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Résumé

Méthodes du noyau pour l’analyse de données de grande

dimension

Résumé. Les nouvelles technologies permettant la collecte de données dépen-

dant d’un nombre de plus en plus important de paramètres, les ensembles de

données voient leur dimension devenir de plus en plus grande. Les problèmes

théoriques, qui dépendent notamment de la dimension intrinsèque de l’ensemble

des données, et les problèmes de calcul, liés à la dimension de l’espace où vivent

les données, affectent l’analyse de données en grandes dimensions. Dans cette

thèse, nous étudions le problème de l’analyse de données en grandes dimensions

en nous plaçant dans le cadre des espaces métriques mesurés. Nous utilisons

la concentration de la mesure pour produire des outils capables de décrire la

structure des ensembles de données de grandes dimensions. Nous visons à in-

troduire un nouveau point de vue sur l’utilisation des distances et des mesures

de probabilité définies sur les données. Plus précisément, nous montrons que les

méthodes de noyau, déjà utilisées en petites dimensions intrinsèques pour réduire

la dimensionnalité, peuvent etre utilisées en grandes dimensions et appliquées à

des cas non traités dans la littérature.

Mots clés: Apprentissage de données, Concentration de la mesure, Méthodes

de noyau, Grandes dimensions, Analyse des données
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Kernel Methods for High Dimensional Data Analysis

Abstract. Since data are being collected using an increasing number of fea-

tures, datasets are of increasingly high dimension. Computational problems, re-

lated to the apparent dimension, i.e. the dimension of the vectors used to collect

data, and theoretical problems, which depends notably on the effective dimension

of the dataset, the so called intrinsic dimension, have affected high dimensional

data analysis.

In order to provide a suitable approach to data analysis in high dimensions, we

introduce a more comprehensive scenario in the framework of metric measure

spaces.

The aim of this thesis, is to show how to take advantage of high dimensionality

phenomena in the pure high dimensional regime. In particular, we aim at in-

troducing a new point of view in the use of distances and probability measures

defined on the data set. More specifically, we want to show that kernel meth-

ods, already used in the intrinsic low dimensional scenario in order to reduce

dimensionality, can be investigated under purely high dimensional hypotheses,

and further applied to cases not covered by the literature.

Key words: Learning Mixtures, Concentration of Measure, Kernel Methods, High

Dimensions, Data Analysis.
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Introduction

Since new technologies enabled the collection of data using a larger and larger

number of features, datasets have become more and more high dimensional. To

give only a few examples: a larger number of camera sensors gives higher reso-

lution in pictures, and consequently datasets of high dimension; large memory

supplies enable to store internet datasets using a large number of features, med-

ical data using a large number of parameters, etc [1], [2]; genome investigation

[3],[4], proteins interaction analysis [5] and molecular simulations produce large

datasets in high dimensional spaces. More prominently, high dimensionality can

be considered as a feature of Big Data [6]. Usually, high dimensionality is not

included among the characterizing features of Big Data, i.e. Volume, Variety,

Velocity, Veracity, Value, but it appears as a consequence of the variety require-

ment and the parallel evolution of the size of data and of the number of data

parameters. In fact, in order to obtain high variety, many features of the data

must be collected. Conversely, a sample in high dimension is supposed to have

a large enough size, which implies that quite often high dimensional datasets

have a very large volume. However, relatively small datasets can have a high

dimension. e.g. short-time experimental data from neurosciences [7], [8].

High dimensionality can be either an intrinsic feature of the dataset or due to

redundant features and noise. To decide in which regime one should put the

problem under consideration, usually the intrinsic dimension of the data space

has to be taken into account. Here intrinsic dimension refers to the actual di-

mension of the dataset, i.e. the number of independent parameters needed to

represent the data. More specifically the intrinsic dimension of a random vector

X can be defined as the topological dimension of the support of X. For a metric

space, the intrinsic dimension can be defined in terms of the doubling constant

1
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of the space: the minimum λ such that every ball can be covered by λ balls

of half the radius, and corresponds to the doubling dimension of X, defined as

dim(X) = log2 λ. This value gives also a lower bound on the minimum dimension

for which a metric space can be embedded in a normed space, with low distor-

tion [9]. If the dataset lies on a manifold, the intrinsic dimension of the dataset

is the topological dimension of the manifold [10], i.e. for a dataset it can be

estimated in term of the neighbourhood structure. In general, if the dataset has

constant dimension, the intrinsic dimension of the space can be defined globally

for the entire dataset, e.g. the topological dimension for a dataset sampled from

a manifold, otherwise it has to be defined on local neighbourhoods for which the

dimension can be considered constant. Intrinsically high dimensional spaces ex-

perience a class of high dimensional phenomena, e.g. concentration of distances

and emptiness of space, that make many low dimensional methods not effec-

tive. In fact, as observed e.g. by Beyer et al [11] nearest neighbor do not carry

meaningful information for typical high-dimensional data, as the ratio between

the variance of the distance between points and the mean value of the distance

generally tends to 0. From a practical point of view, for dimensions as low as 10,

methods based on k-NN search may be severely affected by high dimensionality.

Many methods have been proposed to reduce the dimensionality of the data, in

order to avoid problems related to the high dimensionality of the ambient space.

Classical spectral methods have been proved to be successful in providing target

embedding spaces, e.g. principal component analysis (PCA) for linear embed-

dings, Isomap and Kernel PCA for non linear datasets [12], [13], [14]. However

such methods have their shortcomings and do not allow to successfully address

all the problems that arise in high dimensions.

In this Thesis, we study the problem of high dimensional data analysis in the

framework of metric measure spaces [15]. We take advantage of concentration

of measure to produce tools able to describe the structure of datasets in high

dimensions, using suitably defined Lipschitz maps. We will describe two contri-

butions:

Denoising metric measure spaces. In chapter 3, we suggest an approach,

which turns out to be related to the algorithm proposed in [16], for reducing noise
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in metric measure spaces. The procedure, which we call the distance transform,

consists in embedding the metric measure space into the space of Lp functions

defined on it by means of distance functions. A first property of this transform

is its stability with respect to perturbations of the input metric measure space.

Such perturbations may be quantified using a distance on the set of metric mea-

sure spaces called the Gromov-Wasserstein distance. We show that the distance

transform is 2-Lipschitz for this distance. The main purpose of this transform

however is its noise reduction properties. Corruption by noise may be defined

in several inequivalent ways for a metric measure space. We consider the simple

case where the noisy space is obtained from the ideal one by taking its product

with a space enjoying the concentration of measure property. In this case, we

show that the effects of noise are considerably reduced by the distance trans-

form, especially if the “noise space” is high dimensional. While the transform

does however affect the ideal space as well, we argue that these effects remain

small when the ideal space has simple enough geometry.

Clustering high dimensional mixtures. A fundamental problem in data

analysis is to cluster mixture models. For that problem to be well-defined, one

needs to make a priori assumptions on the components of mixture. In the context

of high dimensional data, a natural assumption is that the components satisfy

the concentration of measure property. Indeed, many classical basic distributions

are known to satisfy it, and according to the famous KLS conjecture [17], the

large class of log-concave distributions also does, assuming a bound on their

covariance matrix. For this clustering problem, one case is solved in a relatively

easy way: When the centers of the components of mixtures are sufficiently far

apart, it is enough to perform a PCA-based dimensionality reduction step, and

then to apply an off-the-shelf clustering algorithm such as k-means. The case

where the centers of the components are close or even equal is more difficult.

The best algorithm for that problem [18] uses tensor decomposition algorithms

on the degree 6 moments of the mixture. While its guarantees are strong, the

correctness of this algorithm crucially depends on Isserli’s theorem, a specific

identity between moments that holds only for Gaussian components. However,

assuming that the components are exactly Guassian probably isn’t very realistic
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in practice. Furthermore, the computational complexity is at least the dimension

n to the sixth power, making it impratical when n exceeds, say a hundred.

We consider the approach to the clustering based on radial kernels. Our main

technical result is that for a mixture of distributions that concentrate, such ker-

nel matrices can be written as the sum of a blockwise row constant matrix and

a blockwise column constant matrix, up to a small error term. For distance ma-

trices, in the case of single component, this result implies that the ratio between

the first and the second singular values is of the order of the dimension n, rather

than
√
n as one might naively expect from a basic application of concentration.

This “second order” concentration phenomenon can be used to show guarantees

for kernel PCA based clustering approaches. We further show that for points

lying on a sphere, the conclusions of our first result can be strengthened, in the

sense that kernel matrices are now well approximated by block constant matrices.

We introduce a specific radial kernel, and an associated spectral algorithm that

is able to cluster mixtures of concentric distributions provided their covariance

matrices are far enough. Analysis shows that the required angular separation

between the components covariance matrices tends to 0 as the dimension goes to

infinity. To the best of our knowledge, this is the first polynomial time algorithm

for clustering such mixtures beyond the Gaussian case.

Description of chapters. We now describe in more detail the contents of

each chapter. In Chapter 1 we give an overview of basic geometric techniques

in data analysis and discuss their limits for data with high intrinsic dimension.

Chapter 2 focuses on metric measure spaces, as a suitable framework for high

dimensional data analysis, and on concentration of measure phenomena. In

Chapter 3 we present our denoising approach for metric measure spaces, and

study some of its theoretical properties. The last chapter of the thesis is about

our work on radial kernel matrices and high-dimensional clustering, which in

fact came out as an elaboration of the ideas in Chapter 3. It is a verbatim

retranscription of a dedicated article to be submitted for publication.
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Chapter 1

High Dimensional Data

Analysis

Since computer power enables massive computations, data analysis has been

driven by the necessity to produce algorithms able to recover the structure of

datasets from input points, e.g. using manifold reconstruction and metric ap-

proximation [19]. Many methods developed in the last decades use extensively

distances and metrics in order to produce structures able to capture the manifold

underlying the dataset, e.g. Delaunay triangulations [20], marching cubes [21],

manifold reconstruction [22]. Moreover, many of those methods strongly rely on

a partition of the space, e.g. Voronoi diagrams in order to produce Delaunay tri-

angulations [20], kd-trees [23] and for nearest neighbour search. These methods

and techniques (e.g. use of distances, partition of the space, nearest-neighbour

search) are affected in high-dimensions by the curse of dimensionality [24], and

consequently, algorithms based on them may be not efficient. The term curse

of dimensionality, introduced by Bellman in 1961 [25], [26] is nowadays used to

refer to the class of phenomena that occur in high dimensions in contrast with

the low dimensional scenario. Important examples are the tendency of data to

become very sparse in high dimensions [24], [27], and the concentration of dis-

tances. Usually dimensions d ≤ 6 are considered low. A high dimensional regime

has to be considered when dimension d ≥ 10 [11].

8
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In general, high dimensional data analysis relies on the strong hypothesis that, in

practice, datasets have low intrinsic dimension, largely supported by observation

(§ 1.2), and that their dimension is only apparently high. As a consequence,

many dimensionality reduction methods have been proposed. These methods

aim at reducing the dimensionality of the dataset by embedding the original

dataset into a lower dimensional space [28], [29], [12]. Anytime that a simplicial

complex structure can be defined on the data, the use of topological tools, like

Topological Data Analysis (TDA), has also been proved to be effective in order

to recover the structure of the dataset. In this chapter, we give a brief overview

of the methods and techniques mostly used in high dimensional data analysis in

order to reduce dimensionality.

Toward the blessing of dimensionality. On the other hand, when the ac-

tual dimension is high, these methods may not be applied directly, or may give

only approximation of the structure of the dataset. This happens, for instance,

in presence of very large noise, or for datasets that are described by a very large

number of parameters (e.g. molecular datasets).

Our aim in this Thesis, is to show how to take advantage of high dimensional-

ity phenomena in the high dimensional regime. We aim at introducing a new

point of view in the use of distances and probability measures defined on the

data set. This approach, i.e. the possibility of using in a good way high dimen-

sional phenomena, is sometimes referred to as blessing of dimensionality. More

specifically, we want to show that kernel methods, already used in the intrinsic

low dimensional scenario in order to produce dimensionality reduction, can be

investigated under purely high dimensional hypotheses, and further applied to

cases not covered in the literature.

1.1 Datasets: Collection and Models

A dataset of dimension n and size N is a collection of N items (points) with

relations, often structured in matrices N ×n, where the rows represent the data

entries and each column represents a variable corresponding to a feature used to

collect the data. In the probabilistic and statistical approach, an n-dimensional
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dataset is the result of sampling N points from a distribution in Rn, which gives

relations between points, where each entry of the dataset is a sample point. In

the geometric model, relations between points can be given in terms of distances,

an the dataset can be described as a finite metric space of size N and dimension

n. Data analysis relies on the fact that not all the features used to collect the

data are relevant, and that the relations between the data points can be given

in terms of a lower number of features. Usually this is formalized by introducing

the definition of intrinsic dimension of the dataset (§ 1.2).

1.1.1 Models for the Data

A dataset is usually modelled according to the mathematical structure that bet-

ter encodes its properties.

Manifold Models. In the geometric model, the most relevant criterion to

produce a dataset description takes into account the existence of a manifold

that approximate the dataset. In this case, several manifold recovering meth-

ods have been proposed, which strongly rely on the use of distances defined on

the datasets. Many methods used extensively distances and metrics to produce

structures able to capture the manifold underlying the dataset, e.g. Delaunay

triangulations [20, 22], marching cubes [21]. These methods strongly rely on a

partition of the space, e.g. Voronoi diagrams in order to produce the Delaunay

triangulation [20] or kd-tree[23].

In most cases, the data points cannot be assumed to lie on a manifold due, for

example, to the presence of noise that may destroy the geometrical structure.

However, if the amplitude of the noise is small and the data points remain close

enough to a manifold, the data set can be represented as complexes (e.g. sim-

plicial) from which the topological and possibly geometrical features of the data

can be extracted.

Mixtures of Distributions. When data are sampled from a probability

distribution (e.g. configuration space of a molecule), the existence of a manifold

approximating the dataset is not always satisfied or the sample cannot be regular
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enough to guarantee for manifold reconstruction.

In the case of data sampled from several probability distributions, where no claim

can be made on the underlying geometrical structure or on the support of the

distributions, data are described as mixtures. The dataset is, in fact, described

as the union of subsets (components), where each component is sampled from

a different distribution. The most effective approach, in this case, is to classify

the points according to the component they are sampled from.

The two approaches are not necessary distinct, and the metric and probability

approach can be combined in the framework of metric measure spaces (Chapter

2).

1.2 Intrinsic Dimension

The ambient dimension n of the dataset is given by the number of variables

used to collect the data, and the size N is given by the number of entries in

the dataset. The aim of high dimensional data analysis is to define the effective

dimension of a dataset, in terms of the relevant features that describe it.

In the high dimensional regime, dimensionality reduction methods aim at find-

ing a lower dimensional target space in order to provide an embedding for the

dataset. In this section, we recall some results on metric dimension and intrinsic

dimension with the aim of formalizing the dimensionality reduction problem.

Embedding Dimension. For two metric spaces (X, dX),(Y, dY ), an injec-

tive map f : X → Y is an embedding of X into Y . The distortion is defined

as max(u,v)∈X
distY (f(u),f(v))

dX(u,v) . The metric dimension refers to the dimension

of the target real normed space in which a dataset can be mapped with low

distortion. In particular, since datasets can be seen as metric spaces, the dimen-

sion of the embedding in Euclidean metric spaces has been proven to depend

on the number of points in the datasets. For small data set (N points) in

high dimensional spaces, a lower dimensional embedding can be provided [9].

Bourgain [30] proved that every metric space with N points can be embedded

in O(log2N)-dimensional Euclidean space with a distortion of O(logN). The



Chapter 1 High Dimensional Data Analysis 12

Johnson-Lindenstrauss lemma [31] states that when the input metric space is

Euclidean, a O(logN) embedding dimension is enough to achieve arbitrarily

small distortion.

