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CHAPTER 1

General Introduction

Research background

The collaboration among small or medium sized enterprises (SME) plays a growing role in their daily operation/management. Participation in a network and collaboration with other enterprises has now become the primary strategy for them to gain competitive advantages in current severe environment. To achieve economies of scale, more and more SMEs have formed collaborative networks by sharing tasks and resources, in order to reduce costs, improve responsiveness to the evolution of market demands, and capture more business opportunities.

Fierce competition in global markets, introduction of products with shorter life cycles, increasing fuel costs and labor prices, growing transportation legislation and heightened expectations of customers have shrunk profit margins of carriers [START_REF] Cruijssen | Horizontal cooperation in logistics : opportunities and impediments[END_REF]. Thus, as an effective strategy for small to medium-sized freight carriers to improve profitability by reducing empty vehicle repositions and increasing vehicle fill rates, carrier collaboration is emerging and attracting a growing interest from industrial practitioners and academic researchers [START_REF] Dai | Mathematical model and solution approach for collaborative logistics in less than truckload (LTL) transportation[END_REF]. Some pilot projects implemented in USA reveal that Collaborative Transportation Management (CTM) (including carrier collaboration) can reduce Chapter 1. General Introduction the mileage traveled by empty vehicles by 15%, the waiting and pause time of vehicles by 15%, the turnover of drivers by 15% and can increase the fill rate of vehicles by 33% [START_REF] Sutherland | Collaborative transportation management : What, why, and how ? (Rapport technique)[END_REF].

Carrier collaboration refers to the partnership among multiple carriers at the same level of logistics operations. Multiple carriers form a coalition and exchange their transportation requests to explorer better complementarity among requests. Better complementarity among requests can improve the routing planning by increasing the vehicle fill rates or eliminating empty backhauls of carriers and consequently reduce their transportation costs. One problem for carrier collaboration is how to optimally exchange (reallocate) requests among carriers so that their total profit is maximized.

The other problem is how to fairly allocate the post-collaboration profit gained through the collaboration among all carriers in the coalition in order to guarantee the sustainability of the alliance [START_REF] Chen | Combinatorial clock-proxy exchange for carrier collaboration in less than truck load transportation[END_REF]. In this thesis, we focus on the first problem which is also referred to as collaborative transportation planning (CTP) problem [START_REF] Wang | Dynamics and sustainability in international logistics and supply chain management-proceedings of the 6th german-russian logistics and scm workshop (dr-log 2011)[END_REF][START_REF] Buer | An exact and two heuristic strategies for truthful bidding in combinatorial transport auctions[END_REF][START_REF] Wang | Operational transportation planning of freight forwarding companies in horizontal coalitions[END_REF].

Key issues in carrier collaboration

In this thesis, we consider carrier collaboration realized through a combinatorial auction or exchange. Such collaboration mechanism involves a virtual/real auctioneer and multiple carriers. Each carrier plays a double role of buyer and seller of transportation requests for the purpose of improving its profitability through exchanging its requests with other carriers.

The auctioneer is responsible for solving a winner determination problem (WDP) [START_REF] Ackermann | Combinatorial auctions in freight logistics[END_REF] to reallocate requests to 1.3. Problems studied in this thesis 3 the winning carriers. The following sequence of events describes the procedure of requests exchange in less-than-truckload (LTL) transportation for carrier collaboration :

1. Each carrier evaluates its requests as profitable or unprofitable by solving the pickup and delivery problem with time windows, profits and reserved requests (PDPTWPR) (Chapter 3).

2. Unprofitable requests are submitted to the auctioneer as outsourcing requests.

3. The auctioneer announces the requests for auction to all carriers. 4. Each carrier tenders bid(s) with an 'ask price' to the auctioneer, and each bid is composed of one or more requests. This problem is referred to as the bid generation problem (BGP) [START_REF] Triki | The stochastic bid generation problem in combinatorial transportation auctions[END_REF][START_REF] Buer | An exact and two heuristic strategies for truthful bidding in combinatorial transport auctions[END_REF][START_REF] Kuyzu | Bid price optimization for truckload carriers in simultaneous transportation procurement auctions[END_REF] (Chapter 4).

5. The auctioneer solves the WDP to reallocate requests among carriers according to the winning bids (Chapter 5).

Problems studied in this thesis

The goal of this thesis is to investigate the above mentioned subproblems of carrier collaboration. More specifically, this thesis mainly studied the sub-problems appeared in steps 1,4,5 mentioned above. Thus, this thesis is devoted to solve the following three problems :

1. The pickup and delivery problem with time windows, profits, and reserved requests (PDPTWPR), a new vehicle routing problem appeared in combinatorial auction (CA) for less-than-truckload (LTL) transportation. This problem is also the first step of the proposed carrier collaboration framework in this thesis, for each carrier to identify the set of profitable requests and the set of unprofitable requests.

A mixed-integer programming (MIP) model is formulated for the PDPTWPR and an adaptive large neighborhood search (ALNS) approach is developed as the solution approach. The ALNS involves ad-hoc destroy/repair operators and a local search procedure. It runs in successive segments which change the behavior of operators and compute their own statistics to adapt selection probabilities of operators. The MIP model and the ALNS approach are evaluated on 54 randomly generated instances with up to 10-100 requests. The numerical results indicate that the ALNS significantly outperforms the commercial solver, not only in terms of solution quality but also in terms of CPU time. A repair heuristic is proposed to cope with any infeasibilities caused by the constraint relaxation. Extensive numerical experiments on randomly generated instances show that the Lagrangian relaxation approach can provide high quality solutions.

Organisation of this thesis

Chapter 1 mainly introduces our research background and generally describes the problems studied in this thesis. Chapter 2 provides an overview of current-art of collaborative transportation planning. An general review is given firstly to the field of collaborative logistics. Then the literature review focuses on significant contributions and important review papers on the decentralized planning approaches, especially the auction-based mechanisms, for carrier collaboration. Chapter 3 is devoted to solve the PDPTWPR. Chapter 4 focuses on the stochatsic BGP. Chapter 5 solves the WDP in carrier collaboration via combinatorial exchange. At last, Chapter 6 concludes this thesis and present the perspectives of future works opened in the field of collaborative transportation planning. 

Introduction

Freight logistics specializes in the movement (or 'forwarding') of freight, or cargo, from one place to another. In the last decade, with the fourishment of E-commerce and economic globalization, freight forwarding business has been playing an essential role in daily economic activities. However, the rapid development of freight logistics induces a fierce competi-Chapter 2. Literature review of CTP tion among freight carriers or forwarders. Moreover, introduction of products with shorter life cycles, increasing fuel costs and labor prices, growing transportation legislation and heightened expectations of customers have shrunk profit margins of carriers [START_REF] Cruijssen | Horizontal cooperation in logistics : opportunities and impediments[END_REF]. For small or medium sized carriers, how to survive in such unprecedented competition environments poses a real challenge. The challenge has given rise to Collaborative Logistics (CL) or Collaborative Transportation Management(CTM). CL or CTM is achieved through the horizontal collaboration between multiple shippers or carriers by either sharing transport capacities or transportation orders. With the collaboration, all actors involved can improve their profitability by eliminating empty backhauls and raising vehicle utilization rates [START_REF] Dai | Collaborative logistics planning among carriers (models and approaches)[END_REF]. Note that such collaboration benefits from the development of information technology in recent years.

Horizontal collaborative logistics refers to the collaboration among multiple actors at the same level in logistics operations such as the collaboration among shippers (manufacturers) and the collaboration among carriers. Two types of horizontal collaborative logistics are studied in the literature : shipper collaboration and carrier collaboration. Shipper collaboration (Ö. Ergun, Kuyzu, & Savelsbergh, 2007) considers the situation of a single carrier and multiple shippers. The collaboration among shippers is realized by consolidation of their transportation requests to be offered to carriers. Through collaboration, shippers are able to reduce 'hidden costs' such as asset reposition costs. However, more attention has been given to carrier collaboration. Differing from shipper collaboration, carrier collaboration [START_REF] Özener | Lane-exchange mechanisms for truckload carrier collaboration[END_REF][START_REF] Hernández | Centralized carrier collaboration multihub location problem for less-than-truckload industry : Hybrid hub-and-spoke network[END_REF] happens among multiple carriers and considers how to provide opportunities for carriers to exploit synergies among their transpor-tation orders (requests) in daily operations, reduce costs associated with fleet operation, decrease lead times, increase asset utilization, and enhance overall service levels [START_REF] Esper | The value of collaborative transportation management (ctm) : its relationship to cpfr and information technology[END_REF].

In realistic logistics services, two types of transportation services are often provided to customers : truckload (TL) transportation and less-thantruckload (LTL) transportation. TL shipping refers to the movement of large amounts of homogeneous cargoes from one origin to one destination, whereas LTL refers to the shipping of relatively small freights from multiple origins to multiple destinations. For LTL shipment, customers pay for the amount of space of capacity used on the truck, instead of the entire truck in TL transportation. This advantage makes one customer share the space of a truck with other customers in case of shipping small freights. This option is ideal for small to medium sized enterprises who do not have their own trucks or can not afford TL shipping. Note that 'truck' used in this thesis may refer to other transportation tools, such as vans or vehicles. These terms are exchangeable hereafter.

One problem for carrier collaboration is how to optimally exchange (reallocate) requests among carriers so that their total profit is maximized, which is also referred to as collaborative transportation planning (CTP)

problem [START_REF] Wang | Dynamics and sustainability in international logistics and supply chain management-proceedings of the 6th german-russian logistics and scm workshop (dr-log 2011)[END_REF][START_REF] Buer | An exact and two heuristic strategies for truthful bidding in combinatorial transport auctions[END_REF]Wang et al., 2014). The other problem is how to fairly allocate the post-collaboration profit gained through the collaboration among all carriers in the coalition in order to guarantee the sustainability of the alliance. The profit allocation will not be discussed in the thesis, we refer readers to a recent review paper on this issue [START_REF] Guajardo | A review on cost allocation methods in collaborative transportation[END_REF].

In this thesis, we focus on the CTP for carrier collaboration in LTL mode.

Two types of approaches for such problem can be found in the literature :

Chapter 2. Literature review of CTP centralized planning approaches and decentralized planning approaches.

In centralized planning approaches, a central coordinator is responsible for optimally reassigning transportation orders among carriers so that their total profit is maximized. On the contrary, in decentralized planning approaches, each carrier acts as an autonomous agent, there is no central coordinator to arrange the overall plan of all carriers involved. Because of the nature of centralized planning approaches, all transportation orders' information is open to each of other carriers in coalition, whereas only limited information of orders is shared among carriers in decentralized planning approaches. Although centralized methods are often superior to decentralized methods in terms of total profit or cost, decentralized approaches are more practical in realistic applications. Because carriers are not only partners but also competitors, they may be not willing to disclose customers' orders and cost information even to their cooperation partners [START_REF] Verdonck | Collaborative logistics from the perspective of road transportation companies[END_REF].

The rest of this chapter will be organized as follows : a general literature review on collaborative logistics will be given firstly in Section 2.2. Then a brief review on centralized planning approaches and a detailed review on decentralized planning approaches will be given in Section 2.3 and Section 2.4 separately, since the three sub-problems studied in this thesis are only related to the class of decentralized planning approaches. [START_REF] Cruijssen | Horizontal cooperation in logistics : opportunities and impediments[END_REF] launch a large-scale survey on the opportunities and impediments of horizontal collaboration in logistics. In general, logistics service providers (LSPs) strongly believe that the potential benefits of
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horizontal collaboration can increase their profitability or improve the quality of their services. However, the impediments for collaboration that are perceived or expected by the non-cooperating LSPs have been proved to be experienced by the cooperating LSPs. They believe a fair allocation of profit is the hardest challenge.

Kopfer et [START_REF] Kopfer | Approaches for modelling and solving the integrated transportation and forwarding problem. Produktions-und Logistikmanagement[END_REF] provide an overview and a comparison of existing approaches for modeling and solving the integrated transportation and forwarding problem, which is an extended problem of the traditional routing and scheduling problem in freight forwarding provided by 3rd and 4th party logistics. This study summarizes the reasons for the existence of the gap between theory and practice.

D'Amours et Rönnqvist ( 2010) present a survey of previous contributions in the field of collaborative logistics. Firstly, they depict opportunities in collaborative transportation planning. Then they discuss key issues in forming coalitions, such as sharing resources and profits, as well as the issues about information protection and decisions technologies. Some business cases are also given to support the discussion in the paper. Finally, they raise some question and describe perspectives of future research. [START_REF] Verdonck | Collaborative logistics from the perspective of road transportation companies[END_REF] provide a thorough literature review on the operational planning related to horizontal logistics collaboration. In this review paper, the authors classify the horizontal logistics collaboration into two mainstream approaches : order sharing and capacity sharing. For both research streams, a detailed overview of solution techniques is presented. For order sharing approaches, carriers may achieve an increase in capacity utilization, improved asset repositioning capabilities and a reduction in total transportation costs due to enhanced transportation planning. Existing studies address distinct approaches to tackle order sharing by optimal re-allocation of requests. The authors classify order sharing approaches into five types : joint route planning, auction-based mechanisms, bilateral lane exchanges, load swapping and shipment dispatching policies. Instead of sharing customer orders, carriers may also collaborate with each other horizontally through the sharing of vehicle capacities. In this way, capital investments may be shared among partners and utilization rates of vehicles may be improved. Previous studies provide two general techniques to determine the most efficient way to share vehicle capacities, namely the way based on mathematical programming and the way based on negotiation protocols. At last, some promising future research directions are proposed in the field of collaborative logistics.

Centralized planning approaches for collaborative transportation

For centralized planning approaches in collaborative logistics with TL transportation, O. [START_REF] Ergun | The lane covering problem[END_REF] to service excess demand. The SCCP is considered from a static planning perspective to gain insights into the potential benefits of the collaboration concept for carriers, and its ability to mitigate the consumption of fuel. The collaborative strategies are evaluated by computing the relative benefits of the collaboration over the non-collaboration situation. Single and multipleproduct SCCPs are both formulated as binary (0-1) multi-commodity minimum cost flow problems, and the models are solved by a branch-and-cut algorithm.

Decentralized planning approaches for collaborative transportation

In 

Auction-based mechanisms

Auction-based approaches are the most important methods for CTP. An auction is a process of buying and selling goods or services by offering them up for bid, taking bids, and then selling the item to the winning bidder.

Different types of auctions exist in the literature, such as single-object auctions, multiple-object auctions, combinatorial auctions (CA), and exchanges [START_REF] Shoham | Multiagent systems : Algorithmic, game-theoretic, and logical foundations[END_REF][START_REF] Krishna | Auction theory[END_REF].

As important category of auctions, combinatorial auctions allow bidders to bid on combinations of objects, tend to lead to more efficient allocations than traditional auction mechanisms in multi-object auctions where the agents' valuations of the objects are not additive. However, determining the winners of an auction so as to maximize the revenue of the auctioneer or the total profit of all bidders is NP-complete [START_REF] Sandholm | Algorithm for optimal winner determination in combinatorial auctions[END_REF]. Such problem is also refered to as the combinatorial auction problem (CAP) or the winner determination problem (WDP). Various combinatorial auction mechanisms are introduced in Cramton, [START_REF] Cramton | Combinatorial auctions[END_REF], such as Vickrey-Clarke-Groves auctions, iterative combinatorial auctions, simultaneous ascending auctions, ascending proxy auctions, and clock-proxy auc-tions.

Here, we mainly introduce two kinds of combinatorial auctions applied for CTP in the literature : single-round combinatorial auctions and multiround combinatorial auctions (iterative combinatorial auctions). Note that multi-round combinatorial auctions have several advantages over the single-round combinatorial auctions [START_REF] De Vries | Combinatorial auctions : A survey[END_REF][START_REF] Kwon | An integrated combinatorial auction mechanism for truckload transportation procurement[END_REF]. Their applications in CTP will be reviewed in the following subsections, respectively.

Single-round combinatorial auctions

Auctions are used in transportation planning early in Song et Regan (2003a). A framework of auction-based request allocation mechanism for carriers is proposed in this work. Their analysis shows their proposed auction-based system is Pareto efficient [START_REF] Pareto | Manual of political economy[END_REF][START_REF] Pardalos | Pareto optimality, game theory and equilibria[END_REF]. Meanwhile, the related complex decision issues like subcontracting, bid generation, bid selection are also investigated in this paper.

In the same year, [START_REF] Song | Combinatorial auctions for transportation service procurement : The carrier perspective[END_REF] study the complexity of the bidding problem in CA for the procurement of TL trucking service contracts.

Furthermore, an optimization-based approximation method is developed to help a carrier to construct its bids. [START_REF] Sheffi | Combinatorial auctions in the procurement of transportation services[END_REF] investigates a CA application in transportation service procurement from shippers' point of view. His work proves that the combinatorial bidding strategy allows both shippers and carriers to exploit inherent economies of scope in TL operations. [START_REF] Figliozzi | Analysis and evaluation of incentive-compatible dynamic mechanisms for carrier collaboration[END_REF] proposes collaborative mechanisms (CMs) for carrier collaborations. Three game theoretic properties : Budget Balanced (BB), In-Chapter 2. Literature review of CTP dividually Rational (IR) and Incentive Compatible (IC) [START_REF] Babaioff | Incentive-compatible, budgetbalanced, yet highly efficient auctions for supply chain formation[END_REF][START_REF] Nisan | Introduction to mechanism design (for computer scientists)[END_REF] are necessary to guarantees sustainability and efficiency of the CMs. A second-price-based dynamic collaborative mechanism (SPDCM) is employed for the auction procedure. A simulation study is carried out on a hypothetical coalition of four carriers. Results clearly show that the proposed collaborative mechanism outperforms the noncollaborative situation. [START_REF] Krajewska | Collaborating freight forwarding enterprises[END_REF] present a three-phase request allocation scheme based on CA and game theory. In the pre-processing phase, each

request is estimated by 'potential self-fulfilment cost'. Then orders are exchanged via a modified matrix auction [START_REF] Day | Expressing preferences with price-vector agents in combinatorial auctions[END_REF][START_REF] Goossens | The matrix bid auction : microeconomic properties and expressiveness[END_REF] in the profit optimization phase. Finally, the collaborative profit is shared based on a game theory concept in the profit sharing phase.

For CA applied to carrier collaboration in LTL transportation, [START_REF] Schwind | A combinatorial intraenterprise exchange for logistics services[END_REF] develop a combinatorial exchange mechanism Co-mEx system, which exchanges delivery orders in a logistics company organized by profit centers. The ComEx system has four phases : initialization phase, outsourcing phase, insourcing phase, and final evaluation phase.

Outsourcing requests to other profit centers is determined in the outsourcing phase, and the acquiring requests from other profit centers is executed in the insourcing phase. In the final evaluation phase, CA is used to minimize the total cost to allocate delivery orders among profit centers. Simulation tests based on real data from a real-world medium-sized logistics company shows the ComEx can achieve up to 14% cost saving.

The issue about disclosing of business information among carriers is a key focus in [START_REF] Berger | Solutions to the request reassignment problem in collaborative carrier networks[END_REF]. Their work proposes a decentralized control and auction based exchange mechanism for the request reas-signment problem in collaborative carrier networks. The decentralized approach, the centralized one and no-collaboration situation are compared in this paper. The simulation makes evident that the centralized approach yields the best outcome, but at a cost of information sharing. On the other hand, no-collaboration situation is dominated by the collaboration using decentralized approach. Note that they ignore the vehicle capacity by assuming that all shipments take only a very small fraction of the space of a vehicle. A recent exploratory study on collaborative urban logistics in Singapore [START_REF] Handoko | Enabling carrier collaboration via order sharing double auction : A singapore urban logistics perspective[END_REF] considers the collaboration among carriers through the exchange of shareable orders (exchangeable transportation requests) at an urban consolidation center for their last mile deliveries. A single-round sealed-bid double auction is proposed for the order exchange. In this mechanism, all bids with an ask price higher than the offer price are banned and a winner determination problem is solved to reallocate the exchangeable transportation requests among carriers. This approach is fully decentralized where each carrier plays both auctioneer and bidder role and no post-coordination profit reallocation is needed.

Iterative combinatorial auctions

Each carrier must asynchronously solve an outsourcing requests selection problem (ORSP) and a requests bidding problem (RBP), both problems are mathematically formulated. Any new-coming requests can be dynamically added into the request pool. Simulation tests on 20 randomly generated instances reveal their approach can achieve a profit increasing compared with a no collaboration situation.

Wang et Kopfer (2014) implement a route-based iterative combinatorial auction for CTP of LTL freight carriers. In each round of the auction, each carrier tenders its routing plan to the auctioneer, which is generated based on the dual values of the linear relaxation of a set partitioning model. Then, the auctioneer solves a provisional winner determination problem that minimizes the total fulfillment costs of all carriers. At the end of this auction, a final winner determination problem is solved to allocate the routes to the winning carriers. This approach assumes that all transportation requests of the carriers are offered for exchange and the ask price of each route determined based on its fulfillment cost must be revealed to the auctioneer. Computational simulation reveals the route-based exchange mechanism can realize a cost saving up to 18%. [START_REF] Dai | Price-setting based combinatorial auction approach for carrier collaboration with pickup and delivery requests[END_REF] develop a multi-round auction based on a price-setting mechanism to achieve the collaboration among LTL carriers.

Their approach neither need to disclose any confidential information nor require to solve a NP-hard winner determination problem. In this auction, a virtual auctioneer who plays the role of mediator between carriers. In each round, every carrier determines the requests to bid for based on the price of serving each outsourcing request announced by the auctioneer. The auctioneer will update the prices according to the bids of all carriers it receives. The auction procedure stops when a certain stopping criterion is met. Three different price adjustment methods are compared to prove the effectiveness of the approach.

J. Li, Rong, et Feng (2015) propose a multi-round auction for carrier collaboration in TL transportation with pickup and delivery requests. But their auction mechanism only allows single request exchange. In each round of the auction, each carrier announces one request to outsource and one request to insource based on two request selection models for outsourcing and insourcing, respectively. Although the restriction to one request to outsource and one request to source in each round simplifies the auction process and lighten the computational burden, it may obtain a near-optimal solution.

