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RESUME

Cette these est consacrée a 1’étude du modele de Potts p-adique a g-états sur les ar-
bres de Cayley. Plus précisément, nous étudions les mesures de Gibbs p-adiques du
modele de Potts sur les arbres de Cayley d’ordres 3 et 4 et leurs systemes dynamiques
p-adiques associés. Dans la premiere partie, nous décrivons les mesures de Gibbs p-
adiques invariantes par translation pour le modele de Potts sur 1’arbre de Cayley d’ordre
4. L’existence de mesures de Gibbs p-adiques invariantes par translation est équiva-
lente a I’existence de points fixes d’une application rationnelle appelée application de
Potts—Bethe. Cette application de Potts—Bethe est obtenue a partir de I’équation récur-
rente d’une application a valeur dans Q% rencontrée lors de la construction des mesures
de Gibbs p-adiques du modele de Potts sur les arbres de Cayley. Afin de décrire ces
mesures de Gibbs p-adiques invariantes par translation, nous trouvons les solutions
d’une équation quartique dans certains domaines &£, de QQ,. En général, nous trou-
vons aussi des conditions de solvabilité pour les équations quartiques dépréciées sur
Qp. Dans la deuxieme partie, nous étudions la dynamique des applications de Potts—
Bethe dans le cas d’arbres de Cayley d’ordres 3 et 4. Premierement, nous décrivons
I’application de Potts—Bethe ayant une bonne réduction. Pour une application de Potts—
Bethe ayant une bonne réduction, la droite projective P! ((@ p) peut étre décomposée en
composants minimaux et leur bassins attractifs. Cependant, les applications de Potts—
Bethe associées au modele de Potts p-adiques sur les arbres de Cayley d’ordres 3 et
4 ont une mauvaise réduction: pour de nombreux nombres premiers p, ces applica-
tions correspondantes sont en effet chaotiques. En fait, pour ces nombres premiers p,
nous prouvons que, restreintes a leurs ensembles de Julia, les applications de Potts—
Bethe sont topologiquement conjuguées a une dynamique de décalage. Pour des autres
nombres premiers p, restreintes a leurs ensembles de Julia, les applications de Potts—
Bethe ne sont pas topologiquement conjuguées a une dynamique de décalage. La pro-
priété chaotique de I’application de Potts-Bethe implique I’immensité de I’ensemble
des mesures de Gibbs p-adiques et une transition de phase. Comme application, nous
obtenons que pour de nombreux nombres premiers p, les modeles de Potts p-adiques
sur les arbres de Cayley d’ordres 3 et 4 ont une transition de phase. Nous remarquons
également que I’affirmation que la transition de phase implique le chaos n’est pas vraie.
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ABSTRACT

This thesis is devoted to the study of the g-state p-adic Potts model on Cayley trees.
Specifically, we investigate the p-adic Gibbs measures of the Potts model on the Cayley
trees of orders 3 and 4 and their related p-adic dynamical systems. In the first part, we
describe the existence of the translation-invariant p-adic Gibbs measures of the Potts
model on the Cayley tree of order 4. The existence of translation-invariant p-adic Gibbs
measures is equivalent to the existence of fixed points of a rational map called Potts—
Bethe mapping. The Potts—Bethe mapping is derived from the recurrent equation of a
Q% -valued function in the construction of the p-adic Gibbs measures of the Potts model
on Cayley trees. In order to describe the existence of these translation-invariant p-
adic Gibbs measures, we find the solutions of some quartic equation in some domains
Ep C Qp. In general, we also provide some solvability conditions for the depressed
quartic equation over Q.. In the second part, we study the dynamics of the Potts—Bethe
mapping of degrees 3 and 4. First, we describe the Potts—Bethe mapping having good
reduction. For a Potts—Bethe mapping with good reduction, the projective line P! (Q p)
can be decomposed into minimal components and their attracting basins. However, the
Potts—Bethe mapping associated to the Potts modelover @, on the Cayley trees of orders
3 and 4 have bad reduction. For many prime numbers p, such Potts—Bethe mappings
are chaotic. In fact, for these primes p, we prove that restricted to their Julia sets,
the Potts—Bethe mappings are topologically conjugate to the full shift dynamics. For
other primes p, the corresponding dynamics restricted to Julia sets are not topologically
conjugate to the full shift dynamics or subshift of finite type. The chaotic property of
the Potts-Bethe mapping implies the vastness of the set of the p-adic Gibbs measures,
and hence implies a phase transition. As an application, for many prime numbers p, the
Potts models over @, on the Cayley trees of orders 3 and 4 have phase transition. We
also remark the statement that phase transition implies chaos is not true.
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CHAPTER 1

APERCU DES TRAVAUX

1.1 FONDEMENTS THEORIQUES

La théorie des probabilités a valeurs p-adiques — un modele ne satisfaisant pas les ax-
iomes de Kolmogorov dans lequel les probabilités prennent des valeurs dans le corps
Q) des nombres p-adiques — a été proposées dans une série de papiers (Khrennikov,
1990a,b, 1991, 1992a,b, 1993, 1996a,b; Khrennikov et al., 1999) dans le but de résoudre
la question de I’interprétation statistique de fonctions d’ondes p-adiques en physique
quantique non-Archimedienne (Beltrametti & Cassinelli, 1972; Volovich, 1987; Vladimirov
et al., 1994; Khrennikov, 1994, 2009; Albeverio et al., 2010). Par ailleurs, afin de
formaliser une approche de théorie de la mesure pour les probabilités p-adiques, Ilic-
Stepic et al. (2016) ont développé de nombreuses propriétés logiques des probabilités
p-adiques, consitutant d’importantes extensions décidables et completes de proposi-
tions logiques classiques.

Plus précisément, une probabilité p-adique est définie comme étant la limite
des fréquence relatives pour la topologie p-adique. Des lors les aspects de théorie
de la mesure de la théorie probabiliste p-adique ont pu étre développés. Ensuite, des
théories des processus stochastiques a valeurs p-adiques, ou plus généralement celle
de champs admettant des distributions probabilistes (non-Kolmogorov) a valeurs non-
Archimediennes ont été intensément développées et divers théorémes limites pour des
processus a valeurs p-adiques ont été obtenus. D’autres parts, des applications issues
d’analyses fonctionnelles et harmoniques p-adiques ont également établies en physique
théorique et mécanique quantique (Albeverio et al., 1997a,b,c, 2009, 2010; Dragovich
et al., 2009). Un résumé de tous les récents développements en phyisque mathématique
p-adique peut étre trouvé dans un article de Dragovich et al. (2017).

Les mesures de Gibbs, qui jouent un role central en mécanique statistique, pren-
nent leurs origines a Boltzmann et Gibbs qui introduirent une approche statistique en
thermodynamique afin de déduire des comportements collectifs macroscopiques a par-
tir d’informations individuelles microscopiques. Les mesures de Gibbs associées a
I’hamiltonien d’un systeme physique (un modele) formalisent la notion d’ensemble
canonique. Dans le cas classique ou le modele mathématique est basé sur le corps des
nombres réels, le phénomene de transitoin de phase est alors illustré par la multiplicité
des mesures de Gibbs. Ainsi, un probleme central dans I’étude des mesures de Gibbs
est de décrire la taille de I’ensemble des mesures de Gibbs.

En raison de la structure convexe de ’ensemble des mesures de Gibbs sur le



corps des nombres réels, pour déterminer la taille de I’ensemble des mesures de Gibbs,
il suffit alors d’étudier le nombre de ses €léments extrémaux. Des lors, dans le cas
classique, pour prédire une transition de phase, 1’attention principale a été de recherche
toutes les mesures extrémales possibles (Georgii, 2011). Cependant, il apparut que
rechercher toutes celles-ci pour des modeles de spins pouvait s’avérer un probleme dif-
ficile et non completement soluble (Gandolfo, Maes, et al., 2017; Gandolfo et al., 2012).
L’ étude des mesures de Gibbs pour le modele de Potts sur des arbres de Cayley ont at-
tiré une grande attention (Kulske et al., 2013; Rozikov & Khakimov, 2013b; Gandolfo,
Rahmatullaev, & Rozikov, 2017). La méthode classique pour caractériser les mesures
de Gibbs sur des arbres de Cayley, inventée par Preston (1974) et Spitzer (1975), est la
théorie des champs de Markov a base d’équations de récurrence. Cependant, la théorie
moderne des mesures de Gibbs sur des arbres de Cayley se base également sur la théorie
des groupes, les flots d’informations, les marches aléatoires a noeuds pondérérés et
I’analyse non-linéaire.

Les développements récents de la théorie des mesures de Gibbs sur les arbres
de Cayley peuvent étre trouvés dans le livre par Rozikov (2013). Mezard et al. (1987)
ont ensuite découvert que la structure des fonctions de corrélation était liée a une ul-
tramétricité. Ce résultat nous amena alors a une mécanique statistique basée sur les
nombres p-adiques. Cette analogie p-adiques de la théorie des mesures de Gibbs sur
les arbres de Cayley a été activement étudiée ces dernicres décénnies, présentant des ex-
emples concrets naturels de processus a valeurs p-adiques (Mukhamedov, 2013; Lud-
kovsky & Khrennikov, 2003). L’étude des mesures de Gibbs sur les arbres de Cay-
ley a été initiée dans Ganikhodjaev et al. (1998) and Mukhamedov & Rozikov (2004,
2005). L’existence de mesures de Gibbs p-adiques ainsi qu’une transition de phase
pour les modeles sur réseaux a été établi dans Mukhamedov (2013); Mukhamedov &
Akin (2013); Mukhamedov et al. (2015) et Rozikov & Khakimov (2013a). Plus réce-
ment, toutes les measures de Gibbs p-adiques invariantes par translation pour le modele
d’Ising et le modele de Potts a g-états sur les arbres de Cayley d’ordre deux (Rozikov
& Khakimov, 2015) et trois (Saburov & Ahmad, 2015b) ont été décrites. Soulignons
que dans le cas p-adique, en raison de 1’absence de structure convexe de I’ensemble
des mesures de Gibbs, il est assez difficile de prédire transitions de phases ou autres
propriétés de cet ensemble.

L’étude de I’ensemble des mesures de Gibbs p-adiques de modeles de Potts sur
des arbres de Cayley est fortement liée a un probleme diophantien (Rozikov & Khaki-
mov, 2015; Saburov & Ahmad, 2015b) consistant a déterminer le nombre de solutions
d’un systeme d’équations polyndmes, ou a donner une borne sur le nombre de solutions
sur le corps des nombres p-adiques. En général, le méme probleme diophantien peut
avoir différentes solutions sur le corps des nombres p-adiques ou sur celui des nom-

bres réels en raison des structures topologiques différentes. Pour des arbres d’ordres



supérieurs, le probleme diphotantien correspondant peut s’avérer difficile d’acces sur le
corps des nombres p-adiques. Récemment, ce probleme a €té totalement résolu pour des
équations monomiales (Mukhamedov & Saburov, 2013), des équations quadratiques
(Saburov & Ahmad, 2015c), et des équations cubiques dépréciées pour des entiers p > 3
(Mukhamedov et al., 2013, 2014).

1.2 OBJECTIFS

Les objectifs de cette these sont :

1. Décrire I’existence des mesures de Gibbs p-adiques invariantes par translation

sur I’arbre de Cayley d’odre 3 et d’ordre 4.

2. Etudier la dynamique de I’application de Potts-Bethe de degré 3 et de degré 4 sur
Qp.

3. Etablir la relation entre les propriétés chaotique de 1’application de Potts-Bethe
sur Q, and la transition de phase du modele de Potts sur Q,, sur les arbres de

Cayley.

1.3 PANORAMA DE LA THESE

Cette these contient cinq chapitres. Dans le Chapitre 1, nous présentons I’état des
recherches et un apercu de la these. Dans le Chapitre 2, nous dressons les préliminaires
des notions de nombres p-adiques, polynomiaux, d’arbres de Cayley, de mesures de
probabilités p-adiques du modele de Potts sur I’arbre de Cayley et systeme dynamique.
Dans le Chapitre 3, pour montrer 1’existence de mesures de Gibbs p-adiques invariantes
par translation du modele de Potts sur I’arbre de Cayley de degré 4, nous résolvons le

systeme suivant d’équations

L O -1z +Y 0z +1
l 0+3 91z

ou 6 = exp,(J) et J une constante de couplage. Nous trouvons la solution de ce

4
) for 1<i<g-—1

systeme d’équations de la forme z = (zy,...,z4—1) telque z; = lorz; =z € £, CQ,

pouri =1, —1, avec z* un point fixe, i.e. z* = f(z*) pour I’application f :

(9—1—|—m)z+q—m)4

1@ = ( mz+60—14+qg—m



appellée "application de Potts-Bethe". Notons que f satisfait f(1) = 1 et a la forme

cx+d
quartiques ayant une solution z € £, (Propositions 3.2.1 et 3.2.2). Cette description

k
(“x+b) . Pour trouver les points fixes de f autres que 1, nous décrivons des équations

nous permet de prouver I’existence et la non-unicité des mesures p-adiques invariantes
par translation (Théoreme 3.2.3). En général, nous produisons aussi des conditions pour

que I’équation quartique dépréciée
x*+ax>+bx+c=0

oua,b,c € Q,, admette une solution dans @, en termes de ses coefficients (Théoreme
3.3.8).

Dans le Chapitre 4, nous étudions la dynamique des applications de Potts-Bethe
sur Q,. Tout d’abord, nous décrivons les applications de Potts-Bethe ayant une bonne
réduction (Proposition 4.2.1) et montrons que la dynamique est alors décomposée en
systemes minimaux avec leurs bassins d’attraction (Théoreme 4.2.2). Ensuite, nous
étudions séparément les dynamiques des applications de Potts-Bethe de degré 3 et de
degré 4 ayant mauvaise réduction. Nous considérons I’application de Potts-Bethe de
degré 3 suivante : ,

fraan = (LY
Nous distinguons deux cas: 0 < |0 —1|, < |gq|, <1let0<|q|, <|0—1], <1.

Cas0<|0—1|, <|q|p <1:Lorsque p =5 (mod 6), nous trouvons un bassin

d’attractions B (x?) du point fixe x(® = 1 (Théoreme 4.3.8) de la forme

B (x?) = Q,\ ({x“>} 1y fetq”,3{x<°°>})
n=0

ot x® =2—-0—g et x(V est le point fixe répulsif. Quand p = 1 (mod 6), I’ensemble
de Julia J de I’application de Potts-Bethe est non-vide. En outre, nous divisons en
deux nouveaux cas : 0 < [0 —1[, <|g|> <let0<|q|2 <[0—1], <|q|, < 1. Pour
0<|0-1]|, < |q|§, < 1, il existe un systeme (7, fp,4,3) qui est isométriquement con-
jugué a une dynamique du décalage complet sur 3 symboles (Théoreme 4.3.13). Pour
< |q|§, <10 —1|, <lq|, < 1, il existe un systeme (7, fg,4,3) qui est isométriquement
conjugué a une dynamique du décalage de type fini sur r symboles, r > 4. Cependant,
ces sous-décalage sur r symboles sont tous topologiquement conjugué au décalage com-
plet sur 3 symboles (Théoeme 4.3.19). Dans tous les cas, nous obtenons la décomposi-
tion suivante:

400
Q=B (x)uTU i x).

n=0



ol x(® =2—0—g et B (x?) est le bassin d’attraction du point fixe x©.

Cas 0 < |q|, < |0 —1|, <1 : Dans ce cas, nous trouvons les disques de Siegel
des points fixes neutres X et x() (Théoreme 4.3.27). Lorsque p = 5 (mod 6), dans
certains cas, nous trouvons des orbites périodiques attractives ou des disques de Siegel
des orbites périodiques neutres avec leurs bassins. Quand p = 1 (mod 6), I’ensemble
de Julia 7 de I’application de Potts-Bethe est non-vide et il existe un systeme (7, f5,4.3)
qui est isométriquement conjugué a la dynamique du décalage complet sur 2 symboles
(Théoreme 4.3.29).

Ensuite nous considérons 1’application de Potts-Bethe de degré 4 suivante :

Ox+qg—1 )4

s = (51

De méme que pour I’application de Potts-Bethe de degré 3, nous considérons 2 cas puis
retrouvons la méme décomposition. Nous distinguons deux cas: 0 < [0 —1|, <|q|, <1
et0<|q|, <|0—1], <L

Cas 0 < |0 —1|, <|q|p <1 : Lorsque p =3 (mod 4), I’ensemble de Julia
J de I'application de Potts-Bethe est non-vide. Il existe un systeme (7, fg,4,4) qui
est topologiquement conjugué a la dynamique du décalage complet sur 2 symboles
(Théoreme 4.4.9). Lorsque p = 1 (mod 4), I’ensemble de Julia J de I’application
de Potts-Bethe est non-vide. Il existe un systeme (7, fg,4,4) topologiquement conjugué
a la dynamique du décalage complet sur 4 symboles (Théoreme 4.4.9). Dans les deux

cas

400
Q, =B (x“’)) g U fom x>,
n=0

Cas 0 < |g|, < |0 —1], < 1: Dans ce cas, nous trouvons les disques de Siegel
des points fixes neutres x(¥ and x() (Théoréme 4.4.17). Lorsque p = 3 (mod 4), dans
certains cas, nous trouvons des orbites périodiques attractives ou des disques Siegel
d’orbites périodiques neutres avec leurs bassins. Lorsque p =1 (mod 4), I’ensemble
de Julia J de I’application de Potts-Bethe est non-vide et il existe un systeme (7, fg,4,4)
qui est isométriquement conjuguées a la dynamique du décalage complet sur 3 lettres
(Théoreme 4.4.17).

Nous montrons également pour de nombreux nombres premiers p que I’application
de Potts-Bethe possede des proporiétés de chaoticité. Cette propriété chaotique im-
plique I'immensité de I’ensemble des mesures de Gibbs p-adiques (Théoreme 4.6.1).
Comme application, pour de nombreux nombres premiers p, la transition de phase a
lieu pour le modele de Potts p-adique sur les arbres de Cayley de degrés 3 et degrés
4. Nous remarquons également que 1’affirmation qu’une transition de phase implique le
chaos est fausse en général, dans la derniere partie de la Section 4.6.

Dans le Chaiptre 5, nous résumons cette these et donnons quelques suggestions



pour la recherche future.

1.4 OVERVIEW OF THE THESIS
This thesis contains five chapters. In Chapter 1, we give the research background and the
overview of the thesis. In Chapter 2, we provide the preliminaries on p-adic numbers,
polynomials, Cayley trees, p-adic probability measures (Potts model over the field Q,
of p-adic numbers) and the related dynamical systems.

In Chapter 3, we study the existence translation-invariant p-adic Gibbs measures
of the g-state Potts model on the Cayley tree of order 4. To show the existence of

translation-invariant p-adic Gibbs measures, we solve the following system of equations

L O -1z +Y 0z +1
l 0+3 91z

where 6 = exp,(J) and J is a coupling constant. We find the solution of this system

4
) for 1<i<g-—1

of equations of the form z = (zy,-++,z4—1) such that z; =l or z; = z* € £, C Q, for

i = 1,q — 1 with z* being the fixed points, i.e. z* = f(z*) of the following map f

O—14+m)z+qg—m\"
7o =
mz+60—14qg—m
called “Potts—Bethe mapping”. We note that f satisfies f(1) = 1 and has the form

(&4

having a solution z € £, (Propositions 3.2.1 and 3.2.2). This descriptions allows us to

k . . . .
) . To find the fixed points of f other than 1, we desribe some quartic equation

prove the non-uniqueness of the translation-invariant p-adic Gibbs measures (Theorem

3.2.3). In general, we also provide some conditions for the depressed quartic equation
x*+ax*+bx+c=0

where a,b,c € Q, to have a solution in QQ,, in terms of its coefficients (Theorem 3.3.8).

