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Titre : Implication de l’axe intestin-cerveau dans la vulnérabilité émotionnelle associée 

au stress précoce 

Résumé : Les maladies psychiatriques présentent de fortes comorbidités avec des désordres 

gastrointestinaux, ce qui suggère l’existence de bases physiopathologiques communes. Une 

littérature abondante démontre que l’adversité précoce (infection, stress) augmente la 

vulnérabilité aux désordres psychiatriques à l’âge adulte. Chez le rongeur, le modèle de 

séparation maternelle induit chez la descendance adulte des comportements hyperanxieux 

associés à une hypersensibilité au stress, ainsi que des dysfonctionnements de la sphère 

gastrointestinale. De plus, des études récentes rapportent une hyperperméabilité de la barrière 

intestinale chez les ratons soumis au stress de séparation, un effet conduisant potentiellement 

à une dysbiose et une perturbation de la communication intestin-cerveau. Le but de ma thèse 

était donc d’étudier le rôle de l’axe intestin-cerveau dans la mise en place des effets à long 

terme du stress précoce. Nos travaux récents ont montré que certains effets à long-terme de la 

séparation maternelle peuvent être atténués par l’exposition des mères à un régime 

hyperlipidique. Dans un premier temps, nous avons testé les effets du régime hyperlipidique 

maternel sur le cerveau et l’intestin de ratons soumis à la séparation maternelle. Nos résultats 

montrent que le régime maternel hyperlipidique protège de l’augmentation de la permeabilité 

intestinale induite par le stress. Nous avons ensuite testé le rôle causal de la perméabilité 

intestinale sur les comportements émotionnels à travers une approche pharmacologique et une 

approche génétique. Nous rapportons 1) que la restauration de la fonction barrière de l’intestin 

atténue certains effets de la séparation maternelle et 2) qu’une hyperperméabilité intestinale 

chez des souris transgéniques non soumises à un stress produit des effets similaires à ceux de 

la séparation maternelle. Enfin, nous avons examiné les effets d’une adversité précoce 

multifactorielle sur le cerveau et l’intestin (perméabilité et microbiote) chez la descendance 

adulte mâle et femelle dans un modèle combinant infection prénatale et séparation maternelle. 

Nos résultats mettent en évidence un effet sexe très marqué sur les phénotypes 

comportements et intestinaux. D’autres études sont nécessaires pour identifier les mécanismes 

sous-tendant les effets de la perméabilité et la dysbiose intestinale sur la vulnérabilité 

émotionnelle associée au stress précoce. 

Mots clés : modèles animaux de désordres psychiatriques ; comportement ; adversité 

précoce ; perméabilité intestinale ; microbiote intestinal ; axe corticotrope 
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Title : Role of the gut-brain axis in early stress-induced emotional vulnerability  

Abstract : Early-life adversity is a main risk factor for psychiatric disorders at adulthood; 

however the mechanisms underlying the programming effect of stress during development are 

still unknown. In rodents, chronic maternal separation has long lasting effects in adult 

offspring, including hyper-anxiety and hyper-responsiveness to a novel stress, along with 

gastrointestinal dysfunctions. Moreover, recent studies report gut barrier hyper-permeability 

in rat pups submitted to maternal separation, an effect that could potentially lead to dysbiosis 

and altered gut-brain communication. Therefore, the aim of my PhD was to unravel the role 

of the gut-brain axis in the neurobehavioral effects of early-life stress. We recently reported 

that some neural, behavioral and endocrine alterations associated with maternal separation in 

rats could be prevented by maternal exposure to a high-fat diet. We first addressed the effects 

of maternal high-fat diet on brain and gut during development in the maternal separation 

model. We show that maternal high-fat diet prevents the stress-induced decrease in spine 

density and altered dendritic morphology in the medial prefrontal cortex. Moreover, maternal 

high-fat diet also attenuates the exacerbated intestinal permeability associated with maternal 

separation. To explore a potential causal impact of gut leakiness on brain functions, we then 

examined the impact of pharmacological and genetic manipulations of intestinal permeability 

on brain and behavior. We report 1) that restoration of gut barrier function attenuates some of 

the behavioral alterations associated with maternal separation and 2) that chronic gut 

leakiness in naive adult transgenic mice recapitulates the effects of maternal separation. 

Finally, we examined the effects of multifactorial early-life adversity on behavior, gut 

function and microbiota composition in males and females using a combination of prenatal 

inflammation and maternal separation in mice. At adulthood, offspring exposed to early 

adversity displayed sex-specific behavioral (social behavior deficits in males and increased 

anxiety in females) and intestinal phenotypes. In conclusion, our work demonstrates an 

impact of gut dysfunctions, in particular gut leakiness, on the emergence of emotional 

alterations. Further studies are needed to unravel the role of the gut dysbiosis in the 

expression of the behavioral phenotypes associated with early-life adversity. 

Keywords : animal models of psychiatric disorders; behavior; early-life adversity; gut 

permeability; gut microbiota; HPA axis  
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Contexte et objectifs de la thèse 

Depuis une dizaine d’années, de plus en plus de travaux mettent en évidence un rôle clé du 

microbiote intestinal dans la communication entre intestin et cerveau (Mayer et al., 2014a). 

En particulier, de nombreuses données chez l’animal, et plus récemment chez l’homme, 

montrent le rôle de manipulations du microbiote dans la régulation des comportements de 

type anxieux et dépressifs et la sensibilité au stress (Dinan et al., 2013; Sarkar et al., 2016). 

De plus, la plupart des maladies psychiatriques présentent une importante co-morbidité avec 

des désordres gastrointestinaux (Folks, 2004; Buie et al., 2010), suggérant l’existence de 

bases physiopathologiques communes. De façon remarquable, la prévalence des désordres 

psychiatriques comme la dépression et les troubles anxieux, comme celle des désordres 

gastrointestinaux, est différente chez les femmes et chez les hommes (environ 2 fois plus 

élevée chez les femmes que les hommes) (Mayer et al., 1999; Fombonne, 2003; Altemus, 

2006; Werling and Geschwind, 2013). Une littérature abondante démontre que l’adversité 

dans l’enfance (traumas, abus, négligence) augmente la vulnérabilité aux troubles anxieux et 

dépressifs à l’âge adulte (Chapman et al., 2004; Rutter, 2005), mais également au syndrome 

de l’intestin irritable (Chitkara et al., 2008; Bradford et al., 2012), un désordre fonctionnel de 

l’intestin associé à des douleurs abdominales chroniques (Öhman and Simrén, 2010). Chez le 

rongeur, la séparation maternelle chronique est un modèle de stress précoce qui induit chez la 

descendance adulte une hyper-anxiété associée à une hypersensibilité au stress (Ladd et al., 

2000), ainsi que des atteintes digestives (O’Mahony et al., 2011) telles qu’une dysbiose 

(déséquilibre de la composition du microbiote intestinal) (De Palma et al., 2015). Comme 

chez l’homme, les altérations rapportées dans ce modèle sont sensiblement différentes entre 

mâles et femelles, aussi bien au niveau comportemental qu’intestinal (Slotten et al., 2006; 

Kokras and Dalla, 2014; Prusator and Greenwood-Van Meerveld, 2016). Des études récentes 

ont montré que le stress néonatal augmente la perméabilité de la barrière intestinale pendant le 

développement (Moussaoui et al., 2014), un effet participant potentiellement à la dysbiose et à 

la perturbation de la communication intestin-cerveau (Borre et al., 2014; Kelly et al., 2015). 

En effet, il a été montré que le microbiote interagit avec l’épithélium intestinal et module sa 

fonction barrière (Zakostelska et al., 2011; Jakobsson et al., 2015; Reunanen et al., 2015). En 

revanche, le rôle intrinsèque de la perméabilité intestinale sur la composition du microbiote 

est mal connu, et son implication potentielle dans la communication intestin-cerveau reste à 

explorer. Cette thèse vise à comprendre le rôle de la perméabilité intestinale et du 

microbiote intestinal dans la mise en place d’une vulnérabilité neuropsychiatrique après 

stress précoce, en tenant compte des potentielles différences mâles-femelles.  
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Résultats obtenus 

La première partie de cette thèse est centrée sur l’étude du rôle de la perméabilité intestinale 

dans la vulnérabilité émotionnelle dans des modèles précliniques, à travers 3 approches 

complémentaires (nutritionnelle, pharmacologique et génétique) permettant d’inhiber ou 

exacerber la perméabilité intestinale. Notre hypothèse était que l’hyper-perméabilité 

intestinale induite par le stress précoce affecte le développement cérébral et contribue à la 

vulnérabilité neuropsychiatrique à long terme. 

Nos travaux ont montré que chez le rat mâle, l’exposition à un régime hyperlipidique pendant 

la période périnatale chez des animaux soumis au stress de séparation maternelle atténue 

certaines altérations observées à l’âge adulte, en particulier les altérations émotionnelles et 

cognitives, l’hyper-activité de l’axe corticotrope, mais également l’hypersensibilité viscérale 

(Rincel et al., 2016, voir ANNEXE 1). De plus, chez les ratons exposés au stress précoce, le 

régime hyperlipidique restaure lors du développement les niveaux d’expression de gènes tels 

que le Bdnf, 5HTr1A et Rest4 dans le cortex préfrontal. Ces résultats nous ont conduit à 

proposer l’hypothèse selon laquelle le régime hyperlipidique pourrait protéger le cerveau et 

l’intestin en développement des effets du stress précoce (Article 1 : Rincel et al., 2017). Dans 

cette première étude, nous avons montré que le régime hyperlipidique périnatal atténue le 

déficit d’épines dendritiques dans les neurones pyramidaux du cortex préfrontal médian des 

ratons soumis au stress et par ailleurs ce même régime supprime l’hyper-perméabilité 

intestinale induite par la séparation maternelle à l’âge de 10 jours. Le régime hyperlipidique 

semble avoir un effet protecteur chez des animaux soumis au stress précoce et ceci tant sur le 

plan de la maturation neuronale que sur le plan de la barrière intestinale. Cependant, nos 

données ne permettent pas de déterminer si les effets protecteurs de ce régime sur le cerveau 

et les comportements mettent en jeu l’atténuation de l’hyper-perméabilité intestinale induite 

par la séparation maternelle. 

La fonction barrière de l’intestin est régulée par l’ouverture/fermeture de jonctions serrées au 

niveau de l’épithélium intestinal, contrôlée par l’activité d’une enzyme, la MLCK (myosin 

light chain kinase) (Clayburgh et al., 2005). Afin d’explorer le lien causal entre 

hyperperméabilité intestinale développementale et vulnérabilité émotionnelle à l’âge adulte, 

nous avons utilisé un inhibiteur pharmacologique de la MLCK, le ML-7, pour restaurer la 

fonction de la barrière intestinale des ratons exposés au stress néonatal (Article 2: Rincel et 

al., en préparation). Nos données montrent que l’inhibition de la MLCK restaure la 

perméabilité intestinale et protège de certaines altérations induites par le stress néonatal 

(anhédonie et hyper-réactivité de l’axe corticotrope au stress). Cet effet protecteur du ML-7 
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est accompagné, à l’âge adulte, d’une atténuation de la dysbiose intestinale engendrée par la 

séparation maternelle. L’analyse approfondie des communautés bactériennes dont 

l’abondance est altérée par le stress et normalisée par le ML-7 a permis d’identifier des 

populations d’intérêt pour d’éventuelles approches préventives ou thérapeutiques, y compris 

des Bifidobactéries qui sont déjà largement utilisées en tant que probiotiques. Par ailleurs, 

bien que la MLCK soit présente au niveau des jonctions serrées de la barrière hémato-

encéphalique (BHE), nos mesures de l’expression des protéines des jonctions serrées par 

immunohistochimie et de la perméabilité de la BHE in vivo suggèrent que les effets du ML-7 

chez les animaux exposés au stress précoce sont indépendants de modifications de la BHE.  

Afin de confirmer la spécificité de notre effet, nous avons travaillé sur un modèle de souris 

transgéniques exprimant une MLCK constitutivement active (CA-MLCK) spécifiquement 

dans les cellules épithéliales de la barrière intestinale (Su et al., 2009a). Ces souris présentent 

une hyper-perméabilité intestinale et de façon très intéressante, un phénotype comportemental 

et endocrine similaire à celui induit par le stress précoce (Article 3: Rincel et al., en 

préparation). En outre, l’étude des mâles et des femelles transgéniques a permis de mettre en 

évidence des différences importantes entre les deux sexes. En effet, les mâles CA-MLCK 

présentent une anhédonie semblable à celle observée chez le rat soumis à la séparation 

maternelle, tandis que les femelles CA-MLCK sont hyper-anxieuses par rapport aux souris 

WT. L’hyper-réactivité de l’axe corticotrope en réponse à un stress, classiquement rapportée 

chez les animaux exposés au stress précoce, a été retrouvée chez les deux sexes. Ces 

altérations sont accompagnées au niveau cérébral dans le cortex préfrontal médian, le noyau 

accumbens et l’hippocampe, par des différences d’expression de certains gènes associés au 

stress (5HTr1A, Crf, Tnfa, Fkpb5…), ainsi que des changements de connectivité entre 

différentes structures sensibles au stress et impliquées dans la régulation des comportements 

(hippocampe, noyau du tractus solitaire). Si les mécanismes par lesquels une augmentation de 

la perméabilité intestinale affecte le cerveau et les comportements restent à explorer, notre 

travail a permis de démontrer, in vivo, que la perméabilité intestinale, en plus du microbiote, 

joue un rôle crucial dans la communication intestin-cerveau.   

 

 

 



 
 

11 
 

Le deuxième volet de cette thèse visait à tester l’hypothèse selon laquelle les effets du stress 

précoce sur la composition du microbiote intestinal diffèrent en fonction du sexe, cette 

différence contribuant à l’émergence d’altérations comportementales sexe-dépendantes 

(Article 4: Rincel et al., en préparation). Par ailleurs, nous avons pris en considération les 

données cliniques soulignant la multiplicité et les effets cumulatifs des facteurs 

environnementaux précoces dans l’étiologie des troubles neuropsychiatriques. Pour ce faire, 

nous avons utilisé un modèle d’adversité multifactorielle combinant une inflammation 

maternelle lors de la gestation et la séparation maternelle. Nous avons montré que les effets 

à long terme de cette adversité précoce multifactorielle sur les comportements émotionnels, 

les fonctions neurodigestives et le microbiote intestinal de la descendance diffèrent entre 

mâles et femelles. Plus particulièrement, les mâles soumis à l’adversité précoce multiple 

présentent une diminution du comportement social alors que les femelles sont plus anxieuses. 

En ce qui concerne le microbiote intestinal, il semble que les mâles soient plus sensibles au 

stress que les femelles, dans la mesure où plus de communautés bactériennes sont affectées 

chez les mâles. De façon intéressante, nous avons pu mettre en évidence des corrélations entre 

certains genres bactériens et les comportements chez les deux sexes. Par ailleurs, si la 

comparaison du microbiote de rat et de souris est délicate, nos résultats mettent en évidence 

une famille bactérienne affectée par le stress précoce dans ces deux espèces, les 

Lachnospiraceae. Ces bactéries sont présentes dans la couche du mucus intestinal, directement 

au contact de l’épithélium et des cellules du système immunitaire inné (Van den Abbeele et 

al., 2013). De ce fait, elles jouent potentiellement un rôle important dans l’homéostasie 

intestinale et leur perturbation pourrait contribuer aux altérations de la communication 

intestin-cerveau. Au niveau cérébral, nous avons observé une interaction sexe x adversité 

précoce significative pour l’expression de 8 gènes dans le cortex préfrontal médian, indiquant 

des effets opposés du stress précoce en fonction du sexe. Parmi ces gènes, l’expression de 

Klf2 (Krüppel-like factor 2) est augmentée spécifiquement chez les femelles exposées au 

stress précoce, or un article récemment publié dans Nature suggère que ce facteur pourrait être 

régulé par le microbiote intestinal (Tang et al., 2017a). D’autres études seront nécessaires 

pour déterminer si les différences de dysbiose intestinale entre mâles et femelles contribuent 

aux différences comportementales entre les deux sexes suite à l’adversité précoce 

multifactorielle. 
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Conclusion 

En conclusion, les résultats obtenus dans le cadre de cette thèse confortent l’hypothèse selon 

laquelle l’adversité précoce contribue à l’émergence d’une vulnérabilité neuropsychiatrique et 

affecte à long terme la sphère gastrointestinale. Par ailleurs, nos travaux suggèrent un rôle 

causal de la perméabilité intestinale dans la mise en place de certaines altérations à long-terme 

dans un contexte de stress précoce. D’autres études sont nécessaires afin de déterminer le rôle 

causal éventuel de la dysbiose intestinale dans les effets observés, en particulier dans le cadre 

des effets différentiels de l’adversité précoce en fonction du sexe. Plus généralement, notre 

travail souligne l’importance d’étudier les mâles et les femelles, mais également les effets 

d’adversités précoces multiples dans les modèles précliniques en psychiatrie. Les futures 

études devront explorer comment l’intestin pourrait constituer une cible pour les traitements 

en psychiatrie, mais également comment les altérations intestinales pourraient contribuer à 

l’émergence d’une vulnérabilité neuropsychiatrique ou à la résistance aux traitements.  
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FOREWORD 

The concept of brain-gut communication is not recent. For instance, each of us has 

experienced the effects of stress on their bowel. However, the contribution of gut microbes to 

brain function has been ignored for centuries until a revolution has begun. Since the last 10 

years, advancements in sequencing technologies brought the concept of gut-brain axis in the 

spotlight of neuroscience research. The discovery that the number of gut microorganisms and 

their combined genetic information far exceed that of their host led to the concept of 

superorganism (also holobiont or hologenome) (Zilber-Rosenberg and Rosenberg, 2008) and 

raised important questions as regards the role of this “forgotten organ” in the host’s 

physiology and health.  

In particular, there is accumulating evidence that gut-brain communication is altered in a 

number of neuropsychiatric and neurodegenerative disorders. For instance, gastrointestinal 

(GI) symptoms are commonly found in major depressive disorder (Gros et al., 2009), autism 

spectrum disorder (ASD) (Buie et al., 2010), but also Parkinson and Alzheimer’s diseases 

(Rao and Gershon, 2016). The possible implication of gut alterations in these disorders is 

currently being investigated. Specifically, the role of gut microbiota in the neurobehavioral 

phenotypes associated with these pathologies has been explored in animal models (Hsiao et 

al., 2013; Kelly et al., 2016; Sampson et al., 2016). Above all, converging data suggest a 

pivotal role of gut microbiota in the etiology of psychiatric symptoms in stress-related 

psychiatric disorders such as anxiety and depression (Rogers et al., 2016). Anxiety and 

depression are highly co-morbid with each other, as well as with cardiovascular, metabolic 

and more interestingly with regard to the gut-brain axis, GI disorders. Of these GI disorders, 

the irritable bowel syndrome (IBS) has shown the strongest and most frequent associations 

with anxiety and depression (Fond et al., 2014). The etiology of psychiatric disorders is not 

fully understood. However, exposure to stressful events during childhood has been repeatedly 

associated with increased vulnerability to both psychiatric and GI disorders such as IBS 

(Chitkara et al., 2008; Nemeroff, 2016). Among the leading causes of disability in the world 

in 2015, depression (3rd) and anxiety disorders (9th) represent considerable socioeconomic 

pressures on the individual and overwhelming costs to global health economies (GBD 2015 

Disease and Injury Incidence and Prevalence Collaborators, 2016). A consistent gender effect 

in the prevalence of these psychiatric conditions has been reported with higher rates of mood 

and anxiety disorders in women than men (Steel et al., 2014). Existing therapeutic approaches 

target the central nervous system (CNS) and broadly affect its functioning, leading to 

numerous side effects. Most importantly, a large proportion of the patients are resistant to 
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pharmacological treatments (Millan et al., 2015). A better understanding of the role of the 

gut-brain axis in psychiatric vulnerability could open novel avenues for gut-directed 

therapeutic or preventive strategies. Especially, whether gut dysfunctions are a causal factor 

of psychiatric disorders remains to be determined. In this context, this PhD work aimed at 

identifying the mechanisms underlying the relationship between the gut and the brain in 

animal models of early-life adversity.  
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INTRODUCTION 

In this introduction, we first describe the different components of the gut-brain axis and 

potential mechanisms of bi-directional communication. Second, we review the evidence for 

gut manipulations affecting brain and behavior in both animal models and humans. Finally, 

we address the consequences of early-life adversity on the brain and intestinal tract with a 

particular focus on the rodent maternal separation model.  

CHAPTER I - The gut-brain axis 

The gut (also called bowel or lower GI tract) is the main organ involved in the uptake of 

nutrients and water. At the same time, it constitutes an essential barrier against harmful 

substances and pathogens from the external environment. The gut comprises the small 

(duodenum, jejunum and ileum) and the large (colon and rectum) intestines, separated by the 

caecum. It is a highly specialized organ involved in digestive function and especially in 

nutrient absorption, thanks to its outsized epithelial surface area. The gut is also provided with 

coordinated muscular segments (longitudinal and circular) that act to mix and move the 

luminal content. In addition to the numerous enzymes secreted in the lumen to breakdown the 

nutrients, epithelial cells secrete mucus to lubricate the gut walls and thus favor absorption 

but also protect the mucosa against gastric acid. In the large intestine, remaining molecules 

are further digested by microbial fermentation. In this chapter, we will describe the main 

components of the gut and the possible routes of communications linking them to the brain. 

 

1.1. Anatomy and function of the main gut components 

1.1.1.  Gut microbiota  

The gut microbiota can be viewed as an organ by itself and it is recognized to play an 

important role in gut digestive, metabolic and immunological functions in the healthy 

individual (see Sekirov et al., 2010 and Jandhyala et al., 2015 for reviews). It is defined as the 

ensemble of microorganisms residing in the gut, including bacteria, fungi and viruses. In the 

gut-brain axis literature, most is known as regards bacteria and their related molecules (Kelly 

et al., 2015), whereas the nature and function of fungi and viruses remain to be deeper 

documented. For this reason, we will focus on bacteria in the following. 

The microbiota of a given subject weighs 1.5-2 kg and contains around 1000 different 

bacterial species (1/3 are common to most people and the other 2/3 are specific to each 

individual). In both humans and rodents, the most represented bacterial phyla in the gut are 

Firmicutes (such as Lactobacillus, Clostridium and Enterococcus) and Bacteroidetes (such as 



 
 

9 
 

Bacteroides) (Eckburg et al., 2005). Other phyla with lower relative abundance can be found, 

such as Actinobacteria (Bifidobacteria), Proteobacteria (Escherichia coli), Fusobacteria, 

Verrucomicrobia and Cyanobacteria. Notably, there are differences in the composition of the 

microbiota depending upon its specific location along the GI tract, but also with regard to the 

proximity to the mucus layer [Figure 1] (Hollister et al., 2014; Donaldson et al., 2016). An 

important consideration is also that the microbiota differs according to gender (Markle et al., 

2013; Dominianni et al., 2015; Jašarević et al., 2016; Fransen et al., 2017) [Figure 2]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1 | Microbial habitats in the human lower gastrointestinal tract. Figure from Donaldson et al., 

2016. The dominant bacterial phyla in the gut are Bacteroidetes, Firmicutes, Actinobacteria, Proteobacteria and 

Verrucomicrobia. The dominant bacterial families of the small intestine and colon reflect physiological 

differences along the length of the gut. For example, a gradient of oxygen, antimicrobial peptides (including bile 

acids, secreted by the bile duct) and pH limits the bacterial density in the small intestinal community, whereas 

the colon carries high bacterial loads. In the small intestine, the families Lactobacillaceae and Enterobacteriaceae 

dominate, whereas the colon is characterized by the presence of species from the families Bacteroidaceae, 

Prevotellaceae, Rikenellaceae, Lachnospiraceae and Ruminococcaceae (colors correspond with the relevant 

phyla). A cross-section of the colon shows the digesta, which is dominated by Bacteroidaceae, Prevotellaceae 

and Rikenellaceae, and the inter-fold regions of the lumen, which are dominated by Lachnospiraceae and 

Ruminococcaceae. cfu, colony-forming units. 
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Figure 2 | Sex-differences in gut microbiota composition of adult mice. Figure from Markle et al., 2013. 

Genera with significantly different abundance revealed by 16S rRNA sequencing in 14 week-old males (M) and 

females (F). 

 

The gut microbiota is acquired at birth and its initial composition is highly sensitive to the 

delivery mode (Dominguez-Bello et al., 2010). Initial colonization is crucial for healthy 

immune development. Several factors influence the trajectory of microbiota development 

including gestational age, antibiotic use, breastfeeding and exposure to family members and 

pets (Penders et al., 2006). In the first weeks, the gut microbiota is characterized by a low 

diversity and stability. By age three, however, the microbiota composition resembles that of 

an adult-like profile (Voreades et al., 2014). Although the common dogma states that the 

intrauterine environment and fetus are sterile until delivery, some evidence demonstrates 

bacterial presence in the intrauterine environment (Collado et al., 2016), suggesting that these 

bacteria may influence the microbiota of the infant even before birth (Gomez de Agüero et al., 

2016). 

1.1.2.  Gut epithelial barrier 

The gut mucosa constitutes a physical barrier between the gut lumen and the host’s inside (see 

König et al., 2016 for review). This barrier is mainly composed of the mucus layer, the 

epithelial layer, and the underlying lamina propria. The epithelium is organized as a 

monolayer mainly composed of enterocytes, but also contains a variety of other cell-types 

including enterochromaffin cells (enteroendocrine cells), goblet cells, paneth cells and 

immune cells [Figure 3]. Enterochromaffin cells release gut hormones such as 

cholecystokinin (CCK), glucagon-like peptide (GLP), peptide tyrosine tyrosine (PYY), but 

also neurotransmitters such as serotonin (Diwakarla et al., 2017). Goblet cells are involved in 

the production of mucin, a main component of the mucus layer which can be considered as a 

first bulwark of the barrier (Deplancke and Gaskins, 2001).  
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Figure 3 | The intestinal epithelial barrier. Adapted from Meng et al., 2015. Epithelial stem cells located in 

the crypt differentiate into four cell types: the absorptive enterocytes, enteroendocrine cells, goblet cells, and 

paneth cells. These cells are in close contact with immune cell populations including macrophages, dendritic 

cells, neutrophils, T lymphocytes, and B lymphocytes. 

 

The main function of the intestinal barrier is to regulate the absorption of nutrients, 

electrolytes and water from the lumen into the circulation, while preventing the entry of 

pathogenic microorganisms and toxic luminal substances (König et al., 2016). This is 

achieved thanks to a dynamic regulation of the permeability between cells (paracellular 

permeability) and through cells (transcellular permeability) (Ménard et al., 2010) [Figure 4]. 

The mucus layer is also particularly important for the containment of microorganisms, as it 

contains high concentrations of secretory immunoglobulin (Ig) A and antimicrobial peptides. 

 

 

 

 

 

 

 

 

 

Figure 4 | Representation of the different selective permeability routes through the gut epithelium. 

Adapted from Heyman et al., 2012 and van Bilsen et al., 2017. Paracellular permeability between cells is 
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regulated by tight-junctions and allows the passage of small hydrophilic molecules via passive diffusion. In 

contrast, transcellular permeability involves active transport through channels, transporters or endocytosis. There 

are several ways to measure gut permeability in humans and animals (see Camilleri et al., 2012 for review). In 

vivo methods consist in quantifying the amount of a selected probe in the plasma or urine following oral 

administration. These methods are non invasive and can be done several times in the same individual. Probes of 

different molecular weight and physicochemical properties are used to evaluate para and transcellular intestinal 

permeability. In humans, intestinal permeability is classically measured using orally administered, non-

degradable sugars or other molecules such as [51Cr]EDTA or polyethylene glycol (König et al., 2016). In 

animals, fluorescent probes such as FITC-dextran (a dextran labeled with fluorescein isothiocyanate) are widely 

used for paracellular permeability assessment, although plasma autofluorescence may interfere with the measure. 

Macromolecular transcytosis can be measured using horseradish peroxidase flux. However, changes in renal 

clearance or liver catabolism can affect these measurements and constitute a potential bias (Mattioli et al., 2011). 

Renal clearance of probes can be evaluated by injecting the probes directly into the penile vein and collecting 

urine for the ensuing 24 hours (Meddings and Gibbons, 1998). Ex vivo measurements using Ussing chambers 

(see Clarke, 2009 for review) circumvent renal clearance and offer the opportunity to control the electrochemical 

potential difference across the intestinal epithelium. The Ussing chamber provides a valuable method for the 

measurement of electrolyte and macromolecule active transport.  

 

Paracellular permeability involves tight-junctions between epithelial cells [Figure 5]. 

Clayburgh and colleagues have shown that T cell activation causes intestinal epithelial barrier 

dysfunction characterized by increased paracellular protein flux, changes in tight junction 

protein distribution, and increased myosin light chain (MLC) phosphorylation (Clayburgh et 

al., 2005) [Figure 5].  

 

 

 

 

 

 

 

 

 
Figure 5 | The MLCK regulates tight-junction-dependent paracellular permeability. Tight junctions are 

complex protein structures that consist of transmembrane proteins such as claudin and occludin (Dörfel and 

Huber, 2012). Upon activation, the myosin II regulatory light chain kinase (MLCK) phosphorylates the myosin, 

thereby inducing a cytoskeleton remodeling and the opening of the junction (Zolotarevsky et al., 2002; 

Clayburgh et al., 2005; Shen et al., 2006). 
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In vitro and in vivo experiments revealed that this barrier dysfunction involves cytoskeleton-

mediated epithelial tight junction opening, upon activation of the myosin II regulatory light 

chain kinase (MLCK) (Zolotarevsky et al., 2002; Clayburgh et al., 2005; Shen et al., 2006). 

Indeed, both genetic knockout and pharmacological MLCK inhibition effectively prevented 

T-cell-dependent loss of barrier function. The authors further suggested that the inhibition of 

MLCK may represent a novel non-immunomodulatory therapeutic approach. Moreover, 

increased MLCK activity was recently reported in IBS patients, suggesting that this 

mechanism is relevant to human disease (Wu et al., 2017).  

The structure of the intestinal barrier is formed by the end of the first trimester (Montgomery 

et al., 1999). Maturation and functional development of the intestinal barrier continue in the 

post-natal period and are influenced by both feeding mode and diet (Cummins and Thompson, 

2002). During early-life, gut permeability is relatively high as compared with the adult (about 

10-fold) (Moussaoui et al., 2014). 

 

1.1.3.  Gut enteric nervous system 

The enteric nervous system (ENS) is a complex neuronal network which extends from the 

esophagus to the anal sphincter (see Furness, 2012 for reviews). It is composed of a 

considerable number of neurons (over 80–100 million in rodents and 400–600 million in 

humans, that is, the same number as in the spinal cord), enteric glia (up to 4–7 times more 

numerous than neurons) and a network of nerve fibers communicating and projecting to 

effector tissues. It is the most complex division of the peripheral nervous system and is also 

coined as the “second brain” (Gershon, 1999). Indeed, while the sympathetic and 

parasympathetic autonomic nervous systems (ANS) provide extrinsic innervation to the GI 

tract and can modulate ENS activity, the ENS is capable of completely autonomous function 

without input from the brain or spinal cord. Key component of the gut, it coordinates the 

processes of digestion including mixing and propagation of GI luminal contents (motility), 

supply of digestive enzymes, absorption, fluid exchanges, storage and excretion), and is also 

involved in epithelial barrier function, nociception and immune responses. ENS neurons are 

organized into two main concentric ganglionated plexi [Figure 6], the myenteric plexus 

(Auerbach) located between the longitudinal and circular muscle layers, and the submucosal 

plexus (Meissner) sandwiched between the submucosal matrix and external circular smooth 

muscle layer. The enteric glia populations are distributed within the plexi and the mucosa 

(Sharkey, 2015). Functionally, ENS neurons can be identified as motor neurons, intrinsic 

sensory (primary afferent) neurons and interneurons (Furness, 2012). They interact with each 
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other as well as with the other cell types including immune cells, enterocytes and 

neuroendocrine cells to control almost all gut functions. ENS neurons synthesize and use over 

30 neuromediators that are similar to those present in the CNS (Furness, 2012). Cholinergic 

and nitrergic neurotransmissions are among the most abundant in the ENS and play key roles 

in the secretomotor, mucosal barrier and immune functions. Migration, differentiation and 

organization of enteric neurons mainly take place during early in-utero life. Microbial 

colonization and immune system development continue to shape the ENS during post-natal 

life (Kabouridis and Pachnis, 2015). 

 

 

 

 

 

 

 

 

 

Figure 6 | Organization of the enteric nervous system. Adapted from Furness, 2012 and Nagy and 

Goldstein, 2017. (A) The enteric nervous system has ganglionated plexi, the myenteric plexus between the 

longitudinal and circular layers of the external musculature and the submucosal plexus that has outer and inner 

components. Nerve fiber bundles connect the ganglia and also form plexi that innervate the longitudinal muscle, 

circular muscle, muscularis mucosae, intrinsic arteries and the mucosa. SMP, submucosal plexus. 

Photomicrographs illustrating enteric neurons from the myenteric plexus (labeled in red) (B) and enteric ganglia 

with glia labeled in green and neurons in red (C).  

 

1.1.4. Gut immune system 

Intestinal homeostasis depends on complex interactions between the microbiota, the gut 

epithelium and the host immune system (see Macpherson and Harris, 2004, Cerf-Bensussan 

and Gaboriau-Routhiau, 2010 and Eberl, 2010; 2016 for reviews). Indeed, gut 

microorganisms stimulate immune cells at the mucosal surface [Figure 3] and the latter 

regulate microbial density via the release of IgA by B cells and the stimulation of 

antimicrobial peptides production by epithelial cells. Moreover, the immune system 

stimulates mucus secretion by goblet cells through the expression of interleukin (IL)-13. 

Other cytokines have an important role in the containment of microbiota, such as IL-17 or IL-

22, that induce the recruitment of neutrophils and the production of antibacterial peptides 

including S100 protein (Eberl, 2010). Cytokines are small polypeptides produced by 

B CA
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numerous cell types including monocytes, macrophages and mast cells (Callard et al., 1999). 

They can act locally or travel to distal tissues as endocrine mediators. Importantly, only very 

low concentrations are needed for their biological effects via the binding to specific 

membrane receptors. Within the gut, cytokines are secreted by antigen-presenting cells and T 

cells and play a pivotal role in directing appropriate immune responses with respect to the 

nature of the encountered microorganisms (Eberl, 2016). They are capable of both promoting 

or dampening inflammatory environments, with a given cytokine generally recognized as 

intrinsically pro- or anti-inflammatory (O’Shea et al., 2002). However, this dichotomy is 

currently challenged as there is a dynamic equilibrium between pro- and anti-inflammatory 

immune responses (Eberl, 2010). The main cytokines are classified as interferons (IFN), 

interleukins, chemokines and the tumor necrosis factor (TNF)-α. In physiological conditions, 

dendritic cells and macrophages produce a set of specific cytokines depending upon the 

microbial environment (more specifically, whether gut microbes are intra- or extracellular 

threats) (Eberl, 2016). According to these cytokines, naive T helper (Th) cells adjust their 

expression of key transcription factors (T-bet, GATA-3 or RORɣt) and thereby acquire a 

polarized phenotype (Th1, Th2 or Th17 subtypes, respectively) (Klatzmann and Abbas, 

2015). In turn, these Th cells produce specific cytokines, with Th1 being the primary producer 

of IFNɣ, Th2 being associated with IL-4, IL-13, IL-10 and transforming growth factor (TGF) 

β, and Th17 with IL-17 and IL-22. Th17 cells are typically induced by the normal gut 

microbiota (healthy condition). In the context of strong inflammation and leaky gut, both 

Th17 and Th1 are likely recruited. On the other hand, type 2 polarization can occur in 

response to large organisms such as helminths – which are not supposed to be present in a 

healthy gut –, or to tissue damage. Innate immune cells permanently sense microbial antigens 

via a range of highly specific receptors (pattern recognition receptors) (Eberl, 2010). Toll-like 

receptors (TLRs) recognize conserved molecular motifs on microorganisms, such as, for 

example, lipopolysaccharide (LPS) from gram-negative bacteria (TLR4). In addition, 

peptidoglycan (a major component of bacterial cell wall) is recognized by nucleotide 

oligomerization domain (NOD) receptors 1 and 2 in the lamina propria. Physiological 

activation of these receptors is essential for colonic homeostasis (Bouskra et al., 2008; 

Wheeler et al., 2014). However, inappropriate activation of their signaling pathways may lead 

to deleterious inflammation and tissue injury.  

Gut microbiota is critically involved in the shaping of immune development during early 

postnatal life. Indeed, in absence of microbiota, lymphoid tissues remain immature and the 

number of lymphocytes in the gut is dramatically reduced (Round and Mazmanian, 2009). 
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Even more striking is the need of microbial presence to induce the development of isolated 

lymphoid follicles (Bouskra et al., 2008), which constitute B cell reservoirs crucial for IgA 

production (Eberl and Lochner, 2009). Interestingly, the effects of gut microbes on immune 

maturation depend upon the nature of the bacterial communities. For instance, segmented 

filamentous bacteria, which have been shown to predominantly reside within the mucus layer 

in close proximity to the epithelium, are potent activators of gut Th cells including Th17 cells 

and likely play a unique role in the postnatal maturation of gut immune functions (Gaboriau-

Routhiau et al., 2009; Ivanov et al., 2009; Cerf-Bensussan and Gaboriau-Routhiau, 2010). 

Furthermore, as for gut microbiota, there are sex differences in gut immune function and 

sensitivity in both humans and animals (Fransen et al., 2017). 

1.2. Mechanisms of bidirectional gut-brain communication  

The bidirectional interplay between gut and brain is illustrated in population survey studies 

revealing a strong correlation between anxiety, depression, and functional GI disorders. 

Furthermore, psychological distress can predict later onset of a functional GI disorder and the 

converse (Koloski et al., 2012). The mechanisms underlying this communication are 

beginning to be unraveled [Figure 7] (see Grenham et al., 2011; Mayer, 2011 and Cryan and 

Dinan, 2012 for reviews). From anatomical perspectives, the most obvious route of gut-brain 

communication is the ANS (neural route). ANS innervation connects the ENS and the CNS 

mainly via the vagal and splanchnic nerves (Furness, 2012; Bonaz and Bernstein, 2013). In 

addition, there exist a wide array of molecules arising from both gut and brain that travel in 

the bloodstream (humoral pathway) and may be involved in gut-brain axis bidirectional 

communication. 

1.2.1. Top-down communication  

Descending signals from the brain have been shown to modulate the motor, sensory, 

secretory, and immune functions of the gut in physiological conditions. This top-down 

communication is particularly evident to each of us in the manifestation of stress effects. 

Indeed, acute intense stress can rapidly trigger bloating, abdominal pain or discomfort and 

even diarrhea. In the following, we will describe the central and peripheral stress responses 

and discuss their impact on the gut. 

 

 

 



 
 

17 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7 | The gut-brain axis. Adapted from Cryan and Dinan, 2012. Multiple potential direct and indirect 

pathways exist through which the gut and the brain communicate bidirectionally. They include endocrine 

(cortisol), immune (cytokines) and neural (vagus and enteric nervous system) pathways. The brain recruits these 

mechanisms to influence gut physiology, for example under conditions of stress. The hypothalamus–pituitary– 

adrenal axis regulates cortisol secretion, and cortisol can affect immune cells (including cytokine secretion) both 

locally in the gut and systemically. Cortisol can also alter gut permeability and barrier function, and change gut 

microbiota composition. Conversely, the gut can influence the brain via an array of molecules including 

hormones, cytokines, neurotransmitters and metabolites, but also endotoxins such as lipopolysaccharide. These 

gut-derived molecules may stimulate primary afferent nerve fibers of the vagus nerve (neural pathway), which 

relay information to brain areas through activation of the nucleus of the tractus solitarius (NTS). Gut-derived 

molecules may also travel in the bloodstream (humoral pathway) and access the brain through leaky regions of 

the blood-brain barrier such as the choroid plexus and circumventricular organs. [1] Brain areas associated with 

major depression (Maletic et al., 2007) or [2] anxiety disorders (Charney and Deutch, 1996). [3] Brain areas 

active in response to colorectal distension in IBS (Irritable bowel syndrome) patients (see paragraph 1.2.1.2.) 

(Guleria et al., 2017). ACTH, adrenocorticotropic hormone; CRF, corticotropin-releasing factor, NTS, nucleus 

tractus solitarius.  
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1.2.1.1. The stress system 

When the brain detects a threat, a coordinated physiological response involving autonomic, 

neuroendocrine, metabolic and immune components is activated (see Herman et al., 2003, 

2016 and Ulrich-Lai and Herman, 2009for reviews) [Figure 8].  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8 | The different components of the stress response. Adapted from Moisan and Le Moal, 2012 and 

Raabe and Spengler, 2013. ACTH, Adenocorticotropic hormone; AVP, Arginine-vasopressin; CBG, 

Corticosteroid binding globulin; CRF, Corticotropin releasing factor; GR, Glucocorticoid receptors; MR, 

Mineralocorticoid receptors; NE, Norepinephrine; PVN, Paraventricular nucleus of the hypothalamus; NTS, 

Nucleus tractus solitarius. 

 

Psychogenic stress (such as fear, novelty) and systemic stress (such as blood loss, respiratory 

distress, immune stress and visceral pain) are relayed via limbic forebrain structures 

(prefrontal cortex (PFC), hippocampus, amygdala) and brainstem nuclei (nucleus tractus 

solitarius (NTS), parabrachial nucleus…), respectively, to the major stress-integrative brain 

centers located in the hypothalamus and in the brainstem. They include the parvocellular 

neurons of the paraventricular nucleus of the hypothalamus (PVN) and the locus coeruleus 

noradrenergic cell groups of the pons and medulla. The locus coeruleus noradrenergic system 

releases norepinephrine from a dense network of neurons throughout the brain, resulting in 
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enhanced arousal and vigilance; it also activates the ANS through descending projections to 

the preganglionic sympathetic nervous system. The autonomic sympathetic and 

parasympathetic systems provide the most immediate response to stress, and provoke rapid 

alterations in physiological state through neural innervation of end organs. The locus 

coeruleus activates the sympathetic nervous system by sending signals through the autonomic 

nerves to the medulla part of the adrenal glands which secretes epinephrine into the 

bloodstream. Epinephrine brings on a number of physiological changes (increasing blood 

flow to muscles, output of the heart, pupil dilation, and glucose and fat release) supporting the 

‘fight or flight’ survival response.  

A second key system in the stress response is the neuroendocrine hypothalamus-pituitary-

adrenal (HPA) axis. Neurons in the medial parvocellular region of the PVN release 

corticotropin-releasing factor (CRF) and arginine-vasopressin (AVP). This triggers the 

subsequent secretion of adrenocorticotropic hormone (ACTH) from the anterior part of the 

pituitary gland (adenohypophysis), leading to the production of glucocorticoids (GC) by the 

adrenal cortex (cortisol in humans, corticosterone in rodents). As lipids, GC in the blood need 

to be transported: 95% of circulating GC are bound to either corticosterone binding globulin 

(CBG) (80%) or albumin (15%). CBG maintains a circulating GC pool and ensures GC 

delivery to target tissues. GC levels are also regulated by 11β-hydroxysteroid dehydrogenase 

(11β-HSD) 1 and 2, that interconvert active (cortisol or corticosterone) and inactive GC 

(cortisone or 11-dehydrocorticosterone). GC exert a wide range of effects both in the 

periphery and in the CNS via their glucocorticoid (type 2, low affinity) and mineralocorticoid 

(type 1, high affinity) receptors (GR and MR), expressed in many body tissues, including 

brain, bone, skin, liver and gut among many others. Within the brain, MR are specifically 

expressed in limbic areas, whereas GR are ubiquitous. At the cellular level, MR and GR are 

located in the cytosol, at the cell membrane and on mitochondrial membranes. Notably, MR 

and GR belong to the superfamily of nuclear receptors. When inactive, they reside in the 

cytoplasmic compartment, but when bound to their ligands, they translocate to the nucleus 

where they bind DNA sequences known as glucocorticoid/mineralocorticoid-response 

elements (GRE/MRE) to modulate the transcriptional activity of a plethora of target genes 

(Datson et al., 2008; Surjit et al., 2011). They can also interact with other transcription 

factors, such as nuclear factor-кB (NFкB), cyclic AMP response element-binding (CREB), 

activator protein-1 (AP-1) and several signal transducers and activators of transcription 

(STATs) (Datson et al., 2008). Many neurotransmitter systems are under GC control, 

including the serotonin receptor 1A (5HTr1A), the adenosine receptor A1, the vasopressin 
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receptor V1a and oxytocin receptors as well as monoamine oxidase (MAO) A (monoamines 

degradation enzyme). GC also regulate the expression of neurotrophic factors and their 

receptors and genes involved in neuronal shaping. They exert an effect on both exocytosis and 

endocytosis by affecting transcription of genes involved in vesicle recycling. Other GC-

regulated genes are associated with apoptosis, cell cycle progression, intracellular signaling 

and circadian rhythms. In peripheral tissues, GC target genes regulate immune response and a 

variety of metabolic processes, including lipogenesis, insulin secretion, glucose clearance, 

lipid accumulation and nutrient absorption. Regulation of transcription of genes involved in 

gluconeogenesis and glycolysis not only occurs in key energy-consuming tissues such as the 

liver and muscles, but also in the brain. Finally, GR and MR at the cell membrane and on 

mitochondria can rapidly alter neuronal function upon ligand binding, independent of 

translocation to the nucleus, by modulating processes such as excitatory amino acid release. 

Moreover, GC also play a major role in the regulation of their own secretion. Negative 

feedback mechanisms on PVN neurons through GC action at different levels of the HPA axis 

as well as on PFC and hippocampus lead to the inhibition of GC secretion (Dallman et al., 

1994). These processes are activated to counteract the physiological activation and reinstate 

the internal equilibrium of the organism (Chrousos and Kino, 2009), through a process called 

allostasis or “stability through changes” (McEwen, 1998). However, if the stressor persists 

and becomes chronic, the body enters a resistance phase and tries to adapt to the strains and 

demands of the environment by engaging coping mechanisms. When the severity and/or 

chronicity of the stressors exceeds certain limits, the adaptive system becomes defective, 

leading to a state of allostatic load (McEwen, 1998). This state, reflecting the “cost” of the 

adaptation, is harmful to the organism and lies at the origin of a variety of stress-related 

diseases that develop in the context of a vulnerable background (Chrousos and Kino, 2009). 

The pathogenesis of stress-induced disorders affects the whole body, including the viscera, of 

which the GI tract is a sensitive target (Chrousos and Kino, 2009; Stengel and Taché, 2010). 

1.2.1.2. Effects of stress on the intestinal tract 

Exposure to stress and GC profoundly affects GI function and immunity. As previously 

mentioned, acute stress response involves both sympathetic and parasympathetic autonomic 

systems. While the sympathetic nerves are activated (including splanchnic and pelvic nerves), 

the parasympathetic component (including the vagus nerve) is blunted, resulting in inhibition 

of digestive functions (see Bonaz and Bernstein, 2013 for review). This nervous stress 

response is mediated by acetylcholine, norepinephrine and adrenaline and leads to immediate 

increase in gut motility and thus accelerated intestinal transit. Moreover, chronic stress 
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decreases vagal efferent outflow (Taché and Bonaz, 2007) and this effect has been shown to 

favor intestinal inflammation (Straub et al., 2006). Intriguingly, vagal stimulation is used in 

humans to attenuate systemic or intestinal inflammation, suggesting that the vagal nerve could 

exert anti-inflammatory actions. Indeed, it has been shown that vagal stimulation decreases 

the production of TNF by macrophages through cholinergic neurotransmission (Borovikova et 

al., 2000). However, vagal stimulation likely affects both efferent and afferent fibers, and the 

underlying mechanisms are unclear. 

Another consistent effect of stress exposure is the induction of gut barrier leakiness as well as 

visceral pain hypersensitivity (Barreau et al., 2004a, 2004b; Ait-Belgnaoui et al., 2005, 

2009, 2014, 2012; Schwetz et al., 2005; Gareau et al., 2006; Tjong et al., 2011; Øines et al., 

2012; Chen et al., 2013; Da Silva et al., 2014; Moussaoui et al., 2014, 2016a, 2016b). It is 

worth mentioning that if the stress-induced gut leakiness was first showed in animals, a recent 

human study reported similar effects of acute stress in healthy subjects (Vanuytsel et al., 

2014). In addition to its effects on gut permeability and visceral pain, chronic stress affects 

gut microbiota composition, induces upregulation of TLRs expression in the colonic mucosa, 

affects the levels of intestinal secretory IgA and increases circulating cytokines levels (Bonaz 

and Bernstein, 2013). Moreover, animals submitted to chronic stress are more susceptible to 

experimental colitis. Importantly, acute water avoidance and restraint stress, but also early-life 

stress such as maternal separation, are among the most widely used paradigms to model IBS 

in preclinical studies (Moloney et al., 2015a). Remarkably, stress-induced intestinal 

hyperpermeability appears to be GC-dependent, as it is evoked by the synthetic GC 

dexamethasone and prevented by administration of a GR antagonist (RU486) (Moussaoui et 

al., 2014). Likewise, GR antagonism also prevents stress-induced visceral hyperalgesia 

(Myers and Greenwood-Van Meerveld, 2012; Prusator and Greenwood-Van Meerveld, 2017). 

On the other hand, the CRF peptide also plays a role in the effects of stress on the gut (Taché 

and Perdue, 2004). For instance, it has been shown that CRF administration directly into the 

amygdala increases visceral pain (Su et al., 2009a), while amygdalar CRF antagonism 

reverses visceral hypersensitivity (Johnson et al., 2012). Similarly, peripheral administration 

of a CRF receptor antagonist blocks the stress-induced visceral hyper-sensitivity and gut 

leakiness in rats (Schwetz et al., 2005; Million et al., 2006;  Barreau et al., 2007a). 

Importantly, stress also induces CRF local expression in the gut and CRF receptors are widely 

expressed in the colonic mucosa, in particular in immune cells including macrophages, 

lymphocytes and mast cells (Taché and Perdue, 2004).  
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1.2.2. Bottom-up communication 

There is increasing evidence that the gut also signals to the brain and can have causal effects 

on behavior, especially stress-related behaviors. In particular, numerous studies demonstrate a 

key role of the gut microbiota as a central node in gut-brain communication. An outstanding 

question is how can microbes located in the gut, separated by tight barriers from the host’s 

inside, exert such effects? As for top-down communication, several lines of evidence show 

that bottom-up communication involve the neural pathway (vagus nerve) and humoral 

pathway (circulating factors) [Figure 7]. 

1.2.2.1. Potential role of the vagus nerve in gut to brain signaling 

The vagus nerve is a mixed nerve containing both efferent and afferent fibers. However, 90% 

of these fibers are afferent fibers, suggesting that the vagus nerve is particularly important for 

gut to brain signaling. So far, it has been shown that the vagus nerve conveys information 

regarding intestinal mucosa distortion, luminal osmolarity, the quality and quantity of luminal 

nutrients and the presence of bacterial products (Bonaz and Bernstein, 2013). Vagal afferents 

terminate in the dorsal vagal complex located in the brainstem (including the NTS). The NTS 

is further connected with limbic structures via the PVN (Rinaman et al., 2011; Herman, 

2017). Importantly, vagal terminals are in close contact with mucosal mast cells and express 

cytokines receptors, suggesting that local immune activation in the gut could impact the brain 

through electrical inputs. Indeed, it has been shown that proinflammatory cytokines such as 

IL-1β, IL-6 and TNFα can stimulate vagal afferents and lead to activation of CRF neurons in 

the PVN (Dantzer et al., 2000). On the other hand, brain imaging studies in humans have 

shown that rectal distension, induced by inflating a balloon cathether inserted into the rectum, 

altered brain activation patterns in healthy volunteers (Baciu et al., 1999). Moreover, 

differential brain responses to visceral noxious, but also, non-noxious stimuli, which is 

characteristic of visceral hypersensitivity, were reported in IBS patients compared with 

controls (Andresen et al., 2005; Labus et al., 2008; Elsenbruch et al., 2010; Tillisch et al., 

2011; Larsson et al., 2012). In these imaging studies, the changes in brain activity and 

connectivity were observed within a few seconds following visceral stimulation (Liu et al., 

2016; Guleria et al., 2017), suggesting an underlying nervous communication. In the last 15 

years, a role of the vagus nerve in mediating gut-brain axis effects on anxiety and emotional 

behavior has been documented in several animal studies using vagotomy or inactivation of the 

NTS. For instance, anxiolytic and antidepressant-like effects of probiotics are lost in 

vagotomized mice (Bravo et al., 2011). In addition, it has been shown that LPS exposure in 

mice decreases social interaction, but this effect is lost in animals that undergo vagotomy or 
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NTS pharmacological inactivation before LPS injection (Konsman et al., 2000; Marvel et al., 

2004). Similarly, hyperanxiety produced by chemically-induced GI inflammation with 

dextran sodium sulfate (DSS), a widely used agent for the induction of colitis, could be 

reversed by a probiotic treatment in a vagal-dependent manner (Bercik et al., 2011a). 

However, another study reported no effect of vagotomy on hyperanxiety induced by infection 

with the non invasive parasite Trichuris muris (Bercik et al., 2010). On the other hand, vagal 

stimulation has been found to exert anxiolytic and antidepressant-like effects in rodents 

(Furmaga et al., 2011; Shah et al., 2016) and is currently used as a therapy in resistant 

epileptic and depressive patients (Kosel and Schlaepfer, 2002). However, as previously 

mentioned, vagal stimulation or vagotomy likely involves both bottom-up and top-down 

communication between the gut and the brain. Moreover, vagus nerve innervation is not 

limited to the GI tract (as a matter of fact, it only innervates the upper part of it, i.e. the 

stomach and proximal small intestine) but rather extends to the heart, lungs, pancreas and 

endocrine glands including thyroid and adrenals. Although their contribution remains 

underexplored, the splanchnic and pelvic autonomic nerves – which do innervate the lower 

intestine including the colon – could also play a role in the gut-brain axis. 

1.2.2.2. Potential role of gut-derived molecules in gut to brain signaling 

Another important route of gut-brain communication is the bloodstream. Circulating factors 

of different nature and origin can eventually reach the brain to regulate its function and 

behavioral responses. These gut-derived molecules include gut hormones, neurotransmitters, 

metabolites (arising from both the host and gut microbes), endotoxins or other microbial 

antigens, and inflammatory cytokines. Importantly, the potential role of these molecules in 

gut-brain communication must be cautiously addressed with regard to their intrinsic ability to 

cross or not the blood-brain barrier (BBB) (Engelhardt and Ransohoff, 2012). Nevertheless, it 

is worth mentioning that if the BBB prevents the passage of gut-derived molecules in healthy 

adult individuals, these molecules may cross the barrier in young subjects or under 

pathological context. Moreover, the gut microbiota and its associated products have been 

shown to influence BBB function (Braniste et al., 2014). On the other hand, the 

circumventricular organs, located outside the BBB, are sensitive to the vascular content and 

can modulate the activity of neighboring neurons. 

As previously mentioned, the GI tract releases numerous hormones such as GLP-1, ghrelin, 

PYY, CCK, vasoactive intestinal peptide (VIP), gastric inhibitory polypeptide (GIP), gastrin 

and secretin, that are known to be involved in digestive processes as well as metabolic, 
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cardiovascular and immune processes. Interestingly, numerous studies have demonstrated that 

these molecules also modulate brain functions and behavior including food intake, emotion 

and cognition (Holzer, 2016). For instance, they have been implicated in visceral pain (CCK) 

(Wang et al., 2015), but also neuroprotection, neurogenesis, fear and anxiety, depression and 

memory (Lee and Soltesz, 2011; Bowers et al., 2012; Jiao et al., 2017). PYY and GLP-1 

administration to rodents have significant effects on neurotransmitters and behavior, including 

learning and memory (Stadlbauer et al., 2015), but also anxiety and depressive-like behavior 

(Morales-Medina et al., 2012; Anderberg et al., 2016). The mechanism by which gut peptides 

affect brain functions is still a matter of debate. Some of them such as ghrelin or GLP-1 cross 

the BBB, or such as CCK may be released by vagal afferents fibers in the NTS (Sartor and 

Verberne, 2008), but most of them are also secreted directly within the brain as 

neuropeptides. Therefore, it is often difficult to determine whether the effects of gut hormones 

on the brain are mediated by peripheral (neuroactives peptides) or central (neuropeptides) 

sources of these peptides. 

In addition, gut bacteria modulate various host metabolic reactions, resulting in the production 

of a vast repertoire of metabolites that have been identified as potential key players in gut-

brain communication, such as bile acids, tryptophan (an amino acid essential for the synthesis 

of serotonin by the host), acetylcholine, dopamine, norepinephrine and short-chain fatty acids 

(SCFAs) (see Lyte, 2014; El Aidy et al., 2015 and Rooks and Garrett, 2016 for reviews). In 

particular, tryptophan and neurotransmitter metabolism are known for their neuroactive 

properties. Whether they can reach the CNS – and in sufficiently high concentrations – is 

currently unclear. However, they may modulate neural signaling within the ENS, or act 

directly on primary afferent axons of the ANS. Moreover, recent studies demonstrated that 

SCFAs such as butyrate can impact brain and behavior via different actions including 

epigenetic-related mechanisms (Bourassa et al., 2016; Stilling et al., 2016). For instance, 

SCFAs modulate the maturation and function of microglia, which are the resident 

macrophages of the CNS (Erny et al., 2015). Microbial antigens (e.g. LPS, peptidoglycans) 

can also cross the intestinal epithelium and enter the bloodstream. A recent study showed that 

bacterial peptidoglycan can be translocated into the brain and sensed by specific receptors, 

which were found to be highly expressed in the developing brain during postnatal 

development in both males and females (Arentsen et al., 2017). They further showed that 

knocking-out one of these receptors resulted in sex-dependent changes in social behavior. 

Alternatively, microbial antigens also stimulate local cytokine production by mucosal 

immune cells. Cytokines and even activated immune cells can in turn travel to the brain or 
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modulate ENS and vagal activity (Capuron and Miller, 2011). In the CNS, circulating 

cytokines can have direct effects or trigger de novo production of cytokines by glial cells, 

including in brain areas involved in the regulation of stress response, emotion and cognition 

(Capuron and Miller, 2011). Cytokines have been shown to modulate HPA axis activity, the 

metabolism and function of several neurotransmitters, neuronal plasticity and behavior. As an 

example, during infection the synthesis of brain cytokines acts to coordinate the behavioral 

changes reffered to as ‘sickness behavior’ (anxiety, fatigue…)(Dantzer, 2001). This sickness 

behavior is a transient adaptive response that contributes to the elimination of the pathogen 

and the resolution of inflammation. However, several pathological conditions such as 

depression are associated with a chronic low grade inflammation, which has been proposed to 

induce behavioral alterations (Raison et al., 2006; Maes, 2008; Nusslock and Miller, 2016). 

 

During the last decade, a growing number of studies have explored this gut-brain 

communication through the evaluation of the impact of gut microbiota manipulations on 

brain function and behaviors. We will review these studies in the next chapter. 

