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In this information era, we witness the emergence of Cloud Computing as the
revolutionized force for the IT industry. Taking advantage of the abundant resources
combined with the rapid development of web technologies, Cloud Computing has
realized the idea of "computing as a utility". Today, users can access different services
powered by the cloud literally everywhere from navigating with Google Maps, and
watching movies on-demand with Netflix, to having a teleconference with business
partners halfway around the world using Skype. All of these services are made possible
by having heavy computation handled by the cloud. Moreover, start-ups use the cloud
infrastructures to materialize their ideas without the hassle of having to build and
manage their own physical infrastructure.

One key technology in the development of Cloud Computing is system virtualiza-
tion. System virtualization can be thought of as the abstraction of a physical object.
Such abstraction allows the split of physical resources into groups of different sizes in
order to share them between different "virtualized environments". This way of sharing
resources among different tenants is a critical capability to utilize physical resources
effectively on the massive scale of a cloud system. In Cloud Computing, different
types of virtualization technologies have been proposed but Virtual Machines (VMs)
and Containers are the two most important ones. A VM is the combination of differ-
ent physical resources under a layer of abstraction on which users can perform their
tasks. Meanwhile, containers introduce a lighter and more efficient approach to the
virtualization of the physical resources [5, 6, 7, 8, 9, 10]. Without diving into details
for the moment, all these studies presented the same conclusion: the performance
of a container-based application is close to that of the bare metal, while there was
a significant performance degradation when running the same application in a VM,
especially for VM I/O accesses.

Among key operations of a cloud resource management system, the provisioning
process is in charge of deploying and starting a VM (or a container as fast as possible).
It is composed of three complex stages: (i) after receiving the provisioning order for a
machine, a scheduler identifies an appropriate physical node to host the VM/container;
(ii) the image for that machine will be transferred from a repository to the designated
node; (iii) and finally, the requested VM/container is booted. To solve the resource
scheduling problem of the first stage, several approaches have been proposed over the
years with different scheduling policies according to the expected objective (energy
saving, QoS guarantee, etc.,) and various methodologies in order to reduce as much
as possible the computation time [11, 12]. Depending on the properties of the client’s
request, the availability of physical resources and the scheduling algorithm criteria,
the duration of the scheduling operation can vary. For the image retrieval, i.e., the
second stage, most cloud solutions leverage a centralized approach where VM/container
images are transferred from a centralized repository to the physical host that will be in
charge of hosting the “virtualized environment”. To deal with performance penalties
that raises such a centralized approach, several works have focused on improving the
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transfer of these images over the network, leveraging techniques such as peer-to-peer
image transferring, deduplication or caching method, etc., [13, 14, 15, 16, 17]. The
last stage consists of turning on the VM/container itself. It is noteworthy that people
usually ignore the time to perform a VM/container boot process because they assume
that this duration is negligible with respect to the two first ones and constant when the
environment is ready (i.e., the image is already present on the host). However, in reality,
users may have to wait several minutes to get a new VM [18] in most public IaaS clouds
such as Amazon EC2, Microsoft Azure or RackSpace. Such long startup durations have
a negative impact when additional VMs/containers are mandatory to handle a burst
of incoming requests: the longer is the boot duration, the bigger is the economic loss.
Under resource contentions, the boot time of one VM can take up to a few minutes
to finish. There is also a misconception for the boot time of containers. Although
containers are said to be ’instantly’ ready, they may also suffer from the interference
produced by other co-located “virtualized environments”. In some cases, the boot time
of containers can be as long as that of VMs.

In this thesis, we show how it is critical to limit the interference that can occur when
booting a VM or a container. More precisely, we present a complete performance anal-
ysis of the VM/container boot process, which shows how co-located VMs/containers
impact the boot duration of a new VM or container on the same compute node. Lever-
aging this study, we propose a novel solution to speed up the boot process of both a VM
and a container, which in return improves the efficiency of the provisioning process as a
whole.

Our contributions in this thesis are as follows:

— We conducted thousands of experiments on the boot time of VMs, containers
and nested containers (i.e., a container running inside a VM). More precisely,
we performed, in a software-defined manner, more than 14.400 experiments
during 500 hours in order to analyze how does the boot time of VMs and con-
tainers react. The gathered results show that the time to perform boot process
is not only affected by the co-workloads and the number of simultaneously
deployed VMs/containers but also the parameters that are used to configure
VMs/containers. This study has been published in a research report [19]. Be-
sides, we leveraged this analysis to propose a VM boot time model [20]. The
motivation of this work was to propose an accurate model for VM operations
when researchers use cloud simulation tools to evaluate the characteristics of
real cloud systems. Because this proposed model is not the main contribution of
the thesis, I chose to present in the Appendix section.

— In order to mitigate the cost of the boot process, we designed YOLO (You

Only Load Once), a mechanism that minimizes the number of I/O operations
generated during a VM/container boot process. YOLO relies on the boot image

abstraction which contains all the necessary data from a VM/Container image
to perform a boot process. These boot images are stored on a fast access storage
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device such as memory or a dedicated SSD on each compute node. Whenever
a VM/container is booted, YOLO intercepts all read accesses and serves them
directly. The improvements YOLO delivers have been presented in details in a
research report [21] and a shorter version of this report will be presented during
the next Euro-Par conference in August 2019 [22].

The rest of this thesis is organized in 3 parts and 7 chapters. Part II focuses
on explaining Cloud Computing. In Chapter 1, a brief history of Utility Computing
from the time of mainframes to the current cloud is presented. Also, we introduce
the virtualization technique as a key element in Cloud Computing and explain further
the virtualization concept from the hardware virtualization to the containerization.
Chapter 2 focuses on the VM/container provisioning processes. Contradiction to many
beliefs, many factors can damage the actual boot process time of VMs or containers.
Therefore, it is interesting to understand the current issues and solutions to this process.
Furthermore, Chapter 3 presents the architectural detail and the workflow of the two
widely used virtualization solutions: QEMU-KVM and Docker which were used in all
experiments of our work.

Part III of this thesis describes the contributions related to the boot time optimiza-
tion. Chapter 4 provides a comprehensive study on the boot time of VMs and containers
under high contention scenarios. With this analysis, we understand how different factors
in a system affect the boot time. In Chapter 5, we present and evaluate our novel method
to improve the boot time, called YOLO, by mitigating the I/O contention during the
boot process.

In Part IV, we conclude the thesis in Chapter 6 and then we give some directions
for future research in Chapter 7.
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In this chapter, we discuss the transformation of utility computing from the early

days mainframes to the current day cloud computing era. The emerging of cloud

computing is the result of a chain of improvements of technologies in many aspects

of computing technologies. The core technology lies in the middle of the cloud is the

virtualization, which comes in many shapes and forms. We also discuss the overall

overhead of these virtualization techniques on the system.
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10 Chapter 1. Utility Computing

1.1 Utility Computing: from Mainframes to Cloud Com-

puting Solutions

Since the invention of digital computers, computing technologies have changed
dramatically in the past couple of decades. From the 1950s to the 1970s, mainframe
computers were the main computing technology. At that time, mainframes were
extremely expensive and only a few organizations could access them. Users connected
to mainframes through terminals which did not have any real processing power. This
sharing scheme allowed multiple people to harness the centralized processing power
of mainframes, and conceptually speaking, this could be considered as an ancestor to
cloud computing.

With the advancement of networking technologies, computers are interconnected
with each others. As the result, in the late 1970s, a new paradigm of computing was born
called distributed computing. The idea of connecting and distributing the computation
over networks of computers solved many problems in an efficient way, even better than
a single supercomputer. The arrival of the Internet truly brought distributed computing
to the global scale during the 1990s. Computing powers kept increasing by many orders
of magnitude while being available and affordable. This motivated the evolution in the
way we provided computing as an utility as predicted by John McCarthy: "computation
may someday be organized as a public utility" [23]. His speech at the MIT’s centennial
celebration in 1961 showed his vision of what we now know as Cloud Computing, as
if he had the ability to glimpse the future. The term Grid Computing showed up in
the 1990s as an analogy to the electric power grid, showing that computing power is
as easy to access as an electric power in the grid. Many efforts have been made in the
scientific community to make use of the under-utilized resources from a network of
geographically dispersed computers. Grid was originally developed as a solution to
provide these resources to researchers from everywhere.

Cloud computing emerged as a solution for making computing power easily ac-
cessible to everyone with different needs, at the affordable prices. A graphic designer
can request a high specifications "machine" with high-end graphic cards to handle 3D
rendering tasks in a straightforward fashion. A researcher can rent multiple GPUs to
train on the cloud a deep neural network model on over a million of images to classify
images for a small amount of money [24]. We used to perform these tasks with our own
custom built physical machines, and now we can simply request the cloud provider for
the resources to run them.

Supercomputers and clusters were created to fulfill the requirements to have mas-
sive computing power for a specific objective (they were used for climate research,
molecular modeling, or studying earthquakes). Then, Cloud Computing evolved out
of Grid Computing to deliver abstract resources and services while Grid Computing
focuses on an infrastructure to deliver storage and compute resources [1]. Both being
varied distributed systems, Cloud Computing indeed relies on the infrastructure of Grid
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Computing. We started to see an extension of the cloud model to the HPC area as the
convergence of the two models (Figure 1.1).

Figure 1.1 – Overview of Grid and Cloud computing, updated version of [1]

There have been many proposed definitions both academically and industrially for
cloud computing. An informal definition for cloud computing describes it as a way
to deliver computing services over the Internet (“the cloud”). However, a definition
proposed by the American National Institute of Standards and Technology (U.S. NIST)
in 2009 included major common elements that are widely used in the cloud computing
community. The definition given by NIST [25] is as follows:

"Cloud computing is a model for enabling ubiquitous, convenient, on-
demand network access to a shared pool of configurable computing re-
sources (e.g., networks, servers, storage, applications, and services) that
can be rapidly provisioned and released with minimal management effort
or service provider interaction."

Like mechanical machines powering the industrial evolution that transforming the
human society in the industrial age, cloud computing is the engine for today worldwide
information era, providing solid infrastructure with new opportunities to disrupt various
industries. Small businesses and young start-ups make use of the capabilities of cloud
computing to realize their products. Netflix disrupts the video renting market by
providing the online movie streaming service using Amazon Web Services (AWS) for
the infrastructure. Google has just announced the new cloud gaming service called
Stadia in which the cloud renders the game at the server side, and gamers don’t need to
own a dedicated gaming console or high-end PC to play 1. Users can easily stream the

1. https://www.blog.google/products/stadia/stadia-a-new-way-to-play/
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12 Chapter 1. Utility Computing

game just like they do with the movie or music. We live in the world that almost every
modern services are powered by the Cloud.

1.2 Virtualization System Technologies: A Key Element

Virtualization technologies play an essential role in Cloud Computing infrastructures.
Conceptually, virtualization is a method to consolidate different types of resources and
allow multiple users to access them through a "virtual representation" of those resources.
In other words, virtualization provides an abstraction layer over actual underlying
resources, it creates a virtual version of a resource (like memory, storage, processor,
etc.), a service, or data. A more formal definition is provided by Susanta et. al. [26]:

"Virtualization is a technology that combines or divides computing re-
sources to present one or many operating environments using method-
ologies like hardware and software partitioning or aggregation, partial or
complete machine simulation, emulation, time-sharing, and many others"

The concept of virtualization dates back to the 1960s, with solutions to allow
multiple users to run programs on the same mainframe by using virtual memories and
paging techniques. Furthermore, as the cloud emerges in recent years, virtualization has
matured rapidly and has been applied to various aspect of computing (CPU, memory,
storage, network). There are basically countless usage patterns of users on a cloud
system. Some want to have as many memory as possible in which they will use as a
cache for the conntent of their website, or to perform data analytics on big data using
in-memory computing framework (Spark). Some want to train a machine translation
model using a cluster of GPUs in a short amount of time without having to buy and
setup the cluster themselves. Some don’t even want to have a whole VM but only the
capability for running custom functions at scale. Virtualization of those resources is
the solution to share and manage all the accesses to the underlying machines in a cloud
system in order to satisfy the diversified requests from users.

Virtualization allows abstraction and isolation of lower level functionalities and
underlying hardware. This enables portability of higher level functions and sharing
and/or aggregation of the physical resources. The different virtualization approaches can
be categorized into: application virtualization, desktop virtualization, data Virtualiza-
tion, network Virtualization, storage Virtualization, hardware Virtualization, OS-level
Virtualization.

In this thesis, we study two virtualization technologies that has become widely used:
hardware Virtualization (virtual machines) and OS-level Virtualization (containers).
We provide the background of these two technologies in the next sections.

12



1.3. Hardware Virtualization 13

1.3 Hardware Virtualization

Hardware Virtualization enables us to run multiple operating systems on a single
physical computer by creating virtual machines that act like real computers with an
operating system inside. Software and applications executed on the virtual machines
are separated from the underlying hardware resources. Today, hardware virtualiza-
tion is often called server virtualization, hypervisor-based virtualization or, simply,
virtualization.

(a) Traditional architecture (b) Virtual architecture

Figure 1.2 – Traditional and Virtual Architecture

Figure 1.2 shows the model of hardware virtualization, where the essential difference
to the traditional one is a virtualization layer. In state-of-the-art virtualization systems,
this layer is a software module called a hypervisor or also known as Virtual Machine
Monitor (VMM), which works as an arbiter between a VM’s virtual devices and the
underlying hardware. Hypervisor creates a virtual platform on a host computer, where
multiple operating systems, which are either multiple instances of the same or different
operating systems, can share the hardware resources offered by the host. This virtual
environment is not only providing a sharing resources but also performance isolation,
and security between running VMs. However, having to consult the hypervisor each
time a VM makes a privileged call introduces a high overhead in the VM performance
as the hypervisor must be brought online to process each request. This overhead can be
mitigated depending on different virtualization mechanisms. Currently, we have two
approaches to provide hardware virtualization: software-emulated virtualization and
hardware-assisted virtualization.

1.3.1 Types of Hardware Virtualization

Software-Emulated Virtualization

In this solution, the hypervisor is responsible for the instruction emulation from
VMs to physical devices. There are two distinct types of this virtualization scheme: full
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14 Chapter 1. Utility Computing

virtualization and para-virtualization.
Full Virtualization is where the hypervisor holds the responsibility for the emula-

tion of the instruction from VMs to physical devices. In other words, a virtual machine
can run with an unmodified guest operating system (using the same instruction set as
the host machine) and it is completely isolated. A hypervisor emulates the physical
hardware by translating all instructions from the guest OS to the underlying hardware.
Full virtualization brings the compatibility and flexibility as a VM can run any OS with
corresponding drivers and does not require any specific hardware, it also offers the
best isolation and security for the virtual machines. However, this method has a bad
performance due to the emulation of the hardware devices.

Figure 1.3 – The binary translation approach to x86 virtualization [2]

Figure 1.3 depicts the way a hypervisor combines the binary translation and the
direct execution techniques to achieve full virtualization for CPU access. While a
normal user level code is directly executed on the processor for high performance, a
hypervisor has to translate kernel code to replace non-virtualizable instructions with new
sequences of instructions that have the intended effect on the virtual hardware. Each
hypervisor provides each VM with all the services of the physical system, including a
virtual BIOS, virtual devices and virtualized memory management.

Para-virtualization is different compared to full virtualization because the hyper-
visor does not need to emulate the hardware for the VM. The VM is aware that it is
running in a virtualized environment and it access hardware devices “directly” through
special drivers, obtaining a better performance when compared to full virtualization.
However, the guest OS kernel must be modified in order to provide new system calls.
This modification increases the performance because it reduces the CPU consumption
but, at the same time, it reduces the security and increases the management difficulty.

Figure 1.4 describes the Para-virtualization mechanism when a VM want to access
to CPU core. Para-virtualization provides hypercalls for guest OS to communicate with
the VMM directly. The hypervisor also provides hypercall interfaces for other critical
kernel operations such as memory management, interrupt handling and time keeping.

14
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Figure 1.4 – The Para-virtualization approach to x86 Virtualization [2]

Hardware-Assisted Virtualization

Hardware-assisted virtualization relies on special hardware to allow the instructions
generated from guest OS to be directly executed on physical hardware. Because the
X86 processor did not have such facilities available in its original design, this type of
virtualization was used on the virtualization systems only from the 2000s when Intel
and AMD introduced new level to the processor for the first time.

Figure 1.5 – The hardware assist approach to x86 virtualization [2]

As depicted in Figure 1.5, hardware vendors add a new privilege level to processor.
This level is a new root mode, stays below ring 0. In the new privilege frame, when
the guest OS attempts to perform the privileged operations, traps will be automatically
raised to VMM without any binary translations. The new level lets the VMM safely
and transparently uses direct execution for VMs to increase the performance of VMs.
Moreover, the guest OS remains unmodified.

1.3.2 Discussion

All three above approaches have their own advantages and drawbacks. Full virtual-
ization requires neither the OS modification nor the hardware modification, hence has
the best compatibility. As VMWare has declared, full virtualization with binary transla-
tion is currently the most established and reliable virtualization technology available [2].
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16 Chapter 1. Utility Computing

And it will continue to be a useful technique for years to come. But the software imple-
mented binary translation still has its inherence problems, such as memory accessing
overhead, host CPU execution overhead. This is the inherence limitation of software
approaches. So hardware assisted virtualization is where virtualization is going with
pure software virtualization being a performance enhancing stopgap along the way.

Whatever the type of hardware virtualization, we always need a hypervisor to make
the communication between the VM and the underlying hardware. The following
sections will discuss two main elements inside a hardware virtualization environment:
the hypervisor and the virtualized interfaces.

1.3.3 Hypervisor

Hypervisor is commonly classified as one of these two types, as show in Figure 1.6.

(a) Hypervisor Type 1 (b) Hypervisor Type 2

Figure 1.6 – 2 types of hypervisors

Type 1 - Bare-metal Hypervisor is also referred to as a "native" or "embedded"
hypervisors in vendor literature. Type 1 hypervisor runs directly on the host’s hardware,
meaning that the hypervisor has direct communication with the hardware. Consequently,
the guest operating system runs on a separate level above the hypervisor. Examples of
this classic implementation of virtual machine architecture are Xen, Microsoft Hyper-V,
VMWare ESX.

