) used to estimate (or measure)

evapotranspiration (ET) from surfaces have been evaluated extensively in the past.

Thus, crop evapotranspiration knowledge is a precious asset for the evaluation of

water losses and for precision irrigation. Several ways to remotely obtain a value of

evapotranspiration exist, but only one takes into account the strength of the small

fluctuations in the index of refraction due to temperatures fluctuations through the

measurement of the refractive index structure of air C2
n via an optical metrology with

scintillometric measurements of a laser beam. Techniques used to obtain C2
n have been

reviewed in Sec. 1.6. A newly different method to sense the atmospheric turbulence

measures intensity fluctuations after propagation in a turbulent medium patterned on

a holographic plate (Barillé et al., 2013).

However if the scintillometer method is well known, the beam wandering method

is less used and the holographic method has never been used in surface heat measure-

ments.

3.2.1 Scintillometer

A scintillometer is an instrument that consists of a transmitter and a receiver. The

receiver measures intensity fluctuations in the radiation emitted by the transmitter

caused by refractive scattering of turbulent eddies in the scintillometer path. Scin-

tillometers exist since the 1970’s (Wang et al., 1978), and mostly use large aperture

devices (Moene et al., 2004) to measure the refractive index structure parameter C2
n

with the variance of intensity fluctuation measurements.
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Generally, when the measurement of C2
n is made over a path in a range > 50 m,

intensity fluctuations is used only. Beam wandering measurements with a collimated

laser beam leading to values of C2
n have been made in laboratory experiments at small

scales and in real conditions over longer distances, but never to indirectly measure the

surface heat flux to our knowledge.

We propose in this study a scintillometer based on a thin collimated laser beam in

the aim to measure values of C2
n over a crop field. We show that this scintillometer has

several advantages and drawbacks. The obtained values of refractive index structure

parameter can then be used to compute the sensible flux and the latent heat flux over

the laser beam path when they are coupled to other meteorological data.

We measure in our experiment C2
n values using both the intensity fluctuations and

the wandering fluctuations of the beam over a long beam propagation path with the

developed device. The results obtained with the two methods are compared to data

obtained with a micrometeorological method and a 3D sonic anemometer.

3.3 Evapotranspiration by remote sensing

The relation between energy balance, heat flux density and surface temperature is

long known and was investigated early (Li et al., 2009; Rana and Katerji, 2000). The

theoretical basis of energy fluxes modeling is studied taking the land surface as a flat

and thin layer such that no heat storage exist, the surface energy balance equation at

the interface between the land surface and the overlying atmosphere is written as:

Rn = H + λE +G0 (3.1)

where Rn is the net radiation flux, λE is the latent heat flux—or evaporation when is

expressed in term of water depth, H is the sensible heat flux and G0 is the soil heat

flux. The sign convention in Eq. (3.1) is that Rn is considered positive when directed

towards the land surface, while H, λE and G0 are considered positive when directed

away from the land surface. For the sake of simplicity, all flux densities will be called

fluxes, and the units is W/m2.

Incoming solar radiation is mainly driven by the azimuth and zenith angle of the

sun at a given position and time. However, many other factors have to be taken into
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account to reproduce global radiation correctly. In particular, ground elevation and

relief determine the direct incoming radiation pattern in mountainous areas, cloud

cover can reduce direct radiation, and atmospheric aerosols content will significantly

affect the contribution of diffuse radiation to the global radiation. Atmospheric radia-

tion is mainly driven by the atmosphere temperature and column water content (and

by extension cloud type and content). The vertical structure and properties of the

atmosphere must be known to reproduce the surface radiative fluxes.

The soil heat flux is often parameterized proportionally to the net radiation arriving

at the soil surface, therefore is a function of the vegetation cover—see (Faivre, 2014)

and references therein.

In the context of applying remote sensing measurements to estimate heat fluxes, the

latent heat flux or evaporation is calculated as the residual of energy balance Eq. (3.1),

and the major concern is to calculate sensible heat flux H. As in Faivre (2014), H

is calculated by two mehtods; the Single-source parameterization and the Dual-source

parameterization. In the former, the sensible heat flux is related to the difference

between the air temperature at a source height z0 for heat transfer (so-called the aero-

dynamic surface temperature, Taero) and air temperature Ta at a reference height. The

Dual-source parameterization makes a difference between the surface energy transfer

of soil and canopy sub-systems. This model allows to distinguish radiometric and aero-

dynamic surface temperatures by incorporating the effects of sensor view geometry

to partion surface energy and temperature into soil and vegetation sub-components.

Here we use the eddy covariance method (Barillé et al., 2016), which belongs to the

Single-source parameterization. The method will be described below.

3.3.1 Single-source parameterization of H and λE

The sensible heat flux is related to the difference of temperatures and is written by a

bulk transfer equation

H = ρacp
Taero(z0)− Ta(z)

rah(z0, z)
(3.2)

where Taero is the aerodynamic surface temperature at source height z0, Ta is the air

temperature at a reference height z, ρa is the air density (kg/m3), cp is the heat capacity

of the air (J/Kg/K), rah(z0, z) is the aerodynamic resistance for heat transfer (s/m—is
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the inverse of the speed, “vertical wind speed”) between the source height (z0) and the

reference height (z) in the Atmospheric Surface Layer (ASL).

The aerodynamic resistance for heat transfer is given by

rah(z0h, z) =
1

ku∗

[
ln

(
z − d0
z0h

)
− ψh

(
z − d0
L

)
+ ψh

(z0h
L

)]
(3.3)

where k is the Von Karman constant (k = 0.4), d0 is the displacement height (m), ψh is

the Monin-Obukhov stability correction function for heat transfer, z0h is the effective

source height, i.e. the roughness length for heat transfer is usually not measurable

directly; and u∗ is the friction velocity (m/s) in the ASL—defined as (τ0/ρa)
1/2 with τ0

the surface shear stress. The velocity is expressed as:

u∗ =
kuz

ln
(

z−d0
z0m

)
− ψm

(
z−d0
L

)
+ ψm

(
z0m
L

) (3.4)

with z0m the roughness length for momentum transfer (m), ψm is the Monin-Obukhov

stability correction function for momentum transfer, and L in the equations above is

the Monin-Obukhov length given as:

L = −ρacpu
3
∗θav

kgH
(3.5)

where θav is the potential virtual air temperature near the surface (K) and g is the

gravitational acceleration.

By analogy, latent heat flux is expressed by a bulk transfer equation as

λE =
ρacp
γ

e0 − ea
raw

(3.6)

where λ is the latent heat for vaporization of water (J/kg), E is the actual evaporation

rate (mm/s), γ (Pa/K) is the psychrometric constant, e0 (Pa) is the surface vapor

pressure, ea (Pa) is the actual water vapor pressure of the air at temperature Ta, raw

is the bulk aerodynamic resistance for water vapor transfer between the source height

of water vapor (z0w) and reference height (zref ) in the ASL.

Assuming the land surface or soil-vegetation system can be represented as a big leaf

and introducing two resistances in series, aerodynamic resistance between “surface”
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and reference height in ASL and canopy surface resistance (rc) which regulates the

evapotranspiration from the vegetation by adjusting the stomata aperture, latent heat

flux can be written as in the Penman-Monteith combination equation (Faivre, 2014):

λE =
△rah(z0h, z)(Rn −G0) + ρacp[e∗(Taero(z0h))− ea(Ta(z))]

rah(z0h, z)(γ +△) + γrc
(3.7)

where △ is the slope of saturated vapor pressure at the air temperature Ta. In the

Penman-Monteith equation, we assumed that the aerodynamic resistance for water

vapor transfer raw is the same as for heat transfer rah, and the surface vapor pressure

e0 is equal to the saturation water vapor pressure e∗ at temperature Taero. For surface

fully covered by wet vegetation or open water, Eq. (3.7) is reduced to Penman equation

λE =
△rah(z0h, z)(Rn −G0) + ρacp[e∗(Taero(z0h))− ea(Ta(z))]

rah(z0h, z)(γ +△)
(3.8)

3.4 Evapotranspiration and its connection with

refractive index fluctuations

Evapotranspiration varies in function of numerous factor, for instance, temperature.

The temperature, or better say, fluctuations of temperature affect also the index of

refraction. Turbulence fluctuations are influenced by the refractive index nν which is

dependant of humidity and principally by temperature according to (Tunick, 2003):

∂nν

∂z
=
∂nν

∂θ

∂θ

∂z
+
∂nν

∂q

∂q

∂z
(3.9)

with θ the temperature, q the specific humidity and z the vertical elevation.

The structure function of the refractive index at two different points is related to

the structure parameter—C2
n, see Sec. 1.1.4

3.4.1 Index of refraction structure constant—method

One can calculate the value of the sensible flux with the measured value of C2
n, providing

that some additional meteorological data are acquired at the same time. The method is
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explained in (Solignac, 2009; Rana and Katerji, 2000; Ezzahar et al., 2007; Meijninger

et al., 2002). Briefly we sum up the method here.