 

CHAPTER II - Impact of gut-directed interventions on brain and behaviors 

The gut microbiota is highly sensitive to the environment and alterations of its composition 

(dysbiosis) have been described in conditions ranging from IBS and obesity to depression and 

autism (Zhao, 2013; Collins, 2014; Wang and Kasper, 2014; Mangiola et al., 2016). Of the 

many environmental factors, stress emerges as a consistent detrimental factor for the gut 

microbiota. However, the mechanisms underlying the ability of stress to modulate microbiota 

composition remain to be unraveled. Moreover, it is unclear whether dysbiosis is a causative 

factor in the etiology of the above-mentioned pathologies. Interestingly, studies using 

different, but complementary, gut microbiota-directed interventions (Germ-free (GF) rodents, 

antibiotics, probiotics, GI infection and fecal microbiota transplantation) have demonstrated 

that gut bacteria can signal to the brain through a variety of mechanisms and influence 

processes such as neurotransmission, neurogenesis, neuroinflammation, neuroendocrine stress 

response, and modulate behavior (see Cryan and Dinan, 2012; Burokas et al., 2015; Sampson 

and Mazmanian, 2015 and Sharon et al., 2016 for reviews). In particular, certain gut bacteria 

can have a benefical effect on emotional behaviors and, as such, have been proposed for 

potential therapeutic interventions in psychiatry (concept of psychobiotics) (Dinan et al., 

2013; Sherwin et al., 2016). In this chapter, we will briefly mention some of the findings on 

cognitive function and memory and rather more extensively review the impact of gut-directed 
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interventions on emotionality and stress response. Furthermore, we will mention a number of 

studies demonstrating a key role of the gut in brain development. 

The basis of this microbiota-gut-brain research stems from rodent studies. Psychiatric diseases 

and psychiatric symptoms cannot be directly assessed in animals. Available tools to evaluate 

emotionality are mostly limited to tests with a poor ethological validity but rather good 

predictive validity, which means that these tests are sensitive to pharmacological treatments 

used in psychiatry (anxiolytics, antidepressants). A summary of the different tests used to 

assess anxiety and depressive-like behaviors in rats and mice is presented in Figure 9 (also 

see Cryan and Holmes, 2005; Nestler and Hyman, 2010 and York et al., 2012 for reviews). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9 | Behavioral testing for emotionality in rodents. Adapted from Cryan and Holmes, 2005 and 

Talukdar et al., 2016. The most widely used tests to measure anxiety-like behavior in rodents are the open-field 

(A), the light/dark box (B), and the elevated plus maze (C) tests. These tests are based on rodents’ natural fear of 

open spaces and preference for dark and confined places. Thus, an animal that spends less time exploring the 
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open areas and rather sticks around the shady or closed spots is considered anxious. Indeed, anxiolytic treatments 

increase the time exploring the open arms of the elevated plus maze, the center of the open-field or the light 

compartment of the light/dark box (Lister, 1990). During development, it has been shown that the emission of 

ultrasonic vocalizations (USV) (D) can be used as an index of anxiety in pups separated from their dams for a 

short duration (<10 minutes). Indeed, anxiolytics blunt USV response (see (Iijima and Chaki, 2005) for review). 

Moreover, other complementary tests for anxiety such as, for instance, the marble burying test (E), can be used 

in mice (Deacon, 2006). This test consists in introducing marbles in the homecage (or after habituation to a novel 

cage lined with bedding). Mice will spontaneously bury the ‘intruder’ marbles and this behavior is sensitive to 

anxiolytics. An increase in the number of buried marbles is associated with increased anxiety. In addition to the 

behavioral assessment of anxiety, many studies examine the HPA (hypothalamus-pituitary-adrenal) axis 

response to stress using, for instance, restraint stress (F). The animal is stuck in a plastic cylinder for a variable 

duration (around 30 min) and blood samples are collected at several timepoints before, during and after this 

stress for ACTH/corticosterone determination. Likewise, the most used tests for depressive-like behavior are the 

forced-swimming (G) and the tail suspension (H) tests (FST and TST). The FST was developed by Porsolt 

(Porsolt et al., 1977) and consists in placing the animal in a cylinder filled with warm water for 2 successive 

sessions. During the second session, the time spent immobile is a reflection of the despair state. Similarly, the 

TST (used in mice only) is based on immobility of the mice when suspended by the tail. These tests are also 

pharmacologically validated as antidepressant treatments decrease immobility and promote struggling. In 

addition, depressive-like behaviors can also be evaluated through the assessment of anhedonia-like status, such 

as in the sucrose preference test (I) (Willner et al., 1987). This test is based on the natural preference of rodents 

for a sucrose solution versus tap water, presented in a free-choice situation. A decreased preference for sucrose is 

representative of an anhedonic state. More ethological tests have been developed to evaluate other types of 

anhedonic behaviors that involve social or sexual dimensions. For instance, since rodents are social animals, a 

simple measurement is the time spent in social interaction with a conspecific in a neutral environment (J). On the 

other hand, the three-chamber test (K) is used to quantify the preference of an animal for a social target versus an 

empty compartment (or an objet/inanimate conspecfic) (Kaidanovich-Beilin et al., 2011). This measure of 

sociability can be automated and thus is often preferred. Decreased time spent in social interaction or decreased 

preference for the social target can be interpreted as social anhedonia. A more specific test available in males is 

the female urine sniffing test (FUST) (Malkesman et al., 2010) (L). In this test, the time spent sniffing estrus 

female urine versus water (presented using a cotton Q-tip) is significantly greater in control animals displaying 

normal sexual reward seeking behavior. The loss of interest for female urine in the FUST is restored by 

antidepressants and therefore can be considered as representative of a depressive-like state.  

 

2.1. Germ-free animals 

The study of GF animals served as a proof of concept for the role of gut microbiota in the 

regulation of brain function and behavior. A large number of studies have explored GF-

associated phenotypes both in the gut and the brain. Here, we will non exhaustively 

summarize these phenotypes [Figure 10] (see Luczynski et al., 2016a for review).  

GF animals (most often mice) are generated by aseptic caesarean section and adopted by a GF 

foster mother in a sterile environment (isolator), and grow up in isolators throughout life and 

across generations (Gustafsson, 1959a; Smith et al., 2007). It is worth mentioning that GF 

status is completely artificial and is not specific to the gut microbiota. Nevertheless, the 

absence of microbial colonization is deleterious for the digestive function and GF animals 

consume more food than control animals to maintain the same body weight (Wostmann et al., 

1983). Indeed, gut microbes synthesize essential nutrients otherwise unavailable for the host’s 

metabolism (Sekirov et al., 2010). To survive, GF rodents are fed a diet enriched in several 
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vitamins including vitamin B and K (Gustafsson, 1959b; Sumi et al., 1977). Importantly, GF 

models imply that the animals are GF during the whole developmental period, not only in 

adulthood. This has a number of implications regarding GF phenotypes. Indeed, as seen 

earlier in this introduction, the gut microbiota is necessary for normal maturation of the 

mucosal immune system (Macpherson and Harris, 2004). Moreover, GF animals display 

markedly impaired ENS development, with overall decreased nerve density in the small 

intestine (Collins et al., 2014). These alterations are associated with altered intestinal motility 

(Husebye et al., 1994, 2001). A recent study also reported increased visceral pain sensitivity 

in GF mice compared specific pathogen-free controls (SPF; mice guaranteed to not harbor 

certain pathogens (Luczynski et al., 2017). 

 

 

 

 

 

 

 

Figure 10 | Germ-free (GF) mice as a tool to study the microbiota-gut-brain axis. Figure from Luczynski 

et al., 2016a. GF mice are raised in isolation in a GF unit without any exposure to microorganisms. Gut-brain 

signaling is altered due to the lack of bacterial exposure throughout the lifetime. The microbiota is required for 

normal stress responsivity, anxiety-like behaviors, sociability, and cognition. Furthermore, the microbiota 

protects CNS homeostasis by regulating immune function and blood brain barrier (BBB) integrity. 5-HT, 5 

hydroxytryptamine (serotonin). 

 

Studies in GF rodents have revealed that the microbiota influences HPA axis responsiveness 

to stressors and associated emotional behaviors. Indeed, a study by De Palma and colleagues 

showed that early-life stress fails to induce long-term endocrine and behavioral alterations in 

GF mice compared with SPF controls (De Palma et al., 2015). On the other hand, adult GF 

animals show exaggerated release of corticosterone in response to stress compared with SPF 

controls (Sudo et al., 2004; Crumeyrolle-Arias et al., 2014). This HPA axis dysregulation is 

accompanied by alterations of stress-related behaviors such as anxiety (Heijtz et al., 2011;  

Neufeld et al., 2011a, 2011b). Interestingly, GF mice show reduced basal anxiety whereas GF 

rats are hyperanxious, suggesting that growing up GF has a species-specific directional effect 
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on anxiety levels (Crumeyrolle-Arias et al., 2014). Social behavior impairments have also 

been reported in GF mice (Desbonnet et al., 2014; Arentsen et al., 2015). Interestingly, the 

effects of GF status on sociability seem to be more important in males than in females. In 

addition to the observed deficits in sociability, male GF mice engage more in stereotyped and 

repetitive self-grooming behaviors compared with controls (Desbonnet et al., 2014). These 

alterations in sociability, locomotor activity, and repetitive, stereotyped behaviors in GF mice 

are comparable with the behavioral phenotype observed in rodent models of autism 

(Silverman et al., 2010). Intriguingly, patients with ASD have an altered composition of the 

gut microbiota and commonly suffer from GI complications such as constipation and 

increased intestinal permeability (Kohane et al., 2012;  Mulle et al., 2013; Mayer et al., 

2014a; Rosenfeld, 2015). GF animals also show cognitive disabilities including learning and 

memory deficits (see Luczynski et al., 2016a for review). 

Although numerous findings in GF mice clearly demonstrate that the gut microbiota 

influences stress responsivity, sociability, and cognition, the molecular mechanisms 

underlying these effects remain largely unknown. Nevertheless, there is growing evidence 

that the GF status produces a variety of neurobiological alterations including both functional 

and structural alterations in the CNS. Some studies reported that the absence of microbiota 

affects serotonergic neurotransmission in the hippocampus specifically in males. Alterations 

in other neurotransmitter systems, including the noradrenergic, serotonergic, dopaminergic 

and glutamatergic systems, have been documented (Heijtz et al., 2011; Neufeld et al., 2011b; 

Clarke et al., 2013; Matsumoto et al., 2013). The study by Matsumoto and colleagues showed 

that the cerebral metabolome is different in GF versus ex-GF (conventionalized) mice 

(Matsumoto et al., 2013). On the other hand, brain derived neurotrophic factor (Bdnf) 

expression is altered in GF mice, with either increased or decreased expression depending on 

the studies and the brain areas (Sudo et al., 2004; Gareau et al., 2011; Heijtz et al., 2011; 

Neufeld et al., 2011b; Clarke et al., 2013). Altered levels of BDNF in the CNS are well 

known to be associated with affective disorders such as depression in humans (Autry and 

Monteggia, 2012). BDNF promotes the growth and development of new neurons and the 

survival of existing neurons (Park and Poo, 2012). Consistently, it was recently shown that 

GF mice exhibit alterations of neuronal morphology in the hippocampus, amygdala 

(Luczynski et al., 2016b) and medial PFC (Luczynski et al., 2017). In addition, a study 

revealed hypermyelination of prefrontal neurons in GF mice (Hoban et al., 2016a). Adult 

neurogenesis is a key process involved in memory processes, stress responsivity, and 

antidepressant treatment efficacy (Snyder et al., 2011; Marín-Burgin and Schinder, 2012; 
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Miller and Hen, 2015). Increased hippocampal neurogenesis is typically associated with 

improved memory, whereas its decrease is associated with memory impairments and 

depressive-like behavior (Deng et al., 2010; Eisch and Petrik, 2012). Surprisingly, the 

survival of newly-born neurons in the subgranuar zone of the dorsal hippocampus is increased 

in GF mice (Ogbonnaya et al., 2015). In contrast, the morphology of dorsal dentate granule 

cells of GF mice is less complex compared with SPF (Luczynski et al., 2016b). 

Another important finding with respect to the gut-brain axis is that the BBB is 

underdeveloped in GF mice. Indeed, increased BBB permeability as well as tight junctions 

abnormalities have been reported in juvenile and adult GF animals (Braniste et al., 2014). 

These changes in BBB function likely underlie some of the reported alterations of brain 

function and behavior in GF animals. Finally, although the gut microbiota has long been 

known to impact the peripheral immune system, little was known until recently regarding its 

modulation of immune development and function in the CNS. GF mice have greater numbers 

of microglia throughout the entire brain compared with controls (Erny et al., 2015; Castillo-

Ruiz et al., 2017). In addition, these microglia show abnormal morphology and an immature-

like transcriptome (Matcovitch-Natan et al., 2016). Microglia are the resident macrophages of 

the CNS and act as the first line of immune protection for the brain and spinal cord (Prinz and 

Priller, 2014). Microglia are also involved in shaping neural circuits in the developing brain 

(Schafer and Stevens, 2013). Thus, alterations in microglia number and activity may also 

contribute to the reported physiological and behavioral alterations in GF animals. 

Interestingly, many of the above GF phenotypes are normalized by colonization, although the 

effects largely depend upon the age of colonization and the animal species and strain (Clarke 

et al., 2013; Braniste et al., 2014; Desbonnet et al., 2014; Luczynski et al., 2017). As seen 

above, GF animals show altered brain development, suggesting that microbial colonization 

during a critical window in early-life could lastingly impact brain function and behavior. 

Supporting this, Sudo et al. reported the first evidence that colonization during early 

development, but not at a later age, could attenuate the increased HPA axis response to stress 

in GF mice (Sudo et al., 2004). In line with this study, Heijtz et al. further showed that some 

behavioral alterations (i.e. locomotor activity) in GF mice could be reversed by colonization 

early in life, whereas colonization at adulthood had no effect (Heijtz et al., 2011).  

2.2. Antibiotics 

GF models have, however, several limitations such as the absence of bacteria in the whole 

body and the difficulty to conduct behavioral tests in incubators or to reproduce housing 
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conditions in control groups (Luczynski et al., 2016a). The use of antibiotics allows to 

transiently reduce the abundance of certain gut bacterial communities at different 

developmental time points to examine the impact of gut microbiota on brain development and 

behavior. 

Numerous studies have shown deleterious effects of antibiotics on brain and behavior. For 

instance, treatment with a mix of antibiotics increased depressive-like behaviors (Hoban et al., 

2016b; Guida et al., 2017). This effect was associated with altered BDNF signaling and 

neuronal firing in the hippocampus and increased number of activated astrocytes and 

microglia in the hippocampus and cortex (Guida et al., 2017). Moreover, antibiotic depletion 

of gut microbiota during adolescence lastingly altered the expression of key neuromodulators 

in the hippocampus and hypothalamus and reduced anxiety, but induced cognitive deficits 

(Desbonnet et al., 2015). In line with the latter observation, several studies showed that 

different antibiotic treatments impaired spatial (Fröhlich et al., 2016; Hoban et al., 2016b) and 

non-spatial memory (Pyndt Jørgensen et al., 2015; Möhle et al., 2016), likely via decreased 

hippocampal neurogenesis proliferation and survival (Möhle et al., 2016). Furthermore, 

penicillin exposure early in life induces long-term hyperanxiety in males and females, social 

deficits in males and increased IL-6 and IL-10 expression in the frontal cortex together with 

altered tight junction protein expression in the hippocampus of both sexes (Leclercq et al., 

2017). This suggests that the early perinatal period constitutes a critical window of sensitivity 

for the effects of dysbiosis on emotional behaviors. However, vancomycin treatment in early-

life did not alter anxiety-like behavior in another study using male rats (O’Mahony et al., 

2014). Overall, these studies indicate that antibiotics can bidirectionally modify behavior and 

emotionality and that the effects differ, notably, according to the antibiotic used. 

On the other hand, beneficial effects of antibiotics have been found in different models 

producing behavioral alterations. In a post-infection model, ampicillin treatment attenuated 

the increased anxiety and showed antidepressant-like effects in control animals (Lotan et al., 

2014). Likewise, a beneficial effect of antibiotics on social behavior was found in several 

studies. Indeed, social avoidance in non-obese diabetic mice was not observed in mice with 

antibiotic depleted microbiota (Gacias et al., 2016). Interestingly, 8 week-vancomycin 

treatment in autistic children transiently improved both GI symptoms and ASD symptoms, 

(Sandler et al., 2000). Similarly, in an animal model of autism (maternal immune activation), 

vancomycin pre-treatment in dams prevented the deleterious effects of prenatal infection in 

adult male offspring, including structural cortical abnormalities, social deficits and 

hyperanxiety (Kim et al., 2017). In another autism paradigm (prenatal valproate exposure), 
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oral treatment with minocycline was found to ameliorate autistic behaviors, including 

decreased sociability and hyperanxiety, and blood brain barrier leakiness in rats (Kumar and 

Sharma, 2016). Besides, other studies reported preventive antipsychotic-like effects of 

minocycline in different neurodevelopmental and adult animal models of schizophrenia 

(maternal immune activation and peripubertal stress, Mattei et al., 2014; Giovanoli et al., 

2016; hippocampal inflammation, Zhu et al., 2014a, 2014b). Minocycline also prevented 

spatial memory deficits associated with neuroinflammation in stressed (McKim et al., 2016) 

or aged (Kohman et al., 2013) animals. However, in all these minocycline studies, although it 

was orally administered, the antibiotic was used for its anti-inflammatory or neuroprotective 

properties, without mention of the gut microbiota. Indeed, it is not clear whether these 

properties involve effects on the gut microbiota, as intraperitoneal or even central 

administration of minocycline also affect brain and behavior. This consideration also applies 

to other antibiotics including vancomycin. Therefore, conclusions on the role of gut 

microbiota in emotional behavior can only be drawned if appropriate controls are carried out, 

or when fecal transplantation or probiotic treatment following microbiota depletion reverse its 

effects. For instance, Bercik and coworkers showed that oral administration, but not i.p. 

injection, of antibiotics, increased exploratory behavior and hippocampal BDNF expression in 

mice (Bercik et al., 2011b). Moreover, the authors reported that orally delivered antibiotics 

had no effects on these parameters in GF mice, further demonstrating the involvement of gut 

microbiota in the effects of antibiotics.  

2.3. Fecal transplantation 

The important role of gut microbiota in the regulation of behavior was further confirmed by 

demonstrating the successful adoptive transfer of host behavioral phenotypes between mice of 

different strains and with different behavioral profiles (see Collins et al., 2013 for review). In 

addition to providing much information as regards the intrinsic role of the gut microbiota in 

the brain-gut axis, GF animals are also a useful tool for these fecal transplantation studies. 

Another possibility is to treat conventional animals with broad spectrum antibiotics before 

transplantation (Lundberg et al., 2016). In animals, fecal transplantation can be achieved by 

oral gavage of fresh fecal content or by transient co-housing with the donor. The stability of 

the transplanted microbiota can vary depending upon several factors (strain, sex, age, housing 

conditions). 

The first evidence of gut-brain effects following fecal transplantation in animals showed a 

critical role of gut microbiota in host metabolism and energy balance (Turnbaugh et al., 2008; 

Wang et al., 2016). Since then, accumulating data have demonstrated that fecal 
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transplantation can affect brain and behavior in rodents. For instance, the cognitive 

impairment associated with diet-induced obesity (high-fat diet, HFD) was transferred to 

recipient mice fed a control diet (Bruce-Keller et al., 2015). Another study showed that social 

deficits in offspring from HFD-fed dams could be reversed by co-housing with offspring from 

dams fed a regular diet (Buffington et al., 2016), an effect accompanied by restored synaptic 

plasticity in the brain following social interaction. Similarly, social deficits in non obese 

diabetic mice could be transferred to control microbiota-depleted C57/Bl6 mice via fecal 

transplantation (Gacias et al., 2016). This study also reported changes in gene expression in 

the PFC of the recipient mice. Moreover, several studies indicate that anxiety and depressive-

like behaviors can be modulated by fecal transplantation. A study using high and low anxiety 

mouse strains (NIH Swiss and Balb/C, respectively) demonstrated that microbiota transfer 

between strains also transferred their anxiety levels (Bercik et al., 2011b). Recent elegant 

studies have used gut microbiota from human patients and healthy volunteers for fecal 

transplantation in animals. Zheng and colleagues showed that fecal transplantation with the 

microbiota of depressed subjects induced significant depressive-like behaviors in GF mice, as 

compared with colonization with the microbiota of healthy control individuals (Zheng et al., 

2016). Similar findings were also reported in the rat using antibiotic-driven microbiota 

depletion before transplantation (Kelly et al., 2016). Together these studies strongly suggest 

that the gut microbiota play a causal role in the development of features of depression and 

may represent a novel target in the treatment and prevention of this disorder.  

On the other hand, colonization with the microbiota of IBS patients with diarrhea versus 

healthy controls recapitulated several features of IBS in GF mice, including faster GI transit, 

intestinal barrier dysfunction, innate immune activation, but also anxiety-like behavior (De 

Palma et al., 2017). Intriguingly, antibiotic-induced decrease in hippocampal neuronal 

progenitor survival as well as deficient non-spatial memory was not improved by fecal 

transfer with normal SPF microbiota, but fully restored by oral administration of a probiotic 

mixture containing eight bacterial strains of the Bifidobacterium and Lactobacillus genera 

(Möhle et al., 2016). 

Overall, the potential clinical value of fecal transplantation for the treatment of disorders of 

the gut-brain axis is promising (Borody and Khoruts, 2011; Brandt and Aroniadis, 2013) and 

currently represents an active area of research. To date, the only indication for fecal 

transplantation in humans is the treatment of severe infections with Clostridium difficile, 

resulting in high success rates (Khoruts, 2014). Interestingly, a recent clinical trial evaluated 

the beneficial impact of fecal transplantation in a small cohort of 18 ASD-diagnosed children 
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(Kang et al., 2017). This study reports attenuated GI symptoms (e.g. constipation, diarrhea, 

abdominal pain) as well as behavioral ASD symptoms, both persisting up to 8 weeks after 

treatment, and associated with stable increases in the abundance of several bacterial taxa, 

including Bifidobacterium, Prevotella, and Desulfovibrio.  

2.4. Probiotics 

The term ‘probiotic’, defined as ‘a live microbial feed supplement, which beneficially affects 

the host by improving its intestinal microbial balance’ was coined in 1953 by Werner Kollath 

to contrast with antibiotics (Eberl, 2010). The use of probiotics in animal studies has provided 

further evidence that the gut microbiota possess some level of antidepressant or anxiolytic 

activity, leading to the concept of psychobiotics (see Dinan et al., 2013 and Sarkar et al., 2016 

for reviews). Furthermore, probiotics interventions are generally restricted to one or few 

bacterial species, thereby allowing the association between a given bug and a particular 

behavioral effect. The most used are members of the Bifidobacteria and Lactobacillus genera. 

In the last decade, beneficial effects of these probiotics on behavioral outcomes have been 

demonstrated in several rodent models, especially in a context of stress. 

Pretreatment with a probiotic formulation (Lactobacillus helveticus and Bifidobacterium 

longum) has been shown to prevent the increase in plasma corticosterone and neuronal 

activation in the PVN of adult male C57Bl6 mice submitted to acute stress (water avoidance) 

(Ait-Belgnaoui et al., 2014). In addition, gut permeability and tight junction proteins levels 

were also restored by the probiotic. Similar results were reported with the probiotic 

Lactobacillus casei Shirota (Takada et al., 2016). Moreover, the authors demonstrated a dose-

dependent modulation of vagal afferent activity by intragastric administration of L casei, 

providing potential insight into the underlying mechanisms. Another study conducted in 

female rats reported beneficial effects of Lactobacillus probiotics (L farciminis) on gut barrier 

function and HPA axis activity after acute stress (Ait-Belgnaoui et al., 2012). Interestingly, 

prevention of gut barrier leakiness using a pharmacological agent (MLCK inhibitor, ML-7) 

led to similar effects on HPA axis markers, suggesting that the effects of the probiotic on the 

latter are mediated by the promotion of gut barrier function (Ait-Belgnaoui et al., 2012). 

However, no behavioral outcome was tested in this study. In a later study, Emge and 

colleagues showed that a mixture of Lactobacillus rhamnosus and Lactobacillus helveticus 

could prevent the increased anxiety in a model of intestinal inflammation induced by DSS 

(Emge et al., 2016). Using the DSS model, it has been reported that intestinal inflammation 

leads to immune activation in the hippocampus and reduces cell proliferation in this area 

(Zonis et al., 2015). Taken together, these works suggest that probiotics can modulate 
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anxiety-like behavior via the buffering of HPA axis reactivity and possibly of 

neuroinflammatory processes. Lactobacillus helveticus was also shown to protect against the 

deleterious effects of chronic stress in adult rats (Liang et al., 2015). Indeed, chronic restraint 

stress led to decreased sucrose preference, but this effect on depressive-like behavior was 

comparably ameliorated by the probiotic or the antidepressant citalopram. Moreover, whereas 

the antidepressant did not affect stress-induced anxiety or increased corticosterone levels, L. 

helveticus also normalized these features in stressed rats. The probiotic group also showed 

increases in the anti-inflammatory cytokine IL-10, and in hippocampal Bdnf mRNA as well 

as norepinephrine and serotonin levels. Likewise, Lactobacillus casei has been shown to 

prevent antibiotic-induced depressive-like behaviors, altered hippocampal Bdnf and increased 

glial activation in the hippocampus and cortex (Guida et al., 2017). One study examined the 

effects of Lactobacillus rhamnosus in adult male BALB/c mice, a mouse strain showing 

innately high anxiety levels compared with other strains (Bravo et al., 2011). Both anxiety 

and depressive-like behaviors (in the elevated plus maze and forced swim tests, respectively) 

were ameliorated by the probiotic. These changes were accompanied by a blunted 

corticosterone response to stress and changes in mRNA expression of the GABA (gamma 

amino butyric acid) receptor GABAB1b in the PFC, hippocampus and amygdala. 

Furthermore, the behavioral and molecular changes were lost in vagotomized mice, 

suggesting that the modulation of synaptic transmission and HPA axis could mediate the 

effects of probiotics on anxiety and depressive-like behaviors via the vagus nerve. Another 

study showed that probiotic strains of the Bifidobacteria family (B longum and B breve) can 

also reduce anxiety and depressive-like behaviors in male BALB/c mice (Savignac et al., 

2014). Moreover, B longum has been reported to normalize the increased anxiety in mouse 

models of GI inflammation induced by infection with the parasite Trichuris muris (Bercik et 

al., 2010) or by oral exposure to DSS (Bercik et al., 2011a). Intringuingly in the parasite 

study, the authors also tested the probiotic L rhamnosus, but the treatment with this bacterium 

was not able to prevent the elevated anxiety levels. This finding contrasts with the study by 

Bravo et al. in BalB/C mice and suggests that the effects of probiotics on anxiety depend on 

the mechanisms underlying the alterations of this behavior (Bravo et al., 2011). Likewise, 

treatment with the probiotic Mycobacterium vaccae in male BALB/c mice enhances learning 

performances in the spatial Hebb-Williams maze (Matthews and Jenks, 2013). Interestingly, 

the improved performance in probiotic treated mice was associated with a reduction of 

anxiety-related behaviors such as immobilization and grooming during the test. 
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Beneficial effects of probiotics have also been reported in paradigms involving early-life 

adverse events. For instance, the probiotic Bifidobacterium infantis administered at adulthood 

was reported to exert antidepressant-like effects in animals exposed to early-life stress 

(maternal separation) (Desbonnet et al., 2010). Indeed, stressed animals spent more time 

immobile in the forced swimming test compared with controls, but this effect was corrected 

by both antidepressant (citalopram) and the probiotic treatment. In addition, the increased 

peripheral levels of the proinflammatory cytokine IL-6 as well as the increased Crf mRNA 

levels in the amygdala in stressed animals were also normalized by both interventions. 

However, in a previous study, the authors found no behavioral change in adult naive rats 

treated with the same probiotic, although the anti-inflammatory effect on IL-6 was present 

(Desbonnet et al., 2008). Besides, in an elegant study, Hsiao and colleagues have 

demonstrated that oral gavage of Bacteroides fragilis is sufficient to correct gut permeability 

defects, impaired sociability and increased anxiety in a mouse model of prenatal infection 

(Hsiao et al., 2013). Interestingly, in this study, B fragilis, which is not known as a classic 

probiotic, was identified as one of the most altered bacterium by comparing the gut 

microbiota profiles in the prenatal infection and control groups. In addition to the beneficial 

effects on gut barrier and behavior, B fragilis treatment normalized the increase in 4-

ethylphenylsulfate in the serum of prenatally infected mice. The authors further demonstrated 

that administration of this metabolite in naive mice was sufficient to induce hyperanxiety, but 

not social deficits. This study suggests that novel probiotic-like bacterial species can be 

identified using animal models. However, to date, the beneficial effects of this bacterium on 

behavior have not been tested in another study, and the presence of this bacterium in the 

serum is thought to cause systemic inflammation (Lukiw, 2016). 

In addition to the beneficial effects of probiotics in adult animals, there is non-negligible 

literature showing that probiotics supplementation during early-life can have long-term 

preventive effects. Indeed, it has been shown that a mixture of Lactobacillus rhamnosus and 

Lactobacillus helveticus could prevent the elevation in basal plasma corticosterone observed 

in early-stressed (maternally separated) juvenile rats (post-natal day (PND) 20), in addition to 

mitigating the associated increased gut permeability (Gareau et al., 2007a). Similar findings 

have been reported in a mouse model of maternal separation where mice received the 

probiotic Bifidobacterium pseudocatenulatum during the perinatal period (Moya-Pérez et al., 

2017). Compared with their placebo-fed stressed counterparts, probiotic-fed mice exposed to 

early stress showed attenuated HPA axis reactivity and intestinal inflammation at weaning, as 

well as lower anxiety levels during adolescence. Using another early adversity (i.e. perinatal 
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antibiotic exposure), Leclercq et al. reported that Lactobacillus rhamnosus supplementation in 

lactating dams prevented some of the deleterious effects of antibiotics on anxiety and social 

behavior, cytokine expression in the frontal cortex and BBB integrity in a sex-dependent 

manner (Leclercq et al., 2017). 

Although the initial studies have been conducted in animal models, there is now a growing 

number of human trials providing evidence for psychotropic-like effects of probiotics on 

mood and anxiety. However, most of the trials were performed in healthy subjects (Benton et 

al., 2007; Messaoudi et al., 2011; Tillisch et al., 2013; Steenbergen et al., 2015). Interestingly, 

it has been recently demonstrated in double-blinded, placebo-controlled studies that 

Lactobacillus casei Shirota reduces stress-induced increase in salivary cortisol in healthy 

students (Takada et al., 2016) and decreases anxiety symptoms in subjects suffering from  

chronic fatigue syndrome (Rao et al., 2009). Probiotic treatment during two months 

significantly decreased anxiety symptoms compared with the placebo. A recent study reported 

that pregnant women supplemented with Lactobacillus rhamnosus until 6 months postpartum 

had significantly lower depression and anxiety scores in the postpartum period (Slykerman et 

al., 2017). Furthermore, a study reported that treatment with the probiotic B longum reduced 

depression but not anxiety scores in IBS patients compared with the placebo group. Using 

functional brain imaging, the authors also reported decreased brain activity in responses to 

negative emotional stimuli in probiotic-treated versus placebo-treated IBS subjects (Pinto-

Sanchez et al., 2017). It has been proposed that probiotics might represent an adjuvant therapy 

in psychiatric disorders including major depressive disorder, although well-designed clinical 

trials are needed to make clear conclusions (Vlainić et al., 2016). To date, only sparse 

evidence for antidepressant effects of probiotics has been reported in major depressive 

disorder (Akkasheh et al., 2016; Bambling et al., 2017). 

2.5. Prebiotics 

Prebiotics are nutrients that can be fermented by gut microbes in the gut and thus favor the 

growth of certain microbial communities (Gibson and Roberfroid, 1995). In comparison with 

probiotics, a much smaller number of studies have examined the effects of prebiotics on 

behavior (see Kao et al., 2016 for review). These include investigations of galacto-

oligosaccharides (GOS) and fructo-oligosaccharides (FOS), which are a source of nutrition 

for Bifidobacteria and Lactobacilli. For instance, the effects of GOS have been tested in 

response to acute inflammation in adult male CD1 mice (Savignac et al., 2016). The prebiotic 

treatment did not affect the early hypolocomotion induced by LPS injection (sickness 

behavior), however, it did prevent the increased anxiety observed 24h after injection, as well 
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as the increased IL-1β levels in the frontal cortex. Another recent study in C57BL/6J male 

mice reported that the combination of both prebiotics had anxiolytic and antidepressant 

effects both in basal and chronic stress situations (Burokas et al., 2017). These effects were 

consistent across several behavioral tests and accompanied by attenuated HPA axis hyper-

reactivity to stress as well as changes in mRNA expression of stress-related genes in the 

hypothalamus and hippocampus. GOS of FOS alone showed some levels of protective effects 

but to a much lower extent, suggesting that combining multiple prebiotics, including other 

oligosaccharides, may increase their beneficial potential. Human milk oligosaccharides 

(HMO) have been reported to impact brain development and cognitive functions (Wang and 

Brand-Miller, 2003; Wang et al., 2003). Mice supplemented with HMO in their diet (2 weeks) 

were protected against stress-induced hyperanxiety (Tarr et al., 2015). Apart from these 

effects on emotional behaviors, other studies have reported improved learning and memory 

performance in male rats and mice supplemented with different oligosaccharides including 

HMO (Vázquez et al., 2015; Jia et al., 2016; Oliveros et al., 2016; Yen et al., 2017). 

2.6. Gut permeability 

Strikingly, we have seen in this chapter that almost all the manipulations affecting the gut 

used to explore the role of the gut-brain axis in the regulation of behavior are focused on the 

gut microbiota. This is probably due to the fact that the initial findings in this research area 

come from GF animal studies. However, several studies highlight a potentially synergistic 

role of gut permeability in the effects of microbiota manipulations. Notably, gut microbes 

have been shown to influence gut barrier function and accordingly, gut dysbiosis is often 

concomitant with gut leakiness (Zakostelska et al., 2011; Hsiao et al., 2013; Jakobsson et al., 

2015; Reunanen et al., 2015). For instance, Hsiao et al. have demonstrated that the long-term 

behavioral (autistic-like) alterations induced by prenatal inflammation were reversed by oral 

gavage of Bacteroides fragilis, an effect that was accompanied by a partial restoration of gut 

microbiota composition and a full restoration of gut barrier function (Hsiao et al., 2013). 

Likewise, in the study by Ait-Belgnaoui et al., acute stress led to increased corticosterone 

levels along with gut leakiness, and the beneficial effects of probiotics on corticosterone 

levels were accompanied by a restoration of gut barrier function (Ait-Belgnaoui et al., 2012). 

Furthermore, this study was the first to address the role of gut permeability per se in the 

stress-induced HPA axis alterations. Indeed, the authors demonstrated that treatment with 

ML-7, an inhibitor of the MLCK, which is responsible for tight junction permeability (Shen et 

al., 2006), was able to normalize HPA axis response. However, ML-7 inhibitory action is not 

specific to the gut MLCK and has been shown to also modulate BBB permeability (Kuhlmann 
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et al., 2007; Luh et al., 2010). Nonetheless, these results suggest that gut permeability could 

play a role in the regulation of behavior and stress responsivity. As previously mentioned, De 

Palma and colleagues have demonstrated that early-life stress (i.e. maternal separation) fails 

to induce hyperanxiety and depressive-like behaviors in GF mice compared with SPF controls 

(De Palma et al., 2015). Interestingly, colonization with the gut microbiota of a conventional 

SPF control mouse unmasked the effects of early-life stress in GF mice. However, 

colonization with the microbiota of an early-stressed animal did not transfer the stress-

associated behavioral phenotype in naive GF mice, suggesting that gut bacteria are necessary 

but not sufficient to mediate the behavioral effects of early-life stress. Although the authors 

did not measure it, the increased permeability generally associated with early-life stress 

(Barreau et al., 2004a, 2004b; Gareau et al., 2006; Øines et al., 2012; Moussaoui et al., 2014, 

2016a, 2016b) could be responsible for its deleterious effects upon colonization. Thus, it is 

conceivable that animals showing gut dysbiosis without concomitant gut leakiness display 

unspoiled behavior.  

 

In conclusion, we have seen that stress affects both the brain and the gut and that gut 

microbiota plays a key role in the effects of stress on emotional behaviors. However, it is 

still not clear whether gut dysbiosis, leakiness or inflammation precede each-other and 

whether they are the cause or the consequence of psychiatric symptoms. In this respect, 

there is a need for other specific gut-directed interventions to better understand the 

effects of stress on the gut-brain axis. Tools for the specific manipulation of gut 

permeability, in particular, would provide new insight in the field, even though it is 

likely that they would affect the gut microbiota at some point. Moreover, despite 

widespread sex differences in both gut physiology and neuropsychiatric vulnerability, 

most of the studies ignore the issue of sex. 

Finally, this chapter called attention to the early-life period as particularly sensitive for 

gut-brain communication alterations. As seen in chapter I, the gut mucosal barrier 

remains immature until mid-infancy [Figure 11]. Moreover, it is greatly influenced by 

gut microbiota colonization and diversification during the lactating period. The 

interaction between epithelial cells and the mucosal immune system during the same 

period is crucial for future health including mental health. Indeed, the brain also 

undergoes important maturation during early post-natal life (Gutman and Nemeroff, 

2002; Andersen and Teicher, 2008) [Figure 11]. In the following chapter, we will discuss 

the impact of stress during this particular developmental window. 
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Figure 11 | Temporal sequences of gut and brain development. Adapted from Sasselli et al., 2012; Borre et 

al., 2014 and Jain and Walker, 2015.  

 

CHAPTER III – Early-life stress, neuropsychiatric vulnerability and intestinal 

dysfunctions 

 

3.1. Early-life adversity in humans 

The “Developmental Origins of Health and Disease” (DOHaD) concept states that 

“environmental factors acting during the phase of developmental plasticity interact with 

genotypic variation to change the capacity of the organism to cope with its environment in 

later life” (Gluckman and Hanson, 2004). Although the main focus of the DOHaD originally 

was on nutritional factors (Barker, 1998), this concept was extended to a broader range of 

environmental factors such as stress during different phases of development (Heindel et al., 

2015). This concept suggests that the early-life environment is determinant for the 

individual’s future phenotype and health (Gluckman and Hanson, 2004; Boersma et al., 

2014). Exposure to trauma or chronic stress, especially during critical periods such as infancy, 

may increase the allostatic load and can vulnerabilize to a plethora of health problems across 

lifespan, including neuropsychiatric disorders, bowel disease, metabolic and cardiac disorders 

(Danese and McEwen, 2012). 

Childhood adversity is among the factors that affect the most brain function and mental health 

at adult age (see Bick and Nelson, 2016 for review). Indeed, a vast literature has shown that 

childhood adversity is a major risk factor for the development and persistence of 

neuropsychiatric disorders such as anxiety and depression at adulthood (Famularo et al., 1992; 

Kendler et al., 2004; Mullen et al., 1996; Stein et al., 1996; Young et al., 1997; Agid et al., 
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1999; Heim and Nemeroff, 2001; Chapman et al., 2004; Grover et al., 2005; Phillips et al., 

2005; Faravelli, 2012; Bruce et al., 2013; Reiser et al., 2014). An adverse childhood 

experience most often refers to parental maltreatment, neglect and sexual abuse. However, it 

has been shown that several other stressors such as war, pollution, illness or low socio-

economic status may constitute risk factors for mental health, in particular anxiety and 

depression (Weich et al., 2009; McLaughlin et al., 2010), but also ASD, schizophrenia and 

addiction. It has been established that there is a dose-dependent relationship between the 

severity of childhood adversity and the occurrence of depressive episodes in adulthood 

(Chapman et al., 2004). Moreover, the occurrence or aggravation of these neuropsychiatric 

disorders is often associated with additional adversities at adulthood (Hammen et al., 1992, 

2000; Norman and Malla, 1994), suggesting that childhood life adversity could increase long-

term vulnerability to stress. Nevertheless, the effects of early-life adversity on 

neuropsychiatric vulnerability seem to differ according to gender (Carpenter et al., 2017). 

Childhood adversity is associated with structural alterations in brain structures involved in the 

regulation of emotions and stress response. In particular, the PFC, amygdala and 

hippocampus have been consistently reported to be impacted by early adversity. More 

precisely, individuals having suffered from childhood adverse events generally exhibit 

reduced PFC (De Bellis et al., 2002; Frodl et al., 2010a, 2010b; van Harmelen et al., 2010) 

and hippocampus (Vythilingam et al., 2002; Woon and Hedges, 2008; Frodl et al., 2010a, 

2010b; Rao et al., 2010) volume and an increased volume of the amygdala, despite some 

inconsistent findings (i.e. decreased volume) in the latter area (Mehta et al., 2009; Lupien et 

al., 2011). Functional brain imaging studies have also revealed that, relative to control 

subjects, previously maltreated individuals exhibit decreased activation in the basal ganglia 

(ventral striatum, globus pallidus) following money reward (Dillon et al., 2009; Mehta et al., 

2010). 

In addition to its long-term effects on the brain and neuropsychiatric vulnerability, numerous 

studies have shown that childhood adversity is a risk factor for GI disorders, especially IBS 

(Hislop, 1979; Klooker et al., 2009; Halland et al., 2014; see Chitkara et al., 2008 for review). 

Notably, emotional abuse seems to be the most potent predictor for IBS (Bradford et al., 

2012). How does adversity “get under the skin” to influence the physiology of the developing 

child is still unclear. Alterations in neuroendocrine stress systems, metabolism and 

inflammatory processes, associated with allostasis overload, probably play a major role in the 

health problems associated with early-life stress (Barboza Solís et al., 2015; Nusslock and 

Miller, 2016). 
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Finally, a large literature also suggests that stress occurring before birth and even before 

conception has similar detrimental effects on brain and neuropsychiatric vulnerability 

(Glover, 2011; Entringer et al., 2015; Gröger et al., 2016), but no robust link between prenatal 

stress and functional GI disorders has been established. Although several evidences for long-

term effects of early adversity on brain vulnerability exist in the human literature, most of the 

relationships have been demonstrated in animal models.  

3.2. Animal models of early-life adversity: focus on rodent maternal separation  

Pioneering work from Levine, Denenberg, Meaney and Plotsky in rodents has shown that the 

early environment shapes emotional behavior as well as stress responsivity in adult life 

(Levine, 1957; Denenberg et al., 1962; Meaney et al., 1991a; Plotsky and Meaney, 1993). 

Since then, a vast body of literature has documented these effects (Meaney, 2001; Chapillon 

et al., 2002; Weaver et al., 2002; Champagne et al., 2003; Cirulli et al., 2003; see Maccari et 

al., 2014 for review). In particular, there is compelling evidence that maternal care (including 

arched-back nursing and anogenital licking and grooming of the pups) is crucial for brain 

maturation and long-term stress sensitivity in the offspring (Maccari et al., 1995; Barbazanges 

et al., 1996; Champagne et al., 2003; Darnaudéry et al., 2004). Indeed, when compared with 

offspring from dams showing high levels of active maternal care, offspring from dams with 

low levels of maternal care display hyperanxiety accompanied by exacerbated HPA axis 

response to stress and decreased expression of GR in the hippocampus (see Hackman et al., 

2010 for review). Moreover, cross fostering experiments showed that adoption of pups from 

high maternal care biological mothers by low maternal care dams induced similar alterations 

in offspring. Consistent with these demonstrations of the pivotal role of maternal care on 

brain vulnerability, disruption of the mother-infant relationship in rodents, best known as 

maternal separation (MS) or deprivation, induces a wide range of neurobehavioral and 

endocrine alterations both in juvenile and adult offspring. In the following, we will review the 

adverse consequences of MS, which is the most used model of early adversity in the gut-brain 

axis field. This model produces emotional and endocrine, but also GI alterations with good 

face validity. 

3.2.1.  Maternal separation and emotional vulnerability 

MS models are based on dam-pups separations in rats, during the first weeks of life (1-3 

weeks). The most common MS paradigm consists in daily 3h separations between postnatal 

days 2 and 14 (Lippmann et al., 2007). However, there are other models using different 

separation durations (3-8 h per day) or an acute 24h separation (Barna et al., 2003; Schmidt et 



 
 

43 
 

al., 2004; Roman et al., 2006; Viveros et al., 2009). MS results in different degrees of 

perceived stress in dams and pups according to the protocol used. Dams can be placed in a 

novel cage while their litter remains together in the homecage, or the whole litter can also be 

transferred into a novel environment. In addition, pups can be individually separated in a 

novel environment, resulting in an additional isolation stress. Finally, a key factor is the 

choice of the control group. The most widely used is the condition where dams and their pups 

remain undisturbed throughout the lactation period. In some studies, however, dams are daily 

separated from the litter for a short period (i.e 15 min) (Vallée et al., 1996, 1997, 1999; Pryce 

et al., 2003; Wilber et al., 2009). This condition, referred to as ‘early handling’, was designed 

to mimic the short separations observed in the wild when the dams leave the nest to find some 

food. Moreover, this daily separation allows similar handling between MS and control groups, 

with the only difference being separation duration. However, it has been shown that this 

procedure per se is beneficial and leads, for instance, to improved stress sensitivity and 

anxiety in the offspring, likely through an enhancement of active maternal care following 

separation (Meaney et al., 1991a, 1991b, 1991c; Vallée et al., 1996, 1997, 1999). The 

different models and their respective effects are reviewed in Pryce and Feldon, 2003; Korosi 

and Baram, 2010 and Vetulani, 2013. In any case, pups are deprived of maternal care during 

the separation. Importantly, the absence of the dam implies that the pups cannot benefit from 

dams’ heat and milk. Temperature issues can be easily corrected by maintaining the room at 

28-29°C during separation sessions. However, the lack of milk intake likely contributes to the 

short and long-term effects of 24h MS (Suchecki et al., 1993; van Oers et al., 1998). Initially, 

MS was developed in rats, but mother-infant separation-based models have also been 

developed in other rodents (e.g. guinea pigs and mice) and in primates (rhesus macaques) (see 

Cirulli et al., 2009 for review). The largest literature still involves rats, with mice being more 

and more used; we will focus on these species in this introduction. It appears that mice are 

less sensitive to this early-life stress than rats (see Millstein and Holmes, 2007 for review). 

This might be attributable to species specificities in neurodevelopment and maternal care 

behavior patterns. Indeed, brain developmental trajectories in mice and rats differ 

significantly. Mice exhibit more rapid neurodevelopment and consequently earlier maturation 

of the HPA axis (Schmidt et al., 2003). Another possible reason is that mouse studies more 

often involve genetically inbred as well as transgenic strains (Millstein and Holmes, 2007). 

C57/Bl6 is the most widely used mouse strain and this strain shows particularly low levels of 

active maternal care as well as stress hyposensitivity compared with other strains and with 

rats, which could also explain why dam-pups separation has fewer impact in mouse studies. 
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Furthermore, as reviewed by Tractenberg et al., MS studies in mice show important 

inconsistencies in their separation procedures (Tractenberg et al., 2016). Accordingly, 

Mansuy developed a new mouse model combining MS and unpredictable chronic mild stress 

in dams during separation sessions (Weiss et al., 2011). With this model, they demonstrate 

that the effects of early adversity are transmitted to the next generation.  

In the following, we will describe the effects of MS on behavior, endocrine stress response 

and neurobiological correlates. 

3.2.1.1. Long-term psychoneuroendocrine alterations 

Behavior 

The long-term consequences of MS on emotional behavior have been extensively 

documented. Typically, MS leads to increased anxiety and depressive-like behaviors. Indeed, 

adult animals exposed to MS during early-life display reduced exploration of the open areas 

in the elevated plus maze, light/dark box and open-field tests [Figure 9A-C] compared with 

non separated controls (Caldji et al., 2000; Huot et al., 2001; Kalinichev et al., 2002; Daniels 

et al., 2004; Lee et al., 2007, 2014; Lambás-Señas et al., 2009; Troakes and Ingram, 2009; 

Maniam and Morris, 2010a; De Palma et al., 2015; Shu et al., 2015; Gracia-Rubio et al., 

2016; Koe et al., 2016; Rincel et al., 2016, see ANNEXE 1; Shin et al., 2016; Moya-Pérez et 

al., 2017). Moreover, it has been shown that exposure to a novel stress at adulthood 

aggravates these anxiety-like behaviors in maternally separated rats (Marais et al., 2008; 

Eiland and McEwen, 2012). Numerous studies also report increased depressive-like behaviors 

in the forced swimming test or tail suspension test [Figure 9G,H]. Indeed, adult maternally 

separated rodents show greater immobility time in these tests compared with controls 

(MacQueen et al., 2003; Lee et al., 2007; Lambás-Señas et al., 2009; Desbonnet et al., 2010; 

Maniam and Morris, 2010a; Sung et al., 2010; Uchida et al., 2010; Hui et al., 2011; Réus et 

al., 2011, 2017; Bai et al., 2012; Amiri et al., 2016; Gracia-Rubio et al., 2016; Paternain et al., 

2016; Sadeghi et al., 2016; Amini-Khoei et al., 2017). Anhedonic behaviors with respect to 

different rewards (sucrose, social target… [Figure 9I-K]) are also sensitive to antidepressants 

and can be used as more ethological assessment of depressive-like behaviors. MS has been 

associated with decreased sucrose preference in numerous studies (Maniam and Morris, 

2010b; Hui et al., 2011; Bai et al., 2012; Øines et al., 2012; Kundakovic et al., 2013; Shu et 

al., 2015; Amiri et al., 2016; Sadeghi et al., 2016; Yang et al., 2016a; Amini-Khoei et al., 

2017). In addition, social behavior was repeatedly found to be altered by MS. Specifically, 

social interaction with a conspecific has been shown to be decreased (Zimmerberg and 

Sageser, 2011; Kundakovic et al., 2013; Tsuda et al., 2014; Farrell et al., 2016; Rincel et al., 
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2016, see ANNEXE 1). Moreover, male aggressivity towards a counterpart is either increased 

(Shin et al., 2016) or decreased (Tsuda et al., 2011;2014), indicative of social behavior 

impairment. 

However, inconsistencies can be found in the MS literature, with a number of studies 

reporting no alterations of certain emotional behaviors (Shalev and Kafkafi, 2002; 

Zimmerberg and Kajunski, 2004; Rüedi-Bettschen et al., 2005; Marais et al., 2008; Farkas et 

al., 2009; Uchida et al., 2010; Hulshof et al., 2011; Mourlon et al., 2011; Eiland and McEwen, 

2012; Klug and van den Buuse, 2012; Øines et al., 2012; Park et al., 2012; Zhang et al., 2012; 

Ferreira et al., 2013; Hill et al., 2014; Rincel et al., 2016, see ANNEXE 1; Sadeghi et al., 

2016) and a some others reporting opposite effects (e.g. lower anxiety or increased sucrose 

preference) (Eklund and Arborelius, 2006; Slotten et al., 2006; Michaels and Holtzman, 2007; 

Maniam and Morris, 2010b; León Rodríguez and Dueñas, 2013; Tsuda et al., 2014; Chocyk et 

al., 2015; Aya-Ramos et al., 2017). These discrepancies could be attributed to the use of 

different MS protocols (number of separated pups, separation duration and control group), age 

of investigation, animal strain and sex, housing conditions (individual or collective cages, 

light/dark cycle, enrichment), but also other testing protocol issues (e.g. habituation prior 

testing, brightness, sucrose concentration for the sucrose preference test). The majority of 

these findings were obtained using males only.  

The effects of MS are not limited to the above alterations of emotional behaviors. For 

instance, MS leads to exacerbated motivation for alcohol and drugs of abuse (Kosten et al., 

2000, 2006a; Huot et al., 2001; Ploj et al., 2003a; Jaworski et al., 2005; Lynch et al., 2005; 

Roman and Nylander, 2005; Roman et al., 2005; Vazquez et al., 2005, 2006; Naudon et al., 

2013; Gondré-Lewis et al., 2016; see Moffett et al., 2007 for review). 

Finally, several studies have also shown deleterious effects of MS on cognition (see Kosten et 

al., 2012 for review). Briefly, these effects include impaired hippocampal-dependent spatial 

learning and memory (Son et al., 2006; Hui et al., 2011; Couto et al., 2012; Rincel et al., 

2016, see ANNEXE 1; Wang et al., 2011, 2014a), altered non-spatial memory (Aisa et al., 

2007; Benetti et al., 2009; Hulshof et al., 2011; Pinheiro et al., 2014; Wang et al., 2011, 

2014a) and impairments in PFC-dependent tasks (working memory, extinction, cognitive 

flexibility) (Wang et al., 2011; Baudin et al., 2012; Lejeune et al., 2013; do Prado et al., 2015; 

Thomas et al., 2016; Yang et al., 2016b). In contrast, amygdala-dependent aversive memory 

(e.g. fear conditioning) can be enhanced by MS (Wilber et al., 2009; Diehl et al., 2014; Toda 

et al., 2014). As for emotional behavior, some studies did not replicate these findings 
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(Lehmann et al., 1999; Pryce et al., 2003; Kosten et al., 2006b; Stevenson et al., 2009; Wang 

et al., 2011; Hill et al., 2014; Zhu et al., 2017).  

Endocrine response and neurobiological correlates 

MS also exerts long-lasting effects on HPA axis function, leading in most of the studies to 

endocrine hyper-responsivity to a novel stress (Rosenfeld et al., 1992a; Plotsky and Meaney, 

1993; Ladd et al., 1996, 2000; Patchev et al., 1997; Biagini et al., 1998; Lehmann et al., 2002; 

Slotten et al., 2006; Aisa et al., 2007; Cotella et al., 2013). However, a few studies did not 

replicate these findings (Daniels et al., 2004; Hulshof et al., 2011). These discrepancies likely 

cannot be explained by differences in MS protocol, age, sex, strain or type of stressor, as we 

and others reported contrasting results using Wistar male adult rats exposed to the same 

separation paradigm (i.e. 3h per day from PND2-14 with separation of the whole litter and 

undisturbed controls) and a similar stressor at adulthood (i.e. exposure to a novel 

environment) (Hulshof et al., 2011; Rincel et al., 2016, see ANNEXE 1). Suprisingly, 

Hulshof and coworkers reported no alteration of ACTH or corticosterone response to different 

other stressors including odor predator, footshock or restraint stress, suggesting that the nature 

and intensity of the stressor does not impact HPA axis reactivity. However, these animals 

were individually housed as adults, whereas they were housed in collective cages in our study 

(Rincel et al., 2016, see ANNEXE 1). Importantly, HPA axis activity varies with respect to 

the circadian rhythm (Nicolaides et al., 2014), thus, although this information is not provided 

in most cases, the time of blood sampling could possibly account for some of the observed 

discrepancies. Moreover, a recent study suggests that the effects of early adversity depend 

upon the gut microbiota profile of the animals (which differs across animal suppliers, i.e. 

Jackson laboratories and Taconic Biosciences) (Kim et al., 2017). 

Within the CNS, this HPA axis hyper-reactivity is associated with an up-regulation of CRF 

expression in the PVN and amygdala but also with CRF concentration and increased CRF 

receptor density in the locus coeruleus and raphe nucleus (Plotsky and Meaney, 1993; Ladd et 

al., 1996, 2000; see Rivarola and Renard, 2014 for review), as well as altered oxytocin and 

vasopressin expression (either up- or down-regulated) in the PVN (see Veenema, 2012 for 

review). MS also decreases GR expression in the hippocampus and PFC (Rivarola and 

Suárez, 2009; Wilber et al., 2009), two main brain areas involved in HPA axis negative 

feedback. In addition, MS decreases the number of GABA receptors in noradrenergic neurons 

of the locus coeruleus, as well as the number of benzodiazepine receptors in the amygdala, the 

locus coeruleus and the PFC (Caldji et al., 2000). The GABA/benzodiazepines system plays a 

role in CRF synthesis inhibition in the central amygdala, allowing a buffering of the 
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noradrenergic response to stress. Interestingly, short separations (early handling) produce 

opposite effects on behavior and neuroendocrine response to stress relative to prolonged 

separations. It has been proposed that the latter observation could be due to changes in other 

neurotransmission systems in different brain areas. These alterations include impaired 

glutamatergic (Pickering et al., 2006; Katsouli et al., 2014), serotonergic (Daniels et al., 2004; 

O’Mahony et al., 2008; Kawakami et al., 2013; Bravo et al., 2014), dopaminergic (Matthews 

et al., 2001; Ploj et al., 2003a; Brake et al., 2004; Arborelius and Eklund, 2007; Kawakami et 

al., 2013; Li et al. 2013; Romano-López et al. 2016; Moya-Pérez et al., 2017) and opioidergic 

(Ploj et al., 2003a, 2003b) transmission. In the CNS, serotonin is involved in neuronal 

development (Daubert and Condron, 2010), emotionality and also pain modulation (Kim and 

Camilleri, 2000; Sommer, 2004). Among other effects, MS reduces the expression of the 

serotonin transporter in the raphe nucleus (Bravo et al., 2014). Interestingly, SSRI 

antidepressants are inhibitors of this transporter (selective serotonin reuptake inhibitors). For 

instance, administration of the SSRI paroxetine normalizes HPA axis function as well as 

emotional behavior in maternally separated adult rats, suggesting that serotonin plays a major 

role in the long-term consequences of MS (Huot et al., 2001). Moreover, adult MS offspring 

display neuroinflammatory marks such as increased TNFα, IL-1β and TLR4 expression in the 

hippocampus (Pinheiro et al., 2014; Sadeghi et al., 2016; Amini-Khoei et al., 2017) and PVN 

(Tang et al., 2017b). 

As in humans, MS has been shown to induce both functional and structural changes in several 

brain regions including the PFC, hippocampus, amygdala and nucleus accumbens 

(Muhammad et al. 2012; Li et al. 2013; Danielewicz and Hess, 2014; Soztutar et al., 2016). 

More specifically, impaired synaptic long-term potentiation, dendritic atrophy as well as 

reduced dendritic spine density have been reported in the medial PFC and hippocampus of 

adolescent and adult maternally separated rats (Bock et al., 2005; Gos et al., 2008; Gruss et 

al., 2008; Monroy et al., 2010; Muhammad and Kolb 2011; Baudin et al. 2012; Chocyk et al. 

2013; Cao et al., 2014; Sousa et al., 2014; Farrell et al. 2016; Romano-López et al. 2016; Shin 

et al., 2016). In addition, it has been shown that MS leads to hypomyelination in the medial 

PFC (Yang et al., 2016b). By contrast, MS has been shown to induce dendritic hypertrophy in 

the amygdala (Koe et al., 2016). These effects are accompanied by changes in the expression 

of neurotrophins such as NGF (nerve growth factor) and BDNF, that are known to play 

critical roles in dendrite growth and spinogenesis (see Park and Poo, 2012 for review). In 

particular, numerous studies have reported decreased NGF or BDNF expression in the 

hippocampus (Lippmann et al., 2007; Marais et al., 2008; Aisa et al., 2009; de Lima et al., 
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2011; Réus et al., 2011). In addition, MS leads to alterations of hippocampal neurogenesis 

(either decreased or increased) at adulthood (Mirescu et al., 2004;  Hulshof et al., 2011; Hays 

et al., 2012; Suri et al., 2013). Interestingly, decreased hippocampal BDNF and neurogenesis 

are consistent observations in post-mortem brains of depressed subjects and there is mounting 

evidence that BDNF is involved in emotional vulnerability (see Autry and Monteggia, 2012 

for review). 

3.2.1.2. Possible early mechanisms at the origin of maternal separation 

programming 
 

The mechanisms underlying the long-term effects of MS are not fully understood. Multiple, 

possibly synergistic effects in both dams and pups have been reported in several studies (see 

Korosi, 2009 for review). In the following, we will discuss the effects of MS during 

development and highlight some evidences of their potential involvement in the programming 

of long-term phenotypes. 