Recently, Chen (2016) extends the clock-proxy auction to a combinatorial clock-proxy exchange for a carrier collaboration problem in LTL transportation. This is also an iterative combinatorial auction, which has two phases. The first phase is called clock phase, where an iterative exchange Chapter 2. Literature review of CTP based on Lagrangian relaxation is developed. The second phase is called proxy phase, where the bids that each carrier submits to its proxy agent are determined based on the information observed in the clock phase. The proposed approach combines the simple and transparent price discovery of the clock exchange with the efficiency of the proxy exchange. Computational results on randomly generated instances show the usefulness of the proxy phase and the effectiveness of the clock-proxy exchange.

Bid generation problems

The BGP in carrier collaboration can be classified into two categories :

deterministic BGPs and stochastic BGPs. We will review them separately in the following subsections.

Deterministic bid generation problems

Wang et Xia ( 2005) study a carrier's BGP in the context of TL transportation service procurement. In this paper, the focus is on the bundling method when an OR bidding language is used. They firstly define the bidder's optimality criterion of combinatorial bids. Then two heuristics are developed and compared, one is based on a fleet assignment model and the second is based on the nearest insertion method. [START_REF] Lee | A carrier's optimal bid generation problem in combinatorial auctions for transportation procurement[END_REF] [START_REF] Buer | An exact and two heuristic strategies for truthful bidding in combinatorial transport auctions[END_REF] proposes an exact strategy and two heuristic strategies for bidding on subsets of requests. The exact bidding strategy is based on the concept of elementary request combinations. The author shows that it is sufficient for a carrier to bid on each elementary request combination in order to guarantee the same result as bidding on each element of the powerset of the set of tendered requests. The other two heuristic bidding strategies identify promising request combinations, where pairwise synergies based on saving values as well as the capacitated p-median problem are used. The proposed heuristic bidding strategies can help a carrier to increase its chance to win and at the same time can reduce the computational burden to participate in a combinatorial transport auction.

Stochastic bid generation problems

O. Ergun, Kuyzu, et Savelsbergh (2007a) ; [START_REF] Kuyzu | Bid price optimization for truckload carriers in simultaneous transportation procurement auctions[END_REF] Neighborhood Search (VNS) to the PDPTW and their computational results
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show promising performance of their algorithm, compared with the previous PDPTW metaheuristics. [START_REF] Ropke | An adaptive large neighborhood search heuristic for the pickup and delivery problem with time windows[END_REF] design an ALNS algorithm which is probably the most effective metaheuristic for the PDPTW so far, with results reported for up to 1000 locations.

Our PDPTWPR displays important differences with the PDPTW : i) serving all requests is not mandatory (provided all reserved requests are treated), ii) a profit is associated with each request, and iii) the objective function, to be maximized, is the sum of the revenues minus the routing costs.

We find no reference on this problem in the literature, although a growing number of publications deals with vehicle routing problems with profits (VRPP) in general.

Single-vehicle problems with profits are surveyed in [START_REF] Feillet | Traveling salesman problems with profits[END_REF]. Tour costs and collected profits can be expressed in the objective function, by minimizing the travel costs minus the profits, giving the profitable tour problem (PTP). The profits collected can be maximized, subject to a maximum tour length, which defines the orienteering problem (OP). Conversely, in the prize-collecting traveling salesman problem (PCTSP) [START_REF] Balas | The prize collecting traveling salesman problem[END_REF], the travel costs are minimized but the collected profits cannot be less than a given constant.

Among these problems, the PTP has the same objective function as our PDPTWPR. Only heuristics are available to solve it. Nguyen et Nguyen ( 2010) develop an approximation algorithm, based on the heuristic from [START_REF] Frieze | On the worst-case performance of some algorithms for the asymmetric traveling salesman problem[END_REF] for the asymmetric traveling salesman problem (ATSP), and a method to round fractional solutions of a linear programming relaxation for the asymmetric PTP. [START_REF] Goemans | On the parsimonious property of connectivity problems[END_REF] solve an undirected version of the PTP.

Routing problems with multiple vehicles and profits are much less studied. [START_REF] Butt | A heuristic for the multiple tour maximum collection problem[END_REF] define the multiple tour maximum collection problem (MTMCP), a generalization of the OP where the same maximum tour length is applied to several vehicles. [START_REF] Chao | The team orienteering problem[END_REF] study the same problem but introduce a nowadays standard name, the team orienteering problem (TOP For more details on VRPPs, we refer readers to the technical report written by [START_REF] Archetti | Vehicle routing problems with profits (Rapport technique)[END_REF].

Problem description and mathematical model

The PDPTWPR is based on a complete undirected graph G = (N, E).

The node-set is defined as N = {0, • The goal is to determine the selective requests to be served, in addition to the reserved requests, and to determine the associated vehicle routes, to maximize the total profit which is equal to the sum of collected payments minus the total cost of the routes. The demand served in a route cannot exceed vehicle capacity, the time window at each node must be respected, and the delivery node of each request must be visited after its correspon-
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ding pickup node, in the same route.

The problem is NP-hard in strong sense like the PDPTW which is the particular case where R s is empty and all prices p i are equal to a large positive constant M (to ensure that all requests are served).

The PDPTWPR can be formulated by a MIP model. In addition to previous data, we need two symbols to write the model more easily : 

T ij = b j -a i plays
p i • y k i - k∈K i∈N j∈N c ij • x k ij (3.1) Subject to : j∈N,j =i x k ji - j∈N,j =i x k ij = 0 ∀i ∈ P ∪ D, ∀k ∈ K (3.2) j∈P,j =0 x k 0j = 1 ∀k ∈ K (3.3) i∈D,i =2n+1 x k i,2n+1 = 1 ∀k ∈ K (3.4) k∈K y k i = 1 ∀i ∈ R r (3.5)
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y k i ≤ 1 ∀i ∈ R s (3.6) j∈N,j =i,2n+1 x k ij = y k i ∀i ∈ P, ∀k ∈ K (3.7) j∈N,j =i,0 x k j,n+i = y k i ∀i ∈ P, ∀k ∈ K (3.8) T k i + t i,n+i ≤ T k n+i ∀i ∈ P, ∀k ∈ K (3.9) T k j ≥ T k i + t ij • x k ij -T ij • (1 -x k ij ) ∀i, j ∈ N, ∀k ∈ K (3.10) a i ≤ T k i ≤ b i ∀i ∈ N, ∀k ∈ K (3.11) Q k j ≥ Q k i + d j -Q j • (1 -x k ij ) ∀i, j ∈ N, ∀k ∈ K (3.12) max{0, d i } ≤ Q k i ≤ min{Q, Q + d i } ∀i ∈ N, ∀k ∈ K (3.13) x k ij ∈ {0, 1} ∀i, j ∈ N, ∀k ∈ K (3.14) y k i ∈ {0, 1} ∀i ∈ R, ∀k ∈ K (3.15) T k i ≥ 0 ∀i ∈ N, ∀k ∈ K (3.16) Q k i ≥ 0 ∀i ∈ N, ∀k ∈ K (3.

Adaptive large neighborhood search

For classical vehicle routing problems (without profits), the small-scale moves used in local search procedures affect the partition of customers in routes and the sequence of these routes. In problems with profits, other moves are required to modify the set of served requests since it is not mandatory to serve all of them. As the possibility of choosing requests tremendously expands solution space, the two kinds of moves must be combined in a clever way to avoid excessive running time. For instance, [START_REF] Labadie | The team orienteering problem with time windows : An LP-based granular variable neighborhood search[END_REF] propose a VNS algorithm for the TOPTW where a local search procedure focuses on route sequences, while the shaking step changes the subset of served requests. For the PDPTWPR, we select the adaptive large neighborhood search (ALNS) framework as another way to remedy the weak efficiency of small-scale neighborhoods.

The precursor of the ALNS is Large Neighborhood Search (LNS), introduced by [START_REF] Shaw | Using constraint programming and local search methods to solve vehicle routing problems[END_REF] for the capacitated vehicle routing problem (CVRP).

LNS begins with an initial solution and improves the objective value gradually, by applying one destroy and one repair operator at each iteration.

The destroy operator is a randomized heuristic removing a small subset of customers. The repair operator reinserts these customers optimally, using constraint programming and branch-and-bound, see [START_REF] Bent | A two-stage hybrid algorithm for pickup and delivery vehicle routing problems with time windows[END_REF] for the VRPTW. The destroy and repair operators are also called ruin and recreate operators, or removal and insertion operators.

Chapter 3. PDP with time windows, profits and reserved requests

The application of a destroy/repair pair can be viewed as a move that implicitly defines a very large neighborhood. However, only one move is randomly selected at each iteration instead of exploring the neighborhood completely. LNS is conceptually simple but has some known drawbacks.

The search is a bit blind because the destroy/repair moves sample a very small fraction of the large neighborhood. This can be compensated by more iterations but, added to the exact method used to reinsert customers, the metaheuristic becomes time-consuming. [START_REF] Ropke | An adaptive large neighborhood search heuristic for the pickup and delivery problem with time windows[END_REF] propose an ALNS to improve the LNS. The ALNS involves several destroy and repair operators, which are all heuristics to achieve a time-saving purpose. At each iteration, a pair of operators is randomly chosen to make a move and statistics are computed to favor the most efficient pairs. The method is adaptive since the most frequent pairs may change during the search. The ALNS has been successfully applied to the PDPTW [START_REF] Ropke | An adaptive large neighborhood search heuristic for the pickup and delivery problem with time windows[END_REF] and later to various rich vehicle routing problems [START_REF] Pisinger | A general heuristic for vehicle routing problems[END_REF][START_REF] Aksen | An adaptive large neighborhood search algorithm for a selective and periodic inventory routing problem[END_REF].

Our ALNS is motivated by [START_REF] Ropke | An adaptive large neighborhood search heuristic for the pickup and delivery problem with time windows[END_REF], but we bring six important modifications to cope with the peculiarities of the PDPTWPR so as to achieve a good efficiency. The first one is the design of specific destroy/repair operators, which acts both on the sequence of the routes and on the selection of served requests. if S feasible and (f (S ) > f (S) or r U (0,1) < exp ((f (S )-f (S))/T ) (Subsection 3.4.5) then 13:

S ← S if f (S best ) > f (S * ) then S * ← S best endif 23: end for

Initial solution construction

According to our experimental results, the quality of the initial solution may have a crucial impact on the final outcome of the ALNS. Consequently, we develop an effective sequential insertion heuristic (SIH) to provide quickly each run with a high-quality initial solution. SIH can be controlled by using three insertion policies :

-Policy 1 : Only the reserved requests are served.

-Policy 2 : After the insertion of all reserved requests, only profitable selective requests can be inserted. The insertion procedure will stop if no profitable selective request can be found any more.

-Policy 3 : After the insertion of all reserved requests, selective requests are inserted until infeasibility.

Policy 1 is the most basic way to construct a feasible initial solution, by including the whole set of reserved requests. In general, Policy 2 produces a better initial solution than the others two, but we observe that in a few cases that a near-optimal initial solution may lead to be trapped in a local optimum at the very beginning of the ALNS searching process. In comparison with the two first policies, Policy 3 tends to exhaust vehicle fleet capacity.

For each run of the ALNS, SIH randomly select Policy 1, 2 or 3 with respective probabilities γ 1 , γ 2 and γ 3 , with

γ 1 + γ 2 + γ 3 = 1.
As shown in Algorithm 2, SIH builds one route at a time. The reserved requests are first sorted in decreasing order of price and marked as unserved. The sorted list is browsed and the existence of at least one feasible insertion slot is checked for the current request i. If feasible insertion places exist in the current route, the request is marked as served and its two nodes i and n + i are inserted into the most profitable position. If no feasible insertion is possible, the request remains unserved in the list and will be tested again in a new route. When no request can be inserted, a new route is initiated. This process is repeated until all reserved requests are served. The selective requests are treated in the same way by taking Policy 2 or 3 into account.

Chapter 3. PDP with time windows, profits and reserved requests Algorithm 2 -Sequential insertion heuristic -SIH(S)

1: sort reserved requests in decreasing order of prices in a list L 2: set current route index r to 0 3: mark all reserved requests as unserved 4: repeat 5:

r ← r + 1 6:
initialize a new route using the 1st unserved request of L repeat steps 1-13 but for the selective requests and follow the Policy 2 or 3 16: end if

Adaptive selection of destroy/repair operators

At each iteration, the ALNS algorithm employs one or two removal operators to partially destroy the current solution and then repairs it by utilizing one insertion operator. One question is how to select these operators more effectively. Like other ALNS implementations in the literature, the algorithm chooses the most suitable combination of operators depending on their past performance. For diversification purposes, poor-performance operators still need to have a low selection probability to be selected during the search. We use a roulette-wheel mechanism. Assuming that n operators are available, each operator is associated with a weight ω i which reflects its performance during its previous outcomes. Each operator j is randomly selected with probability ω j / n i=1 ω i for the current iteration.

The weight ω i of each operator i is set to 1 at the beginning of each
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ALNS run. It remains fixed during the iterations of a segment but it is adjusted at the end of the segment on the basis of a performance score. At the beginning of each segment, all scores are initialized to 0, for the reason that low performance operators can still have a chance to be selected even if they were seldom selected in the previous segment. For feasible moves, the scores are updated by adding either 1 , 2 , 3 or 4 according to the four different situations in Table 3.1.

In practice, the score adjustment parameters should be set such that 1 The solution is not found before and improves the current solution.

> 2 > 3 > 4 .
3

The solution is not a new one but improves the current solution.

4

The solution is worse than the current solution but still accepted by the SA scheme.

To update the operator weights after each segment seg, let ω i,seg be the weight of operator i used in the segment, α i,seg the number of times the Chapter 3. PDP with time windows, profits and reserved requests operator was called, β i,seg its resulting score, and η ∈ [0, 1] a reaction factor representing how quick the weights react to performance. The weights are adjusted using formula (3.18). Note that if η = 1 then the previous weight is completely ignored and the new weight solely depends on the score achieved in the last segment. The other extreme is η = 0 which preserves the current weight while ignoring the score.

ω i,seg+1 =        ω i,seg if β i,seg = 0 (1 -η) • ω i,seg + η • β i,seg /α i,seg otherwise (3.18)

Dynamic adjustment of operator behavior

The PDPTWPR is highly complex since it combines the choice of selective requests and routing decisions. Even a minor modification on the current solution might deeply affect final results. To improve final solution quality and to vary the number of served requests, we implemented a technique called Dynamic Adjustment of Operator Behavior (DAOB). The basic idea is to modify progressively the behavior of operators over the successive segments of the ALNS. Firstly, we develop one group of removal policies and two groups of insertion policies based on the specific features of the PDPTWPR.

Request Remove Policies (RRP) :

1. Both selective requests and reserved requests are removable.

2. Only selective requests are removable.

Request Insertion Priority Policies (RIPP) :

1. Selective requests and reserved requests have the same priority.

2. All reserved requests must be served before treating selective requests.

Insertion Threshold of Selective Requests (ITSR) :

1. Selective requests are inserted regardless of profitability.

2. Selective requests are inserted only if they are profitable (insertion cost < service payment).

We would refer to the policies marked by '1.' as Code-1 policies, and the policies marked by '2.' as Code-2 policies.

As explained in the next subsection describing each operator, each ALNS iteration applies one or two destroy operators to remove a given number of requests, and then one repair operator. The destroy operators can remove any request in Policy RRP1 but only selective requests in RRP2.

While the ALNS for the PDPTW [START_REF] Ropke | An adaptive large neighborhood search heuristic for the pickup and delivery problem with time windows[END_REF]) reinserts all removed requests (since all requests must be served), our repair operators try to insert unserved requests according to the selected insertion policies (RIPP1/RIPP2 and ITSR1/ITSR2), as long as feasible insertions exist. An infeasible solution, i.e. , a solution violating certain constraints or with negative profit, can be obtained if some reserved requests cannot be served, due to time windows or lack of vehicle capacity.

Clearly Hence, the probability of using Code-2 policies is gradually augmented at the beginning of each segment. In the last segments, the ALNS generates more feasible solutions and tends to faster improve the total profit. Let P 1 and P 2 denote the probabilities of using policies with Code-1 or Code-2, respectively. They are simply computed as P 1 = 1 -P 2 and P 2 = seg/nsegs (where seg is the current segment number and nsegs the total number of segments, nsegs > 2).

To better understand the DAOB, the change of neighborhoods neighborhood are reduced and focus on feasible solutions. 

N 1 N 2 N 3 N 4 N 5 PDPTW solution space N 1 N 5 N 4 N 3 N 2 solution space PDPTWPR infeasible solution space N 5 N 1 N 4 N 3 N 2 solution space PDPTWPR infeasible solution space

Description of destroy/repair operators

Although some operators in our ALNS are similar to the ones designed in [START_REF] Ropke | An adaptive large neighborhood search heuristic for the pickup and delivery problem with time windows[END_REF] for the PDPTW, they must be adapted to serve a variable number of selective requests and deal with profits. For non-selective VRPs, all requests must be served and one destroy operator removes a certain number of requests which must be reinserted by another repair operator. Conversely, in the PDPTWPR, partial solutions are already feasible as long as all reserved requests are served. Moreover, the behavior of our destroy and repair operators (different treatment for reserved requests and selective requests) is affected by the DAOB policies explained in the previous subsection.

We also implement a meta-destroy operator to diversify the search when a maximum number δ of successive iterations without improving best solution is reached. This mechanism is independent from the decomposition of the search into segments : The number of iterations without improvement is counted from the beginning of each ALNS run and the maximum number is checked at each iteration of each segment. The metadestroy operator consists in applying two destroy operators instead of one.

The number of routes, or vehicles actually used, m can be modified by our operators. When one destroy operator removes the only request from a route, this route is closed. When looking for a best insertion for a request, the repair operators consider the m non-empty routes plus, if m < m, one "empty" route reduced to the two depot nodes 0 and 2n + 1.

Destroy operators

Our ALNS involves six destroy operators described. Given the number n of the requests in the incumbent solution and a removal fraction ρ ∈ [0, 1], each of the operators applies a strategy to select ρ • n requests (among all requests in Policy RPP1, or only among selective requests in RPP2). These re-Chapter 3. PDP with time windows, profits and reserved requests quests are then removed from the routes. Only one destroy operator is executed in each ALNS iteration, except in the meta-destroy scheme (applied after δ successive non-improving iterations) where two destroy operators are applied to bring diversification. Most expensive removal. Given a request i served in the incumbent solution S, we define its cost as f (S) -f (S ), where f (S) -f (S ) represents the difference of transportation cost with or without request i. This operator is widespread in ALNS metaheuristics for general VRPs. It works like the least profit and least paid removal (Algorithm 3), except that array L is sorted in decreasing order of requests' cost.

Random

Shaw removal. We use the same way of implementing Shaw removal [START_REF] Shaw | Using constraint programming and local search methods to solve vehicle routing problems[END_REF] as [START_REF] Ropke | An adaptive large neighborhood search heuristic for the pickup and delivery problem with time windows[END_REF]. Firstly, a seed request is chosen randomly and the heuristic removes similar requests in terms of distance (a request whose pickup and delivery nodes are close to those of the seed request is favored), time (starts of service at the two nodes are similar in the two requests), and demands. It is also applied ρ • n times with the same randomization as in Algorithm 3. The underlying idea is that similar requests less frequently violate capacity and time window constraints when they are reshuffled around in groups.

Price similarity removal. This operator is similar to the previous one but it removes requests which are similar in terms of price. Then a repair operator will exchange their locations or directly abandon them to increase total profit. We use in fact a dissimilarity measure for two requests i and j, defined as their price difference P (i, j) = |p i -p j | : growing values correspond to more and more dissimilar prices. This operator is outlined in Algorithm 4.
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Algorithm 4 -Price similarity removal 1: randomly select one seed-request r from solution S and put it in a set Z 2: while |Z| < ρ • n do 3: sort requests of S\Z such as i < j ⇒ P (r, i) < P (r, j) in a list L 4: compute a random request index j = (r U (0,1) ) 100•ρ |L| 5: Z = Z ∪ {L j } 6: end while 7: remove all requests of Z from S

Repair operators

Two repair operators were utilized in our ALNS. Their behavior depends on the policies RIPP1/2 and ITSR1/2 selected by the DAOB. They insert unserved requests (not only those removed by the destroy operators) as long as feasible insertions are possible.

Basic greedy insertion heuristic.

This greedy heuristic inserts one by one unserved requests. The two nodes i and n + i of request i are inserted in order to achieve the largest increase of total profit.

Regret insertion heuristic. The basic greedy heuristic seems quite myopic as it only considers the profit change of one request : the later an attempt of a request insertion is made, the more difficult it is to insert this request at a good insertion position (slot), because the insertion of other requests reduced the number of possible insertion slots. The regret insertion heuristic tries to anticipate by computing for each unserved request a regret value equal to the total profit difference between the best insertion and the second best one. Thus, one request with a high regret value will be inserted firstly. The regret values must be recomputed after each insertion, because some insertion positions are no longer available.

Diversification via simulated annealing

The simulated annealing (SA) scheme appears clearly in the main algorithm. Its goal is to avoid to be trapped in a local optimum. Compared with a descent heuristic which only accepts improved solutions, the SA accepts a degrading move S → S (when f (S ) < f (S)) with a probability e -(f (S)-f (S ))/T . The probability decreases with the profit disparity and with parameter T called temperature.

At the beginning of each run, T is set to T beg . A number computed to accept a solution 30% worse than the initial solution with a given probability τ . The temperature is reduced after each iteration (over successive segments) by multiplying T a cooling factor θ ∈ (0, 1). In practice, θ must be close to 1 to achieve a slow cooling.

Local search procedure

Observe that embedding a local search procedure in our ALNS is often beneficial to improve the outcome of metaheuristic. Consequently, we decide to implement six moves in a local search procedure called only at the end of each segment to keep running time at a reasonable level. The local search procedure works as follows. Three types of moves are randomly selected, including at least one of the two selective moves (selective request removal and selective request insertion) for the reason that they are more effective than the other four in most cases. The neighborhoods defined by the three types are searched in the order of description below.

All feasible moves in the incumbent neighborhood are tested. If improving moves are found, the best one is executed and the neighborhood is examined again, otherwise the search proceeds with the next neighborhood type.

The local search stops when the last type yields no improvement.

-Intraroute relocate : One pickup node or a delivery node is removed to be reinserted in another position of the same route (Fig. 3.2).

-Interroute relocate : One request is removed from one route and reinserted in another (Fig. 3.3).

