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Résumé de la thèse

Contexte

Dans l’industrie contemporaine, les systèmes de fabrication jouent un rôle crucial. La
population mondiale augmente, créant une demande croissante de produits et de services.
Pour répondre à cette demande et relever le défi de la concurrence, chaque entreprise
doit concevoir avec soin son système de fabrication qui soit à la fois efficace du point de
vue de la qualité des produits fabriqués et des capitaux investis. L’un des systèmes de
fabrication les plus courants dans l’industrie est la chaîne de production, elle est constituée
de stations alignées de manière séquentielle. Les décisions relatives à la conception des
lignes de production revêtent une grande importance car le coût de la mise en place d’une
ligne de production se chiffre en millions d’euros.

La conception des systèmes de production comprend plusieurs étapes. Nous nous
sommes focalisés sur l’étape consistant à équilibrer la chaîne de production. Pour un
ensemble donné de postes de travail, cette étape suit l’analyse des produits à fabriquer
et la planification du processus de fabrication, qui déterminent les informations sur le
traitement du travail dans le système conçu, c’est-à-dire un ensemble de tâches indi-
visibles liées par certaines contraintes. Ces contraintes proviennent de considérations
technologiques, économiques et environnementales ou de facteurs ergonomiques pour les
travailleurs. L’équilibrage de ligne consiste à choisir les ressources et à les affecter aux
postes de travail, de manière à ce que toutes les contraintes soient satisfaites et que les
objectifs prédéfinis soient atteints. Traditionnellement, ces objectifs peuvent être, par
exemple, de minimiser le coût total ou de maximiser la productivité de la ligne. Les prob-
lèmes rencontrés au stade de la configuration des chaînes de fabrication sont de nature
combinatoire. Le concepteur de la ligne recherche la ou les solutions optimales parmi
d’autres solutions possibles. La tâche est ardue car le nombre de solutions envisageables
est énorme et le choix d’une méthode appropriée pour résoudre ce problème est décisif.
Il est attendu de la méthode retenue qu’elle permettre d’obtenir des solutions de haute
qualité à un coût de calcul relativement faible. De plus, certaines incertitudes, suscepti-
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Résumé de la thèse

bles de compromettre la faisabilité d’une solution, doivent être prises en compte afin de
protéger la solution contre les conséquences de ces incertitudes.

Motivation

Dans cette thèse, nous considérons le problème d’équilibrage de la ligne de production
sous incertitude. Elle consiste à affecter des tâches de production à un nombre fixe de
stations, de sorte que la ligne fonctionne avec une productivité donnée déterminée par
le temps de cycle. Le temps de cycle est la durée qui sépare la production de deux
produits consécutifs, en régime permanent. Toutes les tâches sont spécifiées par un temps
de traitement estimé et un ensemble de contraintes déterminant leur ordre sur la ligne.
Nous supposons que les temps de traitement des tâches peuvent différer dans le futur
en fonction des changements de caractéristiques du produit, de la fatigue des employés,
de leur expérience, ou pour d’autres raisons. Ces événements peuvent compromettre
la faisabilité de la solution ou détériorer les performances. Le problème consiste donc
à maximiser la stabilité de la ligne de production. Nos objectifs sont de développer
une méthode efficace pour maximiser la capacité de la ligne à maintenir la faisabilité
malgré l’incertitude affectant la durée des tâches, et de montrer son application pour
des lignes de montage et de transfert simples. La méthode proposée consiste à étudier
une nouvelle approche, introduite dans des travaux récemment publiés sur l’optimisation
robuste, qui est plus appropriée pour traiter les incertitudes dans le domaine des systèmes
de production que celles utilisées jusqu’à présent. Cela nous conduit à étudier de nouveaux
problèmes d’optimisation industrielle représentant un objet d’étude essentiel, à la fois d’un
point de vue pratique et algorithmique.

Contributions

Les contributions de cette thèse s’appuient sur les observations présentées dans le
paragraphe précédent. Le problème d’équilibrage des lignes de production est le problème
support de ces travaux. Le manuscrit s’articule de la manière suivante:

• Le Chapitre 1 présente l’état de l’art sur les problèmes d’équilibrage sous incerti-
tudes. Les applications et les méthodes de résolution dédiées sont décrites.

• Le Chapitre 2 présente le problème d’équilibrage robuste de lignes d’assemblage
simples. Plusieurs versions des modèles MILP sont distinguées, en fonction de la
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représentation du rayon de stabilité. Les améliorations pour les modèles et la mise
en évidence de cas résolvables en temps polynomial sont également proposées.

• Le Chapitre 3 présente le problème d’équilibrage robuste de lignes de transfert.
Les formules du calcul du rayon de stabilité pour deux métriques classiques sont
introduites. Les modèles de PLNE sont construits et des règles de pré-traitement
pour les améliorer sont proposées.

• Le Chapitre 4 présente une approche hybride pour le problème d’équilibrage de ligne
de transfert. Cette approche utilise des techniques avancées de solveurs commer-
ciaux pour guider le processus de résolution. Deux types de techniques dans deux
solveurs populaires sont considérés et comparés.

• Enfin le dernier chapitre présente un résumé général des contributions et dresse des
perspectives ouvertes par ces travaux.

Les Chapitres 2, 3 et 4, qui présentent les contributions de cette thèse, sont détaillés
dans les sections suivantes.

Équilibrage robuste de lignes d’assemblage simples

Dans ce type de lignes de production, les stations sont synchronisées par un système
unique de convoyage des produits. Les pièces de production qui y sont placées se déplacent
du début à la fin de la ligne en passant par toutes les stations dans l’ordre de leur instal-
lation. Le problème consiste à affecter les tâches d’assemblage aux stations satisfaisant
toutes les contraintes de fabrication. Le nombre de stations est limité et le temps de cycle
est fixé. L’objectif de production est de maximiser la mesure de la robustesse, c’est-à-dire
le rayon de stabilité. Nous analysons deux métriques classiques pour le calcul du rayon
de stabilité et en introduisons une nouvelle. Des théorèmes sont établis et confèrent un
cadre formel aux résultats. Nous proposons des modèles de programmation linéaire en
variables mixtes, destinés à aider les décideurs à basculer facilement d’un modèle à l’autre
en fonction de situations particulières et des connaissances disponibles.

Les modèles de PLNE proposés sont programmés avec C++ à l’aide du solveur com-
mercial Gurobi. Des tests sont effectués sur des instances de la bibliothèque de tests en
ligne avec des données supplémentaires générées aléatoirement. Deux paramètres sont
utilisés pour établir le niveau d’incertitude entre les tâches et les stations. Les résul-
tats obtenus montrent que les modèles présentés peuvent être utilisés pour des instances
industrielles sous certaines conditions de densité du graphe de précédence.
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Équilibrage robuste de lignes de transfert

La constitution de lignes de transfert permet de réaliser plusieurs tâches en même
temps par la même tête d’usinage. Chaque poste (machine) contient une ou plusieurs
têtes d’usinage (blocs), les têtes de chaque poste sont activées de manière séquentielle,
les stations comme précédemment sont synchronisées par un convoyeur unique commun.
Ainsi, le problème de l’équilibrage de la ligne de transfert consiste en l’attribution de
tâches de production à des têtes d’usinage et à la distribution de têtes aux machines
répondant à toutes les contraintes. Le critère d’optimisation est la robustesse mesurée par
le rayon de stabilité. Seules les métriques ℓ1 et ℓ∞ sont prises en compte pour son calcul.
Nous formalisons le calcul de ces métriques par l’intermédiaire d’une série de lemmes
et de théorèmes. Ensuite, deux nouveaux modèles mathématiques sont présentés. Leur
complexité nécessite quelques améliorations pour une exécution efficace. Sur la base de
pratiques bien connues concernant les problèmes d’équilibrage de ligne, nous introduisons
des intervalles d’affectation des tâches sur des lignes de transfert. Cet intervalle affiche
les index des blocs pouvant exécuter la tâche considérée. Cinq règles sont élaborées
pour calculer ces intervalles pour deux métriques différentes et sont appliquées dans une
approche appelée Reduction.

Une méthode heuristique pour les lignes de transfert est élaborée. Outre l’idée,
qui s’apparente aux méthodes classiques de lignes d’assemblage, nous devons prendre
en compte la construction de blocs. Pour éviter l’attribution répétitive de tâches, qua-
tre procédures avec différentes restrictions sont construites. Ensemble, elles composent
un algorithme heuristique à démarrages multiples qui, à chaque itération, recherche un
équilibrage linéaire avec un rayon de stabilité supérieur à la plus grande valeur connue.
Tous les développements présentés constituent l’approche globale de pré-traitement, qui
génère non seulement une solution initiale et une borne inférieure, mais crée également
deux familles d’inégalités pour enrichir les formulations PLNE.

Tous les modèles et algorithmes de pré-traitement sont programmés avec C++ et
résolus par le solveur commercial Gurobi. Les données d’instance ont été importées de
la bibliothèque d’exemples générés aléatoirement pour les lignes de transfert. Les résul-
tats prouvent l’hypothèse centrale selon laquelle la densité du graphe de précédence a
un impact significatif sur la résolution du problème. En général, la méthode présentée
montre une capacité à résoudre des instances dont la taille est équivalente aux résultats
précédemment rapportés dans la littérature relative aux lignes de transfert.
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Approches de solutions hybrides pour le problème d’équilibrage de
ligne de transfert

Cette approche consiste en une application combinée d’un solveur PLNE commer-
cial et d’algorithmes de génération de coupes basés sur l’optimalité. Nous utilisons des
techniques de callback qui permettent de gérer et de guider le processus d’optimisation.
Deux solveurs commerciaux sont considérés afin de trouver celui qui conduit à la résolu-
tion la plus efficace. Plusieurs types de callbacks sont étudiés. Nous avons choisi deux
approches possibles pour la génération de coupes avec les callbacks. Ils reposent sur la
technologie dite des lazy constraints et le MIP restart, respectivement. L’approche par les
lazy constraints fonctionne avec un ensemble de coupes qui est introduit progressivement
dans le modèle à résoudre. Dans ce cas, les callbacks n’interrompent pas la résolution,
et le solveur reprend son travail après l’insertion des coupes basées sur l’optimalité. Les
métriques ℓ1 et ℓ∞ ont nécessité des implémentations distinctes en raison d’une interpré-
tation différente du rayon de stabilité. Comme pour la méthode de prétraitement globale,
nous utilisons la méthode Reduction pour déterminer les intervalles d’affectation et les
blocs inutilisés sur les machines.

La solution hybride est programmée en C++ et résolue par le solveur commercial
GUurobi pour les tests finaux. Des expériences ont été menées sur un nombre plus réduit
d’instances qu’au chapitre 3. L’approche MIP restart a montré son avantage par rapport
aux lazy constraints et aux opportunités de recherche et développement futurs.

Perspectives

Tous les résultats obtenus révèlent de nombreuses perspectives pour les recherches
futures sur l’optimisation robuste des chaînes de production.

• Tout d’abord, nous avons plusieurs options pour améliorer les modèles PLNE en
utilisant des techniques avancées de solveurs commerciaux. Mais même dans ce cas,
il existe un risque de se heurter à des limites strictes qui ne permettront pas de
trouver une solution optimale pour des instances de grande taille. L’une des clés de
la résolution de ce problème réside dans le développement de méta-heuristiques telles
que : les calculs évolutifs, les algorithmes génétiques et l’optimisation d’essaims de
particules.

• D’un autre côté, nous pouvons développer des méthodes exactes efficaces pour trou-
ver une solution optimale au problème. La littérature comprend de nombreux exem-
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ples d’algorithmes de branch-and-price et de branch-and-bound pour les problèmes
d’équilibrage de ligne.

• Une estimation de bornes superieures pour le problème d’équilibrage de ligne de
transfert pourrait être divisée en deux étapes : la détermination des blocs et leur
affectation aux machines. Cela rend impossible l’application de certaines formules
classiques au calcul puisque la première étape consiste en général en un problème
NP-difficile.

• Notre technique de pré-traitement du problème d’équilibrage de la ligne de trans-
fert fait particulièrement référence à la méthode bien connue appelée kernelisation.
Il s’agit de pré-traitements au cours desquels les entrées de l’algorithme sont rem-
placées par des entrées plus petite (noyau). La simplification de la saisie aide les
décideurs, car ceux-ci ne disposent pas toujours d’informations exhaustives au stade
de la conception. Ainsi, les développements futurs dans ce domaine ont une signifi-
cation pratique indéniable.

• Un certain nombre de méthodes de recherche opérationnelle ont fait leur preuves
dans la programmation par contraintes. Cette évolution est tout à fait naturelle,
car leurs objetcifs ont souvent les mêmes. D’autres schémas d’hybridation décom-
posent le problème afin que CP et OR puissent attaquer les parties du problème
auxquelles ils conviennent le mieux. Cette combinaison peut apporter des avantages
informatiques substantiels.

• Nous avons pris en compte deux mesures (ℓ1 et ℓ∞) pour calculer le rayon de stabilité
dans le problème d’équilibrage de la ligne de transfert et une autre (résilience rela-
tive) dans le problème d’équilibrage de la ligne d’assemblage simple. Cependant, sa
définition classique est basée sur le concept de norme, qui a diverses expressions en
science. Par exemple, il existe de nombreuses manières de mesurer la différence entre
deux séquences (voir les distances de Levenshtein, Hamming, Lee et Jaro–Winkler).
Elles ouvrent des possibilités d’estimation de la stabilité des systèmes de fabrication
reconfigurables (y compris les chaînes de production), dont la popularité ne cesse
de croître ces dernières années.

Dans cette thèse, nous traitons le problème de la conception de lignes de production
en présence de temps de traitement sujets à des incertitudes. Cependant, le problème de
la prise en compte de l’incertitude des données au stade de la conception ne se limite pas
à la prise en compte des variations de ces données numériques. Ainsi, des modifications
possibles peuvent également se produire au niveau de diverses contraintes, telles que les
contraintes de précédence. Jusqu’à présent, cet aspect n’est pas encore bien été traité
dans la littérature. Ceci est une piste de nos recherches futures dans ce domaine.
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Introduction

In the contemporary industry, manufacturing systems play a crucial role. The world’s
population is increasing, creating a growing demand for products and services. To meet
this demand and take the challenge of competition, each company must carefully design
its manufacturing system that will be both effective for the quality of manufactured
products and the capital expended. One of the most common manufacturing systems in
the industry is the production line, it consists of stations aligned sequentially. Decisions
related to the design of the production lines are of great importance because the cost of
setting up a production line is in the millions of euros.

The design of production systems includes several steps. We are particularly in-
terested in the stage of balancing the production line. For a given set of workstations,
this step follows the analysis of the products to be manufactured and the planning of
the manufacturing process which determine the information about the work processing
in the designed system, i.e., a set of indivisible tasks related by some constraints. These
constraints come from technological, economical and environmental considerations or er-
gonomic factors for the workforce. Line balancing consists of choosing the resources of
and assign them to the workstations, so that all constraints are satisfied and predefined
objectives are met. Traditionally, these objectives can be, for example, to minimise the
total cost or to maximise the productivity of the line. Problems occurring at the config-
uration stage manufacturing lines are combinatorial in nature. The designer of the line
is looking for the optimal solution(s) among other feasible solutions. It is a difficult task
as the number of feasible solutions is huge, so the choice of an appropriate method to
tackle this problem is decisive. The selected method is expected to return high-quality
solutions at a reasonably low computational cost. Moreover, some uncertainties, which
may compromise the feasibility of a solution, must be taken into account in order to avoid
this pitfall.

In this thesis, we consider the production line balancing problem under uncertainty.
It consists of assigning of production tasks to the fixed number of stations, such that the
line is going to work with a given production rate determined by cycle time. The cycle
time shows how fast the line produces a new piece of product. All tasks are supported
by an estimated processing time and a set of constraints determining their order on the
line. We assume that task processing times can deviate in the future according to product
characteristic changes, employee fatigue and experience or something else. These events
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may compromise solution feasibility, or deteriorate performance, so the stability of the
line balance is the problem objective. Our goals are to develop an effective method
for maximising the line ability to maintain feasibility despite task time deviation, and
to show its application for simple assembly and transfer lines. The proposed method
consists in studying a new alternative approach, introduced in recently appeared works
on robust optimisation, that is more appropriate for handling uncertainty in the field of
production systems than those used up to now. This leads us to investigate new industrial
optimisation problems representing an essential object of study from both practical and
algorithmic points of view. In what follows, we present the structure of the thesis, which
is made of four chapters.

Chapter 1 presents the study of existing production lines, their parameters and at-
tributes. We show which types of production lines exist and why it is important to know
how to balance them. Three common objective functions minimising the number of sta-
tions, cycle time and line efficiency are highlighted. Events modifying processing times
of tasks are considered. Their impact on a line balance and its productivity is pictured
in series of examples. Possible task time deviations have to be taken into account at the
design stage in order to keep the line working after installation. We consider uncertainties
that can be faced during the line balancing process. In the second part of the chapter,
we analyse existing approaches to model data uncertainty in combinatorial optimisation
problems. We identify the robust one that best fit the context of the design of production
lines. It is based on the stability radius, which shows the maximal value of processing time
deviations that do not violate solution feasibility or optimality. In the end, we introduce
a new robust formulation for the production line balancing problem.

Chapter 2 is related to Simple Assembly Lines, which consist of stations synchro-
nised by a common conveyor. Robust versions of the simple assembly line balancing
problem consider that the number of stations and the cycle time are fixed parameters.
The problem is to allocate assembly tasks to stations satisfying all manufacturing con-
straints and maximising the robustness measured by the stability radius. We analyse two
classic metrics for its calculation and introduce a new one representing the case of the
proportional robustness. Respective theorems and formulas are established. Based on
them, we propose combined mixed-integer linear programming models, which are aimed
to help decision-makers easily switch from one model to another according to the partic-
ular situation and available knowledge. Several enhancements are following the studied
models. Among them, a greedy heuristic method, some combinatorial upper bounds, and
a cut generation method. Computational results and conclusion are finishing the chapter.

In Chapter 3 we adapt our method for the generalised case of assembly lines, referred
to in the literature as Transfer Lines where several tasks can be performed simultaneously
by a single machining head. Each station (machine) contains one or more machining heads
(blocks), the heads of each station are activated sequentially, the stations as before are
synchronised by a common conveyor. This major difference from simple assembly lines
determines new properties that makes mathematical models more complex. The transfer
line balancing problem consists in assignment of production tasks to machining heads and
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distribution of heads to machines satisfying all given constraints and maximising the value
of the stability radius. We discover new formulas for measurement of line robustness in
Manhattan and Chebyshev metrics and prove them within a series of lemmas and theo-
rems. Two Mixed Integer Linear Programming (MILP) models are developed according
to all problem properties. To handle their complexity, we proposed some enhancements
based on well-known practices for line balancing problems. First of all, we introduce
assignment intervals of tasks and introduce five rules to calculate them under both the
considered metrics. Together with a reworked heuristic algorithm they compose a global
pre-processing approach which not only generates an initial solution and a lower bound,
but also creates two groups of constraints for MILP formulations. The chapter is ending
by computational experiments.

Chapter 4 presents a new hybrid approach for transfer line balancing problem. It is
aiming to reduce the search space during the optimisation process by generation of opti-
mality based cuts. We study advanced technologies of commercial solvers called callbacks.
Solvers IBM CPLEX and Gurobi are considered for a better understanding of possible
options and approaches. Two implementations (MIP restart and lazy constraints) are
analysed and explained in details. Within both of them, we explain applications for de-
veloped models. Computational results compare implementations with each other and
with enhanced MILP models.

We finish this work with a general conclusion and a bibliography.
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Chapter 1

Line Balancing under Uncertainty
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1.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

1.1 Production lines

Production lines are present in different industrial environments and are widely used
to manufacture a large variety of products. Primarily, they are used to produce consumer
goods such as cars, engines, domestic appliances, television sets, computers, smart-phones,
and other electrical devices. Since the production constraints can vary a lot according
to the products, the corresponding production systems can present major differences.
Consequently, the literature includes a wide range of balancing problems. In this section,
we examine characteristics that determine various types of production lines.
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Chapter 1. Line Balancing under Uncertainty

1.1.1 Basic terms of production lines

A task is a simple portion of the total work content in a production line. The time
required to perform a task is called processing time (of a task). We assume that tasks
are indivisible, i.e., they cannot be split into smaller work elements without creating
unnecessary additional work.

A station (or workstation) is a segment of the production line where a certain amount
of tasks is executed. It is characterised by its dimension, the machinery, and equipment as
well as the kind of assigned work. There are two types of stations: manual and automated.
The manual station or workplace has to be occupied by a human operator, who performs
work using either a simple tool or semi-automated machines which have to be controlled
by an operator. Automated stations or machines can work by themselves. We do not
consider independently a group of collaborative stations, which are hybrids with human
and machine (robot) working together. Their applications in manufacturing are usually
presented by co-existence or sequential collaboration. In both, human and robot do not
work on a production part at the same time. Thus, mathematical representation may
interpret a collaborative station as two independent: one manual and one automated.
The set of tasks assigned to a station is referred to as station load, the time necessary to
perform the work as load time (of a station).

The material handling system is the mechanical equipment used for the move-
ment, storage, control and protection of workpieces or production parts throughout the
process of manufacturing. A conveyor belt is a common choice for production lines.

The cycle time represents the duration that separates the release of two products in
a permanent regime. On a paced production line this duration is equivalent to (or at least
not smaller than) the load time of the most charged station. On an unpaced one, this
value has no direct references to stations and their load times. See the differences between
paced and unpaced lines below in this chapter. The production rate is the division of a
one-time unit by the cycle time. The distance between the cycle time and the load time
is called idle time (of a station).

Precedence Constraints show some technological restrictions between tasks. They
are usually represented by an acyclic oriented graph, where each node models a task. A
given precedence graph may have several source and final nodes if there is no special type
asked by an industrial environment. The interpretation of arcs depends on particular
cases, but, in general, an arc (i, j) indicates that the task j must not be completed before
the task i can start, and cannot be assigned to an earlier station than i. An example of
a precedence graph appears in Figure 1.1. Here the task 4 cannot be performed earlier
than any of its predecessors 1, 2 or 3; as well as later than any of its successors 6, 7 or 8.
Similarly, there is no connection with task 5; thus, the order of their appearance on the
line is free.
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1

3

2 4

5

6

7

8

Figure 1.1: Precedence graph

1.1.2 Types of production lines

Number of products

The first characteristic is the number of different products released by the same
production line. The literature distinguishes the following line types.

Single-model lines: A single product type is manufactured at the line in large
quantities. A set of production tasks is known. All stations repeatedly have to perform
the same subset of tasks on identical workpieces.

Mixed-model lines: several models of a basic product are manufactured on the
same line (but not at the same time). The models differ from the primary one only
concerning some attributes and optional features. The production processes are quite
similar in this case and, consequently, the same set of basic operations is necessary to
produce any of the models. The presence or absence as well as processing time of a task
depends on an optional part being installed or not and on its parameters. Minor setup
activities are applying to switch from one model to another.

Multi-model lines: several products are manufactured on the same line in separate
batches. Significant differences in production processes require major setup activities (or
rearrangements) of the line equipment when products are changing. Besides processing
time variations, setup times are taking into account.

Product Flow Manner

A production line consists of stations and a material handling system, which connects
stations and moves production parts from one station to the next one. It also determines
how elements flow through the line.

Paced lines: material handling systems as conveyor belts flexibly connect the sta-
tions. Production parts are steadily moved between stations by the conveyor belt at
constant speed immediately after being processed. Each station has the same amount
of available working time (the cycle time) to perform the assigned tasks on all incoming
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workpieces. Figure 1.2 illustrates a paced production line with four stations.

Station 1 Station 2 Station 3 Station 4

Production parts

E
nt

ra
nc

e

E
xit

Figure 1.2: Scheme of a paced production line

Unpaced lines: the stations are separated by buffer stocks which hold production
parts when previous items still occupy the following stations. Usually, buffers have limited
capacities. Because of this, a station may be blocked when the following buffer is full.
Conversely, a station is starving when the preceding buffer is empty after terminating its
assigned tasks. Thus, buffer sizes directly impact the production rate of the line. An
illustration of an unpaced line is presented in Figure 1.3. There are three stations with
two buffers in between. Station 1 could be blocked since the following buffer is full, while
station 3 is going to be idle if station 2 did not release its production part in time.

Station 1

Buffer

Station 2

Buffer

Station 3

Production parts

E
nt
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nc

e

E
xit

Figure 1.3: Scheme of an unpaced production line

Line layout

Basic Straight: this is a traditional layout of production lines. Each workpiece
visits a series of stations in order of their installation. The tasks on stations are supposed
to be executed sequentially one by one.

Straight with multiple stations: the advantages of parallelisation can be used to
increase productivity in a single line by installing multiple stations, i.e., the production
parts are distributed among several operators or automated tools which perform the same
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1.1. Production lines

tasks. It helps to reduce the (actual) cycle time of the entire system if some tasks have
processing times longer than the desired cycle time. Such tasks should be assigned to
parallel stations.

U-shaped: these lines have both the entrance and exit in the same place. They
are commonly manual. Workers placed between two legs of the line are allowed to walk
from one leg to another. Therefore, they can work on two (or more) workpieces during
the same cycle. Stations are closer together such that visibility of the production process,
and communications between operators are improved.

Lines with circular transfer: stations are dispatched around a rotating table which
is used for loading-unloading and moving the part from a station to another. Concerning
the number of turns during which a part stays on the table before being completed,
the lines with a single circular transfer can be distinguished. If only one part side is
handling at each station and a single turn is sufficient for completing a product, then
this configuration is equivalent to a basic straight line. If several sides of the part could
be treated simultaneously, then this configuration is equivalent to a line with multiple
stations. For the case of multi-turn transfer, the set of tasks assigned to a station must
be partitioned into the different cycles corresponding to the number of turns of the table.

Asymmetric: they can be used to postpone the differentiation of products to main-
tain a typical line configuration for all manufactured products as long as possible. This
strategy reduces the risks associated with increasing product variety, but the correspond-
ing line balancing problem must be solved conjointly with a layout optimisation problem
in order to determine the final line configuration.

Multiple lines using multiple lines can offer several advantages. Investments can
be deferred because additional lines can be installed one by one as they are needed.
Production can be adapted more quickly to meet changes in demand. Failure of one
line does not necessarily adversely affect the rhythm of other lines, and production costs
may be reduced, among other advantages. One drawback is the increased investment
cost compared to a single line. The consequences for worker productivity can be diverse:
a longer line cycle time in the case of multiple lines enriches the work and improves
motivation. However, this may limit the learning effect, since the variation of operations
performed by a worker increases. Therefore, the choice between a single line with short
cycle time and many lines with longer cycle times is not straightforward and should be
considered as a part of an integrated decision-making process.

Industrial environment

Assembly: a final product is assembled from different components. These lines have
many different applications from manual with worker assignment to fully automated.
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Disassembly: the objective is to separate end-of-life (EOL) products subassemblies
and components for recycling, remanufacturing and reuse. Such lines are used to carry out
disassembly operations with higher productivity rate. The structure and quality of EOL
products are strongly uncertain and even the number of components in such products
can not be predicted. Moreover, the precedence graph cannot be obtained by reversing a
relevant one for the assembly line. That makes disassembly process more complex than
assembly. Due to technical or economic restrictions such as irreversible connections of
components of a product and low revenue obtained from retrieved parts, disassembly
lines are mostly manual today.

Machining: a product is completed by a series of machining operations like drilling,
milling, reaming, and other. In general, there may be much fewer precedence relations
between such operations than in the case of an assembly or disassembly process. However,
there may exist many tolerance constraints that impose assigning operations to the same
workstation and incompatibility constraints that forbid the assignment of specific tasks to
the same station because of technological incompatibilities. Such lines are usually highly
automated.

1.1.3 Line balancing

Line balancing is a stage of the design that consists in finding an assignment of
production tasks among stations that satisfies all the constraints of the problem in order
to optimise one or several goals.

A Line Balance is a feasible solution to a balancing problem. For the feasibility,
a solution has to satisfy several constraints: each task is assigned to exactly one station;
precedence constraints are fulfilled; the load time of any station does not exceed the cycle
time. A line balance is optimal if, besides the restrictions, it also maximises (minimises)
given production goals (objectives).

Example 1. A line balance is shown in Figure 1.4 as a Gantt chart, where four
stations process nine tasks. One layer includes all tasks assigned to the same station.
Processing times are equivalent to lengths of rectangles. The most loaded station
determines the cycle time (9, by station S2). The idle times are 1, 0, 3 and 2 for
stations S1, S2, S3 and S4 respectively. The balance also presents the order of tasks
execution on the stations. Thus, station S1 (or a worker assigned to it) performs
the task 1, then task 2, and task 4 in the end. At time 9, a conveyor belt moves a
production part to station S2. Station S2 starts the task 3, and then task 5, and so
on until the end of the production line.

The installation of a production line is a long-term decision that requires significant
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Figure 1.4: Line balance

capital investments. Therefore, it is vital for a designed system to be as efficient as
possible. A new line balanced before launching has to be re-designed later according to
a periodically (planned) or single changes in the production process. The objectives have
to be carefully chosen, according to the goals of the company to minimise the long-term
effect of balancing (re-balancing) decisions. Traditionally, there are three types of line
balancing problems:

• type-1: minimise the number of stations for a given cycle time;

• type-2: minimise the cycle time for a given number of stations;

• type-E: minimise the line efficiency represented by the non-linear function – the
product of the number of stations and the cycle time, while they are given by lower
and upper bounds.

Now, when we have an understanding about line balance and production goals, let
introduce some helpful notations:

• V = {1, 2, . . . , n} is a set of production tasks to be assigned;

• tj is a nominal processing time of the task j, j ∈ V ;

• m is a number (maximal) of available stations;

• T is a cycle time;

• G = (V,A) is a precedence graph, where A is a set of arcs (i, j), such that i, j ∈ V .

Then, deterministic models can be introduced with following constraints:

m∑

k=1

xj,k = 1, ∀j ∈ V, (1.1)
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m∑

k=1

kxi,k ≤
m∑

k=1

kxj,k, ∀(i, j) ∈ A, (1.2)

∑

j∈V

tjxj,k ≤ Tyk, ∀k = 1, 2, . . . ,m, (1.3)

yk ∈ {0, 1}, ∀k = 1, 2, . . . ,m,

xj,k ∈ {0, 1}, ∀j ∈ V, ∀k = 1, 2, . . . ,m. (1.4)

Restrictions 1.1 assure that any production task assigned exactly to one station. The
precedence order is modelled in 1.2. The load time of any station does not exceed the
cycle time, as it is shown in 1.3. Two last groups represent constraints on variables:

• xj,k is a decision variable, that equals to 1 if and only if the task j is assigned to the
station k;

• yk states if the station k is presented on the line.

Objective goals mentioned above can be written in mathematical form as:

• type-1: minimise
m∑
k=1

yk;

• type-2: minimise T ;

• type-E: minimise T ·
m∑
k=1

yk.

Regardless of the type of production line and objectives, new challenging conditions
or changes may arise during the manufacturing process. Their prediction or, at least,
anticipation is a substantial part of the line balancing stage. The changes that affect sta-
tions availability and task processing time posses the major challenges. Indeed, a human
operator cannot work with constant speed due to several reasons, such that: personal
experience, proficiency, education, fatigue, health conditions, partial dissatisfaction with
something, thrill before the holidays, or something else. Even tasks executed by a ma-
chine may not have a stable processing time because of overheating, material or product
specification changes, malfunctioning, the input lag of software. All of these events may
inflict costly damage and should be prevented within the line balancing. For this purpose,
we assume that all tasks are belonging to one of two subsets: certain and uncertain. Cer-
tain ones have a fixed processing time that is not affected by any event. On the contrary,
uncertain tasks are vulnerable, and their processing time is changing with an occasion on
the line.
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Example 2. Consider the line balance from Figure 1.4. Assuming that tasks 1, 3,
8 and 9 are uncertain, they are coloured in grey, as shown in Figure 1.5. In paced
mode the line produces a new piece of product every 9 units of time. If a unit of time
equals to one second, then the production rate is 400 pieces per hour. Now, imagine
that because of a worker replacement or mistaken estimation the processing time of
the task 3 is increasing from 5 to 6 units of time. Figure 1.6 shows the deviated line
balance. The new cycle time is 10, which is equivalent to the production rate of only
360 pieces per hour, which amounts to a significant throughput loss. Moreover, if the
line is automatic and the cycle time is strongly fixed, then such deviation will cause
the line interruption. Thus, anticipation of task time uncertainties should be taken
into account at the design stage.

0 1 2 3 4 5 6 7 8 9

S1

S2

S3

S4

1 2 4

3 5

6 7

8 9

Figure 1.5: Line balance with certain and uncertain tasks

0 1 2 3 4 5 6 7 8 9 10

S1

S2

S3

S4

1 2 4

3 5

6 7

8 9

Figure 1.6: Deviated line balance

13



Chapter 1. Line Balancing under Uncertainty

1.2 Modelling of uncertainty

In this section, we discuss some approaches which are used to handle task time
uncertainties in line balancing problems. Detailed general observations on a line balancing
are given by Scholl and Becker [63], Boysen et al. [10], Battaïa et al. [4]. Earlier
comprehensive surveys about line balancing under task time uncertainty was published
by Bentaha et al. in [9] and [8]. The literature usually considers three major approaches:
stochastic, fuzzy and robust methods.

1.2.1 Stochastic approaches

Stochastic approaches are the most popular ones and consist of a representation of
task times as independent random variables with known characteristics, usually symmetric
distribution.

Chance-constrained programming

This approach presents the processing time of tasks as normally distributed indepen-
dent random variables tj ∼ N (µj, σ

2
j ), j ∈ V . The mean µj and variance σ2

j are known
for all tasks. Let us introduce Y =

∑
j∈V

tj, i.e., a normally distributed random variable

Y ∼ N (
∑
j∈V

µj,
∑
j∈V

σ2
j ). This variable can be easily converted into a standard distribution

using the transformation Z =
Y−

∑
j∈V

µj

√ ∑
j∈V

σ2
j

. A designed line balance should respect the cycle

time with a given probability α. In practice and literature, this value usually is greater
than 0.9. Thus, P(Y ≤ T ) ≥ α, and using mentioned transformation we get the next
formula:

P


Z ≤

T −
∑
j∈V

µj

√∑
j∈V

σ2
j


 ≥ α (1.5)

P(Z ≤ zα) = α, zα is (100α)-percentile of the standard normal distribution. Expression
(1.5) holds if and only if

zα ≤

T −
∑
j∈V

µj

√∑
j∈V

σ2
j

(1.6)

or ∑

j∈V

µj + zα

√∑

j∈V

σ2
j ≤ T. (1.7)
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1.2. Modelling of uncertainty

Let xj,k be a binary variable that is set to one if and only if the task j is allocated to
the station k. Then inequality (1.7) can be written as follows:

∑

j∈V

µjxj,k + zα

√∑

j∈V

σ2
jxj,k ≤ T. (1.8)

This expression represents the cycle time constraint that should be satisfied during
the design in any type of line balancing problem.

It is evident that a mathematical model with the constraint (1.8) is non-linear which
may prevent to successfully solve large problem instances. Thus chance-constrained pro-
gramming requires an additional linear transformation for real-life problem instances.
Non-linear part can be eliminated by a squaring procedure by introducing new binary
variables and constraints.

The reason why the developed chance-constraint model is not linear is the term√∑
j∈V

σ2
jxj,k with task variable. For that reason by eliminating the square-root, linearising

will be possible. So, by squaring both side of the inequality (1.6), including variables from
(1.8), the next inequality has been obtained.

(zα)
2 ≤

(T −
∑
j∈V

µjxj,k)
2

(√∑
j∈V

σ2
jxj,k

)2 (1.9)

While the non-linear situation caused by the term
√∑

j∈V

σ2
jxj,k has been eliminated

by inequality (1.9), a new non-linear term has appeared with term (T −
∑
j∈V

µjxj,k)
2. The

open form of this term is given by

(T −
∑

j∈V

µjxj,k)
2 = T 2 − 2T

∑

j∈V

µjxj,k +




µ2
1x

2
1,k + µ1x1,kµ2x2,k + · · ·+ µ1x1,kµnxn,k

µ1x1,kµ2x2,k + µ2
2x

2
2,k + · · ·+ µ2x2,kµnxn,k

· · ·
µ1x1,kµnxn,k + µ2x2,kµnxn,k + · · ·+ µ2

nx
2
n,k




(1.10)

Since the variable xj,k is 0− 1 integer, x2
j,k is equal to xj,k. The term (µixi,kµjxj,k) is

the non-linear part of the equation (1.10). Thus, a current transformation technique in
the literature has been used to make this part linear

ui,j,k = xi,kxj,k. (1.11)
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Chapter 1. Line Balancing under Uncertainty

After the variable transformation given in (1.11), the variable uijk is linked to xik

and xjk by the following inequalities:

xi,k + xj,k − ui,j,k ≤ 1, (1.12)

xi,k + xj,k − 2ui,j,k ≥ 0. (1.13)

Another situation to be considered on inequality (1.9) is that the inequality is valid
in two different cases. These can be expressed by the inequality below.

|zα| ≤

∣∣∣∣∣∣∣∣

T −
∑
j∈V

µj

√∑
j∈V

σ2
j

∣∣∣∣∣∣∣∣
(1.14)

Assuming that zα is larger than 0.9 implies that zα is positive, and so the right-hand
side of the inequality (1.14) must be positive, too. For that reason, we have to introduce
an additional constraints which is the same as the cycle time constraint at the basic
deterministic model (compare to 1.3):

T −
∑

j∈V

µjxj,k ≥ 0. (1.15)

Then, the inequality (1.8) is replaced by the constraint (1.15), the equality (1.11)
together with (1.12–1.13) and:

T 2 − 2T
∑

j∈V

µjxj,k +
n∑

j=1

µ2
jxj,k + 2

n−1∑

i=1

n−1∑

j=i+1

µiµjui,j,k − z2α

n∑

j=1

σ2
jxj,k ≥ 0. (1.16)

This stochastic approach is well-developed and applied almost for all existing types of
production lines: straight ([13], [22], [62], [64]), U-shaped ([1], [2], [6], [29], [55]), two-sided
([14], [53], [54]).

Simulation of problem characteristics and re-balancing

The second category involves the work performed to examine the problem charac-
teristics via simulation and to compare the deterministic and stochastic versions of the
problem. In these procedures, an initial balance is given, and the objective is to rearrange
the tasks to fulfil a substitution with a new item due to customers’ unique requirements.
It can be observed that the definition of the category is deeply related to a particular case
well known in the literature as a re-balancing problem.

Rearrangements may require the modifications of the whole initial parameters, as well
as the modification of a subset only. Because of this, the main difficulty in practical cases is
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1.2. Modelling of uncertainty

the precise estimation of costs related to all possible tasks movements, a weighted multiple
objective function involving both completion and tasks movement associated costs is not
introduced. Preferably, two separate objective functions, concerning expected completion
costs (EC) and the degree of similarity between initial and new tasks assignments (shortly,
mean similarity factor or MSF), are separately introduced. EC is calculated in a similar
way as the objective function for type-E balancing problem:

EC = mT +
∑

j∈V

pjIj, (1.17)

where as before m is the number of machines, and T is the cycle time of a new balance,
pj is the probability of not completing task j in the assigned station, Ij is the total
incompletion cost of task j. It includes the value of the task itself and those of its followers
in the precedence graph, i.e., the task staying earlier in the order is more worthy. In the
same manner as in chance-constrained programming, the probability pj is calculated using
the transformation into a standard form:

pj = P(Z ≤ zj) ∀j ∈ V, (1.18)

zj ≤

T −
∑

i∈Vjk

µj

√ ∑
i∈Vjk

σ2
j

∀j ∈ V, k | j ∈ Vk

where zj represents the station idle time, with respect to task j. Consequently, Vk is a
subset of tasks assigned to station k; Vjk is a subset of Vk (such that j ∈ Vk) including
both the task j and tasks executed before it in the station k. Here, T is exactly the
task time which is not always equivalent to the cycle time. As above, the non-linear part
can be eliminated by the squaring procedure which consists in introducing new binary
variables and constraints.

The second objective function showing the mean similarity factor (MSF), as it follows
from the name, is aiming to compare a given initial line balance with a re-designed one.
Two special subsets are introduced for this purpose:

TIBj = {i ∈ V 0
k | j ∈ V 0

k and i 6= j} ∀j ∈ V 0

TNBj = {i ∈ Vk | j ∈ Vk and i 6= j} ∀j ∈ V

TIBj is the subset of initial tasks, other than j, belonging to the station k in an initial
balance. In a similar manner, TNBj is also the subset of tasks, but for a new balance. As
it was mentioned above, V may differ from V 0 because of product changes and another
requirements. The similarity factor (SFj) of the task j is obtained in

SFj =
|TIBj ∩ TNBj|

|TIBj|
. (1.19)

It is the ratio of number of tasks assigned to the same station as task j in the initial and
in the new configuration to the number of tasks assigned to the same station in the initial
balance.
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Chapter 1. Line Balancing under Uncertainty

When the task j is alone in a station in the given configuration, SFj assumes an
indefinite form 0/0. In this case, the SFj value is set to 0 in assignment procedures so as
to make it less likely that this task will be assigned to a station where tasks belonging
to other sets are present. Whilst, in the final MSF evaluation step, where the similarity
of the line as a whole is computed, SFj is set to 1 in case the task j is alone both in the
initial and in the new balance, and to 0 otherwise.

Notice that SFj takes a value within the range 0 ≤ SFj ≤ 1. SFj takes the value 0
if none of the tasks assigned to the same station as task j in the initial line balance are
assigned to the current station. SFj takes the value 1 if all the tasks assigned initially to
the same station as task j are assigned to the current station. SFj takes a value within
the range (0, 1) for any other subset of the tasks. The more numerous is this subset, the
higher is SFj.

The mean similarity factor (MSF) between the new re-balanced line and the initial
one is finally evaluated as in

MSF =

∑
j∈V

SFj

|V |
. (1.20)

In the presence of several new feasible balances, the highest MSF values address the choice
of balances with less tasks movements.

Since one of the first appearance in [57], this approach is generally used for assembly
line balancing and can be found in [7], [26], [45], [49], [50], [69].

Alternative procedures

In the third category, there are procedures specifically developed for the stochastic
problem. They may partially include ideas from either chance-constrained or simulation
approach. For example, Saif et al [61] consider a bi-objective model, where the main
goal is to minimise the cycle time (as in type-2 problems), and the supporting goal is
to maximise the probability of stations to withstand the limit both individually and
together. Zhang et al. [74] also present a bi-objective optimisation method aiming to
minimise the cycle time as well as the total processing cost. Kao in his works [42] and [43]
optimises a type-1 assembly line constructing the preference order for task assignment
under stochastic processing times. Carter and Silverman [12] develop a model with off-
line repairs for uncompleted tasks partially based on chance-constrained programming.
Another approach with off-line completion is proposed in [22] by Erel et al. Minimisation
of the smoothness index together with the design cost associated with labor and equipment
requirements is given by Cakir et al. in [11] for a line with parallel stations. Chiang et al.
[14] model two-sided assembly lines taking into account mated-stations and optimising a
weighted sum of the line length and the number of station. Zheng et al. [76] propose
a distribution-free models for disassembly line balancing problem, but still dealing with
stochastic tasks.
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1.2. Modelling of uncertainty

Bowl-phenomenon

Besides these three categories, we can find an approach based on the bowl-phenomenon
that arises in unpaced systems. This phenomenon consists in the fact that workload
should be allocated according to a strictly concave function (stations in the middle are
less utilised than those at the start or the end of the line). It helps to find a size of buffers
and their locations in an unpaced system that improves a production rate especially when
processing times of tasks are not normally distributed or when they are significantly dif-
ferent from each other. Among the latest works, we refer to Das et al. [15], Tiacci [67],
Urban et al. [69].

1.2.2 Fuzzy approaches

Another type of task times uncertainty is called fuzzy. The term fuzzy is meant
to represent variables, expressions and judgements that have no clear (crisp) values or
boundaries. In this case, the given information about the processing times is better
introduced as a fuzzy set or a fuzzy number. They can appropriately represent imprecise
parameters and can be manipulated through different operations defined on them.

A fuzzy set is defined by a membership function (all the information about a fuzzy
set is described by its membership function). The membership function maps elements
(crisp inputs) in the universe of discourse (interval that contains all the possible input
values) to elements (degrees of membership) within a certain interval, which is usually
[0, 1]. Then, the degree of membership specifies the extent to which a given element
belongs to a set or is related to a concept. Figure 1.7 shows the membership function of
a fuzzy set that represents the concept of “a number close to m”. The crisp input m has a
degree of membership in the fuzzy set of one, which means that m is totally related to the
concept (it is close to m). Any other number from [a, b]\{m} has a degree of membership
between 0 and 1, which means that a number is partially related to the concept.

The most commonly used range for expressing degree of membership is the unit
interval [0, 1]. Thus, for a fuzzy set A, this can be expressed by

fA(x) : X → [0, 1], (1.21)

which means that the membership function fA assigns to each element x of the universal
set X, which is a crisp set, a value within the range [0, 1]. If the value assigned is 0, the
element does not belong to the set (it has no membership). If the value assigned is 1,
the element belongs completely to the set (it has total membership). Finally, if the value
lies within the interval (0, 1), the element has a certain degree of membership (it belongs
partially to the fuzzy set). A fuzzy set, then, contains elements that have different degrees
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x

fA(x)

a m b

1

0

Figure 1.7: A membership function for a fuzzy set

of membership in it. More concrete example, related to Figure 1.7 is written as follows:

fA(x) =





0, if x ≤ a, or x ≥ b,
λ(x−a)
(m−a)

, if a ≤ x ≤ m,
λ(b−x)
(b−m)

, if m ≤ x ≤ b.

(1.22)

Here, the fuzzy set A is presented by a triplet (a,m, b) of real numbers, such that 0 ≤ a ≤
m ≤ b. The parameter λ shows the maximal possible degree of membership. Sometimes,
the inverse of half the length of the segment is used, i.e., λ = 2

(b−a)
. In this case, the

membership function represents the triangular density of probability.

Initially, necessity of this approach for real production lines was explained by the fact
that it is often impractical to use a well-known probability distribution (like Gaussian) to
characterise task times. Indeed, for manual production systems where a lot of employees
are involved, it is extremely difficult to estimate these densities. Nevertheless, in practice,
as a rough estimate, managers are able to provide a usual task time m and 2 values a
and b that are, respectively, the lowest and greatest task times. Usually, evaluating a task
time using the above three parameters can be enough for most management purposes.

A fuzzy number is a special case of a fuzzy set. Different definitions and properties
of fuzzy numbers are encountered in the literature, but they all agree on that a fuzzy
number represents the conception of a set of “real numbers close to r”, where r is the
number being fuzzified. To classify as a fuzzy number, a fuzzy set A on R must satisfy
the following:

• at least one element of the fuzzy set A has full membership;

• Aα must be a closed interval for every α ∈ (0, 1], where

Aα = {x ∈ X | fA(x) ≥ α}; (1.23)
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• The support or scope of A must be bounded.