Type 2 - Hosted Hypervisor runs as an application on a host operating system.
When the virtualization movement first began to take off, Type 2 hypervisors were most
popular used. Administrators could buy the software and install it on a server they
already had. Some well-known examples of hosted hypervisor are VMWare Server
and Workstation, QEMU, Microsoft Virtual PC, and Oracle VM VirtualBox. Full
virtualization uses hosted hypervisor to manage VMs.

Type 1 hypervisors are gaining popularity because building the hypervisor into the
firmware has been proved to be more efficient. According to IBM, Type 1 hypervisors
provide higher performance, availability, and security than Type 2 hypervisors (IBM
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recommends that Type 2 hypervisors should be used mainly on client systems where
efficiency is less critical or on systems where support for a broad range of I/O devices
is important and can be provided by the host operating system). Experts predict that
shipping hypervisors on bare metal will impact how organizations purchase servers in
the future. Instead of selecting an OS, they will simply have to order a server with an
embedded hypervisor and run whatever OS they want.

1.3.4 Virtualized Interfaces

Many important operations in virtualized systems suffer from some degree of
virtualization overhead. For example, in both full virtualization and paravirtualiztion,
each time a VM encounters a memory page fault the hypervisor must be brought
on the CPU to rectify the situation. Each of these page faults consists of several
context switches, as the user space process is switched to the guest kernel, the kernel
to the hypervisor, and sometimes the hypervisor to the host kernel. Compare this to
a bare-metal operating system that generally has only two context switches: the user
space process to kernel process and back again. Disk access has similar problems.
It is fairly intuitive that the higher number of context switches and their associated
operations can impart considerable overhead on privileged calls as each call now
consumes considerably more CPU cycles to complete. As stated earlier, the hypervisor
is necessary as it is required to operate between running VMs and the hardware for both
performance isolation and security reasons.

The virtualized interfaces are concrete implementation of the two types of hardware
virtualization techniques mentioned in Section 1.3. There are two types of virtualized
interfaces in a virtualized environment: software-based interfaces and hardware-assisted
virtual interfaces.

Software Interfaces

The virtual interfaces are generally considered to be in two classes: device emulation
(fully virtualized) and paravirtualized devices.

Emulation of hardware devices is performed by the hypervisor. Since guest OS
in VM only sees the emulated hardware, the VM can basically run on any hardware.
However, emulation comes with a huge performance issue because the hypervisor needs
to translate the communication of the VM and its emulated devices to the real physical
hardware and back. For example, to emulate the CPU, the hypervisor has to capture
all instructions sent to the processor by the VM, then translate them to use the real
instruction set of the current physical CPU. After the CPU has finished the task, the
hypervisor has to translate the result to the VM. In case of disk I/O from the guest OS,
we can emulate the hard disk for a VM by mapping the I/O request addresses from the
guest OS to the physical addresses and perform the read/write on the VM disk file on
the host machine.
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18 Chapter 1. Utility Computing

Para-virtualization lets the VM have special access to the hardware by using
a modified physical hardware interface provided by the hypervisor. The guest OS
has to be modified to make use of the paravirtualized interfaces. One of the most
well-known implementation is virtio [27], which is used by KVM to provide par-
avirtualized devices to VM. We have virtio-blk (paravirtualized block device)
and virtio-scsi (paravirtualized controller device) provide efficient transport for
guest-host communication which improve the I/O performance of VM to hard disks,
while virtio-ballon and virtio-mem tackle the problem of hot plug/unplug
virtual memory for VMs.

Hardware-Assisted Interfaces

These interfaces are support by hardware companies. They add a new privilege level
to the physical hardware devices so that a hypervisor can safely and transparently uses
direct execution for VMs. The most known hardware-assisted interfaces are:

CPU: Intel VT-x [28], AMD-V [29]
They are two independent but very similar technologies by Intel and AMD which

are aimed to improve the processor performance for common virtualization challenges
like translating instructions and memory addresses between VM and the host. A VM
can generate the instructions to change the state of system resources or the instructions
executed by a program on a VM reveal that they were executed on a VM since the
results differ from those when they are executed on the physical machine (e.g, htop
command). These instruction can become the serious problem for the hypervisor and
guest system. Both Intel VT-x and AMD-V were developed in response to this problem.
It allows the hypervisor can execute these kind of instructions on behalf of the program.

Memory: Second Level Address Translation (SLAT)

A VM is allocated with virtual memory of the host system that serves as a phys-
ical memory for the guest system. Therefore, the memory address translation has to
perform twice – inside the guest system (using software-emulated shadow page table),
and inside the host system (using hardware page table). Nested paging or Second
Level Address Translation (SLAT) is a hardware-assisted virtualization technology
developed to overcome overhead of hypervisor shadow page tables operations. Intel’s
extended page tables (EPT) [30] and AMD’s Rapid Virtualization Indexing (RVI) [31]
are implementations of the SLAT technology. Using SLAT, the two levels of address
space translations required for each virtual machine is performed in hardware, reducing
the complexity of the hypervisor and the context switches needed to manage virtual
machine page faults.

Network: Virtual Machine Device Queues (VMDq) [32] and Intel Data Direct

I/O Technology (Intel DDIO) [33]
They are devices focus on reducing the interrupt requests and remove the extra

packet copy which happen when using a virtual NIC. When a VM transfers data through
the network, the hypervisor is responsible for queueing and sorting the packets. VMDq
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moves packet sorting and queues out of the VMM and into the network controller
hardware and allows parallel queues for each virtual NIC (vNIC). Intel DDIO allows
the network data to exchange between the CPU and NIC directly without moving those
packets to and from memory which help to reduce latency and enhancing bandwidth.

I/O: Single Root I/O Virtualization (SR-IOV) [34] and IO memory manage-

ment unit (IOMMU)

Single Root I/O Virtualization (SR-IOV) [34], developed by the PCI-SIG (PCI
Special Interest Group), provides direct access between the devices and the VM. SR-
IOV can share a single device to multiple VMs. Also, IO memory management unit
(IOMMU) allows guest VM to directly use peripheral devices through Direct Memory
Access (DMA) and interrupt remapping.

1.4 OS-level Virtualization (or Containerization)

(a) Hardware Virtualization (b) Containerization

Figure 1.7 – Virtualization Architecture

Containerization, also called container-based virtualization or application container-
ization, is an OS-level virtualization method for deploying and running distributed
applications without launching an entire VM for each application. Therefore, container-
ization is considered a lightweight alternative to full machine virtualization. Figure 1.7
illustrates the differences between containers and VMs: (1) Containers run on a single
control host and access a single kernel (Figure 1.7b), (2) VMs require a separate guest
OS (Figure 1.7a). Because containers share the same OS kernel as the host, containers
can be more efficient than VMs in term of performance. Essentially, containers are
processes in the host OS that can directly call the kernel functions without performing
many context switches as in the case of VMs.
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20 Chapter 1. Utility Computing

The earliest form of a container dates back to 1979 with the development of chroot
in 1979 in Unix V7, which created an early process isolation solution. There is no
advancement in this field until the 2000s when FreeBSD Jails allows a computer system
to be divided into multiple independent smaller systems. Then Linux VServer [35]
used that jail mechanism to partition resources, which implemented by patching the
Linux kernel. Solaris Containers [36], released in 2004, allows system resource controls
and boundary separation provided by zones. In 2005, Open VZ [37] patched a Linux
kernel to provide virtualization, isolation, resource management and checkpointing,
however, it is not merged to the official Linux kernel. A major advancement in container
technology happened when Google launched Process Containers [38] in 2006. It was
later renamed to Control Groups - cgroups - and merged to Linux kernel 2.6.24.
cgroups can limit and isolate resources of a group of processes. Linux Containers
(LXC) [39] was among the first implementation of a Linux container manager when it
was introduced in 2008 that uses cgroups and namespaces. In the 2010s, Cloud
Foundry with Warden and Google with Let Me Contain That For You (LMCTFY) are
different solutions that tried to improve the adoption rate of the container technology.
When Docker [40] emerged in 2013, containers gained huge popularity. At first, Docker
also used LXC and later replaced with libcontainer. Docker can stand out from
the rest dues to the whole container management ecosystem it brings to users.

Two most popular container technologies nowadays are LXC and Docker. Both
utilize the Linux cgroups and namespaces in the Linux kernel to create an iso-
lation environment for the containers. Essentially, Linux containers are just isolated
processes with controlled resources running on a Linux machine. cgroups is a kernel
mechanism for limiting and monitoring the total resources used by a group of processes
running on a system. While namespaces are a kernel mechanism for limiting the
visibility on the system’s resources that a group of processes has over the rest of a
system. Accordingly, cgroups manages resources for a group of processes, whereas
namespaces manages the resource isolation for a single process.

1.5 Virtualization Overhead

While hypervisor-based technology is the current virtualization solution widely used
in a cloud system, the container-based virtualization starts receiving more attention for
being a promising alternative. Although container offers near bare metal performance
and is a lightweight and faster solution compared to VM, both of these virtualization
solutions still rely on sharing the host’s resource. They may suffer from performance
interference in multi-tenant scenarios and their performance overheads would lead to
negative impacts on the quality of cloud services.

To help fundamentally understand the overhead of these two types of virtualization
solutions, we do a survey among studies that measure the overhead and compare the
performance between VM, container and bare-metal. The results show that although the
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container-based solution is undoubtedly lightweight, the hypervisor-based technology
does not come with higher performance overhead in every case.

1.5.1 CPU Overhead

(a) 1 Virtual CPUs (b) 2 Virtual CPUs

(c) 4 Virtual CPUs (d) 8 Virtual CPUs

Figure 1.8 – CPU Virtualization Overhead [3]

In Kumar’s thesis [3], he compared the CPU overhead between hardware virtual-
ization (using both Xen and QEMU/KVM), containerization (LXC), and bare-metal.
The objective of the CPU test suite is to measure the execution time of the sample
application and its individual tasks. His result depicts in Figure 1.8, which shows that
Linux Containers and QEMU/KVM perform the best for both single-threaded and
multi-threaded workloads, exhibiting the least overhead compared to the bare-metal
performance. Though Xen performed identically to the others for single-threaded
workloads, it exhibited relatively poor performance when scheduling multi-threaded
workloads.

Other study [9] shows the difference in performance for CPU intensive workloads
when running on VMs vs. LXCs is under 3% (LXC fares slightly better). Thus, the
hardware virtualization overhead for CPU intensive workloads is small, which is in
part due to virtualization support in the CPU (VMX instructions and two dimensional
paging) to reduce the number of traps to the hypervisor in case of privileged instructions.
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1.5.2 Memory Overhead

To evaluate the virtualization overhead associated with memory access, Kumar [3]
created a sample application to allocate two arrays of a given size, and then copies data
from one to the other. The reported “bandwidth” is the amount of data copied, over
the time required for the operation to complete. Then, he measured the memory access
bandwidth available to the virtual machine and bare-metal host. The results shows that
Linux Containers and KVM yielded higher memory bandwidth than Xen.

The author in [9] measured the performance of Redis in-memory key-value store
under the YCSB benchmark. For the load, read, and update operations, the VM latency
is around 10% higher as compared to LXC.

1.5.3 Network Overhead

Kumar [3] measured the network bandwidth available to a virtual machine in both
NAT and bridged configurations. To ensure a fair comparison, the author set up an
iperf server on a machine outside of the test network and measured the network
bandwidth by running an iperf client on each of VM/container. His results shows
that there is no observable overhead introduced when virtualizing network interfaces
hardware between virtualization (using both Xen and QEMU/KVM), containerization
(LXC) and bare-metal.

The authors [9] also have the same conclusion, they do not see a noticeable difference
in the performance between the two virtualization techniques when using the RUBiS
benchmark to measure network performance of guests.

1.5.4 Disk I/O Overhead

Kumar [3] evaluated the overhead introduced when virtualizing disk I/O by per-
forming a set of sequential and random disk I/O. He measured the execution time of
the sample application and its individual tasks. The results summarized in Figure 1.9
confirm that KVM exhibiting the highest overhead, and Linux Containers exhibiting
the least. Based on these results, the author concludes that Linux Containers perform
the best with respect to virtualizing disk I/O operations.

The author [9] uses filebench randomrw workload which issues lots of small reads
and writes, and each one of them has to be handled by a single hypervisor thread. VirtIO
is used as I/O virtualized interface for VMs. Their results shows that the disk throughput
and latency for VMs are 80% worse than Linux containers.
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(a) Sequential File I/O (b) Random File I/O

(c) Disk Copy Performance

Figure 1.9 – Virtualization Overhead - I/O Disk (reads/writes) [3]

1.6 Summary

We have provided an overview of Cloud Computing from its beginning. A key
component in the Cloud Computing technology is the virtualization, which comes in
many different shapes and sizes. Even though virtualization brings many benefits to
the Cloud system, it does not come without any trade-offs. In this chapter, we also
discussed various overheads of virtualization. After having a general understanding of
the concept of Cloud Computing, we present a crucial operation happens within a cloud
system - the provisioning process, and we examine this operation in great detail in the
following chapter.
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After drawing a high level picture about cloud computing and the role of virtualiza-

tion technology, we focus in this chapter on the provisioning process of a cloud system

(i.e., the process to allocate cloud provider’s resources and services to a customer).

Because the provisioning process consumes resources, other running applications in the

system can impact on this process duration. Besides, if we need an additional VM or

container for a task, and the time to have that virtual environment ready is longer than

the time that task finished, this leads to resource waste and unnecessary cost for the

system. Therefore, optimizing the provisioning process is crucial in providing a better

experience for users as well as improving the overall operations of the cloud system.
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2.1 Overview

Cloud provisioning is the allocation of a cloud provider’s resources or services
to a customer on demand and makes it available for use. In a typical cloud system,
when a user requests to start a VM with specific resources, these following steps of a
provisioning process are performed:

— Step 1: The scheduler identifies a suitable compute node for the VM/container
based on the user requirements.

— Step 2: VM/container image is transferred from the repository to the designated
compute node.

— Step 3: The VM/container starts its booting process on the compute node.
All of these 3 steps are involved in the deployment duration of a new VM or

container in a cloud platform. Depending on the properties of the client’s request (i.e.,
VM/container type, resources, start time, etc.), the availability of physical resources
and the scheduling algorithm purpose (i.e., energy saving, resources usage, or QoS
guarantee, etc.), the duration of operation in Step 1 can vary. In Step 2, the size of image,
the I/O throughput on both compute node and repository and the network bandwidth
between the compute node and the repository are important factors. Researchers usually
consider that a VM launching process time takes place mostly in this stage and they
try to speed it up [41, 42]. In Step 3, because the environment for the VM/container is
ready, researchers assumed that the boot process utilise little resources and the time to
boot that VM/container is negligible and can be ignored.

Step 1 is a well-known problem in cloud computing and there are thousand solutions
according to the different purposes. Because the duration of Step 1 relies on the
scheduling algorithm itself, this amount is not considered in total of a VM deployment
time, and we do not focus on this step in our thesis. In general, the startup time or
also known as launching time of a VM/container is consider as the last two steps. The
previous works often skip the duration of step 3 [18, 41] or naively use a constant
number to represent Step 3 duration [43]. Meanwhile, Step 3 may have significant
effect on the total startup time of a VM as we explain further in part III. In the following
sections, we introduce more detail about Step 2 and Step 3, we describe what happens
in each Step and the current issues and solutions.

2.2 Step 2: VM/Container Image Retrieval

2.2.1 Retrieving Process

Generally, the images of VM/Container are stored in a centralized repository in most
cloud system. Therefore in a provisioning process, we have to transfer the images from
the repository to the assigned compute node before start a new VM/Container. Moving
the image through out the network when deploying a machine puts a significant pressure
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on the network capacity. In a shared environment, the degradation in performance of
the network can have critical impact on the experience of other users in the system.
When serving the images, the repository suffers from the workload on its I/O to retrieve
the images from its local storage. In case the images are compressed before sending,
the repository has to perform the compression task which is quite CPU heavy. This
problem is more severe in case there are simultaneously deploying requests from users
where the images need to be transferred to multiple physical nodes at the same time.
Moreover, the compute node is also stressed on its CPU and IO.

2.2.2 Retrieving Process Issues and Solutions

The image of a VM/Container is, in fact, heavy in size and abundant. Each user is
able to create or upload their own images. As a result, a number of storage nodes are
dedicated to store images. When receiving user requests to create a new VM/Container,
the image will be transferred from the storage nodes to the compute node, and this
process becomes a burden to the cloud infrastructure. A lot of efforts focused on
mitigating the penalty of the VM images (VMI) transferring time either by using
deduplication, caching and chunking techniques or by avoiding it thanks to remote
attached volume approaches [13, 14, 15, 44, 45]. On the contrary, there are only a few
studies on improving container image transferring [16, 17, 46]. We give a summary of
all techniques that present in these works in Table 2.1.

Table 2.1 – Summary methodologies to transferring images

Chunking Deduplication Caching Peer-to-Peer Lazy loading

VM

[13] x x
[14] x
[44] x x
[15] x
[45] x

Container

[16] x
[17] x
[46] x

VM Image Transferring

In this work, the authors [13] use deduplication technique on identical parts (chunks)
of the images to reduce the required storage for VM disk images. They conducted
extensive evaluations on different sets of virtual machine disk images with different
chunking strategies. Their results show that the amount of stored data grows very
slowly after the first few virtual disk images, which have similar kernel versions and
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packaging systems. In contrast, when different versions of an operating system or
different operating systems are included, the deduplication effectiveness decreases
greatly. They also show that fixed length chunks work well compared to variable-length
chunks. Finally, by identifying zero-filled blocks in the VM disks, they can achieve
significant savings in storage.