Intrinsic Dimension. The intrinsic dimension refers to the actual dimension

of the dataset, i.e. the number of independent parameters needed to represent

the dataset. More specifically, the intrinsic dimension of a random vector X can

be defined as the topological dimension of the support of X. If the dataset lies

on a manifold, the intrinsic dimension of the dataset can be defined as the topo-

logical dimension of the manifold. For a metric space X, the intrinsic dimension

can be defined in terms of the doubling constant of the space: i.e. the minimum

λ such that every ball can be covered by λ balls of half the radius. Then the

doubling dimension of X, is defined as dim(X) = log2 λ. A small doubling di-

mension allows low distortion embeddings in smaller spaces. In fact, O(dim(X))

dimensions are enough to get O(log1+ε n) distortion for any ε > 0[9]. Several

attempts have been made to generalize this definition of intrinsic dimension [32].

Moreover, the connection between sparsity and intrinsic dimensionality of the

data has been addressed in research on nearest neighbour search [33].

A common assumption is that although datasets lie in high dimensional ambi-

ent spaces, their intrinsic dimension is often low. This assumption is largely

supported by observation. As a consequence, many dimensionality reduction

methods have been proposed. These methods aim at reducing the dimensional-

ity of the dataset by embedding the original dataset in a lower dimensional space.

Methods in this class have very good performance when the above assumption

holds [28], [29], [12]. Such methods avoid problems related to high dimensional-

ity such as the exponential size of space subdivisions and the sparsity of data in

high dimensions. Topological tools, like those used in Topological Data Analysis

(TDA), can also be effective in recovering the low dimensional structure of the

dataset.
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1.3 Use of Distances in Data Analysis

Distances are ubiquitous in data analysis and are the most natural descriptors for

a dataset. Often datasets are collected as matrices of coordinates of points and

the Euclidean distance or Minkowski distances are used to measure the distance

between points. When data are collected with reference to the distribution they

are sampled from, we may prefer to use pseudo distances, such as KL-divergences

(pseudo-distance on the space of probability distributions), or other similarity

measures (pseudo-distance on the dataset) to evaluate the similarity between

datasets or data points.

1.3.1 Divergences

If the dataset can be modelled in terms of mixtures of distributions, effective

methods that produce good classification are based on divergences between dis-

tributions instead of distance between points. KL-divergence gives a measure

of how a distribution diverges from an expected distribution. In the continu-

ous case, for two distributions P and Q, the Kullback-Leibler divergence can be

defined as

DKL(P‖Q) =

∫ +∞

−∞
p(x)

p(x)

q(x)
dx

and, for the discrete case,

DKL(P‖Q) =
∑
i

P (i) log
P (i)

Q(i)
.

The KL-divergence is not symmetric and does not satisfy the triangular inequal-

ity. It is therefore not a distance. Nevertheless, it has found many applications

and several generalization have been proposed. A notable application of KL-

divergences can be found in Stochastic Neighbour Embedding (SNE) methods

for dimensionality reduction where it is defined to define the cost function to be

optimized.
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1.3.2 Density Based Distances

Density based distances provide a similarity measure that can be used to perform

dimensionality reduction and clustering. They take into account the distribution

of the points and not only the distance. As an example, we can consider a dataset

sampled from a mixture of two distributions that results in two groups of points,

clearly separated by an empty strip. Points that are at the same Euclidean

distance from a query point but belong to regions with different densities may

be expected to be assigned to different classes.

Definition 1.1. Let f(x) be a probability density function in Rn, a density

based measure in Rn may be defined as a path-length measure that assigns short

lengths to paths through high density regions and longer lengths to path passing

through low density regions:

Mf (x1  
γ x2) =

∫ 1

0
g(f(γ(t))‖γ′(t)‖pdt

where γ : [0.1] → Rd is a continuous path from γ(0) = x1 to γ(1) = x2 and

g : R+ → R is a monotonically decreasing function (e.g. g(u) = 1/u).

Mf provides a density based measure of path length, and a density based

distance may be defined as

Df (x1, x2) = inf
γ
Mf (x1  

γ x2)

If the density function is not given, a natural way to define a density function

is in term of the inverse of distance to the k-nearest neighbours around a query

point.

Density based distances allow to take into account probability distributions. By

associating a weight to each point of the dataset, they provide a more complete

description compared to methods that rely only on metric properties of the space.

As a result, they allow to solve cases that are not accessible to a simple metric

analysis.
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Density based methods and low dimensional hypothesis. However,

density based methods quite often rely on the assumption that the dataset is of

low intrinsic dimension. Indeed, low dimensional density based methods strongly

rely on distances to compute k-nearest neighbours and estimate density, which

may cause difficulties. On the one hand, computing nearest neighbours become

intrinsically difficult (§ 1.9) and, on the other hand, the number of points needed

to perform calculations grows very rapidly with n. In practice, data may be very

sparse and methods like Kernel Density Estimator(KDE) or Parzen Windows

may fail in high dimensions [34] and widely used algorithms, such as DBSCAN

[35], may experience problems.

Deep Learning and Density Estimation. Recently, high dimensional den-

sity estimation has been performed using deep learning algorithms. These al-

gorithms may recover the density distribution on the observed dataset by min-

imizing the KL-divergence between the empirical distribution mapped in the

new spaces (representation space) and a good distribution chosen a priori. In

this approach, minimizing the entropy of the density distribution may provide

a factorization in the latent space [36]. However, for these methods and related

algorithms, a reliable proof cannot always be given.

1.4 From Distances to Topological Invariants: Topo-

logical Data Analysis

Computational topology offers methods that are complementary to the afore-

mentioned methods based on distances. Topological Data Analysis provides

new descriptors of datasets able to encode high dimensional properties and to

describe the structure of the datasets. In particular, TDA focuses on the ho-

mological properties of a dataset and topological invariants are used in order to

recover the intrinsic dimensionality of the dataset.

In topology, spaces are classified according to the following equivalence relations:

two spaces are homeomorphic if there exist a continuous invertible transformation
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with continuous inverse between them; a weaker condition is to have the same

homotopy type, i.e. one space can be continuously deformed into the other; an

even weaker notion, which is a kind of linearization of homotopy, is the notion

of homology that classifies topological spaces in terms of the number of holes.

For a space X, computing the number of holes (of any dimension) reduces to

computing the dimension of its homology groups.1 Being the weaker equivalence,

the homological classification is the coarsest one and the easiest to achieve.

Persistent homology [37] is a multi-scale variant of homology. It aims at count-

ing holes and recording how long they live when the space is looked upon at

increasing resolution. More precisely, one associates to a given dataset a simpli-

cial complex K (which is a topological space) together with a filtration, i.e. a

nested sequence of simplicial complexes associated to various values of a scale

parameter: K0 ⊆ K1 ⊆ · · · ⊆ Kn = K. A barcode (or persistent diagram) reg-

isters the appearance and the disappearance of the generators of the persistent

homology with respect to the value of the scale parameter. TDA is based on the

principle that the topological features of the dataset that are associated to long

lasting holes are meaningful and distinguish from the short ones that are related

to noise. Bar codes are a new type of descriptors that can be used to further an-

alyze the data [38], [39], [40], [41],[42]. TDA hence provides a general framework

to analyze data in a manner that is insensitive to the particular metric chosen

and provides dimensionality reduction and robustness to noise. Moreover, the

use of Vietoris-Rips complexes and efficient computational tools [43] made the

algorithms efficient.

The drawback of these methods, however, is that, even if they are robust to small

noise, they may not resolve cases in which the noise is larger or comparable to the

intrinsic geometrical features of the dataset. In those cases, due to intrinsically

high dimensional spaces, the TDA approach is not effective.

1Homology groups with coefficients in a field are vector spaces and by dimension here we
consider the dimension of the vector spaces.
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1.5 Nearest neighbour search

Nearest neighbour search is a fundamental problem whose exact solution can

easily be obtained by comparing the distance of the query point to all the points

in the data set. Beating this trivial algorithm is not easy in high dimensions and

in fact reporting the true nearest neighbour in sublinear time requires a data

structure of size exponential in the dimension of the space. This fact leads to

consider various kinds of approximations.

Local Sensitive Hashing. Local Sensitive Hashing (LSH) is an approach

to report all points that are within a distance r from a query point using hash

functions [44], [45]. Hash functions are defined so that nearby points have a

high probability of receiving the same hash code (the value assigned by the

hash function) and to be collected in the same bucket. For a query point s,

all points in a bucket are retrieved as near points to s. Since computing hash

codes turns to be fast, and the number of points in a bucket is much smaller

than the total number of points, LSH is quite efficient: for datasets in Rn, the

algorithm depends only polynomially on the ambient dimension n. The main

issue in LSH methods is to define suitable hash functions [46], [47], [48], [49].

Particularly efficient LSH methods can be obtained when the intrinsic dimension

is low. However, high intrinsic dimensionality results in difficulty in indexing,

and poor performance [46] (§ 1.9), [50].

Partition Trees. An effective partition of the space has been given by Das-

Gupta at al. [32]. The proposed structure, called the random projection tree

(RP tree), is inspired from the kd-tree. It is produced by splitting the space

along random directions instead of the coordinate directions and allowing split-

ting points that are not median points. RP trees have the notable property to

adapt to the intrinsic dimension of the space.

Dynamic Continuous Indexing. In recent work, Li and Malik introduced

a new approach named dynamic continuous indexing (DCI) [50] which improves
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on the k-nearest neighbour search in high dimensions. DCI reduces the depen-

dence on the dimension of the ambient space from exponential to linear. In the

prioritized DCI, they manage to further improve on the query time.

1.6 Dimensionality Reduction

In general, reducing dimensionality is the best approach to tame high dimen-

sional datasets when the intrinsic dimension is low enough to allow for good low

dimensional embedding. It consists in reducing the number of parameters that

represent a dataset in order to obtain a faithful and meaning representation of

the dataset in a lower dimensional space. Dimensionality reduction has been

addressed from various points of view. Geometrical aspects of the subject in-

clude topological data analysis, manifold reconstruction and data embedding. In

statistics, dimension recovery is related to multivariate density estimation. Di-

mensionality reduction is also related to feature extraction in pattern recognition,

and to data compressing and encoding in information theory [12], [13].

Linear and non-linear techniques have been proposed for dimensionality reduc-

tion. Linear methods, including principal component analysis (PCA), factor

analysis and classical scaling, are the most used, while non-linear methods have

the capability to adapt to non linear data. The latter class includes isometric

mapping, kernel PCA, multi-dimensional scaling (MDS), locally linear embed-

ding and its variants, Laplacian eigenmaps, diffusion maps [13].

1.6.1 Spectral Methods

This class of methods includes some of the most effective dimensionality reduc-

tion methods. In practice, spectral methods provide dimensional reduction using

projection on eigenspaces associated to eigenvalues of a suited designed matrix.

PCA. PCA gives a low dimensional representation of the data, using a linear

basis that consists of the directions that maximize the variance of the data. PCA
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computes the covariance matrix cov(X) of the dataset and solves the eigenprob-

lem

cov(X)v = λv

The eigenvalues of C provide a measure of the variance of the high dimensional

data set along the principal axes (eigenvectors). The top m eigenvectors of the

matrix, (e1, ...em), provide a basis for the embedding space. This space turns

out to minimize the reconstruction error between the input dataset and the

projection in the m-dimensional subspace

EPCA =
∑
i

‖xi −
m∑
α=1

(xi · eα)eα‖2

The output of PCA is the projection of the input dataset on the m-dimensional

subspace spanned by the top m eigenvectors of C. PCA is the most widely used

and effective method for dimensionality reduction.

Multidimensional Scaling (MDS). In multidimensional scaling the input

is the distance matrix M of the pairwise Euclidean distances between points in

the dataset. The core of the method uses PCA on M in order to provide the low

dimensional embedding.

Kernel PCA. PCA provides a best linear embedding of the dataset. How-

ever, the hypothesis that the dataset lies on a linear subspace of the observation

space is actually too strong in many cases. A notable example is a curve in

a high dimensional space that lie on a 2-dimensional plane. The curve can be

efficiently embedded in a 2-dimensional space but not in a 1-dimensional space.

To recover the intrinsic 1-dimensional structure of the curve, one can consider a

non-linear embedding such as the one provided by kernel PCA [10].

Let {x1, ...xN} be a set of N n-dimensional vectors in Rn (the data points) and let

k be a positive kernel function. The kernel function defines a N ×N symmetric

matrix M

Mij = k(xi, xj)
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called the kernel matrix. Kernel PCA consists in applying PCA to the positive

kernel matrix.In order to analyse precisely kernel PCA in high dimensions, it is

necessary to understand the behaviour of kernel matrices and of their spectra as

the dimension increases. While the literature on eigenvalues of random matrices

is vast and growing rapidly, the knowledge about random kernel matrices is not

growing at the same rate although important contributions have been made [51],

[52].

Isomap. When the dataset live on a non linear submanifold, using the stan-

dard Euclidean distance in the ambient space may not allow to correctly identify

the neighbours of a data point on the submanifold. To overcome this difficulty,

Isomap, as well as other graph-based methods, constructs a graph structure from

the dataset where the nodes are the input data points and the edges represent

neighbourhood relations. The pairwise distances between the points are used as

an approximation of the geodesic distance between the points on the manifold.

The length of the shortest path joining two nodes on the graph then provides an

approximation of the geodesic distance on the manifold. The algorithm consists

of three parts:

• Construct a proximity graph whose nodes are the points of the dataset

and whose edges connect points that are close. Assign weights to the edges

based on the Euclidean distances between the points.

• For those pairs of points that are not in the proximity graph, compute

their distance as the length of the shortest path between the points in the

proximity graph (Dijkstra’s Algorithms),

• Applying MDS on the computed interpoint distances.

A problem of Isomap is its instability against noise. Indeed, noise and outliers

may produce erroneous links in the graph that may lead to topological errors.

Also, while its correctness has been proved for submanifolds isometric to convex

subsets of Euclidean spaces, it remains a heuristic in more general cases.
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Stochastic Neighbour Embedding. Stochastic neighbour embedding and

its variants compute an embedding of the data in a lower dimensional space

so as to minimize the similarity between the distribution of the pairwise dis-

tances between the points in the dataset in the high dimensional space and

the corresponding distribution measured in the lower dimensional space [53].

The similarity between the two distributions is usually measured using the KL-

divergence [54].

Concentration of distances. Besides the computational difficulty of com-

puting nearest neighbors in high dimensions, it turns out their relevance become

increasingly unclear as the intrinsic dimension of the data grows. Indeed, it was

noticed by practitioners that the ratio distances to the nearest neighbor and dis-

tances to the furthest point often tend to 1, implying that the nearest neighbor

might be determined by the sample’s randomness. This phenomenon is referred

to as concentration of distances and strongly affects searching and indexing high

dimensional datasets [55], [56]. Concentration of distances is part of a large

class of higher dimensional phenomena usually referred to as concentration of

measure, which we will investigate in more detail in Chapter 2.

1.7 Clustering Methods

A first step in recovering the structure of a dataset is to identify clusters. We give

in the following section a brief overview of clustering methods. As is common,

we distinguish between partition methods and hierarchical methods [57].

Partition methods. In partition algorithms, a set of N data points is par-

titioned in k clusters. The number of clusters k is given as part of the input

and remains fixed. At each iteration, the algorithm reassign datapoints among

clusters. The algorithm starts with an initial partition which is further improved

so as to optimize an objective function. The celebrated k -means algorithms is

one of the most widely used clustering algorithm. Each cluster is represented by

its center of gravity (or mean), i.e. the point that minimizes the sum of squared
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distances to the elements in the cluster. Given a set X = {x1, ..., xn} of means

{m1, ...,mk} the algorithm consists of the two following steps

• Expectation: at step t, each data point is assigned to the cluster whose

mean is closest. Hence, the clusters St1, ..., S
t
k are defined as the Voronoi

partition

Sti = {x ∈ X : ‖x−mt
i‖2 ≤ ‖x−mt

j‖21 ≤ j ≤ k}

• Maximisation: new means {mt+1
1 , ...,mt+1

k } are computed according to the

new partition

mt+1
i =

1

|Sti |
∑
xj∈Sti

xj

While the algorithm converges to a local optimum, there is no guarantee that it

will converge to a global optimum. Moreover, if one uses Euclidean distances as

described above, the cost functional will minimize the standard cluster variance,

implying that the algorithm may fail to disciver anisotropic clusters.