The concept of α-cut of a fuzzy set is useful for defining the arithmetic operations
on fuzzy numbers. As it follows from (1.23), the α-cut is the (crisp) set Aα of elements
x, such that their degree of membership in the set A is at least equal to α (0 ≤ α ≤ 1).

To apply this approach, suitable fuzzy arithmetic and an appropriate method ded-
icated to comparing these fuzzy sets (numbers) have to be introduced. Because of this,
not only the processing times but also another problem data has to be presented by fuzzy
sets (the cycle time or number of machines).

In the literature, several fuzzy comparison methods have been proposed such as
pseudo-order fuzzy preference model (see Roy and Vincke [59]), fuzzy-weighted average
(Vanegas and Labib [70]), signed distance method (Yao and Wu [72]). The last one is the
most popular among them, but generally, the fuzzy approach becomes less popular. The
following work can be noted: a heuristic method in Hop [40]; a meta-heuristic algorithm for
line efficiency maximisation in Zacharia and Nearchou [73]; genetic methods in Tsujimura
et al. [68]; binary fuzzy goal programming approach in Kara et al. [44].

During the last four years, the only work that was related to the fuzzy approach
is Babazadeh et al. [3]. Authors provide mixed integer linear problem formulations
for straight and U-shaped assembly lines and develop a non-dominated sorting genetic
algorithm for resolution.

1.2.3 Robust approaches

Evoked in the late 1960s [30], the idea of robustness is attracting increasing interest
from both practitioners and theorists in operational research. Originally reflecting a con-
cern for flexibility in a context of uncertainty, this concept now seems to fit a much broader
spectrum of situations. In the robustness literature, uncertain data is mainly associated
with a set, continuous or discrete, of possible values, with no associated probability [46].
In the continuous case, the sets are often intervals, hence the notion of interval approach.
In the discrete case, meanwhile, we are talking about the scenario model. Whatever the
case, the Cartesian product of these sets defines the possible instances of a problem. After
modelling the uncertain data in the form of possible instances, the problem is to find a
solution that is “good” for all these instances or robust. We say that a solution is robust
if its performance is somehow insensitive to data uncertainty and hazards.

All above-mentioned stochastic techniques require some a priori information to con-
struct an appropriate probability distribution and membership function. However, such
information is not always available at the design stage due to, for example, originality of
the considered line. Since stochastic and fuzzy approaches are hardly applicable, some
robust ones have to be used in this case. These approaches assume that only a discrete
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set of scenarios or closed intervals of tasks time realisations are available without any
distribution on it.

Set of scenarios

Following this definition, a robust solution is then designed to limit or absorb the
effects of uncertain data. In practice, it is often considered that the robust solution is
the best solution in the worst case. Most of the works on robustness uses the concept
of distance between the robust solution calculated a priori and the optimal solution of
the instance actually achieved according to a certain criterion (satisfaction of constraints
or a particular requirement). In the search for robust solutions, most authors use the
criteria of absolute robustness (min-max), maximum regret (min-max regret) or relative
regret [60]. For a minimisation problem, if S is the set of possible solutions, I is the set
of instances, f(s, I) gives the value of the solution s ∈ S for the instance I ∈ I and f ∗

I

the value optimal for instance I ∈ I, then the three criteria are defined as follows:

• absolute robustness: min
s∈S

max
I∈I

f(s, I);

• maximum regret: min
s∈S

max
I∈I

(f(s, I)− f ∗
I );

• relative regret: min
s∈S

max
I∈I

f(s,I)−f∗
I

f∗
I

;

Consider a more precise example for production lines. Let tj,k be the processing
time of the task j on the station k, k ∈ W (W is a set of available stations), and let
t be the respective matrix of processing times. It is assumed that t belongs to a set S
of scenarios. The set of scenarios S is a finite collection of subsets of interval scenarios:
S = S(1)

⋃
S(2)

⋃
. . .
⋃

S(l). Since the set of task processing times is not unique, a question
then appears as to which solution is appropriate. The best solution for one specific set can
be the worst for another set. One of the classic approaches to hedge against uncertainty
is to construct the best solution for the worst scenario.

The cycle time for this formulation is modelled using the following expression:

max
t∈S

max
k∈W

{∑

j∈Vk

tj,kxj,k

}
≤ T, (1.24)

where Vk is a subset of tasks assigned to the station k. This constraint chooses the most
loaded station among all scenarios and checks that its load time does not exceed the cycle
time. In case of the type-2 line balancing problem, this approach is exactly representing
absolute robustness (or min–max) approach. Its detailed explanation can be found in
[21]. Another comprehensive work with new exact and heuristic methods based on the
min-max regret approach was given in [56].
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In the work [71], a mixed-model assembly line balancing problem is considered. Au-
thors Yang and Gao propose combinatorial lower and upper bounds for studied problem
formulation and develop a multi-scenario greedy procedure as well as a branch, bound
and remember algorithm. The processing time of tasks in this work varies according to a
scenario of an assignment. A similar situation happens in robotic assembly lines, where
a set of chosen robot determines an assignment scenario and a respective processing time
for tasks. Multi-objective optimisation for U-shaped robotic assembly lines is presented
in [75]. Zhang et al. discover an artificial bee colony algorithm for this purpose. An-
other group of metaheuristic algorithms for robotic assembly lines are compared in [41]
by Janardhanan et al.

Moreira et al. propose a comparison of three heuristic procedures for multi-objective
assembly line worker integration and balancing problem in [52].

Several heuristic procedures are compared in He et al. [38] for a multi-objective
automated transfer line balancing problem. Authors introduce a new robust dominance
criterion which they use for the construction of a feasible solution.

Interval uncertainty

Similar to the set of scenarios, tasks processing times can be represented as closed
intervals tj = [aj, bj] dealing with nominal and worst case values which are used for borders
of ranges. Here, these intervals are fixed and do not depend on the scenario or a station.
This approach uses the special parameter Γ that shows the number of tasks involving a
processing times variability. When Γ = 0, the consequences of the variability are ignored
and the deterministic problem with nominal time values is obtained. By contrast, high
values of this parameter indicate risk-averse behaviour. Variability of processing times is
presented in the model as the following function:

gk(x) = max

{∑

j∈V

djxj,kuj,k :
∑

j∈V

uj,k ≤ Γ

}
. (1.25)

More precisely, the function (1.25) defines the maximal time deviation for the station k.
The value dj equals to the interval’s range of the task j, i.e., dj = bj−aj. The set of tasks
that are subject to uncertainty are determined by the binary vector u = {j : uj,k = 1, ∀k}.
As aforementioned, these tasks will have processing times equal to the upper bounds.
However, total possible deviation is bounded using the parameter Γ, which also reflects
the pessimism level of the decision maker. A larger value of Γ corresponds to a larger
amount of deviation that is taken into account. The time deviation (1.25) transforms the
cycle time constraints into: ∑

j∈V

ajxj,k + gk(x) ≤ T. (1.26)

Again, in type-2 line balancing problems, this approach uses techniques of the min-max
optimisation. Also, it should be noted that the function (1.25) may be introduced in a
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different way which depends on another representation of time intervals and a definition of
the parameter Γ, see [36]. In the article of Hazir and Dolgui [37], mixed integer program-
ming formulation for a U-type assembly lines is presented, and a decomposition algorithm
is proposed for its resolution. Moreira et al. [51] present two mixed integer formulation
as well as a heuristic method for assembly line worker assignment and balancing problem.
Other formulations and exact solution methods have been presented in [33] by Gurevsky
et al.

The evolutionary simulated annealing algorithm for mixed-model multi-robotic dis-
assembly line balancing problem can be found in the work of Fang et al. [23].

Stability radius

Among the robust approaches, there is one related to stability analysis. This
theory is concerned with the stability of solutions of a problem (system of constraints)
under small perturbations of initial conditions. Thus, it is not a question of solving an
optimisation problem, but of evaluating the behaviour of the solutions already found in
the face of disturbances of the initial data. In this way, uncertainty is introduced into the
phase after solving the problem.

Sensitivity analysis was initially used to evaluate the influence of changes in one of
the parameters of the linear programming problems solved using the simplex algorithm.
The goal was to analyse the behaviour of the objective function without having to solve
the problem again. Sensitivity analysis for combinatorial optimisation problems appeared
a little later. Attempts to directly employ the methods developed for continuous linear
problems on these problems have not resulted in a satisfactory result. Since the 1970s,
many studies have been devoted to the study of sensitivity for combinatorial optimisation
problems. The first state of the art was published by Geoffrion and Nauss in 1977 [27].

In order to determine the stability (or robustness), it is necessary to use a measure
that would confront a value to a given solution. Sotskov, Dolgui and Portmann [66]
introduce a specific indicator named stability radius for application in balancing problems.
According to the definition, it is a maximal deviation of uncertain tasks from their nominal
values that do not violate solution feasibility. The stability radius is a suited measure
of robustness for known solutions in the presence of task processing time deviations.
Gurevsky, Battaïa and Dolgui [31] show results of its application for simple assembly line
balancing problem. Stability analysis of feasible and optimal solutions of generalised line
balancing problem for the case of processing time variations for some tasks have been
developed in [32]. Sotskov et al. [65] also investigate the stability of simple assembly lines
with respect to variations of processing times and propose algorithms for constructing
feasible and stable optimal line balances. Their work is continued in [47]. Authors are
discovering of stability radius’ properties and solution approaches.

The majority of papers presented above are considering a line balancing problem
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supported by one of the following goals: minimisation of the line cost (through the minimal
number of stations); minimisation of the cycle time (i.e., maximisation of the production
rate). It is clear that from a practical point of view, these goals are most important.
However, an obtained solution may not stand all incoming events as well as it assumes
to be. Availability for the production systems to be reconfigured may solve this issue but
as the last review in this field shows (see Galizia et al. [25]), companies still prefer to use
traditional systems because important questions are still open in flexible systems:

1. In the current production environment, do industrial companies have a clear view of
the emerging market trends and of the need of adopting these emerging production
systems?

2. Is it possible to make reconfigurable a production system not designed to be? Is
it necessary to include reconfigurability principles just in the design phase of such
systems?

3. From an economic point of view, is it possible to introduce reconfigurability princi-
ples in an existing production system without making any new substantial invest-
ments?

The ability to keep a line working in changing circumstances without reconfigurations or,
at least, to find the moment when the line has to be reconfigured could be important for
modern production systems. Because of this, we propose a new combinatorial optimisation
problem, whose main goal is to maximise the robustness of the designed production line.

1.3 Stability radius maximisation

Classic formulations assume that either the cycle time or the number of stations are
fixed. From one point of view, we can find a solution (optimal) and use the stability
radius for post-optimal analysis. It will help us to understand its level of robustness
and, in case of the presence of several optimal balances, to choose the one which is more
stable. But from a different perspective, the real challenge lies in the fact that usually an
optimal solution may be unstable (see Lai et al. [48]), i.e., the optimal solution may not
withstand even slight processing time deviations, which would make it unpractical in a
real-life context.

Example 3. Let see again the example of the line balance of Figure 1.5. The stability
radius equals to zero since any nonzero deviation of the processing time of the task
3 violates the cycle time. Thus, this balance is unstable. The solution pictured in
Figure 1.6 also cannot be considered as stable, because nothing can prevent future
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time deviations. However, we can imagine alternative line constitutions, for example
the one shown in Figure 1.8. This configuration may provide the production rate in
360 pieces per hour and protect from some time variations. For any uncertain task the
threshold is determined within the idle time of the station. The task 1 may increase
its processing time from 2 up to 4; task 3 – from 5 up to 10; tasks 8 and 9 share the
total possible deviation in 3 time units.

0 1 2 3 4 5 6 7 8 9 10

S1

S2

S3

S4

1 2 4

3

5 6 7

8 9

Figure 1.8: Robust line balance

Example 3 shows that the capability of the line balance to stand tasks processing
times deviation should be taken into account in the design stage. A configuration with the
greatest value of the stability radius has to be chosen as an optimal one. Eventually, both
the cycle time and number of stations have to be fixed or, at least, are given as known
input parameters. In practice it is possible according to the budget limitations, which
generally are not so variant to provide both bounds [mmin and mmax], but precise enough
for a concrete number. Another limitation comes from an available working surface. We
can divide it by measurements of stations to see a total capacity. Alternatively, the
cycle time represents the reversed value of the production rate. Indeed, the release of a
modern product often consists of two parts: pre-order and foremost one. Using pre-order,
manufacturers can gauge how much demand there will be and thus the size of initial
production runs, and sellers can be assured of minimum sales. Additionally, high or low
pre-order rates can be used to form sales for the foremost part. Since customer needs are
known (exactly or approximately), calculation of the respective boundaries does not seem
to be a difficult challenge.

The paper of Rossi et al. [58] shows the first attempt to address the aforementioned
problem. The authors introduce the idea of stability radius maximisation for simple
assembly line balancing under tasks time uncertainties with the fixed cycle time and
number of workstations. Mixed integer linear programming (MILP) models are presented
for two classic metric: Manhattan (l1) and Chebyshev (l∞).
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1.4 Conclusion

We consider line balancing problems under uncertainty where production tasks have
to be assigned to a linearly ordered set of stations without buffers. The number of
machines, as well as the cycle time, are available as parts of input data for the problem
and do not have to be minimised. The production tasks are supporting by nominal values
of processing time. Nevertheless, there is a subset of uncertain tasks which are sensitive
to different events during manufacturing. To model these variations, we use a robust
approach based on stability radius. The optimisation goal is aimed at maximising the
robustness of the designed line.
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Robust Balancing of Simple Assembly

Lines
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In this Chapter we study the simple assembly line balancing problem under task pro-
cessing time deviations. Mathematical models are presented for three metrics according
to introduced formulas for the stability radius calculation.

Assembly lines considered here are basic straight paced production systems, aimed to
manufacture a large quantity of product and consist of a set of linearly ordered workstation
linked by a conveyor belt. During manufacturing, the units are sequentially injected at
the beginning of the line, then they are transferred from one workstation to another.
At each workstation a set of tasks is performed on the units by operators or automated
equipment. Furthermore, the workstations operate simultaneously and only one unit can
be processed at the same time at a workstation. As for tasks, they are indivisible and
subject to strict precedence constraints, usually represented by a directed acyclic graph
that contains a node for each task, an arc (i, j) means that the task i must be done before
the task j.
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Chapter 2. Robust Balancing of Simple Assembly Lines

In the following, we consider simple assembly line, where there is no buffer stock
nor parallel workstation. Therefore the units are transferred in a synchronised manner
based on the cycle time, defined as the time period between the transfer of a unit to
another workstation. Since a simple assembly line is conceived to run in a long-term
and may require a large capital investment, its balancing is an important issue that
arises in its design so that the line works as efficiently as possible. The balancing of
a simple assembly line consists in partitioning a set of tasks among workstations in an
optimal way with respect to a given production goal. Due to space restriction, the number
of workstations is limited. On manual workstations, operators’ work rate depends on
their skills, fatigue and motivation, thereby generating variation on tasks processing time.
Otherwise tasks processing time variation can be caused by delays and micro-stoppages
during the manufacturing cycle or by changes of product specifications and workstation
characteristics.

The uncertainty on task processing time was tackled in [58] for simple assembly line
with a limited number of workstations and fixed cycle time. A robust approach was
used and mixed-integer linear programs were formulated to seek a simple assembly line
configuration, which is able to support the maximum amplitude of task time variability
know as stability radius. Two well-known norms l1 and li were used to evaluate the stability
radius. Following on this previous work, in this thesis we also measure the robustness
of a simple assembly line as the maximum proportion increases of all uncertain tasks
processing time.

2.1 Constitution of an assembly line in introduced no-

tations

Let us introduce the following notations for the robust formulation of simple assembly
line balancing problem (SALBP-R): the set V = {1, . . . , n} of production tasks; the set
W = {1, . . . ,m} of workstations; the vector t = (t1, . . . , tn) of nominal processing times;
and the cycle time T . An acyclic oriented graph G = (V,A) pictures manufacturing and
processing order of tasks. If arc (i, j) belongs to A, then the processing of task j cannot
start before the end of task i.

We are calling solution a combination of subsets Vp of tasks assigned to the worksta-
tion p such that the expressions hold:

V =
⋃

p∈W

Vp, (2.1)

Vp ∩ Vq = ∅, ∀p, q ∈ W, where p 6= q. (2.2)

If a solution satisfies the precedence (2.3) and cycle time (2.4) constraints, then it is called
feasible. If two tasks i and j are assigned to the same workstation, then the task j has to

30



2.1. Constitution of an assembly line in introduced notations

be performed later than task i.

(i, j) ∈ A ⇒ p ≤ q, where i ∈ Vp, j ∈ Vq, (2.3)

∑

j∈Vp

tj ≤ T, ∀p ∈ W. (2.4)

It is supposed here that there exist two sets of uncertain tasks: a non-empty set Ṽ 1

(Ṽ 1 ⊆ V ) of a priori uncertain tasks whose processing time may deviate from its nominal
value with regard to time without any additional information and a set Ṽ 2 (Ṽ 2 ⊆ V )
of a posteriori uncertain tasks whose uncertainty is caused by a set Ŵ (Ŵ ⊆ W ) of
uncertain workstations. These workstations are such that any task allocated to them
becomes uncertain (even if it belongs to V \ Ṽ 1). Hereinafter, the set of all uncertain
tasks is denoted as Ṽ = Ṽ 1 ∪ Ṽ 2 and any workstation from W \ Ŵ is called certain.
The presence of certain and/or uncertain workstations can be explained by the existence
of assembly lines having simultaneously two types of workstations: workstations with
automatic tasks executed by robots or machines and workplaces where tasks are operated
in a manual manner, respectively.

To evaluate the robustness of a feasible solution, we use the concept of stability radius
whose formal definition requires some supplementary notations:

• F (t) is the set of feasible solutions ((2.1)–(2.4) hold) with respect to a given vector
t ∈ Rn

+;

• Ξ is the set of vectors, where each of which presents possible non-negative processing
time deviations for the uncertain tasks, i.e., {ξ ∈ Rn

+ | ξj = 0, j ∈ V \ Ṽ }1;

Thus, the stability radius of a feasible solution s ∈ F (t) can be defined as follows
(see [66]):

ρ(s, t) = max{ε ≥ 0 | ∀ξ ∈ B(ε) s ∈ F (t+ ξ)}, (2.5)

where B(ε) = {ξ ∈ Ξ | ‖ξ‖ ≤ ε}.

In other words, ρ(s, t) is determined as the value of the radius of the greatest closed
ball B(·), called stability ball, representing the deviations of the uncertain task nominal
processing times, for which s remains feasible. Any element ξ of B(·) is evaluated based
on a given norm ‖ · ‖ defining the distance between vectors t and t+ ξ (or the amplitude
of deviations from t).

We may interpret the stability radius in l1-metric as the maximal total deviation of
nominal processing times of all uncertain tasks which does not violate a solution feasibility

1Since any decrease of task processing time cannot compromise the solution feasibility, it is sufficient
to consider only non-negative task time deviations, i.e., ξj ∈ R+ for any j ∈ Ṽ .
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or optimality. On another side, the stability radius in l∞-metric shows the maximal
deviation of nominal processing time of any uncertain task which does not violate a
solution feasibility or optimality.

The work [58] proposes two classic norm for calculation of the stability radius: ‖ · ‖1
and ‖ · ‖∞, where by the definition ‖ξ‖1 =

∑
j∈Ṽ

ξj ‖ξ‖∞ = max
j∈Ṽ

ξj. Notations ρ1(·, ·), B1(·)

and ρ∞(·, ·), B∞(·) are used to distinguish respective values and variables.

The next two theorems show how to calculate the exact value of the stability radius for
a given feasible solution for two introduced norms. They prove that the stability radius
in the ℓ1-norm is equal to the minimum idle time among the workstations containing
uncertain tasks. While for the ℓ∞-norm, it needs to seek the workstation that provides
the minimum value of the idle time divided by the number of its uncertain tasks.

Please note that notations W̃ and Ŵ have a different meaning. While Ŵ includes
initially uncertain workstations, W̃ collects both initially uncertain and those from W \Ŵ
which have at least one uncertain task. In general, we have the following relation on
workstations: Ŵ ⊆ W̃ ⊆ W .

Theorem 1 (Rossi et al. [58]). The stability radius ρ1(s, t) of s ∈ F (t) is calculated as
follows:

ρ1(s, t) = min
p∈W̃


T −

∑

j∈Vp

tj


 (2.6)

Theorem 2 (Rossi et al. [58]). The stability radius ρ∞(s, t) of s ∈ F (t) is calculated
as follows:

ρ∞(s, t) = min
p∈W̃

T −
∑
j∈Vp

tj

|Ṽp|
(2.7)

Here, we address a novel interpretation of the stability radius called relative resilience.

It refers to the situation where the processing time increase of uncertain tasks is
bounded by an amount of time that is proportional to its nominal duration.

Mathematically, the vector ξ is formed by ξj = αtj for j ∈ Ṽ and ξj = 0 for j ∈ V \Ṽ ,
where α ≥ 0. We do not present α as a standard norm, but just as rate of increase in the
duration of the uncertain tasks that one aims to maximise. The new stability radius and
ball are denoted by ρrr(·, ·) and by Brr(·).

Theorem 3. The relative resilience ρrr(s, t) of s ∈ F (t) is calculated as follows

ρrr(s, t) = min
p∈W̃

T −
∑
j∈Vp

tj

∑
j∈Ṽp

tj
. (2.8)
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Proof. Let us denote the right-hand side of (2.8) as ϕ, and the left-hand as just ρ. To
prove the present theorem, on should show that ρ ≥ ϕ and ρ ≤ ϕ.

First start with ρ ≥ ϕ. Let p be an uncertain workstation, exposed to stand the
processing time perturbations, which ratio α does not exceed ϕ. It is not difficult to see
that its perturbed load is constructed with the following expression:

∑

j∈Vp

tj + α ·
∑

j∈Ṽp

tj. (2.9)

Taking into account the fact that α ≤ ϕ and the inequality ϕ ≤
T−

∑
j∈Vp

tj

∑

j∈Ṽp

tj
, which is valid

for any p ∈ W̃ due to the definition of ϕ, we obtain

(2.9) ≤
∑

j∈Vp

tj +

T −
∑
j∈Vp

tj

∑
j∈Ṽp

tj
·
∑

j∈Ṽp

tj = T.

The latter demonstrates that the load of the workstation p does not exceed the cycle time,
whatever a perturbation ratio less or equal to ϕ. This proves ρ ≥ ϕ.

Now let us prove that ρ ≤ ϕ. To do this, it is sufficient to check that any perturbation
ratio α > ϕ causes the considered feasible solution to be unfeasible.

As above, based on the definition of ϕ, we deduce that there exists an uncertain

workstation p∗ such that ϕ =
T−

∑
j∈Vp∗

tj
∑

j∈Ṽp∗
tj

. Then, we can notice that the perturbed load

(with respect to the ratio α) of the machine p∗ violates the cycle time constraint, since

∑

j∈V ∗
p

t
(α)
j =

∑

j∈V ∗
p

tj + α ·
∑

j∈Ṽ ∗
p

tj >
∑

j∈V ∗
p

tj +

T −
∑

j∈V ∗
p

tj

∑
j∈Ṽ ∗

p

tj
·
∑

j∈Ṽ ∗
p

tj = T

that proves ρ ≤ ϕ.

Thus, to compute the relative resilience of a given solution, we need to seek for
the workstation that provides the minimal ratio between its idle time and the sum of
processing times of its uncertain tasks, it can be done in polynomial time.

2.2 MILP formulations

Different interpretations of the norm represent different challenges which may happen
in the production process. A decision maker (manager) is able to chose those one that
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corresponds to his (her) particular case. In this section we are showing the similarity in
mixed integer linear problem formulations for three described metrics: ℓ1, ℓ∞ and ℓrr. At
the beginning, let introduce necessary decision variables:

• ρ is the stability radius value to maximise;

• xj,p is a binary variable that is set to one if and only if the task j is allocated to the
workstation p;

• ap is a non-negative variable that is positive if the workstation p has at least one
uncertain task, or if the workstation p is uncertain (ℓ1-metric special variable, not
applicable for another metrics);

• ξj,p is a processing time deviation of the task j on the workstation p:

– in ℓ∞-metric it shows a real deviation of processing times;

– in the relative resilience it models a percentage for which processing times are
deviating from their nominal values;

– variables are not applicable for ℓ1-metric.

The objective function of the considered problem is the same for all formulations:

Maximise ρ

Also, production tasks are indivisible, and any of them has to be assigned to exactly
one workstation: ∑

p∈W

xj,p = 1, ∀j ∈ V. (2.10)

Any feasible line balance must satisfy the precedence constraints:
∑

p∈W

pxi,p ≤
∑

p∈W

pxj,p, ∀(i, j) ∈ A, (2.11)

m∑

q=p

xi,q ≤
m∑

q=p

xj,q, ∀(i, j) ∈ A, ∀p ∈ W \ {1}. (2.12)

Here, restrictions (2.11) compare indexes of workstation, which accommodate production
tasks i and j. If the task j succeeds the task i, then it cannot be assigned to any
workstation with an index smaller than the one of the task i. Constraints (2.12) are more
classic one. They verify subset of workstation for the presence of tasks. Since, variables
xj,p are binary, the left-hand part of (2.12) is turning to zero not later than the right-
hand. It could be essential to know that these constraints are surplus, and it is possible
to use only one of them depending on a particular studied problem and an interpretation
of precedence constraints.
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2.2.1 MILP formulation for ℓ1-metric

The central idea of the MILP formulation for P1 consists in considering ρ as the
minimum idle time of the workstations that process uncertain tasks (see Theorem 1).
The cycle time constraints in this metric are presented by its classic version:

∑

j∈V

tjxj,p ≤ T, ∀p ∈ W. (2.13)

It is possible because tasks time deviations are modelled with the next expressions:

xj,p ≤ ap, ∀j ∈ Ṽ 1, ∀p ∈ W \ Ŵ , (2.14)

ap = 1, ∀p ∈ Ŵ , (2.15)

ρ ≤ T (2− ap)−
∑

j∈V

tjxj,p, ∀p ∈ W. (2.16)

According to Theorem 1, the stability radius is calculated on the subset W̃ , which consists
of two parts: constraints (2.14) indicate if any uncertain task is assigned to the certain
workstation p; equations (2.15) set up ap for all initially uncertain workstations. Finally,
the value of the stability radius is obtained as the minimal idle time on the line (see (2.16)).
Indeed, it is easy to see that (2.14)–(2.16) imply that ap ∈ {0, 1}. As a consequence, if
p is a certain workstation without uncertain tasks, then ap = 0 and (2.13) together with
(2.16) yields ρ ≤ T , which is always valid.

The complete MILP formulation for P1 maximises ρ and has the constraints (2.10),
(2.11), (2.12), (2.13), (2.14), (2.15), (2.16) and the restrictions on variables:

ρ ≥ 0,

ap ≥ 0, ∀p ∈ W

xj,p ∈ {0, 1}, ∀j ∈ V, ∀p ∈ W.

2.2.2 MILP formulation for ℓ∞-metric

MILP formulation for P∞ is focused on the fact that the processing time of all un-
certain tasks can be increased by ρ without losing the feasibility for the optimal solution.
The modelling of cycle time constraints requires to take into account possible deviations
ξj,p: ∑

j∈V

tjxj,p +
∑

j∈V

ξj,p ≤ T, ∀p ∈ Ŵ , (2.17)
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∑

j∈V

tjxj,p +
∑

j∈Ṽ 1

ξj,p ≤ T, ∀p ∈ W \ Ŵ . (2.18)

Any task assigned to p ∈ Ŵ may increase its processing time, that is shown in (2.17). If
the workstation p is certain, then only tasks from Ṽ 1 may be deviated, see constraints
(2.18).

To obtain the result related to Theorem 2, we have to be sure that all tasks time
deviations are equal:

ρ =
∑

p∈W

ξj,p, ∀j ∈ V. (2.19)

Additionally, we may install an upper bound for ξj,p:

ξj,p ≤ T · xj,p, ∀j ∈ V, ∀k ∈ W. (2.20)

Any appropriate value UB can be used instead of T in 2.20 (see [58] for details).

Thus, MILP formulation for P∞ maximises ρ and has the constraints (2.10), (2.11),
(2.12), (2.17), (2.18), (2.19), (2.20) and the restrictions on variables:

ρ ≥ 0,

ξj,p ≥ 0, ∀j ∈ V, ∀p ∈ W,

xj,p ∈ {0, 1}, ∀j ∈ V, ∀p ∈ W.

2.2.3 MILP formulation for ℓrr-metric

The last model evolves directly from the previous one. It is recalled that, in practice,
uncertain tasks can have different processing time deviations. From this point of view,
the formulation for P∞ seems overprotective and less realistic. The new model is changing
this considering relative resilience, i.e., the processing time of all uncertain tasks can be
increased by a proportion ρ without loosing the feasibility for the optimal solution.

The following constraints together with (2.10), (2.11), (2.12) are presenting the for-
mulation for Prr:

ξj,p ≤ UB · xj,p, ∀j ∈ V, ∀p ∈ W, (2.21)

ρ =
∑

p∈W

ξj,p, ∀j ∈ V, (2.22)

∑

j∈V

tjxj,k +
∑

j∈V

tjξj,k ≤ T, ∀k ∈ Ŵ , (2.23)

∑

j∈V

tjxj,k +
∑

j∈Ṽ 1

tjξj,k ≤ T, ∀k ∈ W \ Ŵ , (2.24)

ξj,k ≥ 0, ∀j ∈ V, ∀k ∈ W,

xj,k ∈ {0, 1}, ∀j ∈ V, ∀k ∈ W.

36



2.3. Enhancements

Constraints (2.21) ensure that only for one p ∈ W, ξj,p is non-zero for any fixed
j ∈ V and state that the variation of any uncertain task is bounded by UB, where

UB =
T−max

j∈Ṽ 1 tj

max
j∈Ṽ 1 tj

. Inequalities (2.22) state that the deviation ratio of any task is set to

ρ. The perturbed load of each workstation does not exceed the cycle time, as shown in
constraints (2.23) and (2.24).

2.3 Enhancements

There is no preference in an assignment of tasks to workstations. Nevertheless, the
precedence graph usually may say which task would be in the beginning or in the end of the
line. This leads us to the introduction of assignment intervals for all production tasks.
An interval Qj = [lj , uj ] shows that the task j cannot be allocated to the workstation
whose place on the line is either earlier than lj or later than uj. Such boundaries may be
estimated as follows:

lj =




tj +
∑

i∈P(j)

ti

T



, uj = m+ 1−




tj +
∑

i∈S(j)

ti

T



, (2.25)

where P(j) (resp. S(j)) is a set of all predecessors (resp. all successors) of j in the graph
G. Using this information, models can be enriched by the respective constraints:

xj,p = 0, ∀j ∈ V, ∀p /∈ Qj. (2.26)

2.4 Polynomial time solvable case

In this section, we want to briefly discuss an effectively solvable case of considered
problems.

Statement 1. If the number of workstations is equivalent to the number of production
tasks, i.e., m = n, then SALBP-R can be solved in polynomial time.

Indeed, in this case any workstation p includes exactly one production task, and its
idle time equals to (T − tj), where j ∈ Vp. If the workstation is uncertain then Vp = Ṽp.
For any feasible (according to the precedence order) line balance s, the stability radius is
calculated with one of the following formulas:

• ρ1(s, t) = min
p∈W̃

{T − tj | j ∈ Vp} = T −max
j∈Ṽ

tj;
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• ρ∞(s, t) = min
p∈W̃

{
T−tj

|Ṽp|
| j ∈ Vp

}
= T −max

j∈Ṽ
tj, since |Ṽp| = 1 for all workstations;

• ρrr(s, t) = min
p∈W̃

{
T−tj
tj

| j ∈ Vp

}
= T

max
j∈Ṽ

tj
− 1.

It is not difficult to see, that these formulas also present upper bounds on the stability
radius for respective metrics. In particular, the formula for the relative resiliency is used
to calculate upper bound UB in the constraint (2.21), while the formula for ℓ∞ can be
applied in (2.20) instead of T .

Allocation of tasks to workstations can be performed by any ranking or enumeration
algorithm, which sorts nodes of the precedence graph in order of their appearance.

2.5 Computational results

To examine the MILP model for Prr we used the same instances used in [58] which
consist of a set of 25 instances that can be found at http://alb.mansci.de/. For
these instances we added the number of workstations and the cycle time, set as m =⌈
1.2×

∑
j∈V tj

T

⌉
and T = 1.5 ×maxj∈V tj. After that a random permutation of the tasks

and workstations have been generated. In any test, only the first |Ṽ 1| elements are consid-
ered as uncertain tasks and, similarly, the first |Ŵ | elements from the second permutation
as uncertain workstations. All these permutations are given in Appendix B. To distinguish
the tests we use the number of uncertain tasks and number of uncertain workstations as
varying parameters, such that |Ṽ 1| ∈ {⌈n

4
⌉, ⌈n

2
⌉, ⌈3n

4
⌉, n}, and |Ŵ | ∈ {0, ⌈m

4
⌉, ⌈m

2
⌉}.

The computational results were carried out on a laptop having Inter Core i5 2.5 GHz
and 4 GB RAM. The program code was developed in C++ using the commercial solver
GUROBI 7.51. An example of results is given in Table 2.1. It is built as follows. The
first four columns indicate respectively the instance’s name, number of tasks, number
of workstations, and cycle time. The next column is the best value of stability radius
found (LB), followed by the upper bound (UB) found by GUROBI. Column 7 report the
CPU time in seconds for solving the instance and the last column display the gap. The
last row of every table displays the number of instances solved optimally, the average
computational time and the average gap over all instances. The solving of each instance
is limited by 600 seconds, then if an instance is not solved optimally within the time
limit, the number 600 is indicated its CPU. The detailed results of each series are given
in Appendix A.

Tables A.1 to A.4 gives the results for series of instances without uncertain stations,
i.e., |Ŵ | = 0 for all of them, while |Ṽ 1| ∈

{
⌈n
4
⌉, ⌈n

2
⌉, ⌈3n

4
⌉, n
}
. In contrary, Tables A.5 to

A.10 show all results where both the number of uncertain tasks and stations are gradually
increased with each series.
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Instance n m T LB UB CPU GAP

MERTENS 7 4 9 0 0 0.36 0
BOWMAN8 8 4 25.5 0.375 0.375 0.02 0
MANSOOR 11 4 67.5 1.813 1.813 0.04 0
JAESCHKE 9 5 9 0.2 0.2 0.01 0
JACKSON 11 6 10.5 0.3 0.3 0.06 0
MITCHELL 21 7 19.5 0.833 0.833 0.07 0
ROSZIEG 25 8 19.5 0.5 0.5 0.01 0
HESKIA 28 8 162 0.514 0.514 0.03 0
LUTZ1 32 9 2100 0.5 0.5 0.01 0
BUXEY 29 11 37.5 0.5 0.5 0.06 0
SAWYER30 30 11 37.5 0.974 0.974 0.32 0
GUNTHER 35 10 60 0.45 0.45 0.06 0
HAHN 53 7 2662.5 0.793 0.793 0.13 0
KILBRID 45 9 82.5 0.5 0.5 0.04 0
TONGE70 70 18 234 0.5 0.5 0.89 0
WARNECKE 58 24 79.5 0.529 0.529 0.64 0
ARC83 83 17 5536.5 1.018 1.045 600 0.027
LUTZ3 89 18 111 0.5 0.5 0.65 0
BARTHOLD 148 12 574.5 0.5 0.5 1.11 0
MUKHERJE 94 20 256.5 0.5 0.5 0.53 0
ARC111 111 22 8533.5 0.687 0.687 3.68 0
LUTZ2 89 38 15 0.5 0.5 19.44 0
WEE-MAG 75 60 40.5 0.558 0.558 6.51 0
BARTHOL2 148 41 124.5 0.5 0.5 7.92 0
SCHOLL 297 41 2079 0.878 0.949 600 0.08

#OPT: 23/25 49.70 0.004

Table 2.1: Solving Prr with GUROBI for |Ṽ 1| = ⌈n
4
⌉ and |Ŵ | = 0

For the sake of illustrating the results presented in these tables, the solutions returned
for the instance JACKSON are shown in Figures 2.2 – 2.5. That instance is defined by the
precedence graph in Figure 2.1.

Table A.2 includes the results where half of production tasks are uncertain, but all
workstations are certain. Figure 2.2 shows the optimal solution obtained by GUROBI for
the presented MILP formulation. Uncertain tasks are pictured as grey rectangles. There
are tasks 2, 3, 7, 8, 9 and 10. Its length equals to the respective nominal processing time.
The optimal value of the stability radius is ρ = 0.3. By the definition, any uncertain task
may increase its processing time in (1 + ρ) times. For example, the task 3 has t3 = 5,
then after the deviation, the new time would be (1 + ρ) · t3 = 1.3 · 5 = 6.5. Figure 2.3
presents task times deviations. Here, the load time of workstations 4 and 6 hits the cycle
time, which means that any smallest perturbation bigger than ρ will lead to the process
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Figure 2.1: Precedence constraints of the instance JACKSON

interruption.
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Figure 2.2: Optimal solution for
JACKSON, |Ṽ 1| = 6 and |Ŵ | = 0.
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Figure 2.3: Deviation by the stability ra-
dius value for the solution on Figure 2.2

The group of results for similar tests but with uncertain workstations is presented
in Table A.8. Again, tasks 2, 3, 7, 8, 9 and 10 are uncertain, but also workstations 3, 5
and 6 are uncertain (see for details Appendix B). Then, all the tasks assigned to one of
them become uncertain as well. In this situation, the optimal value of the stability radius
is ρ = 0.1667. The line balance with all deviations is in Figure 2.5. Clearly, we cannot
apply any variation bigger than ρ, since the workstation 6 reaches the cycle time.
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Figure 2.4: Optimal solution for
JACKSON, |Ṽ 1| = 6 and |Ŵ | = 3.
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Figure 2.5: Deviation by the stability ra-
dius value for the solution on Figure 2.4

This observation shows how important the knowledge of the initial data and how
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solution is changing according to it. Moreover, if we compare our results with analogical
one for two classic metrics in the paper [58], then we can see the impact of the metric.
Table 2.2 presents the values of the stability radius for the instance JACKSON in all three
metrics and different values of parameters Ṽ 1 and Ŵ . The maximal total deviation keeps
the same value through all tests (value ρ1), while the maximal uniform deviation (ρ∞)
is reducing from 1.5 to 0.75 when the number of uncertain tasks and workstations are
growing up. For the proportional robustness the value also goes down, but it shows the
processing time deviation in percents from the initial value. Because of this, we provide
the column “ρrr · tmax” which represents the deviation of the longest task. In general case,
all three values are different, and it says to decision makers how they can analyse a problem
and chose a better combination of parameters according to the available knowledge.

|Ṽ 1| |Ŵ | ρ1 ρ∞ ρrr ρrr · tmax

⌈n
4
⌉ 0 1.5 1.5 0.3 2.1

⌈n
2
⌉ 0 1.5 1.25 0.3 2.1

n 0 1.5 0.75 0.167 1.167

⌈n
4
⌉ ⌈m

4
⌉ 1.5 1.5 0.3 2.1

⌈n
2
⌉ ⌈m

2
⌉ 1.5 0.75 0.167 1.167

Table 2.2: Comparison of results for JACKSON

A summary of Tables A.1–A.10 (placed in Appendix A) is given in Table 2.3.

The complexity for resolution raises together with either the number of uncertain
tasks or number of uncertain workstations. Firstly, we can see it in Tables A.1, A.2, A.3
and A.4. The number of optimal solutions in them decreases as follow: 23–18–15–14. The
average gap is also growing up from 0.004 to 0.054, 0.071 and 0.162.

Secondarily, series with uncertain stations can be compared in pairs. In Tables A.5
and A.6, the number of optimal solutions falls down from 22 to 18, and the average gap
is changing from 0.054 to 0.153. And so on for all rest the tables in Appendix A.

However, all three series with |Ṽ 1| = ⌈3n
4
⌉ (Series 3, 9 and 10 in Table 2.3) show that

the small amount of uncertain workstations may bring minor improvements to results
comparing to those one without them. We can explain this by the fact that for the
high number of uncertain tasks, the set of uncertain workstation makes in advance some
solutions comparable or even equivalent. It helps to find an optimal solution faster in some
instances, but not in general. In the end, all the results fit to the last test with every
tasks considered as uncertain which has the lowest number of instances solved optimally.
Since the increase of |Ṽ 1| and |Ŵ | means that more tasks and workstations are involved
in the objective values, it causes the increase of difficulty for a commercial solver to find
an optimal line balance.
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Series |Ṽ 1| |Ŵ | #OPT Avg. CPU Avg. GAP

1 ⌈n
4
⌉ 0 23 49.70 0.004

2 ⌈n
2
⌉ 0 18 174.49 0.054

3 ⌈3n
4
⌉ 0 15 243.95 0.071

4 n 0 14 268.17 0.162

5 ⌈n
4
⌉ ⌈m

4
⌉ 22 77.80 0.054

6 ⌈n
4
⌉ ⌈m

2
⌉ 18 185.25 0.153

7 ⌈n
2
⌉ ⌈m

4
⌉ 18 190.64 0.059

8 ⌈n
2
⌉ ⌈m

2
⌉ 16 217.61 0.093

9 ⌈3n
4
⌉ ⌈m

4
⌉ 16 225.05 0.135

10 ⌈3n
4
⌉ ⌈m

2
⌉ 15 253.94 0.138

Table 2.3: Summary results for all series

2.6 Conclusion and perspectives

The robust balancing for simple paced assembly lines without buffer stock nor parallel
workstations was considered. It consists in finding a line configuration with the greatest
stability radius subject to restricted number of workstations, fixed cycle time, precedence
constraints, and task time variability. The stability radius is evaluated in three metrics:
ℓ1, ℓ∞ and ℓrr. For each of them, the corresponding problem was proven to be strongly
NP-hard (see [58]). A MILP formulation were proposed for each problem. Numerical
results show that the used commercial solver can find an optimal solution in less than 10
minutes for half of the instances.

We analysed the influence of different parameters on the value of the stability radius.
Among them there are the number of uncertain tasks and stations, graph density and
chosen metric. The results show that the next step for future research should be concerned
about development of efficient methods for the problem resolution. Branch-and-bound and
dynamic algorithms seem more appropriate, but there are also several meta-heuristics that
can be applied. Another attractive idea is investigating a new industrial optimisation
problem that can be called as “reverse robust balancing”. This problem appears when
we seek a simple assembly line configuration whose stability radius has to be greater
than a given value enforced by a decision maker. In this situation, it is not always
possible to find such a solution and the unique possibility to get around this difficulty is
to use parallel workstations with duplicated tasks that require supplementary financial
expenses. As a consequence, the aim of the reverse robust balancing problem is to find a
line configuration with the desired value of stability radius, while minimising the number
of parallel workstations.
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We consider a transfer line balancing problem (TLBP) in which each production task
must be assigned to one element of the set of stations used for the task execution. Any
station is formed of several mechanical multi-spindle heads called blocks. Production
tasks assigned to the same block are going to be operated in parallel mode by tools
installed to the multi-spindle head. The order of blocks on the station is linear and
fixed. An objective is maximising the line robustness under the given number of stations
and cycle time constraints. We assume that during the lifespan of the transfer line, the
minor product properties as well as material types may change and, consequently, deviate
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the processing times of production tasks from initially estimated values. The stability
radius is used as an appropriate robustness measure for the line balancing with task time
deviations. We elaborate formulas of the stability radius calculation for two traditional
metrics and develop respective mixed integer linear programming (MILP) models and a
general heuristic approach for the problem resolution.

3.1 Constitution of a transfer line

Transfer lines are widely used in mechanical industry for mass production of a single
type of product or several types of product if the differences in their parameters are
negligible [28], [39]. These lines also can represent subsections (sub-conveyor) on an
assembly line, which produce production parts to be assembled [35]. Designing transfer
lines is a very complex problem due to manufacturing and design constraints and to
the large number of possible decisions. At the design stage, all the required tasks to
manufacture a product are known in advance. Since stations presented in mechanical
industry are generally automatic and semi-automatic, here and after, we are using the
word machine to picture a single device on the line. It is necessary to define the machines
and pieces of equipment (tools and spindle heads) to create the corresponding production
line. Such a line is characterised by a significant cost and a long exploitation period.
Thus, finding a good (and if possible the best) design solution is a crucial problem.

The transfer line allows reducing the number of machines and pieces of equipment
(line cost) as well as the occupied area for the considered line, assigning the tasks into
blocks. There is at least one block at each machine. All tasks of the same block are
executed simultaneously by one spindle head. Each spindle head may have several tools
which perform tasks simultaneously. As in previous chapter, we consider the case where
there are no intermediate buffers; all blocks (spindle heads) of the same machine are
executed sequentially, all the machines are linearly ordered and are activated simultane-
ously. Thus, at the preliminary design stage, it is necessary to assign each task required
to manufacture a product to one block, and each block to one machine. The assignment
of blocks to a machine defines at the same time the order of their activation on it. An
example of such a line is given in Figure 3.1.

We assume that the working time of each block is equal to the longest processing
time among all tasks of this block. The load time of any machine is equal to the sum of
block working times (for all blocks assigned to this machine).

In addition to the fact that the balancing of transfer lines is similar to the one
for assembly lines, known methods for SALB problems cannot be used directly for the
problem at hand because:

• the tasks of each block are executed simultaneously (the block time is equal to the
longest processing time and not the sum of processing times);
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Figure 3.1: Scheme of a transfer line with four machines

• the blocks are not known in advance and must be built during optimisation;

• additional constraints on compatibility of grouping operations in the blocks and at
the stations may exist (to obtain realisable design decisions).

The problem considered in the chapter is then an extension of SALB problems. And
of course, if each block can process a single task at a time, then the problem is identical
to SALBP.

Among the classic formulation, where the objective is to minimise either the number
of machines (and blocks) or cycle time, we can find exact optimisation methods ([16],
[17], [19], [20]) and heuristic procedures ([5], [18], [24]). Comparison of these methods
was presented by Guschinskaya and Dolgui in [34].

The formulations proposed in this thesis deal with robustness of transfer lines. The
number of machines and cycle time are given a priori, and we are maximising the ro-
bustness that is measured by the stability radius. In the next section, we explain how to
calculate its value for balances in two classic metrics.

3.2 Stability radius

The balancing transfer lines consists of an assignment of the set of production tasks
V = {1, . . . , n} to the set of machines W = {1, . . . ,m} such that some tasks are grouped
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into blocks for parallel execution. Any task j ∈ V is known with its nominal processing
time tj. It is considered that there exists a non-empty set of uncertain tasks Ṽ (Ṽ ⊆ V )
whose processing time may deviate from its nominal value with regard to time without
any additional information. Each other task from V \ Ṽ is named certain. By contrast
with the previous chapter, we do not consider uncertain machines, which means that all
the machines are certain. This implies that the origin of uncertainty is restricted to tasks
only, regardless of the machines that process them.

To evaluate the robustness of a feasible solution, we use the concept of stability radius
whose formal definition requires some supplementary notations, which can be found in
Table 3.1 together with detailed basic notations.

