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Méthodes du noyau pour l'analyse de données de grande dimension Résumé. Les nouvelles technologies permettant la collecte de données dépendant d'un nombre de plus en plus important de paramètres, les ensembles de données voient leur dimension devenir de plus en plus grande. Les problèmes théoriques, qui dépendent notamment de la dimension intrinsèque de l'ensemble des données, et les problèmes de calcul, liés à la dimension de l'espace où vivent les données, affectent l'analyse de données en grandes dimensions. Dans cette thèse, nous étudions le problème de l'analyse de données en grandes dimensions en nous plaçant dans le cadre des espaces métriques mesurés. Nous utilisons la concentration de la mesure pour produire des outils capables de décrire la structure des ensembles de données de grandes dimensions. Nous visons à introduire un nouveau point de vue sur l'utilisation des distances et des mesures de probabilité définies sur les données. Plus précisément, nous montrons que les méthodes de noyau, déjà utilisées en petites dimensions intrinsèques pour réduire la dimensionnalité, peuvent etre utilisées en grandes dimensions et appliquées à des cas non traités dans la littérature.

Contents Introduction

Since new technologies enabled the collection of data using a larger and larger number of features, datasets have become more and more high dimensional. To give only a few examples: a larger number of camera sensors gives higher resolution in pictures, and consequently datasets of high dimension; large memory supplies enable to store internet datasets using a large number of features, medical data using a large number of parameters, etc [START_REF] Francois | High dimensional data analysis[END_REF], [START_REF] Xu | High-dimensional data analysis in cancer research[END_REF]; genome investigation [START_REF] Selvaraj | Microarray data analysis and mining tools[END_REF], [START_REF] Mutch | Microarray data analysis: a practical approach for selecting differentially expressed genes[END_REF], proteins interaction analysis [START_REF] Marchiori | Evolutionary Computation, Machine Learning and Data Mining in Bioinformatics: 6th European Conference[END_REF] and molecular simulations produce large datasets in high dimensional spaces. More prominently, high dimensionality can be considered as a feature of Big Data [START_REF] Shirkhorshidi | Big Data Clustering: A Review -Computational Science and Its Applications[END_REF]. Usually, high dimensionality is not included among the characterizing features of Big Data, i.e. Volume, Variety, Velocity, Veracity, Value, but it appears as a consequence of the variety requirement and the parallel evolution of the size of data and of the number of data parameters. In fact, in order to obtain high variety, many features of the data must be collected. Conversely, a sample in high dimension is supposed to have a large enough size, which implies that quite often high dimensional datasets have a very large volume. However, relatively small datasets can have a high dimension. e.g. short-time experimental data from neurosciences [START_REF] Menoret | Evaluating graph signal processing for neuroimaging through classification and dimensionality reduction[END_REF], [START_REF] Foy | Systems, man, and cybernetics (smc)[END_REF].

High dimensionality can be either an intrinsic feature of the dataset or due to redundant features and noise. To decide in which regime one should put the problem under consideration, usually the intrinsic dimension of the data space has to be taken into account. Here intrinsic dimension refers to the actual dimension of the dataset, i.e. the number of independent parameters needed to represent the data. More specifically the intrinsic dimension of a random vector X can be defined as the topological dimension of the support of X. For a metric space, the intrinsic dimension can be defined in terms of the doubling constant CONTENTS 2 of the space: the minimum λ such that every ball can be covered by λ balls of half the radius, and corresponds to the doubling dimension of X, defined as dim(X) = log 2 λ. This value gives also a lower bound on the minimum dimension for which a metric space can be embedded in a normed space, with low distortion [START_REF] Abraham | Embedding metric spaces in their intrinsic dimension[END_REF]. If the dataset lies on a manifold, the intrinsic dimension of the dataset is the topological dimension of the manifold [START_REF] Wang | Geometric Structure of High-Dimensional Data and Dimensionality Reduction[END_REF], i.e. for a dataset it can be estimated in term of the neighbourhood structure. In general, if the dataset has constant dimension, the intrinsic dimension of the space can be defined globally for the entire dataset, e.g. the topological dimension for a dataset sampled from a manifold, otherwise it has to be defined on local neighbourhoods for which the dimension can be considered constant. Intrinsically high dimensional spaces experience a class of high dimensional phenomena, e.g. concentration of distances and emptiness of space, that make many low dimensional methods not effective. In fact, as observed e.g. by Beyer et al [START_REF] Beyer | When is Nearest Neighbour Meaningful? ICDT '99[END_REF] nearest neighbor do not carry meaningful information for typical high-dimensional data, as the ratio between the variance of the distance between points and the mean value of the distance generally tends to 0. From a practical point of view, for dimensions as low as 10, methods based on k-NN search may be severely affected by high dimensionality.

Many methods have been proposed to reduce the dimensionality of the data, in order to avoid problems related to the high dimensionality of the ambient space.

Classical spectral methods have been proved to be successful in providing target embedding spaces, e.g. principal component analysis (PCA) for linear embeddings, Isomap and Kernel PCA for non linear datasets [START_REF] Carreira-Perpin | A review of dimension reduction techniques[END_REF], [START_REF] Van Der Maaten | Dimensionality reduction: A comparative review[END_REF], [START_REF] Engel | A Survey of Dimension Reduction Methods for High-dimensional Data Analysis and Visualization[END_REF]. However such methods have their shortcomings and do not allow to successfully address all the problems that arise in high dimensions.

In this Thesis, we study the problem of high dimensional data analysis in the framework of metric measure spaces [START_REF] Sturm | On the geometry of metric measure spaces[END_REF]. We take advantage of concentration of measure to produce tools able to describe the structure of datasets in high dimensions, using suitably defined Lipschitz maps. We will describe two contributions:

Denoising metric measure spaces.

In chapter 3, we suggest an approach, which turns out to be related to the algorithm proposed in [START_REF] Dubnov | A new nonparametric pairwise clustering algorithm based on iterative estimation of distance profiles[END_REF], for reducing noise CONTENTS 3 in metric measure spaces. The procedure, which we call the distance transform, consists in embedding the metric measure space into the space of L p functions defined on it by means of distance functions. A first property of this transform is its stability with respect to perturbations of the input metric measure space.

Such perturbations may be quantified using a distance on the set of metric measure spaces called the Gromov-Wasserstein distance. We show that the distance transform is 2-Lipschitz for this distance. The main purpose of this transform however is its noise reduction properties. Corruption by noise may be defined in several inequivalent ways for a metric measure space. We consider the simple case where the noisy space is obtained from the ideal one by taking its product with a space enjoying the concentration of measure property. In this case, we

show that the effects of noise are considerably reduced by the distance transform, especially if the "noise space" is high dimensional. While the transform does however affect the ideal space as well, we argue that these effects remain small when the ideal space has simple enough geometry.

Clustering high dimensional mixtures.

A fundamental problem in data analysis is to cluster mixture models. For that problem to be well-defined, one needs to make a priori assumptions on the components of mixture. In the context of high dimensional data, a natural assumption is that the components satisfy the concentration of measure property. Indeed, many classical basic distributions are known to satisfy it, and according to the famous KLS conjecture [START_REF] Kolesnikov | The KLS isoperimetric conjecture for generalized Orlicz balls[END_REF], the large class of log-concave distributions also does, assuming a bound on their covariance matrix. For this clustering problem, one case is solved in a relatively easy way: When the centers of the components of mixtures are sufficiently far apart, it is enough to perform a PCA-based dimensionality reduction step, and then to apply an off-the-shelf clustering algorithm such as k-means. The case where the centers of the components are close or even equal is more difficult.

The best algorithm for that problem [START_REF] Huang | Learning mixtures of Gaussians in high dimensions[END_REF] uses tensor decomposition algorithms on the degree 6 moments of the mixture. While its guarantees are strong, the correctness of this algorithm crucially depends on Isserli's theorem, a specific identity between moments that holds only for Gaussian components. However, assuming that the components are exactly Guassian probably isn't very realistic CONTENTS 4 in practice. Furthermore, the computational complexity is at least the dimension n to the sixth power, making it impratical when n exceeds, say a hundred.

We consider the approach to the clustering based on radial kernels. Our main technical result is that for a mixture of distributions that concentrate, such kernel matrices can be written as the sum of a blockwise row constant matrix and a blockwise column constant matrix, up to a small error term. For distance matrices, in the case of single component, this result implies that the ratio between the first and the second singular values is of the order of the dimension n, rather than √ n as one might naively expect from a basic application of concentration.

This "second order" concentration phenomenon can be used to show guarantees for kernel PCA based clustering approaches. We further show that for points lying on a sphere, the conclusions of our first result can be strengthened, in the sense that kernel matrices are now well approximated by block constant matrices.

We introduce a specific radial kernel, and an associated spectral algorithm that is able to cluster mixtures of concentric distributions provided their covariance matrices are far enough. Analysis shows that the required angular separation between the components covariance matrices tends to 0 as the dimension goes to infinity. To the best of our knowledge, this is the first polynomial time algorithm for clustering such mixtures beyond the Gaussian case.

Description of chapters.

We now describe in more detail the contents of each chapter. In Chapter 1 we give an overview of basic geometric techniques in data analysis and discuss their limits for data with high intrinsic dimension.

Chapter 2 focuses on metric measure spaces, as a suitable framework for high dimensional data analysis, and on concentration of measure phenomena. In Chapter 3 we present our denoising approach for metric measure spaces, and study some of its theoretical properties. The last chapter of the thesis is about our work on radial kernel matrices and high-dimensional clustering, which in fact came out as an elaboration of the ideas in Chapter 3. It is a verbatim retranscription of a dedicated article to be submitted for publication.
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Chapter 1

High Dimensional Data

Analysis

Since computer power enables massive computations, data analysis has been driven by the necessity to produce algorithms able to recover the structure of datasets from input points, e.g. using manifold reconstruction and metric approximation [START_REF] Gomes | A Variational Approach to Recovering a Manifold from Sample Points[END_REF]. Many methods developed in the last decades use extensively distances and metrics in order to produce structures able to capture the manifold underlying the dataset, e.g. Delaunay triangulations [START_REF] Boissonnat | Algorithmic Geometry[END_REF], marching cubes [START_REF] Lorensen | Marching cubes: A high resolution 3d surface construction algorithm[END_REF],

manifold reconstruction [START_REF] Boissonnat | Manifold reconstruction using Tangential Delaunay Complexes[END_REF]. Moreover, many of those methods strongly rely on a partition of the space, e.g. Voronoi diagrams in order to produce Delaunay triangulations [START_REF] Boissonnat | Algorithmic Geometry[END_REF], kd-trees [START_REF] Newman | A survey of the marching cubes algorithm[END_REF] and for nearest neighbour search. These methods and techniques (e.g. use of distances, partition of the space, nearest-neighbour search) are affected in high-dimensions by the curse of dimensionality [START_REF] Keogh | Curse of Dimensionality[END_REF], and consequently, algorithms based on them may be not efficient. The term curse of dimensionality, introduced by Bellman in 1961 [START_REF] Bellman | Dynamic Programming[END_REF], [START_REF] Bellman | Adaptive control processes: a guided tour[END_REF] is nowadays used to refer to the class of phenomena that occur in high dimensions in contrast with the low dimensional scenario. Important examples are the tendency of data to become very sparse in high dimensions [START_REF] Keogh | Curse of Dimensionality[END_REF], [START_REF] Guruswami | Geometry of high dimensional spaces[END_REF], and the concentration of distances. Usually dimensions d ≤ 6 are considered low. A high dimensional regime has to be considered when dimension d ≥ 10 [START_REF] Beyer | When is Nearest Neighbour Meaningful? ICDT '99[END_REF].
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In general, high dimensional data analysis relies on the strong hypothesis that, in practice, datasets have low intrinsic dimension, largely supported by observation ( § 1.2), and that their dimension is only apparently high. As a consequence, many dimensionality reduction methods have been proposed. These methods aim at reducing the dimensionality of the dataset by embedding the original dataset into a lower dimensional space [START_REF] Prescott | High-dimensional probability estimation with deep density models[END_REF], [START_REF] Saul | Spectral methods for dimensional reduction[END_REF], [START_REF] Carreira-Perpin | A review of dimension reduction techniques[END_REF]. Anytime that a simplicial complex structure can be defined on the data, the use of topological tools, like Topological Data Analysis (TDA), has also been proved to be effective in order to recover the structure of the dataset. In this chapter, we give a brief overview of the methods and techniques mostly used in high dimensional data analysis in order to reduce dimensionality.

Toward the blessing of dimensionality. On the other hand, when the actual dimension is high, these methods may not be applied directly, or may give only approximation of the structure of the dataset. This happens, for instance, in presence of very large noise, or for datasets that are described by a very large number of parameters (e.g. molecular datasets).

Our aim in this Thesis, is to show how to take advantage of high dimensionality phenomena in the high dimensional regime. We aim at introducing a new point of view in the use of distances and probability measures defined on the data set. This approach, i.e. the possibility of using in a good way high dimensional phenomena, is sometimes referred to as blessing of dimensionality. More specifically, we want to show that kernel methods, already used in the intrinsic low dimensional scenario in order to produce dimensionality reduction, can be investigated under purely high dimensional hypotheses, and further applied to cases not covered in the literature.

Datasets: Collection and Models

A dataset of dimension n and size N is a collection of N items (points) with relations, often structured in matrices N × n, where the rows represent the data entries and each column represents a variable corresponding to a feature used to collect the data. In the probabilistic and statistical approach, an n-dimensional

Chapter 1 High Dimensional Data Analysis 10 dataset is the result of sampling N points from a distribution in R n , which gives relations between points, where each entry of the dataset is a sample point. In the geometric model, relations between points can be given in terms of distances, an the dataset can be described as a finite metric space of size N and dimension n. Data analysis relies on the fact that not all the features used to collect the data are relevant, and that the relations between the data points can be given in terms of a lower number of features. Usually this is formalized by introducing the definition of intrinsic dimension of the dataset ( § 1.2).

Models for the Data

A dataset is usually modelled according to the mathematical structure that better encodes its properties.

Manifold Models.

In the geometric model, the most relevant criterion to produce a dataset description takes into account the existence of a manifold that approximate the dataset. In this case, several manifold recovering methods have been proposed, which strongly rely on the use of distances defined on the datasets. Many methods used extensively distances and metrics to produce structures able to capture the manifold underlying the dataset, e.g. Delaunay triangulations [START_REF] Boissonnat | Algorithmic Geometry[END_REF][START_REF] Boissonnat | Manifold reconstruction using Tangential Delaunay Complexes[END_REF], marching cubes [START_REF] Lorensen | Marching cubes: A high resolution 3d surface construction algorithm[END_REF]. These methods strongly rely on a partition of the space, e.g. Voronoi diagrams in order to produce the Delaunay triangulation [START_REF] Boissonnat | Algorithmic Geometry[END_REF] or kd-tree [START_REF] Newman | A survey of the marching cubes algorithm[END_REF].

In most cases, the data points cannot be assumed to lie on a manifold due, for example, to the presence of noise that may destroy the geometrical structure.

However, if the amplitude of the noise is small and the data points remain close enough to a manifold, the data set can be represented as complexes (e.g. simplicial ) from which the topological and possibly geometrical features of the data can be extracted.

Mixtures of Distributions.

When data are sampled from a probability distribution (e.g. configuration space of a molecule), the existence of a manifold approximating the dataset is not always satisfied or the sample cannot be regular enough to guarantee for manifold reconstruction.

In the case of data sampled from several probability distributions, where no claim can be made on the underlying geometrical structure or on the support of the distributions, data are described as mixtures. The dataset is, in fact, described as the union of subsets (components), where each component is sampled from a different distribution. The most effective approach, in this case, is to classify the points according to the component they are sampled from.

The two approaches are not necessary distinct, and the metric and probability approach can be combined in the framework of metric measure spaces (Chapter 2).