Hierarchical Algorithms. In hierarchical algorithms, the clusters are pro-

duced by grouping clusters in bottom-up fashion (agglomerative clustering), at

each step combining two clusters that are similar. At the beginning of the pro-

cess, each element is in a cluster of its own. The clusters are then sequentially

combined into larger clusters until all elements end up being in the same cluster.

The result of the clustering can be visualized as a dendrogram, which shows the

sequence of cluster fusion and the distance at which each fusion took place.

The grouping rule can be guided by several similarity measures. Single-linkage

clustering consists in merging the two clusters that contain the closest pair of

elements not yet belonging to the same cluster as each other. In complete linkage

clustering, the distance between two clusters is given by the greatest distance

between any points in the clusters. In average linkage clustering, similarity is

measured as the average distance between the points of the two clusters.
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Density Based Clustering, Model Based and Grid-Based. Since clus-

tering is based on grouping objects according to some common features, two

classes of measures are usually used: distance based measures and similarity

measures. Han and Kamber (2001) further proposed to use three approaches:

density based methods, model based clustering and grid-based methods. In

model-based clustering, a theoretical model is provided and optimized so that

it best fits the data. In grid based models, the space is partitioned into a fi-

nite number of cells. All these methods are affected by high dimensionality and

experience concentration of volume and emptiness of the space, leading to poor

performance.



Chapter 2

Metric Measure Spaces and

Concentration of Measure

Metric spaces are a natural structure used to describe datasets. More specifically,

sample points in a dataset often come with a natural notion of distance, turning

it into a metric space. Associating (for example equal) weights to the data points

further turns the dataset into a metric measure space [58], [15]. The arsenal of

mathematical results and techniques for metric measure spaces can then be lever-

aged to unveil and investigate the hidden structure of the dataset. In particular,

high dimensional datasets can be analysed by exploiting well-known phenomena

that seem to govern high-dimensional metric spaces. These phenomena, known

as concentration of measure, have been extensively studied for several decades.

Concentration of measure refers to the fact that regular functions tend to become

nearly constant as the dimension increases. This phenomenon was first observed

by Milman, and further developed by Gromov [58–61]. It describes for example

the behaviour of distance functions in high dimension, i.e. concentration of dis-

tance (which results in the nearest and the furthest point to have comparable

distances,§ 1.9) and in general of Lipschitz functions (i.e. concentration of func-

tions). Another example is concentration of volumes [62], which is responsible

for the so called emptiness of space, along with the sparsity of the data in high

dimension.

24
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Our aim is to take advantage of concentration of measure in order to give a

description of the dataset. As we will see, Lipschitz functions can be used as

tools to analyse the structure of the dataset, by leveraging the concentration of

measure property.

In this chapter we give a brief overview of the mathematical framework of metric

measure spaces, and we present some theorems and examples that will be further

refined in the last chapter.

2.1 Metric Measure Spaces

Metric measure spaces are mathematical structures that combine the metric and

the measure defined on a set, e.g. a dataset in the discrete case.

Definition 2.1. • Let (X, d) be a complete separable metric space. A mea-

sure on X is a measure on the space (X,B(X)), with X the Borel σ-algebra

of X ( generated by the opens balls of X).

• The push forward of ν under a measurable map f : X → Y into another

metric space Y is the probability measure f∗ν on Y given by

(f∗ν)(A) := ν(f−1(A))

for all measurable A ⊂ X.

Metric measure spaces. With reference to the definition given in [15], a

metric measure space (mm-space) is a triple (X, d, µ) where

• (X, d) is a complete separable metric space with distance d,

• µ is a measure on (X,B(X)) which is locally finite i.e. µ(Br(x)) < ∞ for

all x ∈ X and sufficiently small r. B(X) is the Borel algebra on X induced

by d, and Br(x) the ball of radius r centered at x.

From now on, we restrict our attention to metric measure spaces for which

µ(X) = 1, i.e. µ is a probability measure.
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Isomorphism of mm-spaces.

Definition 2.2. Let (X, dX , µX) and (Y, dY , µY ) be metric measure spaces. An

isomorphism of mm-spaces between (X, dX , µX) and (Y, dY , µY ) is a map which

is an isometry on the support of the measures, φ : supp[µX ] → supp[µY ] , such

that µX(φ−1(B)) = µY (B) for all B ⊂ Y measurable.

2.1.1 Examples

Unit sphere. An example of a metric measure space is (Sn−1, g, σn−1), the

unit sphere Sn−1, endowed with the geodesic distance and the uniform measure

[60], [62].

Gaussian Spaces. A notable example of metric measure spaces is given by

Gaussian spaces. A Gaussian space is of the form Gn = (Rn, ‖ · ‖2, γnc,Σ), i.e.

Rn endowed with the Euclidean distance and a Gaussian measure γnc,Σ. The

Gaussian measure is the multivariate Gaussian distribution N (c,Σ), where c is

the mean value vector and Σ is the covariance matrix. For isotropic Gaussian

spaces, Σ = σ2In and

γnc,σ =
1

(
√

2πσ)n

∫
Rn
e−
‖x−c‖2

2σ2 dx,

and, for general Gaussian spaces,

γnc,Σ =
1√

(2π)n
√

detΣ

∫
Rn
e−

1
2

(x−c)TΣ−1(x−c)dx

with det(Σ) the determinant of Σ.

Molecular Datasets. Molecular dataset can be described as metric spaces

where the measure is the Boltzmann distribution. Data from molecular dynam-

ics are collected in the configuration space X, with X ⊂ R3N , where N is

the number of atoms (possibly a selection e.g. the number of carbons). Data

are generated using an effective potential Etot involving parameters such as the

torsion angles between covalent bonds or the distance btween specific atoms,
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from which a force field is derived to perform the simulation. The associated

Boltzmann distribution can then be written as

µ ∝ e−Etot
kT

The potential energy expression usually contains a large number of variables,

i.e. it is written in terms of a large number of coordinates. Often one uses a

small number of coordinates NR, the so called reaction or active coordinates

to describe the system, which results in a reduced Boltzmann distribution µR

obtained by pushforward from µ. The space (RNR , ‖·‖, µR) is an example of met-

ric measure space describing the behavior of the molecule at thermal equilibrium.

2.2 Concentration of Measure

Concentration of measure is a property of metric measure spaces that roughly

says that regular functions tend to be nearly constant [59],[60],[58],[61]. It can

be observed in many spaces, typical examples being high dimensional spheres

with the uniform measure, or general Gaussian spaces.

Concentration function. We say that a measure µ on some metric measure

space (X, d, µ) has σ-concentration if there exists a constant ac, such that for

any set A with µ(A) ≥ 1
2µ(X), for any ε ≥ 0 we have:

µ(Aε) ≥ 1− ace−
ε2

σ2 (2.1)

where Aε = {x ∈ X, d(x,A) < ε} is the ε-offset of A.

Concentration and Lipschitz functions. Concentration in a metric mea-

sure space (X, d, µ) can equivalently be stated in terms of Lipschitz functions.

For f a real function on X, with median M(f), let

αf (ε) = µ{x : |f(x)−Mf | ≥ ε}
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be the concentration function for f on X. We say that f has σ-concentration,

for some σ > 0, if for any ε > 0:

µ{x : |f(x)−M(f)| ≥ ε} ≤ e−
ε2

2σ2 (2.2)

A metric measure space X is said to have σ-concentration if all 1-Lipschitz

functions have σ-concentration on X. In particular, if ε = O(σ), the right term

in equation 2.2 is constant, so that f(x) differs from M(f) by at most O(σ),

with constant probability.

2.2.1 From Isoperimetric Inequalities to Concentration

Concentration of measure appears as a natural consequence of isoperimetric in-

equalities.

Let (X, d, µ) be a metric measure space and µ+ = limr→0 inf 1
rµ(Ar/A) be the

boundary measure for a Borel set A ∈ X. Then the isoperimetric function of µ

is the largest function Iµ on [0, µ(X)] so that

µ+(A) ≥ Iµ(µ(A)) (2.3)

holds for every Borel set A, with µ(A) ≤ ∞. B is said to be an extremal set if

the equality holds, i.e. µ+(B) = Iµ(µ(B)).

As a notable example, for the sphere, the isoperimetric inequality states that the

spherical caps minimize the boundary measure at fixed volume. While isoperi-

metric inequalities deal explicitly with extremal sets, concentration is related

to non-infinitesimal neighbourhoods [60], and can be extended to situation not

covered by the isoperimetric formalization. Moreover isoperimetric functions are

known only for few example, and usually are very difficult to compute.

We present in this section the link between isoperimetric inequalities and concen-

tration properties [60]. In fact, concentration of measure, for important classes

of metric measure spaces, can be formalized in this framework.
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Concentration Functions. A notable example, for which isoperimetric func-

tion can be computed, is the class of constant curvature metric measure spaces,

namely, manifolds with constant curvature endowed with their canonical mea-

sure. Letting v(r) be the volume of a ball of radius r, the isoperimetric function

can be expressed as

Iv = v′ ◦ v−1

In general the following result holds:

Proposition 2.3. [60] Assume Iµ ≥ v′ ◦ v−1 for some strictly increasing differ-

entiable functions. The, for every r

v−1(µ(Ar)) ≥ v−1(µ(A)) + r.

In fact, the condition in proposition 2.3, for a Borel set A of finite measure,

reduces to

µ+(A) ≥ v′ ◦ v−1(µ(A)). (2.4)

For spaces of constant curvature this condition is satisfied by geodesic balls, and

enables to express the above proposition as

µ(Ar) ≥ µ(Br), (2.5)

as soon as with µ(A) = µ(B), and where B is a ball. Specifically, for the

sphere, among all measurable sets A ⊂ Sn−1, for a given measure, spherical caps

minimize the measure of the ε-neighborhood µ(Aε).

From the previous conditions 2.4, 2.5, one can recover the concentration function

of the space X using the following proposition:

Proposition 2.4. [60] Let (X, d, µ) be a metric measure space, for which propo-

sition 2.3 applies, and assume Iµ ≥ v′ ◦ v−1, then

α(X,d,µ)(r) ≤ 1− v
(
v−1

(
1

2

)
+ r

)
, r > 0 (2.6)
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Concentration on the Sphere. Let us consider the case of the unit sphere

Sn in Rn+1, endowed with its uniform measure σ. For 0 < r < π,

v(r) =
1∫ π

0 sinn−1 θdθ

∫ r

0
sinn−1 θdθ,

From calculations, it follows that:

Proposition 2.5. [60] For the unit sphere Sn, we have:

αSn ≤ e−(n−1)r2/2, r > 0.

From the definition of concentration function, we get:

Theorem 2.6 (Concentration on the sphere). For an arbitrary measurable set

A on the sphere, with σ(A) ≥ 1
2 ,

σ(Aε) ≥ 1− 2e−
(n−1)ε2

2 (2.7)

In general, for a sphere of radius R:

αRSn ≤ e−
(n−1)r2

2R2 (2.8)

When compared to equation 2.3, it is important to note that the concentration

properties 2.7,2.6,2.1 can be expressed with no dependence on any extremal set.

Concentration for the Gaussian Space. The isoperimetric inequality for

the sphere implies the isoperimetric inequality for Gaussian spaces. In fact, by

Poincaré lemma, it is known that the uniform measure on a sphere of radius
√
n approximates, after projection on a finite number of coordinates, a Gaussian

distribution1.

For a Gaussian measure γn in Rn, with associated Euclidean distance, concen-

tration function for Gaussian spaces, can be found by performing the limit in

2.8, setting R =
√
n,

1Specifically, the extremal sets for the Gaussian isoperimetric inequality are the half spaces,
and starting from the distribution of the half spaces, one can recover the same concentration
function.
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α(Rn,‖·‖2,γn) ≤ e−
r2

2 . (2.9)

It is important to note that there is no explicit dependence on the dimension.

In fact, it is easy to see that condition 2.9 implies several concentration properties

for the Gaussian space. They became explicit in the functional version, the Levy’s

lemma [61], which states concentration bounds in terms of L-Lipschitz functions

defined on the isotropic Gaussian space Gn.

Theorem 2.7 (Levy’s Lemma). Let f be a Lipschitz function of constant L

defined on the isotropic Gaussian space Gn = (Rn, ‖ · ‖2, γn). Then f has σL

concentration.

This result applies to anisotropic Gaussians if one takes σ2 to be the maximum

variance of the distribution, i.e. σ2 = maxj σ
2
j , over all principal directions,

j = {1, .., n}. Levy’s lemma implies that, for high dimensional Gaussian spaces,

most of the points are at about the same distance from the center.

Proposition 2.8. Almost all the mass of an isotropic Gaussian is concentrated

in a spherical shell of radius σ
√
n and width O(σ).

Indeed, for an isotropic Gaussian vector x,

E(‖x‖2) = E(x)2 + Var(N (0, σ2In) = σ2n.

As distance functions are 1-Lipschitz, by Levy’s lemma, they have σ-concentration.

This implies that the distance of every point from the center differs by at most

O(σ) from σ
√
n,

‖x‖ ∼ σ
√
n±O(σ).

Concentration of Measure for Log-concave Functions Other examples

of distributions that conjecturally exhibit similar concentration properties are

uniform distributions over isotropic convex bodies, and more generally isotropic

measures with log-concave densities, meaning that the logarithm of the density is
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Figure 2.1: Growing ratio between the radius of the sphere and the diagonal
of the cube when the dimension d increase.

concave. Specifically, for this class of distributions, a weaker form of concentra-

tion of measure called exponential concentration would be implied by the KLS

conjecture [17].

2.3 Emptiness of Space

Another consequence of high dimensionality is the so called emptiness of space

phenomenon. The picture that we associate to higher dimensional cubes, and in

general to high dimensional shapes and volumes, should change drastically when

the dimension increases [62] [27]. In fact, doing simple computations, it is easy

to see that when the dimension n increases the diagonal of the unit cube tends

to increase, while the radius of the sphere remains constant (by definition).

Moreover, along with the dimension of the space the size N of the dataset is

supposed to increase. In order to keep the same distance between the points

in the sample from a uniform distribution, when the dimension of the ambient

space increases, the size of the sample has to increase exponentially with the

dimension, too. This implies that, in general, data tend to be sparse in high

dimensions.

Volume of the Unit Sphere To give another example, consider the volume

of the unit ball in the Euclidean space. It tends to zero when the dimension of

the space tends to infinity. In fact, since the volume of the ball is given by

Vn =
π
n
2

Γ(n2 + 1)
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it is easy to see that limn→∞ Vn = 0.

Moreover, when the dimension increases the mass of the ball becomes concen-

trated in a thin shell. Indeed, the ratio between the volume of a ball of radius

(1− ε) and the one of a ball of radius 1 is (1− ε)n, which goes to 0 for ε� 1/n

when n goes to ∞.

Volume of the Cube As a remark, we note that, for large enough n, the

volume of the cube tends to be concentrated around its the vertices (figure 2.1).

Indeed, if we consider the ball of radius c
√
n, for any c < (2π)−1/2, we see using

Stirling’s formula that its volume tends to zero as the dimension tends to infinity.

This implies that for n large enough, almost all the volume of the unit cube will

lie outside that of that sphere.



Chapter 3

The Distance Transform of a

Metric Measure Space

Noise is one of the reason for high dimensionality of datasets: a low-dimensional

signal corrupted by isotropic ambiant noise will appear high-dimensional, al-

though most of its variance represents unwanted information. Under some spe-

cific hypotheses, concentration of measure can be used to suitably shrink the

noise, in order to make the data consistent with the signal. We present an ap-

proach designed for denoising data in the framework of metric measure spaces.

In order to do so, we use some distances defined on the space of metric measure

spaces.

The possibility of defining a distance between metric spaces, the Gromov-Hausdorff

distance [58], resulted in powerful tools for computational purposes. The GH-

based methods have been used to compare datasets and shapes [63], [64], [65].