V is the set of all necessary tasks, i.e., {1, 2, . . . , n};
Ṽ is the set of uncertain tasks, where Ṽ ⊆ V ;
W is the set of all available machines, i.e., {1, 2, . . . ,m};
G is a directed acyclic graph (V,A) representing the precedence constraints,

where A is the set of arcs;
tj is a non-negative nominal processing time of task j;
t is a vector expressing the nominal processing task times, i.e., (t1, t2, . . . , tn);

F (t) is the set of all feasible solutions with respect to a given vector t;
Ξ is the set of vectors, where each of which presents possible non-negative processing

time deviations for the uncertain tasks, i.e., {ξ ∈ Rn
+ | ξj = 0, j ∈ V \ Ṽ }2;

T is the cycle time;
rmax is the maximal number of tasks, which can be assigned to one block;
bmax is the maximal number of blocks, which can be allocated into one machine;
U is the set of all available blocks, i.e., {1, 2, . . . ,mbmax};

U(p) is the set of blocks of machine p, i.e., {(p− 1) · bmax + 1, . . . , p · bmax};
Vk is the set of all tasks assigned to block k;
Ṽk is the set of all uncertain tasks assigned to block k, i.e., Vk ∩ Ṽ ;
τk is the nominal working time of block k, i.e., maxj∈Vk

tj;
Ũ(p) is the set of uncertain blocks of machine p,

where each one has at least one uncertain assigned task;
W̃ is the set of uncertain machines, where each one has at least one uncertain block.

Table 3.1: Basic notations for TLBP

According to these notations, the stability radius of a feasible solution s ∈ F (t) can
be defined as follows [see 66]:

ρ(s, t) = max{ε ≥ 0 | ∀ξ ∈ B(ε) (s ∈ F (t+ ξ))}, (3.1)

where B(ε) = {ξ ∈ Ξ | ‖ξ‖ ≤ ε}.

In other words, ρ(s, t) is determined as the value of the radius of the greatest closed
ball B(·), called stability ball, representing the deviations of the uncertain task nominal
processing times, for which s remains feasible. Any element ξ of B(·) is evaluated based
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on a given norm ‖ · ‖ defining the distance between vectors t and t+ ξ (or the amplitude
of deviations from t).

Two norms ℓ1 (‖ · ‖1) and ℓ∞ (‖ · ‖∞) are studied in details, where by definition
‖ξ‖1 =

∑
j∈Ṽ ξj and ‖ξ‖∞ = maxj∈Ṽ ξj. As a consequence, the notations ρ1(·, ·), B1(·)

and ρ∞(·, ·), B∞(·) will be used for ℓ1 and ℓ∞, respectively.

Let us give an illustrative example of the interpretation of the stability radius in
the ℓ∞- and ℓ1-norms. The following problem instance is considered: n = 7, m = 1,
Ṽ = {2, 5, 6}, t = (5, 4, 2, 3, 2.5, 2, 2.5), T = 11.5, rmax = 3. There is no precedence
constraint. A feasible assignment is shown in Figure 3.2: the total load of the machine is
less than the cycle time. Working times of blocks are τ1 = 5, τ2 = 3 and τ3 = 2.5 by the
definition.

1
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4

5

6 2

7

3

Figure 3.2: Example of assignment

The stability radius for ℓ1-metric shows the maximal total deviation of all uncertain
tasks that keeps solution admissibility. Most dangerous impact for the system would be
if such deviation concentrated on only one task. The rectangle shaped by lines in Figure
3.3 represents this amplitude that is equal to 1.5. Indeed, the deviation can be applied
to any of uncertain tasks: 2, 5 or 6 without having the machine load exceeding the cycle
time. Similarly, the stability radius for ℓ∞-metric is different and describes the maximal
deviation of any uncertain task that does not change solution feasibility. In Figure 3.4 we
increase the processing time of tasks 2 and 5 by 1.25 (two shaped rectangles). It is not
difficult to see that any processing time increase larger than 1.25 compromises the cycle
time.
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Figure 3.3: Stability radius for ℓ1-metric
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Figure 3.4: Stability radius for ℓ∞-metric

3.2.1 Save time

Before returning to the stability radius, an important parameter called save time
should be introduced. By contrast with simple assembly lines, the load time of a machine
is the sum of its blocks working times, which are formed by the longest task assigned
to the block. The example presented above shows that if the longest task is a certain
one, and the block also possesses one or several uncertain tasks, then the processing time
of an uncertain task may increase (to some extend) without changing neither its block
working time, nor the load time of its machine. The save time is introduced to account for
this situation. It is determined only for uncertain blocks and calculated as the difference
between the block working time and the processing time of its longest uncertain task, i.e.,
τk −maxj∈Ṽk

tj, k ∈ Ũ(p), p ∈ W . Consequently, the save time can be zero and non-zero,
see Figure 3.5 and Figure 3.6, respectively. Hereafter, the save time of uncertain block k
of the machine p is denoted as ∆

(p)
k and the minimal save time of the machine p ∈ W̃ as

∆
(p)
min = mink∈Ũ(p)∆

(p)
k .
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Figure 3.5: Block with uncertain
tasks having zero save time
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Figure 3.6: Block with uncertain
tasks having non-zero save time
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3.2.2 Calculation of stability radius for ℓ1-metric

Theorem 4. The stability radius ρ1 for a given feasible solution is calculated as follows

ρ1 = min
p∈W̃



T −

∑

k∈U(p)

τk +∆
(p)
min



 . (3.2)

Proof. Let us denote the right-hand side of (3.2) as ϕ1. To prove the present theorem,
one needs to show that ρ1 ≥ ϕ1 and ρ1 ≤ ϕ1.

First start with ρ1 ≥ ϕ1. Let p be an uncertain machine, exposed to stand the
processing time deviations ξ ∈ B1(ϕ1). It is not difficult to see that its perturbed load
cannot be greater than the value of the following expression

∑

k∈U(p)

τk +


∑

j∈Ṽ

ξj −∆
(p)
min



+

, (3.3)

where [x]+ = max{0, x}, x ∈ R. Moreover, taking into account the fact that ξ ∈ B1(ϕ1)

and the inequality ϕ1 ≤ T −
∑

k∈U(p) τk + ∆
(p)
min that is valid for any p ∈ W̃ due to the

definition of ϕ1, we obtain

(3.3) ≤
∑

k∈U(p)

τk +
[
ϕ1 −∆

(p)
min

]+
≤
∑

k∈U(p)

τk +


T −

∑

k∈U(p)

τk



+

= T.

The latter demonstrates that the load of the machine p does not exceed the cycle time,
whatever ξ ∈ B1(ϕ1). This proves ρ1 ≥ ϕ1.

Now, let us show that ρ1 ≤ ϕ1. To do this, it is sufficient to check that for any
δ > ϕ1 there exists a vector of processing time deviations ξ∗ ∈ B1(δ), which causes the
considered feasible solution to be unfeasible.

As above, based on the definition of ϕ1, we deduce that there exists an uncertain
machine p∗ so that ϕ1 = T −

∑
k∈U(p∗) τk + ∆

(p∗)
min . Let k∗ be an uncertain block of this

machine having the least save time, i.e., ∆(p∗)
k∗ = ∆

(p∗)
min , and let j∗ be a longest uncertain

task of this block, i.e., tj∗ = maxj∈Ṽk∗
tj. Then, setting ξ∗ ∈ B1(δ), where ξ∗j = δ, if j = j∗

and 0 otherwise, we notice that the perturbed load of the machine p∗ violates the cycle
time constraint, since

∑

k∈U(p∗)

τk +
[
δ −∆

(p∗)
min

]+
>

∑

k∈U(p∗)

τk +
[
ϕ1 −∆

(p∗)
min

]+
=

∑

k∈U(p∗)

τk +


T −

∑

k∈U(p∗)

τk




+

= T

that proves ρ1 ≤ ϕ1.
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In the case of rmax = 1, the configuration of the transfer line is transformed into that
of the simple assembly line, since at most one task can be allocated to block. Hence, the
save time of all uncertain blocks becomes equal to zero, i.e., ∆(p)

k = 0, k ∈ Ũ(p), p ∈ W̃ .
As a consequence, Theorem 4 directly yields

Corollary 1 ([58]). The stability radius ρ1 for a given configuration of simple assembly

line is calculated as min
p∈W̃

{
T −

∑
k∈U(p) τk

}
.

3.2.3 Calculation of stability radius for ℓ∞-metric

For any uncertain machine p, let us introduce the following function, which is useful
for further statements:

θ(p, q) =
T −

∑
k∈U(p) τk +

∑q

i=1 ∆
(p)
πi

q
, (3.4)

where ∆
(p)
π1 ≤ ∆

(p)
π2 ≤ . . . ≤ ∆

(p)
π
|Ũ(p)|

is the non-decreasing order of the save time for all

uncertain blocks of the machine p ∈ W̃ and q = 1, . . . , |Ũ(p)|. The following evident
expression is valid for any p and q ∈ {1, . . . , |Ũ(p)| − 1}:

∆(p)
πq+1

= (q + 1) · θ(p, q + 1)− q · θ(p, q). (3.5)

Lemma 1. Let p be a given uncertain machine having |Ũ(p)| ≥ 3 and let there be q⋆ ∈

{1, . . . , |Ũ(p)| − 1} such that θ(p, q⋆ + 1) ≥ θ(p, q⋆), then

θ(p, q⋆ + α + 1) ≥ θ(p, q⋆ + α) (3.6)

holds for any α ∈ {0, . . . , |Ũ(p)| − q⋆ − 1}.

Proof. This lemma is proven by recurrence on α. First, it can immediately be checked
that if there exists q⋆ ∈ {1, . . . , |Ũ(p)| − 1} such that θ(p, q⋆ + 1) ≥ θ(p, q⋆), then (3.6) is
satisfied for α = 0. Now, assume that (3.6) holds up to some integer α ≤ |Ũ(p)− q⋆ − 2|,
and prove that it also holds up to α+1. To do this, let us develop inequality (3.6). Based
on expression (3.5), we obtain

θ(p, q⋆ + α + 1)− θ(p, q⋆ + α) =
∆

(p)
πq⋆+α+1 − θ(p, q⋆ + α)

q⋆ + α + 1
.

Since the latter expression is non-negative due to (3.6), then we have ∆
(p)
πq⋆+α+1 ≥ θ(p, q⋆+

α). Multiplying it by (q⋆+α) and then adding ∆
(p)
πq⋆+α+1 , yields ∆(p)

πq⋆+α+1 ≥ θ(p, q⋆+α+1).

By definition of the permutation π, we have ∆
(p)
πq⋆+α+2 ≥ ∆

(p)
πq⋆+α+1 , and, as a consequence,

we deduce that
∆(p)

πq⋆+α+2
≥ θ(p, q⋆ + α + 1). (3.7)
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Now, let us show that θ(p, q⋆+α+2) ≥ θ(p, q⋆+α+1). By analogy with the previous
development, we have

θ(p, q⋆ + α + 2)− θ(p, q⋆ + α + 1) =
∆

(p)
πq⋆+α+2 − θ(p, q⋆ + α + 1)

q⋆ + α + 2
,

which is non-negative due to (3.7). This proves Lemma 1.

Lemma 2. Let q
(p)
min denote an index on which the function θ(p, q) reaches its minimum

for a given uncertain machine p, then ∆
(p)
π
q
(p)
min

≤ θ(p, q
(p)
min) and additionally θ(p, q

(p)
min) ≤

∆
(p)
π
q
(p)
min

+1
, if q

(p)
min < |Ũ(p)|.

Proof. First we prove that ∆
(p)
π
q
(p)
min

≤ θ(p, q
(p)
min), which is evident if q(p)min = 1. Let q

(p)
min ≥ 2.

From the definition of q(p)min, we deduce that θ(p, q
(p)
min) ≤ θ(p, q

(p)
min − 1). Then, using the

latter inequality and representation (3.5), we obtain

∆(p)
π
q
(p)
min

= q
(p)
min · θ(p, q

(p)
min)− (q

(p)
min − 1) · θ(p, q(p)min − 1) ≤

q
(p)
min · θ(p, q

(p)
min)− (q

(p)
min − 1) · θ(p, q(p)min) = θ(p, q

(p)
min).

Now, we prove that θ(p, q
(p)
min) ≤ ∆

(p)
π
q
(p)
min

+1
, if q(p)min < |Ũ(p)|. As above, the definition

of q(p)min implies that θ(p, q
(p)
min) ≤ θ(p, q

(p)
min + 1), which yields the following

∆(p)
π
q
(p)
min

+1

= (q
(p)
min + 1) · θ(p, q(p)min + 1)− q

(p)
min · θ(p, q

(p)
min) ≥

(q
(p)
min + 1) · θ(p, q(p)min)− q

(p)
min · θ(p, q

(p)
min) = θ(p, q

(p)
min).

Lemma 3. Any uncertain machine p supports each processing time deviation from B∞(θ(p, q
(p)
min)).

Proof. Let p be an uncertain machine of some feasible solution, exposed to stand the
processing time deviations from B∞(θ(p, q

(p)
min)). It is not difficult to see that its perturbed

load can not be greater than the value of the following expression
∑

k∈U(p)

τk +
∑

l∈Ũ(p)

[
θ(p, q

(p)
min)−∆

(p)
l

]+
, (3.8)

where [x]+ = max{0, x}, x ∈ R. Then, based on Lemma 2 and the definition of the
function θ(p, q), we obtain

(3.8) =
∑

k∈U(p)

τk +

q
(p)
min∑

j=1

(
θ(p, q

(p)
min)−∆(p)

πj

)
=
∑

k∈U(p)

τk + q
(p)
min · θ(p, q

(p)
min)−

q
(p)
min∑

j=1

∆(p)
πj

= T

that holds according to the introduction 3.4 of θ(p, q) and proves the present lemma.
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Figure 3.7 shows an illustrative example of a machine with five blocks which have been
sorted in non-decreasing order of the save time: ∆

(p)
1 ≤ ∆

(p)
2 ≤ ∆

(p)
3 ≤ ∆

(p)
4 ≤ ∆

(p)
5 . The

cycle time is 21 and the total load of the machines is 19. Using the formula we calculate
the value of θ (see Table 3.2). Here, q(p)min = 3 and the minimal value of the function θ(p, q)

is 1.67. Figure 3.8 shows changing of the machines load within the deviation ∆
(p)
3 . It is

not difficult to see, that the only available space for further deviations is 0.5 which should
be divided between first three blocks, i.e., the stability radius for this configuration is
equal to θ(p, q

(p)
min) = 1.67.

q 1 2 3 4 5
∆p

q 0.5 1.0 1.5 2.0 2.0
θ(p, q) 2.5 1.75 1.67 1.75 1.8

Table 3.2: Value of θ. Example from the Figure 3.7

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

Figure 3.7: A machine with ordered uncertain blocks

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

Figure 3.8: Example for ℓ∞-metric: deviation ∆
(p)
3 = 1.5

Theorem 5. The stability radius ρ∞ for a given feasible solution is calculated as follows

ρ∞ = min
p∈W̃

min
q=1,...,|Ũ(p)|

θ(p, q). (3.9)

Proof. Let us denote the right-hand side of (3.9) as ϕ∞. To prove the present theorem,
one needs to show that ρ∞ ≥ ϕ∞ and ρ∞ ≤ ϕ∞. The inequality ρ∞ ≥ ϕ∞ is a direct
consequence of Lemma 3.

Now, let us show that ρ∞ ≤ ϕ∞. To do this, it is sufficient to check that for any
δ > ϕ∞ there exists a vector of processing time deviations ξ∗ ∈ B∞(δ), which causes the
considered feasible solution to be unfeasible.

As above, based on the definition of ϕ∞, we deduce that there exists an uncertain
machine p∗ and an index q∗ such that q∗ · ϕ∞ = T −

∑
k∈U(p∗) τk +

∑q∗

i=1 ∆
(p∗)
πi . Then,
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setting ξ∗ ∈ B∞(δ), where ξ∗j = δ, for any j ∈ Ṽk, k ∈ Ũ(p∗), we notice that the perturbed
load of the machine p∗ violates the cycle time constraint, since

∑

k∈U(p∗)

τk+

|Ũ(p∗)|∑

i=1

[
δ −∆(p∗)

πi

]+
≥

∑

k∈U(p∗)

τk+

q∗∑

i=1

[
δ −∆(p∗)

πi

]+
≥

∑

k∈U(p∗)

τk+

[
q∗∑

i=1

(
δ −∆(p∗)

πi

)
]+

>

∑

k∈U(p∗)

τk +

[
q∗∑

i=1

(
ϕ∞ −∆(p∗)

πi

)
]+

=
∑

k∈U(p∗)

τk +

[
q∗ · ϕ∞ −

q∗∑

i=1

∆(p∗)
πi

]+
=

∑

k∈U(p∗)

τk +


T −

∑

k∈U(p∗)

τk




+

= T

that proves ρ∞ ≤ ϕ∞.

Based on the same arguments developed above for rmax = 1 and the ℓ1-norm case,
Theorem 5 implies

Corollary 2 ([66]). The stability radius ρ∞ for a given configuration of simple assembly

line is calculated as min
p∈W̃

T−
∑

k∈U(p) τk

|Ũ(p)|
.

3.3 MILP formulations

3.3.1 Complexity

The studied problem P is strongly NP-hard. Indeed, it is sufficient to consider an
instance of P , where the maximal number of tasks per block is limited by 1, i.e., rmax = 1.
Then, P reduces to the same problem as the one investigated in [58], which is proven to
be NP-hard in the strong sense.

Below, we present two MILP formulations: one for P1 and another one for P∞. For

both formulations the value of bmax is fixed to max
{
k
∣∣ ∑k

i=1 tπi
≤ T

}
, where (π1, π2, . . . , πn)

is a permutation of V with respect to the non-decreasing order of their processing times.
It is easy to see, that the latter expression can be computed in O(n log n) time.

3.3.2 MILP formulation for P1

P1 is formulated as a mixed integer linear program on the following decision variables:
ρ1 is the stability radius value to maximise; xj,k is a binary variable that is set to one if
and only if the task j is allocated to the block k; yk is equal to 1 if the block k is not empty
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and 0, otherwise; τk ≥ 0 determines the working time of the block k; ∆(p)
min ≥ 0 represents

the minimal value of the save time among all the blocks allocated to machine p; ap is a
non-negative variable that is positive if machine p processes at least one assigned uncertain
task; zk is set to 1 if an uncertain task is allocated to the block k and 0, otherwise. The
central idea of the MILP formulation for P1 consists in maximising ρ1, the minimum idle
time over all the machines that process uncertain tasks (see Theorem 4).

Maximise ρ1∑

k∈U

xj,k = 1 ∀j ∈ V (3.10)

∑

j∈V

xj,k ≤ rmax ∀k ∈ U (3.11)

xj,k ≤ yk ∀k ∈ U, ∀j ∈ V (3.12)

yk ≤
∑

j∈V

xj,k ∀k ∈ U (3.13)

yk+1 ≤ yk ∀p ∈ W, ∀k ∈ U(p) \ {pbmax} (3.14)

tj · xj,k ≤ τk ∀k ∈ U, ∀j ∈ V (3.15)

∆
(p)
min ≤ T · (2− yk − zk) + τk − tj · xj,k ∀p ∈ W, ∀k ∈ U(p), ∀j ∈ Ṽ (3.16)

xj,k ≤ zk ∀k ∈ U, ∀j ∈ Ṽ (3.17)∑

k∈U(p)

τk ≤ T ∀p ∈ W (3.18)

|U |−1∑

q=k

xi,q ≤

|U |∑

q=k+1

xj,q ∀(i, j) ∈ A, ∀k ∈ U \ {mbmax} (3.19)

xj,k ≤ ap ∀p ∈ W, ∀k ∈ U(p), ∀j ∈ Ṽ (3.20)

ρ1 ≤ T · (2− ap)−
∑

k∈U(p)

τk +∆
(p)
min ∀p ∈ W (3.21)

ρ1 ≥ 0

∆
(p)
min ≥ 0, ap ≥ 0 ∀p ∈ W

τk ≥ 0 ∀k ∈ U

xj,k ∈ {0, 1} ∀j ∈ V, ∀k ∈ U

zk ∈ {0, 1} ∀k ∈ U

yk ∈ {0, 1} ∀k ∈ U

Constraints (3.10) ensure that each task is allocated to exactly one block. Inequalities
(3.11) show that each block contains at most rmax tasks. Any block having at least
one assigned task is not empty, otherwise it is empty, as enforced by (3.12) and (3.13).
Constraints (3.14) ensures that block k + 1 has to be empty if block k is empty. The
working time of a block cannot be less than the processing time of any task allocated to
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it, as provided by (3.15). Constraints (3.16) express the definition of ∆(p)
min. Inequalities

(3.17) ensure that the block k is uncertain if there is at least one uncertain task assigned
to it, and is certain otherwise. As for constraints (3.18), they state that the load of any
machine does not exceed the cycle time. The precedence constraints are expressed by
inequalities (3.19). Constraints (3.20) – (3.21) describe the result obtained in Theorem 4.
Indeed, it is easy to see that (3.20) – (3.21) implies that ap ∈ {0, 1}. As a consequence,
if machine p has no uncertain task, then ap = 0 and (3.18) together with (3.21) yields
ρ1 ≤ T , which is always valid. Otherwise, when ap = 1, (3.21) is a corollary of (3.2).

3.3.3 MILP formulation for P∞

P∞ is formulated as a mixed integer linear program on the following decision variables:
ρ∞ is the stability radius value to maximise; xj,k is a binary variable that is set to one if
and only if the task j is allocated to the block k; yk is equal to 1 if the block k is not empty
and 0, otherwise; ξj,k is a deviation time of the task j on the block k; τk ≥ 0 determines
the time of the block k including deviations. The main idea of the MILP formulation
for P∞ is that the processing time of all uncertain tasks can be increased by ρ∞ without
compromising feasibility in any optimal solution.
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Maximise ρ∞∑

k∈U

xj,k = 1 ∀j ∈ V (3.22)

∑

j∈V

xj,k ≤ rmax ∀k ∈ U (3.23)

xj,k ≤ yk ∀k ∈ U, ∀j ∈ V (3.24)

yk ≤
∑

j∈V

xj,k ∀k ∈ U (3.25)

yk+1 ≤ yk ∀p ∈ W, ∀k ∈ U(p) \ {pbmax} (3.26)

ξj,k ≤ T · xj,k ∀k ∈ U, ∀j ∈ Ṽ (3.27)

tj · xj,k + ξj,k ≤ τk ∀k ∈ U, ∀j ∈ Ṽ (3.28)

tj · xj,k ≤ τk ∀k ∈ U, ∀j ∈ V \ Ṽ (3.29)

ρ∞ =
∑

k∈U

ξj,k ∀j ∈ Ṽ (3.30)

∑

k∈U(p)

τk ≤ T ∀p ∈ W (3.31)

|U |−1∑

q=k

xi,q ≤

|U |∑

q=k+1

xj,q ∀(i, j) ∈ A, ∀k ∈ U \ {mbmax} (3.32)

ρ∞ ≥ 0

ξj,k ≥ 0 ∀j ∈ V, ∀k ∈ U

xj,k ∈ {0, 1} ∀j ∈ V, ∀k ∈ U

yk ∈ {0, 1} ∀k ∈ U

Constrains (3.22) – (3.26) and (3.31) – (3.32) are respectively equivalent to constraints
(3.10), – (3.14), (3.18) and (3.19) from the MILP formulation for P1. The value of
the variables ξj,k ≥ 0 is determined in (3.27) – (3.29). Inequality (3.27) says that any
deviation of an uncertain task assigned to the block k cannot be greater than the cycle
time. These deviations may lead to increase the working time of the block as shown in
(3.28). Constraints (3.29) do not involve any ξj,k variables since they model the working
time of blocks based on certain tasks only. Constraints (3.30) enforce all uncertain tasks
have the same deviation time, which defines ρ∞, the problem objective.
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3.4 Pre-processing

3.4.1 Assignment intervals and empty blocks

First, an algorithm seeking a lower bound on the number of blocks necessary for
assigning a given set of tasks is proposed. It not only uses the ratio between the cardinality
of this set and rmax, but it also takes the cycle time into account. More precisely, it first
forms the blocks of the input set of tasks so as the sum of the working time of the obtained
blocks is minimised. Second, it finds a lower bound on the number of machines necessary
to allocate all these blocks. Thus, the seeking number of blocks is equal to the index of the
first block of the last needful machine. This algorithm is formally presented below, where
D is considered as a given set of tasks, which could be V itself or some of its subsets.

Algorithm α(D).

1. Let (σ1, σ2, . . . , σ|D|) be a permutation of D with respect to the non-increasing
order of their processing times.

2. Form ω =
⌈

|D|
rmax

⌉
blocks B1, B2, . . . , Bω, where each of which has at exactly rmax

tasks except possibly the last one, such that the task σj is in the block B⌈ j

rmax
⌉,

j ∈ D. This permits, inter alia, to determine the working time of each obtained
block: τk = maxi∈Bk

ti, k = 1, 2, . . . , ω.

3. The lower bound on the number of machines able to allocate all the obtained

blocks is equal to λ = 1
T
·

ω∑
k=1

τk. From this, the returned lower bound on the

number of blocks equals bmax · ⌈λ− 1⌉+ 1.

Because of Step 1, Algorithm α(D) can be implemented to run in O(|D| log |D|) time.

It is recalled that when building a feasible assignment of all given tasks to blocks and
blocks to machines, precedence constraints have to be satisfied. Thus, for example, for
each task j ∈ V , the set of all its predecessors, denoted as P (j), has to be assigned before
j. In the same manner, the set of all successors of j, denoted by S(j), has to be assigned
after j. Thus, for any task j, we introduce the interval Qj = [lj , uj ], where lj (resp. uj) is
the lowest (resp. uppermost) index of the block able to accommodate the task j. For the
efficient solving of our problem, these intervals should be as tight as possible. In order to
reach this goal, we provide below five different rules for reducing Qj.

Reduction rules.
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• Rule 1 is based on the knowledge of the quantity of all predecessors and all

successors for a given task in the precedence graph: l
(1)
j =

⌈
|P (j)|
rmax

⌉
+ 1 and

u
(1)
j = mbmax + 1−

(⌈
|S(j)|
rmax

⌉
+ 1
)

for any j ∈ V .

• Rule 2 consists in applying Algorithm α(·) on the sets of predecessors and suc-
cessors of each task: l(2)j = α(P (j))+ 1 and u

(2)
j = mbmax +1− (α(S(j))+ 1) for

any j ∈ V . Here, α(·) is the result of application of Algorithm α(·) on a given
set of tasks.

• Rule 3 is similar to Rule 2, but the input set of tasks for Algorithm α(·) includes
also the task j itself: l(3)j = α(P (j)∪{j}) and u

(3)
j = mbmax +1−α(S(j)∪{j}).

• Rule 4 analyses the assignment intervals of all direct predecessors and successors
for all tasks as follows: l

(4)
j = max

(i,j)∈A
li + 1 and u

(4)
j = min

(j,i)∈A
ui − 1 for any j ∈ V .

• Rule 5 takes also (with respect to Rule 4) into account the cardinality of the sets
of direct predecessors P ∗(j) and direct successors S∗(j) of j: l

(5)
j = min

(i,j)∈A
li +

⌈
|P ∗(j)|
rmax

⌉
and u

(5)
j = max

(j,i)∈A
ui −

⌈
|S∗(j)|
rmax

⌉
.

The reduced assignment intervals serve at detecting a set of unused (or a priori empty)
blocks, and then to take advantage of this piece of information in order to reduce even
further these intervals. Algorithm β(p) presents a procedure of seeking unused blocks for
a given machine p ∈ W .

Algorithm β(p).

1. Compute the set V (p) = {j ∈ V | Qj ∩ U(p) 6= ∅} of assignable tasks to
machine p.

2. Based on V (p), determine the maximal number of blocks b(p)max for the machine p

by determining max
{
k
∣∣ ∑k

i=1 tπi
≤ T

}
, where (π1, π2, . . . , π|V (p)|) is a permu-

tation of V (p) with respect to the non-decreasing order of their processing times.
Thus, the set Û(p) = {(p − 1)bmax + 1 + b

(p)
max, . . . , pbmax} of unused (or a priori

empty) blocks is introduced for the machine p.

3. For each task j ∈ V (p), update its interval Qj as follows. If lj ∈ Û(p), then set
lj = pbmax + 1. If uj ∈ Û(p), then set uj = (p− 1)bmax + b

(p)
max.
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It is not difficult to see that the running time of Algorithm β(·) is not greater than
O(n log n), because of Step 2.

The whole process of finding unused blocks and reducing assignment intervals can
be summarised in the following approach, where all the tasks assignment intervals are
initialised to [1,mbmax].

Approach Reduction.

1. For each task j ∈ V , compute Q
(1)
j , Q(2)

j and Q
(3)
j by applying respectively Rules

1, 2 and 3. Update the intervals Qj as follows : lj = max{lj , l
(1)
j , l

(2)
j , l

(3)
j } and

uj = min{uj, u
(1)
j , u

(2)
j , u

(3)
j }.

2. For each task j ∈ V , compute Q
(4)
j and Q

(5)
j by applying respectively Rules 4

and 5. Update the intervals Qj as follows : lj = max{lj, l
(4)
j , l

(5)
j } and uj =

min{uj, u
(4)
j , u

(5)
j }.

3. For each machine p ∈ W , apply Algorithm β(p) and update the intervals Qj

with respect to the constructed sets Û(p) of unused blocks.

4. If there exists a task j ∈ V such that Qj was reduced on Steps 2 or 3, then go
to Step 2. Otherwise stop.

Example of calculation

Given n = 11 production tasks which have to be assigned to m = 4 machines with re-
spect to the cycle time T = 6. Any block is able to execute up to rmax = 2 tasks in parallel
mode. Nominal processing times are presented by the vector t = (3, 4, 3, 5, 4, 2, 2, 4, 3, 1, 3).
Figure 3.9 portrays the precedence order.

It is not difficult to see that the maximal number of blocks per machine bmax equals
to 3, since 1+2+2 < T < 1+2+2+3. Thus, the set U = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}
includes all available blocks. The result of computing assignment intervals Qj for each
task j ∈ V is shown in Table 3.3. Below, we describe in details the approach Reduction

for the next three tasks: 5, 6 and 7.

Initially, all assignment intervals are installed as [1, 12]. During the first step, we
calculate new borders using Rules 1, 2 and 3.

Task 5. Rule 1 requires to use the quantity of all predecessors and all successors and
to estimate the number of blocks that they can occupy. It is easy to see that P (5) = {1, 2}
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1

t1 = 3

2

t2 = 4

3

t3 = 3

4

t4 = 5

5

t5 = 4

6

t6 = 2

7

t7 = 2

8

t8 = 4

9

t9 = 3

10

t10 = 1

11

t11 = 3

Figure 3.9: Example. Precedence constraints

and S(5) = {9, 11}. Then,
⌈
|P (5)|
rmax

⌉
=
⌈
|S(5)|
rmax

⌉
= 1, and we obtain first borders l

(1)
5 = 2

and u
(1)
5 = 11. Rule 2 applies Algorithm α(·) for {1, 2} and {9, 11}, separately. From

Steps 1 and 2 of this algorithm, the set of tasks {1, 2} forms 1 block with τ = 4. From
Step 3, we got that the minimal number of blocks needed to allocate all predecessors of
the task 5 is equal to 1, i.e., l(2)5 = 2. Similarly, the set of all successors {9, 11} gives
one block with its working time as 4. The result of algorithm α(·) is 1, and u

(2)
5 = 11.

Rule 3 enriches the input sets by the task 5 itself. Thus, we apply algorithm α(·) to
the set {1, 2, 5} and receive 2 blocks such that B1 = {2, 5} and B2 = {1} with τ1 = 4
and τ2 = 3, since t2 = 4 ≥ t5 = 4 ≥ t1 = 3. Taking into account that τ1+τ2

T
= 7

6
is

not integer and following Step 3, the minimal number of blocks needed to allocate the
tasks {1, 2, 5} is equal to bmax ·

⌊
τ1+τ2

T

⌋
+ 1 = 4. Same time the set of tasks {5, 9, 11}

forms 2 blocks such that B1 = {5, 9} and B2 = {11} with τ1 = 4 and τ2 = 3, since
t5 = 4 ≥ t9 = 3 ≥ t11 = 3. This means that α({5, 9, 11}) is also 4. Consequently,
l5 = max{2, 2, 4} = 4 and u5 = min{11, 11, 9} = 9.

Task 6. As above, P (6) = {1, 3} and S(6) = {9, 11}. Then,
⌈
|P (6)|
rmax

⌉
=
⌈
|S(6)|
rmax

⌉
= 1,

and Rule 1 brings l
(1)
6 = 2, u(1)

6 = 11. By applying Algorithm α(·) for {1, 3} and {9, 11},
separately, we again have the result as 1 block for all predecessors (successors, resp.):
l
(2)
6 = 2 and u

(2)
6 = 11, according to Rule 2. For the third element we calculate α({1, 3, 6}).

Thus, we form 2 blocks B1 = {1, 3} and B2 = {6} with τ1 = 3 and τ2 = 2. As τ1+τ2
T

= 5
6

is not integer, the minimal number of blocks needed to allocate the tasks {1, 3, 6} is
equal to bmax ·

⌊
τ1+τ2

T

⌋
+ 1 = 1. In the same way, the set of tasks {6, 9, 11} forms the

blocks B1 = {9, 11} and B2 = {6}, where τ1 = 3, τ2 = 2. The value τ1+τ2
T

= 5
6

again
is not integer. This means that α({6, 9, 11}) is bmax ·

⌊
τ1+τ2

T

⌋
+ 1 = 1. Rule 3 gives us

l
(3)
6 = 1 and u

(3)
6 = 12 Hence, the final borders for the task 6: l6 = max{2, 2, 1} = 2 and
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u6 = min{11, 11, 12} = 11.

Task 7. For this task, P (7) = {1, 3, 4}, S(7) = {10, 11}, and, as a consequence,

l
(1)
7 =

⌈
|P (7)|
rmax

⌉
+ 1 = 3, u

(1)
7 = 13 −

⌈
|S(7)|
rmax

⌉
− 1 = 11. Next, {1, 3, 4} forms 2 blocks

B1 = {1, 4} and B2 = {3} with τ1 = 5 and τ2 = 3. Because τ1+τ2
T

= 8
6

is not integer, then

l
(2)
7 = α({1, 3, 4}) + 1 = 5. Successors of the task 7 require only one block, because they
are only two, i.e., u(2)

7 = 11. It is not difficult to see that l(3)7 = α({1, 3, 4, 7}) equals to 4.
The set of tasks {7, 10, 11} generates 2 blocks B1 = {7, 11} and B2 = {10}, where τ1 = 3

and τ2 = 1. The value τ1+τ2
T

= 4
6

is not integer, that implies u(3)
7 = 13−α({7, 10, 11}) = 12.

Finally, the task 7 has borders l7 = max{3, 5, 4} = 5 and u7 = min{11, 11, 12} = 11.

Table 3.3 shows intervals for all tasks obtained during the first step of the approach
Reduction. These values are used for dynamic improvements on the next steps.

j 1 2 3 4 5 6 7 8 9 10 11
lj 1 2 2 2 4 2 5 4 5 5 8
uj 5 8 8 9 9 11 11 11 11 11 12

Table 3.3: Intervals Qj for Example 2

Task 5. Rules 4 and 5 deal with direct predecessors P ∗(5) = {2} and successors
S∗(5) = {9} of the task. The cardinality for both sets is 1, the borders of the intervals
are identical and can be easily calculated as follows: l

(4,5)
5 = l2 + 1 = 3 and u

(4,5)
5 =

u9 − 1 = 10. All five rules set up the assignment interval l5 = max{l5, l
(4)
5 , l

(5)
5 } = 4 and

u5 = min{u5, u
(4)
5 , u

(5)
5 } = 9.

Task 6. This task also has only one predecessor and one successor, and the calculation
on Step 2 is identical to the task 5. However, the current value l6 matches l3 (the left
border of its predecessor) as well as u6 matches u9 (the right border of its successor).
Because of this, dynamic rules are going to improve the assignment interval of the task
6: l6 = l3 + 1 = 3, u6 = u9 − 1 = 10.

Task 7. Two direct predecessors form different manners of calculation, but the same

results for Rules 4 and 5: l
(4)
7 = max{l3, l4} + 1 = 3 and l

(5)
7 = min{l3, l4} +

⌈
|P ∗(7)|
rmax

⌉
=

2 + 1 = 3. Again, there is only one successor which eventually improves the right border
u
(4,5)
7 = u10 − 1 = 10. The final assignment interval has limits l7 = max{l7, l

(4)
7 , l

(5)
7 } = 5

and u7 = min{u7, u
(4)
7 , u

(5)
7 } = 10.

Intervals for all production tasks after on this stage are given in Table 3.4. Algorithm
β(p) is then applied for each machine p ∈ W to construct the sets Û(p) of unused blocks.

Machine 1. It has three blocks with indexes 1, 2 and 3. Using Table 3.4, we can
determine the tasks that can be allocated to any of these blocks. There are tasks 1, 2, 3,
4 and 6. Their processing times: 3, 4, 3, 5 and 2, respectively, or 2, 3, 3, 4 and 5, once
sorted by non-decreasing order. Then, b(1)max = 2 since 2 + 3 < T < 2 + 3 + 3, i.e., in any
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j 1 2 3 4 5 6 7 8 9 10 11
lj 1 2 2 2 4 3 5 4 5 6 8
uj 5 8 8 9 9 10 10 11 11 11 12

Table 3.4: Intervals Qj for Example 2 with dynamic improvements

feasible line balance machine 1 has no more than 2 open blocks. The set of unused blocks
is Û(1) = {3}.

Machine 2. As above, the blocks of this machines have indexes 4, 5, and 6. They
are present in all assignment intervals, except for the task 11. Sorted processing times
(1, 2, 2, 3, 3, 3, 4, 4, 4, 5) lead to b

(2)
max = 3 that is equal to bmax, i.e., there is no unused block

on the machine 2, so Û(2) = ∅.

Machine 3. As for machine 2, almost all tasks can be assigned to its blocks. Thus,
Û(3) = ∅.

Machine 4. The set of assignable tasks includes the following tasks: {6, 7, 8, 9, 10, 11}.
Unfortunately, they do not exclude any block from the machine.

The only unused block 3 affects the assignment interval of the tasks 6, which is now
[4, 10]. The approach Reduction requires to get back to Step 2 and to repeat calcula-
tions, but it could be noticed that there is no possible changes for any task. Consequently,
sets of unused blocks remain the same, and the approach is stopping.

3.4.2 Heuristics

Based on the ideas presented in [32], in this sub-section, we describe a general heuris-
tic methodology applicable for both problems P1 and P∞. Then, its multi-start version
is provided as well. Assignment intervals found in previous sub-section are used by this
heuristic to provide a better solution, which can be introduced for respective MILP models
as an initial one.

The heuristic aims to construct a feasible solution having the stability radius greater
than a given value ρ. Its main principle is to assign as many tasks as possible to the
current block of the current machine. At the beginning, a partially constructed solution
contains only one machine having one empty block. The heuristic assigns tasks to this
block until no task can be added because of the existing constraints. Then, a new empty
block (or a new machine with one empty block) is opened and becomes current. This
continues until all tasks are assigned and a feasible solution is obtained or there is no
possibility to construct a feasible solution.

The heuristic uses the so-called candidate list CL(k, p), which contains all tasks
assignable to the current block k of the current machine p. This list is built in the
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following way: the set of unassigned tasks is analysed and task j is added to CL(k, p) if
all following conditions are satisfied:

1. j has no predecessors or all predecessors of j are already assigned,

2. assigning of j does not violate the cycle time constraint,

3. assigning of j does not exceed the maximal number of tasks per block rmax,

4. assigning of j assures that the partially constructed solution has the stability radius
greater than ρ,

The formal description of the heuristic as well as the usage of the candidate list is
presented below.

Heuristic H1(ρ).

1. Mark all tasks as unassigned and open the first machine having one empty block,
i.e., set k = 1 and p = 1.

2. If there exists at least one unassigned task, then construct a candidate list
CL(k, p) for the block k of the machine p. Otherwise, go to Step 6.

3. If CL(k, p) = ∅ and k < bmax, then open a new empty block on the current
machine, i.e., set k = k + 1, and go to Step 2. If CL(k, p) = ∅, k = bmax and
p < m, then open a new machine having one empty block, i.e., set p = p + 1
and k = 1, and go to Step 2. If CL(k, p) = ∅, k = bmax and p = m, then go to
Step 5.

4. If CL(k, p) is not empty, then choose randomly one task from CL(k, p), assigned
it to the current block k and go to Step 2.

5. Stop, a feasible solution is not found.

6. Stop, a feasible solution is found.

In order to diversify the search strategy, a second heuristic method, denoted by
H2(ρ), is also devised. Its unique difference from the first one, denoted by H1(ρ), consists
in analysing the precedence graph (and, as a consequence, composing the list CL(k, p))
in the opposite manner, i.e., H2(ρ) constructs feasible solutions starting from the last
machine and not from the first one.

According to the definition, assignment intervals determine all blocks able to ac-
commodate respective tasks. We can conclude that this information can be used under

63



Chapter 3. Robust Balancing of Transfer Lines

construction of the candidate lists for the heuristic. Thus, a new optional condition have
to be introduced:

5. global index of the block k, i.e. (p− 1)bmax + k, belongs to the current interval Qj.

That leads us to two search strategies, heuristic methods, noted as H3(ρ) and H4(ρ),
respectively. They are similar to the previous heuristics except for the additional require-
ment used when building the candidate list.

A multi-start heuristic M(ρ) can naturally be built upon H(ρ) (and extended to
H2(ρ), H3(ρ) and H4(ρ)). Each attempt of H(ρ) consists in trying to construct a new
feasible solution, whose stability radius is greater than the best one found so far. The
number of attempts without improvement is limited by mslimit. The formal description
of such version is presented below. The entire procedure includes four consecutive launch
of M(ρ) by one for each strategy.

Multi-start heuristic M(ρ).

1. Set k = 0.

2. Apply Heuristic H(ρ) for a chosen strategy. If a new feasible solution with the
stability radius ρ∗ > ρ is found, then memorise this solution and set ρ = ρ∗,
k = 0 and repeat Step 2. Otherwise, set k = k + 1.

3. If k < mslimit, then go to Step 2. Otherwise, stop and return the best found
feasible solution.

3.4.3 Global pre-processing approach

Based on the heuristic strategies and reduction rules, this sub-section provides a
global approach of enhancements for both MILP formulations, P1 and P∞. One of the
main ideas of this approach can be found in the following statements.

Statement 2. Let (s0, ρ0) be the pair made of a feasible solution and its stability radius
of for the problem instance I of P1. Then, s0 is also a feasible solution for the problem
instance I ′, which is obtained from I by increasing the processing time of exactly one
uncertain tasks by ρ0. Moreover, all assignment intervals and unused blocks of I ′ are also
valid for I.

Statement 3. Let (s0, ρ0) be the pair made of a feasible solution and its stability radius
of for the problem instance I of P∞. Then, s0 is also a feasible solution for the problem
instance I ′, which is obtained from I by increasing the processing time of all uncertain
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tasks by ρ0. Moreover, all assignment intervals and unused blocks of I ′ are also valid for
I.

In other words, Statements 2 and 3 indicate that analysing I ′ may provide tighter
assignment intervals for I. The analysis requires taking into account |Ṽ | instances for P1,
and a single one for P∞. This difference between the two problems is shown below in the
following global pre-processing approach.

Pre-processing for P1.

1. Let (s, ρ) (resp. (s∗, ρ∗)) be respectively the best feasible solution and its stability
radius value after applying the multi-start heuristic M(−1) (resp. M(ρ)) for
any strategy.

2. For each uncertain task j ∈ Ṽ , produce the following instructions:

6.1. Set tj = tj + ρ∗.

6.2. Apply Approach Reduction to construct the sets of unused blocks Û(p),
p ∈ W , and reduce intervals Qj, j ∈ V .

6.3. Set tj = tj − ρ∗.

3. Consider s∗ as a starting feasible solution for the corresponding MILP formula-
tion and add the following optimality-based cuts:

xjk = 0, ∀j ∈ V, ∀k /∈ Qj, (3.33)

yk = 0, ∀p ∈ W, ∀k ∈ Û(p). (3.34)

Pre-processing for P∞.

1. Let (s, ρ) (resp. (s∗, ρ∗)) be respectively the best feasible solution and its stability
radius value after applying the multi-start heuristic M(−1) (resp. M(ρ)) for
any strategy.

2. For each uncertain task j ∈ Ṽ , set tj = tj + ρ∗.

3. Apply Approach Reduction to construct the sets of unused blocks Û(p), p ∈
W , and reduce intervals Qj, j ∈ V . If it concerns P1, then go to Step 6.3.

4. For each uncertain task j ∈ Ṽ , set tj = tj − ρ∗.
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5. Consider s∗ as a starting feasible solution for the corresponding MILP formula-
tion and add the following optimality-based cuts:

xjk = 0, ∀j ∈ V, ∀k /∈ Qj,

yk = 0, ∀p ∈ W, ∀k ∈ Û(p).

Here, constraints (3.33) model the assignment interval for any task j ∈ V and con-
straints (3.34) describe all unused blocks. These constraints do not remove any optimal
solution, but exclude some feasible ones.

3.5 Computational results

In order to assess the computational effort induced by our models and algorithms,
we have used several series of randomly generated instances which can be found on the
Benchmarks Library3 as a part of the program code written for the GAMS environment4.
The number of tasks per instance varies as follows: two series with 25 tasks (referred to as
S1 and S2), one series with 50 ones (S3). Each series is composed of 50 unique instances.
Tasks processing times and precedence constraints are those specified in these files. The
Order of Strength (OS) is defined as the ratio of the number of edges in the transitive
closure of the precedence graph, to the number of edges in the complete graph. This value
is different in all series and presented in Table 3.5 for information. The cycle time T for
all instances is set to 70 instead of 100 proposed originally. This value has been set after
preliminary tests for ensuring that all the instances are feasible. The number of machines
m is set to 5 for S1 and S2, and 10 for S3. A set of uncertain tasks for any instance is
determined by an individual random permutation added to the data. We propose two
additional parameters to distinguish the tests: the block capacity rmax ∈ {2, 3} and the
ratio of uncertain tasks %UT={50%, 75%, 100%}. Thus, the set of uncertain tasks is
defined as the first |Ṽ | tasks of the random permutation.