Mother infant communication and maternal care 

As previously mentioned, maternal care is thought to play an important role in brain 

maturation and later vulnerability to stress. It has been established that rodent pups vocalize in 

response to isolation (30-90 Hz ultrasounds) (Branchi et al., 2001; Hofer et al., 2002) and MS 

has been shown to increase the number of these vocalizations compared with undisturbed 

pups in several mouse strains (Feifel et al., 2017). Because these isolation calls elicit retrieval 

behavior in the mother, they are thought to serve mother-pup communication and stimulate 

maternal care towards their pups (D’Amato et al., 2005; Brunelli et al., 2015). Moreover, this 

behavior is potentiated when pups are isolated for a second time immediately after dam 

contact (or return to the nest) (Hofer et al., 2002). Differences in maternal care have been 

shown to contribute to the differences in offspring’s stress reactivity at adulthood (Maccari et 

al., 1995; Liu, 1997; Caldji et al., 1998; Francis et al., 1999; Francis and Meaney, 1999; 

Champagne et al., 2003, 2008; Cameron et al., 2005). In the MS model, pups are deprived of 

maternal care during several consecutive hours, which may constitute a mechanism for the 

adverse effects of this early-life stress. Indeed, it has been demonstrated that the long-term 

behavioral effects of acute 24h-MS can be prevented by pup tactile stimulation (van Oers et 

al. 1998). Nevertheless, the role of maternal care in the long-term effects of MS remains 

controversial. Several studies have reported increased overall (over 24h) maternal care in 

dams submitted to chronic MS (Macrí et al., 2004; Marmendal et al., 2004), but also to early 

handling (Macrí et al., 2004). As previously mentioned, these two separation protocols 

produce opposite effects on HPA axis reacitvity and emotionality in adult offspring.  
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MS also constitutes a potent stressor for the dams. Indeed, it has been reported that this 

psychological stress induces anxiety and depressive-like behaviors in dams (Boccia et al., 

2007; Maniam and Morris, 2010c; Aguggia et al., 2013). As a matter of fact, several studies 

suggest that dam’s perceived stress plays an important role in the effects of separation in the 

offspring. As an example, Huot and coworkers have shown that the MS-induced HPA hyper-

response to stress in the offspring can be counteracted by providing a foster litter to the dam 

while its own litter is being separated (Huot et al., 2004). 

Endocrine, immune and neurobiological effects of MS in developing pups 

The HPA axis is almost silenced during a short window of early post-natal development (i.e. 

from PND4 to 14) (Sapolsky and Meaney, 1986; Vázquez, 1998). This stress hypo-responsive 

period is characterized by extremely low basal corticosterone levels in the plasma as well as a 

limited amplitude of ACTH and corticosterone response following stress exposure. 

Nevertheless, this blunted HPA axis response is not absolute, since a potent stressor such as 

MS is able to induce its activation (Anisman et al., 1998; Vázquez, 1998; Gutman and 

Nemeroff, 2002). It has been proposed that stress and immune activation result in a cross-

sensitization of both systems that possibility creates a self-perpetuating cycle contributing to 

the emergence of the alterations in animals subjected to early stress. MS has been shown to 

decrease the plasma levels of the anti-inflammatory cytokine IL-10 in adolescent rats (Grassi-

Oliveira et al., 2016). In addition, altered circulating pro-inflammatory IL-1β, IL-6 and TNFα 

were observed in maternally separated pups and adolescent animals (Wieck et al., 2013; do 

Prado et al., 2015; Pinheiro et al., 2014; Roque et al., 2014, 2016; Réus et al., 2017). 

Furthermore, several pieces of evidence show that MS induces neuroinflammation in the PFC 

and hippocampus (Park et al., 2014; Réus et al., 2017). For instance, two-week-old MS pups 

display increased activated microglia in the PFC and hippocampus (Gracia-Rubio et al., 2016) 

and decreased number of astrocytes in the hippocampus (Musholt et al., 2009), along with 

increased IL-1β and TNFα expression in the same brain area compared with controls (Roque 

et al., 2016). Furthermore, the authors report increased hippocampal expression of TNFα in 

control pups submitted to a single separation on PND15, suggesting that long-lasting 

alterations in the hippocampus could be underlied by the altered TNFα expression during 

development.  

Both altered HPA axis activity and neuroinflamamtion during development have been shown 

to be deleterious for the immature brain. In particular, processes of synaptogenesis, dendritic 

expansion, neurogenesis and apoptosis are highly dynamic during this period. MS disrupts the 

normal course of brain development and produces structural alterations including delayed 
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synaptic maturity (Andersen and Teicher, 2004) and increased neuronal and glial death 

(Zhang et al., 2002; Kuma et al., 2004; Mirescu et al., 2004). Altered expression of 

neurotrophins such as BDNF and NGF in separated pups could contribute to these effects 

(Cirulli et al., 2000; Kuma et al., 2004; Roceri et al., 2004). In addition, MS disturbs the 

serotonergic system during development. Indeed, reduced expression of the serotonin receptor 

5HTr1A in the hippocampus and PFC has been reported in 7-day-old pups (Ohta et al., 2014). 

A recent study demonstrates that transient juvenile – but not adult – knockdown of Otx2 

(orthodenticle homeobox 2) in the ventral tegmental area mimics early-life stress by 

increasing stress susceptibility, whereas its overexpression reverses the effects of early-life 

stress (Peña et al., 2017). Moreover, we and others have reported decreased mRNA 

expression of the transcription repressor Rest4 (RE-1 silencing transcription factor 4) in the 

PFC of pups submitted to MS (Uchida et al., 2010; Rincel et al., 2016, see ANNEXE 1). It 

has been shown that Rest4 targets include genes encoding Crf, Bdnf and 5HTr1A (Otto et al., 

2007). Remarkably, Uchida and colleagues have demonstrated that Rest4 overexpression in 

the PFC specifically during development is sufficient to produce HPA axis hyper-responsivity 

to stress in adulthood, suggesting that this brain area is particularly relevant for the long-term 

effects of MS (Uchida et al., 2010). We recently demonstrated that exposure to a high-fat diet 

(HFD) during the perinatal period can prevent the long-term MS-associated neurobehavioral 

alterations including hyperanxiety, decreased social behavior and HPA hyperresponse to 

stress, possibly via a protective effect on gene expression in the PFC (Rincel et al., 2016, see 

ANNEXE 1). Indeed, perinatal HFD prevented the MS-induced alterations of Rest4, Bdnf 

and 5HTr1A expression in this brain area.  

Epigenetic changes in MS offspring 

Epigenetic regulation of DNA transcription can be achieved by several mechanisms including 

DNA methylation, histone modifications and interaction with non-coding RNAs such as 

microRNA (miRNA) (Goldberg et al., 2007). Epigenetic marks are dynamic and highly 

sensitive to environmental factors; furthermore they can last in time and even be transferred 

across generations (Bohacek and Mansuy, 2013). As such, they represent a potential 

mechanism that could underlie the long-term effects of early-life stress (Heim and Binder, 

2012; Lutz and Turecki, 2014; Provençal and Binder, 2015; Silberman et al., 2016). Indeed, a 

number of studies have reported persistent epigenetic marks in the genome of animals 

submitted to MS (see Jawahar et al., 2015 for review). In particular, changes in DNA 

methylation of specific regulatory sites in key genes for stress processing such as Crf, Avp, 

GR, or Bdnf in the PVN, hippocampus and PFC of maternally separated animals, have been 
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documented (Meaney and Szyf, 2005; Murgatroyd et al., 2009; Roth et al., 2009; Roth and 

Sweatt, 2011; Wang et al., 2014a; Zhu et al., 2017). It has been shown that administration of a 

DNA methyl transferase (DNMT) inhibitor prevents the decreased prefrontal Bdnf mRNA 

expression induced by MS (Roth et al., 2009). Moreover, DNA methylation in the offspring 

has been shown to be associated with the level of maternal care (Weaver et al., 2004). 

Nonetheless, the group of Mansuy provided evidence for epigenetically-mediated 

transmission of behavioral traits induced by early-life stress across generations irrespective of 

crossfostering (Weiss et al., 2011).  

Another major epigenetic process is histone modification, especially acetylation by histone 

acetyltransferases (HATs) or deacetylation by histone deacetylases (HDACs). Histone 

acetylation patterns as well as HAT and HDAC expression in the brain are also altered by MS 

(Pusalkar et al., 2016). For instance, Park and coworkers have shown that MS leads to 

decreased Bdnf and GR mRNA expression in the hippocampus, and that these effects were 

accompanied by decreased levels of histone acetylation at their respective promoters (Seo et 

al., 2016; Park et al., 2017). In addition, the authors reported increased hippocampal HDAC5 

mRNA in MS animals compared with controls. Interestingly, chronic treatment with an 

antidepressant (escitalopram) attenuated all these effects, suggesting that the behavioral 

antidepressant effect could involve epigenetic changes. Furthermore, a recent study suggests 

that there is a cross-talk between histone acetylation and DNA methylation (Zhu et al., 2017). 

Indeed, the authors reported that treatment with a HDAC inhibitor reversed the MS-induced 

increased DNA methylation at the GR promoter region.  

Finally, the possible role of brain miRNAs in mediating the long-term effects of MS has been 

addressed in a few studies. Uchida and colleagues were the first to report changes in 

expression of several miRNA in the PFC of MS rats (Uchida et al., 2010). Another MS study 

reported an increase in miR-16 in the hippocampus that was negatively correlated with Bdnf 

expression in the same brain area and also negatively correlated with sucrose preference (Bai 

et al., 2012). 

3.2.2. Maternal separation as a model of irritable bowel syndrome: impact on the 

gastrointestinal tract 
 

As seen earlier, MS is also used as a model of IBS (see Barreau et al., 2007b and O’Mahony 

et al., 2011 for reviews). In addition to its effects on stress vulnerability, it leads to several GI 

dysfunctions and increases the vulnerability to experimental colitis. 

 



 
 

52 
 

3.2.2.1. Effects of maternal separation on the enteric nervous system, visceral 

sensitivity and motility 
 

MS induces dynamic structural and functional changes in the ENS (Barreau et al., 2008; 

Tominaga et al., 2016). For instance, MS has been reported to increase nerve density and 

synaptogenesis in juveniles, but these effects are no longer present at adulthood (Barreau et 

al., 2008). In contrast, the levels of the neuronal marker PGP 9.5 (anti-protein gene product 

9.5) in the colon are increased in adult MS animals but not in juveniles. Interestingly, early-

life adversity has been shown to affect ENS development in a sex-dependent manner, with 

females being more sensitive than males (Million and Larauche, 2016). It has been widely 

reported that adult maternally separated rats display visceral hyperalgesia during colorectal 

distension (Coutinho et al., 2002; Rosztóczy et al., 2003; Barreau et al., 2004b; Schwetz et al., 

2005; O’Mahony et al., 2008; Gosselin et al., 2010; Tjong et al., 2011; Tsang et al., 2012; 

Hyland et al., 2015; Moloney et al., 2015b; Rincel et al., 2016, see ANNEXE 1; Tang et al., 

2017b; Yi et al., 2017). This procedure consists in introducing a balloon in the rectum and 

measuring the visceromotor response (abdominal contractions or electromyogenic signal) in 

response to the balloon’s inflation. Interestingly, this hyper-sensitivity to colorectal distension 

is larger in females than in males (Rosztóczy et al., 2003). Furthermore, the authors also 

showed that visceral hyperalgesia was greater when all pups were separated from the dam 

than when only half of littermates were removed, suggesting that the dam’s perceived stress 

plays a role in the long-term effects of MS on visceral sensitivity. Indeed, in another study, it 

was demonstrated that MS-induced visceral hypersensitivity is transferred across generations 

and that this effect likely depends upon maternal care (Van den Wijngaard et al., 2013). In 

addition, MS produces increased intestinal motility in response to stress, as evidenced by 

reduced total transit time and increased number of fecal pellets (Schwetz et al., 2005; Hyland 

et al., 2015; Moloney et al., 2015b; Murakami et al., 2017). 

3.2.2.2. Effects of maternal separation on gut microbiota composition 

Gut microbiota composition can be determined by various approaches. The most common 

methods rely on 16S ribosomal RNA (rRNA) amplification or sequencing. 16S rRNA is 

ubiquitous in prokaryotes and has the advantage to contain both highly conserved domains 

and variable domains, which allow detection and identification of the taxa, respectively. 16S-

high throughput sequencing is the most costly but provides much broader information, 

including α and β diversity (within- and between-community diversity, respectively). 

Although this method is widely used in the field of gut microbiota in general, it has been used 

in a limited number of studies investigating the effects of MS on microbiota composition. A 
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growing number of studies have reported altered gut microbiota composition both in juvenile 

and adult maternally separated animals. However, the use of different animals and strains, 

sex, MS protocols, nature of the sample, microbiota analysis method and age of investigation 

renders between-studies comparisons difficult, and yet, there is no clear microbial pattern 

associated with MS in rodents. The first study that has investigated the effects of MS on the 

gut microbiota showed overall reduced bacterial diversity in maternally separated animals 

versus controls (O’Mahony et al., 2009). This finding has been replicated in a more recent 

work (Zhou et al., 2016). However, another recent study reports no change in diversity 

(Moya-Pérez et al., 2017). Qualitatively, MS was shown to increase the Firmicutes to 

Bacteroidetes ratio at the phylum level in some studies (De Palma et al., 2015; Zhou et al., 

2016; Li et al., 2017a; El Aidy et al., 2017), but again this finding is not consistent across 

studies as some report opposite (Pusceddu et al., 2015) or no effects (Zhou et al., 2016). A 

consistent finding, however, is that the effects of MS on microbiota composition vary both 

qualitatively and quantitatively with respect to age of investigation. Indeed, several studies 

comparing at least two time points show completely different patterns (García-Ródenas et al., 

2006; Barouei et al., 2012; Zhou et al., 2016; Moya-Pérez et al., 2017). Overall, Bacteroides 

and Lachnospiraceae (including Clostridium XIVa) species seem to be consistently altered 

(either enriched or depleted) across several studies (De Palma et al., 2015; Zhou et al., 2016; 

Murakami et al., 2017). More studies using global 16S-sequencing approaches are needed to 

better document the effects of MS on gut microbiota and potentially identify candidate 

species or genera associated with the behavioral effects of MS. Furthermore, considering the 

importance of sex differences in both stress effects and basal gut microbiota composition, 

future studies should be conducted in both males and females. To date, only one of the above 

studies investigated males anf females separately, but found no sex effect (El Aidy et al., 

2017). 

3.2.2.3. Effects of maternal separation on the gut mucosa 

MS has been associated with alterations in the differentiation and distribution of 

enteroendocrine cells in the gut epithelium (Estienne et al., 2010). In addition, MS animals 

were shown to display colonic tissue damage including decreased crypt length and altered 

number of goblet cells and are more engaged in epithelial cell proliferation (Barreau et al., 

2004a; O’Malley et al., 2010; Li et al., 2016, 2017a, 2047b). Moreover, MS animals show 

more colonic damage after DSS or TNBS-induced colitis than non stressed animals and as a 

result, they also lose more weight, indicating that they are more sensitive to experimental 

colitis (Varghese et al., 2006; Ghia et al., 2008; Veenema et al., 2008). There is mounting 
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evidence that MS produces long-term gut paracellular and transcellular hyper-permeability to 

ions and macromolecules (Söderholm et al., 2002; Barreau et al., 2004a, 2004b; García-

Ródenas et al., 2006; Varghese et al., 2006; Gareau et al., 2007a, 2007b; Moussaoui et al., 

2014; Li et al., 2016) [Figure 4]. In addition, exposure to a novel stress at adulthood 

potentiates gut hyperpermeablity in maternally separated rats (Söderholm et al., 2002; Øines 

et al., 2012). Furthermore, it has been shown that acute MS induces immediate passage of 

macromolecules across the colonic mucosa and can lead to increased number of bacterial cells 

penetrating the gut epithelium (Barreau et al., 2004a; Gareau et al., 2006; Moussaoui et al., 

2014).  

Not surprisingly according to these observations, MS also produces several immune 

alterations in the colon. Indeed, MS animals show an infiltration of immune cells (i.e. 

polymorphonuclear neutrophils) (Barreau et al., 2004a; Ghia et al., 2008) and an increase in 

mucosal mast cell density (Barreau et al., 2004a, 2004b, 2008; Hyland et al., 2009). MS also 

increases the expression of numerous cytokines including IL-6, IL-1β, TNFα, IFNɣ, IL-4, IL-

2, IL-22 and IL-10 in the colonic mucosa (Barreau et al., 2004a; Ghia et al., 2008; Barouei et 

al., 2015; Li et al., 2017a, 2017b; Moya-Pérez et al., 2017). It has been previously shown that 

MS increases IFNɣ and TNF secretion by mesenteric lymph node cells (Veenema et al., 

2008). In addition, increased mRNA expression of TLR3, 4 and 5 has been reported in the 

colonic mucosa of MS adult rats (McKernan et al., 2009).  

 

In conclusion, we have seen that MS induces long-term neurobehavioral alterations 

similar to that observed in human subjects with a history of early-life adversity. 

Moreover, MS leads to long-term GI dysfunctions resembling IBS symptoms in humans. 

Altogether, this suggests that MS is a good model to investigate the role of the gut-brain 

axis in long-term emotional vulnerability. 
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OBJECTIVES 

The etiology of psychiatric disorders is not fully understood, but there are strong evidences 

that early-life adversity is a major risk factor (Chapman et al., 2004; Rutter, 2005). Early-life 

adversity is generally defined as exposure to abuse, trauma or neglect during childhood. 

However, prenatal adverse experiences such as maternal stress or illness have also been 

reported to increase the vulnerability to neuropsychiatric disorders, including schizophrenia, 

autism and depression (Herbert, 2010; Brown, 2011; Entringer et al., 2015; Flinkkilä et al., 

2016). Unfortunately, cumulating several of the above pre and postnatal events is frequent 

and likely leads to even higher emotional vulnerability (McEwen, 1998; Maynard et al., 2001; 

Nederhof and Schmidt, 2012). Importantly, anxiety and mood disorders are more frequent in 

women than men (Altemus, 2006), and the converse for ASD (Werling and Geschwind, 2013, 

suggesting that early-life adversity does not equally affect both genders (Carpenter et al., 

2017). In addition, psychiatric disorders are comorbid with each other as well as with other 

conditions including cardiovascular and metabolic diseases (Luppino et al., 2010; Oladeji and 

Gureje, 2013), but also GI disorders (e.g. IBS) (Folks, 2004; Buie et al., 2010). Interestingly, 

early-life stress is also a risk factor for IBS (Chitkara et al., 2008; Bradford et al., 2012), the 

latter being more prevalent in women (Mayer et al., 1999). Retrospective epidemiological 

studies are poorly reliable tools to understand the complex effects of early-adversity, and 

prospective longitudinal studies are very costly and have to deal with numerous confounding 

factors. Animal models have succeeded in demonstrating the causal relationship between 

early-life adversity (especially stress) and emotional alterations (Sánchez et al., 2001; Cottrell 

and Seckl, 2009; Schmidt et al., 2011; Molet et al., 2014). However, few studies have taken 

into account the multiplicity of early stress sources and the potential resulting aggravation of 

the neurobehavioral alterations. A widely used model of early post-natal stress is maternal 

separation (MS) (Cirulli et al., 2003; Korosi, 2009). In rodents, chronic MS produces long 

lasting effects in adult offspring, including hyper-anxiety and hyper-responsiveness to a novel 

stress (Gutman and Nemeroff, 2002), but also GI dysfunctions (Barreau et al., 2007b; 

O’Mahony et al., 2011).  

In the last decade, there has been huge interest in the field of gut-brain communication as 

regards mental disorders and especially the regulation of emotions (Mayer et al., 2014a). 

Exciting converging data from both animal and human studies strongly suggest that what 

happens in the gut can influence brain function and behavior. The gut microbiota has received 

particular attention thanks to the technological progress in DNA sequencing, showing altered 

relative abundance of some bacterial phyla, genera or species in a number of pathological 
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conditions (Sekirov et al., 2010; Rogers et al., 2016). Proof-of-concept studies in animal 

models using GF animals or probiotics demonstrate a causal effect of gut bacteria on brain 

and behavior (Mayer, 2011; Luczynski et al., 2016a; Sarkar et al., 2016; Sherwin et al., 2016), 

especially in early adversity models including MS studies (De Palma et al., 2015). Notably, 

gut microbiota composition is significantly different in men versus women, and the same 

finding was observed in animals (Markle et al., 2013; Dominianni et al., 2015; Jašarević et al., 

2016; Fransen et al., 2017). This suggests that sex differences in emotional vulnerability could 

be due to differential microbiota-gut-brain interactions. A lot of expectancy lies on fecal 

transplantation as a potential novel, revolutionary medical tool for brain disorders (Borody 

and Khoruts, 2011; Lemon et al., 2012; Collins et al., 2013). However, to date, it has only 

proved efficient in severe forms of Clostridium difficile infections (Khoruts, 2014). On the 

other hand, pre- and probiotics treatments show mild, inconsistent effects. Overall, it remains 

unclear which bacterial species or communities are beneficial and by which mechanisms they 

can impact brain and behavior. Dietary interventions that more globally impact the GI tract 

could constitute powerful alternatives. Although it is known that gut microbes tightly interact 

with the gut epithelium and are important regulators of gut permeability (Jakobsson et al., 

2015), few attention has been devoted to gut barrier function (Bischoff et al., 2014). Yet, is 

has been reported that gut permeability is increased in several psychiatric conditions (Julio-

Pieper et al., 2014) and is highly sensitive to stress (Kelly et al., 2015; Pigrau et al., 2016). 

Moreover, gut leakiness has been recently reported in rat pups submitted to acute MS 

(Moussaoui et al., 2014). Loss of gut barrier function or leakiness is often concomitant with 

gut dysbiosis (Leclercq et al., 2014; Moussaoui et al., 2016a; Slyepchenko et al., 2016; 

Stevens et al., 2017) and can lead to bacterial translocation in the bloodstream and peripheral 

immune activation, that constitute potential mechanisms for altered gut to brain 

communication (Moriez et al., 2005; Maes and Leunis, 2008; Maes et al., 2008; Slyepchenko 

et al., 2016). However, the role of gut microbiota and gut permeability in the etiology of 

anxiety and mood disorders and the underlying mechanisms remain to be explored. 

The general objective of this thesis was therefore to decipher the mechanisms underlying gut-

brain axis communication in a context of early-life stress. To this end, we first aimed to 

explore the effects of a nutritional approach on brain and gut alterations induced by MS 

during development (objective 1). Our results suggested a role of gut permeability in the short 

and long-term neurobehavioral effects of MS. Thus, our second aim was to investigate the 

effects of gut permeability per se on brain and behavior but also on gut microbiota 
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composition (objective 2). Finally, we aimed to develop an animal model of multifactorial 

early-adversity that more closely reproduces what happens in humans (objective 3). 

Considering the lack of studies involving both males and females and the gender differences 

reported in both humans and animals, we will endeavor to study the differential effects of 

early-life adversity on brain and gut in males and in females. 

 

Objective 1 : What is the impact of perinatal high-fat diet exposure on early-stress-

induced brain and gut alterations during development? 

In rodents, MS induces enhanced anxiety-like behaviors and hyper-responsiveness to stress, 

along with increased gut permeability and visceral sensitivity in adulthood. We recently 

showed that the long-term effects of MS on anxiety, social behavior and stress endocrine 

response, but also visceral sensitivity, can be prevented by exposing the dams to high-fat diet 

during gestation and lactation (Rincel et al., 2016, see ANNEXE 1). In addition to this 

protective effect of perinatal high-fat diet in adult animals, we reported similar beneficial 

effects on the developing brain. Indeed, maternal high-fat diet exposure attenuated the stress-

induced changes in mRNA expression of key genes involved in neuronal maturation and 

structural plasticity in the PFC of PND10 pups. The mechanisms underlying this protective 

effect of maternal HFD are elusive. It has been proposed that abnormal density and 

organization of dendritic spines in the PFC may contribute to the behavioral alterations 

caused associated with chronic stress (Moench and Wellman, 2015). On the other hand, recent 

studies report increased gut permeability in stressed pups (Moussaoui et al., 2014), potentially 

impacting visceral sensitivity, gut microbes and immune processes, which could in turn affect 

brain development.  

Here, we tested the hypothesis that maternal high-fat diet protects PFC neurons but also 

gut barrier function in pups submitted to MS. Our results are in line with this hypothesis, 

and suggest that altered gut permeability could contribute to the long-term effects of MS. 

 

Objective 2 : Is there a causal role for gut leakiness in mediating the long-term effects of 

early-life stress on emotional vulnerability ?  

Gut permeability is increased in several psychiatric conditions associated with vulnerability to 

early-life adverse events, including major depression and ASD (Maes et al., 2008; de 

Magistris et al., 2010). Moreover, gut leakiness is often concomitant with gut dysbiosis 

(Leclercq et al., 2014; Moussaoui et al., 2016a; Slyepchenko et al., 2016; Stevens et al., 

2017). However, to date, most of the research on the gut-brain axis and early-life adversity 
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has been focusing on the gut microbiota, and the intrinsic role of gut permeability in the 

regulation of emotional behavior remains unexplored. Gut leakiness is associated with 

epithelial tight-junctions defects. A key regulator of tight junction permeability is the MLCK.  

In this part, we used two complementary strategies to manipulate gut permeability by 

targeting this enzyme. First, we pharmacologically inhibited the MLCK during early-life 

to test whether we could restore normal behavior in maternally separated animals. 

Second, we used transgenic mice expressing a constitutively active form of the MLCK 

specifically in the gut (CA-MLCK mice) to test whether gut leakiness per se could lead to 

neurobehavioral alterations in naive animals. Our data strongly suggest that gut leakiness 

can impact emotional behavior and stress responsivity both in males and females. 

 

Objective 3 : What is the impact of multifactorial early adversity on brain and gut in 

males and females ? 

In the two first parts, we used the MS model to investigate the role of gut-brain 

communication in the effects of early-life adversity. It is worth mentioning that, as in humans, 

other early adverse events that can impact the prenatal and postnatal development have been 

associated with emotional and GI outcomes in adult animals. Indeed, stress exposure of the 

dams during gestation or before conception leads to anxiety and depressive-like behaviors in 

offspring (Schmidt et al., 2011; Maccari et al., 2014; Gröger et al., 2016). One study also 

reported GI defects including gut dysbiosis (Golubeva et al., 2015). On the other hand, 

models of early infection also produce emotional alterations, gut leakiness and gut dysbiosis 

(Enayati et al., 2012; Hsiao et al., 2013; Depino, 2015; Foley et al., 2015; Winston and Sarna, 

2016; Kim et al., 2017). It has been proposed that accumulation of stressors across the life 

span can enhance neuropsychiatric vulnerability (Maynard et al., 2001; Nederhof and 

Schmidt, 2012). However, most of the animal models only deal with one stressor and one 

specific time window. Therefore, relevant models combining multiple early adversities could 

shed new light in the gut-brain axis field. In addition, sex differences are omnipresent in early 

adversity models, including MS (Zimmerberg and Kajunski, 2004; Slotten et al., 2006; Pohl 

et al., 2007; Weinstock, 2007; Chaloner and Greenwood-Van Meerveld, 2013; Clarke et al., 

2013; Kundakovic et al., 2013; Foley et al., 2015; Gobinath et al., 2016; Prusator and 

Greenwood-Van Meerveld, 2016; Carpenter et al., 2017). However, most studies have 

focused on males and there is a lack of studies involving both sexes. On the other hand, gut 

microbiota profiling is often carried out in males and females pooled together (Hsiao et al., 
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2013; De Palma et al., 2015) and the sex of the animals used is sometimes not even 

mentioned. 

Here, we developed a new model of multifactorial early adversity combining maternal 

infection (LPS injection in late gestation) and MS in early post-natal life, in order to 

examine the consequences on behavior, gut function and microbiota composition in 

males and females. Preliminary results indicate marked sex differences in all above-

mentioned outcomes. 
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ABSTRACT 

Maternal separation (MS) in rats is associated with emotional, cognitive and endocrine 

alterations as well as long-lasting gastrointestinal dysfunctions. Recent studies report 

increased intestinal permeability in pups after MS. A major regulator of tight-junction 

permeability is the myosin light chain kinase (MLCK). The present study aims to determine 

whether the inhibition of MLCK-dependent gut leakiness during the neonatal period protects 

against the long-term effects of MS. Male Wistar rats were exposed to MS (3 h per day from 

postnatal day (PND)2 to PND14) or left undisturbed, and received daily injection of a MLCK 

inhibitor (ML-7, 5mg/kg; i.p.) or vehicle during the same period. Gut permeability as well as 

blood-brain barrier (BBB) function were evaluated in juvenile rats. At adulthood, emotional 

behaviors and corticosterone response to stress were analyzed. Finally, gut microbiota 

composition was analyzed in both juvenile and adult rats. We report that ML-7 restored 

normal gut barrier function in MS pups (PND14). BBB permeability was not affected by MS or 

the ML-7 treatment. Remarkably, ML-7 treatment during development prevents MS-induced 

sexual reward seeking impairment and altered corticosterone response to stress at 

adulthood. In contrast, ML-7 has no preventive effect on anxiety or sucrose preference. 

These effects of ML-7 were accompanied by normalization of the increased abundance of 

Lachnospiraceae UCG-001 group, Clostridiales vadinBB60 group and Desulfovibrio spp. and 

decreased abundance of Bacteroidales S24-7, Enterorhabdus and Bifidobacterium spp. in 

the feces of MS rats at adulthood. However, increased Escherichia spp. and Acetitomaculum 

spp abundance in MS rats was not prevented by ML-7. There were limited effects of MS 

(decreased Enterorhabdus spp.) and no effect of ML-7 on gut microbiota composition in 

juveniles. Altogether, our work suggests that gut barrier dysfunction during development 

plays a critical role in the long-term effects of early-life stress and provides new insight into 

the gut-brain communication in a context of stress. 

Funding: Univ. Bordeaux, INRA, projet inter-régions Aquitaine - Midi-pyrénées, ITMO 

neurosciences, sciences cognitives, neurologie, psychiatrie. The authors acknowledge 

technical help from Agnès Aubert and Julie Sauvant for molecular analyses. 
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INTRODUCTION 

Anxiety and mood disorders are highly comorbid with gastrointestinal disorders such as the 

irritable bowel syndrome (IBS) (Folks, 2004), suggesting that they may share common 

pathophysiological bases. Indeed, childhood adverse experience emerges as a common risk 

factor for both conditions (Chapman et al., 2004; Chitkara et al., 2008; Bradford et al., 2012). 

In rodents, chronic maternal separation (MS) is a widely used model to study the long-term 

impact of early-life stress on brain and behavior, but also on gut physiology and digestive 

functions (Barreau et al., 2007; O’Mahony et al., 2011). A large body of literature reports 

hyper-anxiety and exaggerated endocrine responsiveness to a novel stress in adult 

maternally separated animals (Gutman and Nemeroff, 2002). In addition, MS produces 

various gastrointestinal dysfunctions including visceral hyperalgesia, gut dysbiosis and 

impaired gut barrier function (Barreau et al., 2007). In the last decade, the gut microbiota has 

been implicated in a variety of behavioral processes, particularly emotional processes and 

stress vulnerability (Dinan and Cryan, 2012; Foster and McVeyNeufeld, 2013; Burokas et al., 

2015; Luczynski et al., 2016). For instance, De Palma and colleagues have demonstrated 

that MS-induced anxiety and depressive-like behaviors are absent in germ-free (GF) mice, 

but can be unmasked upon colonization with the gut microbiota of a conventional control 

mouse (De Palma et al., 2015). However, colonization with the microbiota of a maternally 

separated mouse did not transfer the stress-associated behavioral phenotype in naive GF 

mice, suggesting that gut bacteria are necessary but not sufficient to mediate the behavioral 

effects of early-life stress. Although it is known that gut microbes tightly interact with the gut 

epithelium and are important regulators of gut permeability (Zakostelska et al., 2011; 

Jakobsson et al., 2015; Reunanen et al., 2015), few attention has been devoted to the 

potential role of gut barrier function in stress-induced emotional alterations. Yet, is has been 

reported that gut permeability is increased in several psychiatric conditions (Maes et al., 

2008; de Magistris et al., 2010) and is highly sensitive to stress (Kelly et al., 2015; Pigrau et 

al., 2016). Loss of gut barrier function or leakiness is often concomitant with gut dysbiosis 

(Zakostelska et al., 2011; Hsiao et al., 2013; Jakobsson et al., 2015; Reunanen et al., 2015) 

and can lead to bacterial translocation in the bloodstream (Gareau et al., 2006; Moussaoui et 

al., 2014) and peripheral immune activation, that constitute potential mechanisms for altered 

gut to brain communication. Moreover, probiotic treatments have been shown to attenuate 

the behavioral and endocrine alterations induced by stress exposure, including stress during 

early-life. Interestingly, some studies reported that the beneficial effects of probiotics on 

behavior and hypothalamus-pituitary-adrenal (HPA) axis response to stress are 

accompanied by changes in gut microbiota composition, but also a restoration of gut barrier 

function (Gareau et al., 2007; Ait-Belgnaoui et al., 2012). Pharmacological inhibition of the 

myosin light chain kinase (MLCK) prevents stress-induced intestinal, tight-junction-
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dependent leakiness in rat pups (Moussaoui et al., 2014) and HPA axis hyperactivity in adult 

rats (Ait-Belgnaoui et al., 2012). The latter findings suggest that increased gut permeability 

could contribute to the effects of early-life stress on brain vulnerability through alterations of 

gut-brain communication. The present study aims to determine whether the prevention of gut 

leakiness associated with MS during the neonatal period protects against the long-term 

behavioral and endocrine abnormalities in MS animals. Moreover, we also explored the 

effects of MS and ML-7 treatment on gut microbiota composition both in adult and juvenile 

rats.  

 

METHODS 

Animals 

Male and female Wistar rats were used for breedings. All experiments were approved by the 

local Bioethical committees of our Universities (Bordeaux: N° 50120186-A ; Toulouse: 

ToxCom/0031) and by the régions Aquitaine (ID: A33-063-920) and Midi-Pyrénées 

Veterinary Services (National Animal Care Committee ID : 86) according to the European 

legislation (Directive 2010/63/EU, 22 September 2010). Animals were maintained in a 12-h 

light/12-h dark cycle (lights on at 0800 hours) in a temperature-controlled room (22 °C) with 

free access to food and water, unless otherwise mentioned. 

 

Study design 

3 cohorts were used in this study. Figure 1 illustrates the experimental design with the 

different cohorts used.  

Experiment 1 (cohort 1): determination of the dose of ML-7 for pharmacological 

inhibition of gut leakiness in MS pups. A first cohort was used to test the effects of chronic 

ML-7 injections in maternally separated male pups. Pups were separated from their dam for 

3 hours daily on post-natal day (PND)2-14, or left undisturbed. Prior each separation 

session, MS pups received a ML-7 injection (10 µL i.p, Bio-Techne R&D Systems, Lille, 

France) or vehicle (saline). The ML-7 solution was prepared from ML-7 powder in NaCl 9‰ 

and sonicated 10s twice. Two ML-7 doses (1 mg/kg and 5 mg/kg) were tested based on 

previous work (Moussaoui et al., 2014). Intestinal permeability was assessed on PND14, 

PND21 and PND49. The dose of 5 mg/kg was chosen for the following experiments. 

Experiment 2 (cohorts 2 and 3): impact of chronic ML-7 on short and long-term 

abnormalities associated with early-life stress. Dams were individually housed 

throughout gestation and lactation. At birth, litters were culled to 9 pups with balanced sex-

ratio and randomly assigned to either MS or control groups. MS was carried out from PND2 

to PND14 (between 9:00 ± 1hr and 12:00 ± 1hr) as previously described (Rincel et al., 2016). 
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Control litters remained undisturbed throughout the procedure. Within each litter (MS or 

control), 2 male pups received daily injections of ML-7 (5 mg/kg, i.p. ) immediately before 

separation (or at the same time for controls), while 2 others were assigned to the vehicle 

group.  

 

Molecular analyses 

In vivo intestinal permeability. Intestinal permeability was measured at PND14, PND21 

and PND49. Pups were gavaged with 250 µL of 1 or 5 mg/mL solution of Fluorescein-5-

isothiocyanate (FITC)-labeled dextran 4kD (FD4, TdB consultancy AB, Uppsala, Sweden). 

After 4 hours, blood samples were taken from the facial vein (heparinized tubes). For the 

measure on PND14, oral gavage was performed immediately after the 180min of separation. 

Tubes were centrifuged for 10 minutes at 10,000 g and fluorescein concentration was 

determined against a standard curve on a microplate reader (Tecan Infinite M200, Lyon, 

France). Results are expressed as FD4 plasma concentration per gram of body weight. 

In vivo BBB permeability. Gestant female Wistar (n=6) were purchased (Janvier Labs, Le 

Genest Saint Isle, France) at gestational day 16 and individually housed throughout gestation 

and lactation. MS and ML-7 injections were carried out between PND2 and PND14 as 

described in the experimental design. Evans blue (EB) extravasation was used as an index 

of BBB permeability (Kumar and Sharma, 2016). The following protocol was based on 

preliminary tests in naive animals (see Supplementary methods and Supplementary Fig. 1 

for EB dose-response). All groups (N=7 male pups/group) received 2% EB (Sigma Aldrich, 

St. Quentin Fallavier, France) injections (240 mg/kg, i.p.) on PND14 immediately after ML-7 

or vehicle injection. EB was diluted in NaCl, vortexed and filtered 24h prior injection and 

stored at 4°C. ML-7/vehicle and EB injections were done at the opposite body side. 24h after 

EB injections (including the 3hr-MS on PND14), pups were deeply anesthetized with 

pentobarbital 150 µl and cardiac blood was collected before perfusion with 20ml NaCl. Brain 

tissues were split in left and right hemispheres (forebrain) and hindbrain (cerebellum + 

brainstem), weighed and stored at -20°C. 5 female pups (MS group) were killed as negative 

controls without EB injection (blank). 

All samples remained protected from light throughout the procedure. Plasma samples were 

obtained following a series of centrifugations (10min at 1000g), diluted 10x in 50% 

trichloroacetate (TCA) and further centrifuged (10min at 10,000rpm). The supernatant was 

finally stored at -20°C. Brain tissues were homogenized in 1 ml 50% TCA (tissuelyser 3min 

3Hz), centrifuged 30 min at 10000 rpm and the supernatant was stored at -20°C. EB 

fluorescence was measured in supernatants from plasma and brain tissues using a 

microplate reader (Tecan Infinite M200, excitation 620 nm / emission 680 nm). EB 

fluorescence was expressed relative to the blank group. 
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Plasma cytokines multiplex assay. Trunk blood was collected from PND14 pups after 180 

min of MS and centrifuged at 4°C before plasma was stored at−20°C. Plasma interleukin (IL)-

1b, IL-6, IL-10, interferon gamma (IFNg) and tumor necrosis factor alpha (TNFa) were 

measured by multiplex assay (RECYTMAG-65K MILLIPLEX MAP Rat Cytokine/Chemokine 

Magnetic Bead Panel, Millipore, Fontenay sous Bois, France) according to the 

manufacturer’s instructions. Cytokines concentrations were determined using the Luminex 

xMap Technology (Bio-Rad, Marnes-la-Coquette, France). All samples were processed in 

duplicates. Intra- and inter-assay coefficients were below 5 and 15%, respectively and 

crossed reactions were insubstantial (0.01%). Minimum detectable concentrations were 2.8 

pg/mL for IL-1b, 30.7 pg/mL for IL-6, 2.7 pg/mL for IL-10, 6.2 pg/mL for IFNg and 1.9 pg/mL 

for TNFa. Only IL-1b and IL-10 were detectable in our samples. 

Corticosterone radioimmunoassay. Total plasma corticosterone was measured with an in-

house radio immunoassay, by competition between cold corticosterone (B) and 3H-B (B*) for 

a specific anti-corticosterone antibody, as previously described (Rincel et al., 2016).The 

sensitivity of this assay is around 5 ng/ml. Intra- and inter-assay variations were <15%. 

 

Immunohistochemistry  

After deep anesthesia with sodium pentobarbital (100µL/10g BW), PND14 pups (n=7-8 per 

group) were transcardially perfused with 50mL of phosphate-buffered saline (PBS) followed 

by 50 mL of4% paraformaldehyde (PFA). The brains were removed, post-fixed in the same 

fixative for 12 hours and cryoprotected by immersion in 30% sucrose/PBS for 48 hours. 

Brains were finally frozen in isopentane and stored at -80°C. 

Tight-junction proteins immunofluorescence. 20µm coronal sections containing the 

choroid plexus (anteroposteriority from bregma: -2.64nm/-3.72nm, according to Paxinos and 

Watson 2013) were obtained using a HM560 cryotome (MM, Francheville, France). Every 8th 

section was collected on the same slide so that the interval between sections within a given 

series was 160µm. Slides were incubated with the primary antibody (polyclonal rabbit anti-

occludin, 1/2000, ab 31721Abcam, UK; polyclonal rabbit anti-zonulin-1 (zo-1), 1/50, 61-7300, 

Zymed, Thermo Fisher Scientific, USAor polyclonal rabbit anti-claudin-1, 1/300, ab 

15098Abcam, UK) for 48h at 4°C followed by a 1h incubation with a goat anti-rabbit antibody 

coupled to Alexa 488 (1/1000, A11008, Molecular Probes, Thermo Fisher Scientific, USA) at 

4°C and in contact with 4',6-diamidino-2-phenylindole (DAPI, 1 µM for 1 min, D3571 

Molecular Probes, Thermo Fisher Scientific). Sections were coverslipped with Prolong 

Goldantifade (P36930, Molecular Probes, Thermo Fisher Scientific, USA) before analysis. 

Quantification of immunoreactivities. Images were captured by a black and white Zeiss 

Camera (Axiocam 503) coupled with a Zeiss Axio-imager M2m microscope using the Zen.2 

pro software. For occludin and zo-1 labeling in the choroid plexus, we obtained a Z-stack of 
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50 virtual optical slices of 0.250 µm each using the x63 objective. For claudin-1 labeling in 

the choroid plexus, we obtained a Z-stack of 10 virtual optical slices of 0.55 µm each using 

the x40 objective. The signal was quantified using Fiji (Schindelin et al., 2012) and expressed 

as Alexa 488 intensity/ Alexa area / DAPI area. 

 

Behavioral assessment 

All experiments were performed during the light phase (9h30-17h). For analyses involving 

manual quantifications, experimenters remained blind to the experimental groups. 

Ultrasonic vocalizations (USVs).  USVs were assessed in response to a 6min separation 

on PND6 (in the afternoon, 3 hours after the end of the MS episode). Pups were gently 

removed from the homecage and placed in a glass crystallizer bedded with thick cotton in an 

adjacent room. USVs emissions (range 0-70 kHz) were recorded using an ultrasound 

microphone coupled with the AvisoftSAS LabPro software (Avisoft Bioacoustics,Glienicke, 

Germany) and  automatically quantified.  

Sucrose preference (2 months). Rats were individually housed 3 days before the beginning 

of the experiment and underwent 3 days of habituation with two bottles of tap water. On the 

day of testing (afternoon), animals were presented one bottle filled with 1% sucrose solution 

and one bottle of water during 24h. Water and sucrose intakes were monitored before and 

after the 24h of test and sucrose preference was calculated as the percentage of sucrose 

intake over total fluid intake. Bottle side was randomized to control for any side bias. 

Light-dark box (2.5 months). The apparatus was a two-compartment box with a dark 

compartment (31x31cm) wrapped with a cover and a light compartment (45x31cm) exposed 

to intense light (light intensity: 70 lux). Rats were placed in the dark compartment and 

exploration of the light box was recorded with a digital camera during 10 min. Time and 

number of entries in the light box were manually quantified using an ethological software 

(The observer, Noldus Information Technology, Wageningen, The Netherlands). An entry in 

the light box was scored as such when the rat placed all four limbs into the light 

compartment. 

Female urine sniffing test (3 months). The test was performed as previously described 

(Malkesman et al., 2010). Females (3 month-old) from different litters were used for urine 

collection. To elicit estrus, a male was introduced in the females’ homecage during 1 hr. 

Three days later, females were placed in a new cage without bedding for 3 hours and urine 

(approximately 3 ml per animal) was collected and stored at -20°C until use. Estral cycle 

phase was determined by vaginal cytology and only urine from estrus females (n=5) was 

used for the experiment. Under dim light (light intensity: 3 lux), male rats were habituated to a 

dry Q-tip in the homecage for 60 min, and then presented with a Q-tip soaked with sterile 

water for 5 min. After 45 min without any Q-tip, rats were presented with a Q-tip soaked with 
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estrus female urine for another 5 min. Q-tips were soaked with 200 µl of sterile water or urine 

and taped to the cage wall. 5 min trials were videorecorded using a digital camera and Q-tip 

sniffing time was manually quantified using the Observer software (Noldus Information 

Technology).  

HPA axis reactivity to stress (4.5 months). Rats were placed in transparent plexiglas 

restraint tubes for 30 min and put back in their homecages. Blood samples were collected 

from the tail vein at the beginning of the restraint stress (t0), 30 min (t30, end of restraint), 60 

min (t60) and 120 min (t120) after the beginning of the stress. Blood samples were 

centrifuged (4000 rpm, 4°C) for 20 min and plasma was stored at -20°C until use. 

 

16S rRNA sequencing and microbial community analysis.  

Fecal content was collected at sacrifice and stored at -80°C until use. Genomic DNA from 

fecal homogenates was extracted using the ZR Fecal DNA MiniprepTM (Zymo Research) and 

DNA quantity was determined using TECAN Fluorometer (Qubit® dsDNA HS Assay Kit, 

molecular probes). The microbial 16S rRNA gene was amplified during the first PCR step 

with adapter fusion primers targeting the V3 to V4 regions (corresponding to a 460-bp region 

of Escherichia coli 16S rRNA gene, GenBank number J01695 with bacterial forward 343F 

(TACGGRAGGCAGCAG, Liu et al., 2007) and reverse 784R (TACCAGGGTATCTAATCCT, 

Andersson et al., 2008) primers. Pooled amplicon libraries were sequenced employing an 

Illumina MiSeq (2 x 250 bp) at the GeT-PlaGe platform in Toulouse (France). Sequence 

reads were quality controlled and first treated with the FROGS pipeline (Find Rapidly 

operational taxonomic units (OTU) with Galaxy Solution) (Escudie et al., 2015). Briefly, after 

merging the 250 bp reads, datasets were denoised and the software was further used for 

several quality filtering level of DNA sequences before and after clustering (Swarm (Mahé et 

al., 2014). Chimera (Vsearch), singletons and OTU representing low proportion of reads 

(0.00005, Bokulich et al., 2013) or found in less than 3 samples were removed. Taxonomic 

assignment at the lowest phylogenetic level (BLAST algorithm against the SILVA 123 

database) and prevalence based filtering step allowed to obtain 643 OTUs (after correcting 

multi-affiliations and some misleading affiliations) among the 3,772,253 remaining reads. 

Between 25,718 and 54,362 valid sequences per sample were counted (an average of 

48,393 sequences at PND 14 and 37,340 at PND 155). Richness and diversity indexes of 

bacterial community as well as clustering and ordinations were computed using Phyloseq 

package (v 1.19.1) in RStudio software (R Development Core Team, 2011; Mcmurdie and 

Holmes, 2012, 2013). Differences in overall bacterial communities composition were 

determined using two-way ANOVAs combined with Holm-Sidak’s post-hoc tests, whereas 

microbiota differences in structure between groups were assessed using Adonis (permuted 

p-value was obtained by performing 9999 permutations). For further differential abundance 
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analysis, closely-related taxa were agglomerated at the genus rank, reducing the taxon list to 

96 at PND14 and 94 at PND155. A negative binomial fit model for count data was run on all 

groups using the DESeq2 package (v 1.14.1) (Love et al., 2014; McMurdie and Holmes, 

2014) and linear discriminant analysis (LDA) effect size was performed between two groups 

and plotted using LEfSe (Segata et al., 2011). Tests were corrected for multiple inferences 

using Benjamini-Hochberg method to control the False Discovery Rate (Hochberg and 

Benjamini, 1990). The complete method and statistical analysis are provided in the online 

supplementary methods. 

 

Statistics 

Data were analyzed using Statistica 6.0 (Statsoft) and Graphpad Prism 6. Normality was 

assessed by Shapiro–Wilk tests. Two-way ANOVAs followed by Fisher’s LSD, Holm-Sidak’s 

post-hoc tests or planned comparisons were used to test the effects of MS and ML-7 in 

juveniles and adults, unless otherwise mentioned. Three-way ANOVAs with repeated 

measures were used for the analysis of USVs and HPA axis responsiveness to stress. 

Student t-tests were used to test the effects of MS and ML-7 on intestinal permeability. 

Paired t-tests were used to analyze the preference for urine versus water in the FUST. 

Detailed statistics used for gut microbiota analysis are provided in the corresponding method 

section. Statistical significance was set at p<0.05, unless otherwise mentioned. Graphics 

were made using GraphPad Prism 6 and Adobe Illustrator CS5.1 was used for artwork. Data 

are expressed as means ± SEM or medians, unless otherwise stated (gut microbiota 

analyses). 

 

RESULTS 

Chronic MLCK inhibition from PND2 to PND14 prevents gut leakiness in MS pups 

specifically during early development and has no effect on BBB permeability 

We first determined the ML-7 dose able to prevent gut leakiness in MS pups (Fig. 2). In 

PND14 pups, chronic MS significantly increased gut permeability to FITC-Dextran (MS Veh 

vs Control, Student t-test, t(14)=5.77, p<0.0001) (Fig. 2a). This effect was not modulated by 

1 mg/kg ML-7 (MS ML-7 1mg/kg vs MS Veh, t(14)<1, n.s.); however, 5 mg/kg ML-7 fully 

restored gut permeability (MS ML-7 5mg/kg vs MS Veh, t(14)=5.52, p<0.0001) (Fig. 2a). 

Consequently, we used this dose in all the following experiments. MS-induced intestinal 

hyper-permeability was still present on PND21 (MS Veh vs Control, t(14)=5.11, p=0.000) 

(Fig. 2b) and PND49 (t(14)=5.55, p<0.0001) (Fig. 2c), but the ML-7 treatment from PND2-14 

failed to prevent this long-lasting effect of early stress (MS ML-7 vs MS Veh, all t(14)<1, n.s.). 

These results suggest that chronic ML-7 treatment from PND2 to PND14 specifically 
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prevents the increase of intestinal permeability during the stress procedure, but this effect is 

not maintained after the end of the ML7 treatment.    

Early-life stress has been shown to increase BBB permeability (Gómez-González and 

Escobar, 2009). As the intestinal barrier, the BBB is regulated by tight junction MLCKs and 

we cannot exclude that i.p. ML-7 treatment does not impact brain MLCK activity (Kuhlmann 

et al., 2007; Luh et al., 2010). Thus, we assessed markers of structural and functional BBB 

integrity in PND14 pups at the end of the MS procedure (Fig. 3). Protein levels of occludin, 

claudin-1 and zo-1 in the choroid plexus were not modified by MS (early stress effect: all 

F(1,16)<1.2, n.s.)(Fig. 3a-c). However, ML-7 significantly decreased occludin expression 

whatever the stress condition (treatment effect: F(1,16)=4.81, p=0.0434). We further 

explored BBB function by measuring Evans Blue (EB) extravasation in the brain after i.p. 

injection (Fig. 3d-f). There was no significant difference in EB fluorescence between groups 

in the forebrain or hindbrain 24h after injection (all F(1,25)<2, n.s) (Fig. 3d,e). Of note, EB 

fluorescence in plasma was similar in all groups and much higher than in brain tissues, 

indicating that there was no injection bias (all F(1,24)<1, n.s.)(Fig. 3f). These results suggest 

that the BBB is unspoiled in our experimental conditions. 

 

Effects of neonatal MLCK inhibition on MS-associated alterations in  juvenile rats 

We then investigated the effects of MS and ML-7 in juvenile rats (PND6-14). On PND6, rat 

pups were submitted to a short separation episode to assess ultrasonic vocalization (USV) 

emissions. USV response has been shown to serve mother-infant communication in rodents 

and can be used as an index of pups’ anxiety (Branchi et al., 2001). There was no change in 

the number of calls across time (three-way ANOVA with repeated measures, time effect: 

F(5,110)=1.98, p=0.0874) (Fig. 4a,b). Overall, MS significantly increased the number of 

USVs in response to the short separation (early stress effect: F(1,22)=11.37, p=0.0027). The 

ML-7 treatment did not significantly alter USV emission pattern (F(1,22)<0.01, n.s.). There 

was no effect of MS or ML-7 treatment on pups body weight at PND14 (two-way ANOVA, 

early stress effect, treatment effect, early stress x treatment effect, all F(1,51)<0.5, n.s.) (Fig. 

4c). However, as expected, there was an increase in plasma corticosterone in response to 

the 3hr separation, but this effect was not affected by the ML-7 treatment (early stress effect: 

F(1,26)=28.93, p<0.001) (Fig. 4d). Both gut leakiness and MS are associated with peripheral 

immune activation (Ait-Belgnaoui et al., 2012; Wieck et al., 2013; Pinheiro et al., 2014; 

Roque et al., 2014; do Prado et al., 2015; Réus et al., 2017). We thus measured peripheral 

cytokine levels in the plasma. MS increased both IL-1b and IL-10 levels regardless the 

treatment (IL-1b, early stress effect: F(1,36)=3.66, p=0.0639; treatment effect, F(1,36)=1.55, 

n.s.; early stress x treatment effect: F(1,36)=1.17, n.s. and IL-10, early stress effect: 

F(1,36)=5.41, p=0.0300; treatment effect, F(1,36)=0.53, n.s.; early stress x treatment effect: 
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F(1,36)=0.48, n.s.) (Fig. 4e,f). These results suggest that MS induces immune activation in 

the periphery. To assess whether MS leads to neuroinflammation, we also evaluated 

cytokine mRNA expression in the hippocampus and mPFC, two brain areas sensitive to 

stress and previously shown to exhibit altered cytokine expression in MS animals (Pinheiro et 

al., 2014; Roque et al., 2014; Réus et al., 2017) (Supplementary Fig. 2a,b). Overall, brain 

cytokine mRNA levels were not altered by the perinatal manipulations (all F(1,29)<3, n.s. 

F(1,29)<1.5, n.s, except IL-1b in the hippocampus, early stress effect: F(1,29)=3.51, 

p=0.0710; treatment effect: F(1,29)=6.88, p=0.01375; early stress x treatment effect: 

F(1,29)=3.67, p=0.0653). IL-1b levels in the hippocampus were significantly higher in C ML-7 

animals relative to all other groups (Fisher LSD’s post-hoc, at least p<0.05). Altogether, 

these results suggest that MS is not associated with increased cytokines expression in the 

brain. Vagus nerve afferences to the nucleus tractus solitarius (NTS) constitute an important 

route of gut-brain communication (Bercik et al., 2011; Bravo et al. 2011). Therefore, were 

quantified neuronal activation in the NTS after the 3hr separation on PND14 

(Supplementary Fig. 2c). There was no effect of MS or ML-7 on the number of C-FOS 

immunoreactive cells (two-way ANOVA, all F(1,10)<3, n.s.).   

 

Chronic MLCK inhibition during early-life prevents MS-induced impairment in sexual 

reward seeking and HPA axis hyper-responsiveness to stress at adulthood 

To test the hypothesis that early restoration of gut barrier function would alleviate MS-

associated long-term behavioral alterations, adult rats were tested for anxiety, anhedonia 

and social behaviors (Fig. 5 and Supplementary Fig. 3). Regardless the treatment, MS 

significantly decreased the time spent in the light box, indicating that MS led to exacerbated 

anxiety (two-way ANOVA, early stress effect: F(1,44)=5.35, p=0.0254; treatment effect: 

F(1,44)=0.93, n.s.; early stress x treatment effect: F(1,44)=0.13, n.s.) (Fig. 5a). In the 

sucrose preference test, there was no difference in water intake over the 24h (early stress 

effect, treatment effect and early stress x treatment effect, all F(1,44)<1, n.s.; data not 

shown). However, MS significantly reduced sucrose intake whatever the treatment (early 

stress effect: F(1,44)=8.02, p=0.0070; treatment effect: F(1,44)=0.00, n.s.; early stress x 

treatment effect: F(1,44)=0.27, n.s.) (Fig. 5b). Furthermore, reward seeking behavior was 

assessed in the female urine sniffing test (Fig. 5c), a more ethological paradigm. Control 

animals spent more time sniffing estrus female urine than water (paired t-test, t(4)=2.82, 

p=0.0480). This preference for female urine was not observed in MS Veh or C ML-7 groups 

(both t(4)<1, n.s.). However, it was restored in MS ML-7 rats (t(3)=3.80, p=0.0320). These 

results show that MS rats display anhedonia for both sucrose and female urine. Interestingly, 

ML-7 prevented MS-induced anhedonia for female urine but not sucrose. Of note, there was 

no significant impact of the perinatal manipulations on social interaction with a conspecific, 
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an aggressor or a juvenile (two-way ANOVAs, early stress effect, treatment effect and early 

stress x treatment effect, all F(1,44)<2, n.s.) (Supplementary Fig. 3). 

In order to assess HPA axis response to stress, rats underwent 30min restraint stress and 

plasma corticosterone was determined at 0, 30, 60 and 120 min (Fig. 5d). Three-way 

ANOVA with repeated measures showed a significant effect of time (F(1,132)=281.19, 

p<0.001). The effects of MS varied according to the treatment, although the interaction did 

not reach statistical significance (early stress x treatment effect: F(1,44)=2.67, p=0.1096). 

Planned comparisons at 60 and 120 min revealed that MS led to sustained corticosterone 

levels after the end of stress relative to controls, suggesting impaired HPA axis negative 

feedback (MS Veh vs C Veh, t60: p=0.1470 and t120: p=0.0107). These effects were totally 

prevented by the ML-7 treatment (MS ML-7 vs MS Veh, t60: p=0.0489 and t120: p=0.0004) 

(Fig. 5d). Consistently, the area under the curved (AUC) was differentially altered by MS 

depending upon the treatment (early stress x treatment effect:  F(1,44)=2.82, p=0.1004, data 

not shown). The MS-induced increase in AUC was abrogated by the ML-7 treatment (Fisher 

LSD’s post-hoc, MS Veh vs C Veh: p=0.0493 and MS ML-7 vs MS Veh: p=0.0182). We then 

tested whether the impaired HPA axis negative feedback was associated with altered 

expression of stress-related genes in the hippocampus, a key brain region involved in HPA 

axis regulation (Herman et al., 2003, 2016) (Supplementary Fig. 4). Overall, there was no 

significant effect of MS or ML-7 on mRNA in the hippocampus of adult rats (two-way ANOVA, 

all F(1,28)<2, n.s., except for 11 beta hydroxysteroid dehydrogenase 1 (11bHSD1, treatment 

effect: F(1,28)=4.14, p=0.0514). The ML-7 treatment slightly downregulated 11bHSD1 

expression whatever the stress condition (Supplementary Fig. 4b).  