The refractive index structure parameter C2
n can be written (Meijninger et al., 2002),

with the structure parameter of temperature (C2
T ), humidity (C2

q ) and the covariant

term (CTq) as follows:

C2
n =

A2
T

T 2
C2

T +
ATAq

Tq
CTq +

A2
q

q2
C2

q (3.10)

Where AT and Aq are quantities dependent on optical wavelength and mean value of

temperature (T ), humidity (q) and atmospheric pressure (P , hPa).

For the wavelength used in our setup, these quantities are given by (De Bruin et al.,

1995):

AT = −0.776× 10−6P

T
(3.11)

Aq = −47× 10−6q (3.12)

Thus, the first term in Eq. (3.10) containing C2
T , is considered to be much larger

than the two other terms. The temperature structure parameter C2
T can then be derived

from the refractive index structure parameter C2
n by (Hill et al., 1980):

C2
T = C2

n

(−0.78× 10−6P

T 2

)−2(
1 +

0.03

β

)−2

(3.13)

Where β is the Bowen ratio, which connect temperature and humidity by the ratio

of sensible flux and latent heat flux (β = H/λE). The second term in brackets is a

correction for the effects of humidity.

The Monin-Obukhov Similarity Theory (MOST) allows to bound the temperature

structure parameter with temperature scale T ∗:

C2
T = T ∗2(z − d)−2/3fn

(
z − d

L

)
(3.14)

where z and d = 0.67·hveg are the measurement height and the zero plane displacement

height (hveg referring to the height of the vegetation) respectively, and fh is the universal
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function of similarity theory, determined empirically, and depending on z and Monin-

Obukhov length—L see Eq. (3.5). The Monin-Obukhov length allows to obtain the

temperature T ∗.

Several functional forms have been proposed to represent fh. In this thesis, the

definition of the universal function given by De Bruin et al. (1995) will be used, because

it has an average behavior compared to the existing definitions in Solignac (2009). This

function depends on the stability of the atmospheric surface boundary layer (ASL)—

see (Barillé et al., 2016) and references therein.

In this experiment we will measure the index of refraction structure constant through

two different methods. The first one is “scintillation index”—see Sec. 1.6.3, and the

second one is “beam wander”—see Sec. 1.6.2.

In the far-field Λ0 > 1, lowest-order Gaussian-beam wave is considered as a spherical

wave. The values of the structure parameter are given from Eq. (1.78) at Sec. 1.6.3.

On the other hand, the second method—beam wandering, can be used to get the

value of refraction index structure parameter C2
n through the variance of the point

of maximum irradiance. For a collimated beam in the case of infinite outer scale, the

values of C2
n are given by Eq. (1.71) at Sec. 1.6.2. We write the beam wander according

to the mean square of the beam position on the detector,

〈r2c 〉 = 〈x2〉+ 〈y2〉 (3.15)

providing that we assume locally homogeneous fluctuations. In our case, the position

(horizontal x and vertical y from a zero reference) is monitored by the mean of a position

sensing detector. This detector can be a lateral effect photodiode (LEP), which is a

two-dimension detector that generates photocurrents proportional to the position and

the intensity of the centroid of light on the active area. The current carriers generated in

the illuminated region are divided between the electrodes in proportion to the distance

of the current paths between the illuminated region and the electrodes. Or it can be

also a quadrant (4Q) photodiode, which consist of four photodiodes separated by a

small gap (few dozen micrometer), the position being deduced from the difference of

photocurrent between the right and left side or the top and bottom side. The noise

sensitivities of the 4Q detector and the LEP are roughly 0.2 and 0.5 (Makynen et al.,

1996). In case of low background illumination, the noise level of an LEP is typically
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more than ten times higher than that of the 4Q receiver due to the low (typically

10 k Ω) inter-electrode resistance. Consequently, in electrical sense the achievable

SNR, and accordingly the resolution of the 4Q detector are better than that of the

LEP (Makynen et al., 1997). We then choose a 4Q detector in our experiment.

3.5 Experimental setup

The scintillometer setup consists of an emitter and a receiver, placed in front of each

other at the distance L, on which the measurement will be made. The emitter consists

of a continuous laser and a pair of lenses to collimate the beam over the optical path.

The laser wavelength used is 473nm with a power of 400mW, and with a 1.5 mrad of

beam divergence. The lenses are chosen in order to have a Galilean telescope expanding

the output beam of the laser and to collimate the beam over a long distance typically

for distances less than 200 m. The first lens, placed just after the laser output, is

a plano-concave lens with a focal length of −50mm (Thorlabs, LC1259-A). A second

lens, plano-convex with a 250mm focal length is placed 20 cm from the first, in order

to have a magnification of 5. The diameter of the beam at the output of the emitter is

then 1 cm. This pair of lenses allows having a Rayleigh range of around 142m for the

output collimated beam.

A Galilean telescope is also used in the receiver to recollect the light (Thorlabs,

BE10). The measurement field for a 4Q detector is defined by the size of the light

spot, as the detector will provide position information only up to the point where the

edge of the spot reaches the gap. Therefore, to provide a sufficiently large measurement

field, it is essential to enlarge the 4Q detector. The first lens is plano-convex with a

focal length of 60mm and the second is plano-concave with a focal length of −12mm.

The two lenses are separated with a distance of 86mm, enabling a magnification of 5.

After the telescope, the beam is separated in two parts with a 90 : 10 beam splitter

cube. The 10% part of the beam is then sent on a quadrant photodiode, which allows

recording the beam position and intensity simultaneously. The quadrant photodiode

is 100mm2 (10mm ×10mm) and the gap between the four quadrants is 50µm. The

90% part of the beam is sent to an azopolymer thin film, used to record a mean value

of C2
n over the acquisition time by the mean of self-organized surface relief grating

(Barillé et al., 2013; AhmadiKanjani et al., 2005; Barillé et al., 2009). All the optical
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components are mounted on a metal board for stability during the measurements.

The electronic system includes a card for managing the acquisition data and a remote

interface with the operators. The setup is presented in Fig. 3.1,

Figure 3.1: Setup with the emitter and receiver used for the experiment (shown close
to one another for clarity).

The estimation of the position of the light spot center with respect to the 4Q center

along the Y axis (Makynen et al., 1996) with PI , PII and PΣ the power acquired by

the first quadrant, second quadrant and all the quadrant respectively is:

ψ(x, y) = 2
PI(x, y) + PII(x, y)

PΣ(x, y)
− 1 (3.16)

Considering the symmetry of the irradiance distribution of the laser spot the same

expression is also valid for the x axis. The estimation of the position can be written

as:

ψ(x, y) ≃ ∂ψ(0, 0)

∂(y/R)
·
( y
R

)
= Sy

y

R
(3.17)

with Sy the sensitivity in A/W and R the 4Q radius. The sensitivity of the Quadrant

Position Detector (QPD) is given with respect to the relative displacement y/R instead

of the absolute displacement. The 4Q sensitivity for the two axial directions in the

case of a Gaussian distribution of the light spot irradiance onto the 4Q surface is given
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by the following expression (Manojlovic, 2011):

Sx = Sy =
2R

ω
√
π

erf
(
R
ω

)
exp

[(
R
ω

)2]− 2R
ω
√
π

exp
[(

R
ω

)2]− 1
(3.18)

with ω the light spot radius and erf the Gauss error function of its arguments. We find

a high sensitivity considering the used parameter of the beam width and the dimension

of the 4Q and we obtain Sy = Sx = 5.64. The sensitivity is equal to 1 when the light

spot radius is equal to the 4Q radius and higher for ω < R.

However the sensitivity can change with fluctuations of the laser beam. The laser

beam is not only subjected to beam wandering but also fluctuations in intensity and

modifications of the beam diameter. We need to calculate the relative change ∆Sy/Sy

of the 4Q sensitivity versus the relative change ∆ω/ω of the light spot radius. The

absolute change of the sensitivity is given in Manojlovic (2011):

∆Sy = ∆Sx =
dSy

dω
∆ω = − R

ω2

dSy

d
(
R
ω

)∆ω (3.19)

and the ratio of the 4Q sensitivity relative change and the light spot radius relative

change versus the ratio of light spot radius and 4Q radius is then:

∆Sy

Sy

∆ω
dω

= −1− 2

(
R

ω

)2





1

exp
[(

R
ω

)2]− 1



+

2R
ω
√
π

erf
(
R
ω

)
exp

[(
R
ω

)2]− 2R
ω
√
π

(3.20)

We consider a symmetric fluctuation of the beam width ∆ω/ω in the range of ±10%

and we find a value of −1 meaning that the sensitivity relative change of the 4Q is not

affected by the relative change of the beam diameter and is proportional to the beam

width change. In the case of fluctuations of the beam size in the vertical direction as

it occurs during the experiment the ratio (∆Sx/Sx)/(∆ω/ω) is similar.