Series n m OS
S1 25 5 0.5
S2 25 5 0.15
S3 50 10 0.9

Table 3.5: Main characteristics of Series S1, S2 and S3

3http://www.math.nsc.ru/AP/benchmarks/Transfer/tests.html
4The General Algebraic Modeling System (GAMS) is a high-level modeling system for mathematical

programming and optimization. It consists of a language compiler and a stable of integrated high-
performance solvers
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The computational tests were performed on an Apple MacBook Pro computer equipped
of an Intel Core i5 processor at 2.7 GHz with 2 cores and 8 GByte RAM. Gurobi 7.5 was
used as a solver for addressing the mixed integer linear programming models proposed
above. First, we have launched an experimentation with basic models only as they are
presented in Section 3.3, with a maximum allotted time of 10 minutes per instance. Ta-
ble 3.6 shows the number of optimal solutions, average gap and CPU time in ℓ1 and ℓ∞
metrics for series with rmax = 2. It can be seen that the problem is difficult to solve. The
best result is obtained for ℓ∞-metric with 50 percents of uncertain tasks in series S1 –
5 optimal solutions are found, out of 50 ones. In series S2 only feasible solutions were
obtained, and the gap provided by the solver is quite large. With S3, no solution at all
was found, which is indicated by “n/d” in the gap column. Table 3.7 presents results
with rmax = 3. The situation remains unchanged with Series S3, as no feasible solution is
found in the allotted time. With S2, the results are slightly better than with rmax = 2, as
several instances are solved to optimality. The improvement is more visible with Series S1,
as more optimal solutions are found, however only 66% of the instances in S1 are solved
optimality. All these observations lead us to conclude that basic MILP formulations are
not competitive even for small and medium size instances.

P1 P∞

Series %UT # OPT GAPavg CPUavg # OPT GAPavg CPUavg

S1 50 0 2.392 600 5 1.324 581.72
75 1 2.236 595.69 3 2.473 588.50
100 1 1.073 597.75 1 4.042 599.68

S2 50 0 2.321 600 0 1.450 600
75 0 4.391 600 0 2.718 600
100 0 1.706 600 0 4.291 600

S3 50 0 n/d 600 0 n/d 600
75 0 n/d 600 0 n/d 600
100 0 n/d 600 0 n/d 600

Table 3.6: Computational results for basic models with rmax = 2

P1 P∞

Series %UT # OPT GAPavg CPUavg # OPT GAPavg CPUavg

S1 50 20 0.962 522.63 42 0.128 344.71
75 30 0.386 478.83 27 0.368 471.16
100 42 0.104 392.42 37 0.521 436.67

S2 50 2 0.675 592.33 7 0.241 558.59
75 3 1.564 586.70 2 1.107 586.34
100 10 0.297 545.89 10 0.906 542.62

S3 50 0 n/d 600 0 n/d 600
75 0 n/d 600 0 n/d 600
100 0 n/d 600 0 n/d 600

Table 3.7: Computational results for basic models with rmax = 3
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Now the enhanced models enriched by new constraints based on assignment intervals
of tasks introduced in Section 3.4 are also tested. The efficiency of optimality-based
cuts depends on the heuristic’s results. Indeed, a bigger stability radius gives tighter
intervals. This is the reason why the heuristic should be given enough time to return
reasonably good solutions. The maximum number of iterations without improvements of
the objective value is chosen as the stopping criterion. It is expressed as a linear function
of the number of tasks, n, i.e., f(n) = αn, where α is a constant coefficient. After time-
based experiments with large-size instances, α has been set to 100. This value is the same
for all the instances presented below. Thus, in series S1 and S2 the maximum number of
iterations without improvements is 2500, and 5000 in series S3. Tests for enhanced models
are presented in Tables 3.8 and 3.10. They include results for all ratios of uncertain tasks
(%UT).

The first observation that can be made is that the order of strength (OS) has a
major impact on the computational efficiency of our algorithms. For example, in series
S1, which has an OS value of 0.5, meaning that the transitive closure of the precedence
graph includes half of the edges from the complete graph, 38 instances are solved to
optimality in ℓ1-metric (Table 3.8), whereas a single instance is solved to optimality in
series S2 for which OS = 0.15. Moreover, our approach achieves good results for series S3
(for which OS = 0.9), despite the fact that instance size is twice larger.

P1 P∞

Series %UT # OPT GAPavg CPUavg # OPT GAPavg CPUavg

S1 50 16 0.186 452.14 33 0.198 253.44
75 10 0.396 509.20 23 0.337 379.45
100 12 0.321 480.66 38 0.137 210.42

S2 50 0 0.478 600 1 1.255 599.32
75 0 0.961 600 1 1.993 590.32
100 1 0.787 595.69 3 2.048 570.61

S3 50 35 0.197 321.66 45 0.071 108.36
75 35 0.180 341.41 49 0.031 42.29
100 36 0.171 302.53 50 0.0 13.03

Table 3.8: Results with the heuristics and the cuts with rmax = 2.

The results are similar with the ℓ∞-metric, even if more optimal solutions are found
in that case. This is visible in particular for Series S3 where all the instances for which
all the tasks are uncertain are solved to optimality with an average computational time
of 13 seconds.

The detailed results for each individual instance with rmax = 2 can be found in
Appendix C: Tables C.1–C.3. Any table includes information for both considered metrics
with the instance name and percentages of uncertain tasks preceding the results, see Table
3.9 for an illustrative example. The first two columns correspond to the best value of the
stability radius obtained by the heuristic, with its corresponding CPU time in seconds.
They are called LB and CPU under the line “Heuristic”, respectively. They are followed
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P1

Heuristic Solver
Inst %UT LB CPU LB UB GAP CPU
S1.0 50 28.8 0.17 30.4 30.4 0.0 52.44

75 28.8 0.13 30.4 30.4 0.0 58.82
100 28.8 0.12 30.4 30.4 0.0 83.67

S1.1 50 24.6 0.16 26.7 39.2 0.468 600.00
75 23.8 0.17 23.8 38.8 0.63 600.00
100 23.8 0.13 23.8 38.8 0.63 600.00

S1.2 50 27.7 0.12 29.1 29.1 0.0 486.42
75 26.4 0.13 28.1 31.2 0.11 600.00
100 27.7 0.11 28.0 36.7 0.311 600.00

S1.3 50 33.1 0.18 33.1 51.4 0.553 600.00
75 29.3 0.16 29.5 51.4 0.742 600.00
100 29.3 0.18 29.4 51.4 0.748 600.00

S1.4 50 25.0 0.14 28.5 46.771 0.641 600.00
75 25.5 0.16 26.1 33.1 0.268 600.00
100 24.3 0.14 26.3 33.1 0.259 600.00

S1.5 50 31.9 0.19 32.3 40.2 0.245 600.00
75 29.0 0.15 29.0 47.673 0.644 600.00
100 29.0 0.14 29.4 41.3 0.405 600.00

Table 3.9: Example of detailed results

by four columns related to the results of GUROBI: LB and UB – the best lower and upper
bounds obtained after 10 minutes (or less if the optimal solution is found); GAP – relative
difference between lower and upper bounds; CPU – computational time for GUROBI (this
value is set to 600.00 if no provable optimal solution was found).

Another advantage of the approach can be observed in the results for enhanced models
with the parameter rmax = 3. The same series of instances are considered. Table 3.10
presents the number of optimal solutions, the average gap and computational time. We
can see that increasing block capacity without changes for another parameters leads to
better results. Now any single instance from S1 is solved optimally in both metrics, and
the average CPU time does not exceed two minutes. Improvements are achieved with
Series S2, as more optimal solutions are found. Betterment is less significant with Series
S3. It can be explained with the fact that, because of the order of strength, the stability
radius cannot increase, while the solution space of the integer linear program is much
larger. The output for all instances is presented in Tables C.4–C.6.

The detailed results shown in Appendix C confirm that the objective value decreases
when the number of uncertain tasks increases. This is visible, for example, in Table C.1,
with instance “S1.9”. This instance is solved optimally for all considered ratios of uncertain
tasks in both metrics. While %UT is growing up from 50 to 75 and 100, LB is dropping
off from 12.9 – 9.467 – 8.133 in ℓ∞-metric. Such a result was expected, but in some cases
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P1 P∞

Series %UT # OPT GAPavg CPUavg # OPT GAPavg CPUavg

S1 50 50 0.0 74.58 50 0.0 12.86
75 50 0.0 118.66 50 0.0 11.13
100 50 0.0 76.64 50 0.0 0.31

S2 50 28 0.069 355.92 27 0.113 352.50
75 15 0.165 473.73 15 0.742 452.46
100 21 0.120 425.40 45 0.007 89.91

S3 50 37 0.195 299.92 47 0.033 112.34
75 33 0.389 337.79 50 0.0 34.44
100 38 0.192 290.31 50 0.0 7.80

Table 3.10: Results with the heuristics and the cuts with rmax = 3.

it might be helpful to improve solution methods. We can see one opportunity in Table
C.6, with instance “S3.41”. We have two optimal solutions (when %UT is 50 and 100)
with the same value of objective function and a feasible (but not proven optimal) solution
for %UT = 75. Hence it is possible to conclude that the solution found with %UT = 75
is optimal.

3.6 Conclusion

An important industrial problem was considered: optimal design of transfer lines. In
contrast to the classical formulations where either a number of machines or a cycle time
should be minimised, we consider a robust version of the problem, which returns solution
that remain feasible despite processing time variation affecting uncertain tasks. The
solution of this problem is also a challenge taking into account the exigency of reducing
the time from design to manufacturing.

Since the problem is NP-hard, its solution time can be extremely large. The devel-
opment of efficient methods and choice of a method adapted to each concrete problem is
an important issue. Hybrid approach for the configuration of a transfer line with sequen-
tially activated spindle heads at stations is evaluated. It includes both MILP and heuristic
components. The heuristic method uses different restrictions for construction of a feasible
solution that is used as a starting point in the MILP formulation. The approach has been
tested on three data sets each of which contains 50 randomly generated instances.

The experiments have shown that our approach is suitable for both MILP formula-
tions, but results for P∞ are notably better than for P1 from the point of view of number
of optimal solutions, average gap and computational time. So far, we can conclude that
the stability radius can be successfully applied for modelling of uncertainties in Transfer
Line Balancing Problem.
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On the basis of our analysis, the following conclusion can be drawn. The number
of tasks per instance is an important point for assessing the computational effort, but
the density of the precedence constraints (order of strength) has an even more significant
impact on instance difficulty. Thus, medium size instances with the higher OS bring
significantly better results than small size ones with less constraints. Of course, in the
case where there are no precedence constraints, the problem would be very similar to the
classic bin packing problem, for which very efficient extended formulations are available.
Hence, moderately dense precedence constraints may lead to the most difficult instances
for the proposed approaches.

Finally, availability of blocks to accomplish more tasks in parallel accelerates the
solution process, that is not difficult to see with results for small size instances.

Further investigations will concern improving the multi-start heuristic method as
well as the mixed integer linear programming models in order to enlarge our experiments.
Since, TLBP can be considered as a generalisation of SALBP, we would like to apply the
presented approach for this classical problem.
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Relying on a commercial solver to address transfer line balancing problem (TLBP)
with a pure mixed integer linear programming approaches has been shown to be inefficient.
Addressing larger problem instances requires developing alternative methods that still
exploit commercial solvers, by that also benefit from the problem structure. In particular,
many different advanced techniques allow to get the access to the calculation process and
to interrupt it, which offers interesting perspectives. We are using this ability to devise a
hybrid solution approach combining the computational power of a commercial solver and
problem properties.

In the previous chapter, we have described pre-processing procedures which reduce
the search space by implementing new constraints to mathematical models before their
execution. Computational results show that this implementation has essential influence
on the number of optimal solutions, average gap and running time per instance. Tables
C.1–C.6 have many examples, where the solver has found a better solution comparing
to the proposed one by the heuristic method introduced in Section 3.4.2. The main idea
developed here is to take advantage of best feasible solution known so far to strengthen
the allocation intervals of the tasks, so that the solver can exploit them and converge
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faster. Hence, the corresponding constraints (see Chapter 3, (3.33) and (3.34)) can be
updated in order to exclude more feasible solutions that are not optimal.

Below, we are reviewing such features of commercial software as user callbacks, dis-
cussing two possible realisations and applications for considered metrics.

4.1 User callbacks in modern solvers

Originally, a callback is an executable piece of code that is passed as an argument
to another piece of code (function, procedure) that is expected to call back the argument
at a given time. This execution may be immediate as in a synchronous callback, or it
might happen at a later time as in an asynchronous callback. Following implementations
of callbacks are widely used in programming languages: subroutines, lambda expressions,
blocks, and function pointers.

The idea of the callback application is natural. Let us consider an algorithm or a
program that should be executed. The following three events classically occur:

1. Call a the program;

2. Wait for the result;

3. Continue once the result comes in.

Simple launch of MILP models works exactly like this: once we have an instance data we
call a solver for developed models, wait for the solution, analyse the results after termi-
nation. For small size instances the second step is almost immediate, but the situation is
changing for large sizes. Of course, this schema is no longer acceptable when the result
requires an unreasonably long amount of time to complete. There are two options to carry
experiments in this case:

• Keep the program design and run it at night, weekend, without any ideas how fast
MILP solver will go through the branching tree;

• Design the program to guide the seeking process of a commercial solver.

It should be noted that we do not modify an original code of a solver, but use the
respective application programming interface (API) to get access to: the best solution
found so far, lower and upper bounds, objective value, number of feasible solutions found,
number of iterations, status code for a current MIP node and many other internal features.
Below we consider two commercial solvers IBM CPLEX 12.7 and GUROBI 7.51 and
discuss some particular realisations of callbacks. Any detailed information can be found
in their manual user guides.
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4.1.1 IBM CPLEX 12.7

According to API for this popular solver, callbacks allow to monitor closely and
to guide the behaviour of the optimiser. In particular, the respective user code will be
executed regularly during an optimisation or during a tuning session. To use callbacks
with CPLEX, a callback function should have been written beforehand, and have been
passed to the solver. There are three types of optimisation callbacks: informational
callbacks, query callbacks, and control callbacks.

• Informational callbacks give an access to information about the progress of optimisa-
tion without interfering with the search path; also useful to terminate optimisation;
compatible with dynamic search; compatible with all modes of parallel optimisation.

• Query callbacks, also known as diagnostic callbacks, give an access to information
in the course of optimisation; incompatible with dynamic search; incompatible with
deterministic parallel optimisation by default.

• Control callbacks are used to change the search path, for example, by interrupting
and resuming optimisation under conditions specified by the user; incompatible with
dynamic search; incompatible with deterministic parallel optimisation by default.

4.1.2 GUROBI 7.51

Callbacks in GUROBI are implemented within an abstract class. To implement a
callback, a subclass of this class should be created, with a callback method. Then an object
of the implemented subclass has to be created and passed to the model before starting
its optimisation. The callback method will be called periodically during the seeking
process. While IBM CPLEX divides callbacks into three types, GUROBI differentiates
them by access points. These points determine which information about the progress of
the optimisation is available to the user.

• PRESOLVE: during the execution of the presolve process; give access to the number
of removed columns and rows, number of changed constraint senses, variable bounds
and coefficients.

• SIMPLEX: during simplex method; give access to the number of simplex iterations,
objective value, information about primal and dual infeasibility.

• MIP: during MIP process; give access to the best objective and best objective bound,
explored and unexplored node count, number of feasible solutions found, count of
cutting planes applied, number of simplex iterations;

75



Chapter 4. Hybrid solution approaches for TLBP

• MIPSOL: the method is called whenever a new MIP incumbent is found; give access
to the new solution, new objective value, current best objective and best bound,
explored node count, number of feasible solutions found.

• MIPNODE: during the exploration of a MIP node; give access to the optimisation
status of the current MIP node, best objective and best bound, explored node count,
number of feasible solutions found.

Statement 4. Since callbacks always present a function or a method that is called some-
where during optimisation process, we have to take into account the fact that they are
going to consume computer resources (memory and time). It may affect results for some
instances in experiments.

4.2 Cuts generation with callbacks

In the preview of this chapter we have mentioned that using callbacks we want to
generate optimality-based cuts for considered models. We consider two major technologies
to achieve this: lazy constraints and MIP (MILP) restart.

4.2.1 Lazy constraints

Lazy constraints represent simply one portion of the constraints set, and the model
would be incomplete (and possibly would deliver incorrect answers) in their absence.
Solver always make sure that lazy constraints are satisfied before producing any solution
to a MILP model. In our case„ the following constraints are encoded as lazy constraints,
they enforce restrictions on decision variables resulting from allocation intervals:

xjk = 0, ∀j ∈ V, ∀k /∈ Qj,

yk = 0, ∀p ∈ W, ∀k ∈ Û(p).

As we said above, they reduce the feasible space, but do not rule out any optimal
solution that the rest of the model permits. Lazy constraints are collected into the pool
without interrupting the solution process. After that, when the solver found a candidate
integer-feasible solution, it checks one by one all the lazy constraints from the pool and
progressively introduces them into the MILP model if the candidate solution violates
them. It is supposed that the user designates constraints as lazy in the strong hope and
expectation that they will not need to be applied, thus saving computation time by their
absence from the working problem. In practice, it is relatively costly (for a variety of
reasons) to apply a lazy constraint after a violation is identified, and so the user should
err on the side of caution when deciding whether a constraint should be marked as lazy.
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GUROBI requires to use a MIPSOL access point to apply lazy constraints into the
models. In IBM CPLEX, they should be realised with control callbacks. Unfortunately,
it means incompatibility with dynamic search, that may significantly affect the entire
seeking process.5 Thus, the GUROBI solver is more appropriate for lazy constraints
application than IBM CPLEX.

Since we are using callbacks for cuts generation, the implementation differs for P1

and P∞.

Lazy constraints for P1.

1. Wait until the MIP solver provides a new feasible solution s with its stability
radius value ρ, then pause the execution.

2. If ρ ≤ ρ∗, where ρ∗ is the best known value at this moment, then go to Step 5.

3. Store the new value ρ∗ = ρ and for each uncertain task j ∈ Ṽ , produce the
following instructions:

3.1. Set tj = tj + ρ∗.

3.2. Apply Approach Reduction to construct the sets of unused blocks Û(p),
p ∈ W , and reduce intervals Qj, j ∈ V .

3.3. Set tj = tj − ρ∗.

4. Put the following lazy constraints into the POOL:

xjk = 0, ∀j ∈ V, ∀k /∈ Qj,

yk = 0, ∀p ∈ W, ∀k ∈ Û(p).

5. Resume the MIP solver and go to Step 1.

Lazy constraints for P∞.

1. Wait until the MIP solver provides a new feasible solution s with its stability
radius value ρ, then pause the execution.

2. If ρ ≤ ρ∗, where ρ∗ is the best known value at this moment, then go to Step 7.

3. Store the new value ρ∗ = ρ and for each uncertain task j ∈ Ṽ , set tj = tj + ρ∗.

5 It makes sense for all versions up to 12.7. Hopefully, in later versions this problem will be solved.
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4. Apply Approach Reduction to construct the sets of unused blocks Û(p), p ∈
W , and reduce intervals Qj, j ∈ V .

5. For each uncertain task j ∈ Ṽ , set tj = tj − ρ∗.

6. Put the following lazy constraints into the POOL:

xjk = 0, ∀j ∈ V, ∀k /∈ Qj,

yk = 0, ∀p ∈ W, ∀k ∈ Û(p).

7. Resume the MIP solver and go to Step 1.

The approach Reduction is matching the one presented in Chapter 3. Thus, call-
backs are close to the global pre-processing method that we use to find an initial solution
and restrictions on assignment intervals and sets of unused blocks for TLBP. It is not
difficult to see that lazy constraints do not interrupt the execution of the solver. Because
of this we do not have to store the best solution s in order to resume the search from the
same point.

4.2.2 MIP restart

This approach is based on the ability to help the solver find an initial solution with
additional information. These hints consist of pairs of variables and values, known as a
MIP start, an advanced start, or a warm start.

A MIP start might come from a different problem that has previously been solved
or from extra knowledge on the problem, or, what is more common, from an heuristic
solution. In addition, the solver can take one or more MIP starts. A MIP start may
be a feasible solution of the problem, but it is not mandatory; it may even be infeasible
or incomplete. Both considered MIP solvers are able to deal with partially populated
vectors, representing pairs of variables and values. They will attempt to fill in values for
missing start values, but it is also possible to leave the start value for a variable undefined,
in case if it is essential.

When providing a MIP start as data, the solver processes it before starting branch-
and-cut during an optimisation. If one or more of the MIP starts define a solution, then
the best of these solutions is installed as the incumbent solution. Having an incumbent
from the very beginning of branch-and-cut allows to eliminate portions of the search space
and thus may result in smaller branch-and-cut trees.

The main idea is to abort the search when a new best solution found, to apply cuts
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to the model and to restart the seeking process with the last obtained solution as the
incumbent. There are several advantages in doing so: since we generate optimality-based
cuts as new constraints, they cannot remove the last solution from the search space. Thus,
it can be guaranteed that the MIP start is presenting the feasible solution even for an
enhanced model. Consequently, a solver would be appropriately restarted.

The difference from lazy constraints is clear: we do not create a pool of constraints
within a single seeking process, but elaborate on the model using cuts generated while the
optimisation is aborted. Informational callbacks are used in IBM CPLEX to achieve this
goal. It is also possible with control callbacks, but the incompatibility with dynamic search
makes this type less preferable. GUROBI allows to use either MIP or MIPSOL access
point for the MIP restart approach. Moreover, the entire restart process is automated,
and the user does not have to provide a MIP start for a modified model: the solver will
try to build one from the solution of the previous model.

MIP restart for P1.

1. Wait until the MIP solver provides a new feasible solution s with its stability
radius value ρ and an estimated upper bound UB, then pause the execution.

2. If ρ ≤ ρ∗, where ρ∗ is the best knonw value at this moment, then resume the
MIP solver and go to Step 1.

3. Store the new solution s∗ = s, stability radius value ρ∗ = ρ and current upper
bound UB∗ = UB. Then, abort the search.

4. For each uncertain task j ∈ Ṽ , produce the following instructions:

3.1. Set tj = tj + ρ∗.

3.2. Apply Approach Reduction to construct the sets of unused blocks Û(p),
p ∈ W , and reduce intervals Qj, j ∈ V .

3.3. Set tj = tj − ρ∗.

5. Form a new model from the previous one by the following constraints:

xjk = 0, ∀j ∈ V, ∀k /∈ Qj,

yk = 0, ∀p ∈ W, ∀k ∈ Û(p).

6. Install the solution s∗ as the initial one with the upper bound UB∗ on the
objective function. Then, restart the MIP solver for the enhanced model and go
to Step 1.
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MIP restart for P∞.

1. Wait until the MIP solver provides a new feasible solution s with its stability
radius value ρ and an estimated upper bound UB, then pause the execution.

2. If ρ ≤ ρ∗, where ρ∗ is the best known value at this moment, then resume the
MIP solver and go to Step 1.

3. Store the new solution s∗ = s, stability radius value ρ∗ = ρ and current upper
bound UB∗ = UB. Then, abort the search.

4. For each uncertain task j ∈ Ṽ , set tj = tj + ρ∗.

5. Apply Approach Reduction to construct the sets of unused blocks Û(p), p ∈
W , and reduce intervals Qj, j ∈ V .

6. For each uncertain task j ∈ Ṽ , set tj = tj − ρ∗.

7. Form a new model from the previous one by the following constraints:

xjk = 0, ∀j ∈ V, ∀k /∈ Qj,

yk = 0, ∀p ∈ W, ∀k ∈ Û(p).

8. Install the solution s∗ as the initial one with the upper bound UB∗ on the
objective function. Then, restart the MIP solver for the enhanced model and go
to Step 1.

It is necessary to explain why the MIP restart approach requires to deal with an upper
bound as well as a solution and its stability radius value. The problem lies in the restart
process. In certain cases an initial solution is not sufficient to speed up the optimisation
up to respective boundaries, and the solver spends unneeded time for estimation. An
upper bound from the previous launch allows to reduce it to a simple verification.

4.3 Computational results

These tests are equivalent to the one presented in previous chapter, but instead of
all 150 instances we are using only the first 10 ones in each series, i.e., instances “S1.0” to
“S1.9”, “S2.0” to “S2.9” and “S3.0” to “S3.9”. All the parameters and presets are the same:
the number of tasks per block varies between 2 and 3; and the ratios of uncertain tasks
per instance takes values 50, 75 and 100 (%, percents of the initial number of tasks).
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For the final experiment, we have selected GUROBI Optimiser as the MIP solver,
since implementing callbacks in IBM CPLEX can be more tedious to achieve and did
not bring significant advantage over GUROBI in preliminary tests. However, we do not
compare these two solvers in order to find the best one, and may not suggest one before
another.

Here, we discuss in detail MIP restart approach when callbacks are used, because it
has some significant advantages compared to Lazy constraints. Appendix D has detailed
results for both approaches with the parameter rmax = 2 (Tables D.1 and D.2). An

P1

Heuristic OBC Solver
Inst %UT LB CPU X Y LB UB GAP CPU
S1.0 50 28.8 0.17 3 0 30.4 30.4 0.0 107.25

75 28.8 0.12 3 0 30.4 30.4 0.0 190.49
100 28.8 0.11 3 0 30.4 30.4 0.0 134.35

S1.1 50 24.6 0.17 3 0 27.3 42.2 0.546 600.00
75 23.4 0.14 0 0 23.7 42.2 0.781 600.00
100 23.8 0.13 0 0 23.8 38.8 0.63 600.00

S1.2 50 27.7 0.11 5 0 29.1 52.8 0.814 600.00
75 26.4 0.10 0 0 28.1 36.7 0.306 600.00
100 27.7 0.10 0 0 28.0 28.9 0.032 600.00

S1.3 50 33.1 0.18 0 0 33.1 51.4 0.553 600.00
75 29.3 0.16 0 0 29.5 51.4 0.742 600.00
100 29.3 0.17 0 0 29.4 51.4 0.748 600.00

S1.4 50 26.0 0.13 6 1 28.5 37.9 0.33 600.00
75 25.5 0.15 0 0 26.3 38.0 0.445 600.00
100 24.3 0.14 5 0 26.3 36.8 0.399 600.00

S1.5 50 30.8 0.16 0 0 32.3 41.8 0.294 600.00
75 29.0 0.14 0 0 29.0 47.673 0.644 600.00
100 29.0 0.13 0 0 29.4 53.88 0.833 600.00

S1.6 50 27.1 0.13 0 0 28.5 28.6 0.004 600.00
75 26.5 0.12 0 0 27.9 28.6 0.025 600.00
100 26.5 0.11 0 0 27.9 28.6 0.025 600.00

Table 4.1: Example of detailed results for the hybrid approach

example is in Table 4.1. For any metric the table is divided in three groups of columns.
The first group presents the lower bound and computational time of the heuristic method.
The third one includes the results of the GUROBI solver. Columns in-between are related
to generated optimality based cuts (OBC in the table): column “X” shows the number of
additional reductions in assignment intervals when ρ rises up from the heuristic value to
the last one obtained by GUROBI, and “Y” shows the number of block which have been
closed after applying the reduction rules on the incumbent.

Lazy constraints and MIP restarts produce nearly identical results, and generate the
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same number of cuts for studied models, but there are differences in gap and computation
time, as can be seen in Table 4.2. Negative values indicate an improvement provided
by lazy constraints over MIP restart. By contrast, positive ones mean that MIP restart
works more efficiently. Thus, lazy constraints seem appropriate for small size instances in
ℓ1-metric. In all tests, the average gap is better, and the computational time is smaller
than for MIP restart. But the picture is all different when we consider ℓ∞-metric. Only
for %UT= 75 in series S2 lazy constraints approach provides a slightly better gap, for
any other, the restart of the MIP process is more accurate and faster. Finally, we can see
that MIP restart approach take the lead in medium size instances (series S3) having up
to almost 4 minutes ahead of lazy constraints.

P1 P∞

Series %UT ∆GAPavg ∆CPUavg ∆GAPavg ∆CPUavg

S1 50 −0.021 −17.08 +0.347 +129.76
75 −0.015 +41.67 +0.237 +114.66
100 −0.029 −36.75 +0.293 +102.76

S2 50 −0.376 +0.01 +0.165 +3.73
75 −0.781 −6.23 −0.089 +33.39
100 −0.182 −0.00 +0.170 +58.31

S3 50 +0.21 +73.86 +0.426 +236.10
75 +0.66 +43.63 +0.235 +219.42
100 +0.60 +69.21 — +73.71

Table 4.2: Improvements of Lazy constraints over MIP restart in terms of gap and CPU
time

In results for rmax = 2 (Table D.1) we see that OBC within callbacks work better for
ℓ∞-metric. It happens because of the nature of calculation. Simultaneous augmentation
of all uncertain tasks by an extra value of the stability radius has a significant impact on
the whole production line, than the same value for ℓ1-metric, as it is limited to a single
task.

Unfortunately, user callbacks consume time to get an information from execution
process, that slightly increases computational time for those instances, which can be
solved optimally even without advanced techniques. For example, “S3.0” to “S3.9” in ℓ∞-
metric, where every final result matches equivalent one from previous tests, but rises its
CPU by 1 to 2 seconds. In ℓ1-metric, some instances are not proven optimal (comparing
to the previous tests): “S1.2” and “S1.7” (%UT = 50); several groups works significantly
longer: “S3.0”, “S3.1” and “S3.3” (for all %UT ), “S3.6” (%UT = 50 and %UT = 75).

Lower and upper bounds (and gap) do not show a general tendency either for bet-
terment nor degradation. We have at least nine possible representations when bounds
rise up, remain or drop-down individually or together. However, most of improvements
were obtained for instances of the series S2. This suggest to use callbacks preferably for
problems with a low order of strength.
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There are also several instances which bring good results for any value of the parame-
ter %UT : “S1.3”, “S1.6”, “S1.9”, “S2.8”, “S2.9”. Since, all instances are randomly generated,
there could be many explanations for this. One of them is a particular graph constitution
that responds on reductions.

The results for rmax = 3 confirm the conclusion drawn here when rmax = 2. In ℓ1-
metric (Table 4.3), the average computational time (CPU) raises for all series of tests and
parameters %UT, but not dramatically. Besides this, the number of optimal solutions
keeps the same, except for series S2, where it falls down by 1 for all tests. This is an
interesting result, because it may help to understand how callbacks affect CPU and entire
execution process depending on the size of the problem and order of strength. Series S3
has some positive progress in the average gap, which means the reduction of upper bounds
by the cuts generated with callbacks.

MILP MILP restart
Series %UT # OPT GAPavg CPUavg # OPT GAPavg CPUavg

S1 50 10 0.0 70.01 10 0.0 94.57
75 10 0.0 102.13 10 0.0 109.73
100 10 0.0 71.25 10 0.0 74.17

S2 50 6 0.056 326.83 5 0.091 375.93
75 3 0.131 440.54 2 0.293 503.46
100 5 0.093 388.93 4 0.172 416.90

S3 50 5 0.374 397.43 5 0.360 408.64
75 5 0.315 393.45 5 0.315 412.98
100 5 0.234 405.33 5 0.233 405.85

Table 4.3: Average results in ℓ1 metric

Table 4.4 compares results for ℓ∞-metric. Series S1 and S3 do not loose any optimal
solution in the hybrid solution approach, while S2 has one less for the parameter %UT=
50. Nevertheless, this series improves average gap and CPU in certain cases, which again
suggests to use the hybrid approach for instances with a low order of strength. For some
other tests the raising of CPU is even less than for ℓ1-metric. Detailed information for
any single instance is in Table D.3 (Appendix D).

4.4 Conclusion

In this chapter, we have presented a hybrid approach for addressing the stability
radius maximisation problem under the ℓ1 and ℓ∞ metrics for a transfer line balancing
problem under task time uncertainties. It consists in a combination of a commercial solver
computational power and properties of the studied problem. To make it possible, the
advanced technique of commercial solver was used. Two different approaches of callbacks
implementation have been considered.
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MILP MILP restart
Series %UT # OPT GAPavg CPUavg # OPT GAPavg CPUavg

S1 50 10 0.0 12.28 10 0.0 15.37
75 10 0.0 10.10 10 0.0 10.44
100 10 0.0 0.23 10 0.0 0.39

S2 50 6 0.111 331.94 5 0.130 325.80
75 3 0.74 442.96 3 0.708 453.28
100 9 0.006 79.96 9 0.003 79.80

S3 50 10 0.0 127.33 10 0.0 139.57
75 10 0.0 46.07 10 0.0 63.91
100 10 0.0 9.32 10 0.0 9.70

Table 4.4: Average results in ℓ∞ metric

Computational experiments have shown that the CPU time of this hybrid approach
is not competitive. However, it helps us to estimate the limits of our method and pushes
to investigate new problem properties which can enrich the set of optimality based cuts
generated within callbacks. Besides this, the hybrid approach gave interesting results for
instances with a small density of the precedence graph, which also shows an opportunity
for future applications.
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In this thesis, we have studied a robust optimisation of production lines at the design
stage. For optimisation problems that appear at this stage, usually, decision-makers or
designers do not have accurate data but an only estimate. Unfortunately, during the
system life cycle, some data may be different from estimated values. Thus, a provided
on the design stage solution is challenged. The purpose of our study was to mitigate this
situation by developing models and approaches which choose among all feasible solutions
the one that will be the most stable in the face of data variations. In particular, we
worked on line balancing problems under uncertainties on the task processing times.

We began by general studying of existing production lines, their parameters and
attributes. According to them, a line balancing problem was presented with three common
objective functions minimising the number of machines (line cost), cycle time (maximising
the production rate), line efficiency. Since deterministic versions of these problems do not
consider any deviation in input data, which can be extremely unpractical for real-life
applications, scientists use special techniques for modelling. In the second part of the
beginning, we analysed existing in the literature approaches to model data uncertainty in
combinatorial optimisation problems. Our objective was to identify the approaches that
best fit the context of the design of production lines. The study conducted in Chapter
1 guided us towards the robust approach based on the stability radius, which shows the
maximal value of processing time deviations that do not violate solution feasibility or
optimality. Since the stability radius initially was used in the sensitivity analysis for a
given solution, we refer to a recent formulation of the line balancing problem, which is
maximising the robustness of the system. Further, we considered two types of production
lines: simple assembly and transfer.

Robust formulations of the simple assembly line balancing problem were presented
in Chapter 2. In this type of production lines stations are synchronised by a common
conveyor. Production parts placed on it move from the beginning of the line to the end
visiting all stations in order of their installation. The problem is to allocate assembly
tasks to stations satisfying all manufacturing constraints. The number of stations is
limited and the cycle time is fixed. The production goal is to maximise the robustness
measure, i.e., stability radius. We have analysed two classic metric for the stability radius
calculation and introduced a new one. Respective theorems and formulas were presented.
We proposed combined mixed-integer linear programming models, which are aimed to
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help decision-makers easily switch from one model to another according to particular
situations and available knowledge.

The proposed MILP models have been programmed with C++ using the commercial
solver Gurobi. Tests have been carried on instances from the online benchmark library
with additional randomly generated data. Two parameters were used to install the level
of uncertainty among tasks and stations. The results are encouraging. Even with the time
limit on the execution process, optimal solutions can be found in general for instances up to
90 tasks, and up to 150 tasks in some particular tests. Supplementary experiments showed
that results do not depend on the precedence graph density. Thus, presented models can
be used for industrial instances under the assumption of the respective computational
power.

In Chapter 3, we have studied transfer lines where several tasks can be performed at
the same time by the same machining head. Each station (machine) contains one or more
machining heads (blocks), the heads of each station are activated sequentially, the stations
as before are synchronised by a common conveyor. Thus, the transfer line balancing
problem consists in assignment of production tasks to machining heads and distribution
of heads to machines satisfying all given constraints. The optimisation criterion is the
robustness measured by the stability radius. Only ℓ1 and ℓ∞ metrics were considered
for its calculation. We discovered the corresponding formulas and proved them within
a series of lemmas and theorems. Then, two new mathematical models were presented.
Their complexity requires some enhancements for the efficient execution. Based on well-
known practices for line balancing problems, we introduced assignment intervals of tasks
on transfer lines. Such interval shows the indexes of blocks that can execute the considered
task. Five rules were elaborated to calculate these intervals for two different metrics and
were applied within the approach Reduction.

Heuristic method for transfer lines has been elaborated. Besides the idea, which is
similar to classic methods for assembly lines, we had to take into account the construction
of blocks. To evade repetitive assignment of tasks, four procedures with different restric-
tions were constructed. Together they compose a multi-start heuristic algorithm which
on every iteration is looking for a line balance with a better stability radius than the best
obtained earlier. All presented developments form the global pre-processing approach,
which not only generate an initial solution and a lower bound, but also create two groups
of constraints for MILP formulations.

All models and pre-processing algorithms have been programmed with C++ and
resolved by commercial solver Gurobi. Instance data were imported from the library
of randomly generated examples for transfer lines. Since these type of production lines
consists of automated stations or machines, we did not take into account the uncertainty
of stations, but instead we used the parameter that indicate the maximal capacity of
blocks. The results approved the central hypothesis that the order of strength has a
significant impact on the resolution of the problem. Thus, even small size instances might
not have an optimal solution in installed time limits. Another observation told us that
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the block capacity also positively affect the resolution process. But this effect weakens
with the size of the problem. In general, the presented method showed ability to solve
instances whose size is equivalent to previously reported result in the literature related to
transfer lines. Real problems of this type rarely exceed 150 tasks, and there are industrial
examples sized to about 30 tasks (even less). In some cases this number can be easily
reduced by grouping tasks into macro-tasks. So we can say that our approach are already
partially operational.

Chapter 4 discussed a hybrid solution approach for the transfer line balancing prob-
lem. It consists in a combined application of a commercial MIP solver and optimality-
based cuts generation algorithms. We used callback techniques which allow to manage and
to do guide the optimisation process. Two commercial solvers were considered in order to
find a proper realisation. Several types of callbacks were studied. We chose two possible
approaches for cuts generation with callbacks. They are named by lazy constraints and
MIP restart, respectively. Lazy constraints approach works with the pool of cuts that
are introduced progressively into the model under optimisation. In this case, callbacks do
not abort a solver and resume its work as only optimality-based cuts are generated. ℓ1
and ℓ∞ metrics required different implementations because of different interpretation of
the stability radius. Similar to the global pre-processing method, we used Reduction

method to determine assignment intervals and unused blocks on machines.

The hybrid solution approach has been programmed with C++ and resolved by
commercial solver GUROBI for final tests. Experimentation was carried on the reduced
set of instances comparing to Chapter 3. It was expected, that instances may take a bit
more time before resolution, and the results proved this expectation for all realisations.
The MIP restart approach has shown its advantage over lazy constraints, opportunities
for future research and development.

All obtained results reveal a lot of perspectives for future researches in Robust Op-
timisation of Production Lines. First of all, we have several options to improve MILP
models using advanced techniques of commercial solvers. But even in this case, there is
a risk to face strict boundaries that will not allow finding an optimal solution for large
size instances at an appropriate time. One of the keys to handling this issue lays in the
development of meta-heuristics. These higher-level procedures may provide significantly
better results with less computational effort. Among successful application, we mainly
can see population-based approaches which maintain and improve multiple candidate so-
lutions, often using population characteristics to guide the search. There are evolutionary
computations, genetic algorithms, and particle swarm optimisation. Mentioned heuristic
algorithms may generate an initial population for them with some enhancements installing
task assignment priorities which are necessary for interactions between generations or it-
erations.

On another side we can develop exact methods to find an optimal solution of the
problem. The literature includes many examples of branch-and-bound, branch-and-cut,
branch-and-price algorithms for line balancing problems. The idea for any of them is
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similar to the proposed in Chapter 3 heuristic method: the root of the branching tree
includes an empty station, nodes represent a particular sub-solution. Starting from the
root we create new nodes according to the set of tasks available for assignment, block
capacity and cycle time constraints within a station. The main thing we are missing here
is domination rules that will prune unpromising sub-trees. That leads us to the next
perspective – upper bounds investigation.

An estimation of UB for TLBP seems to be divided into two stages: determination of
blocks and their assignment to machines. That makes it impossible to apply some classic
formulas for calculation since the first stage, in general, is presenting NP-hard problem.
Nevertheless, the having ideas may bring good results, which directly boost development
of all exact, heuristic and meta-heuristic algorithms.

Our pre-processing technique for the transfer line balancing problem particularly
refers to the well-known method called kernelisation. It is using for designing efficient
algorithms that achieve their efficiency by a pre-processing stage in which inputs to the
algorithm are replaced by a smaller input (kernel). The result of solving the problem
on the kernel should either be the same as on the original input, or it should be easy
to transform the output on the kernel to the desired output for the original problem.
Simplification of the input helps to decision-makers, because they do not always have
surplus information at the design stage. Thus, future development in this field has an
undeniable practical meaning.

A number of operations research methods have found their way into constraint pro-
gramming. This development is entirely natural, since both OR and CP have similar goals.
CP’s constraint-oriented approach to problem solving poses a prescriptive modelling task
very similar to that of OR. CP historically has been less concerned with finding optimal
than feasible solutions, but this is a superficial difference. There remains a fundamental
difference in the way that CP and OR understand constraints. CP typically sees a con-
straint as a procedure, or at least as invoking a procedure, that operates on the solution
space, normally by reducing variable domains. OR sees a constraint set as a whole cloth;
the solution algorithm operates on the entire problem rather than the constraints in it.
CP can design specialised algorithms for individual constraints or subsets of constraints,
thereby exploiting substructure in the problem that OR methods are likely to miss.

MILP models play the role of a relaxation of the respective constraints programming
problem. A solution of the relaxation then contributes to domain reduction or helps guide
the search. Additional flexibility lies in the fact that instead of MILP models, it is possible
to use their relaxations, Lagrangean relaxations, and dynamic programming models. All
these methods formulate specialised relaxations for a wide variety of standard situations
and provide tools for relaxing global constraints. Other hybridisation schemes decompose
the problem so that CP and OR can attack the parts of the problem to which they are best
suited. This combination can bring substantial computational benefits. Many presented
applications in the literature report acceleration of the seeking process for Scheduling
problems up to 1000 times. It could be a good opportunity to apply these approaches to
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studied problems.

We considered two metrics (ℓ1 and ℓ∞) to calculate the stability radius in the transfer
line balancing problem, and one additional (relative resilience) in the simple assembly line
balancing problem. However, its classic definition is based on the concept of norm, which
have various expressions in science. For example, there is a big group for measuring
the difference between two sequences (see Levenshtein, Hamming, Lee and Jaro–Winkler
distances). They are opening opportunities for estimation the stability of reconfigurable
manufacturing systems (including production lines), whose popularity is growing up last
years.

Another perspective concerns the generalisation of this approach to other types of
lines, for example to lines on which all blocks are activated simultaneously or which
have two possibilities of activation (serially-sequentially). We must also integrate other
constraints, such as those related to machining modes, eligible and optimised (cutting
speed optimisation), tasks and blocks inclusion/exclusion constraints. The development
of a user-friendly prototype integrating all our programs and algorithms is also on the
agenda.