Intrinsic Dimension

The ambient dimension n of the dataset is given by the number of variables used to collect the data, and the size N is given by the number of entries in the dataset. The aim of high dimensional data analysis is to define the effective dimension of a dataset, in terms of the relevant features that describe it.

In the high dimensional regime, dimensionality reduction methods aim at finding a lower dimensional target space in order to provide an embedding for the dataset. In this section, we recall some results on metric dimension and intrinsic dimension with the aim of formalizing the dimensionality reduction problem.

Embedding Dimension.

For two metric spaces (X,

d X ),(Y, d Y ), an injec- tive map f : X → Y is an embedding of X into Y . The distortion is defined as max (u,v)∈X dist Y (f (u),f (v)) d X (u,v)
. The metric dimension refers to the dimension of the target real normed space in which a dataset can be mapped with low distortion. In particular, since datasets can be seen as metric spaces, the dimension of the embedding in Euclidean metric spaces has been proven to depend on the number of points in the datasets. For small data set (N points) in high dimensional spaces, a lower dimensional embedding can be provided [START_REF] Abraham | Embedding metric spaces in their intrinsic dimension[END_REF].

Bourgain [START_REF] Bourgain | On Lipschitz embedding of finite metric spaces in Hilbert space[END_REF] proved that every metric space with N points can be embedded in O(log 2 N )-dimensional Euclidean space with a distortion of O(log N ). The Johnson-Lindenstrauss lemma [START_REF] Johnson | Extensions of Lipschitz mappings into a Hilbert space[END_REF] states that when the input metric space is Euclidean, a O(log N ) embedding dimension is enough to achieve arbitrarily small distortion.

Intrinsic Dimension. The intrinsic dimension refers to the actual dimension of the dataset, i.e. the number of independent parameters needed to represent the dataset. More specifically, the intrinsic dimension of a random vector X can be defined as the topological dimension of the support of X. If the dataset lies on a manifold, the intrinsic dimension of the dataset can be defined as the topological dimension of the manifold. For a metric space X, the intrinsic dimension can be defined in terms of the doubling constant of the space: i.e. the minimum λ such that every ball can be covered by λ balls of half the radius. Then the doubling dimension of X, is defined as dim(X) = log 2 λ. A small doubling dimension allows low distortion embeddings in smaller spaces. In fact, O(dim(X))

dimensions are enough to get O(log 1+ n) distortion for any > 0 [START_REF] Abraham | Embedding metric spaces in their intrinsic dimension[END_REF]. Several attempts have been made to generalize this definition of intrinsic dimension [START_REF] Dasgupta | Random projection trees and low dimensional manifolds[END_REF].

Moreover, the connection between sparsity and intrinsic dimensionality of the data has been addressed in research on nearest neighbour search [START_REF] He | On the difficulty of nearest neighbor search[END_REF].

A common assumption is that although datasets lie in high dimensional ambient spaces, their intrinsic dimension is often low. This assumption is largely supported by observation. As a consequence, many dimensionality reduction methods have been proposed. These methods aim at reducing the dimensionality of the dataset by embedding the original dataset in a lower dimensional space.

Methods in this class have very good performance when the above assumption holds [START_REF] Prescott | High-dimensional probability estimation with deep density models[END_REF], [START_REF] Saul | Spectral methods for dimensional reduction[END_REF], [START_REF] Carreira-Perpin | A review of dimension reduction techniques[END_REF]. Such methods avoid problems related to high dimensionality such as the exponential size of space subdivisions and the sparsity of data in high dimensions. Topological tools, like those used in Topological Data Analysis (TDA), can also be effective in recovering the low dimensional structure of the dataset.

Use of Distances in Data Analysis

Distances are ubiquitous in data analysis and are the most natural descriptors for a dataset. Often datasets are collected as matrices of coordinates of points and the Euclidean distance or Minkowski distances are used to measure the distance between points. When data are collected with reference to the distribution they are sampled from, we may prefer to use pseudo distances, such as KL-divergences (pseudo-distance on the space of probability distributions), or other similarity measures (pseudo-distance on the dataset) to evaluate the similarity between datasets or data points.

Divergences

If the dataset can be modelled in terms of mixtures of distributions, effective methods that produce good classification are based on divergences between distributions instead of distance between points. KL-divergence gives a measure of how a distribution diverges from an expected distribution. In the continuous case, for two distributions P and Q, the Kullback-Leibler divergence can be defined as

D KL (P Q) = +∞ -∞ p(x) p(x) q(x) dx
and, for the discrete case,

D KL (P Q) = i P (i) log P (i) Q(i) .
The KL-divergence is not symmetric and does not satisfy the triangular inequality. It is therefore not a distance. Nevertheless, it has found many applications and several generalization have been proposed. A notable application of KLdivergences can be found in Stochastic Neighbour Embedding (SNE) methods for dimensionality reduction where it is defined to define the cost function to be optimized.

Density Based Distances

Density based distances provide a similarity measure that can be used to perform dimensionality reduction and clustering. They take into account the distribution of the points and not only the distance. As an example, we can consider a dataset sampled from a mixture of two distributions that results in two groups of points, clearly separated by an empty strip. Points that are at the same Euclidean distance from a query point but belong to regions with different densities may be expected to be assigned to different classes.

Definition 1.1. Let f (x) be a probability density function in R n , a density based measure in R n may be defined as a path-length measure that assigns short lengths to paths through high density regions and longer lengths to path passing through low density regions: M f provides a density based measure of path length, and a density based distance may be defined as

M f (x 1 γ x 2 ) = 1 0 g(f (γ(t)) γ (t) p dt where γ : [0.1] → R d is a continuous path from γ(0) = x 1 to γ(1) = x
D f (x 1 , x 2 ) = inf γ M f (x 1 γ x 2 )
If the density function is not given, a natural way to define a density function is in term of the inverse of distance to the k-nearest neighbours around a query point.

Density based distances allow to take into account probability distributions. By associating a weight to each point of the dataset, they provide a more complete description compared to methods that rely only on metric properties of the space.

As a result, they allow to solve cases that are not accessible to a simple metric analysis.

Chapter [START_REF] Orlitsky | Estimating and computing density based distance metrics[END_REF] and widely used algorithms, such as DBSCAN [START_REF] Ester | A densitybased algorithm for discovering clusters in large spatial databases with noise[END_REF], may experience problems.

Deep Learning and Density Estimation. Recently, high dimensional density estimation has been performed using deep learning algorithms. These algorithms may recover the density distribution on the observed dataset by minimizing the KL-divergence between the empirical distribution mapped in the new spaces (representation space) and a good distribution chosen a priori. In this approach, minimizing the entropy of the density distribution may provide a factorization in the latent space [START_REF] Prescott | High-dimensional probability estimation with deep density models[END_REF]. However, for these methods and related algorithms, a reliable proof cannot always be given.

1.4 From Distances to Topological Invariants: Topological Data Analysis

Computational topology offers methods that are complementary to the aforementioned methods based on distances. Topological Data Analysis provides new descriptors of datasets able to encode high dimensional properties and to describe the structure of the datasets. In particular, TDA focuses on the homological properties of a dataset and topological invariants are used in order to recover the intrinsic dimensionality of the dataset.

In topology, spaces are classified according to the following equivalence relations: two spaces are homeomorphic if there exist a continuous invertible transformation with continuous inverse between them; a weaker condition is to have the same homotopy type, i.e. one space can be continuously deformed into the other; an even weaker notion, which is a kind of linearization of homotopy, is the notion of homology that classifies topological spaces in terms of the number of holes.

For a space X, computing the number of holes (of any dimension) reduces to computing the dimension of its homology groups. 1 Being the weaker equivalence, the homological classification is the coarsest one and the easiest to achieve.

Persistent homology [START_REF] Zomorodian | Computing persistent homology[END_REF] is a multi-scale variant of homology. It aims at counting holes and recording how long they live when the space is looked upon at increasing resolution. More precisely, one associates to a given dataset a simplicial complex K (which is a topological space) together with a filtration, i.e. a nested sequence of simplicial complexes associated to various values of a scale parameter:

K 0 ⊆ K 1 ⊆ • • • ⊆ K n = K. A barcode (or persistent diagram) reg-
isters the appearance and the disappearance of the generators of the persistent homology with respect to the value of the scale parameter. TDA is based on the principle that the topological features of the dataset that are associated to long lasting holes are meaningful and distinguish from the short ones that are related to noise. Bar codes are a new type of descriptors that can be used to further analyze the data [START_REF] Cohen-Steiner | Stability of persistence diagrams[END_REF], [START_REF] Ghrist | Barcodes: The persistent topology of data[END_REF], [START_REF] Edelsbrunner | Persistent homology -a survey[END_REF], [START_REF] Chazal | Proximity of persistence modules and their diagrams[END_REF], [START_REF] Carlsson | Persistence barcodes for shapes[END_REF]. TDA hence provides a general framework to analyze data in a manner that is insensitive to the particular metric chosen and provides dimensionality reduction and robustness to noise. Moreover, the use of Vietoris-Rips complexes and efficient computational tools [START_REF] Maria | The Gudhi Library: Simplicial Complexes and Persistent Homology[END_REF] made the algorithms efficient.

The drawback of these methods, however, is that, even if they are robust to small noise, they may not resolve cases in which the noise is larger or comparable to the intrinsic geometrical features of the dataset. In those cases, due to intrinsically high dimensional spaces, the TDA approach is not effective.

Nearest neighbour search

Nearest neighbour search is a fundamental problem whose exact solution can easily be obtained by comparing the distance of the query point to all the points in the data set. Beating this trivial algorithm is not easy in high dimensions and in fact reporting the true nearest neighbour in sublinear time requires a data structure of size exponential in the dimension of the space. This fact leads to consider various kinds of approximations.

Local Sensitive Hashing.

Local Sensitive Hashing (LSH) is an approach to report all points that are within a distance r from a query point using hash functions [START_REF] Indyk | Approximate nearest neighbors: Towards removing the curse of dimensionality[END_REF], [START_REF] Wang | Hashing for similarity search: A survey[END_REF]. Hash functions are defined so that nearby points have a high probability of receiving the same hash code (the value assigned by the hash function) and to be collected in the same bucket. For a query point s, all points in a bucket are retrieved as near points to s. Since computing hash codes turns to be fast, and the number of points in a bucket is much smaller than the total number of points, LSH is quite efficient: for datasets in R n , the algorithm depends only polynomially on the ambient dimension n. The main issue in LSH methods is to define suitable hash functions [START_REF] Datar | Locality-sensitive hashing scheme based on p-stable distributions[END_REF], [START_REF] Lv | Multiprobe LSH: Efficient indexing for high-dimensional similarity search[END_REF], [START_REF] Andoni | Practical and Optimal LSH for Angular Distance[END_REF], [START_REF] Datar | Locality-sensitive hashing scheme based on p-stable distributions[END_REF].

Particularly efficient LSH methods can be obtained when the intrinsic dimension is low. However, high intrinsic dimensionality results in difficulty in indexing, and poor performance [START_REF] Datar | Locality-sensitive hashing scheme based on p-stable distributions[END_REF] ( § 1.9), [START_REF] Li | Fast k-nearest neighbour search via prioritized DCI[END_REF].

Partition Trees.

An effective partition of the space has been given by Das-Gupta at al. [START_REF] Dasgupta | Random projection trees and low dimensional manifolds[END_REF]. The proposed structure, called the random projection tree (RP tree), is inspired from the kd-tree. It is produced by splitting the space along random directions instead of the coordinate directions and allowing splitting points that are not median points. RP trees have the notable property to adapt to the intrinsic dimension of the space.

Dynamic Continuous Indexing.

In recent work, Li and Malik introduced a new approach named dynamic continuous indexing (DCI) [START_REF] Li | Fast k-nearest neighbour search via prioritized DCI[END_REF] which improves on the k-nearest neighbour search in high dimensions. DCI reduces the dependence on the dimension of the ambient space from exponential to linear. In the prioritized DCI, they manage to further improve on the query time.

Dimensionality Reduction

In general, reducing dimensionality is the best approach to tame high dimensional datasets when the intrinsic dimension is low enough to allow for good low dimensional embedding. It consists in reducing the number of parameters that represent a dataset in order to obtain a faithful and meaning representation of the dataset in a lower dimensional space. Dimensionality reduction has been addressed from various points of view. Geometrical aspects of the subject include topological data analysis, manifold reconstruction and data embedding. In statistics, dimension recovery is related to multivariate density estimation. Dimensionality reduction is also related to feature extraction in pattern recognition, and to data compressing and encoding in information theory [START_REF] Carreira-Perpin | A review of dimension reduction techniques[END_REF], [START_REF] Van Der Maaten | Dimensionality reduction: A comparative review[END_REF].

Linear and non-linear techniques have been proposed for dimensionality reduction. Linear methods, including principal component analysis (PCA), factor analysis and classical scaling, are the most used, while non-linear methods have the capability to adapt to non linear data. The latter class includes isometric mapping, kernel PCA, multi-dimensional scaling (MDS), locally linear embedding and its variants, Laplacian eigenmaps, diffusion maps [START_REF] Van Der Maaten | Dimensionality reduction: A comparative review[END_REF].

Spectral Methods

This class of methods includes some of the most effective dimensionality reduction methods. In practice, spectral methods provide dimensional reduction using projection on eigenspaces associated to eigenvalues of a suited designed matrix.

PCA. PCA gives a low dimensional representation of the data, using a linear basis that consists of the directions that maximize the variance of the data. PCA computes the covariance matrix cov(X) of the dataset and solves the eigenprob-

lem cov(X)v = λv
The eigenvalues of C provide a measure of the variance of the high dimensional data set along the principal axes (eigenvectors). The top m eigenvectors of the matrix, (e 1 , ...e m ), provide a basis for the embedding space. This space turns out to minimize the reconstruction error between the input dataset and the projection in the m-dimensional subspace

E P CA = i x i - m α=1 (x i • e α )e α 2
The output of PCA is the projection of the input dataset on the m-dimensional subspace spanned by the top m eigenvectors of C. PCA is the most widely used and effective method for dimensionality reduction.

Multidimensional Scaling (MDS).

In multidimensional scaling the input is the distance matrix M of the pairwise Euclidean distances between points in the dataset. The core of the method uses PCA on M in order to provide the low dimensional embedding.

Kernel PCA. PCA provides a best linear embedding of the dataset. However, the hypothesis that the dataset lies on a linear subspace of the observation space is actually too strong in many cases. A notable example is a curve in a high dimensional space that lie on a 2-dimensional plane. The curve can be efficiently embedded in a 2-dimensional space but not in a 1-dimensional space.

To recover the intrinsic 1-dimensional structure of the curve, one can consider a non-linear embedding such as the one provided by kernel PCA [START_REF] Wang | Geometric Structure of High-Dimensional Data and Dimensionality Reduction[END_REF].

Let {x 1 , ...x N } be a set of N n-dimensional vectors in R n (the data points) and let k be a positive kernel function. The kernel function defines a

N × N symmetric matrix M M ij = k(x i , x j )
Chapter 1 High Dimensional Data Analysis 20 called the kernel matrix. Kernel PCA consists in applying PCA to the positive kernel matrix.In order to analyse precisely kernel PCA in high dimensions, it is necessary to understand the behaviour of kernel matrices and of their spectra as the dimension increases. While the literature on eigenvalues of random matrices is vast and growing rapidly, the knowledge about random kernel matrices is not growing at the same rate although important contributions have been made [START_REF] Williams | The effect of the input density distributions on kernel based classifiers[END_REF], [START_REF] Karoui | The spectrum of kernel random matrices[END_REF].

Isomap.

When the dataset live on a non linear submanifold, using the standard Euclidean distance in the ambient space may not allow to correctly identify the neighbours of a data point on the submanifold. To overcome this difficulty, Isomap, as well as other graph-based methods, constructs a graph structure from the dataset where the nodes are the input data points and the edges represent neighbourhood relations. The pairwise distances between the points are used as an approximation of the geodesic distance between the points on the manifold.