-Intraroute exchange : Two requests are exchanged in the same route (Fig. 3.4).

-Interroute exchange : Two requests are exchanged between two routes (Fig. 3.5).

-Selective request removal : One selective request is removed from its route and becomes unserved (Fig. 3.6).

-Selective request insertion : One unserved selective request is inserted in a route (Fig. 3.7).
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A + Depot A - C + C - B + B - A + Depot A - C + C - B + B - FIGURE 3.2: Intraroute relocate : delivery node of request A is relocated A + Depot Depot A - B + B - C + C - A + Depot Depot A - B + B - C + C - A + Depot Depot A - B + B - C + C - FIGURE 3.3: Interroute relocate : request B is relocated A + Depot A - B - B + C + C - A + Depot A - B - B + C + C - A + Depot A - B - B + C + C - Depot FIGURE 3
.4: Intraroute exchange : request A and request C are exchanged 

A + Depot A - C + C - D + D - Depot B + B - A + Depot A - C + C - D + D - Depot B + B -
A + Depot A - B + B - C - C + A + Depot A - B + B - C - C + FIGURE 3.6: Selective requests removal : request B is removed A + Depot A - B + B - C - C + A + Depot A - B + B - C + C - A + Depot A - B + B - C + C - A + Depot A - B + B - C - C + FIGURE 3.7: Selective requests insertion : request B is inserted

Computational experiments

To evaluate the performance of the ALNS algorithm, we generate 54 instances partitioned in small size (n ∈ {10, 20}), medium size (n ∈ {30, 40, 50}) and large size (n = 100) for the PDPTWPR. The ALNS is compared with the CPLEX MIP solver (version 12.6).

The following subsections describe the generation of instances, list the parameter values used in our algorithm, and provide test results and optimality gaps which are reported separately for small, medium and large size instances. An analysis on the percentage of infeasible solutions and the impact of the DAOB mechanism closes the section.

Generation of instances

The instances of this study are generated based on the Euclidean benchmark instances proposed by [START_REF] Ropke | An adaptive large neighborhood search heuristic for the pickup and delivery problem with time windows[END_REF] for the PDPTW, available at URL http://www.diku.dk/~sropke/. We copy the instances with the coordinates of each node, the demand and time windows of each request.

Each instance name has a format n -|R r | -|R s | -source. Consider instance 10-5-5-50a as an example. There are 10 requests in total, including 5 reserved requests (1-5) and 5 selective requests (6-10). The code 50a means this instance is derived from the original one, prob50a : Only the 10 first requests appearing in prob50a are copied in instance 10-5-5-50a.

Some specific data required for the PDPTWPR are added. For each instance size (10, 20, 30, 40, 50 or 100 requests), we build nine instances using nine PDPTW files. These nine instances can be decomposed in three types :

three with roughly one-third of reserved requests, three with 50% of reserved requests, and three with two-thirds of reserved requests.

The fleet size of original instances is regarded as a reference. It is adjusted in accordance with the proportion of the number of requests extracted from the original instance.

The service price of each request is set according to the coordinates of its nodes. Take request i as an example, let d i,n+i denote the distance from its pickup node i to delivery node n + i, then this request is given a service 3,5]. This formula generates a large proportion of profitable requests and a small proportion of non-profitable requests.

price p i = d i,n+i • λ, λ ∈ [
Finally, since some original instances have multiple depots, we select one of the depots arbitrarily in such cases. With these options, the computation load of CPLEX is distributed over the four cores (8 threads) of the Intel(R) Core (TM) i7-2600 processor.

We solved the MIP model with a preset time of 0.5, 1, 1.5, 2, 4 hours (1800, 3600, 5400, 7200, 14400 seconds) with 10, 20, 30, 40, 50 requests, respectively. For the large size instances with 100 requests we set the time limit to 10 hours. The long preset time aims to ensure that the resolution of the MIP model can obtain at least one feasible solution served as a comparison indicator with our ALNS algorithm, although in most cases it failed to achieve such a goal. To further evaluate the performance of our ALNS algorithm, we present the upper bounds found by CPLEX as well.

Parameter setting for the ALNS

The ALNS parameters were determined in preliminary experiments, since the ALNS algorithm is composed of several procedures and each procedure has its own parameters, parameter setting was tuned by concerning a tradeoff between solution quality and CPU time. The values used are ga-thered in Table 3.2.

Observe that large size instances require more balanced probabilities (smaller selecting probability difference between {γ 1 , γ 2 , γ 3 }) to provide the ALNS with more diverse initial solutions. The number of iterations without improvement δ before calling the meta-destroy mechanism must be increased on medium and large size instances, to give more time to the ALNS to explore its large neighborhoods. For the same reason, ρ, τ and θ are tuned in keeping with the size of instances. 

Experimental results

Two key indicators were used to evaluate the performance of our ALNS algorithm :

i) The upper bound produced by CPLEX for the MIP model of a PDPTWPR instance input, which indicates the upper bound of the optimal Chapter 3. PDP with time windows, profits and reserved requests objective function value (profit).

ii) The best feasible solution of the MIP model found by CPLEX, which is marked as the lower bound of the optimal objective function value (profit).

For ease of reading, the abbreviations of the experiment indicators and corresponding definition are listed in Table 3.3. 

Impact of the DAOB mechanism

In this subsection, we will analyze the gain of our proposed DAOB (see Section 3.4.3) from two perspectives. Firstly we present the proportion of feasible solutions as a function of instance size, with or without DAOB, in 

Conclusion

This chapter introduces a new vehicle routing problem, the pickup and delivery problem with time windows, profits, and reserved requests To the best of our knowledge, this is the first time that an ALNS is used for a pickup and delivery problem with profits.

To evaluate the performance of the ALNS heuristic applied to the PDPTWPR, a mixed-integer programming (MIP) model is formulated and solved by CPLEX in a pre-specified time limit. For small to medium size instances (up to 50 requests), the upper and lower bounds achieved by CPLEX are compared with the lower bounds obtained by the ALNS. The test results show that our heuristic is able to retrieve the proven optima found by CPLEX. In the cases without proven optima, the ALNS significantly outperforms CPLEX both in terms of solution quality and CPU time.

For the large instances with 100 requests, even when CPLEX was not able to find a feasible solution in 10 hours, the ALNS was still able to generate a good feasible solution in a reasonable computation time.

Our future work will consider a variant of the PDPTWPR that has new characteristics such as a heterogeneous vehicle fleet, maximum tour duration, multiple vehicle depots, etc. The design of a fair post-collaboration profit reallocation scheme will also be addressed. The contributions of this chapter are summarized as follows :

1. The stochastic BGP in LTL transportation is investigated for the first time.

2. The stochastic MIQP model of the problem is simplified and it is reduced to several independent PDPTW. 

A reasonable

Problem description and mathematical model

The main purpose of this study is to build a BGP model which can help carriers to make decisions on generating and pricing bid(s) from a carrier's perspective in the context of LTL carrier collaboration, where multiple carriers collaborate with each other by exchanging part of their transportation requests for the purpose of improving their profitability.

A bid represents an offer to serve a bundle of requests with an 'ask price'. 'Ask price' indicates how much a carrier charges the auctioneer to serve the bundle of requests. Generally speaking, 'ask price' should be a positive value but not be superior to the sum of individual service costs of all requests in this bundle. 'Ask price' is a delicate issue in the BGP. On one hand, the more a carrier charges the auctioneer to serve a bundle of requests, the more the profit can be generated later. On the other hand, competitors (other carriers in coalition) may ask lower prices to serve the same bundle of requests, under such a circumstance, a losing bid gets nothing in return. Hereafter, we refer to the determination of 'ask price' as pricing problem.

Each transportation request is associated with a pair of pickup and delivery locations and time windows, quantity of goods, and price (paid by shippers/customers). Moreover, to adapt to realistic industry scenarios, we assume that each carrier has some reserved requests that must be served by itself and its other requests can be offered (outsourced) to other carriers in coalition. The outsourced requests are gathered and be referred to as requests for auction. The objective of the BGP for a carrier is to optimally select some requests for auction to bid for (generate the best bid) while still serving its reserved requests in the routing planning. Furthermore, other
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carriers' behaviors of bidding should also be considered, because carriers are competitors during the bidding phase. In brief, three key issues must be taken into account simultaneously : 1) request selection problem : which requests to bid for 2) pricing problem : how to set the 'ask price' of a bundle of requests 3) routing problem : how to plan the routes for serving reserved requests and bidding requests.

For the sake of simplicity, we make the following assumptions (known information) for our stochastic BGP model :

-two types of requests : reserved requests and requests for auction The problem is NP-hard in strong sense since it is a particular case of the PDPTW where R s is empty. In our BGP, we consider other carriers' (competitors') behaviors of bidding in order to simulate a free market competition environment. Thus, the auction clearing price (lowest price) of each potential bid remains uncertain. In order to take into account this fact during the bidding phase, we involve the probabilistic constraint (4.2) [START_REF] Triki | The stochastic bid generation problem in combinatorial transportation auctions[END_REF] Resulting model :

max b∈B p b • z b + p(R r ) - k∈K i∈N j∈N c ij • x k ij (4.1) Subject to : P r(p b • z b ≤ Y b ) ≥ 1 -α ∀b ∈ B (4.2) b∈B z b ≤ 1 (4.3) j∈N,j =i x k ji - j∈N,j =i x k ij = 0 ∀i ∈ P ∪ D, ∀k ∈ K (4.4) j∈P,j =0 x k 0j = 1 ∀k ∈ K (4.5) i∈D,i =2n+1 x k i,2n+1 = 1 ∀k ∈ K (4.6) k∈K y k i = 1 ∀i ∈ R r (4.7) k∈K y k i = b∈B e b i • z b ∀i ∈ R s (4.8) j∈N,j =i,2n+1 x k ij = y k i ∀i ∈ P, ∀k ∈ K (4.9) j∈N,j =i,0 x k j,n+i = y k i ∀i ∈ P, ∀k ∈ K (4.10) T k i + t i,n+i ≤ T k n+i ∀i ∈ P, ∀k ∈ K (4.11) T k j ≥ T k i + t ij • x k ij -T ij • (1 -x k ij ) ∀i, j ∈ N, ∀k ∈ K (4.12) a i ≤ T k i ≤ b i ∀i ∈ N, ∀k ∈ K (4.13) Q k j ≥ Q k i + d j -Q j • (1 -x k ij ) ∀i, j ∈ N, ∀k ∈ K (4.14) max{0, d i } ≤ Q k i ≤ min{Q, Q + d i } ∀i ∈ N, ∀k ∈ K (4.15) x k ij ∈ {0, 1} ∀i, j ∈ N, ∀k ∈ K (4.16
)

y k i ∈ {0, 1} ∀i ∈ R, ∀k ∈ K (4.17) z b ∈ {0, 1} ∀i ∈ R s , ∀b ∈ B (4.18) p b ∈ [p b min , i∈b p i ] ∀b ∈ B (4.19) T k i ≥ 0 ∀i ∈ N, ∀k ∈ K (4.20) Q k i ≥ 0 ∀i ∈ N, ∀k ∈ K (4.21)
The objective function 
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Note that we enumerate all the potential bids for the set B from all the requests for auction, i.e. , the power-set of R s in our model. The techniques to reduce the number of potential bids while still guaranteeing the same result as bidding on each element of the powerset of the set of requests for auction can be found in [START_REF] Buer | An exact and two heuristic strategies for truthful bidding in combinatorial transport auctions[END_REF].

The proposed model is able to generate only one bid at a time, with its 'ask price' and the corresponding routing plan ; Nevertheless, in order to adapt a wide range of bidding language mechanisms, e.g. , OR or XOR, the carrier can iteratively run the model to generate more bids as long as more bids exist from the remaining requests for auction.

The stochastic MIQP model and its linearization

Observe that the proposed BGP model is quadratic because of the product of non-negative variable p b and binary variable z b in objective function 

max b∈B f b + p(R r ) - k∈K i∈N j∈N c ij • x k ij (4.22)
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Subject to : 

P r(f b ≤ Y b ) ≥ 1 -α ∀b ∈ B (4.23) p b min • z b ≤ f b ≤ i∈b p i • z b ∀b ∈ B (4.

Deterministic transformation of the probabilistic constraint

To transform the probabilistic constraint (4.2) into a deterministic constraint, we assume that the price of each request for auction follows a normal distribution. A Gaussian distribution reflects some unpredictable characteristics of a request in real business situations, e.g. , expedited shipping, dangerous goods delivery, fragile items transport, etc.

More precisely, consider a bid b in which each request i has a price p i paid by its shipper/customer. Assume that the prices of transportation requests are independent and that each p i follows a normal distribution with mean µ i and variance σ 2 i , where µ i and σ 2 i are estimated from the distance between pickup and delivery nodes, the load d i , and the record of past order history :

p i ≡ N (µ i , σ 2 i ).
Setting the ask price of a bid must consider complementarity among transportation requests in the bid and the bidding strategies of other car- This key-issue is addressed in subsection 4.2.4.

Since Y b involves a sum of independent Gaussian parameters, it fol-

lows that Y b ≡ N (µ b , σ 2 b ), where µ b = S b • i∈b µ i , and σ 2 b = S b • i∈b σ 2 i . Consequently, Y b ≡ N (S b • i∈b µ i , S b • i∈b σ 2 i )
and we can transform the probabilistic constraints (4.23) as follows :

f b ≤ S b • i∈b µ i + Φ -1 (α) • S b • i∈b σ 2 i , ∀b ∈ B (4.25)
where Φ -1 represents the inverse function of the cumulative distribution function for the standard normal distribution. Recall that α denotes the probability of losing a bid.

Equivalent MIP model

After the linearization manipulation and deterministic transformation of the probabilistic constraint upon the stochastic MIQP model, it results a new MIP model which is equivalent to the original one.

max b∈B f b + p(R r ) - k∈K i∈N j∈N c ij • x k ij (4.26)
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Subject to :

b∈B z b ≤ 1 (4.27) f b ≤ S b • [ i∈b µ i + Φ -1 (α) • S b • i∈b σ 2 i ] ∀b ∈ B (4.28) p b min • z b ≤ f b ≤ i∈b p i • z b ∀b ∈ B (4.29) j∈N,j =i x k ji - j∈N,j =i x k ij = 0 ∀i ∈ P ∪ D, ∀k ∈ K (4.30) j∈P,j =0 x k 0j = 1 ∀k ∈ K (4.31) i∈D,i =2n+1 x k i,2n+1 = 1 ∀k ∈ K (4.32) k∈K y k i = 1 ∀i ∈ R r (4.33) k∈K y k i = b∈B e b i • z b ∀i ∈ R s (4.34) j∈N,j =i,2n+1 x k ij = y k i ∀i ∈ P, ∀k ∈ K (4.35)
j∈N,j =i,0

x k j,n+i = y k i ∀i ∈ P, ∀k ∈ K (4.36)

T k i + t i,n+i ≤ T k n+i ∀i ∈ P, ∀k ∈ K (4.37) T k j ≥ T k i + t ij • x k ij -T ij • (1 -x k ij ) ∀i, j ∈ N, ∀k ∈ K (4.38) a i ≤ T k i ≤ b i ∀i ∈ N, ∀k ∈ K (4.39) Q k j ≥ Q k i + d j -Q j • (1 -x k ij ) ∀i, j ∈ N, ∀k ∈ K (4.40) max{0, d i } ≤ Q k i ≤ min{Q, Q + d i } ∀i ∈ N, ∀k ∈ K (4.41) x k ij ∈ {0, 1} ∀i, j ∈ N, ∀k ∈ K (4.42) y k i ∈ {0, 1} ∀i ∈ R, ∀k ∈ K (4.43) z b ∈ {0, 1} ∀i ∈ R s , ∀b ∈ B (4.44) p b ∈ [p b min , i∈b p i ] ∀b ∈ B (4.45) T k i ≥ 0 ∀i ∈ N, ∀k ∈ K (4.46) Q k i ≥ 0 ∀i ∈ N, ∀k ∈ K (4.47)

Chapter 4. Stochastic bid generation problem in LTL transportation

Synergy factor estimation

In this subsection, we discuss how to estimate the synergy factor among requests in a bid. Note that even for the TL transportation, the issue of bundle synergy computation was rarely addressed in the literature. A rigorous study of synergy among requests needs to involve the exact modeling technique and the evaluation of interactions among numerous dependent random variables, which is not a trivial task.

However, it is necessary to estimate the synergy factor of a bid since we have to predict other carriers' lowest offers to serve this bid in order to win the bid (see constraint(4.2)). This synergy information makes the carrier who is solving the stochastic BGP to offer an 'ask price' lower than those of its competitors in order to increase the probability of winning the bid. Note that the cost matrix used in the above calculation is taken as that of the carrier who solves the BGP and we only take into account each carrier's depot without considering its reserved requests for the synergy estimation.

Because reserved requests are private business information in most cases, carriers disclose them unwillingly even to partners in realistic situations, whereas their vehicle depots are normally the information known by the public.

The value of S w,b ∈ (0, 1) reflects the degree of complementarity among requests in bundle b for carrier w, a smaller value of S w,b implies a more complementary synergy of requests in the bid for this carrier. In other words, this carrier would ask a relative lower price to serve the bid. For the carrier who is solving its BGP to determine a bid to submit in order to estimate S b for each bid b, it first estimates the synergy of the bid with respect to each of other carriers in coalition by the procedure presented above, and then takes the smallest value of the synergies as S b . This is because for the carrier, in order to win a bid, its 'ask price' should beat the 'ask prices' of the bid offered by all other carriers.

To make more clearly the synergy estimation procedure, a simple example is used to illustrate the evaluation of the synergy factor of a bid o with two requests 1, 2 competed by three carrier a, b, c as given in Table 4.1. It is assumed that each carrier has only one vehicle with capacity 30.

The optimal route to serve the bid o for carrier a is 

D a -→ P 2 -→ D 2 -→ P 1 -→ D 1 -→ D a ⇒ C a,

GRASP × ILS hybrid

In Subsection 4.2.3, we present the MIP model which is equivalent to the stochastic BGP in LTL carrier collaboration. Since existing commercial solvers are not powerful enough to solve the PDPTW of large size in a reasonable time, and the problem studied in this paper is even harder than the PDPTW. The challenge imposes us to develop a fast and effective heuristic algorithm.

Observe that we can enumerate all potential bids b ∈ B to simplify the MIP model due to the XOR bidding language (constraint (4.3)), only one bid is generated after each run of the MIP model. Since for each bid ge-

nerated with z b = 1, f b = min{ i∈b p i , S b • [ i∈b µ i + Φ -1 (α) • S b • i∈b σ 2 i ]
} maximizes the objective function. Hence, the problem is transformed into m sub-problems, where m is the number of potential bids. Each sub-problem is equivalent to the PDPTW. Because the carrier is obliged to serve all the reserved requests and the requests in the selected bid with a fixed total revenue. Thus, the minimization of total traveled distance is the objective of each sub-problem.

A large number of potential bids (increases exponentially with the number of requests for auction) motivates us to implement a light, simple and also powerful heuristic as the solution approach. GRASP × ILS is a pertinent heuristic algorithm for the task because of its simple structure, low time complexity and customized local search components.

The general structure of our algorithm is sketched in Algorithm 5 and its components are detailed in the following subsections. S and f (S) represent a solution and its profit. RSIH denotes a randomized sequential insertion heuristic to generate initial solutions (Subsection 4.3.1) and M utate is a random mutation procedure like that in genetic algorithms (Subsection 4.3.3).

LS is a local search procedure (Subsection 4.3.2). S * and f * = f (S * ) respectively denote the best solution found by the GRASP × ILS and its profit. For the parameters, np denotes the number of phases (each phase generates a local optimum), ni indicates the number of iterations per phase (number of attempts to produce better local optima). The total number of calls to the local search is ncls = np × ni [START_REF] Prins | A grasp× evolutionary local search hybrid for the vehicle routing problem[END_REF]. end for 18: end for

Initial solution construction

A randomized sequential insertion heuristic (RSIH) is developed to construct a random initial solution before a local search procedure, see Algorithm 6. RSIH builds routes one by one. Carrier's reserved requests and requests in the selected bid are combined together and sorted in decreasing order of their distances to depot. In each step, the l st (l ∈ q, l ∈ N ) farthest request is picked to insert into the current routing plan, here a random factor q (Subsection 4.4.2) is involved to arouse the effect of multi-start solution construction. Then all potential insertion places for request i are checked and memorized over the current routing plan. If no feasible insertion place exists, a new route will be created and a new step of picking next request to insert is invoked. Otherwise, the picked request i is inserted into its best insertion place. In this heuristic, the best insertion place corresponds to the smallest detour in distance, where the detour distance is d ji + d ik -d jk for the insertion of node i between j and k. Here, the detour distance of request i is calculated based on the sum of its pickup node i and its pairwise delivery node n + i. The procedure will repeat until all requests are inserted.

Local search operators

We adopt in our GRASP × ILS algorithm four local search operators : intra/inter-route relocations and intra/inter-route exchanges of requests. This article describes also a 2-opt move but time windows make it infeasible in most cases. So, we discard it to reduce the computational burden.

At the beginning of each iteration of the local search, a random ordering of the four neighborhoods is selected. The neighborhoods are browsed in this 

Mutation

The mutation in the GRASP × ILS algorithm swaps two distinct node i and j without violating any capacity, time window and precedence constraints. p successive swaps are executed in each mutation. The level p is set to p min at the beginning of each phase or at each time the best solution is improved. It is increased by one each time the mutation following local search returns a no-improved solution, but without exceeding a maximum value p max . The interval of level p is detailed in Subsection 4.4.2.

Computational experiments

The numerical experiments were conducted on a desktop equipped with an Intel Core i7-2600 3.40 gigahertz processor, 8 GB gigabyte of RAM, and Windows 7 Professional (64 bits) service pack 1. The GRASP × ILS algorithm and the instance generator described in the sequel were both implemented by using Python programming language (Interpreter : Cpython 0.24.1, IDE : JetBrains PyCharm 2016.2.3). The MIP model for the stochastic BGP was built and solved by using the GUROBI MIP solver (version 6.5.2) integrated in its API for Python with the following parameter settings : MIPFocus = 1, Quad = 1 , NumericFocus = 2 , Threads = 4 (see GUROBI 6.5.2 Reference Manual).