In Chapter 4, we study the dynamics of the Potts—Bethe mapping on Q. First,
we describe the Potts—Bethe mapping having good reduction (Proposition 4.2.1) and
show that its dynamics is decomposed into minimal subsystems and their attracting
basins (Theorem 4.2.2). Then we study separately the dynamics of the Potts—Bethe
mapping of degree 3 and of degree 4 which has bad reduction. We consider the follow-

ing Potts—Bethe mapping of degree 3

Ox+qg—1 )3

Jo.q.3(x) = (x—l—Q—-i—q—Z



We distinguish two cases: 0 < |6 —1|, <|q|, <1and 0 <|q|, <|0—1], < 1.
Case 0 <|0—1|, <|q|p <1: When p =5 (mod 6), we find the attracting basin
B (x(?) of the fixed point x¥) = 1 (Theorem 4.3.8) is as follows

B (x?) = Q,)\ ({x“)} ulJ fojq’g{x(w)})
n=0

where x(®) =2 -9 —g and x(V) is the repelling fixed point. When p = 1 (mod 6),
the Julia set J of the Potts—Bethe mapping is non-empty. We divide into two subcases:
0<[0—1], <lgl5 <1land0<lg|5 <10—1], <l|gl, <1. For0<|0—1], < gl <
1, there exists a subsystem (7, fg,4,3) that is isometrically conjugate to the full shift
dynamics on 3 symbols (Theorem 4.3.13). For 0 < |¢]2 < |0 —1|, < |q|, < 1, there
exists a subsystem (7, fg,4,3) that is isometrically conjugate to a subshift of finite type
on r symbols where r > 4. However, these subshifts on r symbols are all topologically
conjugate to the full shift on 3 symbols (Theorem 4.3.19). In both case, we have the

following decomposition:
400
Q, =% (X(O)) UuJgu U foa x>}
n=0

where x(® =2 —0 —¢g and B (X(O)) is the attracting basin of the attracting fixed point
x©,

Case 0 < |q|, < |0 —1|, < 1: In this case we find the Siegel disks of the neutral
fixed points x© and x(!) (Theorem 4.3.27). When p = 1 (mod 6), the Julia set J
of the Potts—Bethe mapping is non-empty. There exists a subsystem (7, fg,4,3) that is
isometrically conjugate to the full shift dynamics on 2 symbols (Theorem 4.3.29).

Next we consider the following Potts—Bethe mapping of degree 4

Ox +q—1 )4

a0 = (ot

Similar to the Potts—Bethe mapping of degree 3, we consider two case: 0 <
0—1], <|glp<land0<|gq|, <|0—1|, <1

Case 0 < |0 —1], < |q|p, < 1: In this case the Julia set J is non-empty. When
p =3 (mod 4), there exists a subsystem (7, fg,4,4) that is topologically conjugate to
the full shift dynamics on 2 symbols (Theorem 4.4.9). Whereas when p =1 (mod 4),
there exists a subsystem (7, fg,4,4) that is topologically conjugate to the full shift dy-
namics on 4 symbols (Theorem 4.4.9). In both case, we have the following decomposi-

tion:

400
Q, =3 (X(O)) UJu U fej(z3{x(oo)}
n=0



where x(® =2 —0 —g and B (X(O)) is the attracting basin of the attracting fixed point
x©,

Case 0 < |q|, < |0 —1], < 1: We calculate the Siegel disks of neutral fixed
points x© and x" (Theorem 4.4.17). When p = 1 (mod 4), the corresponding Julia
set J is non-empty. We obtain a subsystem (7, fg,4,4) that is isometrically conjugate
to the full shift dynamics on 3 symbols (Theorem 4.4.17).

We show for many prime numbers p, the Potts—Bethe mapping has chaotic prop-
erties. These chaotic properties of the Potts-Bethe mapping imply the vastness of the
set of the p-adic Gibbs measures (Theorems 4.6.1 and 4.6.2). As application, for many
prime numbers p, the phase transition occurs for the Potts models over @, on the Cay-
ley trees of orders 3 and 4. We also remark that the statement phase transition implies
chaos is not true, in the last part of Section 4.6.

In Chapter 5, we give the summarry of this thesis and suggestion for the future

research.



CHAPTER 2

PRELIMINARIES

2.1 P-ADIC NUMBERS
For an introduction to p-adic numbers and p-adic analysis, we recommend the books
of Schikhof (1984), Koblitz (1984) and S. Katok (2007).

2.1.1 p-Adic Integers and p-Adic Numbers
Most of the materials here are taken from Caruso (2017). Recall that each positive

integer n can be written in base p
n=ao +a1p—|—a2p2—|—---+aep£.
Definition 2.1.1. A p-adic integer a is a formal series
a= a0+a1p+a2p2+--~

where 0 < a; < p—1. The set of all p-adic integers is denoted by Z,,.

For any a € Z,, we define
Op =ao+a1p+arp*+--+a,_1p" ' €Z/p" 7.
Then we set the following functions
Ty Ly —>7L/p "L, wp(a)=ay,.

We have forany a € Z,, w,41(a) = m,(a) (mod p"). More generally, 7, (a) = 7, (a) (mod p™)

for m > n. Then putting m,,’s together we get

i lp— LiLnZ/an’ ar (m(a),m(a),:--).

n

where

imZ/p"Z:= Ja = (an) € [ | Z/p"Z: wu11(a) = 7u(a) (mod p") Vi

n n=1



is the projective limit of Z/ p"Z.

Consider a sequence o = (tq,®2,++) € l(ln 7./ p"7Z.. Write
n

n—1
Oy =dp,o +an,1p+"'an,n—1p .
The condition o, +1 = o, (mod p™) implies a,4+1,; = a,,; for 0 <i <n—1. This means

(an.i)n>i is constant and converges to some a;. Set
w(a) =a= (a()’al"“) € Zp~
We can check that v is the inverse function of 7. Thus we have the following

— n
Ly = l(an/ p 7.
n
The descriptions of Z, as a limit of Z/ p"Z allows us to endow Z, with a commutative
ring structure, that is for a,b € Z, we look at their sequences «,, B, € Z/p"Z. Then
oy + Bn € Z/ p"Z yields a well defined element a + b € Z,. Note that Z C Z,. One

can see % ¢ Z,. We have QQ,, as a fraction field of Z .

Definition 2.1.2. A p-adic number a is a series

a:Zaipi

i>m

where m € Z.and 0 < a; < p — 1 with a,, # 0. The set of all p-adic numbers is denoted
by Q,.

2.1.2 p-Adic Norm and Completeness

According to Ostrowski’s Theorem (see Koblitz (1984)), there are only two kinds of
completions of the field Q of rational numbers. These two kinds of completions give
the field R of real numbers or the field Q, of p-adic numbers. For a fixed prime p,
we introduce the notion of p-adic valuation and p-adic norm (absolute value). Let
X = pk% € Qwithk,meZ,n eN, pfm and p fn. The number k is called the p-adic
valuation of x and is denoted by ord,(x). By convention, we define ord,(0) = oo.
Thus

k ifx 0,

ordp(xX) =1 ifx =0

10



Then we can define the p-adic norm (absolute value) as follows:

p* ifx #0,

Xo=10  ifx=o.

This norm is non-Archimedean because it satisfies the strong triangle inequal-
ity: |x + y|, < max (|x|p, |y|p) . The metric induced by this norm, d(x,y) = |[x —y|,,
satisfies the ultrametric property: for all x,y,z € Q, d(x,y) < max(d(x,z),d(z,y)).
We notice that d takes values from the proper subset {0} U {p” : n € Z} of R. Recall the

following definitions.

Definition 2.1.3. A sequence (x,) in a field K is called Cauchy if for every € > 0 there

exists N such that |x, — x,,| < € whenever n,m > N.

Definition 2.1.4. A field K is complete with respect to the norm (absolute value) |- | if

every Cauchy sequence of K converges in K.
By these definitions, we have the following proposition.

Proposition 2.1.5 (see S. Katok (2007)). The field Q, of p-adic numbers is the comple-
tion of the field Q of rational numbers with respect to the p-adic norm (absolute value)
|- 1p-

Denote by B, (a) :={x € Q, : |x —al, <r}, B,(a):={x e Qpilx—alp=<r}
and S,(a) := {x € Q, : [x —a|, = r} the open ball, closed ball and the sphere in Q,
with center a and radius r. Remark that the open ball is also closed. Then the set of
all p-adic integers and p-adic units of Q, are denoted by Z, = {x € Q, : |x|, < 1}
and Zj, = {x € Qp : |x[, = 1} respectively. Any p-adic unit x € Z, has the unique
canonical form

X=Xo+X1-p+x2:p> -

where xog € {1,2,---p—1}and x; € {0,1,2,--- p—1} for i € N. Furthermore, any p-adic

number x € @, has the following unique canonical form

ordp(x) (

X=p Xo+ X1 p4xa-pi+...)

where x¢ € {1,2,...,p—1}and x; € {0,1,2,..., p—1} fori € N. Therefore,

x*

|x|p

such that x* € Z7,.
As parallel to the construction of the field C of complex numbers, we can also
construct an analogue for p-adic numbers, see for example Koblitz (1984) and Schikhof

(1984). We consider the algebraic extension of Q©,. The p-adic absolute value will be

11



uniquely extended. However, any extension of finite order of QQ, is not algebraically
closed. Hence, the algebraic closure Q, of Q) is an infinite extension. This algebraic
closure is not topologically complete. Fortunately, the topological completion of Q7 is
algebraically closed. This final field denoted by C,, is called the field of complex p-adic
numbers.

Next, denote by P! (C,) the projective line over C,,. The field C,, may be iden-
tied with the subset of P! ((C p) given by

{[x:1] P (C,):x eC,}.

A point in the projective line P! (C p) is be given in homogeneous coordinates by a pair
[x1 : x2] of points in C, which are not both zero. Two such pairs are equal if they differ

by an overall (nonzero) factor A € C7:
[x1:x2] = [Ax1 1 Axs].

This subset contains all points in P! (C p) except one: the point of infinity, which may
be given as co = [1:0].
The spherical metric defined on P! ((C p) is analogous to the standard spherical

metric on Reimann sphere. For P = [x; : x5] and Q = [y1 : y»] in P* (C,), we define

|X1J’2—y1x2|p

max{[x1|p, [x2|p} maxi|yilp, |y2lp}

p(P,Q) =

or, viewing P! (C,) as C,, U {oo}, for z1,z, € C, U{oo}, we define

p(z1,22) = lZl_lep
’ max{|z;|,, 1} max{|z;|,, 1}
and
1, if |z], <1
plz,00) =9
W, llelp > 1.

Remark that the restriction of the spherical metric on the ring O ={z € C, : |z|, < 1}
is same as the metric induced by the absolute value |-|,. One can also think the same

for the case of projective line P! (Q,) over Q.

12



2.2 POLYNOMIAL

2.2.1 Resultant and Discriminant
We refer the book of Gelfand et al. (1994) and the article of Dilcher & Stolarsky (2005)
for the resultant and dicriminant of the polynomials.

We write a polynomial over a field K as a,x" + a,_1x"~ ' +--- + ao where
a, #0and a; € K fori =0,...,n. We denote n = deg(a,x" + ap_1x" 1 +---+ag)
the degree of the polynomial a,x" + a,_1x" ! +---+ao. The examples of the field
K that can be considered are IF,,, @, R, C and etc. Later, we will concentrate on the
polynomial equations over Q,. Let f(x) = apx" +ap—1x" ' +---+ap and g(x) =
bpx™ + by x™ 1 4 .. 4 by be polynomials of degrees n > 1 and m > 1 (a, and a,,
do not vanish) with coefficient in an arbitrary field K respectively. Denote by R, »( f. &)

of their resultant. Sometimes we denote it as R( f, g).

Definition 2.2.1. Let a,, # 0 and b, # O.

1)
R(f.g)=aybp [ [(i—y))
i,j

where X1,...,X, and y1,...,Ym are roots of f and g respectively.

2) R(f, g) is equal to the determinant of the following (n +m) by (n +m) Sylvester

matrix,
ag ap a -+ du—1 dy o o -+ 0
0 ay a1 -+ ay— a1 a, 0 -+ 0
100 0 - ag a, a as -+ da
RUD=\p by by o by 0 0 0 - O
0O by by - by-4y b, 0 0 - 0
o o o - 0 bo by by --- b,

The following is one of the result on resultant of two polynomials f and g.

Theorem 2.2.2 (see Gelfand et al. (1994)). For two concrete polynomials f and g,
R(f,g) = 0is equivalent to the fact that | and g have a common root. This also means

that R( f,g) # 0 is equivalent to the fact that f and g have no common root.

Resultant and discriminant of polynomial has a relation. We denote by A, (f)

the discriminant of polynomial f. Frequently, we write it as A( f).

13



Definition 2.2.3. Let a,, # 0. Then

A(f) = (D) a2 [ —x,)?

i<j
where X1,...,X, are roots of f.
The following is the relation between discriminant and resultant.

Theorem 2.2.4 (Dilcher & Stolarsky (2005)). Let f(x) = a,x" +a,_1x" ' +---+ay
be a polynomial of degrees n > 1 with coefficient in an arbitrary field K. Then the

discriminant of f is given by

nn—1)
2

A(f)=(=D"7 a, R(f [

This relation allows us to find the discriminant of a polynomial. For example,
the quadratic polynomial has

A(ax?+bx +c) = b*—4ac,
the cubic polynomial has
Alax® +bx*+c+d) =b*c*>—4ac®> —4b*d —27a*d?* + 18abcd,
and the quartic polynomial has

Alax* +bx>+cx?+dx+e) = 256a%e®>—192a’bde* —128a°c?e? + 144a°cd’e
—27a*d* + 144ab*ce® —6ab*d*e —80abc’de
+18abcd?® + 16ac*e —4ac®d? —27b*e?
+18b3cde —4b3d>® —4b%c3e + b*c?d>.

2.2.2 Polynomial Congruences
For linear and quadratic congruences, we refer to the book of Rosen (2011). The sim-
plest congruence is linear

ax = b (mod m) 2.1)

where a, b, m > 0 are integers. The following theorem tells us when the linear congru-

ence (2.1) has solutions.
Theorem 2.2.5 (see Rosen (2011)). Let a, b, m > 0 be integers and gcd(a,m) = d.

(i) If d t b, then the congruence (2.1) has no solution.

14



(ii) Ifd | b, then the congruence (2.1) has exactly d incongruent solutions modulo m.

The quadratic congruence
ax?+bx +c =0 (mod n) (2.2)

where a, b, ¢, n > 0 are integers is the simplest non-linear congruence. For simplicity,

a prime number p is considered instead of an integer n > 0. So we have
ax?+bx+c =0 (mod p) (2.3)

where a,b,c are integers and p a prime number. Denote (%) the Legendre symbol.
Then we have the following theorem about the quadratic congruence.

Theorem 2.2.6 (see Rosen (2011)). Let p be a prime number and a,b,c are integers
with p {a.

(a) Let p =2. We have a = 1 (mod p). Then the quadratic congruence (2.3) has
solutions if and only if not both b,c = 1 (mod p).

(b) Let p be an odd prime number. Let D, = b?> —4ac.

(i) If D, = 0 (mod p), then the quadratic congruence (2.3) has exactly one

solution modulo p.

(ii) If (%) =1, i.e. D, is a quadratic residue modulo p, then the quadratic

congruence (2.3) has two incongruent solutions modulo p.

(iii) If (%) = —1, i.e. D, isaquadratic nonresidue modulo p, then the quadratic

congruence (2.3) has no solution.

Now we consider the following cubic congruence
x> 4+gx?+rx+t=0 (mod p) (2.4)
such that ¢, r, 7 are integers and p a prime number. Let
D3 =q*r* —4r3 —4q3t — 271> + 18qrt

be the discriminant of the cubic polynomial. Denote Ng (anx" Fa,_x" N4+ ao)
be the number of solutions of polynomial equation a,x" + a,_x" ! +---+ag in the

field K. Then we have the following result.
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Theorem 2.2.7 (see Sun (2003)). Let p > 5 be a prime number and p 1 D3. Then

0 or 3 if (2)=1
1 if (%):-1.

Most results on cubic congruences are due to Sun (2003). Let {u,} and {s,} be

Nr, (X +gx*+rx+1) =

the third-order recurrence sequences for g, r,t € Z defined by
U =u_1=0,uy=1, upys+qupyz+rups1+tu, =0, (n>-2)
and
50 =23, 51=—q, S2=q° =21, Sut3+qSnt2+FSps1+15, =0, (n>0).
Lemma 2.2.8 (Sun (2003)). Let p > 5 be a prime number and p | D3. Then
Nr, (x3 +gx*+rx —|—t) =3.

Theorem 2.2.9 (Sun (2003)). Let p > 5 be a prime number o = (¢*>—3r)3, B = —2q¢>+
9qr —27t and D3 = —%(ﬁz —4a). Let ptab. Then

3 if Dsuj_, =0 (mod p),
Ny, (x3 +gx?+rx+ t) =10 if D3u§,_2 = (¢%>—3r)? (mod p),
1 if Dsuj_, #0,(¢g*>—3r)* (mod p).

Theorem 2.2.10 (Sun (2003)). Let p > 5 be a prime number. Let p {1 (q*> —3r). Then

3 if Spi1=¢q*—2r (mod p),
N, (x3+qx2+rx+t) =10 if sp41 =71 (mod p),

1 if sp+1#q*—2r,r (mod p).

The following is a result on specific case of cubic congruence, i.e. depressed

cubic polynomial.

Proposition 2.2.11 (Mukhamedov et al. (2014)). Let p > 5 be a prime number and
g =0 (mod p) and rt # 0 (mod p). We have D3 = —4r3 —27t2.
(i) Let Dsu’_, =0 (mod p). Then

1) The cubic congruence (2.4) has 3 incongruent solutions if and only if D3 #
0 (mod p). In this case, we have 3x +r % 0 (mod p) for any solution X.
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2) The cubic congruence (2.4) has 2 incongruent solutions while one of them
has multiplicity 2 if and only if D3 = 0 (mod p). If X1 and X, are 2 in-

congruent solution while Xy has multiplicity-2, then x| = % (mod p) and

Xy = —% (mod p). In this case,we have 3X, +r % 0 (mod p).
3) The cubic congruence (2.4) does not have any solution of multiplicity 3.
(ii) Let D3u§_2 % 0 (mod p). Then 3x +r #£ 0 (mod p) for any solution X.

Remark that Sun (2003) also give the explicit form of the solution for the cubic

congruence (2.4). Lastly, let us consider the quartic congruence
x*+ax?>+bx+c =0 (mod p) (2.5)

such that a, b, ¢ are integers and p a prime number. It is also due to Sun (2003), we have

the results on quartic congruence (2.5). Denote
D, = —b*(4a>®+27b%) + 16¢(a* + 9ab* —8a*c + 16¢?)

the discriminant of the depressed quartic polynomial x* + ax? + bx + c. It could be

easily check that Dy is also the discriminant of the following cubic polynomial
vy +3ay? + (a*>—4c)y — b2,

Lemma 2.2.12 (Sun (2003)). Let p be an odd prime number and a,b,c € 7Z with p 1 b.

Then the quartic congruence (2.5) has one multiple solution if and only if p | Dg.