During the measurement, intensity and beam wandering fluctuations are measured

continuously, and an average is recorded every 8 s as well as the temperature and the

humidity. The error on the value of C2
n (measured with intensity) is 1 × 10−15 m−2/3

and the error on the value of C2
n (measured with beam wandering) is 2.9×10−15 m−2/3.

The error on the temperature measurement is 0.5 ◦C and the error on the humidity
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measurement is 2%. All measured and computed data during the experiment are logged

in a text file for further studies.

3.5.1 Site Instrumental de Recherche par Télédetection

Atmosphérique (SIRTA)

In the aim to validate our experimental setup of scintillometry, the setup was installed

in an open field situated in the experimental platform of the SIRTA. The receiver was

placed 72m far from the emitter, and the measurements were made during one day

from 11 a.m. to 4 p.m. at the Atmospheric Research Laboratory of the Pierre Simon

Laplace Institute. The results obtained by our scintillometer setup are compared with

measurements obtained with data acquired in parallel by the SIRTA’s instruments on

the experimental platform.

The SIRTA’s instruments consist in a meteorological platform with 3D sonic anemome-

ters measuring wind speed in all directions and temperature. The vertical wind fluc-

tuations and temperature correlation can be obtained. The optical setup was placed

close to a 3D sonic anemometer—see photos 3.2 and 3.3, in order to acquire the local

atmospheric turbulence simultaneously.

Figure 3.2: Photo of the emitter.
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The 3D anemometer’s data cannot provide directly a value of C2
n, but it is possible,

with the eddy covariance method, to calculate the sensible flux from the surface H

(Rana and Katerji, 2000). The value of H [W/m2] is then given by Eq. (3.2) and the

latent heat flux—“evapotranspiration”, and the other fluxes are calculated as in the

procedure described in Sec. 3.3.

Figure 3.3: Photo of the receptor.

3.6 Experimental results

3.6.1 Refractive index structure parameter

The value of C2
n versus time calculated with Eq. (1.78) and the intensity fluctuations

is presented in Fig. 3.4 with temperature and humidity data measured simultaneously.
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A good correlation between the behavior of C2
n and the evolution of the temper-

ature and humidity acquired during the experience is shown. When the temperature

decreases the humidity increases simultaneously during the first half hour of the mea-

surement. The increase of the temperature dries the atmosphere and reduces the

humidity. There is a maximum time shift of 10 minutes between the large variations

of the temperature and humidity and C2
n. The Fig. 3.5 compares humidity and tem-

perature with C2
n to account for the inertial variation of these two parameters on the

atmospheric turbulence. We consider in the calculation the moving average values to

smooth all the data.

× 10−15 Beam Intensity Fluctuations

Time
Figure 3.4: C2

n vs time calculated with the laser beam intensity fluctuations.

The maximum changes in the refractive index structure constant appears for a

maximum of humidity and a minimum of temperature changes meaning that C2
n is

modified by the gradient of temperature. In Fig. 3.5 the positive gradient of tem-

perature is delimited. We observe that a positive gradient of temperature of 0.5 ◦C

induces a variation of 1 × 10−15 m−2/3. We note that humidity and temperature are

measured locally at the receptor and cannot account for the very high peaks on the C2
n

measured on a large distance. This result confirms that two micrometeorological data

(temperature and humidity) can reflect the average turbulence.



3.6 Experimental results 71

H
u
m
id
it
y
[%

]

T
em

p
er
at
u
re

[◦
C
]

Time
Figure 3.5: Comparison of evolution of temperature (left axis) and humidity (right axis)
with atmospheric turbulence measured with the intensity fluctuations.

F

× 10−15 Beam Intensity Fluctuations

Time
Figure 3.6: C2

n vs time calculated with the laser beam wandering fluctuations using
Eq. (1.71).
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The values of C2
n calculated with the intensity fluctuations are compared with the

beam wandering method—see Eq. (1.71). Using the measured fluctuations of the beam

positions onto the detector during acquisition of data. The results are presented in Fig.

3.6.

We observe a ratio between the two calculated values of C2
n of 2.28 corresponding

to a value of C2
n with the beam deflection of almost twice the one calculated with the

intensity fluctuations. This result can be explained by the precision on the beam wan-

dering measurement with the 4Q. During the acquisition with the beam wandering

method the laser beam diameter fluctuates in x and y non-symmetrically. An asym-

metry on the beam is due to large refractive index fluctuations mainly in the vertical

direction where the gradient in the atmospheric layer is the maximum. The fluctua-

tions of the laser positions through the lens at the input of the detector can also induce

astigmatism and transverse aberrations. However in the case of the measurement of C2
n

with the beam wandering method a dynamic is observed with the 4Q larger than with

the intensity fluctuation method. A part of the two plots of C2
n with the two methods

is represented in Fig. 3.7 with an estimation of the error in both cases.

C
2 n
(m

−
2
/
3
)

Time

Figure 3.7: Comparison of C2
n vs time calculated with the beam wandering fluctuations

and C2
n vs time calculated with the laser beam intensity fluctuations during a time range

of 10 minutes showing an estimation of the error on both measurements.
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For the error on C2
n calculated with intensity fluctuations, we assume an error on

the measured optical path length of 1 m. The error for intensity fluctuations is taken

as the standard deviation: 1.35 × 10−15 m−2/3. The error on C2
n calculated with the

beam wandering method is larger due to the error on the calibration of the detector

done with a millimetric translation stage (error = ±0.5 mm).

During the experiment, we observe that the position fluctuations of the beam are

not the same for the horizontal and vertical axis and are given by:

〈x2〉
〈y2〉 = 1.45 (3.21)

The horizontal fluctuations are almost 45% larger than the vertical fluctuations,

this difference is due to the shape of the beam, which was Gaussian on the receiver

with a larger dimension in x direction like an ellipsoid shape. Indeed, as the quad-

rant photodiode is used to measure the position, this measurement is affected by the

beam profile, whereas the intensity measurement is not. Moreover, the experiment

was conducted in the month of December with outside temperatures showing small

fluctuations. The vertical gradient of temperature does not introduce a large difference

of position fluctuations between the two axes.

When comparing the mean values for the C2
n measured with the two methods, we

find:
C2

nBW

C2
nI

= 2.28 (3.22)

as C2
nBW has 50% more error than C2

nI , this error is a product of the Beam wander

equation that doesn’t take into account the natural diffraction of the beam through

the propagation as the scintillation does. The Fig. 3.7 shows that the two error estima-

tions overlap on a relatively important value range for C2
n measured with the intensity

fluctuations and beam wandering. The overlap is estimated to be 1× 10−15 m−2/3.

3.6.2 Sensible flux and comparison with SIRTA

The values of the sensible flux H and the latent heat flux λE can be calculated with

the C2
n values measured by our device and the method described in Sec. 3.4.1. The

measurements obtained for the sensible flux H and λE are compared to acquired

values using data from the 3D sonic anemometer of SIRTA and using Eq. (3.2). The
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sensible flux obtained with our laser scintillometer setup is compared to the sensible

flux obtained with the data of SIRTA in the Fig. 3.8.
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Figure 3.8: Comparison between the values of Sensible flux and evapotranspiration
measured with our device (with intensity fluctuations method–black–and with beam
wandering method–red) and the ones calculated from the SIRTA data (blue).

The measured sensible flux with our scintillometer setup is very close (< 20 W

m−2) to the value calculated with the eddy covariance method using the 3D sonic

anemometers of the SIRTA’s experimental platform. The data points show common

values and a good overlap between error bars. However results obtained with intensity

fluctuations are closer to results obtained with the eddy covariance than values obtained

with the beam wandering in the range of 7%.

The comparison between a well known scintillometric device and a working com-

mercial device gives us a good appreciation of the accuracy of our setup. However

we need to consider that the value of C2
n measured with our device is integrated over
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the beam path whereas the value obtained by the 3D sonic anemometers is measured

at one fix point and at a higher elevation from the ground. Furthermore, data were

collected during the month of December, when sensible flux is very small, making the

amplitude of the data as small as 40 W m−2. These two points explain why the Fig. 3.8

doesn’t show a slope of ±1.

3.6.3 Evapotranspiration
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Figure 3.9: Evapotranspiration calculations with data provided by the laser fluctuations
(ETscin) and the eddy covariance (ETec) and comparison with the calculation given by
the FAO model.