Generation of instances

Since the MIQP model for carrier collaboration in LTL transportation is developed for the first time, and no benchmark instance is publicly available in the literature. So we decided to construct a specific instance gene-rator.

The instances of this study are generated based on the benchmark instances in [START_REF] Ropke | Branch and cut and price for the pickup and delivery problem with time windows[END_REF], available at http://www.diku.dk/ ~sropke/.

We directly copy the instances with the coordinates of each node, the demand and time windows of each request. Each instance is given a label of source codenumber of requestsnumber of bidsnumber of vehicles number of competitors. Consider instance AA30-7-7-3-4 as an example.

First code 'AA30' indicates that this instance is modified from the instance 'AA30', second code means this instance includes 7 requests in total (including reserved requests and requests for auction). Only the first 7 requests appearing in AA30 are considered in instance AA30-7-7-3-4. Third code shows there are 7 potentials bids, and fourth code indicates the size of fleet is 3. Last code represents 4 competitors are taken into account.

We consider two cases to generate the average price of each request µ.

One takes into account both distance factor and quantity factor, the other one only considers distance factor. For the first case, µ = ρ × distance × load, and second case µ = ρ × distance, where distance represents the average distance between the pickup node and the delivery node of each request in bid, and load represents the average quantity of demands of each request in bid. A random factor ρ ∈ (0, 1) is used to simulate the record of the past order history. For the variance σ 2 , we set it as ten percent of µ. For the generation of the set of bids B, we enumerate all the potential bids as described in Subsection 4.2. p b min is set to be 10 -5 , and α, the probability threshold, is in the interval (0, 0.1] , which can be found in the instance files.

The fleet size is adjusted in accordance with the proportion of the number of requests extracted from the original instance. Finally, since some original instances have multiple depots, we select one of the depots arbitrarily in our case.

Parameter setting

The GRASP × ILS algorithm is controlled by relatively few parameters. Their values were determined by preliminary experiments in order to achieve a good trade-off between solution quality and CPU time. As shown in Table 4.2, the parameters' values depend on instance size. For ease of reading, we recall the meaning of p and q : p indicates the interval for the mutation level (Subsection 4.3.3), and q represents the interval for the randomized initial solution construction (Subsection 4.3.1). 

Experimental results

Since no benchmark of the BGP in LTL exists and the instances data are generated by our-self, one way to assess the performance of the GRASP ×

ILS is to compare it with the exact solution. In this paper, we use GUROBI, 

Conclusions

The BGP is a key sub-problem in combinatorial auctions (CAs) for collaborative logistics (CL). Previous studies were limited to develop models and algorithms for the bid generation problem (BGP) in truckload 

Introduction

In previous two chapters, we have addressed the PDPTWPR (Chapter 3) and the stochastic BGP (Chapter 4) appeared in combinatorial auctions/exchanges. In this chapter, we will address the last key problem for transportation combinatorial auctions/exchanges appeared in the framework of this thesis (Section 1.2), the winner determination problem (WDP) in carrier collaboration via combinatorial exchange.

Generally, CTP must deal with two sub-problems, i.e. , reallocation of transport requests and profit sharing [START_REF] Krajewska | Collaborating freight forwarding enterprises[END_REF][START_REF] Berger | Solutions to the request reassignment problem in collaborative carrier networks[END_REF][START_REF] Dai | A multi-agent and auction-based framework and approach for carrier collaboration[END_REF][START_REF] Robu | A multiagent platform for auction-based allocation of loads in transportation logistics[END_REF][START_REF] Dai | Price-setting based combinatorial auction approach for carrier collaboration with pickup and delivery requests[END_REF]Wang & Kopfer, 2014 ;Wang et al., 2014 ;[START_REF] Dai | Proportional egalitarian core solution for profit allocation games with an application to collaborative transportation planning[END_REF]Y. Li, Chen, & Prins, 2016). In this chapter, we focus on the first sub-problem : design of a combinatorial exchange (CE) mechanism to reallocate requests among carriers. This CE mechanism considers a scenario where each carrier tenders for acquiring (buying) requests from other carriers and selling requests to other carriers at the same time in order to maximize its profit. In the CE, carriers submit all their outsourcing requests to a virtual auctioneer and then requests are reallocated to them by the auc-tioneer, based on all bids received. The bi-directional characteristic of the CE makes it able to exploit more potential profits by better exploration of synergies among the requests and more participation of the carriers. To the best of our knowledge, this topic was only conceptually addressed [START_REF] Bloos | Efficiency of transport collaboration mechanisms[END_REF][START_REF] Ackermann | Combinatorial auctions in freight logistics[END_REF] but never studied deeply in the literature.

The CE is an alternative transaction mechanism to combinatorial auc- The contributions of this chapter are summarized as follows :

1. We introduce a new CE mechanism as an alternative method of CA mechanisms for requests reallocation/exchange among carriers in LTL transportation.

2. A formal mathematical model which can be adapted to distinct bidding languages is provided for the CE problem.

3. As the solution approach for the CE problem, an efficient approach This chapter is organized as follows. A brief literature review on the winner determination problem (WDP) and the MVWCP is given in Section 5.2. In Section 5.3, the advantages of the CE compared with CA mechanisms are discussed and illustrated by an easy-understood example. Section 5.4

provides a mathematical formulation of the CE. A Lagrangian relaxation approach is presented in Section 5.5. Computational experiments to evaluate the approach are reported in Section 5.6. Finally, Section 5.7 concludes this chapter with perspectives for future research.

Literature review

Our study is closely related to the winner determination problem (WDP) and the maximum vertex weight clique problem (MVWCP), so we will review the literature from the above two aspects.

Winner determination problems

The WDP in CA, also called combinatorial auction problem (CAP), is to determine the winning bidders and bids by the auctioneer. Since the problem is NP-hard [START_REF] Rothkopf | Computationally manageable combinational auctions[END_REF], both exact and heuristic methods have been developed to solve it.

Exact methods can solve the WDP to optimality but the computation time grows exponentially with problem size. The earliest attempt to exactly to solve a problem of combinatorial multi-item multi-unit reverse auction (CMMRA).

Maximum vertex weight clique problems

Our CE problem is solved using a Lagrangian relaxation approach in which the relaxed problem is transformed into a maximum vertex weight clique problem (MVWCP). For this reason, we also review methods for solving the MVWCP and the related maximum clique problem (MCP).

The MVWCP determines, in an undirected graph G = (V, E) with vertex weights, a subset of pairwise adjacent nodes (i.e. , a clique) maximizing total weight.

The MCP, a particular case of the MVWCP with unit weights [START_REF] Benlic | Breakout local search for maximum clique problems[END_REF], has a wide range of applications such as bioinformatics, cheminformatics, coding theory, economics, location, scheduling, social network analysis, and wireless networks (Wu & Hao, 2015a).

Like for the majority of combinatorial optimization problems, solution methods for the MVWCP can also be divided into exact methods and heuristic methods. [START_REF] Babel | A fast algorithm for the maximum weight clique problem[END_REF] introduces a branch-and-bound method calling a weighted coloring heuristic. [START_REF] Warren | Combinatorial branch-and-bound for the maximum weight independent set problem[END_REF] present three distinct branch-andbound methods based on the results of [START_REF] Balas | Finding a maximum clique in an arbitrary graph[END_REF] and [START_REF] Babel | A fast algorithm for the maximum weight clique problem[END_REF],

where upper bounds and branching rules are derived from weighted clique covers.

As exact methods can only solve small instances of the MVWCP (Wu & Hao, 2015a), several heuristics are available to find near-optimal solutions in a reasonable amount of time. They include an augmentation algorithm
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93 (Mannino & Stefanutti, 1999), a parallel and distributed heuristic based on replicator dynamics [START_REF] Bomze | Approximating the maximum weight clique using replicator dynamics[END_REF], a complementary pivoting algorithm (Massaro, Pelillo, & Bomze, 2002), a hybrid evolutionary approach [START_REF] Singh | A hybrid evolutionary approach to maximum weight clique problem[END_REF], a fast heuristic based on Motzkin-Straus theorem [START_REF] Busygin | A new trust region technique for the maximum weight clique problem[END_REF], a phased local search algorithm [START_REF] Pullan | Approximating the maximum vertex/edge weighted clique using local search[END_REF], a multi-neighborhood tabu search algorithm [START_REF] Wu | Multi-neighborhood tabu search for the maximum weight clique problem[END_REF]) and a breakout local search [START_REF] Benlic | Breakout local search for maximum clique problems[END_REF].

Combinatorial exchange versus combinatorial auction

Firstly, we briefly recall the set-packing formulation of the WDP in CA, presented in [START_REF] Ackermann | Combinatorial auctions in freight logistics[END_REF].

max j∈B p j • x j (5.1) j∈B e jk • x j ≤ 1 ∀k ∈ M (5.2) x j ∈ {0, 1} ∀j ∈ B (5.3)
In this model, M denotes a set of requests and B a set of bids. Each bid j in B is associated with a price p j . e jk is a binary parameter equal to 1 if bid j includes request k and 0 otherwise. x j is a binary variable indicating whether bid j is a winning bid.

The objective function (5.1) aims to maximize the auctioneer's revenue, i.e. , the total income of winning bids. Constraints (5.2) ensure that each request is assigned to at most one winning bid. In case that all requests must 94 Chapter 5. WDP in Carrier Collaboration Via CE be auctioned out, i.e. , there is no free disposal, each inequality in constraints (5.2) must be replaced by an equality [START_REF] Andersson | Integer programming for combinatorial auction winner determination[END_REF][START_REF] Sandholm | Winner determination in combinatorial auction generalizations[END_REF]. Hereafter, model (5.1)-( 5.3) is referred to as the CA model or problem.

Clearly, to implement a CA among carriers, each carrier must firstly determine and submit its outsourcing requests to an auctioneer. The carriers then bid for profitable requests in a common request pool held by the auctioneer. Bids are structured as bundles, e.g. , {(r 1 , r 2 , r 3 ), 50} denotes a bid for acquiring (buying) requests r 1 , r 2 , r 3 of an offer price of 50.

Different from the bids in a traditional CA, each bid in CE consists of two parts, the buying-part and the selling-part, e.g. , {(+r 1 , +r 2 , -r 3 , -r 4 , -r 5 ), 100} represents a bid for buying two requests r 1 , r 2 with positive sign '+' and outsourcing (selling) three requests r 3 , r 4 , r 5

with negative sign '-', at a price of 100. All requests in one bid are linked, which means one bid can only be accepted or rejected as a whole in the WDP, and the price of a bid is not necessarily be positive. In the following, we explain why CE is more effective than CA for carrier collaboration in freight logistics.

Better exploration of synergies among requests

In a traditional CA, each carrier must determine and submit its outsourcing requests to a virtual auctioneer (e.g. , an auction platform) in the request offering phase and the carriers in coalition then bid for profitable requests in the bidding phase. In such a scenario, carriers can only bid for requests in the request pool held by the auctioneer. Whereas in CE, each carrier submits bids that contain both selling and buying requests, which provides more possibilities for request exchange among bidders.

The primary reason to implement CE rather than CA is that the former provides more flexibility, as shown in the following example. Under a CA mechanism, assume that a carrier hosts request r 3 which is not profitable in its current routing plan. Meanwhile, two requests r 1 , r 2 in the auctioneer's pool are profitable for this carrier. However, due to side constraints such as vehicle capacity and/or time windows, r 1 , r 2 , r 3 cannot be served simultaneously by the carrier.

In such a situation, one dilemma of static games with incomplete information (SGII) [START_REF] Gibbons | A primer in game theory[END_REF] occurs. On the one hand, bid (+r 1 , +r 2 ) can be infeasible if r 3 is not sold to another carrier once the WDP is solved : r 3 returns to its carrier who has not enough capacity to serve it with the winning requests (+r 1 , +r 2 ). On the other hand, missing the bid (+r 1 , +r 2 ) makes losing the opportunity if r 3 is acquired by another carrier. A CE mechanism can prevent from being trapped in such a dilemma by allowing the carrier to submit a bid (+r 1 , +r 2 , -r 3 ) instead. In this case, the acquisition of r 1 and r 2 by winning the bid will be conditioned by the selling out of request r 3 .

More efficient allocation due to a larger solution space

An auction-based mechanism with a larger number of possible bids can lead to more efficient request allocations among carriers [START_REF] Ackermann | Combinatorial auctions in freight logistics[END_REF]. It is interesting to note that CE can generate more bids than CA. For a carrier with p reserved requests (self-fulfillment requests) and a common pool with q requests, the number of possible bids that the carrier can submit is 2 q -1 in CA, versus 2 p+q -1 in CE. Of course, more potential bids may require more computation time. One remedy addressed in Buer ( 2014) is to develop an effective way to reduce the number of bids, while guaranteeing the high-quality outcome of CE.

To further illustrate the advantages of the CE mechanism mentioned above, consider one simple instance of collaboration with two carriers X and Y and four requests. It is assumed that each carrier has a single vehicle, travel costs are equal to Euclidean distances, and request service times are negligible. Vehicle capacity is 7 units for X and 10 for Y. The other data are given in Table 5.1. Before collaboration, the transportation plan of each carrier is obtained by solving a vehicle routing problem with time windows (VRPTW), giving the two routes in Fig. 5.1 (a). If a CA mechanism is adopted, carrier X can only bid for request 1 :

(+r 1 ). Indeed, if it bids for request 2, and requests 3, 4 are finally not served by carrier Y, carrier X has to serve three requests r 2 , r 3 and r 4 , which violates the capacity constraint of its vehicle (3 + 2 + 3 > 7). So, bids (+r 2 ) and

(+r 1 , +r 2 ) are not valid. The same analysis can be applied to carrier Y, who has only one feasible bid (+r 3 ), since serving the three requests r 1 , r 2 and r 4 by carrier Y via route Y → 1 → 2 → 4 → Y would violate the time window constraint of r 4 (the same violation is inevitable for other routing plans in this situation).

On the other hand, if the CE mechanism is adopted, the carriers are able to tender for more bids, which may generate more profits. For this example, the winning bids combination is (+r 1 , +r 2 , -r 3 , -r 4 ) for carrier X and (+r 3 , +r 4 , -r 1 , -r 2 ) for carrier Y. 5.2 details the results of the three scenarios. CE outperforms clearly the other two schemes.

Problem description and mathematical model

Our CE can be viewed as a profit optimization scheme under the assumption that all carriers consent mutually to maximize their total profit as the primary task, whereas fair post-collaboration profit allocation among the carriers is considered as a separate task. Actually, as long as the total profit of the carrier coalition increases, any carrier's individual profit will definitely not be lowered by the application of some reasonable profit sharing mechanism (Wang & Kopfer, 2014). The second issue is not addressed here since it goes beyond the scope of this research.

Formulation of the winner determination problem of the CE

Let N be a set of n carriers in a coalition, M the set of m requests they wish to exchange, and B a set of b bids. Each carrier i owns a set M i of requests and submits a subset of bids B i , hence M = i∈N M i and B = i∈N B i denotes the set of all bids. Each bid j has a price p j , ∀j ∈ B. All bids submitted by one carrier i (B i ) are assumed to be feasible, i.e. , the requests that carrier i wants to sell are in M i while the requests it wants to buy are in M \ M i . To simplify the model, three sets of binary parameters are defined : e jk equals 1 if and only if (iff) request k is in bid j, a ik = 1 iff request k is in M i (request k can be sold out by carrier i), and b ik = 1 iff request k is in M \ M i (request k can be bought in by carrier i). The model involves also a binary variables x j , equal to 1 iff j is a winning bid (i.e. , bid j is accepted by the auctioneer after solving the WDP).

max j∈B p j • x j (5.4) i∈N j∈B i a ik • e jk • x j ≤ 1 ∀k ∈ M (5.5) i∈N j∈B i b ik • e jk • x j ≤ 1 ∀k ∈ M (5.6) i∈N j∈B i a ik • e jk • x j = i∈N j∈B i b ik • e jk • x j ∀k ∈ M (5.7) x j ∈ {0, 1} ∀j ∈ B (5.8)
The objective function (5.4) represents the total price of all winning bids.

Constraints (5.5) impose that each request appears at most once as a selling request in winning bids. In constraints (5.6), each request is included at most once as a buying request in winning bids. Constraints (5.7) are the sell-buy balance constraints, which state that any request is either not sold out or sold to only one winning bid. Hereafter, model (5.4)-(5.8) is referred to as the CE model or problem.

Bidding languages of combinatorial exchange

How to select a suitable bidding language for CA mechanisms in carrier collaboration is also a delicate problem. Generally, we have two choices for CA in the literature : the OR and XOR bidding languages (Nisan, 2000(Nisan, , 2006)). XOR states that each carrier can win at most one bid while OR relaxes this constraint. Obviously, the tight constraint of XOR impacts negatively the quality of final solution and indirectly narrows bid construction space, whereas OR can often generate a more satisfactory outcome due to a broader solution space at the cost of supplementary computational burden.

A compromising alternative is OR-of-XOR bidding language [START_REF] Boutilier | Bidding languages for combinatorial auctions[END_REF], where carriers follow OR rule but each vehicle of carriers respects XOR regulation.

In this paper, we adopt OR bidding language for CE since OR is the 

Lagrangian relaxation approach

Lagrangian relaxation techniques transform a difficult optimization problem into a simpler one, by relaxing some hard constraints and moving them into the objective function. The relaxed constraints are penalized in case of violation by associating weights (Lagrangian multipliers) with them in the objective function. This dualization process yields a Lagrangian relaxed problem which is relatively easier to solve. The optimum of the Lagrangian relaxed problem for the given multipliers provides an upper bound on the optimum of the original maximization problem. The Lagrangian dual problem consists in determining the multipliers that minimize this bound.

Framework of Lagrangian relaxation approach

As in the CE model (Section 5.4), constraints (5.5) and (5.6) impose that each request must be sold out and bought in at most once, we name them non-overlapping constraints. The sell-buy balance constraints (5.7) are also called matching constraints.

The matching constraints are relaxed, which gives the WDP with a modified objective function. Let λ = (λ k ) k∈M be the Lagrangian multipliers associated with constraints (5.7). Then the Lagrangian relaxed problem, RP (λ), can be formulated by equations (5.9)-(5.12). Z(λ) is also referred to as the Lagrangian dual function. If Z * (λ) denotes its maximum for given multiplier

Lagrangian relaxation approach 101

values, the Lagrangian dual problem can be formulated as min λ∈IR m Z * (λ).

Z(λ) = max i∈N j∈B i p j • x j + k∈M λ k • i∈N j∈B i a ik • e jk • x j - i∈N j∈B i b ik • e jk • x j (5.9) i∈N j∈B i a ik • e jk • x j ≤ 1 ∀k ∈ M (5.10) i∈N j∈B i b ik • e jk • x j ≤ 1 ∀k ∈ M (5.11)
x j ∈ {0, 1} ∀j ∈ B (5.12)

In RP (λ), constraints (5.10) and (5.11) are similar to (5.2) in the CA model : both ensure that each request can only be traded at most once. So the relaxed problem looks like the WDP in CA. However, as the WDP is NPhard and the Lagrangian relaxed problem must be solved many times, we decide to implement a fast tabu search metaheuristic explained in Section 5.5.2 instead of an exact method, to solve RP (λ) without excessive running time even on large size instances. Indeed, [START_REF] Zhao | Surrogate gradient algorithm for lagrangian relaxation[END_REF] have proved that even if the relaxed problem is not optimally solved, the subgradient algorithm for solving the Lagrangian dual problem still converges to the optimal Lagrangian multipliers if the solution of the relaxed problem found at each iteration is close enough to its optimal solution.

The general structure of our Lagrangian relaxation approach is sketched in Algorithm 8 and its components are detailed in the next subsections.

Roughly speaking, this is a subgradient procedure whose each iteration determines one upper bound, by solving the Lagrangian relaxed problem via a fast tabu search metaheuristic, and one feasible solution to the original CE problem (giving a lower bound) by repairing the upper bounding solution.

This procedure is followed by a post-optimization step where the Lagrangian relaxed problem with final values of multipliers is solved exactly, using a commercial MIP solver.

Starting with null multipliers, each main loop iteration(lines 2-18) begins by solving the Lagrangian relaxed problem with the current multipliers.

To do so, RP (λ) is converted into a maximum vertex weight clique problem (M V W CP , line 3), as explained in Section 5.5.2.1, which is then solved in line 4 using the multi-neighborhood tabu search (MNTS) described in Sec- The relative gap between LB best and U B best is computed (line 15) and multipliers are adjusted (line 16) as shown in Section 5.5.3. The main loop stops after a maximum number of iterations niters LR or when the gap falls below a given threshold Gap. The post-optimization phase with the MIP solver is performed in lines 20-28.
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Algorithm 8 -Overview of Lagrangian relaxation approach [START_REF] Ausiello | Structure preserving reductions among convex optimization problems[END_REF] explain how to reduce the set-packing problem to the MVWCP. [START_REF] Wu | Solving the winner determination problem via a weighted maximum clique heuristic[END_REF] apply this technique to transform the WDP in CA into a MVWCP, which is then solved using their MNTS heuristic [START_REF] Wu | Multi-neighborhood tabu search for the maximum weight clique problem[END_REF]. They hold so far the best results on 530 benchmark instances, both in terms running time and solution quality. Our Lagrangian relaxed problem differs from the WDP in CA by its two sets of packing constraints and its modified objective function, but we show in Section 5.5.2.1 that it is still possible to be converted into the MVWCP. Initial tests unveiled excessive running time if RP (λ) is solved exactly in each iteration of Algorithm 8. Using the MNTS brings a considerable speed-up (even if RP (λ) must be converted into a MVWCP), while inducing a negligible upper bound increase on average. Moreover, repairing the upper bounding solutions obtained by the MNTS still provides good feasible solutions/lower bounds to the CE problem. However, to compensate the loss in solution quality and to obtain an exact upper bound without augmenting too much running time, we decide to solve RP (λ) exactly, but only once at the end.