For specific classes of datasets, in particular low dimensional and smooth mani-

folds, this approach led to important results. The GH-distance has been further

generalized, by Memoli, to a distance on the space of metric measure spaces:

the Gromov-Wasserstein distance, defined taking into account both metric and

measure features of a data set [66].

We first introduce some technical tools in order to define distances between met-

ric measure spaces [15], following Sturm’s approach, in the formalism of Chap. 2.

34
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Then we introduce Memoli’s definition of Gromov-Wasserstein distance inspired

by the Gromov-Hausdorff distance between metric spaces. We then suggest a

simple way to “denoise” metric measure spaces, which we will refine in the last

chapter of the thesis.

3.1 Distances Between Metric Measures Spaces: D-

distance

In this section we present the definition of a distance on the space of isomorphism

classes of mm-spaces, the D−distance, by Sturm. In order to give the definition

of D-distance, we introduce some fundamental tools such as the Wasserstein

distance, coupling of measures, and coupling of metrics.

We consider below isomorphism classes of metric measure spaces, and the dis-

tances are defined on the space of isomorphism classes of mm-spaces:

Isomorphism of mm-spaces.

Definition 3.1. Let (X, dX , µX) and (Y, dY , µY ) be metric measure spaces. An

isomorphism of mm-spaces between (X, dX , µX) and (Y, dY , µY ) is a map which

is an isometry on the support of the measures, φ : supp[µX ] → supp[µY ], such

that µX(φ−1(B)) = µY (B) for all B ⊂ Y measurable.

Wasserstein Distances.

Definition 3.2 (Coupling of measures). Given two metric measure spaces (X,µX),

(Y, µY ) a measure µ on X × Y is a coupling of µX and µY if its marginals are

µX and µY , that is, if

µ(A× Y ) = µ(A), q(X ×A′) = ν(A′)

for all measurable sets A ⊂ X, A′ ⊂ Y .
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An example of coupling, the most obvious but not always the most suitable, is

the product measure µX × µY . Couplings µ of µX and µY are also called trans-

portation plans from µX to µY , and may be described as the plans to transport

some products whose locations are distributed according to µX to consumer

distributed according to µY . The set of all couplings for given measures µX

and µY is denoted by M(µX , µY ). The problem of comparing measures can be

stated as a mass-transportation problem, i.e. to find the best way to move a

certain mass from producers distributed according to a law µX to customers,

distributed according to µY . This leads to the definition of Wasserstein dis-

tances, which are metrics on the space of Borel probability measures µ on X

with
∫
d(x0, x)pdµ(x) <∞ for some x0 ∈ X:

Definition 3.3. (Wasserstein distance). Let (X, d) be a metric space, for p ≥ 1,

the Lp-Wasserstein distance between µ1 and µ2 is defined as

dW,p(µ1, µ2) =

(
inf

µ∈M(µ1,µ2)

∫
dp(x, y)dµ(x, y)

)1/p

D-distance. The problem of defining distances between two metric measure

spaces is formalized by Sturm [15] who introduced the D-distance. To define it,

we first need to introduce couplings of metrics:

Definition 3.4. (Coupling of metrics). Given two metric (measure) spaces

(X, dX , µX) (Y, dY , µY ), a pseudometric d̂ on the disjoint union X t Y is a

coupling of dX and dY iff

d̂(x, y) = d(x, y) and d̂(x′, y′) = d′(x′, y′)

for all x, y ∈ supp[m] ⊂ X and all x′, y′ ∈ supp[m′] ⊂ Y , i.e. d̂ extends d and d′

on M tM ′.

Definition 3.5 (D-distance). Given p ≥ 1, the D-distance between two metric

measure spaces is defined as

Dp((X, dX ,mX), (Y, dY ,mY )) = inf
d̂,µ

(∫
M×M ′

d̂p(x, y)dµ(x, y)

)1/p

where d̂ is a coupling of dX and dY , and µ is a coupling of µX and µY .
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The Dp-distance is a complete and separable metric on the family of all isomor-

phism classes of normalised metric measure spaces. While it enjoys certain useful

properties from a theoretical point of view, it isn’t very easy to handle from a

computational perspective, because the optimization with respect to the metric

coupling is difficult to perform in general.

3.2 Distance Between Metric Measure Spaces: Gromov-

Wasserstein Distance

A modified version of Sturm’s definition 3.5 is given by Memoli [66], and is

known as the Gromov-Wasserstein distance. While similar, the definitions are

quite independent. More specifically, Memoli’s definition of Gromov-Wasserstein

distance is inspired by the Gromov-Hausdorff distance between metric spaces.

In fact, while Sturm’s approach originates from the formalism of metric measure

spaces, Memoli definitions and techniques are more data analysis oriented. This

makes Gromov-Wasserstein distances also more amenable for numerical compu-

tation ([66], section 7).

Correspondences. In order to give the definition of Gromov-Wasserstein

distance we introduce the notion of correspondences and the related Gromov-

Hausdorff distance.

Definition 3.6 (Correspondence). Let A and B be sets. A subset R ∈ A × B

is a correspondence between A and B if

• for each a ∈ A, there exist a b ∈ B such that (a, b) ∈ R.

• for each b ∈ B there exist a ∈ A such that (a, b) ∈ R.

We denote by R(A,B) the set of all possible correspondence between A and B.

Gromov-Hausdorff and Gromov-Wasserstein distance
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Definition 3.7. Let (X, d) be a metric space. The Hausdorff distance between

any two sets A,B ∈ X can be expressed as

dH(A,B) = inf
R

sup
(a,b)∈R

d(a, b)

where the infimum is taken over all R ∈ R(A,B).

The Gromov-Hausdorff distance function dGH and the Gromov-Wasserstein dis-

tance function dGW can be defined, using the previous definitions.

Definition 3.8. Let (X, dX), (Y, dY ) be metric spaces and Γ(x, x′, y, y′) =

|dX(x, x′) − dY (y, y′)|. The Gromov-Hausdorff distance between the two met-

ric spaces is:

dGH(X,Y ) =
1

2
inf

R∈R(X,Y )
‖Γ‖L∞(R×R)

Recall the definition of coupling of measures 3.2 in the previous section. Then,

analogously to the Gromov-Hausdorff distance, the Gromov-Wasserstein distance

can be defined. In fact the Gromov-Wasserstein distance can be seen as a relaxed

form of the Gromov-Hausdorff distance [66].

Definition 3.9 (Gromov-Wasserstein). Let (X, dX , µX), (Y, dY , µy) be metric

measure spaces and Γ(x, x′, y, y′) = |dX(x, x′) − dY (y, y′)|. For 1 ≤ p ≤ ∞, the

Gromov-Wasserstein distance between the two mm-spaces is:

dGW (X,Y ) =
1

2
inf

µ∈M(µX ,µY )
‖Γ‖Lp(µ×µ)

It can be shown that the D-distance and the dGW -distance coincide for p =∞.

3.3 Denoising

The term denoising or noise-reduction usually refers to a general procedure

aimed at eliminating the non-signal components from a a dataset. For data

in Euclidean space, if the noise is assumed to be additive, denoising can be

formulated as a deconvolution problem. Equivalently, data in this model are



Chapter 3 The Distance Transform of a Metric Measure Space 39

a mixture of components describing the structure of the noise corrupting each

signal point, and the goal is to retrieve the parameters of this mixture.

We propose an idea that takes advantage of the properties of Lipschitz functions

in high dimensional spaces, to perform denoising on a dataset. This algorithm

operates at the level of metric measure spaces and is thus not limited to data in

Euclidean spaces. Although this idea is essentially already proposed by Dubnov

et al. in 2002 [16], the analysis we provide sheds new light on its properties in

the context of high dimensional data.

3.3.1 A transform on metric measure spaces

We define the following map on the set of metric measure spaces, which we call

the distance transform:

Definition 3.10. For {X, d, µ} a metric measure space, define φX : X → RX by

φX(x) = d(x, .) for all x ∈ X. Given p ≥ 1, if X is such that the image of φX is in

Lp(X), the distance transform of X is the metric measure space Φ(X) = φX(X).

It is clear from the triangle inequality that φX is always non expansive, so that

distances in Φ(X) are at most the ones in X. Also, for p =∞, Φ reduces to the

identity map, since |d(x, y)− d(y, y)| = d(x, y).

3.3.2 Stability

We first check that the distance transform is robust with respect to perturbations

of the input mm-space. More precisely:

Lemma 3.11. The map Φ is 2-Lipschitz for any p ≥ 1:

dGW (Φ(X),Φ(Y )) ≤ 2dGW (X,Y )

for any two mm-spaces X and Y for which Φ is defined.

Proof. We consider for simplicity the case of Gromov-Wasserstein distances with

exponent 1. The GW -distance between the images of X = (X, dX , µX) and

Y = (Y, dY , µY ) can be written
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dGW (Φ(X),Φ(Y )) =
1

2
inf

µ∈M(µX ,µY )

∫
|‖dX(x, .)− dX(x′, .)‖Lp(µX)

−‖dY (y, .)− dY (y′, .)‖Lp(µY )|dµ(x, y)dµ(x′, y′)

≤ 1

2
inf
pX ,pY

∫
|‖dX(pX(a), pX(.))− dX(pX(a′), pX(.))‖Lp(Ω)

−‖dY (pY (b), pY (.))− dY (pY (b′), pY (.))‖Lp(Ω)|dada′dbdb′

≤ 1

2
inf
pX ,pY

∫ ∣∣∣∣ (∫ (dX(pX(a), pX(z))− dX(pX(a′), pX(z)))pdz

)1/p

−
(∫

(dY (pY (b), pY (t))− dY (pY (b′), pY (t)))pdt

)1/p ∣∣∣∣dada′dbdb′
≤ 1

2
inf
pX ,pY

∫ (∫
(dX(pX(a), pX(z))− dY (pY (b), pY (t)))pdz

)1/p

+

(∫
(dX(pX(a′), pX(z))− dY (pY (b′), pY (t)))pdt

)1/p ∣∣∣∣dada′dbdb′
≤ 2dGW (X,Y )

In the second line we reformulated couplings as measure preserving parametriza-

tions pX and pY of both measures µX and µY over a common probability space

Ω. In the fourth line we swap terms between the two Lp norms using the triangle

inequality, which gives the desired claim.

3.3.3 Behavior with respect to products

Given two mm-spaces X = (X, dX , µX) and N = (N, dN , µN ) their product is

the mm-space X ×N = (X ×N, dX×N , µX ⊗ µN ), with dX×N ((x, n), (x′, n′)) =

dX(x, x′) + dN (n, n′). Thinking of X as the “signal”, for example a low dimen-

sional manifold, and of N as the “noise”, for example a Gaussian space, the

product X × N can be thought of as a noise corrupted version of X. In this

model of noise, if N is a high dimensional Gaussian space, generally X ×N will

be very far from X in the GW-distance, as distances will be typically increase

by the variance of the Gaussian, which is proportional to its dimension. We ob-

serve below that applying the distance transform has the effect of considerably

reducing that effect if N satisfies the concentration of measure property:



Chapter 3 The Distance Transform of a Metric Measure Space 41

Lemma 3.12. If N has σ-concentration, then

dGW (Φ(X),Φ(X ×N)) ≤ O(σ)

for any fixed finite p, the Gromov-Wasserstein distance being computed with

exponent p.

Proof.

d(φ(x, n), φ(x′, n′)) = ‖d(x,n) − dx′,n′)‖Lp(X×N)

=

(∫
|dX(x, y) + dN (n,m)− dX(x′, y)− dN (n′,m)|pdµX(y)dµN (m)

)1/p

≤
(∫
|dX(x, y)− dX(x′, y)|pdµX(y)

)1/p

+

(∫
|dN (n,m)− dN (n′,m)|pdµN (m)

)1/p

Hence

|d(φ(x, n), φ(x′, n′))− d(φ(x), φ(x′))| ≤
(∫
|dN (n,m)− dN (n′,m)|pdµN (m)

)1/p

But (n, n′,m) 7→ dN (n,m)− dN (n′,m) is 4-Lipschitz and has zero mean, hence

by concentration its norm in Lp(N
3) is O(σ). Therefore, using the projection

X ×N → X as coupling, we have

dGW (Φ(X),Φ(X ×N))p ≤
∫
|d(φ(x, n), φ(x′, n′))− d(φ(x), φ(x′))|pdµX(x)dµX(x′)dµN (n)dµN (n′)

≤
∫
|dN (n,m)− dN (n′,m)|pdµN (m)dµN (n)dµN (n′)

≤ O(σp)

which is the desired claim.
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3.3.4 Distortion bound for simple spaces

While the above paragraph shows that the distance transform has noise reduc-

tion properties, one should bear in mind that it does affect the signal as well.

However, the distortion can be controlled for low dimensional spaces, for example

as follows:

Lemma 3.13. Let X = (X, d, µ) be a metric measure space. If there exists c > 0

such that

(i) the balls of radius c/2 have measure at least λ

(ii) any ball of radius 2c can be mapped to an Euclidean d-ball by a measure-

preserving bijection that changes pairwise distances by at most ε

then X and Φ(X) are approximately bilipschitz equivalent, in the sense that

d(x, y) ≥ dΦ(X)(φ(x), φ(y)) ≥ C(d, p, λ)(d(x, y)− ε)

for all x, y in X.

Proof. The first inequality always holds. For the second one, we first consider

the case where d(x, y) ≥ 2c. Function d(x, .) − d(y, .) is 2-Lipschitz and equals

d(x, y) at y. Hence it is larger than d(x, y) − c ≥ d(x, y)/2 on B(y, c). As a

consequence the Lp norm of dx − dy is at least λ1/pd(x, y)/2. If d(x, y) < 2c, we

use the fact that B(x, 2c) is close to a Euclidean d-ball B. Let ψ be the measure

preserving bijection given by assumption (ii), and let µx = µ|B(x,2c)/µ(B(x, 2c))

and ν be the uniform probablity distribution of B. By change of variable, we

see that

‖dx − dy‖Lp(µx) ≥ ‖dB(ψ(x), .)− dB(ψ(y), .)‖Lp(ν) − ε

By elementary geometry, it is easy to see that the first term in the right hand

side is at least CdB(ψ(x), ψ(y)), where C depends on d and p. Hence

‖dx − dy‖Lp(µx) ≥ Cd(x, y)− (C + 1)ε
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And since B(x, 2c) has measure at least λ by assumption (i), we obtain

‖dx − dy‖Lp(µ) ≥ λ1/p(Cd(x, y)− (C + 1)ε)

which proves the desired claim.

The constant C in the above lemma intuitively depends on the dimension and

on the “geometric complexity” of X. Indeed, parameter λ is related to the

number of “simple” patches that are required to cover X. If X is for example

a Riemannian d-manifold, there exists a radius c such that X looks ε-close to

Euclidean space at scale c, and 1/λ indicates how small that scale is with respect

to the size of the whole manifold. Using differential geometric estimates, it can

be shown for example that λ is controlled by a function of the volume of the

manifold, its maximum absolute sectional curvature and its injectivity radius.

It seems likely that in the Riemannian case, X and its distance transform are

guaranteed to be bilipschitz equivalent rather than approximately so.

Regarding the application of the distance transform to data, we note that it is

trivially implementable given data in the form of a finite input metric measure

space. However, rather than further developping this initial idea in a broad

context, we refine it in the context of Euclidean spaces in the next chapter of

thesis.



Chapter 4

Spectral Properties of Radial

Kernels and Clustering in

High Dimensions

4.1 Introduction

Given a set of data points drawn from a mixture of distributions, a basic problem

in data analysis is to cluster the observations according to the component they

belong to. For this to be possible, it is clearly necessary to impose separation

conditions between the different components in the mixture.

Many approaches have been proposed to solve the problem of clustering mixtures

of distributions. We give below a brief historical account of the algorithms that

come with theoretical guarantees, focusing on the high dimensional situation.