The length of the shortest path joining two nodes on the graph then provides an approximation of the geodesic distance on the manifold. The algorithm consists of three parts:

• Construct a proximity graph whose nodes are the points of the dataset and whose edges connect points that are close. Assign weights to the edges based on the Euclidean distances between the points.

• For those pairs of points that are not in the proximity graph, compute their distance as the length of the shortest path between the points in the proximity graph (Dijkstra's Algorithms),

• Applying MDS on the computed interpoint distances.

A problem of Isomap is its instability against noise. Indeed, noise and outliers may produce erroneous links in the graph that may lead to topological errors.

Also, while its correctness has been proved for submanifolds isometric to convex subsets of Euclidean spaces, it remains a heuristic in more general cases.

Stochastic Neighbour Embedding.

Stochastic neighbour embedding and its variants compute an embedding of the data in a lower dimensional space so as to minimize the similarity between the distribution of the pairwise distances between the points in the dataset in the high dimensional space and the corresponding distribution measured in the lower dimensional space [START_REF] Hinton | Stochastic neighbor embedding[END_REF].

The similarity between the two distributions is usually measured using the KLdivergence [START_REF] Lee | Type 1 and 2 Mixtures of Kullback-Leibler Divergences As Cost Functions in Dimensionality Reduction Based on Similarity Preservation[END_REF].

Concentration of distances.

Besides the computational difficulty of computing nearest neighbors in high dimensions, it turns out their relevance become increasingly unclear as the intrinsic dimension of the data grows. Indeed, it was noticed by practitioners that the ratio distances to the nearest neighbor and distances to the furthest point often tend to 1, implying that the nearest neighbor might be determined by the sample's randomness. This phenomenon is referred to as concentration of distances and strongly affects searching and indexing high dimensional datasets [START_REF] Eiter | Database theory -icdt 2005[END_REF], [START_REF] Kumari | Measuring concentration of distances 2014 an effective and efficient empirical index[END_REF]. Concentration of distances is part of a large class of higher dimensional phenomena usually referred to as concentration of measure, which we will investigate in more detail in Chapter 2.

Clustering Methods

A first step in recovering the structure of a dataset is to identify clusters. We give in the following section a brief overview of clustering methods. As is common, we distinguish between partition methods and hierarchical methods [START_REF] Rokach | Data mining and knowledge discovery handbook, chapter 15 clustering methods[END_REF].

Partition methods.

In partition algorithms, a set of N data points is partitioned in k clusters. The number of clusters k is given as part of the input and remains fixed. At each iteration, the algorithm reassign datapoints among clusters. The algorithm starts with an initial partition which is further improved so as to optimize an objective function. The celebrated k -means algorithms is one of the most widely used clustering algorithm. Each cluster is represented by its center of gravity (or mean), i.e. the point that minimizes the sum of squared distances to the elements in the cluster. Given a set X = {x 1 , ..., x n } of means {m 1 , ..., m k } the algorithm consists of the two following steps

• Expectation: at step t, each data point is assigned to the cluster whose mean is closest. Hence, the clusters S t 1 , ..., S t k are defined as the Voronoi partition

S t i = {x ∈ X : x -m t i 2 ≤ x -m t j 2 1 ≤ j ≤ k}
• Maximisation: new means {m t+1 1 , ..., m t+1 k } are computed according to the new partition

m t+1 i = 1 |S t i | x j ∈S t i x j
While the algorithm converges to a local optimum, there is no guarantee that it will converge to a global optimum. Moreover, if one uses Euclidean distances as described above, the cost functional will minimize the standard cluster variance, implying that the algorithm may fail to disciver anisotropic clusters.

Hierarchical Algorithms.

In hierarchical algorithms, the clusters are produced by grouping clusters in bottom-up fashion (agglomerative clustering), at each step combining two clusters that are similar. At the beginning of the process, each element is in a cluster of its own. The clusters are then sequentially combined into larger clusters until all elements end up being in the same cluster.

The result of the clustering can be visualized as a dendrogram, which shows the sequence of cluster fusion and the distance at which each fusion took place.

The grouping rule can be guided by several similarity measures. Single-linkage clustering consists in merging the two clusters that contain the closest pair of

elements not yet belonging to the same cluster as each other. In complete linkage clustering, the distance between two clusters is given by the greatest distance between any points in the clusters. In average linkage clustering, similarity is measured as the average distance between the points of the two clusters. Chapter 2

Metric Measure Spaces and

Concentration of Measure

Metric spaces are a natural structure used to describe datasets. More specifically, sample points in a dataset often come with a natural notion of distance, turning it into a metric space. Associating (for example equal) weights to the data points further turns the dataset into a metric measure space [START_REF] Gromov | Metric structures for Riemannian and non-Riemannian spaces[END_REF], [START_REF] Sturm | On the geometry of metric measure spaces[END_REF]. The arsenal of mathematical results and techniques for metric measure spaces can then be leveraged to unveil and investigate the hidden structure of the dataset. In particular, high dimensional datasets can be analysed by exploiting well-known phenomena that seem to govern high-dimensional metric spaces. These phenomena, known as concentration of measure, have been extensively studied for several decades.

Concentration of measure refers to the fact that regular functions tend to become nearly constant as the dimension increases. This phenomenon was first observed by Milman, and further developed by Gromov [START_REF] Gromov | Metric structures for Riemannian and non-Riemannian spaces[END_REF][START_REF] Milman | A certain property of functions defined on infinite-dimensional manifolds[END_REF][START_REF] Ledoux | The Concentration of Measure Phenomenon[END_REF][START_REF] Lévy | Collection de monographies sur la théorie des fonctions[END_REF]. It describes for example the behaviour of distance functions in high dimension, i.e. concentration of distance (which results in the nearest and the furthest point to have comparable distances, § 1.9) and in general of Lipschitz functions (i.e. concentration of functions). Another example is concentration of volumes [START_REF] Matousek | Lectures on Discrete Geometry[END_REF], which is responsible for the so called emptiness of space, along with the sparsity of the data in high dimension.

Our aim is to take advantage of concentration of measure in order to give a description of the dataset. As we will see, Lipschitz functions can be used as tools to analyse the structure of the dataset, by leveraging the concentration of measure property.

In this chapter we give a brief overview of the mathematical framework of metric measure spaces, and we present some theorems and examples that will be further refined in the last chapter.

Metric Measure Spaces

Metric measure spaces are mathematical structures that combine the metric and the measure defined on a set, e.g. a dataset in the discrete case.

Definition 2.1.

• Let (X, d) be a complete separable metric space. A measure on X is a measure on the space (X, B(X)), with X the Borel σ-algebra of X ( generated by the opens balls of X).

• The push forward of ν under a measurable map f : X → Y into another metric space Y is the probability measure f * ν on Y given by

(f * ν)(A) := ν(f -1 (A))
for all measurable A ⊂ X.

Metric measure spaces. With reference to the definition given in [START_REF] Sturm | On the geometry of metric measure spaces[END_REF], a metric measure space (mm-space) is a triple (X, d, µ) where

• (X, d) is a complete separable metric space with distance d,
• µ is a measure on (X, B(X)) which is locally finite i.e. µ(B r (x)) < ∞ for all x ∈ X and sufficiently small r. B(X) is the Borel algebra on X induced by d, and B r (x) the ball of radius r centered at x.

From now on, we restrict our attention to metric measure spaces for which µ(X) = 1, i.e. µ is a probability measure. 

: supp[µ X ] → supp[µ Y ] , such that µ X (φ -1 (B)) = µ Y (B) for all B ⊂ Y measurable.

Examples

Unit sphere.

An example of a metric measure space is (S n-1 , g, σ n-1 ), the unit sphere S n-1 , endowed with the geodesic distance and the uniform measure [START_REF] Ledoux | The Concentration of Measure Phenomenon[END_REF], [START_REF] Matousek | Lectures on Discrete Geometry[END_REF].

Gaussian Spaces.

A notable example of metric measure spaces is given by Gaussian spaces. A Gaussian space is of the form

G n = (R n , • 2 , γ n c,Σ ), i.e.
R n endowed with the Euclidean distance and a Gaussian measure γ n c,Σ . The Gaussian measure is the multivariate Gaussian distribution N (c, Σ), where c is the mean value vector and Σ is the covariance matrix. For isotropic Gaussian spaces, Σ = σ 2 I n and

γ n c,σ = 1 ( √ 2πσ) n R n e -x-c 2 2σ 2 dx,
and, for general Gaussian spaces,

γ n c,Σ = 1 (2π) n √ detΣ R n e -1 2 (x-c) T Σ -1 (x-c) dx
with det(Σ) the determinant of Σ.

Molecular Datasets. Molecular dataset can be described as metric spaces where the measure is the Boltzmann distribution. Data from molecular dynamics are collected in the configuration space X, with X ⊂ R 3N , where N is the number of atoms (possibly a selection e.g. the number of carbons). Data are generated using an effective potential E tot involving parameters such as the torsion angles between covalent bonds or the distance btween specific atoms, from which a force field is derived to perform the simulation. The associated Boltzmann distribution can then be written as

µ ∝ e -E tot kT
The potential energy expression usually contains a large number of variables,

i.e. it is written in terms of a large number of coordinates. Often one uses a small number of coordinates N R , the so called reaction or active coordinates to describe the system, which results in a reduced Boltzmann distribution µ R obtained by pushforward from µ. The space (R N R , • , µ R ) is an example of metric measure space describing the behavior of the molecule at thermal equilibrium.

Concentration of Measure

Concentration of measure is a property of metric measure spaces that roughly says that regular functions tend to be nearly constant [START_REF] Milman | A certain property of functions defined on infinite-dimensional manifolds[END_REF], [START_REF] Ledoux | The Concentration of Measure Phenomenon[END_REF], [START_REF] Gromov | Metric structures for Riemannian and non-Riemannian spaces[END_REF], [START_REF] Lévy | Collection de monographies sur la théorie des fonctions[END_REF]. It can be observed in many spaces, typical examples being high dimensional spheres with the uniform measure, or general Gaussian spaces.

Concentration function. We say that a measure µ on some metric measure space (X, d, µ) has σ-concentration if there exists a constant a c , such that for any set A with µ(A) ≥ 1 2 µ(X), for any ≥ 0 we have:

µ(A ) ≥ 1 -a c e - 2 σ 2 (2.1)
where

A = {x ∈ X, d(x, A) < } is the -offset of A.
Concentration and Lipschitz functions.

Concentration in a metric measure space (X, d, µ) can equivalently be stated in terms of Lipschitz functions.

For f a real function on X, with median M (f ), let

α f ( ) = µ{x : |f (x) -M f | ≥ }
be the concentration function for f on X. We say that f has σ-concentration, for some σ > 0, if for any > 0:

µ{x : |f (x) -M (f )| ≥ } ≤ e - 2 2σ 2 
(2.2)

A metric measure space X is said to have σ-concentration if all 1-Lipschitz functions have σ-concentration on X. In particular, if = O(σ), the right term in equation 2.2 is constant, so that f (x) differs from M (f ) by at most O(σ), with constant probability.

From Isoperimetric Inequalities to Concentration

Concentration of measure appears as a natural consequence of isoperimetric inequalities.

Let (X, d, µ) be a metric measure space and µ + = lim r→0 inf 1 r µ(A r /A) be the boundary measure for a Borel set A ∈ X. Then the isoperimetric function of µ is the largest function I µ on [0, µ(X)] so that

µ + (A) ≥ I µ (µ(A)) (2.3)
holds for every Borel set A, with µ(A) ≤ ∞. B is said to be an extremal set if the equality holds, i.e. µ + (B) = I µ (µ(B)).

As a notable example, for the sphere, the isoperimetric inequality states that the spherical caps minimize the boundary measure at fixed volume. While isoperimetric inequalities deal explicitly with extremal sets, concentration is related to non-infinitesimal neighbourhoods [START_REF] Ledoux | The Concentration of Measure Phenomenon[END_REF], and can be extended to situation not covered by the isoperimetric formalization. Moreover isoperimetric functions are known only for few example, and usually are very difficult to compute.

We present in this section the link between isoperimetric inequalities and concentration properties [START_REF] Ledoux | The Concentration of Measure Phenomenon[END_REF]. In fact, concentration of measure, for important classes of metric measure spaces, can be formalized in this framework.

Concentration Functions. A notable example, for which isoperimetric function can be computed, is the class of constant curvature metric measure spaces, namely, manifolds with constant curvature endowed with their canonical measure. Letting v(r) be the volume of a ball of radius r, the isoperimetric function can be expressed as

I v = v • v -1
In general the following result holds:

Proposition 2.3. [60] Assume I µ ≥ v • v -1
for some strictly increasing differentiable functions. The, for every r

v -1 (µ(A r )) ≥ v -1 (µ(A)) + r.
In fact, the condition in proposition 2.3, for a Borel set A of finite measure, reduces to

µ + (A) ≥ v • v -1 (µ(A)). (2.4) 
For spaces of constant curvature this condition is satisfied by geodesic balls, and enables to express the above proposition as

µ(A r ) ≥ µ(B r ), (2.5) 
as soon as with µ(A) = µ(B), and where B is a ball. Specifically, for the sphere, among all measurable sets A ⊂ S n-1 , for a given measure, spherical caps minimize the measure of the -neighborhood µ(A ).

From the previous conditions 2.4, 2.5, one can recover the concentration function of the space X using the following proposition:

Proposition 2.4. [START_REF] Ledoux | The Concentration of Measure Phenomenon[END_REF] Let (X, d, µ) be a metric measure space, for which proposition 2.3 applies, and assume

I µ ≥ v • v -1 , then α (X,d,µ) (r) ≤ 1 -v v -1 1 2 + r , r > 0 (2.6)
Concentration on the Sphere.

Let us consider the case of the unit sphere S n in R n+1 , endowed with its uniform measure σ. For 0 < r < π,

v(r) = 1 π 0 sin n-1 θdθ r 0 sin n-1 θdθ,
From calculations, it follows that:

Proposition 2.5. [START_REF] Ledoux | The Concentration of Measure Phenomenon[END_REF] For the unit sphere S n , we have:

α S n ≤ e -(n-1)r 2 /2 , r > 0.
From the definition of concentration function, we get:

Theorem 2.6 (Concentration on the sphere). For an arbitrary measurable set

A on the sphere, with σ(A)

≥ 1 2 , σ(A ) ≥ 1 -2e -(n-1) 2 2 (2.7) 
In general, for a sphere of radius R:

α RS n ≤ e -(n-1)r 2 2R 2 (2.8)
When compared to equation 2.3, it is important to note that the concentration properties 2.7,2.6,2.1 can be expressed with no dependence on any extremal set.

Concentration for the Gaussian Space.

The isoperimetric inequality for the sphere implies the isoperimetric inequality for Gaussian spaces. In fact, by Poincaré lemma, it is known that the uniform measure on a sphere of radius √ n approximates, after projection on a finite number of coordinates, a Gaussian distribution1 .

For a Gaussian measure γ n in R n , with associated Euclidean distance, concentration function for Gaussian spaces, can be found by performing the limit in

2.8, setting R = √ n, α (R n , • 2 ,γn) ≤ e -r 2 2 .
(2.9)

It is important to note that there is no explicit dependence on the dimension.

In fact, it is easy to see that condition 2.9 implies several concentration properties for the Gaussian space. They became explicit in the functional version, the Levy's lemma [START_REF] Lévy | Collection de monographies sur la théorie des fonctions[END_REF], which states concentration bounds in terms of L-Lipschitz functions defined on the isotropic Gaussian space G n .