 

Impact of MS and neonatal MLCK inhibition on gut microbiota composition 

Several studies have reported altered microbiota composition in adult rats and mice with a 

history of MS (De Palma et al., 2015; Pusceddu et al., 2015; Zhou et al., 2016; El Aidy et al., 

2017; Murakami et al., 2017) and some evidence exists that this dysbiosis is necessary for 

certain behavioral effects of MS (De Palma et al., 2015). Moreover, there is a cross-talk 

between gut barrier function and gut microbiota, suggesting that inhibition of gut leakiness 

could impact the microbiota. Therefore, at the end of the behavioral experiments (PND155), 

we conducted 16S rRNA illumina sequencing-based analysis of fecal microbiota in the same 

4 experimental groups. Fecal microbiota composition was differentially affected according to 

the neonatal manipulations (Fig. 6). Specifically, the number of bacterial genera (-diversity) 

was decreased by MS, but this effect was attenuated in rats treated with the ML-7 (early 

stress x treatment effect: F(1,40)=5.23, p=0.0276, Holm-Sidak’s post-hoc tests, C Veh vs MS 

Veh p=0,0174; C Veh vs MS ML-7 p=0.0617) (Fig. 6a). Multidimensional scaling analysis 

based on Bray Curtis distances (-diversity) showed partial separation of microbiota profiles 
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according to the neonatal manipulations, the MS Veh microbiota being the most distant from 

C Veh and MS ML-7 microbiotas (Fig.1b, MANOVA, early stress x treatment effect: 

F(1,40)=3.72, p=0.0010) (Fig. 6b). At the phylum level, ANOVA revealed an interaction 

between early stress and treatment for all the detected phyla except Tenericutes, that were 

unaffected by either manipulation (Firmicutes: F(1,40)=5.72, p=0.0216; Bacteroidetes: 

F(1,40)=6.49, p=0.0148; Proteobacteria: F(1,40)=8.83, p=0.0050; Actinobacteria: 

F(1,40)=6.22, p=0.0169; Deferribacteres: F(1,40)=6.25, p=0.0166; Tenericutes: F(1,40)<1, 

n.s.) (Fig. 6c-h). Proteobacteria were significantly enriched in MS Veh compared with 

controls (Holm-Sidak’s post-hoc tests, C Veh vs MS Veh p= 0.0064). A trend towards 

increased Deferribacteres (only represented by the species Mucispirillum schaedleri) was 

also observed in MS Veh (C Veh vs MS Veh p= 0.0601). Strikingly, these MS-induced 

changes were not observed in rats treated with ML-7 (C Veh vs MS ML-7, all n.s.) (Fig. 6e-

g). Over the 94 assigned bacterial taxa at the genus rank, 12 were significantly affected 

primarily by MS (Fig. 7a) (early stress effect: all padj<0.05, see detailed statistics in 

Supplementary Table 2). Among these 12 genera altered by early-life stress, concomitant 

ML-7 administration normalized the relative abundance of 6 genera (Fig. 7b) (early stress x 

treatment effect: all padj<0.05, see detailed statistics in Supplementary Table 3). Indeed, 

the increased abundance of Lachnospiraceae UCG-001 group, Clostridiales vadinBB660  

(both Firmicutes) and Desulfovibrio spp. (Proteobacteria), as well as the decreased 

abundance of Bacteroidales S24-7 (Bacteroidetes), Enterorhabdus spp. and Bifidobacterium 

spp. (i.e. animalis and pseudolongum) (both Actinobacteria) found in MS Veh were not 

observed in MS ML-7 rats. Cladograms illustrating the changes in gut microbiota composition 

in MS Veh and MS ML-7 groups compared with controls are shown in Figure 7c,d (see LDA 

scores in Supplementary Fig. 5). Remarkably, Figure 7d underlines that altered abundance 

of Escherichia spp. and Acetitomaculum spp. in MS animals was not normalized by ML-7. Of 

note, there was no major impact of the ML-7 treatment in non-separated animals 

(Supplementary Fig. 6). 

We then asked whether MS and ML7 similarly impacted these bacterial communities during 

development (Supplementary Fig. 7 and 8). In PND14 pups, there was no significant 

impact of early-life manipulations on global composition of the fecal microbiota at phylum 

level, as evidenced by the lack of difference in - and -diversity or relative abundance of the 

detected phyla (two-way ANOVAs, all F(1,39)<3,2, n.s., Supplementary Fig. 7). Further 

analysis at the genus rank revealed a significant decrease in Enterorhabdus spp. in 

maternally separated pups, regardless their treatment group (early adversity effect: 

padj=0.0470) (Supplementary Fig. 8). Interestingly, this decreased abundance of 

Enterorhabdus spp. is observed in both juveniles and adult rats. However, normalization by 

the ML-7 treatment occurs in adults only.  
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DISCUSSION 

There is mounting evidence that gut microbiota plays an important role in the regulation of 

stress-related behaviors and stress responsivity (Dinan and Cryan, 2012; Foster and 

McVeyNeufeld, 2013; Burokas et al., 2015; Luczynski et al., 2016). Numerous studies have 

shown that chronic stress exposure leads to gut dysbiosis concomitant with gut leakiness. 

Despite the close relationship between gut microbiota and gut epithelial barrier, the intrinsic 

role of gut barrier permeability in stress-induced emotional alterations has not been 

investigated. Previous work demonstrated that inhibition of the MLCK by ML-7 prevents 

stress-induced intestinal, tight-junction-dependent, increase in paracellular permeability in rat 

pups (Moussaoui et al., 2014) and HPA axis hyperactivity in adult rats (Ait-Belgnaoui et al., 

2012). Here, we show in male rats with a history of chronic maternal separation that inhibition 

of gut leakiness during the neonatal period (PND2-PND14) prevents some of the long-term 

deleterious effects of maternal separation. These results suggest that altered gut 

permeability during this critical developmental period may contribute to HPA axis 

dysfunctions and impaired sensitivity to sexual reward later in life. Moreover, we also report a 

preventive effect of the attenuation of gut leakiness in early-stressed animals on gut 

dysbiosis at adulthood, suggesting that primary defects in barrier function can drive changes 

in gut microbial communities. 

Previous studies have demonstrated that intestinal permeability is exacerbated in pups 

during maternal separation, this effect lasting at least 8 hours (Moussaoui et al 2014; Rincel 

et al., 2017). Interestingly, gut permeability seems to be also durably increased after the end 

of chronic MS, since adolescent or adult animals with an history of MS exhibit gut leakiness 

(Gareau et al., 2007a, 2007b). In line with these studies, we report increased gut 

permeability in PND21 and PND49 rats, but also in juveniles (PND14) submitted to chronic 

MS. Importantly, the neonatal ML-7 treatment prevents MS-induced gut leakiness specifically 

at PND14, but its effect is no longer present several days after treatment cessation (i.e. 

PND21 or PND49). Our results indicate that ML-7 from PND2-14 prevented the long-term 

MS-induced sexual reward seeking impairment and neuroendocrine hyper-response to 

stress. This suggests that gut leakiness may affect the maturation of the HPA axis and brain 

circuits involved in reward processes. In contrast, anxiety and sucrose preference in MS rats 

were not modified by the neonatal ML7 treatment. Since the beneficial effect of ML-7 

treatment on intestinal permeability was not maintained after the end of the maternal 

separation period, we can not exclude that long-lasting hyper-permeability also contributes to 

the behavioral alterations reported in MS animals at adulthood (increased anxiety and 

decreased sucrose preference). Further experiments testing the effects of ML-7 treatment at 

adulthood are required to address this question.  
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Our results extend previous data showing that MLCK inhibition in adult animals suppresses 

acute restraint stress-induced hypercorticosteronemia and elevated corticotropin-releasing 

factor (Crf) expression in the paraventricular nucleus of the hypothalamus (PVN) (Ait-

Belgnaoui et al., 2012). More importantly, our study provides the first evidence that neonatal 

intestinal hyper-permeability per se may causally affect behavior and HPA axis function. A 

study by De Palma and colleagues recently demonstrated that MS has no effect on 

emotional behaviors in germ-free mice devoid of gut microbiota, but leads to increased 

anxiety and depressive-like behaviors upon colonization with the gut microbiota of a 

conventional control mouse (De Palma et al., 2015). However, colonization with the 

microbiota of a maternally separated animal did not transfer the MS-associated behavioral 

phenotype in naive germ-free mice. These findings suggest that gut bacteria are necessary 

but not sufficient to mediate the behavioral effects of MS. A hypothesis could be that the 

altered microbiota in MS mice is associated with stress-induced gut leakiness. Thus, animals 

showing gut dysbiosis without gut barrier defect display unspoiled behavior. Together with 

these previous findings, our results suggest that both gut dysbiosis and gut leakiness are 

required for the long-term behavioral effects of MS.  

It is worth mentioning that MLCK inhibition did not prevent other MS-induced behavioral 

alterations such as increased anxiety and anhedonia for sucrose. The lack of significant 

effect of ML-7 on reduced sucrose preference in MS animals was surprising because both 

decreased interest for sexual rewards and decreased sucrose preference are considered as 

measures of anhedonia. A recent study conducted in rats exposed to early stress 

demonstrated that anhedonia (assessed using sucrose preference and social play) is 

associated with aberrant interaction of reward (ventral tegmental area, nucleus accumbens) 

and anxiety (infra-limbic medial prefrontal cortex, amygdala) circuits (Bolton et al., 2017). 

However, brain circuits involved in these behaviors may differ with respect to the nature of 

the reward. 

It has been shown that stress-induced HPA axis hyper-reactivity and hyperanxiety can be 

prevented by antibiotics or normalized by probiotic treatments (Gareau et al., 2007a; Ait-

Belgnaoui et al., 2012, 2014; Desbonnet et al., 2015; Liang et al., 2015; Leclercq et al., 2017; 

Moya-Pérez et al., 2017). Here, we report a protective effect of chronic ML-7 treatment in 

early-life on MS-associated gut dysbiosis both at the phylum and genus levels. Specifically, 

increased abundance of Lachnospiraceae UCG-001 group, Clostridiales vadinBB660 and 

Desulfovibrio spp., but also decreased abundance of Bacteroidales S24-7, Enterorhabdus 

and Bifidobacterium spp. are normalized in animals treated with ML-7. Whether these effects 

participate in the prevention of sexual reward seeking impairment and deficit in HPA axis 

negative feedback remains to be determined. Increased Desulfovibrio spp. and decreased 

Bifidobacterium spp., have been reported in IBS patients and have been suggested as a 
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signature of disrupted intestinal barrier homeostasis (Crouzet et al., 2013). Moreover, 

Bifidobacteria strains are among the most used probiotics and have been reported to prevent 

the hypercorticosteronemia in response to acute stress in mice (Ait-Belgnaoui et al., 2014) 

and to reduce anxiety and depressive-like behaviors in different mouse models (Bercik et al., 

2010, 2011; Savignac et al., 2014). For instance, Bifidobacterium infantis administered at 

adulthood was reported to exert antidepressant-like effects in early-life stressed animals 

(Desbonnet et al., 2010). Here, the normalization of Bifidobacteria at the genus level is 

associated with restored HPA axis function and sexual reward motivation but not anxiety or 

sucrose preference. Our results suggest that the behavioral phenotype likely results from a 

unique combination of microbial alterations rather than altered abundance of a single 

bacterium.  

A limitation in our study is that the ML-7 treatment is not specific of intestinal MLCK. The 

MLCK is expressed in all epithelia including lungs and kidney, but also in endothelial cells of 

the blood-brain barrier (Beard et al., 2014). Nevertheless, neither histological nor in vivo 

measures of BBB permeability revealed a major impact of ML-7 on the BBB. The 

mechanisms underlying its protective effect on neuroendocrine stress response and sexual 

reward seeking remain to be further explored. Surprinsingly, we did not observe any 

beneficial effect of the ML-7 in juvenile MS rats, suggesting that ML-7 during development 

may impact the maturation of some physiological systems. In contrast to the numerous gut 

microbiota alterations found in adult offspring, we did not observe major effects of MS in 

PND14 juveniles. Some studies have reported differentially abundant taxa in maternally 

separated animals at PND21, including increased Bacteroidales spp., suggesting that gut 

dysbiosis may appear before adulthood in our animals (El Aidy et al., 2017; Moya-Pérez et 

al., 2017). Whether the dysbiosis is established early or not, gut leakiness during the 

perinatal period could lead to immune activation and/or abnormal leakage of gut-derived 

molecules such as bacterial antigens, gut hormones, neurotransmitters or other metabolites. 

Although there was no obvious sign of neuroinflammation in PND14 pups, the elevated 

circulating cytokine levels reported here suggest that MS pups undergo peripheral immune 

activation that could impact the brain at a later age.  

In conclusion, our work demonstrates for the first time that gut leakiness during the neonatal 

period may contribute to long-term HPA axis altered response to stress and behavioral 

impairments associated with early stress. Our study also suggests that the development of 

pharmacological or nutritional strategies to modulate intestinal permeability and/or gut 

microbiota may be relevant in combination with standard treatments, in particular in 

neurosychiatric conditions associated with early-life adversity.  
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FIGURE 1 

Fig 1. Experimental design. (a) Early 

manipulations were carried out daily 

from PND2-14. (b) MS consisted in 3h-

separations of the entire litter with pups 

individually isolated, while controls 

remained undisturbed. Within each 

litter, 2 male pups from each litter 

received i.p. injections of ML-7 and 2 

others received vehicle. Injections were 

performed immediately prior each 

separation session. (c) 3 cohorts were 

used in this study. Yellow frames 

represent the early manipulations. 

Behavior and gut microbiota 

assessment was carried out in the 3rd 

cohort (a maximum of two pups per 

litter was used to prevent litter effect). 

At PND21, male offspring were weaned 

and housed 6 per cage until PND40 

and then 3 per cage (except during 

sucrose preference test) until the end of 

the experiment. 9 females from 7 

different litters were kept for the female 

urine sniffing test. PND, post-natal day; 

Veh, vehicle; IP, intestinal permeability; 

USVs, ultrasonic vocalizations; CORT, 

plasma corticosterone; BBB, blood-

brain barrier; FUST, female urine 

sniffing test; IHC, 

immunohistochemistry; TJ, tight-

junction; NTS, nucleus tractus 

solitarius. 
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FIGURE 2 

 

 

 

 

 

 

Fig 2. Chronic MLCK inhibition during early-life prevents MS-induced gut leakiness in 

PND14 pups. In vivo intestinal permeability to FITC-Dextran (µg/ml plasma) at PND14 (a), 

PND21 (b) and PND49 (c). MS increases gut permeability at all time points. At a dose of 5 

mg/kg, ML-7 treatment prevents this effect specifically in PND14 rats. N=8 per group. Data 

are mean ± SEM. Student t-tests :  *p<0.05 versus Controls, # p<0.05 versus MS Veh. 

 

FIGURE 3 

 

 

 

 

 

 

 

 

 

 

 

Fig 3. Effects of MS and ML-7 treatment on the BBB in juvenile rats. Relative 

quantification of occludin (N=4-6 per group) (a), claudin-1 (N=5 per group) (b) and zo-1 (N=3-

7 per group) (c) tight junction protein expression (% fluorescence intensity normalized to C 

Veh) in the choroid plexus of PND14 rats. In vivo BBB permeability to EB (% EB 

fluorescence) in the forebrain (d), hindbrain (e) and plasma (f) of PND15 rats (N=5-9 per 

group). MS or ML-7 had no major impact on BBB integrity or permeability. Data are mean ± 

SEM. 
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FIGURE 4 

Fig 4. Effects of chronic MLCK 

inhibition during early-life on 

MS-induced endophenotypes in 

juvenile rats. (a) and (b) 

Ultrasonic vocalizations in 

response to a 6-min separation 

on PND6. In (a) each line 

corresponds to one animal and 

each dash represents one USV 

emission (N=5-7 per group). (c) 

Pups’ body weight (g) at PND14 

(N=13-15 per group). (d) Plasma 

corticosterone (ng/mL) following 

the 3hr-MS episode on PND13 

(N=7-9 per group). (e) and (f) 

Plasma levels (pg/mL) of IL-

1band IL-10 following the 3hr-MS 

episode on PND14 (N=10 per 

group). Neither MS or ML-7 

affects pups’ body weight. 

However, MS increases plasma 

corticosterone and cytokine levels 

as well as USVs. These effects 

are not affected by ML-7. Data 

are mean ± SEM. 
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FIGURE 5 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 5. Chronic MLCK inhibition during early-life prevents MS-induced impairment in 

sexual reward seeking and HPA axis hyper-responsiveness to stress at adulthood. (a) 

Time spent in the light box (s) over 10 min (N=12 per group). (b) Sucrose intake (mL) in the 

24hr sucrose preference test (N=12 per group). (c) Time (s) spent sniffing a Q-tip soaked 

with water or estrus female urine over 3 min (N=3-5 per group). MS induced hyperanxiety 

and loss of preference for sucrose or female urine versus water. ML-7 treatment prevented 

the MS-induced altered behavior in the female urine sniffing test. Plasma corticosterone 

(ng/mL) time course response to 30min of restraint stress (c) and area under the curve 

(AUC) (N= 12 per group) (d). MS led to sustained corticosterone response after restraint 

stress. This effect was abolished by ML-7 treatment. In c: Paired t-tests, *p<0.05; in d: Fisher 

LSD’s post-hoc, **p<0.01 versus C Veh; +p<0.05, +++p<0.001 versus MS Veh. Data are 

mean ± SEM.  
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FIGURE 6     

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 6. Impact of MS and ML-7 treatment during early life on composition and structure 

of fecal microbiota at adulthood. (a) Richness (Chao-1 indice of alpha diversity). (b) Bray-

Curtis Multidimentional scaling (MDS) plots representing structural changes of microbiota 

composition between groups. (c-h) Relative abundance (%) per phylum. N=11 per group. 

Bars in boxplots represent medians. Two-way ANOVA with Holm-Sidak’s post-tests: *p<0.05 

and **p<0.01 versus C Veh (other p values in a and g are also comparisons with C Veh); 

#p<0.05 versus MS Veh.  
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FIGURE 7     

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 7. Impact of MS and ML-7 treatment during early-life on the abundance of fecal 

bacterial genera at adulthood. (a-b) Genera with differential abundance significantly 

affected by early-life stress: (a) early-life stress factor being the main effect and (b) 

normalized by ML-7 treatment (for which interaction term of the two-factor design was 

significant). Genera are classified by magnitude of effect. Phylum is indicated using color 

codes and circle size represents the mean normalized abundance of the genus across 

samples. Features were considered significant if their adjusted post-test p-value was less 

than 0.05 using a two-factor nested design. (c-d) Representative circular cladogram 

generated from LEfSe analysis showing the most differentially abundant taxa in MS Veh (c) 

or MS ML-7 (d) compared with C Veh. Taxa enriched in C Veh are shown in red whereas 

taxa enriched in MS Veh or MS ML-7 are shown in green. Only taxa with LDA scores higher 

than 3 and for which p<0.01 (Kruskal-Wallis test) are displayed. N=11 per group. 
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SUPPLEMENTARY INFORMATION 

 

SUPPLEMENTARY METHODS 

C-Fos immunochemistry. Serial coronal sections (40µm) containing the nucleus tractus 

solitarius (NTS, anteroposteriority from bregma: -11.40 to -15.72) were obtained using a 

cryostat and stored in cryoprotectant solution (composition,) at -20°C until use. Free-floating 

sections (40μm, every 6th) were treated as previously described (Labrousse et al., 2009) 

(Labrousse et al., 2009). Briefly, Briefly, rabbit polyclonal antiserum raised against c-Fos 

(Santa Cruz Biotechnology, Santa Cruz, CA) was diluted 1∶1000 in Tris Buffer Saline (TBS) 

containing 0.3% Triton X-100, 2% donkey serum and 1% bovine serum albumin (BSA), and 

sections were incubated overnight at room temperature before being incubated for 2 h with 

biotinylated goat anti-rabbit antibody (1∶2000; Jackson 152, Jackson ImmunoResearch, 

Suffolk, UK) for 2 h with avidin-biotin peroxidase complex (1∶1000; Vectastain ABC kit, 

Vector laboratories, Burlingame, CA), and finally revealed with diaminobenzidine via the 

nickel-enhanced glucose oxidase method. Sections were then slide-mounted onto gelatin-

coated slides.  

Quantification of C-Fos immunoreactivity. NDPI images at x20 magnification were 

obtained at the Bordeaux Imaging Center (CNRS-INSERM and Bordeaux University, France 

BioImaging) using a digital slide scanner (Nanozoomer, Hamamatsu Photonics, Massy, 

France) and converted into TIFF format using the ImageJ software 

(http://imagej.nih.gov.gate2.inist.fr/ij/) and NDPItools plugin (Deroulers et al., 2013). Regions 

of interest (ROI) were manually circumscribed using ROItools according to (Paxinos et al., 

1985). The number of c-Fos-IR cells was automatically quantified in 8-bit thresholded images 

using the particle analysis function (size: 5-20 µm²; circularity: 0.5-1). The quantification of C-

FOS-IR cells was carried out in 3-5 sections per animal for each area using ImageJ. Results 

are expressed as C-FOS-IR cells per mm². The experimenter remained blind to the treatment 

conditions throughout the analysis. 

EB dose response. Rats pups (PND15-20) received i.p. injections of EB (80, 160 or 240 

mg/kg, i.p.) and EB fluorescence in the plasma, hindbrain and forebrain was determined 24h 

later (see paragraph x in the method section). EB concentration in the samples was 

calculated according to a standard range made in 50% TCA. 

Social interaction (3.5-4 months).Time spent in social interaction was evaluated using 3 

different paradigms (conspecific, aggressor and juvenile) over 10 min, under dim light (30 

lux) in a neutral arena (40×40 cm). For the conspecific test, pairs of weight-matched rats 

from the same experimental group were placed together in the arena. For the aggressor test, 

old breeder male Wistar rats (n=12, Janvier Labs, Le Genest Saint Isle,France) were isolated 

http://imagej.nih.gov.gate2.inist.fr/ij/
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for 2 weeks and placed first in the arena. Finally, for the juvenile test, 6 week-old Wistar rats 

(n=12, Janvier Labs, Le Genest Saint Isle, France) were placed first in the arena. Each 

aggressor and juvenile rat encountered a rat from the 4 experimental groups. Social behavior 

(sniffing, allogrooming and crawling over) was recorded using a digital camera and manually 

scored using an ethological software (The observer, Noldus Information Technology, 

Wageningen, The Netherlands) as previously described (Rincel et al., 2016). 

Real-time quantitative PCR. PND14 pups (n=112 per group) or 5 month-old rats were 

deeply anesthetized with isoflurane and killed by decapitation. Whole brains were collected 

and the medial prefrontal cortex (mPFC, PND14) and hippocampus (PND14 and adults) 

were dissected and stored at -80°C until use. Total RNA was extracted using TRIzol 

(Invitrogen, Life Technologies, Carlsbad, CA, USA). RNA concentration and purity were 

determined using a ND-1000 spectrophotometer (Nanodrop Technologies, Wilmington, DE, 

USA). cDNA was synthetized from 1 μg of RNA using Superscript III reverse transcriptase 

(Invitrogen, Life Technologies) as previously described (Labrousse et al., 2012). Real time 

quantitative PCR was performed from 20 ng/ml cDNA samples using SYBR assays and the 

LightCycler 480 system (LC480, Roche diagnostics, Mannheim, Germany). All primers used 

were validated for selectivity and amplification efficiency (primer sequences are provided in 

Supplementary Table 1). All samples were performed in duplicates. Expression of target 

genes was calculated by the delta-delta Ct method and normalized to the housekeeping 

gene beta-2 microglobulin (β2m). All gene expression results are expressed relative to 

expression in the control group (folchange). 

16S rRNA amplification and amplicon sequencing. The V3-V4 hypervariable region of the 

16S rRNA gene was amplified by PCR. The forward PCR primer 5’CTTTCC CTA CAC GAC 

GCT CTT CCG ATC TAC GGR AGG CAG CAG3’ was a 43-nuclotide fusion primer 

consisting of the 28-nt illumina adapter (designed by bold font) and the 14-nt broad range 

bacterial primer 343F. The reverse PCR primer 5’GGA GTT CAG ACG TGT GCT CTT CCG 

ATC TTA CCA GGG TAT CTA ATC CT3’ was a 47-nuclotide fusion primer consisting of the 

28-nt illumina adapter (designed by bold font) and the 19-nt broad range bacterial primer 

784R. The PCR mix contained MTP Taq DNA polymerase (SIGMA, 0,05 U/µl), 200 µM of 

each DNTP (SIGMA, premix), and 0,5 µM of each primer. After initial denaturation at 94°C 

for 60 sec in CFX-96 Thermal Cycler (Bio-Rad), 30 cycles were run with 60 sec denaturation 

at 94°C, 60 sec annealing at 65°C and 60 sec at 72°C.Round ended with 10 min extension at 

72°C. Amplification quality (length, quantity and specificity) was verified using the Agilent 

2200 Tapestation system (High sensitivity D1000 ScreenTape Assay) and AATI Fragment 

Analyser at the GeT (Genomic and Transcriptomic, TRIX and PlaGe) platforms in Toulouse. 

Because MiSeq enables paired 250-bp reads, the ends of each read are overlapped and can 
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be stitched together to generate extremely high-quality, full-length reads of the entire V3 and 

V4 region in a single run. Single multiplexing was performed using home made 6 bp index, 

which were added to R784 during a second PCR with 12 cycles using forward primer (AAT 

GAT ACG GCG ACC ACC GAG ATC TAC ACT CTT TCC CTA CAC GAC) and reverse 

primer (CAA GCA GAA GAC GGC ATA CGA GAT-index-GTGACTGGAGTTCAGACGTGT). 

The resulting PCR products were purified and loaded onto the Illumina MiSeq cartridge 

according to the manufacturer instructions. The quality of the run was checked internally 

using PhiX, and then each pair-end sequences were assigned to its sample with the help of 

the previously integrated index. Each pair-end sequences were assembled using Flash 

sofware (Magoč and Salzberg, 2011) using at least a 10bp-overlap between the forward and 

reverse sequences, allowing 10% of mismatch. The lack of contamination was checked with 

a negative control during the PCR (water as template). The quality of the stitching procedure 

was controlled using 4 bacterial samples that are run routinely in the sequencing facility in 

parallel to the current samples. 

  

Microbiome 16S data analysis. High quality filtered reads (6,820,034 reads) were further 

processed using FROGS pipeline to obtain OTUs and their respective taxonomic assignment 

thanks to Galaxy instance (http://sigenae-worbench.toulouse.inra.fr): Initial FROGS pre-

process step allowed to select overlapped reads with expected length without N, yielding to 

5,125,859 pass-filter reads (an average of 58,250 reads per sample). Swarm clustering 

method was applied by using a first run for denoising with a distance of 1 and then a second 

run for clustering with an aggregation maximal distance of 3 on the seeds of first Swarm 

(Mahé et al., 2014), yielding to 772,290 clusters (an average of 8,700 per sample at PND14 

and 13,250 at PND155). Putative chimera were removed using vsearch combined to cross-

validation (GitHub repository. Doi 10.5281/zenedo.15524), yielding to 487,412 clusters (an 

average of 6,510 per sample at PND14 and 5,980 at PND155).  

Cluster abundances were filtered at 0,005% (Bokulich et al., 2013)and/or had to be present 

at least in 3 samples, yielding to 644 clusters (an average of 224 clusters per sample at PND 

14 and 453 at PND 155) corresponding to 3,772,253 final valid reads (an average of 42,866 

valid reads per sample whatever the age of rats).  

100% of clusters were affiliated to OTU by using a silva123 16S reference database and a 

taxonomic multi-affiliation procedure (Blast+ with equal multi-hits (Camacho et al., 2009)). 

Since rarefaction has shown to result in high rates of false positive tests for differential 

abundance(McMurdie and Holmes, 2014), counts were not rarefied. OTU prevalence, 

abundance per phylum and rarefaction curves were plotted for each sample by using 

Phyloseq package (v 1.19.1) after a supplementary recommended prevalence filtering 

http://sigenae-worbench.toulouse.inra.fr/
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(threshold prevalence as 5% of total sample, leading finally to 643 analysed OTUs (535 

OTUs and 614 OTUs relative to PND14 and PND155 analysis respectively) accordingly to 

the Bioconductor workflow for microbiome data analysis proposed by Callahan et al., 2016. 

Within sample community alpha diversity was assessed by Chao-1 diversity. Divergence in 

community composition between samples was quantitatively assessed by calculating 

weighted Unifrac (abundance and phylogenetic relation) distance matrice. Unconstrained 

ordination was visualized using multidimensional scaling (MDS) and hierarchical clustering 

(complete linkage combined with wUnifrac distance) and compared using Adonis test (9999 

permutations). 

In order to evaluate differential abundance in response to postnatal treatments and identify 

important taxa modulated by maternal separation and associated with ML-7administration, 

OTUs were agglomerated at the genus rank. Differentially abundant taxa were identified by 

characterizing the difference between two different postnatal treatments (Kruskall-Wallis non 

parametric pairwise comparisons) using LefSe algorithm (Segata et al., 2011)with an alpha 

value of 0.01 and a threshold on the logarithmic LDA score for discriminative features of 3. 

Univariate differential abundance of taxa was also tested using a negative binomial noise 

model for over dispersion as implemented in the R package DESeq2 (v 1.14.1)(Love et al., 

2014; McMurdie and Holmes, 2014).A 2x2 factor design combined with a Wald test was 

applied in order to identify taxa for which maternal separation effect changed acrossML-7 

exposition (interaction term). On the final taxa corresponding to the interaction term, 6 taxa 

were selected at PND155 because administration of ML-7 normalized their relative 

abundance in maternally separated rats. Taxa were considered significantly differentially 

abundant between treatments if their adjusted p-value was below 0.05. 
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SUPPLEMENTARY TABLES 

Supplementary Table 1. Primer sequences used for qPCR 

 

 

 

 

 

 

 

 
B2m, Beta 2 microglobulin; Crh, Corticotropin releasing hormone; GR, Glucocorticoid receptor; IL-1b, Interleukin 

1-beta; IL-6, Interleukin 6; MR, Mineralocorticoid receptor; TNFa, Tumor necrosis factor alpha; 11bHSD1; 11 beta 

hydroxysteroid dehydrogenase 1; Nr3c, Nuclear receptor subfamily 3, group C. 

 

 

 

 

Supplementary Table 2: Detailed statistics and taxonomic affiliation of clusters (agglomerated at the 

genus rank) significantly affected by early-life stress in adult animals.  

 

 

 

 

 

 

 

 

 

Supplementary Table 3: Detailed statistics and taxonomic affiliation of clusters (agglomerated at the 

genus rank) significantly affected at adulthood by early-life stress but for which ML-7 treatment prevented 

MS-induced alterations (Interaction term reach significance).  

 

 

-3’GR (Nr3c1) 5’-AACGCCCTTATAAATGTGAACTG 5’-GGCTTCTCACCCAACTAGATCA C-3’

IL-1b 5’-CCGAAAGTTCCTCTTGACCTTTAG-3’ 5’-GCACCAAATCGGTCATCCA-3’

Crh 5’-CAGCCGTTGAATTTCTTG-3’ 5’-GACTTCTGTTGAGGTTCC-3’

Β2m 5’-CGTGCTTGCCATTCAGAAAA-3’- 5’-GAAGTTGGGCTTCCCATTCTC-3’

-3’

IL-6

Gene name Sense primer Antisense primer

Camk2a

IL-6

Camk2a

5’-GCATCTGCCGCTTGTTGAA-3’ 5’-TCCTCGGAGATGCTGTCATG-3’

MR (Nr3c2) 5’- CTTTACGAAGTGTTTC TACTACTG-3 ’ 5’- TGACACCCAGAAGCCTC ATCT-3’

11bHSD1 5’-GCGGTTTGTGAAATGGAAGT-3’ 5’-CAGGGTCCACTCTTGGGTTA-3’

TNFa 5’-GCGTTGTTGGGTGCCATAAT-3’ 5’-CCGGATTGAGCAGGGAGTT-3’

Phylum Class Order Family Genus baseMean

log2	

FoldChange lfcSE stat pvalue padj

Actinobacteria Actinobacteria Bifidobacteriales Bifidobacteriaceae Bifidobacterium 193,25 -4,31 1,34 3,23 0,0012 0,0183

Actinobacteria Coriobacteriia Coriobacteriales Coriobacteriaceae Adlercreutzia 10,54 -1,64 0,59 -2,77 0,006 0,049

Actinobacteria Coriobacteriia Coriobacteriales Coriobacteriaceae Enterorhabdus 35,38 -1,97 0,54 3,64 0,0003 0,0062

Bacteroidetes Bacteroidia Bacteroidales Bacteroidales	S24-7	group 5189,43 -1,38 0,40 3,47 0,0005 0,0095

Bacteroidetes Bacteroidia Bacteroidales Porphyromonadaceae Parabacteroides 552,50 0,77 0,26 2,97 0,003 0,036

Firmicutes Clostridia Clostridiales Clostridiales	vadinBB60	group 361,98 2,01 0,55 -3,66 0,0003 0,0062

Firmicutes Clostridia Clostridiales Lachnospiraceae Acetitomaculum 5,30 3,39 1,01 3,36 0,0008 0,025

Firmicutes Clostridia Clostridiales Lachnospiraceae Lachnospiraceae	UCG-001 391,05 2,71 0,67 -4,04 0,0001 0,0024

Firmicutes Clostridia Clostridiales Peptostreptococcaceae Intestinibacter 1045,29 -1,60 0,48 -3,32 0,0009 0,019

Firmicutes Erysipelotrichia Erysipelotrichales Erysipelotrichaceae Turicibacter 829,35 -2,08 0,60 -3,45 0,0006 0,019

Proteobacteria Deltaproteobacteria Desulfovibrionales Desulfovibrionaceae Desulfovibrio 334,19 1,76 0,55 -3,20 0,0014 0,0183

Proteobacteria Gammaproteobacteria Enterobacteriales Enterobacteriaceae Escherichia-Shigella 14,66 2,23 0,67 3,35 0,0008 0,025

Phylum Class Order Family Genus baseMean

log2	

FoldChange lfcSE stat pvalue padj

Actinobacteria Actinobacteria Bifidobacteriales Bifidobacteriaceae Bifidobacterium 193,25 -4,31 1,34 3,23 0,0012 0,0183

Actinobacteria Coriobacteriia Coriobacteriales Coriobacteriaceae Enterorhabdus 35,38 -1,97 0,54 3,64 0,0003 0,0062

Bacteroidetes Bacteroidia Bacteroidales Bacteroidales	S24-7	group 5189,43 -1,38 0,40 3,47 0,0005 0,0095

Firmicutes Clostridia Clostridiales Clostridiales	vadinBB60	group 361,98 2,01 0,55 -3,66 0,0003 0,0062

Firmicutes Clostridia Clostridiales Lachnospiraceae Lachnospiraceae	UCG-001 391,05 2,71 0,67 -4,04 0,0001 0,0024

Proteobacteria Deltaproteobacteria Desulfovibrionales Desulfovibrionaceae Desulfovibrio 334,19 1,76 0,55 -3,20 0,0014 0,0183
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SUPPLEMENTARY FIGURES 

SUPPLEMENTARY FIGURE 1 

 

Supplementary Fig 1. EB dose-response curve after EB i.p. 

injection in PND15 pups. EB concentration in the plasma (µg/mL, left 

axis) and hindbrain/forebrain (µg/mL/g of tissue, right axis) 24 hr after 

EB i.p. injection.   

 

 

 

 

 

SUPPLEMENTARY FIGURE 2 

 

 

 

 

 

Supplementary Fig 2.Effects of MS and ML-7 treatment on brain cytokines expression and neuronal 

activation in the NTS of PND14 rats following 3hr of separation. mRNA expression of IL-1b, IL-6 and TNFa 

(foldchange) in the mPFC (a) and hippocampus (b) (N=7-9 per group). (c) Neuronal activation (C-Fos-IR 

cells/mm²) in the NTS (N=4-5 per group). MS or ML-7 had no major impact on brain cytokines expression or 

neuronal activation in the NTS following 3hr of MS. Data are mean ± SEM. Fisher LSD’s post-hoc, # at least 

p<0.05 versus all other groups. IL-1b, Interleukin 1 beta; IL-6, Interleukin 6; TNFa, Tumor necrosis factor alpha.  

 

 

 

SUPPLEMENTARY FIGURE 3 

 

 

 

 

 

Supplementary Fig 3. Impact of MS and ML-7 treatment on social behavior in adult rats. Time spent in 

social interaction (s) with a male conspecific (a), aggressor (b), or juvenile (c) over 10 min. Social interaction was 

not affected by the perinatal manipulations. N=10-11 per group. Data are mean ± SEM. 
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SUPPLEMENTARY FIGURE 4 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Supplementary Fig 4. Impact of MS and ML-7 treatment on hippocampal mRNA expression of stress-

related genes in adult rats. Foldchange mRNA expression of Crh (a), 11bHSD1 (b), GR (c) and MR (d). N=8 

per group. Data are mean ± SEM. Planned comparisons,Crh, Corticotropin-releasing hormone; 11bSHD1, 11β-

Hydroxysteroid dehydrogenase type 1; GR, Glucocorticoid receptor; MR, Mineralocorticoid receptor. 

 

 

 

 

 
SUPPLEMENTARY FIGURE 5 

 

 

 

 

 

 

 

 

 

 

Supplementary Fig 5. Impact of the ML-7 treatment in non-stressed animals on the abundance of fecal 

bacterial genera at adulthood. Histograms generated from LEfSe analysis showing the most differentially 

abundant taxa in MS Veh (a) or in MS ML-7 (b) compared with C Veh rats. Taxa enriched in C Veh are shown in 

red whereas taxa enriched in MS Veh or MS ML-7 are shown in green. The magnitude of the LEfSe scores 

indicates the degree of consistency of the difference. Only taxa with LDA scores higher than 3 and for which 

p<0.01 (Kruskal-Wallis test) are displayed. N=11 per group. 
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SUPPLEMENTARY FIGURE 6 

 

 

 

 

 

 

 

 

 

 

Supplementary Fig 6. Impact of the ML-7 treatment in non-stressed animals on the abundance of fecal 

bacterial genera at adulthood. (a) Representative circular cladogram and (b) histograms generated from LEfSe 

analysis showing the most differentially abundant taxa in C ML-7 compared with C Veh. Taxa enriched in C Veh 

are shown in red whereas taxa enriched in C ML-7 are shown in green. The magnitude of the LEfSe scores 

indicates the degree of consistency of the difference. Only taxa with LDA scores higher than 3 and for which 

p<0.01 (Kruskal-Wallis test) are displayed. N=11 per group. 
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SUPPLEMENTARY FIGURE 7 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Supplementary Fig 7. Impact of MS and ML-7 treatment on the composition and structure of fecal 

microbiota in PND14 juveniles. (a) Richness (Chao-1 indice of alpha diversity). (b) Bray-Curtis Multidimentional 

scaling (MDS) plots representing structural changes of microbiota composition between groups. (c) Relative 

abundance (%) per phylum. Bars in boxplots represent medians. N=10-12 per group. 

 

 

SUPPLEMENTARY FIGURE 8 

 

Supplementary Fig 8. Impact of MS on the abundance of fecal bacterial 

genera in PND14 juveniles. Enterorhabdus was the only genus with 

differential abundance significantly affected by early-life stress. This effect is 

independent of the ML-7 treatment. Phylum is indicated using color codes and 

circle size represents the mean normalized abundance of the genus across 

samples. Features were considered significant if their adjusted post-test p-

value was less than 0.05 using a two-factor nested design. N=10-12 per group. 
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ABSTRACT 

Substantial evidence points to a major role of the gut-brain-axis in the regulation of 

behavioral processes and stress response. In particular, gut dysbiosis has been associated 

with altered anxiety and depressive-like behaviors and microbiota-directed interventions 

(fecal transplantation, probiotics) normalize these behaviors. Critically, gut dysbiosis is often 

concomitant with gut permeability leakiness, but the primary contribution of gut barrier 

defects in the development of behavioral alterations remains unexplored. Intestinal epithelial 

tight junction permeability is regulated by the myosin light chain kinase (MLCK). Here, we 

used transgenic mice with tissue-specific expression of a constitutively active MLCK (CA-

MLCK mice) within intestinal epithelia to explore the effects of gut leakiness per se on 

emotional behaviors and stress response. Male and female CA-MLCK transgenic mice 

exhibited similar increases in intestinal permeability and displayed exacerbated 

corticosterone response to stress and marked alterations in the expression of several stress-

related genes in the medial prefrontal cortex, hippocampus and nucleus accumbens. 

Immunomapping of C-FOS expression within the brain indicates altered stress-induced 

connectivity in CA-MLCK mice. In addition, intestinal epithelial CA-MLCK expression impairs 

spatial memory and blunts sexual reward seeking in males and leads to anhedonia for 

sucrose and increased anxiety in females. These data reveal for the first time that increased 

intestinal paracellular permeability induces changes in the gut-brain axis that result in altered 

behavior.  

 

Funding: Univ. Bordeaux, INRA, projet inter-régions Aquitaine - Midi-pyrénées. The authors 
acknowledge the help of Amélie Dinca, Sarah Barnett-Burns and Yann Matime for behavioral 
and molecular analyses. 
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INTRODUCTION 

There is increasing literature pointing to a key role of the microbiota-gut-brain axis in the 

regulation of brain function and behavior, particularly emotional processes and stress 

vulnerability (Dinan and Cryan, 2012; Foster and McVeyNeufeld, 2013; Burokas et al., 2015; 

Burokas et al., 2017). Studies in animals have shown that gut bacteria are critical for 

neuroendocrine stress response, anxiety-like behaviors, sociability and cognition (Luczynski 

et al., 2016). The mechanisms involved in this gut to brain communication remain unclear. 

Gut microbes are in close contact with the intestinal epithelium and have been repeatedly 

reported to influence gut barrier integrity and function (Zakostelska et al., 2011; Hsiao et al., 

2013;.Nébot-Vivinus et al., 2014; Jakobsson et al., 2015; Reunanen et al., 2015). 

Consistently, gut dysbiosis is often accompanied by gut barrier dysfunction or leakiness. In 

addition to dysbiosis, gut leakiness has been reported in several psychiatric conditions (see 

Julio-Pieper et al., 2014 for review) including autism spectrum disorders (D’Eufemia et al., 

1996; de Magistris et al., 2010; Fiorentino et al., 2016), schizophrenia (Cascella et al., 2011), 

major depressive disorder (Maes et al., 2008; Stevens et al., 2017) and alcohol dependence 

(Leclercq et al., 2014; de Timary et al., 2015). Moreover, in the study by Leclercq and 

coworkers, gut leakiness was found to be associated with higher scores of depression and 

anxiety in alcohol-dependent subjects (Leclercq et al., 2014). To date, however, most of the 

research has been focusing on the gut microbiota, and the intrinsic role of gut permeability in 

the regulation of emotional behavior remains poorly explored. Psychosocial stressors and 

childhood adverse experience (trauma or abuse) play a significant role in the onset and 

perpetuation of the irritable bowel syndrome (IBS), a functional gastrointestinal disorder 

frequently associated with gut leakiness (Bradford et al., 2012; Halland et al., 2014; see 

Chitkara et al., 2008 for review). Interestingly, this condition is highly comorbid with anxiety 

and mood disorders, and gastrointestinal symptoms severity in IBS patients is positively 

correlated with psychiatric symptoms (Van Oudenhove et al., 2016; Wilpart et al., 2017). 

However, it remains unclear whether there is a causal relationship between these disorders 

and if so, which comes first. Therefore, it is crucial to unravel the role of gut permeability in 

brain function and behavior. Furthermore, gut-brain literature suggests that the relationship 

between gut microbiota and behavior could be different in males versus females, although 

this aspect has not been studied extensively. In vitro and in vivo studies have shown that gut 

barrier function regulation involves cytoskeleton-mediated epithelial tight-junction opening, 

upon activation of the myosin II regulatory light chain kinase (MLCK) (Zolotarevsky et al., 

2002; Clayburgh et al., 2005; Shen et al., 2006). High MLCK activity was recently reported in 

IBS (Wu et al., 2017) and other inflammatory bowel diseases (Blair et al., 2006), suggesting 

that this mechanism is relevant to human gut dysfunctions. We previously showed that 

prevention of gut leakiness by administration of a MLCK inhibitor (ML-7) in stressed rats 
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attenuates the increased neuroendocrine response to stress as well as the pro-inflammatory 

cytokine expression in the hypothalamus (Ait-Belgnaoui et al., 2012), suggesting a possible 

role of MLCK activity in stress-related behaviors. Transgenic mice with tissue-specific 

expression of a constitutively active MLCK within intestinal epithelia (CA-MLCK mice) exhibit 

gut leakiness (Su et al., 2009; Edelblum et al., 2017). Here, we aim to examine the 

consequences of CA-MLCK expression in the gut on emotional behavior and stress 

response in male and female mice. Furthermore, we explore stress-related gene expression 

and C-FOS activation upon acute stress in relevant brain areas according to the behavioral 

and endocrine results.  

 

METHODS 

Animals 

All experiments were approved by the local Bioethical committees of our Universities 

(Bordeaux: N° 50120186-A; Toulouse: ToxCom/0031) and by the régions Aquitaine (ID: A33-

063-920) and Midi-Pyrénées Veterinary Services (National Animal Care Committee ID: 86) 

according to the European legislation (Directive 2010/63/EU, 22 September 2010). Animals 

were maintained in a 12-h light/12-h dark cycle (lights on at 0800 hours) in a temperature-

controlled room (22°C) with free access to food and water, unless otherwise stated. The 

breedings were carried out in Toxalim (Neuro-gastroenterology and Nutrition, INRA UMR 

1331, Toulouse) and involved wild-type (WT) female and heterozygous CA-MLCK male 

parents (carrying the transgene encoding a constitutively active MLCK under the control of 

the villin promoter, specific of intestinal epithelial cells; C57/Bl6 genetic background) as 

previously described (Su et al., 2009). Four cohorts were used in this study. Heterozygous 

male and female CA-MLCK mice and WT control littermates were used for the experiments.  

 

Genotyping  

Mouse genomic DNA were prepared from mouse tail, digested for 10 minutes at 95°C in 

buffer (pH12.0) containing 25 mM NaOH and 0.2 mM EDTA. Then, samples were put on ice 

for 10 minutes and the reaction was stopped by adding 40 mM Tris-HCl (pH5.0). After 

centrifugation (6 min at 14000 rpm), PCR was performed using 2 µL of DNA, EconoTaq DNA 

polymerase (Euromedex, Souffelweyersheim, France) and primers for transgene detection. 

 

In vivo intestinal permeability 

In vivo intestinal permeability was assessed in 6-week-old mice using fluorescein-

isothiocyanate (FITC, 396 Da, Invitrogen) as previously described (Edelblum et al., 2017). 

Briefly, mice were gavaged with 250 µL of 1 mg/mL solution of FITC dissolved in 10mM 
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NaOH. After 4 hours, 200 µL of blood was taken from the facial vein on heparinized tubes. 

Tubes were centrifuged for 10 minutes at 10000 g and FITC concentration was determined 

against a standard curve on a microplate reader (Tecan Infinite M200, Lyon, France).  

Behavioral assessment 

All experiments were performed during the light phase. For analyses involving manual 

quantifications, experimenters remained blind to the experimental groups. Animals were 

collectively housed except during sucrose preference and buried food tests. 

Elevated plus maze (EPM, 2 months). The apparatus consisted of two opposing open arms 

(30 × 8 cm, brightness: 80 lux) and two opposing closed arms (30 × 8 × 15 cm, brightness: 

20 lux) connected by a central platform (8 × 8 cm) and elevated 120 cm above the floor. 

During the light period (10:30 ± 1h), 2 month-old female mice were placed in the center of the 

maze facing an enclosed arm and allowed to explore for 5 min. Time spent in each arm was 

automatically quantified using videotracking (Smart software, Bioseb, Vitrolles, France). The 

percentage of time spent in open arms was calculated (open arms/(open arms+closed 

arms)x100). A reduction of the percent of exploration of the open arms is considered as an 

anxiety-like index (Belzung and Griebel, 2001). 

Light-dark test (2,5 months). The apparatus was a two-compartment plexiglas box with a 

dark compartment wrapped with a cover (14 x 21 x 21 cm) and a light compartment exposed 

to intense light (30 x 21 x 21 cm; brightness: 200 lux). Both chambers were connected by a 7 

x 5 cm opening. Mice were placed in the dark compartment and exploration of the light box 

was recorded with a digital camera during 10 min as previously described (de Cossío et al., 

2017). Time spent in the light box was manually quantified using an ethological software 

(The observer, Noldus Information Technology, Wageningen, The Netherlands).  

Sociability test (2.5 months). The apparatus was an open-field equipped with 2 perforated 

plastic beakers placed in opposite corners. Under dim light (brightness: 20 lux), mice were 

habituated to the setup for 5 min with empty beakers. They were transiently removed while a 

familiar mouse from the same cage was introduced in one of the beakers. Mice were put 

back in the open-field for 5 min and allowed to explore around either the empty or the 

mouse-containing beaker. Time spent exploring the empty beaker and the beaker with the 

social target was automatically quantified using videotracking (Smart, Bioseb, Vitrolles, 

France).   

Y-maze (2-3.5 months). Spontaneous spatial recognition in the Y-maze was evaluated as 

previously described (Dinel et al., 2014). The apparatus was a Y-shaped maze made of dark 

grey plastic with three identical arms (34 x 8 x 14 cm). The floor was covered with corncob 

bedding and was mixed between each trial in order to remove olfactory cues. Visual cues 

were placed on the walls of the testing room and kept constant during the whole test. During 
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the acquisition phase, one of the three arms was closed with a plastic gate and male mice 

were placed in the depart arm (facing the wall) and allowed to explore the two open arms for 

10 min. After an intra-trial interval (ITI) of 30 min (males and females) or 60 min (males only), 

mice were put back in the Y-maze with free access to all three arms (depart, familiar and 

novel arms) during 3 min (restitution phase). All these trials were conducted under dim light 

(brightness: 60 lux). The position of the novel arm was randomized to prevent from any 

position effect. The 30 min ITI trial was performed at 2 months. In males, 30 and 60 min ITI 

trials were carried out in the same animals, aged 2 and 3.5 months, respectively. To 

minimize bias, a different maze was used for the two experiments, and the novel arm 

position was changed. Quantification of time spent in the three arms was performed 

automatically using videotracking (Smart, Bioseb, Vitrolles, France or Ethovision, Noldus 

Information Technology, Wageningen, The Netherlands). The percentage of time spent in the 

new arm during the restitution phase was calculated (new arm/(new arm + familiar arm + 

depart arm)x100). A reduction of the percent of exploration of the new arm reflects impaired 

spatial memory (Conrad et al., 1996). 

Tail suspension test (TST, 3months). The apparatus was a three-compartment box 

provided with 3 hooks (Bioseb). Mice were hanged by the tail using secure tape for a 6 min 

test session and their immobility was automatically assessed using movement detection 

software (Bioseb, Vitrolles, France).  

Female urine sniffing test (4 months). Females from different litters were placed in a new 

cage without bedding for 3 hours and urine (approximately 500 µl per mouse) was collected 

and stored at -20°C until use. The cyclic status was determined by microscopic observation 

of vaginal smears and only urine from estrus females was used for the experiment. The test 

was conducted as previously described (Malkesman et al., 2010). Under dim light (5 lux), 

male mice were habituated to a dry Q-tip in the homecage (30 x 20 x 20 cm) for 60 min, and 

then presented with a Q-tip soaked with sterile water for 5 min. After 45 min without any Q-

tip, mice were presented with a Q-tip soaked with estrus female urine for another 5 min. Q-

tips were soaked with 200 µl of sterile water or urine and presented inside 1 ml plastic tips 

taped to the cage wall. 5 min trials were videorecorded using a digital camera and Q-tip 

sniffing time was manually quantified using the Observer software (Noldus Information 

Technology, Wageningen, The Netherlands). 

Buried food test (2 months). Mice were food-deprived for 24h prior each day of testing. To 

assess motivation to eat, mice were transiently removed from their homecage and the feeder 

was filled back with food pellets (standard chow). To evaluate olfactory function, mice were 

placed in a new cage with 4 food pellets (standard chow) buried under 1 cm of bedding. 

During each test, the latency to eat was manually recorded (Yang and Crawley, 2009).   
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Sucrose preference. Female mice (4 month-old) were individually housed 4 days before the 

beginning of the experiment and underwent 48h of habituation with two bottles of tap water. 

On the first day of testing, animals were presented one bottle filled with 1% sucrose solution 

and one bottle of water during 24h. The day after, the 1% sucrose solution was replaced by 2 

% sucrose solution for another 24h. Finally, 3% sucrose solution was tested on the next day. 

Water and sucrose solution intakes were measured after every 24h and sucrose preference 

was calculated as the percentage of sucrose intake over total fluid intake. Bottle side was 

randomized and switched between the two days of test to control for any side bias. Based on 

female results, the procedure was repeated in males of another cohort (1.5 month-old) with a 

2 % sucrose solution.  

Hypothalamus-pituitary-adrenal (HPA) axis reactivity to stress (4.5 months). Mice were 

placed in perforated 50 ml falcons for 30 min and blood samples were collected from the tail 

vein at the beginning of the restraint stress (t0), as well as 30 min (t30, end of restraint), 60 

min (t60) or 120 min (t120) after the beginning of the stress. Blood samples were centrifuged 

(4000 rpm, 4°C) for 20 min and stored at -20°C until use. 

  

Molecular and biochemical analyses  

Corticosterone (CORT) radioimmunoassay. Total plasma CORT was measured with an 

in-house radio immunoassay, by competition between cold CORT (B) and 3H-B (B*) for a 

specific anti-CORT antibody, as previously described (Richard et al., 2010). The sensitivity of 

this assay is around 5 ng/ml. Intra- and inter assay variations were <15%. 

RNA extraction from brain tissues. 5 month-old mice were deeply anesthetized with 

isoflurane and killed by decapitation. Whole brains were collected and stored at -80°C until 

used. Micropunches (1 mm of diameter) of the medial prefrontal cortex (mPFC) (from +2.22 

to +1.42 mm; anterior-posterior from bregma (AP)), nucleus accumbens (NAc) (from +1.70 to 

+0.98 mm, AP) and dorsal hippocampus (dHPC) (from -1.46 to -2.3 mm, AP) were made in 

200 µm slices obtained using a cryostat (Leica) at -14°C. Total RNA was extracted using  

TRIzol (Fisher Scientific, France) according to the manufacturer’s protocol with slight 

modifications. The quality of total RNA was assessed on representative samples using RNA 

Nano chips on a Bioanalyzer 2100 (Agilent, Boeblingen, Germany). Samples had a RNA 

Integrity Number (RIN) score > 8.0. 300 ng of total RNA were reverse-transcribed using with 

Superscript III (Invitrogen, Cergy Pontoise, France) and random hexamers according to the 

manufacturer’s protocol. 

Stress-related gene expression. High throughput real time quantitative PCR was 

performed at the GeT‐TRiX facility (GénoToul, Génopole Toulouse Midi-Pyrénées) using 

Biomark (Fluidigm) according to manufacturer’s protocol. To avoid genomic DNA 

amplification, primer pairs were designed in two different exons (thus spanning an intron) 
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using the Primer Express software (PE APPLIED Biosystems, Courtaboeuf, France). 

Sequences of primers used are provided in Supplementary Table 1. The specificity of the 

PCR reaction was validated according to MIQE (Minimum Information for publication of 

Quantitative real time PCR Experiments) guidelines. Each cDNA was diluted (5 ng/µL) and 

used for target amplification. Primer pairs targeting all the genes of interest were pooled to a 

final concentration of 200nM for each primer pair. A multiplexed preamplification process was 

performed for the primers pool on every 1.25 µL of cDNA using 14 cycles of cDNA 

preamplification step (at 95°C for 15 s and at 60°C 4 min) and PreAmp Master Mix (Fluidigm) 

in a standard PCR thermocycler. Exonuclease I treatment (NEB) was performed to degrade 

excess primers then preamplified cDNA was diluted 1:5 in TE low EDTA (10 mMTris, 0.1 mM 

EDTA). Diluted cDNA (2 µL) was added to DNA Binding Dye Sample Loading Reagent 

(Fluidigm), EvaGreen (Interchim) and TE low EDTA to constitute Sample Mix plate. In Assay 

Mix plate, 2 µL of primer pairs (20 µM) were added to the Assay Loading Reagent (Fluidigm) 

and TE low EDTA to a final concentration of 5 µM. Following priming the chip in the 

Integrated Fluidic Circuit Controller, Sample Mix (5 µL) were loaded into the sample inlet 

wells, and Assay Mix (5 µl) were loaded into assay inlet wells. One well was loaded with 

water as a contamination control. To verify specific target amplification and qPCR process 

efficiencies, a sample control (human gDNA, Thermo Fisher) was treated, preamplified and 

quantified on assay control (RNasePTaqMan probe, Thermo Fisher) using the same process 

in same plate at the same time. The expected value of cycle quantification was around 13. 

The chip was placed into the IFC Controller, where 6.3nl of Sample Mix and 0.7nl of Assay 

Mix were mixed. Real-time PCR was performed on the Biomark System (Fluidigm) with 

protocol: Thermal Mix at 50 °C, 2 min; 70 °C, 30min; 25°C, 10min, UNG at 50°C, 2 min, Hot 

Start at 95°C, 10 min, PCR Cycle of 35 cycles at95 °C, 15 s; 60 °C, 60 s and Melting curves 

(to 60°C until 95°C). Results were analyzed using the Fluidigm Real-Time PCR Analysis 

software v.4.1.3. to control specific amplication for each primer then the raw results of the 

qPCR were analyzed using GenEx software (MultiD analyses AB) in order to choose the best 

reference gene to normalize mRNA expression and to measure the relative expression of 

each gene between groups. Beta-2 microglobulin (β2m) was found to be the best reference 

gene in this experiment and was thus used for normalization of gene expression. Expression 

of target genes was calculated by the delta-delta Ct method relative to expression in WT 

mice (foldchange). 

 

Immunohistochemistry 

Brain C-Fos immunomapping. Mice were killed either after 90 ± 20 min restraint stress or 

under basal conditions. After deep anesthesia (pentobarbital 500mg/kg, i.p.), they were 

intracardially perfused with 100 mL of 4% paraformaldehyde (PFA) and dissected brains 
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were stored in 4% PFA for 24h, transferred to 30% sucrose for 48h and finally stored in a 

cryoprotectant solution at -20°C. Serial coronal sections (40 µm) were obtained using a 

vibratome (Leica, Rueil Malmaison, France) and stored in a cryoprotectant solution at -20°C 

until use. Free-floating sections (40μm) were treated as previously described (Labrousse et 

al., 2009). The antibodies were a primary rabbit anti-c-Fos at 1:1000 (Sc520d, Santa Cruz 

Biotechnology, Santa-Cruz, CA, USA) and a secondary goat anti-rabbit at 1:2000 (Jackson 

152, Jackson ImmunoResearch, Suffolk, UK). The glucose oxidase-DAB-nickel method was 

used for the detection of C-FOS immunoreactive (IR) cells.  

Quantification of C-FOS-IR cell. NDPI images at x20 magnification were obtained at the 

Bordeaux Imaging Center (CNRS-INSERM and Bordeaux University, France BioImaging) 

using a digital slide scanner (Nanozoomer, Hamamatsu Photonics, Massy, France) and 

converted into TIFF format using ImageJ (http://imagej.nih.gov.gate2.inist.fr/ij/) and the 

NDPItools plugin (Deroulers et al., 2013). Regions of interest (ROI) were manually 

circumscribed using ROItools according to Paxinos and Franklin, 2001, as follows: mPFC 

(anterior cingulate dorsal, ACd; prelimibic, PrL and infralimibc, IL), bregma +1.98 to +1.18 

mm; cingulate cortex (CG1/2), bregma +1.18 to -0.10 mm; NAc (shell/core), bregma 1.94 to 

0.74 mm; paraventricular nucleus of the thalamus (PV), bregma-0.22 to -2.18 mm; 

paraventricular nucleus of the hypothalamus (PVN), bregma -0.70 to -1.22 mm; amygdala 

(basolateral, BLA and central, CeA), bregma -0.58 to -2.18 mm; dorsal hippocampus (cornu 

ammonis 1, CA1 and dentate gyrus, DG), bregma -1.22 to -2.18 mm; ventral hippocampus 

(CA1/DG), bregma -2.18 to -3.08 mm; nucleus tractus solitarius (NTS), bregma -7.92 to -8.24 

mm (Figure 5). The number of C-FOS-IR cells was automatically quantified in 8-bit 

thresholded images using the particle analysis function (size: 5-20 µm²; circularity: 0.5-1).  