Three calculations of evapotranspiration are compared. The evapotranspiration cal-

culated with data acquired by the scintillometer set-up (ETscin) with the intensity fluc-

tuations and based on the model described in Meijninger et al. (2002), is compared with

the results calculated with the eddy covariance data (ETec). These two calculations of

evapotranspiration are compared to the FAO Penman-Monteith method as a standard

ETo method (Von Randow et al., 2008; Cai, Liu, Lei and Pereira, 2007)—The United

Nations Food and Agriculture Organization (FAO) accepts as a standard method for

modeling evapotranspiration, the Penman–Monteith equation—see Eq. (3.7). This

method has been reported to be able to provide ETo values in many regions and cli-



3.7 Conclusions 76

mates and it has been accepted worldwide as a good ETo estimator when compared

with others methods especially for daily computation. This method requires daily data

on maximum and minimum air temperatures (Tmax and Tmin), relative humidity and

wind speed. We observe in the Fig. 3.9 that the measurements with the scintillome-

ter are close to the measurements with the eddy-covariance. The measurements with

eddy-covariance rise with a slope and follow the variation of temperatures given in

Fig. 3.5. However the slope for the measurements with the scintillometer is low. This

can be explained by the average measurements along the laser path compared to the

eddy-covariance giving a local measurement. Finally we can conclude that the FAO

model gives the upper limit with a relative constant evolution as a function of time

and the ET values with the scintillometer gives the lower values.

3.7 Conclusions

The present work proposes a comparison of two optical techniques for measuring the

atmospheric turbulence. This optical metrology is tested in real condition over a path

length of 72 m in the experimental platform of SIRTA. C2
n values are obtained using

intensity and beam wandering fluctuations in parallel. Both values of C2
n acquired

with intensity fluctuations and beam wandering calculated with the Eqs. (1.78) and

(1.71) respectively are accurate, since we find the same value of the sensible flux (H)

in the limit of the error bars when compared to the value given by eddy covariance

data acquired at the same time. The values of C2
n obtained with the beam wander-

ing method (1.71), are very close to the ones obtained with the intensity fluctuation

method (1.78). Our measurements show the main contribution of the two atmospheric

parameters (temperature and humidity) in the evapotranspiration variations and par-

ticularly the temporal contribution. This comparison gives us a good insight of our

device’s accuracy and capabilities. Finally these measurements lead us to calculate the

evapotranspiration. We have then compared our measurements with two other models

calculated with local atmospheric parameters. Our model is close to the results calcu-

lated with the eddy-covariance data and far from the values calculated with the FAO

model.



Chapter 4

Propagation of Unconventional

Beams through Turbulence

The scintillation is an important detrimental effect due to the atmospheric turbulence

which have been studied with attention. Nowadays, find new transmitters which are

affected in a minor degree by the turbulence could improve its applications in diverse

areas. In this chapter we will describe two experiments involving the propagation

of new unconventional transmitters in a turbulent medium. These experiments are

studied from the scintillation index point of view and the transmitters are compared

with a tranditional Gaussian beam.

4.1 Introduction to the experiments

Recently, more and more attention is paid to the use of optical beams for free-space op-

tical (FSO) communications due to the increasing requirement for larger bandwidths

and high rate of data transfer in optical wavelength. The high direction of the op-

tical beams can guarantee the security of the transmitted data to a certain extent

in FSO communications compared to that in Radio-frequency (RF) communications.

Furthermore, optical beams are also applied in other applications, such as laser satel-

lite communications, laser radar system and remote sensing. In those applications,

propagation of optical beam in atmosphere is inevitably encountered.

However, atmospheric factors are the most serious disadvantage to FSO because
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they can limit operating availability and/or cause distortions of the carrier wave. In

addition, optical turbulence resulting from small temperature variations in the atmo-

sphere gives rise to further power losses from spreading of the beam spot radius beyond

that due to diffraction alone, and to temporal and spatial fluctuations of the laser beam

known as scintillation, as well as influences in the degree of coherence and the degree

of polarization (Korotkova and Wolf, 2007; Korotkova and Shchepakina, 2010; Ji et al.,

2010). Scintillations of a light beams are important since intensity fluctuations de-

grade ratio of signal to noise and may increase bit error rate. Tyson (2002) analyzed

an adaptive optics compensation for atmospheric-turbulence-induced scintillation.

Diverse types of beams have been studied in optical turbulence, those studies are

focused in the scintillation and the way to reduce it. Beam scintillations are closely

related to beam properties, like beam shape, phase, polarization, coherence to name

a few. Previous studies have shown that different beams, appropriately modulating

coherence, phase and polarization of input laser beams can reduce the scintillations.

It is discovered that the on-axis scintillation index of an elliptical Gaussian beam can

be smaller than that of a circular Gaussian beam in weak turbulences under certain

conditions (Cai, Chen, Eyyuboglu and Baykal, 2007). Other types of beams have been

also studied, such as (multi) Gaussian Schell-model—Gaussian Schell-model (GSM)

beams are common in the theoretical studies because in some cases this model al-

lows for analytical results to be derived in a closed form. Since then, investigation of

propagation of partially coherent beams in turbulent atmosphere has become a topic

of interest, and many optimization schemes have been proposed (Schulz, 2005; Qian

et al., 2009; Wang et al., 2012; Korotkova et al., 2012). Qian et al. (2009) found that

the degradation of degree of source coherence of pseudo-partially coherent GSM beams

may cause reductions of scintillation index, which indicates that partially coherent

beams are more resistant to atmospheric turbulence than fully coherent beams. The

property of polarization influences the scintillation of a laser beam on propagation in

atmospheric turbulence as well (Korotkova, 2008; Gu et al., 2009; Cheng et al., 2009).

An appropriately chosen coherent beam of non-uniform polarization also has smaller

scintillation index than a beam of uniform polarization (Gu et al., 2009). Gu and

Gbur (2012) showed that the turbulence-induced scintillation can be further reduced

by using an incoherent beam array composed of beamlets with nonuniform polariza-

tion. Chen et al. (2014) have found that the scintillation index of a partially coherent
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radially polarized beam can be smaller than that of a completely coherent beam, this

study included an outdoor experiment over 400m path.

Another method to reducing scintillation is substituting a single incident beam by

beam arrays (Eyyuboğlu et al., 2008; Peleg and Moloney, 2006; Polynkin et al., 2007;

Gu and Gbur, 2010). Polynkin et al. (2007) studied the minimum of the scintillation

index with respect to the beam separation for multiemitter beams composed of two

and four identical fundamental Gaussian beams. Thereafter, the scintillation index

can be substantially reduced if the constituent beams overlap at the detector and are

properly separated in the transmitter plane.

Beams with spiral phase are known as vortex beams, each photon carrying orbital

angular momentum (OAM). OAM can be used to encode data for transmitting infor-

mation in free-space optical systems (Gibson et al., 2004; C̆elechovský and Bouchal,

n.d.). It has been demonstrated that the OAM of a beam can be well preserved in a

long propagation distance in weak turbulence (Gbur and Tyson, 2008). The scintil-

lations of circular vortex beams in turbulence have also been studied (Ji et al., 2010;

Cheng et al., 2009). (Cheng et al., 2009) demonstrated numerically that the vector

vortex beam shows substantially lower scintillation than the scalar vortex. Liu and Pu

(2011) propagated elliptical vortex beams in turbulent atmosphere finding a new way

to reduce scintillation index.

In the next sections, we describe two experiments based on the study of new trans-

mitters through atmospheric turbulence, in them, we analyzing its intensity fluctua-

tions due to the turbulent medium. The first experiment involves a new optical vortex

called Phase-flipped Gaussian beam, the second one corresponds a multiwavelength

beam—supercontinuum.

4.2 Phase–flipped Gaussian beam

Had Thomas Young, in his celebrated demonstration of optical interference (Young,

1804), generalized his two-slit experiment to three or more slits, he would have dis-

covered a qualitatively different type of destructive interference∗. For in general, when

three or more waves interfere, light vanishes at points, rather than on fringes, in two

∗In fact, Young could not have generalized his experiment as he did not use slits at all but rather
a single line obstruction in a pencil of light.
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dimensions. At these places where the intensity of the wave is zero, the phase is

undefined—singular, and in general, all 2π phase values occur around the zero, lead-

ing to a circulation of the optical energy. These points, which are extremely general

features of optical fields, are known by various terms encompassing these properties:

nodal points, phase singularities, wave dislocations, and optical vortices.

Optical vortices—also known as a screw dislocation or phase singularity, is an op-

tical field with a point of zero intensity. In optical vortices, light is twisted like a

corkscrew around its axis of travel—being cancelled each other out light waves at the

axis itself, producing a darkness at the center.

Phase singularities are a phenomenon in a physical field of at least two variables

(e.g., positions x and y), where the physical quantity represented by the field can

naturally be represented in a plane, such as the Argand plane of complex numbers. In

optics, this is naturally the complex amplitude of a scalar optical field, whose modulus

is the real amplitude and argument is the phase. For this field, we write

U = ρ exp[iχ] (4.1)

where ρ is the real amplitude, and χ is the phase.