1: iter ← 0, λ ← 0, U B best ← ∞, LB best ← -∞, Gap ← +∞ 2: repeat 3: transform RP (λ) into a maximum vertex weight clique problem M V W CP 4: solve M V W CP using tabu search M N T S, giving solution S M N T S with cost U B M N T S (Algorithm 9) 5: if U B M N T S < U B best then 6: U B best ← U B M N T S 7: end if 8: if S M N T S is

Solving the Lagrangian relaxed problem

Transformation into the maximum vertex weight clique problem (MVWCP)

We show here how to transform our Lagrangian relaxed problem into the MVWCP. Consider a given CE problem with a set B of b bids. Each bid j in B is defined as a triplet (R + j , R - j , p j ), where R + j is the set of buying requests, R - j is the set of selling requests, and p j denotes the price. An undirected graph G = (V, E) can be constructed as follows :
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-The node-set V contains one node j with weight p j for each bid j ∈ B.

-The edge-set E contains one edge (j, k) if the two corresponding bids j and k are such that R

+ j ∩ R + k = ∅ and R - j ∩ R - k = ∅.
As two vertices (bids) connected by an edge have neither buying request nor selling request in common, a clique in G corresponds to a feasible solution of the Lagrangian relaxed problem, and a clique C with maximum total weight W (C) corresponds to the optimal solution of the relaxed problem. Hence, any solution method for the MVWCP can be used to solve the Lagrangian relaxed problem. In general, the solution of the relaxed problem does not satisfy the matching constraints and is not feasible for the CE problem (5.4)-(5.8), but high quality solutions can be obtained by repairing the solutions of the relaxed problem in the follow-up repair procedure.

Consider one example of the CE problem with 2 carriers and 3 re- Carrier 2 {r 2 } {r 1 , r 3 } -10

Multi-neighborhood tabu search (MNTS)

To solve the MVWCP, we directly implement the MNTS algorithm proposed by [START_REF] Wu | Multi-neighborhood tabu search for the maximum weight clique problem[END_REF], briefly presented as in Algorithm 9. The reader is referred to [START_REF] Wu | Multi-neighborhood tabu search for the maximum weight clique problem[END_REF] for more details. 

Initial solution construction :

The initial solution is constructed using an iterative procedure. One seed-vertex is first randomly selected to generate an initial clique C. Then, at each iteration, a new vertex j is randomly selected among all nonconflicting vertices and inserted into C, i.e. , j / ∈ C, and j is connected to all other vertices of C. The procedure stops when no more vertex can be added. This randomized heuristic is fast, easy to implement and generates diversified solutions.

Neighborhoods used :

Three neighborhoods called N swap , N add and N drop are browsed to jointly improve the current clique C. In each tabu search iteration, the best nontabu neighbor is determined (even if the total weight of the corresponding clique decreases) to replace the incumbent solution.

The moves defining N swap exchange one vertex i in C with one vertex j in V \ C, such that (i, j) / ∈ E and j is connected to all but one vertices in C, i.e. , |A(j) ∩ C| = |C -1|, where A(j) is the set of adjacent vertices of j in G. N add is defined by the moves that add one vertex i to clique C, i.e. , i ∈ V \ C and (i, v) ∈ E, ∀v ∈ C. Finally, N drop simply removes one vertex i from clique C. This last move is useful since the weight of a vertex (the price of a bid) may be negative in our problem.

Tabu list and tabu tenure : Although the matching constraints are relaxed, they are sometimes satisfied during the execution of the MNTS, giving a feasible solution of the CE problem. In such a case, if the Lagrangian relaxed problem RP (λ) is solved to 5.5. Lagrangian relaxation approach 109 optimality, we would have an optimal solution of the original problem and could stop the MNTS. However, the MNTS is a heuristic algorithm, and does not necessarily solve RP (λ) to optimality. That's why the MNTS must continue until reaching its maximum number of iterations.

A

Update of Lagrangian multipliers

Algorithm 10 shows how the Lagrangian multipliers λ = (λ k ) k∈M are updated in line 16 of Algorithm 8. The notation δ denotes a given step size, δ ≤ 2. Recall that m is the number of requests.

Algorithm 10 -Update of Lagrangian multipliers

1: t ← δ•(U B M N T S -LB RH ) i∈N j∈B i k∈M x j •e jk •(a ik -b ik ) 2 2: for k ← 1 to m do 3: λ k ← λ k + t • i∈N j∈B i k∈M x j • e jk • (a ik -b ik ) 4: end for

Repair heuristic

Algorithm 11 sketches the repair heuristic used to derive a feasible solution to the original CE problem (S RH ) from the solution obtained by the

MNTS (S M N T S ).

A solution of the Lagrangian relaxed problem is infeasible to the original CE problem because some requests in the solution do not meet the matching constraints. Such a request is called no-balanced iff it is included in a winning bid of the relaxed problem while its corresponding matching constraint is violated. So, the idea to repair an infeasible solution is to bring more bids to the final solution which makes all no-balanced requests meet their matching constraints.

even for large size instances (Section 5.6.1) and so the repair heuristic is very fast in practice. 

Computational experiments

All experiments were conducted on a desktop equipped with an Intel Core i7-2600 3.40 GHz processor, 8 GB RAM, and Windows 7 Professional (64 bits) service pack 1. The Lagrangian relaxation algorithm and the instance generator described in the sequel were both coded in Python programming language (Interpreter : Cpython 3.4.3, IDE : JetBrains PyCharm 4.5.4). The 0-1 linear programming model for the CE problem was built and solved using the GUROBI MIP solver (version 6.5.0) and its API for Python, using default parameters.

tor and quantity factor (denoted by option A), the other one considers distance factor solely (denoted by option B). For the first option, each request i is set with a selling price p i sell = ρ sell × distance i × load i and a buying price p i buy = ρ buy × distance i × load i , whereas for the second option each request i is set with a selling price p i sell = ρ sell × distance i and a buying price p i buy = ρ buy ×distance i . distance i represents the distance between the pickup node and the delivery node of request i and load i represents the demand quantity of each request i. The factor ρ sell and ρ buy are randomly generated according to the uniform distribution defined on (0, 0.5) and (0, 1). p i sell can be interpreted as the price that a carrier will charge if it outsources (sells) request i to other carriers, and p i buy can be interpreted as the price that a carrier will pay if it acquires (buys) request i from other carriers and serves the request. p i buy has a wider value interval than p i sell , because we want to make the prices of most bids in an instance be positive, which more conforms to realistic scenarios.

Then the price of each bid j can be set as p j = i∈R + j p i buy •σ -i∈R - j p i sell , where σ is a synergy factor randomly generated from the interval [1, 1 + (m + j -1)/2m + j ], with m + j = |R + j | being the number of requests to buy in bid j. Why the synergy factor is generated in this way is explained as follows.

Assume that all requests in R + j are delivery requests (delivery of goods from a depot to m + j customers) and the distance from each customer to the depot and the distance between any two customers are both the unit distance on the Euclidean plane. In case that each request in R + j is served individually, the total cost (distance) for serving the m + j requests is 2m + j . In case that all requests in R + j are served by the same carrier on the same route, the total cost (distance) for serving the requests is m + j + 1. Compared with the first extreme case, the synergy among the requests in the second extreme case can reduce their total service cost by [(m + j -1)/2m + j ] • 100%, where (m + j -1)/2m + j = 1 -(m + j + 1)/2m + j . This cost reduction will be turned into profit increase. We assume that the percentage of profit increase is the same as (or close to) the percentage of cost reduction. Then in the second extreme case, the total profit for serving all requests in R + j will be

i∈R + j p i buy • [1 + (m + j -1)/2m + j ].
Obviously, the total profit for serving the requests by the same carrier will never be lower than the total profit for serving each of the requests individually, i.e. , i∈R + j p i buy . So we can generate the synergy factor σ from the interval [1, 1 + (m + j -1)/2m + j ]. Of course, this way of generating σ is heuristic, but it is intuitively reasonable, because σ = 1 when m + j = 1 (in this case, 1 + (m + j -1)/2m + j = 1), 1 + (m + j -1)/2m + j increases when m + j increases, and 1+(m + j -1)/2m + j → 1.5 when m + j → +∞. Note that the larger the factor σ, the higher the synergy among the requests.

Each instance is named with the format of n -m -b -C/P -A/Boriginal instance, where n is the number of carriers, m is the number of requests, b is the number of bids, C/P indicates complete/partial bids, A/B represents the method to generate requests' prices, and original instance indicates the instance name used to generate requests' prices. For example, 2-4-30-C-B-AA30 is an instance with 2 carriers, 4 requests, 30 bids, complete bids, requests' prices generated by option B, and using AA30 to generate requests' prices. We generated three sets of instances : 10 small instances (up to 1000 bids), 20 medium instances (1001-5000 bids) and 20 large instances (5001-12000 bids).

Parameter setting

The Lagrangian relaxation algorithm is controlled by relatively few parameters. Their values were selected in preliminary experiments to achieve a good trade-off between solution quality and CPU time. As shown in Table 5.4, they depend on instance size. 

Experimental results

In this section, we present the computational results and compare the performance of our Lagrangian relaxation approach with that of the MIP solver. One table of results is provided for each instance set (small, medium and large). For the Lagrangian approach are reported the upper bound U B, the lower bound LB, the relative duality gap U B-LB U B

and the running time T in seconds. For the solver, the tables display the upper bound (only when no optimum is found), the lower bound (optimal or best feasible solution found), and the running time, with a time limit of 3600 seconds. In addition, the saving by percentage achieved by the Lagrangian relaxation approach over the MIP solver is given as Imp = LB(LR)-LB(M IP )

LB(M IP

)

. An asterisk in column 7 and a bold face font in column 3 indicate that the solutions are proven to be optimal by the MIP solver.

Table 5.5 reports the results on the 10 small size instances. The solver finds in all cases an optimal solution, in less than one second (0.28 seconds ver is still able to solve 4 instances to optimality with a relative low number of requests, although their number of bids exceeds 5000. Nevertheless, it fails to solve the remaining 16 partial-bids instances with a large number of requests : even after one hour of execution, the solver gap is 5.21% on average and even reaches 11.75%. Once again, the Lagrangian approach retrieves the proven optima and in the other cases improves GUROBI results by 3.91% on average. Its gaps increase compared with medium instances (average 1.14%, maximum 2.76%), but they are still relatively small and obtained in reasonable computation time (829.95 seconds on average).

A few remarks result from the above simulation tests. GUROBI is more efficient than the Lagrangian relaxation algorithm for the CE instances with a low number of requests, but our Lagrangian algorithm significantly outperforms the solver both in terms of computation time and solution quality for the instances with a large number of requests (more than 40). In fact, some previous studies pointed out that commercial MIP solvers are often 

Conclusions

Requests reallocation/exchange is a key issue for carrier collaboration in freight logistics. In this chapter, we propose an alternative mechanism which differs from traditional combinatorial auctions (CAs) for the exchange of transportation requests among carriers. The new combinatorial exchange (CE) mechanism shows some advantages compared with CA : a better exploration of possible synergies among requests and a sufficient participation from carriers.

We provided a 0-1 linear programming model for the CE problem and design a Lagrangian relaxation approach to solve it. The hard matching constraints are relaxed but the Lagrangian relaxed problem is still equivalent to a NP-hard maximum vertex weight clique problem (MVWCP). However, optimal or quasi-optimal solutions can be computed using a multineighborhood tabu search (MNTS) heuristic for the MVWCP.

We also develop an instance generator for the CE problem. 50 randomly generated instances with up to 12,000 bids are tested to evaluate the performance of the GUROBI MIP solver and our Lagrangian relaxation approach.

The results have shown that our algorithm significantly outperforms the solver on hard instances, both in solution quality and computation time. 

Perspectives

Although we have proposed a complete framework to tackle the requests reassignment problem in LTL carrier collaboration, there are still other works to be done to improve the models and the solution approaches in order to make them more applicable in realistic carrier collaboration environments.

Firstly, for the PDPTWPR, the pickup and delivery requests with time windows are classified into two types : reserved requests and selective requests. The reserved requests are compulsory requests [START_REF] Ziebuhr | The integrated operational transportation planning problem with compulsory requests[END_REF][START_REF] Chen | Combinatorial clock-proxy exchange for carrier collaboration in less than truck load transportation[END_REF] that must be fulfilled by itself and cannot be subcontracted to other carriers [START_REF] Schönberger | Operational freight carrier planning : basic concepts, optimization models and advanced memetic algorithms[END_REF][START_REF] Özener | Lane-exchange mechanisms for truckload carrier collaboration[END_REF]. However, in some cases, subcontracting reserved requests may be possible. In other words, more general vehicle routing problems with both profits and subcontrac-ting option of reserved requests should be considered in order to deal with the realistic situations when reserved requests are involved and subcontracting of transportation requests is possible. For the solution approach of the PDPTWPR, although the ALNS algorithm outperforms the commercial solver (CPLEX), more efficient and effective meta-heuristics need to be developed in order to quickly solve large realistic size instances.

Secondly, for the stochastic BGP, we only consider a limited number of requests for auction since the proposed algorithm must enumerate all the potential bids based on all the requests for auction, which is the power-set of the number of the requests for auction. Obliviously, it is not a clever way to explore all the potential bids since such a way is too time-consuming. So some particular techniques to reduce the number of bids while still guarantee the quality of solution should be developed in future research, such as in [START_REF] Buer | An exact and two heuristic strategies for truthful bidding in combinatorial transport auctions[END_REF]. Moreover, we assume the price of each request for auction follows a normal distribution, but, more complicated price distributions should be considered to better simulate a free market environment.

Thirdly, for the CE mechanism, each carrier plays a double role of seller and buyer of transportation requests. The idea makes the tendered bids to have two parts (requests to sell and requests to buy) instead of one in traditional combinatorial auctions (requests to buy). However, there are many ways to determine requests to buy, such as the stochastic BGP in this thesis, whereas the methods to identify requests to sell remain scarce in the literature.

Finally, profit allocation techniques are not addressed in this thesis. But this issue is inevitable when implementing collaborative logistics. In the literature, the requests reassignment problem and the profit allocation problem are often be handled separately. [START_REF] Triki | The stochastic bid generation problem in combinatorial transportation auctions[END_REF][START_REF] Buer | An exact and two heuristic strategies for truthful bidding in combinatorial transport auctions[END_REF][START_REF] Kuyzu | Bid price optimization for truckload carriers in simultaneous transportation procurement auctions[END_REF] (chapitre 4).

5. Le commissaire-priseur résout le WDP afin de réaffecter les demandes en fonction des enchères gagnantes (chapitr 5). Les contributions de ce chapitre sont résumées comme suit :

A.2 Introduction

1. Le PDPTWPR, une nouvelle variante du problème de tournées de véhicules, est proposé dans le contexte de la collaboration entre transporteurs.

2. Un ensemble d'opérateurs de destruction et de réparation est conçu pour l'algorithme ALNS selon la propriété du PDPTWPR.

3. Un mécanisme qui peut ajuster dynamiquement le comportement des opérateurs pour être conservateur/agressif est utilisé pour le problème de tournées de véhicules avec profits pour la première fois.

Le PDPTWPR est basé sur un graphe complet non orienté G = (N, E). [START_REF] Robu | A multiagent platform for auction-based allocation of loads in transportation logistics[END_REF][START_REF] Dai | Price-setting based combinatorial auction approach for carrier collaboration with pickup and delivery requests[END_REF]Wang & Kopfer, 2014 ;Wang et al., 2014 ;[START_REF] Dai | Proportional egalitarian core solution for profit allocation games with an application to collaborative transportation planning[END_REF]Y. Li et al., 2016). Dans ce chapitre, nous nous 

A.6 Conclusion et perspective

Bien que nous ayons proposé un cadre complet pour aborder le problème de réaffectation des demandes de transport parmi les transporteurs de chargement partiel en collaboration, il reste encore beaucoup de travail à faire pour améliorer les modèles et les approches de résolution en vue d'adapter à des problèmes de la logistique collaborative plus généraux et à des problèmes de grande taille dans des applications industrielles.

Tout d'abord, pour le PDPTWPR, nous ont classifié toutes les demandes de transport de ramassage et de livraison avec des fenêtres de temps en deux types : demandes réservées et demandes sélectives. Des demandes réservées sont des demandes obligatoires qui doivent être servies par un transporteur lui-même [START_REF] Ziebuhr | The integrated operational transportation planning problem with compulsory requests[END_REF][START_REF] Chen | Combinatorial clock-proxy exchange for carrier collaboration in less than truck load transportation[END_REF] et qui ne peuvent pas être sous-traitées à d'autres transporteurs [START_REF] Schönberger | Operational freight carrier planning : basic concepts, optimization models and advanced memetic algorithms[END_REF][START_REF] Özener | Lane-exchange mechanisms for truckload carrier collaboration[END_REF]. Mais dans certains cas, il n'y a pas de demande strictement réservée, parce que toute violation du contrat de servir une telle demande 
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  The stochastic bid generation problem (BGP) appears in the bidding phase of our carrier collaboration framework. The stochastic BGP combines request selection problem and routing problem for serving pickup and delivery requests with time windows. A mixed-integer quadratic programming (MIQP) with a probabilistic constraint is formulated for the problem. To tackle the intractable MIQP model, deterministic transformation and linearization technique are used to transform it into a MIP model. The MIP model can be decomposed into several independent sub-problems, and each of them is a the pickup and delivery problem with time windows (PDPTW). A multi-start iterative local search (GRASP × ILS) algorithm is then developed to solve the simplified model. Extensive numerical experiments comparing the algorithm with the GUROBI 1.4. Organisation of this thesis 5 MIP solver on randomly generated instances show the effectiveness of the algorithm. 3. Winner determination problem (WDP) in carrier collaboration via combinatorial exchange aims to reallocate transportation requests among carriers, which is the last step of the carrier collaboration framework in this thesis. The CE can be considered as an alternative approach of CA in LTL transportation. But in the CE, each carrier plays a double role of buyer and seller of transportation requests. This characteristic brings some advantages compared with traditional CAs in freight logistics. A 0-1 linear programming model is formulated for this problem. A Lagrangian relaxation approach is developed to solve the CE problem. The relaxed problem is transformed into a maximum vertex weight clique problem (MVWCP) which is solved either by a multi-neighborhood tabu search or by a commercial MIP solver.

  -based mechanisms . . . . . . . . . . . . . . . . 14 2.4.2 Bid generation problems . . . . . . . . . . . . . . . . . . 20 2.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

  [START_REF] Ackermann | Combinatorial auctions in freight logistics[END_REF] discuss various objectives of a combinatorial request exchange mechanism in freight logistics and provide the arguments for their designed decisions. Their study is based on a realistic environment of LTL carriers. The proposed mechanism is flexible since it allows the unbundling of bundles into sub-bundles in the offering phase and regrouping them later in the auction phase.

  consider the carrier's optimal BGP in combinatorial auctions for transportation procurement in TL transportation. Carriers employ vehicle routing models to identify sets of lanes to bid for based on the actual routes. Both column generation and Lagrangian based techniques are used for solving the carrier optimization model and promising results are reported.

  study simultaneous transportation procurement auctions from a truckload carrier's perspective. A stochastic bid price optimization (BPO) problem with the objective of maximizing a carrier's expected profit is formulated in their paper. The formulation takes into account the synergies among the lanes and the competing carriers' bidding strategies. To solve this stochastic optimization problem, they develop an iterative coordinate search algorithm that finds good solutions efficiently. The benefits of employing the BPO technology are demonstrated through computational experiments involving a simulated marketplace. Triki et al. (2014) deal with a stochastic BGP in the context of long-haul full TL transportation services. They develop a probabilistic optimization model that integrates the bid generation and pricing problems together with the routing planning of the carrier's fleet. Two heuristic procedures Chapter 2. Literature review of CTP are developed to solve the model with up to 400 auctioned loads.

  if f (S) > f (S best ) then S best ← S endif

  all reserved requests are served or r = m (maximum fleet capacity reached) 14: if P olicy = 1 then 15:

  The first situation is highly rewarded since it yields a new best solution. The second and third situations are still interesting because the current solution is improved. We prefer to favor the second condition because finding a solution with new characteristics means that the search is driven to an unexplored area of solution space. To detect a new solution, the past solutions are stored. To achieve efficient comparison, only the following characteristics of a past solution are stored : total profit, the number of vehicle used and the number of customers served by each vehicle. The pool is kept sorted in increasing profit order and the existence of a solution with a given cost is checked using dichotomic search. The awarding of score 4 based on the SA acceptance criterion is used to prevent the search from looping on the same operators and also to bring some diversification.

  , Code-1 policies allow deep changes in the current solution and induce long-range moves while the more conservative policies with Code-2 favour the generation of feasible solutions and a faster improvement of the objective function. At the beginning of our ALNS (first segment) it is worthwhile to widen the search by using more frequently Code-1 policies. However, because of Policy RIPP1, infeasible solutions are frequent since selective requests may exhaust vehicle capacity and leave a few reserved requests unserved. Also, Policy ITSR1 results in very slow improvements on Chapter 3. PDP with time windows, profits and reserved requests the objective function.

N

  1 , N 2 , . . . for three cases is depicted in Fig.3.1. The first one illustrates a traditional ALNS applied to the PDPTW : most of the solution space is searched. The second one corresponds to the first segment of our DAOB for the PDPTWPR. The destroy/repair operators define wider neighborhoods which include many infeasible solutions (shown in grey). The last situation corresponds to the more conservative operators in the last segments :

FIGURE 3 . 1 :

 31 FIGURE 3.1: Illustration of neighborhoods in a classical ALNS and in our DAOB version.

  removal. This operator randomly selects the ρ • n requests to be removed. Depending on the value of ρ, it may significantly modify the incumbent solution. Least profit removal. The profit of a request i served in the incumbent solution S is defined as f (S) -f (S ), where f (S ) is the objective function without request i. The least profit removal sketched in Algorithm 3 removes ρ • n requests with low profits, because they might often be reinserted in more profitable positions. The operator is randomized to avoid repeatedly removing the ρ • n requests with lowest profits. requests (Policy RPP1) or all selective requests (Policy RPP2) served in S in increasing order of profit in an array L 4: compute a random request index j = (r U (0,1) ) 100•ρ |L| 5: remove request L j from S 6: removed ← removed + 1 7: until removed = ρ • n Least paid removal. The least paid removal operator has the same algorithm as the least profit removal, except that array L is now sorted in increasing order of prices p i . Considering request prices is essential in the PDPTWPR : removing the cheapest requests and putting them in the request pool (case of selective requests) or reinserting them in other positions may lead to a better solution.