Theorem 2.7 (Levy's Lemma). Let f be a Lipschitz function of constant L defined on the isotropic Gaussian space

G n = (R n , • 2 , γ n ). Then f has σL concentration.
This result applies to anisotropic Gaussians if one takes σ 2 to be the maximum variance of the distribution, i.e. σ 2 = max j σ 2 j , over all principal directions, j = {1, .., n}. Levy's lemma implies that, for high dimensional Gaussian spaces, most of the points are at about the same distance from the center. Indeed, for an isotropic Gaussian vector x,

E( x 2 ) = E(x) 2 + Var(N (0, σ 2 I n ) = σ 2 n.
As distance functions are 1-Lipschitz, by Levy's lemma, they have σ-concentration.

This implies that the distance of every point from the center differs by at most

O(σ) from σ √ n, x ∼ σ √ n ± O(σ).
Concentration of Measure for Log-concave Functions Other examples of distributions that conjecturally exhibit similar concentration properties are uniform distributions over isotropic convex bodies, and more generally isotropic measures with log-concave densities, meaning that the logarithm of the density is concave. Specifically, for this class of distributions, a weaker form of concentration of measure called exponential concentration would be implied by the KLS conjecture [START_REF] Kolesnikov | The KLS isoperimetric conjecture for generalized Orlicz balls[END_REF].

Emptiness of Space

Another consequence of high dimensionality is the so called emptiness of space phenomenon. The picture that we associate to higher dimensional cubes, and in general to high dimensional shapes and volumes, should change drastically when the dimension increases [62] [27]. In fact, doing simple computations, it is easy to see that when the dimension n increases the diagonal of the unit cube tends to increase, while the radius of the sphere remains constant (by definition).

Moreover, along with the dimension of the space the size N of the dataset is supposed to increase. In order to keep the same distance between the points in the sample from a uniform distribution, when the dimension of the ambient space increases, the size of the sample has to increase exponentially with the dimension, too. This implies that, in general, data tend to be sparse in high dimensions.

Volume of the Unit Sphere To give another example, consider the volume of the unit ball in the Euclidean space. It tends to zero when the dimension of the space tends to infinity. In fact, since the volume of the ball is given by

V n = π n 2 Γ( n 2 + 1)
it is easy to see that lim n→∞ V n = 0.

Moreover, when the dimension increases the mass of the ball becomes concentrated in a thin shell. Indeed, the ratio between the volume of a ball of radius (1 -) and the one of a ball of radius 1 is (1 -) n , which goes to 0 for 1/n when n goes to ∞.

Volume of the Cube As a remark, we note that, for large enough n, the volume of the cube tends to be concentrated around its the vertices (figure 2.1).

Indeed, if we consider the ball of radius c √ n, for any c < (2π) -1/2 , we see using

Stirling's formula that its volume tends to zero as the dimension tends to infinity.

This implies that for n large enough, almost all the volume of the unit cube will lie outside that of that sphere.

Chapter 3

The Distance Transform of a

Metric Measure Space

Noise is one of the reason for high dimensionality of datasets: a low-dimensional signal corrupted by isotropic ambiant noise will appear high-dimensional, although most of its variance represents unwanted information. Under some specific hypotheses, concentration of measure can be used to suitably shrink the noise, in order to make the data consistent with the signal. We present an approach designed for denoising data in the framework of metric measure spaces.

In order to do so, we use some distances defined on the space of metric measure spaces.

The possibility of defining a distance between metric spaces, the Gromov-Hausdorff distance [START_REF] Gromov | Metric structures for Riemannian and non-Riemannian spaces[END_REF], resulted in powerful tools for computational purposes. The GHbased methods have been used to compare datasets and shapes [START_REF] Memoli | On the use of Gromov-Hausdorff distances in shape comparison[END_REF], [START_REF] Facundo | Gromov-Hausdorff distances in Euclidean spaces[END_REF], [START_REF] Memoli | Some Properties of Gromov-Hausdorff Distances[END_REF].

For specific classes of datasets, in particular low dimensional and smooth manifolds, this approach led to important results. The GH-distance has been further generalized, by Memoli, to a distance on the space of metric measure spaces:

the Gromov-Wasserstein distance, defined taking into account both metric and measure features of a data set [START_REF] Facundo | Gromov -Wasserstein distances and the metric approach to object matching[END_REF].

We first introduce some technical tools in order to define distances between metric measure spaces [START_REF] Sturm | On the geometry of metric measure spaces[END_REF], following Sturm's approach, in the formalism of Chap. 2.
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Then we introduce Memoli's definition of Gromov-Wasserstein distance inspired by the Gromov-Hausdorff distance between metric spaces. We then suggest a simple way to "denoise" metric measure spaces, which we will refine in the last chapter of the thesis. 

: supp[µ X ] → supp[µ Y ], such that µ X (φ -1 (B)) = µ Y (B) for all B ⊂ Y measurable.
Wasserstein Distances.

Definition 3.2 (Coupling of measures). Given two metric measure spaces (X, µ X ),

(Y, µ Y ) a measure µ on X × Y is a coupling of µ X and µ Y if its marginals are µ X and µ Y , that is, if µ(A × Y ) = µ(A), q(X × A ) = ν(A )
for all measurable sets A ⊂ X, A ⊂ Y .

An example of coupling, the most obvious but not always the most suitable, is the product measure µ X × µ Y . Couplings µ of µ X and µ Y are also called transportation plans from µ X to µ Y , and may be described as the plans to transport some products whose locations are distributed according to µ X to consumer distributed according to µ Y . The set of all couplings for given measures µ X and µ Y is denoted by M(µ X , µ Y ). The problem of comparing measures can be stated as a mass-transportation problem, i.e. to find the best way to move a certain mass from producers distributed according to a law µ X to customers, distributed according to µ Y . This leads to the definition of Wasserstein distances, which are metrics on the space of Borel probability measures µ on X with d(x 0 , x) p dµ(x) < ∞ for some x 0 ∈ X: Definition 3.3. (Wasserstein distance). Let (X, d) be a metric space, for p ≥ 1, the L p -Wasserstein distance between µ 1 and µ 2 is defined as

d W,p (µ 1 , µ 2 ) = inf µ∈M(µ 1 ,µ 2 ) d p (x, y)dµ(x, y) 1/p D-distance.
The problem of defining distances between two metric measure spaces is formalized by Sturm [START_REF] Sturm | On the geometry of metric measure spaces[END_REF] who introduced the D-distance. To define it, we first need to introduce couplings of metrics: 

D p ((X, d X , m X ), (Y, d Y , m Y )) = inf d,µ M ×M dp (x, y)dµ(x, y) 1/p
where d is a coupling of d X and d Y , and µ is a coupling of µ X and µ Y .

The D p -distance is a complete and separable metric on the family of all isomorphism classes of normalised metric measure spaces. While it enjoys certain useful properties from a theoretical point of view, it isn't very easy to handle from a computational perspective, because the optimization with respect to the metric coupling is difficult to perform in general.

Distance Between Metric Measure Spaces: Gromov-Wasserstein Distance

A modified version of Sturm's definition 3.5 is given by Memoli [START_REF] Facundo | Gromov -Wasserstein distances and the metric approach to object matching[END_REF], and is known as the Gromov-Wasserstein distance. While similar, the definitions are quite independent. More specifically, Memoli's definition of Gromov-Wasserstein distance is inspired by the Gromov-Hausdorff distance between metric spaces.

In fact, while Sturm's approach originates from the formalism of metric measure spaces, Memoli definitions and techniques are more data analysis oriented. This makes Gromov-Wasserstein distances also more amenable for numerical computation ([66], section 7).

Correspondences.

In order to give the definition of Gromov-Wasserstein distance we introduce the notion of correspondences and the related Gromov-Hausdorff distance.

Definition 3.6 (Correspondence). Let A and B be sets

. A subset R ∈ A × B is a correspondence between A and B if • for each a ∈ A, there exist a b ∈ B such that (a, b) ∈ R.
• for each b ∈ B there exist a ∈ A such that (a, b) ∈ R.

We denote by R(A, B) the set of all possible correspondence between A and B.

Gromov-Hausdorff and Gromov-Wasserstein distance Definition 3.7. Let (X, d) be a metric space. The Hausdorff distance between any two sets A, B ∈ X can be expressed as

d H (A, B) = inf R sup (a,b)∈R d(a, b)
where the infimum is taken over all R ∈ R(A, B).

The Gromov-Hausdorff distance function d GH and the Gromov-Wasserstein distance function d GW can be defined, using the previous definitions. 

d GH (X, Y ) = 1 2 inf R∈R(X,Y ) Γ L ∞ (R×R)
Recall the definition of coupling of measures 3.2 in the previous section. Then, analogously to the Gromov-Hausdorff distance, the Gromov-Wasserstein distance can be defined. In fact the Gromov-Wasserstein distance can be seen as a relaxed form of the Gromov-Hausdorff distance [START_REF] Facundo | Gromov -Wasserstein distances and the metric approach to object matching[END_REF].

Definition 3.9 (Gromov-Wasserstein). Let (X, d X , µ X ), (Y, d Y , µ y ) be metric measure spaces and Γ(x, x , y, y ) = |d X (x, x ) -d Y (y, y )|. For 1 ≤ p ≤ ∞, the Gromov-Wasserstein distance between the two mm-spaces is:

d GW (X, Y ) = 1 2 inf µ∈M(µ X ,µ Y ) Γ L p (µ×µ)
It can be shown that the D-distance and the d GW -distance coincide for p = ∞.

Denoising

The term denoising or noise-reduction usually refers to a general procedure aimed at eliminating the non-signal components from a a dataset. For data in Euclidean space, if the noise is assumed to be additive, denoising can be formulated as a deconvolution problem. Equivalently, data in this model are a mixture of components describing the structure of the noise corrupting each signal point, and the goal is to retrieve the parameters of this mixture.

We propose an idea that takes advantage of the properties of Lipschitz functions in high dimensional spaces, to perform denoising on a dataset. This algorithm operates at the level of metric measure spaces and is thus not limited to data in Euclidean spaces. Although this idea is essentially already proposed by Dubnov et al. in 2002 [START_REF] Dubnov | A new nonparametric pairwise clustering algorithm based on iterative estimation of distance profiles[END_REF], the analysis we provide sheds new light on its properties in the context of high dimensional data.

A transform on metric measure spaces

We define the following map on the set of metric measure spaces, which we call the distance transform: Definition 3.10. For {X, d, µ} a metric measure space, define φ X :

X → R X by φ X (x) = d(x, .) for all x ∈ X. Given p ≥ 1, if X is such that the image of φ X is in L p (X), the distance transform of X is the metric measure space Φ(X) = φ X (X).
It is clear from the triangle inequality that φ X is always non expansive, so that distances in Φ(X) are at most the ones in X. Also, for p = ∞, Φ reduces to the identity map, since |d(x, y) -d(y, y)| = d(x, y).

Stability

We first check that the distance transform is robust with respect to perturbations of the input mm-space. More precisely:

Lemma 3.11. The map Φ is 2-Lipschitz for any p ≥ 1:

d GW (Φ(X), Φ(Y )) ≤ 2d GW (X, Y )
for any two mm-spaces X and Y for which Φ is defined.

Proof. We consider for simplicity the case of Gromov-Wasserstein distances with exponent 1. The GW -distance between the images of X = (X, d X , µ X ) and

Y = (Y, d Y , µ Y ) can be written d GW (Φ(X), Φ(Y )) = 1 2 inf µ∈M(µ X ,µ Y ) | d X (x, .) -d X (x , .) L p (µ X ) -d Y (y, .) -d Y (y , .) L p (µ Y ) |dµ(x, y)dµ(x , y ) ≤ 1 2 inf p X ,p Y | d X (p X (a), p X (.)) -d X (p X (a ), p X (.)) L p (Ω) -d Y (p Y (b), p Y (.)) -d Y (p Y (b ), p Y (.)) L p (Ω) |dada dbdb ≤ 1 2 inf p X ,p Y (d X (p X (a), p X (z)) -d X (p X (a ), p X (z))) p dz 1/p - (d Y (p Y (b), p Y (t)) -d Y (p Y (b ), p Y (t))) p dt 1/p dada dbdb ≤ 1 2 inf p X ,p Y (d X (p X (a), p X (z)) -d Y (p Y (b), p Y (t))) p dz 1/p + (d X (p X (a ), p X (z)) -d Y (p Y (b ), p Y (t))) p dt 1/p dada dbdb ≤ 2d GW (X, Y )
In the second line we reformulated couplings as measure preserving parametrizations p X and p Y of both measures µ X and µ Y over a common probability space Ω. In the fourth line we swap terms between the two L p norms using the triangle inequality, which gives the desired claim.

Behavior with respect to products

Given two mm-spaces X = (X, d X , µ X ) and

N = (N, d N , µ N ) their product is the mm-space X × N = (X × N, d X×N , µ X ⊗ µ N ), with d X×N ((x, n), (x , n )) = d X (x, x ) + d N (n, n ).
Thinking of X as the "signal", for example a low dimensional manifold, and of N as the "noise", for example a Gaussian space, the product X × N can be thought of as a noise corrupted version of X. In this model of noise, if N is a high dimensional Gaussian space, generally X × N will be very far from X in the GW-distance, as distances will be typically increase by the variance of the Gaussian, which is proportional to its dimension. We observe below that applying the distance transform has the effect of considerably reducing that effect if N satisfies the concentration of measure property:

Lemma 3.12. If N has σ-concentration, then d GW (Φ(X), Φ(X × N )) ≤ O(σ)
for any fixed finite p, the Gromov-Wasserstein distance being computed with exponent p.

Proof.

d(φ(x, n), φ(x , n )) = d (x,n) -d x ,n ) L p (X×N ) = |d X (x, y) + d N (n, m) -d X (x , y) -d N (n , m)| p dµ X (y)dµ N (m) 1/p ≤ |d X (x, y) -d X (x , y)| p dµ X (y) 1/p + |d N (n, m) -d N (n , m)| p dµ N (m) 1/p Hence |d(φ(x, n), φ(x , n )) -d(φ(x), φ(x ))| ≤ |d N (n, m) -d N (n , m)| p dµ N (m) 1/p But (n, n , m) → d N (n, m) -d N (n , m
) is 4-Lipschitz and has zero mean, hence by concentration its norm in L p (N 3 ) is O(σ). Therefore, using the projection X × N → X as coupling, we have

d GW (Φ(X), Φ(X × N )) p ≤ |d(φ(x, n), φ(x , n )) -d(φ(x), φ(x ))| p dµ X (x)dµ X (x )dµ N (n)dµ N (n ) ≤ |d N (n, m) -d N (n , m)| p dµ N (m)dµ N (n)dµ N (n ) ≤ O(σ p )
which is the desired claim.

Distortion bound for simple spaces

While the above paragraph shows that the distance transform has noise reduction properties, one should bear in mind that it does affect the signal as well.

However, the distortion can be controlled for low dimensional spaces, for example as follows: The constant C in the above lemma intuitively depends on the dimension and on the "geometric complexity" of X. Indeed, parameter λ is related to the number of "simple" patches that are required to cover X. If X is for example a Riemannian d-manifold, there exists a radius c such that X looks -close to Euclidean space at scale c, and 1/λ indicates how small that scale is with respect to the size of the whole manifold. Using differential geometric estimates, it can be shown for example that λ is controlled by a function of the volume of the manifold, its maximum absolute sectional curvature and its injectivity radius.

It seems likely that in the Riemannian case, X and its distance transform are guaranteed to be bilipschitz equivalent rather than approximately so.

Regarding the application of the distance transform to data, we note that it is trivially implementable given data in the form of a finite input metric measure space. However, rather than further developping this initial idea in a broad context, we refine it in the context of Euclidean spaces in the next chapter of thesis.

Chapter 4

Spectral Properties of Radial Kernels and Clustering in High Dimensions

Introduction

Given a set of data points drawn from a mixture of distributions, a basic problem in data analysis is to cluster the observations according to the component they belong to. For this to be possible, it is clearly necessary to impose separation conditions between the different components in the mixture.