In this thesis, we dealt with the problem of designing production lines in the presence
of processing times subject to uncertainties. However, the problem of taking into account
the data uncertainty on the design stage is not limited to the consideration of variations
of these numerical data. Thus, possible changes can also occur at the level of various
constraints like precedence constraints. So far, this aspect is not yet well treated in the
literature. This is a track of our future research in this domain.
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Appendix A. Simple assembly lines. Detailed computational results

Series without uncertain stations

Instance n m T LB UB CPU GAP

MERTENS 7 4 9 0 0 0.36 0
BOWMAN8 8 4 25.5 0.375 0.375 0.02 0
MANSOOR 11 4 67.5 1.813 1.813 0.04 0
JAESCHKE 9 5 9 0.2 0.2 0.01 0
JACKSON 11 6 10.5 0.3 0.3 0.06 0
MITCHELL 21 7 19.5 0.833 0.833 0.07 0
ROSZIEG 25 8 19.5 0.5 0.5 0.01 0
HESKIA 28 8 162 0.514 0.514 0.03 0
LUTZ1 32 9 2100 0.5 0.5 0.01 0
BUXEY 29 11 37.5 0.5 0.5 0.06 0
SAWYER30 30 11 37.5 0.974 0.974 0.32 0
GUNTHER 35 10 60 0.45 0.45 0.06 0
HAHN 53 7 2662.5 0.793 0.793 0.13 0
KILBRID 45 9 82.5 0.5 0.5 0.04 0
TONGE70 70 18 234 0.5 0.5 0.89 0
WARNECKE 58 24 79.5 0.529 0.529 0.64 0
ARC83 83 17 5536.5 1.018 1.045 600 0.027
LUTZ3 89 18 111 0.5 0.5 0.65 0
BARTHOLD 148 12 574.5 0.5 0.5 1.11 0
MUKHERJE 94 20 256.5 0.5 0.5 0.53 0
ARC111 111 22 8533.5 0.687 0.687 3.68 0
LUTZ2 89 38 15 0.5 0.5 19.44 0
WEE-MAG 75 60 40.5 0.558 0.558 6.51 0
BARTHOL2 148 41 124.5 0.5 0.5 7.92 0
SCHOLL 297 41 2079 0.878 0.949 600 0.08

#OPT: 23/25 49.70 0.004

Table A.1: Results for |Ṽ 1| = ⌈n
4
⌉ and |Ŵ | = 0
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Instance n m T LB UB CPU GAP

MERTENS 7 4 9 0 0 0.01 0
BOWMAN8 8 4 25.5 0.214 0.214 0 0
MANSOOR 11 4 67.5 0.691 0.691 0.03 0
JAESCHKE 9 5 9 0.125 0.125 0 0
JACKSON 11 6 10.5 0.3 0.3 0.02 0
MITCHELL 21 7 19.5 0.313 0.313 0.11 0
ROSZIEG 25 8 19.5 0.313 0.313 0.08 0
HESKIA 28 8 162 0.434 0.434 5.03 0
LUTZ1 32 9 2100 0.5 0.5 0.05 0
BUXEY 29 11 37.5 0.389 0.389 1.22 0
SAWYER30 30 11 37.5 0.464 0.464 3.75 0
GUNTHER 35 10 60 0.341 0.341 3.54 0
HAHN 53 7 2662.5 0.401 0.401 0.08 0
KILBRID 45 9 82.5 0.5 0.5 0.08 0
TONGE70 70 18 234 0.345 0.345 126.34 0
WARNECKE 58 24 79.5 0.347 0.423 600 0.217
ARC83 83 17 5536.5 0.425 0.429 600 0.01
LUTZ3 89 18 111 0.382 0.382 9.24 0
BARTHOLD 148 12 574.5 0.437 0.439 600 0.004
MUKHERJE 94 20 256.5 0.357 0.357 2.93 0
ARC111 111 22 8533.5 0.482 0.488 600 0.013
LUTZ2 89 38 15 0.154 0.286 600 0.862
WEE-MAG 75 60 40.5 0.5 0.5 9.8 0
BARTHOL2 148 41 124.5 0.324 0.383 600 0.181
SCHOLL 297 41 2079 0.404 0.433 600 0.072

#OPT: 18/25 174.49 0.054

Table A.2: Results for |Ṽ 1| = ⌈n
2
⌉ and |Ŵ | = 0
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Appendix A. Simple assembly lines. Detailed computational results

Instance n m T LB UB CPU GAP

MERTENS 7 4 9 0 0 0.01 0
BOWMAN8 8 4 25.5 0.206 0.206 0 0
MANSOOR 11 4 67.5 0.5 0.5 0.01 0
JAESCHKE 9 5 9 0 0 0.01 0
JACKSON 11 6 10.5 0.3 0.3 0.01 0
MITCHELL 21 7 19.5 0.269 0.269 0.04 0
ROSZIEG 25 8 19.5 0.219 0.219 0.07 0
HESKIA 28 8 162 0.298 0.298 9.77 0
LUTZ1 32 9 2100 0.403 0.403 0.55 0
BUXEY 29 11 37.5 0.271 0.271 2 0
SAWYER30 30 11 37.5 0.25 0.25 8.87 0
GUNTHER 35 10 60 0.25 0.25 4.12 0
HAHN 53 7 2662.5 0.207 0.207 0.09 0
KILBRID 45 9 82.5 0.41 0.419 600 0.023
TONGE70 70 18 234 0.258 0.266 600 0.032
WARNECKE 58 24 79.5 0.242 0.324 600 0.338
ARC83 83 17 5536.5 0.268 0.278 600 0.037
LUTZ3 89 18 111 0.26 0.26 69.09 0
BARTHOLD 148 12 574.5 0.311 0.313 600 0.004
MUKHERJE 94 20 256.5 0.248 0.248 4.15 0
ARC111 111 22 8533.5 0.308 0.315 600 0.023
LUTZ2 89 38 15 0.125 0.17 600 0.357
WEE-MAG 75 60 40.5 0.3 0.5 600 0.667
BARTHOL2 148 41 124.5 0.231 0.278 600 0.203
SCHOLL 297 41 2079 0.263 0.285 600 0.086

#OPT: 15/25 243.95 0.071

Table A.3: Results for |Ṽ 1| = ⌈3n
4
⌉ and |Ŵ | = 0
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Instance n m T LB UB CPU GAP

MERTENS 7 4 9 0 0 0.03 0
BOWMAN8 8 4 25.5 0.159 0.159 0.01 0
MANSOOR 11 4 67.5 0.406 0.406 0.04 0
JAESCHKE 9 5 9 0 0 0.01 0
JACKSON 11 6 10.5 0.167 0.167 0.03 0
MITCHELL 21 7 19.5 0.219 0.219 0.07 0
ROSZIEG 25 8 19.5 0.219 0.219 0.19 0
HESKIA 28 8 162 0.256 0.256 7.7 0
LUTZ1 32 9 2100 0.282 0.282 0.51 0
BUXEY 29 11 37.5 0.172 0.172 3.81 0
SAWYER30 30 11 37.5 0.21 0.21 4.6 0
GUNTHER 35 10 60 0.2 0.2 4.97 0
HAHN 53 7 2662.5 0.14 0.14 0.12 0
KILBRID 45 9 82.5 0.331 0.345 600 0.044
TONGE70 70 18 234 0.194 0.195 600 0.007
WARNECKE 58 24 79.5 0.187 0.206 600 0.102
ARC83 83 17 5536.5 0.218 0.229 600 0.051
LUTZ3 89 18 111 0.194 0.194 82.13 0
BARTHOLD 148 12 574.5 0.222 0.224 600 0.006
MUKHERJE 94 20 256.5 0.161 0.166 600 0.035
ARC111 111 22 8533.5 0.24 0.248 600 0.032
LUTZ2 89 38 15 0.071 0.155 600 1.175
WEE-MAG 75 60 40.5 0.157 0.5 600 2.182
BARTHOL2 148 41 124.5 0.164 0.206 600 0.257
SCHOLL 297 41 2079 0.192 0.224 600 0.165

#OPT: 14/25 268.17 0.162

Table A.4: Results for |Ṽ 1| = n and |Ŵ | = 0

101



Appendix A. Simple assembly lines. Detailed computational results

Series with uncertain stations (manual execution)

Instance n m T LB UB CPU GAP

MERTENS 7 4 9 0 0 0.01 0
BOWMAN8 8 4 25.5 0.214 0.214 0 0
MANSOOR 11 4 67.5 1.75 1.75 0.01 0
JAESCHKE 9 5 9 0.125 0.125 0 0
JACKSON 11 6 10.5 0.3 0.3 0.02 0
MITCHELL 21 7 19.5 0.5 0.5 0.07 0
ROSZIEG 25 8 19.5 0.219 0.219 0.13 0
HESKIA 28 8 162 0.514 0.514 0.04 0
LUTZ1 32 9 2100 0.5 0.5 0.02 0
BUXEY 29 11 37.5 0.5 0.5 0.09 0
SAWYER30 30 11 37.5 0.786 0.786 1.45 0
GUNTHER 35 10 60 0.429 0.429 0.14 0
HAHN 53 7 2662.5 0.478 0.478 0.13 0
KILBRID 45 9 82.5 0.5 0.5 0.05 0
TONGE70 70 18 234 0.5 0.5 4.68 0
WARNECKE 58 24 79.5 0.529 0.529 8.21 0
ARC83 83 17 5536.5 0.695 0.712 600 0.025
LUTZ3 89 18 111 0.426 0.426 5.85 0
BARTHOLD 148 12 574.5 0.5 0.5 1.1 0
MUKHERJE 94 20 256.5 0.5 0.5 1.15 0
ARC111 111 22 8533.5 0.687 0.687 74.67 0
LUTZ2 89 38 15 0.25 0.5 600 1
WEE-MAG 75 60 40.5 0.558 0.558 6.78 0
BARTHOL2 148 41 124.5 0.5 0.5 40.48 0
SCHOLL 297 41 2079 0.711 0.949 600 0.335

#OPT: 22/25 77.80 0.054

Table A.5: Results for |Ṽ 1| = ⌈n
4
⌉ and |Ŵ | = ⌈m

4
⌉
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Instance n m T LB UB CPU GAP

MERTENS 7 4 9 0 0 0.03 0
BOWMAN8 8 4 25.5 0.214 0.214 0 0
MANSOOR 11 4 67.5 0.985 0.985 0.01 0
JAESCHKE 9 5 9 0 0 0.01 0
JACKSON 11 6 10.5 0.167 0.167 0.07 0
MITCHELL 21 7 19.5 0.3 0.3 0.06 0
ROSZIEG 25 8 19.5 0.219 0.219 0.07 0
HESKIA 28 8 162 0.514 0.514 0.04 0
LUTZ1 32 9 2100 0.5 0.5 0.11 0
BUXEY 29 11 37.5 0.5 0.5 0.36 0
SAWYER30 30 11 37.5 0.442 0.442 13.62 0
GUNTHER 35 10 60 0.364 0.364 2.54 0
HAHN 53 7 2662.5 0.467 0.467 0.12 0
KILBRID 45 9 82.5 0.5 0.5 0.11 0
TONGE70 70 18 234 0.376 0.376 388.17 0
WARNECKE 58 24 79.5 0.395 0.517 600 0.31
ARC83 83 17 5536.5 0.438 0.475 600 0.085
LUTZ3 89 18 111 0.321 0.321 9.74 0
BARTHOLD 148 12 574.5 0.5 0.5 1.87 0
MUKHERJE 94 20 256.5 0.425 0.433 600 0.019
ARC111 111 22 8533.5 0.604 0.632 600 0.046
LUTZ2 89 38 15 0.167 0.448 600 1.688
WEE-MAG 75 60 40.5 0.558 0.558 14.25 0
BARTHOL2 148 41 124.5 0.368 0.496 600 0.348
SCHOLL 297 41 2079 0.35 0.814 600 1.324

#OPT: 18/25 185.25 0.153

Table A.6: Results for |Ṽ 1| = ⌈n
4
⌉ and |Ŵ | = ⌈m

2
⌉
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Appendix A. Simple assembly lines. Detailed computational results

Instance n m T LB UB CPU GAP

MERTENS 7 4 9 0 0 0.01 0
BOWMAN8 8 4 25.5 0.214 0.214 0 0
MANSOOR 11 4 67.5 0.607 0.607 0.01 0
JAESCHKE 9 5 9 0.125 0.125 0 0
JACKSON 11 6 10.5 0.3 0.3 0.01 0
MITCHELL 21 7 19.5 0.313 0.313 0.11 0
ROSZIEG 25 8 19.5 0.219 0.219 0.34 0
HESKIA 28 8 162 0.429 0.429 2.72 0
LUTZ1 32 9 2100 0.5 0.5 0.19 0
BUXEY 29 11 37.5 0.342 0.342 3.44 0
SAWYER30 30 11 37.5 0.442 0.442 3.18 0
GUNTHER 35 10 60 0.341 0.341 2.09 0
HAHN 53 7 2662.5 0.307 0.307 0.13 0
KILBRID 45 9 82.5 0.5 0.5 0.46 0
TONGE70 70 18 234 0.34 0.34 515.32 0
WARNECKE 58 24 79.5 0.347 0.387 600 0.114
ARC83 83 17 5536.5 0.333 0.341 600 0.024
LUTZ3 89 18 111 0.306 0.306 9.89 0
BARTHOLD 148 12 574.5 0.436 0.439 600 0.006
MUKHERJE 94 20 256.5 0.357 0.357 16.56 0
ARC111 111 22 8533.5 0.442 0.45 600 0.019
LUTZ2 89 38 15 0.154 0.273 600 0.773
WEE-MAG 75 60 40.5 0.5 0.5 11.59 0
BARTHOL2 148 41 124.5 0.297 0.383 600 0.291
SCHOLL 297 41 2079 0.347 0.433 600 0.251

#OPT: 18/25 190.64 0.059

Table A.7: Results for |Ṽ 1| = ⌈n
2
⌉ and |Ŵ | = ⌈m

4
⌉
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Instance n m T LB UB CPU GAP

MERTENS 7 4 9 0 0 0.02 0
BOWMAN8 8 4 25.5 0.214 0.214 0.01 0
MANSOOR 11 4 67.5 0.534 0.534 0.07 0
JAESCHKE 9 5 9 0 0 0.01 0
JACKSON 11 6 10.5 0.167 0.167 0.04 0
MITCHELL 21 7 19.5 0.219 0.219 0.06 0
ROSZIEG 25 8 19.5 0.219 0.219 0.16 0
HESKIA 28 8 162 0.409 0.409 0.38 0
LUTZ1 32 9 2100 0.483 0.483 0.31 0
BUXEY 29 11 37.5 0.293 0.293 1.74 0
SAWYER30 30 11 37.5 0.339 0.339 3.01 0
GUNTHER 35 10 60 0.304 0.304 3.11 0
HAHN 53 7 2662.5 0.307 0.307 0.13 0
KILBRID 45 9 82.5 0.5 0.5 1.91 0
TONGE70 70 18 234 0.272 0.292 600 0.074
WARNECKE 58 24 79.5 0.314 0.37 600 0.177
ARC83 83 17 5536.5 0.302 0.316 600 0.047
LUTZ3 89 18 111 0.233 0.233 10.95 0
BARTHOLD 148 12 574.5 0.426 0.436 600 0.025
MUKHERJE 94 20 256.5 0.343 0.357 600 0.04
ARC111 111 22 8533.5 0.416 0.446 600 0.071
LUTZ2 89 38 15 0.154 0.277 600 0.803
WEE-MAG 75 60 40.5 0.5 0.5 18.37 0
BARTHOL2 148 41 124.5 0.258 0.383 600 0.487
SCHOLL 297 41 2079 0.265 0.422 600 0.589

#OPT: 16/25 217.61 0.093

Table A.8: Results for |Ṽ 1| = ⌈n
2
⌉ and |Ŵ | = ⌈m

2
⌉
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Appendix A. Simple assembly lines. Detailed computational results

Instance n m T LB UB CPU GAP

MERTENS 7 4 9 0 0 0.03 0
BOWMAN8 8 4 25.5 0.206 0.206 0 0
MANSOOR 11 4 67.5 0.5 0.5 0.01 0
JAESCHKE 9 5 9 0 0 0.02 0
JACKSON 11 6 10.5 0.3 0.3 0.02 0
MITCHELL 21 7 19.5 0.269 0.269 0.09 0
ROSZIEG 25 8 19.5 0.219 0.219 0.07 0
HESKIA 28 8 162 0.296 0.296 3.9 0
LUTZ1 32 9 2100 0.36 0.36 0.7 0
BUXEY 29 11 37.5 0.25 0.25 1.86 0
SAWYER30 30 11 37.5 0.25 0.25 9.2 0
GUNTHER 35 10 60 0.25 0.25 3.28 0
HAHN 53 7 2662.5 0.207 0.207 0.13 0
KILBRID 45 9 82.5 0.394 0.394 180.8 0
TONGE70 70 18 234 0.25 0.267 600 0.068
WARNECKE 58 24 79.5 0.242 0.309 600 0.276
ARC83 83 17 5536.5 0.261 0.262 600 0.004
LUTZ3 89 18 111 0.233 0.233 10.02 0
BARTHOLD 148 12 574.5 0.312 0.313 600 0.003
MUKHERJE 94 20 256.5 0.248 0.248 15.99 0
ARC111 111 22 8533.5 0.302 0.309 600 0.023
LUTZ2 89 38 15 0.071 0.214 600 1.997
WEE-MAG 75 60 40.5 0.3 0.5 600 0.667
BARTHOL2 148 41 124.5 0.233 0.278 600 0.195
SCHOLL 297 41 2079 0.249 0.285 600 0.144

#OPT: 16/25 225.05 0.135

Table A.9: Results for |Ṽ 1| = ⌈3n
4
⌉ and |Ŵ | = ⌈m

4
⌉
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Instance n m T LB UB CPU GAP

MERTENS 7 4 9 0 0 0.01 0
BOWMAN8 8 4 25.5 0.206 0.206 0 0
MANSOOR 11 4 67.5 0.5 0.5 0 0
JAESCHKE 9 5 9 0 0 0.01 0
JACKSON 11 6 10.5 0.167 0.167 0.03 0
MITCHELL 21 7 19.5 0.219 0.219 0.04 0
ROSZIEG 25 8 19.5 0.219 0.219 0.13 0
HESKIA 28 8 162 0.29 0.29 1.77 0
LUTZ1 32 9 2100 0.314 0.314 0.85 0
BUXEY 29 11 37.5 0.25 0.25 3.12 0
SAWYER30 30 11 37.5 0.25 0.25 3.71 0
GUNTHER 35 10 60 0.25 0.25 2.35 0
HAHN 53 7 2662.5 0.207 0.207 0.11 0
KILBRID 45 9 82.5 0.385 0.39 600 0.011
TONGE70 70 18 234 0.238 0.238 319.91 0
WARNECKE 58 24 79.5 0.239 0.308 600 0.288
ARC83 83 17 5536.5 0.256 0.262 600 0.025
LUTZ3 89 18 111 0.207 0.207 16.52 0
BARTHOLD 148 12 574.5 0.309 0.313 600 0.013
MUKHERJE 94 20 256.5 0.239 0.246 600 0.031
ARC111 111 22 8533.5 0.299 0.309 600 0.034
LUTZ2 89 38 15 0.071 0.194 600 1.714
WEE-MAG 75 60 40.5 0.3 0.5 600 0.667
BARTHOL2 148 41 124.5 0.209 0.278 600 0.332
SCHOLL 297 41 2079 0.212 0.285 600 0.348

#OPT: 15/25 253.94 0.138

Table A.10: Results for |Ṽ 1| = ⌈3n
4
⌉ and |Ŵ | = ⌈m

2
⌉
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Appendix A. Simple assembly lines. Detailed computational results
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Appendix B

Simple assembly lines. Detailed

instances

Data added to instance ARC83

Random task permutation
39 12 18 41 8 23 56 69 30 59 16 26 7 2 57 14 47 27 11 37 81 36 1 68 73 71 61 3 72 64 19
34 45 65 6 43 35 29 74 62 75 66 33 20 21 58 9 24 50 82 22 78 13 25 83 5 54 4 38 60 49 52
40 17 55 79 53 10 32 48 46 28 76 44 67 77 51 63 31 15 80 42 70
Random workstation permutation
13 5 4 3 16 9 1 6 17 12 7 14 8 15 10 2 11

Data added to instance ARC111

Random task permutation
39 20 95 64 85 33 75 49 52 13 107 1 61 98 81 94 18 70 26 63 56 38 35 44 16 45 89 77 19
73 23 43 74 32 67 51 96 58 76 5 109 28 4 7 71 102 101 12 34 30 9 10 17 99 100 3 25 104
111 57 72 84 65 108 80 82 91 14 27 90 92 41 11 60 50 93 54 22 103 68 88 8 59 47 97 2 29
79 48 86 83 66 24 6 46 62 69 78 87 31 15 55 36 53 40 110 21 106 37 42 105
Random workstation permutation
4 8 1 20 7 21 19 2 15 13 17 11 16 3 10 5 12 18 22 9 6 14

Data added to instance BARTHOL2

Random task permutation
39 77 70 121 74 75 136 145 96 33 60 16 58 12 40 107 115 98 8 120 131 18 129 37 126 111
106 76 6 36 108 7 38 92 48 141 122 97 34 143 66 44 41 54 123 127 104 4 114 57 128 21
137 24 67 42 2 130 135 68 47 73 19 146 109 35 113 134 147 83 100 85 87 95 28 55 22 81
63 139 26 9 13 88 103 64 31 56 59 25 3 51 14 72 29 71 1 89 65 125 82 53 52 45 148 50 78
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Appendix B. Simple assembly lines. Detailed instances

43 11 142 46 5 15 117 93 23 20 138 91 119 132 90 110 61 84 112 140 32 17 133 49 79 124
116 102 27 99 101 118 30 10 62 94 80 105 86 69 144
Random workstation permutation
34 19 25 32 29 4 37 12 1 13 21 30 11 35 23 28 5 8 17 10 22 40 36 7 14 31 24 2 16 41 27 6
20 9 18 39 38 33 15 3 26

Data added to instance BARTHOLD

Random task permutation
39 77 70 121 74 75 136 145 96 33 60 16 58 12 40 107 115 98 8 120 131 18 129 37 126 111
106 76 6 36 108 7 38 92 48 141 122 97 34 143 66 44 41 54 123 127 104 4 114 57 128 21
137 24 67 42 2 130 135 68 47 73 19 146 109 35 113 134 147 83 100 85 87 95 28 55 22 81
63 139 26 9 13 88 103 64 31 56 59 25 3 51 14 72 29 71 1 89 65 125 82 53 52 45 148 50 78
43 11 142 46 5 15 117 93 23 20 138 91 119 132 90 110 61 84 112 140 32 17 133 49 79 124
116 102 27 99 101 118 30 10 62 94 80 105 86 69 144
Random workstation permutation
12 7 4 1 8 6 9 3 2 5 11 10

Data added to instance BOWMAN8

Random task permutation
7 6 5 3 8 2 4 1
Random workstation permutation
4 3 2 1

Data added to instance BUXEY

Random task permutation
10 21 18 23 6 16 22 14 19 17 2 4 7 20 5 9 3 15 24 1 27 13 26 28 12 29 8 11 25
Random workstation permutation
11 8 2 5 9 7 3 6 4 10 1

Data added to instance GUNTHER

Random task permutation
23 7 18 19 22 28 4 33 15 14 13 9 17 11 31 6 24 3 10 1 35 2 29 21 32 25 20 8 27 5 30 16 12
34 26
Random workstation permutation
10 8 9 4 1 7 3 5 6 2

Data added to instance HAHN
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Random task permutation
5 41 50 53 20 22 21 6 29 9 35 11 13 8 49 10 38 34 32 25 46 36 23 30 19 18 7 26 24 37 51
16 39 43 28 12 17 52 14 15 2 1 44 45 4 47 40 3 33 48 42 31 27
Random workstation permutation
1 2 4 5 7 3 6

Data added to instance HESKIA

Random task permutation
7 25 15 19 24 4 1 17 3 28 16 8 21 10 13 9 26 18 14 11 2 12 27 5 22 6 20 23
Random workstation permutation
4 7 1 3 6 8 5 2

Data added to instance JACKSON

Random task permutation
8 9 10 2 7 3 1 5 6 11 4
Random workstation permutation
5 3 6 4 1 2

Data added to instance JAESCHKE

Random task permutation
6 4 9 8 5 1 2 7 3
Random workstation permutation
3 2 1 5 4

Data added to instance KILBRID

Random task permutation
16 8 22 45 31 32 23 19 18 37 21 44 5 14 15 4 30 38 12 3 6 43 1 33 25 13 28 42 7 39 2 10
24 35 36 27 29 34 40 20 41 17 11 9 26
Random workstation permutation
9 8 1 2 5 7 3 4 6

Data added to instance LUTZ1

Random task permutation
15 18 8 30 2 4 7 11 14 31 13 5 25 21 19 20 17 29 24 10 32 3 23 12 27 26 9 22 28 1 6 16
Random workstation permutation
7 5 4 2 6 9 1 3 8
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Appendix B. Simple assembly lines. Detailed instances

Data added to instance LUTZ2

Random task permutation
3 85 71 18 30 46 62 2 11 53 58 14 78 12 22 52 82 20 68 27 28 37 73 87 89 50 13 25 61 17
70 86 24 47 54 29 5 66 1 31 56 69 79 4 21 75 74 64 32 41 38 9 59 63 10 48 49 7 19 39 65
15 51 60 43 55 76 33 57 8 23 84 35 26 44 6 83 40 45 80 16 88 36 42 67 72 77 81 34
Random workstation permutation
23 8 38 6 20 19 29 7 15 24 13 39 2 34 22 4 17 35 31 33 26 36 25 16 1 3 14 32 27 5 28 30
10 21 9 18 37 12 11

Data added to instance LUTZ3

Random task permutation
27 37 22 75 29 32 56 5 78 41 47 82 7 59 4 15 80 25 28 57 34 16 55 61 54 35 42 71 44 73
50 31 63 76 51 72 40 20 81 83 33 21 85 36 3 43 48 79 19 46 77 70 64 12 6 18 67 23 45 2
30 69 9 11 10 17 53 52 86 89 8 38 74 65 24 39 14 26 49 13 87 62 88 84 58 66 68 60 1
Random workstation permutation
8 16 18 6 5 17 9 10 11 7 1 14 15 3 13 2 4 12

Data added to instance MANSOOR

Random task permutation
7 9 4 2 11 1 10 6 3 8 5
Random workstation permutation
3 4 1 2

Data added to instance MERTENS

Random task permutation
3 7 6 4 5 2 1
Random workstation permutation
3 4 2 1

Data added to instance MITCHELL

Random task permutation
14 10 16 5 8 7 17 2 3 15 19 18 12 21 4 11 13 9 1 20 6
Random workstation permutation
6 3 7 4 5 1 2
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Data added to instance MUKHERJE

Random task permutation
79 33 54 7 88 18 40 30 25 65 3 5 17 87 73 45 52 8 53 68 83 64 80 32 57 92 42 59 72 48 61
50 24 82 9 35 63 75 23 85 49 67 70 81 58 77 21 89 36 22 4 90 47 12 51 2 56 10 78 14 69
19 27 76 6 66 43 60 39 28 46 38 71 93 44 94 1 37 26 84 13 16 74 31 41 62 86 34 15 55 11
20 29 91
Random workstation permutation
12 4 17 10 3 1 6 15 13 7 18 5 11 20 14 9 19 2 16 8

Data added to instance ROSZIEG

Random task permutation
14 23 19 15 11 8 17 6 24 5 1 4 7 25 16 2 13 21 18 12 20 22 9 10 3
Random workstation permutation
7 1 3 6 2 5 8 4

Data added to instance SAWYER30

Random task permutation
30 3 2 9 22 12 11 17 29 19 27 26 16 28 23 5 21 25 18 7 10 24 8 13 6 4 20 15 1 14
Random workstation permutation
2 4 11 3 8 9 10 6 5 7 1

Data added to instance SCHOLL

Random task permutation
121 53 239 163 222 272 207 175 15 271 285 250 74 168 228 214 263 196 256 30 211 147
144 227 201 106 46 141 52 184 177 146 219 240 205 249 125 283 171 216 68 223 234 10
29 145 274 48 209 19 108 194 111 182 183 160 77 269 200 112 85 41 237 2 25 257 124 235
164 149 270 24 136 9 169 203 291 210 220 76 57 23 99 88 42 225 64 120 162 16 122 155 62
34 289 116 148 60 245 102 248 32 114 246 231 142 199 193 192 258 118 190 189 1 130 84
265 153 204 259 101 104 218 134 113 82 47 20 81 282 224 58 33 296 91 229 131 281 186
27 179 253 65 35 247 51 254 4 129 242 73 208 161 295 137 212 241 105 266 45 151 275
103 8 31 264 152 233 119 260 244 92 202 133 37 284 59 66 273 174 195 159 49 70 187 252
166 165 191 226 79 36 67 185 294 83 7 55 251 293 297 39 78 96 97 69 197 279 157 206 90
178 213 110 287 56 180 93 11 107 44 126 286 109 80 17 139 150 292 167 172 230 94 143
238 5 40 232 135 18 138 13 75 236 127 117 156 217 3 95 288 12 278 262 215 22 132 86
173 38 261 176 71 140 170 181 54 123 21 61 6 277 87 115 154 290 26 280 89 243 98 128
72 188 28 255 63 198 158 268 221 43 100 14 276 50 267
Random workstation permutation
27 14 28 4 35 34 11 30 9 20 13 29 1 36 32 22 17 41 12 10 21 2 15 33 40 18 24 5 8 19 37 6
38 31 39 26 16 23 3 25 7
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Appendix B. Simple assembly lines. Detailed instances

Data added to instance TONGE70

Random task permutation
49 16 13 57 11 9 63 24 59 14 21 69 36 55 37 7 15 39 33 46 52 67 5 3 19 45 28 25 4 48 22
31 56 61 10 23 12 66 34 54 50 38 62 65 30 40 43 47 68 51 58 42 44 70 20 26 27 17 41 8 64
32 1 60 18 29 2 53 35 6
Random workstation permutation
10 4 2 16 8 5 18 1 6 17 7 14 3 15 13 9 12 11

Data added to instance WARNECKE

Random task permutation
35 29 42 51 15 21 38 33 45 41 40 34 14 47 57 1 49 3 22 10 27 16 26 28 19 37 8 36 43 54
12 9 4 24 30 6 50 58 44 13 55 11 7 17 46 2 32 18 53 31 48 52 25 20 39 23 5 56
Random workstation permutation
5 8 23 21 17 18 13 4 19 6 15 3 14 1 9 16 11 20 24 12 10 22 7 2

Data added to instance WEE-MAG

Random task permutation
40 10 47 50 59 43 33 49 17 4 56 41 21 55 11 37 51 74 71 28 18 25 20 52 2 53 65 63 35 38
26 6 67 66 75 69 3 64 60 68 44 24 14 54 42 61 12 19 9 16 46 7 22 45 27 39 15 31 23 57 34
29 72 73 32 1 5 8 13 30 36 70 58 62 48
Random workstation permutation
18 1 8 34 5 20 10 12 17 31 33 15 30 38 36 4 22 14 25 2 23 24 43 35 27 7 13 39 40 28 6 11
45 44 21 16 9 41 32 42 37 26 29 3 19
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Appendix C

Transfer lines. Detailed computational

results
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Table C.1: Series 1. Example of table for metrics comparison;
rmax = 2.

P1 P∞

Heuristic Solver Heuristic Solver
Inst %UT LB CPU LB UB GAP CPU LB CPU LB UB GAP CPU
S1.0 50 28.8 0.17 30.4 30.4 0.0 52.44 19.4 0.41 21.15 21.15 0.0 15.57

75 28.8 0.13 30.4 30.4 0.0 58.82 11.867 0.35 13.2 13.2 0.0 23.97
100 28.8 0.12 30.4 30.4 0.0 83.67 9.5 0.48 10.133 10.133 0.0 6.74

S1.1 50 24.6 0.16 26.7 39.2 0.468 600.00 16.0 0.48 19.3 19.3 0.0 12.07
75 23.8 0.17 23.8 38.8 0.63 600.00 10.3 0.44 11.55 11.55 0.0 193.60
100 23.8 0.13 23.8 38.8 0.63 600.00 7.8 0.47 7.933 7.933 0.0 458.60

S1.2 50 27.7 0.12 29.1 29.1 0.0 486.42 16.1 0.43 17.55 21.369 0.218 600.00
75 26.4 0.13 28.1 31.2 0.11 600.00 12.1 0.57 13.0 13.0 0.0 524.50
100 27.7 0.11 28.0 36.7 0.311 600.00 9.2 0.35 9.333 9.333 0.0 8.09

S1.3 50 33.1 0.18 33.1 51.4 0.553 600.00 20.6 0.44 22.05 24.9 0.129 600.00
75 29.3 0.16 29.5 51.4 0.742 600.00 12.85 0.58 14.0 39.075 1.791 600.00
100 29.3 0.18 29.4 51.4 0.748 600.00 9.4 0.73 9.833 18.0 0.831 600.00

S1.4 50 25.0 0.14 28.5 46.771 0.641 600.00 17.65 0.43 18.6 18.6 0.0 133.00
75 25.5 0.16 26.1 33.1 0.268 600.00 11.15 0.59 12.35 12.35 0.0 54.03
100 24.3 0.14 26.3 33.1 0.259 600.00 8.5 0.47 8.767 8.767 0.0 18.85

S1.5 50 31.9 0.19 32.3 40.2 0.245 600.00 20.15 0.37 20.65 20.65 0.0 22.11
75 29.0 0.15 29.0 47.673 0.644 600.00 14.45 0.64 14.45 16.35 0.131 600.00
100 29.0 0.14 29.4 41.3 0.405 600.00 9.567 0.49 9.833 9.833 0.0 283.20

S1.6 50 27.0 0.16 28.5 35.4 0.242 600.00 17.7 0.48 18.9 20.8 0.101 600.00
75 26.5 0.13 26.6 36.1 0.357 600.00 12.8 0.52 13.1 14.3 0.092 600.00
100 26.5 0.12 27.9 28.6 0.025 600.00 8.833 0.41 9.3 9.3 0.0 13.30

S1.7 50 32.7 0.13 38.5 38.5 0.0 243.34 20.5 0.85 21.1 32.8 0.555 600.00
75 29.1 0.15 29.6 41.0 0.385 600.00 13.65 0.53 14.3 20.3 0.42 600.00
100 29.0 0.12 29.0 43.9 0.514 600.00 9.7 0.56 9.867 9.867 0.0 570.00

S1.8 50 32.4 0.17 32.4 32.4 0.0 138.04 18.5 0.47 20.6 20.6 0.0 48.04
75 26.9 0.14 28.0 35.1 0.254 600.00 12.15 0.54 13.7 13.7 0.0 476.50
100 26.7 0.14 27.9 35.1 0.258 600.00 8.9 0.51 9.633 9.633 0.0 33.22

S1.9 50 23.7 0.08 24.4 24.4 0.0 64.73 12.9 0.23 12.9 12.9 0.0 3.90
75 24.4 0.08 24.4 24.4 0.0 120.12 9.467 0.25 9.467 9.467 0.0 2.11
100 24.4 0.07 24.4 24.4 0.0 30.68 8.133 0.21 8.133 8.133 0.0 0.05

S1.10 50 25.4 0.12 26.7 27.6 0.034 600.00 18.3 0.37 20.2 20.2 0.0 31.47
75 25.0 0.13 25.7 25.7 0.0 141.71 11.367 0.32 11.367 11.367 0.0 8.13
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Table C.1 – continued from previous page
P1 P∞

Heuristic Solver Heuristic Solver
Inst %UT LB CPU LB UB GAP CPU LB CPU LB UB GAP CPU

100 24.9 0.10 25.2 25.2 0.0 103.97 8.3 0.32 8.4 8.4 0.0 3.28
S1.11 50 23.6 0.10 25.6 25.6 0.0 75.83 12.95 0.23 12.95 12.95 0.0 4.32

75 23.0 0.10 25.4 25.4 0.0 75.04 8.533 0.35 8.633 8.633 0.0 1.55
100 23.0 0.09 25.4 25.4 0.0 44.97 7.833 0.27 8.467 8.467 0.0 0.22

S1.12 50 27.1 0.18 27.1 36.5 0.347 600.00 18.5 0.57 18.5 18.5 0.0 94.97
75 25.1 0.19 25.9 45.1 0.741 600.00 10.75 0.44 12.05 18.25 0.515 600.00
100 25.1 0.15 25.9 36.5 0.409 600.00 8.367 0.55 8.867 8.867 0.0 80.00

S1.13 50 25.5 0.09 25.5 25.5 0.0 65.58 15.3 0.28 17.3 17.3 0.0 2.64
75 25.5 0.09 25.5 25.5 0.0 82.56 10.5 0.28 11.95 11.95 0.0 5.12
100 25.5 0.09 25.5 25.5 0.0 66.93 8.5 0.28 8.5 8.5 0.0 0.31

S1.14 50 30.7 0.12 32.1 32.1 0.0 225.65 19.0 0.50 20.3 20.3 0.0 101.20
75 28.7 0.11 30.1 30.3 0.007 600.00 11.45 0.37 12.2 12.2 0.0 22.43
100 28.7 0.10 30.1 30.1 0.0 171.88 9.567 0.37 10.033 10.033 0.0 4.90

S1.15 50 25.1 0.15 25.3 28.9 0.142 600.00 16.05 0.39 16.05 16.05 0.0 29.85
75 24.3 0.14 24.7 41.0 0.66 600.00 11.15 0.54 11.55 11.55 0.0 45.24
100 24.3 0.13 24.7 33.8 0.368 600.00 8.1 0.54 8.367 8.367 0.0 68.15

S1.16 50 28.4 0.14 29.8 39.3 0.319 600.00 19.35 0.55 21.1 46.93 1.224 600.00
75 27.6 0.18 27.6 39.3 0.424 600.00 12.55 0.57 13.15 19.65 0.494 600.00
100 27.6 0.17 27.6 39.3 0.424 600.00 9.033 0.55 9.333 11.5 0.232 600.00

S1.17 50 32.0 0.14 32.0 32.0 0.0 140.43 18.05 0.44 18.4 18.4 0.0 78.17
75 26.9 0.16 27.1 36.2 0.336 600.00 12.9 0.40 14.0 14.7 0.05 600.00
100 26.9 0.15 28.1 36.2 0.288 600.00 8.933 0.40 9.367 9.367 0.0 16.43

S1.18 50 30.0 0.18 30.7 50.6 0.648 600.00 20.15 0.49 20.6 20.6 0.0 23.30
75 30.4 0.20 30.7 50.6 0.648 600.00 13.85 0.56 13.85 17.4 0.256 600.00
100 30.4 0.18 30.7 35.3 0.15 600.00 10.0 0.79 10.233 10.233 0.0 86.67

S1.19 50 30.8 0.14 31.4 37.8 0.204 600.00 19.0 0.50 19.85 19.85 0.0 31.92
75 29.4 0.15 29.4 42.1 0.432 600.00 12.0 0.42 13.35 14.6 0.094 600.00
100 29.1 0.11 29.4 36.9 0.255 600.00 9.733 0.40 9.8 9.8 0.0 14.20

S1.20 50 32.3 0.16 32.8 43.003 0.311 600.00 19.4 0.85 19.7 50.1 1.543 600.00
75 25.9 0.18 26.3 44.4 0.688 600.00 11.2 0.64 11.45 39.964 2.49 600.00
100 25.9 0.17 27.4 49.068 0.791 600.00 8.6 0.77 9.133 14.65 0.604 600.00

S1.21 50 31.9 0.17 33.0 40.2 0.218 600.00 20.1 0.68 20.75 37.6 0.812 600.00
75 30.3 0.16 31.2 38.8 0.244 600.00 14.8 0.71 15.15 20.1 0.327 600.00
100 30.3 0.15 30.8 38.8 0.26 600.00 10.233 0.63 10.433 11.1 0.064 600.00
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Table C.1 – continued from previous page
P1 P∞

Heuristic Solver Heuristic Solver
Inst %UT LB CPU LB UB GAP CPU LB CPU LB UB GAP CPU
S1.22 50 30.6 0.14 33.8 35.4 0.047 600.00 18.5 0.50 19.9 19.9 0.0 116.80

75 24.5 0.15 25.3 41.5 0.64 600.00 11.65 0.47 12.05 16.55 0.373 600.00
100 24.5 0.14 25.3 38.6 0.526 600.00 8.167 0.56 8.467 8.467 0.0 427.70

S1.23 50 32.8 0.14 33.4 41.7 0.249 600.00 18.4 0.46 19.45 24.15 0.242 600.00
75 27.4 0.15 27.4 54.7 0.996 600.00 12.55 0.62 12.7 20.25 0.594 600.00
100 27.4 0.15 27.4 48.268 0.762 600.00 9.133 0.59 9.233 12.767 0.383 600.00

S1.24 50 33.3 0.18 34.0 38.2 0.124 600.00 20.5 0.44 20.6 20.6 0.0 33.35
75 26.3 0.20 26.5 49.062 0.851 600.00 11.25 0.52 12.7 20.0 0.575 600.00
100 26.3 0.17 27.3 43.8 0.604 600.00 9.067 0.56 9.233 10.367 0.123 600.00

S1.25 50 30.9 0.11 31.9 35.1 0.1 600.00 20.3 0.37 21.05 21.05 0.0 208.00
75 29.0 0.14 29.0 44.484 0.534 600.00 12.85 0.43 14.15 14.15 0.0 245.30
100 29.0 0.13 29.3 40.5 0.382 600.00 9.667 0.40 10.0 10.0 0.0 144.40

S1.26 50 20.8 0.08 21.2 21.2 0.0 16.71 11.3 0.21 13.8 13.8 0.0 2.62
75 20.7 0.08 21.2 21.2 0.0 27.14 7.5 0.28 7.5 7.5 0.0 9.34
100 20.3 0.09 21.2 21.2 0.0 30.04 6.767 0.22 7.067 7.067 0.0 1.07

S1.27 50 30.2 0.14 30.8 40.6 0.318 600.00 19.3 0.45 20.2 22.5 0.114 600.00
75 26.7 0.12 29.2 36.1 0.236 600.00 11.3 0.53 12.8 15.05 0.176 600.00
100 26.7 0.11 29.2 31.6 0.082 600.00 8.733 0.42 9.733 9.733 0.0 14.19

S1.28 50 32.4 0.20 32.4 50.1 0.546 600.00 18.5 0.63 20.15 30.7 0.524 600.00
75 26.4 0.17 27.6 50.1 0.815 600.00 12.3 0.64 13.2 21.75 0.648 600.00
100 26.4 0.17 27.6 50.1 0.815 600.00 8.8 0.52 9.2 17.65 0.918 600.00

S1.29 50 35.0 0.15 38.0 38.8 0.021 600.00 19.5 0.56 19.9 21.2 0.065 600.00
75 29.3 0.17 31.3 50.2 0.604 600.00 13.15 0.60 14.05 19.4 0.381 600.00
100 28.9 0.16 29.7 38.8 0.306 600.00 9.633 0.65 10.633 10.633 0.0 84.29

S1.30 50 34.1 0.16 35.0 35.0 0.0 149.85 19.5 0.45 19.5 19.5 0.0 178.50
75 26.3 0.14 26.7 36.3 0.36 600.00 12.05 0.51 12.25 16.95 0.384 600.00
100 26.3 0.13 26.7 35.0 0.311 600.00 8.633 0.43 8.9 8.9 0.0 32.47

S1.31 50 30.7 0.18 32.9 40.4 0.228 600.00 20.3 0.47 20.7 21.7 0.048 600.00
75 28.2 0.12 29.0 42.081 0.451 600.00 11.867 0.60 12.55 12.55 0.0 301.10
100 28.2 0.11 29.0 37.412 0.29 600.00 9.367 0.44 9.667 9.667 0.0 11.61

S1.32 50 33.4 0.17 33.4 49.286 0.476 600.00 18.7 0.57 19.4 49.436 1.548 600.00
75 27.4 0.16 29.4 37.6 0.279 600.00 12.05 0.48 13.1 30.7 1.344 600.00
100 27.4 0.15 29.4 43.7 0.486 600.00 9.2 0.66 9.8 10.233 0.044 600.00

S1.33 50 30.9 0.13 30.9 30.9 0.0 202.80 17.9 0.42 19.6 19.6 0.0 33.74
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Table C.1 – continued from previous page
P1 P∞

Heuristic Solver Heuristic Solver
Inst %UT LB CPU LB UB GAP CPU LB CPU LB UB GAP CPU

75 28.1 0.14 28.1 28.1 0.0 325.15 12.05 0.66 13.75 13.75 0.0 102.80
100 28.1 0.13 28.1 28.1 0.0 117.56 9.3 0.65 9.367 9.367 0.0 4.85

S1.34 50 31.4 0.24 31.7 40.5 0.278 600.00 19.0 0.54 20.25 20.25 0.0 272.20
75 25.9 0.20 27.1 57.2 1.111 600.00 11.9 0.58 12.7 21.45 0.689 600.00
100 25.9 0.17 27.5 43.9 0.596 600.00 8.667 0.62 9.167 18.0 0.964 600.00

S1.35 50 27.5 0.12 30.3 30.3 0.0 96.22 19.5 0.30 19.55 19.55 0.0 23.88
75 27.3 0.12 28.1 28.1 0.0 112.62 12.3 0.30 13.45 13.45 0.0 7.78
100 27.3 0.12 28.1 28.1 0.0 196.83 9.1 0.36 9.367 9.367 0.0 1.75

S1.36 50 31.3 0.11 31.3 32.8 0.048 600.00 15.65 0.40 16.4 16.4 0.0 82.29
75 23.7 0.13 24.0 38.4 0.6 600.00 11.3 0.39 11.4 11.4 0.0 61.17
100 23.7 0.12 25.4 27.2 0.071 600.00 7.9 0.40 8.467 8.467 0.0 7.67

S1.37 50 25.2 0.11 26.2 26.2 0.0 78.69 16.7 0.28 17.6 17.6 0.0 11.56
75 23.0 0.11 23.4 25.2 0.077 600.00 10.65 0.33 10.85 10.85 0.0 18.30
100 23.0 0.10 23.4 23.4 0.0 87.46 7.8 0.33 7.8 7.8 0.0 6.81

S1.38 50 24.7 0.15 25.0 25.0 0.0 62.42 13.35 0.41 13.85 13.85 0.0 13.05
75 24.7 0.14 25.0 25.0 0.0 57.55 10.7 0.44 12.2 12.2 0.0 8.77
100 24.7 0.13 25.0 25.0 0.0 72.81 8.333 0.28 8.333 8.333 0.0 0.81

S1.39 50 28.2 0.14 28.2 37.5 0.33 600.00 18.2 0.72 18.2 18.2 0.0 28.16
75 28.2 0.13 28.2 33.8 0.199 600.00 12.9 0.41 12.9 12.9 0.0 143.80
100 28.1 0.11 28.1 37.5 0.335 600.00 9.367 0.51 9.367 9.367 0.0 9.71

S1.40 50 27.1 0.15 27.1 36.1 0.332 600.00 16.8 0.42 18.5 18.5 0.0 36.53
75 24.8 0.16 25.6 37.4 0.461 600.00 11.95 0.57 12.1 14.15 0.169 600.00
100 24.8 0.15 26.0 36.1 0.388 600.00 8.367 0.49 8.8 8.8 0.0 16.00

S1.41 50 26.8 0.12 28.8 28.8 0.0 107.36 18.05 0.34 19.65 19.65 0.0 12.80
75 25.6 0.11 27.1 27.1 0.0 458.98 11.5 0.52 12.9 12.9 0.0 15.18
100 25.6 0.10 27.1 27.1 0.0 225.76 8.667 0.40 9.033 9.033 0.0 5.97

S1.42 50 30.7 0.17 30.7 42.0 0.368 600.00 18.9 0.56 19.65 50.1 1.55 600.00
75 25.7 0.18 25.9 39.7 0.533 600.00 11.45 0.60 12.4 21.0 0.694 600.00
100 25.8 0.16 26.8 49.294 0.839 600.00 8.4 0.54 8.9 17.9 1.011 600.00

S1.43 50 32.8 0.20 32.8 40.8 0.244 600.00 19.95 0.76 20.2 39.8 0.97 600.00
75 27.0 0.19 28.5 49.198 0.726 600.00 12.65 1.08 14.25 37.6 1.639 600.00
100 27.0 0.18 28.5 45.0 0.579 600.00 8.7 0.65 9.5 19.9 1.095 600.00

S1.44 50 34.0 0.21 34.0 40.1 0.179 600.00 18.95 0.49 20.6 20.75 0.007 600.00
75 28.4 0.21 28.5 45.894 0.61 600.00 13.0 0.65 13.4 20.5 0.53 600.00
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Table C.1 – continued from previous page
P1 P∞

Heuristic Solver Heuristic Solver
Inst %UT LB CPU LB UB GAP CPU LB CPU LB UB GAP CPU

100 28.4 0.20 28.5 40.1 0.407 600.00 9.1 0.56 9.5 15.2 0.6 600.00
S1.45 50 28.3 0.14 28.3 29.4 0.039 600.00 17.15 0.59 18.2 18.2 0.0 117.60

75 22.1 0.12 22.8 36.8 0.614 600.00 9.9 0.42 9.9 16.95 0.712 600.00
100 22.1 0.11 22.8 36.4 0.596 600.00 7.367 0.45 7.6 7.6 0.0 517.40

S1.46 50 31.1 0.16 31.1 34.3 0.103 600.00 18.25 0.35 18.25 18.25 0.0 19.94
75 26.9 0.15 26.9 33.0 0.227 600.00 11.85 0.57 12.9 12.9 0.0 391.50
100 26.9 0.14 26.9 33.0 0.227 600.00 8.967 0.49 9.067 9.067 0.0 14.14

S1.47 50 25.6 0.15 27.2 40.4 0.485 600.00 16.1 0.54 16.25 20.2 0.243 600.00
75 24.0 0.14 25.0 40.4 0.616 600.00 10.05 0.51 11.0 21.45 0.95 600.00
100 22.7 0.11 23.8 40.4 0.697 600.00 7.567 0.38 8.233 8.233 0.0 240.00

S1.48 50 28.7 0.14 29.7 32.2 0.084 600.00 16.85 0.44 19.3 19.3 0.0 177.00
75 27.5 0.17 27.7 33.1 0.195 600.00 12.2 0.39 13.7 13.7 0.0 109.20
100 27.5 0.16 27.7 33.1 0.195 600.00 9.167 0.43 9.467 9.467 0.0 59.85

S1.49 50 30.1 0.20 30.1 39.4 0.309 600.00 16.7 0.46 18.1 18.1 0.0 469.80
75 25.6 0.13 25.9 39.0 0.506 600.00 11.65 0.43 12.1 16.25 0.343 600.00
100 25.4 0.14 26.4 39.1 0.481 600.00 8.167 0.48 8.8 8.8 0.0 53.24
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Table C.2: Series 2. Example of table for metrics compari-

son; rmax = 2.