  The moves are inspired by the ones of the classical VRP literature[START_REF] Toth | Vehicle routing : Problems, methods and applications[END_REF] with the difference that we relocate or exchange pairs of nodes. The moves are illustrated in Fig. 3.2 to Fig. 3.7. Circles represent pickup nodes while triangles denote delivery nodes. Reserved requests are filled in black while selective requests have an empty interior. The 2-Opt move is not included because time windows make it infeasible in most Chapter 3. PDP with time windows, profits and reserved requests cases.

FIGURE 3

 3 FIGURE 3.5: Interroute exchange : request B and request D are exchanged

  environment and CPLEX setting All experiments were conducted on a desktop equipped with Intel(R) Core (TM) i7-2600 3.40 gigahertz processor and 8 gigabyte of RAM. The operating system of this PC is 64-bit Window 7. The ALNS algorithm was coded in C++ using the development platform Visual Studio 2013. The Optimization Programming Language (OPL) and the CPLEX solver 12.6 were used to solve the MIP model. CPLEX 12.6 was called with the following option settings : nodef ileind = 2, workmem = 128, memoryemphasis = 1, threads = 8, nodesel = 2 and varsel = 3 (see CPLEX 12.6 Solver Manual).

Fig. 3

 3 Fig. 3.8. The proportion of feasible solutions generated by the ALNS decreases sharply when the number of requests increases, whether the DAOB is activated or not, but clearly the DAOB technique looks effective since it ends with 70% of feasible solutions generated versus 50% when it is not activated.

  . The PDPTWPR is a key sub-problem of collaboration logistics (CL) in Less-than-truckload (LTL) transportation mode. To get a near optimal solution of the PDPTWPR under tight time windows and fleet size constraints, we develop specific techniques to improve the basic adaptive large neighborhood search (ALNS) method, such as the meta-destroy mechanism, the search organized in segments and the dynamic adjustment of operator behavior (DAOB). Moreover, eight tailored destroy/repair operators are designed to cope with the particularity of the PDPTWPR and a local search procedure based on six effective moves is added for further improvement.

  stochastic MIQP model and its linearization . . . . 68 4.2.2 Deterministic transformation of the probabilistic constraint . . . . . . . . . . . . . . . . . . . . . . . . . . 69 4.2.3 Equivalent MIP model . . . . . . . . . . . . . . . . . . . 70 4.2.4 Synergy factor estimation . . . . . . . . . . . . . . . . . 72 4.3 GRASP × ILS hybrid . . . . . . . . . . . . . . . . . . . . . . . 75 4.3.1 Initial solution construction . . . . . . . . . . . . . . . . 77 4.3.2 Local search operators . . . . . . . . . . . . . . . . . . . 77 4.3.3 Mutation . . . . . . . . . . . . . . . . . . . . . . . . . of instances . . . . . . . . . . . . . . . . . . 79 4.4.2 Parameter setting . . . . . . . . . . . . . . . . . . . . . . 81 4.4.3 Experimental results . . . . . . . . . . . . . . . . . . . . 81 This chapter addresses a stochastic bid generation problem (BGP) raised in combinatorial auctions (CA) for collaborative logistics (CL) in less-thantruckload (LTL) transportation, which combines request selection problem and routing problem for serving pickup and delivery requests with time windows. In this problem, multiple carriers form an alliance and exchange their transportation requests for the purpose of improving their profitability. Each carrier generates the best bid from requests for auction while still serving its owns mandatory pickup and delivery requests with time windows.Generally, in carrier collaboration, several carriers engage in the procedure of bid generation. Therefore, other carriers' behaviors of bidding should be considered when we try to solve the BGP from the point of view of one carrier. However, other carriers' behaviors of bidding are sometimes unpredictable, even unknown, because of business information protection issue. So, it is necessary to consider stochastic events (uncertainties) in the BGP processes to better simulate a free-market environment.To the best of our knowledge, the study of the stochastic BGP in combinatorial transportation auctions or simultaneous transportation auctions is limited to truckload (TL) mode. The stochastic BGP in LTL transporation was never addressed before in the literature, although LTL transportation also plays an important role in nowadays logistics operations. So, in this chapter, we try to fill this gap by proposing a stochastic mixed-integer quadratic programming (MIQP) model for BGP in LTL transportation and developing an effective heuristic algorithm. Motivated by the probabilistic optimization model in TL transportation proposed by[START_REF] Triki | The stochastic bid generation problem in combinatorial transportation auctions[END_REF], we extends and applies it to LTL transportation. The hard MIQP model is then transformed into several independent pickup and delivery problems with time windows (PDPTW). A GRASP × ILS algorithm is developed as the solution approach to the problem. Computational experiments on randomly generated instances show the effectiveness of the proposed GRASP × ILS algorithm.

  technique is proposed to estimate the synergy factor among requests based on competitors' (other carriers') behaviors of bidding. 4. A GRASP × ILS algorithm is developed to solve each PDPTW derived. The reminder of this paper is organized as follows : Section 4.2 describes the problem studied in this paper and provides its MIQP model with a probabilistic constraint. Section 4.3 presents a simplified formulation of the mathematical model and the GRASP × ILS algorithm. Computational experiments and analysis of their results are reported in Section 4.4. Finally, Section 4.5 concludes the chapter with perspectives for future research. 62 Chapter 4. Stochastic bid generation problem in LTL transportation
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  service fee provided by shippers/customers for each request -fleet size of the carrier (bidder) and its unique depot location -other carriers' (competitors') depot locations -probability of losing a bidThe vehicle routing problem (VRP) involves the design of a set of minimum cost routes for a fleet of vehicles which serve exactly once a set of customers with known demands. The PDPTW is a generalization of the VRP which is concerned with the construction of optimal routes to satisfy transportation requests, each requiring both pickup and delivery under capacity, time window and precedence constraints[START_REF] Dumas | The pickup and delivery problem with time windows[END_REF]. The stochastic BGP studied in this paper is based on the PDPTW, and defined on a complete undirected graph G = (N, E). The node-set is defined asN = {0, • • • , 2n + 1},where n denotes the number of requests. Nodes 0 and 2n + 1 represent the depot of the carrier, hosting a set K = {1, • • • , m} of m identical vehicles of capacity Q. It is assumed that each vehicle route begins at node 0 and ends at node 2n + 1. Each node i has a time window [a i , b i ] constraint, while each edge (i, j) in E has a travel cost c ij and a travel time t ij . The service times at node i is included in the 64 Chapter 4. Stochastic bid generation problem in LTL transportation t ij 's. Like in the VRPTW, a vehicle can wait at customer i if it arrives before a i . The subset P = {1, • • • , n} contains the pickup nodes of all requests, while D= {n + 1, • • • , 2n} gathers delivery nodes. Request i, i = 1, • • • , n,is associated with a pickup node i, a delivery node n + i, a demand d i > 0 and a price p i . For the delivery node, we set d n+i = -d i . The set R of all requests includes the subset of carrier's reserved requests R r and the subset of requests for auction R s . The objective for the carrier is to maximize its total profit which is equal to the sum of collected payments of served requests minus the total cost of the routes. The load of a route before and after visiting each node cannot exceed vehicle capacity, the time window at each node must be respected, and the delivery node of each request must be visited after its corresponding pickup node, in the same route.

  in our model. Let variables Y b denote the auction clearing price of bid b that depends on the total price of requests in bundle and the synergy factor among them, and α ∈ [0, 1] represents probability of losing a bid. In addition to the previous parameters, we need two additional relations to write the model more easily : T ij = b j -a i plays the role of a big-M constant in the time window constraints, while Q i = Q + d i is used in the capacity constraints. We formulate the BGP as a MIQP model with a probabilistic constraint, and indices, sets, parameters and decision variables are introduced as follows : ij , binary variable equals to 1 if and only if vehicle k travels directly through arc (i, j), -y k i , binary variable equals to 1 if and only if request i is served by vehicle k, -z b , binary variable equals to 1 if and only if bundle b is a generated bid, -p b , the 'ask price' of bundle b, -T k i , time at which vehicle k begins service at node i, -Q k i , load of vehicle k when leaving node i. Sets : -R r , set of the carrier's (bidder's) reserved requests, -R s , set of requests for auction, -R, set of all requests, R = R r ∪ R s , -B, set of all potential bids, indexed by b, -K, set of available vehicles, indexed by k. Parameters : -e b i , equals to 1 if and only if request i is in bid b, otherwise 0, -p b min , small positive value indicating the minimum 'ask price' of bid b, -Y b , random variable denoting the lowest price (auction clearing price) offered by competitors for bid b, -α ∈ [0, 1], probability of losing a bid, -p(R r ), total revenue obtained from serving the reserved requests, -p i , price of request i, -c ij , transportation cost from node i to j, where c ij = c ji , and the triangle inequality holds, -t ij , travel time from node i to j, -d i , quantity of request i, -[a i , b i ], time windows of node i, -Q, vehicle capacity.

  (4.1) represents the expected profit, which equals to the difference between the sum of revenue and the total transportation cost. Constraints (4.2) impose a minimum probability for winning a tendered bid. Constraints (4.3) will force the model to generate at most one bid for each run, the most competitive one (one can solve again the same model if more bids are needed). Constraints (4.4) guarantee the flow balances at each node for each route. Constraints (4.5) and (4.6) indicate that each vehicle leaves the depot and returns to it. Constraints (4.7) impose that all reserved requests must be served. Constraints (4.8) represent the logical relationship between the routing variables and the binary bid variables. Constraints (4.9) and (4.10) ensure that if a request is served, there must be a vehicle leaving its pickup node and arriving at its paired delivery node. Time windows and precedence relations are respected via constraints (4.11) to (4.13). Constraints (4.14) and (4.15) involve vehicle capacity. Finally, constraints (4.16) to (4.21) define the variables.

  (4.1) and constraints (4.2). To make the model solvable by a commercial solver, e.g. , GUROBI or CPLEX (they can only solve convex quadratic programming, obviously, our model is non-convex), we linearize the stochastic MIQP model as follows : Let f b = p b • z b , ∀b ∈ B, then we can rewrite the objective function (4.1) and constraints (4.2) as the objective function (4.22) and constraints (4.23) by adding new constraints (4.24) into the model :

  24) The product of integer variable p b and binary variable z b is transformed into an integer variable f b . So the stochastic MIQP model is converted into a stochastic mixed-integer programming (MIP) model. The value of f b can be obtained by resolving the stochastic MIP model. That is, f b equals to p b with z b = 1.
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 4 Stochastic bid generation problem in LTL transportationriers. The complementarity among requests in a bid b can be measured by a synergy factor S b between 0 and 1. That is, the auction clearing price of this bid is estimated as Y b = S b • i∈b p i , ∀b ∈ B. The smaller the synergy factor, the higher the complementarity.[START_REF] Triki | The stochastic bid generation problem in combinatorial transportation auctions[END_REF] pointed out that one of challenges for the BGP is to estimate the synergy factor S b properly.

  So contrary to evaluating the synergy from requests' interactions[START_REF] An | Bidding strategies and their impact on revenues in combinatorial auctions[END_REF][START_REF] Wang | Combinatorial bid generation problem for transportation service procurement[END_REF][START_REF] Lee | A carrier's optimal bid generation problem in combinatorial auctions for transportation procurement[END_REF][START_REF] Chang | Decision support for truckload carriers in one-shot combinatorial auctions[END_REF], we propose a new method to estimate the synergy among requests taking account of the competitions from all other carriers.Let denote the set of other carriers by W . For each of other carrier w ∈ W , we first estimate the synergy factor of a bid b with respect to it by the procedure described as follows : 1. calculate the optimal cost of the carrier w to serve bid b without considering its reserved requests, denote this cost as C w,b optimal 2. calculate the total cost of the carrier w to serve each request in bid b independently, denote it as i∈b C w,b i 3. the synergy factor of bid b with respect to the carrier w is estimated by the formula : S w,b = C w,b optimal / i∈b C w,b i

  FIGURE 4.1: Example of cost calculation for synergy factor estimation for carrier a.

  FIGURE 4.3: Example of cost calculation for synergy factor estimation for carrier c.

Algorithm 5 -

 5 GRASP × ILS hybrid 1: initialize the random number generator 2: f * ← -∞ 3: for i ← 1 to np do
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 4 Stochastic bid generation problem in LTL transportationAlgorithm 6 -Randomized sequential insertion heuristic (RSIH) 1: merge reserved requests and bidding requests in array L 2: sort L by descending distance to depot 3: r ← 1 4: while |L| > 0 do 5: choose a random integer number l in the interval [0, q] first improving move detected is executed. The local search stops after a maximum number of iterations ni or no improvement move can be found.Algorithm 7 -Local search procedure (LS) 1: δ ← 0 (number of iterations)

a

  top commercial MIP solver to solve the simplified model of the stochastic BGP (constraint (4.26) to constraint (4.47)). However, solving exactly the model is only limited to instances with few requests for auction and few potentials bids.

(

  TL) transportation. In this paper, we extend the BGP to carrier collaboration in less-than-truckload (LTL) transportation. A mixed integer quadratic programming (MIQP) model with a probabilistic constraint is formulated, which simultaneously integrates request selection problem, pricing problem and routing problem. To tackle the intractable MIQP model, deterministic transformation and linearization technique are used to transform it into a mixed integer programming (MIP) model. The MIP model can be decomposed into several independent sub-problems, and each of them is a pickup and delivery problem with time windows (PDPTW). For solving the PDPTW effectively and efficiently, a GRASP × ILS algorithm is developed as the solution approach. In the algorithm, a randomized sequential initial solution heuristic and four customized local search operators are designed as its components. The performance of the GRASP × ILS heuristic applied to the stochastic BGP is compared with a top commercial MIP solver, GUROBI. Lower bounds and upper bounds obtained by GUROBI in a prespecified computation time are compared with the best feasible solutions found by the GRASP × ILS heuristic. The numerical results show the promising performance of the proposed algorithm. Further research will focus on designing a mechanism which only explores a part of potential bids but can still guarantee similar results as exploring the power-set of the set of tendered requests in order to reduce the computation time for bid generation. determination problems . . . . . . . . . . . . . 90 5.2.2 Maximum vertex weight clique problems . . . . . . . . 92 5.3 Combinatorial exchange versus combinatorial auction . . . . 93 5.3.1 Better exploration of synergies among requests . . . . . 94 5.3.2 More efficient allocation due to a larger solution space 95 5.4 Problem description and mathematical model . . . . . . . . . 97 5.4.1 Formulation of the winner determination problem of the CE . . . . . . . . . . . . . . . . . . . . . . . . . . of Lagrangian relaxation approach . . . . . 100 5.5.2 Solving the Lagrangian relaxed problem . . . . . . . . 104 5.5.3 Update of Lagrangian multipliers . . . . . . . . . . . . 109 88 Chapter 5. WDP in Carrier Collaboration Via CE 5.5.4 Repair heuristic . . . . . . . . . . . . . . . . . . . . . of instances . . . . . . . . . . . . . . . . . . 112 5.6.2 Parameter setting . . . . . . . . . . . . . . . . . . . . . . 115 5.6.3 Experimental results . . . . . . . . . . . . . . . . . .

  tions (CAs) among less-than-truckload (LTL) carriers. In the CE, each carrier plays a double role of buyer and seller of transportation requests. This characteristic brings some advantages compared with traditional CA mechanisms in freight logistics. A 0-1 linear programming model is formulated for the problem. A Lagrangian relaxation approach is then developed to solve the winner determination problem of CE. The relaxed problem is transformed into a maximum vertex weight clique problem (MVWCP) which is solved either by a multi-neighborhood tabu search (MNTS) or by a commercial MIP solver. A repair heuristic is proposed to cope with any infeasibilities caused by the constraint relaxation. Extensive numerical experiments on randomly generated instances show that the Lagrangian relaxation approach can provide high quality solutions.

  relaxation and on the MNTS algorithm for solving the clique problem is developed and proven to produce high quality solutions by numerical experiments on randomly generated instances.

  FIGURE 5.1: Comparison of routing plannings among no-collaboration scenario, CA and CE.

Fig. 5 .

 5 Fig. 5.1 show the routes before collaboration (a), after CA (b) and after CE (c). Table5.2 details the results of the three scenarios. CE outperforms
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 5 WDP in Carrier Collaboration Via CE most general one among the three options. XOR and OR-of-XOR can also be easily implemented in the CE model since we can transform a relaxed problem of the model into the MVWCP, see Section 5.5.2.1.

  tion 5.5.2.2. The metaheuristic returns a solution S M N T S with total profit U B M N T S . As the sequence of upper bounds is not always decreasing, a global best upper bound U B best is updated in lines 5-7. If S M N T S is feasible for the original CE problem (line 8), then the incumbent best feasible solution LB best is updated by comparing with U B M N T S . The next step in line 11 is to derive from S M N T S a feasible solution S RH to the original CE problem, via a repair heuristic RH (Section 5.5.4), giving a lower bound LB RH . As the successive repairs do not necessarily yield increasing lower bounds, the best lower bound LB best and the associated solution S best are recorded in line 13.

  quests. Carrier 1 owns requests r 1 and r 3 , while carrier 2 has request r 2 , i.e. , N = {1, 2}, M = {r 1 , r 2 , r 3 }, M 1 = {r 1 , r 3 }, and M 2 = {r 2 }. Table5.3 gives the information of bids. The cliques associated with the optimum of RP (0) (first Lagrangian relaxed problem) and the optimum of the CE problem respectively are depicted in Fig.5.2. RP (0) = {b 1 , b 3 , b 7 , b 8 } has total profit 219 but is not feasible for the CE problem since no carrier sells request r 1 , which violates one matching constraint. The optimal solution of this instance is a combination of winning bids {b 1 , b 3 , b 6 , b 8 } with total profit 210.Since the edges between conflicting bids must not be included in the graph, other bidding languages like XOR and OR-of-XOR (mentioned in Section 5.4.2) can be directly implemented to our CE model, by removing the edges infeasible to them.

  FIGURE 5.2: Comparison of optimal cliques between the relaxed problem and the CE problem.

  Before each call of the M N T S to solve the Lagrangian relaxed problem, RP (λ) is reduced to a MVWCP defined on an undirected weighted graph G = (V, E) in Algorithm 8. The algorithm returns a clique C GlobalBest with 5.5. Lagrangian relaxation approach 107 maximum or nearly maximum total weight W (C GlobalBest ).

Algorithm 11 -

 11 Repair heuristic -RH(S) 1: generate R nopair from the infeasible solution S 2: generate R matching from R nopair 3: for all bids b repair ∈ B do 4: if b repair / ∈ S and b repair ∈ R matching then 5: include bid b repair in the set of bids B repair 6: end if 7: end for 8: for all possible subsets B repair ⊆ B repair do 9: if B repair = R matching then 10: record B repair in a set L 11: end if 12: end for 13: sort all elements in set L in non-increasing order of their total profit 14: denote the first element in the sorted set L as B best repair 15: S RH ← S ∪ B best repair 16: return S RH with cost LB RH

Future

  research may include the bid generation problem (BGP) and bid pricing problem (BPP) in order to improve the effectiveness of the CE. Combining our CE with routing problems in carrier collaboration is another challenging issue. Moreover, a fair post-collaboration profit allocation mechanism should also be designed to enhance the CE mechanism.In recent years, collaborative logistics or more particularly collaborative transportation has been emerging as an effective strategy for small to medium-sized freight carriers to improve their profitability by reducing empty vehicle repositions and increasing vehicle fill rates. In this thesis, we mainly address collaborative transportation planning (CTP) problems appeared in carrier collaboration, especially the carrier collaboration in lessthan-truckload (LTL) transportation.Two key issues are often addressed for carrier collaboration in LTL transportation : the requests reassignment problem and the postcollaboration profit allocation problem. We focus on the requests reassignment problem in this thesis, and propose an auction-based carrier collaboration framework. In the framework, three main sub-problems have been addressed : the pickup and delivery problem with time windows, profits, and reserved requests (PDPTWPR), the stochastic bid generation problem (BGP) and the winner determination problem (WDP) in carrier collaboration via combinatorial exchange.

A. 3

 3 Le problème de ramassage et de livraison avec fenêtres de temps, profits et demandes réservées Ce chapitre traite le problème de ramassage et de livraison avec les fenêtres de temps, profits et demandes réservées (PDPTWPR), un nouveau problème de tournées de véhicules apparu dans la collaboration entre transporteurs réalisée par une enchères combinatoire (CA) ou un échange combinatoire (CE). Le PDPTWPR est un sous-problème clé dans le cadre de collaboration entre transporteurs proposé dans cette thèse. Dans la collaboration entre transporteurs, plusieurs transporteurs forment une alliance et échangent certaines de leurs demandes de transport. Chaque transporteur possède un ensemble de demandes réservées (i.e. les demandes non proposées pour l'échange en CA/CE) et peut demander à servir d'autres demandes (demandes sélectives) auprès d'autres transporteurs. Chaque demande de transport est une demande de ramassage et de livraison associée à une origine, une destination, une quantité, deux fenêtres de temps et un prix pour servir la demande payé par son expéditeur correspondant (client). Pour chaque transporteur dans CA/CE, il doit déterminer quelles demandes sélectives pour enchérir, en plus de ses demandes réservées, et construit des tournées réalisables pour maximiser son profit total. Un tel problème soulève une nouvelle variante de problème de ra-A.3. Le problème de ramassage et de livraison avec fenêtres de temps, profits et demandes réservées 135 massage et de livraison avec les fenêtres de temps (PDPTW), c'est-à-dire le PDPTWPR. À notre connaissance, ce problème a rarement été étudié dans la littérature. Un modèle de programmation linéaire en nombres mixtes (MIP) est formulé pour le PDPTWPR et une version améliorée de l'approche de la recherche adaptative à grand voisinage ALNS est développée. L'ALNS implique des opérateurs de destruction/réparation ad hoc et une procédure de post-optimisation menée par recherche locale (LS). L'algorithme s'exécute en segments successifs qui modifient le comportement des opérateurs et calculent leurs propres statistiques pour mettre à jour de manière adaptative les probabilités de sélection des opérateurs. Le modèle MIP et l'approche ALNS sont évalués sur 54 instances générées au hasard avec jusqu'à 100 demandes de transport en charge partielle. Les résultats numériques indiquent que l'ALNS est plus performante de manière significative que le solveur CPLEX, non seulement en termes de qualité de la solution, mais aussi en termes de temps de calcul.