Many approaches have been proposed to solve the problem of clustering mixtures of distributions. We give below a brief historical account of the algorithms that come with theoretical guarantees, focusing on the high dimensional situation. and Kannan [START_REF] Arora | Learning mixture of separated non-spherical Gaussians[END_REF], using a distance-based algorithm, for Gaussians with at most unit covariance. These methods, to correctly classify the components, require a O(n 1/4 ) separation between the centers of the Gaussian. For mixtures of unit covariance Gaussians, Vempala and Wang [START_REF] Vempala | A spectral algorithm for learning mixture models[END_REF] used PCA to obtain a dimensionfree separation bound, which depends only on the number of the components.

Their method is based on the fact that the space spanned by the k top singular vectors of the mixture's covariance matrix contains the centers of the components. Projecting to this space has the effect of reducing the variance of each component while maintaining the separation between the centers. Kannan et al. [START_REF] Kannan | The spectral method for general mixture models[END_REF] extended this idea to mixtures of log concave distributions with at most unit covariance, also requiring a separation between the centers that depends only on the number of the components. Achlioptas and McSherry [START_REF] Achlioptas | On spectral learning of mixture of distributions[END_REF] improved further the dependency of the separation bound on the number of components.

A combination of PCA with a reweighting technique was proposed by Brubaker and Vempala [START_REF] Brubaker | Isotropic PCA and affine-invariant clustering[END_REF]. This method is affine invariant and can deal with highly anisotropic inputs as a result. When applied to a sample from a mixture of two Gaussians, the algorithm correctly classifies the sample under the condition that there exists a half space containing most of the mass of one Gaussian and almost none of the other. Finally, a different family of approaches uses the moments of the mixture to learn the parameters of the components. Strong results have been obtained in this direction (see e.g. [START_REF] Huang | Learning mixtures of Gaussians in high dimensions[END_REF][START_REF] Belkin | Polynomial learning of distribution families[END_REF]). These methods do not require any separation assumption, however their downside is that they require a priori knowledge of a small parametric family containing the component's distributions. They also become inefficient when applied to high dimensional data, since the number of moments involved grows rapidly with the dimension. For example, the currently fastest algorithm [START_REF] Huang | Learning mixtures of Gaussians in high dimensions[END_REF] for learning mixtures of Gaussians runs in time O(n 6 ).

Another possible approach to the analysis of mixtures uses kernel matrices. On in particular of their spectral decomposition as in the popular kernel PCA algorithm, has long become commonplace in data analysis. Still, surprisingly little is known regarding theoretical justifications for kernel based clustering methods. Notably, the analysis in [START_REF] Shi | Data spectroscopy: Eigenspaces of convolution operators and clustering[END_REF] implies that a kernel PCA type algorithm will correctly cluster mixtures when the components are sufficiently separated. However, the arguments used in this paper follow the low (or constant) dimensional intuition and the required separation between the components is of the order of the width of the kernel, which typically leads to a separation that grows like the square root of the dimension.

a dataset {x 1 , ...x N } of N points in R n a kernel function k : R n × R n → R defines a N × N kernel matrix whose ij entry is k(x i , x j ).
In order to improve the above analysis of kernel PCA, it is necessary to better understand the behavior of kernel matrices and of their spectra as the dimension increases. Again, while the literature on eigenvalues of random matrices is vast and growing rapidly, the knowledge about random kernel matrices is much scarcer. A notable exception is [START_REF] Karoui | The spectrum of kernel random matrices[END_REF], which gives an asymptotic description of radial kernel matrices of the form k(x i , x j ) = h( x i -x j 2 /n) as the dimension n tends to infinity, for a fixed function h. In the case of distributions whose coordinates are independent after some linear change of coordinate, e.g. Gaussians, it is shown that the kernel matrices converge in the operator norm to a certain matrix related to the covariance of the data. Under the weaker condition that the distribution enjoys concentration properties, the corresponding convergence result is proved to hold at the level of spectral distributions, but no result is derived for individual eigenvalues.

In this paper, we prove new results about radial kernel matrices of mixtures of high dimensional distributions. Unlike [START_REF] Karoui | The spectrum of kernel random matrices[END_REF], we do not assume independence of coordinates. Rather, we only assume that the components in the mixtures have exponential concentration. Specifically, we show that such matrices can be very well approximated by the sum of a matrix that is row constant within each component and a matrix that is column constant within each component.

For distance matrices of mixtures with a single component, the result implies a large spectral gap between the two largest eigenvalues: The ratio between these eigenvalues is of the order of the dimension, rather than that of the square root of the dimension, as one might naively expect from basic concentration results. When the input distributions are supported on a sphere, this "double Chapter 4 Spectral Properties of Radial Kernels and Clustering in High Dimensions 47 concentration" phenomenon is enhanced and large eigenvalue gaps arise for kernel matrices more general than distance matrices. The proof technique is geometric and very different from the one used in [START_REF] Karoui | The spectrum of kernel random matrices[END_REF].

For positive kernels, a consequence of the above result is that kernel PCA is a valid clustering method as long as the Gram matrix of the mixture's components, when viewed as elements of the corresponding Reproducing Kernel Hilbert Space (RKHS), is sufficiently well conditioned. In particular, this allows to check that kernel PCA allows to correctly clusters mixtures of two Gaussians with a required separation between centers that does not depend on the dimension.

In the case of even distributions supported on a sphere and satisfying a Poincaré inequality, we further show that our main result can be strengthened, so that kernel matrices are well approximated by block constant matrices, provided the kernel, which may or may not be positive, is smooth enough. We also design a specific non positive kernel for which this result can be extended to non necessarily even (and non necessarily centered) distributions. This kernel is not of the form studied in [START_REF] Karoui | The spectrum of kernel random matrices[END_REF], so the results of this paper do not apply even for Gaussian mixtures. Based on this kernel, we derive a simple spectral algorithm for clustering mixtures with possibly common means. This algorithm will succeed if the angle between any two covariance matrices in the mixture (seen as vectors in R n 2 ) is larger than O(n -1/6 log 5/3 n). In particular, the required angular separation tends to 0 as the dimension tends to infinity. To the best of our knowledge, this is the first polynomial time algorithm for clustering such mixtures beyond the Gaussian case.

Kernels in high dimensions

Our analysis of kernel matrices for high dimensional data hinges on the concentration of measure phenomenon. Concentration of measure is a property of metric measure spaces that roughly says that regular functions are nearly constant [START_REF] Gromov | Metric structures for Riemannian and non-Riemannian spaces[END_REF][START_REF] Milman | A certain property of functions defined on infinite-dimensional manifolds[END_REF][START_REF] Ledoux | The Concentration of Measure Phenomenon[END_REF]. It can be observed in many spaces, typical examples being Gaussian spaces or manifolds with Ricci curvature bounded below. We give precise definitions below for a probability measure µ on R n . We say that f : R n → R has Chapter 4 Spectral Properties of Radial Kernels and Clustering in High Dimensions 48 exponential σ-concentration, or σ-concentration for short, for some σ > 0, if for any ε > 0:

µ{x : |f (x) -M (f )| ≥ ε} ≤ O(e -ε σ )
where M (f ) is a median of f . The measure µ is said to have σ-concentration if all 1-Lipschitz functions have σ-concentration. In particular, we have that f equals M (f ) plus or minus O(σ) with high probability.

Levy's lemma [START_REF] Lévy | Collection de monographies sur la théorie des fonctions[END_REF] states that an isotropic Gaussian with covariance σ 2 I has Gaussian concentration, which is a stronger property implying O(σ)-concentration.

This result is also true for anisotropic Gaussians if one takes σ 2 to be the maximum eigenvalue of the covariance matrix. In particular, it implies that for high dimensional Gaussian spaces, most of the points are at about the same distance from the center. More precisely, almost all the mass of an isotropic Gaussian is concentrated in a spherical shell of radius σ √ n and thickness O(σ). Indeed, for an isotropic Gaussian vector x, E( x 2 ) = σ 2 n. As distance functions are A stronger form of concentration that we will also consider is based on Poincaré inequality. We will say that a probability measure µ satisfies a Poincaré inequality if for any Lipschitz function f : R n → R whose mean is zero with respect to µ, we have

f 2 dµ ≤ O(1) ∇f 2 dµ
A probability measure that satisfies a Poincaré inequality necessarily has O(1)concentration [START_REF] Ledoux | Poincaré's inequality and Talagrand's concentration phenomenon for the exponential distribution[END_REF]. Gaussians distributions whose covariance have O( 1) eigenvalues are known to satisfy a Poincaré inequality. The famous KLS conjecture [START_REF] Kolesnikov | The KLS isoperimetric conjecture for generalized Orlicz balls[END_REF] states that uniform distributions over isotropic convex bodies, and more generally isotropic measures with log-concave densities also do.
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Main result

We consider a mixture µ of k distributions µ i in R n , with weights w i , which we treat as numerical constants. We assume that each component µ i has O(1)concentration. Drawing a sample of N points independently from the mixture gives a point set X that is, with probability 1, the disjoint union of subsets X i , corresponding to each component. The radius of µ i is the quantity (E µ i ||x -

E µ i x|| 2 ) 1/2
for a random variable x with law µ i , and we denote by R the smallest radius of the µ i . We consider a function h : R + → R and the associated radial kernel. This defines a kernel matrix Φ h (X) whose entries are h( x i -x j )/N , for x i , x j in X. We assume that the indices are ordered in such a way that the components form contiguous intervals ; in particular, we have a natural block structure (doubly)-indexed by the components.

Theorem 4.1. If the number of samples N is drawn according to the Poisson distribution with mean N 0 , then with arbitrarily high probability, we have:

Φ h (X) -A ≤ O c h + h ∞ n log N 0 N 0
where the entries of A in the ij block are given by

A xy = 1 N h( x -z )dµ j (z) + h( y -z )dµ i (z ) -h( z -z )dµ i (z)dµ j (z )
and with

c h = sup r≥R/2 |h (r)| + 1 r |h (r)| + h ∞ exp (-Θ(R))
Furthermore, if the components µ i are supported on the sphere centered at 0 with radius √ n, and have mean at distance O(1) from the origin, the conclusions above hold with c h replaced by

c h = sup r≥R/Θ(log(R)) log 2 (R)|h (r)| + |h (r)| r + h ∞ /R
The proof of Theorem 4.1 follows from the analysis of the map sending each point x in R n to its kernel function h( x -. ) in L 2 (R n , µ) or, more precisely, 

has at most k eigenvalues larger than O c h + h ∞ n log N 0 N 0
, and at most k

eigenvalues smaller than -O c h + h ∞ n log N 0 N 0
, with arbitrarily high probability.

Distance matrices

To illustrate Theorem 4.1, setting for example h(r) = r gives a description of distance matrices. Consider the case of a sample drawn from a mixture of k Gaussians with unit covariance. If x i and x j are drawn independently from two Gaussians in the mixture, x i -x j is a Gaussian with covariance 2I. Concentration of measure then implies that the entries ||x i -x j || of each block concentrate around their mean value, i.e. they differ by at most O(1) from the mean of the block with high probability:

Φ h (X) =      Φ 11 •• Φ 1k . . . •• . . . Φ k1 •• Φ kk      = 1 N      m 1 ± O(1) •• m 1k ± O(1) . . . •• . . . m k1 ± O(1) •• m kk ± O(1)      (4.1) 
A finer description of Φ h (X) is given by Theorem 4.1. For an isotropic Gaussian,

the radius R is Θ( √ n), and from |h | = 1, |h | = 0 we get c h = Θ (1/ √ n).
The dependancy on the average number of samples N 0 in Theorem 4.1 involves h ∞ , which is unbounded. However, assuming for example that the centers of the components are at distance O(1), then the fraction of pairs of sample points whose distance is larger than an appropriate constant times √ n is exponentially small by concentration. Hence we can first modify h by thresholding such that Chapter 4 Spectral Properties of Radial Kernels and Clustering in High Dimensions 51

h ∞ becomes O( √ n)
, with an exponentially small change in Φ h (X). Furthermore, by making the transition between the linear part and the constant part smooth enough, we can ensure that the second derivatives of the modified kernel

g are O(1/ √ n), so that c g = O(1/ √ n).
Applying the theorem to g implies that with a polynomial number of samples (N 0 = Ω(n 3 log n) suffices), with arbitrarily high probability, each block of Φ h (X) has the following structure

Φ ij = 1 N         a 1 a 2 •• a N i a 1 a 2 •• a N i . . . . . . •• . . . a 1 a 2 •• a N i         + 1 N         b 1 b 1 •• b 1 b 2 b 2 •• b 2 . . . . . . •• . . . b N j b N j •• b N j         + B with B = O(1/ √ n).
Note that the error term B is now much smaller than the one in (4.1), which is a priori up to O(1) in the operator norm.

Furthermore, for each block the vectors (a s ) and (b t ) are, up to a constant, averages of the columns of the distance matrix. As a result these vectors are 1-Lipschitz and thus have O(1)-concentration. Also, we can assume they have the same mean, namely half the average distance m ij within the block, that is, at least Ω( √ n). So we can write a s = m ij (1 + ε s )/2 and b t = m ij (1 + δ t )/2 with ε s and δ t in O(1/ √ n) with high probability. This implies that each block is very well approximated by a rank one matrix. Indeed

a s + b t = m ij (2 + ε s + δ t )/2 = m ij ((1 + ε s /2)(1 + δ t /2) + O(1/n))
In particular, the normalized distance matrix of points drawn according to a single Gaussian has only one eigenvalue that is larger than

O(1/ √ n), this top eigenvalue being Θ( √ n).
This observation, which we stated for isotropic Gaussians for concreteness, applies to any distribution with O(1)-concentration and variance Θ(n) as well.

We also remark that in the case of distributions on the sphere with O(1)concentration and variance Θ(n), the contribution of h in the error bound in Theorem 4.1 is divided by Θ( √ n/ log 3 n), which makes it possible to extend the above discussion to kernels other than distance functions. We do not elaborate Chapter 4 Spectral Properties of Radial Kernels and Clustering in High Dimensions 52 further as the spherical case will be studied in more detail in the sequel of the paper.

Positive definite kernels and clustering

For radial kernels that are positive definite, i.e. that define positive definite kernel matrices, Corollary 4.2 implies that there are at most k significant eigenvalues for mixtures of k probability measures that concentrate. We can use this result to provide guarantees for a simple clustering algorithm. First, assuming a certain gap condition, we can relate eigenspaces of the kernel matrix to the space of piecewise constant vectors, i.e. vectors that are constant on each component in the mixture.

The required gap condition can be conveniently formulated in terms of kernel distances [START_REF] Suquet | Distances euclidiennes sur les mesures signées et application des théorèmes de Berry-Esseen[END_REF][START_REF] Hein | Hilbertian metrics and positive definite kernels on probability measures[END_REF]. Recall that kernel distances are Hilbertian metrics on the set of probability measures, which are obtained by embedding the ambiant Euclidean space into a universal RKHS. More precisely, given two probability measures µ 1 and µ 2 on R n , the expression

µ 1 , µ 2 = h(||x -y||) dµ 1 (x)dµ 2 (y)
is a positive definite kernel and the kernel distance is the associated distance.

Proposition 4.3. Assume h defines a positive definite kernel, and that the conditions of Theorem 4.1 are satisfied. Let

G h = ( µ i , µ j ) i,j=1...k
be the Gram matrix of the components in the kernel distance.

If the smallest eigenvalue of G h is at least Kc h , then the maximum angle formed by the space spanned by the top k eigenvectors of Φ h (X) and the space of piecewise constant vectors is at most O(1/ √ K), with arbitrarily high probability, provided N 0 ≥ N 1 , with:

N 1 = O h 2 ∞ c 2 h + n h 2 ∞ c 2 h log n h 2 ∞ c 2 h
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Under these assumptions we can provide a guarantee for the following basic kernel PCA clustering algorithm. First, we perform a spectral embedding using the k top eigenvectors of Φ h (X). Namely, each data point x is mapped to (φ 1 (x), . . . , φ k (x)), φ 1 , . . . , φ k being the k dominant eigenvectors of Φ h (X). In As an example, we consider the case of a mixture of two Gaussians using a Gaussian kernel h(r) = exp(-r 2 /(2τ 2 )). In this case, matrix G h can be computed in closed form, so that the conditions of Proposition 4.3 can be checked explicitly.