Kangjin et al [44] propose a novel approach called the Marvin Image Storage (MIS)
has which efficiently stores virtual machine disk images using a content addressable
storage. For this purpose, the disk image is split in a manifest file which contains
metadata information of each file in the image and the actual file content stored in the
MIS data store. By using special Copy-On-Write layers, the MIS can reuse a virtual
machine disk image as a shared base image for a number of virtual machines to further
reduce the storage requirements. It also offers a fast and flexible way to apply updates.
Furthermore, the MIS offers advanced features like hard link detection and algorithms to
merge and diff image manifests, directly mount disk images from the store, an efficient
way to apply updates to a disk image and the possibility to apply filters to remove
sensitive content. The presented evaluation has shown that the storage requirements
could be reduced by up to 94% of the original images. However, because they adopted
the deduplication at the file level, they have to check the duplicated file content against
the data store with each file in every VM image. This is an intensive CPU task which
may effect the image server, especially in case the image server is transferring VM
image to compute nodes.

Machine image templates are large in size, often ranging in tens of Gigabytes, thus,
fetching image templates stored in centralized repositories results in long network delay.
A solution to replicate the image repositories across all hosting centers is expensive in
terms of storage cost. Therefore, a solution - called DiffCache [14] - which maintains
a cache collocated with the hosting center to mitigate such latency issue is proposed.
Generally, there is a high percentage of similarity between image templates, and this
feature has been exploited in optimizing storage requirement of image repository by
storing only common blocks across templates. DiffCache algorithm that populates the
cache with patch and template files instead of caching large templates. A patch file is
the difference between two templates, and if the templates are highly similar to each
other then this patch file is rather small in size. As a result, DiffCache minimizes the
network traffic, and leads to significant gain in reducing service time when compared to
standard caching technique of storing template files. When the template and the patch
file are in cache, then a new template can be generated by using the in-cache template
and patch.

The key observation from the tests of the authors in [15] is that VMs actually read
only small fractions of the huge VMI during the boot process, with ≈200 MB being the
biggest size observed from a Windows Server 2012 image. Therefore, they proposed
VMI caches, as an extension to QCOW2 format, that can significantly reduce the amount
of network traffic for booting a VM. The authors made use of the characteristics of
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the copy-on-write mechanism to populate the VMI caches during the boot process of
VMs. This cache is chained, and positioned between the base image and the COW layer.
Whenever a VM needs the boot data from the base image, it can read from the warmed
cache, which reduce the IO to the base image and speed up the process.

Nicolae et al. [45] introduced a novel multi-deployment technique based on aug-
mented on demand remote access to the VM disk image template. Since the IO is
performed on-demand, it prevents bottlenecks due to concurrent access to the remote
repository. The authors organized VMs in a peer-to-peer topology where each VM has
a set of neighbors to fetch data chunks from. The VM instances can exchange chunks
asynchronously in a collaborative scheme similar to peer-to-peer approaches. The
scheme is highly scalable, with an average of 30-40% improvement in read throughput
compared to simple on-demand schemes.

Container Image Pulling

Slacker [16] is a new Docker storage driver utilizing lazy cloning and lazy propa-
gation to speed up the container startup time. Docker images are downloaded from a
centralized NFS store and only a small amount of data needed for the startup process
of the container is retrieved. Other data is fetched when needed. All container data is
stored in the NFS server which is shared between all the worker nodes. However, this
design tightens the integration between the registry and the Docker client as clients now
need to be connected to the registry at all times (via NFS) in case additional image data
is required.

CoMICon [17] proposes a cooperative management system of Docker images on
a set of physical nodes. In each node, only a part of images is stored. CoMICon uses
peer-to-peer (P2P) protocol to transfer layers between nodes. When an image is pulled,
CoMICon tries to fetch a missing layer from a closest node before pulling from a remote
registry.

FID [46] is a P2P-based large-scale image distribution system, which integrates the
Docker daemon and registry with BitTorrent. A Docker image is stored in the Docker
Registry as two static files: the manifest and the blobs. Blob is a compressed file of the
layer. When images are pulled, the blobs are downloaded using P2P. For each blob, a
torrent file is created and seeded to the BitTorrent network. Because BitTorrent is used
to distribute images, it exposes Docker clients to other nodes in the network which can
become a security issue.

2.3 Step 3: Boot Duration

In this section, we describe a VM and container boot process so that readers can
understand clearly the different steps of the boot operation. From that, we can have an
idea of the level of influence of these factors on the boot time of a VM or container.
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2.3.1 Boot Process

VM Boot Procces

- Check Hardware
- Start Boot Loader

Run ScriptsContext 

Assign 
Devices 

Load and Init  
Kernel 

Figure 2.1 – VM boot process

Figure 2.1 illustrates the different stages in a VM boot process. During a VM boot
operation, a standard OS boot process happens. First, the hypervisor is invoked to
assign resources (e.g., CPU, memory, disk storage) to the VM. After that, BIOS checks
all the devices and tests the system, then BIOS loads the boot loader into memory and
gives it the control. Boot loader (GRUB, LILO, etc.) is responsible for loading the OS
kernel. Finally, the OS kernel starts the configured services such as SSH. The last step
is made based on client requirements. A VM boot process generates both read and write
operations: it loads the kernel files from the image into memory and writes the data
(logs, temporary files, etc.).

Container Boot Process

Figure 2.2 – Container boot process

Although we use the words container boot process in comparison with the hardware
virtualization system terminology, it is noteworthy that a container does not technically
boot, but rather start. The overview of the container boot process is depicted in Figure
2.2. Booting a docker starts when the dockerd daemon receives the container starting
request from the client. After verifying that the associated image is available, dockerd

utilizes cgroups and namespace to prepare the container layer structure, initializes
the network settings, performs several tasks related to the specification of the container
and finally gives the control to the containerd daemon. containerd is in charge of
starting the container and managing its life cycle.
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Summary

CPU, memory, and IO resources from the compute node are required to achieve the
boot process. Consequently, workloads or VMs/containers that are already executed on
the compute node can significantly increase the VM/container boot time and should be
considered in a boot operation.

2.3.2 Boot Process Issues and Solutions

The promise of elasticity of cloud computing brings the benefits for clients to add
and remove new VMs in a manner of seconds. However, in reality, users must wait
several minutes to start a new VM in the public IaaS cloud such as Amazon EC2,
Microsoft Azure or RackSpace [18]. Such long startup duration has a strong negative
impact on services deployed in a cloud system. For instance, when a web service faces
spontaneously increasing workloads in the high sale season, they need to add new VMs
temporarily. The websites may be unreachable if the new VMs are only available after
a few minutes, leading to unsatisfied clients and a loss of revenue for the site operators.
Therefore, the startup time of VMs is also essential in provisioning resources in a cloud
infrastructure.

While a lot of efforts focused on speeding up the VMI transferring time, there are
only few works that focus on the startup/boot operation. To the best of our knowledge,
the solutions that have been investigated rely on the VM cloning technique [47, 48, 49,
50] or the suspend/resume capabilities of VMs [51, 52, 53, 54]. The cloning solutions
require to keep a live VM on a host to spawn new identical VMs so that they skip the
whole VM boot process. Moreover, after cloning, VMs need to be reconfigured to
get specific parameters such as IPs or MAC addresses. With the resuming technique,
the entire VM state is suspended and resumed when necessary. This mechanism has
to store a significant number of VMs due to the variety of requested applications and
configurations. In our discussion, we analysed the works that focus on improving the
VM booting phase by using two techniques: cloning and resuming.

Cloning

SnowFlock [47] and Kaleidoscope [48] are similar systems that can start stateful
VMs by cloning them from a parent VM. SnowFlock utilises lazy state replication to
fork child VMs which have the same state as a parent VM when started. Kaleidoscope
has introduced a novel VM state replication technique that can speed up VM cloning
process by identifying semantically related regions of states.

Potemkin [49] uses a process, called flash cloning, which clones a new VM from
a reference image in the compute node by copying the memory pages. To create the
reference image, Potemkin initiates a new VM then snapshot the VM memory pages.
After changing its identity (i.e., IP address, MAC address, etc.), the newly cloned
VM is already ready to run without going through the VM boot process. Potemkin
presents an optimization by marking the parent VM memory pages as copy-on-write and
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shares these states to all child VMs without having to physically copying the reference
image. On the contrary, Potemkin can only clone VMs within the same compute node.
Moreover, the authors restrict their system to have only one combination of operation
system and application software, which is not very useful for a real cloud system.

Wu et al. [50] perform live cloning by resuming from the memory state file of the
original VM, which is distributed to the compute nodes. The VM is then reconfigured by
a daemon inside each cloned VMs that load the VM-metadata from the cloud manager.
These systems clones new VMs from a live VM so that they have to keep many VMs
alive for the cloning process. This method also suffers from the downside of the cloning
technique, as discussed previously.

Resuming

Several works [51, 52, 53, 54] attempt to speed up VM boot time by suspending
the entire VM’s state and resuming when necessary. To satisfy various VM creation
requests, the resumed VMs are required to have various configurations combined with
various VMIs, which leads to a storage challenge. If these pre-instantiated VMs are
saved in a different compute node or an inventory cache and then they are transferred
to the compute nodes when creating VMs, this may place a significant load on the
network.

VMThunder+ [55] boots a VM then hibernates it to generate the persistent storage
of VM memory data. When a new VM is booted, it can be quickly resumed to the
running state by reading the hibernated data file. The authors use hot plug technique to
re-assign the resource of VM. However, they have to keep the hibernate file in the SSD
devices to accelerate the resume process. Razavi et al. [56] introduce prebaked µVMs, a
solution based on lazy resuming technique to start a VM efficiently. To boot a new VM,
they restore a snapshot of a booted VM with minimal resources configuration and use
their hot-plugging service to add more resources for VMs based on client requirements.
The authors only evaluated their solution by booting one VM with µVMs on a SSD
device. However, VM boot duration is heavily impacted by the number of VM booted
concurrently as well as the workloads running on a system [20], thus, their evaluation is
not enough to explore the VM boot time in different environments, especially, under
high I/O contention.

A recent development in lightweight virtualization combines the performance aspect
of Containers technology with the better isolation capability and security advantage of
VMs. One of the advancement is the Kata Containers [57] project, which is managed
by the OpenStack Foundation. Kata Containers incorporates two technologies Intel
Clear Containers and Hyper.sh runV to introduce the lightweight VMs which run one
container inside [58]. In order to reach the boot time of a container, the lightweight VM
uses a minimal and optimized guest OS and kernel. Moreover, Kata Containers uses
a specific version of QEMU called qemu-lite together with some custom machine
accelerators [59], including: nvdimm to provide the root filesystem as a persistent
memory device to the VM; nofw to boot an ELF format kernel by skipping the
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BIOS/firmware in the guest; and static-prt to reduce the interpretation burden for
guest ACPI component. VM templating is another technique used by Kata Containers
so that new VMs are "forked" from a pre-created template VM. The cloned VMs will
share the same initramfs, kernel and agent memory in readonly mode. Because the
lightweight VM is stripped down to the minimum VM that can run containers and uses
an custom kernel, the techniques of Kata Containers cannot be applied on a general
VM.

2.4 Summary

As mentioned in Section 2.1, the provisioning process of a VM/container includes
transferring the image from the repository to the local compute node and the actual
VM/Container boot/startup process. In fact, most studies have only focused on reducing
the image transferring time. They made an assumption that the actual boot process
duration is stable and not as significant as the transferring time. This assumption has
recently been challenged by some studies [20, 60], which demonstrate that the actual
booting up process varies considerably under different scenarios. The boot operation
is a key factor in the resources provisioning process in a cloud system. If we allocate
a VM/container on a high resources contention compute node it can take up to some
minutes to complete the boot process. This situation is critical when the customers need
to turn on a VM/container to handle a burst of incoming requests to their systems and
potentially causes the economic loss.

There are two main approaches toward improving the boot duration of a VM:
resuming and cloning. Resuming techniques allow a VM to be started quickly by using
a suspended state of an entire running VM. It essentially skips the VM boot process
altogether, thus, improves the boot time. However, the resumed VM is required to have
different configurations to align with the requirements of a VM. This will lead to the
storage explosion because of many possible combinations of configurations and VMIs.
Another approach for this problem is using the cloning technique, in which a new VM
is identically cloned from a running VM. As a result, this newly cloned VM is exactly
the same to the running VM and its configurations have to be modified to match the VM
request’s requirements. Moreover, a VM has to be kept running in order to clone new
VM from it. Even though these 2 solutions somehow skip the init process when booting
VMs, it still generates I/O for copying the files. To the best of our knowledge, there
is no study on improving the boot duration of a container in the literature. Prior work
only proposed solutions for increase the performance of the container image retrieval
process.

There are many virtualization solutions for VMs and Containers. QEMU-KVM and
Docker are the most popular among them, they have a wide-scale adoption in both the
industry and academia. The background related to the boot process of these two specific
solutions is essential before we design experiments and explain the boot behavior of
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both VMs and containers. In the next chapter, we introduce the technical details of the
QEMU-KVM and Docker, which is used to perform all the experiments in this thesis.
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We provided a high-level overview of the provisioning process in the previous chapter.

In this chapter, we dive into the technical details related to the boot operation of QEMU-

KVM and Docker, the two widespread use virtualization solutions. Understanding the

architectural and the workflow of these two techniques is mandatory to understanding

the overhead and behaviors of boot duration results.
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3.1 QEMU-KVM Virtual Machine

3.1.1 QEMU-KVM Work Flow

It is also worth mentioning a little history, which can make clear to the confusion
around QEMU and KVM. QEMU is a type 2 hypervisor for performing full virtualiza-
tion. It is flexible in that it can emulate CPUs via dynamic binary translation allowing
code written for a given processor to be executed on another (i.e ARM on x86, or PPC
on ARM). Given that QEMU is a software-based emulator which can run independently,
it interprets and executes CPU instructions one at a time in software, which means its
performance is limited.

Previously, KVM (Kernel-base Virtual Machine) was a fork of QEMU, named
qemu-kvm. The main idea of KVM development is leveraging hardware-assisted
virtualization to greatly improve the QEMU performance. KVM cannot by itself create
a VM, to do so, it must use QEMU [61]. The KVM was included in mainline QEMU
version 1.3 and the kernel component of KVM is merged in the mainline Linux 2.6.20.

Figure 3.1 – QEMU/KVM with virtio work flow

In our work, we focus on full virtualization using QEMU-KVM, the default Linux
hypervisor, and virtio [27] as paravirtualization driver for I/O elements. The QEMU-
KVM architecture is presented in details in Figure 3.1. From a host point of view, each
VM is a QEMU process, each application inside a VM is a thread that belong to a
QEMU process. When an application on a guest OS requires an instruction, QEMU
conveys this request to KVM. KVM will identifies the instruction, if it is an execution
of a sensitive instruction by the CPU, it will be transferred without modification to the
CPU for direct execution [61]. If it is an I/O instruction, in case we use QEMU as
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emulated virtualization drives, KVM will give the control back to the QEMU process,
and QEMU executes the task. However, with paravirtualization driver (in Figure 3.1), a
I/O instruction is handled by the virtio kernel module on the guest OS (not go through
the KVM and get back to QEMU). Virtio creates a shared memory that can be access
from both guest OS and QEMU. Using this shared memory, I/O processing for multiple
items of data can be perform together, thereby reducing the overhead associated with
QEMU emulation [62].

3.1.2 VM Disk Types
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Figure 3.2 – Two types of VM disk

QEMU offers two strategies to create a VM disk image from the VMI (a.k.a. the
VM base image). Figure 3.2 illustrates these two strategies. For the sake of simplicity,
we call them shared image and no shared image strategies. In the shared image strategy,
the VM disk is built on top of two files: the backing and the QCOW (QEMU Copy-On-
Write) files [63]. The backing file is the base image that can be shared between several
VMs while the QCOW is related to a single VM and contains write operations that has
been previously performed. When a VM performs read requests, the hypervisor first
tries to retrieve the requested data from the QCOW and if not it forwards the access
to the backing file. In the no shared image strategy, the VM disk image is cloned
fully from the base image and all read/writes operations executed from the VM will be
performed on this standalone disk.

3.1.3 Amount of Manipulated Data in a VM Boot Process

Because a VM boot process implies I/O operations, understanding the difference
in terms of the amount of manipulated data between these two strategies is important.
To identify the amount of data that is manipulated during VM boot operations in both
VM disk strategies, we performed a first experiment that consisted of booting up to 16
VMs simultaneously on the same compute node. We used QEMU-KVM (QEMU-2.1.2)
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as the hypervisor, VMs are created from the 1.2GB Debian image (Debian 7, Linux-
3.2) with writethrough cache mode (at the opposite of the writeback, and each write
operation is directly propagated to the VM disk image [64]).
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Figure 3.3 – The amount of manipulated data during boot operations (reads/writes)

Figure 3.3 reveals the amount of read/write data when booting up to 16 VMs at the
same time. Although the VMs have been created from a 1.2GB VMI, booting 1 VM
only needs to read around 50MB from kernel files in both cases of shared image and
no shared image. In addition to confirming previous studies regarding the small amount
of mandatory data w.r.t. the size of the VMI, this experiment shows that booting several
instances of the same VM simultaneously leads to a different amount of manipulated
data according to the disk strategy used to create the VM disk(s). When the VMs share
the same backing file (Figure 3.3a), the different boot process benefits from the cache
and the total amount of read data stays approximately around 50MB no matter how
many VMs are started (the mandatory data has to be loaded only once and stays into
the cache for later accesses). When VMs rely on different VM disks (Figure 3.3b),
the amount of read data grows linearly since each VM has to load 50MB data for its
own boot process. Regarding write accesses, both curves follow the same increasing
trend. However, the amount of manipulated data differs: the shared image strategy
writes 10MB data when booting one VM and 160MB for booting 16 VMs while the no

shared image strategy slightly rises from 2MB to 32MB. The reason why the shared

image strategy writes 5 times more data is due to the "copy-on-write" mechanism: when
a VM writes less than cluster size of the QCOW file (generally 64 kB), the missing
blocks should be read from the backing file, modified with the new data and written
into that QCOW file [65]. In addition to reading from the base image, the QEMU-KVM
process (i.e., the daemon in charge of handling the boot request) has to load into the
memory a total of 23MB. This amount of data correspond to host libraries and the
QEMU binary file. The write operations performed by the QEMU-KVM process are
negligible (a few KBytes).
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Figure 3.4 – The number of I/O requests during boot operations (reads/writes)

To summarise, whatever the disk strategy, this experiment shows us that the number
of I/O operations that are performed during boot operations are significant (as depicted
in Figure 3.4) and should be mitigated as much as possible in order to prevent possible
interference with other co-located workloads/vms. Loading mandatory data into the
memory before starting the boot process may be an interesting approach to serve read
requests faster. We investigate such a strategy can be achieved in the next chapter.