Unlike in the low dimensional dimensional case, approaches based e.g. on single

linkage or spectral clustering cannot be employed, because such methods require

dense samples which would have an unreasonably large cardinality. The first re-

sult in this field, due to Dasgupta, used random projection onto a low dimensional

subspace [67]. It was shown that a mixture of Gaussians with unit covariance in

dimension n could be provably well clustered if the separation between the means

of the components was O(
√
n). The result was later improved by Dasgupta and

Schulman [68] using a variant of EM for unit covariance Gaussians, and by Arora

44
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and Kannan [69], using a distance-based algorithm, for Gaussians with at most

unit covariance. These methods, to correctly classify the components, require a

O(n1/4) separation between the centers of the Gaussian. For mixtures of unit

covariance Gaussians, Vempala and Wang [70] used PCA to obtain a dimension-

free separation bound, which depends only on the number of the components.

Their method is based on the fact that the space spanned by the k top singular

vectors of the mixture’s covariance matrix contains the centers of the compo-

nents. Projecting to this space has the effect of reducing the variance of each

component while maintaining the separation between the centers. Kannan et

al. [71] extended this idea to mixtures of log concave distributions with at most

unit covariance, also requiring a separation between the centers that depends

only on the number of the components. Achlioptas and McSherry [72] improved

further the dependency of the separation bound on the number of components.

A combination of PCA with a reweighting technique was proposed by Brubaker

and Vempala [73]. This method is affine invariant and can deal with highly

anisotropic inputs as a result. When applied to a sample from a mixture of two

Gaussians, the algorithm correctly classifies the sample under the condition that

there exists a half space containing most of the mass of one Gaussian and almost

none of the other. Finally, a different family of approaches uses the moments

of the mixture to learn the parameters of the components. Strong results have

been obtained in this direction (see e.g. [18, 74]). These methods do not re-

quire any separation assumption, however their downside is that they require a

priori knowledge of a small parametric family containing the component’s dis-

tributions. They also become inefficient when applied to high dimensional data,

since the number of moments involved grows rapidly with the dimension. For

example, the currently fastest algorithm [18] for learning mixtures of Gaussians

runs in time O(n6).

Another possible approach to the analysis of mixtures uses kernel matrices. On

a dataset {x1, ...xN} of N points in Rn a kernel function k : Rn×Rn → R defines

a N × N kernel matrix whose ij entry is k(xi, xj). An important class of ker-

nels are positive definite kernels, which are those for which the associated kernel

matrix is positive definite for any dataset. The use of such kernel matrices, and
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in particular of their spectral decomposition as in the popular kernel PCA algo-

rithm, has long become commonplace in data analysis. Still, surprisingly little

is known regarding theoretical justifications for kernel based clustering meth-

ods. Notably, the analysis in [75] implies that a kernel PCA type algorithm will

correctly cluster mixtures when the components are sufficiently separated. How-

ever, the arguments used in this paper follow the low (or constant) dimensional

intuition and the required separation between the components is of the order of

the width of the kernel, which typically leads to a separation that grows like the

square root of the dimension.

In order to improve the above analysis of kernel PCA, it is necessary to better

understand the behavior of kernel matrices and of their spectra as the dimen-

sion increases. Again, while the literature on eigenvalues of random matrices is

vast and growing rapidly, the knowledge about random kernel matrices is much

scarcer. A notable exception is [52], which gives an asymptotic description of

radial kernel matrices of the form k(xi, xj) = h(‖xi−xj‖2/n) as the dimension n

tends to infinity, for a fixed function h. In the case of distributions whose coor-

dinates are independent after some linear change of coordinate, e.g. Gaussians,

it is shown that the kernel matrices converge in the operator norm to a certain

matrix related to the covariance of the data. Under the weaker condition that

the distribution enjoys concentration properties, the corresponding convergence

result is proved to hold at the level of spectral distributions, but no result is

derived for individual eigenvalues.

In this paper, we prove new results about radial kernel matrices of mixtures

of high dimensional distributions. Unlike [52], we do not assume independence

of coordinates. Rather, we only assume that the components in the mixtures

have exponential concentration. Specifically, we show that such matrices can

be very well approximated by the sum of a matrix that is row constant within

each component and a matrix that is column constant within each component.

For distance matrices of mixtures with a single component, the result implies

a large spectral gap between the two largest eigenvalues: The ratio between

these eigenvalues is of the order of the dimension, rather than that of the square

root of the dimension, as one might naively expect from basic concentration

results. When the input distributions are supported on a sphere, this “double
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concentration” phenomenon is enhanced and large eigenvalue gaps arise for kernel

matrices more general than distance matrices. The proof technique is geometric

and very different from the one used in [52].

For positive kernels, a consequence of the above result is that kernel PCA is a

valid clustering method as long as the Gram matrix of the mixture’s components,

when viewed as elements of the corresponding Reproducing Kernel Hilbert Space

(RKHS), is sufficiently well conditioned. In particular, this allows to check that

kernel PCA allows to correctly clusters mixtures of two Gaussians with a required

separation between centers that does not depend on the dimension.

In the case of even distributions supported on a sphere and satisfying a Poincaré

inequality, we further show that our main result can be strengthened, so that

kernel matrices are well approximated by block constant matrices, provided the

kernel, which may or may not be positive, is smooth enough. We also design

a specific non positive kernel for which this result can be extended to non nec-

essarily even (and non necessarily centered) distributions. This kernel is not of

the form studied in [52], so the results of this paper do not apply even for Gaus-

sian mixtures. Based on this kernel, we derive a simple spectral algorithm for

clustering mixtures with possibly common means. This algorithm will succeed if

the angle between any two covariance matrices in the mixture (seen as vectors in

Rn2
) is larger than O(n−1/6 log5/3 n). In particular, the required angular separa-

tion tends to 0 as the dimension tends to infinity. To the best of our knowledge,

this is the first polynomial time algorithm for clustering such mixtures beyond

the Gaussian case.

4.2 Kernels in high dimensions

Our analysis of kernel matrices for high dimensional data hinges on the concen-

tration of measure phenomenon. Concentration of measure is a property of met-

ric measure spaces that roughly says that regular functions are nearly constant

[58–60]. It can be observed in many spaces, typical examples being Gaussian

spaces or manifolds with Ricci curvature bounded below. We give precise defi-

nitions below for a probability measure µ on Rn. We say that f : Rn → R has
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exponential σ-concentration, or σ-concentration for short, for some σ > 0, if for

any ε > 0:

µ{x : |f(x)−M(f)| ≥ ε} ≤ O(e−
ε
σ )

where M(f) is a median of f . The measure µ is said to have σ-concentration

if all 1-Lipschitz functions have σ-concentration. In particular, we have that f

equals M(f) plus or minus O(σ) with high probability.

Levy’s lemma [61] states that an isotropic Gaussian with covariance σ2I has

Gaussian concentration, which is a stronger property implyingO(σ)-concentration.

This result is also true for anisotropic Gaussians if one takes σ2 to be the maxi-

mum eigenvalue of the covariance matrix. In particular, it implies that for high

dimensional Gaussian spaces, most of the points are at about the same distance

from the center. More precisely, almost all the mass of an isotropic Gaussian

is concentrated in a spherical shell of radius σ
√
n and thickness O(σ). Indeed,

for an isotropic Gaussian vector x, E(‖x‖2) = σ2n. As distance functions are

1-Lipschitz, by Levy’s lemma, they have σ-concentration. Hence the distance

from a random point to the center differ by at most O(σ) from σ
√
n, with high

probability.

A stronger form of concentration that we will also consider is based on Poincaré

inequality. We will say that a probability measure µ satisfies a Poincaré inequal-

ity if for any Lipschitz function f : Rn → R whose mean is zero with respect to

µ, we have ∫
f2dµ ≤ O(1)

∫
‖∇f‖2dµ

A probability measure that satisfies a Poincaré inequality necessarily has O(1)-

concentration [76]. Gaussians distributions whose covariance have O(1) eigen-

values are known to satisfy a Poincaré inequality. The famous KLS conjecture

[17] states that uniform distributions over isotropic convex bodies, and more

generally isotropic measures with log-concave densities also do.
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4.2.1 Main result

We consider a mixture µ of k distributions µi in Rn, with weights wi, which

we treat as numerical constants. We assume that each component µi has O(1)-

concentration. Drawing a sample of N points independently from the mixture

gives a point set X that is, with probability 1, the disjoint union of subsets Xi,

corresponding to each component. The radius of µi is the quantity (Eµi ||x −

Eµix||2)1/2 for a random variable x with law µi, and we denote by R the smallest

radius of the µi. We consider a function h : R+ → R and the associated radial

kernel. This defines a kernel matrix Φh(X) whose entries are h(‖xi − xj‖)/N ,

for xi, xj in X. We assume that the indices are ordered in such a way that the

components form contiguous intervals ; in particular, we have a natural block

structure (doubly)-indexed by the components.

Theorem 4.1. If the number of samples N is drawn according to the Poisson

distribution with mean N0, then with arbitrarily high probability, we have:

‖Φh(X)−A‖ ≤ O

(
ch + ‖h‖∞

√
n logN0

N0

)

where the entries of A in the ij block are given by

Axy =
1

N

(∫
h(‖x− z‖)dµj(z) +

∫
h(‖y − z′‖)dµi(z′)−

∫
h(‖z − z′‖)dµi(z)dµj(z′)

)

and with

ch = sup
r≥R/2

(
|h′′(r)|+ 1

r
|h′(r)|

)
+ ‖h′‖∞ exp (−Θ(R))

Furthermore, if the components µi are supported on the sphere centered at 0 with

radius
√
n, and have mean at distance O(1) from the origin, the conclusions

above hold with ch replaced by

c′h = sup
r≥R/Θ(log(R))

(
log2(R)|h′′(r)|+ |h′(r)|

r

)
+ ‖h′‖∞/R

The proof of Theorem 4.1 follows from the analysis of the map sending each

point x in Rn to its kernel function h(‖x − .‖) in L2(Rn, µ) or, more precisely,
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of a finite sample version of this map. That analysis crucially depends on the

fact that in Euclidean spaces, the cross derivative of the distance ∂2

∂x∂y‖x − y‖

is upper bounded by O(1/‖x − y‖). A first consequence of Theorem 4.1 is the

following result about the spectrum of Φh(X), which follows directly from the

variational characterization of eigenvalues:

Corollary 4.2. Under the assumptions of Theorem 4.1, the spectrum of Φh(X)

has at most k eigenvalues larger than O
(
ch + ‖h‖∞

√
n logN0

N0

)
, and at most k

eigenvalues smaller than −O
(
ch + ‖h‖∞

√
n logN0

N0

)
, with arbitrarily high proba-

bility.

4.2.2 Distance matrices

To illustrate Theorem 4.1, setting for example h(r) = r gives a description of

distance matrices. Consider the case of a sample drawn from a mixture of k

Gaussians with unit covariance. If xi and xj are drawn independently from two

Gaussians in the mixture, xi−xj is a Gaussian with covariance 2I. Concentration

of measure then implies that the entries ||xi − xj || of each block concentrate

around their mean value, i.e. they differ by at most O(1) from the mean of the

block with high probability:

Φh(X) =


Φ11 ·· Φ1k

... ··
...

Φk1 ·· Φkk

 =
1

N


m1 ±O(1) ·· m1k ±O(1)

... ··
...

mk1 ±O(1) ·· mkk ±O(1)

 (4.1)

A finer description of Φh(X) is given by Theorem 4.1. For an isotropic Gaussian,

the radius R is Θ(
√
n), and from |h′| = 1, |h′′| = 0 we get ch = Θ (1/

√
n).

The dependancy on the average number of samples N0 in Theorem 4.1 involves

‖h‖∞, which is unbounded. However, assuming for example that the centers of

the components are at distance O(1), then the fraction of pairs of sample points

whose distance is larger than an appropriate constant times
√
n is exponentially

small by concentration. Hence we can first modify h by thresholding such that
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‖h‖∞ becomes O(
√
n), with an exponentially small change in Φh(X). Further-

more, by making the transition between the linear part and the constant part

smooth enough, we can ensure that the second derivatives of the modified kernel

g are O(1/
√
n), so that cg = O(1/

√
n). Applying the theorem to g implies that

with a polynomial number of samples (N0 = Ω(n3 log n) suffices), with arbitrarily

high probability, each block of Φh(X) has the following structure

Φij =
1

N


a1 a2 ·· aNi

a1 a2 ·· aNi
...

... ··
...

a1 a2 ·· aNi

+
1

N


b1 b1 ·· b1

b2 b2 ·· b2
...

... ··
...

bNj bNj ·· bNj

+B

with ‖B‖ = O(1/
√
n). Note that the error term B is now much smaller than the

one in (4.1), which is a priori up to O(1) in the operator norm.

Furthermore, for each block the vectors (as) and (bt) are, up to a constant,

averages of the columns of the distance matrix. As a result these vectors are

1-Lipschitz and thus have O(1)-concentration. Also, we can assume they have

the same mean, namely half the average distance mij within the block, that is,

at least Ω(
√
n). So we can write as = mij(1 + εs)/2 and bt = mij(1 + δt)/2 with

εs and δt in O(1/
√
n) with high probability. This implies that each block is very

well approximated by a rank one matrix. Indeed

as + bt = mij(2 + εs + δt)/2 = mij((1 + εs/2)(1 + δt/2) +O(1/n))

In particular, the normalized distance matrix of points drawn according to a

single Gaussian has only one eigenvalue that is larger than O(1/
√
n), this top

eigenvalue being Θ(
√
n). This observation, which we stated for isotropic Gaus-

sians for concreteness, applies to any distribution with O(1)-concentration and

variance Θ(n) as well.

We also remark that in the case of distributions on the sphere with O(1)-

concentration and variance Θ(n), the contribution of h′′ in the error bound in

Theorem 4.1 is divided by Θ(
√
n/ log3 n), which makes it possible to extend the

above discussion to kernels other than distance functions. We do not elaborate
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further as the spherical case will be studied in more detail in the sequel of the

paper.

4.3 Positive definite kernels and clustering

For radial kernels that are positive definite, i.e. that define positive definite

kernel matrices, Corollary 4.2 implies that there are at most k significant eigen-

values for mixtures of k probability measures that concentrate. We can use this

result to provide guarantees for a simple clustering algorithm. First, assuming a

certain gap condition, we can relate eigenspaces of the kernel matrix to the space

of piecewise constant vectors, i.e. vectors that are constant on each component

in the mixture.

The required gap condition can be conveniently formulated in terms of kernel

distances [77, 78]. Recall that kernel distances are Hilbertian metrics on the set

of probability measures, which are obtained by embedding the ambiant Euclidean

space into a universal RKHS. More precisely, given two probability measures µ1

and µ2 on Rn, the expression

〈µ1, µ2〉 =

∫
h(||x− y||) dµ1(x)dµ2(y)

is a positive definite kernel and the kernel distance is the associated distance.

Proposition 4.3. Assume h defines a positive definite kernel, and that the con-

ditions of Theorem 4.1 are satisfied. Let

Gh = (〈µi, µj〉)i,j=1...k

be the Gram matrix of the components in the kernel distance.

If the smallest eigenvalue of Gh is at least Kch, then the maximum angle formed

by the space spanned by the top k eigenvectors of Φh(X) and the space of piecewise

constant vectors is at most O(1/
√
K), with arbitrarily high probability, provided

N0 ≥ N1, with:

N1 = O

(
‖h′‖2∞
c2
h

+
n‖h‖2∞
c2
h

log

(
n‖h‖2∞
c2
h

))
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Under these assumptions we can provide a guarantee for the following basic

kernel PCA clustering algorithm. First, we perform a spectral embedding us-

ing the k top eigenvectors of Φh(X). Namely, each data point x is mapped to

(φ1(x), . . . , φk(x)), φ1, . . . , φk being the k dominant eigenvectors of Φh(X). In

order to have the right dependency on the total number of points, these eigen-

vectors are scaled to have norm
√
N . By the above proposition, this will give a

point cloud that is O(
√

1/K) close in the transportation distance W2 to a point

cloud obtained using the embedding provided by an orthogonal basis of piece-

wise constant vectors, scaled to have norm
√
N . Note that in the latter point

cloud, each component becomes concentrated at a single location, the distance

between any two such locations being Ω(1). In such a situation, any constant

factor approximation algorithm for the k-means problem will find a clustering

with a fraction of at most O(1/K) misclassified points. We just proved:

Corollary 4.4. If the assumptions of Proposition 4.3 are satisfied, kernel PCA

allows to correctly cluster a 1−O(1/K) fraction of the mixture, with arbitrarily

high probability.