Theorem 2.2.13 (Sun (2003)). Let p > 5 be a prime number and a,b,c € 7 with p t
bDy4. Then Ny, (x4 +ax?+bx + c) = 0 if and only if there exists an integer y such
that
3 2 2 2 _
v>+3ay“+ (a“—4c)y —b” =0 (mod p)

and (%) = —1. Furthermore, when Ny, (x* +ax*+bx +¢) > 0, we have
N, (x4 +ax?®+bx —|—c) = N, (y3 +3ay*+ (a*—4c)y —bz) + 1.

Theorem 2.2.14 (Sun (2003)). Let p > 5 be a prime number and a,b,c € 7 with p 1
bDy. Then

Np, (x4—|—ax2+bx—|—c) = I—I—Z (Z)
p
y
where y runs over the solutions of the cubic congruence

y3+3ay? + (a*>—4c)y —b* =0 (mod p).
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Notice that all previous results on quartic congruence deal when p 1 b. Now
we will discuss the results for the quartic congruence (2.5) when p | b. For simplicity,

suppose b = 0. Then the quartic congruence (2.5) takes the form
x*+ax*+c¢ =0 (mod p). (2.6)
The discriminant of quartic congruence (2.6) is
Dy = 16¢c(a* —8a*c 4+ 16¢%) = 16¢(a”* —4¢)*.
Suppose p {ac. Then to discuss the quartic congruence (2.6), we divide into two cases:
p| Dgand pfDy.

Lemma 2.2.15. Let p be an odd prime number and p | D4. Then the quartic congruence
(2.6) has solutions if and only if (_T%a> =1.

Proof. When p | D4, we have 4c = a? (mod p). The quartic congruence (2.6) can be

written as 5

4 2, 4 2 4)\?
x*+ax +IE(X —|—§) = (0 (mod p).
So —2a is a quadratic residue modulo p. [

The following are the old results by Carlitz (1956). For p an odd prime number,
we may assume @ = —2m (mod p) for some m € Z. So the quartic congrunce (2.6) is
equivalent to

x*—2mx?*+c¢ =0 (mod p).

Theorem 2.2.16 (Carlitz (1956)). Let p be an odd prime number and p t Dy.

(i) Let ¢ =n? (mod p). Consider the numbers
2m—n), 2(m+n), m*—n>. 2.7

1) If all numbers in (2.7) are quadratic residues, then the quartic polynomial

x*—2mx? 4 n? is congruent to the product of four linear factors.

2) If only one number in (2.7) is a quadratic residue, then the quartic polyno-
mial x*—2mx? +n? is congruent to the product of two irreducible quadrat-

ics.
(ii) Let ¢ be quadratic non-residue modulo p.

1) If m?—c is a quadratic residue modulo p, then the quartic polynomial x* —
2mx? + c is congruent to an irreducible quadratic and two distinct linear

factors.
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2) If m? —c is a quadratic non-residue modulo p, then the quartic polynomial

x*—2mx? + c is irreducible.
From the theorem above, we obtain the following corollary.
Corollary 2.2.17. Let p be an odd prime number and p 1 D,.
(i) Let c =n? (mod p).

1) If all of 2(m —n), 2(m +n) and m* —n? are quadratic residues, then the

quartic congruence (2.6) has four solutions.

2) If only one of 2(m —n), 2(m +n) and m? —n? is a quadratic residue, then

the quartic congruence (2.6) has no solution.
(ii) Let ¢ be a quadratic non-residue modulo p.

1) If m?—c is a quadratic residue modulo p, then the quartic congruence (2.6)

has two solutions.

2) If m? —c is a quadratic non-residue modulo p, then the quartic congruence

(2.6) has no solution.

Proof. By Theorem 2.2.16, the linear factor means that the quartic congruence (2.6) has
a solution. While irreducible quartic and quadratic polynomials imply that the quartic

congruence (2.6) is not solvable. Then we get the statements of the corollary. ]

2.2.3 Polynomial Equation Over Q,
As in the field R of real numbers, the field @, of p-adic numbers is not algebraically
closed. For example, the simplest monomial equation x¥ = p for k > 2 does not has

solution in Q,. Meanwhile, the quadratic equation x? =

p =1 (mod 4).

Let us discuss first some techniques for finding roots of polynomials in Q:

—1 has solution in Q, when

Newton polygon and Hensel’s lemma. For more detailed informations, we refer to the
books of Silverman (2007); Borevich & Shafarevich (1966) and S. Katok (2007).

Definition 2.2.18 (Newton polygon). Let g(x) = > i_, a;x' be a polynomial with a; €
C, . The Newton polygon of g is the convex hull of the set of points {(i, —log,lailp):0<i < n} .
By convention, we set —log , |0|, = co. To construct Newton polygon, we take a vertical
ray starting at the point (0,—log, |ao|,) and aiming down the y-axis. Then rotate the
ray counterclockwise, keeping the point (0,—log , |ao|p) fixed, until it bends around all

of the points (i,—log,, |a;|p).

The following lemma is one of the results on Newton polygon.
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Lemma 2.2.19 (see Silverman (2007), Theorem 5.11). Let g(x) = Y :_,a;x' be a
polynomial with a; € C,. Suppose that the Newton polygon of g includes a line segment
of slope m whose horizontal length is L, i.e., the Newton polygon has a line segment

from

(i,—log,lailp) to (i+L,—log,lait+Llp)

whose slope is

—lng |ai+L|P + lng |ai |P
7 .
Then g has exactly L roots X (counting multiplicity), satisfying |x|, = p™.

Next is the statement of Hensel’s lemma.

Lemma 2.2.20 (see Borevich & Shafarevich (1966), Theorem 3). Let g be a polynomial
whose coefficients are p-adic integers. Let 0 be a p-adic integer such that for some
i >0,

g(0) =0 (mod p**"), g'(6) =0 (mod p'), g'(8) #0 (mod p'*").
Then g has a unique p-adic integer root X which satisfies X = 0 (mod p'™).

Now we state some results on lower degree (quadratic and cubic) polynomial

equations. The following results are the solvability conditions of the quadratic equation

over Q.

Theorem 2.2.21 (see Mukhamedov et al. (2014)). Let d = p®®»Dd* such that d* =
do+dip+---. Then the quadratic equation x> = d has solution in Q,, if and only if
2| ord,(d) and

(i) (%) — 1 when p #2.
(it) d* =1 (mod 8) when p = 2.

Theorem 2.2.22 (Saburov & Ahmad (2015c¢)). The quadratic equation x*> +ax +b =0

has solutions in Q, if and only if either one of the following conditions holds:
L. |a]2 <|blp. ~b—13:
2. |afy = |bl,,  VD-3
3. |a|§, > |b|p.

Next we mention some results on cubic equations over Q,. Let a,b € Q, be
two nonzero p-adic numbers with a = ﬁ b = ﬁ where a*,b* € Z; with a™ =
p p

ap+ay-p+ar-p*+---andb* =bg+by-p+by-p>+---.
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We set Do = —4aj —27b% and up43 = bouy — agUn+1 with u; =0, u, = —ay,
and u3 = by forn = 1, p — 3. Then we have the following result on the depressed cubic

equation over Q.

Theorem 2.2.23 (Mukhamedov et al. (2014)). Let p > 3 be a prime. Then the depressed
cubic equation x> + ax + b = 0 has solutions in Q, if and only if one of the following

conditions holds.
1. |al5 < |b]2. 3|log, |b], andbéf’%” =1 (mod p);
2. |al3 = |b|2 and Dou?,_, # 9ag (mod p);
3. Jal} > b2

Moreover, Saburov & Ahmad (2018) provide the local descriptions of the roots
of the cubic equation over Q,, for p > 5. By their study, we could determine the location
(p-adic norm) of all roots of a given cubic equation. On the other hand, the cubic
equation over (Q; and over (Q, are study by Saburov & Ahmad (2015a,d) and Saburov
& Ahmad (2014) respectively. Recall from Mukhamedov & Saburov (2013) that there
exists /B (resp. ~/B) if and only if Bop%l =1 (mod p) (resp. B(;f’%” =1 (mod p))
and log, | B, is divisible by 2 (resp. by 3). We shall use the notation VB —13 (resp.
VB —3) whenever there exists v/ B (resp. ¥/ B). We set Dy = —4A3—27B¢ (mod p)
and u,+3 = Bou, — Ao, +1 withu; =0, u, = —Ay, and uz = By forn > 1.

We define the set ® = &; U ®, U O5 (the set P is the solvability region of the

cubic equation over Q) where

o, = {(A,B)e@,,x@,,;|A|§;<|B|2,3/§—3}
®, = {(A.B)€Q,xQ,:|A} =|B[5. Dous_, # 9AG (mod p)}
®; = {(4,B)eQ,xQ,:|A]}> B[}

We introduce some notations. Let §; = b%? —4ac, 8, = a®>—4b, §3 = —2a> —
27c, A = 3307 g = 2a749ab=2Tc anq A = ¢2h% — 4a’c — 4b> —27¢2 + 18abe =

—4A3—27B2. Letalso D = —4(A|A|,)* —27(B|B|,)?. Then the following theorem
extends the Theorem 2.2.23.

Theorem 2.2.24 (Ahmad (2016); Saburov & Ahmad (2017b)). Let p > 3 be a prime.
Then the cubic equation x>+ ax? + bx + ¢ = 0 has solutions in Q,, if and only if one

of the following conditions holds:

AL Iblp <lalp and  {/lclp <lalp:
2. |alp, < /Iblp and  /lc|p < /1blp:
3. alp < Vlelp. VIblp < el and — Y=c-3.
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B. 4. lal, </|bl,={lcl, and Dous_, # 9bg (mod p);
5. V/Iblp <lalp = Vlclp and

i 81y < a3 =lel, or

ii. |83]p = |a|§) =lc|p and Doui—z # ag (mod p);

6. Vlclp <lalp = +/10]p.
C. 7 lalp=+/Iblp = Vlc|lp and (A, B) € .

2.3 DYNAMICAL SYSTEMS

For introduction to dynamical systems, we recommend the books of A. Katok & Has-
selblatt (1995) and Walters (1982). For more informations on p-adic dynamical sys-
tems and its applications, we refer to the books of Khrennikov (1997); Anashin &
Khrennikov (2009) and Silverman (2007). Let X be a space, G be a semigroup and
T; : X — T (t € G) be a family of tranformation such that 75y, = T; 0 T;. Then
I' := {T;},ec defines a semigroup action of G on X. Then (X, I") is called a dynamical
system. We will focus on discrete dynamical system (X, 7T') where the semigroup G is

generated by a single tranformation 7' : X — X.

2.3.1 p-Adic Dynamics

We will use the standard terminology of dynamical system, see Khrennikov (1997).
Let us consider the dynamical system (B, f) in Q,, where f : B — B is an analytic
function and B = B,(a) or Q,. Denote x, = f"(xo), where xo € B and f"(x) is
the nth composition of /. A point x(© is called fixed point if f (x©@) = x©@. If
F™(x©@) =x©, then x@ is called a periodic point. If  is the smallest natural number
with this property then 7 is said to be the period of x(®. We denote the corresponding
cycle by y = (x@,xM ... x@ D). A fixed point x® is called an attractor if there
exists a neighborhood N, of x® such that all points x € N, are attracted to x(©.
Its attracting basin is the set A (x@) = {x € Q,, : lim,—00 /" (x) = x@}. A fixed point
x(© is called an repeller if there exists a neighborhood N, of x( such that | f(x) —
x©@], > [x =x@|, for x@ £ x € Nyo. Acycle y = (x@,xD ..., x®D) is said to
be an attractor (repeller) if x(® is attractor (repeller) of the map f™.

Next is the analogue version of non-Archimedean Siegel disk. The ball B, (x©)
is said to be a Siegel disk where x@ is a fixed point if each sphere Sy (x(o)) (p<r)is
an invariant sphere of f. The union of all Siegel disks with center in x(® is said to be a
maximal Siegel disk. In the same way we define a Siegel disk with center at a periodic

point x® with the corresponding cycle y = (x©@,xM, ... x®=D) of the period n. Here

22



the spheres S, (x(©) (p < r), are invariant spheres of the map /.

Since the function f : B — Q,, is analytic, then we can find attractors, repellers,
and Siegel disks using properties of the derivative of . Let x® be a periodic point
of f. Set A = (f") (x). The point x(© is called attracting if |A|, < 1, repelling if
|A|p > 1 and indifferent if |A|, = 1.

Lemma 2.3.1 (Khrennikov (1997), page 288, Lemma 2.1). Let f € Q,(x) and a € Q.
If there exists r > O such that for all k > 2

f®(a)
k!

rAl < ‘f’(a)|p’
P
then for all x,y € B,(a) :=={x:|x—al|, <r},

S = fD, = [/ @], Ix =y,

Note that a compact open set in @, is a finite union of balls. The following is

the definition of local scaling on a compact open set X C QQ, (Kingsbery et al., 2009).

n
Definition 2.3.2. Let X = | B, (a;) C Q, be a compact open set. We say that a
i=1

mapping f : X — X is locally scaling for r; € {p",n € Z} if there exists a function
S : X — Rxg such that for any x,y € B, (a;), S(x) = S(y) = S(a;) and

| () =S WD)]p = S(@i)|x = ylp.
The function § is called a scaling function. The following lemma will be useful.

n
Lemma 2.3.3 (Kingsbery et al. (2009), Theorem 5.1). Let X = | B,,(a;) C Q) be a
i=1
compact open and f : X — X be a scaling for ri € {p".,n € Z}. Let S : X — R be

the correspondence scaling function. Then for all v’ < r;, the restricted map

f i Br(ai) > Brsa)(f(ai))
is a bijection.
The following result is a direct consequence of Lemma 2.3.3.

Corollary 2.3.4. Keep the same assumption as in Lemma 2.3.3, we have for all v’ <r,

the restricted map

f1Sp(ai) = Sps@n(f(ai))

is a bijection.
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Proof. Recall S, (a;) ={x € Qp :|x—a;|, =r"}. Then S, (a;) = B, (a;) \ B, (a;) is
a difference of consecutive balls. By Lemma 2.3.3, f are bijections from balls to balls.

Thus when restricted to the spheres, f is also bijective. [

The two most fundamental objects in the complex dynamics are the Fatou and
Julia sets associated to a rational map ¢. This is also the case for p-adic dynamics. As
refer to (Benedetto, 2002), let X and Y be metric spaces and F' be a family of maps
from X to Y. Then F is equicontinuous if there exists a positive constant C such that
forany f € F and x,y € X,

dy(f(x), f(y)) <Cdx(x,y).

Then for ¢ € C,(z) arational function, the Fatou set 7' = Fy of ¢ is defined as the set
of all x € P!(C,) having a neighbourhood on which the family of iterates {¢" },>¢ is
equicontinuous. Meanwhile, the Julia set J = J is defined as P!(C ») \ F. The notion
of neigbourhood and equicontinuity are defined by the spherical metric on P'(C ).
The Fatou set is open and the Julia set is closed under this spherical metric.
They are invariant under the iteration of ¢, thatis ¢ (F) = ¢~ 1 (F) = F and ¢ (J) =
¢~ (J) = J. Moreover, if f € PGLy(C,) andw = f~'ogo f, then F,, = f~1(Fp)
and J, = f _1(j¢). For more background on Fatou and Julia sets in complex theory,
one could consult to Wilnor (2006). The following result mention about a periodic point

and the Fatou-Julia set.

Proposition 2.3.5 (Benedetto (2001)). Let ¢ € C,(z) be a rational function with Fatou
set F and Julia set J. Let a € P'(C,) be a periodic point of ¢. Then a € T if and only
if a is repelling.

Proposition 2.3.6 (Benedetto (2001)). Let ¢ € C,(z) be a rational function. Then the

Fatou set F is non-empty.

The following is the analogue components of the Fatou set in non-Archimedean

(p-adic) dynamics.

Definition 2.3.7 (Benedetto (2000)). Let X be a topological space with a set D of
distinguished subsets. Let U C X be an open subset. For any x € U we define the
D-component of U containing x to be the set of all y € U with the following property:

there exists a finite sequence of distinguished subsets
Dy,...,D, €D
with x € Dy and y € Dy, such that foranyi =1,...,n—1,

D;N D,'_H 75 @.
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Definition 2.3.8 (Benedetto (2000)). A closed P'(C ,)-disk is a closed ball B, (a), or the
complement of an open ball P'(C,) \ B, (a) for some a € C,, and r > 0. Similarly, an
open PY(C,)-disk is an open ball B, (a), or the complement of an closed ball P*(C,) \
B, (a) for some a € Cpandr > 0.

If X is a metric space, we set D to be the set of all disks with positive radius
in X. By this definition, on could verify that the D-component of an open subset U
of the field C of complex numbers are precisely the connected components of U. If
X = C,, then the D-component of an open subset U containing a given point x € U is
the largest ball B, (x) or B, (x) centered at x and subset of U. Meanwhile, for the case
X =P!(C,), we choose D to be the set of all P!(C,)-disk and we have the following

result.

Proposition 2.3.9 (Benedetto (2001)). Let U be an open subset P'(C,) and x € U. If
U =PY(C,) of U is the complement of a single point of P'(C,,), then the D-component
of U containing x is U. Otherwise, the D-component is the largest P'(C,)-disk con-

taining x and contained in U.

Let X be a metric space and ¢ : X — X. A point x € X is recurrent if x is
contained in the closure of its orbit {¢" (x) : n > 1}.

LG ts derivative
g(2)

Next, we consider a rational function ¢ (z) =

['(2)8(2) — f(2)8'(2)

¢'(2) = 2(2)?

is defined for all @ such that @ # oo and g(a) # 0. The Taylor’s expansion around a is

given as follows
¢(2) = ¢(a) +¢'(a)(z—a) + O ((z—a)?).

The function ¢ : C, — C,, is ramified at a if ¢'(a) = 0 where a is called a critical point
or ramification point. For a # oo and g(a) # 0, the ramification index of ¢ at a is

denoted by deg(a) such that there is constant A satisfies
B(2) = $(@) + Az —a)* =@ + 0 ((z —a) e @+1).

The number deg(a) is greater than 2 when a is a critical point, i.e. the function ¢ is
ramified at a.

For a = oo and g(a) = 0, in order to find their ramification index, we need to
make a linear change of variables: Let f € PGL,(C,) be a linear fractional transforma-
tion, p/ = f~lopo f and b = f~(a). Then if b # oo and ¢/ (b) # oo we define the

ramification index of ¢ at a to be
deg,(a) = deg, /(D).
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Let ¢ € C,(z) be a rational function. A critical point a € P'(C,) of ¢ is wild if
p | degy(a). Then we have the following “No Wandering Domains” results.

Theorem 2.3.10 (Benedetto (2000)). Let K be a finite extension of Q, and ¢ € K(z)
have no recurrent wild critical points in its Julia set. Then the Fatou set of ¢ has
no wandering D-component and has only finitely many periodic D-components which

contain points in K.

Now, we consider one-parameter family (¢,c) of rational maps with marked
critical point. We say that (¢, ¢) has a Misiurewicz bifurcation at ¢t = ¢ if the following

conditions are satisfied (see Rivera-Letelier (2005)).

(M1) There is an integer £ > 1 such that ¢f0 (cy,) 1s a repelling fixed point of ¢, .
(M2) ¢4, is unramified for ¢y, .

(M3) ¢¥(c,) is not a fixed point of ¢, for some .

(M4) deg¢te (c;) = deg(ﬁteO (¢y,) for every t close to fy.

The following theorem tells us on the existence of a rational map with the (wild) recur-

rent critical point.

Theorem 2.3.11 (Rivera-Letelier (2005)). In every one-parameter family of rational
maps that is defined over a finite extension of Q, and has a Misiurewicz bifurcation,
there is a rational map whose coefficients are algebraic over Q, and has non-periodic

recurrent critical point.