3.2 Docker Container

3.2.1 Docker Container Work Flow

Figure 3.5 – Container work flow
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When a container is started, its Docker image is downloaded from the image registry
(Docker Hub) if the image is not stored locally. Docker creates a namespace for
this container and uses cgroups to set a limit to the host’s resources based on the
configuration of the container (Figure 3.5). A thin writable container layer is created
with a merged mount point to the Docker image. Docker setups an isolated environment
so that the process of the container can be executed with the pre-defined configuration.
This process can access to the host resources like a normal process with only some
restrictions. Therefore, the I/O performance of a container is very close to that of the
host system.

3.2.2 Docker Image

Docker image is the template for creating a container. It is comprised of several
layers stacked on top of each other, with each layer represents an instruction in the
image’s Dockerfile. Each layer is the differences from the layer before it. As a
result, a layer can be reused in different images, for example, the layer for Redis as
well as the layer for Postgres can use the Ubuntu OS as the base layer. When a new
container is created, Docker adds a new writable layer - called container layer - on top
of the underlying read-only image layers. All changes made to the running container
are applied to this container layer. When the container is deleted, only the container
layer is removed, the image layers remain intact. By separating the container layer with
the image layers, the image layers can be shared among different containers.

Figure 3.6 – Docker union file system: overlayfs [4]

From the storage viewpoint, a layer consists of a set of directories and files that
makes up the root file system for a container. Therefore, the image layer is the lowerdir

files and the container layer is the upperdir files (Figure 3.6). Correspondingly, these
two layers can be seen as the backing and COW files in the VM terminology.

The unified view of the two directories is exposed as the merged union mount that
is mounted into the container thanks to the overlayfs file system. This file system
implements the copy-on-write strategy. When the image layer and the docker container
layer contain the same files, the data of those files are read from the container layer
instead of the image layer. When an existing file in the docker container is modified, the
file is copied to the container layer first and the modification is applied to this version
of this file in the container layer.
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3.2.3 Amount of Manipulated Data of a Docker Boot Process

Although the order of magnitude differs, the amount of manipulated data when
booting several times the same container follows the same trend of VMs sharing the
same backing file: thanks to the cache, the amount of read data is constant. However,
at the opposite of VMs, we observed that the significant part of read accesses when
booting one container is related to the host directories and not the docker image. In other
words, loading the docker binaries (docker, docker-containerd-shim and docker-runc),
their associated libraries and configuration files represent much more data than the one
that is performed on the docker image. Table 3.1 gives the details for different kinds
of containers. Regarding the write operations, they are related to the creation of the
container layer and the union mount. Although this amount is not significant w.r.t read
operations, we noticed that the creation of the merge union mount point is a synchronous
process: the docker daemon has to wait the completion of this action before progressing
in the boot process. This is an important point as the more competition we will have on
the I/O path, the longer will be the time to start the container.

Table 3.1 – The amount of read data during a docker boot process

Host OS Docker image
debian 62.9MB 3.7MB
ubuntu 62.6MB 4.1MB
redis 61.8MB 8.2MB
postgres 60.1MB 24.4MB

3.3 Summary

We presented in this chapter the technical background for QEMU-KVM and Docker
with the focus on the running work flow, the VM/Container disks and the amount
of manipulated data when booting. QEMU-KVM has two types of disks creation
strategies: shared image and no shared image, while Docker creates the container disks
as a separated layer on top of the Docker base image. Our experiment shows the amount
of manipulated data on the disks of a VM/Container when booted. VMs have a different
pattern of I/O usage when using different type of disks. There are significant number
of I/O operations during the boot operation regardless of the disk strategies. A major
different between the amount of read between VMs and Docker is that Docker performs
many read accesses to the directories of the Docker installation, instead of the docker
image. Equipped with this knowledge, we can perform experiments to uncover the boot
behavior of VMs/containers in the next chapter.
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In this chapter, we discuss a large experimental campaign that we performed

to understand in more detail the boot behaviour of both virtualization techniques.

Particularly, we analyzed thoroughly the boot time of VMs, containers on top of bare-

metal servers, and containers inside VMs (or nested container) which is a current

trend of public Cloud Computing such as Amazon Web Services or Google Cloud. We

conducted more than 14.400 experiments in a software-defined way on top of Grid’5000

testbed for a bit more than 500 hours. This work discusses several experiment scenarios

that aim to investigate different factors related to the boot action. As far as we know, our

study is the first work that deals with many different resource contention scenarios for

the boot operation. After that, we present our preliminary studies which are related to

preloading all the mandatory data during a boot process to speed up the boot duration.

4.1 Experiments Setup

4.1.1 Infrastructure

We use the physical nodes of Nantes cluster in Grid’5000 [66]. Each physical node
has 2 Intel Xeon E5-2660 CPUs (8 physical cores each) running at 2.2GHz; 64GB of
memory, a 10Gbit Ethernet network card and one of two kinds of storage devices: (i)
HDD with 10 000 rpm Seagate Savvio 200GB (150MB/s throughput) and (ii) SSD
with Toshiba PX02SS 186GB (346MB/s throughput). Regarding remote attached
volume, we used Ceph version 10.2.5 deployed on 5 nodes (1 master and 4 data nodes,
using HDD). When needed, Ceph has been used to deliver the remote-attached VM
image disks to different VMs (each “compute” node mounted the remote block devices
with ext4 format).

4.1.2 VM and Container Configurations

For container, we used Docker [67] version 17.05.0-ce, build 89658be, with overlay2
storage driver. Regarding the VMs’ configuration, the hypervisor is QEMU-KVM
(QEMU-2.1.2 and Linux-3.2) [68], virtio [27] is enabled for network and disk
device drivers. VM disks are created from the VMI with QCOW2 format. The I/O
scheduler of VMs and the compute node is CFQ. We choose QEMU-KVM and Docker
for our evaluation because they are the most widely used virtualization solutions. From
this point forward, the term "docker" is used interchangeably with "docker container".
We set up all VMs and containers with 1 vCPU and 1 GB of memory.

In our experiments, we defined two type of machines:
— e−machine is an experimenting machine (i.e., VM, docker or nested docker)

which is used to measure the boot time;
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— co−machine is a co-located machine, it is allocated on the same compute node
as e-machines and runs competitive workloads;

We created the combinations of booting VMs by using the following parameters:
— cpu_policy: whether all VMs/dockers are started on the same physical core or

each VM/docker is isolated on a dedicated core.
— boot_policy: defines the way to boot e-VMs

— (a) one then other: the first e-machine is started. Once the boot operation is
completed, the rest of e-machines are booted simultaneously. The goal is to
evaluate the impact of the cache. The boot time is calculated as the time to
boot the first e-machine plus the time to boot all remaining ones.

— (b) all at once: all e-machines are booted at the same time. The time we
report is the maximum boot time among all VMs.

— cache_mode: we use writeback, writethrough and none when configure a VM.
A detail explanation for each cache mode is available at [64].

— image_policy : is the way to create a VM disk. There are two strategies: shared

image and no shared image. The explanation of these two image policies is in
section 3.1.2. For container, there is one way to create its disk, so we do not use
this parameter to configure a container.

We combined the above parameters to cover a maximum of boot scenarios because
the boot time is not only impacted by resource contention on the same compute node
but also the way VMs are booted and the way they are created. We underline that we did
not consider the configuration of a VM. Indeed, Wu et al [60] showed that the capacity
of a VM does not impact the duration of a VM boot process (i.e., a VM with 1 core
and 2G memory takes a similar time to boot as a VM with 16 cores and 32GB). We
also did not consider the size of a VMI. Although the application files can significantly
increase the size of the VMI, only the kernel data is loaded for the boot process. Several
studies [15, 55, 69] confirmed that a small portion of a VMI is loaded during a VM boot
process. All our experiments have been repeated at least 10 times to get statistically
significant results.

4.1.3 Benchmark Tools

LINPACK 1 is used to produce CPU workloads. LINPACK estimates a system’s
floating point computing power by measuring how fast a computer solves a dense n by
n system of linear equations Ax = b.

CacheBench 2 is a benchmark to evaluate the raw bandwidth in megabytes per sec-
ond of the memory of computer systems. It includes read, write and modify operations
on the memory to fully simulate the effect of memory usage.

1. http://people.sc.fsu.edu/ jburkardt/c_src/linpack_bench/linpack_bench.html
2. http://icl.cs.utk.edu/llcbench/cachebench.html
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Stress 1 simulates an I/O stress by spawning a number of workers to continuously
write to files and unlink them.

Iperf 2 measures the maximum achievable bandwidth on IP networks. Iperf creates
TCP and UDP data streams to measure the throughput of a network that is carrying
them.

4.1.4 Boot Time Definition

In our work, the boot time is calculated as the duration to perform only the boot
process. We did not take into account the duration of VM/Container placement nor the
VMI transferring process. The boot duration is measured as follows:

VM boot time: we assume that a VM is ready to be used when the guest OS is
deployed completely and clients can log into the VM, therefore, we calculated the VM
boot duration as the time to have the SSH service started. This time can be retrieved by
reading the system log, and it is measured with milliseconds precision. In our setup, we
configured SSH as the first service to be started.

Docker boot time: The main idea behind a container is running applications in
isolation from each other [67]. For this reason, docker boot duration is considered as
the time to have a service starts inside a docker. Specifically, by using Docker CLI 3, we
measured the boot time as the duration for starting the SSH service inside a docker.

Nested Docker boot time: We measured this boot time in the same manner as the
Docker boot time. We did not include the host VM boot time in this calculation.

4.1.5 A Software Defined Experiment

All our experiments have been performed on top of the Grid’5000 [66], a large
scale and highly reconfigurable experimental grid testbed. We created a dedicated script
to create and manage VMs automatically by leveraging the Execo framework [70]
and libvirt. Precisely, our script extends vm5k 4 - a python module to perform
reproducible experiments of VMs on the Grid’5000 platform. At coarse-grained, vm5k
relieves researchers of the burden of deploying virtualization stack on bare-metal servers:
(1) it deploys and configures servers with all necessary packages, (2) creates the VM
templates according to the defined parameters, (3) starts the VMs, and (4) performs
specific benchmarks and collects information. By extending vm5k and using advanced
features of Execo, we completely scripted our experimental campaign in order to
measure the boot time and monitor the resource usage during the boot process for both
VMs and containers [19]. We underlined this script allows any researchers to reproduce
all experiments anytime as it performs all scenarios in an isolated environment.

1. http://people.seas.harvard.edu/~apw/stress/
2. https://iperf.fr/
3. https://docs.docker.com/engine/reference/commandline/cli/
4. http://vm5k.readthedocs.io/
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In details, our script leverages:

1. Execo [70]: Performing experiments consists of running different scenarios over
and over again. Execo provides a template to run customized experiments with
different predefined scenarios. Execo takes experiment parameters as inputs
and produces combinations of these inputs. Each combination is a scenario for
an experiment following a complex workflow that we designed. The engine
of Execo then distributes these combinations to pre-booked physical nodes to
conduct experiments.

2. OARSUB [71]: is a batch scheduler for large clusters, based upon an original
design that emphasizes on low software complexity by using high level tools.

3. Kadeploy3 [72]: is a scalable, efficient and reliable deployment system (cluster
provisioning solution) for cluster and grid computing. It provides a set of tools
for cloning, configuring (post installation) and managing cluster nodes. We use
Kadeploy3 in Execo to deploy operating system images to physical hosts.

4. Taktuk [73]: is a tool for deploying efficiently parallel remote executions of
commands to a potentially large set of remote nodes.

OARSUB

KADEPLOY

TAKTUK

Script EXECO

Frontend

Cluster
Node

get nodes

deploy nodes

send custom 

Grid 5000

commands

Figure 4.1 – Engine Architecture

Figure 4.1 shows the workflow of our script. First, our script reserves the compute
nodes in Grid’5000’s clusters by using OARSUB software suite. Then Kadeploy3 is
used to deploy the machine with a specific Linux environment and setup the network.
Next, we install in those nodes the software and tools required for our experiments
by utilizing Taktuk to send installation commands. For remote attached volume
scenarios, we deploy a dedicated Ceph environment using dfs5k 1 - a tool for the
deployment of Distributed File System on top of Grid’5000. When the compute nodes
are ready, we loop through all the combinations of possible scenarios for our experiment,
as explained in Section 4.1. For each combination, we use Execo with Taktuk to run

1. https://www.grid5000.fr/mediawiki/index.php/Storage
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the scripted scenario and collect results from the compute nodes. All the results are
gathered and saved on the machine where the script is executed.

4.2 Boot Time In No-Workload Environment

This scenario aims to evaluate how the boot time is affected when multiple machines
are booted simultaneously on different storage devices. We boot several e-machines

on a "fresh" compute node (i.e., a compute node without the co-located workload and
with an empty page cache). Each e-machine is assigned to a single core to avoid CPU
contention, the number of e-machines has been increased from 1 to 16 because the
compute node we used only has 16 physical cores. For VMs, we created them with two
types of disk creation strategies, three cache modes and they are booted in two ways:
all at once and one then others.
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Figure 4.2 – Boot time of VMs with different installations on three storage devices

4.2.1 VM Boot Time

We expect the impact on VM boot time in this experiment is mostly the I/O through-
put from loading the kernel files and writing the system log from VMs. Figure 4.2
reveals that even on a "fresh" node when we boot 16 VMs simultaneously, the boot
duration can last more than one minute in the worse case. In comparison, it only takes
4.5 seconds to boot one VM.

On HDD, the boot time of VMs with shared image disk is always faster than the no

shared one in three cases of cache mode. When the cache mode is on (i.e., writeback
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and writethrough), the boot time of VM with shared image disk is much faster. The
reason is when the very first VM boots, the mandatory data for VM boot process on the
backing file is loaded on the memory, and then, because all VMs are sharing the same
backing file, the following VMs can access this data directly from the memory and do
not generate read access to the storage device. In the meanwhile, with no shared image

strategy, because every VM has its standalone disk, the mandatory data has to be read
many times even all these VMs are created from the same VMI. In case of none cache
mode, VMs with shared image disk also have to read the boot data from the backing file
many times. Moreover, there is the overhead of read access of shared image strategy
which comes from checking if the requested data is on the QCOW or on the backing
file as explained previously in section 3.1.2. Therefore, the boot time is less faster than
the no shared one.

To compare one then others and all at onces boot policy, we should only consider
scenarios where VMs get benefit from the cache, specifically, VMs are created by using
shared image disk with writeback or writethrough cache mode. In this condition, the
one then others policy boots faster than all at once. In case of one then others, only
the first VM generates read operations to the disk, the other VMs read the mandatory
data from memory so that the I/O contention only comes from write operations (VMs
write log files during the boot process). On the other hand, when all VMs are booted at
the same time, the I/O contention comes from read and write access of all VMs. The
difference in the amount of I/O requests between these two cases leads to the faster boot
of one then others boot policy.

On SSD, the boot time of one VM is around 2.5 seconds, and it is mostly constant
when we increase the number of VMs from 1 to 16, and the VM boot time is not
impacted by different cache modes nor image policies. The boot duration does not
increase because the I/O throughput of the SSD is five times bigger than HDD, all I/O
requests generated by VMs are not enough to stress the I/O and they are handled very
quickly. The boot time of one then others is longer because we accumulate the boot
time of the first VM.

On Ceph, with writeback and writethrough cache mode, we observe that there is
not a big difference in boot time between two image policies as on HDD. The shared

image disk VMs still gain benefits from the cache, however, the VMs with no shared

image disk do not directly suffer the bad overhead of the random read as on HDD. With
none cache mode, VMs with no shared image disk boot much faster than VM with
shared image disk. There are two reasons. First, with the good I/O performance of
Ceph, random read access from different VM disks in case of no shared image on Ceph
is responded faster. Second, when there is no cache, we have already explained that
VMs with share image disk have to load mandatory data many times. Plus, the overhead
of checking where the needed data is stored to read of the shared image mechanism
becomes significant in case of the appearance of the latency.

In brief, without co-workloads, VMs with various installations have different boot
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duration, and even booting multiple VMs with the same installations have diverse behav-
iors on different storage devices. Shared image policy always has better performance
on all storage devices if the cache mode of VMs is on. Although the I/O performance
of writeback is the best, the data is not protected in a power failure situation and
it is recommended only for temporary data where data loss is not a concern. With
one then others boot policy, the boot time is good only on HDD where the random
read is costly; on Ceph and SSD, with good I/O performance the all at once boot policy
is slightly better.

4.2.2 Docker Boot Time

To compare the boot time between VMs and containers, we consider the boot time
of VMs with writethrough cache mode, share image disk and one then others boot
policy. We illustrate the boot time of those VMs using 3 different storage devices in
Figure 4.3a.
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Figure 4.3 – Boot time of multiple VMs, Dockers and Nested Dockers on 3 storage devices

Figure 4.3b depicts that the boot time of docker increases linearly along with the
increasing of the number of dockers on three storage devices. The result also shows
that dockers boot faster than VMs, as expected, even in the case of the best configured
of VMs (Figure 4.3a). On HDD, booting one docker in an idle compute node takes
1.7 seconds and 16 dockers need around 10.5 seconds. On Ceph, the boot duration is
slightly better than on HDD because of the higher I/O performance of Ceph. It takes
around 1.5 seconds to 10 seconds to boot 1 to 16 dockers simultaneously. On SSD, the
boot time also has the upward trend with smaller slope compared to HDD and Ceph.
This is the result of having the highest I/O throughput between the 3 types of disks.

4.2.3 Nested Docker Boot Time

Boot duration of nested docker has the same trend as docker as illustrated in Figure
4.3c. However, the nested docker boot time is a bit longer compared to docker. The
explanation for this observation is that the nested docker is located inside a VM placed
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on the compute node. Therefore, the nested docker also suffers from the reduced
performance of the virtualization technology.