L

  'ensemble de noeuds du graphe est défini comme N = {0, • • • , 2n + 1}, où n désigne le nombre de demandes de transport. Les noeuds 0 et 2n+1 représentent le dépôt du transporteur, hébergeant un ensemble K = {1, • • • , m} de m véhicules identiques de capacité Q. On suppose que chaque tournée de véhicule commence au noeud 0 et se termine au noeud 2n + 1. Chaque noeud i a une fenêtre de temps [a i , b i ] pour commencer le service, alors que chaque arc (i, j) dans E est associé à un coût de déplacement c ij et un temps de trajet t ij . Le temps de service au noeud i est inclus dans t ij . Comme dans le VRPTW, un véhicule peut attendre au client i s'il y arrive avant a i . Le sous-ensemble P = {1, • • • , n} contient les noeuds de ramassage de toutes les demandes, tandis que D = {n + 1, • • • , 2n} rassemble les noeuds de livraison. La demande i, i = 1, • • • , n, est associée à un noeud de ramassage i, un noeud de livraison n + i, une demande d i > 0 et un prix p i . Pour le noeud de livraison, nous définissons d n+i = -d i . L'ensemble R de toutes les demandes comprend le sous-ensemble de demandes réservées R r et le sous-ensemble de demandes sélectives R s .L'objectif du PDPTWPR est de déterminer les demandes sélectives à servir, en plus des demandes réservées, et de déterminer les tournées de véhicules associés, afin de maximiser le profit total qui est égal à la somme des A.3. Le problème de ramassage et de livraison avec fenêtres de temps, profits et demandes réservées 137 paiements collectés moins le coût total des tournées. Les demandes servies dans une tournée ne peuvent pas dépasser la capacité du véhicule, la fenêtre de temps à chaque noeud doit être respectée et le noeud de livraison de chaque demande doit être visité après son noeud de ramassage correspondant, dans la même tournée. Le problème est NP-hard au sens fort comme le PDPTW qui est le cas particulier du problème où R s est vide et tous les prix p i sont égaux à une grande constante positive M (pour s'assurer que toutes les demandes sont servies). Le PDPTWPR peut être formulé par un modèle MIP. En plus des données précédentes, nous avons besoin de deux notations pour formuler le modèle plus facilement : T ij = b j -a i joue le rôle d'une constante big-M dans les contraintes de fenêtre de temps, tandis que Q i = Q + d i est utilisé dans les contraintes de capacité. Les variables de décision suivantes sont également utilisées dans le modèle : -x k ij , la variable binaire est égale à 1 si et seulement si le véhicule k parcourt directement l'arc (i, j), -y k i , la variable binaire est égale à 1 si et seulement si la demande i est servie par le véhicule k, -T k i , heure à laquelle le véhicule k commence le service au noeud i, -Q k i , charge du véhicule k au départ du noeud i.A.4 Le problème de génération d'enchère dans le transport de chargement partial Ce chapitre traite un problème de génération d'enchère stochastique (BGP) soulevé dans des ventes aux enchères combinatoires (CA) pour la collaboration entre transporteurs en mode de chargement partiel (LTL), qui combine le problème de sélection de demandes et le problème de tournées de vehicules pour servir des demandes de ramassage et de livraison avec fenêtres de temps. Dans ce problème, plusieurs transporteurs forment une alliance et échanger leurs demandes de transport dans le but d'améliorer leur rentabilité. Chaque transporteur veut générer la meilleure offre de demandes à l'enchère tout en servant ses demandes réservées avec des fenêtres de temps. Une offre représente un paquet de demandes à servir avec un «prix demandé». Le «prix demandé» indique combien un transporteur charge le commissaire-priseur pour servir le paquet de demandes. Géneralement, le «prix demandé» doit être une valeur positive, mais pas être supérieur à la somme du coût de service individuel de chaque demande dans ce paquet. La determination du «prix demandé» est un problème difficile dans le BGP. D'une part, plus un transporteur demande au commissaire-priseur pour servir un paquet de demandes, plus le profit il peut générer plus tard. D'autre part, les concurrents (autres transporteurs en coalition) peuvent demander des prix plus bas pour servir le même paquet de demandes, en vertu d'une telle circonstance, une offre perdante ne reçoit rien en retour.A.4. Le problème de génération d'enchère dans le transport de chargement partial 141Au-delà, nous nous référons à la détermination du «prix demandé» comme le problème de prix. Triki et al. (2014) a souligné deux défis principaux pour le BGP en TL transport, l'un est la nécessité d'énumérer un nombre exponentiel d'offres potentielles qui est le pouvoir-ensemble de toutes les demandes d'enchères. Cette difficulté fait aussi le BGP un problème NP-hard. Le second problème est la nécessité de considérer les synergies entre les demandes dans une offre en raison de la complémentarité entre elles. L'estimation du facteur de synergie joue un rôle clé dans le contexte du transport LTL, qui sera présenté plus tard avec une description détaillée dans la section 4.2.4. En règle générale, dans la logistique collaborative, plusieurs acteurs (transporteurs ou expéditeurs) engager dans une procédure de génération d'offres. Par conséquent, les comportements des autres acteurs devraient être pris en considération lorsque nous essayons de résoudre le BGP du point de vue d'un transporteur. Toutefois, les comportements d'autres acteurs sont parfois imprévisibles, même inconnus en raison de la protection d'information commerciale. Donc, il est nécessaire de considère le facteur stochastique dans le processus BGP pour mieux simuler un environnement de marché libre. Au mieux de notre connaissance, l'étude du BGP stochastique des ventes de demandes de transport aux enchères combinatoires ou aux enchères simultanées sont limitées en mode de TL. Mais le BGP stochastique dans le transport de mode LTL n'a jamais été abordé auparavant dans la littérature, et le transport de LTL aussi joue un rôle important dans les opérations de transport de nos jours. Donc, dans ce chapitre, nous essayons de combler cette lacune en proposant un modèle et en élaborant un algorithme heuristique efficace. Motivé par le modèle d'optimisation probabiliste dans le transport de TL proposé par Triki et al. (2014), nous étendons et l'appliquons au transport de LTL. Le modèle de programmation stochastique quadratique en nombres mixtes (MIQP) est ensuite transformé en plusieurs problèmes de ramassage et de livraison indépendants avec des fenêtres de temps (PDPTW). Un GRASP × ILS algorithme est développé en tant que l'approche de résolution du problème. Des expérimentations numériques sur des instances générées aléatoirement montrent l'efficacité de l'algorithme. Les contributions de ce chapitre sont résumées comme suit : 1. Le BGP stochastique pour le transport LTL est étudié pour la première fois. 2. Le modèle stochastique MIQP du problème est simplifié, transformé et décomposé en plusieurs PDPTW indépendants. 3. Une technique pertinentes est proposée pour estimer le facteur de synergie entre les demandes de transport, fondée sur les comportements d'autres transporteurs (concurrents).

  concentrons sur le premier sous-problème : la conception d'un mécanisme d'affectation des demandes de transport entre les transporteurs dans un échange combinatoire (CE). Ce mécanisme du CE considère un scénario où chaque transporteur répond à un appel d'offres pour l'acquisition (l'achat) des demandes d'autres transporteurs et la vente de certaines de ses demandes à d'autres transporteurs en même temps afin de maximiser son profit. Dans le CE, les transporteurs soumettent toutes leurs demandes de sous-traitance à un commissaire-priseur virtuel, puis les demandes sont réaffectés parmi eux par le commissaire-priseur, selon toutes les offres reçues.La caractéristique bi-directionnelle du CE, le rendre en mesure d'exploiter des profits potentiels par une meilleure exploration des synergies entre les demandes et par une plus grande participation des transporteurs. Au mieux de notre connaissance, ce sujet n'a qu'été conceptuellement abordé[START_REF] Bloos | Efficiency of transport collaboration mechanisms[END_REF][START_REF] Ackermann | Combinatorial auctions in freight logistics[END_REF] mais jamais étudié profondément dans la littérature. Le CE est un mécanisme de transaction alternatif aux ventes aux enchères combinatoires (CA) entre les transporteurs de LTL. Dans le CE, chaque transporteur joue un rôle double d'acheteur et de vendeur. Cette caractéristique apporte certains avantages par rapport aux mécanismes de CA traditionnels. Un modèle de programmation linéaire binaire est formulé pour le problème. Une approche de relaxation lagrangienne est en-A.5. Le problème de détermination de gagnants dans la collaboration entre transporteurs via l'échange combinatoire 145 suite développée pour résoudre le problème du CE. Le problème relaxé se transforme en un problème de clique pondéré avec la maximisation du poids total des noeuds (MVWCP) qui est résolu soit par une méthode de recherche muliti-voisinages tabu (MNTS) ou par un solveur commercial de MIP. Une heuristique de réparation est proposée pour construire une solution faisable à partir d'une solution infaisable dont les infaisabilités causés par la relaxation de contraintes. Les expérimentations numériques intensives sur les instances générées aléatoirement montrent que l'approche de relaxation lagrangienne peut fournir des solutions de haute qualité. Les contributions de ce chapitre sont résumées comme suit : 1. Nous introduisons un mécanisme de CE comme une alternative à la CA pour la réaffectation/échange de demandes de transport entre transporteurs dans le transport de LTL. 2. Un modèle mathématique qui peut être adapté à différentes langues d'appel d'offres est élaboré pour le problème du CE. 3. Comme l'approche de résolution pour le problème du CE, une approche efficace basée sur la relaxation lagrangienne et l'algorithme MNTS pour résoudre le problème clique pondéré est développée et prouvée capable de produire des solutions de haute qualité par des expérimentations numériques sur des instances générées aléatoirement.

  peut être compensée par une pénalité. En d'autres termes, les modèles de problèmes de tournée des véhicules plus généraux avec pénalités doivent être considérés afin d'adapter à une situation réelle lorsque les demandes réservées sont impliquées. Pour l'approche de résolution du PDPTWPR, bien que l'algorithme ALNS est plus performant que le solveur commercial (CPLEX), des méta-heuristiques plus efficaces doivent être développées afin de résoudre des instances de la taille de l'industrie plus rapidement. le problème de génération d'enchère dans le transport de chargement partiel, nous ne considérons qu'un nombre limité de demandes aux enchères puisque l'algorithme proposé doit énumérer toutes les offres potentielles sur la base de toutes les demandes aux enchères, qui est la puissance du nombre des demandes. Evidement, ce n'est pas une manière intelligente d'explorer toutes les offres potentielles puisque une telle manière prend trop de temps. Ainsi, des techniques particulières pour réduire le nombre d'offres tout en garantissant la qualité de solution devraient être développées pour les recherches futures, comme fait dans Buer (2014). En outre, nous supposons que les prix des demandes de transport aux enchères suivent une distribution normale, mais une distribution de prix plus compliquée devrait être envisagée pour mieux simuler un environnement de marché libre. Les deux aspects ci-dessus peuvent être les directions de recherche future. Troisièmement, pour le mécanisme d'échange combinatorial de demandes de transport en charge partielle, chaque transporteur joue un double rôle de vendeur et d'acheteur. L'idée est que les appels d'offres concernent deux parties (demandes pour la vente et demandes pour l'achat) au lieu d'une partie dans les enchères combinatoires traditionnelles (demandes de l'achat). Cependant, il existe de nombreuses façons de déterminer les demandes pour l'achat, comme le problème de génération d'enchère stochastique dans cette thèse, alors que les méthodes pour identifier les demandes pour la vente restent rares dans la littérature. Enfin, les techniques de répartition de profit ne sont pas abordées dans cette thèse. Mais ce problème est important lorsque l'on considère la logistique collaborative. Dans la littérature, le problème de la réaffectation des demandes de transport et le problème de l'allocation de profit sont souvent traités séparément. Nous pensons que des techniques peuvent être proposées pour intégrer les deux problèmes ensemble de sorte qu'un meilleur résultat peut être obtenu par rapport au traitement des deux problèmes successivement. En outre, des formes plus sophistiquées de collaboration peuvent être envisagées dans le domaine de la logistique collaborative, par exemple lorsque les expéditeurs, ou même les clients, sont impliqués ensemble dans la collaboration. Pour ce type de collaboration, de nouveaux modèles et des approches de résolution sont exigés. Tous ces problèmes ci-dessus seront les sujets de la recherche future.
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	procedure conducted by local search (LS). The algorithm runs in successive 3.2 Literature review
	segments which change the behavior of operators and compute their own
	statistics to adapt selection probabilities of operators. The MIP model and Our problem is related to the pickup and delivery problem with time
	the ALNS approach are evaluated on 54 randomly generated instances with windows (PDPTW), which itself is a generalization of the vehicle rou-
	up to 100 requests. The computational results indicate that the ALNS signi-ting problem with time windows (VRPTW). The PDPTW involves three
	This chapter addresses the pickup and delivery problem with time win-ficantly outperforms the CPLEX MIP solver, not only in terms of solution main constraints : time window constraints, capacity constraints and cou-
	dows, profits, and reserved requests (PDPTWPR), a new vehicle routing quality but also in terms of CPU time. pling constraints (the delivery node of each request must be visited after
	problem appeared in carrier collaboration realized through combinatorial Therefore, the contributions of this chapter are summarized as follows : its corresponding pickup node in the same route). The PDPTW has been
	auction (CA) or combinatorial exchange (CE). The PDPTWPR is a key sub-1. The PDPTWPR, a new variant of vehicle routing problem, is propo-well studied in the literature and due to its complexity, metaheuristic algo-
	problem in the auction-based framework of carrier collaboration. sed under the context of LTL carrier collaboration. rithms have become dominating methods for its resolution. Nanry et Wes-
	In carrier collaboration, several carriers form an alliance and exchange ley Barnes (2000) propose a reactive tabu search and test it on instances
	some of their transportation requests. Each carrier has a set of reserved re-2. An improved version of adaptive large neighborhood search (ALNS) with up to 50 requests. H. Li et Lim (2003) create a set of benchmark ins-
	quests (i.e. not proposed for exchange in CA/CE) and can serve additio-approach well adopted to the PDPTWPR is developed. tances and propose a hybrid metaheuristic. Hosny et Mumford (2012) com-
	nal requests (selective requests) acquired from other carriers. Each request is 3. A set of destroy/repair operators are designed for the ALNS algo-pare sequential and parallel insertion heuristics to provide metaheuristics
	a pickup and delivery request associated with an origin, a destination, a rithm according to the property of the PDPTWPR. with high quality initial solutions. Bent et Hentenryck (2006) apply Variable
	quantity, two time windows (pickup time window and delivery time win-
	dow), and a price (revenue) for serving the request paid by its correspon-4. A mechanism which can dynamically adjust the operators' behavior
	ding shipper (customer). For each carrier in CA/CE, it has to determine to be conservative/aggressive is firstly used for routing problems
	which selective requests to bid for, in addition to its reserved requests, and with profits.
	builds feasible routes to maximize its total profit. Such a problem raises a This chapter is organized as follows. A brief literature review of vehicle
	new variant of pickup and delivery problem with time windows (PDPTW), routing problems (VRP) and vehicle routing problems with profits (VRPP)
	i.e. the PDPTWPR. To the best of our knowledge, this problem was rarely is provided in Section 3.2. Section 3.3 describes the PDPTWPR and provides
	studied in the literature. its MIP model. An improved version of ALNS to solve the PDPTWPR is
	A mixed-integer programming (MIP) model is formulated for the developed in Section 3.4. Section 3.5 presents numerical experiments which
	PDPTWPR and an improved version of adaptive large neighborhood compares the results of our ALNS algorithm with the ones obtained by the
	search (ALNS) approach well adapted to the problem is developed. The CPLEX MIP solver on the randomly generated instances. Finally, Section 3.6
	ALNS involves ad-hoc destroy/repair operators and a post-optimization closes this chapter with some remarks for future research.
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	vehicle can transport one request at a time, each request can be modeled by
	one arc, which leads to an arc routing problem (ARP).
	). A few recent papers have tackled the
	TOP with time windows (TOPTW), see for instance Labadie, Mansini, Me-
	lechovsky, et Wolfler-Calvo (2012) who develop a granular variable neigh-
	borhood search. The TOPTW is close to our PDPTWPR but does not dis-
	tinguish between pickup and delivery nodes. A recent paper by Archetti,
	Corberan, Sanchis, Plana, et Speranza (2014) present the team orienteering
	arc routing problem (TOARP), but in a truckload (TL) context : since each

  • • , 2n+1}, where n denotes the number of requests. Nodes 0 and 2n + 1 represent the depot of the carrier, hosting a set K = {1, • • • , m} of m identical vehicles of capacity Q. It is assumed that each vehicle route begins at node 0 and ends at node 2n + 1. Each node i has a time window [a i , b i ] to begin service, while each edge (i, j) in n+i = -d i . The set R of all requests includes the subset of reserved requests R r and the subset of selective requests R s .

	E has a travel cost c ij and a travel time t ij . The service times at node i is
	included in the t ij 's. Like in the VRPTW, a vehicle can wait at customer i
	if it arrives before a i . The subset P = {1, • • • , n} contains the pickup nodes
	of all requests, while D = {n + 1, • • • , 2n} gathers delivery nodes. Request
	i, i = 1, • • • , n, is associated with a pickup node i, a delivery node n + i, a
	demand d i > 0 and a price p i (customer payment). For the delivery node,
	we set d
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.1: Adaptive adjustment of the operator scores Increment Conditions on the solution obtained by the operators 1 A new best solution is obtained.

2

TABLE 3

 3 

		.2: Parameter tuning according to instance size	
	Symbol Role	Small Medium Large
	nruns	Number of runs	10	10	10
	nsegs	Segments per run	10000	20000	50000
	niters	Iterations per segment	100	100	100
	γ 1	SIH Policy 1 probability	0.15	0.15	0.20
	γ 2	SIH Policy 2 probability	0.70	0.70	0.60
	γ 3	SIH Policy 3 probability	0.15	0.15	0.20
	1	Operator score increment case 1	10	10	10
	2	Operator score increment case 2	5	5	5
	3	Operator score increment case 3	3	3	3
	4	Operator score increment case 4	1	1	1
	η	Score reaction factor	0.8	0.8	0.8
	δ	Unfruitful iterations for meta-destroy	100	150	200
	ρ	Removal fraction	0.2	0.2	0.3
	τ	To set SA initial temperature	0.3	0.4	0.4
	θ	SA cooling factor	0.9995	0.9996	0.9997

TABLE 3

 3 The upper bound of the MIP model obtained by CPLEX in a preset running time LB M IP The best feasible objective value found by CPLEX solver in a preset running time LB ALN S The best feasible objective value obtained by the ALNS after a preset number of iterations Gap M IP The gap between LB M IP and U B M IP . It is calculated by :

	.3: Abbreviation of experiment indicators and definition
	Abbreviation Definition
	U B M IP

U BMIP -LBMIP U BMIP Gap ALN S The gap between LB ALN S and U B M IP . It is calculated by : U BMIP -LBALNS U BMIP Imp ALN S-M IP The improvement of LB ALN S over LB M IP . It is calculated by : LBALNS -LBMIP LBMIP CP U ALN S The running time of the ALNS algorithm CP U M IP CPU time for solving the MIP model by CPLEX
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 3 Gap ALN S is on average 6.17% which maintains at the same level of instances with 20 requests, whereas Gap M IP increases from 12.14% to 24.65%. For 40 requests instances, CPLEX failed to identify feasible solutions, in spite of a larger time limit of 2 hours. In contrast, our ALNS algorithm always returned good quality feasible solutions. For n = 40 and n = 50, the average Gap ALN S is equal to 8.96% and 9.98% and Imp ALN S-M IP increases to 30.87% and 69.77%, respectively, excluding the cases for which CPLEX failed to obtain any feasible solution. In parallel, the running time of the ALNS grows naturally with instance size but still represents a small fraction of the CPU time consumed by CPLEX.

	tive value than CPLEX for 7 out of 9 instances and the average Gap ALN S is
	only 6.11%. Furthermore, our ALNS algorithm supersedes CPLEX in terms
	of running time, the longest CPU time being only 23.2 seconds compared
	with the limit of 3600 seconds reached by CPLEX.
	Table 3.5 gives in the same format the results for medium size instances.

.4 compares the performance of our ALNS algorithm and the CPLEX MIP solver on small size instances. For the instances with 10 requests, both solution approaches were able to solve the problem to optimality, but the ALNS algorithm consumed less CPU time than CPLEX. When the number of requests increases to 20, no proven optima were obtained, so we compare the near-optimal solutions of the two methods using the three above-mentioned indicators (Gap M IP , Gap ALN S and Imp ALN S-M IP ) and the running time of both. Observe that the ALNS algorithm found better objec-

The improvement Imp ALN S-M IP increases quickly with the number of requests. For the group of instances with 30 requests, Table

3

.6 summarizes the results for 100 requests instances. CPLEX achieved to find feasible solution for only 2 out of 9 instances. In most cases, CPLEX terminated because of lack of memory, so we did not try longer time limit. For this reason, we only report U B M IP , LB ALN S and Gap ALN S for the remaining 7 instances to serve as a benchmark for future comparisons. Our algorithm produce an average 12.80% Gap ALN S . Since the best upper bound might be reduced by more sophisticated techniques, the actual optimality gap is possibly less than Gap ALN S . Table

3

.7 concludes the average value of Gap M IP , Gap ALN S , Imp ALN S-M IP , CP U M IP and CP U ALN S by instance size, respectively.
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 3 4: Computational results for small size instancesInstances U B M IP LB M IP a LB ALN S a Gap M IP (%) b Gap ALN S (%) b Imp ALN S-M IP (%) CP U M IP (s) CP U ALN S (s)The better Gap between the upper bounds found by the MIP in a given running time and the best feasible solutions found by the ALNS/the best feasible solutions found by the MIP is emphasized in italics among the columns 5 and 6.