P1 P∞

Heuristic Solver Heuristic Solver
Inst %UT LB CPU LB UB GAP CPU LB CPU LB UB GAP CPU
S2.0 50 35.8 0.19 35.8 50.2 0.402 600.00 21.4 0.83 22.7 50.2 1.211 600.00

75 31.3 0.18 32.5 50.2 0.545 600.00 14.3 0.94 15.65 50.2 2.208 600.00
100 30.0 0.16 31.3 54.267 0.734 600.00 9.967 0.96 10.567 34.766 2.29 600.00

S2.1 50 31.3 0.24 33.5 56.8 0.696 600.00 17.75 0.80 20.0 50.2 1.51 600.00
75 25.1 0.21 26.9 51.2 0.903 600.00 11.45 0.83 11.75 45.408 2.864 600.00
100 25.4 0.18 26.2 50.9 0.943 600.00 8.467 1.06 8.867 23.05 1.6 600.00

S2.2 50 33.1 0.18 34.7 45.4 0.308 600.00 20.65 0.76 22.3 51.4 1.305 600.00
75 28.5 0.17 30.2 43.8 0.45 600.00 12.95 0.76 14.0 36.7 1.621 600.00
100 28.6 0.17 29.7 43.8 0.475 600.00 9.433 0.79 9.967 18.35 0.841 600.00

S2.3 50 35.6 0.19 38.3 59.5 0.554 600.00 22.15 1.02 22.4 51.4 1.295 600.00
75 31.2 0.31 33.6 60.0 0.786 600.00 13.75 0.95 15.2 51.4 2.382 600.00
100 30.0 0.17 30.3 60.0 0.98 600.00 9.9 1.29 10.2 45.686 3.479 600.00

S2.4 50 31.9 0.25 32.5 59.7 0.837 600.00 18.7 0.92 20.65 50.5 1.446 600.00
75 27.5 0.32 29.0 52.7 0.817 600.00 11.75 0.91 13.2 50.1 2.795 600.00
100 26.0 0.17 26.9 56.413 1.097 600.00 8.567 1.48 9.1 45.375 3.986 600.00

S2.5 50 35.5 0.21 37.3 51.8 0.389 600.00 21.2 0.79 22.7 51.8 1.282 600.00
75 33.4 0.18 34.1 60.0 0.76 600.00 14.3 0.84 15.25 50.354 2.302 600.00
100 30.5 0.18 31.6 58.5 0.851 600.00 9.767 0.78 10.333 37.225 2.602 600.00

S2.6 50 28.0 0.22 28.6 35.2 0.231 600.00 17.05 0.56 21.35 21.35 0.0 565.30
75 26.0 0.15 28.5 35.4 0.242 600.00 12.55 0.50 14.3 14.3 0.0 115.50
100 26.0 0.14 28.6 28.6 0.0 384.09 8.833 0.53 9.533 9.533 0.0 14.37

S2.7 50 38.5 0.19 38.5 55.8 0.449 600.00 21.25 0.73 23.0 51.8 1.252 600.00
75 30.6 0.19 31.2 55.66 0.784 600.00 14.15 1.17 15.45 50.6 2.275 600.00
100 30.4 0.19 31.1 52.2 0.678 600.00 10.233 1.00 10.567 38.538 2.647 600.00

S2.8 50 34.5 0.20 36.8 51.4 0.397 600.00 20.2 0.63 20.8 42.8 1.058 600.00
75 27.5 0.16 29.1 51.4 0.766 600.00 12.8 0.62 13.75 41.3 2.004 600.00
100 27.5 0.19 28.8 51.4 0.785 600.00 9.167 1.07 9.7 22.6 1.33 600.00

S2.9 50 34.5 0.18 35.2 52.1 0.48 600.00 20.65 0.57 21.3 50.7 1.38 600.00
75 30.4 0.23 31.2 52.1 0.67 600.00 14.05 0.85 15.05 50.347 2.345 600.00
100 30.8 0.18 30.8 48.073 0.561 600.00 10.167 0.70 10.267 20.0 0.948 600.00

S2.10 50 34.6 0.20 36.6 57.0 0.557 600.00 20.1 0.69 22.7 51.6 1.273 600.00121
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Table C.2 – continued from previous page
P1 P∞

Heuristic Solver Heuristic Solver
Inst %UT LB CPU LB UB GAP CPU LB CPU LB UB GAP CPU

75 28.6 0.19 28.8 57.0 0.979 600.00 13.0 0.79 14.3 50.2 2.51 600.00
100 28.5 0.16 30.0 57.0 0.9 600.00 9.5 0.91 9.967 45.57 3.572 600.00

S2.11 50 34.5 0.22 36.3 53.6 0.477 600.00 20.95 0.68 22.45 51.7 1.303 600.00
75 29.3 0.19 30.1 56.4 0.874 600.00 13.85 0.82 14.8 50.9 2.439 600.00
100 28.8 0.17 30.1 53.2 0.767 600.00 9.767 1.08 10.033 32.758 2.265 600.00

S2.12 50 32.4 0.18 33.5 52.7 0.573 600.00 19.2 0.85 20.4 50.9 1.495 600.00
75 25.9 0.23 27.0 52.7 0.952 600.00 11.75 1.28 13.25 50.9 2.842 600.00
100 25.9 0.19 27.2 52.7 0.938 600.00 8.533 0.92 8.967 44.165 3.925 600.00

S2.13 50 34.2 0.15 34.2 41.6 0.216 600.00 19.25 0.53 21.1 48.941 1.319 600.00
75 26.2 0.17 26.7 51.3 0.921 600.00 12.75 0.66 13.8 40.6 1.942 600.00
100 26.6 0.15 27.6 44.4 0.609 600.00 8.8 0.80 9.467 20.3 1.144 600.00

S2.14 50 36.0 0.33 36.8 59.5 0.617 600.00 21.05 0.80 21.55 50.1 1.325 600.00
75 30.4 0.17 31.4 57.7 0.838 600.00 14.35 1.21 14.9 50.1 2.362 600.00
100 30.4 0.15 31.7 57.7 0.82 600.00 10.167 0.79 10.667 40.087 2.758 600.00

S2.15 50 31.8 0.16 33.7 50.7 0.504 600.00 18.7 0.87 19.85 50.5 1.544 600.00
75 25.0 0.26 26.5 50.7 0.913 600.00 11.95 1.04 12.55 38.1 2.036 600.00
100 25.0 0.15 25.8 49.867 0.933 600.00 8.267 0.78 9.0 19.05 1.117 600.00

S2.16 50 33.8 0.15 33.8 58.7 0.737 600.00 20.75 0.97 21.6 50.9 1.356 600.00
75 27.9 0.15 28.6 108.661 2.799 600.00 13.0 0.81 13.95 22.25 0.595 600.00
100 27.6 0.14 28.5 52.752 0.851 600.00 9.3 0.76 9.533 22.25 1.334 600.00

S2.17 50 34.6 0.23 36.1 50.85 0.409 600.00 19.55 0.90 20.1 50.4 1.507 600.00
75 28.0 0.17 30.6 60.0 0.961 600.00 12.85 1.01 13.95 24.35 0.746 600.00
100 29.4 0.19 29.6 55.815 0.886 600.00 9.5 0.96 9.933 24.35 1.451 600.00

S2.18 50 35.8 0.17 38.4 50.6 0.318 600.00 20.45 0.98 22.35 50.6 1.264 600.00
75 30.4 0.23 30.7 50.6 0.648 600.00 14.65 1.09 15.1 50.6 2.351 600.00
100 30.3 0.20 30.9 50.6 0.638 600.00 10.1 0.91 10.567 23.35 1.21 600.00

S2.19 50 36.6 0.14 37.8 55.3 0.463 600.00 21.0 0.74 22.3 52.0 1.332 600.00
75 30.1 0.20 30.7 55.8 0.818 600.00 13.9 0.91 14.65 51.2 2.495 600.00
100 30.0 0.19 30.7 49.242 0.604 600.00 9.833 0.68 10.567 22.1 1.091 600.00

S2.20 50 32.5 0.17 32.5 50.8 0.563 600.00 19.8 0.89 20.25 50.1 1.474 600.00
75 27.2 0.22 27.2 53.9 0.982 600.00 12.4 0.72 14.35 50.1 2.491 600.00
100 26.8 0.20 27.6 57.2 1.072 600.00 8.933 0.77 9.433 38.342 3.065 600.00

S2.21 50 34.3 0.16 34.4 53.6 0.558 600.00 20.8 0.72 23.15 51.2 1.212 600.00
75 29.9 0.18 31.3 41.3 0.319 600.00 13.85 0.63 14.5 40.881 1.819 600.00
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Table C.2 – continued from previous page
P1 P∞

Heuristic Solver Heuristic Solver
Inst %UT LB CPU LB UB GAP CPU LB CPU LB UB GAP CPU

100 29.9 0.17 31.2 41.3 0.324 600.00 10.033 0.81 10.567 18.387 0.74 600.00
S2.22 50 32.4 0.21 33.8 55.7 0.648 600.00 18.6 0.70 19.95 50.4 1.526 600.00

75 25.5 0.17 26.5 58.2 1.196 600.00 12.2 0.91 13.65 50.4 2.692 600.00
100 25.5 0.24 26.6 58.2 1.188 600.00 8.733 1.20 9.0 44.502 3.945 600.00

S2.23 50 34.3 0.23 35.8 52.7 0.472 600.00 19.15 0.55 20.5 49.622 1.421 600.00
75 28.3 0.18 28.9 52.7 0.824 600.00 13.45 0.80 14.25 23.2 0.628 600.00
100 27.4 0.14 29.1 52.7 0.811 600.00 9.1 0.68 9.767 20.25 1.073 600.00

S2.24 50 35.9 0.22 36.2 57.3 0.583 600.00 20.1 0.99 21.2 50.8 1.396 600.00
75 27.1 0.26 28.1 57.3 1.039 600.00 12.75 0.81 13.95 50.8 2.642 600.00
100 27.6 0.20 27.7 57.3 1.069 600.00 9.0 1.02 9.467 46.027 3.862 600.00

S2.25 50 37.6 0.23 39.8 51.8 0.302 600.00 21.7 0.76 22.0 51.1 1.323 600.00
75 29.4 0.18 30.8 53.1 0.724 600.00 14.1 0.80 14.75 51.1 2.464 600.00
100 29.4 0.17 30.8 55.5 0.802 600.00 9.833 0.78 10.267 31.184 2.037 600.00

S2.26 50 33.0 0.23 35.2 40.9 0.162 600.00 17.6 0.57 19.3 23.2 0.202 600.00
75 25.3 0.20 30.2 50.952 0.687 600.00 11.1 0.68 12.0 21.162 0.764 600.00
100 24.0 0.16 25.2 51.7 1.052 600.00 8.067 0.89 8.667 19.2 1.215 600.00

S2.27 50 32.0 0.20 33.8 44.7 0.322 600.00 19.6 0.59 21.85 28.7 0.314 600.00
75 27.0 0.15 29.3 39.1 0.334 600.00 12.45 0.77 14.05 19.55 0.391 600.00
100 26.6 0.18 29.9 39.1 0.308 600.00 8.933 0.63 9.967 9.967 0.0 219.20

S2.28 50 34.3 0.18 35.8 50.1 0.399 600.00 19.9 1.02 20.8 50.1 1.409 600.00
75 27.3 0.25 28.3 116.561 3.119 600.00 12.75 0.78 14.2 50.1 2.528 600.00
100 27.3 0.22 28.1 60.0 1.135 600.00 9.133 0.81 9.533 29.221 2.065 600.00

S2.29 50 34.4 0.19 34.4 51.8 0.506 600.00 20.05 0.82 21.3 50.2 1.357 600.00
75 30.5 0.21 31.8 52.9 0.664 600.00 13.8 0.91 14.5 50.2 2.462 600.00
100 29.8 0.21 31.1 55.7 0.791 600.00 9.867 0.85 10.667 41.505 2.891 600.00

S2.30 50 34.1 0.22 34.9 59.8 0.713 600.00 19.9 0.92 21.0 50.3 1.395 600.00
75 27.5 0.22 28.7 50.3 0.753 600.00 12.3 0.98 14.2 50.3 2.542 600.00
100 27.8 0.30 28.5 50.7 0.779 600.00 9.033 0.96 9.5 47.145 3.963 600.00

S2.31 50 33.7 0.23 36.3 43.0 0.185 600.00 18.45 0.72 21.3 37.8 0.775 600.00
75 27.3 0.18 30.1 35.7 0.186 600.00 12.2 0.79 14.2 17.85 0.257 600.00
100 27.3 0.17 29.7 36.3 0.222 600.00 8.867 0.59 10.067 10.067 0.0 96.30

S2.32 50 33.8 0.22 35.9 51.5 0.435 600.00 19.05 0.67 20.45 50.6 1.474 600.00
75 28.5 0.17 29.4 60.0 1.041 600.00 13.35 1.06 14.8 49.663 2.356 600.00
100 27.8 0.18 29.9 50.6 0.692 600.00 9.2 0.95 9.8 33.872 2.456 600.00
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Table C.2 – continued from previous page
P1 P∞

Heuristic Solver Heuristic Solver
Inst %UT LB CPU LB UB GAP CPU LB CPU LB UB GAP CPU
S2.33 50 35.3 0.20 38.1 60.0 0.575 600.00 21.0 1.12 21.7 50.1 1.309 600.00

75 30.4 0.27 31.1 58.712 0.888 600.00 14.4 1.31 15.8 50.1 2.171 600.00
100 30.1 0.23 31.2 56.753 0.819 600.00 10.033 1.14 10.5 41.559 2.958 600.00

S2.34 50 32.4 0.21 34.9 53.1 0.521 600.00 18.75 0.85 20.75 45.6 1.198 600.00
75 27.4 0.16 27.6 59.8 1.167 600.00 12.2 0.81 13.7 23.6 0.723 600.00
100 26.7 0.18 27.1 59.8 1.207 600.00 8.667 0.70 9.3 22.8 1.452 600.00

S2.35 50 33.7 0.13 36.8 42.3 0.149 600.00 21.85 0.86 23.05 24.3 0.054 600.00
75 31.0 0.19 33.7 48.6 0.442 600.00 14.0 0.54 15.25 24.8 0.626 600.00
100 30.2 0.16 32.3 42.2 0.307 600.00 10.067 0.73 10.767 11.9 0.105 600.00

S2.36 50 30.6 0.17 30.8 51.9 0.685 600.00 18.5 0.46 19.9 50.4 1.533 600.00
75 27.3 0.23 28.4 51.9 0.827 600.00 12.65 0.68 13.45 24.0 0.784 600.00
100 27.2 0.19 28.1 43.0 0.53 600.00 8.9 0.97 9.467 16.5 0.743 600.00

S2.37 50 32.3 0.25 32.3 51.4 0.591 600.00 18.1 0.72 21.25 50.8 1.391 600.00
75 26.6 0.23 27.3 56.4 1.066 600.00 12.6 0.83 13.6 40.992 2.014 600.00
100 26.1 0.16 26.7 56.4 1.112 600.00 8.767 1.29 9.233 21.25 1.301 600.00

S2.38 50 35.6 0.19 37.7 53.9 0.43 600.00 20.3 0.68 21.8 50.5 1.317 600.00
75 29.3 0.21 31.4 53.9 0.717 600.00 13.8 0.87 15.65 50.5 2.227 600.00
100 29.3 0.23 31.3 50.3 0.607 600.00 9.833 0.88 10.4 43.901 3.221 600.00

S2.39 50 36.3 0.26 36.9 51.921 0.407 600.00 21.2 0.83 22.6 50.1 1.217 600.00
75 30.3 0.34 31.5 172.412 4.473 600.00 13.75 1.13 14.9 50.1 2.362 600.00
100 30.6 0.27 31.1 52.9 0.701 600.00 10.167 1.44 10.5 49.128 3.679 600.00

S2.30 50 34.1 0.22 34.9 59.8 0.713 600.00 19.9 0.92 21.0 50.3 1.395 600.00
75 27.5 0.22 28.7 50.3 0.753 600.00 12.3 0.98 14.2 50.3 2.542 600.00
100 27.8 0.30 28.5 50.7 0.779 600.00 9.033 0.96 9.5 47.145 3.963 600.00

S2.31 50 33.7 0.23 36.3 43.0 0.185 600.00 18.45 0.72 21.3 37.8 0.775 600.00
75 27.3 0.18 30.1 35.7 0.186 600.00 12.2 0.79 14.2 17.85 0.257 600.00
100 27.3 0.17 29.7 36.3 0.222 600.00 8.867 0.59 10.067 10.067 0.0 96.30

S2.32 50 33.8 0.22 35.9 51.5 0.435 600.00 19.05 0.67 20.45 50.6 1.474 600.00
75 28.5 0.17 29.4 60.0 1.041 600.00 13.35 1.06 14.8 49.663 2.356 600.00
100 27.8 0.18 29.9 50.6 0.692 600.00 9.2 0.95 9.8 33.872 2.456 600.00

S2.33 50 35.3 0.20 38.1 60.0 0.575 600.00 21.0 1.12 21.7 50.1 1.309 600.00
75 30.4 0.27 31.1 58.712 0.888 600.00 14.4 1.31 15.8 50.1 2.171 600.00
100 30.1 0.23 31.2 56.753 0.819 600.00 10.033 1.14 10.5 41.559 2.958 600.00

S2.34 50 32.4 0.21 34.9 53.1 0.521 600.00 18.75 0.85 20.75 45.6 1.198 600.00
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Table C.2 – continued from previous page
P1 P∞

Heuristic Solver Heuristic Solver
Inst %UT LB CPU LB UB GAP CPU LB CPU LB UB GAP CPU

75 27.4 0.16 27.6 59.8 1.167 600.00 12.2 0.81 13.7 23.6 0.723 600.00
100 26.7 0.18 27.1 59.8 1.207 600.00 8.667 0.70 9.3 22.8 1.452 600.00

S2.35 50 33.7 0.13 36.8 42.3 0.149 600.00 21.85 0.86 23.05 24.3 0.054 600.00
75 31.0 0.19 33.7 48.6 0.442 600.00 14.0 0.54 15.25 24.8 0.626 600.00
100 30.2 0.16 32.3 42.2 0.307 600.00 10.067 0.73 10.767 11.9 0.105 600.00

S2.36 50 30.6 0.17 30.8 51.9 0.685 600.00 18.5 0.46 19.9 50.4 1.533 600.00
75 27.3 0.23 28.4 51.9 0.827 600.00 12.65 0.68 13.45 24.0 0.784 600.00
100 27.2 0.19 28.1 43.0 0.53 600.00 8.9 0.97 9.467 16.5 0.743 600.00

S2.37 50 32.3 0.25 32.3 51.4 0.591 600.00 18.1 0.72 21.25 50.8 1.391 600.00
75 26.6 0.23 27.3 56.4 1.066 600.00 12.6 0.83 13.6 40.992 2.014 600.00
100 26.1 0.16 26.7 56.4 1.112 600.00 8.767 1.29 9.233 21.25 1.301 600.00

S2.38 50 35.6 0.19 37.7 53.9 0.43 600.00 20.3 0.68 21.8 50.5 1.317 600.00
75 29.3 0.21 31.4 53.9 0.717 600.00 13.8 0.87 15.65 50.5 2.227 600.00
100 29.3 0.23 31.3 50.3 0.607 600.00 9.833 0.88 10.4 43.901 3.221 600.00

S2.39 50 36.3 0.26 36.9 51.921 0.407 600.00 21.2 0.83 22.6 50.1 1.217 600.00
75 30.3 0.34 31.5 172.412 4.473 600.00 13.75 1.13 14.9 50.1 2.362 600.00
100 30.6 0.27 31.1 52.9 0.701 600.00 10.167 1.44 10.5 49.128 3.679 600.00
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Table C.3: Series 3. Example of table for metrics compari-

son; rmax = 2.

P1 P∞

Heuristic Solver Heuristic Solver
Inst %UT LB CPU LB UB GAP CPU LB CPU LB UB GAP CPU
S3.0 50 15.7 0.40 15.7 15.7 0.0 167.88 7.2 0.77 7.2 7.2 0.0 8.74

75 15.5 0.40 15.5 15.5 0.0 378.43 4.05 1.01 4.05 4.05 0.0 12.48
100 15.5 0.40 15.5 15.5 0.0 178.52 3.925 0.98 3.925 3.925 0.0 5.92

S3.1 50 16.4 0.42 17.6 17.6 0.0 187.87 7.2 0.86 7.2 7.2 0.0 23.23
75 16.4 0.41 17.6 17.6 0.0 151.98 4.6 0.91 4.6 4.6 0.0 16.20
100 16.4 0.41 17.6 17.6 0.0 119.50 4.1 0.89 4.4 4.4 0.0 3.86

S3.2 50 17.8 0.40 17.8 23.408 0.315 600.00 9.0 0.92 9.0 9.0 0.0 18.85
75 17.8 0.41 17.9 18.0 0.006 600.00 6.65 0.94 6.65 6.65 0.0 14.90
100 17.8 0.42 17.8 28.145 0.581 600.00 4.5 0.98 4.5 4.5 0.0 3.27

S3.3 50 11.6 0.45 11.6 11.6 0.0 476.83 5.45 0.83 5.45 5.45 0.0 34.79
75 11.6 0.45 11.6 11.6 0.0 254.68 3.067 1.00 3.067 3.067 0.0 34.77
100 11.6 0.42 11.6 11.6 0.0 303.28 2.9 1.04 2.9 2.9 0.0 21.13

S3.4 50 14.0 0.38 14.0 14.0 0.0 39.96 4.95 0.80 4.95 4.95 0.0 14.09
75 14.0 0.38 14.0 14.0 0.0 59.43 4.15 0.85 4.15 4.15 0.0 2.59
100 14.0 0.37 14.0 14.0 0.0 23.59 3.575 0.75 3.575 3.575 0.0 0.49

S3.5 50 14.1 0.47 14.1 31.102 1.206 600.00 7.5 1.01 7.5 7.5 0.0 89.53
75 14.1 0.48 14.1 28.9 1.05 600.00 4.7 1.16 4.7 4.7 0.0 34.34
100 14.1 0.47 14.1 21.9 0.553 600.00 3.525 1.16 3.525 3.525 0.0 46.04

S3.6 50 19.4 0.42 20.7 20.7 0.0 309.95 11.2 0.88 11.2 11.2 0.0 65.78
75 18.3 0.45 20.7 20.7 0.0 470.85 7.05 1.03 7.4 7.4 0.0 91.80
100 18.3 0.44 18.3 23.5 0.284 600.00 6.1 1.02 6.9 6.9 0.0 1.66

S3.7 50 20.0 0.45 20.7 22.3 0.077 600.00 9.133 0.99 9.7 9.7 0.0 83.70
75 20.0 0.46 20.7 28.06 0.356 600.00 7.05 1.21 7.05 7.05 0.0 78.46
100 20.0 0.44 20.7 20.7 0.0 391.54 5.975 1.11 5.975 5.975 0.0 4.63

S3.8 50 24.1 0.71 24.1 60.0 1.49 600.00 12.95 1.18 12.95 19.35 0.494 600.00
75 23.5 0.52 23.5 60.0 1.553 600.00 8.667 1.72 8.667 22.25 1.567 600.00
100 23.2 0.49 23.2 60.0 1.586 600.00 7.733 1.43 8.167 8.167 0.0 28.84

S3.9 50 4.4 0.41 4.4 4.4 0.0 91.04 2.2 0.60 2.55 2.55 0.0 3.73
75 4.4 0.42 4.4 4.4 0.0 38.81 1.1 0.71 1.2 1.2 0.0 14.89
100 4.4 0.42 4.4 4.4 0.0 35.95 1.1 0.80 1.1 1.1 0.0 22.22

S3.10 50 11.0 0.45 11.0 11.0 0.0 337.35 4.4 0.82 4.4 4.4 0.0 54.90
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Table C.3 – continued from previous page
P1 P∞

Heuristic Solver Heuristic Solver
Inst %UT LB CPU LB UB GAP CPU LB CPU LB UB GAP CPU

75 11.0 0.46 11.0 11.0 0.0 125.44 3.667 0.96 3.667 3.667 0.0 10.76
100 11.0 0.44 11.0 11.0 0.0 247.46 2.75 1.07 2.75 2.75 0.0 31.03

S3.11 50 13.0 0.48 13.0 13.0 0.0 250.34 6.6 0.92 6.6 22.017 2.336 600.00
75 13.0 0.49 13.0 19.8 0.523 600.00 4.625 1.10 4.95 4.95 0.0 38.54
100 13.0 0.47 13.0 13.0 0.0 251.12 3.25 1.06 3.25 3.25 0.0 22.30

S3.12 50 7.3 0.38 9.8 9.8 0.0 15.14 4.333 0.65 4.7 4.7 0.0 6.33
75 7.3 0.39 9.8 9.8 0.0 19.01 3.1 0.72 3.25 3.25 0.0 0.45
100 7.3 0.38 9.8 9.8 0.0 13.90 1.825 0.77 2.45 2.45 0.0 4.63

S3.13 50 11.2 0.42 11.6 11.6 0.0 282.46 4.5 0.81 4.5 4.5 0.0 19.55
75 11.2 0.43 11.6 11.6 0.0 326.40 3.733 0.89 3.85 3.85 0.0 11.54
100 11.2 0.42 11.6 11.6 0.0 273.06 2.8 0.90 2.9 2.9 0.0 2.51

S3.14 50 18.4 0.47 18.4 32.6 0.772 600.00 9.2 1.00 9.2 9.2 0.0 220.50
75 18.4 0.45 18.4 22.3 0.212 600.00 7.7 1.10 7.7 7.7 0.0 10.08
100 18.4 0.45 18.4 21.9 0.19 600.00 6.133 1.05 6.133 6.133 0.0 2.08

S3.15 50 12.9 0.42 12.9 20.3 0.574 600.00 8.867 0.88 10.5 10.5 0.0 57.67
75 12.9 0.42 12.9 19.967 0.548 600.00 5.2 0.97 5.2 5.2 0.0 31.77
100 12.9 0.41 12.9 20.3 0.574 600.00 3.325 1.00 3.325 3.325 0.0 5.99

S3.16 50 14.1 0.41 14.1 14.1 0.0 274.24 7.05 0.86 7.05 7.05 0.0 40.90
75 12.2 0.43 12.2 12.2 0.0 211.72 6.1 0.92 6.1 6.1 0.0 4.56
100 12.2 0.42 12.2 12.2 0.0 268.78 3.05 0.94 3.05 3.05 0.0 18.22

S3.17 50 12.2 0.61 13.7 13.7 0.0 138.25 6.75 0.92 6.75 6.75 0.0 68.03
75 9.8 0.46 13.7 13.7 0.0 198.66 3.267 1.01 4.733 4.733 0.0 28.75
100 9.8 0.47 13.7 13.7 0.0 131.26 2.45 0.98 3.55 3.55 0.0 14.25

S3.18 50 19.9 0.42 20.9 20.9 0.0 275.58 8.933 1.02 10.5 10.5 0.0 55.57
75 19.6 0.45 20.9 21.049 0.007 600.00 6.633 1.12 6.633 6.633 0.0 5.36
100 19.6 0.44 20.9 20.9 0.0 441.58 5.6 1.02 6.175 6.175 0.0 1.84

S3.19 50 13.7 0.42 13.7 13.7 0.0 467.59 7.867 0.87 7.867 7.867 0.0 123.50
75 13.7 0.44 13.7 13.7 0.0 344.19 4.567 0.99 4.567 4.567 0.0 28.02
100 13.7 0.42 13.7 13.7 0.0 121.68 3.425 1.02 3.425 3.425 0.0 16.23

S3.20 50 6.6 0.43 6.6 6.6 0.0 69.82 3.25 0.75 3.25 3.25 0.0 8.20
75 6.6 0.43 6.6 6.6 0.0 19.81 2.933 0.84 2.933 2.933 0.0 3.59
100 6.6 0.42 6.6 6.6 0.0 42.88 1.65 0.87 1.65 1.65 0.0 3.80

S3.21 50 15.6 0.39 15.6 15.6 0.0 237.19 6.6 0.79 6.85 6.85 0.0 54.52
75 13.3 0.40 13.3 13.3 0.0 183.58 4.15 0.84 4.15 4.15 0.0 5.41
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Table C.3 – continued from previous page

P1 P∞

Heuristic Solver Heuristic Solver
Inst %UT LB CPU LB UB GAP CPU LB CPU LB UB GAP CPU

100 13.3 0.41 13.3 13.3 0.0 125.35 3.9 0.78 3.9 3.9 0.0 0.50
S3.22 50 12.6 0.43 12.6 12.6 0.0 332.59 5.133 0.84 5.133 5.133 0.0 42.42

75 12.6 0.43 12.6 12.6 0.0 402.21 4.2 0.86 4.2 4.2 0.0 34.30
100 12.6 0.42 12.6 12.6 0.0 401.15 3.15 0.91 3.15 3.15 0.0 1.62

S3.23 50 10.2 0.39 10.2 10.2 0.0 129.70 4.35 0.82 4.35 4.35 0.0 45.42
75 10.2 0.40 10.2 10.2 0.0 99.99 3.05 0.86 3.05 3.05 0.0 10.28
100 10.2 0.40 10.2 10.2 0.0 104.84 2.55 0.87 2.55 2.55 0.0 12.52

S3.24 50 10.9 0.41 12.3 14.729 0.197 600.00 4.8 0.74 4.8 4.8 0.0 22.50
75 10.9 0.42 12.3 12.3 0.0 268.61 3.15 0.83 3.15 3.15 0.0 36.83
100 10.9 0.41 12.3 12.3 0.0 432.27 2.725 0.94 3.075 3.075 0.0 44.78

S3.25 50 17.6 0.55 17.6 24.6 0.398 600.00 7.667 0.97 9.0 9.0 0.0 96.96
75 16.9 0.46 17.6 17.6 0.0 595.50 6.533 1.05 7.367 7.367 0.0 28.93
100 16.9 0.44 17.6 17.6 0.0 259.44 4.225 1.07 5.175 5.175 0.0 8.78

S3.26 50 14.0 0.45 14.0 14.0 0.0 336.79 6.55 0.94 6.55 6.55 0.0 74.53
75 14.0 0.46 14.0 14.0 0.0 387.50 4.667 1.02 4.667 4.667 0.0 73.53
100 14.0 0.44 14.0 14.0 0.0 370.48 4.667 1.06 4.667 4.667 0.0 1.29

S3.27 50 11.7 0.46 11.7 11.7 0.0 369.65 9.3 0.88 9.3 9.3 0.0 35.75
75 11.7 0.48 11.7 11.7 0.0 538.43 4.05 1.02 4.05 4.05 0.0 42.81
100 11.7 0.46 11.7 20.5 0.752 600.00 2.925 1.09 2.925 2.925 0.0 41.51

S3.28 50 7.1 0.35 7.1 7.1 0.0 37.96 3.35 0.61 3.35 3.35 0.0 4.73
75 7.1 0.35 7.1 7.1 0.0 30.45 1.775 0.71 1.775 1.775 0.0 4.33
100 7.1 0.36 7.1 7.1 0.0 26.96 1.775 0.76 1.775 1.775 0.0 0.55

S3.29 50 11.2 0.45 11.2 11.2 0.0 145.68 5.6 0.91 5.6 5.6 0.0 54.55
75 11.2 0.44 11.2 11.2 0.0 312.84 3.4 1.00 3.4 3.4 0.0 24.12
100 11.2 0.44 11.2 11.2 0.0 277.14 2.35 0.99 2.35 2.35 0.0 12.73

S3.30 50 18.4 0.45 18.4 24.3 0.321 600.00 8.933 0.97 10.1 10.5 0.04 600.00
75 18.4 0.46 18.4 34.841 0.894 600.00 8.0 1.01 8.7 8.7 0.0 239.10
100 18.4 0.45 20.7 22.2 0.072 600.00 6.133 1.04 6.967 6.967 0.0 34.40

S3.31 50 18.4 0.68 18.4 46.511 1.528 600.00 7.667 0.98 8.1 8.1 0.0 326.00
75 15.7 0.48 15.7 43.4 1.764 600.00 5.267 1.09 6.4 6.4 0.0 31.18
100 15.7 0.46 15.7 33.4 1.127 600.00 5.133 1.10 5.133 5.133 0.0 1.95

S3.32 50 14.0 0.50 14.0 14.0 0.0 229.27 6.9 0.99 6.9 6.9 0.0 27.76
75 14.0 0.51 14.0 14.0 0.0 315.71 4.667 1.17 4.667 4.667 0.0 8.06
100 14.0 0.48 14.0 14.0 0.0 286.88 3.5 1.16 3.5 3.5 0.0 1.96
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Table C.3 – continued from previous page
P1 P∞

Heuristic Solver Heuristic Solver
Inst %UT LB CPU LB UB GAP CPU LB CPU LB UB GAP CPU
S3.33 50 13.8 0.48 13.8 13.8 0.0 247.90 6.367 0.94 6.367 6.367 0.0 101.10

75 12.7 0.58 12.7 12.7 0.0 244.42 3.767 1.26 3.767 3.767 0.0 34.16
100 12.7 0.57 12.7 12.7 0.0 182.59 3.175 1.15 3.175 3.175 0.0 44.10

S3.34 50 5.7 0.39 6.2 6.2 0.0 69.09 2.467 0.63 2.467 2.467 0.0 3.00
75 5.7 0.39 6.2 6.2 0.0 46.49 2.0 0.73 2.0 2.0 0.0 0.44
100 5.7 0.39 6.2 6.2 0.0 52.51 1.425 0.78 1.55 1.55 0.0 1.45

S3.35 50 9.5 0.41 9.5 9.5 0.0 169.18 6.033 0.78 6.067 6.067 0.0 27.84
75 9.5 0.42 9.5 9.5 0.0 179.51 4.0 0.86 4.0 4.0 0.0 8.88
100 9.5 0.42 9.5 9.5 0.0 142.92 2.375 0.93 2.375 2.375 0.0 8.27

S3.36 50 8.3 0.41 8.3 8.3 0.0 35.72 4.15 0.75 4.15 4.15 0.0 83.48
75 8.3 0.42 8.3 8.3 0.0 88.06 3.833 0.83 3.833 3.833 0.0 8.64
100 8.3 0.42 8.3 8.3 0.0 87.39 2.075 0.86 2.075 2.075 0.0 3.65

S3.37 50 18.3 0.49 18.3 35.746 0.953 600.00 11.1 1.07 11.1 17.5 0.577 600.00
75 18.3 0.50 18.3 41.439 1.264 600.00 7.667 1.34 7.767 7.767 0.0 152.70
100 18.3 0.47 18.3 43.0 1.35 600.00 6.1 1.10 6.1 6.1 0.0 24.59

S3.38 50 17.4 0.48 17.4 27.861 0.601 600.00 8.7 1.10 8.7 9.7 0.115 600.00
75 17.4 0.48 17.4 17.7 0.017 600.00 7.1 1.13 7.833 7.833 0.0 16.13
100 17.4 0.46 17.4 17.7 0.017 600.00 4.95 1.19 4.95 4.95 0.0 2.08

S3.39 50 18.0 0.46 18.0 32.0 0.778 600.00 8.8 1.13 8.8 8.8 0.0 130.40
75 18.0 0.45 18.0 30.6 0.7 600.00 6.833 1.13 6.833 6.833 0.0 62.77
100 18.0 0.44 18.0 32.0 0.778 600.00 6.0 1.09 6.0 6.0 0.0 2.87

S3.40 50 15.7 0.44 15.7 15.7 0.0 253.86 7.85 0.82 7.85 7.85 0.0 83.86
75 15.7 0.44 15.7 16.9 0.076 600.00 4.675 0.97 4.675 4.675 0.0 20.45
100 15.7 0.43 15.7 20.4 0.299 600.00 4.675 0.92 4.675 4.675 0.0 1.28

S3.41 50 7.6 0.42 7.6 9.8 0.289 600.00 3.0 0.80 3.0 3.0 0.0 34.40
75 7.6 0.43 7.6 7.6 0.0 363.55 2.8 0.88 2.9 2.9 0.0 6.66
100 7.6 0.42 7.6 7.6 0.0 254.77 1.9 0.96 1.9 1.9 0.0 6.94

S3.42 50 13.9 0.42 13.9 13.9 0.0 262.24 8.1 0.82 8.1 8.1 0.0 13.11
75 13.9 0.42 13.9 13.9 0.0 148.31 5.567 1.13 5.8 5.8 0.0 3.13
100 13.9 0.39 13.9 13.9 0.0 166.30 4.633 0.95 4.633 4.633 0.0 0.94

S3.43 50 8.0 0.41 8.7 8.7 0.0 96.35 3.8 0.74 4.0 4.0 0.0 52.51
75 8.0 0.40 8.7 8.7 0.0 115.69 2.433 0.81 2.433 2.433 0.0 5.63
100 8.0 0.40 8.7 8.7 0.0 78.33 2.0 0.88 2.175 2.175 0.0 25.90

S3.44 50 8.6 0.41 9.6 9.6 0.0 224.32 3.533 0.70 3.533 3.533 0.0 18.61
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Table C.3 – continued from previous page

P1 P∞

Heuristic Solver Heuristic Solver
Inst %UT LB CPU LB UB GAP CPU LB CPU LB UB GAP CPU

75 8.6 0.40 9.6 9.6 0.0 305.42 2.65 0.82 2.65 2.65 0.0 57.86
100 8.6 0.41 9.6 9.6 0.0 195.38 2.15 0.83 2.4 2.4 0.0 14.65

S3.45 50 10.6 0.45 11.0 17.0 0.545 600.00 8.3 0.79 8.7 8.7 0.0 6.70
75 10.6 0.43 10.6 11.1 0.047 600.00 3.533 0.90 3.533 3.533 0.0 21.81
100 10.6 0.41 10.6 16.748 0.58 600.00 2.65 0.95 2.75 2.75 0.0 66.23

S3.46 50 8.6 0.40 8.9 8.9 0.0 67.86 3.85 0.74 4.133 4.133 0.0 21.11
75 8.6 0.41 8.9 8.9 0.0 73.96 2.967 0.87 2.967 2.967 0.0 12.01
100 8.6 0.40 8.9 8.9 0.0 97.75 2.15 0.90 2.225 2.225 0.0 6.46

S3.47 50 8.5 0.36 8.5 8.5 0.0 152.63 2.833 0.84 2.833 2.833 0.0 24.58
75 8.5 0.36 8.5 8.5 0.0 114.37 2.175 0.76 2.175 2.175 0.0 11.75
100 8.5 0.36 8.5 8.5 0.0 18.03 2.125 0.73 2.125 2.125 0.0 6.43

S3.48 50 15.8 0.41 15.8 15.8 0.0 201.59 6.9 0.91 8.6 8.6 0.0 30.10
75 15.8 0.39 15.8 15.8 0.0 577.73 4.45 0.97 4.45 4.45 0.0 72.95
100 15.8 0.39 15.8 15.8 0.0 294.04 3.95 0.93 3.95 3.95 0.0 1.32

S3.49 50 7.3 0.40 7.3 7.3 0.0 99.08 4.55 0.67 4.8 4.8 0.0 3.86
75 6.2 0.41 7.1 7.1 0.0 78.34 2.85 0.82 2.85 2.85 0.0 5.17
100 6.2 0.40 7.1 7.1 0.0 27.71 1.55 0.84 1.775 1.775 0.0 10.30
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Table C.4: Series 1. Example of table for metrics compari-

son; rmax = 3.

P1 P∞

Heuristic Solver Heuristic Solver
Inst %UT LB CPU LB UB GAP CPU LB CPU LB UB GAP CPU
S1.0 50 34.7 0.11 34.7 34.7 0.0 71.10 22.3 0.28 22.3 22.3 0.0 1.64

75 34.7 0.11 34.7 34.7 0.0 136.86 19.8 0.38 19.8 19.8 0.0 0.72
100 34.7 0.09 34.7 34.7 0.0 70.31 17.35 0.22 17.35 17.35 0.0 0.02

S1.1 50 36.0 0.12 38.6 38.6 0.0 37.53 21.35 0.41 22.25 22.25 0.0 3.44
75 35.7 0.12 37.0 37.0 0.0 63.84 18.35 0.45 19.4 19.4 0.0 4.52
100 35.8 0.16 37.0 37.0 0.0 47.42 17.85 0.35 18.5 18.5 0.0 0.38

S1.2 50 36.5 0.12 38.0 38.0 0.0 78.83 29.3 0.36 31.5 31.5 0.0 17.13
75 36.5 0.12 36.7 36.7 0.0 84.54 20.95 0.43 21.1 21.1 0.0 3.16
100 36.5 0.11 36.7 36.7 0.0 20.08 18.25 0.31 18.35 18.35 0.0 0.04

S1.3 50 41.2 0.13 41.2 41.2 0.0 82.63 36.0 0.39 36.0 36.0 0.0 30.33
75 40.5 0.18 41.1 41.1 0.0 93.14 22.4 0.62 22.4 22.4 0.0 14.90
100 40.4 0.17 41.1 41.1 0.0 62.03 20.2 0.54 20.55 20.55 0.0 0.66

S1.4 50 36.8 0.12 37.2 37.2 0.0 81.76 32.9 0.47 33.1 33.1 0.0 2.04
75 36.0 0.10 36.0 36.0 0.0 23.62 18.75 0.35 19.45 19.45 0.0 1.66
100 34.8 0.10 35.3 35.3 0.0 52.91 17.4 0.30 17.65 17.65 0.0 0.10

S1.5 50 39.7 0.12 40.2 40.2 0.0 75.61 32.7 0.35 38.9 38.9 0.0 2.62
75 39.7 0.14 40.2 40.2 0.0 90.99 20.45 0.40 20.45 20.45 0.0 2.31
100 39.7 0.13 40.2 40.2 0.0 42.73 19.85 0.38 20.1 20.1 0.0 0.34

S1.6 50 37.8 0.10 37.8 37.8 0.0 51.34 28.6 0.32 30.3 30.3 0.0 10.25
75 36.1 0.10 36.1 36.1 0.0 64.46 18.05 0.33 18.05 18.05 0.0 1.15
100 36.1 0.11 36.1 36.1 0.0 101.34 18.05 0.22 18.05 18.05 0.0 0.02

S1.7 50 41.0 0.15 41.0 41.0 0.0 57.56 36.8 0.39 38.3 38.3 0.0 35.88
75 40.0 0.17 40.2 40.2 0.0 146.08 20.3 0.54 20.7 20.7 0.0 68.57
100 40.0 0.17 40.2 40.2 0.0 127.31 19.75 0.46 20.1 20.1 0.0 0.54

S1.8 50 35.5 0.17 39.1 39.1 0.0 110.75 22.7 0.45 28.0 28.0 0.0 15.86
75 35.1 0.12 35.1 35.1 0.0 229.21 21.05 0.52 21.05 21.05 0.0 1.14
100 35.1 0.12 35.1 35.1 0.0 78.84 17.55 0.35 17.55 17.55 0.0 0.07

S1.9 50 23.7 0.09 24.4 24.4 0.0 52.96 12.9 0.21 12.9 12.9 0.0 3.64
75 23.7 0.09 24.4 24.4 0.0 88.56 10.467 0.26 10.467 10.467 0.0 2.82
100 23.7 0.09 24.4 24.4 0.0 109.48 7.9 0.22 8.133 8.133 0.0 0.08

S1.10 50 30.3 0.11 30.3 30.3 0.0 61.64 25.7 0.29 28.8 28.8 0.0 2.16131
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Table C.4 – continued from previous page
P1 P∞

Heuristic Solver Heuristic Solver
Inst %UT LB CPU LB UB GAP CPU LB CPU LB UB GAP CPU

75 30.3 0.10 30.3 30.3 0.0 62.86 17.8 0.29 17.8 17.8 0.0 2.91
100 30.3 0.10 30.3 30.3 0.0 99.47 10.1 0.29 10.1 10.1 0.0 0.17

S1.11 50 26.6 0.09 26.8 26.8 0.0 65.38 13.3 0.25 13.3 13.3 0.0 3.16
75 26.6 0.09 26.8 26.8 0.0 25.69 10.833 0.28 10.833 10.833 0.0 2.04
100 26.6 0.09 26.8 26.8 0.0 5.61 8.867 0.23 8.933 8.933 0.0 0.11

S1.12 50 36.9 0.12 37.3 37.3 0.0 88.21 22.55 0.36 22.55 22.55 0.0 4.32
75 36.5 0.13 36.5 36.5 0.0 49.38 19.2 0.53 19.2 19.2 0.0 2.96
100 36.2 0.12 36.2 36.2 0.0 104.43 18.1 0.40 18.1 18.1 0.0 0.54

S1.13 50 24.3 0.09 25.7 25.7 0.0 71.39 17.3 0.25 17.3 17.3 0.0 3.77
75 24.3 0.10 25.7 25.7 0.0 123.98 10.2 0.29 12.15 12.15 0.0 4.26
100 24.3 0.09 25.7 25.7 0.0 17.37 8.1 0.24 8.567 8.567 0.0 0.51

S1.14 50 40.0 0.12 40.4 40.4 0.0 15.71 23.85 0.34 24.05 24.05 0.0 2.64
75 36.4 0.15 39.3 39.3 0.0 39.11 20.25 0.33 20.5 20.5 0.0 0.59
100 35.9 0.11 39.3 39.3 0.0 65.07 17.95 0.29 19.65 19.65 0.0 0.05

S1.15 50 36.5 0.11 36.9 36.9 0.0 72.41 19.85 0.34 19.85 19.85 0.0 2.43
75 36.5 0.12 36.5 36.5 0.0 102.09 19.85 0.34 19.85 19.85 0.0 0.74
100 36.5 0.11 36.5 36.5 0.0 101.43 18.25 0.35 18.25 18.25 0.0 0.34

S1.16 50 38.9 0.13 38.9 38.9 0.0 83.19 37.0 0.39 37.0 37.0 0.0 8.27
75 38.9 0.15 38.9 38.9 0.0 133.79 19.65 0.45 19.65 19.65 0.0 21.59
100 38.9 0.19 38.9 38.9 0.0 77.90 19.45 0.49 19.45 19.45 0.0 0.24

S1.17 50 36.2 0.11 36.2 36.2 0.0 24.17 36.1 0.33 36.1 36.1 0.0 2.79
75 36.2 0.11 36.2 36.2 0.0 61.61 18.1 0.36 18.1 18.1 0.0 2.45
100 36.2 0.11 36.2 36.2 0.0 81.04 18.1 0.29 18.1 18.1 0.0 0.05

S1.18 50 39.8 0.16 39.8 39.8 0.0 89.78 21.85 0.39 21.85 21.85 0.0 40.58
75 39.2 0.18 39.8 39.8 0.0 113.97 20.55 0.73 20.75 20.75 0.0 4.02
100 39.8 0.17 39.8 39.8 0.0 52.81 19.9 0.54 19.9 19.9 0.0 0.18

S1.19 50 40.6 0.14 41.3 41.3 0.0 65.12 21.6 0.32 21.6 21.6 0.0 2.82
75 40.2 0.12 40.6 40.6 0.0 110.34 20.7 0.38 20.7 20.7 0.0 4.42
100 40.2 0.12 40.6 40.6 0.0 63.09 20.1 0.38 20.3 20.3 0.0 0.10

S1.20 50 37.1 0.17 38.4 38.4 0.0 273.42 35.8 0.44 36.0 36.0 0.0 58.56
75 37.1 0.17 37.3 37.3 0.0 431.61 19.5 0.63 20.2 20.2 0.0 179.25
100 37.1 0.16 37.3 37.3 0.0 214.84 18.65 0.59 18.65 18.65 0.0 1.51

S1.21 50 39.1 0.13 40.2 40.2 0.0 36.81 37.6 0.38 38.0 38.0 0.0 45.79
75 38.8 0.12 38.8 38.8 0.0 92.88 20.1 0.48 20.1 20.1 0.0 5.94
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Table C.4 – continued from previous page
P1 P∞