4.2.4 Discussion

In general, booting one docker or nested docker is faster than booting a VM in
an idle environment. The main reason is the number of I/O operations during their
boot processes. When a VM is booted, a normal Linux boot process is in place. VM
loads the kernel data from the VM disk, performs some computations, and then writes
the log files to VM disk. The full Linux boot process runs inside a VM on restricted
pre-assigned resources. On the contrary, when we start a new container, Docker engine
initializes the file system for a container and mount the read-write layer for it. Then
Docker engine assigns the CPU and memory of the container using resources of the
compute node. Finally, the requested service is executed inside that container with
limited resources. In brief, containers do not need to load the kernel data or go through
the full Linux boot process. Plus, Docker engine prepares the environment to run a
service inside a container without any restriction on the physical resources.
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Figure 4.4 – I/O usage during boot process of multiple machines

In Figure 4.4, we compared the amount of data that VMs, dockers and nested
dockers read from their images. The amount of I/O read shown in Figure 4.4a is steady
for VMs and containers when the number of machines increases because they all use
the shared image disk strategy (i.e., all machine share the same base image, and the
mandatory data for their boot processes are read only once). However, data need for a
VM boot process is much more than docker one. Figure 4.4b depicts that the amount of
written data of VMs and containers increase linearly. VMs also have much higher I/O
writes than dockers because of the "copy-on-write" mechanism of the VM disk. When
a VM writes new data to a COW image, the relevant blocks are read from the backing
file, modified with the new data and written into that COW image. This mechanism
leads to 2 read and 3 write operations for every single write operation on the COW
image [65]. The amount of read and write data of nested docker is higher than that of a
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docker because a nested docker is booted inside a VM with shared image disk so that it
is suffered from the COW image mechanism.

4.3 Boot Time Under Workloads Contention

This experiment focuses on understanding the boot time of a single machine in the
presence of concurrent workloads. On a compute node, first, we boot n co-machines

(n ∈ [0, 15]) and then run workload on them. After that, we start one e-machine. In the
case where we want to generate CPU stress, all co-machines are allocated on the same
physical core with the e-machine. For the other experiments where CPU contention
should be avoided (i.e., when we want to stress either only the memory, network or
the I/O bus), every machine has to be assigned to different cores. In this scenario, all
VMs are configured with writethrough cache mode. Because we only measure the
boot duration of one VM, the parameters cache_mode and boot_policy do not have an
important effect.

4.3.1 Memory Impact

As shown in Figure 4.5, when we increase the number of co-machines to stress
the memory, the boot duration of the e-machine does not change on all three storage
devices. The boot time of VM is consistently slower than nested docker and docker,
while nested docker boots a little bit slower than docker. In conclusion, the effect of
memory competition on boot time is negligible.
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Figure 4.5 – Boot time of 1 VM, Docker and Nested Docker on three storage devices under memory
contention

On HDD (Figure 4.5a), the boot time of the VM that has shared image disk is 4.5
seconds while no shared image disk is 4 seconds. The overhead of checking where
is the needed data to read of shared image strategy make it 0.5 seconds longer than
no shared image when booting only one VM. On Ceph (Figure 4.5c), we also see 1
second difference between two disk creating strategies. This gap becomes bigger on
Ceph because of the latency when accessing data on a remote storage device. We also
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have differences between two image policies in case of CPU and network contention as
we discussed in the next paragraph.

4.3.2 CPU Impact
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Figure 4.6 – Boot time of 1 VM, Docker and Nested Docker on three storage devices under CPU
contention

Figure 4.6 reveals that VM boot time is impacted by CPU contention while docker
and nested docker boot time are stable. For VMs, there is a clear linear correlation
between the boot time of a VM and the number of co-allocated VMs, and the same
increasing trend for three types of storage devices. Because all e-VM and co-VMs are
assigned to one core, and the workload on each co-VM is always 100% full capacity of
CPU usage, the more co-VMs running on one physical core, the more the VM has to
wait until it can access the CPU core to perform the computation for the boot process.
This leads to a longer boot time when we increase the number of co-VMs. In general,
it takes around 4.5 seconds to boot a VM without CPU contention and increases to 40
seconds when we have 16 co-VMs generating CPU contention. We still see the 0.5
seconds gap between boot time of two disk creation strategies and this is also explained
in the same way in case of memory contention.

In case of containers, under CPU stress, the boot time of both docker and nested
docker are not affected on any storage devices. In this experiment, to generate CPU
contention, we assign all co-machines into the same physical core where the e-machine

is allocated. As explained before, during a docker boot process, when docker engine
prepares the environment for a docker (i.g., mounting root file system, limiting resource),
the engine may not run in the core that has been stressing. Only the starting process of
the containers actually run under the constrained resources and affected by the CPU
contention.

4.3.3 Network Impact

As we expected, Figure 4.7 reveals the network contention does not have any effect
on the boot time of e-machine on local storage devices (HDD and SSD) and only affects
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Figure 4.7 – Boot time of 1 VM, Docker and Nested Docker on three storage devices under network
contention

the remote storage backend. It is reasonable since, on the local storage devices, the
boot process of a VM or a docker does not require network exchanges. On Ceph, in the
case of VM (Figure 4.8c), the e-VM uses bandwidth to load the kernel files remotely.
The boot time of a VM with Ceph is quite stable around 4.5 seconds until we have
10 stressing the 10 Gigabit Ethernet interface of the compute node. When we keep
increasing the network usage by growing the number of co-VMs, the remaining network
bandwidth for the e-VM is limited, therefore, the boot time rises from 4.5 seconds to
around 15 seconds. However, even on remote storage device - Ceph, docker and nested
docker boot time are not significantly impacted under network stress.

4.3.4 I/O Disk Impact
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Figure 4.8 – Boot time of 1 VM, Docker and Nested Docker on three storage devices under I/O contention

Figure 4.8 depicts the boot time of a machine on three storage devices under I/O
stress. The VM boot time increases linearly with the increased number of co-VMs
for both disk creation strategies. Under CPU, memory and network contention, the
boot time of e-VMs with no shared image is faster than the shared image one and this
gap is stable. However, the gap evolves differently under I/O contention. On HDD
(Figure 4.8a), boot time of no shared image VM increases longer than the shared image
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one (from 4 seconds to over 120 seconds, compared to 4.5 seconds to 85 seconds,
respectively), but the boot time between these two disk creating strategies is similar
on SSD (Figure 4.8b). The reason is the high I/O performance of SSD. On Ceph, the
overhead of checking data to read from shared image is again significant, this leads
to the boot time of VM with shared image disk is longer. The gap between two disk
creation strategies evolves differently on HDD can be explained as follows. With no

shared image disk, a disk is populated with its full size so in case we have many coVMs,
the space that is used on the host HDD is larger than the one used for the shared image

approach. Given the mechanism of the HDD with the seek operation, the probability to
have longer seeks is proportional to the space used on the HDD (the HDD’s arm needs
to seek back and forth often and through a larger distance in order to server all requests
coming from all the hosted VMs). We verified such an explanation by conducting
additional experiments with blktrace tool [74] to extract the I/O access data on the
compute node while coVMs run I/O stress.

Docker and nested docker boot time also increase under I/O contention but they are
faster than VMs on both HDD and SSD storage devices. The boot time of docker and
nested docker increases when there is more stress on I/O, then becomes stable. In case
of Ceph, the boot time of a docker is abnormally much longer than that of one VM.
Docker boot time increases significantly in a bizarre manner when we stress I/O on
Ceph which also leads to the contention in network resources. We do not observe this
behavior with nested docker and VMs which shows the isolation limitation of Docker.
Therefore, our hypothesis is that because Docker is not fully isolated from the host OS
so it may have competitions in kernel system calls under high I/O contention on remote
attached volumes. However, to fully explain this, a number of intensive experiments
has to be conducted.

4.3.5 Discussion

Workloads that are already running on a compute node obviously increase the time
to boot an additional VM/docker and this should be considered. While comparing the
workloads together, our results show that VM, docker and nested docker boot time
introduce negligible overhead for memory and network bandwidth (except in the case
of remote attached volume such as Ceph). I/O disk is the most influence factor for both
VM and docker on different types of storage devices. Even though the impact of CPU
is rather small as compared to the I/O factor for VM (docker is not impacted by CPU
contention), we cannot simply ignore it. Indeed, it is still significant enough to alter the
boot time. Finally, as we expected, dockers have better boot time compared to nested
dockers.
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4.4 Preliminary Studies

In this section, we give additional elements regarding how we can reduce the impact
of the I/O accesses during the boot operation. These preliminary studies led us to the
YOLO proposal that I define in this thesis.

4.4.1 Prefetching initrd and kernel files

In the kernel stage of a normal Linux boot process, initrd [75] is used as a small
file system located on RAM disk to run user space programs before the actual root
file system is mounted. Because Libvirt [76] offers the possibility to boot a VM from
specific kernel and initrd files, a simple way of speeding up the VM boot operation
could be to load these files into the page cache beforehand. Such a strategy looks
interesting because most VMIs differ only in the set of installed software. That is, we
can use the same kernel and initrd files to serve many VMs that have different VMIs
but the same kernel. However, diving into details, we observed that a large part of the
I/O operations come after the initrd phase. That is after the kernel has mounted the real
file system into the VM disk and has called the /etc/init and other scripts on this real file
system to start the services .

To summarise, the initrd and kernel files only represent a small part of the I/O
accesses and another approach is needed.

4.4.2 Prefetching Mandatory Data

Leveraging the shared-image disk experiment, we observed that it is possible to
mitigate the number of I/O operations by using the cache so that read operations are
served from memory rather than from the storage device as long as the page cache is
not evicted. To identify which part of a VMI is needed during a VM boot process, we
booted one VM on a dedicated compute node with an empty page cache. To determine
which pages of the VMI were resident into the cache after the boot operation, we used
the Linux mincore function [77]. From that information, we extracted the list of logical
block addresses of the VMI that a VM accesses during a boot process.

In addition to the accesses list, we collected additional information thanks to the
Linux blktrace. This tool allowed us to capture this exact read access pattern
according to the time as depicted by Figure 4.9.

These results are important. First they confirm that there is a large amount of read
accesses and second that there is an alternation between I/O and CPU intensive phases.
Leveraging these results, we investigated the most efficient approach to prefetch the
mandatory data into the memory. There are two possibilities either by time or offset
order. The time order corresponds to the same order a VM reads data during its boot
process. This strategy is not optimal because of the small size of the I/O operations
and the large number of random accesses. With the offset order, we sort and merge
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Figure 4.9 – Read accesses during a VM boot process. Each dot corresponds to an access at a certain
period of the boot process and a certain offset.

the accesses by the logical block addresses so that we can have a sequential reading
of the VM image. This strategy is more efficient. However, the number of accesses is
still significant. The best solution would be to extract the mandatory data from each
VMI and store it into a single file in the time order. Thanks to this file entitled boot

image, it would be possible to read the file in a contiguous manner, benefit from the
Linux kernel prefetching strategy [78] and thus put mandatory data into the memory in
the most efficient manner.
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Figure 4.10 – Time comparison for prefetching the VM boot mandatory data

To effectively measure the benefit of the different strategies, we developed an ad-hoc
script, which uses the vmtouch [79] command, to fetch the content of all the mandatory
blocks according to the expected order. Figure 4.10 shows the comparison between
the three policies on different storage devices emulating respectively locally stored
(HDD and SSD) and remote-attached (Ceph [80]) VMIs. We underline that we did not
measure the boot time duration but only the time to prefetch the mandatory data while
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increasing the number of manipulated VMIs (the more VMIs we have to access the more
I/O contention we should expect). Hardware and configuration details are discussed in
Section 4.1. Results confirm that retrieving the data through the two first prefetching
strategies leads to worse performance in comparison the boot image approach.

To conclude, it would be interesting to create for each VMI its associated boot
image and link it to the VM image disk structure in a similar manner of the share image
disk strategy. By this way, the boot process should be modified at the hypervisor level
in order to leverage the boot image during the boot process instead of using the VM
image disk. However, in addition to requiring modifications at the hypervisor level and
the VMI format, this solution has an important shortcoming related to the page cache
space that can be claimed by the host OS whenever the memory is needed. In other
words, while we expect the mandatory data would be available in the cache, VMs can
face corner cases where they have to prefetch the cache once again. Consequently, it
is not a practical solution especially in an I/O-intensive environment where the page
cache of the host OS would be used intensively. Another approach, less dependent from
the kernel and the hypervisor should be designed.

4.5 Summary

Performing reproducible experiments on cloud computing platforms implies com-
plex tasks which required to evaluate a large number of configurations. The analysis of
VMs and containers boot times is a such kind of this task. We presented in this chapter
how we conducted, in a software-defined manner, more than 14.400 experiments and
discussed the collected results.

This study gave us a comprehension view about the VM and container boot time.
The VM boot duration is not only affected by the co-workloads and the number of
VMs simultaneously deployment but also the parameters that we use to configure VMs.
Furthermore, on different storage devices, booting VMs with the same configuration
even have varied behaviors. Having the understanding of the VM boot time will allow us
to choose the best way to boot new VMs within a cloud infrastructure. When comparing
the boot time between containers and VMs, it is obvious that containers boot much
faster than VMs. However, the boot duration of containers also has an increasing trend
like the VM boot time when we boot multiple VMs/containers at the same time or under
a workload contention environment. Especially, I/O throughput is the most significant
factor on both VMs and containers boot duration. This behavior of VMs/containers boot
time should be taken into account when we want to deploy new VMs/containers. Using
the above analysis, we proposed a VM Boot Time model that gives a more accurate
estimation of the time a VM needs to boot in a shared resource environment. The model
is described in the Appendix Section A.

Besides that, the preliminary studies about the amount of mandatory data for a
boot process in this chapter gave some insightful observations. Combining with the
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understanding of the effect of I/O operations in a boot process, we introduced the new
mechanism in the following chapter to reduce the I/O requests by manipulating the
mandatory boot data.
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Based on the detailed analysis for VM and container boot time behavior and some

preliminary studies in the previous chapter, we present in this chapter our proposal

YOLO mechanism (You Only Load Once). YOLO reduces the number of I/O operations

generated during a boot process by relying on a boot image abstraction, a subset of
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the VM/container image that contains all data blocks necessary to complete the boot

operation. First, we describe the YOLO implementation and workflow and then, we

evaluate YOLO under several scenarios with different types of storage devices as well

as the overhead of YOLO.

5.1 YOLO Design and Implementation

To leverage the boot image abstraction as well as limiting the cache effect, we
designed YOLO as a new method to serve the mandatory boot data for a VM effectively.
In this section, we give an overview of our proposal and its implementation. First, we
explain how boot images are created. Second, we introduce how yolofs, our custom file
system, intercepts I/O requests to speed up the VM boot process.

5.1.1 Boot Image

In this section we present how we implement the boot image abstraction and we
give a few details regarding the storage requirements by analysing the Google Cloud
platform as an example with a relevant number of VM images.

Creating a Boot Image

To create boot images, we capture all read requests generated when we boot com-
pletely a VM or a container. Each read request has: (i) a file_descriptor with file_path

and file_name, (ii) an offset which is the beginning logical address to read from, and (iii)
a length that is the total length of the data to read. For each read request, we calculate
the list of all block_id to be read by using the offset and length information and we
record the block_id along with the data of that block. A boot image contains a dictionary
of key-value pairs in which the key is the pair (file_name, block_id) and the value is the
content of that block. Therefore, with every read request on the base image, we can use
the pair (file_name, block_id) to retrieve the data of that block. In a cloud system, we
create these boot images for all available VM and container images and store them on
each compute node. To avoid generating I/O contentions with other operations when
accessing these boot images, we advocate to store them on dedicated devices for yolofs,
which can be either local storage devices, remote attached volumes, or even memory.

Storage Requirement

The space needed to store 900+ VMIs available from Google Cloud is 1.34TB.
Then, for each VMI, we built a boot image using the method described in Section 5.1.1.
In Table 5.1, we can see how the size reduction rate goes from 94% to 99%. Instead of
storing all these VM images (1.34TB) locally on the physical machines to speed up the
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Table 5.1 – The statistics of 900+ Google Cloud VMIs and their boot images. We group the VMIs into
image families and calculate the boot images for each image family.

Image No. Size of Size of all Reducing
of images images boot images rate

CentOS 156 223GB 6.3GB 97.2 %
Debian 180 216GB 4.7GB 97.8 %
Ubuntu 236 272GB 16GB 94.1 %
CoreOS 221 173GB 1.2GB 99.3 %
RHEL 167 302GB 7GB 97.7 %
Windows 15 191GB 5.2GB 97.3 %
Total 983 1.34TB 40.4GB 97.4 %

VM boot process, we only need to create and store 40GB of boot images, which is less
than 3% of the original size of all VMIs.

5.1.2 yolofs

Read/Write Data Flow

We developed yolofs using FUSE (Filesystem in User space) to serve all the read
requests executed by VMs during the boot process via the boot images. FUSE allows to
create a custom file system in userspace without changing the kernel of the host OS.
Furthermore, recent analysis [81, 82] confirmed that the performance overhead when
using FUSE against read requests is acceptable. However, other solutions might be used
if the performance is a critical issue, for example using library interposition.

In Figure 5.1, we illustrate the workflow of yolofs along with the read/write data
flow for a QEMU-KVM VM which is created with a shared image disk and a Docker
container. yolofs is executed as a daemon on each compute node (that is before any boot
operation). When a VM/container issues read operations on its base image, which is
linked to our mounted yolofs file system, the VFS routes the operation to the FUSE’s
kernel module, and yolofs will process it (i.e., Step 1, 2, 3 of the read flow). yolofs then
returns the data directly from the boot image which already was in the yolofs’ memory
(Step 4). If the boot image is not already on the memory, yolofs will load it from its
dedicated storage device (where stores all the boot images of this cloud system) to the
memory. Whenever the VM/docker wants to access data that is not available in the boot
image, yolofs redirects the request to the kernel-based file system to read the data from
the disk (Step 5, 6, and 7 of the read flow). Regarding write operations, they are not
handled by yolofs and are forwarded normally to the corresponding COW file (the write
flow in Figure 5.1).
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Figure 5.1 – yolofs read/write data flow

Implementation

We implemented yolofs to handle the VMs’ I/O requests as shown in Algorithm 1.
yolofs runs as a daemon waiting to handle I/O requests sent to the FUSE mount point.
As mentioned, write requests do not go through yolofs, the kernel-based file system
is used to write this data to the hardware disk (Line 1 of Algorithm 1). Otherwise,
with every read request, we first extract the file_descriptor, offset, and length of the
request (line 5). We calculate the begin block_id and the end block_id given the system
BLOCK_SIZE (Line 6 and 7). yolofs takes the corresponding boot image B from the
local repository and loads it into the memory if needed (Line 9). Next, we iterate over
all block_id belong to the range [block_begin, block_end], with each block_id we check
the corresponding boot image for the data of that block and return it (Line 12, 13, and
14). After the VM is booted, if the VM needs to read a block which is not in the boot
image, that block is read from the kernel-based file system as described in line 17.