The quantification of C-FOS-IR cells was carried out in 3-5 sections per animal for each area. 

Results expressed as C-FOS-IR cells per mm² were used for correlation analyses. 

Comparisons between groups were conducted on values normalized to the mean of WT 

basal animals (%). The experimenter remained blind to the treatment conditions throughout 

the analysis. 

 

Statistics 

All data were analyzed using Statistica 6.0 (Statsoft). Normality was assessed by Shapiro–

Wilk tests.  Student t-tests or Mann Whitney U tests were used to test the effects of genotype 

in males and in females according to the normality results. Two-way ANOVA with repeated 

measures (between-subjects factors: genotype; within-subject factor: beaker, urine or time) 

followed by Fisher’s LSD post-hoc tests were used to analyze sociability, female urine 

sniffing test and HPA axis response to stress. The effects of acute stress and genotype on C-

FOS immunoreactivity were analyzed by one-way Kruskal-Wallis ANOVA followed by Mann 

http://imagej.nih.gov.gate2.inist.fr/ij/
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Whitney U tests. C-FOS data for each group were also compared with chance level (100%). 

Spearman tests were used to examine C-FOS immunoreactivity correlations between brain 

areas. Statistical significance was set at p<0.05. Graphics were made using GraphPad Prism 

5 and Adobe Illustrator CS5.1 was used for artwork. Data are expressed as means ± SEM. 

 

RESULTS 

Tissue-specific expression of a constitutively-active MLCK within intestinal epithelial 

cells induces gut leakiness in males and females. 

Previous work has shown that female CA-MLCK mice exhibit gut leakiness compared with 

WT animals (Su et al., 2009; Edelblum et al., 2017). We first aimed to replicate this finding in 

both sexes (Figure 1). Gut permeability was significantly higher in CA-MLCK mice of both 

sexes compared with WT animals (Mann-Whitney U tests, males: U=20, p=0.0309; females: 

U=8.5, p=0.0340). There was no difference in body weight between groups of the same sex 

(data not shown).  

 

Tissue-specific expression of a constitutively-active MLCK within intestinal epithelial 

cells blunts sexual reward seeking and produces a hyper-response of the HPA axis to 

stress in males. 

Adult male and female WT and CA-MLCK mice underwent a battery of behavioral tests 

(Figure 2). We first explored anxiety-, despair- and anhedonia-like behaviors in WT and CA-

MLCK males (Figure 2a-d). There was no effect of genotype on the time spent in the light 

compartment of the light-dark box or in the open arms of the EPM (Student t test, all t(18)<1, 

n.s., Figure 2a,b), the time spent immobile in the TST (t(18)<1, n.s., Figure 2c), or the 

sucrose preference index (t(12)=1.32, n.s., Figure 2d). We then assessed sociability in an 

adapted version of the three-chamber test (Figure 2e). When animals were placed in the 

open-field containing a social target (familiar mouse) and an empty beaker in opposite 

corners, both genotypes spent more time exploring the mouse (two-way ANOVA with 

repeated measures, genotype effect: F(1,14)=0.04, n.s.; beaker effect: F(1,14)=17.00, 

p=0.0010; genotype x beaker effect: F(1,14)=0.56, n.s.). Of note, there was no difference in 

the time spent exploring the two empty beakers during habituation (genotype effect, beaker 

effect, genotype x beaker effect, all F(1.14)<1.5, n.s.; data not shown). Overall, these data 

suggest that male CA-MLCK mice display normal emotional behavior. However, in the urine 

sniffing test, which involves sexual reward seeking behavior, the time spent sniffing a cotton 

Q-tip soaked with urine or water varied according to the genotype (two-way ANOVA with 

repeated measures, genotype effect: F(1,18)=0.24, n.s., urine effect: F(1,18)=12.12, 
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p=0.0027, genotype x urine effect: F(1,18)=5.53, p=0.0303, Figure 2f). Only WT males 

exhibited a significant preference for estrus female urine versus water (Fisher LSD’s post-

hoc, WT-water vs WT-urine, p=0.0006), suggesting that CA-MLCK males are anhedonic as 

regards sexual rewards. This effect is likely not due to altered olfactory abilities as the 

latency to nose urine was similar between genotypes (WT: 12.4 ± 7.4 sec vs CA-MLCK: 18.1 

± 5.5 sec; Student t test, t(18)<1, n.s., data not shown). To further control for a potential 

olfactory bias, we conducted additional tests in 24h-fasted mice (Figure 2g,h). Mice were 

food deprived and the latency to eat was measured upon food reintroducing (visible food, 

Figure 2g). There was no difference between genotypes in the latency to eat (t(10)=1.50, 

n.s.), indicating that motivation to eat was not affected by intestinal CA-MLCK expression. 

Importantly, there was no difference in the latency to find food buried in their homecage 

bedding, providing additional evidence that CA-MLCK mice have normal olfaction (buried 

food, t(10)<1, n.s., Figure 2h). Finally, mice were tested for spatial memory in the Y-maze 

task (Figure 2i). Males of both genotypes spent significantly more time in the novel arm 

compared with chance levels after a 30 min inter-trial interval (ITI) (comparison with 33%, 

WT: t(9)=7.26, p<0.0001, CA-MLCK: t(9)=2.98, p=0.0154). However, after a 60 min ITI, only 

WT males displayed significant discrimination of the novel arm (WT: t(9)=3.62, p=0.0055, 

CA-MLCK: t(9)=1.10, n.s.), indicating that spatial memory is impaired in CA-MLCK mice in a 

more difficult task. These results suggest that gut permeability could play a role in the 

regulation of cognitive processes. 

We next explored HPA axis responsiveness to stress by measuring plasma CORT levels at 

baseline and following 30min of restraint stress (Figure 2j). Basal CORT levels were similar 

in both genotypes, whereas, at the end of restraint (T30min), plasma CORT was significantly 

higher in CA-MLCK versus WT males (two-way ANOVA with repeated measures, genotype x 

time effect: F(1,54)=3.54, p=0.0206, planned comparison WT vs CA-MLCK, T30, p=0.0458). 

This effect was not maintained after the end of the stress (T60 and T120, n.s.). Overall, the 

area under the curve (AUC) was larger in CA-MLCK versus WT males (Student t test, 

t(14)=2.27, p=0.0395) (Figure 2k). 

 

Tissue-specific expression of a constitutively-active MLCK within intestinal epithelial 

cells increases anxiety and produces anhedonia in females. 

Female CA-MLCK mice spent significantly less time in the light box (t(18)=2.13, p=0.0474, 

Figure 3a) and the open arms of the EPM (t(18)=3.50, p=0.0026, Figure 3b) compared with 

WT, suggesting that they are more ranxious. These effects were accompanied by a 

decreased sucrose preference for a 2% sucrose solution, but not 1 or 3% (2%: t(17)=2.12, 

p=0.0491, Figure 3d; 1 and 3%, data not shown) but no difference in immobility time in the 

TST (t(18)<1, n.s., Figure 3c). Surprisingly, in the sociability test, neither WT or CA-MLCK 
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females displayed significant preference for the social target versus the empty beaker 

(genotype effect, beaker effect, genotype x beaker effect: all F(1,14)<4.5, n.s., Figure 3e). 

However, CA-MLCK mice spent less time exploring the two empty beakers during 

habituation (genotype effect: F(1.14)=4.58, p=0.0505; beaker effect: F(1.14)<1, n.s.; 

genotype x beaker effect: F(1.14)=2.02, n.s.; data not shown), possibly reflecting their 

increased anxiety. In the Y-maze task, neither WT or CA-MLCK females significantly 

discriminated the new arm after a 30 min ITI (comparison with 33%, WT: t(9)=1.56, 

p=0.1528, n.s., CA-MLCK: t(9)=1.65, p=0.1330, n.s., Figure 3f). Together, our data suggest 

that the sociability test and the y maze task were not appropriate to assess social behavior 

and spatial memory in WT females under these conditions. 

Plasma CORT of CA-MLCK females was not changed after 30min of restraint relative to WT, 

but remained higher after stress cessation, suggesting that HPA axis negative feedback is 

impaired in CA-MLCK females (genotype x time effect: F(1,39)=1.02, n.s.; planned 

comparison WT vs CA-MLCK, T30, p=0.0539), (Figure 3g). Overall, the AUC tended to be 

increased in CA-MLCK versus WT females (t(13)=1.95, p=0.0726) (Figure 3h).  

 

Intestinal CA-MLCK expression alters stress-related gene expression in the mPFC, 

NAc and hippocampus in both sexes 

In order to gain insight into the molecular mechanisms underlying these effects, we analyzed 

mRNA expression of stress-related genes (Datson et al., 2008) in brain areas involved in 

emotional processes and stress regulation (Figure 4a,b, see legend for genes full names). 

Among 92 genes, we found 19 up-regulated genes (see Figure 3e for details) in the mPFC 

of male CA-MLCK mice relative to WT, 2 up-regulated (Sirt1 and Dynll1) and 2 down-

regulated (Ngf and Rheb) genes in the NAc and 1 down-regulated gene (Crhbp) in the dHPC 

(Mann-Whitney U tests, all p at least <0.05) (Figure 4a). In CA-MLCK females, 3 genes 

(Mtor, Lasp1 and Hsf1) were up-regulated and 1 gene (Ttr) was down-regulated in the 

mPFC; 15 genes were down-regulated in the NAc; 1 gene (Reln) was up-regulated and 2 

genes (Cox2 and Ttr) were down-regulated in the dHPC (all p at least <0.05) (Figure 4b). 

These target genes could possibly be involved in the behavioral and neuroendocrine 

alterations reported here. Overall, the impact of intestinal CA-MLCK expression seems to be 

greater in the mPFC (males) and the NAc (females) than in the other brain regions studied. 

Interestingly, most of the impacted genes in males were up-regulated, and most impacted 

genes in females were down-regulated, indicating marked differential effects between sexes, 

as reported for the behavior. Moreover, Rheb expression was altered in both the mPFC and 

the NAc in males. In females, Cox2, Tnfa and Ttr expression was altered in two brain regions 

out of the three tested. Overall, our results suggest that these genes could be important 

targets for gut-brain communication. 
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Tissue-specific expression of a constitutively-active MLCK within intestinal epithelial 

cells is associated with altered neuronal activation patterns in both sexes 

We then performed a brain mapping of neuronal activation after restraint stress in WT and 

CA-MLCK mice, using C-FOS immunolabeling (Figure 5, 6 and 7). In males of both 

genotypes, there was a marked increase in the number of C-FOS-IR cells following stress in 

the majority of the brain areas examined (comparison with 100%, all p at least <0.05, except 

dDG and vCA1, see detailed between group comparisons in Supplementary table 2) 

(Figure 6). However, WT males showed no increase of C-FOS expression in the dorsal DG 

and ventral CA1, whereas CA-MCLK males displayed neuronal activation in response to 

stress in these brain areas (Mann-Whitney U tests, CA-MLCK post-stress vs CA-MLCK 

basal, dDG p=0.0451 and vCA1 p=0.0635) (Figure 6l,o). Although there is no significant 

difference between genotypes in the post-stress condition, these data suggest that the 

hippocampus is a selected target of the gut-brain axis under genetic manipulation of 

intestinal permeability in male mice. Similarly, in females, stress induced massive C-FOS 

expression in the brain of both genotypes compared with the basal condition (all p at least 

<0.05, except dCA1, vDG and vCA1; see detailed between group comparisons in 

Supplementary table 3) (Figure 7). Importantly, WT females showed increased C-FOS 

response under stress in all the brain areas. In contrast, CA-MLCK females exhibited no 

increase of C-FOS expression in the dorsal and ventral DG (CA-MLCK post-stress vs CA-

MLCK basal, dDG p=0.6991 and vDG p=0.4286) (Figure 7l,n). Interestingly, C-FOS-IR cell 

numbers in basal conditions were increased in CA-MLCK mice relative to WT (CA-MLCK 

basal vs WT basal, dDG p=0.0931 and vDG p=0.0556). Furthermore, there was also greater 

basal C-FOS expression in the PV and PVN of CA-MLCK mice compared with WT (CA-

MLCK basal vs WT basal, PV p=0.0649 and PVN p=0.0411) (Figure 7h,i). Altogether with 

the male data, our findings suggest that the hippocampus, thalamus and hypothalamus are 

important targets of the gut-brain axis. 

We further explored how C-FOS expression in response to stress correlates between the 

different brain areas in WT and in CA-MLCK mice (Supplementary Figure 1, 

Supplementary Figure 2, Figure 6q,r and Figure 7q,r). In WT males, the vast majority of 

the brain regions studied correlate with each other, except the dDG and vCA1 (Figure 6q). In 

contrast, in CA-MLCK mice, these areas correlate with most brain regions, but the vDG does 

not (Figure 6r). In WT females, all areas except the NTS correlate with each other (Figure 

7q). Interestingly, the NTS only correlates with the vDG and vCA1. The latter correlations are 

lost in CA-MLCK females, while the NTS correlates with the other areas (Figure 7r). 

Moreover, the connectivity between the dDG and the rest of the brain is lost and that of the 

vDG is also dramatically weakened. Overall, our data suggest that CA-MLCK mice exhibit 
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altered brain connectivity post-stress in both males and females. Changes in the connectivity 

between WT and CA-MLCK mice for dHPC, vHPC and NTS are illustrated in 

Supplementary Figure 1 and Supplementary Figure 2. 

  

DISCUSSION 

There is mounting evidence that altered gut-brain communication could play a role in the 

onset and persistence of neuropsychiatric disorders. For instance, gastrointestinal symptoms 

are commonly found in major depressive disorder (Rios et al., 2017) or autism spectrum 

disorder (Buie et al., 2010). The role of gut microbiota in the neurobehavioral phenotypes 

associated with these pathologies has been elegantly demonstrated in animal models (Hsiao 

et al., 2013; De Palma et al., 2015; Kelly et al., 2016; Kim et al., 2017). Gut dysbiosis is often 

associated with gut leakiness, thus the behavioral alterations reported in a number of studies 

using germ-free animals or stress-induced dysbiosis could be mediated by impaired gut 

barrier function. Here, using transgenic mice with tissue-specific CA-MLCK expression within 

intestinal epithelia, we show for the first time that gut leakiness per se is sufficient to produce 

behavioral alterations in a sex-dependent manner. Specifically, we show that male CA-MLCK 

mice display reduced sexual reward seeking and spatial memory deficits while female CA-

MLCK are more anxious and exhibit decreased sucrose preference relative to WT mice. 

These behavioral changes are accompanied by exaggerated HPA axis response to restraint 

stress, stress-related gene expression changes in the brain and altered brain C-FOS 

immunoreactivity in both sexes. 

In previous studies, the link between manipulations of microbiota and anxiety-like behavior 

appeared as the most frequent and robust observation. However, most studies focus on 

males or pool males and females together for data analysis. Here, we report a causal effect 

of gut permeability on anxiety in females, but not in males. In addition, despite no change 

was observed in the TST, CA-MLCK females exhibited lower sucrose preference compared 

with WT. The exacerbated anxiety and depressive-like behavior in female CA-MLCK mice 

are particularly interesting with respect to the higher prevalence of anxiety and mood 

disorders, but also IBS, in women. On the other hand, our findings suggest that the impact of 

gut leakiness on male emotional behavior is limited. Decreased sexual reward seeking in the 

female urine sniffing test suggests that gut permeability and more generally gut-brain 

communication could play a role in sexual behaviors. A key finding in CA-MLCK males is the 

impaired spatial memory in the Y maze. Several studies have reported cognitive alterations 

in dysbiotic mice using spatial and non-spatial tasks (Gareau et al., 2011; Fröhlich et al., 

2016; Hoban et al., 2016). Future studies are needed to better document the cognitive 
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outcomes of intestinal CA-MLCK expression, that might be affected in a sex-dependent 

fashion as well.  

We sought for neurobiological correlates that might contribute to the behavioral changes 

induced by gut leakiness. Our findings reveal HPA axis disturbances in CA-MLCK mice of 

both sexes, although they are not affected in the same way. These results are consistent 

with previous findings showing that pharmacological MLCK inhibition prevents stress-induced 

neuroendocrine response to stress in rats (Ait-Belgnaoui et al., 2012). The sustained 

elevation in CORT levels observed in females suggests a deficit in negative feedback by 

glucocorticoids, while the increased CORT secretion at the end of the stress in males is likely 

independent of these feedback processes. Therefore, the molecular mechanisms underlying 

the altered HPA axis response to stress in males and females are presumably different. This 

hypothesis is supported by the cerebral gene expression and the C-FOS data reported here. 

Again, the impact of gut leakiness on cerebral expression of genes relevant for stress 

response revealed sex differences. Overall, mRNA expression was greatly affected in the 

mPFC of males and NAc of females, suggesting an important contribution of these brain 

areas in the respective behavioral alterations. Notably, there was an opposite effect of gut 

leakiness on mRNA expression of Cox1, Cox2, Cox3, Glut1, Rheb, Tnfa, Serpina6, 

Hsp90aa1 and Ace, that were upregulated in males’ mPFC but downregulated in females’ 

Nac. We previously reported that pharmacological MLCK inhibition normalized the stress-

induced increase in Crf and pro-inflammatory cytokine (interleukin (IL)-1b, IL-6 and tumor 

necrosis factor alpha (Tnfa)) mRNA expression in the hypothalamus in rats (Ait-Belgnaoui et 

al., 2012). Here, we show that MLCK overexpression in the gut produces mRNA expression 

changes, including Tnfa, in higher brain areas involved in the regulation of emotional 

behaviors. These data further document the causal link between MLCK activity and brain 

gene expression. Moreover, expression of the serotonin receptor Htr1a was increased in 

males’ mPFC. Interestingly, upregulation of Htr1a in the PFC has been reported in male 

rodents submitted to chronic stress (Iyo et al., 2009; Rincel et al., 2016), suggesting that gut 

leakiness exerts stress-like effects in male MLCK. It has been shown that HTR1A shapes 

serotonergic modulation of a functional circuit between the amygdala and mPFC (Fisher et 

al., 2011). Accordingly, it would be interesting to assess stress-related gene expression in 

the amygdala. 

In the present study, we have explored C-FOS immunoreactivity in several brain areas 

including the amygdala. No difference in neuronal activation was found in the mPFC or 

amygdala of CA-MLCK mice versus WT. Nevertheless, gut leakiness induced a shift in brain 

connectivity in both sexes. The hippocampus dDG and vCA1 subregions show very different 

profiles in males versus females, suggesting that this brain area could be involved in the 

differential effects of gut leakiness in males and females. Moreover, the effect of gut 
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leakiness on neuronal activation patterns is more pronounced in females than males. 

Especially, the increased basal C-FOS expression in the PVN, PV and DG in CA-MLCK 

females demonstrate that gut leakiness per se, without any exposure to stress, can alter 

brain function. It has been proposed that PVN overactivity in absence of stress may produce 

inadequate behaviors (Füzesi et al., 2016). Whether the observed patterns of neuronal 

activation could participate in the sex-dependent behavioral and endocrine effects of 

intestinal CA-MLCK expression remains to be demonstrated. Moreover, identification of the 

neuronal subpopulations involved in the C-FOS expression changes could provide insight 

into the molecular mechanisms underlying these changes as well as the possible link with 

the behavioral alterations.  

Gut leakiness is often concomitant with dysbiosis. Owing to the observed sex-differences in 

microbiota composition (Markle et al., 2013; Fransen et al., 2017), one can hypothesize that 

gut leakiness has differential effects on gut bacterial communities in males and females. A 

limitation of the present study is the lack of data as regards gut microbiota composition. 

However, our work provides, to our knowledge, the first proof-of-concept that gut 

permeability can causally affect brain and behavior. Further studies are needed to unravel 

the molecular mechanisms underlying this gut-brain communication. Whether CA-MLCK 

mice exhibit gut dysbiosis or not, the increased gut permeability implies more passage of 

bacterial products in the lamina propria. Su and colleagues previously reported no increase 

in circulating endotoxin levels in CA-MLCK mice (Su et al., 2009). Nevertheless, these mice 

display mucosal immune activation including increased production of interferon-gamma 

(IFNg) and Tnf as well as increased T-bet/Gata-3 ratio indicative of type 1 T-helper cell 

polarization. Whether this local inflammation could in turn induce neuroinflammation in the 

brain remains to be determined. In line with this hypothesis, we report increased Tnfa mRNA 

in the mPFC of both male and female CA-MLCK in basal conditions. In contrast, Tnfa 

expression is decreased in the NAc of CA-MLCK females. It would be interesting to explore 

the effects of an immune challenge (e.g. LPS injection) on Tnfa and other neuroinflammatory 

markers including glial activity in the brain of CA-MCLK mice. In addition, intestinal CA-MLCK 

expression could lead to impaired blood-brain barrier function. Indeed, blood-brain barrier 

permeability has been shown to be influenced by the gut microbiota (Braniste et al., 2014). 

Overall, our work provides new insight into the mechanisms of gut-brain communication and 

suggests that intestinal permeability should be taken into account in both animal and human 

studies. Our findings may have implications for the numerous conditions associated with gut 

leakiness including stress, psychiatric disorders and IBS, but also obesity, diabetes and other 

metabolic diseases (Bischoff et al., 2014; Slyepchenko et al., 2016), in which psychiatric 

comorbidities have been described (Bornstein et al., 2006; Luppino et al., 2010; Oladeji and 

Gureje, 2013; Holt et al., 2014). 
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FIGURE 1 
 
Fig 1. Increased gut permeability in male and 

female CA-MLCK mice. In vivo paracellular 

permeability to FITC (ng/ml) in males (N=14 WT and 

8 CA-MLCK) (a) and females (N=5 WT and 10 CA-

MLCK) (b). FITC concentration is expressed per 

gram of body weight. Data are mean ± SEM. Mann-

Whitney U tests: *p<0.05 versus WT. 

 
 
 
 
 
 
 
 
FIGURE 2 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig 2. Male CA-MLCK mice display sexual reward-seeking impairment. (a) Time (s) 

spent in the light box of the light-dark apparatus over 10 min of test (N=10 per group). (b) 

Time (%) spent in the open arms of the EPM over 5 min of test (N=10 per group). (c) Time(s) 

spent immobile in the TST over 6 min (N=10 per group). (d) 24h-sucrose preference (% 
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sucrose intake over total fluid intake) in free choice condition with water and 2% sucrose 

solution (N=6-7 per group). (e) Time (s) spent exploring the empty beaker or the beaker 

containing a mouse during a 5 min three-chamber-like sociability test (N=8 per group). (f) 

Time (s) spent sniffing a water- or estrus-female-urine-filled Q-tip over 3 min in the female 

urine sniffing test (N=10 per group). Latency (s) to eat visible (g) or buried (h) food pellets 

after 24h of food-deprivation (N=6 per group). (i) Time (%) spent in the novel arm of the y 

maze during the restitution phase, 30 or 60 min following acquisition (N=10 per group). (j) 

Plasma CORT (ng/ml) at 0, 30, 60 and 120 min in response to 30 min of restraint stress and 

(k) area under the curve (N=8 per group). Data are mean ± SEM. *p<0.05, **p<0.01 and 

***p<0.001 (Fisher LSD’s post-hoc test in f; comparison with 33% in i; planned comparison in 

j; Student t-test in k). ITI, inter-trial interval. 

 
 
 
 
 
 
FIGURE 3 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
Fig 3. Female CA-MLCK mice exhibit increased anxiety and anhedonia. (a) Time (s) 

spent in the light box of the light-dark apparatus over 10 min of test (N=10 per group). (b) 

Time (%) spent in the open arms of the EPM over 5 min of test (N=10 per group). (c) Time(s) 

spent immobile in the TST over 6 min (N=10 per group). (d) 24h-sucrose preference (% 

sucrose intake over total fluid intake) in free choice condition with water and 2% sucrose 

solution (N=10 per group). (e) Time (s) spent exploring the empty beaker or the beaker 

containing a mouse during a 5 min three-chamber-like sociability test (N=8 per group). (f) 

Time (%) spent in the novel arm of the y maze during the restitution phase, 30 min following 

acquisition (N=7 per group). (g) Plasma CORT (ng/ml) at 0, 30, 60 and 120 min in response 

to 30 min of restraint stress and (h) area under the curve (N=7-8 per group). Data are mean 

± SEM.  *p<0.05, **p<0.01 and ***p<0.001 (Student t-test in a,b, d and h; comparison with 

33% in f; planned comparison in g). 
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FIGURE 4 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig 4. Tissue-specific CA-MLCK expression within intestinal epithelial cells leads to 

altered brain gene expression in males and females. mRNA expression (fold change) in 

the medial prefrontal cortex (mPFC), nucleus accumbens (NAc) and dorsal hippocampus 

(dHPC) of male (a) and female (b) mice. All data are expressed relative to the housekeeping 

gene Beta-2-microglobulin (B2m). Each row represents a single gene (n=6-9 per 

group).Down-regulation is shown in blue whereas up-regulation is shown in red; white color 

represents unaltered gene expression. Samples that failed the quality control as well as 

statistically significant outliers were excluded from analyses and are colored in black. Only 

significant changes are shown in this figure (Mann-Whitney U tests). Among the 92 genes 

tested, mRNA expression of 19 genes in the mPFC, 4 genes in the NAc and 1 gene in the 

dHPC was significantly altered by genotype in males; 4 genes in the mPFC, 15 genes in the 

NAc and 3 genes in the dHPCof females (at least p<0.05).*p<0.05 versus WT (in a and c: 

Planned comparisons, in b and d: Student t-tests). Ace, Angiotensin converting enzyme; 

Apoe, Apolipoprotein E; Bdnf, Brain-derived neurotrophic factor; Ccl5, C-C motif chemokine 

ligand 5; Cnr1, Cannabinoid receptor 1; Cox1, Cytochrome c oxidase subunit 1; Cox2, Cox 

subunit 2; Cox3, subunit 3; Crf, Corticotropin releasing factor; Crhbp, Crf-binding protein; 

Csnk1a1, Casein kinase 1 alpha 1; Cytb, Cytochrome B; Dynll1, Dynein light chain LC8-type 

1; Egr1, Early growth response protein 1; Fkbp5, FK506 (tacrolimus)-binding protein 5; 

Gabra4, Gamma-aminobutyric acid (GABA) type A receptor alpha 4; Glut1, Glucose 

transporter 1; Gpx1, Glutathione peroxidase 1; Gss, Glutathione synthetase; Hsf1, Heat 

shock factor 1; Hsp70, Heat shock protein family A; Hsp90aa1, Heat shock protein 90 alpha 

family class A member 1; Htr1a, 5-hydroxytryptamine (serotonin) receptor 1A; Ido1, 

Indoleamine 2,3-dioxygenase 1; Igf1, Insulin like growth factor 1; Igf2, Insulin like growth 

factor 2; Igfbp3, Igf-binding protein 3; Lasp1, Lin11/Isl1/Mec3 (LIM) and sarcomatoid renal 

carcinoma (Src) homology 3 domain (SH3) protein 1; Mtor, Mechanistic target of rapamycin 

kinase; Ngf, Nerve growth factor; Pafah1b1, Platelet-activating factor acetylhydrolase, 
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isoform 1b, subunit 1; Pfn1, Profilin 1; Pparg, Peroxisome proliferator-activated receptor 

gamma; Reln, Reelin; Rheb, Ras homolog enriched in brain; Rora, Retinoic acid receptor 

(Rar) related orphan receptor A; Rxra, Retinoid X receptor alpha; Rxrb, Retinoid X receptor 

beta; Serpina6, Serpin family A member 6; Sirt1, Sirtuin 1; Socs3, Suppressor of cytokine 

signaling 3; Sod3, Superoxide dismutase 3; Tnfa, Tumor necrosis factor alpha; Ttr, 

Transthyretin. (For interpretation of the references to color in this figure legend, the reader is 

referred to the web version of this article.) 

 

FIGURE 5. 
Fig 5. C-FOS immunomapping 

in the brain of WT and CA-

MLCK mice. Regions of interest 

(ROI) (a-f) and representative 

images of C-FOS 

immunoreactivities in basal (g-o) 

and post-stress conditions (p-x). 

Acd, PrL and IL(mPFC) (a,g,p), 

CG1 and CG2 (b,h,q), NAccore 

and shell (b,i,r), PV (c,j,s), PVN 

(c,k,t), dCA1 and dDG (d,l,ur), 

BLA and CeA (d,m,vr), vCA1 and 

vDG (e,n,w) and NTS (f,o,x). ROI 

are colored in red and ventricles in 

black. All images are from male 

mice except for the NTS in o and 

x. Scale bars represent 200 µm. 

Acd, Anterior cingulate dorsal; 

PrL, Prelimbic cortex; IL, 

Infralimbic cortex; CG, Cingulate 

cortex; LV, Lateral ventricle; NAc 

c, Nucleus accumbens core; NAc 

s, Nucleus accumbens shell; PV, 

Paraventricular nucleus of the 

thalamus; 3V, 3rd ventricle; PVN, 

Paraventricular nucleus of the 

hypothalamus; BLA, Basolateral 

amydgdala; CeA, Central 

amygdala; dDG, dorsal dentate 

gyrus; dCA1, dorsal cornu 

ammonis of the hippocampus; 

vDG, ventral dentate gyrus; vCA1, 

ventral cornu ammonis of the 

hippocampus; NTS, Nucleus of 

the tractus solitaris; CC, Central 

canal. 
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FIGURE 6 
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Fig 6. Intestinal CA-MLCK expression alters hippocampal c-fos expression following 
restraint stress in males. C-FOS expression (number of C-FOS-IR cells per mm²) in the 
mPFC (a-c), CG (d-e), NAc (f-g), PV (h), PVN (i), amygdala (j-k), hippocampus (l-o) and 
NTS (p) in basal conditions or following 1hr of restraint stress. Data are expressed as 

percentage of the WT basal group (dashed line).Overall, stress induces marked C-FOS 
expression in the brain of both genotypes. Interestingly, WT males show no increase of C-
FOS expression in the dorsal DG and ventral CA1, whereas CA-MCLK males display 
neuronal activation in response to stress in these brain areas. Data are mean ± SEM. 
Comparison with 100%: *p<0.05, **p<0.01, ***p<0.001. Correlation heatmaps (Spearman R 
values) based on neuronal activation in the different regions of interest in WT (q) and CA-
MLCK (r) males. Dark red represents strongest correlations (R=1) whereas white illustrates 
the absence of correlation (R=0). N=6 per group. Acd, Anterior cingulate dorsal; PrL, 

Prelimbic cortex; IL, Infralimbic cortex; CG, Cingulate cortex; NAc c, Nucleus accumbens 
core; NAc s, Nucleus accumbens shell; PV, Paraventricular nucleus of the thalamus; PVN, 
Paraventricular nucleus ofthe hypothalamus; BLA, Basolateral amydgdala; CeA, Central 
amygdala; dDG, dorsal dentate gyrus; dCA1, dorsal cornu ammonis of the hippocampus; 
vDG, ventral dentate gyrus; vCA1, ventral cornu ammonis of the hippocampus; NTS, 
Nucleus of the tractus solitarius. (For interpretation of the references to color in this figure 
legend, the reader is referred to the web version of this article.) 
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FIGURE 7 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



23 
 

Fig 7. Intestinal CA-MLCK expression alters basal C-FOS expression in the PV, the 
PVN and the DG in females. C-FOS expression (number of C-FOS-IR cells per mm²) in the 
mPFC (a-c), CG (d-e), NAc (f-g), PV (h), PVN (i), amygdala (j-k), hippocampus (l-o) and 
NTS(p) in basal conditions or following 1hr of restraint stress. Data are expressed as 

percentage of the WT basal group (dashed line). Overall, stress induces marked C-FOS 
expression in the brain of both genotypes. Interestingly, CA-MLCK females show no increase 
of C-FOS expression in the dorsal and ventral DG whereas WT females display neuronal 
activation in response to stress in these brain areas. In basal conditions, there is a greater C-
FOS expression in the PV, PVN and dorsal and ventral DG of CA-MLCK mice compared with 
WT. Data are mean ± SEM. Comparison with 100%: *p<0.05, **p<0.01, ***p<0.001. 
Correlation heatmaps (Spearman R values) based on neuronal activation in the different 
regions of interest in WT (q) and CA-MLCK (r) females. Dark red represents strongest 
correlations (R=1) whereas white illustrates the absence of correlation (R=0). N=6 per group. 
Acd, Anterior cingulate dorsal; PrL, Prelimbic cortex; IL, Infralimbic cortex; CG, Cingulate 
cortex; NAc c, Nucleus accumbens core; NAc s, Nucleus accumbens shell; PV, 
Paraventricular nucleus of the thalamus; PVN, Paraventricular nucleus ofthe hypothalamus; 
BLA, Basolateral amydgdala; CeA, Central amygdala; dDG, dorsal dentate gyrus; dCA1, 
dorsal cornu ammonis of the hippocampus; vDG, ventral dentate gyrus; vCA1, ventral cornu 
ammonis of the hippocampus; NTS, Nucleus of the tractus solitarius. (For interpretation of 
the references to color in this figure legend, the reader is referred to the web version of this 
article.) 
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SUPPLEMENTARY INFORMATION 

Supplementary Table 1. Primer list for brain gene expression. 

 

 

 

 

 

Genes Forward Primers 5'-3' Reverse Primers 5'-3'
Amplicon

size (bp)

Ace AGTTGCCCGGAATGAAACCC ACTGGAACTGCAGCACAAAGC 104

Apoe TGCGAAGATGAAGGCTCTGTG GGTTGGTTGCTTTGCCACTC 111

B2m AGTTAAGCATGCCAGTATGGCC TCTCGATCCCAGTAGACGGTCT 51

Bdnf CACAATGTTCCACCAGGTGAGA GCCTTCATGCAACCGAAGT 81

Bdnf IV CAGAGCAGCTGCCTTGATGTT GCCTTGTCCGTGGACGTTTA 150

Cat TGCCGTTCGATTCTCCACAG AGGGGTGTTGTTTCCCACAAG 127

Ccl5 CACTCGGTCCTGGGAAAATG TGCTGATTTCTTGGGTTTGCTG 70

Cd11c AACCCCGTCCCTCTTATCGT GGGTCCCGTCTGAGACAAAC 151

Cnr1 CCTGGGAAGTGTCATCTTTGTCT GGTAACCCCACCCAGTTTGA 99

Cox1 CAAAAGCCCACTTCGCCATC GAAAGGCCCAGGAAATGTTGAG 73

Cox2 CCGAGTCGTTCTGCCAATAGAA TGATTTAGTCGGCCTGGGATG 123

Cox3 AACCCTTGGCCTACTCACCAA TGGCCTTGGTAGGTTCCTTCA 81

Crebbp TCTCCGCGAATGACAACACAG ACGCAGCATCTGGAACAAGG 126

Crf AAAGCAGATGGGAGTCATCCA TCTTCCACTGCAGCTCCAAA 51

Crhbp TGGTTCCATACCAGCACCAAAAC AGCTCCACAAAGTCACCAGTCC 148

Csnk1a1 CGTCGGTGGAAAATACAAACTGG TCTCGTACAGCAACTGGGGATG 146

Cx3cr1 CCCATCTGCTCAGGACCTCACC CGCCCAAATAACAGGCCTCAGC 98

Cytb CCCGATTCTTCGCTTTCCAC CCTGTTGGGTTGTTTGATCCTG 103

Dncic1 AACTTCGTGGTTGGCAGTGAG ACCGATGCCTGCTTTGCTTC 72

Dynll1 ATCGAGAAGGATATTGCGGCCC TTTCGGCCCACAATGCAGTG 83

Erk1 TCCCCATAGCCTGAGTGATGAG CCATTCCAGAACGGTCTACCAGA 102

Fkbp1a TCCTCTCGGGACAGAAACAAGC AGTTTGGCTCTCTGACCCACAC 110

Fkbp5 CAAACCCAAACGAAGGAGCAAC TCCCCAACAACGAACACCAC 97

Fos B GGGATCTTGCAGAGGGAACTTG TGGCCGAGTGGAATGAGATG 130

G6pd GCAGTCACCAAGAACATTCAAGAG CACGATGATGCGGTTCCA 63

Gabra4 TCCCCAGGACAGAACTCAAAGG AACAGGACCCCCAAATCCAG 117

Galnt9 GAACGTGTACCCCGAGATGAG GCCGCTAGCTTTGCTGTTTC 76

Glut1 TCGTCGTTGGCATCCTTATTG TGCATTGCCCATGATGGA 59

Glut4 TCCCTTCAGTTTGGCTATAACATTG CTACCCAGCCACGTTGCATT 86

Gpm6a ACTGCTGGAGACACACTGGATG AAGAAAGCAGCCGCAATGCC 80

Gpx1 TCGGACACCAGAATGGCAAG AGGAAGGTAAAGAGCGGGTGAG 142

Gss CCGACACGTTCTCAATGTCCTG TCCCTTGCTGGGGTTATTGG 73

Hacd2 GTCATTGCCTGGACAATCACGG TCCCATTGGGTACAGCACGATG 126

Hsd11b1 GGAAGGTCTCCAGAAGGTAGTGTC GAGGCTGCTCCGAGTTCAAG 51

Hsf1 TGGCCATGAAGCACGAGAAC TTTGCTGCTGGGCATGCTTC 75

Hsf2 CCGGGCTAACAATGAAGCAG TCGTTGGTGTGGGTTTCCTC 85

Hsp70 GGGCATCGACTTCTACACATCC TCTGCGCCTTGTCCATCTTG 125

Hsp90aa1 TGGCAGTAAAGCATTTTTCTGTTG AGCGCGTCTTGGGACAAA 71

Htr1a TCACTTGGCTCATTGGCTTTC GCGCCAGCCCAGCAT 53

Ido1 ACGACATAGCTACCAGTCTGGAGAA AAACGTGTCTGGGTCCACAAA 77

Igf1 ACTTCAACAAGCCCACAGGC TCTGAGGTGCCCTCCGAAT 51

Igf2 TCGGAGGCCACAAAAGATGG TCCCCCAAATGCTCAGAAGG 127

Igfbp3 TAAGAAGAAGCAGTGCCGCC ACGCTGAGGCAATGTACGTC 126

Itpr1 ATCGGCCACCAGTTCCAAAG AGCCAAGTAATGCCCTGTAGCC 127

Kif5c ATGTAAAGGGGTGCACCGAGAG ACGTGTCGGTTTGCTTTGCC 85

Lasp1 TCAAGCAACAGAGCGAGCTG ACCACGCTGAAACCTTTGCC 82

Limk1 TCCGAGCACATCACCAAAGG AGGCGAGGCAGATGAAACAC 79

Maoa TGAGGTATCTGCCCTGTGGTTC CCCCAAGGAGGACCATTATCTG 146

Map1b TCAGATGAAGCCGTCAGCACTG AGCACCAGCAGTTTATGGCG 71

Mapk1 AGCTAACGTTCTGCACCGTG TGATCTGGATCTGCAACACGGG 108

Me1 TGACCAAGGGACGTGCAA GGGAGAGTGACTGGATCAAAAGG 58

Htr2c TGCTGATATGCTGGTGGGACTA CTAGGTAAAGGCCAGACATAATCATAAA 81
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Ace, Angiotensin converting enzyme; Apoe, Apolipoprotein E; B2m, Beta-2-microglobulin; Bdnf, Brain-derived 

neurotrophic factor; Bdnf IV, Bdnf exon IV; Cat, Catalase; Ccl5, C-C motif chemokine ligand 5; Cd11c, 

Complement component 3 receptor 4 subunit (Itgax); Cnr1, Cannabinoid receptor 1; Cox1, Cytochrome c oxidase 

subunit 1; Cox2, Cox subunit 2; Cox3, Cox subunit 3; Crebbp, C-adenosine monophosphate (AMP) response 

element-binding protein-binding protein; Crf; Corticotropin releasing factor; Crhbp; Crf-binding protein; Csnk1a1, 

Casein kinase 1 alpha 1; Cx3cr1, C-X3-C motif chemokine receptor 1; Cytb, Cytochrome B; Dncic1, Dynein 

cytoplasmic 1 intermediate chain 1 (Dync1i1); Dynll1, Dynein light chain LC8-type 1; Erk1, mitogen-activated 

protein kinase 3 (Mapk3); Fkbp1a, FK506 (Tacrolimus)-binding protein 1a; Fkbp5, FK506-binding protein 5; Fos 

B, Finkel–Biskis–Jinkins (FBJ) murine osteosarcoma viral oncogene homolog B; G6pd, Glucose-6-phosphate 

dehydrogenase; Gabra4, Gamma-aminobutyric acid (GABA) type A receptor alpha 4; Galnt9, Polypeptide N-

acetylgalactosaminyltransferase 9; Glut1, Glucose transporter 1; Glut4, Glucose transporter 4; Gpm6a, 

Glycoprotein M6A; Gpx1, Glutathione peroxidase 1; Gss, Glutathione synthetase; Hacd2, 3-hydroxyacyl-CoA 

dehydratase 2; Hsd11b1, Hydroxysteroid 11-beta dehydrogenase 1; Hsf1, Heat shock factor 1; Hsf2, Heat shock 

factor 2; Hsp70, Heat shock protein family A; Hsp90aa1, Heat shock protein 90 alpha family class A member 1; 

Htr1a, 5-hydroxytryptamine (serotonin) receptor 1A; Htr2c, Serotonin receptor 2C; Ido1, Indoleamine 2,3-

dioxygenase 1; Igf1, Insulin like growth factor 1; Igf2, Insulin like growth factor 2; Igfbp3, Igf-binding protein 3; 

Itpr1, Inositol 1,4,5-trisphosphate receptor, type 1; Kif5c, Kinesin family member 5C; Lasp1, Lin11/Isl1/Mec3 (LIM) 

Mhc II GCTCTCGGAGACCTATGACG ACAGGCAAACCTCTGGACAC 210

Me3 GACAAGGGCCACATTGCAA ACCACCACAGCCTTAATATTGTCTT 65

Mtor TGGGTGCTGACCGAAATGAG TCCCACACAGCCACAAAAATG 133

Nfkb1 GCCAGCTTCCGTGTTTGTTC GGCGTTTCCTTTGCACTTCC 116

Nfkb2 TGCGCTTCTCAGCTTTCCTTC AACCCGCTGTCTTGTCCATTC 141

Ngf ATCAAGGGCAAGGAGGTGACAG GAGTTCCAGTGTTTGGAGTCGATG 143

Ngf1a AGCCGAGCGAACAACCC TGTCAGAAAAGGACTCTGTGGTCA 51

Nr3c1 GTGGAAGGACAGCACAATTACCT GCGGCATGCTGGACAGTT 87

Nr3c2 GCCGTGGAAGGACAACACA CCTAAGTTCATGCCGGCTTG 125

Nr4a1 CTGCCTTCCTGGAACTCTTCA CGGGTTTAGATCGGTATGCC 51

Nsf GCATTTGCTTCTCGGGTGTTC TGCCAATCTGTCGAGCCAAG 124

Pafah1b1 GATGTGGGAAGTGCAAACTGG CTGATTTGGCCGCACCATAC 82

Per1 TGTCCTGCTGCGTTGCAAAC TTGAGACCTGAACCTGCAGAGG 150

Per2 GCTGGCAACCTTGAAGTATGC TGGTAGTACTCCTCATTAGCCTTCAC 66

Pfn1 ATCGTAGGCTACAAGGACTCGC AACCTCAGCTGGCGTAATGC 81

Pgd CATCTCGGCGCTGGAGTAC GCACCGAGCAAAGACAGCTT 64

Pparg CAAGAATACCAAAGTGCGATCAAA AGCTGGGTCTTTTCAGAATAATAAGG 68

Ppargc1a GTCTTAGCACTCAGAACCATGCA CCATGAATTCTCGGTCTTAACAATG 83

Ppargc1b TGAGGTGTTCGGTGAGATTGTAGA AAGGTGATAAAACCGTGCTTCTG 78

Prex1 TCCGACAAGCAGGACAAACTTC TCATGGGGAAATGCCTGGTC 127

Rarb CCGCCTGCTTGGATATCTTG GTGTAAGGCCATCAGAGAAAGTCA 87

Rarg CCCAAGGATGCTGATGAAAATC GCCCTTTCTGCTCCCTTAGTG 63

Reln AGTACTCAGATGTGCAGTGGGCAA AG CGCTCCTTCAGGAAAGTCTTCA 171

Rheb CACCAAGATGCCTCAGTCCAAG ATGAGGACTTTCCCACAGACCG 71

Rora GGAATCCATTATGGTGTCATTACG GTGGCATTGCTCTGCTGACTT 74

Rxra CCATCTTTGACAGGGTGCTAACA ATCTGCATGTCACGCATCTTAGAC 55

Rxrb GCGCCAGCGGAATCG AACCGCCTCCCTTTTCATG 73

Serpina6 AGCAGACGACCTGGTCAACC GACAGGTATACAGGGCAAGCG 51

Sgk1 CGTCAAAGCCGAGGCTGCTCGAAGC GGTTTGGCGTGAGGGTTGGAGGAC 279

Sgk1.1 GAAGGCGGATCGGGATACAGATGCAGTAA GGTTTGGCGTGAGGGTTGGAGGAC 644

Sirt1 AGACCCTCAAGCCATGTTTG ACACAGAGACGGCTGGAAC 105

Sirt2 TCCACTGGCCTCTATGCAAACC TTGGCAAGGGCAAAGAAGGG 110

Slc6a4 TCGCCAGAGCACATCCAAAG TTTTGCCCGTTCCAAGAGAAG 131

Socs3 AGCAGATGGAGGGTTCTGCTTTGT ATTGGCTGTGTTTGGCTCCTTGTG 112

Sod1 TTGGCCGTACAATGGTGGTC GCAATCCCAATCACTCCACAG 118

Sod3 TTCCCAGTGAGCACCTTTGAG AAGGGGGCAGAAGGAAATGG 77

Stat3 GAAACTTAATGAAGAGTGCCTTCGT CCGGTCCGGGTGCAT 65

Tgfb1 TTGCTTCAGCTCCACAGAGA TGGTTGTAGAGGGCAAGGAC 183

Tnfa ATGATCCGCGACGTGGAA ACCGCCTGGAGTTCTGGAA 73

Ttr CACTTGGCATTTCCCCGTTC TCTCAATTCTGGGGGTTGCTG 145

Ttyh1 TGGCAAAGCAGAGCAAATGG TAGAACCCCAGCTCAGGACAAG 78
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and sarcomatoid renal carcinoma (Src) homology 3 domain (SH3) protein 1; Limk1, LIM domain kinase 1; Maoa, 

Monoamine oxidase A; Map1b, Microtubule-associated protein 1B; Mapk1, mitogen-activated protein kinase 1; 

Me1; Malic enzyme 1; Me3, Malic enzyme 3; Mhc II, Major histocompatibility complex, class II; Mtor, Mechanistic 

target of rapamycin kinase; Nfkb1, nuclear factor kappa B subunit 1; Nfkb2, Nfkb subunit 2; Ngf, Nerve growth 

factor; Ngf1a, Early growth response protein 1 (Egr-1); Nr3c1, Nuclear receptor subfamily 3 group C 

(glucocorticoid receptor) member 1; Nr3c2, Glucocorticoid receptor member 2; Nr4a1, Nuclear receptor subfamily 

4 group A member 1; Nsf, N-ethylmaleimide sensitive factor; Pafah1b1, Platelet-activating factor acetylhydrolase, 

isoform 1b, subunit 1; Per1, Period circadian regulator 1; Per2, Period circadian regulator 2; Pfn1, Profilin 1; Pgd, 

Phosphogluconate dehydrogenase; Pparg, Peroxisome proliferator-activated receptor gamma; Ppargc1a, Pparg 

coactivator 1 alpha; Ppargc1b, Prex1, Phosphatidylinositol-3,4,5-trisphosphate dependent Ras-related C3 (Rac) 

exchange factor 1; Rarb, Retinoic acid receptor beta, Rarg, Retinoic acid receptor gamma; Reln, Reelin; Rheb, 

Ras homolog enriched in brain; Rora, Rar related orphan receptor A; Rxra, Retinoid X receptor alpha; Rxrb, 

Retinoid X receptor beta; Serpina6, Serpin family A member 6; Sgk1, Serum/Glucocorticoid Regulated Kinase 1; 

Sgk1.1,  Serum/glucocorticoid regulated kinase 1, brain isoform; Sirt1, Sirtuin 1; Sirt2, Sirtuin 2; Slc6a4, solute 

carrier family 6 member 4 (serotonin transporter); Socs3, Suppressor of cytokine signaling 3; Sod1, Superoxide 

dismutase 1; Sod3, Superoxide dismutase 3; Stat3, Signal transducer and activator of transcription 3; Tgfb1, 

Transforming growth factor beta 1; Tnfa, Tumor necrosis factor alpha; Ttr, Transthyretin; Ttyh1, Tweety family 

member 1. 
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Supplementary Table 2. Detailed statistics for C-Fos data in males. One-way Kruskal-Wallis ANOVAs were 

followed by Mann-Whitney U between group tests. N=6 per group. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Supplementary Table 3. Detailed statistics for C-Fos data in females. One-way Kruskal-Wallis ANOVAs were 

followed by Mann-Whitney U between group tests. N=6 per group. 
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SUPPLEMENTARY FIGURES 

Supplementary Figure 1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Supplementary Fig 1. Shift in coactivated brain areas in male CA-MLCK mice. Correlation patterns 

(Spearman R values) based on neuronal activation (C-Fos-IR cells) in the different regions of interest in WT (a,c-

e) and CA-MLCK (b,d,f) males. N=6 per group. Dark red represents strongest correlations (R=1) whereas white 

illustrates the absence of correlation (R=0). Correlation strength between neuronal activation in the dorsal 

hippocampus and the other brain areas in WT (c) and CA-MLCK (d) males. Correlation strength between 

neuronal activation in the ventral hippocampus and the other brain areas in WT (e) and CA-MLCK (f) males. 

Correlation strength between neuronal activation in the NTS and the other brain areas in WT (g) and CA-MLCK 

(h) males. Red color is used when the correlation is statistically significant (p value); grey color is used for non 

significant correlations. Thickest segments represents strongest correlations (R value). In WT males, the dHPC 

only correlates with the NAc and PV, whereas in CA-MLCK mice it also correlates with the mPFC, CG, AMY and 

vHPC. In contrast, the vHPC correlates with the NTS, mPFC, CG, NAc and AMY in WT, but NTS and AMY 

correlations are lost in CA-MLCK, whereas the PV and dHPC are recruited in the circuit. Finally, the NTS 

correlates with all except the dHPC in WT, but only with the mPFC, NAc and PVN in CA-MLCK. mPFC, medial 

prefrontal cortex; CG, Cingulate cortex; NAc, Nucleus accumbens; PV, Paraventricular nucleus of the thalamus; 

PVN, Paraventricular nucleus ofthe hypothalamus; AMY, Amydgdala; dHPC, dorsal hippocampus; vHPC, ventral 

hippocampus; NTS, Nucleus of the tractus solitarius. (For interpretation of the references to color in this figure 

legend, the reader is referred to the web version of this article.) 
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Supplementary Figure 2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Supplementary Fig 2. Shift in coactivated brain areas in female CA-MLCK mice. Correlation heatmaps 

(Spearman R values) based on neuronal activation (C-Fos-IR cells) in the different regions of interest in WT 

(a,c,e) and CA-MLCK (b,d,f) females. N=6 per group. Dark red represents strongest correlations (R=1) whereas 

white illustrates the absence of correlation (R=0). Correlation strength between neuronal activation in the dorsal 

hippocampus and the other brain areas in WT (a) and CA-MLCK (b) females. Correlation strength between 

neuronal activation in the ventral hippocampus and the other brain areas in WT (c) and CA-MLCK (d) females. 

Correlation strength between neuronal activation in the NTS and the other brain areas in WT (e) and CA-MLCK (f) 

females. Red color is used when the correlation is statistically significant (p value); grey color is used for non 

significant correlations. Thickest segments represents strongest correlations (R value). In WT females, the dHPC 

correlates with all except the vHPC and NTS, whereas it only correlates with the vHPC in CA-MLCK. Similarly the 

vHPC correlates with all except the dHPC in WT but NTS, mPFC, NAc, PV and PVN are lost in CA-MLCK, 

whereas thedHPCis recruited. Finally, the NTS correlates with all except the dHPCand NAcin WT, whereas the 

vHPC is lost and the NAc is recruited in CA-MLCK. mPFC, medial prefrontal cortex;CG, Cingulate cortex; NAc, 

Nucleus accumbens; PV, Paraventricular nucleus of the thalamus; PVN, Paraventricular nucleus ofthe 

hypothalamus; AMY, Amydgdala; dHPC, dorsal hippocampus;vHPC, ventral hippocampus; NTS, Nucleus of the 

tractussolitarius. (For interpretation of the references to color in this figure legend, the reader is referred to the 

web version of this article.) 
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ABSTRACT 

The accumulation of adverse early-life events during brain development can exacerbate the 

vulnerability to neuropsychiatric diseases such as autism, schizophrenia, anxiety disorders or 

depression. Gut microbiota alterations have been recently hypothesized to affect brain 

development, and dysfunction of the gastrointestinal tract is a common feature of numerous 

neuropsychiatric diseases. However, the long lasting impact of early-life adversity on gut 

microbiota, notably with regards to sex differences, remains underexplored. This question is 

of particular importance since there are marked sex differences for both the prevalence of 

psychiatric disorders and the composition of gut microbiota. Here, we examined the effects of 

early-life adversity on behavior, gut permeability and microbiota composition in males and 

females using a multifactorial animal model in C3H/HeN mice combining maternal immune 

activation (120 µg/kg Lipopolysaccharide i.p. injection at embryonic day 17), maternal 

separation (3hr per day from postnatal day (PD)2 to PD14) and maternal unpredictable 

chronic mild stress during separation sessions. During infancy, ultrasonic vocalizations in 

response to isolation were analyzed in PND7 pups. At adulthood, animals underwent a 

battery of behavioral tests for anxiety, social behavior and depressive-like behaviors. In vivo 

gut permeability and visceral sensitivity to colorectal distension were also evaluated. Finally, 

the impact of multifactorial early adversity on gut microbiota composition and gene 

expression in the medial prefrontal cortex (mPFC) was studied in the same animals. Our 

results reveal that multifactorial early adversity impaired ultrasonic vocalization in isolated 

pups of both sexes. At adulthood, offspring exposed to early adversity displayed sex-specific 

behavioral and intestinal phenotypes. Males exposed to early adversity showed decreased 

social interaction but intact anxiety-like behavior. In contrast, social interaction was not 

affected in females, but they exhibited greater anxiety relative to controls. Depressive-like 

behaviors were unaffected in both sexes. Microarray analysis reveal that early adversity 

specifically upregulated Krüppel-like factor 2 (Klf2) mRNA in the mPFC of female mice, but 

had no effect in males. Gut permeability was exacerbated in males, but not in females. 

Finally, 16S-based microbiota profiling revealed higher proportions of Bacteroides, 

Lactobacillus, Porphyromonas, Alloprevotella and unclassified Firmicutes spp. and lower 
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proportions of unclassified Lachnospiraceae and unclassified Porphyromonadaceae spp. in 

male mice submitted to early adversity compared with controls. In females, early adversity 

decreased the abundance of Mucispirillum and Lactobacillus spp. In conclusion, our work 

highlights sex differences in a multifactorial model of early-life adversity, for both behavior 

and gut parameters. Further studies are needed to unravel the role of the gut dysbiosis 

reported here in the expression of the behavioral phenotypes associated with early-life 

adversity. 

Funding: Univ. Bordeaux, INRA, AVIESAN Immunology, Hematology and Pneumology. The 

authors thank Aline Foury for her help with the presentation of microarray data. 

 

INTRODUCTION  

The risk of developing psychiatric symptoms is enhanced by early-life adverse events 

occurring during prenatal or early postnatal periods, when brain development is ongoing 

(McDonald and Murray, 2000; Opler and Susser, 2005). The multi-hit hypothesis (or 

cumulative stress hypothesis) proposes that neuropsychiatric disorders may be precipitated 

by a combination of two or more major adverse events in particular during development. 

(McEwen, 1998; Maynard et al., 2001; Nederhof and Schmidt, 2012). For instance, women 

exposed to one or more childhood adversities were more likely to become depressed 

following exposure to moderate stress at adulthood than women without early adversity 

(Hammen et al., 2000). Maternal infection and postnatal exposure to psychological stress or 

trauma are two environmental risk factors for several psychiatric disorders including autism, 

schizophrenia and depression (Phillips et al., 2005; Herbert, 2010; McLaughlin et al., 2010; 

Brown, 2011, 2014; Mayer et al., 2014; Ornoy et al., 2015; Flinkkilä et al., 2016). According 

to the multiple-hit hypothesis, it has been proposed that initial exposure to prenatal infection 

can render the offspring more vulnerable to the deleterious effects of a second postnatal 

stimulus, such as stress (Maynard et al., 2001). Previous findings support this hypothesis in 

animal models combining prenatal inflammation and adolescent or adult stress exposure 

(Deslauriers et al., 2013; Giovanoli et al., 2013; Monte et al., 2017). In contrast, the impact of 

prenatal inflammation combined with an early post-natal stress remains underexplored. 

Interestingly, even if a large majority of the literature on early stress is conducted in males, 

an increasing body of evidence suggests that early adversity does not equally affect 

emotional vulnerability in males and females (Slotten et al., 2006; Mourlon et al., 2010; Klug 

and van den Buuse, 2012; Foley et al., 2014a, 2014b, 2015; Hill et al., 2014; Farrell et al., 

2016; Lundberg et al., 2017; Monte et al., 2017). This issue is of particular importance with 

respect to the gender differences observed in the prevalence of psychiatric disorders. 

Indeed, autism spectrum disorders are more prevalent in men (Werling and Geschwind, 
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2013), whereas women are more susceptible to anxiety and depression (Altemus, 2006; 

Steel et al., 2014). The mechanisms underlying the long-term behavioral effects of early 

adversity remain unclear. Recent studies suggest that gastrointestinal alterations during 

early-life, notably gut dysbiosis and loss of barrier function, can affect brain development and 

lastingly impair gut-brain communication (Hsiao et al., 2013; Kim et al., 2017; see Borre et 

al., 2014 for review). In particular, maternal immune activation and maternal separation (MS) 

are among the most used experimental models of early adversity producing short and long-

term intestinal defects in association with behavioral outcomes (O’Mahony et al., 2011; 

Labouesse et al., 2015a). Numerous studies using either adversity have shown that 

microbiota-directed interventions such as probiotic treatments or fecal transplantation 

modulate brain and behavior, especially stress-related behaviors (Hsiao et al., 2013; Mattei 

et al., 2014; De Palma et al., 2015; Giovanoli et al., 2016; Kim et al., 2017; Moya-Pérez et 

al., 2017). Importantly, it has been reported that gut microbiota composition differs according 

to sex both in animals and humans (Markle et al., 2013; Hollister et al., 2014; Dominianni et 

al., 2015; Jašarević et al., 2016; Fransen et al., 2017). However, to our knowledge, sex 

differences in gut microbiota in a context of early adversity remain unexplored. Indeed, most 

of the studies use males and the few studies involving males and females often pool both 

sexes together for data analysis (Hsiao et al., 2013; De Palma et al., 2015; El Aydi et al., 

2017). In the present study, we hypothesized that early adversity differentially affects the gut 

microbiota in males and females and that these differential effects may underlie the sex 

differences observed at the behavioral level. To test this hypothesis, we developed a mouse 

model of multifactorial early adversity combining prenatal inflammation (lipopolysaccharide 

(LPS) injection), post-natal MS and unpredictable chronic mild stress (UCMS) in dams and 

we investigated emotional behavior, intestinal function and gut microbiota in adult male and 

female offspring.  