Heuristic Solver Heuristic Solver
Inst %UT LB CPU LB UB GAP CPU LB CPU LB UB GAP CPU

100 38.8 0.12 38.8 38.8 0.0 29.85 19.4 0.42 19.4 19.4 0.0 0.06
S1.22 50 38.6 0.13 38.6 38.6 0.0 83.08 34.3 0.40 34.3 34.3 0.0 7.24

75 38.1 0.14 38.1 38.1 0.0 126.72 19.3 0.43 19.3 19.3 0.0 1.16
100 37.8 0.19 37.8 37.8 0.0 123.24 18.7 0.48 18.9 18.9 0.0 0.27

S1.23 50 38.4 0.14 39.1 39.1 0.0 109.19 32.4 0.34 32.4 32.4 0.0 2.50
75 38.3 0.14 38.4 38.4 0.0 296.27 21.2 0.39 21.35 21.35 0.0 5.68
100 38.0 0.14 38.3 38.3 0.0 182.83 19.05 0.55 19.15 19.15 0.0 0.78

S1.24 50 39.5 0.12 39.6 39.6 0.0 92.18 34.8 0.43 36.7 36.7 0.0 9.79
75 39.1 0.14 39.6 39.6 0.0 53.78 20.0 0.42 20.4 20.4 0.0 4.88
100 38.5 0.12 38.5 38.5 0.0 38.69 19.25 0.46 19.25 19.25 0.0 0.14

S1.25 50 40.5 0.13 40.5 40.5 0.0 77.55 38.3 0.49 38.3 38.3 0.0 2.64
75 39.8 0.11 40.5 40.5 0.0 106.26 21.35 0.34 21.35 21.35 0.0 1.98
100 39.8 0.12 40.3 40.3 0.0 60.94 19.9 0.36 20.15 20.15 0.0 0.31

S1.26 50 21.2 0.09 21.3 21.3 0.0 35.65 13.7 0.26 15.85 15.85 0.0 2.25
75 21.2 0.10 21.3 21.3 0.0 37.60 11.35 0.26 13.25 13.25 0.0 1.44
100 21.2 0.09 21.3 21.3 0.0 44.14 7.067 0.25 7.1 7.1 0.0 0.27

S1.27 50 39.1 0.12 40.3 40.3 0.0 55.75 34.6 0.41 36.2 36.2 0.0 21.22
75 37.5 0.13 38.5 38.5 0.0 66.89 21.35 0.50 21.4 21.4 0.0 10.35
100 37.4 0.15 38.1 38.1 0.0 66.76 18.75 0.52 19.05 19.05 0.0 0.18

S1.28 50 40.7 0.15 40.7 40.7 0.0 107.29 35.8 0.52 37.2 37.2 0.0 15.15
75 38.0 0.18 38.1 38.1 0.0 100.09 20.35 0.55 20.45 20.45 0.0 18.29
100 37.8 0.19 38.0 38.0 0.0 112.85 18.9 0.69 19.0 19.0 0.0 0.39

S1.29 50 40.3 0.15 40.8 40.8 0.0 75.29 38.1 0.45 38.6 38.6 0.0 29.33
75 39.3 0.13 39.3 39.3 0.0 100.16 21.95 0.56 21.95 21.95 0.0 12.21
100 38.8 0.13 38.8 38.8 0.0 26.74 19.4 0.39 19.4 19.4 0.0 0.09

S1.30 50 39.6 0.11 40.4 40.4 0.0 46.77 33.3 0.34 33.3 33.3 0.0 10.18
75 36.3 0.12 36.3 36.3 0.0 295.99 19.1 0.39 20.0 20.0 0.0 7.68
100 36.3 0.12 36.3 36.3 0.0 69.12 18.15 0.34 18.15 18.15 0.0 0.07

S1.31 50 40.4 0.17 40.4 40.4 0.0 73.75 35.6 0.35 35.7 35.7 0.0 3.84
75 37.8 0.18 38.4 38.4 0.0 129.38 20.2 0.40 20.2 20.2 0.0 0.66
100 37.3 0.14 37.8 37.8 0.0 82.36 18.9 0.47 18.9 18.9 0.0 0.06

S1.32 50 40.2 0.14 40.2 40.2 0.0 149.98 32.8 0.43 34.3 34.3 0.0 34.83
75 37.5 0.13 37.5 37.5 0.0 492.48 20.45 0.51 20.45 20.45 0.0 11.69
100 37.5 0.12 37.5 37.5 0.0 164.66 18.75 0.45 18.75 18.75 0.0 0.93
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Table C.4 – continued from previous page
P1 P∞

Heuristic Solver Heuristic Solver
Inst %UT LB CPU LB UB GAP CPU LB CPU LB UB GAP CPU
S1.33 50 34.3 0.12 34.3 34.3 0.0 49.74 25.1 0.33 28.1 28.1 0.0 4.09

75 34.1 0.11 34.1 34.1 0.0 59.42 20.2 0.64 20.45 20.45 0.0 1.78
100 34.1 0.11 34.1 34.1 0.0 92.88 17.05 0.30 17.05 17.05 0.0 0.05

S1.34 50 40.5 0.17 40.5 40.5 0.0 69.93 36.1 0.43 37.1 37.1 0.0 3.06
75 38.2 0.13 39.0 39.0 0.0 184.79 20.25 0.58 21.4 21.4 0.0 10.02
100 38.1 0.16 38.3 38.3 0.0 133.86 18.85 0.52 19.15 19.15 0.0 1.73

S1.35 50 35.3 0.10 35.3 35.3 0.0 31.96 19.55 0.24 22.8 22.8 0.0 16.83
75 34.9 0.10 35.3 35.3 0.0 95.33 15.75 0.27 15.75 15.75 0.0 2.03
100 34.9 0.10 35.3 35.3 0.0 35.79 11.9 0.28 11.9 11.9 0.0 0.18

S1.36 50 33.6 0.10 38.9 38.9 0.0 46.97 20.4 0.28 28.5 28.5 0.0 17.10
75 33.6 0.10 34.3 34.3 0.0 257.33 19.2 0.33 19.2 19.2 0.0 1.84
100 33.6 0.10 34.3 34.3 0.0 75.43 16.8 0.23 17.15 17.15 0.0 0.03

S1.37 50 29.4 0.10 31.6 31.6 0.0 63.26 18.9 0.26 20.9 20.9 0.0 17.07
75 29.4 0.10 31.6 31.6 0.0 66.24 14.7 0.30 14.7 14.7 0.0 1.43
100 29.4 0.10 31.6 31.6 0.0 47.51 9.8 0.28 11.333 11.333 0.0 0.26

S1.38 50 30.8 0.09 30.8 30.8 0.0 45.35 12.0 0.27 15.8 15.8 0.0 21.95
75 30.5 0.10 30.8 30.8 0.0 36.05 12.0 0.30 15.4 15.4 0.0 23.73
100 30.5 0.11 30.8 30.8 0.0 39.73 10.167 0.26 10.267 10.267 0.0 0.16

S1.39 50 36.8 0.12 36.8 36.8 0.0 64.88 18.75 0.35 18.75 18.75 0.0 19.43
75 36.8 0.12 36.8 36.8 0.0 99.74 18.75 0.39 18.75 18.75 0.0 1.53
100 36.8 0.12 36.8 36.8 0.0 61.44 18.4 0.33 18.4 18.4 0.0 0.10

S1.40 50 36.9 0.12 36.9 36.9 0.0 62.41 19.0 0.44 33.0 33.0 0.0 13.41
75 36.1 0.13 36.9 36.9 0.0 117.54 18.05 0.53 18.55 18.55 0.0 13.11
100 36.1 0.12 36.9 36.9 0.0 98.39 18.05 0.34 18.45 18.45 0.0 0.06

S1.41 50 36.1 0.10 36.1 36.1 0.0 67.47 19.1 0.30 22.35 22.35 0.0 3.52
75 35.9 0.11 36.1 36.1 0.0 72.19 18.05 0.37 18.05 18.05 0.0 7.26
100 35.9 0.10 36.1 36.1 0.0 65.59 17.95 0.27 18.05 18.05 0.0 0.02

S1.42 50 39.1 0.14 39.4 39.4 0.0 72.02 35.8 0.41 36.4 36.4 0.0 54.55
75 38.7 0.14 39.4 39.4 0.0 71.31 20.35 0.66 20.35 20.35 0.0 12.24
100 38.7 0.18 39.3 39.3 0.0 92.61 19.35 0.62 19.65 19.65 0.0 0.30

S1.43 50 39.9 0.15 40.8 40.8 0.0 72.03 37.0 0.51 39.8 39.8 0.0 7.04
75 39.8 0.21 39.8 39.8 0.0 103.10 20.65 0.71 20.65 20.65 0.0 19.71
100 39.1 0.18 39.8 39.8 0.0 88.87 19.75 0.79 19.9 19.9 0.0 1.14

S1.44 50 39.3 0.14 40.1 40.1 0.0 85.09 35.5 0.43 35.5 35.5 0.0 10.36
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Table C.4 – continued from previous page
P1 P∞

Heuristic Solver Heuristic Solver
Inst %UT LB CPU LB UB GAP CPU LB CPU LB UB GAP CPU

75 38.3 0.23 38.4 38.4 0.0 88.47 19.65 0.49 19.95 19.95 0.0 29.48
100 38.3 0.23 38.4 38.4 0.0 105.05 19.2 0.75 19.2 19.2 0.0 0.60

S1.45 50 34.3 0.12 34.3 34.3 0.0 40.88 34.1 0.31 34.1 34.1 0.0 2.05
75 34.3 0.13 34.3 34.3 0.0 55.15 17.25 0.41 17.4 17.4 0.0 6.87
100 34.3 0.12 34.3 34.3 0.0 50.70 17.15 0.36 17.15 17.15 0.0 0.25

S1.46 50 36.5 0.11 36.5 36.5 0.0 59.30 21.25 0.41 30.9 30.9 0.0 4.00
75 34.8 0.11 34.8 34.8 0.0 61.92 17.4 0.34 17.4 17.4 0.0 1.43
100 34.8 0.10 34.8 34.8 0.0 40.69 17.4 0.29 17.4 17.4 0.0 0.06

S1.47 50 35.8 0.12 36.6 36.6 0.0 60.26 32.6 0.35 32.6 32.6 0.0 3.15
75 35.6 0.12 36.2 36.2 0.0 89.10 18.9 0.52 19.95 19.95 0.0 10.71
100 35.6 0.11 36.2 36.2 0.0 82.24 17.8 0.33 18.1 18.1 0.0 0.33

S1.48 50 37.3 0.14 37.3 37.3 0.0 66.65 34.1 0.32 34.1 34.1 0.0 3.17
75 37.3 0.12 37.3 37.3 0.0 65.71 19.85 0.38 20.15 20.15 0.0 2.02
100 37.3 0.12 37.3 37.3 0.0 45.27 18.65 0.35 18.65 18.65 0.0 0.10

S1.49 50 37.4 0.12 37.4 37.4 0.0 217.06 22.5 0.32 27.0 27.0 0.0 3.27
75 35.9 0.12 36.7 36.7 0.0 235.36 20.45 0.49 20.45 20.45 0.0 3.15
100 35.9 0.12 36.2 36.2 0.0 78.36 17.95 0.34 18.1 18.1 0.0 0.48
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Table C.5: Series 2. Example of table for metrics compari-

son; rmax = 3.

P1 P∞

Heuristic Solver Heuristic Solver
Inst %UT LB CPU LB UB GAP CPU LB CPU LB UB GAP CPU
S2.0 50 43.3 0.15 45.1 50.2 0.113 600.00 41.0 0.70 41.0 49.934 0.218 600.00

75 41.1 0.18 41.7 50.2 0.204 600.00 23.05 0.74 23.15 50.2 1.168 600.00
100 40.7 0.19 41.5 41.5 0.0 566.87 20.25 0.85 20.75 20.75 0.0 5.19

S2.1 50 41.3 0.25 42.9 47.9 0.117 600.00 36.0 0.70 37.3 50.2 0.346 600.00
75 37.9 0.28 38.6 47.9 0.241 600.00 21.3 0.80 21.75 39.3 0.807 600.00
100 37.5 0.24 38.3 43.0 0.123 600.00 18.8 1.06 19.15 19.15 0.0 31.41

S2.2 50 41.9 0.20 42.2 42.2 0.0 68.33 38.0 0.46 40.8 40.8 0.0 17.08
75 40.3 0.20 40.8 40.8 0.0 72.82 22.1 0.83 22.45 22.45 0.0 85.15
100 40.3 0.18 40.7 40.7 0.0 93.76 20.05 0.62 20.35 20.35 0.0 1.57

S2.3 50 43.6 0.26 44.6 51.7 0.159 600.00 40.4 0.92 41.5 51.4 0.239 600.00
75 41.5 0.20 42.2 51.7 0.225 600.00 22.05 0.73 23.2 51.4 1.216 600.00
100 40.9 0.17 41.3 51.4 0.245 600.00 20.45 0.76 20.65 20.65 0.0 117.76

S2.4 50 42.6 0.20 45.0 52.7 0.171 600.00 36.8 0.71 38.8 50.5 0.302 600.00
75 38.8 0.17 40.1 50.1 0.249 600.00 21.5 1.16 22.35 50.1 1.242 600.00
100 38.0 0.17 38.8 50.1 0.291 600.00 18.95 0.88 19.4 20.55 0.059 600.00

S2.5 50 42.7 0.16 46.0 46.0 0.0 195.54 38.9 0.61 41.1 41.1 0.0 496.42
75 41.1 0.20 41.3 46.6 0.128 600.00 22.9 0.62 23.25 49.411 1.125 600.00
100 40.7 0.17 41.1 41.8 0.017 600.00 20.35 0.80 20.55 20.55 0.0 16.89

S2.6 50 35.4 0.11 35.4 35.4 0.0 58.21 35.4 0.42 35.4 35.4 0.0 1.19
75 35.4 0.10 35.4 35.4 0.0 18.40 17.7 0.40 17.7 17.7 0.0 10.89
100 35.4 0.10 35.4 35.4 0.0 34.19 17.7 0.33 17.7 17.7 0.0 0.04

S2.7 50 45.8 0.16 46.4 46.4 0.0 389.08 39.4 0.65 41.5 41.5 0.0 359.57
75 41.4 0.19 41.7 52.5 0.259 600.00 22.7 0.90 22.9 50.6 1.21 600.00
100 41.3 0.15 41.7 52.2 0.252 600.00 20.6 0.96 20.9 20.9 0.0 22.44

S2.8 50 41.5 0.18 41.5 41.5 0.0 84.08 36.9 0.89 40.4 40.4 0.0 11.49
75 40.4 0.25 40.8 40.8 0.0 114.16 21.05 0.74 21.5 35.1 0.633 600.00
100 40.5 0.17 40.8 40.8 0.0 73.44 19.95 0.79 20.4 20.4 0.0 2.28

S2.9 50 43.0 0.14 43.7 43.7 0.0 73.09 38.3 0.57 40.0 40.0 0.0 33.67
75 41.0 0.15 41.3 41.6 0.007 600.00 22.45 0.68 22.8 22.8 0.0 133.57
100 41.1 0.17 41.3 41.3 0.0 120.99 20.6 0.63 20.65 20.65 0.0 2.06

S2.10 50 43.0 0.26 44.7 53.0 0.186 600.00 39.6 0.65 40.3 51.6 0.28 600.00
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Table C.5 – continued from previous page
P1 P∞

Heuristic Solver Heuristic Solver
Inst %UT LB CPU LB UB GAP CPU LB CPU LB UB GAP CPU

75 39.9 0.17 40.0 57.0 0.425 600.00 21.2 0.75 21.8 50.2 1.303 600.00
100 39.9 0.17 40.2 57.0 0.418 600.00 20.05 1.05 20.65 20.65 0.0 101.49

S2.11 50 41.8 0.15 44.9 44.9 0.0 76.69 35.7 0.52 38.8 51.7 0.332 600.00
75 40.4 0.20 41.2 50.9 0.235 600.00 21.25 0.64 22.8 50.9 1.232 600.00
100 40.1 0.19 40.6 40.6 0.0 478.00 20.05 0.93 20.3 20.3 0.0 4.56

S2.12 50 41.9 0.27 43.5 51.3 0.179 600.00 37.3 0.80 39.4 50.9 0.292 600.00
75 38.4 0.21 39.4 52.7 0.338 600.00 21.35 1.06 21.6 50.9 1.356 600.00
100 38.2 0.19 39.0 52.2 0.338 600.00 19.05 0.81 19.7 19.9 0.01 600.00

S2.13 50 39.1 0.14 39.9 39.9 0.0 150.28 36.0 0.60 37.6 37.6 0.0 22.15
75 39.0 0.21 39.2 39.2 0.0 571.60 20.6 0.57 21.35 21.35 0.0 313.96
100 38.3 0.13 39.2 39.2 0.0 151.30 19.05 0.61 19.6 19.6 0.0 2.68

S2.14 50 43.1 0.22 43.6 50.1 0.149 600.00 39.9 0.78 41.3 42.3 0.024 600.00
75 40.3 0.20 41.3 50.1 0.213 600.00 22.65 0.71 23.55 50.1 1.127 600.00
100 40.5 0.17 41.1 50.1 0.219 600.00 20.25 0.81 20.55 20.55 0.0 28.36

S2.15 50 39.7 0.17 40.3 40.3 0.0 179.42 35.4 0.54 36.6 36.6 0.0 206.63
75 37.7 0.19 38.1 38.1 0.0 82.33 20.8 0.66 21.2 38.1 0.797 600.00
100 37.7 0.23 38.1 38.1 0.0 70.73 18.9 0.75 19.05 19.05 0.0 0.39

S2.16 50 44.6 0.20 44.6 44.6 0.0 216.96 38.1 0.81 39.9 39.9 0.0 480.93
75 39.9 0.22 40.5 44.5 0.099 600.00 21.3 0.70 21.55 24.7 0.146 600.00
100 39.7 0.17 40.2 44.5 0.107 600.00 19.65 0.81 20.1 20.1 0.0 35.62

S2.17 50 40.5 0.18 40.7 40.7 0.0 299.29 36.1 0.49 38.1 38.1 0.0 43.59
75 39.9 0.23 40.3 40.7 0.01 600.00 20.6 0.59 21.65 21.65 0.0 251.91
100 39.9 0.15 40.3 40.8 0.012 600.00 19.9 0.59 20.15 20.15 0.0 6.05

S2.18 50 40.9 0.20 41.2 41.2 0.0 138.30 40.3 0.72 40.6 40.6 0.0 117.36
75 40.4 0.24 40.9 50.6 0.237 600.00 21.8 0.82 22.45 50.6 1.254 600.00
100 40.4 0.20 41.1 41.1 0.0 222.75 20.2 0.81 20.55 20.55 0.0 5.83

S2.19 50 47.4 0.15 47.6 47.6 0.0 96.71 39.4 0.54 40.4 40.4 0.0 244.56
75 40.7 0.17 41.6 41.6 0.0 469.39 22.15 0.71 22.35 40.8 0.826 600.00
100 40.6 0.14 41.4 41.4 0.0 96.75 20.25 0.52 20.7 20.7 0.0 1.84

S2.20 50 46.7 0.19 46.8 46.8 0.0 488.97 37.7 0.64 39.2 39.2 0.0 271.73
75 39.0 0.20 39.0 51.1 0.31 600.00 21.6 0.79 22.05 23.3 0.057 600.00
100 38.8 0.20 39.2 57.6 0.469 600.00 19.4 0.72 19.7 19.7 0.0 87.44

S2.21 50 43.6 0.22 43.9 52.0 0.185 600.00 38.9 0.70 39.6 51.2 0.293 600.00
75 40.9 0.18 41.3 41.3 0.0 33.57 21.95 0.77 22.45 22.45 0.0 464.21
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Table C.5 – continued from previous page

P1 P∞

Heuristic Solver Heuristic Solver
Inst %UT LB CPU LB UB GAP CPU LB CPU LB UB GAP CPU

100 40.2 0.21 41.2 41.2 0.0 98.96 20.2 0.90 20.6 20.6 0.0 0.69
S2.22 50 41.6 0.20 41.6 50.4 0.212 600.00 36.2 0.84 38.5 50.4 0.309 600.00

75 37.8 0.21 38.4 50.4 0.313 600.00 20.75 0.87 21.25 50.4 1.372 600.00
100 37.8 0.20 37.8 50.4 0.333 600.00 18.9 1.07 19.2 19.2 0.0 383.12

S2.23 50 39.5 0.17 40.5 40.5 0.0 98.93 34.7 0.66 34.7 34.7 0.0 35.08
75 39.0 0.14 40.5 40.5 0.0 206.69 21.35 0.58 21.75 21.75 0.0 23.56
100 39.0 0.13 40.4 40.4 0.0 234.02 19.5 0.61 20.2 20.2 0.0 2.96

S2.24 50 44.7 0.24 44.7 56.1 0.255 600.00 37.2 0.90 39.5 50.8 0.286 600.00
75 39.5 0.17 40.2 57.3 0.425 600.00 22.15 1.50 22.6 50.8 1.248 600.00
100 39.3 0.17 40.0 53.0 0.325 600.00 19.7 0.93 20.1 20.4 0.015 600.00

S2.25 50 44.2 0.15 44.2 45.0 0.018 600.00 39.3 0.57 41.8 41.8 0.0 233.19
75 40.7 0.16 42.0 42.6 0.014 600.00 22.0 0.75 22.45 51.1 1.276 600.00
100 40.6 0.14 40.9 52.13 0.275 600.00 20.3 0.63 20.85 20.85 0.0 13.93

S2.26 50 40.9 0.14 40.9 40.9 0.0 87.05 24.55 0.42 24.55 24.55 0.0 6.81
75 38.4 0.18 38.4 40.9 0.065 600.00 20.8 0.67 21.7 21.7 0.0 7.20
100 36.9 0.14 38.4 40.9 0.065 600.00 18.6 0.82 19.2 19.2 0.0 6.02

S2.27 50 41.7 0.19 44.1 44.1 0.0 88.93 36.4 0.65 38.5 38.5 0.0 4.09
75 38.9 0.17 39.1 39.1 0.0 39.13 21.15 0.67 21.9 21.9 0.0 17.58
100 38.1 0.20 39.1 39.1 0.0 49.74 19.05 0.78 19.55 19.55 0.0 0.15

S2.28 50 46.1 0.21 46.1 50.1 0.087 600.00 37.2 0.81 39.3 50.1 0.275 600.00
75 38.4 0.20 39.0 56.1 0.438 600.00 21.3 0.89 21.7 50.1 1.309 600.00
100 38.5 0.19 39.4 45.1 0.145 600.00 19.25 0.77 19.7 19.7 0.0 28.09

S2.29 50 42.5 0.16 42.6 50.2 0.178 600.00 37.1 0.59 39.8 50.2 0.261 600.00
75 40.0 0.16 41.1 50.5 0.229 600.00 21.25 0.66 21.65 50.2 1.319 600.00
100 40.2 0.21 40.7 40.7 0.0 488.71 19.7 0.83 20.35 20.35 0.0 10.44

S2.30 50 43.1 0.23 43.5 50.3 0.156 600.00 37.2 0.59 39.7 50.3 0.267 600.00
75 39.6 0.19 39.8 50.3 0.264 600.00 21.8 0.91 22.55 50.3 1.231 600.00
100 39.5 0.24 39.6 50.3 0.27 600.00 19.75 1.08 19.9 20.4 0.025 600.00

S2.31 50 43.0 0.18 43.0 43.0 0.0 90.73 37.8 0.45 37.8 37.8 0.0 4.65
75 36.3 0.14 36.3 36.3 0.0 101.27 18.75 0.46 18.75 18.75 0.0 2.88
100 36.3 0.14 36.3 36.3 0.0 60.67 18.15 0.47 18.15 18.15 0.0 0.07

S2.32 50 40.6 0.20 42.2 42.2 0.0 157.25 37.6 0.75 40.0 48.045 0.201 600.00
75 39.7 0.18 40.3 43.7 0.084 600.00 20.45 0.95 21.0 50.3 1.395 600.00
100 39.4 0.19 40.3 42.2 0.047 600.00 19.7 0.96 20.2 20.2 0.0 14.38
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Table C.5 – continued from previous page
P1 P∞

Heuristic Solver Heuristic Solver
Inst %UT LB CPU LB UB GAP CPU LB CPU LB UB GAP CPU
S2.33 50 46.5 0.19 48.2 48.2 0.0 534.18 38.8 0.72 40.8 42.6 0.044 600.00

75 40.3 0.23 40.8 50.1 0.228 600.00 22.5 0.99 22.6 50.1 1.217 600.00
100 40.2 0.25 40.8 50.1 0.228 600.00 20.05 0.97 20.4 20.4 0.0 18.32

S2.34 50 41.0 0.19 42.8 42.8 0.0 195.20 36.1 0.58 38.9 38.9 0.0 31.98
75 38.4 0.22 39.3 47.2 0.201 600.00 21.2 0.91 21.8 21.8 0.0 95.00
100 38.4 0.28 39.5 45.6 0.154 600.00 19.05 1.07 19.75 19.75 0.0 35.81

S2.35 50 42.3 0.21 42.3 42.3 0.0 102.36 24.8 0.42 24.8 24.8 0.0 3.58
75 41.4 0.14 42.0 42.0 0.0 177.96 22.75 0.75 23.05 23.05 0.0 15.04
100 40.4 0.16 42.0 42.0 0.0 87.43 20.2 0.69 21.0 21.0 0.0 1.01

S2.36 50 40.4 0.19 40.9 40.9 0.0 98.91 35.6 0.58 37.1 37.1 0.0 21.81
75 38.4 0.16 38.8 38.8 0.0 91.26 21.8 0.51 22.35 22.35 0.0 15.66
100 37.3 0.15 38.5 38.5 0.0 78.39 19.2 0.52 19.25 19.25 0.0 0.75

S2.37 50 40.1 0.18 41.3 41.3 0.0 113.60 37.3 0.76 39.4 39.4 0.0 393.66
75 38.4 0.25 39.2 40.9 0.043 600.00 20.35 0.67 21.7 33.1 0.525 600.00
100 38.4 0.21 39.1 40.3 0.031 600.00 19.2 0.66 19.55 19.55 0.0 31.44

S2.38 50 48.4 0.17 48.4 50.5 0.043 600.00 39.1 0.94 40.7 50.5 0.241 600.00
75 40.5 0.20 41.0 50.9 0.241 600.00 22.65 1.20 23.1 50.5 1.186 600.00
100 40.5 0.17 40.7 50.3 0.236 600.00 20.15 1.00 20.45 20.45 0.0 29.18

S2.39 50 48.4 0.22 48.4 51.4 0.062 600.00 39.9 1.04 41.1 50.1 0.219 600.00
75 40.2 0.22 40.9 51.4 0.257 600.00 22.45 1.35 22.5 50.1 1.227 600.00
100 40.2 0.22 40.9 50.2 0.227 600.00 20.05 1.02 20.45 20.45 0.0 200.80

S2.40 50 39.1 0.22 39.1 50.1 0.281 600.00 35.9 0.58 38.3 38.3 0.0 426.06
75 38.5 0.20 38.5 38.5 0.0 327.88 19.75 0.72 20.0 40.1 1.005 600.00
100 38.5 0.16 38.5 40.1 0.042 600.00 19.25 0.69 19.25 19.25 0.0 7.85

S2.41 50 39.4 0.14 39.7 39.7 0.0 74.30 32.8 0.57 33.0 33.0 0.0 5.96
75 39.1 0.16 39.1 39.1 0.0 149.05 20.05 0.50 20.35 20.35 0.0 15.14
100 38.9 0.14 39.1 39.1 0.0 180.26 19.4 0.53 19.55 19.55 0.0 3.75

S2.42 50 42.9 0.17 46.6 50.2 0.077 600.00 36.8 0.75 38.6 50.1 0.298 600.00
75 38.8 0.27 39.2 50.2 0.281 600.00 20.65 0.87 21.5 50.1 1.33 600.00
100 38.4 0.24 39.7 39.7 0.0 303.68 19.2 0.85 19.85 19.85 0.0 34.00

S2.43 50 42.2 0.18 43.2 51.8 0.199 600.00 37.0 0.98 39.9 50.9 0.276 600.00
75 39.7 0.19 39.7 53.7 0.353 600.00 21.2 0.76 21.7 50.9 1.346 600.00
100 39.6 0.21 40.4 46.3 0.146 600.00 19.6 1.07 20.2 20.2 0.0 102.44

S2.44 50 43.0 0.17 43.0 43.0 0.0 139.48 38.1 0.58 39.4 39.4 0.0 78.74
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Table C.5 – continued from previous page

P1 P∞

Heuristic Solver Heuristic Solver
Inst %UT LB CPU LB UB GAP CPU LB CPU LB UB GAP CPU

75 38.7 0.15 39.3 50.1 0.275 600.00 22.15 0.59 22.4 22.4 0.0 170.67
100 38.6 0.17 39.6 40.1 0.013 600.00 19.15 0.70 19.8 19.8 0.0 4.74

S2.45 50 40.2 0.16 42.1 42.1 0.0 181.23 34.5 0.49 35.2 35.2 0.0 12.70
75 35.6 0.15 36.4 46.8 0.286 600.00 19.5 0.97 19.75 23.4 0.185 600.00
100 35.7 0.15 36.4 36.4 0.0 229.65 17.8 0.61 18.2 18.2 0.0 6.62

S2.46 50 42.0 0.20 42.0 51.5 0.226 600.00 39.1 0.93 40.4 50.1 0.24 600.00
75 40.0 0.23 40.0 50.4 0.26 600.00 21.0 0.72 21.55 50.1 1.325 600.00
100 39.7 0.20 40.3 50.1 0.243 600.00 19.75 0.82 20.25 20.25 0.0 48.32

S2.47 50 40.8 0.15 40.8 40.8 0.0 118.74 35.4 0.52 35.8 35.8 0.0 259.97
75 36.6 0.17 37.5 37.5 0.0 230.54 19.95 0.66 20.95 32.3 0.542 600.00
100 36.2 0.18 36.8 36.8 0.0 149.38 18.3 0.56 18.4 18.4 0.0 4.08

S2.48 50 42.4 0.15 42.6 52.5 0.232 600.00 38.1 0.68 39.4 44.375 0.126 600.00
75 39.8 0.20 40.3 51.9 0.288 600.00 21.65 0.95 22.55 50.5 1.239 600.00
100 39.5 0.15 39.8 51.9 0.304 600.00 19.7 0.60 20.15 20.15 0.0 32.68

S2.49 50 43.6 0.28 43.8 50.5 0.153 600.00 38.4 1.18 39.4 50.5 0.282 600.00
75 39.2 0.28 39.4 60.0 0.523 600.00 21.1 1.38 21.5 50.5 1.349 600.00
100 38.6 0.18 38.7 54.5 0.408 600.00 19.3 1.46 19.6 24.75 0.263 600.00
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Table C.6: Series 3. Example of table for metrics compari-

son; rmax = 3.

P1 P∞

Heuristic Solver Heuristic Solver
Inst %UT LB CPU LB UB GAP CPU LB CPU LB UB GAP CPU
S3.0 50 15.7 0.42 15.7 15.7 0.0 195.49 8.433 0.83 8.433 8.433 0.0 17.26

75 15.5 0.41 15.5 15.5 0.0 256.36 5.1 0.94 5.1 5.1 0.0 5.86
100 15.5 0.41 15.5 15.7 0.013 600.00 3.925 1.00 3.925 3.925 0.0 21.22

S3.1 50 16.4 0.44 18.4 18.4 0.0 238.13 7.2 0.87 7.2 7.2 0.0 104.59
75 16.4 0.43 18.4 18.4 0.0 215.41 4.6 0.94 4.6 4.6 0.0 18.92
100 16.4 0.44 18.4 18.4 0.0 318.67 4.6 0.95 4.6 4.6 0.0 1.51

S3.2 50 17.9 0.43 17.9 47.2 1.637 600.00 9.0 0.89 9.0 9.0 0.0 106.30
75 17.9 0.44 17.9 34.6 0.933 600.00 6.8 0.96 6.967 6.967 0.0 21.24
100 17.9 0.43 17.9 20.4 0.14 600.00 5.233 1.05 5.233 5.233 0.0 5.00

S3.3 50 12.0 0.46 12.2 16.3 0.336 600.00 5.7 0.94 5.7 5.7 0.0 24.86
75 12.0 0.47 12.0 16.3 0.358 600.00 4.0 0.94 4.075 4.075 0.0 6.49
100 12.0 0.46 12.0 12.0 0.0 457.53 3.0 1.04 3.0 3.0 0.0 48.30

S3.4 50 14.0 0.41 14.0 14.0 0.0 122.51 4.95 0.83 4.95 4.95 0.0 34.94
75 14.0 0.40 14.0 14.0 0.0 61.16 4.667 0.93 4.75 4.75 0.0 1.16
100 14.0 0.40 14.0 14.0 0.0 22.95 3.575 0.85 3.575 3.575 0.0 0.49

S3.5 50 16.7 0.49 16.7 30.002 0.797 600.00 8.65 1.02 8.65 8.65 0.0 63.27
75 16.7 0.49 16.7 26.3 0.575 600.00 7.767 1.17 8.6 8.6 0.0 5.34
100 16.7 0.49 16.7 19.4 0.162 600.00 5.567 1.12 5.733 5.733 0.0 1.76

S3.6 50 19.4 0.44 20.7 20.7 0.0 371.40 11.2 0.92 11.2 11.2 0.0 500.87
75 19.4 0.43 20.7 20.7 0.0 366.84 7.05 1.05 8.1 8.1 0.0 68.53
100 19.4 0.43 19.4 36.0 0.856 600.00 6.467 1.03 6.9 6.9 0.0 2.59

S3.7 50 22.1 0.46 22.1 22.3 0.009 600.00 9.133 1.05 9.9 9.9 0.0 108.38
75 22.1 0.48 22.1 23.9 0.081 600.00 7.367 1.26 7.367 7.367 0.0 74.47
100 22.1 0.48 22.1 22.1 0.0 219.44 7.367 0.95 7.367 7.367 0.0 0.37

S3.8 50 27.2 0.54 27.2 53.2 0.956 600.00 15.7 1.19 18.25 18.25 0.0 309.56
75 27.2 0.50 27.2 60.0 1.206 600.00 14.7 1.30 15.65 15.65 0.0 248.78
100 27.2 0.49 27.2 58.9 1.165 600.00 9.067 1.35 9.267 9.267 0.0 3.48

S3.9 50 4.4 0.42 4.4 4.4 0.0 46.74 2.2 0.60 2.55 2.55 0.0 3.32
75 4.4 0.42 4.4 4.4 0.0 34.69 1.1 0.71 1.2 1.2 0.0 11.88
100 4.4 0.42 4.4 4.4 0.0 34.73 1.1 0.80 1.1 1.1 0.0 8.49

S3.10 50 12.3 0.49 12.3 12.3 0.0 190.69 4.4 0.89 4.8 4.8 0.0 64.64141
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Table C.6 – continued from previous page

P1 P∞

Heuristic Solver Heuristic Solver
Inst %UT LB CPU LB UB GAP CPU LB CPU LB UB GAP CPU

75 12.3 0.45 12.3 12.3 0.0 248.06 3.667 1.02 3.667 3.667 0.0 75.39
100 12.3 0.45 12.3 12.3 0.0 145.70 3.25 1.03 3.25 3.25 0.0 7.06

S3.11 50 14.2 0.44 15.6 15.6 0.0 117.12 6.6 0.88 6.6 6.6 0.0 35.42
75 14.2 0.46 15.4 15.4 0.0 204.72 4.733 0.99 4.95 4.95 0.0 34.93
100 14.2 0.47 15.4 15.4 0.0 398.81 3.9 0.98 3.9 3.9 0.0 1.48

S3.12 50 7.3 0.41 9.8 9.8 0.0 14.51 4.333 0.69 4.7 4.7 0.0 4.81
75 7.3 0.39 9.8 9.8 0.0 69.60 3.1 0.70 3.25 3.25 0.0 0.45
100 7.3 0.39 9.8 9.8 0.0 14.22 1.825 0.78 2.45 2.45 0.0 4.52

S3.13 50 9.2 0.45 12.9 12.9 0.0 176.84 6.0 0.84 6.0 6.0 0.0 13.21
75 9.2 0.44 12.9 12.9 0.0 184.25 3.533 0.92 4.025 4.025 0.0 19.32
100 9.2 0.44 12.9 12.9 0.0 216.36 2.3 0.91 3.225 3.225 0.0 8.82

S3.14 50 21.9 0.46 21.9 22.3 0.018 600.00 10.4 1.01 10.4 10.4 0.0 394.77
75 21.2 0.45 21.2 22.3 0.052 600.00 7.767 1.14 7.767 7.767 0.0 14.82
100 21.2 0.42 21.2 21.9 0.033 600.00 7.067 0.82 7.067 7.067 0.0 0.33

S3.15 50 13.3 0.43 13.3 21.562 0.621 600.00 8.75 0.84 10.7 10.7 0.0 87.56
75 12.9 0.43 12.9 21.4 0.659 600.00 5.1 0.94 5.2 5.2 0.0 10.30
100 12.9 0.44 12.9 20.3 0.574 600.00 3.325 1.00 3.325 3.325 0.0 4.66

S3.16 50 15.0 0.41 15.0 15.0 0.0 217.57 7.05 0.90 7.05 7.05 0.0 144.28
75 12.2 0.43 12.2 12.2 0.0 207.77 5.9 1.02 6.1 6.1 0.0 12.29
100 12.2 0.43 12.2 12.2 0.0 201.60 3.833 0.95 3.833 3.833 0.0 2.45

S3.17 50 12.9 0.45 14.8 14.8 0.0 136.76 7.767 0.77 8.6 8.6 0.0 21.51
75 12.1 0.45 13.9 13.9 0.0 121.68 4.033 0.94 5.3 5.3 0.0 4.18
100 12.1 0.44 13.9 13.9 0.0 97.60 3.025 0.98 3.7 3.7 0.0 8.14

S3.18 50 19.9 0.48 21.0 21.0 0.0 471.70 8.933 1.04 10.55 10.55 0.0 47.25
75 19.9 0.50 19.9 24.8 0.246 600.00 6.633 1.15 6.7 6.7 0.0 5.21
100 19.9 0.49 21.0 21.0 0.0 387.82 5.6 1.10 6.7 6.7 0.0 2.09

S3.19 50 19.1 0.43 19.1 19.1 0.0 359.42 8.467 0.85 8.467 8.467 0.0 53.93
75 19.1 0.43 19.1 19.6 0.026 600.00 6.367 1.01 6.367 6.367 0.0 17.23
100 19.1 0.42 19.1 19.1 0.0 227.47 6.367 0.68 6.367 6.367 0.0 0.14

S3.20 50 6.6 0.42 6.6 6.6 0.0 65.48 3.3 0.75 3.3 3.3 0.0 4.99
75 6.6 0.44 6.6 6.6 0.0 153.66 3.25 0.91 3.25 3.25 0.0 2.25
100 6.6 0.43 6.6 6.6 0.0 85.44 1.65 0.91 1.65 1.65 0.0 3.50

S3.21 50 17.9 0.40 17.9 17.9 0.0 82.08 6.6 0.80 6.85 6.85 0.0 76.00
75 14.8 0.40 15.2 15.2 0.0 113.52 4.15 0.84 4.15 4.15 0.0 5.63
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P1 P∞

Heuristic Solver Heuristic Solver
Inst %UT LB CPU LB UB GAP CPU LB CPU LB UB GAP CPU

100 14.8 0.39 15.2 15.2 0.0 123.84 3.9 0.79 3.9 3.9 0.0 0.48
S3.22 50 13.3 0.45 13.3 13.3 0.0 403.35 6.15 0.80 7.5 7.5 0.0 26.50

75 13.3 0.46 13.3 16.3 0.226 600.00 4.433 0.88 4.433 4.433 0.0 26.92
100 13.3 0.43 13.3 13.3 0.0 306.54 3.85 0.95 3.85 3.85 0.0 1.19

S3.23 50 10.2 0.39 10.2 10.2 0.0 134.83 4.667 0.81 4.8 4.8 0.0 62.68
75 10.2 0.39 10.2 10.2 0.0 115.49 3.333 0.86 3.5 3.5 0.0 7.88
100 10.2 0.41 10.2 10.2 0.0 73.50 2.55 0.86 2.55 2.55 0.0 5.81

S3.24 50 14.9 0.41 14.9 14.9 0.0 178.50 7.45 0.80 7.45 7.45 0.0 9.09
75 14.9 0.40 14.9 14.9 0.0 98.42 4.967 0.92 5.0 5.0 0.0 9.54
100 14.9 0.41 14.9 14.9 0.0 163.10 3.725 0.93 3.725 3.725 0.0 0.85

S3.25 50 19.6 0.46 22.1 22.1 0.0 308.36 12.3 0.93 12.3 12.3 0.0 94.08
75 19.6 0.46 21.3 21.3 0.0 522.37 8.433 1.01 8.433 8.433 0.0 63.76
100 19.6 0.44 21.3 21.3 0.0 482.58 6.533 1.34 7.1 7.1 0.0 3.47

S3.26 50 16.8 0.43 20.1 20.1 0.0 228.31 7.4 0.95 8.067 8.067 0.0 97.94
75 16.8 0.44 20.1 20.1 0.0 547.33 5.6 1.07 6.7 6.7 0.0 19.55
100 16.8 0.46 20.1 20.1 0.0 97.60 5.6 1.03 6.7 6.7 0.0 1.20

S3.27 50 16.2 0.45 16.2 16.2 0.0 348.53 8.633 0.90 9.3 9.3 0.0 7.81
75 11.7 0.46 11.7 14.4 0.231 600.00 4.05 1.01 4.05 4.05 0.0 42.09
100 11.7 0.47 11.7 24.2 1.068 600.00 2.925 1.08 2.925 2.925 0.0 37.39

S3.28 50 7.1 0.39 7.1 7.1 0.0 36.71 3.35 0.65 3.35 3.35 0.0 5.55
75 7.1 0.39 7.1 7.1 0.0 26.01 1.775 0.72 1.775 1.775 0.0 8.02
100 7.1 0.38 7.1 7.1 0.0 28.95 1.775 0.77 1.775 1.775 0.0 0.55

S3.29 50 11.2 0.43 11.2 11.2 0.0 144.30 5.6 0.91 5.6 5.6 0.0 187.13
75 11.2 0.45 11.2 11.2 0.0 216.38 3.4 1.03 3.4 3.4 0.0 37.78
100 11.2 0.45 11.2 11.2 0.0 272.18 2.35 1.00 2.35 2.35 0.0 29.36

S3.30 50 20.9 0.45 20.9 60.0 1.871 600.00 8.75 1.00 10.1 10.5 0.04 600.00
75 20.9 0.45 20.9 196.119 8.384 600.00 8.133 1.10 9.2 9.2 0.0 44.73
100 20.9 0.46 20.9 56.0 1.679 600.00 6.967 1.12 7.0 7.0 0.0 1.43

S3.31 50 16.1 0.48 16.1 29.705 0.845 600.00 7.667 1.04 8.1 8.1 0.0 283.05
75 15.7 0.48 15.7 46.074 1.935 600.00 5.267 1.07 7.667 7.667 0.0 22.56
100 15.7 0.48 15.7 30.037 0.913 600.00 5.133 1.11 5.133 5.133 0.0 3.82

S3.32 50 14.0 0.46 15.4 15.4 0.0 225.16 6.9 1.02 6.9 6.9 0.0 53.72
75 14.0 0.47 14.6 14.6 0.0 289.58 4.667 1.11 4.667 4.667 0.0 8.39
100 14.0 0.47 14.6 14.6 0.0 194.72 3.5 1.15 3.65 3.65 0.0 2.62
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Table C.6 – continued from previous page

P1 P∞

Heuristic Solver Heuristic Solver
Inst %UT LB CPU LB UB GAP CPU LB CPU LB UB GAP CPU
S3.33 50 13.8 0.46 13.8 13.8 0.0 335.22 4.4 0.92 6.367 6.367 0.0 233.91

75 11.1 0.47 12.7 12.7 0.0 531.19 3.767 1.01 3.767 3.767 0.0 32.75
100 11.1 0.46 12.7 12.7 0.0 383.69 2.775 1.12 3.175 3.175 0.0 51.20

S3.34 50 6.2 0.39 6.2 6.2 0.0 39.95 2.467 0.62 2.467 2.467 0.0 2.03
75 6.2 0.40 6.2 6.2 0.0 51.11 2.0 0.73 2.0 2.0 0.0 0.55
100 6.2 0.40 6.2 6.2 0.0 54.95 1.55 0.82 1.55 1.55 0.0 0.79

S3.35 50 9.5 0.41 9.5 9.5 0.0 166.60 5.9 0.76 6.067 6.067 0.0 24.71
75 9.5 0.41 9.5 9.5 0.0 121.23 4.0 0.88 4.0 4.0 0.0 7.88
100 9.5 0.42 9.5 9.5 0.0 134.86 2.375 0.91 2.375 2.375 0.0 9.80

S3.36 50 8.3 0.41 8.3 8.3 0.0 61.53 4.15 0.77 5.9 5.9 0.0 14.12
75 8.3 0.42 8.3 8.3 0.0 75.35 3.9 0.90 4.05 4.05 0.0 6.75
100 8.3 0.42 8.3 8.3 0.0 62.58 2.075 0.88 2.075 2.075 0.0 3.64

S3.37 50 20.9 0.47 20.9 45.664 1.185 600.00 11.85 1.05 12.0 17.5 0.458 600.00
75 20.9 0.49 20.9 55.537 1.657 600.00 7.767 1.23 8.65 8.65 0.0 436.09
100 20.9 0.47 20.9 56.4 1.699 600.00 6.967 1.21 7.767 7.767 0.0 14.39

S3.38 50 17.7 0.48 17.7 21.9 0.237 600.00 9.7 1.08 12.15 12.15 0.0 175.95
75 17.7 0.50 17.7 17.7 0.0 463.70 8.1 1.19 8.1 8.1 0.0 45.21
100 17.7 0.50 17.7 17.7 0.0 445.88 5.9 1.23 5.9 5.9 0.0 1.59

S3.39 50 18.0 0.50 18.0 35.535 0.974 600.00 8.8 1.09 8.8 18.731 1.128 600.00
75 18.0 0.49 18.0 41.1 1.283 600.00 6.95 1.22 6.95 6.95 0.0 66.64
100 18.0 0.48 18.0 41.1 1.283 600.00 6.0 1.16 6.0 6.0 0.0 2.60

S3.40 50 15.7 0.43 15.7 19.8 0.261 600.00 7.85 0.83 7.85 7.85 0.0 49.83
75 15.7 0.44 15.7 21.4 0.363 600.00 4.675 1.05 4.675 4.675 0.0 35.04
100 15.7 0.44 15.7 15.7 0.0 273.84 4.675 1.01 4.675 4.675 0.0 1.22

S3.41 50 7.6 0.41 7.6 7.6 0.0 492.94 3.0 0.81 3.0 3.0 0.0 50.85
75 7.6 0.41 7.6 17.0 1.237 600.00 2.325 0.85 2.9 2.9 0.0 36.13
100 7.6 0.43 7.6 7.6 0.0 277.74 1.9 0.98 1.9 1.9 0.0 19.34

S3.42 50 16.3 0.44 17.4 17.4 0.0 224.45 7.4 0.92 8.75 8.75 0.0 43.37
75 16.3 0.44 17.4 17.4 0.0 106.61 5.433 1.05 5.8 5.8 0.0 6.67
100 16.3 0.44 17.4 17.4 0.0 177.92 4.667 1.07 5.8 5.8 0.0 1.45

S3.43 50 9.3 0.40 9.3 9.3 0.0 84.68 4.2 0.76 4.65 4.65 0.0 19.54
75 9.3 0.41 9.3 9.3 0.0 25.18 3.033 0.89 3.15 3.15 0.0 9.02
100 9.3 0.40 9.3 9.3 0.0 56.59 2.325 0.89 2.325 2.325 0.0 6.42

S3.44 50 8.6 0.40 9.6 9.6 0.0 184.20 3.533 0.71 3.533 3.533 0.0 20.26
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Table C.6 – continued from previous page
P1 P∞

Heuristic Solver Heuristic Solver
Inst %UT LB CPU LB UB GAP CPU LB CPU LB UB GAP CPU

75 8.6 0.41 9.6 9.6 0.0 193.94 2.65 0.80 2.65 2.65 0.0 46.92
100 8.6 0.41 9.6 9.6 0.0 213.93 2.15 0.81 2.4 2.4 0.0 14.22

S3.45 50 14.9 0.43 16.3 16.3 0.0 251.62 7.767 0.81 8.8 8.8 0.0 18.81
75 14.9 0.40 16.3 16.3 0.0 363.95 5.667 0.97 5.667 5.667 0.0 2.16
100 14.9 0.40 16.3 16.3 0.0 177.39 4.1 0.99 5.1 5.1 0.0 1.07

S3.46 50 8.9 0.41 8.9 8.9 0.0 74.76 4.133 0.76 4.133 4.133 0.0 42.59
75 8.9 0.56 8.9 8.9 0.0 71.04 2.967 0.88 2.967 2.967 0.0 18.41
100 8.9 0.41 8.9 8.9 0.0 70.18 2.225 0.91 2.225 2.225 0.0 6.09

S3.47 50 8.5 0.40 8.5 8.5 0.0 178.16 3.6 0.68 3.6 3.6 0.0 20.01
75 8.5 0.41 8.5 8.5 0.0 204.22 2.4 0.75 2.5 2.5 0.0 5.95
100 8.5 0.40 8.5 8.5 0.0 71.98 2.125 0.80 2.125 2.125 0.0 19.97

S3.48 50 15.4 0.44 17.4 17.4 0.0 191.53 6.9 0.92 8.65 8.65 0.0 47.54
75 15.4 0.41 17.1 17.1 0.0 289.86 5.8 0.98 6.1 6.1 0.0 3.53
100 15.4 0.42 17.1 17.1 0.0 310.61 4.45 1.01 4.75 4.75 0.0 1.84

S3.49 50 7.3 0.40 7.3 7.3 0.0 94.79 4.55 0.67 4.8 4.8 0.0 4.03
75 6.4 0.40 7.1 7.1 0.0 137.96 2.85 0.80 2.85 2.85 0.0 6.18
100 6.4 0.42 7.1 7.1 0.0 30.94 1.6 0.82 1.775 1.775 0.0 9.96
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Table D.1: MIP restart. First 10 instances from S1, S2 and S3;
rmax = 2.