YOLO works using any storage backend and is transparent to the VMs, the hypervi-
sor and the kernel of the host/guest OS as well.

5.2 Experimenting Protocol

In this section we discuss the experiments performed on top of Grid’5000 [66].
The code of YOLO as well as the set of scripts we used to conduct the experiments
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Algorithm 1: VM Boot time speedup with yolofs
input :boot image B, I/O request R
output :data D

1 if R is a write request then

2 forward to a kernel-based file system to handle R

3 end

4 else

5 offset, length, file_descriptor ← R

6 block_begin ← offset

BLOCK_SIZE

7 block_end ← offset+length

BLOCK_SIZE

8 D ← empty list
9 if boot image B not loaded then

10 load boot image B from dedicated storage device into yolofs’ memory
11 end

12 for block_id ← block_begin to block_end do

13 if block_id in boot image B then
14 D ← D +B.get(block_id, file_descriptor)

15 end

16 else

17 D ← D + ((block_id, file_descriptor) from a kernel-based file
system)

18 end

19 end

20 return D

21 end

are available on public git repositories 1. We underline that all experiments have been
made in a software defined manner so that it is possible to reproduce them on other
testbeds (with slight adaptations in order to remove the dependency to Grid’5000). We
have three sets of experiments. The first set is aimed to evaluate how YOLO behaves
compared to the traditional boot process when the base images are either locally stored
(HDD and SSD) or remotely attached through a Ceph system [80]. The second set
investigates the impact of collocated memory and I/O intensive workloads on the boot
process. Finally, we measured the overheads of using the yolofs during the execution of
the VM with the third set of experiments.

1. https://github.com/ntlinh16/vm5k

67

https://github.com/ntlinh16/vm5k


68 Chapter 5. YOLO: Speed Up VMs and Containers Boot Time

5.2.1 Experimental Conditions

All experiment setups (including the infrastructure, VM and container configura-
tions, benchmark tools, boot time definition) are similar to the one introduced in Section
4.1 in the previous chapter.

5.2.2 Boot Time Policies

For the first set of experiments, we investigated the time to boot up to 16 VMs using
either the same or the different VMI in parallel. Our goal was to observe multiple VM
deployment scenarios from the boot operation viewpoint.
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all at once one then others

prefetching boot YOLO

Figure 5.2 – Four investigated boot policies. Each block represents the time it takes to finish. Prefetching

boot performs prefetching in a parallel fashion to leverage gaps during the booting process of a VMs for
faster loading. YOLO loads and serves boot images whenever VMs need to access the mandatory data.

We considered four boot policies as depicted in Figure 5.2:
— all at once: all VMs are booted at the same time (the time we report is the the

maximum boot time among all VMs)
— one then others: the first VM is started. Once the boot operation is completed,

the rest of VMs are booted simultaneously. The goal is to evaluate the impact
of the cache we observed during the preliminary study on the boot time (see
Section 4.4). The boot time is calculated as the time to boot the first VM plus
the time to boot all remaining ones.

— Prefetching boot: We used the prefetching script we developed for the prelimi-
nary studies (see Section 4.4) to fetch the mandatory data from the VMI in the
offset order. As depicted the prefetching script and the boot process of VMs
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are invoked simultaneously. Figure 4.9 illustrates that there are several time
gaps in reading data during the boot process, especially, at the beginning of the
boot process and around the fourth second. These non I/O intensive periods, in
particular the first one, enables us to start the prefetching script and the boot
process of a new VM at the same time. If they were not, the duration needed for
the prefetching operation would be almost similar than booting a VM, making
this strategy similar to the previous one.

— YOLO: All VMs have been started at the same time, and when VM need to
access mandatory data, YOLO will serve them. We underline that boot images
have been preloaded into the YOLO memory before starting VMs. This way
enabled us to emulate a non volatile device. While we agree that there might be
a short overhead to copy from the non volatile device to the YOLO memory, we
believe that doing so is acceptable as (i) the amount of manipulated boot images
in our experiments is less than 800MB (16*50MB) and (ii) the overhead to load
simultaneously 16 boot images from a dedicated SSD is negligible as discussed
in the preliminary studies and confirmed in Figure 5.3.
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Figure 5.3 – Overhead of serving boot’s I/O requests directly from the memory vs. a dedicated SSD

5.3 VM Boot Time Evaluation

In this section, we analyze the boot time of VMs with two scenarios. The first one
is to boot multiple VMs simultaneously on a idle compute node (i.e., there is no other
workload is running on that node). In this experiment, VMs are created with the same
or different backing files. The second scenario is booting only one VM under I/O or
memory interference.
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5.3.1 Deployment multiples VMs

VMs Deployment With the Same VMI
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Figure 5.4 – Time to boot multiple VMs, which share the same VMI (cold environment: there is no other
VMs that are running on the compute node)

Figure 5.4 shows the time to boot up to 16 VMs leveraging the same VMI (i.e., the
same backing file).

On HDD (Figure 5.4a), the all at once boot policy has the longest boot duration
because VMs perform read and write I/O operations at the same time for their boot
processes. This behavior leads to I/O contentions: the more VMs started simultaneously,
the less I/O throughput can be allocated to each VM. When we use the one then others

policy, we can see better performance in comparison to the previous policy. As already
explained, this is due to the cache that has been populated during the boot of the first
VM. The boot time raises slightly with the number of VMs (from 2 to 16) due to the I/O
writes. Regarding the Prefetching boot and YOLO strategies, they greatly speed up the
VM boot time compared to other two boot policies because the VMs always get benefit
from the cache for reading mandatory data. It is noteworthy that the performance gap
between both strategies is not perceptible in this scenario. This is due to (i) the number
of I/O requests that is not significant and (ii) that there is not cache eviction (all VMs
are using the same VMI).

On SSD (Figure 5.4b), the boot time of several VMs is mostly constant for all
boot policies. The I/O contention generated during the boot process on SSD becomes
negligible because the I/O throughput of the SSD is higher than HDD. The I/O requests
executed by the VMs can be handled quickly. Therefore, all at once, prefetching boot

and YOLO relatively show the same boot duration. The duration of one then others boot
policy is longer because we accumulated the boot time of the first VM.

Using Ceph (Figure 5.4c), prefetching boot and YOLO still have the best perfor-
mance. The boot duration with one then others, prefetching boot and YOLO policy,
which are mostly affected by I/O writes contention, follows the same trends when
running on HDD. However, on Ceph, all at once are faster than one then others, because
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the bottleneck on Ceph is not on I/O disk anymore (all I/O operations go through the
10Gbit network interface and are served by Ceph).
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Figure 5.5 – Time to boot multiple VMs, which have different VMIs (cold environment: there is no other
VMs that are running on the compute node)

We performed the same experiment as the previous one, but each VM had its own
VMI (i.e., backing file). In this particular case, there was no interest to evaluate the
one then others because there was no possible gain from the cache. Therefore, we only
compared the results of the three other boot policies. Figure 5.5 depicts the results.

On HDD (Figure 5.5a), the boot time using YOLO increases slightly while all at

once and prefetching boot rise sharply. For example, to boot 16 VMs, prefetching

boot and all at once needs 38 s and 107 s, respectively, compared to only 7.2 s by using
YOLO. The performance for the prefetching boot strategy is strongly impacted due to
the fact that the script has been invoked several times simultaneously (generating a lot of
competitions and a large number of seek operations on the HDD). While YOLO would
have also suffered from this issue (we remind that the boot images have been preloaded
into the memory before booting VMs), the impact would be less important because
YOLO reads boot images in a contiguous manner. The all at once boot policy also
suffered I/O contentions from random reads generated by multiple VMs simultaneously
as in case of prefetching boot. However, the performance is even worse because of : (i)
the I/O virtualization overhead and (ii) the I/O access pattern that cannot benefit from
the read-ahead strategy of the host OS.

On SSD (Figure 5.5b), it takes less than 3 seconds to boot VMs in three cases of
boot policies. This behaviour is again explained by the SSD capability.

On Ceph (Figure 5.5c), YOLO and prefetching boot rise slightly while all at once

increases in a linear way. However, it is noteworthy to mention that prefetching boot is
constant when the number of VMs is less than 13, and then it slightly increases. The
reason for this trend is due the number requests sent through the network : when we
boot more than 13 VMs at the same time, the traffic is high enough to cause a network
bottleneck.
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Summary

When simultaneously booting several VMs in a cold environment, the VM boot
time is affected by the I/O generated by the boot process of other VMs. On HDD and
Ceph, YOLO speeds up the VM boot time up to 13 times and 6 times respectively when
VMs do not have the same VMI and 2 times when VMs are sharing the same backing
file. YOLO does not improve the boot time on SSD in both cases with or without sharing
VMIs. However, this is not true in high I/O contention scenario. Because SSD has very
high I/O throughput, the I/O contention generated by VMs booted simultaneously is
negligible. We will see the improvement of YOLO for SSD in the next scenario.

5.3.2 Booting One VM Under High Consolidation Ratio

The second set of experiments is aimed to understand the effect of booting a VM in
a high-consolidated environment. We defined two kinds of VMs :

— eVM (experimenting VM), which is used to measure the boot time;
— coVM (collocated VM), which is collocated on the same compute node to run

competitive workloads.
We used the command Stress [83] to generate the I/O and memory workloads. We
measured the boot time of the eVM while the multiple coVMs run their workloads
(generating I/O and memory interferences). First, we started n coVMs where n ∈ [0, 15],
and then we start one eVM to measure its boot duration. Each coVM utilises a separate
physical core to avoid CPU contention with the eVM while running the Stress benchmark.
The I/O (and respectively) memory capacity is gradually used up when we increase
the number of coVMs. Finally, there is no difference between all at once and one then

others boot policy because we measure the boot time of only one VM. Hence, we simply
started the eVM with the normal boot process.
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Figure 5.6 – Boot time of 1 VM (with shared image disk, write through cache mode) under I/O contention
environment
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Figure 5.6 shows the boot time of one VM on the three storage devices under
an I/O-intensive scenario. YOLO delivers significant improvements in all cases. On
HDD, booting only one VM lasts up to 2 minutes by using the normal boot policy.
Obviously, prefetching boot and YOLO speed up boot duration much more than the
normal one because the data is loaded into the cache in a more efficient way. However,
the performance, which was almost similar for YOLO and the prefetching boot when
manipulating one VMI (see Figure 5.4a), is now clearly different and in favour of
YOLO.

The same trend can be found on SSD in Figure 5.6b where the time to boot the eVM
increased from 3 to 20 seconds for the normal strategy, 3 to 6 seconds for the prefetching

boot, and from 3 to 4 seconds for YOLO. While YOLO is faster than prefetching boot by
a small amount, YOLO is up to 4 times faster than all at once policy under I/O contention
of 15 coVMs. Because we generated much more I/O contention than in the first scenario,
there is enough workload on SSD (which has very high I/O throughput). Therefore, we
started to see the improvement of YOLO on SSD. An interesting point is related to the
Ceph scenario. When the coVMs are stressing the I/O, they generate a bottleneck on
the NIC of the host OS, which impacts the performance of the write requests that are
performed by the eVM during the boot operation. This leads to worse performance for
YOLO and the prefetching boot strategies than in the HDD and SSD scenarios, ranging
from 3 to 58 seconds and from 3 to 61 seconds respectively. However, it is still twice
faster than the boot time of all at once, which is 107 seconds at 15 coVMs.

To sum up, on a physical node which already had I/O workloads, YOLO is the best
solution to boot a new VM in a small amount of time. YOLO reduces the boot duration
5 times on local storage (HDD and SSD) and 2 times on remote storage (using Ceph).
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Figure 5.7 – Boot time of 1 VM (with shared image disk, write through cache mode) under memory
usage contention environment

We use this scenario to assess the influence of not having enough space to load and
keep the boot images into the memory of both prefetching boot and YOLO strategies.
Figure 5.7 gives the results we measured.
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On HDD, the normal boot time can reach up to 4 times longer compared to the
other two methods. With prefetching boot, the prefetched data stays in the memory
to reduce the boot time until the page cache space is claimed. In this situation, the
hypervisor might have to to read the prefetching data on the storage device once again.
While comparing to YOLO, the boot data stays in the memory space that has been
allocated by YOLO, hence, cannot be removed by the kernel. For this reason, under
memory-intensive environment, YOLO is almost 2 times faster than prefetching boot

with 15 coVMs that stress the whole memory. On SSD, the different between YOLO

and prefetching boot is small thanks to the performance of SSD. It is also true for Ceph,
which has high read performance in general.

Summary

Using YOLO under I/O and memory intensive scenarios enables faster boot times
in comparison to the normal boot approach. We underline that the gain should be
even more important under when several VMs would be booted simultaneously under
such intensive conditions. Regarding the memory impact, it would be interesting to
conduct additional experiments in order to better understand the influence of the SWAP
for YOLO. Indeed, when there is not enough memory at the host OS level, the YOLO

daemon should be impacted by the SWAP mechanism. In such a case, it would be
probably better to access boot images directly from a dedicated fast efficient storage
device instead of putting the boot image into the YOLO memory. By such a way, it
would be possible to prevent YOLO to suffer from SWAP operations. As we already
observed in Figure 5.3, accessing directly a SSD device is almost similar in terms of
performance than accessing the memory. Such an experiment under a memory intensive
environment should be however performed to confirm this assumption.

5.4 Docker Container Boot Time Evaluation

In this section, we evaluate the boot time of dockers with two scenarios which are
similar to the VM ones: (i) booting several dockers at the same time and (ii) booting
only one docker under I/O contention.

When we discussed the amount of manipulated data during a boot process in Chapter
3, we observed that VMs mainly access the boot data in their images. However, for
docker, the majority of I/O accesses is related to the docker binaries together with their
associated libraries and configuration files. Thus, we use vmtouch to enforce Docker
daemon data to stay in the cache before we boot. In this evaluation, we compare 3
different boot policies: (i) normal boot which is booting all dockers at once; (ii) YOLO;
and (iii) YOLO + vmtouch.
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5.4.1 Booting Multiple Distinct Containers Simultaneously

Similarly to VMs, we discuss in this paragraph the time to boot several different
containers simultaneously. Figure 5.8 presents the results. Although YOLO reduces the
time to boot containers, the time increases more significantly in comparison to VMs.
This is due to the write operations that need to be completed as explained in Section
2.3.1. Understanding how such writes can be handled more efficiently is let as future
works. Overall, YOLO enables the improvement of the boot time by a factor 2 in case
of HDD (Figure 5.8a). The trend for SSD is similar to the VM one: there is no enough
competition on the I/O path to see an improvement.
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Figure 5.8 – Boot time of different docker containers on different storage devices

5.4.2 Booting One Docker Container Under I/O Contention
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Figure 5.9 – Boot time of one debian docker container under I/O contention

In this paragraph, we discuss the time to boot a container under I/O contention.
Figure 5.9 depicts the results: the boot time is increasing until it becomes quite stable.
When a container is started, Docker needs to generate the container layer with all
the directories structure for that container. As mentioned, this action generates write
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operations on the host disk, which suffer from the I/O competition. Although YOLO and
YOLO + vmtouch help mitigate the read operations, Docker still waits for the finalization
of the container layer to continue its boot process. Therefore, the gain of YOLO is much
smaller than for VMs.

5.5 yolofs Overhead

Although booting VMs as fast as possible is the objective of our study, the perfor-
mance of applications or services running inside VMs should be taken also into account.
To this aim, we performed two different experiments to evaluate the I/O performance a
VM can expect once it has been booted using the YOLO mechanism.

Table 5.2 – Time (second) to perform sequential and random read access on a backing file of VMs which
are booted by normal boot and YOLO on three storage devices.

HDD SSD Ceph

ext4 yolofs +ext4 ext4 yolofs +ext4 ext4 yolofs +ext4
Sequential Read 19.047 s 19.074 s 3.540 s 4.084 s 9.7 s 10.55 s
Random Read 13.405 s 13.553 s 6.408 s 6.692 s 11.27 s 12.25 s

In the first experiment, we compared the read performance when accessing data
stored in the backing file with the additional yolofs layer (i.e., yolofs +ext4) and the
straightforward way (i.e., ext4 only). We evaluated both sequential and random access.
For sequential read, we measured the time a VM needs to read sequentially a whole
2.5GB file. For random read, we read randomly 868MB on a 2.5GB file. Table 5.2
presents the time we observed. The difference of read performance of a VM booted by
the two methods is at worst 10%.

Table 5.3 – The number of transactions per second (tps) when running pgbench inside a VM booted using
YOLO and normal way on 3 types of storage devices.

HDD SSD Ceph
yolofs 139 1205 145
Normal I/O path 140 1226 164

In the second experiment, we used pgbench [84] to measure PostgreSQL perfor-
mance (in transactions per second). The VMI used in this experiment already contained
pgbench benchmark (with PostgreSQL 9.4.17). We stored the 1.34GB test database
(with over 5 million rows of data) on a QCOW file of a VM. After booting the VM,
we performed pgbench with the default TPC-B test (involving five SELECT, UPDATE,
and INSERT commands per transaction). Table 5.3 presents the number of transactions
per second when we used pgbench to access the database. The read/write accesses
to the database of the VM is not handled by yolofs because the database is stored on
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the QCOW file and it is not located in the yolofs mount point. In other words, only
I/O reads access to the files related to PostgreSQL application will go through yolofs.
Consequently, YOLO has a similar performance compared to VM boot in a normal way.