 

METHODS 

Animals 

All experiments were approved by the Bioethical committee of our University (N° 50120186-

A) and région Aquitaine Veterinary Services (Direction Départementale de la Protection des 

Animaux, approval ID: A33-063-920) according to the European (Directive 2010/63/EU, 22 

September 2010) legislation. Mice were maintained in a 12-h light/12-h dark cycle (lights on 

at 0800 hours) in a temperature-controlled room (22 °C) with free access to food and water, 

unless otherwise mentioned. Gestant female C3H/HeNRj mice (n=30) purchased (Janvier 
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Labs, Le Genest Saint Isle, France) at gestational day (G) 2 were individually housed 

throughout gestation and lactation and assigned to either early adversity or control groups.  

 

Early life adversity 

The multiple-hit early-life adversity consisted in maternal immune activation during gestation, 

chronic MS and maternal exposure to UCMS during lactation. On embryonic day 17 (E17), 

dams of the early adversity group (n=14) received LPS injection (E. Coli O127B8, 120 µg/kg, 

i.p.), while dams of the control group (n=14) received saline (Golan et al., 2005; Zager et al., 

2014; Zager et al., 2015). Maternal body temperature was determined immediately before 

and 3hr after the injection. 5 litters were delivered at G18 (all from LPS-injected dams), and 

23 litters at G19. None of the 5 litters born the day after LPS injection survived. MS was 

carried out from post-natal day (PND)2 to PND14 (180 min daily) (Rincel et al., 2016; 2017). 

To minimize habituation, MS started randomly at 8:30, 9:00, 9:30, 10:15, 10:30 or 11:00. 

Pups were individually separated and kept at 32°C ±2. During separation sessions, dams 

were placed in a new cage and UCMS (no bedding, wet bedding, 45° tilted cage or defiled 

rat bedding in random order). Control litters (born to saline injected dams) were housed in an 

adjacent room and remained undisturbed until weaning. At PND21, male and female 

offspring from litters with equilibrated sex-ratio (n=9 control litters and 8 early adversity litters) 

were weaned and kept for long-term analyses. Two batches of animals were used for the 

different experiments (batch 1 n=12 per group, batch 2 n=7-8 per group). Within each batch, 

a maximum of 2 siblings per dam was used to minimize the litter effect. The experimental 

design is depicted in Figure 1.  

 

Ultrasonic vocalizations (USVs) in pups 

USVs were assessed in response to a 6min isolation on PND7 (in the afternoon, 4 hours 

after the end of the MS episode). Pups were gently removed from the homecage and placed 

in a glass crystallizer bedded with thick cotton in a different room. USVs emissions (range 

60-80 kHz, threshold -50 dB) were recorded using an ultrasound microphone coupled with 

the Recorder USGH software (Avisoft, Glienicke, Germany) and automatically quantified 

using the whistle tracking mode of the SAS LabPro software (Avisoft Bioacoustics). 

 

Behavioral assessment in adult offspring 

All experiments were performed during the light phase (8:00-14:00, except for the resident-

intruder test: 16:00-17:00). For analyses involving manual quantifications, experimenters 

remained blind to the experimental groups. Animals were collectively housed except for 

visceral sensitivity and gut permeability assessment (batch 2). 
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Elevated plus maze (EPM) (3 months). The apparatus consisted of two opposing open 

arms (30 × 8 cm, light intensity: 80 lux) and two opposing closed arms (30 × 8 × 15 cm, light 

intensity: 20 lux) connected by a central platform (8 × 8 cm) and elevated 120 cm above the 

floor. Mice were placed in the center of the maze facing an open arm and allowed to explore 

for 10 min. Distance traveled and time spent in each arm were automatically quantified using 

videotracking (Smart software, Bioseb, Vitrolles, France). The percentages of distance 

traveled and time spent in open arms were calculated (open arms/(open arms+closed 

arms)x100). A reduction of the percent of exploration of the open arms is considered as an 

anxiety-like index (Walf and Frye, 2007).  

Marble burying test (4 months). Mice were individually housed in large cages (30 x 20 cm) 

filled with 3L of wood chip bedding (5 cm deep). On the next day, they were transiently 

removed from the cages and 20 marbles were evenly placed on top of the bedding as 

previously described (Deacon, 2006). Mice were put back in the cage and their behavior was 

videorecorded during 20 min (light intensity: 80 lux). The number of buried marbles was 

manually quantified every 4 min. A marble was considered buried when at least 2/3 of its 

volume was coated. 

Social interaction (4.5 months). Time spent in social interaction was evaluated over 6 min, 

under dim light (15 lux) in a new cage (30 x 20 cm) filled with fresh bedding. Pairs of weight-

matched mice from the same experimental group (batch 1) were placed together in the cage. 

In another subset of males (batch 2), an additional test was carried out using aggressor CD1 

mice (old breeders previously used for social defeat protocols, n=6). Aggressors were 

isolated for 2 weeks and experimental mice were introduced in their homecage for 6 min 

(resident-intruder paradigm). Each aggressor encountered a control mouse and a mouse 

from the early adversity group to avoid bias. Mice behavior was recorded using a digital 

camera and social interaction (sniffing, allogrooming and crawling over), aggression and 

submission were manually scored using an ethological software (The observer, Noldus 

Information Technology, Wageningen, The Netherlands). 

Tail suspension test (TST) (5 months). Mice were hanged by the tail to a hook placed 

30cm above the floor of the apparatus (Bioseb) using adhesive tape (and plastic pipes to 

prevent from climbing). Their behavior was recorded with a digital camera during 6min. Mice 

demonstrated several escape attempts interspersed with immobility periods during which 

they hung passively and completely motionless. Time spent immobile was manually 

quantified using the Observer software (Noldus) (Dinel et al., 2011). 

HPA axis reactivity to stress (5 months). Mice were restrained in perforated 50 ml falcons 

for 30 min. Blood samples were collected before the restraint stress (t0, facial vein) and at 

the end of the stress by tail nick (t30) using EDTA-coated tubes. Mice returned to their home 
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cage and blood samples were collected 60 min later (t90). Blood samples were centrifuged 

(4000 rpm, 4°C) for 20 min and stored at -20°C until use. Plasma corticosterone was 

determined with an in-house radioimmunoassay using a highly specific antibody as 

previously described (Richard et al., 2010). Cross reactivity with related compound such as 

cortisol was less than 3%. Intra- and inter-assay variations were less than 10% and less than 

15%, respectively. 

 

Intestinal phenotype of adult offspring 

In vivo intestinal permeability. Mice (2.5 month-old, males and females, or 5.5 month-old, 

only males) were individually housed 24h prior to the experiment. On the day of the test, they 

were gavaged with 120 µL of a solution containing Fluorescein–5.6 sulfonic acid (FSA, 

(478.32 D, Thermo Fisher Scientific, Saint Aubin, France, paracellular permeability), horse 

radish peroxidase (HRP, 44 kDa, Sigma Aldrich, France, transcellular permeability) and 

carmine red (total transit time) as previously described (Vanhaecke et al., 2017). After 60min, 

blood samples were taken from the tail vein (heparinized tubes). Plasma  was  isolated  by  

centrifugation  (3200  rpm,  10  min) and plasma FSA fluorescence was determined on a 

microplate reader (Varioskan, Thermo Fisher Scientific, λexc: 490 nm, λemi: 510 nm). Plasma 

HRP activity was determined by enzymatic assay in presence of Tetramethylbenzidine 

substrate, using a spectrofluorometer. Results are expressed as fluorescence (or HRP 

concentration) per mg of plasma. Fecal pellets were monitored at 5 min intervals for the 

presence of carmine red. Total GI transit time was defined as the interval between the 

initiation of gavage and the time of first observance of carmine red in feces. Colonic transit 

(fecal pellet output) was evaluated by quantifying the number of fecal pellets every 15 min 

during 2 hr after gavage. 

Colorectal distension (3.5 months). Mice were individually housed for this experiment. 

Four days before colorectal distention, 2 electrodes were implanted in the abdominal external 

oblique musculature of mice previously anesthetized with xylazine and ketamine. Electrodes 

were exteriorized at the back of the neck and protected by a plastic tube attached to the skin. 

As previously described (Boué et al., 2014), electrodes were connected to a Bio Amp, which 

was connected to an electromyogram acquisition system (ADInstruments, Inc, Colorado 

Springs, CO). A 10.5-mm-diameter balloon catheter was gently inserted into the colon at 5 

mm proximal to the rectum. The balloon was inflated in a stepwise fashion. Ten-second 

distensions were performed at pressures of 15, 30, 45, and 60 mmHg with 5-minute rest 

intervals. Electromyographic activity of the abdominal muscles was recorded and 

visceromotor responses were calculated using Chart 5 software (ADInstruments). 
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Sacrifice, sample collection and ex vivo analyses 

After behavioral assessment (5.5 months), feces were collected and stored at -80°C (1-2 per 

animal) before mice were deeply anesthetized with isoflurane and killed by decapitation. 

Cardiac blood was collected for gut hormones assay in EDTA-coated tubes containing DPP-

IV inhibitor (5µl/500 µl blood, Calbiochem) and phenylmethylsulfonyl fluoride (PMSF, 10 

mg/ml) and centrifuged at 4°C before plasma was stored at−20°C. Whole brains were 

collected and stored at -80°C until use. Segments of ileum and distal colon (approximately 

1.5 cm) were collected for ex vivo intestinal motility experiments. Distal colon segments were 

finally used for assessment of protein content. 

Ex vivo intestinal motility (males only). Ex vivo neuromuscular transmission was 

evaluated as previously described (Suply et al., 2012). The ileum and distal colon were 

placed in cold oxygenated (5% CO2-95% O2) Krebs solution containing (in mM) 117.0 NaCl, 

4.7 KCl, 1.2 MgCl2, 1.2 NaH2 PO4, 25.0 NaHCO3, 2.5 CaCl2, and 11.0 glucose. Segments 

were then placed in the longitudinal direction in a 7-ml organ bath containing oxygenated 

Krebs solution (37°C) and were stretched with a preload of 0.04 to 0.06 mN of tension. 

Preparations were equilibrated for 60 min. Isometric contractions were recorded with force 

transducers (no. 7005; Basile, Comerio, Italy) and data acquired onto a PowerMac Performa 

7100/80 computer equipped with the MacLab/4s system (ADI, Bremen, Germany). Activation 

of enteric neurons was performed by electrical field stimulation (EFS) using a stimulator 

connected to two platinum ring electrodes (10 V, duration of pulse train: 10 s; pulse duration: 

300 μs; frequency: 30 Hz). This procedure was repeated three times with 10-min intervals 

between stimulations. The response of colonic longitudinal muscle to EFS was also 

measured in the presence of NO synthase (NOS) inhibitor, N-nitro-l-arginine methyl ester (L-

NAME, 50 mM, Sigma), and further in presence of atropine (10 µM, Sigma), an antagonist of 

cholinergic muscarinic receptors. Drugs were applied 15 min before EFS. Tension level, 

amplitude of spontaneous contractions, and area under the curve (AUC) during each EFS-

induced response were measured. Data were normalized to the weight of the tissue. 

Microarray transcriptome in the medial prefrontal cortex (mPFC). Total mRNA was 

extracted from mPFC micropunches (anterioposteriority from bregma: +2.10 to +1.18 mm) 

using a TRIzol extraction kit (Invitrogen, Life Technologies, Carlsbad, CA, USA) according to 

the manufacturer’s instructions. RNA concentration, purity and integrity were determined 

using a ND-1000 spectrophotometer (Nanodrop Technologies, Wilmington, DE, USA) and a 

bioanalyzer (Agilent) (Labrousse et al., 2012). Gene expression profiles were performed at 

the GeT‐TRiX facility (GénoToul, Génopole Toulouse Midi-Pyrénées) using Agilent Sureprint 

G3 Mouse microarrays (8x60K, design 074809) following the manufacturer's instructions.  

For each sample, Cyanine-3 (Cy3) labeled cRNA was prepared from 25 ng of total RNA 
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using the One-Color Quick Amp Labeling kit (Agilent) according to the manufacturer's 

instructions, followed by Agencourt RNAClean XP (AgencourtBioscience Corporation, 

Beverly, Massachusetts). Dye incorporation and cRNA yield were checked using 

Dropsense™ 96 UV/VIS droplet reader (Trinean, Belgium).  600 ng of Cy3-labelled cRNA 

were hybridized on the microarray slides following the manufacturer’s instructions. 

Immediately after washing, the slides were scanned on Agilent G2505C Microarray Scanner 

using Agilent Scan Control A.8.5.1 software and fluorescence signal extracted using Agilent 

Feature Extraction software v10.10.1.1 with default parameters. Microarray data and 

experimental details are available in NCBI's Gene Expression Omnibus (Edgar et al., 2002) 

and  are  accessible  through  GEO Series accession number GSEXXXXX 

(https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSEXXXXX ). Microarray  data  were  

analyzed  using  R  (R  Development  Core  Team, 2008)  and  Bioconductor  packages 

(www.bioconductor.org, v  3.0, (Gentleman et al., 2004) as described in GEO accession  

GSEXXXXX.  Raw data (median signal intensity) were filtered, log2 transformed, corrected 

for batch effects (microarray washing bath and labeling serials) and normalized using 

quantile method (Bolstad et al., 2003). A  model  was  fitted  using  the  limma  lmFit  function  

(Smyth, 2004). Pair-wise comparisons between biological conditions were applied using 

specific contrasts. A correction for  multiple  testing  was  applied  using  Benjamini-Hochberg  

procedure  (Benjamini and Hochberg, 1995)  for  False  Discovery  Rate  (FDR).  Probes with 

FDR  ≤  0.1  were considered to be differentially expressed between conditions. 

Fecal Microbiota assessment by high-throughput 16S-sequencing. DNA extraction and 

sequencing were carried out at the GeT‐TRiX facility (GénoToul). Mice stools were aliquoted 

(150mg) and extracted using both mechanical and chemical lysis (PMID: 20203603). 

Following DNA concentration estimation by nanodrop, the V3-V4 region of the 16S rRNA 

gene was amplified (V3F bac339F-TACGGRAGGCAGCAG (modified from Wilson KH, et al. 

J Clin Microbiol. 1990) and V4R bac806R-GGACTACCAGGGTATCTAAT). Illumina MiSeq 

sequencing was performed on 46 samples. One sample provided too low sequences number 

(n=365) and was removed from analysis. Total reads were filtered for length (min 

length=300bp) and quality (min quality =25). A total of 316,668 reads was obtained (average 

7,037 reads/samples). High quality reads were pooled, checked for chimeras, and grouped 

into operational taxonomic units (OTUs) based on a 97% similarity threshold with uclust 

software from QIIME. Estimates of phylotypes richness and diversity were calculated using 

Chao1 index on the rarefied OTU table (n=4,000 reads). Singletons were removed and 

phylogenetic affiliation of each OTU (average 503 OTUs per sample) was done by using 

ribosomal database project taxonomy (Cole et al., 2014) and performed from phylum to 

species level. 
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The statistical language R was used for data visualization and to perform abundance-based 

principal component analysis (PCA) and inter-class PCA associated with Monte-Carlo rank 

testing on the bacterial genera (ade4 library). To decipher the impact of the different set-ups 

(sex and early adversity) on microbiota composition, principal component analyses with the 

different clinical factors as instrumental variables were computed based on the abundance of 

the different bacterial taxa for each individual (one analysis per environmental factor, data 

not shown). These inter-class PCA are appropriate to represent a typology displaying the 

diversity between individual's microbiota as it maximizes the variance between populations 

(here, mice fecal microbiota), instead of the total variance. Hence, inter-class PCA allows 

highlighting combinations of variables (bacterial phylotypes, or genera etc) that maximize 

variations observed between qualitative variables (e.g. environmental factors). Based on 

these inter-class PCA, statistical p-values of the link between the different environmental and 

clinical factors with microbiota profiles was assessed using a Monte-Carlo rank test (1000 

replicates). 

 

Statistics 

All data were analyzed using Statistica 6.0 (Statsoft). Normality was assessed by using 

Shapiro–Wilk tests.  Student t-tests were used to test the effects of early adversity on pups’ 

body weight, adult offspring behavior and dams’ body temperature. Social interaction data 

were analyzed with non-parametric Mann-Whitney U tests. Two-way ANOVAs with repeated 

measures followed by Fisher’s LSD post-hoc tests were used for USVs, marble burying test, 

locomotor activity, corticosterone response to stress and adult body weight analyses. 

Pearson correlations were used to examine associations between gut microbiota and 

behavioral data. Statistical significance was set at p<0.05. Graphics were made using 

GraphPad Prism 5 and Adobe Illustrator CS5.1 was used for artwork. Data are expressed as 

means ± SEM except for gut microbiota composition (medians). 

 

RESULTS 

Effects of early adversity on offspring’s body weight 

LPS injection on E17 induced significant hypothermia in dams (Student t-test, t(15)=4.98, 

p<0.001), indicating that bacterial immune activation was effective (Supplementary Figure 

1). There was no significant effect of prenatal LPS on pup body weight on PND2 (males, 

t(15)=1.60, p=0.1302; females, t(15)=0.94, p=0.3633) (Supplementary Figure 2a). 

However, the combination of prenatal LPS and MS (early adversity) significantly decreased 
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the body weight of pups at PND15 (males, t(15)=2.46, p=0.0.026; females, t(15)=1.62, 

p=0.1269) (Supplementary Figure 2b). This effect was no longer present at weaning 

(males, t(15)=1.67, p=0.1159; females, t(15)=1.26, p=0.2283) (Supplementary Figure 2c). 

 

In males, early adversity leads to impaired social communication during infancy and 

altered social interaction at adulthood 

In order to assess early deficits in social and communication behavior at PND8, we analyzed 

the ultrasonic calls emitted by pups when isolated from their dam and littermates. Males 

showed lower vocalization number when submitted to early adversity relative to controls 

(two-way ANOVA with repeated measures, early adversity effect: F(1,14)=4.78, p=0.0462, 

time x early adversity effect: F(1,42)=10.74, p<0.001) (Figure 2a,b). This effect was mainly 

due the marked decrease in USV emission during the first minute (planned comparisons, 

early adversity vs control, p<0.001). In addition, the latency to vocalize was increased in 

early adversity compared with controls (Student t-test, t(14)=3.10, p=0.0079) (Figure 2c). 

As adults, males submitted to early adversity spent significantly less time in social interaction 

with a conspecific (Mann-Whitney U test, U=1, p=0.0043) (Figure 2d). Moreover, social 

interaction latency was significantly lower relative to controls (U=3, p=0.0152) (Figure 2e). 

We further investigated social behavior in males using a resident-intruder paradigm (Figure 

2f,g). While the aggressors displayed the same number of attacks in both groups (U=24, 

n.s.) (Figure 2f), early adversity males seemed to spend less time in defensive behavior 

(U=13, p=0.1135) (Figure 2g). There was no significant impact of early adversity on the 

percentages of time spent and distance traveled in the open arms of the EPM (Student t-test, 

all t(18)<1, n.s) (Figure 2h and data not shown), on the number of buried marbles in the 

marble burying test (two-way ANOVA with repeated measures, early adversity effect, early 

adversity x time effect, all F(1,88)<1, n.s.) (Figure 2i), or on immobility time in the TST 

(t(20)=0.88, n.s) (Figure 2j), suggesting that anxiety and depressive-like behaviors are 

unspoiled in males exposed to early adversity. Moreover, locomotor activity was not altered 

by early adversity (two-way ANOVA with repeated measures, early adversity effect, early 

adversity x time effect, all F(1,110)<1, n.s.; data not shown). Plasma corticosterone levels 

after restraint stress were not significantly modulated by early adversity (two-way ANOVA 

with repeated measures, early adversity effect, early adversity x time effect, all F(1,36)<1, 

n.s) (Figure 2k). There was no significant impact of early adversity on male body weight 

throughout behavioral assessment (data not shown); however, 3 weeks after TST and acute 

restraint stress, only control males gained significant weight (two-way ANOVA with repeated 

measures, early adversity effect: F(1,20)<1, n.s.; early adversity x time effect, F(1,20)=5.00, 

p=0.0368; Fisher LSD’s post-hoc test, control pre- vs poststress, p=0.0006; early adversity 
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pre- vs poststress, n.s.) (Figure 2l). This difference resulted in significantly lower body 

weight gain in early adversity males relative to controls (t(20)=2.24, p=0.0368) (Figure 2m), 

suggesting that they are more sensitive to stress.  

 

In females, early adversity leads to impaired social communication during infancy and 

exacerbated anxiety at adulthood  

In female pups, the number of USV calls in response to isolation was differentially altered by 

early adversity depending upon time (two-way ANOVA with repeated measures, early 

adversity effect: F(1,16)<1, n.s.; time x early adversity effect: F(1,48)=2.73, p=0.0539) 

(Figure 3a,b). The number of USV calls was significantly reduced during the first minute 

(planned comparisons, early adversity vs control, p=0.0359). This modest effect was not 

accompanied by significantly delayed USV latency (Student t-test, t(16)=1.67, p=0.1134) 

(Figure 3c). 

At adulthood, females exposed to early adversity showed similar time spent in social 

interaction with a conspecific compared with controls (Mann-Whitney U test, U=16, n.s.) 

(Figure 3d). Consistently, the latency to first interaction with the conspecific was not different 

between groups (U=8, n.s., data not shown). In the EPM, early adversity females spent 

significantly less time in the open arms relative to controls (Student t-test, t(22)=2.64, 

p=0.0148) (Figure 3e). Moreover, the distance traveled in the open arms was also reduced 

in early adversity versus control mice (t(22)=2.23, p=0.0449) (Figure 3f). Similarly, early 

adversity females buried significantly more marbles in the marble burying test compared with 

controls (two-way ANOVA with repeated measures, early adversity effect, F(1,84)=6.78, 

p=0.0165) (Figure 3g). Locomotor activity was not altered by early adversity (two-way 

ANOVA with repeated measures, early adversity effect, early adversity x time effect, all 

F(1,110)<1, n.s., data not shown), suggesting that the above-mentioned behavioral 

differences are not due to altered locomotion in the early adversity group. Immobility in the 

TST was not affected by early adversity (t(21)=0.29, n.s) (Figure 3h). Plasma corticosterone 

levels after restraint stress varied depending upon time and the history of early adversity 

(two-way ANOVA with repeated measures, early adversity effect, F(1,18)<1, n.s.; early 

adversity x time effect, F(1,36)=3.88, p=0.0298) (Figure 3i). Planned comparisons revealed 

significantly higher corticosterone levels 60 min after the end of restraint (t90, p=0.0055). 

Further analysis showed that corticosterone recovery to basal levels was lower in the early 

adversity group (t(18)=3.31, p=0.0039 (Figure 3i, inset)). Finally, as in males, the body 

weight growth of females exposed to early adversity was stopped after TST and restraint 

stress exposures, whereas the control group exhibited a normal body weight growth (two-

way ANOVA with repeated measures, early adversity effect: F(1,21)=2.02, p=0.1693, n.s.; 
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early adversity x time effect, F(1,21)=5.11, p=0.0346; Fisher LSD’s post-hoc test, control pre- 

vs poststress, p=0.0032; early adversity pre- vs poststress, n.s.; body weight gain: 

(t(21)=2.26, p=0.0346)) (Figure 3j,k).  

 

Early adversity induces gut leakiness in adult males but not females 

We next assessed whether the effects of early adversity on behavior would be associated 

with altered gut physiology. We first measured plasma levels of several metabolic and gut 

hormones. There was no difference in insulin, leptin, active ghrelin, and total PYY plasma 

levels between groups either in males (Student t-tests, all t(20)<1.5, n.s) or in females (all 

t(19)<1.5, n.s) (data not shown). Visceral sensitivity to colorectal distension as well as 

intestinal permeability were evaluated in both sexes. In males, there was no significant effect 

of early adversity on visceral sensitivity to colorectal distension (two-way ANOVA with 

repeated measures, early adversity effect, early adversity x distension pressure effect, all 

F(1,39)<1, n.s.) (Figure 4a) or on transcellular permeability to HRP (Student t-test, t(18)=<1, 

n.s.). However, paracellular permeability to FSA was significantly increased relative to 

controls (t(18)=2.56, p=0.0198) (Figure 4b). Total transit time and fecal pellet output were 

similar between groups (all t(18)<1.2; n.s.; data not shown). Intriguingly, early adversity 

females displayed visceral hyposensitivity, an effect likely driven by a hypo-response to 

noxious stimuli (two-way ANOVA with repeated measures, early adversity effect: 

F(1,13)=4.90, p=0.0454, early adversity x distension pressure effect: F(1,39)=2.46, 

p=0.0773; planned comparison for 60 mmHg: p=0.0636). (Supplementary Figure 3a). 

Contrary to males, early adversity had no significant impact on females’ intestinal 

permeability or total transit time (Student t-tests, all t(19)<1; n.s.) (Supplementary Figure 

3b,c and data not shown), although it significantly increased fecal pellet output 1 hour after 

oral gavage (t(19)=2.60; p=0.0176; data not shown). As early adversity led to gut leakiness in 

males but not in females, we further assessed intestinal permeability in males at a later age 

(5.5 months). The increased paracellular permeability was no longer observed in older male 

animals (t(21)<1, n.s.), however, early adversity significantly increased males’ transcellular 

permeability at this age (t(21)=2.7995, p=0.0107). There was no effect of early adversity on 

total transit time (all t(18)<1.4, n.s.) or fecal pellet output 2 hours after oral gavage (all 

t(21)=1.35, n.s.) but a trend was observed at 1 hour (t(21)=1.85, p=0.0782). Finally, ex vivo 

motility was studied on the distal colon and on the ileum in the same males (5.5 month-old). 

Segments of colonic and ileal longitudinal muscle were stimulated by electrical field 

stimulation (EFS), and EFS-induced contractile responses were then analyzed in the 

absence or presence of L-NAME or atropine. There was no significant differences in 

contractile responses to EFS between groups in the ileum or distal colon (all t(14)<1.5, n.s.). 
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In presence of L-NAME, the contractile response to EFS in the ileum and distal colon 

decreased similarly across groups (all t(14)<1.5, n.s.). In contrast, after atropine application 

in the bath, the contractile response to EFS was significantly higher in mice subjected to 

early adversity, but this effect was restricted to the distal colon (t(14)=3.57, p=0.003).  

Altogether, our results indicate that multi-hit early adversity leads to different phenotypes in 

males and females for both behavior and gut physiology. In order to explore potential 

mechanisms involved in these effects, we analyzed gene expression in the mPFC and gut 

microbiota composition in the same animals.  

 

Effects of early adversity on gene expression in the medial prefrontal cortex of adult 

offspring  

We examined gene expression in the mPFC, a brain area relevant for the regulation of 

emotional behaviors, but also highly sensitive to early-life stress. Microarray analysis with the 

Benjamini-Hochberg correction for multiple testing revealed interactions between sex and 

early adversity for 30 probes (adjusted p value <0.1, among which 8 probes had an adjusted 

p value <0.05) (see gene list and genes full names in Figure 5 and detailed statistical results 

in Supplementary Table 1), suggesting that the effects of early adversity differed in males 

versus females. Accordingly, the heatmap showed diminished z-scores of relative expression 

of Klf2, Npas4, Btg2, Gadd45g, Zfp36 and Tob1 genes in males exposed to early adversity, 

whereas the z-scores of these genes were increased in females exposed to early adversity. 

Conversely, early stress increased the relative expression of Gm9910 and L3mbtl4 genes in 

males and reduced it in females. However, Klf2 (Krüppel-like factor 2) was the only gene 

significantly altered (upregulated) by early adversity specifically in females (padj=0.0157) 

(Figure 5b).  

 

Early adversity differentially alters gut microbiota composition in adult males and 

females 

Finally, we analyzed gut microbiota composition in both sexes using 16S-based profiling 

(Figures 6 and 7 and Supplementary Figure 4). As illustrated in Supplementary Figure  

4, in adult animals, microbiota composition between males and females of the control group 

strongly differed both qualitatively and quantitatively. Moreover, there were differential effects 

of early adversity according to sex at several taxonomic levels. In males, PCA based on 

genus composition revealed a trend towards significantly differential distribution according to 

the history of early adversity (Monte Carlo simulated p-value=0.0779) (Figure 6a). Chao1 

index of alpha diversity was not altered by early adversity (Mann-Whitney U test, U=65, n.s.) 

(Figure 6b). Males exposed to early adversity  displayed significantly lower proportions of 
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unclassified Lachnospiraceae (U=27, p=0.0156) and unclassified Porphyromonadaceae 

(U=27, p=0.0156) genera (Figure 6c) and higher proportions of Bacteroides (U=34, 

p=0.0512), Lactobacillus (U=29, p=0.0225), Porphyromonas (U=31, p=0.0317), 

Alloprevotella (U=32, p=0.0374) and unclassified Firmicutes (U=34, p=0.0512) genera 

(Figure 6d) compared with controls. Of note, the effect of early adversity on unclassified 

Lachnospiraceae species (spp.), the most abundant detected genus, was particularly striking 

(falling from 30% to 20%). Further analysis at the OTU level showed 96 significantly altered 

OTUs in males with a history of early adversity in comparison with controls: 63 OTUs were 

depleted (55 from Firmicutes and 8 from Bacteroides phyla) (Figure 6e) and 33 OTUs were 

enriched (18 from Firmicutes, 13 from Bacteroides and 1 from Proteobacteria phyla) (Figure 

6f). Notably, an important proportion of the altered OTUs belongs to Barnesiella and 

Clostridium XIVa spp. of the Porphyromonadaceae and Lachnospiraceae families, 

respectively. Although the analysis at the genus level shows overall lower proportions of 

unclassified Lachnospiraceae and unclassified Porphyromonadaceae, the OTUs data 

indicate that different OTUs within the same genus or family vary in opposite directions. 

In female offspring, PCA based on genus composition showed no significant dissociation 

between groups (Monte Carlo simulated p-value=0.1968, n.s.) and chao1 index of alpha 

diversity was not altered by early adversity (U=50, n.s.) (Figure 7a,b), suggesting that the 

gut microbiota of females is less sensitive to early adversity than that of males. Consistently, 

only two genera were significantly altered by early adversity in females (Figure 7c). 

Specifically, relative abundance of Mucispirillum (U=29, p=0.0400) and Lactobacillus (U=30, 

p=0.0473) genera was significantly decreased in early adversity female mice compared with 

controls. Interestingly, this depletion of Lactobacillus spp. in females contrasts with its 

enrichment in males submitted to early adversity. Further analysis at the OTU level showed 

68 significantly altered OTUs in early adversity females versus controls, with 41 depleted (34 

from Firmicutes, 5 from Bacteroides phyla, 1 from Actinobacteria and 1 from Deferribacteres 

phyla) (Figure 7d) and 33 enriched (27 from Firmicutes, 15 from Bacteroides and 1 from 

Proteobacteria phyla) (Figure 7e). As in males, an important proportion of the altered OTUs 

belongs to Barnesiella and Clostridium XIVa spp. of the Porphyromonadaceae and 

Lachnospiraceae families and different OTUs within these families vary in opposite 

directions. Moreover, a substantial proportion of the depleted OTUs belongs to the 

Lactobacillus genus and may account for the overall effect observed at the genus level.  

Overall, the effects of early adversity on gut microbiota composition varied according to sex, 

with males being the most affected. Clostridium XIVa cluster, which represents more than 

10% of the total bacteria, and more generally the Lachnospiraceae family, accounting for 
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approximately 40% of total bacteria (Supplementary Figure 4d,e), appear highly sensitive to 

early adversity in both sexes.  

In male animals, correlational analyses conducted on gut microbiota, behavior, gene 

expression in mPFC and gut function data revealed that uncl. Lachnospiraceae was the 

bacterial genus most often significantly correlated with these parameters. Uncl. 

Lachnospiraceae abundance positively correlated with social interaction (latency for the first 

interaction: r=0.49, p=0.015; time spent in social interaction: r=0.39, p=0.06) and it negatively 

correlated with colonic motility in presence of atropine (r=-0.59, p=0.015). The relative 

abundance of these bacteria in males was also positively correlated with the expression of 

several genes in the mPFC (Npas4: r=0.46, p=0.024; Btg2: r=0.48, p=0.02; Gadd45g: r=0.51, 

p=0.012). In female animals, Lactobacillus abundance was negatively correlated with the 

anxiety score in the marble burying test (r=-0.44, p=0.03) and Klf2 expression in the mPFC 

(r=-0.44, p=0.042). In contrast, Lactobacillus abundance was positively correlated with 

Gm9910 expression in females’ mPFC (r=0.59, p=0.005). 

 

DISCUSSION  

Several studies have reported sex differences in gut microbiota composition in both humans 

and animals (Markle et al., 2013; Dominianni et al., 2015). There is a growing number of 

studies investigating the role of the gut-brain axis, especially gut microbiota, in the regulation 

of stress-related emotional behaviors in animal models of early-life adversity. However, it is 

not clear whether early adversity differentially affects the gut microbiota between males and 

females. Using a mouse model of multifactorial early adversity combining prenatal 

inflammation (LPS injection), post-natal MS and UCMS in dams, we report that early 

adversity leads to social deficits in males and hyperanxiety in females. More importantly, we 

provide clear evidence that multifactorial early adversity differentially alters gut microbiota 

composition in males and females, an effect accompanied by male-specific gut leakiness. 

Consistent with numerous studies, we report that early adversity, including maternal immune 

activation and MS, induces social deficits in male offspring (Tsuda et al., 2011; Hsiao et al., 

2013; Zhu et al., 2014; Rincel et al., 2016; Shin et al., 2016; Kim et al., 2017; Monte et al., 

2017; Shin Yim et al., 2017) and increases anxiety in female offspring (Salzberg et al., 2007; 

Fernández de Cossío et al., 2017). These results are particularly interesting with regards to 

the high prevalence of autism spectrum disorders in male and anxiety disorders in female 

subjects. Notably, USVs data suggest early onset social communication deficits in males and 

show only mild alterations in females, which is consistent with their intact social interaction as 

adults. However, in contrast to previous findings, we did not find any effect of early adversity 
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on depressive-like behaviors in the TST in either sex (Varghese et al., 2006; Ghia et al., 

2008). In addition, we did not observe overt HPA axis dysfunction, although it is often 

reported in an early stress context (Huot et al., 2002; Lehmann et al., 2002; Slotten et al., 

2006; Cotella et al., 2013; Rincel et al., 2016). These discrepancies could be due to specie 

differences (mice have been shown to be less susceptible to stress than rats) but also to the 

strain differences in mice (Millstein and Holmes 2007; Savignac et al., 2011). 

Several studies have demonstrated that correction of gut dysbiosis can reverse social deficits 

(Hsiao et al., 2013; Buffington et al., 2016; Kim et al., 2017; Shin Yim et al., 2017) and 

anxiety-like behaviors (Bercik et al., 2010; Hsiao et al., 2013; Liang et al., 2015; Emge et al., 

2016; Leclercq et al., 2017; Moya-Pérez et al., 2017), highlighting the role of gut microbiota 

in the regulation of emotional behaviors. Here, we report that early adversity induces sex-

differences in gut dysbiosis at adultdhood. In males exposed to early-life adversity, gut 

dysbiosis was mainly characterized by depleted unclassified Lachnospiraceae and 

Porphyromonadaceae spp. and enriched Bacteroides, Lactobacillus, Alloprevotella, 

Porphyromonadaceae and unclassified Firmicutes spp., while early adversity female group 

displayed depleted Lactobacillus and Mucispirillum spp. These results show that i) the 

microbiota of females is affected to a lesser extent than that of males and ii) the only genus 

affected in both sexes is Lactobacillus, however the effects of early adversity on this genus 

are opposed in males and females. We found significant enrichment or depletion of OTUs 

belonging to Clostridium cluster XIVa in the Lachnospiraceae family in both sexes, with 

different OTUs impacted in males versus females. A previous study found increased 

proportions of Porphyromonadaceae, Prevotellaceae, unclassified Bacteriodales and 

Lachnospiraceae spp. in the maternal immune activation mouse model of autism (Hsiao et 

al., 2013). However, males and females were pooled together in this study. Several other 

studies using MS reported increased Bacteroides, Lachnospiraceae and Clostridium XIVa in 

male rats and mice (García-Ródenas et al., 2006; De Palma et al., 2015; Zhou et al., 2016; 

Murakami et al., 2017). Interestingly, numerous OTUs in the Lachnospiraceae family have 

been found to be either increased or decreased in stools of depressive patients compared 

with healthy controls (Zheng et al., 2016), suggesting that the effects of early adversity on 

these bacteria in animal models are relevant to human psychiatric conditions. In addition, a 

recent study reveals that the antidepressant effects of probiotics in male mice are associated 

with an increase of Lachnospiraceae abundance (Guida et al., 2017). Although we do not 

report altered depressive-like behaviors in the TST, the decrease of social interactions has 

been reported in numerous preclinical models of depression (Nestler and Hyman, 2010). 

Interestingly, transfer of intestinal microbiota, including members of Clostridiales and 

Lachnospiraceae, to microbiota-depleted C57BL/6 recipients was sufficient to induce social 
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avoidance and change gene expression and myelination in the prefrontal cortex (Gacias et 

al., 2016). Overall, Lachnospiraceae appear as good candidates for the regulation of 

emotional behaviors within the microbiota-gut-brain axis in males. Moreover, the effect of 

early adversity on Lactobacillus spp. could also account for the sex-specific behavioral 

differences, as abundance of these bacteria was increased in males but decreased in 

females. In females, lower Lactobacillus abundance was associated with higher anxiety, but 

not in males. Lactobacillus strains are commonly used as probiotics with beneficial effects on 

anxiety-like behavior in rodents (Bravo et al., 2011; Liang et al., 2015; Emge et al., 2016; Liu 

et al., 2016; Leclercq et al., 2017). In humans, randomized, double-blind, placebo controlled 

trials show that women who received Lactobacillus rhamnosus spp. throughout pregnancy 

had significantly lower depression and anxiety scores in the postpartum period (Slykerman et 

al., 2017) and that patients with chronic fatigue syndrome displayed reduced anxiety 

symptoms after 2 months of treatment with Lactobacillus casei spp (Rao et al., 2009).  

The links between specific gut microbiota alterations and gene expression in the brain 

remains to be elucidated. In the present study, we report a significant interaction between 

sex and early-life adversity for eight genes in the mPFC. Among them, Klf2 and Npas4 were 

of particular interest regarding both behavior and gut microbiota. Klf2 is significantly 

increased in the mPFC of female mice with a history of early-life adversity and females with 

the highest expression of Klf2 in the mPFC exhibited the lowest abundance of gut 

Lactobacillus spp. KLF2 is a transcription regulator highly expressed in vascular cells. In 

animal models, Klf2 up-regulation has been reported in several conditions associated with 

neuroinflammation such as ischemia and cerebral cavernous malformations (Shi et al., 2013; 

Tang et al., 2017). Remarkably, a recent study demonstrated a link between brain Klf2 

signaling and gut microbiota in an animal model of cerebral cavernous malformations (Tang 

et al., 2017). Gram negative bacteria in the gut constitute a source of LPS that enters 

circulating blood, activating luminal, brain endothelial toll-like receptor (TLR) 4. Authors 

proposed that LPS–TLR4 stimulation drives MEKK3–KLF2/4 signaling to induce cerebral 

malformations. In male mice, uncl. Lachnospiraceae abundance positively correlated with 

Npas4 expression in the mPFC. NPAS4 is a transcription factor highly expressed in brain 

tissues and reported to regulate excitatory and inhibitory synapse balance (Lin et al., 2008; 

Spiegel et al., 2014). In humans, inhibitory-excitatory unbalance is suspected to underlie the 

increased risk of neurodevelopmental disorders such as schizophrenia and autism 

(Maćkowiak et al., 2014; Nelson and Valakh, 2015; Krystal et al., 2017) and it has been 

shown that such unbalance specifically in the PFC elicited social behavior impairments in 

mice (Yizhar et al., 2011). It has been recently shown that Npas4 plays a significant role in 

the development of prefrontal inhibitory circuits (Shepard et al., 2017). Notably, Npas4 
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deficient mice displayed altered expression of GABAergic markers in the PFC in a sex-

specific manner, along with sex-specific emotional impairments when Npas4 deficiency was 

induced at adolescence, but not adulthood (Shepard et al., 2017).  Npas4 is a target gene of 

HDAC5 (Taniguchi et al., 2017), and this epigenetic enzyme has been shown to be 

increased in the PFC in a mouse model of social deficit (Aoyama et al., 2014). Interestingly, 

sodium butyrate treatment (butyrate is a  short-chain fatty acid, product of the fermentation of 

complex carbohydrates by the gut microbiota) attenuates social behavior deficits in this 

mouse model (Aoyama et al., 2014). Therefore, microbiota-driven alterations in butyrate 

levels could represent a possible link between decreased prefrontal Npas4 expression and 

reduced social behavior via HDAC5 activity.  

In conclusion, our work supports a large literature showing that early adversity has an impact 

on emotional behavior and gut microbiota later in life. Importantly we demonstrate that 

offspring’s behavior and gut physiology are differentially affected by the multifactorial 

adversity in males and females. Males seem more prone to develop gut dysfunctions than 

females, as indicated by the large number of bacteria altered in their microbiota and their gut 

leakiness. At the behavioral level, early adversity produced social behavior deficit in males 

and increased anxiety in females. Future studies should target the mechanisms underlying 

these sex differences, and evaluate potential causality links between gut microbiota 

alterations and behavioral deficits. Overall, our study highlights the importance of examining 

both males and females in gut-brain axis research. 
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FIGURES 

Figure 1 

 

 

 

 

 

 

 

 

 

Fig 1. Experimental design. Early adversity consisted in combined maternal immune 

activation and MS associated with UCMS in dams. On E17, early adversity group received 

LPS injection (E. Coli O127B8, 120 µg/kg, i.p.), while control group received saline. MS was 

carried out from PND2 to PND14 (180 min daily). Each day of separation, dams were 

submitted to UCMS during the 180 min. At PND21, male and female offspring were weaned 

and separated in two batches. During infancy, ultrasonic vocalizations in response to a short 

separation were analyzed in PND7 pups. At adulthood (3-5 months), animals underwent a 

battery of behavioral tests for anxiety (elevated plus maze and marble burying), social 

behavior and depressive-like behavior (tail suspension test). In vivo gut permeability and 

visceral sensitivity to colorectal distension were evaluated in a subset of animals at 2.5 and 

3.5 months, respectively. Finally, HPA axis responsiveness to restraint stress was assessed 

and the animals were killed 2 weeks later (5.5 months) for fecal microbiota composition 

analysis by high-throughput 16S RNA sequencing. Gene expression in the medial prefrontal 

cortex was analyzed by microarrays in the same animals. Unless stated ♂, all the 

experiments were conducted in both males and females. E, Embryonic day; PND, Post-natal 

day; LPS, Lipopolysaccharide; USVs, Ultrasonic vocalizations; MS, Maternal separation; 

UCMS, Unpredictable chronic mild stress; IP, intestinal permeability; EPM, Elevated plus 

maze; Aggr, interaction with an aggressor; TST, Tail suspension test; HPA, Hypothalamic-

pituitary-adrenal axis response to stress; mPFC, medial prefrontal cortex. 
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Figure 2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 2. Early adversity leads to social behavior impairment in adult males. (a-c) USV 

response to acute short separation in PND7 pups (N=9 per group). (a) Each line corresponds 

to one animal and each dash represents one USV. (b) USV number across time (min) and 

(c) latency (s) to first USV. (d-l) Adult phenotype. (d) Time (s) spent in social interaction with 

a conspecific over 6 min of test and (e) latency (s) to first interaction (N=6 pairs per group). 

(f) Number of attacks by the aggressor and (g) time (s) spent in defensive behavior over 6 

min in the resident-intruder paradigm (N=6-9 per group). (h) Time (s) spent in the open arms 

of the EPM (N=10 per group). (i) Number of buried marbles across time (min) in the marble 

burying test (N=12 per group). (j) Time (s) spent immobile over the 6min of test in the TST 

(N=11 per group). (k) Plasma corticosterone (ng/mL) in response to 30-min restraint stress at 

0, 30 and 90 min. Inset: recovery to basal levels (%) (N=10 per group). (l) Body weight (g) 

before and 3 weeks after exposure to acute restraint stress (30min) and (m) Body weight 

gain (g) 3 weeks after the TST and acute restraint stress (N=10-12 per group). Data are 

mean ± SEM. * p<0.05, ** p<0.01 and *** p<0.001 versus control group (planned comparison 

in b; Student t-tests in c and m; Mann-Whitney U tests in d, e and g); +++ Fisher LSD’s post-

hoc test, control pre- versus poststress p<0.001. 
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Figure 3 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 3. Early adversity leads to hyper-anxiety in adult females. (a-c) USV response to 

acute short separation in PND7 pups (N=9 per group). (a) Each line corresponds to one 

animal and each dash represents one USV. (b) USV number across time (min) and (c) 

latency (s) to first USV. (d-j) Adult phenotype. (d) Time (s) spent in social interaction with a 

conspecific over 6 min of test (N=6 pairs per group). (e) Time (%) spent and (f) distance (%) 

traveled in the open arms of the EPM (N=12 per group). (g) Number of buried marbles 

across time (min) in the marble burying test (N=11-12 per group). (h) Time (s) spent 

immobile over the 6min of test in the TST (N=12-12 per group). (i) Plasma corticosterone 

(ng/mL) in response to 30-min restraint stress at 0, 30 and 90 min. Inset: recovery to basal 

levels (%) (N=10 per group). (j) Body weight (g) before and 3 weeks after exposure to acute 

restraint stress (30min) and (k) Body weight gain (g) 3 weeks after the TST and acute 

restraint stress (N=11-12 per group). Data are mean ± SEM. * p<0.05 and ** p<0.01 versus 

control group (planned comparisons in b, g and i; Student t-tests in c, e, f, inset in I, j and k); 

++ Fisher LSD’s post-hoc test, control pre- versus poststress p<0.01. 
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Figure 4 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 4. Early adversity increased intestinal permeability and motility in adult males. (a) 

Visceral sensitivity to colorectal distension (N=7-8 per group). Intestinal permeability to FSA 

(AU/mg) (b) or HRP (HRP/mg plasma) (c) at 2.5 months (N=10 per group). Intestinal 

permeability to FITC-Dextran (AU/mg) (d) or HRP (HRP/mg plasma) (e) at 5.5 months 

(N=11-12 per group). Ileal (f) and distal colonic (g) longitudinal muscle segments were 

stimulated by electrical field stimulation (EFS) (N=8 per group). The area under the curve 

(AUC) of EFS-induced contractile response was analyzed in absence or in presence of N-

nitro-l-arginine methyl ester (l-NAME) or atropine. Data are mean ± SEM. * p<0.05 and ** 

p<0.01 versus control group (planned comparison in g; Student t-tests in b and e). 

 

 

 

 

 

 

R
e

la
ti

v
e

 q
u

a
n

t.

Control Early

adversity

h

0

2

3

4

1

GFAP

H
R

P
/m

g
 p

la
s

m
a

Control Early

adversity

c

0

100

150

200

50

0 .00
0 15 30 45 60

0 .02

0 .04

0 .06

0 .08

Pressure (mmH g)

A
U

C

a

F
IT

C
-D

e
x

tr
a

n
 (

A
U

/m
g

)
Control Early

adversity

b

0

4

6

8

2

*

H
R

P
/m

g
 p

la
s

m
a

Control Early

adversity

e

0

100

150

200

50

*

F
IT

C
-D

e
x

tr
a

n
 (

A
U

/m
g

)

Control Early

adversity

d

0

2

3

4

1

5

Control Early

adversity

i
S100b

0.1

0.4

0.3

0.5

0.2

0.1R
e

la
ti

v
e

 q
u

a
n

t.

Control Early

adversity

j
Syn1

0.1

0.4

0.3

0.5

0.2

0.1R
e

la
ti

v
e

 q
u

a
n

t.

Control Early

adversity

k
MAP2

0.00

0.20

0.15

0.25

0.10

0.05

*

R
e

la
ti

v
e

 q
u

a
n

t.

Control Early

adversity

l
PGP 9.5

0.00

0.20

0.15

0.25

0.10

0.05R
e

la
ti

v
e

 q
u

a
n

t.

0.000

0.001

0.002

0.003

0.004

A
U

C
 (

g
.s

  
)

f

-1

EFS L-NAME

Ileum

Atropine

Control
Early adversity

0.000

0.004

0.006

0.008

0.010

A
U

C
 (

g
.s

  
)

g
-1

0.002

Distal colon

EFS L-NAME Atropine

**



23 

 

Figure 5 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 5. Gene expression in the mPFC. Microarrays revealed a significant early adversity x 

sex interaction for 30 probes. (a) Heatmap shows relative expression (Z-score) of the 

different probes (rows) in each animal (columns). (b) Klf2 mRNA (log2 relative expression) 

was significantly upregulated in early adversity females relative to controls (bars represent 

means). N=10-12 per group. * p<0.05 versus control females. Amotl2, angiomotin-like 2 ; 

Clic4, chloride intracellular channel 4; Rcsd1, RCSD domain containing 1; Pip5k1a, 

phosphatidylinositol-4-phosphate 5-kinase, type 1 alpha; Svil, supervillin; Klf2, Kruppel-like 

factor 2; Zfp36, zinc finger protein 36; Txnip, thioredoxin interacting protein; Tob1, transducer 

of ErbB-2.1; Scoc, short coiled-coil protein; Ccnl1, cyclin L1; Hspa4, heat shock protein 4; 

Btg2, B cell translocation gene 2, anti-proliferative; Gadd45g, growth arrest and DNA-

damage-inducible 45 gamma; Npas4, neuronal PAS domain protein 4; Coq10b, coenzyme 

Q10B; Trib1, tribbles pseudokinase 1; L3MBTL4, l(3) mbt-like 4 (Drosophila); 

C330007P06Rik, RIKEN cDNA C330007P06 gene; Khdrb s3, KH domain containing, RNA 

binding, signal transduction associated 3; Stamb pl1, STAM binding protein like 1; 

1700061G19Rik, RIKEN cDNA 1700061G19 gene; Gm9910, predicted gene 9910; 

A130094D17Rik, RIKEN cDNA A130094D17 gene. 
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Figure 6  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 6. Effects of early adversity on fecal microbiota composition in adult males. (a) 

PCA based on genus distribution in early adversity and control males. (b) Alpha diversity 

(Chao1 index). Genera with significantly decreased (c) or increased (d) relative abundance 

in early adversity versus controls. Bars in histograms represent medians. Mann-Whitney U 

Test, * p<0.05. OTUs with significantly decreased (e) or increased (f) relative abundance in 

early adversity versus controls. Each column represents a single OUT and each row a single 

animal. Taxa affiliations are color coded. Red hues denote increasing relative abundance. 

N=11-12 per group.  
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Figure 7 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 7. Effects of early adversity on fecal microbiota composition in adult females. (a) 

PCA based on genus distribution in early adversity and control males. (b) Alpha diversity 

(Chao1 index). (c) Genera with significantly decreased relative abundance in early adversity 

versus controls. Bars in histograms represent medians. Mann-Whitney U Test, * p<0.05. 

OTUs with significantly decreased (e) or increased (f) relative abundance in early adversity 

versus controls. Each column represents a single OUT and each row a single animal. Taxa 

affiliations are color coded. Red hues denote increasing relative abundance. N=11 per group.  
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SUPPLEMENTARY INFORMATION 

 

SUPPLEMENTARY METHODS 

Locomotor activity (3.5 months) 

Mice were placed in individual cages (30 x 12 cm) filled with fresh bedding under dim light 

(light intensity: 30 lux) and videotracked for 60 min using Smart software (Bioseb). Total 

distance travelled was automatically quantified. 

 

Plasma gut hormones multiplex assay 

Plasma leptin, insulin, ghrelin (active), GLP-1 (active) and PYY (total) were measured by 

multiplex assay (MGTMAG-78K MILLIPLEX MAP Mouse Gut Hormone Magnetic Bead 

Panel, Millipore, Fontenay sous Bois, France) according to the manufacturer’s instructions. 

Hormones concentrations were determined using the Luminex xMap Technology (Bio-Rad, 

Marnes-la-Coquette, France). All samples were processed in duplicates. Intra and inter 

assay coefficients were below 10 and 20%, respectively and crossed reactions were 

insubstantial (0.01%). Minimum detectable concentrations were 17.80 pg/mL for leptin, 18.89 

pg/mL for insulin, 3.79 pg/mL for ghrelin (active), 20.98 pg/mL for GLP-1 (active) and 2.64 

pg/mL for PYY (total). Active GLP-1 was not detectable in our samples.  
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SUPPLEMENTARY FIGURES 

 

 
Supplementary Figure 1 

 

Supplementary Fig 1. LPS injection on gestational day 16 produces 

hypothermia in dams. Change in body temperature (°C) 3 hours post LPS or 

saline injection. The significant hypothermia observed in LPS-injected dams 

provides evidence for LPS response efficacy. N=14 per group. Data are means ± 

SEM. Student t-test: *** p<0.001  

 

 
 

 
 
 
 
Supplementary Figure 2 

 

 

 

 

 

 

Supplementary Fig 2. Effect of early adversity on male and female offspring body weight. Body weight (g) 

of male and female pups on PND2 (a), PND15 (b) and PND22 (c). N=8-14 per group. Data are means ± SEM. 

Student t-test: * p<0.05 versus control males. 

 

 

 

Supplementary Figure 3 

 

 

 

 

 

 

 

 

Supplementary Fig 3. Effects of early adversity on visceral sensitivity and permeability in females at 2.5 

months. (a) Visceral sensitivity to colorectal distension (N=7-9 per group). Intestinal permeability to FSA (AU/mg) 

(b) or HRP (HRP/mg plasma) (c) at 2.5 months (N=11 per group). Data are means ± SEM. 
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Supplementary Figure 4 

 

Supplementary Fig 4. Effects of 

early adversity on bacterial taxa 

distribution in feces of adult 

males and females. Relative 

abundance of the different taxa in 

males (left) and females (right). 

Only predominant taxa are 

represented. (a) Mean phylum 

distribution per group. There were 7 

detected phyla in males, 6 in 

females. The Candidatus 

Saccharibacteria phylum  (only 

represented by Saccharibacteria 

incertae sedis spp.) was found only 

in two males of the early adversity 

group. The Deferribacteres phylum 

was only represented by 

mucispirillum spp. (b) Mean class 

distribution per group. There were 

12 detected classes in males, 11 in 

females. (c) Mean order distribution 

per group. There were 19 detected 

orders in males, 18 in females. (d) 

Mean family distribution per group. 

There were 33 detected families in 

males, 32 in females. (e) Mean 

genus distribution per group. There 

were 77 detected genera in males, 

73 in females. N=11-12 per group. 

Mann-Whitney U tests: *p<0.05 

versus controls of the same sex. 
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SUPPLEMENTARY TABLES 

 

Supplementary Table 1. Gene expression in the mPFC. Microarrays revealed a significant early adversity x 

sex interaction for 30 probes (statistical significance alpha=0.1).   

 

 logFCadj.P.Value

0.790.0157

0.570.8644

0.780.4183

0.480.4183

0.350.6556

0.190.7526

0.310.9663

0.180.4183

0.240.8684

0.330.4183

0.410.4183

0.740.4462

0.220.9548

0.270.9560

0.160.9560

0.180.9973

0.190.6138

0.210.8060

0.410.9998

0.520.9998

0.280.8060

0.640.4462

-0.280.3264

-0.250.4462

-0.240.9642

-0.160.9560

-0.230.7258

-0.330.4183

-0.220.6900

-0.150.8060

Early adversity vs Control

Females

-0.330.5143

-0.920.1464

-0.600.4768
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0.210.4901
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0.180.5076

0.140.4905

adj.P.Value

Early adversity vs Control

Males

logFCGene adj.P.Value

Klf2 0.0055

Npas4 0.0103

Btg2 0.0106

Gadd45g 0.0368

Zfp36 0.0410

Tob1 0.0434

Coq10b 0.0540

Amotl2 0.0543

ENSMUST00000172442 0.0568

chr5:124667541-124700029_R 0.0568

Txnip 0.0568

Btg2 0.0646

Pip5k1a 0.0662

Clic4 0.0767
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Svil 0.0830

Scoc 0.0830

Rcsd1 0.0830

Trib1 0.0830
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AK085781 0.0950

Gm9910 0.0055

L3mbtl4 0.0368
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Khdrbs3 0.0814

Stambpl1 0.0950

Sex x early adversity

Interaction
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DISCUSSION 

In the last decade, there has been a huge interest in the gut-brain axis, especially as regards 

stress-related emotional behaviors. The gut microbiota emerges as a key node in this axis. The 

developmental period constitutes a critical window of sensitivity to stress. Indeed, early-life 

adversity increases the risk to develop psychiatric diseases, but also GI disorders such as IBS. 

Animal models including models of prenatal and post-natal adversity demonstrate lasting 

deleterious effects on both the gut and the brain. One of the most used models is maternal 

separation. Several studies suggest that alterations of gut microbiota composition in animals 

exposed to MS underlie some of its effects on brain and behavior (Desbonnet et al., 2010; De 

Palma et al., 2015; Moya-Pérez et al., 2017). Moreover, intestinal hyper-permeability has 

been consistently reported in MS animals (Söderholm et al., 2002)(Barreau et al., 2004a, 

2004b; García-Ródenas et al., 2006; Gareau et al., 2007b; Moussaoui et al., 2014). However, 

although gut microbiota-directed interventions have been found to modulate gut permeability 

(Ait-Belgnaoui et al., 2012; Hsiao et al., 2013), the potential role of gut barrier function in 

mediating the long-term behavioral effects of MS has not been investigated. Importantly, sex 

differences as regards emotional vulnerability and gut microbiota composition exist in both 

humans and animals. However, a vast majority of the studies are conducted in males only. In 

this regard, we aimed to determine the role of gut permeability in the long-term 

neurobehavioral effects of early-life stress and to test whether early adversity differentially 

impacts gut microbiota and permeability according to sex.  

In a first study, we showed that previously reported protective effects of maternal HFD on 

MS-induced neurobehavioral alterations are associated with prevention of gut leakiness in rat 

pups. This observation led us to ask whether gut permeability could contribute to the 

emergence of the behavioral alterations associated with early stress. We hypothesized a causal 

relationship between gut leakiness during early-life and MS-induced endophenotypes 

including behavior, stress response and gut dysbiosis. Using two complementary strategies, 

we demonstrated that pharmacological inhibition of gut leakiness during early-life prevents 

some of the long-term effects of MS on behavior and endocrine response to stress, and 

conversely, genetically-driven gut leakiness in transgenic mice that were not submitted to MS 

recapitulated some of its behavioral and endocrine phenotypes. These results are the first 

proof of concept that gut permeability can affect brain and behavior and support the 

hypothesis that maternal HFD may protect the developing brain notably via the attenuation of 

gut leakiness in MS pups. Moreover, we showed that inhibition of gut leakiness during 

development lastingly modulated the effects of MS on gut microbiota composition. The study 
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in transgenic mice also provided new insight into the sex differences in behavior and 

neurobiological correlates and importantly showed that gut leakiness differentially affects 

males and females. Finally, we report further sex differences in gut and brain vulnerability to 

early-life adversity in a multiple-hit model. 

Here, we will first compare the results obtained in our different studies and discuss the 

findings on the role of gut leakiness and dysbiosis in the psychoneuroendocrine effects of 

early adversity. In a second part, we will discuss possible mechanisms of gut-brain 

communication downstream gut permeability and microbiota, as well as potential biological 

bases for the observed sex differences in our models. 