2.3.2 p-Adic Weak Repeller

We keep the same notation as in (A. H. Fan et al., 2007) and (S. L. Fan & Liao, 2018).
Let f : X — Q, be a mapping from a compact open set X C Q,, into Q,. We assume
that 1) f~'(X) C X and (ii)) X = Ujel B,-+(a;) can be written as a finite disjoint
union of balls of centers a; and of the same radius p~*, t € Z such that for each j € /

there is an integer 7; € Z such that for any x,y € B, (a;)

|f)=FO, =Y [x=ylp- (2.8)

For such a map f, we define its filled Julia set by

Kr=()/"X).

n=0

Itis clear that /™' (Ks) = Ks and f (Ks) C K.
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The triple (X, K ¢, f) is called a p-adic weak repeller if all ; in (2.8) are non-
negative, but at least one is positive. It is called a p-adic repeller if all 7; in (2.8) are

positive. For any i € [, let

Ii:={j eI :B(a;)N f B,(a) # 0} = {j € [ :By(ay) C f (B, (@)}
We then define a so-called incidence matrix A = (a;j)rxr as follows
1 if jel;,
0 if j&I;.

If A is irreducible, we say that (X, Ky, f) is transitive. For an index set / and an

irreducible incidence matrix A given above, we denote by
Yu= {(xk)kzg xi €1, Axk,xk+1 =1, k > 0}

the subshift space. We equip X 4 with a metric d s depending on the dynamics which is
defined as follows. Fori, j € [ andi # j,letk(i,j) be the integer such that |a; —a |, =

p~*@ Ttis clear that k (i, j) < t. By the ultrametric inequality, we have
x—=yl|p=lai—ajl|p, i #j, Vx €B,(a;), Yy € B,(a;).
For x = (x9,X1,+*,Xpn,---) € Zgand y = (¥, V1, , Vn, ) € X 4, We define

pE0 T T T TR n) f £ Q)

dr(x.y) =
p K x0.y0) if n=0

where n =n(x,y) =min{k > 0: xi # yx}. Itis clear that d  defines the same topology
as the classical metric defined by d(x,y) = p~"*) Let o be the (left) shift transfor-

mation on X 4. Then (¥ 4,0,d ) becomes a dynamical system.

Theorem 2.3.12 (A. H. Fan et al. (2007)). Let (X, K, f') be a transitive p-adic weak
repeller with incidence matrix A. Then the dynamics (K 7, f.|-|,) is isometrically con-

Jjugate to the shift dynamics (X 4,0,d ).

Next, we generalized the concept of p-adic repeller. Let f : X — Q, be a
mapping from a compact open set X = (J;; B, (a;) C Q, into Q, such that X C
f(X) and for each j € I there is an integer «; € Z such that for any x,y € B ,—, (a;)

| f() =D, = P |x =,

We simply denote the ball B ,-+; (a;) as B;. The triple (X, Kz, f) is called a
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generalized p-adic weak repeller if (i) for each i € I, f(B;) contains at least some B
and (ii) there exists at least one i € I such that B; C f(IB;). We define the incidence

matix A similar as before. The generalized p-adic repeller is transitive if A4 is transitive.

Theorem 2.3.13 (S. L. Fan & Liao (2018)). Let (X,Kr, f) be a transitive general-
ized p-adic weak repeller with incidence matrix A. Then the dynamics (K¢, f,|-|,) is

topologically conjugate to the shift dynamics (X 4,0.,d r).

The shift dynamics (X 4,0) is called a subshift of finite type determined by ma-
trix A. When A is a n x n matrix whose coefficients are all equal to 1, (¥ 4,0) is called
a full shift over an alphabet of n symbols, and is usually denoted by (%,,0). For the
detailed on shift dynamics, we recommend the book of Lind & Marcus (1995).

We use the following definition of chaos by Devaney (1989). Let us introduce
some terminologies. Transitive. For all non-empty open subsets U and V' of X there
exists a natural number k such that £*(U) NV is non-empty. Sensitive dependence on
initial conditions. If there is a positive real number § (a sensitivity constant) such that
for every point x € X and every neighborhood N, (x) of x there exists a point y € N(x)
and a nonnegative integer n such that the distance d( f"(x), f"(y)) > 4.

Definition 2.3.14. Let X be a metric space. A continuous map f : X — X is said to be
chaotic on X if

(i) f is transitive,
(ii) the periodic points of [ are dense in X,
(iii) f has sensitive dependence on initial conditions.

By this definition, it is well-known that the shift dynamics (subshift of finite type) is

chaotic.

2.3.3 Reduction Modulo p of a Rational Map
Most of the materials here are taken from (A. H. Fan et al., 2017). Let - denote the
reduction modulo p from Z, to Z/pZ such that a — a with a = a@ (mod p). For a

polynomial f € Z,[x], the reduction of f modulo p is defined as
o n
f(x)= Zaix’.
i=0
Notice that a rational map ¢ can be written as quotient of two polynomials f, g € Z,[x]
having no common factors such that at least one coefficient of f or g has p-adic abso-

lute value 1. Denote by deg(¢) the degree of the rational map, the maximum degree of

28



its denominator and numerator without common factors. The reduction of ¢ modulo p

is the rational map (of degree at most deg(¢))

obtain by cancelling common factors in the reductions f(x) and g(x). If degg =

deg(¢), we say ¢ has good reduction. If deg¢p < deg(¢), we say ¢ has bad reduction.
Recall that a dynamical system (X, 7') is minimal if for all x € X, the orbit set

Or(x):={T"(x) :n € N} is dense in X. The set X is then called a minimal set.

Theorem 2.3.15 (A. H. Fan et al. (2017)). Let ¢ € Q,(x) be a rational map of deg(¢) >

2 with good reduction. Then we have
P'(Q,)=AUBUC

where A is the finite set consisting of all periodic points of ¢, B = J ; Bj is the union
of all (at most countably many) clopen invariant sets such that each B; is a finite union
of balls and each subsytem ¢ : B; — B is minimal and points in C lie in the attracting
basin of a periodic orbit or of a minimal subsystem. Moreover, the length of a periodic

orbit has one of the following forms:
k or k€ if p>5

k or k€ or kp if p=2 or 3

where l <k <p+1landl|(p—1).

24 CAYLEY TREES

We remind that for a concise analysis between Cayley trees and Bethe lattices, we con-
sult the article of Ostilli (2012). But in our terminology, both of them are the same and
we prefer to use the term of Cayley tree.

Let Ty = (V, L) be a Cayley tree of order kK where k > 1 with the root x°, i.e.
each vertex has exactly k + 1 edges. Let F,j = (V, L) be a semi-infinite Cayley tree of
order k where k > 1 with the root x°, i.e. each vertex has exactly k + 1 edges except
for the root x° which has k edges. Here V is the set of vertices and L is the set of
edges. The vertices x and y are called nearest neighbors if there exists an edge / € L
connecting them. This edge is also denoted by / = (x,y). A collection of the pairs
(x,x1),-++,{(xg-1,y) is called a path between vertices x and y. The distance d(x,y)

between x,y € V on the Cayley tree I’y or semi-infinite Cayley tree F,j is the length of
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the shortest path between x and y. Let
n
Wy={xeV:dx,x")=n}, V,= UWm and L,={(x,y)eL:x,yeV,}.
m=0

The set of direct successors of x is defined by
VxeW, Sx)={y€Wyi:d(x,y)=1}.

We now introduce a coordinate structure in the Cayley tree ['y and semi-infinite
Cayley tree F,j . We begin with the Cayley tree ['x. Let G be a free product of k + 1

cyclic group of the order 2 with generator ay,as, -+ ,ak, Ak +1-

Proposition 2.4.1 (see Rozikov (2013)). There exist a one-to-one correspondence be-

tween the set of vertices V of the Cayley tree I" and the group Gy.

Proof. Fix an arbitrary element x° € V. Correspond it to the identity element e of the
group G. Without loss of generality, we assume the Cayley tree is a planar graph. Label
the neighbours of e by ay,---,ar4+1 counter-clockwise. Now we label the neighbours
of each a; fori = 1,---,k 4+ 1. All a; have the common neighbour e. So we have
a;a; = ai2 = e and the other neighbours are labelled a;a; for j = 1,---,k 4 1 starting
a;ja; = e counter-clockwise. Next we label the neighbours of each a;a; by a;aja, for
{=1,---,k+ 1 starting by a;a;a; = a;. Iterating this argument, we get a one-to-one

correspondence between the set V' af the Cayley tree I'y and the group Gy. O

The group representation above is called right representation. In the same man-
ner, one could define the left representation. Now we define the (left) group translation

Ty :V — V for g € V on the Cayley tree I'x as follows:
Te(x)=gx, VxeV.

Next we consider the semi-infinite Cayley tree F,:r . Bvery vertex x # x° has
the coordinate (iy,---,i,) wWhere i,, € {1,---,k}, 1 <m < n and the vertex x° has the
coordinate (¥). More precisely, the symbol (@) constitutes level O and the coordinates
(i1,+++,in) form level n of V (from the root x°). In this case, for any x € V, x =
(i1, ,in), we have

Sx)={(x,i):1<i <k}

where (x,i) means (iy,---,i,,i). Let us define a binary operation o : V xV — V as

follows: for any two elements x = (iy,---,iy) and y = (jq,-+-, jm), we define

xoy - (il"“ ’in)o(jl»"' ’]m) - (l'l’“' 7in»j1,"' ,]m)
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and
yo-x - (jl»”‘ ’jm)o(ilv.“ Jn) — (jlv”‘ ’jm’ila'.'vin)'

Then (V, o) is a noncommutative semigroup with the unit x° = (&). In a similar manner

to the Cayley tree case, we define a translation 7, : V' — V for g € V' as follows:
Tg(x) =gox VxeV.

On a semi-infinite Cayley tree I',", we are interested in periodic functions.

Definition 2.4.2. Let G C V be a sub-semigroup of V and h : V — Y be a Y -valued
function. A function h is said to be G-periodic if h(ty(x)) = h(x) for all g € G and

x € V. A V-periodic function is called translation-invariant.

Remark 2.4.3. The periodicity defined for semi-infinite Cayley tree is different to that of
Rozikov (2013) where the Cayley tree T* was considered. In fact, for Cayley tree, there
is a group representation and the periodicity was defined by using normal subgroup of
this representation. It is known that a tree has a group representation if and only if it
is a Cayley tree Rozikov (2002). Thus, we could not have a group representation of the
semi-infinite Cayley tree. Moreover, we would like to emphasize that the multiplication
of the group of the Cayley tree and the binary operation of the corresponding semi-
infinite Cayley tree are different. The former involves cancellation while the latter does

not.

2.5 P-ADIC PROBABILITY MEASURES
For more detailed information about p-adic measures, we recommend the books of
Khrennikov et al. (1999) and Khrennikov (2009).

Let (X,B) be a measurable space where B is an algebra of subsets of X. A
function p : B — Q, is said to be a p-adic measure if for any A4,,..., A, € B such that
AiNA; =0 (@ # j) the following equality holds:

M( U Aj) =) (4.
j=1 j=1

A p-adic measure is called a probability measure if ;(X) = 1. One of the impor-
tant feature of p-adic probability, invented by Monna & Springer (1963), is bounded-
ness. A p-adic probability is bounded if sup{|u(4)|, < oo : A € B}. We are interested
in this important class of p-adic measures in which the boundedness condition itself
provides a fruitful integration theory, see for example Khrennikov (2007). In general,

a p-adic probability measure need not be bounded (Khrennikov, 1996b; Ludkovsky &
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Khrennikov, 2003).

2.5.1 Potts Model Over Q,,

The study of Potts model over Q, was initiated in several papers (Mukhamedov & Rozikov,
2004, 2005; Mukhamedov & Akin, 2013; Rozikov & Khakimov, 2015; Mukhamedov & Khakimov,
2016). Let ® = {1,2,---,¢q} be a finite set and V' be the set of vertices of a semi-infinite
Cayley tree F,j . A configuration (resp. a finite-volume configuration, a boundary con-
figuration) is a functiono : V — ® (resp. 0y, : V, = O, o™ W, — ®). We denote by 2
(resp. Q2y,,, 2w, ) the set of all configurations (resp. all finite-volume configurations, all
boundary configurations). For given configurations 0,_; € Qy,_, and 0™ € Qy, , we
define their concatenation to be a finite-volume configuration o, V o™ ¢ Qy, such
that

on—1(v) if vel,_q,

(Un—l Vv O(n)) (v) =
o™ @) if veW,.

The Hamiltonian of the g-state Potts model over Q,, on the finite-volume con-

figurations is defined for all 0, € Qy, and n € N as follows:

Hy(on) =J Z 80 (x)ou ()

(x,y)eLy

where J € B,-1/,-1(0) is a coupling constant, (x, y) stands for nearest neighbor ver-

tices and 6 is Kronecker’s delta symbol.

2.5.2 p-Adic Gibbs Measures

Now we present the construction of the p-adic Gibbs measures of the g-state Potts
model on the Cayley tree. Leth: V — Q%, be a Q%-valued function such that h(x) =
(ﬁfcl), .. .,i;;q)) for x € V. For n € N, we define a p-adic measure M%") :Qy, = Q, on

Qy,, associated to h, as follows: Yo, € Qy,

1 -
w(0y) = S Py | Halon) + 3 B o 2.9)
h xeWw,

where exp, () : B,-1/6-1(0) — By (1) is the p-adic exponential function and fo") is

the partition function defined by

én)z Z exp,  Hn(on) + Z ﬁ;"”(x))

0n€QY, xeW,
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Here precisely, for any x € B ,—1/»-1(0) we have exp,(x) € £, := {x €Qp:lx—1|, < pfﬁ}.
Throughout, we consider the function h satisfying h(x) € (Bp—l/(p—n(O))q for any
x € V. The p-adic measures (2.9) are called compatible if for all 0,—; € Qy,_, and
n € N, one has

Yo 1 onar vo™) = u (o). (2.10)

O-(rl)eQWn

Due to Kolmogorov’s extension theorem for the p-adic measures (2.9) (see Ganikhod-
jaev et al. (1998); Ludkovsky & Khrennikov (2003)), there exists a unique p-adic mea-
sure g : 2 — Qp such that Vo, € Qy,, VneN

wa(to i,y = o)) = 1 (on).

This uniquely extended measure pj, : € — Q, is called a p-adic Gibbs measure.

The problem of finding the p-adic Gibbs measure is then reduced to the problem
of finding the function h that satisfy the compatibility condition (2.10). The following
theorem describes the condition on the functionh: V — QY for which the compatibility
condition (2.10) is satisfied.

Theorem 2.5.1 (Mukhamedov & Rozikov (2005, 2004)). Let h: V — Q%, h(x) =
(h~§l), .. .,ﬁg‘”) be a given function and h : V — Q%_l, h(x) = (h&”, ... ,h;q_l)) be a
function defined as hS) = ﬁ;” —ﬁﬁf) foralli =1,...,q— 1. Then the p-adic probability
distributions { ;Ll%")} are compatible if and only if

neN

h(x) = )  F(h(y). YxeV\{x% (2.11)

y€S(x)

where S(x) is the set of direct successors of x and the function F : (@‘},_1 — @‘11,_1,
Fth) = (F1,---, Fg—1) forh = (hy,--- ,hy—1) is defined as follows:

((9 —1)exp, (hi)+ Y1\ exp,(h;) + 1
F; =1n,

— , O=exp,(J).
9+Z;I-:11€pr(/’lj) ) ?

Definition 2.5.2. Let (V,0) be the semigroup of the semi-infinite Cayley tree F_kF =
(V,L). Let G CV be a sub-semigroup. A p-adic Gibbs measure determined by a G-
periodic function h is called G-periodic. A V -periodic p-adic Gibbs measure is called

translation-invariant.

Let us describe or find the translation-invariant p-adic Gibbs measures. Note that
a p-adic Gibbs measure of the Potts model on the Cayley tree is translation-invariant if
and only if the function h : I'} — Q9% in (2.9) is constant, i.e. h(x) = h for x € T
Recall k is the order of the Cayley tree. Then the condition (2.11) of the Theorem 2.5.1
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takes the form h = kF(h) or equivalently

for 1<i<qg-1.

_ k
- ((9-—l)expp(hi)+-2:3:§expp(hj)+—1)
T 0+ " exp,(h))

Letz = (z1,-++,24-1) € Q‘},_l such that z; = exp,,(h;) for any 1 <i < g —1. Then the
following theorem tells us how to find the translation-invariant p-adic Gibbs measures

of the Potts model on the Cayley tree.

Theorem 2.5.3 (Mukhamedov & Rozikov (2005)). Let h:V - Q;I, be a function,
h(x)=h= (51,...,154) andh= (hy,...,hg—1) such that h; = hi —ﬁqfor 1<i<gqg-—1.
Then there exists a translation-invariant p-adic Gibbs measure 5 : Q@ — Q) associ-
ated with a function h if and only if z = (z1,. .. . Zg—1) € Slq,_l such that z; = exp,(h;)

is a solution of the following system of equations

_Cw4m+zghﬂ4

k
= Z for 1<i<gq—1. (2.12)
l 0+ 921z )

By this theorem, in order to describe the translation-invariant p-adic Gibbs measures,
we describe the possible form of the solution to the system of equations (2.12).

In what follows in which it can be found in (Saburov & Ahmad, 2015b), we
explain the steps to describe the possible solution of the system of equations (2.12).
LetI,—y = {1,---,q — 1} and §;; be Kronecker’s delta symbol. For j € I,_;, suppose

e; = (01,62, 84—1j) € @j{,—l and for o C I,—;, suppose e, = ) .., e;. For any

JEa
2= (21, ,24-1) € Q‘fp_l, assume {o; (z)}?=1 be a disjoint partition of the index set
I,—.1e. U‘jzl aj(z) =1;—1, oj,(z) Nj,(z) =@ for j; # jo such that z;, = z;, for all
i1,i2 € @j(z) and z;, # z;, for all iy € aj,(2), i € oj,(z). Then for any i € «j(z) and

1 <j <d suchthat z; = z;’. (where Z;? is a value that corresponds to «j(z)), we have

d
z2=Y z%a,@). (2.13)
j=1

Theorem 2.5.4 (Saburov & Ahmad (2015b)). Let z € Sg_l is a solution of the system
(2.12). Then 1 < d <k.

Proof. Letz e 5;1_1 be a solution of the system of equations (2.12). The case ¢ — 1 < k
is trivial. We suppose that ¢ > k + 1. Then we can write z in the form (2.13). Since
z is a fixed solution, S(z) = 231_;11 z; = Z?=1 z5|a(z;)]| is also a fixed number where

zi = z; forany i € «;(z) and j =1.d.
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Let us consider the following polynomial equation of the variable x
x(0+S@)* =[0—1)x+ Sz) + 1]F. (2.14)

Since z = (z1, -+, z4—1) is a solution of the system of equation (2.12), for each j = I,_a’,
the number z7 is a distinct root of the polynomial equation (2.14). On the other hand,
the polynomial equation (2.14) of degree kK may have at most kK number of roots in Q.
Thus d <k. ]

This theorem tells us that for a set of solution of the system of equations (2.12), the
distinct values should not exceed the order k of the Cayley tree. This result is useful
when describing the translation-invariant p-adic Gibbs measures.