P1 P∞

Heuristic OBC Solver Heuristic OBC Solver
Inst %UT LB CPU X Y LB UB GAP CPU LB CPU X Y LB UB GAP CPU
S1.0 50 28.8 0.17 3 0 30.4 30.4 0.0 107.25 17.95 0.43 12 0 21.15 21.15 0.0 58.78

75 28.8 0.12 3 0 30.4 30.4 0.0 190.49 11.867 0.34 4 0 13.2 13.2 0.0 13.63
100 28.8 0.11 3 0 30.4 30.4 0.0 134.35 9.4 0.45 0 0 10.133 10.133 0.0 9.11

S1.1 50 24.6 0.17 3 0 27.3 42.2 0.546 600.00 16.0 0.42 14 0 19.3 19.3 0.0 27.92
75 23.4 0.14 0 0 23.7 42.2 0.781 600.00 10.4 0.46 9 0 11.55 11.55 0.0 450.71
100 23.8 0.13 0 0 23.8 38.8 0.63 600.00 7.8 0.47 7 0 7.933 7.933 0.0 248.87

S1.2 50 27.7 0.11 5 0 29.1 52.8 0.814 600.00 16.1 0.42 5 0 17.55 21.35 0.217 600.00
75 26.4 0.10 0 0 28.1 36.7 0.306 600.00 11.8 0.41 4 0 13.0 13.0 0.0 486.83
100 27.7 0.10 0 0 28.0 28.9 0.032 600.00 8.8 0.33 0 0 9.333 9.333 0.0 24.39

S1.3 50 33.1 0.18 0 0 33.1 51.4 0.553 600.00 20.6 0.43 11 0 22.05 23.35 0.059 600.00
75 29.3 0.16 0 0 29.5 51.4 0.742 600.00 12.85 0.59 12 0 14.85 35.0 1.357 600.00
100 29.3 0.17 0 0 29.4 51.4 0.748 600.00 9.4 0.72 4 0 9.833 20.45 1.08 600.00

S1.4 50 26.0 0.13 6 1 28.5 37.9 0.33 600.00 17.65 0.43 0 0 18.6 18.6 0.0 177.65
75 25.5 0.15 0 0 26.3 38.0 0.445 600.00 11.15 0.58 4 0 12.35 12.35 0.0 67.81
100 24.3 0.14 5 0 26.3 36.8 0.399 600.00 8.5 0.47 0 0 8.767 8.767 0.0 72.13

S1.5 50 30.8 0.16 0 0 32.3 41.8 0.294 600.00 20.15 0.42 3 0 20.65 20.65 0.0 64.58
75 29.0 0.14 0 0 29.0 47.673 0.644 600.00 14.45 0.63 0 0 14.45 16.35 0.131 600.00
100 29.0 0.13 0 0 29.4 53.88 0.833 600.00 9.567 0.49 0 0 9.833 16.35 0.663 600.00

S1.6 50 27.1 0.13 0 0 28.5 28.6 0.004 600.00 17.7 0.53 0 0 18.9 18.9 0.0 229.05
75 26.5 0.12 0 0 27.9 28.6 0.025 600.00 12.8 0.51 0 0 13.1 13.1 0.0 577.02
100 26.5 0.11 0 0 27.9 28.6 0.025 600.00 8.833 0.41 7 0 9.3 9.3 0.0 21.92

S1.7 50 33.4 0.15 3 0 38.3 40.6 0.06 600.00 20.55 0.54 0 0 21.1 40.6 0.924 600.00
75 29.1 0.14 0 0 29.6 52.5 0.774 600.00 13.65 0.54 10 0 14.6 20.65 0.414 600.00
100 29.0 0.12 0 0 29.0 43.9 0.514 600.00 9.7 0.48 0 0 9.867 10.367 0.051 600.00

S1.8 50 32.4 0.17 0 0 32.4 33.9 0.046 600.00 17.3 0.45 43 1 20.6 20.6 0.0 84.89
75 26.9 0.13 0 0 28.0 38.8 0.386 600.00 12.15 0.54 19 0 13.7 14.55 0.062 600.00
100 26.7 0.13 0 0 27.1 35.1 0.295 600.00 8.9 0.51 7 0 9.633 9.633 0.0 147.34

S1.9 50 23.7 0.08 0 0 24.4 24.4 0.0 46.45 12.9 0.22 0 0 12.9 12.9 0.0 4.14
75 24.4 0.07 0 0 24.4 24.4 0.0 121.11 9.467 0.24 0 0 9.467 9.467 0.0 2.11
100 24.4 0.07 0 0 24.4 24.4 0.0 31.01 8.133 0.20 0 0 8.133 8.133 0.0 0.05

S2.0 50 35.8 0.17 0 0 35.8 50.2 0.402 600.00 21.4 0.85 0 0 21.65 50.2 1.319 600.00
75 31.9 0.19 0 0 33.1 100.4 2.033 600.00 14.1 0.76 4 0 15.4 50.2 2.26 600.00
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Table D.1 – continued from previous page
P1 P∞

Heuristic OBC Solver Heuristic OBC Solver
Inst %UT LB CPU X Y LB UB GAP CPU LB CPU X Y LB UB GAP CPU

100 30.0 0.15 4 0 30.8 57.464 0.866 600.00 9.933 0.84 8 0 10.567 32.525 2.078 600.00
S2.1 50 32.2 0.27 2 0 33.4 60.0 0.796 600.00 18.4 0.72 0 0 19.8 50.2 1.535 600.00

75 25.1 0.20 0 0 26.8 51.2 0.91 600.00 11.45 0.82 0 0 11.7 46.1 2.94 600.00
100 25.4 0.17 0 0 26.6 50.9 0.914 600.00 8.467 1.06 0 0 9.0 23.95 1.661 600.00

S2.2 50 33.9 0.14 0 0 34.5 73.637 1.134 600.00 20.3 0.57 5 0 22.2 47.2 1.126 600.00
75 28.5 0.17 10 0 30.2 53.177 0.761 600.00 12.9 0.63 6 0 14.15 49.224 2.479 600.00
100 28.6 0.16 0 0 29.8 53.337 0.79 600.00 9.433 0.88 0 0 10.067 20.5 1.036 600.00

S2.3 50 34.6 0.17 2 0 36.5 51.4 0.408 600.00 20.9 0.78 2 0 22.4 51.4 1.295 600.00
75 31.2 0.30 0 0 33.6 120.71 2.593 600.00 13.85 0.84 0 0 15.05 51.4 2.415 600.00
100 30.0 0.16 0 0 30.6 58.6 0.915 600.00 9.633 1.01 0 0 10.267 45.645 3.446 600.00

S2.4 50 32.6 0.20 4 0 34.9 113.014 2.238 600.00 19.45 1.01 0 0 20.65 50.5 1.446 600.00
75 26.3 0.24 0 0 27.8 104.763 2.768 600.00 11.8 1.12 0 0 13.1 50.1 2.824 600.00
100 26.0 0.16 0 0 27.4 59.9 1.186 600.00 8.567 1.49 0 0 9.067 41.855 3.616 600.00

S2.5 50 35.3 0.22 0 0 37.3 51.8 0.389 600.00 20.3 0.66 9 0 22.8 51.8 1.272 600.00
75 33.4 0.17 0 0 34.1 58.2 0.707 600.00 13.75 0.77 0 0 14.85 50.334 2.39 600.00
100 30.5 0.17 0 0 31.6 56.059 0.774 600.00 9.8 0.83 6 0 10.4 35.76 2.438 600.00

S2.6 50 26.0 0.16 2 0 28.5 35.2 0.235 600.00 17.95 0.39 3 0 21.35 21.35 0.0 562.61
75 26.0 0.14 2 0 28.5 54.6 0.916 600.00 12.65 0.72 0 0 14.3 14.3 0.0 266.02
100 26.0 0.14 2 0 28.6 35.4 0.238 600.00 8.667 0.49 0 0 9.533 9.533 0.0 16.86

S2.7 50 38.5 0.22 0 0 38.5 55.8 0.449 600.00 21.4 0.62 6 0 23.0 51.8 1.252 600.00
75 30.8 0.16 6 0 31.7 110.0 2.47 600.00 14.1 1.02 0 0 15.35 50.6 2.296 600.00
100 30.4 0.18 6 0 31.9 78.662 1.466 600.00 9.967 0.80 0 0 10.667 24.2 1.269 600.00

S2.8 50 35.0 0.17 8 0 36.0 86.293 1.397 600.00 19.95 0.58 5 0 21.05 41.3 0.962 600.00
75 28.2 0.21 0 0 29.1 51.4 0.766 600.00 12.45 0.81 1 0 13.75 47.05 2.422 600.00
100 27.5 0.19 3 0 29.5 52.3 0.773 600.00 9.133 0.92 2 0 9.7 20.75 1.139 600.00

S2.9 50 35.2 0.15 0 0 35.2 52.1 0.48 600.00 20.9 0.63 0 0 22.3 37.012 0.66 600.00
75 30.4 0.23 2 0 30.8 53.1 0.724 600.00 13.95 0.78 0 0 15.15 47.067 2.107 600.00
100 30.8 0.17 0 0 30.8 52.433 0.702 600.00 10.167 0.70 0 0 10.333 19.8 0.916 600.00

S3.0 50 15.7 0.39 0 0 15.7 15.7 0.0 290.92 7.2 0.77 0 0 7.2 7.2 0.0 5.84
75 15.5 0.40 0 0 15.5 15.5 0.0 382.10 4.05 0.95 0 0 4.05 4.05 0.0 12.58
100 15.5 0.39 0 0 15.5 15.5 0.0 182.84 3.925 0.98 0 0 3.925 3.925 0.0 5.96

S3.1 50 16.4 0.40 0 0 17.6 17.6 0.0 284.10 7.2 0.85 0 0 7.2 7.2 0.0 35.03
75 16.4 0.40 2 0 17.6 17.6 0.0 269.24 4.6 0.91 0 0 4.6 4.6 0.0 16.32
100 16.4 0.40 2 0 17.6 17.6 0.0 271.38 4.1 0.89 0 0 4.4 4.4 0.0 5.77
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Table D.1 – continued from previous page
P1 P∞

Heuristic OBC Solver Heuristic OBC Solver
Inst %UT LB CPU X Y LB UB GAP CPU LB CPU X Y LB UB GAP CPU
S3.2 50 17.8 0.39 0 0 17.8 24.6 0.382 600.00 9.0 0.93 0 0 9.0 9.0 0.0 19.03

75 17.8 0.40 0 0 17.9 18.0 0.006 600.00 6.65 0.94 0 0 6.65 6.65 0.0 15.10
100 17.8 0.40 0 0 17.8 29.2 0.64 600.00 4.5 0.98 0 0 4.5 4.5 0.0 3.27

S3.3 50 11.6 0.44 0 0 11.6 11.6 0.0 482.85 5.45 0.83 0 0 5.45 5.45 0.0 35.52
75 11.6 0.43 0 0 11.6 11.6 0.0 258.50 3.067 1.01 0 0 3.067 3.067 0.0 35.47
100 11.6 0.41 0 0 11.6 11.6 0.0 309.10 2.9 1.04 0 0 2.9 2.9 0.0 21.32

S3.4 50 14.0 0.37 0 0 14.0 14.0 0.0 40.52 4.95 0.80 0 0 4.95 4.95 0.0 14.20
75 14.0 0.37 0 0 14.0 14.0 0.0 60.03 4.15 0.83 0 0 4.15 4.15 0.0 2.62
100 14.0 0.36 0 0 14.0 14.0 0.0 24.32 3.575 0.74 0 0 3.575 3.575 0.0 0.49

S3.5 50 14.1 0.46 0 0 14.1 31.102 1.206 600.00 7.5 1.00 0 0 7.5 7.5 0.0 91.47
75 14.1 0.47 0 0 14.1 29.857 1.118 600.00 4.7 1.15 0 0 4.7 4.7 0.0 34.69
100 14.1 0.46 0 0 14.1 24.1 0.709 600.00 3.525 1.17 0 0 3.525 3.525 0.0 46.70

S3.6 50 19.4 0.41 15 0 20.7 20.7 0.0 319.66 11.2 0.88 0 0 11.2 11.2 0.0 68.50
75 18.3 0.43 15 0 20.7 20.7 0.0 539.90 7.05 1.02 19 0 7.4 7.4 0.0 178.19
100 18.3 0.43 0 0 18.3 23.5 0.284 600.00 6.1 1.02 69 1 6.9 6.9 0.0 2.58

S3.7 50 20.0 0.43 0 0 20.7 34.7 0.676 600.00 9.133 0.98 24 0 9.7 9.7 0.0 190.82
75 20.0 0.44 0 0 20.7 23.9 0.155 600.00 7.05 1.20 0 0 7.05 7.05 0.0 79.66
100 20.0 0.43 0 0 20.7 20.7 0.0 378.47 5.975 1.11 0 0 5.975 5.975 0.0 4.61

S3.8 50 23.8 0.58 0 0 23.8 60.0 1.521 600.00 12.95 1.78 0 0 12.95 24.8 0.915 600.00
75 23.5 0.52 0 0 23.5 60.0 1.553 600.00 8.667 1.43 0 0 8.667 21.1 1.435 600.00
100 23.2 0.47 0 0 23.2 60.0 1.586 600.00 7.767 1.33 1 0 8.167 8.167 0.0 29.44

S3.9 50 4.4 0.39 0 0 4.4 4.4 0.0 92.32 2.2 0.61 0 0 2.55 2.55 0.0 5.75
75 4.4 0.40 0 0 4.4 4.4 0.0 39.96 1.1 0.70 0 0 1.2 1.2 0.0 22.82
100 4.4 0.40 0 0 4.4 4.4 0.0 36.54 1.1 0.79 0 0 1.1 1.1 0.0 22.86
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Table D.2: Lazy constraints. First 10 instances from S1, S2 and
S3; rmax = 2.

P1 P∞

Heuristic OBC Solver Heuristic OBC Solver
Inst %UT LB CPU X Y LB UB GAP CPU LB CPU X Y LB UB GAP CPU
S1.0 50 28.8 0.16 3 0 30.4 30.4 0.0 101.24 19.3 0.42 7 0 21.15 21.15 0.0 14.28

75 28.8 0.12 3 0 30.4 32.9 0.082 600.00 11.867 0.34 4 0 13.2 14.545 0.102 600.00
100 28.8 0.11 3 0 30.4 30.4 0.0 71.43 9.4 0.44 0 0 10.133 10.133 0.0 9.25

S1.1 50 24.6 0.16 3 0 26.7 35.5 0.33 600.00 16.0 0.41 14 0 19.3 19.3 0.0 14.93
75 23.4 0.13 0 0 23.5 38.8 0.651 600.00 10.4 0.46 4 0 10.95 17.821 0.627 600.00
100 23.4 0.12 0 0 23.5 38.8 0.651 600.00 7.8 0.47 1 0 7.867 16.945 1.154 600.00

S1.2 50 27.7 0.11 0 0 28.0 40.727 0.455 600.00 16.1 0.42 5 0 17.55 43.066 1.454 600.00
75 26.4 0.10 0 0 26.4 36.7 0.39 600.00 11.8 0.41 4 0 13.0 13.0 0.0 388.21
100 27.7 0.10 0 0 28.0 36.7 0.311 600.00 8.8 0.33 0 0 9.333 9.333 0.0 244.25

S1.3 50 33.1 0.18 0 0 33.1 51.4 0.553 600.00 20.6 0.44 11 0 22.05 40.613 0.842 600.00
75 29.3 0.15 0 0 29.3 51.4 0.754 600.00 12.85 0.57 12 0 14.0 37.486 1.678 600.00
100 29.3 0.17 0 0 29.3 51.4 0.754 600.00 9.4 0.72 4 0 9.833 20.25 1.059 600.00

S1.4 50 26.0 0.13 6 1 28.5 28.5 0.0 418.40 17.65 0.42 0 0 18.6 26.978 0.45 600.00
75 25.5 0.14 0 0 26.3 27.6 0.049 600.00 11.15 0.58 3 0 12.0 16.55 0.379 600.00
100 24.3 0.13 5 0 26.3 31.9 0.213 600.00 8.5 0.47 0 0 8.767 14.804 0.689 600.00

S1.5 50 30.8 0.16 0 0 32.3 40.2 0.245 600.00 20.15 0.40 3 0 20.6 24.45 0.187 600.00
75 29.0 0.14 0 0 29.0 50.256 0.733 600.00 14.45 0.64 0 0 14.45 20.45 0.415 600.00
100 29.0 0.13 0 0 29.5 40.8 0.383 600.00 9.567 0.49 0 0 9.8 18.41 0.879 600.00

S1.6 50 27.1 0.13 0 0 28.5 35.4 0.242 600.00 17.7 0.52 0 0 17.7 29.218 0.651 600.00
75 26.5 0.12 0 0 27.6 34.346 0.244 600.00 12.8 0.51 0 0 13.1 13.1 0.0 532.77
100 26.5 0.11 0 0 27.9 27.9 0.0 267.35 8.833 0.40 7 0 9.3 9.3 0.0 11.80

S1.7 50 33.4 0.15 0 0 34.7 48.858 0.408 600.00 20.55 0.53 0 0 21.1 43.9 1.081 600.00
75 29.1 0.13 0 0 29.6 51.8 0.75 600.00 13.65 0.53 6 0 14.3 22.65 0.584 600.00
100 29.0 0.11 0 0 29.0 44.6 0.538 600.00 9.7 0.47 0 0 9.867 19.15 0.941 600.00

S1.8 50 32.4 0.17 0 0 32.4 39.1 0.207 600.00 17.3 0.45 43 1 20.6 20.6 0.0 60.66
75 26.7 0.11 0 0 28.0 36.491 0.303 600.00 12.7 0.50 0 0 12.85 19.85 0.545 600.00
100 26.7 0.13 0 0 27.7 37.053 0.338 600.00 8.9 0.51 7 0 9.633 9.633 0.0 85.90

S1.9 50 23.7 0.07 0 0 24.4 24.4 0.0 63.28 12.9 0.22 0 0 12.9 12.9 0.0 54.72
75 24.4 0.07 0 0 24.4 24.4 0.0 128.40 9.467 0.24 0 0 9.467 9.467 0.0 23.70
100 24.4 0.07 0 0 24.4 24.4 0.0 59.12 8.133 0.20 0 0 8.133 8.133 0.0 0.18

S2.0 50 35.8 0.17 0 0 35.8 50.2 0.402 600.00 21.4 0.83 1 0 22.7 50.2 1.211 600.00151
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Table D.2 – continued from previous page
P1 P∞

Heuristic OBC Solver Heuristic OBC Solver
Inst %UT LB CPU X Y LB UB GAP CPU LB CPU X Y LB UB GAP CPU

75 31.9 0.18 0 0 33.1 60.0 0.813 600.00 14.3 0.85 4 0 15.3 50.2 2.281 600.00
100 30.0 0.14 8 0 32.1 57.083 0.778 600.00 9.933 0.84 8 0 10.467 38.629 2.691 600.00

S2.1 50 32.2 0.26 2 0 33.0 54.998 0.667 600.00 18.4 0.74 0 0 19.9 50.2 1.523 600.00
75 25.1 0.19 0 0 25.8 51.2 0.984 600.00 11.45 0.82 0 0 11.7 44.777 2.827 600.00
100 25.4 0.16 0 0 26.6 49.307 0.854 600.00 8.467 1.04 0 0 8.7 23.95 1.753 600.00

S2.2 50 33.9 0.13 0 0 34.5 43.8 0.27 600.00 20.1 0.53 5 0 22.1 50.877 1.302 600.00
75 28.5 0.16 0 0 28.9 43.8 0.516 600.00 12.9 0.66 6 0 14.15 36.7 1.594 600.00
100 28.6 0.15 0 0 29.4 45.4 0.544 600.00 9.433 0.86 0 0 9.933 20.755 1.089 600.00

S2.3 50 35.9 0.20 1 0 36.1 51.7 0.432 600.00 20.75 0.90 2 0 22.4 51.4 1.295 600.00
75 31.2 0.28 0 0 33.1 56.974 0.721 600.00 13.85 0.82 0 0 14.95 50.838 2.401 600.00
100 30.0 0.15 0 0 30.1 58.089 0.93 600.00 9.633 0.99 0 0 10.267 38.243 2.725 600.00

S2.4 50 32.6 0.19 4 0 34.9 52.7 0.51 600.00 19.45 0.99 0 0 20.0 50.5 1.525 600.00
75 26.3 0.23 0 0 28.9 52.7 0.824 600.00 11.8 1.12 0 0 13.0 50.1 2.854 600.00
100 26.0 0.15 0 0 26.8 56.07 1.092 600.00 8.567 1.45 0 0 9.033 43.186 3.781 600.00

S2.5 50 35.3 0.21 0 0 37.3 55.621 0.491 600.00 20.3 0.65 8 0 22.55 51.8 1.297 600.00
75 33.4 0.16 0 0 34.1 56.638 0.661 600.00 13.75 0.78 0 0 14.75 49.695 2.369 600.00
100 30.5 0.16 0 0 31.6 56.284 0.781 600.00 9.8 0.82 6 0 10.467 24.45 1.336 600.00

S2.6 50 26.0 0.15 2 0 28.6 32.4 0.133 600.00 17.95 0.39 3 0 21.35 39.747 0.862 600.00
75 26.0 0.13 2 0 28.6 28.6 0.0 537.73 12.65 0.71 0 0 14.3 17.7 0.238 600.00
100 26.0 0.13 2 0 28.5 32.4 0.137 600.00 8.667 0.49 0 0 9.533 16.784 0.761 600.00

S2.7 50 38.5 0.21 0 0 38.5 55.8 0.449 600.00 21.4 0.63 6 0 23.0 51.8 1.252 600.00
75 30.8 0.15 6 0 32.0 59.6 0.863 600.00 14.1 1.01 0 0 15.35 50.6 2.296 600.00
100 30.4 0.17 6 0 31.9 52.2 0.636 600.00 9.967 0.79 0 0 10.5 40.422 2.85 600.00

S2.8 50 35.0 0.16 8 0 36.0 47.951 0.332 600.00 19.95 0.57 5 0 21.05 41.3 0.962 600.00
75 28.2 0.20 0 0 29.1 51.255 0.761 600.00 12.45 0.80 1 0 13.75 51.0 2.709 600.00
100 27.5 0.18 3 0 29.1 46.314 0.592 600.00 9.133 0.89 2 0 9.567 20.65 1.159 600.00

S2.9 50 35.2 0.14 0 0 35.2 52.1 0.48 600.00 20.9 0.64 0 0 22.2 50.7 1.284 600.00
75 30.4 0.21 2 0 30.8 52.1 0.692 600.00 13.95 0.77 0 0 14.8 39.629 1.678 600.00
100 30.8 0.17 0 0 30.8 45.0 0.461 600.00 10.167 0.71 0 0 10.167 21.85 1.149 600.00

S3.0 50 15.7 0.37 0 0 15.7 33.08 1.107 600.00 7.2 0.75 0 0 7.2 7.2 0.0 88.48
75 15.5 0.37 0 0 15.5 29.042 0.874 600.00 4.05 0.94 0 0 4.05 4.05 0.0 99.68
100 15.5 0.37 0 0 15.5 36.2 1.335 600.00 3.925 0.96 0 0 3.925 3.925 0.0 85.19

S3.1 50 16.4 0.38 0 0 17.6 17.6 0.0 193.30 7.2 0.84 0 0 7.2 7.25 0.007 600.00
75 16.4 0.39 2 0 17.6 17.6 0.0 185.01 4.6 0.90 0 0 4.6 4.6 0.0 33.68
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Table D.2 – continued from previous page
P1 P∞

Heuristic OBC Solver Heuristic OBC Solver
Inst %UT LB CPU X Y LB UB GAP CPU LB CPU X Y LB UB GAP CPU

100 16.4 0.39 2 0 17.6 17.6 0.0 302.20 4.1 0.88 0 0 4.4 4.4 0.0 33.55
S3.2 50 17.8 0.37 0 0 17.9 22.8 0.274 600.00 9.0 0.91 0 0 9.0 9.0 0.0 132.27

75 17.8 0.38 0 0 17.9 44.629 1.493 600.00 6.65 0.95 0 0 6.65 6.65 0.0 96.68
100 17.8 0.38 0 0 17.9 41.84 1.337 600.00 4.5 0.97 0 0 4.5 4.5 0.0 35.74

S3.3 50 11.6 0.42 0 0 11.6 20.1 0.733 600.00 5.45 0.81 0 0 5.45 5.45 0.0 79.78
75 11.6 0.42 0 0 11.6 25.964 1.238 600.00 3.067 0.98 0 0 3.067 3.067 0.0 518.36
100 11.6 0.40 0 0 11.6 11.6 0.0 305.00 2.9 1.03 0 0 2.9 2.9 0.0 205.46

S3.4 50 14.0 0.36 0 0 14.0 14.0 0.0 291.41 4.95 0.78 0 0 4.95 4.95 0.0 114.61
75 14.0 0.35 0 0 14.0 14.0 0.0 425.86 4.15 0.82 0 0 4.15 4.15 0.0 17.44
100 14.0 0.35 0 0 14.0 14.0 0.0 84.50 3.575 0.73 0 0 3.575 3.575 0.0 3.65

S3.5 50 14.1 0.44 0 0 14.1 36.088 1.559 600.00 7.5 0.98 0 0 7.5 17.845 1.379 600.00
75 14.1 0.44 0 0 14.1 35.7 1.532 600.00 4.7 1.13 0 0 4.7 5.267 0.121 600.00
100 14.1 0.45 0 0 14.1 28.9 1.05 600.00 3.525 1.16 0 0 3.525 3.525 0.0 384.87

S3.6 50 19.4 0.41 15 0 20.7 36.321 0.755 600.00 11.2 0.86 0 0 11.2 19.05 0.701 600.00
75 18.3 0.41 15 0 20.7 20.7 0.0 339.23 7.05 1.09 0 0 7.05 9.3 0.319 600.00
100 18.3 0.41 15 0 20.7 40.2 0.942 600.00 6.1 1.00 69 1 6.9 6.9 0.0 33.88

S3.7 50 20.0 0.41 0 0 20.7 20.7 0.0 502.17 9.133 0.96 24 0 9.7 11.567 0.192 600.00
75 20.0 0.42 0 0 20.7 20.7 0.0 382.14 7.05 1.18 0 0 7.05 7.067 0.002 600.00
100 20.0 0.42 0 0 20.7 20.7 0.0 548.60 5.975 1.10 0 0 5.975 5.975 0.0 54.90

S3.8 50 23.8 0.57 16 1 24.2 60.0 1.479 600.00 12.95 1.74 0 0 12.95 50.4 2.892 600.00
75 23.5 0.52 16 1 24.2 128.428 4.307 600.00 8.667 1.42 0 0 8.667 37.623 3.341 600.00
100 23.2 0.45 0 0 23.2 130.109 4.608 600.00 7.767 1.30 1 0 8.167 8.167 0.0 15.46

S3.9 50 4.4 0.38 0 0 4.4 4.4 0.0 62.02 2.2 0.58 0 0 2.55 2.55 0.0 12.05
75 4.4 0.39 0 0 4.4 4.4 0.0 53.86 1.1 0.69 0 0 1.2 1.2 0.0 25.74
100 4.4 0.39 0 0 4.4 4.4 0.0 54.45 1.1 0.78 0 0 1.1 1.1 0.0 27.44
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Table D.3: MIP restart. First 10 instances from S1, S2 and S3;
rmax = 3.

P1 P∞

Heuristic OBC Solver Heuristic OBC Solver
Inst %UT LB CPU X Y LB UB GAP CPU LB CPU X Y LB UB GAP CPU
S1.0 50 34.7 0.11 0 0 34.7 34.7 0.0 77.09 22.3 0.28 0 0 22.3 22.3 0.0 1.64

75 34.7 0.10 0 0 34.7 34.7 0.0 91.87 19.8 0.37 0 0 19.8 19.8 0.0 0.71
100 34.7 0.09 0 0 34.7 34.7 0.0 69.19 17.35 0.22 0 0 17.35 17.35 0.0 0.02

S1.1 50 36.0 0.12 2 0 38.6 38.6 0.0 102.37 21.35 0.39 0 0 22.25 22.25 0.0 4.41
75 35.8 0.12 2 0 37.0 37.0 0.0 63.21 18.35 0.50 6 0 19.4 19.4 0.0 8.19
100 35.8 0.14 2 0 37.0 37.0 0.0 52.00 17.85 0.35 6 0 18.5 18.5 0.0 0.27

S1.2 50 36.5 0.11 4 0 38.0 38.0 0.0 258.22 29.3 0.37 4 0 31.5 31.5 0.0 12.26
75 36.5 0.11 0 0 36.7 36.7 0.0 62.85 20.55 0.41 12 1 21.1 21.1 0.0 8.43
100 36.5 0.10 0 0 36.7 36.7 0.0 54.27 18.25 0.30 0 0 18.35 18.35 0.0 0.04

S1.3 50 41.2 0.13 0 0 41.2 41.2 0.0 89.92 36.0 0.39 0 0 36.0 36.0 0.0 30.06
75 40.5 0.17 13 0 41.1 41.1 0.0 199.34 22.4 0.63 0 0 22.4 22.4 0.0 14.94
100 40.2 0.14 7 0 41.1 41.1 0.0 83.82 20.2 0.61 0 0 20.55 20.55 0.0 2.40

S1.4 50 36.8 0.11 3 0 37.2 37.2 0.0 35.35 32.9 0.48 4 0 33.1 33.1 0.0 2.11
75 36.0 0.10 0 0 36.0 36.0 0.0 26.55 18.75 0.35 11 0 19.45 19.45 0.0 5.82
100 34.8 0.10 0 0 35.3 35.3 0.0 76.29 17.4 0.30 0 0 17.65 17.65 0.0 0.15

S1.5 50 40.2 0.14 0 0 40.2 40.2 0.0 123.58 37.2 0.40 3 0 38.9 38.9 0.0 4.36
75 39.7 0.13 1 0 40.2 40.2 0.0 331.02 20.45 0.40 0 0 20.45 20.45 0.0 1.35
100 39.7 0.12 1 0 40.2 40.2 0.0 67.85 19.85 0.38 0 0 20.1 20.1 0.0 0.43

S1.6 50 37.8 0.10 0 0 37.8 37.8 0.0 63.24 28.6 0.32 0 0 30.3 30.3 0.0 16.19
75 36.1 0.09 0 0 36.1 36.1 0.0 64.56 18.05 0.33 0 0 18.05 18.05 0.0 1.15
100 36.1 0.09 0 0 36.1 36.1 0.0 100.27 18.05 0.22 0 0 18.05 18.05 0.0 0.02

S1.7 50 41.0 0.15 0 0 41.0 41.0 0.0 81.93 36.3 0.55 2 0 38.3 38.3 0.0 61.78
75 40.0 0.16 0 0 40.2 40.2 0.0 70.12 20.3 0.54 8 0 20.7 20.7 0.0 59.90
100 40.0 0.15 0 0 40.2 40.2 0.0 90.35 19.75 0.45 0 0 20.1 20.1 0.0 0.41

S1.8 50 35.5 0.17 18 1 39.1 39.1 0.0 71.06 22.7 0.44 4 0 28.0 28.0 0.0 17.21
75 35.1 0.11 0 0 35.1 35.1 0.0 80.81 21.05 0.52 0 0 21.05 21.05 0.0 1.14
100 35.1 0.10 0 0 35.1 35.1 0.0 84.67 17.55 0.35 0 0 17.55 17.55 0.0 0.07

S1.9 50 23.7 0.08 0 0 24.4 24.4 0.0 42.97 12.9 0.21 0 0 12.9 12.9 0.0 3.67
75 23.7 0.08 0 0 24.4 24.4 0.0 106.97 10.467 0.26 0 0 10.467 10.467 0.0 2.81
100 23.7 0.08 0 0 24.4 24.4 0.0 63.00 7.9 0.22 0 0 8.133 8.133 0.0 0.11

S2.0 50 43.3 0.15 0 0 44.7 50.2 0.123 600.00 41.0 0.71 0 0 41.0 49.934 0.218 600.00
75 41.1 0.17 4 0 41.8 50.2 0.201 600.00 23.05 0.75 0 0 23.15 50.2 1.168 600.00

154



Table D.3 – continued from previous page
P1 P∞

Heuristic OBC Solver Heuristic OBC Solver
Inst %UT LB CPU X Y LB UB GAP CPU LB CPU X Y LB UB GAP CPU

100 40.7 0.19 4 0 41.4 58.1 0.403 600.00 20.25 0.87 0 0 20.75 20.75 0.0 16.82
S2.1 50 40.9 0.20 0 0 42.5 56.8 0.336 600.00 35.6 0.65 0 0 37.3 50.2 0.346 600.00

75 37.9 0.27 0 0 38.6 47.9 0.241 600.00 21.3 0.80 0 0 21.75 43.0 0.977 600.00
100 37.5 0.24 0 0 38.3 43.0 0.123 600.00 18.8 1.26 0 0 19.15 19.15 0.0 30.57

S2.2 50 41.9 0.20 0 0 42.2 42.2 0.0 232.48 38.0 0.47 8 0 40.8 40.8 0.0 26.73
75 39.8 0.17 16 0 40.8 43.8 0.074 600.00 22.25 0.90 0 0 22.45 22.45 0.0 99.11
100 40.3 0.18 0 0 40.7 40.7 0.0 164.66 20.05 0.63 0 0 20.35 20.35 0.0 5.66

S2.3 50 43.6 0.26 5 0 44.6 51.7 0.159 600.00 40.4 0.92 5 1 41.5 51.4 0.239 600.00
75 41.5 0.20 0 0 41.8 51.4 0.23 600.00 22.05 0.74 0 0 23.2 51.4 1.216 600.00
100 40.9 0.16 1 0 41.2 51.4 0.248 600.00 20.45 0.77 0 0 20.65 20.65 0.0 86.27

S2.4 50 42.6 0.20 1 0 45.8 50.5 0.103 600.00 36.8 0.71 0 0 38.6 50.5 0.308 600.00
75 38.8 0.17 5 0 40.0 56.2 0.405 600.00 21.5 1.16 0 0 22.35 50.1 1.242 600.00
100 38.0 0.17 5 0 38.8 55.9 0.441 600.00 18.95 0.89 0 0 19.4 19.9 0.026 600.00

S2.5 50 42.7 0.16 2 0 46.0 46.0 0.0 304.06 38.9 0.62 6 0 41.1 48.9 0.19 600.00
75 41.1 0.20 3 0 41.3 49.309 0.194 600.00 22.9 0.64 0 0 23.25 51.4 1.211 600.00
100 40.7 0.17 0 0 40.9 51.4 0.257 600.00 20.35 0.80 0 0 20.55 20.55 0.0 21.59

S2.6 50 35.4 0.11 0 0 35.4 35.4 0.0 58.89 35.4 0.43 0 0 35.4 35.4 0.0 1.18
75 35.4 0.10 0 0 35.4 35.4 0.0 18.50 17.7 0.39 0 0 17.7 17.7 0.0 11.34
100 35.4 0.10 0 0 35.4 35.4 0.0 34.79 17.7 0.33 0 0 17.7 17.7 0.0 0.04

S2.7 50 45.8 0.16 0 0 46.4 55.0 0.185 600.00 39.4 0.66 3 0 41.5 41.5 0.0 88.47
75 41.4 0.19 0 0 41.7 101.2 1.427 600.00 22.7 0.91 0 0 22.9 50.6 1.21 600.00
100 41.3 0.15 0 0 41.8 52.2 0.249 600.00 20.6 0.95 0 0 20.9 20.9 0.0 29.49

S2.8 50 41.5 0.18 0 0 41.5 41.5 0.0 84.94 36.9 0.90 0 0 40.4 40.4 0.0 68.49
75 40.4 0.25 0 0 40.8 40.8 0.0 216.07 21.05 0.77 4 0 21.5 22.6 0.051 600.00
100 40.5 0.16 0 0 40.8 40.8 0.0 137.51 19.95 0.79 0 0 20.4 20.4 0.0 4.48

S2.9 50 43.0 0.14 0 0 43.7 43.7 0.0 78.91 38.3 0.58 15 0 40.0 40.0 0.0 72.97
75 41.0 0.15 0 0 41.2 47.5 0.153 600.00 22.45 0.68 0 0 22.8 22.8 0.0 222.24
100 41.1 0.17 0 0 41.3 41.3 0.0 232.02 20.6 0.63 0 0 20.65 20.65 0.0 3.02

S3.0 50 15.7 0.41 0 0 15.7 15.7 0.0 308.11 8.433 0.84 0 0 8.433 8.433 0.0 17.13
75 15.5 0.40 0 0 15.5 15.5 0.0 258.53 5.1 0.94 0 0 5.1 5.1 0.0 5.81
100 15.5 0.39 0 0 15.5 15.7 0.013 600.00 3.925 1.02 0 0 3.925 3.925 0.0 21.23

S3.1 50 16.4 0.40 0 0 18.4 18.4 0.0 236.25 7.2 0.87 0 0 7.2 7.2 0.0 59.02
75 16.4 0.41 0 0 18.4 18.4 0.0 233.69 4.6 0.95 0 0 4.6 4.6 0.0 18.77
100 16.4 0.42 0 0 18.4 18.4 0.0 323.33 4.6 0.97 0 0 4.6 4.6 0.0 1.51
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Table D.3 – continued from previous page
P1 P∞

Heuristic OBC Solver Heuristic OBC Solver
Inst %UT LB CPU X Y LB UB GAP CPU LB CPU X Y LB UB GAP CPU
S3.2 50 17.9 0.41 0 0 17.9 47.2 1.637 600.00 9.0 0.90 0 0 9.0 9.0 0.0 205.42

75 17.9 0.42 0 0 17.9 34.6 0.933 600.00 6.8 0.95 0 0 6.967 6.967 0.0 27.48
100 17.9 0.41 0 0 17.9 20.4 0.14 600.00 5.233 1.05 0 0 5.233 5.233 0.0 4.96

S3.3 50 12.2 0.44 0 0 12.2 14.7 0.205 600.00 5.7 0.94 0 0 5.7 5.7 0.0 24.69
75 12.0 0.44 0 0 12.0 16.3 0.358 600.00 4.0 0.94 0 0 4.075 4.075 0.0 6.87
100 12.0 0.44 0 0 12.0 12.0 0.0 456.94 3.0 1.05 0 0 3.0 3.0 0.0 48.06

S3.4 50 14.0 0.39 0 0 14.0 14.0 0.0 121.35 4.95 0.82 0 0 4.95 4.95 0.0 34.74
75 14.0 0.38 0 0 14.0 14.0 0.0 61.17 4.667 0.93 0 0 4.75 4.75 0.0 1.15
100 14.0 0.39 0 0 14.0 14.0 0.0 23.25 3.575 0.85 0 0 3.575 3.575 0.0 0.50

S3.5 50 16.7 0.47 0 0 16.7 30.018 0.797 600.00 8.65 1.03 0 0 8.65 8.65 0.0 62.74
75 16.7 0.48 0 0 16.7 26.3 0.575 600.00 7.767 1.15 0 0 8.6 8.6 0.0 16.39
100 16.7 0.47 0 0 16.7 19.4 0.162 600.00 5.567 1.12 0 0 5.733 5.733 0.0 2.40

S3.6 50 19.4 0.40 0 0 20.7 20.7 0.0 373.28 11.2 0.91 0 0 11.2 11.2 0.0 496.05
75 19.4 0.41 0 0 20.7 20.7 0.0 540.95 7.05 1.04 43 1 8.1 8.1 0.0 87.74
100 19.4 0.41 0 0 19.4 35.958 0.854 600.00 6.467 1.03 64 1 6.9 6.9 0.0 3.30

S3.7 50 22.1 0.45 0 0 22.1 22.3 0.009 600.00 9.133 1.05 0 0 9.9 9.9 0.0 105.24
75 22.1 0.45 0 0 22.1 23.9 0.081 600.00 7.367 1.25 0 0 7.367 7.367 0.0 75.13
100 22.1 0.47 0 0 22.1 22.1 0.0 219.03 7.367 0.94 0 0 7.367 7.367 0.0 0.36

S3.8 50 27.2 0.49 0 0 27.2 53.2 0.956 600.00 15.7 1.19 70 0 18.25 18.25 0.0 385.96
75 27.2 0.48 0 0 27.2 60.0 1.206 600.00 14.7 1.28 60 1 15.65 15.65 0.0 383.18
100 27.2 0.46 0 0 27.2 58.9 1.165 600.00 9.067 1.33 0 0 9.267 9.267 0.0 6.15

S3.9 50 4.4 0.39 0 0 4.4 4.4 0.0 46.83 2.2 0.59 0 0 2.55 2.55 0.0 4.73
75 4.4 0.40 0 0 4.4 4.4 0.0 34.65 1.1 0.70 0 0 1.2 1.2 0.0 16.60
100 4.4 0.40 0 0 4.4 4.4 0.0 34.76 1.1 0.79 0 0 1.1 1.1 0.0 8.55
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Titre : Équilibrage robuste de lignes de production : modèles de programmation linéaire en variables
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Résumé : Ce travail porte sur l’optimisation ro-
buste des lignes de production au stade de la
conception. La conception de telles lignes peut
être interprétée comme un problème d’optimisa-
tion consistant à rechercher une configuration op-
timisant des objectifs individuels et à respecter les
contraintes technologiques et économiques. Nous
considérons deux types de lignes de production :
l’assemblage et le transfert. Le premier peut être
représenté comme un ensemble de stations or-
données linéairement où les tâches sont exécu-
tées de manière séquentielle. Le second type de
ligne est constitué de machines de transfert com-
prenant plusieurs têtes multibroches. Toutes les
tâches d’une même tête sont exécutées simulta-
nément, tandis que les outils d’une machine fonc-
tionnent en mode séquentiel.

Nous décrivons différentes approches permet-

tant de modéliser l’incertitude des données dans
les problèmes d’équilibrage de ligne. Notre objec-
tif est d’identifier les approches les mieux adaptées
au contexte de la conception. En particulier, l’atten-
tion se concentre sur l’approche robuste. Nous pro-
posons un nouveau critère d’optimisation basé sur
le rayon de stabilité d’une solution réalisable. En-
suite, des formulations robustes sont présentées
pour la conception des lignes d’assemblage et de
transfert lorsque le temps de traitement des tâches
est sujet à des incertitudes. Nous développons
également des méthodes heuristiques dont les ré-
sultats sont utilisés pour renforcer les modèles ma-
thématiques. Enfin, une nouvelle méthode de ré-
solution hybride est élaborée pour résoudre diffé-
rentes variantes des problèmes de maximisation
du rayon de stabilité.

Title: Robust Balancing of Production Lines: MILP Models and Pre-processing Rules

Keywords: robust optimisation, production lines, stability radius, hybrid approach, reduction rules, MILP

Abstract: This work deals with a robust optimisa-
tion of production lines at the design stage. The de-
sign of such lines can be interpreted as an optimi-
sation problem that consists in finding a configura-
tion optimising individual objectives and respecting
technological and economic constraints. We con-
sider two types of production lines: assembly and
transfer lines. The first one can be represented as
a set of linearly ordered stations where the tasks
are executed sequentially. The second one is com-
posed of transfer machines, including several multi-
spindle heads. All tasks within a single head are
executed simultaneously, while tools on a machine
work in a sequential mode.

We describe different approaches for mod-
elling the uncertainty of data in line balancing prob-
lems. Our objective is to identify the approaches
that best fit the context of the design. In particular,
the attention concentrates on the robust approach.
We propose a new optimisation criterion based on
the stability radius of a feasible solution. Then, ro-
bust formulations are presented for the design of
the assembly and transfer lines under variations of
task processing times. We also develop heuristic
methods whose results are used to improve math-
ematical models. Finally, a new hybrid resolution
method is elaborated to solve different variants of
the stability radius maximisation.
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