As an example, we consider the case of a mixture of two Gaussians using a

Gaussian kernel h(r) = exp(−r2/(2τ2)). In this case, matrixGh can be computed

in closed form, so that the conditions of Proposition 4.3 can be checked explicitly.

Corollary 4.5. Consider a mixture of two Gaussians with O(1)-concentration

in Rn. Assuming that the variance of each Gaussian is Θ(n), for τ = Θ(
√
n),

Gaussian kernel PCA allows to correctly cluster a 1 − O(1/K) fraction of the

mixture if the distance between the centers is K.

The choice of variance for the components in the above corollary is to fix ideas,

similar conclusions would hold with other behaviors. The above guarantee

matches the dimension-independent separation required by the PCA-based algo-

rithms described in [71, 72] for example. Finally, the results in this section are

in fact not strongly tied to the Hilbertian nature of positive kernels. More pre-

cisely, they may be easily extended to conditionally positive kernels, by simply

restricting the involved quadratic forms to the space of zero mean functions. We

omit further details.
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4.4 Covariance based clustering

As shown in the above section, the approximation of kernel matrices provided

by Theorem 4.1 is sufficient to conclude that their top eigenvectors are nearly

constant on the clusters if the kernel is positive, which allows to correctly cluster

the data. Unfortunately, while we showed that positive kernels could allow to

cluster e.g. mixtures of Gaussians with different enough centers, the range of

cases that can be successfully clustered using positive kernels remains unclear at

this stage. In this section we show that by relaxing the positivity constraint, one

can design kernels that can deal with more difficult situations, such as mixtures

of distributions with common centers but different covariances. While Theorem

4.1 alone is insufficient for this purpose, we show that stronger conclusions can

be obtained assuming that the components of the mixtures are supported on

the sphere S with radius
√
n and centered at the origin, and satisfy a Poincaré

inequality. Namely, kernel matrices can then be approximated by block constant

matrices, rather than a sum of column and row constant matrices within each

block. We state below such a result for general kernels, assuming the input distri-

butions are even. We also consider the case of non necessarily even distributions

with small enough means. Similar conclusions can then be drawn for the kernel

ht(r) = cos

(
t√
n

(n− r2/2)

)

where t is a parameter. The argument is more direct and avoids the use of

Poincaré inequality. A more transparent way to write this kernel is to remark

that for x and y on S,

ht(‖x− y‖) = cos

(
t√
n
< x, y >

)

Note that ht has a perhaps non intuitive behavior compared to the most com-

monly used kernels as it oscillates Θ(
√
n) times over the sphere S for t = Θ(1)

for example.

Theorem 4.6. Assume measures µi are supported on S, even, and satisfy a

Poincaré inequality. Let h̃(r) = h′(r)/r. If the number of samples N is drawn

according to the Poisson distribution with mean N0, then with arbitrarily high
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probability, we have:

‖Φh(X)−B‖ ≤ O

(
c′h +

√
nc′

h̃
+ ‖h‖∞

√
n logN0

N0

)

where the entries of B in the ij block are all equal to

Gh(i, j)/N =
1

N

(∫
h(‖z − z′‖)dµi(z)dµj(z′)

)

For the kernel ht, if measures µi are supported on S, have O(1)-concentration

and if their means are at distance O(1) from the origin, then:

‖Φht(X)−B‖ ≤ O

(
t log3 n√

n
+

√
n logN0

N0

)

with arbitrarily high probability for t = O(1).

In particular, in the case of even distributions satisfying a Poincaré inequality,

letting the sample size go to infinity, expliciting the upper bound in the first

part of the theorem implies that for any fixed bounded function h with bounded

derivatives up to the third order, the radial convolution operator from L2(Rn, µi)

to L2(Rn, µj) has at most one singular value larger than O(log3 n/
√
n). It seems

likely that the logarithmic factor can in fact be removed, by replacing the Lips-

chitz extension argument by a Dirichlet energy estimate in the proof of Theorem

4.1.

We now show that the second part of the above theorem can be used to cluster

high dimensional mixtures based on the components covariance matrices. We

assume that the components µi have O(1)-concentration and variance Θ(n). As

the PCA algorithm of [71] allows to separate components whose means are at

distance at least Ω(1) from the other means, it is sufficient to consider the case

where all means are at distance O(1) from the origin. We denote by Σi the non

centered covariance matrix of µi. Given s > 0 and a symmetric matrix M , we

define fs(M) to be the matrix having the same eigenvectors as M , eigenvalues
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being transformed by function λ 7→ fs(λ), with fs(λ) = max(0, |λ| − s). Let

∆ =
√
nmin
u6=v

∥∥∥∥ Σu

traceΣu
− Σv

traceΣv

∥∥∥∥
2

As covariance matrices have trace Θ(n), they have Frobenius norm Θ(
√
n), so

that ∆ = Ω(αmin), αmin being the minimum angle between any two covari-

ance matrices. Let further C1, C2 be two appropriate universal constants. The

algorithm we propose is the following:

Algorithm 1 CovarianceClustering(X)

X̃ = data points projected on S

Φ = Φht(X̃), with t = C1∆

Approximately solve the k-means problem for the columns of fC2∆4(Φ)

To prove that this algorithm succeeds, we apply Theorem 4.6 to the data pro-

jected on S, which tells us that Φht(X̃) is well approximated by block constant

matrix B. We then show that under our separation assumptions, matrices Ght

are well-conditioned in the case of mixtures of two components. Using this fact,

we show that the columns fC2∆4(B) corresponding to different components are

sufficiently far apart. Applying a perturbation bound then allows to conclude,

and obtain the following guarantee:

Theorem 4.7. If ∆ ≥ Kn−1/6 log5/3 n, the above algorithm allows to correctly

cluster a O(1/K6) fraction of the mixture with arbitrarily high probability, pro-

vided N0 ≥ N1, with:

N1 = O
(
log(n/∆)n2/∆2

)
Hence clustering will succeed if the minimum angle αmin between the components

covariances is larger than O(n−1/6 log5/3 n). First note that one case is not

covered by this algorithm, namely the case where different components have

covariance matrices differing only by a scaling. This situation can be dealt with

easily by clustering the data according to the distance to the origin. A second

remark can be made about the sample size. The guarantee given above aims for

the smallest angular separation, and as a result requires a number of points that is
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more than quadratic in the dimension. While it is possible that a better analysis

would give smaller sample sizes in this regime, we remark that if αmin = Ω(1), the

proof can be modified to show that correct clustering will require only O(n log n)

points. Indeed, in this situation, the error bound in Theorem 4.6 is dominated

by the contribution of the sample size, and having O(n log n) points will make

it small enough so that the rest of the analysis can be applied.

To conclude, we give some numerical results on specific examples of equal weight

mixtures of two Gaussian distributions µ1 and µ2 with mean zero on Rn, with n

even. The covariances Σ1 and Σ2 are both diagonal in the standard basis. For a

parameter s > 0, the eigenvalues of Σ1 are 1+s on the first n/2 coordinates, and

1−s on the last n/2 coordinates. Eigenvalues of Σ2 are reversed, so that Σ1+Σ2 =

2I, meaning that the whole distribution is isotropic. Under the assumptions of

Theorem 4.7, as shown in the proof, the spectral soft thresholding operation

used in the algorithm will leave at most 2 non zero eigenvalues. Rather than

implementing the whole algorithm, we just plot the second dominant singular

vector of Φ, as the first one turns out not to separate the components. Figure

4.1 shows it for s = 0.9, n = 10, s = 0.6, n = 100, s = 0.33, n = 1000 and

s = 0.2, n = 10000, with t = 0.1. In all cases each Gaussian has n sample

points. We see that the clusters are easily detected. Note that in the latter case,

the Gaussians are nearly spherical, the relative error being of roughly 10% in

terms of standard deviation.

4.5 Proofs

We give the proof of Theorem 4.1 in section 5.1, of Proposition 4.3 in Section

5.2, and of Corollaries 4.2 and 4.5 in Sections 5.3 and 5.4. Theorems 4.6 and 4.7

are proved in Sections 5.5 and 5.6.

4.5.1 Proof of Theorem 4.1

For technical reasons we will not work directly with the input measure µ, but

rather with its empirical measure µ̄ =
∑

iwiµ̄i, the number of samples being

drawn according to a Poisson distribution with appropriately large mean M0.
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Figure 4.1: Second singular vector of Φ for isotropic mixtures of centered
Gaussians.

Since the µi have O(1)-concentration, a vector X with law µi satisfies E(|X −

EX‖q)1/q = O(
√
n) for constant q ≥ 1, which implies (see e.g. [79]) that

E(Wl(µi, µ̄i)) = O(nM
−1/n
0 )

where Wl are the transportation distances for l = 1 or 2. By Markov inequality,

for any δ > 0, these distances are at most δ with probability at least 1− p, with

p = O

(
nM

−1/n
0

δ

)

Consider the map

φµ̄ :Rn → L2(Rn, µ̄)

x 7→ φµ̄(x) = h(‖x− ·‖)

The gist of our proof of Theorem 4.1 is as follows. We first observe that the

directional derivatives of φµ̄ at each point satisfy a Lipschitz condition with a

small constant. More precisely, this is true after modifying them in a small region,

which is enough for our purposes. Using concentration of measure, this implies

that these derivatives, modulo piecewise constant functions on the components,

are small. This can be further reinterpretated as saying that φµ̄, after centering
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on each component, has a small Lipschitz constant. Because each component

has constant concentration by assumption, this implies that the image of each

component by φµ̄, after centering on each component, has small concentration.

The desired claim on the block structure of Φh(X) can then be deduced.

4.5.1.1 A property of φµ̄

Let E ∈ L2(Rn, µ̄) be the space of functions that are constant on the support

of each µi, and PE and PE⊥ denote the orthogonal projectors onto E and E⊥.

Further denote by S the sphere with radius
√
n centered at 0.

Proposition 4.8. With probability at least 1− p, for any x1 and x2 ∈ Rn,

‖PE⊥φµ̄(x1)− PE⊥φµ̄µ(x2)‖ ≤ O(ch(δ))‖x1 − x2‖

Furthermore if measures µi are supported on S and their mean is O(1), then

with probability at least 1− p, for any x1 and x2 in S:

‖PE⊥φµ̄(x1)− PE⊥φµ̄(x2)‖ ≤ O(c′h(δ))‖x1 − x2‖

with

ch(δ) = (1 + δ)ch +
√
δ‖h′‖∞

c′h(δ) = (1 + δ)c′h +
√
δ‖h′‖∞

To prove the first part of Proposition 4.8 we argue that

‖PE⊥φµ̄(x1)− PE⊥φµ̄(x2)‖2 ≤ sup
x0,v,‖v‖=1

∥∥∥∥∥ d

dx

∣∣∣∣
v,x=x0

PE⊥φµ̄

∥∥∥∥∥
2

‖x1 − x2‖

≤ sup
x0,v,‖v‖=1

∥∥∥∥∥PE⊥ d

dx

∣∣∣∣
v,x=x0

φµ̄

∥∥∥∥∥
2

‖x1 − x2‖

≤ sup
x0,v,‖v‖=1

(∑
i

wi

∥∥∥∥fi − ∫ fidµ̄i

∥∥∥∥2

2

)1/2

‖x1 − x2‖



Chapter 4 Spectral Properties of Radial Kernels and Clustering in High
Dimensions 60

where in the last line fi denotes the directional derivative of φµ̄i at x0 in direction

v. To conclude, it is sufficient to prove that

sup
x0,v,‖v‖=1

∥∥∥∥fi − ∫ fidµ̄i

∥∥∥∥
2

≤ O(ch(δ)) (4.2)

For the second part, we use a similar argument except that we interpolate be-

tween x1 and x2 using a great circle on S instead of a straight line. This shows

that establishing

sup
x0,v,‖v‖=1,〈v,x0〉=0

∥∥∥∥fi − ∫ fidµ̄i

∥∥∥∥
2

≤ O(c′h(δ)) (4.3)

suffices to conclude. Proving these two inequalities is the point of the rest of this

section. For some ρ > 0, let

Lv,ρ = {y| |〈y, v〉| ≤ 1/ρ}

Further define:

dh = sup
r≥ρR

(
|h′′(r)|+ 1

r
|h′(r)|

)
d′h = sup

r≥ρR

(
|h′′(r)|
ρ2r

+
1

r
|h′(r)|

)

Lemma 4.9. Function fi is dh-Lipschitz outside B(x0, ρR) and |fi| is bounded

everywhere by sup |h′|. Furthermore, if v is a unit tangent vector at x0 ∈ S, then

fi is d′h-Lipschitz on Lv,ρ \B(x0, ρR).

Proof. We consider the radial coordinate system (r, θ) centered at x0, where θ

denotes the angle formed by y − x0 and v. A direct calculation shows that

fi(y) =
d

dx

∣∣∣∣
v,x=x0

φµ̄i(x)(y) = h′(r) cos θ

Hence

d

dr
fi(r(y), θ(y)) = h′′(r) cos θ

d

dθ
fi(r(y), θ(y)) = −h′(r) sin θ
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Noticing that r is a 1-Lipschitz function of y, and that |dθ/dy| ≤ 1/r allows to

bound the derivatives of fi in the radial and tangent directions using the chain

rule, implying:

‖∇fi(y)‖ =

(
(h′′(r(y)) cos θ(y))2 +

(
h′(r(y))

r(y)
sin θ(y)

)2
)1/2

≤ max

(
h′′(r(y)) | cos θ(y)|, h

′(r(y))

r(y)

)

Using that | cos θ(y)| ≤ 1/(ρ2r) on Lv,ρ \B(x0, ρR), the conclusion follows.

Lemma 4.10. We can write fi = f̃i + gi, where f̃i is dh-Lipschitz, and gi is

supported on B(x0, ρR) with ||gi||∞ ≤ 2 supr |h′(r)|. If v is a unit tangent vector

at x0 ∈ S, then we can find a similar decomposition with f̃i d
′
h-Lipschitz and gi

supported on B(x0, ρR) ∪ Rn \ Lv,ρ with ||gi||∞ ≤ 2 supr |h′(r)|.

Proof. Define f̃i to be a dh-Lipschitz extension of fi|Rn\B(x0,ρR) to Rn, which ex-

ists by Kirszbraun’s extension theorem [80]. We choose f̃i such that supB(x0,ρR) |f̃i| =

sup∂B(x0,ρR) |f̃i|, which can be done by thresholding if necessary. The result fol-

lows by letting gi = fi − f̃i. The spherical case is proved similarly.

Lemma 4.11. With probability at least 1 − p, we have Varµ̄i(fi) = O(ch(δ)2).

If measures µi are supported on S with mean O(1), then with probability at least

1− p, for v a unit tangent vector at x0 ∈ S, Varµ̄i(fi) = O(c′h(δ)2).