Next we find other kind of periodic p-adic Gibbs measures. We would like to
find other function h that satisfy the compatibility condition (2.10). Let m be some fixed
natural number and H,, = {x eV:.d (x,xo) =0 (mod m)} Observe that the subset
H,, is a sub-semigroup of V' and the function h:V— Q% is Hy,-periodic if h(x) =h)
whenever d(x,x®) = j (mod m) for 0 < j <m. The semigroup H, is equal to the set
of vertices V' of the semi-infinite Cayley tree. Thus, H; is associated to the translation-
invariant p-adic Gibbs measures. There exists an H,,-periodic p-adic Gibbs measure
associated with this H,,-periodic function h. In this case, the condition (2.11) takes the
form h) = kF(hV V) forall 0 < j <m with h® :=h©® ie.,

. k
O 1 (9—1)expp(h<f“))+z Lexp, (hy*D) +1 <izqo
' 0+ 1) exp, (™) T

Remark 2.5.5. It is proven in Theorem 2 of Rozikov & Khakimov (2013b) that the Potts
model (over the field R of the real numbers) on the Cayley trees admits only translation-
invariant Gibbs measures and periodic Gibbs measures of period two which correspond
to Gg-periodic and Giz)—periodic functions respectively. Here Gy is the free group
representation of the Cayley tree T'* and G,(cz) is the subgroup of Gy consisting of all
words of even length. As we have argued in (2.4.3), the definition of the periodic Gibbs
measure on the semi-infinite Cayley trees is different to that on the Cayley trees. The

former is based on a semigroup structure and the later is based on a group structure.

Suppose z) = (21 ... | ;’)1) € £47" such that Z(J) = expp(h(’)) for any 1 <

i <q— 1. In what follows, we write z/) = exp, (h).

Proposition 2.5.6. There exists an H,,-periodic p-adic Gibbs measure if and only if the

following system of equations

+1 1 +1
zm_((e_l)z(] i
) _

+1 . '
9+Zq 1 (]+1) ) , 1<i<g—1, 0=<j=<m-—1 (2.15)
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has a solution {z)}"_} C EXV in which 2" = 2.
Proof. It follows directly from the definition of semi-group H,, and Theorem 2.5.3. [

Let us defined the physical phenomenon of the phase transition. It can be found
in (Mukhamedov & Akin, 2013). We denote by G, the set of all p-adic Gibbs measures
of the Potts model on the Cayley tree associated to the functions h = {h(x),x € V}.

The notation |A| means the cardinality of the set A.

Definition 2.5.7 (Mukhamedov & Akin (2013)). Let the p-adic Gibbs measures for the
associated model are non-unique, i.e. |G,| > 1 and at least one of them unbounded.

Then the phase transition occurs.
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CHAPTER 3

TRANSLATION-INVARIANT P-ADIC GIBBS MEASURES

3.1 INTRODUCTION

We will study a class of p-adic Gibbs measures so-called the class of translation-
invariant p-adic Gibbs measures of the g-state Potts model on the semi-infinite Cayley
trees. In the classical case, Blekher & Ganikhodjaev (1990) show that there is a relation
between the Ising on the Cayley trees and the semi-infinte Cayley trees. Later with-
out any confusion, we will drop the term semi-infinite. We recall that a p-adic Gibbs
measure of the Potts model on the Cayley tree is translation-invariant if and only if the
functionh: V — Q% in (2.9) is constant, i.e. h(x) = h for any x € I’,j. We also recall
the following theorem which inform us about the existence of the translation-invariant

p-adic Gibbs measures of the Potts model on the Cayley tree.

Theorem 3.1.1 (Mukhamedov & Rozikov (2005)). Let h:V - (@?, be a function,
ﬁ(x) —h= (ﬁl,...,fzq) andh= (hy,...,hg—1) such that h; = l;,- —i;qforl <i<q-—1.
Then there exists a translation-invariant p-adic Gibbs measures 5, : Q@ — Q, associ-
ated with a function h if and only if z = (z1, ... . Zg—1) € SZ_I such that z; = exp,(h;)

is a solution of the following system of equations

((9 — 1)Zi + ;I;ll Zj + 1
zZi = 1
60+ Z?:lzj

The following theorem describes the existence of all translation-invariant p-adic

k
) for 1<i<g-—1. 3.1)

Gibbs measures of the Potts model with g—spin values on the Cayley tree of order three.

Theorem 3.1.2 (Saburov & Ahmad (2015b)). There exists a translation-invariant p-
adic Gibbs measure 5 : Q@ — Q, associated with a function h=(hy, - ,Eq) if and
only ifﬁj =log,(hz;) forall j =1,q—1 and ﬁq = log,(h) where h € £, is any p-

adic number andz = (z,-+-Z4—1) € Slq,_l is defined either one of the following form
(A) 7= (la al)a
(B) z=(z,--+,z) where z € £, \ {1} is a root of the following cubic equation

(-1’2 +@B@-1)*—-O-1)*O+3(@g-1)—-1)z>
+B@-1)—(0-1)*0+2)z+1=0;
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(C) 2= ey, +zey, with ;| =m;, m; +my =q—1 such that z € £, \ {1} is a root

of the following cubic equation

m3z° +([3m§(m1 +1)— (0= 1)*(0 +3my — 1)%22
+ [3ma(my +1)> = (0 —1)*(0 +3(m1 + 1) = 1)] z 4+ (m; + 1)> = 0;

(D) 7= z1ey, + z2€q, With |o;| = m;, my +my = q —1 such that

(i) if my # 152 then z, = —(0_1(;_3’1”332’339“ €& \{1}and z, € E,)\ {1} is a

root of the following cubic equation

[(m1—m2)z + (my — 1]
+ (0 —143m)*[(0—143my)z> 4+ (0 +2)z] = 0;

(ii) if my # 152 then zp = ~U=F3MILOLE ¢ £ \ {1} and 2y € £, \ {1} isa

root of the following cubic equation

[((m2—m1)z + (ma— 1))’
+(0—1+43m2)*[(0 —1+3my)z> + (0 +2)z] = 0;

(E) 2 =z1eq, + 22€4, + €4, with |o;| = m;, my +my+m3 = q—1 such that

(i) ifmy # 152 then 2 = ~U=13m2 Bmat032 ¢ o\ (1} and z, € £, \ {1}

is a root of the following cubic equation

[((my —m2)z 4+ (my —m3— D]+ (0 —143m1)*(0 — 1 +3m,)z>
+(0—143m)?>Bmz+60+2)z =0;

(ii) if my # 152 then zo = —CEIAIINAOLE ¢ £\ {1} and z, € £, \ {1}

is a root of the following cubic equation

[(my—my)z + (my—m3— 1)]3 +(0—143m2)*(0—1+3m;)z*
+ (0 —1+43m3)>(3mz+6 +2)z =0;

(iii) if 0 =1—q and my = m, = ms3+ 1 then either z; € E,\ {1} or z, € £, \ {1}
is any p-adic number so that the second one is a root of the cubic equation
(Zl + 2z + 1)3 = 272122.

By these theorems, one can see that the existence of the translation-invariant p-
adic Gibbs measures of the Potts model on the Cayley tree of order 3 is related to the
existence of the roots of cubic equations over Q.. In Chapter 2, we gave the solvability
conditions of the cubic equation over Q, which can be use to describe the existence of

the translation-invariant p-adic Gibbs measures of the Potts model on the Cayley tree
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of order 3. In next section, we will describe the existence of the translation-invariant

p-adic Gibbs measures of the Potts model on the Cayley tree of order 4.

3.2 TRANSLATION-INVARIANT P-ADIC GIBBS MEASURES OF THE POTTS
MODEL ON THE CAYLEY TREE OF ORDER 4

We shall describe the existence of the translation-invariant p-adic Gibbs measures of
the Potts model with g-state values on the Cayley tree of order 4. By Theorem 3.1.1,

we will analyze the following system of equations:

B ((9—1)2,- TR

4
;= B for 1<i<gqg-—1. (3.2)
9+ZZ:iZg )

Due to Theorem 2.5.4, we are interested in the solution of (3.2) of the form z = eg + ze,
with |8] = ¢ — 1 — |o|. Here || means the cardinality of the set . In this case, the
distinct values of the set of the solution to the system of equations (3.2)is 2 <4 = k. If

we substitute z = eg + ze,, into (3.2) we obtain

z= f(2) (3.3)
where
(O —1+ahz+q—al\*
/@ (|a|z+9—1+q—|a|) G4)
B Oz4+0—-1 \* 35)
N (z+®+Q—2) '

with ® = %=1 + 1 and Q = . Recall

o]
_ 1
Epz{erp:|x—1|p<p p—l}.

Our aim is to find the solutions of the equation (3.3) that belong to £, so that we can
have the translation-invariant p-adic Gibbs measures. One could check that 1 € £, is
the solution of the equation (3.3). So from z —1 = f(z) — 1 and the equality (3.4), we
get
(z-D(A—|ef)
(lalz+ A+ B —|a))*
+(Az+ B)(la|z+ A+ B—l|a|)* + (la|lz+ A+ B —|a])’) = (z—1)

((Az+B)*+ (Az + B)*(la|z + A+ B —|a|)
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where A = 60 — 1+ || and B = g — |«|. This means that any other solution 1 # z € £,

is the solution of the following quartic equation

(A—|a|) ((Az+ B)* + (Az + B)*(|la|z+ A+ B —|a|) + (Az + B)(la|z + A+ B —|a|)?
+(lalz + A+ B—|a])’) = (ja|z + A+ B —|a])*.

Expanding the terms, we have

la|*z* 4+ (—A* + 4A|a|® + 4B|a|® = 3|a|*)z® + (—A* —4A4°B

+6A%|a|* + 12AB|a|* —8A|a|* + 6 B*|a|* — 8 B|a|? + 3|« |*)z>

+(—A*—4A°B +4A4%|a| —6A4%B* + 124°B|a| — 6A4%|a|* + 124 B?|«|
—12AB|a|* +4A|a)> +4B3|a| —6B?|a|* + 4Bla|* — |a|H)z+B*=0  (3.6)

On the other hand, from z —1 = f(z) — 1 and the equality (3.5), we obtain
z—D(®-1)
(z4+0O0+Q0—-2)*

+O@z4+0-1)(z+0O+0-2°+(z+0+0-2)%)=(z—1).

(Oz+0-1’+(©z4+0-1)+0+0-2)

This implies that any other solution 1 # z € &£, is the solution of the following quartic

equation:

O©-1)(Oz+0-1’+Oz+0-1)*z+0O+0-2)
+@z+0-1)(z+0O+0-2+(+0+0-2)°)=(z+0+0-2)"

Letz=1-Q—-(®—1)4+ (®—1)y. Then the quartic equation above can be
written as follows

Y —(14+0+024+03)y>—30%2+20+1)(1-0—-0)y>—BO+1)(1-0-0)>y—(1-60-0)>=0.
(3.7)

So, in order to find the solution of the equation (3.3), we could look for the solutions
of the quartic equations (3.6) or (3.7). In what follows, we assume |«| = m and 6 #
1, 1—g. Recall from Proposition 2.5.1 that [ — 1] < 1 where 6 = exp,(J) € &,.

Proposition 3.2.1. Let p > 3 be a prime number and q # 3(6 —1). Suppose |m|, = 1.
(i) Let |q|p = 1. Then the solutions of the equation (3.3) are not in €, except z = 1.
(ii) Let |q|, < 1. Then all the solutions of the equation (3.3) are in &,.

Moreover, if |q|, < 1, then the equation (3.7) always has the solutions.

Proof. We recall |0 —1|, <1 and 6 # 1, 1 —q. Suppose p > 3 be a prime number,
q #3(0—1) and |m|, = 1. In this case we will consider the equation (3.7) in order
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to find the solutions # 1 of the equation (3.3). Since g # 3(6 — 1), one could check

that the solutions of the equation (3.7) are not equal to 0;1%. For |m|, = 1, we have

|Q|p <1land |®—1]|, < 1. If y is the solution of the equation (3.7), then

1714 <max{|{1-@—0|3,]1-0—02|30? +20 +1|,|7],,[1—-O— 01,130 + 1|,|713, 11+ O + ©% + O3 , | 713 }.

This implies |y|, < 1. Thus if |[g|, =1, then |Zz—1|, = |(@-1)(y—-1)— 0|, =
|Q|, = 1 where Z is the solution of the equation (3.3). This means Z ¢ £, and the

statement (i) holds.

Now suppose |¢|, < 1. Then one cansee |Z—1|, = [(®-1)(y—1)— 0], =
|O|p < 1 where Z is any solution of the equation (3.3). So Z € £, and the statement (ii)
holds. Next we will show that the equation (3.7) always has a solution. Without loss of
generality, let m = 1. Then we have

Y —(14+0+024+603)y>—(302+20+1)(1—0—q)y>—BO+1)(1—-0—¢)>y—(1—0—¢)> =0. (3.8)

Let y = 4 (mod p). Consider the polynomial P(y) = y*— (1 +60 4+ 62+ 03)y3 —
BO2+204+1)(1—=0—q)y>—BO+1)(1—-0—g)%>y — (1 —0 —q)? and its derivative
P/(y) =4y —3(1+0+62+6%)2—2(362 420+ 1)(1—0—q)y — (30 + 1)(1—H—
¢)?. Then

P(3)=0 (mod p) and P'(3)=47>—1252=73>#0 (mod p).

By Hensel’s lemma, there exists a root y € Z, of the quartic equation (3.8) such that
y =y (mod p). This means the equation (3.7) always has a solution. This completes
the proof. ]

Proposition 3.2.2. Let p > 5 be a prime number, |m|, <1 and q # 3(0 —1). Then
there exists a solution (# 1) of (3.3) in &€, if and only if we have one of the following

conditions:
(i) |0 —1[, <|m|p and |q|p < |m|p;

(ii) |q|, < |0 —1|, = |m|, and exists a solution y of the quartic equation (3.7) such

that |y —1|, < 1;

(iii) |0 —1|, = |q|p, = |m|, or |m|, <10 —1|, < |q|, and exists a solution y of the

quartic equation (3.7) such that [(6 —1)(y —1) —q|,, < |m|,.

Proof. Recall |6 —1|, <1and 6 # 1, 1 —q. Let p > 3 be a prime number, g 7# 3(6 —1)

and [m|, = 1. The condition g # 3(6 — 1) means that the solutions of the equation (3.7)

0—1+¢q
0—1

the following cases.

are not equal to . To find the solution # 1 of the equation (3.3), we will consider

L0 =1, <|mlp, lqlp < |mlp;
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2. 10—1], <|mlp =1qlp;
3. 10=1], < |mlp < qlp;
4. |qlp <10 =11, = |m|p:
5.10=1], = |m|, = q|
6. 10—1|, =|m|, <lqlp;
7. 1qlp, < mlp, <10 —1],;
8. Imlp=lql, <10—1|p:
9. [mlp <10 —1lp, Im|p <|qlp.

Consider the quartic equation
v+ A3y* + Ay* + A1y + A0 =0

where Ag = —-(1-0—-0)3, A, =-CBO0+1)(1-0-0)% 4, =—-3602+20 +
D1—-0—-0)and A3 = —(O>+O> 4+ O +1).

CASE 1: Let |0 — 1|, < |m|,, |q|, < |m|,. Then we have |® — 1|, < 1 and
|Q|p, < 1. This case is similar to the Proposition 3.2.1.(ii). So there exists a solution
(# 1) of (3.3).

CASE 2: Let |0 — 1], < |m|, =|q|,. Then we have |©® —1|, <1and |Q|, = 1.
It is similar to the Proposition 3.2.1.(i). So there is no solution (# 1) of (3.3) in &,.

CASE 3: Let |0 — 1|, < |m|, < ¢g|,. Then we have | —1|, < 1and |Q], > 1.
If y is the solution of the equation (3.7), then

|71 = max{| Aol 411,17 |p. 421,715 | 43,1713}

This implies |y|, <|Q|,. Thus |z —1|, =|(®@—-1)(y —1)—Q|, = |0Q|, > 1 where z
is the solution of the equation (3.3) and there is no solution ( 1) of (3.3) in &,,.

CASE 4: Let |q|, < |0 —1|, = |m|,. Then we have |®|, <1, |©@—1|, =1 and
|01, < 1. We also have ord,(A9) =0, ord,(A1) >0, ord,(A;) > 0and ord,(A3) >
0. We construct its Newton polygon and we find |y|, = 1 where y is the solution of the
equation (3.7). If thereis y € Qp and |y — 1|, < I, then |z —1|, = |[(®@-1)(y—1)—
Q|p < 1 where Z is the solution of the equation (3.3). This means Z € £,. Otherwise,
there is no solution (# 1) of the equation (3.3) in &,.

CASE 5: Let |6 — 1|, = |m|, = |q|,. Then we have |®|, <1, [©® -1, =
|Q|, = 1. We also have ord ,(Ao) <0, ord,(A;) >0, ord,(A;) > 0and ord,(A3) >
0. We construct its Newton polygon and we find |y|, < 1 where y is the solution of

the equation (3.7). If there is y € Q, and [(6 —1)(y —1) —¢q|, < |m|,, then |Z —1|, =
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(@ —-1)(y —1)— QJ, < 1 where Z is the solution of the equation (3.3). This means
z € €,. Otherwise, there is no solution (# 1) of the equation (3.3) in &,.

CASE 6: Let |0 — 1|, = |m|, <|q|,. Then we have |©® —1|, =1 and |Q|, > 1.
If y is the solution of the equation (3.7), then

|71 = max{| Aol 1411|715, 421,715 143151713}

This implies |y|, <|Q|,. Thus |z —1|, =|(@—-1)(y —1)—Q|, = |0Q|, > 1 where z

is the solution of the equation (3.3) and there is no solution (# 1) of (3.3) in &,,.
CASE 7: Let |¢q|, < |m|, < |60 —1|,. Then we have |®|, = |® —1], > 1 and
|Q|, <1Letw =y — 1. Then the equation (3.7) is written as follows

w*+(B3-0-02-0*)w?+(3002+200-40%+ 0 —40+2)w? +(—30%20—-0?+800+40-60—-2)w+ Q3>—40?+60 -3 =
(3.9
Let By = 03 —40%2+60 -3, B = -30?0—-0?+800+40—-60—2, B, =
300?+200—-40%+ Q—40+2and B3 =3—0—02—03. Wealsohave ord ,(Ap) =
0,0rd,(Ay) =o0rd,(®), ord,(Az) =20rd,(®) and ord,(As) = 3ord,(®). We con-
struct its Newton polygon and we find |w|, = |®|? or |w|, = ﬁ where w is the solu-
tion of the equation (3.9). This implies |z —1|, = [(® —1)w — Q|, > 1 where Z is the
solution of the equation (3.3). Thus there is no solution (# 1) of the equation (3.3) in
Ep.
CASE 8: Let |0 — 1|, > |m|, = |q|,. In this case, we consider the quartic equa-
tion (3.6). Let Cy = B*, C; = —A*—4A4°B +4A4°m —6A4?B? + 124’ Bm — 6 A*>m? +
12AB?>m —12ABm? + 4Am> +4B3>m —6B*m? + 4Bm> —m*, C, = —A*—4A3B +
6A%m? +12ABm? —8Am> + 6B*m? —8Bm?> +3m*, C3 = —A*+4Am>+4Bm?> —
3m* and C4 = m*. Then we obtain ord,(Co) > 4ord,(m), ord,(Cy) = 4ord,(6 —
1), ord,(Cy) =4ord,(0 —1), ord,(Cs) = 4ord,(0 —1) and ord,(Cs) = 4ord,(m).
We construct its Newton polygon and then we find there may exist Z the solution of the
equation (3.8) such that |Z|, = 1. When we substitute Z into equation (3.6), we find
Z %1 (mod p) whenever p > 5. Hence, there is no solution (# 1) of the equation (3.3)
in&,.
CASE 9: Let |0 — 1], > |m|p,, |q|p > |m|,. We divide into three subcases:
mlp <laly <10 —1]p. Iml, <10—1], < lql, and |m|, < |6 1], = gl
CASE 9(I): Suppose |m|, < |q|, < |0 —1|,. Similar to the Case 8, we will consider
the quartic equation (3.6). We have ord,(Co) > 4ord,(q), ord,(Cy) = 4ord,(0 —
1), ord,(Cy) =4ord,(0 —1), ord,(Cs3) =4o0rd,(0 —1) and ord ,(C4) = 4ord,(m).
We construct its Newton polygon and we find there may exist Z the solution of the
equation (3.6) such that |Z|, = 1. If we substitute Z into quartic equation (3.6), we find
Z # 1 (mod p) whenever p > 5. Hence, there is no solution (7 1) of the equation (3.3)
in &p.