Optical phase singularities have recently become a fashionable topic in optical

physics, partly through their relationship with beams carrying orbital angular momentum—

see (Dennis et al., 2009, Chp. 5) and references therein, and a range of techniques have

been developed to generate optical fields containing vortices. Vortices also occur natu-

rally in optical fields; in a random optical wave such as a speckle field, there are many

vortices interspersed between the bright speckles, and the correlation properties of the

vortex points are related to those of the field—see Dennis et al. (2009, Chp. 5) to

generation of vortex beams.

In this section we study a new type of optical vortex propagating through atmo-

spheric turbulence. This vortex beam has a π phase flip in the intensity amplitudes

between the two halves of the beam profile—It is called flipped mode and also known

as phase-flipped Gaussian beam.

A flipped mode is achieved with a Sagnac loop, see Fig. 4.1. Half of the laser

beam in the Sagnac interferometer is blocked with a knife edge, in order to create an

asymmetry between the interfering beams. The transverse amplitude of the counter-
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clockwise (CCW) propagating beam is π phase shifted relative to the clockwise (CW)

propagating beam because they each have experienced two transmissions and reflections

on the beam splitter, respectively (Delaubert et al., 2002).

Gaussian beam

PBS

M1

Knife

M2

M3

Phase-flipped Gaussian beam

Figure 4.1: Sagnac’s Interference: Creation of a phase-flipped Gaussian beam. The red
thick line denotes the TEM00 at the input, while the thin light-blue lines correspond to
the trajectory of each beam inside the loop. Finally at the output, the interferometer
generates the flipped Gaussian mode. It is composed by a pellicle beamsplitter (PBS),
and three mirrors (M1, M2, M3)

Both beams at the Sganac’s interferometer have to traverse the same optical path

length up to arrive the knife. Therefore, the beams opposite one another at the knife

have the same effective radius. This explain the dispositions of the mirrors at Fig. 4.1.
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4.2.1 Optical setup

The development of the experiment was under the frame described in the previous

Section. We propagate a collimated beam through a weak turbulence. Both Gaussian

beam and phase-flipped Gaussian beam are produced by He-Ne laser of 25mW with

a λ = 632.8nm (Melles Griot, 25-LHP-828-230 and 1/e2 beam diameter of 1.23mm).

The beam propagates and enters to the Sagnac interferometer. The interferometer is

composed by three mirrors and one beamsplitter of 50:50, which is a pellicle beamsplit-

ter (Edmund Optics, 39485) with no ghost images from second surface reflections and

no change in optical path length. We used a knife—Gillete’s razor, to obstruct the half

of the Gaussian beam. The CCW beam experimented only three reflections instead of

the five experienced by the CW beam—see photo 4.2. Photo 4.3 shows the two lobes

of the flipped mode, this picture presents the destructive interference at the center.

Figure 4.2: Photo of Sagnac loop. Figure 4.3: Lobes of the flipped mode.

Once the flipped Gaussian mode is created, it is propagated through an optical

turbulent channel of 43cm length. We used a camera CCD (Thorlabs, DCC1645C) for

the detection, the frame rate used was 25fps. The total path length until the CCD is

54cm.

To simulate the optical turbulence—see Section 2.1.1, we used a turbulator—made

it in France by Antonin Poisson. The relation between the structure constant C2
n and

the difference of temperature ∆T for this equipment is shown in Fig. 4.4. In this figure,
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the blue line fit equation is (values are given with a 95% of confidence).

C2
n(∆T ) = 1.12× 10−15∆T + 1.506× 10−14; R = 0.9046, (4.2)
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Figure 4.4: C2
n in function of ∆T . Characterization of the turbulator developed in

France.

The turbulator lets us to develop the experiment in a rank of difference of temper-

ature between 5◦C and 20◦C. For our experiment we measure 5◦C, 10◦C, 15◦C, and

20◦C of temperature difference.

4.2.2 Experimental results

In this section we analyze the data of the experiment taking into account the scintilla-

tion index equation—see Eq. (1.74) at Sec. 1.6.3.

Fig. 4.5 displays the experimental results for the scintillation of both, flipped mode

and Gaussian beam, at different instensities of turbulence. The structure parameter is

C2
n ∼ 10−14 for our experiment, corresponding to a weak turbulence. A experimental

mean reduction of 79% is found for the flipped mode scintillation compared to the

fluctuations of a Gaussian beam. Also, we can conclude that the intensity fluctuations

increase in accordance with the growth of temperature difference—for a Gaussian beam,
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Figure 4.5: Experimental scintillation index for flipped mode (PM) and Gaussian
beam (Gb), in relation to structure parameter—C2

n.

this result is given by the existent proportionality between the scintillation index and

the structure parameter—see Sec. 1.6.3. On the other hand, flipped mode’s scintillation

index is proportional to the change of temperatures as well. Despite of the existing

proportionality the curve seems constant, this is explained because the scintillation

index is around 80% lower than the intensity fluctuations of the Gaussian beam.

4.2.3 Theoretical approach

A phase-flipped Gaussian beam (PF) is the lowest-order traverse electromagnetic Gaussian-

beam wave (TEM00) which has a π phase jump between two halves of its beam pro-

file (Delaubert et al., 2002; Banerji, 2006). Phase singularities are features of scalar

optics and occur naturally only in (complex) scalar components of vectorial fields—see

Eq. (4.1). In the plane of the emitting aperture of the transmitter, z = 0, we propose

a representation of the field as

UPF
0 (r, 0) = exp

[
−
(

1

W 2
0

+ i
k

2F0

)
‖r‖2

]
exp[−i ∆ϕ(kx)] = U0(r, 0) exp[−iπH(kx)]

(4.3)

where W0 and F0 are respectively the effective beam radius and radius of curvature at

the input or transmitter plane, r = (x, y) are the coordinates in this plane (with origin
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at the beam center), and k = 2π/λ with wavelength λ. The term ∆ϕ(kx)—is the

phase χ at Eq. (4.1), it denotes the flipped phase which arises from the difference at

the tranverse length path by the two lobes—∆ϕ(kx) = knd(kx) = (λ/2)H(kx), where

nd(kx) is the optical path difference—d(kx) is the transverse path of the lobes, and

n is the refractive index of the air in our study—the Heaviside step function, H(·),
represents the phase flip. U0(r, 0) denotes the gaussian part of the field in the absence

of turbulence (the initial amplitud has been set to one). The field proposed in Eq. (4.3)

is displayed in Fig. 4.6.

x

UPF
0 (r, 0)

Figure 4.6: Electromagnetic field for a phase-flipped Gaussian beam.

Free-space propagation of this field across a distance z from the transmitter plane

is given by the Huygens-Fresnel principle (see Section 1.4.2). Straightforward, this

principle gives the unperturbed field at z = L—see Eq. (A.1) for details,

UPF
0 (r, z) = erf

[√
k

2iz
(Θ− iΛ)x

]
U0(r, z) , (4.4)

where

U0 (r, z) = (Θ− iΛ) exp

[
ikz +

ik

2z

(
Θ+ iΛ

)
‖r‖2

]
(4.5)
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represents a Gaussian beam at z defined by Θ = 1−Θ, Θ− iΛ = 1/(Θ0 + iΛ0), with

Θ0 = 1− z

F0

, and Λ0 =
2z

kW 2
0

(4.6)

the curvature and Fresnel parameters, respectively—erf(·) is the error function; Fig. 4.7
displays the Intensity of the field— The intensity at this figure, confirms the Photo 4.3.

Observe that the total power of the flipped Gaussian mode at the receiving plane is

π W 2
0 /2 [Watts]—see Eq. (A.12) for details.

x

IPF(r, z)

Figure 4.7: Intensity of the flipped Gaussian mode.

4.2.4 Scintillation index for a phase–flipped

Gaussian Beam

The stochastic phase-flipped Gaussian beam satisfies the stochastic Helmholtz equation.

The most well known classical approaches to solve this equation, when the refractive

index varies slowly with the position, are the extended Huygens-Fresnel Principle and

the Born and Rytov perturbation.

Previously to the scintillation index—see Sec. 1.6.3, we need to obtain the second-

order statistical moments—see Sec. 1.5.2. Henceforth, we focus in the spectral repre-

sentation of the field.
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The first-order spectral representation, ψ1(r, L), is connected to the first normal-

ized Born perturbation, Φ1(r, L). The former is represented by—see Eq. (1.45) and

Eq. (A.13),

ψPF
1 (r, L) ≃ ΦPF

1 (r, L) =
UPF
1 (r, L)

UPF
0 (r, L)

=

= ik

∫ L

0

dz

∫ ∫ ∞

−∞
dν(κ, z) exp

[
iγκ · r− iκ2γ

2k
(L− z)

] erf
[(

x
W

− (L−z)
kW

κx

)√
Θ0−iΛ0

iΛ0

]

erf
[

x
W

√
Θ0−iΛ0

iΛ0

]

(4.7)

Eq. (4.7) is written in function of the controllable parameters at the laboratory, Eq. (4.6);

while W is the spot size at the receiver, and the complex path amplitude weighting

parameter was given in Sec. 1.5.