Corollary 4.5. Consider a mixture of two Gaussians with O(1)-concentration in R n . Assuming that the variance of each Gaussian is

Θ(n), for τ = Θ( √ n),
Gaussian kernel PCA allows to correctly cluster a 1 -O(1/K) fraction of the mixture if the distance between the centers is K.

The choice of variance for the components in the above corollary is to fix ideas, similar conclusions would hold with other behaviors. The above guarantee matches the dimension-independent separation required by the PCA-based algorithms described in [START_REF] Kannan | The spectral method for general mixture models[END_REF][START_REF] Achlioptas | On spectral learning of mixture of distributions[END_REF] for example. Finally, the results in this section are in fact not strongly tied to the Hilbertian nature of positive kernels. More precisely, they may be easily extended to conditionally positive kernels, by simply restricting the involved quadratic forms to the space of zero mean functions. We omit further details.
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Covariance based clustering

As shown in the above section, the approximation of kernel matrices provided by Theorem 4.1 is sufficient to conclude that their top eigenvectors are nearly constant on the clusters if the kernel is positive, which allows to correctly cluster the data. Unfortunately, while we showed that positive kernels could allow to cluster e.g. mixtures of Gaussians with different enough centers, the range of cases that can be successfully clustered using positive kernels remains unclear at this stage. In this section we show that by relaxing the positivity constraint, one can design kernels that can deal with more difficult situations, such as mixtures of distributions with common centers but different covariances. While Theorem 4.1 alone is insufficient for this purpose, we show that stronger conclusions can be obtained assuming that the components of the mixtures are supported on the sphere S with radius √ n and centered at the origin, and satisfy a Poincaré inequality. Namely, kernel matrices can then be approximated by block constant matrices, rather than a sum of column and row constant matrices within each block. We state below such a result for general kernels, assuming the input distributions are even. We also consider the case of non necessarily even distributions with small enough means. Similar conclusions can then be drawn for the kernel

h t (r) = cos t √ n (n -r 2 /2)
where t is a parameter. The argument is more direct and avoids the use of Poincaré inequality. A more transparent way to write this kernel is to remark that for x and y on S,

h t ( x -y ) = cos t √ n < x, y >
Note that h t has a perhaps non intuitive behavior compared to the most commonly used kernels as it oscillates Θ( √ n) times over the sphere S for t = Θ(1) for example. probability, we have:

Φ h (X) -B ≤ O c h + √ nc h + h ∞ n log N 0 N 0
where the entries of B in the ij block are all equal to

G h (i, j)/N = 1 N h( z -z )dµ i (z)dµ j (z )
For the kernel h t , if measures µ i are supported on S, have O(1)-concentration and if their means are at distance O(1) from the origin, then:

Φ ht (X) -B ≤ O t log 3 n √ n + n log N 0 N 0
with arbitrarily high probability for t = O(1).

In particular, in the case of even distributions satisfying a Poincaré inequality, We now show that the second part of the above theorem can be used to cluster high dimensional mixtures based on the components covariance matrices. We assume that the components µ i have O(1)-concentration and variance Θ(n). As the PCA algorithm of [START_REF] Kannan | The spectral method for general mixture models[END_REF] allows to separate components whose means are at distance at least Ω(1) from the other means, it is sufficient to consider the case where all means are at distance O(1) from the origin. We denote by Σ i the non centered covariance matrix of µ i . Given s > 0 and a symmetric matrix M , we define f s (M ) to be the matrix having the same eigenvectors as M , eigenvalues 

N 1 = O log(n/∆)n 2 /∆ 2
Hence clustering will succeed if the minimum angle α min between the components covariances is larger than O(n -1/6 log 5/3 n). First note that one case is not covered by this algorithm, namely the case where different components have covariance matrices differing only by a scaling. This situation can be dealt with easily by clustering the data according to the distance to the origin. A second remark can be made about the sample size. The guarantee given above aims for the smallest angular separation, and as a result requires a number of points that is Chapter 4 Spectral Properties of Radial Kernels and Clustering in High Dimensions 57 more than quadratic in the dimension. While it is possible that a better analysis would give smaller sample sizes in this regime, we remark that if α min = Ω(1), the proof can be modified to show that correct clustering will require only O(n log n)

points. Indeed, in this situation, the error bound in Theorem 4.6 is dominated by the contribution of the sample size, and having O(n log n) points will make it small enough so that the rest of the analysis can be applied.

To conclude, we give some numerical results on specific examples of equal weight mixtures of two Gaussian distributions µ 1 and µ 2 with mean zero on R n , with n even. The covariances Σ 1 and Σ 2 are both diagonal in the standard basis. For a parameter s > 0, the eigenvalues of Σ 1 are 1 + s on the first n/2 coordinates, and 1-s on the last n/2 coordinates. Eigenvalues of Σ 2 are reversed, so that Σ 1 +Σ 2 = 2I, meaning that the whole distribution is isotropic. Under the assumptions of Theorem 4.7, as shown in the proof, the spectral soft thresholding operation used in the algorithm will leave at most 2 non zero eigenvalues. Rather than implementing the whole algorithm, we just plot the second dominant singular vector of Φ, as the first one turns out not to separate the components. Figure 4.1 shows it for s = 0.9, n = 10, s = 0.6, n = 100, s = 0.33, n = 1000 and s = 0.2, n = 10000, with t = 0.1. In all cases each Gaussian has n sample points. We see that the clusters are easily detected. Note that in the latter case, the Gaussians are nearly spherical, the relative error being of roughly 10% in terms of standard deviation.

Proofs

We give the proof of Theorem 4. For technical reasons we will not work directly with the input measure µ, but rather with its empirical measure μ = i w i μi , the number of samples being drawn according to a Poisson distribution with appropriately large mean M 0 .

Chapter 4 Spectral Properties of Radial Kernels and Clustering in High Dimensions 58 Since the µ i have O(1)-concentration, a vector X with law µ i satisfies E(|X -EX q ) 1/q = O( √ n) for constant q ≥ 1, which implies (see e.g. [START_REF] Fournier | On the rate of convergence in Wasserstein distance of the empirical measure[END_REF]) that

E(W l (µ i , μi )) = O(nM -1/n 0 )
where W l are the transportation distances for l = 1 or 2. By Markov inequality, for any δ > 0, these distances are at most δ with probability at least 1 -p, with

p = O nM -1/n 0 δ Consider the map φ μ : R n → L 2 (R n , μ) x → φ μ(x) = h( x -• )
The gist of our proof of Theorem 4.1 is as follows. We first observe that the directional derivatives of φ μ at each point satisfy a Lipschitz condition with a small constant. More precisely, this is true after modifying them in a small region, which is enough for our purposes. Using concentration of measure, this implies that these derivatives, modulo piecewise constant functions on the components, are small. This can be further reinterpretated as saying that φ μ, after centering 

P E ⊥ φ μ(x 1 ) -P E ⊥ φ μµ(x 2 ) ≤ O(c h (δ)) x 1 -x 2
Furthermore if measures µ i are supported on S and their mean is O(1), then with probability at least 1 -p, for any x 1 and x 2 in S:

P E ⊥ φ μ(x 1 ) -P E ⊥ φ μ(x 2 ) ≤ O(c h (δ)) x 1 -x 2 with c h (δ) = (1 + δ)c h + √ δ h ∞ c h (δ) = (1 + δ)c h + √ δ h ∞
To prove the first part of Proposition 4.8 we argue that

P E ⊥ φ μ(x 1 ) -P E ⊥ φ μ(x 2 ) 2 ≤ sup x 0 ,v, v =1 d dx v,x=x 0 P E ⊥ φ μ 2 x 1 -x 2 ≤ sup x 0 ,v, v =1 P E ⊥ d dx v,x=x 0 φ μ 2 x 1 -x 2 ≤ sup x 0 ,v, v =1 i w i f i -f i dμ i 2 2 1/2 x 1 -x 2
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where in the last line f i denotes the directional derivative of φ μi at x 0 in direction v. To conclude, it is sufficient to prove that sup

x 0 ,v, v =1 f i -f i dμ i 2 ≤ O(c h (δ)) (4.2)
For the second part, we use a similar argument except that we interpolate between x 1 and x 2 using a great circle on S instead of a straight line. This shows that establishing sup

x 0 ,v, v =1, v,x 0 =0 f i -f i dμ i 2 ≤ O(c h (δ)) (4.3)
suffices to conclude. Proving these two inequalities is the point of the rest of this section. For some ρ > 0, let

L v,ρ = {y| | y, v | ≤ 1/ρ}
Further define: 

d h = sup
f i is d h -Lipschitz on L v,ρ \ B(x 0 , ρR).
Proof. We consider the radial coordinate system (r, θ) centered at x 0 , where θ denotes the angle formed by y -x 0 and v. A direct calculation shows that If measures µ i are supported on S with mean O(1), then with probability at least 1 -p, for v a unit tangent vector at

f i (y) = d dx v,x=x 0 φ μi (x)(y) = h (
x 0 ∈ S, Var μi (f i ) = O(c h (δ) 2 ).
Proof. For the first claim, we write

Var μi (f i ) ≤ Var μi ( fi ) + Var μi (g i ) ≤ Var μi ( fi ) + ||g i || 2 ≤ Var μi ( fi ) + sup |g i |μ i (B(x 0 , ρR)) 1/2
Because fi is d h -Lipschitz, the pushforwards of µ i and μi satisfy 

W 2 ( fi μi , fi µ i ) ≤ d h W 2 (μ i , µ i ) ≤ d h δ
µ i (B(x 0 , ρR + 1)) ≤ exp (-Ω(1 -ρ)R + O(1)) As a consequence Var μi (f i ) ≤ O (1 + δ 2 ) 1/2 d h + sup r |h (r)| (δ + exp (-Ω(1 -ρ)R)) 1/2
The first claim follows by setting ρ = 1/2. The spherical case is proved similarly, except that we use the inequalities μi

(B(x 0 , ρR) ∪ R n \ L v,ρ ) ≤ μi (B(x 0 , ρR)) + μi (R n \ L v,ρ ) and μi (R n \ L v,ρ ) ≤ δ + µ i ({y| | y, v | ≥ 1/ρ -1}) ≤ δ + 2 exp (-Ω(1/ρ) + O(1)) ≤ δ + O(exp(-Ω(1/ρ)))
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63 becomes δ + 1/R 2 , hence Var μi (f i ) ≤ O (1 + δ 2 ) 1/2 d h + sup r |h (r)| δ + 1/R 2 1/2 ≤ O(c h (δ))
This proves (4.2) and (4.3) and concludes the proof of Proposition 4.8.

Decomposition of Φ h (X)

We first show the following variant of Theorem 4.1:

Proposition 4.12. If the number of samples M is drawn according to the Poisson distribution with mean M 0 , then with probability at least 1 -p, we have

Φ h (X)-A = O(e h (δ)) with e h (δ) = c h (δ)(1+δ)+δ h ∞ , and Φ h (X)-A = e h (δ) with e h (δ) = c h (δ)(1 + δ) + δ h ∞ in the spherical case.
The argument is the same for the spherical and for the non-spherical case, so we only consider the non spherical case. Let M be the number of samples of μ.

First decompose the unnormalized kernel matrix D h (X) = M Φ h (X) as follows:

D h (X) = P E D h (X) + P E ⊥ D h (X)
The first term P E D h (X) is column constant within each block. We now focus on the second one. Consider a unit vector v ∈ R M and let U be a random column of P E ⊥ D h (X).

Variable U, v is equal to φ(V ), v = φ(V ), v , where V is drawn according to μi . Let now W be drawn according to µ i . Since µ i has O(1)-concentration,

φ(W ), v has variance O(M c h (δ) 2 ). Because with probability at least 1 -p, W 2 (μ i , µ i ) < δ, the distributions of φ(W ), v and φ(V ), v are O( √ M c h (δ)δ) away in the W 2 distance. As a consequence Var( φ(V ), v ) = O(Var( φ(V ), v ) + M c h (δ) 2 δ 2 ) = O(M c h (δ) 2 (1 + δ 2 ))
Let us further decompose 

P E ⊥ D h (X) = P E ⊥ D h (X)P E + P E ⊥ D h ( 
Φ h (X) = P E Φ h (X) + P E ⊥ Φ h (X)P E + B Letting Ā = P E Φ h (X) + P E ⊥ Φ h ( 
X)P E , we see that for x ∈ support(μ i ) and y ∈ support(μ j ), the xy entry of Ā is given by

M. Āxy = h( x-z )dμ j (z)+ h( y -z )dμ i (z )-h( z -z )dμ i (z)dμ j (z ) By Kantorovich-Rubinstein theorem, A -Ā ≤ sup xy |M. Āxy -M.A xy | ≤ O(δ h ∞ )
which concludes the proof.
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Sample size

In order to prove that Theorem 4.1 also holds for small sample size, we use the following result in [START_REF] Tropp | Norms of random submatrices and sparse approximation[END_REF]. For a random variable W , let E k W denotes the L k norm of W . For a matrix U , U ∞ is the maximum entry of U , and U 1,2 is the maximum norm of the columns of U .

Theorem. Let Z be a M × M Hermitian matrix, decomposed into diagonal and off-diagonal parts: ), and set q = max{k, 2 log M }.

Z = D + H. Fix k in [2, ∞
Then

E k RZR ≤ O (qE k RHR ∞ + √ ηqE k HR 1,2 + η H ) + E k RDR
where R is a diagonal matrix with independent 0 -1 entries with mean η. 

Let us apply this theorem to

Z = M (Φ h (X) -A M ),
E k RZR ≤ h ∞ O(pE k trace(R) + q + √ ηqE k √ M + η) + O(ηe h (δ)E k M ) Taking k = 2 and η = N 0 /M 0 , we have E k trace(R) = O(N 0 ), E k √ M = O( √ M 0 )
and 

E k M = O(M 0 ). With q = 2 log M 0 , we get E 2 RZR trace(R) ≤ O E 2 RZR N 0 ≤ h ∞ O p + log M 0 N 0 + log M 0 N 0 + 1 M 0 + O(e h (δ)) ≤ h ∞ O n δM 1/n 0 + log M 0 N 0 + O(e h (δ)) ≤ h ∞ O n δM 1/n 0 + log M 0 N 0 + δ + (1 + δ) √ δ + (1 + δ) 2 O(c h ) Chapter 
E 2 ( Φ h (Y ) -A N ) ≤ h ∞ O n δM 1/n 0 + log M 0 N 0 + O(c h ) ≤ O c h + h ∞ n log N 0 N 0
The conclusion follows by applying Markov inequality.

Proof of Proposition 4.3

We want to show that for a positive kernel, the space spanned by the k top eigenvectors of Φ h (X) is close to the space of piecewise constant functions E.