CASE 9(II): Suppose |m|, < |0 —1|, <|q|p,. Then we have 1 < |®|, = |0 —1], <
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|Q|,. We consider the equation quartic (3.9). We have ord,(By) =3ord,(Q), ord,(By) =
20rd,(Q)+ord,(0©), ord,(Bs) =ord,(Q)+20rd,(®) and ord,(B3) = 3ord,(0).
We construct its Newton polygon and and we find there may exist w the solution of the
quartic equation (3.9) such that |w|, = ||g||;’. So if there is w € Q, and |(6 — 1)(w —
1) —ql|, < |m|,, then |Z—1], = [(® —1)w — Q|, < 1 where Z is the solution of the

equation (3.3). This means Z € £,. Otherwise, there is no solution (# 1) of the equation
(3.3)in &,.
CASE 9(III): Suppose |m|, < |0 —1|, = |q|,. Then we have 1 < |®|, =0 —1|, =
|O|p,. We consider the quartic equation (3.9). We have ord,(By) = ord,(B;) =
ordy(B,) = ordy(B3) = 3ord,(Q) = 3ord,(®). We construct its Newton polygon
and and we find there may exist w the solution of the quartic equation (3.9) such
that |w|, = 1. If there is w € Q, and (0 —1)(w — 1) —¢q|, < |m|p, then |Z —1|, =
(@ —1)w—Q|, <1 where Z is the solution of the equation (3.3). This means Z € &,.
Otherwise, there is no solution (# 1) of the equation (3.3) in &,,.

There exists a solution (# 1) of the equation (3.3) in &, if the Case 1,4,5,9(1)
and 9(IIT) hold. Otherwise, the solution is not in &,. O

By these two propositions, Proposition 3.2.1 and 3.2.2, we prove the following
theorem which state the existence of the translation-invariant p-adic Gibbs measure
U associated to the function h where exp,(h) =z = ey, +ze4, # (1,...,1) such that
z=1-Q—-(©®—-1)4+(®—1)y. Here y is the solution of the quartic equation (3.7).

Theorem 3.2.3. Let p > 5 be a prime number, |0 —1|, <1 and q # 3(60 —1). Then
there exists a translation-invariant p-adic Gibbs measure py, associated to the function
h where exp,(h) =z = ey, +zey, # (1,...,1) when one of the following conditions
holds:

(i) |m|, =1 with|0—1],,|q|, <1;
(i) 10 —1[p,lglp <Im|p <1

(iii) |q|, < |0 —1|, = |m|, < 1 and exists a solution y of the quartic equation (3.7)
such that |y — 1|, < 1;

(iv) 10—=1|, =|qlp, =|m|, <lor|m|, <|0—1|, <l|q|, <1 and exists a solution y

of the quartic equation (3.7) such that |(6 —1)(y —1) —q|, <[m|,.

This theorem also tells us when the translation-invariant p-adic Gibbs measures is non-
unique. The non-uniqueness of translation-invariant p-adic Gibbs measures is essential
especially in the study of the set of p-adic Gibbs measures and the phase transition. This
theorem also ask us to find a solution to the quartic equation over Q,. In next section,
we will describe the solvability condition of the quartic equation over Q,. Notice that

finding the translation-invariant p-adic Gibbs measures of the Potts model on the Cayley
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tree is reduced to finding the fixed points of the function f. Later, in Chapter 4, we will

study the dynamics of the function f called Potts—Bethe mapping on Q,,.

3.3 QUARTIC EQUATIONS OVER Qp

In the previous section, we notice that the study of translation-invariant p-adic Gibbs
measures of Potts model on Cayley tree of order 4 is related to the searching of the
roots of the quartic equation over QQ,. A quartic equation may have or may not have a
root in Q,. For instance, the quartic equation x* = p does not have a root in Q,. So
in this section we will study the solvability conditions of the quartic equation over Q.
It is useful later for describing the existence of the translation-invariant p-adic Gibbs
measures of Potts model on the Cayley tree of order 4.

Let us consider the following general quartic equation
4 3 2 _
y't+azy +axy“ary +ao=0. (3.10)
Replacing the variable y by x — %> we obtain the following depressed quartic equation

x*+ax?+bx+c=0 (3.11)

8a>—3a3 b= a3—4azaz+8a; —3a4+256a0—64a\a3+16a2a3
8 7T 8 256

we will only consider the depressed quartic equation (3.11).

where a = and ¢ = . Throughout,

3.3.1 Solvability Over Z7,
Let A C Z be any subset. We introduce the following set

Py i={x € Qp:log,|x|, € A}.

Proposition 3.3.1. Let p be any prime, a,b,c € Q, and A C Z be any subset. The
depressed quartic equation (3.11) is solvable in pAZ; if and only if there exists a pair

(y*,k) € Z}, x A such that y* is a solution of the following depressed quartic equation
Y+ Ay  + By +Ce =0 (3.12)

where Ay = ap~?*, By = bp~3* and Ci, = cp=**. Moreover, in this case, a solution of

the depressed quartic equation (3.11) has the form x = p*y*.

Proof. Let x € Q, and |x|, = p~%. Then x € pAZ}", is a solution of the depressed

quartic equation (3.11) if and only if y* = x[x|, € Z7, is a solution of the depressed
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quartic equation (3.12). ]

This shows that it is enough to study the depressed quartic equation (3.11) over Z, for
a,b,c € Q,.

Proposition 3.3.2. Let p be any prime number. Suppose the depressed quartic equation
(3.11) has solutions in Z, for a,b,c € Q,. Then either one of the following statements
holds

(D) 1blp.lclp <lalp =1

(i1) lalp.|c|p <|blp =1;
(iii) |alp.|1blp <|clp =1;

(iv) lalp, <|blp =lclp. 1blp =lc|p = 1
(W) by <lalp =leclp. lalp =lc|p = 1;
(i) elp <lalp =10lp. lalp =1blp = 1
(iv) lalp, =1blp=lclp, = 1.

Proof. Let the depressed quartic equation (3.11) has solutions in Z7. Then one obtain

lal, = lax?|, = |x* +bx +c| <max{L,|b|,.|c|,},
|b|p = |bX|p = |x4+ax2—|—c| SmaX{1,|a|p7|C|p}’
lclp = |x* +ax® 4+ bx| < max{1,al,, |b|,},

L= |x*], = lax® + bx +c| < max{lalp. [b].lc],}.

By analyzing and comparing these inequalities, we get the conditions (1)—(vii). [

Next we give the conditions for the depressed equation (3.11) to have solution
in Z7,. Recall

A = —b*(4a® —27b%) + 16¢(a* + 9ab® —8a’c + 16¢?)

is the discriminant of the depressed quartic equation (3.11). Recall also from Chapter 2

about the quartic congruence
x*+ax?>+bx+c =0 (mod p). (3.13)

We recall the Theorems 2.2.13 and 2.2.17. Let p > 5 be a prime number, a, b, c € Z and
A #£ 0 (mod p). Leta = —2m (mod p).
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i) Let ptb. Then the quartic congruence (3.13) has solution if and only if there is

no an integer y such that

v +3ay? + (a* —4c)y —b* =0 (mod p)

and (1> =—1.
p
ii) Let p | b and p tac. Then the quartic congruence (3.13) has solution if and only
if

_ 2 2m—n)\ _ (2m+n)\ _ [ m?2=n?\ _
a) c=n (modp)and( 5 >_( > )_(—p )—lor

b) (%) = —1 and (%) =1.

Then we have the following statements.

R, : thereis no an integer y such that y* 4+ 3ay? + (a®> —4c)y —b* = 0 (mod p)

and (X) =—1.
p

R, : c¢=n?(mod p) and (Z(m—n)) = (Z(m—i-n)) = (mZ_nZ) =1.
p 4 p

c m?—c
R; : |—]=-1 and =1.
)4 V4

Let a = por@g* p = pordr®p* and ¢ = p°r9r©c* such that a* = ag +
ayp+ayp*+--,b*=bo+bp+byp*+---and ¢* =co+c1p+cap?+---. Here
Y/a—3I means ord,(a) is divisible by n and a is the nth residue modulo p. By Proposi-

tion 3.3.2, if the depressed equation (3.11) has solutions in Z7, then max{|a|,, [b|,, [¢|p} >
1.

Proposition 3.3.3. Let p > 5 be a prime number. Suppose max{|a|,, |b|,, |c|,} =1
and |A|, = 1. Let either one of the following conditions holds:

(i) lalp. |clp <|b|p and /—b—3;
(i) lalp. 1bl, < lc|, and Y=c—3;
(iii) lal, <1|blp =|c|p and Ry;
(iv) |b|p <la|p = |c|p and R, or R3;
(v) lal, =|b|p, = |c|, and R;.
Then the depressed quartic equation (3.11) has a solution in 7.5,

Proof. Let p > 5 be a prime number. Let max{|a|,, |b|,. |c|,} =1 and |A], =1
where A = —b?(4a® —27b?) + 16¢(a* + 9ab? — 8a?c + 16¢?). Then by Proposition

3.3.2, let one of the following conditions holds:
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(1) lalp.lelp <|blp =1
(2) lalp,|blp <lelp =1;
(3) lalp <Iblp=lclp =1;
(4) |blp <lalp=lclp, =1
() lalp =1blp =lclp = 1.

We shall analyze each cases. Let f,5.(x) = x* +ax?+bx +c. Then fa’,b’c(x) =
4x3 +2ax +b. The condition |A|, = 1 means A # 0 (mod p) and R(fyp.c, [, ) #

a,b,c

0 (mod p). By Theorem 2.2.2, this means that if f, 5 .(X) =0 (mod p) for some x € Z,
then f;, .(X) # 0 (mod p).

(1) : Case (1). We want to show that the depressed quartic equation (3.11) has solution in
Z7, if and only if J/—b—3. IF PART: Let x € 775, be a solution of the depressed quartic
equation (3.11). Then we get x(‘)‘ + boxo = Xo (xg +bo) = xg +bo =0 (mod p). It means
(—bo)pT_1 =1 (mod p) or there exists ¥/—b. ONLY IF PART: Let ¥/—b — 3. Then there
is X € Z such that x*> + by = 0 (mod p). We have f,p..(X) = X (x> +by) =0 (mod p)
and fa”b,c(fc) = 433 + by # 0 (mod p). Due to Hensel’s lemma, there exists x € Z,
such that f; 5 .(x) =0and x = x (mod p). Since X # 0 (mod p), we have x € Z7.
(i1) : Case (2). We want to show that the depressed quartic equation (3.11) has solution
inZ7, if and only if Y/—c—3. IF PART: Let x € Z:, be a solution of the de;pressed quartic
equation (3.11). Then we have xg +co = 0 (mod p). It means (—co)mfjp%n =0 (mod p)
or there exists &/—c. ONLY IF PART: Let &/—c —3. Then there is X € Z such that
X*+co =0 (mod p). We get fup.(¥) =X>+co =0 (mod p) and f;, (X) =35> #
0 (mod p). Due to Hensel’s lemma, there exists x € Z, such that f,.(x) = 0 and
x =X (mod p). Since x # 0 (mod p), we have x € Z7,.

(iii) : Case (3). We want to show that the depressed quartic equation (3.11) is solvable
in Z7, if and only if R; is satisfied. IF PART: Let x € Z, be a solution of the depressed
quartic equation (3.11). Then we have x(‘)‘ + boxo + co =0 (mod p). We know that this
congruence has solutions when condition R; is holds. ONLY IF PART: We assume that
R, is satisfied. Then there exists X such that X* +boX + co = 0 (mod p). Since |A|, =
1, we get f4p.c(X) =X*+boX +co =0 (mod p) and fa/,b,c()_c) = 4x3+ by # 0 (mod p).
By Hensel’s lemma, there exists x € Z, such that f; 5 .(x) =0and x = x # 0 (mod p).
Hence, x € Z}",.

(iv) : Case (4). We want to show that the depressed quartic equation (3.11) is solvable
in Z; if and only if R, or Rj is satisfied. IF PART: Let x € Z; be a solution of the
depressed quartic equation (3.11). Then we have xg + aox3 +co = 0 (mod p). We
know that this congruence has solutions when R, or Rj is holds. ONLY IF PART: Let
R, or Rj is satisfied. Then there exists X such that x* + a¢x? 4+ co = 0 (mod p). Since
|A|, =1, we get fup,.(X) =0 (mod p) and fa”b,c()_c) = 4x3 +2apx # 0 (mod p). By
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Hensel’s lemma, there exists x € Z, such that f, 5 .(x) =0 and x = X # 0 (mod p).
Thus, x € Z;.

(v) : Case (5). We want to show that the depressed quartic equation (3.11) is solvable
in Z7, if and only if R; is satisfied. IF PART: Let x € Z7, be a solution of the depressed
quartic equation (3.11). Then we have x§ + aox3 + boxo + ¢ = 0 (mod p). We know
that this congruence has solutions when R; is holds. ONLY IF PART: We assume R is
satisfied. Then there exists X such that X* +aX? 4 box +co =0 (mod p). Since |A|, =
1, we obtain f; p..(X) =0 (mod p) and fa/,b’c()_c) = 4x3 +2a9X + by # 0 (mod p). By
Hensel’s lemma, there exists x € Z, such that f, 5 .(x) =0 and x = X # 0 (mod p).
Therefore, x € Z;. ]

Proposition 3.3.4. Let p > 5 be a prime number. Let Dy = —4aj —27b3 and u, 43 +

aoUn+1 + bouy, =0 withuy; =0,uy = —ag and uz = —bgy forn =1, p—3.

(i) Let |b|p, |c|p = l|a|p < 1. Then the depressed quartic equation (3.11) has a
solution in Z, if and only if /—a — 3.

(ii) Let|c|p < |a|p = |b|p. Then the depressed quartic equation (3.11) has a solution
in 7, if and only ifDouf)_2 # 9at (mod p).

Proof. (i) Let |b|,, |c|, <|al, < 1. We want to show that the depressed quartic equa-
tion (3.11) has solution in Z7 if and only if /—a—3. IF PART: Let x € Z:, be a solution
of the depressed quartic equation (3.11). Then we get x§ + boxo = x2(x3 + ap) =
xg +ao =0 (mod p). It means (—ao)pT_1 = 1 (mod p) or there exists /—a. ONLY
IF PART: Let /—a —3. Let X € Z such that x> + a9 = 0 (mod p). Then we have
Jape(¥) = X*(X* +ao) =0 (mod p) and f; , .(¥) = 45> +2a0X = 25> # 0 (mod p).
Due to Hensel’s lemma, there exists x € Z,, such that f; 5 .(x) =0 and x = X (mod p).
Since X # 0 (mod p), we have x € Z7.

(i1) We want to show that the depressed quartic equation (3.11) is solvable in
73 if and only if Dou?_, # 9ag (mod p). IF PART: Let x € Z% be a solution of
the depressed quartic equation (3.11). Then we have xg + aoxg + boxo = 0 (mod p)
or xg + apxo + bop = 0 (mod p). We know that this congruence has solutions when
Dou3_, # 9ag (mod p). ONLY IF PART: We assume Dou>_, # 9ag (mod p). Then
there exists X such that x* + agx? + box = 0 (mod p). By Proposition 2.2.11, we get
Jab.c(X) =0 (mod p) and fa/,b’c()_c) = 4x3 + 2a9x + by # 0 (mod p). By Hensel’s
lemma, there exists x € Z, such that f;;.(x) =0 and x = X (mod p). Since X #

0 (mod p), we get x € Z7,. ]
Claim A. Let p > 5 be a prime number and |A|, < 1.

(i) Let |a|, < |b|, = |c|, = 1, then the depressed quartic equation (3.11) have a

solution in Z; if and only if some conditions S; hold;
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(ii) Let |b|, < |a|, = |c|, =1 then the depressed quartic equation (3.11) have a

solution in Z; if and only if some conditions S, hold;

(iii) Let |a|, = |b|p = |c|, = 1, then the depressed quartic equation (3.11) have a

solution in Z7, if and only if some conditions S3 hold.
Proposition 3.3.5. Let p > 5 be a prime number.

(i) Let a =0, |b|, = |c|p, =1 and A = 0. Then the depressed quartic equation

(3.11) has a solution in Z7,.

(ii) Let b =0, |al, =|c|, =1 and A = 0. Then the depressed quartic equation
(3.11) has a solution in Z7, if and only if v —2a —3.

Proof. (i)Leta =0, |b|, =|c|, =1and A =0. So
A =27b* +256¢> = 0.

One could verify x = —‘3‘—2 € Z;, is a solution of the depressed quartic equation (3.11).
(ii)) Letb =0, |a|, =|c|, =1and A =0. So

A = 16c(a* —8a’c +16¢?) = 16¢(a® —4c)* = 0.

This means ¢ = %. Then the depressed quartic equation (3.11) is written as follows:
2 2
4 2, 4 ( 2 a> _
x'+ax*+—=(x"+=) =0.
+ + 1 + >

It clearly shows that the depressed quartic equation (3.11) has a solution if and only if
\/—5 exists, equivalently /—2a exists and this solution is in 7.
O

Proposition 3.3.6. Let p > 5 be a prime number. Suppose max{|a|,, |b|,, |c|p} >1
and two of |al|p, |b|p. |c|p are the maximum. Then the depressed quartic equation

(3.11) has a solution in Z, if and only if either one of the following conditions holds:
(i) lalp < [blp = lclp;
(ii) |blp <lalp = |c|p and /—ac —3;
(iii) |clp <lalp = [b]p.

Proof. Let p > 5 be a prime number. Let max{|a|,, |b|,, |c|,} > 1. Then by Proposi-
tion 3.3.2, if the depressed quartic equation (3.11) has solutions in Z7,, then one could

check either one of the following conditions holds:
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(1) |a|p < |b|p = |C|P;
(2) 1blp <lalp =lclp;
(3) |C|p < |a|p = |b|p-

We shall analyze each cases. Let fup.c(x) = x* +ax?+bx +c. Then f, (x) =
4x3 4+ 2ax +b.

(1) : Case (1). We want to show that the depressed quartic equation (3.11) is solvable
in Z3,. Since |b|, = c]p, = p¥ for some k > 1, it is clear that the solvability of the
following two depressed quartic equations x* +ax? +bx +c¢ = 0 and pFx* + p*ax?+
b*x 4+ ¢* = 0 are equivalent. Moreover, any solution of the first depressed quartic
equation is a solution of the second one and vise versa. On the other hand, the second
depressed quartic equation is suitable for applying the Hensel’s lemma. Let us choose
% such that byX 4 co = 0 (mod p). Suppose that g . (x) = pFx* + p¥ax? +b*x +c*.
We have gp (X)) = box + cop = 0 (mod p) and g;),c()_c) = by # 0 (mod p). Due to
Hensel’s lemma, there exists x € Z, such that g5 .(x) = 0 and x = X (mod p). Since
X # 0 (mod p), we have x € Z7.