 

I – Commonalities and disparities in our studies 

Effects of early adversity and gut permeability manipulations on brain, HPA axis and 

behavior  

In line with the literature and our previous results (Rincel et al., 2016, ANNEXE 1), we found 

that MS produces hyperanxiety in male rats (ARTICLE 2). It appears that male C3H mice 

are resistant to the effect of multifactorial early adversity on anxiety-like behavior 

(ARTICLE 4). However, female C3H mice do develop hyperanxiety after early adversity. 

These findings can be compared with the CA-MLCK study (ARTICLE 3), in which females, 

but not males, display increased anxiety levels.  

Surprisingly, we did not find social deficits in male rats submitted to MS in our ML-7 study 

(ARTICLE 2), contrasting to our previous findings (Rincel et al., 2016, ANNEXE 1) and 

other reports. A possible explanation is that the MS protocol was slightly different due to 

daily vehicle injections in both control and MS groups, which might constitute a mild stressor 

for control rats which were undisturbed in our previous work. However, male C3H submitted 

to multifactorial early adversity show decreased social interaction whereas females do not 

(ARTICLE 4), suggesting that males are more prone to social behavior impairment than 

females. 

Another, striking discrepancy between our studies is the increased number of isolation-

induced ultrasound calls in MS male rats (ARTICLE 2) versus its decrease in male C3H 

mice exposed to early adversity (ARTICLE 4). Although in both cases, the altered pattern of 

vocalization can be interpreted as a disturbance in communication with the dam, it suggests 

that this behavior is different across species. Ultrasonic vocalizations (USVs) are generally 
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recognized as a sensitive measure of altered social communication in mouse models of autism 

(Scattoni et al., 2009), and/or anxiety-like behavior in rat pups (Hofer, 1996). MS in rats is 

widely used as a model of anxiety and/or depressive disorders and we report, in line with 

previous studies (Litvin et al., 2016), that MS increases USV in developing pups. 

Interestingly, the increased USV number in male MS rats is not associated with later social 

behavioral impairment in adulthood, but rather with adult hyperanxiety (ARTICLE 2). It has 

been shown that rats selectively bred for their high rates of isolation-elicited USVs at PND10, 

for 20 generations, display higher anxiety levels compared with rats selectively bred for low 

rates of USVs (Zimmerberg et al., 2005). In contrast, in C3H mice exposed to multifactorial 

early adversity, USVs are reduced in both sexes during development, but adult male offspring 

exhibit altered social behavior while adult females show hyperanxiety (ARTICLE 4). 

Importantly, the multifactorial model involves prenatal inflammation, which is used to model 

autism in mice, and leads to reduced social behavior (Knuesel et al., 2014). Moreover, the MS 

protocol used in C3H mice also include unpredictable chronic mild stress in dams and thus is 

different from MS in rats. A limitation in the latter study is that we did not dissociate the 

respective effects of prenatal inflammation and chronic post-natal stress on offspring’s 

behavior (ARTICLE 4). Altogether, our results and other findings in the literature indicate 

that the relationship between early stress and USVs in neonatal rodents is complex and may 

vary according to several factors such as the species and the type of early stress considered. 

Overall, it seems that emotional vulnerability differs between male rats and mice. The 

literature suggests that female rats are more resistant to perinatal stress than males (Barna et 

al., 2003; Dimatelis et al., 2016; Prusator and Greenwood-Van Meerveld, 2016), which does 

not seem to be the case in mice. A major limitation is that our studies conducted in rats 

involved only males (Rincel et al., 2016, ANNEXE 1; ARTICLES 1 and 2).  

We showed in male rats that prevention of gut leakiness during development protects against 

the long-term sexual reward seeking impairment induced by MS (ARTICLE 2). In CA-

MLCK male mice that display gut leakiness, we observed decreased sexual reward seeking 

and HPA axis hyper-response to stress, that resemble MS phenotype in rats (ARTICLE 3). 

On the other hand, CA-MLCK males do not exhibit increased anxiety or reduced sucrose 

preference, and such alterations were not restored by ML-7 in MS rats. Together, these results 

consistently suggest that developmental gut permeability in males plays a role in the 

maturation of brain areas involved in sexual reward seeking behavior and HPA axis function. 

However, further studies using transgenic mice with overexpression of the CA-MLCK in the 

gut specifically during the early post-natal life, for instance using the lactase promoter (Lee et 
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al., 2002), may help to unravel the differential impact of gut leakiness during development or 

at adulthood.  

Regarding the effects of early adversity and gut permeability manipulations on the brain, 

comparisons are difficult because we did not use the same neurobiological readouts across 

studies, which constitutes a main limitation. Nevertheless, we found significant alterations in 

the PFC of rats and mice (neuronal morphology, stress-related gene expression and 

transcriptome, in ARTICLE 1, 3 and 4 respectively), highlighting the key role of this brain 

area in a context of early stress but also in gut-brain communication. A recent report in Nature 

demonstrated that maternal immune activation produces abnormalities in the primary 

somatosensory cortex of adult offspring, and that activation of pyramidal neurons in this 

cortical area is sufficient to induce the long-term autistic-like behavioral effects of maternal 

immune activation (Shin Yim et al., 2017). Therefore, it would be interesting to examine 

whether animals exposed to early adversity or chronic gut leakiness display similar cortical 

abnormalities. Moreover, we have not investigated the neurobiological impact of gut 

permeability manipulations during development, in particular on dendritic spine density, that 

we reported to be altered by MS in PND21 juvenile rats (ARTICLE 1). Further studies will 

be required to fill this gap.  

Effects of early adversity and gut permeability manipulation on visceral sensitivity 

MS is a widely used model of IBS and MS offspring are hypersensitive to colorectal 

distension in adulthood. We previously showed that visceral hypersensitivity in adult male 

rats exposed to MS was prevented by perinatal exposure to HFD. The results obtained in our 

first study (ARTICLE 1) suggest that this effect of HFD on visceral sensitivity could be 

underlied by the protective effect of HFD on gut permeability in MS pups. However, we have 

not assessed visceral sensitivity in rats treated with the ML-7 or in CA-MLCK mice 

(ARTICLES 2 and 3). Unpublished data from our collaborators show that female CA-

MLCK mice are hyposensitive to colorectal distension under basal conditions, whereas they 

display hypersensitivity following acute water avoidance stress (Ferrier et al., unpublished 

data). Although there are no data available in male CA-MLCK mice, these findings are 

particularly interesting with respect to our results in C3H mice exposed to multifactorial 

adversity (ARTICLE 4). Indeed, in this study, female mice showed a trend towards 

decreased visceral sensitivity under basal conditions. It would have been interesting to expose 

them to acute stress and re-perform colorectal distension. These data also suggest that visceral 

sensitivity is differentially impacted in males versus females according to the species. Finally, 

it seems that altered visceral sensitivity goes with hyperanxiety in our models. Indeed, male 
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MS rats, female CA-MLCK mice, as well as female C3H exposed to early adversity all 

display hyperanxiety and altered visceral sensitivity, whereas male C3H exposed to early 

adversity are not hyperanxious and do not display altered visceral sensitivity (Rincel et al., 

2016, ANNEXE 1 and ARTICLES 3 and 4). It will be necessary to analyze visceral 

sensitivity in female MS rats and male CA-MLCK to confirm this relationship. Other studies 

reported concomitant anxiety and visceral sensitivity alterations in MS rodents (Schwetz et 

al., 2005; Moloney et al., 2015b). Moreover, a study comparing different mouse strains has 

described similar relationships, with CBA/J and C3H/HeN mice being the most anxious and 

viscerally hypersensitive (Moloney et al., 2015c). However, whether visceral sensitivity and 

anxiety cause each other remains to be demonstrated. 

Effects of early adversity and gut permeability manipulation on the gut microbiota 

In male rats, the preventive effects of ML-7 on MS-associated endocrine and behavioral 

phenotypes were accompanied by attenuation of gut dysbiosis at adulthood (ARTICLE 2). 

Unpublished data from our collaborators reveal that CA-MLCK mice also exhibit dysbiosis, 

including increased Clostridium XIVa, Clostridium IV and Desulfovibrio spp. and decreased 

Enterococcus, Prevotella, Bacteroides and Bifidobacterium spp. (Ferrier et al., unpublished 

data). The enrichment in Desulfovibrio and depletion in Bifidobacterium spp. are in line with 

our results in MS rats (same alterations but restored by ML-7 treatment). However, these 

observations were made in female CA-MLCK mice. Further investigation is needed in both 

sexes to better understand the effects of gut barrier dysfunction on gut microbiota 

composition. In addition, such data could provide new insight into the behavioral sex 

differences observed in the transgenic mice.  

Using a different model of multifactorial early adversity in C3H mice, we have also analyzed 

the effects of early-life stress on gut microbiota composition in both sexes (ARTICLE 4). 

Comparison with gut microbiota data in rats submitted to MS did not highlight robust 

similarities at the genus level in male animals. At the OTU (operational taxonomic unit) level 

(data not shown in MS rats), a significant proportion of the altered bacterial populations 

belongs to Clostridiales or Bacteroidales orders in both studies; however, the corresponding 

families within these orders are different in rats versus mice. Nonetheless, the greatest number 

of altered OTU in each experiment are Lachnospiraceae spp. Previous studies also reported 

altered abundance of these bacteria in animal models of early adversity including MS (De 

Palma et al., 2015; Zhou et al., 2016; Murakami et al., 2017). More interestingly, numerous 

OTUs in the Lachnospiraceae family have been found to be either increased or decreased in 

stools of depressive patients compared with healthy controls (Naseribafrouei et al., 2014; 
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Zheng et al., 2016), suggesting that the effects of early adversity on these bacteria in animal 

models are relevant to human psychiatric conditions. 

It is worth mentioning that these comparisons between species (humans, rats and mice) and 

between mouse strains may not make so much sense, as it appears that variations in gut 

microbiota composition are observed even among mice of the same strain. For instance, 

several studies reported that gut microbiota composition of C57BL/6 mice differs according 

to the animal provenance (Jackson Laboratories versus Taconic Biosciences) (Ivanov et al., 

2009; Kim et al., 2017; Rosshart et al., 2017). In addition, the DNA extraction protocols, 

analytic pipelines (identification of taxa) and data processing used differ between our studies. 

It has been shown that these parameters influence microbiota compositional data both 

quantitatively and qualitatively (Fouhy et al., 2016; Salonen et al., 2010). For DNA 

extraction, we used mechanical lysis (beads) in the rat study (ARTICLE 2) and both 

mechanical and chemical lysis in the C3H mice study (ARTICLE 4). In addition, OTU 

grouping was carried out using FROGS pipeline in rats and uclust software (QIIME) in C3H 

mice. Finally, a negative binomial fit model with Benjamini-Hochberg method to control the 

False Discovery Rate was applied in the rat study (logarithmic transformation), whereas row 

relative abundance (%) data were used in the C3H mice study. Key protocol issues including 

the 16S RNA targeted regions (V3-V4 regions) and sequencing method (Illumina MiSeq) 

were however conserved across the studies. These methodological considerations obviously 

also apply to comparisons with other works in the literature. In conclusion, despite the 

methodological differences found in our studies, populations among the Lachnospiraceae 

family seem to be fundamentally affected by both early-life adversity and gut permeability 

manipulation. 

II –Mechanisms underlying the effects of early adversity on emotionality and stress 

response 

Role of gut leakiness in stress-induced dysbiosis 

The mechanisms by which MS leads to changes in microbiota composition are not yet 

understood. It has been shown that stress decreases gastric acid and increases bicarbonate 

secretion in rats, thereby leading to changes in luminal pH and possibly favoring certain 

bacterial communities. Especially, it has been shown that some Clostridium XIVa spp. 

(Lachnospiraceae) survive well in an acidic environment compared with other bacterial strains 

from the Bacteroidetes phylum (Duncan et al., 2009). Moreover, these bacteria are important 
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SCFA producers and SCFAs are suspected to lower the colonic pH (Macfarlane et al., 1992), 

possibly resulting in a self-perpetuating loop. In addition, MS effects on gut mucosa and 

mucus layer as well as mucosal immune and enteric nervous systems likely play a role. 

Indeed, decreased mucus layer thickness has been reported in MS animals (O’Malley et al., 

2010). Since different bacterial strains reside preferentially in the mucus layer, it is 

conceivable that a change in mucus thickness would alter the composition of gut bacteria. 

Moreover, our present results suggest that gut leakiness per se can, at least in part, contribute 

to the MS-induced gut dysbiosis (ARTICLE 2). Bacterial translocation has been shown to 

occur in MS animals (Barreau et al., 2004a; Moussaoui et al., 2014). We can speculate that 

increased occurrence of bacterial invasion in the lamina propria due to gut leakiness 

stimulates the immune system in a way that it would increase the production of IgA and 

antimicrobial peptides to negatively regulate microbial density. Such changes in the cross-talk 

between host immune cells and microorganisms could lead to modifications of gut microbiota 

composition.  

Role of gut leakiness and dysbiosis in the regulation of emotional behavior 

Gut permeability and gut microbiota are tightly connected, making it hard to isolate their 

separate effects on brain and behavior. Indeed, our results together with the literature show 

that gut leakiness is often concomitant with gut dysbiosis (ARTICLES 2 and 4). Although 

the causal role of gut bacteria has been robustly demonstrated by the use of GF animals, fecal 

transplantation and probiotics, it is not clear whether these effects are independent of gut 

permeability. In our models, only adult C3H females submitted to multifactorial early 

adversity seem to display gut dysbiosis despite intact gut barrier function, even though we 

cannot exclude that gut leakiness occurs earlier in life in these animals (ARTICLE 4). An 

interesting study published in 2015 demonstrated that MS fails to induce emotional behaviors 

in GF mice, but leads to increased anxiety and depressive-like behaviors upon colonization 

with the gut microbiota of a conventional control mouse (De Palma et al., 2015). However, 

colonization with the microbiota of a maternally separated animal did not transfer the MS-

associated behavioral phenotype in naive GF mice. These findings suggest that gut bacteria 

are necessary but not sufficient to mediate the behavioral effects of MS. A hypothesis could 

be that GF mice display gut leakiness, conferring latent vulnerability only unmasked by 

microbial colonization. Conversely, control animals not exposed to MS would not display gut 

leakiness, which would explain that altered gut microbiota following fecal transplantation 

from a MS donor has no deleterious effects on emotional behaviors. Together with these 
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previous findings, our results suggest that both gut dysbiosis and gut leakiness are required 

for the long-term behavioral effects of MS.  

As previously underlined, the protective effect of ML-7 treatment in early-life is restricted to 

some MS-induced alterations (i.e. decreased sexual reward sensitivity and sustained 

corticosterone response to stress) (ARTICLE 2). Since the gut dysbiosis in MS rats was not 

fully prevented by the ML-7 treatment, a hypothesis could be that the remaining alterations in 

certain bacterial communities account for the lack of preventive effect of ML-7 on specific 

behaviors. For instance, hyperanxiety and reduced sucrose preference, which are unaffected 

by ML-7, could be underlied by enriched Acetitomaculum, Escherichia, Intestinibacter or 

Parabacteroides genera, or depleted Turicibacter or Adlercreutzia genera, that are also 

unaffected by ML-7. Indeed, a study showed that supplementation with Escherichia coli 

produces increased anxiety levels in male Wistar rats (Tennoune et al., 2015). In this regard, it 

would be interesting to test the effects of fecal transplantation with the microbiota of control 

animals (C Veh) in both MS Veh and MS ML-7 groups. Furthermore, some studies have 

shown that early colonization of GF mice could normalize their neuroendocrine and 

behavioral phenotypes, whereas adult colonization failed (Sudo et al., 2004; Heijtz et al., 

2011). We have seen that early ML-7 treatment restored gut permeability in PND14 pups, but 

no longer in PND21 or PND49 rats. Another hypothesis could be that intact gut barrier 

function is not only critical during early post-natal life, but also during adolescence and/or 

adulthood for behaviors not restored by early ML-7 (anxiety and sucrose preference). 

Therefore, testing the effects of ML-7 treatment during adulthood would provide deeper 

insight in the existence of potential windows of sensitivity. 

The behavioral impact of gut leakiness in CA-MLCK males seems to be restricted to 

decreased sexual reward sensitivity and spatial memory impairment (ARTICLE 3). Since 

CA-MLCK mice display altered HPA axis responsivity to stress, it would be interesting to 

expose them to chronic stress such as MS or chronic restraint stress in adulthood. Moreover, 

an important consideration is that CA-MLCK mice display only mild increases in gut 

permeability. For instance, gut leakiness in CA-MLCK mice is not associated with bacterial 

translocation and mucosal damage (Su et al., 2009; Edelblum et al., 2017), that are found in 

maternally separated animals (Barreau et al., 2004a; Moussaoui et al., 2014). The group of 

Turner reported that CA-MLCK mice are more sensitive to experimental colitis but exhibit 

only subclinical systemic inflammation (Su et al., 2009). Therefore, we can hypothesize that 

an immune challenge such as LPS injection may aggravate their behavioral alterations and/or 

produce other alterations, possibly through neuroinflammatory processes. As a matter of fact, 
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only heterozygous CA-MLCK mice can be used because breedings involving CA-MCLK 

females fail (Ferrier personal communication). It would be interesting to develop new tools to 

produce larger increases in gut permeability. Moreover, the use of WT dams precludes the 

investigation of the effects of in utero exposure to maternal gut leakiness, that might be also 

deleterious for offspring’s brain development. 

Finally, it is worth noting that our MLCK-directed strategies to manipulate gut permeability 

are restricted to paracellular, tight-junction-dependent transport. Because of the different 

nature of the trafficking molecules, we can imagine that para and transcellular 

hyperpermeability do not produce the same effects locally in the gut and thus could be 

associated with different behavioral outcomes. For instance, certain bacterial metabolites may 

be transported via transcellular pathways and others may travel between cells (Ménard et al., 

2010). Moreover, para and transcellularly transported molecules may differentially affect the 

mucosal immune system, which responds to both intra and extra-cellular antigens (Eberl, 

2016). 

Role of other gut microorganisms in the gut-brain axis 

Although it also applies to most of the current research on gut microbiota, especially in the 

gut-brain axis, a limitation is that our characterizations of gut microbiota composition are 

restricted to bacteria. Gut bacteria provide a wide array of microbial antigens and metabolites 

that have been demonstrated to affect mucosal immunity, but also CNS functions. However, 

gut bacteria are not the only inhabitants of the gut and the contribution of archaebacteria, 

viruses and fungi in our effects on brain and behavior remains to be determined. These 

microorganisms also tightly interact with the mucosal immune system and likely play an 

important role in regulating the nature, number, and function of bacterial communities. We do 

not rule out that some of these microbial populations could be primarily impacted by early-

life adversity or gut permeability manipulation and participate in broader effects within the 

gut-brain axis. For instance, a recent study reported that the mycobiome (fungi) is responsible 

for visceral hypersensitivity in maternally separated rats (Botschuijver et al., 2017). The 

authors elegantly showed that visceral hypersensitivity was abolished in fungicide-treated MS 

rats, and further, only fecal transplantation with non-fungicide-treated caecal content was able 

to reinstate visceral hypersensitivity in these rats. To date, the role of the gut mycobiome in 

the regulation of emotional behaviors is unknown. 

Role of the gut immune system 

Our results underscore remaining big questions in the gut-brain axis field such as how can gut 

dysbiosis and leakiness exert their long-term effects in the CNS. A recent study published in 
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Nature has demonstrated that segmented filamentous bacteria (SFB), members of the 

Clostridiaceae, play a critical role in the effects of poly(I:C)-induced maternal immune 

activation (MIA) on autistic-like behaviors in the offspring (Kim et al., 2017), via the 

induction of T helper 17 (Th17) cells in gestant dams. Intriguingly, they found out that 

offspring of dams from Jackson Laboratories – which lack SFB in their gut flora – were 

resistant to maternal immune activation, as they did not show any of its associated behavioral 

disturbances, contrary to offspring of dams from Taconic Biosciences – that are known to 

carry SFB. Strikingly, Jackson dams’ fecal transplantation with the microbiota of mice mono-

colonized (or mono-associated) with SFB was sufficient to reinstate MIA susceptibility. 

Interestingly, a recent study showed that mucosal immune responses to intestinal pathogen 

infection are different in CA-MLCK mice compared with WT (Edelblum et al., 2017). 

Indeed, CA-MLCK mice show increased numbers of CD4+ T cells in the lamina propria. The 

authors reported that this phenotype was absent in mice from Jackson Laboratories and 

depended upon IL-17 production in the presence of specific bacteria found in mice from 

Taconic Biosciences, most likely SFB, known as potent Th17 cell inducers (Gaboriau-

Routhiau et al., 2009; Ivanov et al., 2009). Together, these findings suggest that altered 

abundance of gut commensal bacteria with a propensity to induce Th17 cells may increase the 

neuropsychiatric vulnerability in CA-MLCK mice, but also in our other models. For instance, 

it would be interesting to compare the behaviors of GF CA-MLCK mice, ex-GF CA-MLCK 

mice colonized with the microbiota of a conventional mouse, or monocolonized with SFB or 

lachnospiraceae spp. 

SFB is a group of spore-forming gram-positive bacteria, defined on the basis of their 

morphology and their characteristic adhesion to epithelial cells (Davis and Savage, 1974). 

They are widely distributed in vertebrates, although their 16S rRNA gene sequences differ 

among host species (Snel et al., 1995; Yin et al., 2013). Thus, SFB do not constitute a 

phylogenetic group, but they belong to the order of Clostridiales within the phylum 

Firmicutes. Although we did not observe significant stress-induced differences in rodent SFB 

(Clostridiaceae) in our models, it is plausible that other bacteria including Lachnospiraceae 

spp. have similar immunomodulatory effects. Indeed, Lachnospiraceae spp. have been shown 

to reside in close proximity to the intestinal epithelium (Van den Abbeele et al., 2013) and 

SFB in arthropods belong to the Lachnospiraceae family (Thompson et al., 2012). In addition, 

it has been shown that, apart from rodent SFB, other bacterial strains with epithelial-cell-

adhesive properties also cause a robust induction of Th17 cells in the mouse colon (Atarashi 

et al., 2015). Furthermore, a recent study conducted in C3H mice, the same mouse strain that 
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we used in the multifactorial early adversity model, showed that mono-association with 

Roseburia hominis, a Lachnospiraceae spp., increases the number of Foxp3+ regulatory T 

cells (Tregs) in the lamina propria (Patterson et al., 2017). Foxp3+ Tregs regulate the number 

and polarization of effector T cells and play a pivotal role in suppressing excessive immune 

responses deleterious to the host (Sakaguchi et al., 2008); (Wang et al., 2014b). It has been 

shown that transient systemic Treg depletion affects the brain's choroid plexus, a selective 

gateway for immune cell trafficking to the CNS, and is associated with subsequent 

recruitment of monocyte-derived macrophages and Tregs to cerebral sites in an animal model 

of Alzheimer’s Disease (Baruch et al., 2015).  

In rat pups submitted to MS, we did not observe evident increases in proinflammatory 

cytokines mRNA expression in the hippocampus or PFC (ARTICLE 2). However, deeper 

analyses such as cytokines protein level determination, but also quantification of CD4+ T 

cells, especially CD45high/CD11bhigh cells that represent infiltrating macrophages, or 

microglial cells, could reveal potential neuroinflammatory processes, that may be affected by 

the ML-7 treatment. For instance, it has been shown that MS pups exhibit increased numbers 

of activated microglia in the PFC and hippocampus (Gracia-Rubio et al., 2016). Microglia 

play a critical role in post-natal brain wiring notably by regulating the number and quality of 

dendritic spines, a process known as synaptic pruning (Thion and Garel, 2017). As seen in the 

introduction, the gut microbiota has been shown to regulate the properties and maturation of 

microglia including during development (Erny et al., 2015; Matcovitch-Natan et al., 2016). 

Notably, microglia of GF mice show a downregulation of genes associated with inflammation 

(Matcovitch-Natan et al., 2016). Interestingly, sex differences exist in microglia density and 

phenotype during development (Schwarz and Bilbo, 2012; Hanamsagar and Bilbo, 2016). For 

instance, males have overall more microglia early in postnatal development. Moreover, gene 

expression of numerous cytokines, chemokines and their receptors is highly dependent upon 

sex (Schwarz and Bilbo, 2012). Microglia have estrogen receptors, and it has been shown that 

microglial activation during embryonic development is influenced by sex hormones (Lenz et 

al., 2013). Our work shows that the impact of early adversity on brain, HPA axis function and 

behavior, but also gut permeability, visceral sensitivity and gut microbiota is different in 

males versus females (ARTICLE 4). It is widely accepted that there are differences in 

immune function between sexes. Males are generally more susceptible to infections, whereas 

prevalence of autoimmune disorders is much higher in females (Klein, 2000; Ruggieri et al., 

2016). Moreover, gut microbiota composition also differs between males and females (Markle 

et al., 2013). Recent evidence suggests that sex differences in gut microbiota composition 
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could underlie the aforementioned immune sex differences (Fransen et al., 2017). In light of 

our results, it could be hypothesized that both differences in gut microbiota and differences in 

immunity, possibly in interaction with gut permeability, contribute to the differential effects 

of early adversity on brain and behavior in males and females. Future work exploring the 

effects of gut permeability manipulation on neuroimmune processes will shade new light on 

the molecular and cellular mechanisms underlying its effects on brain and behavior. 

Role of short-chain fatty acids 

Gut bacteria produce numerous metabolites including SCFAs, which have been reported to 

exert a variety of biological effects in the host (Shenderov, 2012). For instance, SCFAs can 

activate different G-protein coupled receptors, including in the brain (Stilling et al., 2016). 

Butyrate receptors are found in neutrophils, monocytes and Tregs and there is accumulating 

evidence that butyrate has anti-inflammatory potential (Bollrath and Powrie, 2013), 

suggesting that butyrate could play a role in neuropsychiatric conditions associated with 

chronic inflammation such as depression (Raison et al., 2006). In addition, SCFAs have been 

identified as potent HDAC inhibitors (especially butyrate) (Candido et al., 1978; Licciardi et 

al., 2011; Stilling et al., 2014b). For instance, SCFAs have been shown to strengthen the 

integrity of the gut epithelial barrier by the upregulation and reorganization of tight junction 

proteins, notably via HDAC inhibition (Suzuki et al., 2008; Peng et al., 2009; Wang et al., 

2012). In addition, gut microbiota has been shown to modulate gut homeostasis and 

inflammatory response in a HDAC3-dependent manner (Alenghat et al., 2013). Interestingly, 

epigenetic regulations have been proposed to underlie some aspects of microbiota-gut-brain 

bottom-up communication (Stilling et al., 2014a, 2014b). In this respect, Stilling and 

colleagues suggested that the concept of hologenome could be extended to ‘holo-epigenome’. 

A study by Braniste et al. suggests that SCFAs regulate BBB function, although the exact 

underlying mechanisms are not clear (Braniste et al., 2014). Remarkably, Erny and coworkers 

demonstrated a role for SCFAs in the maintenance of microglia homeostasis (Erny et al., 

2015). In addition, numerous studies have reported that peripheral administration of sodium 

butyrate or 4-phenylbutyrate in adult animals modulates brain physiology and function 

including anxiety, depressive and autistic-like behaviors (see Stilling et al., 2016 for review). 

For instance, adult sodium butyrate administration has been shown to exert antidepressant-

like effects both in naive mice and in chronically stressed mice (Schroeder et al., 2007; 

Tsankova et al., 2006) and to attenuate social deficits in a genetic mouse model of autism 

(Kratsman et al., 2016). De Vadder et al. have shown that propionate-enriched diet increased 

the number of C-Fos+ cells in the NTS of rats, suggesting an involvement of the vagus nerve 
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in the effects of SCFAs on behaviors (De Vadder et al., 2014). Considering the potential role 

of the vagus nerve in gut-brain communication, Stilling et al. highlighted the interest of 

exploring epigenetic modifications in the brainstem (Stilling et al., 2016). Although to our 

knowledge, no such investigation has been published to date, recent findings suggest that 

stress-induced visceral hyperalgesia is driven by epigenetic mechanisms in the spinal cord 

(Hong et al., 2015). Indeed, rats submitted to chronic water avoidance stress exhibited 

epigenetic marks in dorsal root ganglia of the lombosacral spinal cord, at several genes 

including Nr3c1 (GC receptor). Specific knockdown of DNMT1 and HAT P300 in 

lombosacral dorsal root ganglia neurons reduced DNA methylation and histone acetylation 

and prevented stress-induced increases in visceral pain (Hong et al., 2015). Consistently, 

another study reported similar beneficial effects of peripheral HDAC inhibition on visceral 

pain in the MS model (Moloney et al., 2015b).  

As seen in the introduction, a variety of epigenetic marks have been reported in the brain of 

MS offspring, notably at the promoter of genes encoding GC receptors. Moreover, similar 

marks have been found in the brains of suicide victims with a history of childhood 

maltreatment (McGowan et al., 2009,  2013). In addition, recent insights in animals support 

neuroimmune and neuroepigenetic bases for the sex differences observed in the brain 

(McCarthy et al., 2017). Altogether, these findings support a role of SCFAs in the long-term 

alterations of gut-brain communication induced by early adversity. Interestingly, 

lachnospiraceae (especially Clostridium cluster XIVa) members are important butyrate 

producers (Flint et al., 2008; Louis and Flint, 2009), suggesting that altered abundance of 

some lachnospiraceae spp. could account for the psychoneuroendocrine alterations observed 

in our models, possibly via a change in SCFA quantity and quality. Accordingly, it would be 

pivotal to quantify SCFAs in the gut and plasma in our models. 

 

Conclusion 

In conclusion, our work shows that early adversity leads to sex differences in emotional 

behavior, gut permeability and gut microbiota composition. We provide new insight into the 

mechanisms of gut-brain communication and highlight intestinal permeability as a key actor. 

Furthermore, our results point to a potential role of Lachnospiraceae members in these effects. 

Our findings have relevance for psychiatric conditions associated with early-life adversity, 

including autism, anxiety and mood disorders, and might contribute, ultimately, to develop 

alternative preventive and therapeutic strategies for these disorders.  
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Maternal high-fat diet prevents developmental programming
by early-life stress
M Rincel1,2,4, AL Lépinay1,2,4, P Delage1,2, J Fioramonti3,✠, VS Théodorou3, S Layé1,2 and M Darnaudéry1,2

Anxiety disorders and depression are well-documented in subjects exposed to adverse childhood events. Recently, maternal
obesity and/or maternal consumption of high-fat diets (HFD) have been also proposed as risk factors for offspring mental health.
Here using an animal model in rats, we explored the combinatorial effects of a maternal HFD (40% of energy from fat without
impact on maternal weight; during gestation and lactation) and maternal separation (MS) in offspring. In the prefrontal cortex (PFC)
of pups, MS led to changes in the expression of several genes such as Bdnf (brain derived neurotrophic factor), 5HT-r1a (serotonin
receptor 1a) and Rest4 (neuron-restrictive silencer element, repressor element 1, silencing transcription factor (Rest), splicing variant
4). Surprisingly, perinatal HFD strongly attenuated the developmental alterations induced by MS. Furthermore, maternal HFD totally
prevented the endophenotypes (anxiety, spatial memory, social behavior, hypothalamic–pituitary–adrenal (HPA) axis response to
stress, hippocampal neurogenesis and visceral pain) associated with MS at adulthood. Finally, we also demonstrated that HFD
intake reduced anxiety and enhanced maternal care in stressed dams. Overall, our data suggest that a HFD restricted to gestation
and lactation, which did not lead to overweight in dams, had limited effects in unstressed offspring, highlighting the role of
maternal obesity, rather than fat exposure per se, on brain vulnerability during development.

Translational Psychiatry (2016) 6, e966; doi:10.1038/tp.2016.235; published online 29 November 2016

INTRODUCTION
The etiology of the majority of psychiatric disorders remains
unknown. It is, however, well-accepted that psychosocial adversity
in childhood can contribute to an increased risk of depressive and
anxiety disorders later in life.1–6 In modern societies, a consider-
able amount of the population including childbearing women and
children is exposed to low-cost energy-dense food with a high
content in fat. Yet, it has been recently proposed that maternal
obesity and/or maternal consumption of fat-rich diets could also
constitute risk factors for offspring’s mental health.7 It is therefore
crucial to unravel the possible combinatorial effects of perinatal
exposure to fat-rich diets and early-life stress on the develop-
ing brain.
Early disruption of the mother–infant relationship in rats leads

to a wide range of abnormalities8,9 that are also found in
depressive and anxious patients with an history of early-life
stress.6 These include altered hypothalamic–pituitary–adrenal
(HPA) axis response to stress,10,11 reduced hippocampal
neurogenesis,12 altered emotionality,11,13 increased visceral
pain14 and cognitive impairments.12,15 Similarly, beside the well-
known effects on offspring metabolism,16,17 maternal obesity and/
or maternal high-fat diet (HFD) consumption can also affect
behavior and brain function in offspring.18 Indeed, altered
hippocampal neurogenesis,19 spatial learning deficits20 and
hyperanxiety,21–23 have been reported, suggesting that maternal
stress and maternal HFD may produce similar effects on the brain
during development.

In humans, early-life adversity has marked impact on child brain
and particularly on the prefrontal cortex (PFC).24,25 In rodents,
ontogenic molecular changes within the PFC (between post natal
day (PND) 7 and PND14) have been described in pups submitted
to maternal separation (MS) and are suggested to participate to
the programming effects of early-life stress.26,27 Indeed, the
increase of the neuronal transcription factor Rest4 (neuron-
restrictive silencer element, repressor element 1, silencing
transcription factor (Rest), splicing variant 4) in pups’ medial
prefrontal cortex (mPFC) is responsible for the molecular signature
of MS, characterized by upregulation of genes such as 5HT-r1a
(serotonin receptor 1A) and Bdnf (brain derived neurotrophic
factor).27 Moreover, Rest4 overexpression in the mPFC specifically
during early post-natal development, but not in adulthood, is
sufficient to produce MS-associated adult endophenotypes,
especially hyperanxiety. Here we aim to determine whether
exposure to maternal HFD in rats can mimic MS and potentiate
the MS-induced developmental alterations in the PFC. To
dissociate HFD effect from maternal obesity effects, we used a
protocol of maternal HFD exposure (40% from fat, restricted to
gestation and lactation periods), which does not produce
maternal obesity.28 We further aim to evaluate the long-lasting
impact of maternal HFD exposure on MS-induced alterations of
emotional and cognitive behaviours, as well as some typical
neuroendocrine and neurobiological changes affected by MS.
Since MS is widely used as an animal model of irritable bowel
syndrome (IBS),14 we also examined the effects of these early
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manipulations on visceral pain in adulthood. Finally, given that the
dams were directly exposed to the HFD, and that previous reports
suggest that HFD could modulate stress response, we also
examined the behavioral effects of HFD in stressed dams.

MATERIALS AND METHODS
Experimental procedures
All experiments were approved by the Bioethical committee of our
University (N° 50120186-A) and région Aquitaine Veterinary Services
(Direction Départementale de la Protection des Animaux, approval ID:
A33-063-920) according to the European (Directive 2010/63/EU, 22
September 2010) legislation.
Animals were maintained in a 12-h light/12-h dark cycle (lights on at

0800 hours) in a temperature-controlled room (22 °C) with free access to
food and water. Seventy six pregnant female Wistar rats (11-week old,
Janvier, Le Genest, Saint-Isle, France) were randomly assigned to either
standard diet (SD) or HFD. A mixture of vegetable oils was used as the
source of fat (SD, 12% and HF, 40% of energy from fat, Supplementary
Table 1).28 Dams were maintained under these diets from the first day of
gestation to postpartum day (PP) 21. At birth, litters were culled to 8–10
pups with balanced sex-ratios and randomly assigned to control group or
MS group. From PND2 to PND14, stressed pups underwent daily MS for
180 min as previously described.29 During the separation sessions, dams
were placed in new cages with free access to food (according to their
respective diet) and water, whereas pups were placed in individual
containers in another room under controlled temperature (28 ± 2 °C).
Control pups remained undisturbed with the dams. At PND21, male pups
were weaned onto laboratory chow and housed four per cage (from
different litters) until the testing age (Supplementary Figure S1). A
maximum of two pups per litter was used for each measure to prevent
from any litter effect.30 To investigate the effects of maternal diet and MS
on brain during development, the expression of genes (Rest4, Rest, 5HT-r1a,
Bdnf, Adcy5, Camk2a and Crh) known to be affected by early stress26,27 was
assessed in the PFC at PND11 (cohort 1, see gene list in Supplementary
Table 2). For that purpose, male pups of the four groups (SD–control,
HFD–control, SD–MS and HFD–MS) were killed on PND11, with stressed
pups killed either before or after the 180 min-period of MS. PND11 time
point was chosen based on previous studies showing ontogenic changes
in gene expression between PND7 and PND14 in MS pups.26,27 Plasma
levels of metabolic hormones were also assessed after 180 min of
separation at PND11. In adulthood (cohort 2), rats underwent a battery
of behavioral tests. First, they were tested for anxiety-like behaviour
(4 months), then for spatial learning, spatial memory (5 months),
anhedonia (6 months) and social interaction (7 months). At 8 months,
they were killed and a random subset of each group was used for
biochemical or immunohistochemistry analysis. Plasma corticosterone, Crh
(corticotropin-releasing hormone) mRNA expression in the hypothalamus
(HT) and C-FOS expression in the paraventricular nucleus of the HT (PVN) in
response to an acute stress (10 min of open-field) were examined, as well
as hippocampal neurogenesis. Visceral sensitivity was evaluated in a
separate set of animals at adulthood (2 months, cohort 3).
The following experiments were conducted in stressed dams fed a SD or

HFD (PP2-14, cohort 1). Food intake during the 180 min separation and out
of the stress-sessions in the home cage was measured. Maternal care was
analyzed on PP2 and PP10 in a subset of stressed dams. At PP11, blood
samples were withdrawn at the end of the 180 min of separation for
corticosterone determination. Dams’ anxiety-like behavior was tested in
the light–dark test on the last day of the MS procedure (PP14). Dams were
killed 2 weeks after weaning and fat tissue (mesenteric and perigonadic)
was collected and weighed.

Behavioral assessments in adult offspring
Open field. Rats were placed in the corner of the open field
(100× 100 cm) and exploration of the center (40 × 40 cm) was recorded
for 10 min using videotracking (Bioseb, Vitrolles, France). Distance traveled
and number of visits in the center were automatically quantified.

Sucrose preference. Rats were individually housed and presented two
bottles of tap water to measure basal water consumption. After 48 h of
habituation, animals were presented one bottle filled with 1% sucrose
solution and one bottle of water. Both intakes were measured after 24 h of
test and sucrose preference was calculated as percentage of the volume of

sucrose intake over the total volume of fluid intake. Bottle side was
randomized to control for any side bias.

Social interaction. Pairs of weight-matched rats from the same experi-
mental group were placed in a new cage, under dim light (30 lux) for
8 min. Social behavior (sniffing, allogrooming and crawling over) were
recorded and scored using an ethological software (The observer, Noldus
Information Technology, Wageningen, The Netherlands).31

Morris water maze. Spatial learning and memory were assessed as
previously described.28 Learning consisted of six sessions (four daily trials
each) during which distance traveled to reach the hidden platform was
recorded (Bioseb, Vitrolles, France). After the last session, animals were
given 48 h of retention time and were tested for reference memory during
a 90 s probe trial without the platform. Time spent in each quadrant was
analyzed.

Colorectal distension. Visceral sensitivity was evaluated using electromyo-
graphy recordings in response to progressive colorectal distension as
previously described.32 For more information see Supplementary Methods.

Behavioral assessments in stressed dams
Food consumption. From PP2 to PP14, 24 h and 180 min stress food
intakes were measured. Data were expressed as a percentage of food
intake during separation on MS day 2.

Light-dark box. On the last day of separation (PP14), dams’ anxiety was
assessed in the light–dark box paradigm during separation. The total time
spent in the light compartment was recorded for 10 min as previously
described.31

Maternal behavior. On PP2 and PP10, five 60-min periods in the light
(1300 and 1900 hours) and dark (2200, 0100 and 0500 hours) phases were
video-recorded. Dams’ behaviors were scored every 5 min (12 observations
per hour) and classified into either ‘maternal behavior’ (arched back
posture, licking/grooming and passive nursing, including nesting and pup
retrieving) or ‘non-maternal behavior’ (off nest, including eating/drinking,
self-grooming).33

Molecular and biochemical analysis
Real-time quantitative PCR (pups and adult offspring). Total mRNA was
extracted from PFC of pups and HT of adult offspring using a TRIzol
extraction kit (Invitrogen, Life Technologies, Carlsbad, CA, USA) according
to the manufacturer’s instructions. The RNA concentration and purity were
determined using a ND-1000 spectrophotometer (Nanodrop Technologies,
Wilmington, DE, USA). cDNA was synthestized from 1 μg of RNA using
Superscript III reverse transcriptase (Invitrogen, Life Technologies) as
previously described.34 Quantitative PCR was performed using SYBR assays
(Supplementary Table 2). See Supplementary Methods for further details.

Plasma metabolic hormones multiplex assay (pups). Trunk blood was
collected from PND11 pups after 180 min of MS and centrifuged at 4 °C
before plasma was stored at − 20 °C. Plasma leptin, insulin, total glucagon-
like peptide 1 (GLP-1) and peptide YY (PYY) of PND11 pups were measured
by multiplex assay (MILLIPLEX MAP Rat Metabolic Hormone Magnetic
Bead, Millipore, Fontenay sous Bois, France) according to the manufac-
turer’s instructions. Hormone concentrations were determined using the
Luminex xMap Technology (Bio-Rad, Marnes-la-Coquette, France). All
samples were processed in duplicates. Intra and inter assay coefficients
were below 15% and crossed reactions were insubstantial (0.01%).

Corticosterone radioimmunoassay (dams and adult offspring). Blood
samples were collected from the tail vein (between 0900 and 1200 hours),
centrifuged at 4 °C and plasma was stored at − 20 °C until use. Total plasma
corticosterone was measured with an in-house radio immunoassay,
by competition between cold corticosterone (B) and 3H-B (B*) for a
specific anticorticosterone antibody, as previously described.35 The
sensitivity of this assay is around 5 ng ml− 1. Intra- and interassay variations
were o15%.
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Immunohistochemistry in adult offspring
Neuronal activation in PVN. Anesthetized rats (Pentobarbital, 50 mg kg− 1)
were intracardially perfused with Phosphate Buffer Solution followed by
4% Paraformaldehyde. Brains were post-fixed in the same fixative for 24 h,
cryoprotected in 30% sucrose, and stored at − 80 °C until use. Immunos-
taining for C-FOS was used to measure neuronal activation 1 h post stress.
Free-floating sections (40 μm) containing PVN (−1.80 to − 2.12 mm
posterior to Bregma)36 were treated as previously described.37 C-FOS
immunoreactive (IR) cells were counted with the optical fractionator
method using a microscope (Olympus, Hamburg, Germany, BX51)
equipped with an objective (×100), a video camera (Nikon digital camera
DMX 1200, Champigny sur Marne, France), and a stereological software
(Mercator, ExploraNova, La Rochelle, France). Quantification of C-FOS-IR
cells was carried out in two PVN sections per animal. The fields of view
were systematically sampled using a step size of 50 μm along the x and y
axes. The dissector counting frames were 150× 150 μm. Results are
expressed as C-FOS-IR cells in the total PVN.

Hippocampal neurogenesis. Hippocampal sections (from bregma 2.30 to
5.20 mm) were treated for doublecortin (DCX) immunoreactivity using a
goat polyclonal antibody (1:1000, Santa Cruz Biotechnology, Santa Cruz,
CA, USA) and a biotinylated donkey anti-goat secondary antibody (1:200,
Amersham, Chicago, IL, USA) as previously described.38 Adult neurogenesis
in the dentate gyrus (DG) was evaluated in eight coronal slices of
hippocampus. For each rat (n=4 per group), four matched-sections for
dorsal (1.06 to − 2.06 mm) and ventral (−3.08 to − 3.80 mm) hippocampus
were selected.39 DCX-IR cells were counted within the granular cell layer.
The number of DCX-IR cells was then expressed per mm2.

Statistical analysis
Three different cohorts were used to evaluate the independent and
combined effects of maternal HFD and MS. Sample sizes were determined
based on power analysis and common practice in behavioral (~10 animals
per group) and molecular biology (~5 animals per group) experiments. The
exact number of animals tested in each group is specified in the figure
legends. All data were analyzed using Statistica 6.0 (StatSoft, Tulsa, OK,
USA). Graphs showing the means ± s.e.m. were graphed using Prism 5.0
(GraphPad Software, San Diego, CA, USA). Normality was assessed by

Shapiro–Wilk tests. Statistical outliers were detected with the Grubb’s test
and highly significant outliers (Po0.01) were removed from analyses. Data
were analyzed using two or three-way analysis of variance (ANOVA) with
repeated measures when appropriate, followed by Fisher’s LSD post hoc
tests or planned comparisons (% dams’ food intake throughout the
maternal separation sessions). Unpaired Student t-tests were used to test
the effects of maternal diet in stressed animals. Pearson correlation was
used to examine the link between anxiety in the open-field and memory
performance in the water maze. Neurogenesis and maternal behavior were
analyzed by Mann-Whitney U-tests. Data quantifications that potentially
include subjective bias (social interaction, maternal care, C-FOS and DCX
quantification) were conducted by observers blind to the experimental
group. Statistical significance was set at Po0.05.

RESULTS
Maternal high-fat diet prevents the molecular signature of
maternal separation in pup’s prefrontal cortex
To examine the respective and combined effects of maternal HFD
and MS on the developing brain, we assessed mRNA expression of
Rest4 and related genes in the PFC of PND11 pups, with stressed
pups killed before the stress session (Figure 1a–g). Expression of
the housekeeping B2m gene did not significantly vary across
groups in any of condition (data not shown). Rest4, Rest, Adcy5
(adenylate cyclase 5) and Camk2a (calcium/calmodulin-dependent
protein kinase 2 α) mRNA levels were not significantly altered by
maternal HFD nor MS (Figure 1a,b,e,f). However, there was a
significant interaction between maternal diet and early stress for
5HT-r1a (two-way ANOVA, F(1,31) = 4.3221, P= 0.0460), Bdnf
(F(1,32) = 6.6418, P = 0.0148) and Crh (F(1,32) = 5.3553, P = 0.0272)
mRNA levels (Figure 1c–g). Pups of SD dams exposed to chronic
MS exhibited a trend toward a decrease of 5HT-r1a mRNA (Fisher’s
LSD post hoc, SD–MS versus SD–control, P = 0.0726), and a
significant downregulation of Bdnf (P= 0.0282) and Crh
(P = 0.0443) mRNA expression. The effect of maternal HFD alone
was restricted to a decrease of Bdnf expression (HF-control versus

Figure 1. Independent and combined effects of maternal high-fat diet and maternal separation on pups’ prefrontal cortex gene expression.
Gene expression of (a) Rest4, (b) Rest, (c) 5HT-r1a, (d) Bdnf, (e) Adcy5, (f) Camk2a and (g) Crh in the PFC of 11-day-old pups (n= 10 for SD–control
and HFD–control, n= 7 for SD–MS and n= 9 for HFD–MS; except for Camk2a: n= 5 for SD–MS, n= 9 for HFD–control and n= 8 HFD–MS). All
data are expressed relative to the housekeeping gene β2m (fold change). Pups of SD-fed dams exposed to chronic MS exhibited a slight
decrease in 5HT-r1a mRNA levels, and a significant down-regulation of Bdnf and Crh mRNA. Expression of these markers was restored by
maternal HFD. Adcy5, Adenylate cyclase5; Bdnf, Brain-derived neurotrophic factor; Camk2a, Calcium/calmodulin-dependent protein kinase 2 α;
Crh, Corticotropin-releasing hormone; HFD, high-fat diet; MS, maternal separation; Rest, Neural-restrictive silencer element, repressor element
1 (RE1), silencing transcription factor; Rest4, Rest splicing variant 4; SD, standard diet; 5HT-r1a, Serotonin receptor 1A. *Po0.05.
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SD–control, P= 0.0482). Unexpectedly, the combination of mater-
nal HFD and MS led to 5HT-r1a, Bdnf and Crh mRNA levels similar
to control levels (HFD–MS versus SD–control, P = 0.0980,
P= 0.4979, P= 0.5887, respectively), suggesting a preventive effect
of maternal HFD on the developing PFC in MS pups.
On PND11, we further examined PFC gene expression at the

end of the stress session (that is, 180-min) in chronically stressed
pups, as compared with expression in stressed animals (SD or
HFD) killed before stress (Figure 2a-g). There was a significant rise
in mRNA expression of Rest4 (one sample t-test, t(7) = 5.5237,
P= 0.0009), Rest (t(7) = 6.2155, P = 0.0004), 5HT-r1a (t(7) = 14.4684,
Po0.0001), Bdnf (t(7) = 4.2398, P = 0.0038), Adcy5 (t(7) = 4.7668,
P= 0.0020) and CamK2a (t(7) = 4.3180, P= 0.0035) in stressed pups
of SD-fed dams (Figure 2a-f). Maternal HFD strongly blunted MS-
induced upregulation of Rest4 (unpaired Student t-test,
t(14) = 2.4514, P = 0.0280), Rest (t(14) = 3.4289, P= 0.0041), 5HT-r1a
(t(14) = 9.9536, Po0.0001) and Adcy5 (t(14) = 3.0611, P= 0.0085), but
not Bdnf nor Camk2a (t(14) = 1.0520, P = 0.3106 and t(14) = 0.5439,
P= 0.5951, respectively). Finally, Crh mRNA levels were decreased
in MS pups from dams fed with HFD (one sample t-test,
t(7) = 2.4416, P= 0.0581; Figure 2g). Overall, our data highlight an
unexpected, protective effect of maternal HFD on the molecular
changes associated with MS during brain development.

Maternal high-fat diet prevents adult endophenotypes associated
with early-life stress
Since Rest4 overexpression in the mPFC during development leads
to long-lasting deleterious effects resembling the MS
phenotype,27 we hypothesized that the restoration of Rest4
expression in the PFC at PND11 would alleviate MS-associated
behavioral endophenotypes in adult offspring of HFD-fed dams.
Therefore, we next examined anxiety, anhedonia, social behavior
and spatial learning and memory, which have been extensively

reported as affected in adult MS offspring10,11,13,40 (Figure 3a-f). In
the open-field test, the effects of MS on the distance traveled in
the center area differed with respect to the maternal diet (two-
way ANOVA, maternal diet × early stress effect: F(1,54) = 4.8826,
P= 0.03138; Figure 3a). In offspring of SD dams, MS tended to
decrease the distance in center compared with the control group
(Fisher’s LSD post hoc, SD–MS versus SD–control, P= 0.0676),
suggesting a higher anxiety. This effect was attenuated in MS
offspring exposed to maternal HFD (HFD–MS versus SD–control,
P= 0.0001). Maternal HFD exposure had no impact on anxiety-like
behavior in non stressed animals (HFD–control versus SD–control,
P= 0.23791). A similar profile was found for the number of visits in
the center (two-way ANOVA, maternal diet × early stress effect:
F(1,54) = 4.3119, P= 0.0426; Figure 3b). In contrast, anhedonia,
assessed by the sucrose preference test was not significantly
altered by MS or maternal HFD (maternal diet × early stress effect:
F(1,54) = 0.5020, P= 0.4818; Figure 3c). In the social interaction test,
MS rats spent significantly less time in interaction over the 8-min
of the test compared with controls, independently of maternal
diet (three-way ANOVA with repeated measures, early stress
effect: F(1,24) = 6.9739, P = 0.0143; data not shown). However, the
analysis of the first minute, which can be considered the most
anxiogenic, revealed a significant interaction between early stress
and maternal diet (two-way ANOVA, F(1,24) = 6.1909, P = 0.0202;
Figure 3d). MS rats exposed to a maternal SD displayed reduced
social interaction time compared with their control counterparts
(Fisher’s LSD post hoc, SD–MS versus SD–control, P = 0.0007). In
contrast, in offspring of HFD dams, MS had no effect on social
behavior (HFD–MS versus HFD–control, P = 0.7355). Again, mater-
nal HFD alone had no significant impact on social behavior (HFD–
control versus SD–control, P= 0.1139). As early-life stress is also
associated with cognitive dysfunctions,12,15 we examined the
impact of maternal HFD on spatial memory performance in the
water maze task. All groups performed equally over the spatial

Figure 2. Maternal high-fat diet prevents gene expression changes in the prefrontal cortex of pups following 180- min of maternal separation.
mRNA levels of (a) Rest4, (b) Rest, (c) 5HT-r1a, (d) Bdnf, (e) Adcy5, (f) Camk2a and (g) Crh in the PFC of 11-day-old pups after 180-min of
separation (n= 8 per group). All data are expressed relative to gene expression in pups killed before separation. In pups of SD-fed dams,
expression of all these markers, except Crh, was increased after the acute separation, compared with baseline. However, the acute separation-
induced rises of Rest, Rest4, 5HT-r1a and Adcy5 were blunted in pups born to high-fat-fed dams. Adcy5, Adenylate cyclase5; Bdnf, Brain-derived
neurotrophic factor; Camk2a, Calcium/calmodulin-dependent protein kinase 2 α; Crh, Corticotropin-releasing hormone; PFC, prefrontal cortex;
Rest, Neural-restrictive silencer element, repressor element 1 (RE1), silencing transcription factor; Rest4, Rest splicing variant 4; SD, standard
diet; 5HT-r1a, Serotonin receptor 1A. *Po0.05, **Po0.01 and ***Po0.001; #Po0.05, ##Po0.01 and ###Po0.001 compared with the standard
value of 1 representing mRNA levels in pups killed before the separation.
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learning sessions (three-way ANOVA with repeated measures,
maternal diet × early stress × session effect: F(5,270) = 0.6710,
P= 0.6459 (Figure 3e). In the probe test 48 h later (Figure 3f),
control offspring of SD and HFD dams spent significantly more
time in the target quadrant compared with other quadrants
(ANOVA with repeated measures, quadrant effect: SD–control,
F(3,42) = 6.1010, P = 0.0015; HFD–control F(3,42) = 8.1473, P= 0.0002;
Figure 3f, left panel). In contrast, offspring of SD-fed dams
submitted to MS did not discriminate the target quadrant
(quadrant effect: F(3,39) = 1.4501, P= 0.2431). This memory impair-
ment was suppressed by maternal HFD (quadrant effect:
F(3,39) = 25.1083, Po0.0001; Figure 3f, right panel). Given that
the water maze task is aversive, we tested a possible link between
memory performance and anxiety levels. We found a significant
positive correlation between distance traveled in the center of the
open-field and time spent in target quadrant of the water maze
during the probe test in the MS groups (Pearson correlation:

r= 0.55, P= 0.002; Figure 3g). Indeed, animals that are the most
anxious also exhibit the lowest spatial memory performance,
suggesting that exacerbated anxiety may be involved in the
memory deficit reported in MS animals.
To better characterize the effect of maternal HFD on MS-

associated endophenotypes, we next explored HPA axis response
to stress (including plasma corticosterone, CrhmRNA expression in
the HT, and C-FOS expression in the PVN) and hippocampal
neurogenesis, both widely reported as affected by early-life
stress.10–13,40 At the end of the behavioral characterization,
animals were killed following an acute stress (open-field exposure;
Figure 3h-k). The effect of MS on plasma corticosterone levels
differed with respect to the dam’s diet (two-way ANOVA, maternal
diet × early stress effect: F(1,54) = 8.7133, P= 0.0047). MS offspring of
SD dams exhibited significantly higher plasma corticosterone
levels compared with controls (Fisher’s LSD post hoc, SD–MS
versus SD–control, P= 0.0030). Maternal HFD per se tended to

Figure 3. Maternal high-fat diet alleviates offspring endophenotypes induced by maternal separation. (a) Distance traveled (cm) and (b)
number of visits in the center of the open field (n= 15 for SD-control and HFD–control, n= 14 for SD–MS and HFD–MS). (c) Sucrose preference
(percentage of sucrose solution consumption relative to total fluid intake) over 24 h (n= 15 for SD–control and HFD–control, n= 14 for SD–MS
and HFD–MS). (d) Time (sec) spent in social interaction (n= 7 per group). (e) Distance traveled (cm) to reach the hidden platform during
learning and (f) time (sec) spent in the target quadrant during the probe test, 48 h after the last training session (n= 15 for SD–control and
HFD–control, n= 14 for SD–MS and HFD–MS). (g) Significant positive correlation between distance traveled in the center of the open field and
time spent in target quadrant in the water maze in adult offspring exposed to MS (n= 28). (h) Plasma corticosterone levels (μg dl− 1) (n= 15 for
SD–control and HFD–control, n= 14 for SD–MS and HFD–MS), (i) Crh mRNA expression in the hypothalamus (fold change) (n= 6 for SD–
control, SD–MS and HFD–MS; n= 7 for HFD–control) and (j) Number of C-FOS-IR cells in the PVN 1 h after 10 min open-field exposure (n= 8 for
SD–control, SD–MS and HFD–control; n= 7 for HFD–MS). (k) Number of DCX-IR cells in the DG of the hippocampus (cells per mm2; n= 4 per
group). Crh, Corticotropin-releasing hormone; DCX, Doublecortin; HFD, high-fat diet; MS, maternal separation; SD, standard diet. *Po0.05,
**Po0.01 and ***Po0.001; §P = 0.07 compared with SD–control and Po0.05 compared with HFD–control and HFD–MS; ++ at least Po0.01
and +++ at least Po0.001 compared with all other quadrants.

Maternal nutrition protects from early stress
M Rincel et al

5

Translational Psychiatry (2016), 1 – 9



produce similar effects to MS (HFD–control versus SD–control,
P= 0.0824). In contrast, MS offspring of HFD dams displayed
normalized corticosterone levels (HFD–MS versus SD–control,
P= 0.5072) (Figure 3h). Whatever the maternal diet, there was a
non-significant decrease of Crh gene expression in the hypotha-
lamus of early stressed animals (two-way ANOVA, early stress
effect: F(1,21) = 1.9295, P= 0.1794; Figure 3i). In addition, we
stereologically counted C-FOS IR cells in the PVN of the hypo-
thalamus (Figure 3j). Again, there were differential effects of MS
depending on the maternal diet (two-way ANOVA, maternal
diet × early stress effect: F(1,27) = 7.9363, P = 0.0090). In comparison
with control SD animals, MS or maternal HFD similarly decreased
the number of C-FOS-positive cells in the PVN (Fisher’s LSD post
hoc, SD–MS versus SD–control, P = 0.0034; HFD–control versus SD–
control, P= 0.0397). In contrast, MS offspring of HFD dams showed
normalized C-FOS expression (HFD–MS versus SD–control,
P= 0.2148). Finally, neurogenesis was examined by counting the
total number of DCX-positive cells in the DG of the hippocampus.
In offspring of SD dams, the total number of DCX-positive cells
was significantly lowered by MS (Mann-Whitney U-test, SD–MS
versus SD–control, U= 0.0000, P= 0.0286) (Figure 3k). This
MS-induced decrease of newborn neurons was not observed in
offspring of HFD dams (HFD–MS versus SD–control, U= 8.0000,
P = 1.0000). Maternal HFD alone did not affect hippocampal
neurogenesis in control animals (U= 8.0000, P = 1.0000).
In humans, anxiety disorders are highly co-morbid with the IBS,

which is characterized by chronic visceral pain.41 Since MS is
widely used as an animal model of IBS,14 we next evaluated
visceral sensitivity to pain using colorectal distension.42 Gradual
colorectal distension increased the number of abdominal con-
tractions in a volume-dependent manner (three-way ANOVA with
repeated measures, volume effect: F(3,105) = 176.9673, Po0.0001),
and this effect was modulated by both maternal diet and early
stress (maternal diet × early stress × volume effect: F(3,105) = 2.8488,
P= 0.0410; Figure 4). Specifically, in offspring of SD-fed dams, MS
significantly increased abdominal contractions compared with the
control group (Fisher’s LSD post hoc, SD–MS versus SD–control,
P= 0.0011, P = 0.0089 and P= 0.0230 for 0.4, 0.8 and 1.2 ml,
respectively; Figure 4, left panel). Maternal HFD alone significantly
increased the number of abdominal contractions for the disten-
sion volume of 1.2 ml (HFD–control versus SD–control, P= 0.0505).
In contrast, maternal HFD suppressed the effect of MS for the
highest volumes of 0.8 and 1.2 ml (HFD–MS versus SD–control,
P= 0.3813 and P = 0.2441, respectively; Figure 4, right panel),
without any protective effect on pain threshold (0.4 ml distension
volume, P= 0.0043).