Proof. For the first claim, we write

√
Varµ̄i(fi) ≤

√
Varµ̄i(f̃i) +

√
Varµ̄i(gi)

≤
√

Varµ̄i(f̃i) + ||gi||2

≤
√

Varµ̄i(f̃i) + sup |gi|µ̄i(B(x0, ρR))1/2

Because f̃i is dh-Lipschitz, the pushforwards of µi and µ̄i satisfy

W2(f̃i]µ̄i, f̃i]µi) ≤ dhW2(µ̄i, µi) ≤ dhδ
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And since µi has O(1)-concentration, f̃i]µi has at most O(d2
h) variance. As a

result

Varµ̄i(f̃i) = Varf̃i]µ̄i ≤ O((1 + δ2)d2
h)

Also, letting dx0 be the distance function to x0, we have that

W1(dx0](µ̄i), dx0](µi)) ≤ δ

since distance functions are 1-Lipschitz. Consider an optimal coupling (X,Y )

between dx0](µ̄i) and dx0](µi). By Markov inequality, the probability that X ≤

ρR and Y ≥ ρR+ 1 is at most δ. This implies that

µ̄i(B(xo, ρR)) ≤ δ + µi(B(xo, ρR+ 1))

Since dx0 O(1)-concentrates on µi, its median is O(1) close to (
∫
d2
x0dµi)

1/2. As

the latter quantity is at least R, we have by concentration

µi(B(x0, ρR+ 1)) ≤ exp (−Ω(1− ρ)R+O(1))

As a consequence

√
Varµ̄i(fi) ≤ O

(
(1 + δ2)1/2dh + sup

r
|h′(r)| (δ + exp (−Ω(1− ρ)R))1/2

)

The first claim follows by setting ρ = 1/2. The spherical case is proved similarly,

except that we use the inequalities

µ̄i (B(x0, ρR) ∪ Rn \ Lv,ρ) ≤ µ̄i (B(x0, ρR)) + µ̄i (Rn \ Lv,ρ)

and

µ̄i (Rn \ Lv,ρ) ≤ δ + µi ({y| |〈y, v〉| ≥ 1/ρ− 1})

≤ δ + 2 exp (−Ω(1/ρ) +O(1))

≤ δ +O(exp(−Ω(1/ρ)))

which follows as above from the fact that linear functions O(1)-concentrate on µi

and have mean O(1). Choosing appropriate ρ = Θ(log(R)−1), the bound above
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becomes δ + 1/R2, hence

√
Varµ̄i(fi) ≤ O

(
(1 + δ2)1/2d′h + sup

r
|h′(r)|

(
δ + 1/R2

)1/2)
≤ O(c′h(δ))

This proves (4.2) and (4.3) and concludes the proof of Proposition 4.8.

4.5.1.2 Decomposition of Φh(X)

We first show the following variant of Theorem 4.1:

Proposition 4.12. If the number of samples M is drawn according to the Pois-

son distribution with mean M0, then with probability at least 1 − p, we have

‖Φh(X)−A‖ = O(eh(δ)) with eh(δ) = ch(δ)(1+δ)+δ‖h′‖∞, and ‖Φh(X)−A‖ =

e′h(δ) with e′h(δ) = c′h(δ)(1 + δ) + δ‖h′‖∞ in the spherical case.

The argument is the same for the spherical and for the non-spherical case, so

we only consider the non spherical case. Let M be the number of samples of µ̄.

First decompose the unnormalized kernel matrix Dh(X) = MΦh(X) as follows:

Dh(X) = PEDh(X) + PE⊥Dh(X)

The first term PEDh(X) is column constant within each block. We now focus

on the second one.

Lemma 4.13. With probability at least 1− p, the centered covariance matrix of

the columns of PE⊥Dh(X) corresponding to any component has eigenvalues at

most O(Mch(δ)2(1 + δ2)).

Proof. The columns of PE⊥Dh(X) are the images of the sample points by PE⊥φµ̄,

expressed in the standard basis. Hence by Proposition 4.8, the map φ̄ associating

each sample point with its column in PE⊥Dh(X) is O(
√
Mch(δ))-Lipschitz with

probability at least 1−p. Let φ̃ be a O(
√
Mch(δ))-Lipschitz extension of φ̄ to Rn.
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Consider a unit vector v ∈ RM and let U be a random column of PE⊥Dh(X).

Variable 〈U, v〉 is equal to 〈φ̄(V ), v〉 = 〈φ̃(V ), v〉, where V is drawn according

to µ̄i. Let now W be drawn according to µi. Since µi has O(1)-concentration,

〈φ̃(W ), v〉 has variance O(Mch(δ)2). Because with probability at least 1 − p,

W2(µ̄i, µi) < δ, the distributions of 〈φ̃(W ), v〉 and 〈φ̃(V ), v〉 are O(
√
Mch(δ)δ)

away in the W2 distance. As a consequence

Var(〈φ̃(V ), v〉) = O(Var(〈φ̃(V ), v〉) +Mch(δ)2δ2) = O(Mch(δ)2(1 + δ2))

Let us further decompose

PE⊥Dh(X) = PE⊥Dh(X)PE + PE⊥Dh(X)PE⊥

as a sum of matrix PE⊥Dh(X)PE which is row constant within each block, and a

remainder M.B = PE⊥Dh(X)PE⊥ whose columns are the columns of PE⊥Dh(X)

centered in each block. By Lemma 4.13, the non centered covariance matrix of

all the columns of M.B has eigenvalues at most O(Mch(δ)2(1 + δ2)). As this

covariance matrix is M.BBt, this shows that ||B|| = O(ch(δ)(1 + δ)). Thus we

get:

Φh(X) = PEΦh(X) + PE⊥Φh(X)PE +B

Letting Ā = PEΦh(X) + PE⊥Φh(X)PE , we see that for x ∈ support(µ̄i) and

y ∈ support(µ̄j), the xy entry of Ā is given by

M.Āxy =

∫
h(‖x−z‖)dµ̄j(z)+

∫
h(‖y−z′‖)dµ̄i(z′)−

∫
h(‖z−z′‖)dµ̄i(z)dµ̄j(z′)

By Kantorovich-Rubinstein theorem,

‖A− Ā‖ ≤ sup
xy
|M.Āxy −M.Axy| ≤ O(δ‖h′‖∞)

which concludes the proof.
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4.5.1.3 Sample size

In order to prove that Theorem 4.1 also holds for small sample size, we use the

following result in [81]. For a random variable W , let EkW denotes the Lk norm

of W . For a matrix U , ‖U‖∞ is the maximum entry of U , and ‖U‖1,2 is the

maximum norm of the columns of U .

Theorem. Let Z be a M ×M Hermitian matrix, decomposed into diagonal and

off-diagonal parts: Z = D + H. Fix k in [2,∞), and set q = max{k, 2 logM}.

Then

Ek‖RZR‖ ≤ O (qEk‖RHR‖∞ +
√
ηqEk‖HR‖1,2 + η‖H‖) + Ek‖RDR‖

where R is a diagonal matrix with independent 0− 1 entries with mean η.

Let us apply this theorem to Z = M(Φh(X)−AM ), where X is an iid sample of

µ with cardinality M distributed according to a Poisson distribution with mean

M0, and AM is the matrix specified in Theorem 4.1. In any case ‖RZR‖ ≤

O(trace(R)‖h‖∞), and by Proposition 4.12, with probability at least 1 − p, we

have ‖Z‖ ≤ O(Meh(δ)) (and similarly for the spherical case). Clearly Ek‖RDR‖

and Ek‖RHR‖∞ are both bounded by O(‖h‖∞), and Ek‖HR‖1,2 is at most

O(‖h‖∞Ek
√
M). Also ‖H‖ ≤ ‖Z‖+‖D‖ ≤ O(Meh(δ)+‖h‖∞) with probability

at least 1− p. Hence the theorem above gives:

Ek‖RZR‖ ≤ ‖h‖∞O(pEktrace(R) + q +
√
ηqEk

√
M + η) +O(ηeh(δ)EkM)

Taking k = 2 and η = N0/M0, we have Ektrace(R) = O(N0), Ek
√
M = O(

√
M0)

and EkM = O(M0). With q = 2 logM0, we get

E2

(
‖RZR‖
trace(R)

)
≤ O

(
E2

(
‖RZR‖
N0

))
≤ ‖h‖∞O

(
p+

logM0

N0
+

√
logM0

N0
+

1

M0

)
+O(eh(δ))

≤ ‖h‖∞O

(
n

δM
1/n
0

+

√
logM0

N0

)
+O(eh(δ))

≤ ‖h‖∞O

(
n

δM
1/n
0

+

√
logM0

N0
+ δ + (1 + δ)

√
δ

)
+ (1 + δ)2O(ch)
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assuming N0 ≥ logM0. Matrix RZR/trace(R) is simply Φh(Y ) − AN , where

Y is an iid sample of µ with cardinality N distributed according to a Poisson

distribution with mean N0. Continuing the last equation, taking M0 = N
3n/2
0

and δ = (n/M
1/n
0 )2/3 so that p = Θ(

√
δ), we have

E2(‖Φh(Y )−AN‖) ≤ ‖h‖∞O

(
n

δM
1/n
0

+

√
logM0

N0

)
+O(ch)

≤ O

(
ch + ‖h‖∞

√
n logN0

N0

)

The conclusion follows by applying Markov inequality.

4.5.2 Proof of Proposition 4.3

We want to show that for a positive kernel, the space spanned by the k top

eigenvectors of Φh(X) is close to the space of piecewise constant functions E.

We first observe that for a large enough number of samples, matrix Gh is close

to its finite sample version Ĝh, whose ij entry is the average of the kernel over

Xi ×Xj :

Lemma 4.14. For any c > 0, we have:

P
(
||Gh − Ĝh|| ≥ c

)
≤ 1−O

(
N0 exp

(
−N0Ω

(
min

(
c

‖h′‖∞
,

c2

‖h′‖2∞

))))

Proof. The desired operator norm can be bounded using entries magnitude as

follows:

P
(
||Gh − Ĝh|| ≥ c

)
≤ P

(
||Gh − Ĝh||22 ≥ c2

)
≤ max

ij
P
(
|Gh(i, j)− Ĝh(i, j)| ≥ c/k

)
(4.4)



Chapter 4 Spectral Properties of Radial Kernels and Clustering in High
Dimensions 67

In order to control the error on entry ij, we write:

Gh(i, j)− Ĝh(i, j) =
1

NiNj

∑
x∈Xi,y∈Xj

h(||x− y||)−
∫
h(||x− y||)dµi(x)dµj(y)

=
1

Ni

∑
x∈Xi

1

Nj

∑
y∈Xj

(
h(||x− y||)−

∫
h(||x− y||)dµj(y)

)

+
1

Ni

∑
x∈Xi

(∫
h(||x− y||)dµj(y)−

∫
h(||x− y||)dµi(x)dµj(y)

)

Since ‖h′‖∞ is the Lipschitz constant of ||h(x− .)||, we see by concentration that

for fixed x and for y distributed according to µj :

‖h(||x− y||)−
∫
h(||x− y||)dµj(y)‖ψ1 = O(‖h′‖∞)

where for a random variable U , ‖U‖ψ1 = supp≥1 p
−1 (E‖U‖p)1/p is its Orlicz ψ1

norm. As a consequence, conditionally to Nj , this implies (Corollary 5.17 in [82])

that for any ε > 0:

P (|Sx| ≥ ε) ≤ 2 exp

(
−NjΩ

(
min

(
ε

‖h′‖∞
,

ε2

‖h′‖2∞

)))

with

Sx =
1

Nj

∑
y∈Xj

(
h(||x− y||)−

∫
h(||x− y||)

)
Hence by the union bound:

P

∣∣∣∣∣∣ 1

Ni

∑
x∈Xi

Sx

∣∣∣∣∣∣ ≥ ε
 ≤ 2Ni exp

(
−NjΩ

(
min

(
ε

‖h′‖∞
,

ε2

‖h′‖2∞

)))

≤ O

(
N0 exp

(
−N0Ω

(
min

(
ε

‖h′‖∞
,

ε2

‖h′‖2∞

))))

Similarly, as the Lipschitz constant of
∫
h(||. − y||)dµj(y) is at most ‖h′‖∞ as

well, we get:

P (|U | ≥ ε) ≤ 2 exp

(
−N0Ω

(
min

(
ε

‖h′‖∞
,

ε2

‖h′‖2∞

)))
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with

U =
1

Ni

∑
x∈Xi

(∫
h(||x− y||)dµj(y)−

∫
h(||x− y||)dµi(x)dµj(y)

)

The last two inequalities together with (4.4) imply the desired claim.

Let now M̂h be the matrix obtained from Ĝh by multiplying the ij entry by

√
wiwj . Applying the above lemma with c = ch, its smallest eigenvalue can be

lower bounded as follows:

λ1(M̂h) = Ω(λ1(Ĝh)) = Ω(λ1(Gh)− ch) = Ω(Kch)

with arbitrarily high probability, assuming N0 = Ω(‖h′‖2∞/c2
h).

Now, note that M̂h is the matrix of the quadratic form Φh(X) restricted to E.

More precisely, the indicator functions of the clusters, normalized to have unit

L2-norm, form an orthornormal basis of E, and writing that quadratic form in

this basis gives M̂h. Let λ be the smallest eigenvalue of M̂h. By the variational

characterization of eigenvalues, there exist at least k eigenvalues of Φh(X) that

are at least λ. Let H denote the space spanned by the k-top eigenvectors of

Φh(X), and let L denote the space spanned by the remaining N − k. We show

using a perturbation argument that the maximum of the principal angles between

space E and space H is small.

Let x ∈ E⊥ be a unit vector. We may write x = αxL + βxH with α2 + β2 = 1,

and xL and xH are unit vectors belonging respectively to L and H. Then:

xtΦh(X)x = α2xtLΦh(X)xL + β2xtHΦh(X)xH

Since x ∈ E⊥, we have xtAx = 0, where A is the matrix defined in Theorem 4.1.

Hence by Theorem 4.1, with arbitrarily high probability:

xtΦh(X)x ≤ O(ch)

provided

N0 = Ω

(
n‖h‖2∞
c2
h

log

(
n‖h‖2∞
c2
h

))
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Also, by assumption:

xtHΦh(X)xH ≥ λ ≥ KΩ(ch)

As a consequence:

d(x, L) = β ≤ O(1/
√
K)

That is, the maximum angle between the (N − k)-flats E⊥ and L is O(1/
√
K).

Hence, so is the maximum angle between their orthogonals E and H, which is

the desired claim.

4.5.3 Proof of Corollary 4.6

Let E⊥ ∈ RN be the space of vectors whose mean is zero on each block. This

space has codimension k. Now, for any vector x ∈ E⊥, we easily see that

xtAx = 0, where A is the matrix from Theorem 4.1. As a result, the quadratic

form Φh(X) is at most O
(
ch + ‖h‖∞

√
n logN0

N0

)
I on E⊥ with arbitrarily high

probability, implying that Φh(X) has at least (N − k) eigenvalues that are at

most O
(
ch + ‖h‖∞

√
n logN0

N0

)
. Applying the same argument to −Φh(X), the

result follows.

4.5.4 Proof of Corollary 4.5

Matrix Gh has entries

Gh(i, j) = Eh(||xi − xj ||)

where xi are independant random variables with law N (µi,Σi), where µi and Σi

are the means and covariances of the two Gaussians in the mixture.

Lemma 4.15. If u is a centered Gaussian random variable with covariance Σ,

then:

E(h(||u||)) = det

(
I +

1

τ2
Σ

)− 1
2
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Proof.

E(h(||u||)) =

∫
1√

(2π)n det(Σ)
exp

(
−1

2
xt
(

Σ−1 +
1

τ2
I

)
x

)
dx

=
det
((

Σ−1 + 1
τ2
I
)−1
)1/2

det(Σ)1/2

= det

(
I +

1

τ2
Σ

)− 1
2

By standard algebraic manipulations, shifting the center amounts to scaling the

expectation by a certain factor:

Lemma 4.16. If u is a Gaussian random variable with covariance Σ and mean

µ, then:

E(h(||u||)) = exp

(
− 1

τ2
µt(I − (I + τ2Σ−1)−1)µ

)
det

(
I +

1

τ2
Σ

)− 1
2

In particular, letting Bh be the 2× 2 matrix with entries

Bh(i, j) = Eh(||yi − yj ||)

where yi are independent random variables with law N (0,Σi), we see that Gh

is obtained from Bh by scaling the off diagonal entries by a factor λ that is at

most

exp

(
− 1

τ2
µt(I − (I + τ2(Σ1 + Σ2)−1)−1)µ

)
≤ exp

(
−1− (1 + 2τ2)−1

τ2
||µ1 − µ2||2

)
= 1−Θ

(
||µ1 − µ2||2

n

)

Because detBh is non negative and the entries of Bh are Θ(1), we deduce that

detGh = detBh + (Bh)2
12 − λ2(Bh)2

12

≥ (1− λ2)(Bh)2
12

= Θ

(
||µ1 − µ2||2

n

)
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Now, the largest entries of Gh are the same as for Bh, that is, Θ(1), which implies

that the maximal eigenvalue of Gh is Θ(1) as well. From this we see that:

λ1(Gh) = Θ

(
||µ1 − µ2||2

n

)

To conclude, it suffices to check that for our choice of kernel and assumptions on

the variance of the Gaussians, ch = Θ(1/n).