(11) : Case (2). We want to show that the depressed quartic equation (3.11) is solv-
able in 77, if and only if there exists J/—ac. Since |a|, = |c|, = pk for some k > 1,
it is clear that the solvability of the following two depressed quartic equations x* +
ax?>+bx +c =0and pFx* +a*x? + p*bx + c¢* = 0 are equivalent and moreover,
any solution of the first depressed quartic equation is a solution of the second one
and vise versa. On the other hand, the second depressed quartic equation is suit-
able to apply the Hensel’s lemma. IF PART: Let x € Z7 be a solution of the de-
pressed quartic equation (3.11). Then we have a¢x2 +co = 0 (mod p). It means
(—aoco)pT_1 = 1 (mod p) or equivalently there exists /—ac. ONLY IF PART: As-
sume /—ac exists. Then there exists X such that agX? +co = 0 (mod p). Suppose
Zac(x) = p*Fx*+a*x?+ p*bx +c*. We then obtain g, . (X) = agx? +co =0 (mod p)
and g;’ +(X) = 2a¢x # 0 (mod p). According to Hensel’s lemma, there exists x € Z,
such that g4 .(x) = 0 and x = X (mod p). Since X # 0 (mod p), we have x € Z7,.

(ii1) : Case (3). We want to show that the depressed quartic equation (3.11) is solvable in
Z,. Since |a|, = |b|p, = p¥* for some k > 1, it is clear that the solvability of the follow-
ing two depressed quartic equations x* +ax?+bx +¢ = 0 and pFx* +a*x2 +b*x +
p¥e = 0 are equivalent and moreover, any solution of the first depressed quartic equation
is a solution of the second one and vise versa. On the other hand, the second depressed
quartic equation is suitable to apply Hensel’s lemma. Let agx + by = 0 (mod p). Sup-
pose that g, 5(x) = p*¥x* +a*x?+b*x + p*c. We then have g, ,(X) = X(aoX +bo) =
0 (mod p) and g"l’b (X) =2a9x + by = apx # 0 (mod p). Due to Hensel’s lemma, there
exists x € Z such that g, 5(x) = 0 and x = x # 0 (mod p). Thus, x € Z7. O
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Proposition 3.3.7. Let p > 5 be a prime number. Let |a|, = |b|, = |c|, > 1 and
lal, <|Al|, < |a|f, where A = b%—4ac. If\/i— 3, then the depressed quartic equation

(3.11) has a solution in Z7,.
Proof. Let |a|, = |b|, = |c|, > 1 with |a|, = |b|, = |¢|, = p* or a = p*a*, b =

ptb*, ¢ = plc* where £ > 1. Let A = b2 —4ac = p~2¢§ where § = b** —4a*c*. We

can write the depressed quartic equation (3.11) as follows
Pixt+a*x?+b*x+c* =0.
We get from the last equation that

4a* p*x* 4+ Qa*x +b*)2—-§ = 0, (3.14)
ptQa*x)* +4(a*)*[Qa*x +b%)*—§] = o. (3.15)

Assume that |a|, < |A|, < |a|§,. It means ﬁ < 8|, < 1. We want to show that the
depressed quartic equation (3.11) is solvable in Z7 if and only if there exists \/X IF
PART: Let x € Z7, be a solution of the depressed quartic equation (3.11). We get from
(3.14) that (2a*x + b*)2 = § (mod p%). It means that there exists +/8 or equivalently
\/X. ONLY IF PART: Assume that there exists \/X We choose x € Z such that (2a*x +
b*)? = § (mod p™). Suppose that f;,bjc(x) = p*x3+a*x?+b*x 4 c*. We then have

2a*)* fupe(¥) = p*a*%)* +4(a*)*[(2a*% +b*)*—8] =0 (mod p™*') and

Qa*)* f, (%) = 4p'(2a*%)* + (2a*)*(2a*% +b*)
= (2a%)*(2a*x+b*) (mod p2) =0 (mod p?)
£ 0 (mod p2*1).

Due to Hensel’s lemma, there exists x € Z, such that f;,bﬂc (x) =0and x = x (mod p).
Since X # 0 (mod p), we have x € Z7. L

Claim B. Let p > 5 be a prime number. Let |a|, = |b|, = |c|, > 1. Then the depressed
quartic equation (3.11) has a solution in Z7, if and only if some conditions S4 hold.

We then obtain the following conclusion. Let p > 5 be a prime number. Then the
depressed quartic equation (3.11) has solutions in Z}, if and only if one of the following

conditions holds:
(i) lalp. |clp <|b|p, =1and ~/—b—3;
(ii) |a|p. |b]p, <lc|p =1and /—c—3;

(iii) |b|p, |c|p <lalp, =1and /—a —3;
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(iv) lal, <|b], =|c|p, =1 with

(@) |A|p, =1and Ry;
(b) |A|p <1and Sy;

) |bl, <lal, = lc|, = 1 with

(a) |A|, =1and R, or R3;
(b) |Al, <1and Sy;

i) lelp <lal, = |b|, = 1 and Dou3_, # 9a (mod p);
(vii) Jal, < bl = lel, and [bl, = |el, > 1;
(viii) |b|, < lalp, =|clp, lalp =|clp > 1 and /—ac —3;
(ix) |clp <lalp =|blp and |a|, = [b], > 1
(x) lalp = |blp = [c|p =1 with

(@) |A|p, =1and Ry;
(b) |A|, <1 and S3;

(xi) |a|, = |b|, = |c|p > 1 and S,4.

3.3.2 Solvability Over Q,,
In this subsection, we provide the solvability condition of the depressed quartic equation
(3.11) over Q.

Theorem 3.3.8. Suppose p > 5 be a prime number and
A = —b*(4a® —27b%) + 16¢(a* + 9ab® — 8a’c + 16¢3).

Let Dy = —4618 —27b§, A and Up43 +aoUp41 + boun =0withu; =0,u, = —ag and

us = —bg forn =1, p —3. Let one of the following conditions holds:
(i) |b|4, |c|§’) <|al®, +/—a-—3.

@i) lalS, [el3 <|bly, ~=b—3;

iii) lalS. b3 <lc]3,  =c—3;

@iv) lal, <|bly =lcl3. 1Al =1bly =lcl5, R

(v) bl <lalf =lcl3. [Al, =lalf, =lcl}, Raor Rs;
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(i) [cl3 < lal§ = |bl5. Dous_, # 9aj (mod p);

(vii) |c|§’,<|b|4, lalplcl, < |bI3;

iii) |ef3 <lalS. [bl5 <lalpleclp. /—ac—3;

(ix) |b|;<|a|6, lalylel, < |b|3;

(x) lalS =1bl} = lcl3, [Alp, = lal§ = bl = lcl5, R

. lc]? - —
(xi) lel3 <B4 <alS. B3 = lalplclp. 52 <[A], <lalylel,, VA-3.

Then the depressed quartic equation (3.11) has solutions in Q.
Proof. Let p > 5 be a prime number, x € Q, be a nonzero p—adic number and |x|, =
p~* where k € Z. By Proposition 3.3.1, x is a solution of the depressed quartic equation
(3.11)inQ, ifand only if y = p¥x is a solution of the depressed quartic equation (3.12)
in Z%. Let Ay = p~**a, B = p~*b and C; = p~**¢.

Due to Propositions 3.3.3, 3.3.4, 3.3.6 and 3.3.7, if either one of the following

conditions holds true:

L L |Aklp, =1, |Blp < 1, |Cklp <1, V=4 —3;
L |Bklp =1, [Aklp <1, |Cklp <1, &/=Bx—3;
L [Cilp =1, [Aklp <1, |Bilp <1, ¥/=C—3;
2. IV. |Aklp < |Biklp =ICklp =1, |Dilp =1, Ry;
V. |Bil, <|Ail, = Cil, =1, |Dil, =1, R» or Rs;
VL |Cklp < |Aklp = |Bklp =1, Douj_, # 9ag (mod p);
VIL |Aklp <|Bklp =|Cklp, [Bklp =|Cklp > 1;
VIL |Bilp < |Aklp = ICklp. |Aklp =|Cklp > 1. =ArCr—3;
IX. [Cklp <|Aklp = |Bklp, |Aklp =|Bklp > 1;
3. X |Aklp=1Bklp=1Cklp =1, [Dklp=1, Ri.
XL |Aklp = |Bklp = |Cklp > 1, |Ak|p<|zk|pf|Ak|2v A -3

then the depressed quartic equation (3.12) has a solution in Z7, where A = B,f —
4A,Cr, A = p72k &= By = p=3k 2 ) = p=* < and a*,b*,c* € 7, with

lalp’ blp> lelp

a*=ag+a;-p+..., b*=bo+bi-p+...., ¢*=cotci-p+....

It is clear |Ax|, = p**|a|,. |Bk|, = p3*|b|, and |Ck|, = p**|c|,. Now, in
every case (I)-(XI), we want to describe all p-adic numbers a,b,c € Q, for which all

the conditions should be satisfied for some k € Z.
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(i) : We consider the condition 1.I. From |Ax|, = 1, we obtain k = %logp la|p. It
follows from |By|, < 1 and |Ci|, < 1 that |b|2 < |a|3 and |c|, < |a|? respectively.
The condition /—Aj — 3 is equivalent to \/—a —3. Therefore, if [b[}.|c|5 < |a|$ and
+/—a — 3, then the condition 1.1. is satisfied with k = %logp la|, € Z.
(ii) : Let us consider the condition 1.II. From | By |, = 1, we have that k = %log o bl 1t
follows from |Ax|, < 1 and |Cy|, < 1 that |a|} < |b|> and |c| < |b]} respectively. The
existence of &/— By is equivalent to the existence of +/—b. Hence, if ||, |3 < b5
and ~/—b — 3, then the condition 1.II. is satisfied with k = %logp |b], € Z.
(iii) : We consider the condition 1.III. From |Ck|, = 1, we get that k = %1ogp D] ,.
It follows from |Ax|, < 1 and |Bx|, < 1 that |a|5 < |c|, and [b|} < |c|3, respectively.
4 - : £ 116 4 3
One could check that /—Cy — 3 is equivalent to o/—c —3. Thus if |a|, [b]5, <|c[;,
and /—c — 3 then the condition 1.III. is satisfied with k = %logp lc|p € Z.
(iv) : Let us consider the condition 2.IV. From |Bg|, = 1 and |Cg|, = 1, we obtain
that k = 1log,|b|, and k = ;log, |c|,. It means that ||} = |c|3. Moreover, from
|Aklp <1, |Aklp < |Bilp and [Ak|p, < [Ck|p we have |a|; < |b|§ and |a|§) < lelp.
One could check |Di|, = 1 is equivalent to |A[, = |b|} = |c[3. Therefore, if |a|$ <
b[5, = lc|3. |Al, = |b|5 = |c]3 and Ry, then the condition 2.1V is satisfied with k =
%logp 1b|, = %logp lc|p € Z.
(v) : Let us consider the condition 2.V. From |Ax|, = 1 and |Ci|, = 1, we obtain
k = 3log,lal, and k = {log,|c|,. This means |a|2 = |c|,. Moreover, from | By |, <
1, |Bklp < |Ak|p and | Bx|, < |Cl|p we get [b|2 < |a|3 and |b[3, < |c|3. The condition
|Di|p =1 is equivalent to |A[, = [b]} = |c|3. Therefore, if b|,* < lal$, = lc],”
and |A|, = |al§ = [c[}, with R, or Rs, then the condition 2.V is satisfied with k =
%logp la|, = %logp lc|p € Z.
(vi) : We consider the condition 2.VI. From |[Ax|, = 1 and |Bx|, = 1, we obtain k =
3log, lal, and k = 1log, |b|,. It means that |a|3 = |b|2. Meanwhile, from |Cy|, <
1, |Cklp < |Aklp and |Ck|p < | Bk|p, we have |c|, < |al? and |c|5 < |b|3. Therefore,
if [c[3 < lal$ = |b]3 and Dou?_, # 9ag (mod p), then the condition 2.VI is satisfied
with k = %logp la|, = %logp |b|, € Z.
(vii) : Let us consider the condition 2.VII. From |By|, = |Ck|,, we obtain that k =
logp%. It follows from |Bg|, > 1 and |Ck|, > 1 that || < |b]3. Moreover, from
|Aklp < |Bilp and |Ag|, < [Ck|, we have |a|,|c|, < [b]5. Therefore, if [c[} < |b]}
and |a|,|c|, < |b|?, then the condition 2.VIL. is satisfied with k = log, % €.
(viii) : Let us consider the condition 2.VIII. From |Ag|, = |Ck|,, we obtain k =
%logp % It follows from | Ax|, > 1 and [Cy |, > 1 that |¢|, < |a|3. Moreover, the con-
ditions |Bx|, < |Ak|p and | B|, < |Ckl, imply |b]2 < |a|,|c|,. Itis clear that the ex-
istence of /—A Cy is equivalent to the existence of /—ac. Thusif |c|5 < |al5.|b[3 <
la|p|c|p and /—ac —3, then the condition 2.VIIL. is satisfied with k = %logp laly ¢ 7.

lelp

(ix) : We consider the condition 2.IX. From |Ak|, = |Bk/|p, we obtain k = log, alp

bl p
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and from [Ag|, > 1 and |Bi|, > 1, we get |b|> < |al5. Moreover, the conditions
Cklp < |Aklp and |Ckl, < |Bil, imply |al,lc|, < |b[2. Therefore, if [b],” < |al3
and |a|,|c|, < |b|?, then the condition 2.IX. is satisfied with k = logp lbl" €.

(x) : Let us consider the condition 3.X. From |Ax|, =1, |Bk|, =1 and |Ck|p =1, we
obtain 2k = log, |al|,, 3k =log, |b|, and 4k = log,|c|, respectively. This implies
|a|% = |b|}, = |c[3. One could check | Di|, = 1 is equivalent to |A[, = |a|, = |b], =
|c|3. Therefore, if |a|$ = [b]} = |c[5. |Al, = |al§ = |b]3 = |c| and R, then the
condition 3.11 is satisfied with k = %logp la|, = %logp 1b|, = %logp lc|p € Z.

(xi) : Let us consider the condition 3.XI. From |Ax|, = |Bk|x, |Ak|p = |Ck|p, and

: b

|Bk|p = |Ck|p, we obtain that k = log,, %, 2k = log, 1~ |a|" and k = log,, % respec-
tively. This means |b|f, = |a|p|c|,. Moreover, from |Ag|, > 1, |Bk|, >1and |Cg|, > 1,
we have |b|3 < |al3. ||, < lal? and [c|3 < |b|}. This means |c|5 < ||} < |al5. We

can check |Ax|, < |Akl|p < |Ak|2 implies :a||" < |Al], < la|plc|, and the existence of

V A is equivalent to the existence of vV A. Therefore, if |c|3 < [b|4 < [al, |b|% =

la|plc|p. :Z‘l” < |Al, < la|plc|, and vV A —3, then the condition 3.X is satisfied with
|a\p |a|p

b
k =log, B = llogp el logp| b e 7, O

lelp
Claim C. Let p > 5 be a prime number.

(i) Let |al < |b|} = |c|3. |Al, <[]} = |c[3. Then the depressed quartic equation

(3.11) has a solution in Q,, if and only if some conditions S; hold;

(i) Let |b|5 <alS = |c[5. |Al, < al$, = |c]5. Then the depressed quartic equation
(3.11) has a solution in Q,, if and only if some conditions S, hold;

(iii) Let |al$ = |b[5 = [c[3. |Al, < lal$ = |b|} = |c|. Then the depressed quartic
equation (3.11) has a solution in Q, if and only if some conditions S5 hold;

(iv) Let || < |b|} < |al. |b|2 = |a|plc|,. Then the depressed quartic equation

(3.11) has a solution in Q,, if and only if some conditions S4 hold.

Our concluding remark on the depressed quartic equation (3.11) on QQ, is the
following: Let p > 5 be a prime number. Then the depressed quartic equation (3.11)

has solution in QQ, if and only if one of the following conditions holds
A 1Bl Je < als,
1. |c|§’, < |b|‘1‘,
a. |b|2 <lalplclp,, —ac—3 or /—a—3;
b. |b]2 =lalplcl,, —a—3 or Su
c. b2 > lalplelp:
it [bl% <lel3
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a. [b[3 < lalplel,.
b. [bl5 = lalplcl .
al$. lel, < 1513

3
alg. 1615 <lelp”.

- lall, <1l = e},

i Al =bl},
i, |Al, < |B4,

4 6 __ 3
. |b|p < |a|p - |C|p

1. |A|p = |a|6’

i. |Al, < lalS,

e} <lals = |b]4.

- lall =16l =lcl;

i' |A|P = |a|6’

i. |Al, < lalS,

—ac—3 or
V—a-3;

—a—3;

V-3

S1;

R, or Rj;

Sa;

Ry
S3;

Demonstration. We will consider the results in Theorem 3.3.8 and Remark 3.3.2. Let

H;
H,
H;
H,
Hi,
Hs
Hs >
Hs,1

s

H;

{(a.b.c)e @ |bly
{(a,b,c) € QZ : |a

{(a.b.c)eQ): |a|6
{(a,b,c)e@?J : |a|f,
{(a.b.c)e @) al
{@bhc)eQd: |bf
{(a.b.c)e Q) |bl}
{(a,b,c)e@f,: |C|Z
{(a.b.c)eQ): el
{(a.b.c)e @) ],
{@hc)eQd: |bf
{(a.b.c)e Q) lal$
{(a,b,c)e@i, : |a|f,
{(a.b.c)eQ): e},

el? <lal$. J—a 3}
el <1blh, V=b-3};
,|b|;‘,<|c|3, d —3};
<Ibly =lcly. 1Al =1bl5y =lcl). (D}:
<|bly =lel. |Alp <Ibly=lcl}. Si}:
<lal=lcl. |Al,=lalS =}, 1) or (IV)}:
5 _ 18 1A 6 _ o3 S
<|a|p_|c|p’ | |p<|a|p_|c|p’ 2}7
<lal$ =1bl3. |Al, =lal§ =1b]5. Doul_, # 9aj (mod p)}:

<[},

< |a|6a

lalplelp <1b13}:
b1 <lalplelp.

<lal. lalplel, <IbI3}:
=1bly, = lcly. [Alp = lalf, = 1615 = lcl;. (D}
=|b|4 135 |A|p<la|6 =1bly =lel3. S

4 2
<Iblé <lalS, 1B = lalplelp Sa}.

V—ac-13};

All these sets are the solvability regions of the depressed quartic equation (3.11) on

Qp. We will check all these sets so we could simplify the overlapping regions.
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One could see H; = H7; UH7, UH7; 3 where

H;,, = {(a,b,c)e@;: |c|‘;’,<|b|4, |a|p|c|p<|b|2, |b|4p>|a|f,}
= {(a.b.0)e@: [c]3.lalb < b4}

H,, = {(a,b,c)e(@;): |c|§,<|b|4, |a|p|c|p<|b|2, |b|;:|a|g}
= {(a.b,c)eQ: |3 <blt=1alS}:

H,; = {(a,b,c)le,: |c|§;<|b|4, |a|p|c|p<|b|2, |b|;<|a|f,}
= {(a.b.c)eQ: [cl3<|bl4 <lalS. lalplel, <Ib%}.

A.1: We consider the sets H;, H; 3, Hg, Ho and Hy;.