High-fat diet consumption dampens anxiety and increases
maternal care in stressed dams
Maternal HFD had no impact on dams’ body weight at the end of
gestation (SD 430.8 ± 11.8, n= 8; HFD 415.2 ± 11.2 g, n= 9;
t(15) = 0.9555, P= 0.3545), nor on fat mass at death (2 weeks after
weaning; fat mass expressed in % of dams’ body weight: SD–MS,
4.11 ± 0.27, n= 13; HFD–MS, 3.69 ± 0.32, n= 12; t(23) = 1.0322,
P= 0.3127). Pups’ body weight at birth (SD 7.19 ± 0.15, n= 24;
HFD 6.94 ± 0.21 g, n= 24; t(46) = 0.9532, P= 0.3455) or after 180-min
of MS (Supplementary Table 3) was not affected by maternal HFD
either. Moreover, plasma levels of leptin, insulin, GLP-1 and PYY in
stressed animals were not significantly different between SD and
HFD pups (Supplementary Table 3), suggesting that the protective
effect of maternal HFD could not be explained by metabolic
adaptations. Considering that separation from pups constitutes a
potent stress for dams43 and that HFD consumption could exert
an anti-stress effect in MS dams, we thus explored the effects of
HFD consumption in stressed dams (Figure 5). Consistently, HFD
dams increased their food intake during the 180-min MS sessions
over the 2 weeks compared with SD dams (two-way ANOVA with
repeated measures, maternal diet × separation day effect:
F(10,230) = 8.8712, Po0.0001; planned comparisons, SD–MS versus
HFD–MS, at least Po0.05 for sessions 11, 12 and 13; Figure 5a).
However, mean daily energy intake during the 2 weeks of MS was
similar between SD and HFD dams (unpaired Student t-test,
t(23) = 0.7684, P= 0.4501) (Figure 5b), suggesting that HFD dams
efficiently adapted their intake with respect to the calories
provided by the HFD. We also found a significant reduction of
anxiety levels in stressed dams fed a HFD (Figure 5c). Indeed,
stressed HFD dams spent more time in the light compartment of
the light-dark box compared with stressed SD dams (unpaired
Student t-test, t(23) = 2.5346, P = 0.0185). However, changes in
anxiety were not associated with significant differences in plasma
corticosterone levels after stress (PP11, SD 14.4 ± 2.1, n= 14; HFD
12.9 ± 1.4 μg dl− 1, n= 11; t(23) = 0.5826, P= 0.5659). We finally
explored the impact of HFD on maternal care, which is
determinant for later vulnerability to stress44 and has been
recently demonstrated to be increased in HFD-fed dams.45

Stressed dams under HFD displayed increased global maternal
care (that is, arched back posture, licking–grooming, and passing
nursing) during the dark phase at PP2 (Mann–Whitney U-test,
U= 0.0000, P= 0.0357; Figure 5d). This effect was no longer
present on PP10 (data not shown). Of note, maternal care during
the light phase was not significantly affected by maternal diet
(data not shown).

DISCUSSION
Early-life stress is associated with increased vulnerability to
neuropsychiatric diseases later in life.1,2,5,6 Similarly, obesity,
excessive weight gain, metabolic disorders and unhealthy HFD
during pregnancy have been recently hypothesized to increase
the incidence of mental health disorders.7 Here we examine
whether maternal HFD can have similar effects to MS and/or can
exacerbate the effects of MS in the offspring. Contrary to our
hypotheses, maternal HFD alone has only small impact on gene
expression in pups’ PFC and on behavior in adulthood. More
importantly, maternal HFD alleviates MS-induced endopheno-
types (anxiety, spatial memory, social behavior, HPA axis response
to stress and visceral pain) in adulthood and reduces maternal
anxiety in stressed dams.
HFD exposure has been recently proposed to act as a stressful

challenge during pregnancy.46 Herein, we report that maternal
HFD (40% from fat) alone has no major consequence in offspring,
neither on PFC gene expression in pups nor on behavior in adults.
Indeed, as we previously reported,28 HFD (40% fat) exposure
restricted to gestation and lactation did not lead to maternal

Figure 4. Impact of maternal high-fat diet and maternal separation
on offspring visceral sensitivity at adulthood. Number of abdominal
contractions (number/5 min) in response to gradual colorectal
distension volumes (n= 11 for SD–control; n= 10 for SD–MS; n= 9
for HFD–control and HFD–MS). ¤Po0.05, ¤¤Po0.01 and ¤¤¤Po0.001
compared with control SD; ##Po0.01 and ###Po0.001 compared
with control HFD. HFD, high-fat diet; MS, maternal separation; SD,
standard diet.
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overweight. In contrast, in studies where the dams are overweight
or obese (60% fat or longer HFD exposure), maternal HFD could
impact the developing brain19,47 and lead to exacerbated
anxiety21–23 impaired memory20 and decreased neurogenesis19

in adult offspring. Taken together, these results suggest that
maternal obesity, rather than maternal HFD consumption, is
critical for the detrimental effects of HFD in offspring.
A major finding of the present study is that early exposure to

HFD unexpectedly prevents neurodevelopmental gene expression
alterations in the PFC of stressed pups. Indeed, chronic MS led to
downregulated 5HT-r1a, Crh and Bdnf baseline mRNA levels in
PND11 pups, which is prevented by maternal HFD exposure.
Interestingly, BDNF and serotonin, notably through the 5HT-R1A
receptors, are necessary for proper wiring of neural circuits during
development,48–52 shaping normal anxiety in adulthood.53 An
ontogenic upregulation of Rest4 and associated markers has been
previously reported in the mPFC of MS pups, but not in the
amygdala or in the hippocampus.27 Here we demonstrate that
maternal HFD reversed the MS-induced upregulation of Rest4 and
related genes following separation. As Rest4 overexpression in the
mPFC during development leads to hyperanxiety in adulthood,27

our data suggest that the protective effects of maternal HFD
exposure on behavior in adulthood might in part result from the
normalization of Rest4 mRNA levels in pups’ PFC. We do not rule
out that MS-induced changes in gene expression during devel-
opment also take place in other brain structures. Furthermore,
alterations occurring in the PFC during the perinatal period may
lead to altered connectivity with other brain areas such as the
amygdala or the hippocampus, which have been shown to play a
role in anxiety and cognitive functions.
Although the molecular mechanisms underlying the protective

effects of maternal HFD remain to be elucidated, our results

demonstrate that HFD exposure early in life attenuates MS-
induced hyperanxiety, but also MS-related impairments in
spatial memory, social behavior and visceral pain. Moreover,
hypercorticosteronemia and altered hippocampal neurogenesis,
which are associated with hyperanxiety and spatial memory
disturbances,54,55 were ameliorated by maternal HFD exposure in
MS animals. Previous studies have shown that palatable food
consumption in adulthood can attenuate the deleterious effects of
early stress on emotional behaviours.11,56–58 However, to our
knowledge, our work is the first to demonstrate that an exposure
to HFD restricted to the developmental period can protect against
the long lasting disturbances induced by early stress.
The protective effects of maternal HFD on the offspring might

depend upon several mechanisms acting synergistically. In
particular, it could affect pups’ metabolism through feeding or
pups’ stimulation through the level of maternal care.59 In stressed
pups, neither body weight nor plasma metabolic markers after the
180 min separation differed according to the maternal diet. Thus,
maternal HFD does not lead to a better metabolic adaptation to
the 3 h fasting occurring during the separation sessions. A large
body of evidence highlights the importance of maternal behavior
in later offspring emotional behavior and HPA response to
stress.60 Moreover, previous work reports that dams maintained
on HFD during lactation spent more time nursing their pups.45

Consistently, we showed that stressed dams fed a HFD increased
care toward their pups compared with stressed SD dams. In
humans, it has been demonstrated that food choices are modified
under stress with a shift in preference toward more palatable,
energy-dense snacks.61 Dallman proposed that overconsumption
of palatable food dampens negative emotions associated with
stress.62 MS acts as a potent stressor for dams.43,63 We
demonstrate that stressed dams fed a HFD increased their food

Figure 5. Impact of high-fat diet consumption on stressed dams’ behavior. (a) Food intake (% of intake on MS-day 2) during the 180 min
separations and (b) mean daily food intake (kcal) over the two weeks of the MS procedure (n= 13 for SD–MS and n= 12 for HFD–MS). Stressed
dams fed a HFD increased their food intake during the 180 min of separation over the 2 weeks of MS and consumed significantly more food
compared with standard diet (SD)-fed stressed dams. However, daily food intake (homecage) was not different between standard and high
fat-fed dams. (c) Time (s) in light compartment in the dark/light box on PP14 (n= 13 for SD–MS and n= 12 for HFD–MS). HFD dams showed a
reduction of their anxiety-like behavior. (d) Dams’ behavior (percent of total behaviors measured) during the dark phase at PP2 (n= 4 for SD–
MS and n= 5 for HFD–MS). HFD dams displayed higher global maternal care toward their progeny (arched back posture, licking–grooming
and passive nursing together). * at least Po0.05 compared with standard diet; $ at least Po0.05 compared with MS-day 2 in SD–MS; # at least
Po0.05 compared with MS day 2 in HFD–MS. HFD, high-fat diet; MS, maternal separation.
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intake specifically during the 180-min stress session of separation,
an effect associated with a reduction of their anxiety. These results
extend previous findings showing that high-fat intake modulates
stress response in adult animals11,64,65 and alleviates postpartum
anxiety and depressive-like behavior in mother rats subjected to
MS.66 Maternal stress is detrimental for maternal care quality,67

thus it could be hypothesized that the increase of HFD intake
during lactation exerts an anti-stress effect on dams, which could
promote maternal behavior allowing optimal brain maturation in
pups. Further experiments are needed to confirm the comfort
food effect of HFD in stressed dams. As stress increases C-FOS
expression, future studies should be conducted to examine
whether maternal HFD would blunt dams’ C-FOS response to
the separation stress. Epigenetic regulations are likely candidate
for persistent changes in brain function as a consequence of
perinatal environment. Indeed, some of the effects of parental
obesity persist across multiple generations.68 Therefore, it would
be interesting to examine whether the protective effect of
maternal HFD could be epigenetically transmitted across genera-
tions in our model.
Contrary to the prevailing belief that HFD exposure is

detrimental for the developing brain, our results suggest that
obesity, rather than fat consumption per se, is critical for brain
vulnerability. Furthermore, to our knowledge, we report for the
first time a protective effect of maternal HFD in a context of early-
life stress. Further work is needed to better document and
understand this phenomenon. Although maternal HFD prevents
stress-induced emotional alterations in our study, it is important to
consider other health outcomes, such as effects on metabolic or
cardiovascular diseases vulnerability that might be exacerbated by
HFD. Overall, our findings highlight the importance of taking
nutrition into account in clinical studies on early-life adversity and
mental health.

CONFLICT OF INTEREST
The authors declare no conflict of interest.

ACKNOWLEDGMENTS
J Fioramonti passed away 20 November 2015. This work was supported by the
University of Bordeaux (BQR, Aide à l’installation nouvelle équipe), INRA (Action
Prioritaire Dpt AlimH), Projet inter-régions Aquitaine et Midi-Pyrénées and by the
French National Research Agency (IBISS project ANR-12-DSSA-0004). MR and ALL
were supported by a stipend of the Ministère de l’Enseignement Supérieur et de la
Recherche. We thank Mathieu Cadet, Eric Gaultier, Alexandra Séré, Mélanie Bégorre
and Marine Randé for their valuable technical assistance. We also thank Pierre
Trifilieff, PhD, for helpful discussion and comments on the manuscript.

REFERENCES
1 Rutter M. How the environment affects mental health. Br J Psychiatry 2005; 186:

4–6.
2 Weich S, Patterson J, Shaw R, Stewart-Brown S. Family relationships in childhood

and common psychiatric disorders in later life: systematic review of prospective
studies. Br J Psychiatry 2009; 194: 392–398.

3 Hackman DA, Farah MJ, Meaney MJ. Socioeconomic status and the brain:
mechanistic insights from human and animal research. Nat Rev Neurosci 2010; 11:
651–659.

4 McLaughlin KA, Kubzansky LD, Dunn EC, Waldinger R, Vaillant G, Koenen KC.
Childhood social environment, emotional reactivity to stress, and mood and
anxiety disorders across the life course. Depress Anxiety 2010; 27: 1087–1094.

5 Reiser SJ, McMillan KA, Wright KD, Asmundson GJG. Adverse childhood experi-
ences and health anxiety in adulthood. Child Abuse Negl 2014; 38: 407–413.

6 Nemeroff CB. Paradise Lost: The Neurobiological and Clinical Consequences of
Child Abuse and Neglect. Neuron 2016; 89: 892–909.

7 Rivera HM, Christiansen KJ, Sullivan EL. The role of maternal obesity in the risk of
neuropsychiatric disorders. Front Neurosci 2015; 9: 194.

8 Cirulli F, Berry A, Alleva E. Early disruption of the mother–infant relationship:
effects on brain plasticity and implications for psychopathology. Neurosci Biobe-
hav Rev 2003; 27: 73–82.

9 Franklin TB, Saab BJ, Mansuy IM. Neural mechanisms of stress resilience and
vulnerability. Neuron 2012; 75: 747–761.

10 Sánchez MM, Ladd CO, Plotsky PM. Early adverse experience as a developmental
risk factor for later psychopathology: evidence from rodent and primate models.
Dev Psychopathol 2001; 13: 419–449.

11 Maniam J, Morris MJ. Voluntary exercise and palatable high-fat diet both improve
behavioural profile and stress responses in male rats exposed to early life stress:
Role of hippocampus. Psychoneuroendocrinology 2010; 35: 1553–1564.

12 Kosten TA, Kim JJ, Lee HJ. Early life manipulations alter learning and memory
in rats. Neurosci Biobehav Rev 2012; 36: 1985–2006.

13 Francis DD, Diorio J, Plotsky PM, Meaney MJ. Environmental enrichment reverses
the effects of maternal separation on stress reactivity. J Neurosci 2002; 22:
7840–7843.

14 Barreau F, Ferrier L, Fioramonti J, Bueno L. New insights in the etiology and
pathophysiology of irritable bowel syndrome: contribution of neonatal
stress models. Pediatr Res 2007; 62: 240–245.

15 Aisa B, Tordera R, Lasheras B, Del Río J, Ramírez MJ. Cognitive impairment asso-
ciated to HPA axis hyperactivity after maternal separation in rats. Psychoneur-
oendocrinology 2007; 32: 256–266.

16 Alfaradhi MZ, Ozanne SE. Developmental programming in response to maternal
overnutrition. Front Genet 2011; 2: 27.

17 Li M, Sloboda DM, Vickers MH. Maternal obesity and developmental program-
ming of metabolic disorders in offspring: evidence from animal models. Exp
Diabetes Res 2011; 2011: 1–9.

18 Sullivan EL, Nousen EK, Chamlou KA, Grove KL. The impact of maternal high-fat
diet consumption on neural development and behavior of offspring. Int J Obes
Suppl 2012; 2: S7–S13.

19 Tozuka Y, Wada E, Wada K. Diet-induced obesity in female mice leads to perox-
idized lipid accumulations and impairment of hippocampal neurogenesis during
the early life of their offspring. FASEB J 2009; 23: 1920–1934.

20 Tozuka Y, Kumon M, Wada E, Onodera M, Mochizuki H, Wada K. Maternal obesity
impairs hippocampal BDNF production and spatial learning performance in
young mouse offspring. Neurochem Int 2010; 57: 235–247.

21 Bilbo SD, Tsang V. Enduring consequences of maternal obesity for brain inflam-
mation and behavior of offspring. FASEB J 2010; 24: 2104–2115.

22 Peleg-Raibstein D, Luca E, Wolfrum C. Maternal high-fat diet in mice programs
emotional behavior in adulthood. Behav Brain Res 2012; 233: 398–404.

23 Sasaki A, de Vega WC, St-Cyr S, Pan P, McGowan PO. Perinatal high fat diet alters
glucocorticoid signaling and anxiety behavior in adulthood. Neuroscience 2013;
240: 1–12.

24 McLaughlin KA, Sheridan MA, Winter W, Fox NA, Zeanah CH, Nelson CA. Wide-
spread reductions in cortical thickness following severe early-life deprivation: A
neurodevelopmental pathway to ADHD. Biol Psychiatry 2014; 76: 629–638.

25 Hodel AS, Hunt RH, Cowell RA, Van Den Heuvel SE, Gunnar MR, Thomas KM.
Duration of early adversity and structural brain development in post-
institutionalized adolescents. NeuroImage 2015; 105: 112–119.

26 Goodfellow NM, Benekareddy M, Vaidya VA, Lambe EK. Layer II/III of the prefrontal
cortex: inhibition by the serotonin 5-ht1a receptor in development and stress. J
Neurosci 2009; 29: 10094–10103.

27 Uchida S, Hara K, Kobayashi A, Funato H, Hobara T, Otsuki K et al. Early life stress
enhances behavioral vulnerability to stress through the activation of REST4-
mediated gene transcription in the medial prefrontal cortex of rodents. J Neurosci
2010; 30: 15007–15018.

28 Lépinay AL, Larrieu T, Joffre C, Acar N, Gárate I, Castanon N et al. Perinatal high-fat
diet increases hippocampal vulnerability to the adverse effects of subsequent
high-fat feeding. Psychoneuroendocrinology 2015; 53: 82–93.

29 Moussaoui N, Braniste V, Ait-Belgnaoui A, Gabanou M, Sekkal S, Olier M et al.
Changes in intestinal glucocorticoid sensitivity in early life shape the risk of
epithelial barrier defect in maternal-deprived rats. PLoS ONE 2014; 9: e88382.

30 Chapman RH, Stern JM. Failure of severe maternal stress or ACTH during preg-
nancy to affect emotionality of male rat offspring: implications of litter effects for
prenatal studies. Dev Psychobiol 1979; 12: 255–267.

31 Louvart H, Maccari S, Ducrocq F, Thomas P, Darnaudéry M. Long-term behavioural
alterations in female rats after a single intense footshock followed by situational
reminders. Psychoneuroendocrinology 2005; 30: 316–324.

32 Agostini S, Goubern M, Tondereau V, Salvador-Cartier C, Bezirard V, Lévèque M
et al. A marketed fermented dairy product containing Bifidobacterium lactis
CNCM I-2494 suppresses gut hypersensitivity and colonic barrier disruption
induced by acute stress in rats. Neurogastroenterol Motil 2012; 24: 376–e172.

33 Myers MM, Brunelli SA, Squire JM, Shindeldecker RD, Hofer MA. Maternal behavior
of SHR rats and its relationship to offspring blood pressures. Dev Psychobiol 1989;
22: 29–53.

Maternal nutrition protects from early stress
M Rincel et al

8

Translational Psychiatry (2016), 1 – 9



34 Labrousse VF, Nadjar A, Joffre C, Costes L, Aubert A, Grégoire S et al. Short-term
long chain omega3 diet protects from neuroinflammatory processes and memory
impairment in aged mice. PLoS ONE 2012; 7: e36861.

35 Minni AM, Dorey R, Piérard C, Dominguez G, Helbling J-C, Foury A et al. Critical
role of plasma corticosteroid-binding-globulin during stress to promote gluco-
corticoid delivery to the brain: impact on memory retrieval. Endocrinology 2012;
153: 4766–4774.

36 Paxinos G, Watson C, Pennisi M, Topple A. Bregma, lambda and the interaural
midpoint in stereotaxic surgery with rats of different sex, strain and weight.
J Neurosci Methods 1985; 13: 139–143.

37 Labrousse VF, Costes L, Aubert A, Darnaudéry M, Ferreira G, Amédée T et al.
Impaired interleukin-1beta and c-Fos expression in the hippocampus is asso-
ciated with a spatial memory deficit in P2X(7) receptor-deficient mice. PLoS ONE
2009; 4: e6006.

38 Lemaire V, Lamarque S, Le Moal M, Piazza P-V, Abrous DN. Postnatal stimulation
of the pups counteracts prenatal stress-induced deficits in hippocampal neuro-
genesis. Biol Psychiatry 2006; 59: 786–792.

39 de Andrade JS, Abrão RO, Céspedes IC, Garcia MC, Nascimento JOG, Spadari-
Bratfisch RC et al. Acute restraint differently alters defensive responses and fos
immunoreactivity in the rat brain. Behav Brain Res 2012; 232: 20–29.

40 Huot RL, Gonzalez ME, Ladd CO, Thrivikraman KV, Plotsky PM. Foster litters pre-
vent hypothalamic-pituitary-adrenal axis sensitization mediated by neonatal
maternal separation. Psychoneuroendocrinology 2004; 29: 279–289.

41 Fond G, Loundou A, Hamdani N, Boukouaci W, Dargel A, Oliveira J et al.
Anxiety and depression comorbidities in irritable bowel syndrome (IBS): a sys-
tematic review and meta-analysis. Eur Arch Psychiatry Clin Neurosci 2014; 264:
651–660.

42 Camilleri M, Coulie B, Tack JF. Visceral hypersensitivity: facts, speculations, and
challenges. Gut 2001; 48: 125–131.

43 Boccia ML, Razzoli M, Prasad Vadlamudi S, Trumbull W, Caleffie C, Pedersen CA.
Repeated long separations from pups produce depression-like behavior in rat
mothers. Psychoneuroendocrinology 2007; 32: 65–71.

44 Liu D. Maternal care, hippocampal glucocorticoid receptors, and hypothalamic-
pituitary-adrenal responses to stress. Science 1997; 277: 1659–1662.

45 Purcell RH, Sun B, Pass LL, Power ML, Moran TH, Tamashiro KLK. Maternal stress
and high-fat diet effect on maternal behavior, milk composition, and pup
ingestive behavior. Physiol Behav 2011; 104: 474–479.

46 Bellisario V, Panetta P, Balsevich G, Baumann V, Noble J, Raggi C et al. High-fat diet
during pregnancy acts as a stressor increasing maternal glucocorticoids’ signaling
to the fetus and disrupting maternal behavior in a mouse model. Psychoneur-
oendocrinology 2015; 61: 10.

47 Niculescu MD, Lupu DS. High fat diet-induced maternal obesity alters fetal hip-
pocampal development. Int J Dev Neurosci 2009; 27: 627–633.

48 Gaspar P, Cases O, Maroteaux L. The developmental role of serotonin: news from
mouse molecular genetics. Nat Rev Neurosci 2003; 4: 1002–1012.

49 Cohen-Cory S, Kidane AH, Shirkey NJ, Marshak S. Brain-derived neurotrophic
factor and the development of structural neuronal connectivity. Dev Neurobiol
2010; 70: 271–288.

50 Migliarini S, Pacini G, Pelosi B, Lunardi G, Pasqualetti M. Lack of brain serotonin
affects postnatal development and serotonergic neuronal circuitry formation. Mol
Psychiatry 2013; 18: 1106–1118.

51 Homberg JR, Molteni R, Calabrese F, Riva MA. The serotonin–BDNF duo: devel-
opmental implications for the vulnerability to psychopathology. Neurosci Biobe-
hav Rev 2014; 43: 35–47.

52 Rebello TJ, Yu Q, Goodfellow NM, Caffrey Cagliostro MK, Teissier A, Morelli E et al.
Postnatal day 2 to 11 constitutes a 5-HT-sensitive period impacting adult mPFC
function. J Neurosci 2014; 34: 12379–12393.

53 Gross C, Zhuang X, Stark K, Ramboz S, Oosting R, Kirby L et al. Serotonin1A
receptor acts during development to establish normal anxiety-like behaviour in
the adult. Nature 2002; 416: 396–400.

54 Brown ES, Rush AJ, McEwen BS. Hippocampal remodeling and damage by cor-
ticosteroids: implications for mood disorders. Neuropsychopharmacology 1999; 21:
474–484.

55 Kheirbek MA, Klemenhagen KC, Sahay A, Hen R. Neurogenesis and generalization:
a new approach to stratify and treat anxiety disorders. Nat Neurosci 2012; 15:
1613–1620.

56 Maniam J, Morris MJ. Palatable cafeteria diet ameliorates anxiety and depression-
like symptoms following an adverse early environment. Psychoneuroendocrinology
2010; 35: 717–728.

57 Arcego DM, Krolow R, Lampert C, Toniazzo AP, Berlitz C, Lazzaretti C et al. Early life
adversities or high fat diet intake reduce cognitive function and alter BDNF sig-
naling in adult rats: Interplay of these factors changes these effects. Int J Dev
Neurosci 2016; 50: 16–25.

58 Maniam J, Antoniadis CP, Le V, Morris MJ. A diet high in fat and sugar reverses
anxiety-like behaviour induced by limited nesting in male rats: Impacts on hip-
pocampal markers. Psychoneuroendocrinology 2016; 68: 202–209.

59 van Oers HJ, de Kloet ER, Whelan T, Levine S. Maternal deprivation effect on the
infant’s neural stress markers is reversed by tactile stimulation and feeding but
not by suppressing corticosterone. J Neurosci 1998; 18: 10171–10179.

60 Meaney MJ. Maternal care, gene expression, and the transmission of individual
differences in stress reactivity across generations. Annu Rev Neurosci 2001; 24:
1161–1192.

61 Oliver G, Wardle J. Perceived effects of stress on food choice. Physiol Behav 1999;
66: 511–515.

62 Dallman MF, Pecoraro N, Akana SF, La Fleur SE, Gomez F, Houshyar H et al.
Chronic stress and obesity: a new view of ‘comfort food’. Proc Natl Acad Sci USA
2003; 100: 11696–11701.

63 Aguggia JP, Suárez MM, Rivarola MA. Early maternal separation: neurobehavioral
consequences in mother rats. Behav Brain Res 2013; 248: 25–31.

64 Krolow R, Noschang CG, Arcego D, Andreazza AC, Peres W, Gonçalves CA et al.
Consumption of a palatable diet by chronically stressed rats prevents effects on
anxiety-like behavior but increases oxidative stress in a sex-specific manner.
Appetite 2010; 55: 108–116.

65 Finger BC, Dinan TG, Cryan JF. High-fat diet selectively protects against the effects
of chronic social stress in the mouse. Neuroscience 2011; 192: 351–360.

66 Maniam J, Morris MJ. Long-term postpartum anxiety and depression-like behavior
in mother rats subjected to maternal separation are ameliorated by palatable
high fat diet. Behav Brain Res 2010; 208: 72–79.

67 Champagne FA, Meaney MJ. Stress During Gestation Alters Postpartum Maternal
Care and the Development of the Offspring in a Rodent Model. Biol Psychiatry
2006; 59: 1227–1235.

68 Dunn GA, Bale TL. Maternal High-Fat Diet Effects on Third-Generation Female
Body Size via the Paternal Lineage. Endocrinology 2011; 152: 2228–2236.

This work is licensed under a Creative Commons Attribution 4.0
International License. The images or other third party material in this

article are included in the article’s Creative Commons license, unless indicated
otherwise in the credit line; if the material is not included under the Creative Commons
license, users will need to obtain permission from the license holder to reproduce the
material. To view a copy of this license, visit http://creativecommons.org/licenses/
by/4.0/

© The Author(s) 2016

Supplementary Information accompanies the paper on the Translational Psychiatry website (http://www.nature.com/tp)

Maternal nutrition protects from early stress
M Rincel et al

9

Translational Psychiatry (2016), 1 – 9

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


 
 

119 
 

 

 

 

 

 

ANNEXE 2 



 
 

120 
 

 

 

 

 

 

ANNEXE 3 



 
 

121 
 

 

 

 

 

 

 

ANNEXE 4 

 

 



 93

SY
NT

HÈ
SE

RE
VU

ES

m/s n° 1, vol. 32, janvier 2016
DOI : 10.1051/medsci/20163201015

médecine/sciences 2016 ; 32 :93-9

médecine/sciences Environnement 
précoce et 
vulnérabilité 
neuropsychiatrique
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Muriel Darnaudéry1,2

> Du fait de son immaturité à la naissance, le 
nouveau-né est totalement dépendant des 
soins parentaux pour sa survie et pour son 
développement cérébral. Des altérations de 
la qualité de l’environnement précoce, non 
seulement lors de l’enfance, mais également en 
période prénatale, ont un impact, à long terme, 
sur la santé. Récemment, chez l’animal, des 
travaux ont mis en évidence des modulations 
épigénétiques après des stress précoces 
qui pourraient se transmettre sur plusieurs 
générations, via des modifications dans les 
cellules germinales. <

Adversité durant 
l’enfance et vulnérabilité 
neuropsychiatrique : 
données cliniques et modèles 
animaux de stress psycho-social 

Chez  beaucoup de mammifères, les 
petits naissent immatures et tota-
lement dépendants des soins paren-
taux. L’immaturité du cerveau les 
rend très sensibles à leur environne-
ment. Depuis les recherches menées 
par James Harlow, René Spitz et 
John Bowlby, père de la théorie de 
l’attachement, il est admis que le 
développement cognitif et affectif 
de l’enfant requiert la mise en place 
d’un lien affectif privilégié avec une 
figure d’attachement (le parent ou 
son substitut). Des enfants expo-
sés à des stress sévères tels que des 
carences affectives précoces ou des 
maltraitances parentales présentent des atteintes neurodéveloppe-
mentales de structures clefs dans la régulation des processus cognitifs 
et émotionnels (atrophie du cortex préfrontal et de l’hippocampe, 
atrophie ou hypertrophie de l’amygdale, selon les études). À l’âge 
adulte, ces effets peuvent perdurer et s’accompagner d’altérations de 
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Il existe des périodes critiques durant lesquelles 
l’organisme est fortement influencé par son environ-
nement (Figure 1). L’adversité précoce est associée 
à de nombreux problèmes de santé à l’âge adulte et 
augmenterait le risque de développer des troubles 
neuropsychiatriques tels que la dépression ou l’état 
de stress post-traumatique, mais également une 
obésité ou des maladies cardiovasculaires [1]. 
L’adversité précoce est généralement définie comme 
l’exposition à des maltraitances dans l’enfance, 
telles que des négligences parentales, des abus 
sexuels, physiques ou psychologiques. Avant et après 
la naissance, d’autres facteurs comme la maladie, 
la malnutrition ou l’exposition à des drogues consti-
tuent aussi des stress précoces importants.  À ce 
titre, l’environnement socio-économique pendant 
le développement, par la pluralité des aspects qu’il 
intègre, est un facteur déterminant pour l’état de 
santé psychique et physique de l’enfant devenu 
adulte [2]. Dans cet article nous présenterons les 
recherches montrant les conséquences de stress 
précoces (pendant l’enfance et in utero) sur la santé 
mentale chez l’homme et sur les comportements, 
dans les modèles animaux. Nous illustrerons éga-
lement des mécanismes épigénétiques associés au 
stress précoce.
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nage, produit un phénotype semblable à celui observé 
chez la descendance de mères à faible maternage. 
Enfin, après des adoptions croisées, la descendance 
femelle présente, à l’âge adulte, le même comporte-
ment maternel que celui de la mère adoptive [6]. Chez 
le rat, la séparation répétée mères-petits pendant 
de longues périodes produit, chez la descendance, un 
phénotype proche de celui induit par le faible mater-
nage : altérations de l’axe corticotrope, perturbations 
émotionnelles (hyperanxiété, anhédonie) et mnésiques 
(Figure 3) [7]. Ces changements sont associés, entre 
autres, à des altérations morphofonctionnelles dans le 
cortex préfrontal médian et l’hippocampe (diminution 
de l’arborisation et du nombre d’épines dendritiques 

l’axe corticotrope (système neuroendocrinien du stress) et d’un risque 
plus élevé de troubles neuropsychiatriques (Figure 2) [3, 4]. 
Chez le rongeur, les travaux princeps menés par Seymour Levine ont 
mis en évidence des périodes critiques durant lesquelles l’environne-
ment inscrit une empreinte durable sur le cerveau [5]. La femelle rat 
« materne » de façon intense ses petits (allaitement actif en position 
arc-boutée, léchage ano-génital) ; ce soin maternel est déterminant 
pour la maturation cérébrale et les futures capacités adaptatives 
de la progéniture. Il a été montré qu’à l’âge adulte les descendants 
des mères à faible maternage présentent des altérations compor-
tementales, une réponse exacerbée de l’axe corticotrope face à un 
stress et une diminution des récepteurs des glucocorticoïdes dans 
l’hippocampe (Figure 3) [2]. En outre, l’adoption de ratons issus de 
mères biologiques à fort maternage, par des mères à faible mater-

Régulations épigénétiques
Méthylation de l’ADN, hydroxyméthylation de l’ADN, modification des queues des histones, micro-ARN … 
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• Traumas
• Négligences…
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Anxiété, dépression, addiction, syndrome du côlon irritable, 
syndrome métabolique, obésité, pathologies cardiovasculaires, etc.
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Nourrisson
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Figure 1. Stress précoces, surcharge allostasique et vulnérabilité à l’âge adulte. Les premières phases de vie constituent une période critique 
lors de laquelle les facteurs environnementaux laissent une empreinte durable, suggérant ainsi un phénomène de « programmation précoce » du 
phénotype adulte. Ainsi, l’adversité précoce, se présentant sous de multiples formes telles que la malnutrition ou encore des violences paren-
tales, augmente la vulnérabilité aux troubles neuropsychiatriques et métaboliques à l’âge adulte. Les régulations épigénétiques représentent un 
mécanisme majeur pour expliquer l’effet de l’environnement sur l’individu en développement. De plus, la vulnérabilité de l’individu adulte dépend 
également de son contexte génétique propre. Un contexte génétique inadapté et une pression environnementale trop forte aboutiront à un état de 
rupture de l’homéostasie physiologique ou surcharge allostasique, lequel est caractérisé par une incapacité d’adaptation à de nouveaux stress.
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des neurones pyramidaux, perturbations de la potentialisation à long 
terme1). La carence maternelle produit, dans l’hippocampe adulte, 
une diminution du facteur neurotrophique BDNF (brain derived neu-
rotrophic factor) et des altérations des récepteurs du glutamate, 
NMDA (N-methyl-D-aspartate receptor). Elle induit par ailleurs une 
hypersensibilité aux effets récompensant des drogues d’abus et une 
hypoactivité du système enképhalinergique2 dans les noyaux caudé-
putamen et accumbens [8]. Les systèmes opioïdes sont très impliqués 
dans la mise en place des relations entre la mère et le petit, et leur 
dysfonctionnement pourrait être responsable des altérations com-
portementales des rats stressés. D’autres perturbations de l’envi-
ronnement postnatal précoce, comme la réduction de la disponibilité 
du matériel de nidification, ont également des effets délétères à 
long terme sur la descendance. En revanche, des séparations mères-
petits de courtes durées (15 min par jour) ont des effets opposés, 

1 La potentialisation à long terme est caractérisée par une amélioration durable de l’efficacité synap-
tique. Ce phénomène est généralement associé à la notion de plasticité neuronale et de mémoire.
2 Les enképhalines sont des endorphines (morphine endogène) qui se fixent sur des récepteurs opioïdes. 
Elles jouent un rôle en particulier dans l’inhibition des messages de douleur et la régulation des réponses 
de stress.

 caractérisés par un phénotype résilient attribué à la 
stimulation du comportement maternel [9]. 
Par ailleurs, de nombreuses  études  ont  montré que 
l’adversité précoce constitue un facteur de risque à 
l’émergence de troubles gastro-intestinaux, en par-
ticulier du syndrome du côlon irritable3 (Figure 2). En 
effet, il existe une communication bidirectionnelle 
cerveau-intestin, fortement influencée par le stress. 
La période néonatale est caractérisée par une grande 
plasticité neuronale des circuits sensitifs somatiques 
viscéraux. Chez le rongeur, la séparation maternelle 
affecte de façon durable l’homéostasie intestinale. Les 
conséquences majeures sont : (1) des modifications de 
l’immunité de la muqueuse intestinale, (2) l’apparition 
d’une hypersensibilité viscérale, et (3) l’altération de 
la fonction de la barrière de l’intestin. Ces animaux 

3 Appelé aussi syndrome de l’intestin irritable, il est caractérisé par une douleur 
abdominale chronique et des désordres de la fonction intestinale (diarrhée ou /
et constipation).
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Figure 2. Changements physiologiques à l’âge adulte associés à l’adversité dans l’enfance et mécanismes épigénétiques potentiellement impliqués. 
L’adversité précoce est associée à des altérations de divers systèmes physiologiques tels que le système nerveux central  et périphérique, le système 
immunitaire ou encore le système gastrointestinal. Ces perturbations physiologiques sont accompagnées de modifications épigénétiques comme la 
méthylation ou la déméthylation de l’ADN dans les régions promotrices de nombreux gènes (les changements observés chez l’homme sont en rouge 
gras, les autres changements ont été observés chez l’animal). L’ensemble de ces altérations pourrait participer à l’émergence de pathologies neuro-
psychiatriques. CRH : corticotropin releasing hormone ; ACTH : adrenocorticotropic hormone ; GR : glucocorticoid receptors ; BDNF : brain derived neu-
rotrophic factor ; AVP : arginin vasopressin ; NR4A1 : nuclear receptor subfamily 4, group A, member 1 ; Er  : estrogen receptor alpha ; F BP5 : F 506  
binding protein 5 ; MeCP2 : methyl CpG binding protein 2 ; CB1 : cannabinoid receptor type 1 ; CRH-R2 : corticotropin releasing hormone receptor 2.
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 présentent à l’âge adulte une augmentation du nombre des mas-
tocytes et des polynucléaires neutrophiles muqueux, ainsi qu’une 
réponse locale cytokinique lymphocytaire de type Th1 (T helper) et Th2 
témoignant d’un tonus inflammatoire intestinal à bas bruit4  [10]. Plus 
récemment il a été montré que la susceptibilité à une hypersensibilité 
viscérale des animaux soumis à la séparation maternelle peut être 
transmise à la génération suivante.

Qu’en est-il du stress avant la naissance ?

Pendant la grossesse, l’environnement utérin constitue à la fois une 
protection contre les agressions externes, et, via le placenta, un sys-
tème de « conduction » qui relie le fœtus à son futur environnement. 
L’état physique de la mère détermine fortement le développement du 
fœtus qu’elle porte (➜).
L’exposition à certains médicaments, drogues 
d’abus, virus, toxines microbiennes peut affecter 
l’embryon via leur passage placentaire et avoir 
des effets  irrémédiables. De plus, les procédures 
d’assistance médicale à la procréation, comme la 
fécondation in vitro suivie du transfert d’embryons, ou les traitements 
hormonaux aboutissant à une superovulation, ont des conséquences 

4 Activation chronique des processus immunitaires mais à un niveau relativement faible.

potentielles à long terme sur la descendance, qui 
restent encore mal connues. Enfin, la question du rôle 
de l’état émotionnel de la mère sur le développement 
du fœtus a aussi été posée. Cependant, la démons-
tration d’un lien causal demeure difficile à établir, 
du fait de la lourdeur des études prospectives et des 
biais associés aux études rétrospectives. Depuis de 
nombreuses années, Vivette Glover étudie l’incidence 
du stress maternel lors de la grossesse sur le devenir de 
l’enfant [11]. Certains travaux rapportent une augmen-
tation du risque de troubles émotionnels et cognitifs 
chez l’enfant, et des retards de langage. Ces effets 
sont en partie indépendants de causes pouvant survenir 
après la naissance de l’enfant, comme une dépression 
de la mère. 
Chez l’animal, dès les années 1960, des études ont sug-
géré que le comportement de la descendance  pouvait 
être modulé par des changements hormonaux de l’envi-
ronnement intra-utérin ou par les expériences vécues 
par la femelle lors de la gestation, voire même avant 
la conception [12]. Depuis, une littérature abondante 
a porté sur le stress gestationnel chez le rongeur et 
son incidence sur la descendance [13, 14]. Chez le rat, 
un stress prénatal (contention  maternelle lors de la 

Figure 3. Exemples de modèles de 
stress précoces chez l’animal pro-
duisant un phénotype vulnérable 
à l’âge adulte. Dans des tests 
précliniques, les animaux exposés 
aux stress précoces présentent 
des altérations émotionnelles 
(caractérisées, en autres, par 
une faible exploration des bras 
ouverts dans le labyrinthe en croix 
surélevé et une forte immobilité 
dans le test de la nage forcée). 
Ces effets sont atténués par un 
traitement avec des antidépres-
seurs. Les animaux exposés aux 
stress précoces présentent éga-
lement des altérations cognitives, 
en particulier une diminution des 
capacités d’apprentissage et de 
mémoire dans des tâches spa-
tiales dépendantes de l’hippo-
campe. Enfin les stress précoces 
exacerbent la motivation pour 
les drogues d’abus. Sur le plan 

neurobiologique, le stress précoce affecte la plasticité cérébrale, les systèmes de neurotransmetteurs et de nombreux neuropeptides. BDNF : brain 
derived neurotrophic factor ; GABA : gamma-aminobutyric acid ; DA : dopamine ; 5HT : 5-hydroxytryptamine (sérotonine) ; ACh : acétylcholine ; 
CRH : corticotropin releasing hormone ; AVP : arginin-vasopressin.
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gestation, Figure 3) provoque, chez la progéniture, des changements 
biochimiques et comportementaux durables, qui reflètent l’induction 
d’une programmation pathologique précoce. À l’âge adulte, lors d’un 
nouveau stress, les mâles ayant subi un stress prénatal présentent une 
sécrétion prolongée de corticostérone, caractéristique d’un déficit 
de rétrocontrôle négatif de l’axe corticotrope [15]. Sur le plan com-
portemental, l’exposition de la mère à un stress pendant la gestation 
produit chez la progéniture (1) une augmentation des comportements 
de types anxieux et  dépressifs, (2) une augmentation de la motivation 
et/ou de la sensibilité aux drogues d’abus [13] et (3) des atteintes 
cognitives (retard d’apprentissage spatial, déficit de consolidation 
de la mémoire de peur, déficits de mémoire de travail). Une partie 
des déficits comportementaux associés au stress prénatal pourrait 
impliquer l’hippocampe. En effet, sur le plan neurobiologique, le stress 
prénatal entraîne des atteintes de la plasticité hippocampique, telles 
que la suppression de la potentialisation à long terme, l’atrophie des 
neurones granulaires et pyramidaux ou encore une réduction de la 
neurogenèse adulte [16], un effet certainement lié à l'hyperactivité 
chronique de l'axe corticotrope. Ces altérations sont accompagnées 
d'une baisse de l'expression des récepteurs métabotropiques [17] 
et ionotropiques (NMDA [acide N-méthyl-D-aspartique] et AMPA 
[ -amino-3-hydroxy-5-méthylisoazol-4-propionate]) du glutamate 
dans l'hippocampe [18]. De façon intéressante, un bon nombre des 
altérations comportementales et neurobiologiques que l'on observe 
chez l'animal adulte sont atténuées par les antidépresseurs [19, 20].
Étant donnés les liens existant entre axe corticotrope et stress [15], 
la programmation à long terme des effets du stress prénatal sur la 
descendance pourrait impliquer les glucocorticoïdes. Le stress de 
contention provoque une activation de l’axe corticotrope et une 
augmentation des taux circulants de corticostérone chez la femelle 
gestante (Figure 3). En condition normale, le fœtus est protégé par 
la  11 HSD2 (11 -hydroxystéroïde déhydrogénase de type 2), une 
enzyme qui inactive la corticostérone. Cependant, le stress maternel 
altère l’expression placentaire et l’activité de cette enzyme [21]. De 
plus, la surrénalectomie, réalisée chez les mères stressées, atténue 
certains effets sur la descendance [22].
Le stress gestationnel est vraisemblablement associé à un stress 
postnatal. En effet, l’exposition à des stress pendant la gestation 
perturbe le comportement de maternage, ce qui, comme on l’a vu 
précédemment, détermine les capacités d’adaptation au stress de la 
descendance. Par ailleurs, des manipulations postnatales  précoces 
(adoption, stimulations tactiles, etc.) réduisent les altérations provo-
quées par le stress  prénatal [23]. 

Stress précoces et épigénome 

L’étude princeps concernant la programmation épigénétique et le 
stress précoce est parue en 2004. Elle montrait que les effets du 
faible maternage sur la descendance mettaient en jeu des régu-
lations épigénétiques de la région promotrice du gène codant le 
récepteur des  glucocorticoïdes (Nr3c1 [nuclear receptor subfamily 3, 
group C, member 1]) dans l’hippocampe (Figure 2). En effet, le faible 

maternage produit dans cette structure une augmen-
tation de la méthylation de l’ADN et une diminution 
de l’acétylation des histones, lesquelles induisent 
une diminution de la transcription pouvant aboutir à 
des altérations comportementales et endocriniennes 
[24]. Ces altérations sont atténuées par des infusions 
intracérébroventriculaires d’un inhibiteur d’histone 
déacétylases (HDAC) à l’âge adulte. Les régula-
tions épigénétiques associées à l’adversité précoce 
concernent aussi d’autres gènes tels que ceux codant 
le BDNF (brain derived neurotrophic factor), la vaso-
pressine, le CRH (corticotropin releasing hormone) ou 
le récepteur CRH-R2 (corticotropin releasing hormone 
receptor 2) [4] (Figure 2). La plus grande sensibilité 
aux opiacés des rats exposés à une séparation mater-
nelle implique aussi des processus épigénétiques. En 
effet, la séparation maternelle  produit une augmen-
tation de la MeCP2 (methyl-CpG-binding protein) et 
de l’histone déacétylase HDAC2, ainsi qu’une diminu-
tion de l’acétylation des histones H3 et H4 dans les 
noyaux caudé-putamen et accumbens. De manière 
intéressante, le comportement de dépendance et 
l’hypoactivité du système enképhalinergique sont 
supprimés par le valproate de sodium, un inhibiteur 
d’histone déacétylases [25]. Certaines des altérations 
épigénétiques décrites chez l’animal sont présentes 
chez l’homme (Figure 2). Ainsi, une augmentation de 
la méthylation de la région promotrice du gène Nr3c1 
a été observée dans l’hippocampe de suicidés (souf-
frant de dépression) ayant subi des maltraitances 
dans l’enfance [3]. Par ailleurs, chez l’animal comme 
chez l’homme, des études révèlent des changements 
de méthylation de l’ADN dans de nombreuses régions 
du génome après des stress postnataux précoces, que 
ce soit dans le système nerveux central (hippocampe, 
cortex préfrontal) ou dans les tissus périphériques 
(cellules sanguines, salive, épithélium buccal) [4, 
25]. Le stress in utero est également associé à des 
changements épigénétiques : (1) une baisse de l’ex-
pression placentaire de la 11 HSD2 (qui inactive la 
corticostérone), accompagnée d’une augmentation 
de la méthylation de l’ADN dans les sites 3CpG du 
promoteur du gène codant cette enzyme et (2) des 
changements de méthylation de l’ADN dans les régions 
promotrices des gènes codant le CRH et le récepteur 
des glucocorticoïdes [27]. Cependant, des régulations 
épigénétiques opposées sont rapportées en fonction 
de l’intensité du stress (stress léger : augmentation 
de la méthylation de l’ADN ; stress fort : diminution 
de la méthylation) et du sexe (HDAC4 augmentée dans 
l’hippocampe des mâles ; diminuée dans le cortex pré-
frontal des femelles). 
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the prenatal period, on the adult’s health. The suscep-
tibility to neuropsychiatric diseases is often poten-
tiated by early stress. If there is an agreement that a 
critical developmental period exists, the mechanisms 
underlying the long term effects of early life adversity 
are still poorly understood. Recent studies in animals 
highlight the involvement of epigenetic processes in the 
transmission of such vulnerabilities, notably via modi-
fications in germ cells, which can be transmitted in the 
next  generations. ‡
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Les effets délétères de l’adversité précoce 
semblent transmis à travers les générations [28] 
(➜).
Les processus potentiellement impliqués dans la transmission du stress 
parental à la descendance sont multiples, mais récemment il a été 
proposé que le stress puisse agir sur les cellules germinales. Chez la 
souris, plusieurs études ont rapporté une transmission intergénéra-
tionnelle par le père. Ainsi, un stress chronique chez des souris mâles 
produit des changements neurocomportementaux qui se maintiennent 
chez sa descendance (F1) et à la 2e génération (F2). Ces change-
ments pourraient être transmis via des marques épigénétiques dans 
le sperme. En effet, une diminution de la méthylation de l’ADN dans la 
région promotrice du gène CRH-R2 et une hyperméthylation des sites 
CpG du promoteur du gène MeCP2 ont été observées dans le sperme 
des F1 et F2. 

Conclusion-perspectives : promouvoir le bien-être précoce 
pour favoriser la résilience ?

Depuis plus de 50 ans, les recherches sur l’adversité précoce sou-
lignent ses conséquences sur la santé mentale et la santé en général. 
Des travaux récents rapportent des changements épigénétiques que 
l’on observe à l’âge adulte après une exposition à des stress lors de 
la période de développement. Il faut cependant souligner qu’une part 
non négligeable des études n’observe aucun effet, voire des effets 
bénéfiques sur l’adaptation au stress, y compris chez l’homme [9]. 
Vraisemblablement, le type de stress, son intensité et sa durée jouent 
un rôle dans les effets observés, de même que le sexe et les caractéris-
tiques génétiques de l’individu qui est exposé au stress. 
L’hypothèse selon laquelle l’environnement préconceptionnel et péri-
natal crée une empreinte sur l’individu est une problématique clé en 
psychobiologie du développement. Elle met en jeu 
des questions éthiques importantes [29] (➜).
Comment les résultats des recherches sur la 
transmission intergénérationnelle du stress vont-
ils permettre d’améliorer la santé humaine ? Une publication récente 
parue dans Science [30] montre que la stimulation cognitive et sociale 
précoce (entre 0 et 5 ans) chez des enfants exposés à un environne-
ment socioéconomique défavorisé améliore significativement l’état de 
santé (marqueurs métaboliques, tension artérielle, poids) 30 ans plus 
tard. Ces résultats offrent une perspective intéressante en terme de 
politique publique. Comme le souligne le prix Nobel d’économie James 
Heckman, le retour sur investissement est maximal pour des prises en 
charges très précoces, entre 0 et 3 ans, puis, plus on s’éloigne de cette 
période critique, plus la balance coût-bénéfice se déséquilibre [31]. ‡

SUMMARY
Early life stressful experiences and neuropsychiatric vulnerability: 
evidences from human and animal models 
The human newborn is highly dependent on parental care for its survi-
val but also for the healthy development of its brain. A large body of 
literature demonstrates the impact of early life adversity, even during 

(➜) Voir la Synthèse 
de E. Rial-Sebbag 
et al., page 100  
de ce numéro

(➜) Voir la Synthèse 
de C. Junien et al., 
page 35 de ce numéro



m/s n° 1, vol. 32, janvier 2016  99

SY
NT

HÈ
SE

RE
VU

ES

 26.  Labonté B, Suderman M, Maussion G, et al. Genome-wide epigenetic 
regulation by early-life trauma. Arch Gen Psychiatry 2012 ; 69 : 722-31.

 27.  Bock J, Wainstock T, Braun K, et al. Stress in utero: prenatal programming 
of brain plasticity and cognition. Biol Psychiatry 2015 ; 78 : 315-26.

 28.  Bale TL. Epigenetic and transgenerational reprogramming of brain 
development. Nat Rev Neurosci 2015 ; 16 : 332-44.

 29.  Richardson SS, Daniels CR, Gillman MW, et al. Society: don’t blame the 
mothers. Nature 2014 ; 512 : 131-2.

 30.  Campbell F, Conti G, Heckman JJ, et al. Early childhood investments 
substantially boost adult health. Science 2014 ; 343 : 1478-85.

 31.  Heckman JJ. Schools, skills, and synapses. Econ Inq 2008 ; 46 : 289.

RÉFÉRENCES 

 19.  Marrocco J, Reynaert M-L, Gatta E, et al. The effects of antidepressant treatment in prenatally 
stressed rats support the glutamatergic hypothesis of stress-related disorders. J Neurosci 2014 ; 
34 : 2015-24.

 20.  Morley-Fletcher S, Darnaudéry M, Mocaer E, et al. Chronic treatment with imipramine reverses 
immobility behaviour, hippocampal corticosteroid receptors and cortical 5-HT(1A) receptor mRNA 
in prenatally stressed rats. Neuropharmacology 2004 ; 47 : 841-7.

 21.  Mairesse J, Lesage J, Breton C, et al. Maternal stress alters endocrine function of the feto-
placental unit in rats. Am J Physiol Endocrinol Metab 2007 ; 292 : E1526-33.

 22.  Barbazanges A, Piazza PV, Le Moal M, et al. Maternal glucocorticoid secretion mediates long-term 
effects of prenatal stress. J Neurosci 1996 ; 16 : 3943-9.

 23.  Maccari S, Piazza PV, Kabbaj M, et al. Adoption reverses the long-term impairment in 
glucocorticoid feedback induced by prenatal stress. J Neurosci 1995 ; 15 : 110-6.

 24.  Weaver ICG, Cervoni N, Champagne FA, et al. Epigenetic programming by maternal behavior. Nat 
Neurosci 2004 ; 7 : 847-54.

 25.  Tesone-Coelho C, Morel LJ, Bhatt J, et al. Vulnerability to opiate intake in maternally deprived 
rats: implication of MeCP2 and of histone acetylation. Addict Biol 2015 ; 20 : 120-31.

TIRÉS À PART
M. Darnaudéry

À retourner à EDK, 109, avenue Aristide Briand, 92541 Montrouge Cedex - Tél. : 01 41 17 74 05 - Fax : 01 49 85 03 45 - E-mail : edk@edk.fr

NOM :  .......................................................................................................................................................   Prénom : ...............................................................................................................................................................................................

Adresse : ...............................................................................................................................................................................................................................................................................................................................................................................

Code postal :  .........................................................................................................Ville :  .....................................................................................................................................................................................................................................  
Pays :  .......................................................................................................................................................................................................................................................................................................................................................................................

Fonction :  ...........................................................................................................................................................................................................................................................................................................................................................................

Je souhaite recevoir l’ouvrage La chimie des Saveurs : 20 € + 3 € de port = 23 € TTC
en ..................  exemplaire, soit un total de ............................................. €
❒  Par chèque, à l’ordre de E D K
❒  Par carte bancaire :                         ❒  Visa       ❒  Eurocard/Mastercard

Carte n°  ❘   ❘   ❘   ❘   ❘   ❘   ❘   ❘   ❘   ❘    ❘   ❘   ❘   ❘   ❘   ❘   ❘   ❘   ❘   ❘           Signature : 

Date d’expiration :        ❘   ❘   ❘   ❘   ❘   ❘     
N° de contrôle au dos de la carte :        ❘   ❘   ❘   ❘                 BO

N 
DE

 C
OM

M
AN

DE

ISBN : 978-2-7598-1137-3   180 pages

L a cuisine est une science. Il existe une relation étroite entre élaborer une recette et entreprendre une 
recherche scientifique. Quelle que soit l’origine d’une recette, d’un livre ou inventée, il faudra faire le 
choix des ingrédients, les mélanger et les cuire de manière appropriée afin de ne pas altérer les substances 

actives qui composent les ingrédients. 
Une fois la cuisson terminée, il faudra analyser le goût et si nécessaire prévoir son amélioration. Améliorer une 
recette nécessite de connaître le ou les processus qui interviennent dans le développement des arômes, des 
saveurs et de la texture. Cette approche est similaire à celle développée par le scientifique. 
La relation entre l’élaboration des recettes, les substances nutritives qui composent les ingrédients et la santé 
de l’homme est issue de plusieurs disciplines de la recherche fondamentale et clinique. Au cours des dernières 
années, de nombreux travaux scientifiques ont été publiés sur le rôle de la nutrition et la réduction des risques 
dans les pathologies comme les maladies cardio-vasculaires ou les cancers. 
Le but principal de cet ouvrage a été d’identifier la structure chimique des composants actifs des ingrédients 
utilisés en cuisine (légumes, herbes aromatiques, épices) et qui entrent dans la préparation des recettes pour 
« végétariens » et « omnivores ».

✂

Tarifs d’abonnement  m/s - 2016

Abonnez-vous

à médecine/sciences

> Grâce à m/s, vivez en direct les progrès
des sciences biologiques et médicales

Bulletin d’abonnement
page 130 dans ce numéro de m/s

médecine/sciences


	Maternal high-fat diet prevents developmental programming by early-life�stress
	Introduction
	Materials and methods
	Experimental procedures
	Behavioral assessments in adult offspring
	Open field
	Sucrose preference
	Social interaction
	Morris water maze
	Colorectal distension

	Behavioral assessments in stressed dams
	Food consumption
	Light-dark box
	Maternal behavior

	Molecular and biochemical analysis
	Real-time quantitative PCR (pups and adult offspring)
	Plasma metabolic hormones multiplex assay (pups)
	Corticosterone radioimmunoassay (dams and adult offspring)

	Immunohistochemistry in adult offspring
	Neuronal activation in PVN
	Hippocampal neurogenesis

	Statistical analysis

	Results
	Maternal high-fat diet prevents the molecular signature of maternal separation in pup&#x02019;s prefrontal cortex

	Figure 1 Independent and combined effects of maternal high-fat diet and maternal separation on pups&#x02019; prefrontal cortex gene expression.
	Maternal high-fat diet prevents adult endophenotypes associated with early-life stress

	Figure 2 Maternal high-fat diet prevents gene expression changes in the prefrontal cortex of pups following 180-&znbsp;min of maternal separation.
	Figure 3 Maternal high-fat diet�alleviates offspring endophenotypes induced by maternal separation.
	High-fat diet consumption dampens anxiety and increases maternal care in stressed dams

	Discussion
	Figure 4 Impact of maternal high-fat diet and maternal separation on offspring visceral sensitivity at adulthood.
	Figure 5 Impact of high-fat diet consumption on stressed dams&#x02019; behavior.
	J Fioramonti passed away 20 November 2015. This work was supported by the University of Bordeaux (BQR, Aide &#x000E0; l&#x02019;installation nouvelle &#x000E9;quipe), INRA (Action Prioritaire Dpt AlimH), Projet inter-r&#x000E9;gions Aquitaine et Midi-Pyr&
	J Fioramonti passed away 20 November 2015. This work was supported by the University of Bordeaux (BQR, Aide &#x000E0; l&#x02019;installation nouvelle &#x000E9;quipe), INRA (Action Prioritaire Dpt AlimH), Projet inter-r&#x000E9;gions Aquitaine et Midi-Pyr& (1)
	ACKNOWLEDGEMENTS
	REFERENCES

	Adversité durant l’enfance et vulnérabilité neuropsychiatrique : données cliniques et modèles animaux de stress psycho-social
	Qu’en est-il du stress avant la naissance ?
	Stress précoces et épigénome
	Conclusion-perspectives : promouvoir le bien-être précoce pour favoriser la résilience ?
	SUMMARY
	Early life stressful experiences and neuropsychiatric vulnerability: evidences from human and animal models
	LIENS D’INTÉRÊT
	RÉFÉRENCES