We first observe that for a large enough number of samples, matrix G h is close to its finite sample version G h , whose ij entry is the average of the kernel over X i × X j :

Lemma 4.14. For any c > 0, we have:

P ||G h -G h || ≥ c ≤ 1 -O N 0 exp -N 0 Ω min c h ∞ , c 2 h 2 ∞
Proof. The desired operator norm can be bounded using entries magnitude as follows:

P ||G h -G h || ≥ c ≤ P ||G h -G h || 2 2 ≥ c 2 ≤ max ij P |G h (i, j) -G h (i, j)| ≥ c/k (4.4)
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In order to control the error on entry ij, we write:

G h (i, j) -G h (i, j) = 1 N i N j x∈X i ,y∈X j h(||x -y||) -h(||x -y||)dµ i (x)dµ j (y) = 1 N i x∈X i 1 N j y∈X j h(||x -y||) -h(||x -y||)dµ j (y) + 1 N i x∈X i h(||x -y||)dµ j (y) -h(||x -y||)dµ i (x)dµ j (y)
Since h ∞ is the Lipschitz constant of ||h(x -.)||, we see by concentration that for fixed x and for y distributed according to µ j :

h(||x -y||) -h(||x -y||)dµ j (y) ψ 1 = O( h ∞ )
where for a random variable U , U ψ 1 = sup p≥1 p -1 (E U p ) 1/p is its Orlicz ψ 1 norm. As a consequence, conditionally to N j , this implies (Corollary 5.17 in [START_REF] Vershynin | Introduction to the non-asymptotic analysis of random matrices[END_REF]) that for any ε > 0:

P (|S x | ≥ ε) ≤ 2 exp -N j Ω min ε h ∞ , ε 2 h 2 ∞ with S x = 1 N j y∈X j h(||x -y||) -h(||x -y||)
Hence by the union bound:

P   1 N i x∈X i S x ≥ ε   ≤ 2N i exp -N j Ω min ε h ∞ , ε 2 h 2 ∞ ≤ O N 0 exp -N 0 Ω min ε h ∞ , ε 2 h 2 ∞
Similarly, as the Lipschitz constant of h(||. -y||)dµ j (y) is at most h ∞ as well, we get:

P (|U | ≥ ε) ≤ 2 exp -N 0 Ω min ε h ∞ , ε 2 h 2 ∞
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U = 1 N i x∈X i h(||x -y||)dµ j (y) -h(||x -y||)dµ i (x)dµ j (y)
The last two inequalities together with (4.4) imply the desired claim.

Let now M h be the matrix obtained from G h by multiplying the ij entry by √ w i w j . Applying the above lemma with c = c h , its smallest eigenvalue can be lower bounded as follows:

λ 1 ( M h ) = Ω(λ 1 ( G h )) = Ω(λ 1 (G h ) -c h ) = Ω(Kc h )
with arbitrarily high probability, assuming

N 0 = Ω( h 2 ∞ /c 2 h ).
Now, note that M h is the matrix of the quadratic form Φ h (X) restricted to E.

More precisely, the indicator functions of the clusters, normalized to have unit L 2 -norm, form an orthornormal basis of E, and writing that quadratic form in this basis gives M h . Let λ be the smallest eigenvalue of M h . By the variational characterization of eigenvalues, there exist at least k eigenvalues of Φ h (X) that are at least λ. Let H denote the space spanned by the k-top eigenvectors of Φ h (X), and let L denote the space spanned by the remaining N -k. We show using a perturbation argument that the maximum of the principal angles between space E and space H is small. Let x ∈ E ⊥ be a unit vector. We may write x = αx L + βx H with α 2 + β 2 = 1, and x L and x H are unit vectors belonging respectively to L and H. Then:

x t Φ h (X)x = α 2 x t L Φ h (X)x L + β 2 x t H Φ h (X)x H
Since x ∈ E ⊥ , we have x t Ax = 0, where A is the matrix defined in Theorem 4.1.

Hence by Theorem 4.1, with arbitrarily high probability:

x t Φ h (X)x ≤ O(c h ) provided N 0 = Ω n h 2 ∞ c 2 h log n h 2 ∞ c 2 h
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x t H Φ h (X)x H ≥ λ ≥ KΩ(c h )
As a consequence:

d(x, L) = β ≤ O(1/ √ K)
That is, the maximum angle between the (N -k)-flats E ⊥ and L is O(1/ √ K).

Hence, so is the maximum angle between their orthogonals E and H, which is the desired claim.

Proof of Corollary 4.6

Let E ⊥ ∈ R N be the space of vectors whose mean is zero on each block. This space has codimension k. Now, for any vector x ∈ E ⊥ , we easily see that

x t Ax = 0, where A is the matrix from Theorem 4.1. As a result, the quadratic

form Φ h (X) is at most O c h + h ∞ n log N 0 N 0
I on E ⊥ with arbitrarily high probability, implying that Φ h (X) has at least (N -k) eigenvalues that are at

most O c h + h ∞ n log N 0 N 0
. Applying the same argument to -Φ h (X), the result follows.

Proof of Corollary 4.5

Matrix G h has entries

G h (i, j) = Eh(||x i -x j ||)
where x i are independant random variables with law N (µ i , Σ i ), where µ i and Σ i are the means and covariances of the two Gaussians in the mixture. Proof. Let f : S → R be a 1-Lipschitz function. To prove that µ i has O(1)concentration, we prove that for X distributed according to µ i , there exists a number c such that f (X) -c ψ 1 = O(1). The range of f on S is contained in an interval of length 2 √ n. By shifting f if necessary, we can assume that

f ∞ = O( √ n).
We also assume f is smooth, which is sufficient. Define

g : R n → R x → f x x if x ≥ √ n/2 x → 2 x √ n f x x else
We have: To relate the means of µ i and µ i , we notice that by concentration of the distance to the origin, the 1-transportation distance between both measures is O(1). In particular the means of µ i and µ i differ by O(1), hence the mean of µ i is O(1).

∇g(x) = √ n x ∇f x x if x ≥ √ n/2 = 2 √ n x x f x x + √ n∇f x x
The above lemma shows that we can apply Theorem 4.6 to the projected point cloud X: With arbitrarily high probability, matrix Φ ht ( X) is δ = O(t log 3 n/ √ n)

close to B in the operator norm, assuming N 0 is Ω(log(n/t)n 2 /t 2 ).

We now would like to argue that B retains enough information about the components so that we can separate them. To do so, we restrict B to the subspace for t less than some numerical constant. Now < x, y > 2 dµ i (x)dµ j (y) = y t Σ i y dµ j (y) = trace Σ i yy t dµ j (y) = trace Σ i Σ j

We may thus expand the determinant of G ht as follows:

det To relate matrices G ht and G ht , we let δx (resp. δy) be the difference between

G ht = G ht (u, u)G ht (v, v) -G ht (u, v) 2 = 1 - t 2 2n < Σ u , Σ u > +O(t 4 ) 1 - t 2 2n < Σ v , Σ v > +O(t 4 ) -1 - t 2 2n < Σ u , Σ v > +O(t 4 ) 2 = - t 2 2n Σ u -Σ v
x (resp. y) and its projection on S, so that x -δx (resp. y -δy) is distributed which concludes the proof.

In particular, choosing t = C 1 Σ u -Σ v 2 / √ n = C 1 ∆, we see that for any u, v, the smallest singular value of B restricted to E u,v is at least Ω(∆ 4 -O(∆/ √ n)), which by assumption on ∆ is also Ω(∆ 4 ). Now, as f C 2 ∆ 4 is 1-Lipschitz, the perturbation inequality proved in [START_REF] Yu | An estimate of the norm of f(a) -f(b) for selfadjoint operators a and b (in russian)[END_REF] states that

f C 2 ∆ 4 (B) -f C 2 ∆ 4 (Φ ht ( X)) ≤ O log B + Φ ht ( X) Φ ht ( X) -B + 2 2 Φ ht ( X) -B ≤ O(δ log 2 δ)
Our assumption on ∆ is chosen so that ∆ 4 /(δ log 2 δ) = Ω(K 3 ). Hence we may assume in particular that Φ ht ( X) -B < C )) with respect to the column of f C 2 ∆ 4 (B) associated with that component. By Lemma 4.21, this implies that the ratio between the maximum variance of the components in φ C 2 ( X) and the minimum squared distance between their centers in an optimal solution to the k-means problem is O(K -6 ).

Applying any constant factor approximation algorithm for the k-means problem will thus cluster the data with the claimed error rate.

2

 2 and g : R + → R is a monotonically decreasing function (e.g. g(u) = 1/u).

Density

  Based Clustering, Model Based and Grid-Based. Since clustering is based on grouping objects according to some common features, two classes of measures are usually used: distance based measures and similarity measures. Han and Kamber (2001) further proposed to use three approaches: density based methods, model based clustering and grid-based methods. In model-based clustering, a theoretical model is provided and optimized so that it best fits the data. In grid based models, the space is partitioned into a finite number of cells. All these methods are affected by high dimensionality and experience concentration of volume and emptiness of the space, leading to poor performance.

Proposition 2 . 8 .

 28 Almost all the mass of an isotropic Gaussian is concentrated in a spherical shell of radius σ √ n and width O(σ).

Figure 2 . 1 :

 21 Figure 2.1: Growing ratio between the radius of the sphere and the diagonal of the cube when the dimension d increase.

3. 1

 1 Distances Between Metric Measures Spaces: Ddistance In this section we present the definition of a distance on the space of isomorphism classes of mm-spaces, the D -distance, by Sturm. In order to give the definition of D-distance, we introduce some fundamental tools such as the Wasserstein distance, coupling of measures, and coupling of metrics. We consider below isomorphism classes of metric measure spaces, and the distances are defined on the space of isomorphism classes of mm-spaces: Isomorphism of mm-spaces. Definition 3.1. Let (X, d X , µ X ) and (Y, d Y , µ Y ) be metric measure spaces. An isomorphism of mm-spaces between (X, d X , µ X ) and (Y, d Y , µ Y ) is a map which is an isometry on the support of the measures, φ

Definition 3 . 4 .

 34 (Coupling of metrics). Given two metric (measure) spaces(X, d X , µ X ) (Y, d Y , µ Y ), a pseudometric d on the disjoint union X Y is a coupling of d X and d Y iff d(x, y) = d(x,y) and d(x , y ) = d (x , y ) for all x, y ∈ supp[m] ⊂ X and all x , y ∈ supp[m ] ⊂ Y , i.e. d extends d and d on M M . Definition 3.5 (D-distance). Given p ≥ 1, the D-distance between two metric measure spaces is defined as

Definition 3 . 8 .

 38 Let (X, d X ), (Y, d Y ) be metric spaces and Γ(x, x , y, y ) = |d X (x, x ) -d Y (y, y )|. The Gromov-Hausdorff distance between the two metric spaces is:

Lemma 3 . 13 .

 313 Let X = (X, d, µ) be a metric measure space. If there exists c > 0 such that (i) the balls of radius c/2 have measure at least λ (ii) any ball of radius 2c can be mapped to an Euclidean d-ball by a measurepreserving bijection that changes pairwise distances by at most then X and Φ(X) are approximately bilipschitz equivalent, in the sense thatd(x, y) ≥ d Φ(X) (φ(x), φ(y)) ≥ C(d, p, λ)(d(x, y) -)for all x, y in X. Proof. The first inequality always holds. For the second one, we first consider the case where d(x, y) ≥ 2c. Function d(x, .) -d(y, .) is 2-Lipschitz and equals d(x, y) at y. Hence it is larger than d(x, y) -c ≥ d(x, y)/2 on B(y, c). As a consequence the L p norm of d x -d y is at least λ 1/p d(x, y)/2. If d(x, y) < 2c, we use the fact that B(x, 2c) is close to a Euclidean d-ball B. Let ψ be the measure preserving bijection given by assumption (ii), and let µ x = µ |B(x,2c) /µ(B(x, 2c)) and ν be the uniform probablity distribution of B. By change of variable, we see that d x -d y Lp(µx) ≥ d B (ψ(x), .) -d B (ψ(y), .) Lp(ν) -By elementary geometry, it is easy to see that the first term in the right hand side is at least Cd B (ψ(x), ψ(y)), where C depends on d and p. Hence d x -d y Lp(µx) ≥ Cd(x, y) -(C + 1) Chapter 3 The Distance Transform of a Metric Measure Space 43 And since B(x, 2c) has measure at least λ by assumption (i), we obtain d x -d y Lp(µ) ≥ λ 1/p (Cd(x, y) -(C + 1) ) which proves the desired claim.

  An important class of kernels are positive definite kernels, which are those for which the associated kernel matrix is positive definite for any dataset. The use of such kernel matrices, and Chapter 4 Spectral Properties of Radial Kernels and Clustering in High Dimensions 46
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 1 Lipschitz, by Levy's lemma, they have σ-concentration. Hence the distance from a random point to the center differ by at most O(σ) from σ √ n, with high probability.

Chapter 4 SpectralCorollary 4 . 2 .

 442 Properties of Radial Kernels and Clustering in High Dimensions 50of a finite sample version of this map. That analysis crucially depends on the fact that in Euclidean spaces, the cross derivative of the distance ∂ 2 ∂x∂y x -y is upper bounded by O(1/ x -y ). A first consequence of Theorem 4.1 is the following result about the spectrum of Φ h (X), which follows directly from the variational characterization of eigenvalues: Under the assumptions of Theorem 4.1, the spectrum of Φ h (X)

Corollary 4 . 4 .

 44 order to have the right dependency on the total number of points, these eigenvectors are scaled to have norm √ N . By the above proposition, this will give a point cloud that is O( 1/K) close in the transportation distance W 2 to a point cloud obtained using the embedding provided by an orthogonal basis of piecewise constant vectors, scaled to have norm √ N . Note that in the latter point cloud, each component becomes concentrated at a single location, the distance between any two such locations being Ω(1). In such a situation, any constant factor approximation algorithm for the k-means problem will find a clustering with a fraction of at most O(1/K) misclassified points. We just proved: If the assumptions of Proposition 4.3 are satisfied, kernel PCA allows to correctly cluster a 1 -O(1/K) fraction of the mixture, with arbitrarily high probability.

Theorem 4 . 6 .

 46 Assume measures µ i are supported on S, even, and satisfy a Poincaré inequality. Let h(r) = h (r)/r. If the number of samples N is drawn according to the Poisson distribution with mean N 0 , then with arbitrarily high Chapter 4 Spectral Properties of Radial Kernels and Clustering in High Dimensions 55

  letting the sample size go to infinity, expliciting the upper bound in the first part of the theorem implies that for any fixed bounded function h with bounded derivatives up to the third order, the radial convolution operator from L 2 (R n , µ i ) to L 2 (R n , µ j ) has at most one singular value larger than O(log 3 n/ √ n). It seems likely that the logarithmic factor can in fact be removed, by replacing the Lipschitz extension argument by a Dirichlet energy estimate in the proof of Theorem 4.1.
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 421 Properties of Radial Kernels and Clustering in High Dimensions 56 being transformed by function λ → f s (λ), with f s (λ) = max(0, |λ| -s). As covariance matrices have trace Θ(n), they have Frobenius norm Θ( √ n), so that ∆ = Ω(α min ), α min being the minimum angle between any two covariance matrices. Let further C 1 , C 2 be two appropriate universal constants. The algorithm we propose is the following: CovarianceClustering(X) X = data points projected on S Φ = Φ ht ( X), with t = C 1 ∆ Approximately solve the k-means problem for the columns of f C 2 ∆ 4 (Φ) To prove that this algorithm succeeds, we apply Theorem 4.6 to the data projected on S, which tells us that Φ ht ( X) is well approximated by block constant matrix B. We then show that under our separation assumptions, matrices G ht are well-conditioned in the case of mixtures of two components. Using this fact, we show that the columns f C 2 ∆ 4 (B) corresponding to different components are sufficiently far apart. Applying a perturbation bound then allows to conclude, and obtain the following guarantee: Theorem 4.7. If ∆ ≥ Kn -1/6 log 5/3 n, the above algorithm allows to correctly cluster a O(1/K 6 ) fraction of the mixture with arbitrarily high probability, provided N 0 ≥ N 1 , with:

1 in section 5 . 1 ,

 51 of Proposition 4.3 in Section 5.2, and of Corollaries 4.2 and 4.5 in Sections 5.3 and 5.4. Theorems 4.6 and 4.7 are proved in Sections 5.5 and 5.6.

4. 5 . 1

 51 Proof of Theorem 4.1

Figure 4 . 1 :

 41 Figure 4.1: Second singular vector of Φ for isotropic mixtures of centered Gaussians.

Lemma 4 . 9 .