To conclude, the overhead caused by FUSE in YOLO surfaces when a VM has to
read big chunk of data on the backing file. However, in most practical cases, the backing
file contains only essential application and system files that are shared with many VMs,
other data of those VMs are stored on the QCOW file. This has been confirmed in a
study [69], the authors showed that only a small fraction of the VMI is accessed by
VMs throughout its run-time. Accordingly, VMs booted by YOLO still maintain the
same performance for running the applications or services.

5.6 Integrating YOLO into cloud systems

The proposed methodology YOLO has been applied to both VMs and containers
solutions. In fact, YOLO uses user-space components that are suitable for both full-
virtualization (QEMU-KVM) as well as Containerization (Docker), which shows its
flexibility to apply to a number of virtualization solutions. In order to further demon-
strate the adaptability of the method, we have integrated YOLO to OpenStack. The
motivation behind our choice of OpenStack is its large ecosystem with wide adoption
by many organizations and businesses. Getting YOLO to work on OpenStack and
reduce the boot time of VMs/container in this platform brings a great benefit to the huge
community of OpenStack users.

We performed a simple test to check if YOLO works with OpenStack or not by
changing the backing file of a VM to the yolofs mount point, then we performed a
normal process using OpenStack. Our preliminary results (in Table 5.4) shows that
YOLO speeds up the VM boot time at least 30% in a cold environment and up to 39% in
an I/O contention environment. The early result gives a positive outcome of integrating
YOLO to OpenStack.

Table 5.4 – Booting VM with OpenStack

Without YOLO With YOLO % Speedup
Boot 1 VM 3.93 s 2.71 s 30 %
Boot 1 VM under I/O stress 8.23 s 5.03 s 39 %

YOLO works using any storage backend and is transparent to the VMs, the hyper-
visor, the kernel of the host/guest OS and the Container managers. This characteristic
eases the integration of YOLO, allows YOLO to be deployed on a wide range of existing
systems.
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5.7 Summary

Starting a new VM or container in a cloud infrastructure depends on the time to
transfer the base image to the compute node and the time to perform the boot process
itself. According to the consolidation rate on the compute node, the time to boot a VM
or a container can reach up to one minute and more. Results in the previous chapter
showed that booting a VM/container generates a large amount of I/O operations and
the I/O access is the most influence factor to the boot time of VMs and containers. To
mitigate the overhead of these operations, we proposed YOLO. YOLO relies on the boot
image abstraction which contains all the necessary data from a base image to boot a
VM/container. Boot images are stored on a dedicated fast efficient storage device and
a dedicated FUSE-based file system is used to load them into memory to serve boot
I/O read requests. We discussed several evaluations that show the benefit of YOLO in
most cases. In particular, we showed that booting a VM with YOLO is at least 2 times
and in the best case 13 times faster than booting a VM in the normal way. Regarding
containers, YOLO improvements are limited to 2 times in the best case. Although such
a gain is interesting, we claim that there is space for more improvements. Chapter 7
will elaborate more on these improvements.
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6
Summary of Contributions

In Cloud Computing era, whenever a user wants to execute an application, the
executable binary together with its required dependencies and its related applications
are wrapped around by a layer of abstraction, which can be a virtual machine (VM)
or a container or a lightweight VM (like kata-container [57]). Users do not really care
what types of abstractions are used and only concern about how their applications are
running: will they run in a stable behavior? Will they be secured and isolated from other
applications and systems? Will they have good performance with different workloads?
One issue that is important for both users and infrastructure providers is how fast can
these "machines" boot? Deploying a new VM or container in a cloud infrastructure is a
time-consuming process. It depends on the time to select the hosting node, the time to
transfer the VMI or container image to the compute node and finally the time to boot
the "machine". The boot time can affect the users’ experience and may cause negative
effects on their business. Furthermore, it can also affect the cloud system in case of
handling high workloads and requests, or auto scaling systems.

Currently, users may have to wait from tens of seconds to several minutes before they
can access their VMs/Containers. Obtaining a deep understanding of the boot operation
in a cloud environment helps us identify which factors affect the VM/Container boot
time and their influence levels. In this dissertation, we discussed several experiments
that cover many related scenarios on the boot operation. We conducted performance
analyses in order to investigate in details VM and container boot time [19, 20]. To the
best of our knowledge, this is the first study that deals with this question under so many
different resources contention scenarios. Specifically, we performed a large combination
of experiments in order to understand how resource workloads such as CPU utilization,
memory usage, I/O and network bandwidth on several storage devices and with different
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boot parameters impact the behavior of booting VMs as well as containers. Performing
reproducible experiments on cloud computing platforms includes complex tasks with
complicated workflows and generally a huge number of configurations to consider.
Our experiments (more than 14.000) are performed inside the clusters of Grid5000
where resources for running long time experiments are only available during nights or
weekends. Therefore, we followed a software-defined experiment approach, we created
a script that allows us to execute all the experiments in an automatized and replicable
manner. The study shows that the VM/Container boot duration is not only affected
by the co-workloads and the number of VMs/Containers simultaneously deployed but
also the parameters that have been used to configure VMs/Containers. Furthermore, on
different storage devices, booting VMs/Containers with the same configuration leads to
various behaviors.

When comparing the boot time between containers and VMs, it is obvious that
containers boot much faster than VMs. However, the boot duration of containers also
has an increasing trend like the VM boot time when we boot multiple containers at the
same time or under a workload contention environment. In brief, I/O throughput is the
most significant factor on both VMs and containers boot duration. This behavior of
VMs/containers boot time should be taken into account when we want to deploy new
VMs/containers. Lately, a recent trend called nested virtualization surfaces. Specifically,
it is the possibility to have a virtualization layer inside another virtualization layer. This
is the scenario where we can run a VM inside a VM, or essentially, a container inside a
VM. For example, it is possible to run Docker containers inside a Linux VM deployed
on top of an Amazon Web Services EC2 instance. Having an understanding of the
boot behavior of both VMs and containers helps interpret the behavior of the nested
virtualization scenario.

As we mentioned before, I/O throughput is the most significant factor on both VMs
and containers boot duration, and mitigating the overhead on I/O path will result in a
better boot performance for VMs/Containers. Previous observations have shown that
only a small portion of the image is required to complete the VM boot process. To
confirm the observation, we made an analysis on the I/O operations that occur during
the boot process. It enabled us to conclude that (i) like VMs, containers only require
to access a small part of the image to complete the boot process and (ii) unlike VMs,
the amount of manipulated data for a container is much smaller in comparison to the
I/O operations performed by the container management system itself. Based on these
conclusions, we proposed in this thesis a novel method - called YOLO (You Only Load
Once). We introduced the boot image abstraction which contains all the necessary data
from a base image to boot a VM/container. Boot images are stored on a dedicated fast
efficient storage device and a dedicated FUSE-based file system is used to load them
into memory to serve boot I/O read requests. To reduce the I/O operations related to
the VM/container management system itself, we decided to use the Linux program
vmtouch, which is able to lock specific pages in the Linux system. Our evaluation
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of YOLO shows that booting a VM with YOLO is at least 2 times and in the best case
13 times faster than booting a VM in the normal way. Regarding containers, YOLO

improvements are up to 2 times in the best case. Furthermore, YOLO can be easily
applied to other types of virtualization (e.g., Xen) and containerization because it does
not require intrusive modifications on the virtualization/container management system
nor the base image structure. Due to the fact that YOLO is running in the user space, it
has some overhead on the I/O path. Nevertheless, this overhead has been proved to be
acceptable in [81].

We successfully applied YOLO into OpenStack, a popular cloud system, in order
to demonstrate the adaptability of the proposed solution. In the initial experiment, we
achieved at least 30% improvement on the boot time of VM.

In the following and last chapter, we give opportunities for future research.
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In this last chapter, we discuss some perspectives of the present works. First, we

give some improvements suggestions for YOLO and second, we present a potential

resource allocation solution that takes into account the boot duration.

7.1 Improving YOLO

In this section, we describe a few improvements that it would be interesting to
develop in YOLO.

Speeding the start up the applications

It would be interesting to study whether it makes sense to also construct the boot
image abstraction with the data that is mandatory to start the application services.
Current experiments have been done by using SSH as the signal to the end of the boot
operation (in other words, we put in a boot image all the blocks that are mandatory to
reach the start of SSH). In many public cloud system, users usually have at least one
application or service running on a VM/container. As a result, it is more reasonable
to also have the application/service started in a fast manner. The boot image creation
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process can be extended in order to include the data related to the boot plus the data
related to the starting of the expected services. The drawback of this procedure might
be the enlargement in the storage of the boot image, as well as the reduction in the
amount of duplicated boot data among boot images which might affect the reusability
of the boot images.

Reducing the storage space for boot images

First, we are investigating the capacity of deduplication techniques to reduce the
size of all boot images. Each image has an underlying operating system and a set
of applications installed in it. More specifically, if several images differ only in the
installed applications and share a common underlying operating system, it would be
interesting to generate only one boot image for these images. We can create a boot
image for each family of images that shares the same operating system (e.g., Ubuntu,
Debian, Windows, etc.). Yet each operating system can have different versions and it
can be inefficient to create a boot image for each version. Different minor versions of
a same operating system can share multiple boot data, especially if they use the same
kernel, thus, it is possible to create a boot image for each group of images which belong
to the same operating system family. This method helps reduce the duplicated boot data
to be persisted and served by YOLO.

The same methodology can be used for images that have different versions of an
application running on the same operating system. As discussed above, a boot image
can contain boot data for applications. It is quite common to have a specific image for
running an application with all of its dependencies (e.g., a Microsoft SQL Server runs
on Windows Server image or a deep learning image with Tensorflow). Then each group
of these specific images can share a boot image. Another method for deduplication of
boot data is that we can create only one big boot image for all images in the system.
While the second method offers the greatest reduction in the term of duplicated boot
data, it increases the complexity while reduces the manageability and extensibility of
the boot image, compared to the first method. Altogether, the deduplication technique
is an improvement to the memory footprint and persistent size of YOLO overall.

Using deduplication techniques to reduce the size of all boot images seems a promise
solution but we need to evaluate carefully the performance when keeping only one big
boot image on memory.

Removing the overhead of YOLO after booting

A second technical improvement would consist in redirecting all the application’s
I/O requests to the disk directly, instead of going through yolofs after booting. Specifi-
cally, after the VM/container is fully booted, yolofs has finished its responsibility and
we do not want yolofs to handle the I/O read requests from the VM/container anymore,
hence, minimizing the overhead of yolofs on the VM/container performance. QEMU
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supports a feature to change the link between QCOW file and backing file of a VM disk.
Therefore, it should be possible to leverage this mechanism to dismiss the FUSE mount
point after the boot operation. However, this mechanism requires to restart the VM. To
execute such a change in an online fashion, extensions at the hypervisor level would be
required.

7.2 YOLO in a FaaS model

Figure 7.1 – Overview of a Function as a Service (FaaS) model

FaaS, which stands for Function as a Service, is a relatively new concept and recently
gains more attention in the Cloud Computing communities. Many cloud giants have
heavily invested in this technology and FaaS is now implemented in services such
as AWS Lambda, Google Cloud Functions, IBM OpenWhisk, and Microsoft Azure
Functions. Essentially, FaaS allows the users to run their backend code (a function)
without going through the complexity of building and managing their infrastructure to
host that piece of code. A function is encapsulated by a layer of virtualization (container,
VM, or nested container) as illustrated in Figure 7.1. FaaS can scale horizontally using
automatic resource provisioning and allocation by the provider. The ability to quickly
scale out "machines" that host users’ functions creates the requirement of booting
"machines" in an instant. This is the area where YOLO proves to be useful to improve
the boot time of the encapsulating layer and it is worth the effort to integrate YOLO

into the FaaS underlying infrastructure. The transparency of YOLO further helps the
integration process.
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7.3 An allocation strategy with boot time awareness

Virtual Machine Placement is a well-known problem in a cloud system, and it is
defined as the process to select the appropriate physical machine (PM) to run a given
VM that satisfies a set of constraints. There are thousands proposed VM placement
algorithms by previous works, with each of them tries to focus on some specific
goals (e.g. optimizing operational cost, energy consumption, security, or SLA, etc.)
[85, 86, 87]. Each algorithm performs well under certain conditions.

VMI transferring is usually considered as the most time-consuming stage in the
whole VM deployment process. While there are a lot of solutions to speed up the VMI
transferring time efficiently, it still takes time to perform the VM boot process. In fact,
the duration of a VM boot process by itself varies from a few seconds to several minutes
according to the number of concurrent VMs deployment and the system load, as we
largely discussed in this thesis. A VM placement strategy that considers the rapid VM
booting as one of the key conditions is required to provide dynamic scalability and fast
provisioning in an IaaS cloud system. Thanks to YOLO which can give some guarantee
in boot duration (as all the read accesses are mitigated), it would be possible to create a
VM scheduler that takes into account the VM boot time.

For example, OpenStack implements a Filter scheduler service to determine which
host a VM should launch. From a pool of available hosts, the scheduler will filter out
hosts that do not satisfy the criteria of the filters. Then the designated host is selected
from the filtered pool of hosts. We can use a VM boot time model based on YOLO as a
filter to predict the VM boot time given the current resource utilization of the host. The
unsatisfied hosts will be discarded from the pool.
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In this Appendix, we present and evaluate our proposed VM boot time model. Thanks

to the detailed analysis of the boot time behavior in Chapter 4, we can identify which

factors are the most dominant factors that impact to a boot process in a shared resource

environment. From that results, our proposed model can calculate the boot duration of

a VM based on the resources utilization percentage of the system. Having an accurate

model for the VM boot time helps researchers evaluate the real cloud system more

correctly.

A.1 Motivation

Base on the analysis from Chapter 4, it is clearly that VM boot operations are
complex processes that involved a significant number of parameters. The time it takes
to boot a VM is an important element for many operations of a cloud system. Therefore,
estimating the correct boot time of a VM is a necessary step for several studies such as
designing scheduling policy or performing cloud benchmarks. In order to study large
scale cloud systems, a cloud simulation tool that is capable of simulating as close as
possible real cloud behaviors is a huge advantage. It helps researchers to focus only
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on the parts they are interesting about without facing the aforementioned challenges.
To deliver such a framework, VM operations such as booting, migrating, suspending,
resuming and turning off should be correctly modeled. While actions such as turning
off can be modeled as a constant time activity, other operations such as booting or
migrating require advanced models.

A recent survey on cloud simulation tools [88] showed that current models of
VM boot time are ignored because they assumed that the VM boot time duration is
insignificant. In addition, Costache et al. [43] included a simple VM boot time model by
set the duration to a small constant. This inaccurate estimating can impact the system’s
performance. For instance, because the VM boot process consumes some resources,
other applications performance on the host will be impacted if the boot process takes
a long time. Besides, if we need an additional VM for a task, and the time to boot
that VM is longer than the time that task finished. These lead to resource waste and
unnecessary cost due to imprecise VM boot time information.

In this Appendix, using the obtained results in Chapter 4, we propose a model
that is capable of calculating the VM boot time and taking into account resources
contentions caused by other computations and data loading actions within the whole
system. Not only resource workloads such as CPU utilization, memory usage, I/O and
network bandwidth but also the method we use to boot VMs or the type of storage
device can affect the boot time and should be considered in the model to have a correct
measurement. Delivering a first model for the VM boot operation is an important
contribution as several people might erroneously consider that the time of VM boot
process is negligible. Through evaluation, we also confirmed that our model correctly
reproduced the boot time of a VM under different resources contention.

A.2 VM Boot Time Model

We used the coVMs to generate stress on the shared resources on a compute node so
that we can identify the effect of different resources on the VM boot time, as described
in Section 4.3. To clearly compare between the impact of different resources, we put
those impact factors together in one chart for each of the storage device (in Figure A.1).
As concluded in Section 4.3, the VM boot time is mainly influenced by CPU and I/O
factors. Moreover, within a VM boot process, CPU has to check devices and set up
necessary initialization; while the VM has to load kernel image from disk to its memory,
therefore the VM boot time model has to deal primarily with processing time of I/O
and CPU. Thus, we can split the boot time of a VM into the time of two components:

t = timeIO + timeCPU (A.1)

We convert Figure A.1 by transforming the x-axis from number of coVMs into the
utilization percentage of I/O throughput and CPU capacity and the y-axis to the boot
time of a eVM in seconds. Figure A.2 presents this conversion. The correlation between
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Figure A.1 – The comparison of VM boot time with 4 factors: I/O throughput, CPU capacity, memory
utilization and the mixed factors, on HDD vs SSD. The y-axis shows VM boot time in seconds on a log
scale with base 10

the boot time and the utilization percentage of both CPU capacity and I/O throughput
is the upward curve. In fact, when the utilization reaches 100%, theoretically the boot
process can last indefinitely. Therefore, the boot time model will have the form γ

1−x

where x is the resource utilization percentage and γ denotes the constant boot time
when there is no resource utilization.

Figure A.2 shows that the boot time for I/O throughput utilization increases expo-
nentially so that we add the exponential growth function to this model. Regarding the
CPU capacity utilization, we see no such high exponential trend. Furthermore, when
there is no resource contention, which means the utilization percentage is zero, the boot
time of each component is a constant, denoted α and β correspondingly. Respectively,
we can model them as:

timeIO =
ex × α

1− x
(A.2)

timeCPU =
β

1− y
(A.3)
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with:
— x is the utilization percentage of I/O throughput
— y is CPU utilization percentage
— α is the time that a VM needs to perform I/O operations in boot process when

there is no resources contention
— β is the time that CPU takes to run operations in boot process when there is no

resources contention
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Figure A.2 – The correlation between VM boot time and resources utilization with two disk creation
strategies, on HDD and SSD

A.3 Model Evaluation

To validate the correctness and the accuracy of our VM boot time model, we
compared the boot time from Grid5000 experiments with the boot time calculated from
the model. To perform such a comparison, we needed to identify the α and β parameters
of our model.
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t =
ex × α

1− x
+

β

1− y
(A.4)

Those parameters vary according to different hardware configurations and guest
operating systems. Therefore, to evaluate the model, we run a calibration experiment,
i.e., an experiment where one VM is started with no resource contention. Since there is
no resource contention (x = 0 and y = 0), then the boot time model becomes t = α+β.
The CPU time β is the necessary time for calculation to boot a specific operating system
and we can retrieve it in the system log. The model variables are the I/O throughput and
the CPU utilization percentage. We used these inputs to calculate the boot time with
various utilization levels.
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Figure A.3 – Boot time with different resource contentions on HDD
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Figure A.4 – Boot time with different resource contentions on SSD

Figures A.3 and A.4 show the comparison of boot time under resources contentions
between the Grid5000 experiments, our model and a naive one (i.e., with a constant
boot time of 30 seconds [43]) with HDD and SSD machines respectively. We evaluated
the model on three resource contention cases: CPU, mixed workload (using Pgbench)
and I/O contention. It is clear that the naive model cannot represent the variation of VM
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boot time under different conditions. The naive model overestimates the boot time in
CPU contention while it underestimates by a large margin in high I/O contention.