Assuming that the beam propagates through a statistically homogeneous and isotropic

medium in each transverse plane, thereby the wave number κ is replaced by its scalar

κ = |κ|, that is Φn(κ) = Φn(κ). Moreover, we ensure statistical homogeneity of the

refractive index, see Eq. (A.20) and Eq. (A.21). These integrals have to be calculated

numerically.

4.3 Supercontinuum

The process known as supercontinuum (SC) generation occurs when narrow-band in-

cident pulses undergo extreme nonlinear spectral broadening to yield a broadband

spectrally continuous output, giving very often a white light (Dudley et al., 2006). In

this section, we briefly review the experimental setup for a supercontinuum light, to

propagating through optical turbulence. The results show a reduction in the irradiance

fluctuations induced by the random media, compared with a monochromatic beam.

4.3.1 Experimental setup

We propagate a collimated SC beam—1/e2 beam diameter of ∼ 9mm. SC has a spec-

trum extends from 400–450nm to 1800–1900nm, with 1064 nm of a pump wavelength

passively q-switched microchip laser—microship 10kW peak power, with a 50mW av-
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erage power and pulse duration around 800ps. In the fibre, the pulses are longer, due

to chromatic dispersion.

The optical turbulence is simulated by the turbulator made in France—we measure

5◦C, 10◦C, 15◦C, 17◦C, and 20◦C of temperature difference. The intensity of turbulence

is C2
n ∼ 10−14, given by the Eq. (4.2) and Fig. 4.4. At the receptor, we used a quadrant

detector (First Sensor, QP100−6SMD) for sensing the intensity—it is given by the sum

of the voltage at each quadrant. The quadrant detector is controlled by an Arduino

(MEGA2560)—sampling at 600 data per second. The total length path until the

detector is 45cm. We use some interferential filters to select specific wavelengths to

compare with the SC beam. The setup is showed in Photo 4.8,

Figure 4.8: Optical setup for supercontinuum.

4.3.2 Results

In this experiment we analyze the fluctuations of intensity at the quadrant detector—

see Eq. (1.74) at Sec. 1.6.3.

The Fig. 4.9 presents the experimental results. It displays the scintillation reduction

regarding different intensities of turbulence, the structure parameter is C2
n ∼ 10−14 for

our experiment, as in the Sec. 4.2.2. A mean reduction of 99%, 97%, and 96% shows the
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scintillation for a SC in relation to a monochromatic beam with wavelength of 600 nm,

700 nm, and 800 nm, respectively. From the Fig. 4.9 we conclude, the Gaussian beam’s

scintillation index goes towards to the scintillation index of a SC to the extent that the

wavelength goes to the size of the bandwidth—in number. That is, a monochromatic

beam with wavelengths close to the infrared (IR) senses less the detrimental effects of

the turbulence. Moreover, as in Secs. 1.6.3 and 4.2.2, the intensity fluctuations for a

Gaussian monochromatic beam are proportional to the index of refraction structure

constant. The more prominent result which validates the proportionality is given at

600nm, the increase in proportion to the temperature difference is kept for 700nm and

800nm. The same proportional growth is given for SC, which seems constant due to the

100% (roughly) of mean reduction in relation to the Gaussian monochormatic beam of

600nm.
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Figure 4.9: Experimental scintillation index for a Supercontinuum (SC) and Gaussian
beam (Gb), in relation to structure parameter—C2

n.
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We started Chp. 1 making a revision of the passive scalar fields, for instance, the

refractive index is among them: this is well-known in Atmospheric Optics. Later on,

we described theoretical spectrum models for optical turbulence and—see Sec. 1.2. In

addition, we review the significance of these studies by its application areas and its

detrimental effects over these subjects.

In the latter Secs. 1.5 we review the equation governing the propagation of a beam

through a random medium—stochastics Helmholtz equation, and the approximations

to solving it. All over this section the Markovian approximation is used. It has domi-

nated the Atmospheric Optics scenario among the classic models. It discriminates the

direction of propagation, z, from the remaining coordinates. Thus, we used this model

to calculate the effects of the turbulence over the beams. Thereafter, we explain some

important quantities which describe the behavior of a beam propagatiny in a turbulent

medium.

Afterwards, with the tools exposed in the first chapter we can advance to Chp. 2.

Therein, we proposed a new optical setup to investigate the parameters of the turbu-

lence, as well as the sampling rate for the optical turbulence. In the former experiment,

we studied the statistical quantities for two thin beams which propagate in a turbulent

atmosphere. The on– and off–plane covariances are given for non-Kolmogorov spec-

trum, under GO approximation with the aim of avoid the physical parameters of the

beams. The filtered covariances via Wavelet shown a good agreement—see Fig. 2.14,

with the theoretical results of Pérez and Funes (2012). Furthermore, we can deduce

that the size of the smallest eddies are strongly dependent of the Hurst exponent—see

Eq. (2.6).

On the other hand, the second experiment developed at this chapter, is based in

the analysis of temporal series via Wavelet. It allows to determinate the WES and
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its optimal sampling rate for the turbulence. The Wavelet analysis is independent of

the model used and it can be extended for any optical configuration. For instance,

in adaptive optics, Wavelet lets obtain the frequencies of the turbulence without any

previous knowledge of the structure function or the wind velocity profile. Generally,

information of the turbulence in any dynamic state (inertial, anysotropic, convective,

etc. . . ), strong or weak, can be studied.

Two main considerations should be used to determine an optimal sampling rate from

the WES: the bell-shaped energy distribution corresponding to the optical turbulence

must be completely visible for a given fs; and the lowest and highest bands, associated

to mechanical and electronic noise, should have a negligible signature in the spectrum.

Under these conditions we can obtain a practical estimation of the optimal sampling

rate without losing any information regarding the original dynamics. The advantage

of this method is twofold. It permits to isolate noise from signal and be applied

indistinctly to both stationary and non-stationary series. Finally, even though this

approach is highly qualitative, it has proven to be fast and effective; therefore, our

future objective is to improve it by using more complex wavelet transforms such as the

wavelet packets Mallat (2009). This will allow us to identify the dominant frequencies

in a more accurate way, and reduce any possible subjectivity in the optimal sample

rate estimation.

In Chp. 3 we have developed an experiment which involves evapotranspiration by

remote sensing, where we measured beyond the fluxes—see Sec. 3.3. We also measured

the influence of intensity of turbulence to the evapotranspiration through the rela-

tionship between the structure constante of temperature C2
T and the refractive index

structure parameter C2
n. Good agreements are found between the SIRTA’s instruments

and our device to estimate evapotranspiration—see Fig. 3.9, we compare the results

with FAO Penman-Monteith method as a reference for evapotranspiration (Zotarelli

et al., 2010).

The values of C2
n, obtained in this chapter, differ mainly because of the methods

used. The Eq. (1.78) is obtained under Kolmogorov spectrum which does not take

into account the scales of turbulence, and the “beam wander” method—see Eq. (1.71)

is obtained considering the size of the eddies. Therefore, we applied the exponential

spectrum model; of course, beam wandering is primarily an effect due to the refraction

of large scales which are reflected in this spectrum. These differences affecting the
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values of the refractive index structure parameter—see Fig. 3.6, the superposition of

error bars in this figure show a good agreement.

On the other hand, the energy balance equation is explained by “The Surface Energy

Balance Index (SEBI)” concept (Colin et al., 2006; Faivre, 2014).

Figure 4.10: The SEBI concept, illustrated in terms of relationship between the land
surface albedo—α, and the surface air temperature difference. Figure from Faivre
(2014).

In Fig. 4.10, ri is the internal resistance (or surface, or stomatal), which is reg-

ulated by soil water availability. Since the generic term of internal resistance apply

for both bare soil and vegetation, it avoids to differentiate soil evaporation from plant

transpiration. The range of T0−Ta corresponds with an hypothetical change in evapo-

transpiration from zero to potential rate at constant surface reflectance and roughness.

The upper limit (i.e. the dry boundary) of surface-air temperature difference is a

virtual temperature difference that would occur if the land surface becomes perfectly

dry under the same meteorological and surface structure conditions of the actual case.

That is, no water is evaporated from the surface. In addition, the low limit (i.e. the

wet boundary) of surface-air temperature difference is another virtual temperature

difference that would attain if the land surface is wet and evaporates at its potential

rate under the same meteorological and surface structure conditions as the actual case.
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Fig. 4.10 explains the Fig. 3.8, when the evapotranspiration λE increases the water

in the atmospere also grows, to cooling the temperature. In addition, the sensible heat

flux decreases because that the difference of temperature is reduced—see Sec. 3.3.1.

The deployment of the device was successful and measures have been carried out

over a period of about 5 hours. Some minimal difficulties were encountered in beam

alignment, probably due to transport material.