We will show the that max{|a|S, |b[5. [c[>} = |al. It is true for H;, Hy 3
and Hy;. We are left to show for Hg and Hy. For Hg : We have |c|§) < |a|g and
b[3, < lalplc|p. This implies |b]> < |a|,lc|, < |al}. Hence [c|3.[b]3} < |al$. For
Ho : We have |b|} < |al% and |a],|c|, < |b[3. Then we obtain |al|,|c|, < b3 < |al3.
Thus [c[3.|b]} < |al. So we have shown max{|a[. |b]5. [c]5} = |al}. Next we will

show Hy = Hy 3. We now have
Ho = {(a,b,c) € Q5 : b} <lal, lalplel, <Ibl3. lel} <lal$).

3
From |c|3 < |a|,° and |a|plc|, < |b[2, we get |c|3 < |alplc|, < |b[%. This means

|c[3 < |b]35. So we have Ho = Hy 3 since
3. 3 4 6
Ho = {(a,b,c) € Q;: c|5 <|bly <lal5, lalplel, <[bl3}.

A.2: We check for H, and Hy ;. One can see H, C H7 ;.
A.3: It follows directly from Hj.
B.4: It follows directly from Hy ; and Hy ».
B.5: It follows directly from Hs ; and Hs 5.
B.6: We look at Hg and H7>. One can see easily Hs C H7 5.
C.7: It follows directly from Hyo,; and Hj .
In this section, we have given some solvability conditions of the quartic equation
over Q,. These conditions are useful in order to show the existence of p-adic Gibbs

measures of the Potts model on the Cayley tree of order 4 as stated in Theorem 3.2.3.
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CHAPTER 4

THE POTTS-BETHE MAPPING OVER Qp

Some results in this chapter were published by Saburov & Ahmad (2017a) and Ahmad
et al. (2018) in “Journal of Physics: Conferences Series” and “Journal of Statistical

Physics” respectively.

4.1 INTRODUCTION
We introduce the Potts—Bethe mapping of degree k for k € N as follows

k
Ox+q—1 ) @1

Jo.q.0(x) = (m

where (8 —1)(8 —1 +¢) # 0. Let x(°) = 2—§ — ¢ be the singular point of the Potts—
Bethe mapping (4.1).

A point x € Q, is called a critical point of a function 4 if h’'(x) = 0. Notice
that the Potts—Bethe mapping (4.1) has a critical point x(©) = %. Let g(x) = % and
(foqn)e = & 1(x) o fogx0g(x). Then we can easily verify that the singular point
x(®) is another critical point of the Potts—Bethe mapping (4.1). If we consider Jo.q.k :
P!(C,) — P!(C,), then one could check that the point oo is not the fixed point of fp 4 k-

This Potts—Bethe mapping (4.1) appear in the study of statistical mechanics, i.e.
the Potts model on the Cayley tree of order k. The Potts-Bethe mapping was given a
name by Monroe (1996a,b) where he studied the dynamics of this Potts-Bethe mapping
(4.1) over C. In this chapter, we shall study the Potts—Bethe mapping (4.1) on Q,.
Recall from Chapter 2 that 6 = exp,(J) for some coupling constant J and ¢ € N. This
means |6 — 1|, <1 and |g|, < 1. The study of the Potts-Bethe mapping (4.1) on Q,
was first studied by Mukhamedov & Khakimov (2016).

4.2 THE POTTS—BETHE MAPPING WITH GOOD REDUCTION

For generality, we suppose 0,9 € Q,. The p-adic rational map with good reduction
decomposed the projective line P!(Q,) into minimal subsystems. It is fully described
by Theorem 2.3.15. Now let us find the conditions of the Potts—Bethe mapping (4.1)

over Q, with good reduction.

Proposition 4.2.1. Let p > 3 be a prime number..
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(1) Let max{|6|,,|q|p} < 1. Then the Potts—Bethe mapping (4.1) has a good reduc-

tion.
(I1) Let max{|f|,,|q|,} = 1.

(i) If160 —1|,|60 —1+q|, = 1, then the Potts—Bethe mapping (4.1) has a good

reduction.

@@i) If 10 —1|,|10 =1 4+¢q|, <1, then the Potts—Bethe mapping (4.1) has a bad

reduction.
(I11) Let max{|6|,,|q|,} > 1.

(i) Let|q|, > |0|p. Then the Potts—Bethe mapping (4.1) has a bad reduction.

(ii) Let|q|p < |0|p. Then the Potts—Bethe mapping (4.1) has a good reduction.

(iii) Let|qlp =10]p.
(a) If |0 +ql|, = |0|p, then the Potts—Bethe mapping (4.1) has a good re-
duction.

(b) If10+q|p <|0|p, then the Potts—Bethe mapping (4.1) has a bad reduc-

tion.

Proof. Let fg,q,k = fo,4.k (mod p).
(I) Suppose max{|0|,,|q|,} < 1. Then we get

- _1\*
f9,q,k = (m) .
This implies deg(fg,q,k) =k =deg(fp,4.x)- Thus, fg 4 has a good reduction.
(ID-(1) Suppose max{|0|,,|q|,} =1 and |6 —1],|0 —1+¢q|, = 1. Then

Ox+q—1

k
— 1 d p).
x+q+9—2) (mod p)

ﬁgku)=(

Since (6 —1)(6 —1+¢g) # 0 (mod p), the deg(fg,q,k) =k =deg( fo,4,x). Hence, fo 4k
has a good reduction.
(I)-(ii) Suppose max{|€|,.|¢|,} = 1 and |6 —1|,|0 —1+4¢q|, < 1. Then

Ox+q—1

k
_— d p).
x+q+9_2) (mod p)

J;G,q,k (x) = (

We have deg(fg,q,k) < k = deg( fp,4.k) because (8 —1)(6 —1+¢) =0 (mod p). Thus,
f6.4.x has a bad reduction.
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(IIT) Let max{|0|,.|q|,} > 1. Then 6 = p™6* and g = p"q* for some 6*,q* €

Z}", and integers m,n < 0. We have

* n—m g% —m k
( 0*x+p"""g*—p ) if maX{|9|p,|Q|p} = |9|p

p—mx+pn—mq*+9*_2p—m

k
_ m—n gx* *_ —N .
foqk(0) =1 (Gbratimtigtg=r ) if max{[6],.lql,} = lal,
k
9* + *__ o, —m .
(s ) if 161, = lal,
This means

xk if max{[0|,.l|ql,} =101,
fogix) =11 if max{|0],.1g1,} = lal,»

(4t 161, = lal,
and
=k if max{|0|,.|q|,} =10|p
=0<k if max{|0],.|q/,} =19,
—k if 101, = Iql, =10 +4l,
+k if 161, = lqlp > 10 +ql,-

deg( fo,q.k (X))

Therefore, the statement (III) holds.
O

Due to this proposition, we obtain the following result that tell us about the

dynamics of the Potts—Bethe mapping (4.1) with good reduction.

Theorem 4.2.2. Let p > 3 be a prime number. Suppose one of the following conditions
holds

(1) max{[0],.l|q|p} <1:
(i1) max{[6],.1ql,} = Land |6 1,16 —1+q|, = I;
(iii) 10|, > L and |0|, > |q|p:
() 101, =lqlp =10 +4qlp, > 1.
Then the Potts—Bethe mapping (4.1) decompose P'(Q,,) as follows

P'(Q,)=AUBUC

where A is the finite set consisting of all periodic points of fo 4k, B = ; Bj is the
union of all (at most countably many) clopen invariant sets such that each B is a finite
union of balls and each subsytem fp 4k : Bj — B; is minimal and points in C lie in the

attracting basin of a periodic orbit or of a minimal subsystem.
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Proof. By Proposition 4.2.1, the conditions max{|0|,.|q|,} < 1 and max{|0|,.|q|,} >
1 with |0 —1|,|0 —14¢q|, = |0|, max{|0|,,|q]|,} imply that the Potts—Bethe mapping
(4.1) has a good reduction. Then the decomposition of P'(Q,) follows directly from
the Theorem 2.3.15. O]

Note that |§ — 1|, < 1 and |¢|, < 1 when we associate the Potts—Bethe map-
ping (4.1) with the Potts model on Cayley trees. By this condition one could check by
Proposition 4.2.1 that the Potts-Bethe mapping (4.1) has a bad reduction. There is no
global result to characterize completely the dynamics of p-adic rational map with bad
reduction. In what follows we will study the dynamics the Potts—Bethe mapping (4.1)

of degree 3 and degree 4 with bad reduction.

4.3 THE POTTS—BETHE MAPPING OF DEGREE 3
In this section, we will investigate the dynamics of the Potts—Bethe mapping of degree
3, fo.4.3: Qp — Q, such that

3
Ox+q-1 ) . (4.2)

s = (5544

We first find all the fixed points of the Potts—Bethe mapping (4.2). Let Fix{ f } :=
{x €Q,: f(x) =x} be the set of all fixed points of the mapping /. We notice x(©) =
1 € Fix{ fg,4,3}. Then it follows from f5 ,3(x) —1 = x —1 that

(Ox +q—1)2 4+ (Ox +g—1)(x —x) 4 (x —x(>))2
(x —x(00))3

(x—=DE-1) = (x—1).

Thus, any other fixed point x # x( is a root of the following cubic equation,

O@—1D)Ox+g—1D)((0+Dx+60+2¢—3) = (x+g—1)(x —x)2, (4.3)

Now suppose y := x;:rq + 1. Then the cubic equation (4.3) can be written with respect
to y as
V:=(1+0+6%y*—20+1)(1-0—q)y—(1—-60—g)*=0. (4.4

Let us find all roots of the cubic equation (4.4) whenever 6 # 1,1 —gq.

Proposition 4.3.1. Let p > 5 be a prime numbers and 0 < |60 —1|,.|q|, < 1. Then
the cubic equation (4.4) has a root y such that |y ‘p =1 and |y — 3}17 < 1. Fur-
thermore, if p = 1 (mod 6), then the cubic equation (4.4) has roots y® and y® such
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that

1 1

2 _ ) 2) 3) _ »3) 3)

y ——(y +y p+...)andy ——(y +y p+...)
1—6—q|, "0 "1 1—6—gq|, \"* !

in which y(()z) and y(()3) are roots of the following congruence

32 43(1-0—q)*t+(1—0—¢)*)*=0 (mod p). (4.5)

Remark 4.3.2. The congruence (4.5) has a discriminant D = =3 ((1—60 —q)*)%. It is
solvable if and only D (or equivalently —3) is a quadratic residue modulo p (see Rosen

(2011)). Note —3 is a quadratic residue modulo p when p =1 (mod 6).

Proof. Let|0—1|,,|q|, <1. Supposea =—(1+60+62), b=—(20+1)(1—0—¢q) and
¢ =—(1—=60-q)* Then |b|? =|c|, =[1-0—ql|> <1=a|,and |b|, <lal, |c], <
la |§,. By Theorem 5.1 of Saburov & Ahmad (2015b), the cubic equation (4.4) has a root
y® for which [y®"|, = |a|, = 1. Since |§ —1|,. |g|, < 1 and y® = y$V 4 yP p 4
then we obtain yél) —3=0 (mod p). This implies [y’ —3|, < I.

Now let 8; = b*> —4ac. We have §; = —3(1—60 —¢)* and |b|3 = |a|,|c|, =
|1—0—q|120 =|81],. Since p =1 (mod 3), we have +/§; € Q, (or equivalently V=3¢
Qp). Therefore, by Theorem 5.1 of Saburov & Ahmad (2015b), if p =1 (mod 6), then
the cubic equation (4.4) has two more roots y® and y® such that [y?|, = [y®|, =
% =|1—-60—q|, <1. Assume |1 —60 —g|, = p~" for some r € N.Then we get
yO = p"(y)* fori =2,3and 1 —0 —q = p"(1 — 60 —¢q)*. By plugging y® into the

cubic equation (4.4), we obtain
Py = (14046 ((y D)) -0+ D(1—-0—g)* () —(1-0—¢9)*)* =0
and for i = 2,3 that

302 4+301-0 -9y +(1-0-¢)*)> =0 (mod p).

This means y(()z) and y(()3) are the roots of the congruence

32 43(1—-0—¢)* t+((1—0—¢)*)* =0 (mod p)

and this completes the proof. ]

We then obtain the following result about the fixed points of the Potts—Bethe
mapping (4.2).
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Theorem 4.3.3. Suppose 0 < |0 —1|,,|q|, < 1. Let y© be the roots of the cubic equa-
tion (4.4) and x© := 1, xD :=x 4 (a —1)y? for 1 <i < 3. Then

{x@ xM x@ xOVv if p=1(mod6),

Fix{ fo,4,3} =
! {x© x( if p =5 (mod 6).

Proof. 1t is the consequence of Proposition 4.3.1. ]

In the sequel, we will consider the cases 0 < |0 — 1|, < |g|, <1 and 0 < |g|, < |0 —

1, <1.

43.1 TheCase0<|0—1|,<]|gq|, <1
Proposition 4.3.4. Let p > 5 be a prime number. Then

(i) X =1andx® =x@ —g—(6-1);

(ii) XD =x0) 1 (0 -1)yD fori =1,2,3;

(iii) x|, = |x?D|, =1 and x* xD € £, fori =0,1,2,3;

(v) [y®, = lyO =31, = [y@ =y®|, = lgl, <1 = yV,;

(v) |X(O)_X(oo)|p =qlp. |X(1)_X(oo)|p =10 —1]p:

(vi) |X(2) _X(Oo)|p = |X(3) _X(Oo)|p =lq[pl0 —1]p;

vii) |xD —xO|, =|q|, fori =1,2,3 and |xD —xV|, = |0 —1|, fori =2,3;
(viii) [x® —=xP, = |q|,0 =1,

Proof. We have X =2—-0—¢g, x® =1 and x® =x® + (0 - 1)y fori =1,2,3.

Then one could easily calculate all the properties. ]
Then we analyze the local behaviour of each fixed points.

Proposition 4.3.5. Let p > 5 be a prime number. Then the fixed point X9 is attracting
and the fixed point XV is repelling. Moreover, if p =1 (mod 6), then the fixed points

x® and x® exist and they are repelling.

Proof. We will show )féq 3(X(0))‘ < 1and ‘fe’q 3(x("))‘ > 1 for 1 <i < 3. One could
b p * p

check for 0 <i < 3, we have

: 30 —1)(0 —1+¢)(OxD +g—1)?
/ @)
Jo.0.3 (X ) (x@ — x(00))4
30 —1)(6 —1+¢)x¥

T 0xD +g— )(xO —x)’ (4.6)
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Hence ‘fé’q 5 (x(o))‘ = -lr 1 Recalling x® = x© 4+ (6 —1)y® for 1 <i <3,

lg1p
we deduce from the equality (4.6) that
, 3(0 —14q)x®
/ (z)) _ , A , 4.7
Joas (X (0 —1DyD(OyD +1-60-q) &7
Due to Proposition 4.3.1, we have !y(2)| = |y(3)| = |1 —0—ql,<1= |y(1)} and
0| lg1p
|x¢ )} =1for 1 <i <3. Thus ‘fg 5 (xD) ‘ |9‘11|p

Next suppose p = 1 (mod 6). Then, for the fixed points x® and x®, follows
from the equality (4.7) for i = 2,3, we have

) ® 3(0—14¢)[1—60—q3x®
fiq5(x7) =

=D D) (9(69)" +(1-0-9))

By means of the congruence (4.5), we can check 6 (y(i))* #—(1—-0—¢)" (mod p).
Consequently, we obtain

; 0—14¢| 1
/ x® ‘ = | P = > 1
’ ( )p 1=0—ql310—11, Iqlpl0—1]p

We will now consider two cases: p =5 (mod 6) and p =1 (mod 6).
CASE p =5 (mod 6). We introduce the following sets

Ao

xe€eQ,: x—X(O)‘p < |q|p},

Ay = {xe(@p: x—x(O)‘ >|q|p§,
p
Aoe 1= fre@pifx—x®| ~[x=x?] oIy,
p p
A, = {xe(@p:|9—1|p<‘x—x(oo)’p<|q|p},
A?}X, = {xe(@p: x—x(l)‘ = ‘x—x(c’o) :|9—1|p%,
p p
A(f?,o = {xe(@p: x—x(l)‘ <’x—x(°°) =|9—1|p},
’ r r

p
3
I

xeQ,: 0< ‘x—x(w)‘p< |9—1|p}.

Proposition 4.3.6. The following inclusions hold
(i) AgUAIUA U Ao oo C fo a5 (Ao):
(ii) Ao C fy,5(A1) C f3 25 (Ao);
(iii) .A s C f9q3(Ao %) C fgq 3 (Ao).
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Proof. We have
(0= (x—x?)

(x —x(0))3

Jo.4.3(x) —x g(x) (4.8)

where g(x) = (0x +q— 1)+ (0x +q—1) (x —x) + (x —x(°°))2. We also notice
that the Potts—Bethe mapping (4.2) can be written as follows

0—1)(1—-0—q)\>
fraao) = (o4 C=UIE0) 49)
Then we have
6—1)(x —x©
fogao)—x® = CZDOXT) (4.10)

x —x(%0)

x—x(0° x—x(00

(i) We will show for any x € Ay U A, that fy 4 3(x) € Ap. In fact, we have

2
where g;(x) = (9 + w> + (@ 4 6-na- )—q)) +1.

, x € Ay,
‘x_x(oo)‘ _ ‘X—X(O)+q+(0—1)’ _ |91, 0
p p

lx—x©@|,, xeA; and

s x €A ,
P |x—x@|,, xeA.
These imply
917, x € Ao,
lg(xX)]p <
lx—x©@12 xeA,.

Then from the equality (4.8), we deduce that

|x—x(0)|,J .
|f9,q,3(x)—X(0)|p§ lalp 0 —1]p, x €A

<|8-1|, < .
o e (=10 Ne<lly

So we get fp4.3(x) € Ap for any x € Ag U A; which means fy,3(Ag) C Ay and
Jo.4.3 (A1) C Ao.

Next, we will show that fp 4 3(x) € Ap for any x € Ay o,. We have |x —x© }p =
[x =x| = lql, and |6x +¢ 1], = [0(x =x) + (O -1 (10 ~-q)|, = |q],-
These imply [g(x)|, < |¢|%. By the equality (4.8), we get | fo.4,3(x) —x@[, <[ — 1], <
|q]p- Thus fy 4.3(x) € A for any x € Aj o which implies f5 4.3 (Ao,00) C Abp.

Lastly, we will show fp ,3(x) € Ag for any x € A,. Indeed, for any x € A,, we

have
O@-DA-0-q)| _ lqlpl0—1],

= <1
x —x(%0) ,  lx—=x],
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0—-1],

|x—x(°°) |

which implies [g1(x)|, = 1 and | fo,4,3(x) — x(°)| |x —x©@ |p <|q|,. Hence,
we get fp 4.3(x) € Ap for any x € A, which implies fp 43 (.Az) C Ap the inclusion (i)
holds.

(ii) Now we want show fp 4.3(x) € A; for any x € A. We consider the follow-

ing sets
AD = ger,,:0<(x—x<°°>‘p<|q|p|9—1|p§
AD = %xe@l,: )x—x(oo)‘ :|q|p|9—1|p}
A = %erl,: lql,10—1], ‘x x(w)‘ <|9—1|§

where Ao = AD U Ag) UAD.
Let x € AY. Then

O-DA-0-q)| _ lqlpl0—1lp
= TP,
— x(c0) » |x X(Oo)l
6—1)(1—6—
|f9,q,3(x){p = ’ ( 1 = q)‘ >1 and
X —X P
s =X = [ foas], > 1> lalp

Thus fg’q,3 (A(()IO)) C ./41.

Next let x € AQ). Then }x—x(o){ = |q|, and ‘—(9 1)(;(009) ) . —||‘i i'&'jlb <1.
This implies
© 60—1], |x—x(°)}p
1), =1 and glp < faga() 