Figure A.3 shows that our model can keep up with the upward curve of VM boot
time under different workloads stress on HDD. The deviation in CPU contention case is
within 2 seconds in Figure A.3a. For the mixed workload (Figure A.3b), the average
deviation is 15 seconds, but when we get high resource contention, at 90% CPU and I/O
throughput utilization, the deviation increases up to 37 seconds, knowing that the boot
time can reach up to 130 seconds. Under I/O stress, the boot time can rise as high as 210
seconds. The difference on average between our model and the Grid5000 experiments
is 10 seconds for shared disk (Figure A.3c) and 25 seconds for no shared disk (Figure
A.3d). However, when I/O resource utilization reaches over 90%, the deviation can be
up to 23 seconds and 89 seconds for each disk type, respectively. In the case of HDD,
under I/O contention, the model is less accurate due to the large difference in boot time
of the two disk creation strategies. With the no share disk, there is a higher probability
that the HDD needs to do more seek operations, which leads to the high deviation of
the model. However, our VM boot time model does not model such a phenomenon yet.

The graph in Figure A.4a shows that our model also successfully represents the
upward curve of VM boot time for SSDs. The deviation is within 1.5 seconds for
CPU stress and 4 seconds for mixed worload. The comparison between the Grid5000
experiment and the model under I/O contention using SSDs is illustrated in Figure
A.4c. Under high I/O contention, the boot time can rise up to 70 seconds. The model
differs from the Grid5000 experiment by 25 seconds maximum when the I/O utilization
reaches 90% and 5 seconds on average.

A.4 Conclusion

Based on the results, we can confirm that a simple model based on constant values
is definitely not accurate since it cannot handle the variation of the boot time under
workloads that may increase up to 50 times under high I/O contentions. On the other
hand, our model succeeds to follow such fluctuations with deviations within 2 seconds
in case CPU contention, and 10 seconds in average for I/O contention (when resource
utilization is lower than 90%). The time to boot a VM grows from a few seconds to
several minutes depend on the contention that occurs on the I/O and CPU resources.
We introduce a VM boot time model to give a more accurate estimation of the time a
VM needs to boot in a shared resource environment.

Regarding the future work, it would be interesting to extend the VM boot time model
to capture the HDD seek time when there are I/O competitive workloads. Furthermore,
a container boot time model can be obtained based on performing a more detailed
analysis on the results of Chapter 4. Finally, both VM and container boot time model
can be integrated into existing cloud simulators such as SimGrid [89].
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Résumé en Français

Contexte

L’émergence du Cloud Computing a révolutionné le secteur des technologies de

l’information et de la communication. Profitant de l’abondance des ressources asso-

ciée au développement rapide des technologies Web, le Cloud Computing a permis

de démocratiser le concept d’"informatique en tant qu’utilitaire". Aujourd’hui, les

utilisateurs peuvent accéder à différents services exécutés sur le cloud, depuis la naviga-

tion avec Google Maps, la visualisation de films à la demande avec Netflix, ou encore

la téléconférence avec des partenaires commerciaux utilisant Skype à l’autre bout du

monde. Par ailleurs, de nouvelles entreprises peuvent concrétiser leurs idées sans avoir

à déployer et gérer leur propre infrastructures. Tous cela est rendu possible par la

puissance de calcul offertes à la demande par les infrastructures de type cloud.

Une technologie clé dans le développement et l’adoption du Cloud Computing est

la virtualisation. La virtualisation peut être considérée comme l’abstraction d’un objet

physique ou d’un service. L’utilisation de virtualisation permet notamment de diviser

les ressources physiques en groupes de taille différente et donc de les partager entre

plusieurs "environnements virtualisés". Cela constitue un moyen simple et efficace

pour utiliser les ressources physiques offertes par une infrastructure cloud tout en

apportant un certain niveau d’isolation entre les utilsateurs. Parmi les différents types

de virtualisation qui ont été développés, les deux technologies les plus importantes

sont les machines virtuelles (VM) et les conteneurs. Une machine virtuelle est la

combinaison de différentes ressources physiques sous une couche d’abstraction sur

laquelle les utilisateurs peuvent démarrer un système d’exploitation afin d’effectuer

des tâches spécifiques. Les conteneurs peuvent être vus comme une approche plus

moderne et surtout plus légère de la virtualisation des ressources. De nombreuses

études [5, 6, 7, 8, 9, 10] ont comparé ces deux technologies sur l’axe de la performance.

Tous ces travaux ont abouti à la même conclusion: les performances d’une application
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s’exécutant au dessus d’un conteneur sont proches de celles du système nu, alors qu’il

y a une dégradation significative des performances lors de l’exécution de la même

application au dessus une VM, en particulier pour les opérations d’entrée/sortie.

Gardant à l’esprit ce concept de virtualisation, un défi important pour les opérateurs

de clouds est de pouvoir provisionner aussi rapidement que possible une VM ou un

conteneur. Ce processus dit de "provisionnement" peut être d’un durée plus ou moins

longue. Il comprend trois étapes: (i) après réception de la demande de provisionnement,

le système de gestion de ressources identifie un nœud physique approprié pour héberger

la VM / le conteneur, (ii) l’image disque permettant de démarrer cette machine est

transférée depuis une base de données vers le nœud désigné, et (iii) la machine virtuelle

/ le conteneur est démarré. Chacune de ces étapes est complexe et peut impacter le

temps de provisionement de l’environement demandé. De nombreuses politiques ont

été étudiées pour identifier de manière efficace, la machine physique qui va héberger

l’environnement. Elles essaient d’optimiser des objectifs spécifiques tels que l’économie

d’énergie, la garantie de qualité de service, l’équilibrage de charge, etc. [11, 12]. Selon

les caractéristiques de la demande, la disponibilité des ressources physiques et les

critères de l’algorithme de séléction, la durée de l’opération d’identification peut varier.

La seconde étape, le transfert de l’image disque associée à l’environnement, a également

fait l’objet de nombreuses recherches [13, 14, 15, 16, 17]. De nos jours, dans la plupart

des plateformes de cloud, les images de machines virtuelles ou de conteneurs sont

stockées dans une base de données distante et sont transférées sur un hôte physique en

vue du démarrage d’une nouvelle machine. Diverses techniques ont été proposées afin

d’optimiser le transfert de ces images sur le réseau, notamment le transfert d’image par

des protocoles "pair-à-pair", la déduplication ou encore des méthodes de mise en cache.

La durée de cette étape est généralement considérée comme la plus longue du processus

de provisionnement. La dernière étape du processus de provisionnement consiste à

démarrer la machine virtuelle / le conteneur lui-même. Le temps associé à cette action

est souvent négligé (ou considéré constant dans le meilleur des cas). Cependant, il a

été montré que dans la plupart des clouds IaaS publics tels qu’Amazon EC2, Microsoft

Azure ou RackSpace, les utilisateurs peuvent attendre plusieurs minutes pour obtenir

un nouvel ordinateur virtuel [18]. Une telle durée de démarrage a un impact négatif

sur les services de cloud computing. Cette situation est critique lorsque les clients

doivent activer des machines virtuelles / conteneurs pour traiter un pique d’activités

sur leurs applications. Dans un environnement contraint (i.e., une machine physique
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surchargée), le temps de démarrage d’une machine virtuelle peut atteindre plusieurs

minutes là où il en prend généralement une vingtaine de secondes. De la même manière,

de nombreux utilisateurs ont une idée fausse concernant le temps de démarrage des

conteneurs. Bien que les conteneurs soient dits «instantanément» prêts au démarrage,

le taux de charge éfféctif de la machine physique a un impact sur le temps nécessaire

pour mettre à disposition le conteneur.

Objectifs

Dans cette thèse, nous montrons combien il est essentiel de limiter les interférences

pouvant se produire lors du démarrage d’une machine virtuelle ou d’un conteneur. Plus

précisément, nous présentons une analyse complète des performances du processus

de démarrage de la machine virtuelle / du conteneur. Cette analyse montre l’impact

des environnements virtualisés co-localisés sur la durée de démarrage d’une nouvelle

machine virtuelle ou d’un nouveau conteneur. Afin d’y remedier, nous proposons une

approche permettant de réduire au maximum le nombre d’operations d’entrées/sorties

afin d’accélérer le processus de démarrage d’une machine virtuelle et d’un conteneur.

Contributions

Comprendre les pénalités de performances et de temps de démarrage des ma-

chines virtuelles / conteneurs

Actuellement, les utilisateurs peuvent avoir besoin d’attendre de quelques dizaines

de secondes à plusieurs minutes avant de pouvoir accéder à leurs VM / conteneurs.

Obtenir une compréhension approfondie de l’opération de démarrage dans un environ-

nement cloud nous aide à identifier les facteurs qui affectent le temps de démarrage de

la machine virtuelle / du conteneur et leurs niveaux d’influence. Nous avons effectué

un nombre conséquent d’expériences afin de comprendre les temps de démarrage des

machines virtuelles, des conteneurs et des conteneurs imbriqués ( c’est-à-dire un con-

teneur s’exécutant dans une machine virtuelle). Plus précisément, nous avons effectué

de manière automatisé plus de 14 400 expériences, représentant plus de 500 heures de

traitement sur l’infrastructure Grid’5000. À notre connaissance, il s’agit de la première

étude traitant de cette question dans le cadre de nombreux scénarios de conflit de

ressources.

Cette campagne d’expériences nous a permis d’analyser finement le comportement

du temps de démarrage d’une machine virtuelle et d’un conteneur. Les résultats obtenus

ont permis de montrer que la durée d’exécution du processus de démarrage est affectée
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par les environnements co-localisés, le nombre de VM / conteneurs déployés simultané-

ment, et également par les paramètres utilisés pour configurer les machines virtuelles /

conteneurs. Lors de la comparaison des charges de travail, nos résultats montrent que

le temps de démarrage de la machine virtuelle, introduit une surcharge négligeable en

termes de mémoire et de bande passante réseau (sauf dans le cas d’un volume distant).

Les entrées/sorties disques sont le facteur le plus déterminant quelquesoit le type de

périphériques de stockage.

L’ensemble de cette campagne d’expériences ainsi que les principaux résultats

obtenus ont donné lieu à un rapport de recherche [19]. Nous avons également exploiter

cette étude pour proposer un modèle de temps de démarrage pour les machines virtuelles.

La motivation de ce travail etait de fournir un modèle pouvant être intégrer dans les

outils de simulation de type SimGrid. Ces travaux qui ont été menés en parallèle de

la problématique d’optimisation du temps de démarrage sont présentés en annexe du

présent manuscrit et ont été publiés à la conférence IEEE PDP en 2017 [20].

YOLO: accélérer le temps de démarrage des ordinateurs virtuels et des con-

teneurs

Afin d’accélérer le processus de démarrage, nous avons conçu YOLO (You Only

Load Once), un mécanisme qui minimise le nombre d’opérations d’Entrées/Sorties

générées au cours d’un processus de démarrage. YOLO repose sur le concept de boot

image. Un boot image contient toutes les données nécessaires d’une image disque usuel

effectuer un processus de démarrage. Ces nouvelles images dédiées au processus de

démarrage sont stockées directment sur chacun des noeuds pouvant héberges une VM

ou un conteneur, plus précisemment sur un périphérique de stockage à accès rapide, tel

qu’une mémoire vive ou un disque SSD dédié. À chaque démarrage d’une machine

virtuelle / d’un conteneur, YOLO intercepte les accès en lecture et les sert directement.

Notre évaluation de YOLO montre que le démarrage d’une machine virtuelle avec

YOLO est au moins 2 fois et dans le meilleur des cas 13 fois plus rapide que le démarrage

normal d’une machine virtuelle. En ce qui concerne les conteneurs, les améliorations

YOLO vont jusqu’à 2 fois dans le meilleur des cas. De plus, YOLO peut être facilement

appliqué à d’autres types de virtualisation (e.g., Xen) et de conteneurisation car il ne

nécessite pas de modifications intrusives sur le système de gestion des conteneurs /

virtualisation ni sur la structure d’image de base.

La méthode proposée a été publiée dans la conférence internationale Europar [22]

et des évaluations plus détaillées sont présentées dans un rapport de recherche [21].
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Directions pour la recherche future

Malgré l’efficacité de YOLO, il y a encore matière à amélioration. Tout d’abord, il

serait intéressant d’étudier la pertinance de construire également l’abstraction d’image

de démarrage avec les données obligatoires pour démarrer les services d’application.

L’inconvénient de cette procédure pourrait être l’élargissement du stockage de l’image

de démarrage, ainsi que la réduction de la quantité de données de démarrage dupliquées

entre les images de démarrage, ce qui pourrait affecter la possibilité de réutilisation de

ces dernières.

Deuxièmement, si plusieurs images diffèrent uniquement par les applications instal-

lées et partagent un système d’exploitation sous-jacent commun, il serait intéressant de

générer une seule image de démarrage pour ces images. Nous pouvons créer une image

de démarrage pour chaque famille d’images partageant le même système d’exploitation.

Cette méthode permet de réduire le nombre de données de démarrage dupliquées à

conserver et à servir par YOLO. Utiliser des techniques de déduplication pour réduire la

taille de toutes les images de démarrage semble une solution prometteuse, mais il sera

utile d’évaluer avec soin les performances lorsque nous conservons une seule image de

démarrage volumineuse en mémoire.

Enfin, une fois que le conteneur/machine virtuelle est complètement initialisé, il

n’est plus utile que yolofs traite les demandes de lecture d’Entrées/Sorties de la machine

virtuelle/du conteneur. Ainsi, il serait pertinent d’étudier comment cela pourrait ils a

mis en place et le gain apporté.
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Titre : Contributions à l'approvisionnement d’environnements virtualisés : la problématique des 
temps de démarrage des machines virtuelles et des conteneurs 

Mots clés : Informatique en nuage, virtualisation système, conteneurs, temps de démarrage. 

Résumé : Le processus d'approvisionnement 
d'une machine virtuelle (VM) ou d'un conteneur 
est une succession de trois étapes complexes: (i) 
la phase d’ordonnancement qui consiste à 
affecter la VM/le conteneur sur un nœud de calcul 
; (ii) le transfert de l'image disque associée vers 
ce nœud de calcul; (iii) et l'exécution du 
processus de démarrage (généralement connu 
sous le terme « boot »). 
En fonction des besoins de l’application 

virtualisée et de l’état de la plate-forme, chacune 
de ces trois phases peut avoir une durée plus ou 
moins importante. Si de nombreux travaux se 
sont concentrés sur l’optimisation des deux 
premières étapes, la littérature couvre que 
partiellement les défis liés à la dernière. Cela est 
surprenant car des études ont montré que le 
temps de démarrage peut atteindre l’ordre de la 
minute dans certaines conditions. Durée que 
nous avons confirmée grâce à une étude 
préliminaire visant à quantifier le temps de 
démarrage, notamment dans des scénarios où le 
ratio de consolidation est élevé. 

Pour comprendre les principales raisons de ces 
durées, nous avons effectué en jusqu'à 15000 
expériences au dessus de l’infrastructure 
Grid5000. Chacune de ces expériences a eu 
pour but d’étudier le processus de démarrage 
selon différentes conditions environnementales. 
Les résultats ont montré que les opérations 
d'entrée/sorties liées au processus de 
démarrage étaient les plus coûteuses. Afin d’y 
remédier, nous défendons dans cette thèse la 
conception d'un mécanisme dédié permettant 
de limiter le nombre d’entrées/sorties générées 
lors du processus de démarrage. Nous 
démontrons la pertinence de notre proposition 
en évaluant le prototype YOLO (You Only Load 
Once). Grâce à YOLO, la durée de démarrage 
peut être accélérée de 2 à 13 fois pour les VM 
et jusqu’à 2 fois pour les conteneurs. Au delà de 
l’aspect performance, il convient de noter que la 
façon dont YOLO a été conçu permet de 
l’appliquer à d’autres types de technologies de 
virtualisation/conteneurisation. 
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Abstract : The provisioning process of a Virtual 
Machine (VM) or a container is a succession of 
three complex stages : (i) scheduling the 
VM/Container to an appropriate compute node; 
(ii) transferring the VM/Container image to that 
compute node from a repository; (iii) and finally 
performing the VM/Container boot process. 
Depending on the properties of the client’s 

request and the status of the platform, each of 
these three phases can impact the total duration 
of the provisioning operation. While many works 
focused on optimizing the two first stages, only 
few works investigated the impact of the boot 
duration. This comes to us as a surprise as a 
preliminary study we conducted showed the boot 
time of a VM/Container can last up to a few 
minutes in high consolidated scenarios. 

To understand the major reasons for such 
overheads, we performed on top of Grid'5000 up 
to 15k experiments, booting VM/Container 
under different environmental conditions. The 
results showed that the most influential factor is 
the I/O operations. To accelerate the boot 
process, we defend in this thesis, the design of 
a dedicated mechanism to mitigate the number 
of generated I/O operations. We demonstrated 
the relevance of this proposal by discussing a 
first prototype entitled YOLO (You Only Load 
Once). Thanks to YOLO, the boot duration can 
be faster 2-13 times for VMs and 2 times for 
containers. Finally, it is noteworthy to mention 
that the way YOLO has been designed enables 
it to be easily applied to other types of 
virtualization (e.g., Xen) and containerization 
technologies. 
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