In addition, It is well known that the atmospheric factors are the most serious disad-

vantage to FSO because they can limit operating availability and/or cause distortions

of the carrier wave that are uncommon to RF systems. Power losses associated with

laser beam radiation in the visible range can be caused by absorption and scattering of

the constituent gases and particulates of the atmosphere. In addition, optical turbu-

lence resulting from small temperature variations in the atmosphere gives rise to further

power losses from spreading of the beam spot radius beyond that due to diffraction

alone, and to temporal and spatial fluctuations of the laser beam known as scintillation.

Small pointing errors can easily lead to unacceptable fade levels owing to a Gaussian

roll-off in the mean irradiance profile combined with large off-axis scintillation. Fi-

nally, In the latter Chp. 4, we presented a few unfinished works which are focused in

this frame. At Secs. 4.2 and 4.3, we have studied experimentally the propagation of a

phase-flipped Gaussian beam through optical turbulence and a supercontinuum beam,

finding them as a good transmitter with a reduction on its fluctuations of intensity.

For the former, the reduction is explained from the nature of the optical vortex, for in-

stance, its scintillation index corresponds only a radial fluctuations of intensity, where

there is not a longitudinal scintillation—analytical solution given under ideal condition

(These results have been presented in SPIE. REMOTE SENSING, Centre de

Congrès Pierre Baudis., 21 - 24 September 2015 in Toulouse, France). This vor-

tex beam is presented as a new transmitter for experiments which involve optical wave

propagation, improving the transmission of information through the atmosphere and

the performance of various optical communication system as measured by the BER,

e.g., in case of bidirectional earth-space transmission, uplink, downlink and horizontal

paths. The latter Fig. 4.5 showed a experimental decreasing for the scintillation index

of a flipped mode, regarding the Gaussian beam. Same behavior is observed for a su-

percontinumm in according with the scintillation index for a Gaussian beam—Fig. 4.9.

This result can be explained (maybe) due to the contribution of all the wavelengths, i.e.
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for a SC beam, the multi-wavelengths balanced out the fluctuation for each wavelength

because of the continuity existent between the wavelengths, as a result, reduces the in-

tensity fluctuations. Thereby, supercontinuum light is a high-performance transmitter

through optical turbulence for all the propagation path—its theory still in progress.

All the latter sections at the Chp. 4, are between the main goals of this year.



Appendix A

In Sec. 4.2.3 we have developed the physical propagation through atmospheric turbu-

lence of a special beam, which is derivative it from a Gaussian beam, currently called

flipped mode. Herein, we review in detail the equations for its free space propagation.

Propagation into half-space

The complex amplitude for Eq. (4.3) at propagation distance z from the source is given

by Huygens-Fresnel integral

UPF
0 (r, z) = −2ik

∫ ∞

−∞

∫ ∞

−∞
G(s, r, z)UPF

0 (s, 0) d2s

where UPF
0 (s, 0) is the optical wave for a flipped Gaussian mode at the source plane

and G(s, r, z) is the free-space Green’s function under the paraxial approximation, thus

UPF
0 (r, z) =

ik

2πz
exp

[
ikz +

ik

2z
r2
]
×

×
∫ ∞

−∞

∫ ∞

−∞
exp

[
− ik
z
s · r

]
exp

[
ik

2z
(1 + iα0z) s

2

]
exp[−iπH(ksx)] d

2s

(A.1)

we introduced the complex parameter α0, which is related to the spot size and phase

front radius of curvature according to α0 = (2/kW 2
0 )+ (i/F0) in [m−1]. The integral of

Eq. (A.1) is calculated in rectangular coordinates. By the “complete squares” method

at each exponential, yields a general expression

I ≡ exp[−ia2u/(4b)]√
b

∫ t2

t1

exp
[
it2
]
dt (A.2)
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where

au ≡ ku

z
, u = x, y.

b ≡ k

2z
(1 + iα0z) ,

t ≡
√
bsu −

au

2
√
b
.

From the integral in Gradshteyn and Ryzhik (2007, Functional relations 8.256),

√
i

2
erf

(
z√
i

)
=

2√
2π

∫ z

0

exp[it2] dt (A.3)

Eq. (A.3) features the error function—erf(·), or also called probability integral. Straight-

forward, Eq. (A.1) becomes

UPF
0 (x, y, z) =

i exp[ikz]

(1 + iα0z)
exp

[
ik

2z

(
iα0z

1 + iα0z

)(
x2 + y2

)]
erfi

[
x

√
ik

2z(1 + iα0z)

]
=

= U0(x, y, z)erf

[
x

√
k

2iz
(Θ− iΛ)

]

(A.4)

we applied the transformation of the imaginary error function—erfi(·), and the following

equalities

i erfi(x) = erf(ix) (A.5)

iα0z

1 + iα0z
= Θ+ iΛ (A.6)

1

1 + iα0z
=

1

Θ0 + iΛ0

= Θ− iΛ (A.7)

The Eq. (A.4) corresponds to Eq. (4.4) at Sec. 4.2.3, and we can identify clearly the

electric field for a Gaussian beam wave at distance z—Eq. (4.5).
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Phase–flipped Gaussian beam intensity

The irradiance or intensity of the optical wave is the squared magnitude of the field,

IPF (r, z) = |UPF
0 (r, z)|2 = UPF

0 (r, z) · U∗PF
0 (r, z) =

=
4

π
I0(0, z) exp

[
−2y2

W 2

]
F

[
x

√
ik

2z
(Θ− iΛ)

]
F

[
x

√
−ik
2z

(Θ + iΛ)

]
(A.8)

where W = W0

√
Θ2

0 + Λ2
0 is the free space beam radius, I0(0, z) is the on-axis irradi-

ance, and F(x) denotes the Dawson’s Integral which is related to the imaginary error

function

F(x) =

√
π

2
exp
[
−x2

]
erfi(x)

The total power is given by

P =

∫ ∞

−∞

∫ ∞
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]
dx

(A.9)

the integral in direction x is computed by the software Mathematica

∫ ∞

−∞
F

[
x

√
ik

2z
(Θ− iΛ)

]
F

[
x

√
−ik
2z

(Θ + iΛ)

]
dx =

=
π3/2

4
√

iΛ
Θ+iΛ

√
k
z
(Λ− iΘ)

(A.10)

and in direction y ∫ ∞

−∞
exp

[
−2y2

W 2

]
dy =

√
π

2
W (A.11)

these integrals simplify the Eq. (A.9)

P =

∫ ∞

−∞

∫ ∞

−∞
IPF (r, z) d2r =

π

2
W 2

0 (A.12)
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The result correspond to the power of a Gaussian beam and there is no loss of power,

as we expected.

Statistical moments for a flipped mode

To review the free-space propagation of the flipped Gaussian mode under Rytov theory,

we need to review the spectral representations for Born and Rytov perturbations—see

Sec. 1.5. The stochastic optical field at distance z = L from the transmitter will be rep-

resented by UPF (r, L) = UPF
0 (r, L) exp[Ψ(r, L)], where UPF

0 (r, L) is the unperturbed—

unscattered field, given by Eq. (A.4) and Ψ(r, L) is the total complex phase perturba-

tion of the field due to random inhomogeneities along the propagation path, which is

assumed as a Gaussian random variable under weak-turbulence condition. Currently,

the first-order Born perturbation was given in Sec. 1.5,

ΦPF
1 (r, L) =

UPF
1 (r, L)

UPF
0 (r, L)

=

=
k2

2π

∫ L

0

dz

∫ ∫ ∞

−∞
d2s exp

[
ik(L− z) +

ik|s− r|2
2(L− z)

]
UPF
0 (s, z)

UPF
0 (r, L)

n1(s, z)

(L− z)
,

(A.13)

and the first-order spectral representation for a phase-flipped Gaussian beam will be

written with the help of the two-dimensional Riemann-Stieltjes integral form for the

index-of-refraction fluctuations—see Eq. (1.49) at Sec. 1.5. Eq. (A.13) in rectangular

coordinates, thus

ΦPF
1 (x, y, L) =

=
k2

2π

1

erf
[
x
√

k
2iL

(Θ(L)− iΛ(L))
]
∫ L

0

dz

∫ ∞

−∞

∫ ∞

−∞

dν(κx, κy, z)

γ(L− z)
exp

[
i
kγ(x2 + y2)

2(L− z)

]
×

×
∫ ∞

−∞
exp

[
i

ks2x
2(L− z)γ

+ isx

(
κx −

kx

L− z

)]
erf

[
sx

√
k

2iz
(Θ(z)− iΛ(z))

]
dsx×

×
∫ ∞

−∞
exp

[
i

ks2y
2(L− z)γ

+ isy

(
κy −

ky

L− z

)]
dsy, (A.14)
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From the integral in Gradshteyn and Ryzhik (2007, Functional relations 8.259, Eq. 1),

will resolving the integral in direction x

∫ ∞

−∞
exp
[
−px2

]
erf[a+ bx] dx =

√
π

p
erf

[
a
√
p√

b2 + p

]
, Re p > 0, a, b real. (A.15)