 49 Function f i is d h -Lipschitz outside B(x 0 , ρR) and |f i | is bounded everywhere by sup |h |. Furthermore, if v is a unit tangent vector at x 0 ∈ S, then

61 Noticing that r is a 1 -2 1 / 2 ≤Lemma 4 . 10 .Lemma 4 . 11 .

 61112410411 r) cos θ Hence d dr f i (r(y), θ(y)) = h (r) cos θ d dθ f i (r(y), θ(y)) = -h (r) sin θ Chapter 4 Spectral Properties of Radial Kernels and Clustering in High Dimensions Lipschitz function of y, and that |dθ/dy| ≤ 1/r allows to bound the derivatives of f i in the radial and tangent directions using the chain rule, implying:∇f i (y) = (h (r(y)) cos θ(y)) 2 + h (r(y)) r(y) sin θ(y) max h (r(y)) | cos θ(y)|, h (r(y)) r(y) Using that | cos θ(y)| ≤ 1/(ρ 2 r) on L v,ρ \ B(x 0 , ρR), the conclusion follows. We can write f i = fi + g i , where fi is d h -Lipschitz, and g i issupported on B(x 0 , ρR) with ||g i || ∞ ≤ 2 sup r |h (r)|.If v is a unit tangent vector at x 0 ∈ S, then we can find a similar decomposition with fi d h -Lipschitz andg i supported on B(x 0 , ρR) ∪ R n \ L v,ρ with ||g i || ∞ ≤ 2 sup r |h (r)|. Proof. Define fi to be a d h -Lipschitz extension of f i | R n \B(x 0 ,ρR) to R n , which ex-ists by Kirszbraun's extension theorem[START_REF] Kirzbraun | Uber die zusammenziehende und lipschitzsche transformationen[END_REF]. We choose fi such that sup B(x 0 ,ρR) | fi | = sup ∂B(x 0 ,ρR) | fi |, which can be done by thresholding if necessary. The result follows by letting g i = f i -fi . The spherical case is proved similarly. With probability at least 1 -p, we have Var μi (f i ) = O(c h (δ) 2 ).

Lemma 4 . 13 .

 413 With probability at least 1 -p, the centered covariance matrix of the columns of P E ⊥ D h (X) corresponding to any component has eigenvalues atmost O(M c h (δ) 2 (1 + δ 2 )).Proof. The columns of P E ⊥ D h (X) are the images of the sample points by P E ⊥ φ μ, expressed in the standard basis. Hence by Proposition 4.8, the map φ associating each sample point with its column inP E ⊥ D h (X) is O( √ M c h (δ))-Lipschitz with probability at least 1-p. Let φ be a O( √ M c h (δ))-Lipschitz extension of φ to R n . Chapter 4 Spectral Properties of Radial Kernels and Clustering in High Dimensions 64

4

 4 Spectral Properties of Radial Kernels and Clustering in High Dimensions 66 assuming N 0 ≥ log M 0 . Matrix RZR/trace(R) is simply Φ h (Y ) -A N , where Y is an iid sample of µ with cardinality N distributed according to a Poisson distribution with mean N 0 . Continuing the last equation, taking M 0 = N

Lemma 4 . 15 . 1 Chapter 4

 41514 If u is a centered Gaussian random variable with covariance Σ, Spectral Properties of Radial Kernels and Clustering in High Dimensions 74 of Lemma 4.17. Expliciting the constant c ht = O(t log 3 n/ √ n) then gives the desired bound.

4. 5 . 6 Lemma 4 . 19 .

 56419 Proof of Theorem 4.7Since the desired conclusions are unchanged by scaling the components by a constant factor, and as we assume their variance is Θ(n), we can assume that their variance is n. Let µ i be the pushforwards of µ i by the closest point projection on S. The following lemma is easily proved: Measure µ i has O(1)-concentration and mean O(1).

1 Chapter 4

 14 else As a consequence function g is O(1)-Lipschitz, hence by concentration, for Y distributed according to µ i , there exists a number c such that by g(Y) -c ψ 1 = O(1). Letting now f : x → f (x/ x ), we have that P (g(Y ) = f (Y )) ≤ exp(-Θ(1)√ n) since g and f only differ on B(0, √ n/2), which has exponentially small measure by concentration. Also clearly g(Y) -f (Y ) ∞ ≤ O( √ n).As a consequence, theψ 1 norm of g(Y ) -f (Y ) is at most O( √ n) timesthe ψ 1 norm of a Bernoulli variable with expectation exp(-Θ(1) √ n). Since the ψ Spectral Properties of Radial Kernels and Clustering in High Dimensions 75 norm of such variables is O(1/ √ n), g(Y ) -f (Y ) ψ 1 = O(1), from which we get f (Y ) -c ψ 1 = O(1). This is what we wanted to prove, as f (Y ) and f (X) have the same distribution.

ELemma 4 . 20 . 2 2

 4202 u,v of piecewise constant vectors supported on the two components Xu and Xv , for some indices u and v. In the orthornormal basis formed by the normalized indicator vectors of the two components, the ij entry (i, j ∈ {u, v}) matrix of this restriction is ( wi wj ) -1/2 G ht (i, j), G ht being the 2 × 2 matrix associated with µ u and µ v , and wi being the fraction of data points in the i th component. As the wi 's are Θ[START_REF] Francois | High dimensional data analysis[END_REF], the singular values of B restricted to V u,v are within a constant factor of those of G ht . Now, using the power series expansion of h t , one can show the following lower bound on the smallest singular value of the 2 × 2 matrix G ht associated with µ u and µ v , based on the difference between their covariance matrices: There existsC 1 = Θ(1) such that if t ≤ C 1 Σ u -Σ v 2 / √ n, the smallest singular value of G ht is at least Ω(t 2 Σ u -Σ v /n). Furthermore: G ht -G ht = O(t/ √ n)Proof. By Taylor's theorem, for i, j ∈ {u, v}, we have:G ht (i, j) = cos t √ n < x, y > dµ i (x)dµ j (y) = ∞ l=0 (-1) l (t/ √ n) 2l (2l)! < x, y > 2l dµ i (x)dµ j (y)Chapter 4 Spectral Properties of Radial Kernels and Clustering in High Dimensions 76Let x and y be two independent random vectors distributed respectively according to µ i and µ j . Conditioned to x = x 0 ∈ R n , < x, y > has O( x 0 )concentration and mean O( x 0 ), so its ψ 1 norm is O( x 0 ). Hence< x, y > ψ 1 ≤ O(E x ) ≤ O( √ n)As a consequence the distribution of | < x, y > / √ n| decays exponentially. Hence its l th moment is controlled by the l th moment of an exponential distribution with mean Θ(1), that is, Θ(1) l l!. This implies|Ght (i, j) -1 + t 2 2n < x, y > 2 dµ i (x)dµ j (y)| ≤ ∞ l=2 t 2l (2l)! Θ(1) 2l (2l)! ≤ O(t 4 )

2 2 + O(t 4 )

 24 Hence by assumption, for well chosen C 1 , the first term in the expansion above dominates, so | det G ht | satisfies the desired lower bound. Since the entries of G ht have absolute value less than 1, the lower bound also holds for the smallest singular value of G ht .

Chapter 4 Spectral

 4 Properties of Radial Kernels and Clustering in High Dimensions 77 according to µ i (resp. µ j ). We can write G ht (i, j) = cos t √ n < x -δx, y -δy > dµ i (x)dµ j (y) Also < x -δx, y -δy >=< x, y > -< δx, y > -< δy, x > + < δx, δy > By concentration and since µ j has O(1) mean, | < δx, y > | has expectation O( δx ) conditioned to δx. Since E δx = O(1) by concentration of the distance to the origin, we have E| < δx, y > | = O(1). The last two terms above can be dealt with similarly, yielding that the distributions of < x -δx, y -δy > and of < x, y > are at 1-transportation distance O(1). Since cos(t./ √ n) is O(t/ √ n)-Lipschitz, we see that | G ht (i, j) -G ht (i, j)| = O(t/ √ n)

Lemma 4 . 21 .

 421 For sufficiently small C 2 = Θ(1), the columns of f C 2 ∆ 4 (B) with indices i and j are equal if i and j belong to the same component. If i and j belong to different components, their distance is Ω(∆ 4 / √ N ). Proof. Eigenvectors of B with non zero eigenvalue are piecewise constant, so the first part is clear. Assume indices i and j respectively belong to distinct components u and v. The distance between their columns is f C 2 ∆ 4 (B)e uv , where e uv has entries 1/ X u (resp. -1/ X v ) at indices corresponding to component u (resp. v), and 0 else. Vector e uv is in E uv and has norm Θ(1/ √ N ). From the singular value lower bound, there must exist a unit vector x such that | < e uv , Bx > | = Ω(∆ 4 / √ N ). Chapter 4 Spectral Properties of Radial Kernels and Clustering in High Dimensions 78 Denote by E 2C 2 ∆ 4 the vector space generated by the singular vectors of B with singular values at least 2C 2 ∆ 4 , and write x = αy + βz, where y and z are unit vectors respectively lying in E 2C 2 ∆ 4 and in E ⊥ 2C 2 ∆ 4 , and α 2 + β 2 = 1. We have | < e uv , Bx > | = |α < e uv , By > +β < e uv , Bz > | = O(| < e uv , By >|) + O(C 2 ∆ 4 / √ N ) ≤ max(C 3 | < e uv , By > |, C 4 C 2 ∆ 4 / √ N )for some constant C 3 and C 4 , where in the second line we used the fact that the largest singular value of B is O(1). Hence for small enough C 2 = Θ(1), we willhave C 4 C 2 ∆ 4 / √ N < | < e uv , Bx > |, implying | < e uv , By > | ≥ | < e uv , Bx > |/C 3 = Ω(∆ 4 / √ N ). Now because y ∈ E 2C 2 ∆ 4 , as f C 2 ∆ 4 modifies eigenvalues by afactor at most 2 in that range, there exists a matrix F with the same eigenvectors as B, and with singular values between 1/2 and 2, such that F By = f C 2 ∆ 4 (B)y.Hence| < f C 2 ∆ 4 (B)F -1 e uv , y > | = | < F -1 e uv , f C 2 ∆ 4 (B)y > | = | < F -1 e uv , F By > | = | < e uv , By > | = Ω(∆ 4 / √ N )In particular f C 2 ∆ 4 (B)F -1 e uv has norm at least O(∆ 4 / √ N ). But that vector equals F -1 f C 2 ∆ 4 (B)e uv , and as F -1 doesn't change distances by more than a factor of 2, we see that f C 2 ∆ 4 (B)e uv = Ω(∆ 4 / √ N ), as claimed.

  

  Isomorphism of mm-spaces. Definition 2.2. Let (X, d X , µ X ) and (Y, d Y , µ Y ) be metric measure spaces. An isomorphism of mm-spaces between (X, d X , µ X ) and (Y, d Y , µ Y ) is a map which is an isometry on the support of the measures, φ

  Chapter 4 Spectral Properties of Radial Kernels and Clustering in High Dimensions 59 on each component, has a small Lipschitz constant. Because each component has constant concentration by assumption, this implies that the image of each component by φ μ, after centering on each component, has small concentration. Let E ∈ L 2 (R n , μ) be the space of functions that are constant on the support of each µ i , and P E and P E ⊥ denote the orthogonal projectors onto E and E ⊥ . With probability at least 1 -p, for any x 1 and x 2 ∈ R n ,

	The desired claim on the block structure of Φ h (X) can then be deduced.
	4.5.1.1 A property of φ μ		
	Further denote by S the sphere with radius	√	n centered at 0.
	Proposition 4.8.		

  Chapter 4 Spectral Properties of Radial Kernels and Clustering in High Dimensions 62 And since µ i has O(1)-concentration, fi µ i has at most O(d 2 h ) variance. As a result Var μi( fi ) = Var fi μi ≤ O((1 + δ 2 )d 2 h )Also, letting d x 0 be the distance function to x 0 , we have thatW 1 (d x 0 (μ i ), d x 0 (µ i )) ≤ δsince distance functions are 1-Lipschitz. Consider an optimal coupling (X, Y ) between d x 0 (μ i ) and d x 0 (µ i ). By Markov inequality, the probability that X ≤ ρR and Y ≥ ρR + 1 is at most δ. This implies that μi (B(x o , ρR)) ≤ δ + µ i (B(x o , ρR + 1))Sinced x 0 O(1)-concentrates on µ i , its median is O(1) close to ( d 2 x 0 dµ i ) 1/2 .As the latter quantity is at least R, we have by concentration

  Chapter 4 Spectral Properties of Radial Kernels and Clustering in High Dimensions 79 This means that within each component, the columns of f C 2 ∆ 4 (Φ ht ( X)) have variance O(∆ 8 /(N K 6

2 ∆ 4 . By Weyl's theorem on eigenvalue perturbations, f C 2 ∆ 4 (Φ ht ( X)) thus has at most k = Θ(1) non zero eigenvalues. As a result f

C 2 ∆ 4 (B) -f C 2 ∆ 4 (Φ ht ( X)) 2 2 ≤ O(δ 2 log 4 δ) = O(∆ 8 /K 6 ).

Homology groups with coefficients in a field are vector spaces and by dimension here we consider the dimension of the vector spaces.

Specifically, the extremal sets for the Gaussian isoperimetric inequality are the half spaces, and starting from the distribution of the half spaces, one can recover the same concentration function.
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Proof.

E(h(||u||

By standard algebraic manipulations, shifting the center amounts to scaling the expectation by a certain factor: Lemma 4. [START_REF] Dubnov | A new nonparametric pairwise clustering algorithm based on iterative estimation of distance profiles[END_REF]. If u is a Gaussian random variable with covariance Σ and mean µ, then:

In particular, letting B h be the 2 × 2 matrix with entries

where y i are independent random variables with law N (0, Σ i ), we see that G h is obtained from B h by scaling the off diagonal entries by a factor λ that is at most exp -

Because det B h is non negative and the entries of B h are Θ(1), we deduce that
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Now, the largest entries of G h are the same as for B h , that is, Θ(1), which implies that the maximal eigenvalue of G h is Θ(1) as well. From this we see that:

To conclude, it suffices to check that for our choice of kernel and assumptions on the variance of the Gaussians, c h = Θ(1/n).

Proof of Theorem 4.6

We first show that constant functions are sent to nearly constant functions by the convolution operator with kernel

Lemma 4.17. Let f i (x) = h( y-x )dµ i (y), and fi (x) = h( y-x )dµ i (y). If µ i and µ j are supported on the sphere S, even, and satisfy a Poincaré inequality, then:

Proof. The gradient of f i is as follows:

For x ∈ S, the gradient of the restriction of f i to S is

From the structure of blocks described in and

Calling y the coordinate vector of S, that is, the identity map of S, the above equation expresses M y as the sum of two terms T 1 and T 2 . The first one is

we see that as µ i is even, fi (y) is an even function of y. Hence multiplying it by y gives an odd function whose integral against µ j must be be zero as µ j is even as well. Hence T 1 vanishes. The second term T 2 is

As µ i is even, it has zero mean so T 2 cancels. From (4.5), the above discussion gives:

The desired claim follows using Poincaré inequality.

Lemma 4.18. Taking h = h t , we have:

assuming µ i and µ j are supported on S, have O(1) means and O(1)-concentration.

Proof. For any x, y in S we can write
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Hence

As a consequence, for any unit vector u:

where µ u i is µ i multiplied by function x →< x, u >, the last line using the fact that µ i has O(1)-concentration and O(1) mean. Hence

The lemma follows since µ j has O(1)-concentration.

To prove the first part of Theorem 4.6, using Theorem 4.1, it is sufficient to show that with arbitrarily high probability A -B = O(U ) where

and A is the matrix given by Theorem 4.1. By definition of A, and after a small manipulation, we see that the entries of A -B in the ij block are given by

Hence by Lemma 4.17