4.5.5 Proof of Theorem 4.6

We first show that constant functions are sent to nearly constant functions by

the convolution operator with kernel h from L2(Rn, µi) to L2(Rn, µj).

Lemma 4.17. Let fi(x) =
∫
h(‖y−x‖)dµi(y), and f̄i(x) =

∫
h̃(‖y−x‖)dµi(y). If

µi and µj are supported on the sphere S, even, and satisfy a Poincaré inequality,

then:

Varµjfi = O
(
nc′2

h̃

)
Proof. The gradient of fi is as follows:

∇fi(x) =

∫
(x− y)h̃(‖x− y‖)dµi(y)

For x ∈ S, the gradient of the restriction of fi to S is

∇fi|S(x) = PTxS∇fi(x) = −PTxS
(∫

yh̃(‖x− y‖)dµi(y)

)
(4.5)

Denoting by M : L2(Rn, µi)→ L2(Rn, µj) the operator defined by

Mg(x) =

∫
g(y)h̃(‖x− y‖)dµi(y)

From the structure of blocks described in Theorem 4.1, and letting the sample

size go to infinity, we get that ‖M −M ′‖ = O(c′
h̃
), where

M ′g(x) =

∫
g(y)M ′xydµi(y)
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and

M ′xy =

∫
h̃(‖y− z′‖)dµi(z′) +

∫
h̃(‖x− z‖)dµj(z)−

∫
h̃(‖z − z′‖)dµi(z)dµj(z′)

Calling y the coordinate vector of S, that is, the identity map of S, the above

equation expresses M ′y as the sum of two terms T1 and T2. The first one is

T1 =

∫
y

(∫
h̃(‖y − z′‖)dµi(z′)

)
dµi(y) =

∫
yf̄i(y)dµi(y)

we see that as µi is even, f̄i(y) is an even function of y. Hence multiplying it by

y gives an odd function whose integral against µj must be be zero as µj is even

as well. Hence T1 vanishes. The second term T2 is

T2 =

(∫
ydµi(y)

)(∫
h̃(‖x− z‖)dµj(z)−

∫
h̃(‖z − z′‖)dµi(z)dµj(z′)

)

As µi is even, it has zero mean so T2 cancels. From (4.5), the above discussion

gives:

‖∇fi|S‖2 ≤ ‖My‖2

≤ ‖(M −M ′)y‖2

≤ O
(
c′2
h̃
‖y‖2

)
≤ O

(
nc′2

h̃

)

The desired claim follows using Poincaré inequality.

Lemma 4.18. Taking h = ht, we have:

Varµjfi ≤ O(t2/n)

assuming µi and µj are supported on S, have O(1) means and O(1)-concentration.

Proof. For any x, y in S we can write

ht(‖x− y‖) = Re exp

(
it√
n
< x, y >

)
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Hence

fi(x) = Re
(
µ̂i(−tx/

√
n)
)

As a consequence, for any unit vector u:

| < ∇fi(x), u > | ≤ t√
n
| < ∇µ̂i(−tx/

√
n), u > |

≤ t√
n
|µ̂ui (−tx/

√
n)|

≤ t√
n
O(‖µui ‖1)

≤ O(t/
√
n)

where µui is µi multiplied by function x 7→< x, u >, the last line using the fact

that µi has O(1)-concentration and O(1) mean. Hence fi is O(t/
√
n)-Lipschitz.

The lemma follows since µj has O(1)-concentration.

To prove the first part of Theorem 4.6, using Theorem 4.1, it is sufficient to show

that with arbitrarily high probability ‖A−B‖ = O(U) where

U =
√
nc′

h̃

and A is the matrix given by Theorem 4.1. By definition of A, and after a small

manipulation, we see that the entries of A−B in the ij block are given by

(A−B)xy =
1

N

(∫
h(‖x− z‖)dµj(z)−

∫
h(‖x− z‖)dµj(z)dµi(x)

)
+

1

N

(∫
h(‖y − z′‖)dµi(z′)−

∫
h(‖y − z′‖)dµi(z′)dµj(y)

)
=

1

N

((
fj(x)−

∫
fj(x)dµi(x)

)
+

(
fi(y)−

∫
fi(y)dµj(y)

))

Hence by Lemma 4.17, the entries of A − B have, conditionally to N , vari-

ance O(U2/N2). In particular, A− B has expected squared Frobenius norm at

most O(U2). Bounding the operator norm by the Frobenius norm and apply-

ing Markov inequality proves the desired bound on ‖A − B‖ and concludes the

proof of the first part of the theorem. For the second part of Theorem 4.6, the

argument is the same except one uses the bound given in Lemma 4.18 instead
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of Lemma 4.17. Expliciting the constant c′ht = O(t log3 n/
√
n) then gives the

desired bound.

4.5.6 Proof of Theorem 4.7

Since the desired conclusions are unchanged by scaling the components by a con-

stant factor, and as we assume their variance is Θ(n), we can assume that their

variance is n. Let µ̃i be the pushforwards of µi by the closest point projection

on S. The following lemma is easily proved:

Lemma 4.19. Measure µ̃i has O(1)-concentration and mean O(1).

Proof. Let f : S → R be a 1-Lipschitz function. To prove that µ̃i has O(1)-

concentration, we prove that for X distributed according to µ̃i, there exists a

number c such that ‖f(X) − c‖ψ1 = O(1). The range of f on S is contained

in an interval of length 2
√
n. By shifting f if necessary, we can assume that

‖f‖∞ = O(
√
n). We also assume f is smooth, which is sufficient. Define

g : Rn → R

x 7→ f

(
x

‖x‖

)
if ‖x‖ ≥

√
n/2

x 7→ 2‖x‖√
n
f

(
x

‖x‖

)
else

We have:

∇g(x) =

√
n

‖x‖
∇f

(
x

‖x‖

)
if ‖x‖ ≥

√
n/2

=
2√
n

(
x

‖x‖
f

(
x

‖x‖

)
+
√
n∇f

(
x

‖x‖

))
else

As a consequence function g is O(1)-Lipschitz, hence by concentration, for Y

distributed according to µi, there exists a number c such that by ‖g(Y )− c‖ψ1 =

O(1). Letting now f̄ : x 7→ f(x/‖x‖), we have that P (g(Y ) 6= f̄(Y )) ≤

exp(−Θ(1)
√
n) since g and f̄ only differ on B(0,

√
n/2), which has exponen-

tially small measure by concentration. Also clearly ‖g(Y ) − f̄(Y )‖∞ ≤ O(
√
n).

As a consequence, the ψ1 norm of g(Y ) − f̄(Y ) is at most O(
√
n) times the

ψ1 norm of a Bernoulli variable with expectation exp(−Θ(1)
√
n). Since the ψ1
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norm of such variables is O(1/
√
n), ‖g(Y )− f̄(Y )‖ψ1 = O(1), from which we get

‖f̄(Y )− c‖ψ1 = O(1). This is what we wanted to prove, as f̄(Y ) and f(X) have

the same distribution.

To relate the means of µi and µ̃i, we notice that by concentration of the distance

to the origin, the 1-transportation distance between both measures is O(1). In

particular the means of µi and µ̃i differ by O(1), hence the mean of µ̃i is O(1).

The above lemma shows that we can apply Theorem 4.6 to the projected point

cloud X̃: With arbitrarily high probability, matrix Φht(X̃) is δ = O(t log3 n/
√
n)

close to B in the operator norm, assuming N0 is Ω(log(n/t)n2/t2).

We now would like to argue that B retains enough information about the com-

ponents so that we can separate them. To do so, we restrict B to the subspace

Eu,v of piecewise constant vectors supported on the two components X̃u and X̃v,

for some indices u and v. In the orthornormal basis formed by the normalized

indicator vectors of the two components, the ij entry (i, j ∈ {u, v}) matrix of

this restriction is (w̄iw̄j)
−1/2Ĝht(i, j), Ĝht being the 2×2 matrix associated with

µ̂u and µ̂v, and w̄i being the fraction of data points in the ith component. As the

w̄i’s are Θ(1), the singular values of B restricted to Vu,v are within a constant

factor of those of Ĝht .

Now, using the power series expansion of ht, one can show the following lower

bound on the smallest singular value of the 2× 2 matrix Ght associated with µu

and µv, based on the difference between their covariance matrices:

Lemma 4.20. There exists C1 = Θ(1) such that if t ≤ C1‖Σu − Σv‖2/
√
n, the

smallest singular value of Ght is at least Ω(t2‖Σu − Σv‖22/n). Furthermore:

‖Ĝht −Ght‖ = O(t/
√
n)

Proof. By Taylor’s theorem, for i, j ∈ {u, v}, we have:

Ght(i, j) =

∫
cos

(
t√
n
< x, y >

)
dµi(x)dµj(y)

=
∞∑
l=0

∫
(−1)l

(t/
√
n)2l

(2l)!
< x, y >2l dµi(x)dµj(y)
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Let x and y be two independent random vectors distributed respectively ac-

cording to µi and µj . Conditioned to x = x0 ∈ Rn, < x, y > has O(‖x0‖)-

concentration and mean O(‖x0‖), so its ψ1 norm is O(‖x0‖). Hence

‖ < x, y > ‖ψ1 ≤ O(E‖x‖) ≤ O(
√
n)

As a consequence the distribution of | < x, y > /
√
n| decays exponentially. Hence

its lth moment is controlled by the lth moment of an exponential distribution with

mean Θ(1), that is, Θ(1)ll!. This implies

|Ght(i, j)− 1 +

∫
t2

2n
< x, y >2 dµi(x)dµj(y)| ≤

∞∑
l=2

t2l

(2l)!
Θ(1)2l(2l)!

≤ O(t4)

for t less than some numerical constant. Now

∫
< x, y >2 dµi(x)dµj(y) =

∫
ytΣiy dµj(y)

=

∫
trace Σiyy

tdµj(y)

= trace ΣiΣj

We may thus expand the determinant of Ght as follows:

detGht = Ght(u, u)Ght(v, v)−Ght(u, v)2

=

(
1− t2

2n
< Σu,Σu > +O(t4)

)(
1− t2

2n
< Σv,Σv > +O(t4)

)
−
(

1− t2

2n
< Σu,Σv > +O(t4)

)2

= − t
2

2n
‖Σu − Σv‖22 +O(t4)

Hence by assumption, for well chosen C1, the first term in the expansion above

dominates, so |detGht | satisfies the desired lower bound. Since the entries of

Ght have absolute value less than 1, the lower bound also holds for the smallest

singular value of Ght .

To relate matrices Ght and G̃ht , we let δx (resp. δy) be the difference between

x (resp. y) and its projection on S, so that x− δx (resp. y − δy) is distributed
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according to µ̃i (resp. µ̃j). We can write

G̃ht(i, j) =

∫
cos

(
t√
n
< x− δx, y − δy >

)
dµi(x)dµj(y)

Also

< x− δx, y − δy >=< x, y > − < δx, y > − < δy, x > + < δx, δy >

By concentration and since µj has O(1) mean, | < δx, y > | has expectation

O(‖δx‖) conditioned to δx. Since E‖δx‖ = O(1) by concentration of the distance

to the origin, we have E| < δx, y > | = O(1). The last two terms above can be

dealt with similarly, yielding that the distributions of < x− δx, y − δy > and of

< x, y > are at 1-transportation distance O(1). Since cos(t./
√
n) is O(t/

√
n)-

Lipschitz, we see that

|G̃ht(i, j)−Ght(i, j)| = O(t/
√
n)

which concludes the proof.

In particular, choosing t = C1‖Σu − Σv‖2/
√
n = C1∆, we see that for any u, v,

the smallest singular value of B restricted to Eu,v is at least Ω(∆4−O(∆/
√
n)),

which by assumption on ∆ is also Ω(∆4).

Lemma 4.21. For sufficiently small C2 = Θ(1), the columns of fC2∆4(B) with

indices i and j are equal if i and j belong to the same component. If i and j

belong to different components, their distance is Ω(∆4/
√
N).

Proof. Eigenvectors of B with non zero eigenvalue are piecewise constant, so the

first part is clear. Assume indices i and j respectively belong to distinct com-

ponents u and v. The distance between their columns is ‖fC2∆4(B)euv‖, where

euv has entries 1/]Xu (resp. −1/]Xv) at indices corresponding to component u

(resp. v), and 0 else.

Vector euv is in Euv and has norm Θ(1/
√
N). From the singular value lower

bound, there must exist a unit vector x such that | < euv, Bx > | = Ω(∆4/
√
N).
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Denote by E2C2∆4 the vector space generated by the singular vectors of B with

singular values at least 2C2∆4, and write x = αy + βz, where y and z are unit

vectors respectively lying in E2C2∆4 and in E⊥2C2∆4 , and α2 + β2 = 1. We have

| < euv, Bx > | = |α < euv, By > +β < euv, Bz > |

= O(| < euv, By > |) +O(C2∆4/
√
N)

≤ max(C3| < euv, By > |, C4C2∆4/
√
N)

for some constant C3 and C4, where in the second line we used the fact that the

largest singular value of B is O(1). Hence for small enough C2 = Θ(1), we will

have C4C2∆4/
√
N < | < euv, Bx > |, implying | < euv, By > | ≥ | < euv, Bx >

|/C3 = Ω(∆4/
√
N). Now because y ∈ E2C2∆4 , as fC2∆4 modifies eigenvalues by a

factor at most 2 in that range, there exists a matrix F with the same eigenvectors

as B, and with singular values between 1/2 and 2, such that FBy = fC2∆4(B)y.

Hence

| < fC2∆4(B)F−1euv, y > | = | < F−1euv, fC2∆4(B)y > | = | < F−1euv, FBy > |

= | < euv, By > | = Ω(∆4/
√
N)

In particular fC2∆4(B)F−1euv has norm at least O(∆4/
√
N). But that vector

equals F−1fC2∆4(B)euv, and as F−1 doesn’t change distances by more than a

factor of 2, we see that ‖fC2∆4(B)euv‖ = Ω(∆4/
√
N), as claimed.

Now, as fC2∆4 is 1-Lipschitz, the perturbation inequality proved in [83] states

that

‖fC2∆4(B)− fC2∆4(Φht(X̃))‖ ≤ O

(
log
‖B‖+ ‖Φht(X̃)‖
‖Φht(X̃)−B‖

+ 2

)2

‖Φht(X̃)−B‖

≤ O(δ log2 δ)

Our assumption on ∆ is chosen so that ∆4/(δ log2 δ) = Ω(K3). Hence we may

assume in particular that ‖Φht(X̃)−B‖ < C2∆4. By Weyl’s theorem on eigen-

value perturbations, fC2∆4(Φht(X̃)) thus has at most k = Θ(1) non zero eigen-

values. As a result ‖fC2∆4(B) − fC2∆4(Φht(X̃))‖22 ≤ O(δ2 log4 δ) = O(∆8/K6).



Chapter 4 Spectral Properties of Radial Kernels and Clustering in High
Dimensions 79

This means that within each component, the columns of fC2∆4(Φht(X̃)) have

variance O(∆8/(NK6)) with respect to the column of fC2∆4(B) associated with

that component. By Lemma 4.21, this implies that the ratio between the maxi-

mum variance of the components in φC2(X̃) and the minimum squared distance

between their centers in an optimal solution to the k-means problem is O(K−6).

Applying any constant factor approximation algorithm for the k-means problem

will thus cluster the data with the claimed error rate.
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