The equation above is an improper integral and its functions are entire (analytical

without singularities), by virtue of Cauchy Integral theorem the integral in complex

plane is the same as in the Real line, i.e. for a and b complex, the integral remains

invariant. The reason is that as a result of shifting the integration countour into the

complex plane no singularities are encountered. On the other hand, for direction y,

the “complete squares” method yields a general expression

∫ ∞

−∞
exp
[
At2 +Bt

]
dt =

exp[−B2/(4A)]
√
π√

−A
, Re A < 0. (A.16)

These integrals allow to write the first-order spectral representation as

ΦPF
1 (r, L) =

UPF
1 (r, L)

UPF
0 (r, L)

=

= ik

∫ L

0

dz

∫ ∫ ∞

−∞
dν(κ, z) exp

[
iγκ · r− iκ2γ

2k
(L− z)

] erf
[(

x
W

− (L−z)
kW

κx

)√
Θ0−iΛ0

iΛ0

]

erf
[

x
W

√
Θ0−iΛ0

iΛ0

]

(A.17)

where we used r = (x, y) and the parameter γ—from Eq. (1.53) at Sec. 1.5. In addition,

the second order Born perturbation is defined by Eq. (1.46). The substitution of

Eqs. (1.49), (A.17), (A.15) and (A.16), yield the second-order spectral representation
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for a flipped mode

ΦPF
2 (r, L) =

UPF
2 (r, L)

UPF
0 (r, L)

= −k2
∫ L

0

dz

∫ z

0

dz′
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
dν(κ, z)dν(κ′, z′)×

× exp

[
iγ(κ+ γ′κ′) · r− iγ|κ+ γ′κ′|2

2k
(L− z)− iκ′2γ′

2k
(z − z′)

]
×

×
erf
[(

x
W

− (L−z)
kW

κx −
(

z−z′

γ(L−z)
+ γ′

)
(L−z)
kW

κ′x

)√
Θ0−iΛ0

iΛ0

]

erf
[

x
W

√
Θ0−iΛ0

iΛ0

] , (A.18)

with γ′ = (1 + iα0z
′)/(1 + iα0z).

Carrying on, we compute the statistical moments defined in Sec. 1.5.2. For the

case when n1(R) is delta correlated in the direction of propagation—often referred

to as the Markov approximation, we have κz = 0 and the power spectrum reduces

to Φn(κ) = Φn(κx, κy, 0). Consequently, we introduce the two-dimensional spectral

density Fn(κ, z) defined by the transform Fourier relation,

2π Φn(κ) =

∫ ∞

−∞
Fn(κ, z)dz. (A.19)

we have assumed a medium statistically homogeneous so each quantity are a function

of only the difference R1 − R2. In addition, we assume that the beam propagates

through an isotropic random medium in each transverse plane, then we can replace κ

by its scalar magnitude κ, that is Φn(κ) = Φn(κ).

Next, to ensure statistical homogeneity of the refractive index, we have to write for

E2(r1, r2)—see Eq. (1.59),

〈dν(κ, z)dν∗(κ′, z′)〉 = Fn(κ, |z − z′|)δ(κ− κ
′)d2κd2κ′, (A.20)

where δ is the delta function—δ(κ ± κ
′) = δ(κx ± κ′x)δ(κy ± κ′y), and based on

the fact that n1(s, L) is a real function; the “amplitudes” dν(κ, z) for E1(r, r) and

E3(r1, r2)—see Eq. (1.58) and Eq. (1.60), satisfy the relation (Andrews and Phillips,
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1998, Sec. 5.4.3)

〈dν(κ, z)dν(κ′, z′)〉 = 〈dν(κ, z)dν∗(−κ
′, z′)〉

= Fn(κ, |z − z′|)δ(κ+ κ
′)d2κd2κ′,

(A.21)

with the two-dimensional spectral density of the index of refraction—Fn(κ, |z−z′|) ≥ 0

(Tatarsk̆ı, 1971, Chp. 1—Sec. 4).
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Wang, Fei, Yangjian Cai, Halil T. Eyyuboğlu and Yahya Baykal (2012), ‘Twist phase-

induced reduction in scintillation of a partially coherent beam in turbulent atmo-

sphere’, Opt. Lett. 37(2), 184–186.

Wang, Ting-i., G. R. Ochs and S. F. Clifford (1978), ‘A saturation-resistant optical

scintillometer to measure c2n.’, J. Opt. Soc. Am. 68, 334–338.

Zotarelli, Lincoln, Michael D. Dukes, Consuelo C. Romero, Kati W. Migliaccio and

Kelly T. Morgan (2010), ‘Step by step calculation of the penman-monteith evapo-

transpiration (fao-56 method).’, Agricultural and Biological Engineering Department,

UF/IFAS Extension. .



	

 
  

 
 

 
Experiments for Laser Beam Propagation through Optical Turbulence: 
Development, Analysis and Applications. 
 Résumé 

 
La turbulence atmosphérique générée par une 
différence de température entre la surface de la Terre et 
l'atmosphère, provoque des effets sur les ondes 
optiques et présente un grand intérêt pour les 
scientifiques depuis de nombreuses années. Les 
distorsions du front d'onde optique induites par le 
résultat de la turbulence atmosphérique génèrent un 
étalement du faisceau au-delà de celui dû à la 
diffraction pur, des variations aléatoires de la position du 
centre de gravité du faisceau, et une répartition 
aléatoire de l'énergie du faisceau qui conduit à des 
fluctuations de l’irradiance. 
Ces effets ont des conséquences sur l'imagerie 
astronomique, les communications optiques en espace 
libre (OFS), la télédétection, la communication par 
satellite laser, l’imagerie astronomique, l’optique 
adaptative, la désignation de cible, le LiDAR 
hyperspectral, et d'autres applications qui nécessitent la 
transmission d'ondes optiques dans l'atmosphère sur 
une grande portée. 
Tout au long de cette thèse, nous introduisons le 
concept général de la turbulence, en se concentrant sur 
la turbulence atmosphérique. Diverses expériences ont 
été réalisées, par exemple, la propagation de deux 
minces faisceaux parallèles dans les conditions de 
l'optique géométrique pour l'étude des paramètres de 
turbulence optiques. La même configuration optique a 
été utilisé pour étudier la meilleure fréquence 
d'échantillonnage pour la turbulence optique. En outre, 
nous avons indirectement mesuré l'évapotranspiration, 
pour laquelle nous tenons compte des fluctuations de 
l'indice de réfraction de la turbulence à travers les 
variations d’intensités du faisceau laser. Enfin, certaines 
expériences qui considèrent de nouveau émetteur ont 
également été développées, tel que le saut de mode 
montre une réduction expérimentale des fluctuations de 
l'irradiance induite par la turbulence. Ce faisceau a une 
meilleure performance comme émetteur d'informations 
pour la communication optique en espace libre. 
 
Mots clés 
Turbulence atmosphérique – propagation d’un 
faisceau laser, processus stochastiques – 
Evapotranspiration. 

 

Abstract 
 
Atmospheric turbulence, generated by a differential 
temperature between the Earth's surface and the 
atmosphere, causes effects on optical waves that have 
been of great interest to scientists for many years. Wave 
front distortions in the optical wave induced by 
atmospheric turbulence result in a spreading of the 
beam beyond that due to pure diffraction, random 
variations of the position of the beam centroid, and a 
random redistribution of the beam energy within a cross 
section of the beam leading to irradiance fluctuations. 
Those effects have far-reaching consequences on 
astronomical imaging, free space optics (FSO) 
communications, remote sensing, laser satellite 
communication, astronomical imaging, adaptive optics, 
target designation, hyperspectral LiDAR, and other 
applications that require the transmission of optical 
waves through the atmosphere.  
Throughout this thesis, we introduce a globally concept 
of turbulence, focusing in atmospheric turbulence. 
Diverse experiments have been carried out, for 
instance, the propagation of two parallel thin beams 
under geometrical optics condition for studying the 
parameters of optical turbulence, and besides, the same 
optical configuration was used to investigate the best 
sampling rate for optical turbulence. Furthermore, we 
have measured evapotranspiration by remote sensing, 
in which we have heeded the fluctuations of the 
refractive index through the intensities of the turbulence. 
Finally, experiments which involve a new beam are also 
developed, such as phase-flipped Gaussian beam. This 
beam shows an experimental reduction on its irradiance 
fluctuations induced by the turbulence, which means 
that it has a high performance in optical 
communications. The experimental reduction 
aforementioned is proved through the comparison with 
the theory developed. 
  
Key Words 
Atmospheric Turbulence. Laser Beam Propagation. 
Stochastic Process and Statistics. Turbulence. 
Evapotranspiration. 
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