	10-5-5-50a	965.2	965.2	965.2	0	0	0	47.4	4.2
	10-5-5-50b	1235.8 1235.8	1235.8	0	0	0	256.8	3.1
	10-5-5-50c	1415.0 1415.0	1415	0	0	0	123.3	3.2
	10-3-7-50d	1100.7 1100.7	1100.7	0	0	0	134.0	4.1
	10-3-7-50e	864.8	864.8	864.8	0	0	0	57.0	3.5
	10-3-7-50f	1467.6 1467.6	1467.6	0	0	0	52.2	3.0
	10-7-3-50g	1047.2 1047.2	1047.2	0	0	0	147.6	5.2
	10-7-3-50h	756.2	756.2	756.2	0	0	0	177.6	2.7
	10-7-3-50i	1226.4 1226.4	1226.4	0	0	0	101.2	4.5
	20-10-10-50a 4116.2 3765.1	3978.9	8.53	3.34	5.68	3600	14.4
	20-10-10-50b 3591.8 3123.3	3475	13.04	3.25	11.26	3600	12.2
	20-10-10-50c 1999.7 1863.6	1854.7	6.81	7.25	-0.48	3600	9.3
	20-5-15-50d	3432	3007.4	3112.7	12.38	9.30	3.52	3600	11.0
	20-5-15-50e	3252.4 2766.6	3018.2	14.94	7.2	9.09	3600	10.3
	20-5-15-50f	2555.7 2365.0	2334.2	7.46	8.67	-1.30	3600	23.2
	20-15-5-50g 4086.5 3461.3	3878.6	15.30	5.09	12.06	3600	14.1
	20-15-5-50h 3216.4 2682.0	2994.4	16.61	6.90	11.65	3600	17.0
	20-15-5-50i	4164.7 3574.3	4000.3	14.18	3.95	11.92	3600	10.3
	30-15-15-50a 9513.6 7235.3	9114.0	23.95	4.20	25.97	5400	42.1
	30-15-15-50b 11154.7 8963.8 10365.1	19.64	7.08	15.63	5400	30.0
	30-15-15-50c 10336.9 9456.4	9356.8	8.52	9.48	-1.05	5400	35.7
	30-10-20-50d 12783.3 7177.7 11596.6	43.85	9.28	61.56	5400	56.3
	30-10-20-50e 11232.5 9632.4 10763.2	14.25	4.18	11.74	5400	46.0
	30-10-20-50f 8564.2 5864.3	7478	31.53	12.68	27.52	5400	60.5
	30-20-10-50g 10648.3 7364.0 10056.2	30.84	5.56	36.56	5400	41.1
	30-20-10-50h 10326.7 8264.7 10268.2	19.97	0.57	24.24	5400	47.8
	30-20-10-50i 8494.3 6002.0	8278.9	29.34	2.54	37.94	5400	42.0
	40-20-20-50a 14527.0 10023.6 12998.1	31.00	10.52	29.67	7200	72.1
	40-20-20-50b 15986.4	9552	14756.3	40.25	7.69	54.48	7200	102.0
	40-20-20-50c 15268.1 11752.1 13535.5	23.03	11.35	15.18	7200	80.6
	40-15-25-50d 12134.6 7531.8 11136.4	37.93	8.23	47.86	7200	118.0
	40-15-25-50e 10134.2 7963.9	9636.7	21.42	4.91	21.00	7200	75.6
	40-15-25-50f 10593.7	-	9616.0	-	9.23	-	7200	86.4
	40-25-15-50g 11667.4 8567.8 10589.3	26.57	9.24	23.59	7200	89.0
	40-25-15-50h 17868.5	-	16069.9	-	10.07	-	7200	84.3
	40-25-15-50i 13244.2 9654.0 12000.3	27.11	9.39	24.30	7200	100.3
	50-25-25-50a 26518.2 14421.2 24738.6	45.62	6.71	71.54	14400	361.0
	50-25-25-50b 21996.8	-	18991.0	-	13.66	-	14400	258.0
	50-25-25-50c 23644.1	-	22695.9	-	4.01	-	14400	247.5
	50-20-30-50d 22414.6	-	19983.6	-	10.85	-	14400	577.1
	50-20-30-50e 18649.9 10664.8 16119.2	42.82	13.57	51.14	14400	246.4
	50-20-30-50f 22378.0	-	20347.5	-	9.07	-	14400	416.0
	50-30-20-55g 19986.5 9894.5 18465.2	50.49	7.61	86.62	14400	365.9
	50-30-20-50h 23668.4	-	20004.1	-	15.48	-	14400	345.0
	50-30-20-50i 16986.0	-	15478.6	-	8.87	-	14400	466.8
	a The higher of the best feasible objective values found by the MIP (Column 3) and the ALNS (column 4) is indicated
	in boldface.								

a The higher of the best feasible objective values found by the MIP (Column 3) and the ALNS (column 4) is indicated in boldface. b TABLE 3.5: Computational results for medium size instances

Instances U B M IP LB M IP a LB ALN S a Gap M IP (%) b Gap ALN S (%) b Imp ALN S-M IP (%) CP U M IP (s) CP U ALN S (s) b

The better Gap between the upper bound found by the MIP in a given running time and the best feasible solutions found by the ALNS/the best feasible solutions found by the MIP is emphasized in italics among the columns 5 and 6.

TABLE 3 .

 3 6: Computational results for large instances testInstances U B M IP LB M IP a LB ALN S a Gap M IP (%) b Gap ALN S (%) b Imp ALN S-M IP (%) CP U M IP (s) CP U ALN S (s)The higher of the best feasible objective values found by the MIP (Column 3) and the ALNS (column 4) is indicated in boldface.b The better Gap between the upper bound found by the MIP in a given running time and the best feasible solutions found by the ALNS/the best feasible solutions found by the MIP is emphasized in italics among the columns 5 and 6.

	100-50-50-100a 89554.8	-	74431.9	-	16.89	-	36000	741.2
	100-50-50-100b 94316.2 54549.7 85631.4	42.16	9.21	56.98	36000	766.8
	100-50-50-100c 127414.0	-	111717.1	-	12.32	-	36000	515.2
	100-25-75-100d 99874.7	-	86041.3	-	13.85	-	36000	1023.0
	100-25-75-100e 112084.5	-	96327.0	-	14.06	-	36000	985.1
	100-25-75-100f 96683.7 64493.4 82667.6	33.29	14.50	28.18	36000	602.0
	100-75-25-100g 81324.6	-	68543.2	-	15.72	-	36000	866.9
	100-75-25-100h 92333.1	-	84667.9	-	8.30	-	36000	711.4
	100-75-25-100i 13269.9	-	11898.0	-	10.34	-	36000	1176.2

a
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	n = 10	0	0	0	121.9	3.72
	n = 20	12.14	6.11	7.04	3600	13.53
	n = 30	24.65	6.17	26.68	5400	44.61
	n = 40	29.62	8.96	30.87	7200	89.81
	n = 50	46.31	9.98	69.77	14400	318.19
	n = 100	37.73	12.80	42.58	36000	820.87

.7: Statistical average value on the performance indicators Instance size Gap M IP (%) Gap ALN S (%) Imp ALN S-M IP (%) CP U M IP (s) CP U ALN S (s)
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		.8: Average improvement of total profit with the DAOB
	Number of requests Average improvement of total profit using the DAOB
	10	0
	20	5.7%
	30	7.0%
	40	10.3%
	50	9.8%
	100	14.6%

TABLE 4
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	.1: Example data for synergy factor estimation	
	Node index	Coordinates Time window Quantity
	Depot of carrier a (D a )	(7.5,7.5)	(0,5000)	/
	Depot of carrier b (D b )	(10,7.5)	(0,5000)	/
	Depot of carrier c (D c )	(7.5,0)	(0,5000)	/
	Pickup node of request 1 (P 1 )	(5,5)	(2406,2945)	15
	Delivery node of request 1 (D 1 )	(5,10)	(3537,4283)	-15
	Pickup node of request 2 (P 2 )	(10,10)	(1145,2199)	12
	Delivery node of request 2 (D 2 )	(10,5)	(1453,2702)	-12

TABLE 4 .

 4 2: Parameter setting of the GRASP × ILS according to instance size

	Symbol Role
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	.4: GRASP× ILS versus GUROBI MIP solver on small size instances
	(µ = ρ × distance)						
	Instance	GRASP× ILS		GUROBI		Imp(%)
		LB	T ime(s)	U B	LB	Gap(%) T ime(s)	
	AA30-7-7-3-4 344.95	0.43	-	* 344.95	-	0.91	0
	BB30-7-7-3-4	229.3	0.46	-	* 229.3	-	0.61	0
	AA30-10-31-3-3 547.95	7.94	-	* 547.95	-	33.11	0
	BB30-10-31-3-3 326.41	8.21	-	* 326.41	-	33.07	0
	Average	-	4.26	-	-	-	16.93	0
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	Instance	GRASP× ILS		GUROBI		Imp(%)
		LB	T ime(s)	U B	LB	Gap(%) T ime(s)	
	AA30-15-31-5-5	3196.51 183.66	3356.62 3189.06	4.99	3600.00	0.23
	BB30-15-31-5-5	3184.84 204.84	-	* 3184.84	-	2975.92	0
	CC30-15-31-5-5	2130.23 196.70	2340.14 2090.87	10.65	3600.00	1.85
	DD30-15-31-5-5	2257.83 201.36	2526.74 2222.54	12.04	3600.00	1.56
	XX30-16-15-4-4	2463.30 166.74	2523.02 2394.56	5.09	3600.00	2.79
	YY30-16-15-4-4	2217.47 179.62	2508.35 2070.87	17.44	3600.00	6.61
	AA30-25-31-7-6	4109.48 328.40	4465.63 3938.95	11.79	7200.00	4.15
	BB30-24-63-7-8	4199.16 547.66	4572.49 3809.92	16.68	7200.00	9.30
	CC30-25-31-8-8	1704.05 295.62	2264.87 1476.12	34.83	7200.00	13.38
	DD30-25-31-8-8	1746.57 333.85	2315.68 1174.08	49.30	7200.00	32.78
	XX30-23-127-8-7 2006.80 1017.90	2344.08 1959.49	16.41	7200.00	2.36
	YY30-24-63-5-7	1848.30 603.42	2541.98 1818.99	28.44	7200.00	1.56
	AA40-32-255-8-10 524.11 2577.11	1046.11 232.28	77.80	14400.00	55.68
	BB40-32-255-10-10 2454.13 2396.73	3226.31 2157.86	33.17	14400.00	12.07
	CC40-35-31-10-10 2123.35 493.46	3405.85 2005.07	41.13	14400.00	5.57
	DD40-33-127-12-5 1372.28 1574.92	2413.87 531.46	77.98	14400.00	61.27
	XX40-33-127-11-5 1844.25 1321.38	2464.55 1097.49	55.47	14400.00	40.49
	YY40-32-255-10-6 1366.24 2782.83	2650.36 1072.54	59.53	14400.00	21.50
	Average	-	855.90	-	-	30.71	8365.33	15.18

.5: GRASP× ILS versus GUROBI MIP solver on medium size instances (µ = ρ × distance × load)

. Stochastic bid generation problem in LTL transportation TABLE

  4.6: GRASP× ILS versus GUROBI MIP solver on medium size instances (µ = ρ × distance)

	Instance	GRASP× ILS		GUROBI		Imp(%)
		LB	T ime(s)	U B	LB	Gap(%) T ime(s)	
	AA30-15-31-5-5	609.7	195.37	729.38 606.34	16.87	3600.00	0.55
	BB30-15-31-5-5	639.25	184.66	713.91 634.3	11.15	3600.00	0.77
	CC30-15-31-5-5	805.22	184.72	978.68 790.68	19.21	3600.00	1.81
	DD30-15-31-5-5	611.18	174.11	861.68 575.34	33.23	3600.00	5.86
	XX30-16-15-4-4	783.73	202.84	825.23 774.34	6.17	3600.00	1.20
	YY30-16-15-4-4	754.47	179.36	986.27 669.13	32.16	3600.00	11.31
	AA30-25-31-7-6	1022.65 395.74	1355.13 976.42	27.95	7200.00	4.52
	BB30-24-63-7-8	996.57	641.13	1423.68 931.93	34.54	7200.00	6.49
	CC30-25-31-8-8	259.52	303.55	870.95 54.25	93.77	7200.00	79.10
	DD30-25-31-8-8	642.39	323.41	1254.04 429.07	65.78	7200.00	33.21
	XX30-23-127-8-7 1189.23 1064.88	1563.74 871.21	44.29	7200.00	26.74
	YY30-24-63-5-7	1163.88 642.74	1674.09 998.48	40.36	7200.00	14.21
	AA40-32-255-8-10	549	2471.23	1107.76 277.21	74.98	14400.00	49.51
	BB40-32-255-10-10 547.98 2330.43	1266.49 201.77	84.07	14400.00	63.18
	CC40-35-31-10-10 262.27	570.11	917.66 46.24	94.96	14400.00	82.37
	DD40-33-127-12-5 594.37	1530.6	841.02 313.54	62.72	14400.00	47.25
	XX40-33-127-11-5 790.84 1410.28	1286.59 107.95	91.61	14400.00	86.35
	YY40-32-255-10-6 616.63 2454.71	973.27 424.21	56.41	14400.00	31.21
	Average	-	847.77	-	-	49.46	8400	30.31

TABLE 5
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	Node index	Description	Coordinates Time window Quantity Price
	X	Depot of carrier X	(0,10)	/	/	/
	Y	Depot of carrier Y	(30,15)	/	/	/
	1	Request 1 hosted by carrier Y	(10,0)	[10,50]	1	50
	2	Request 2 hosted by carrier Y	(0,20)	[60,80]	3	40
	3	Request 3 hosted by carrier X	(35,5)	[10,100]	2	60
	4	Request 4 hosted by carrier X	(20,15)	[50,80]	3	40

.1: Data for the illustrative example

TABLE 5
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	.2: Comparison of results among no-collaboration scenario, CA and
	CE			
	Situation	Cost Revenue Profit
	Carrier X without collaboration 73.9	100	26.1
	Carrier Y without collaboration 77.8	90	12.2
	Carrier X in CA	52.8	90	37.2
	Carrier Y in CA	79.7	100	20.3
	Carrier X in CE	46.5	90	43.5
	Carrier Y in CE	39.2	100	60.8

  feasible for the original CE problem and LB best < U B M N T S then until (iter = niters LR ) or (Gap < 0.01) 20: solve RP (λ) via a MIP solver to get a solution S M IP and its cost U B M IP 21: if U B M IP < U B best then M IP using RH to get a feasible solution S RH and its cost L RH 25: if LB RH > LB best then LB best ← LB RH , S best ← S RH 27: end if 28: Gap ← U B best -LB best U B best 29: return Gap, S best , U B best and LB best

	14:	end if
	15: 16:	Gap ← U B best -LB best U B best update the vector of multipliers λ (Algorithm 10)
	17:	iter ← iter + 1
	18:	end if
	19: 22:	U B best ← U B M IP
	23: end if
	24: repair S 26:

9: LB best ← U B M N T S , S best ← S M N T S 10: else 11: repair S M N T S using RH (Algorithm 11), giving a feasible solution S RH with cost LB RH 12: if LB RH > LB best then 13:

LB best ← LB RH , S best ← S RH

TABLE 5
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			.3: Bids information of the example	
	Bid j	Bidder Requests to sell R -j	Requests to buy R + j	Price p j
	1	Carrier 1	{r 3 }	∅	65
	2	Carrier 1	{r 1 , r 3 }	∅	47
	3	Carrier 1	∅	{r 2 }	63
	4	Carrier 1	{r 1 }	{r 2 }	-18
	5	Carrier 1	{r 1 , r 3 }	{r 2 }	79
	6	Carrier 2	{r 2 }	∅	13
	7	Carrier 2	{r 2 }	{r 1 }	22
	8	Carrier 2	∅	{r 3 }	69
	9				

  prohibition rule is used in Algorithm 9 : Once a vertex leaves the current clique C, it is banned to come back during the next |C|+LengthT abu iterations, for the neighborhood N swap , and during LengthT abu iterations, for the neighborhood N drop , where LengthT abu is a tabu tenure parameter.

	Multi-start mechanism and stopping criteria :
		A restart is triggered after a given number of iterations without impro-
	vement. The number is denoted as DepthSearch. Each restart calls the ran-
	domized heuristic to construct a new initial solution. Algorithm 8 stops
	when the total number of iterations over successive restarts reaches a given
	maximum number niters M N T S .
	Algorithm 9 -Multi-neighborhood tabu search MNTS
	1: iter ← 0, C GlobalBest ← ∅
	2: while iter < niters M N T S do
	3:	initialize current clique C using the randomized constructive heuris-
		tic
	4:	reset tabu list
	5:	notbetter ← 0
	6:	C LocalBest ← C
	7:	while (notbetter < DepthSearch) and (iter < niters M N T S ) do
	8:	iter ← iter + 1
	9:	find the best non-tabu clique C in N swap ∪ N add ∪ N drop
	10:	C ← C
	11:	update tabu list
	12:	iter Restart ← iter Restart + 1
	13:	if W (C) > W (C LocalBest ) then
	14:	C LocalBest ← C
	15:	notbetter ← 0
	16:	else
	17:	notbetter ← notbetter + 1
	18:	end if
	19:	end while
	20:	if W (C LocalBest ) > W (C GlobalBest ) then
	21:	C GlobalBest ← C LocalBest
	22:	end if
	23: end while
	24: return C GlobalBest

TABLE 5
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		.4: Parameter setting according to instance size	
	Symbol	Role	Small Medium Large
	niters LR	Maximum number of iterations of LR	10	100	200
	niters M N T S	Maximum number of iterations of M N T S	1000	10000	20000
	δ	Step size to update Lagrangian multipliers	1	1.5	1.9
	LengthT abu Length of tabu tenure	7	8	9
	DepthSearch Parameter for triggering the restart of M N T S	20	30	50

TABLE 5 .

 5 6: Lagrangian relaxation versus MIP on medium size instances

	Instance	Lagrangian relaxation			MIP			Imp
		U B	LB	Gap	T	U B	LB	Gap	T	
	4-8-1020-C-A-BB30	3462.17	3460.59 0.05	1.92	-	* 3460.59	-	0.52	0
	4-8-1020-C-B-XX35	139.57	138.64	0.67	2.02	-	* 138.64	-	0.41	0
	2-20-2000-P-A-BB35	5723.61 5717.43 0.26	3.14	-	* 5717.43	-	12.44	0
	2-20-2000-P-B-CC35	480.6	479.34	0.44	3.60	-	* 479.34	-	20.49	0
	5-9-2555-C-A-AA55	1260.42	1251.89 0.68	7.48	-	* 1251.89	-	5.47	0
	5-9-2555-C-B-AA55	116.31	115.06	1.07	7.27	-	* 115.06	-	5.29	0
	3-30-3000-P-A-DD30 8390.24 8385.12 0.06 32.55	-	* 8385.12	-	1391.83	0
	3-30-3000-P-B-CC50	706.54	702.81	0.53 30.49	-	* 702.81	-	2966.36	0
	4-40-4000-P-A-AA55 8491.38 8477.41 0.16 50.63	8582.94	8465.93 1.36	3600	0.14
	4-40-4000-P-B-BB55	776.81	772.30	0.58 42.84	774.05	765.62	1.09	3600	0.87
	5-40-4000-P-A-AA65 8139.92 8109.12 0.38 41.04	8144.16	7982.56 1.98	3600	1.59
	5-40-4000-P-B-BB65	1015.18 1012.98 0.22 46.93	1029.61	999.94	2.88	3600	1.30
	4-10-4092-C-A-XX40	143.35	142.58	0.54 41.17	-	* 142.58	-	2.26	0
	4-10-4092-C-B-YY40	266.74	263.68	1.15 52.19	-	* 263.68	-	2.28	0
	8-45-4600-P-A-XX45	888.77	874.68	1.59 153.64	881.77	851.29	3.46	3600	2.75
	8-45-4600-P-B-YY45	981.06	976.68	0.45 165.70	982.79	949.19	3.42	3600	2.90
	5-50-5000-P-A-AA60 10454.80 10413.51 0.39 187.43	10414.87 10318.91 0.92	3600	0.92
	5-50-5000-P-B-BB60	1015.3	1011.69 0.36 201.21	1013.21	1005.51 0.76	3600	0.61
	10-50-5000-P-A-CC60 10237.08 10226.92 0.10 227.73	10265.17 10160.27 1.02	3600	0.66
	10-50-5000-P-B-DD60 1116.44 1113.48 0.27 217.44	1124.92 1061.63 5.63	3600	4.88
	Average	-	-	0.50 75.82	-	-	2.25 2020.37 1.66

TABLE 5 .

 5 7: Lagrangian relaxation versus MIP on large size instances

	Instance	Lagrangian relaxation			MIP			Imp
		U B	LB	Gap	T	U B	LB	Gap	T
	5-10-5115-C-A-AA70	1716.53	1699.85 0.97 153.22	-	* 1699.85	-	3.83	0
	5-10-5115-C-B-BB70	284.03	280.87	1.11 166.80	-	* 280.87	-	3.19	0
	6-50-6000-P-A-XX70	1114.49 1099.84 1.32 285.53	1121.04	989.30 11.75	3600	10.05
	6-50-6000-P-B-XX75	1094.07 1087.53 0.60 226.57	1088.71 1061.69 2.48	3600	2.43
	4-40-6000-P-A-YY70	758.30	753.93	0.58 316.32	728.75	723.24	0.76	3600	4.07
	4-40-6000-P-B-YY75	889.15	879.37	1.10 246.18	888.18	868.52	2.21	3600	1.25
	5-50-7000-P-A-AA50 10536.97 10494.32 0.40 411.63	10556.10 10418.72 1.30	3600	0.72
	5-50-7000-P-B-BB50	808.97	807.91	0.13 435.76	809.55	800.22	1.15	3600	0.96
	4-11-8118-C-A-CC70	3066.30	3045.06 0.69 607.24	-	* 3045.06	-	4.84	0
	4-11-8118-C-B-DD70	235.11	234.11	0.43 658.19	-	* 234.11	-	4.82	0
	7-50-8400-P-A-CC50	10835.73 10550.77 2.63 717.39	10676.16 10101.59 5.38	3600	4.26
	7-50-8400-P-B-DD50	849.01	845.04	0.47 818.67	884.53	825.39	6.69	3600	2.38
	8-55-9600-P-A-AA60	9710.22 9632.60 0.80 1006.12	9704.21 9115.74 6.06	3600	5.37
	8-55-9600-P-B-BB60	1455.96 1426.46 2.03 1210.81	1427.33 1410.87 1.15	3600	1.10
	10-60-10000-P-A-CC60 13003.43 12874.78 0.99 1453.84	13016.09 11786.76 9.44	3600	8.45
	10-60-10000-P-B-DD60 1357.12 1346.31 0.80 1226.57	1376.19 1329.33 3.41	3600	1.28
	12-65-12000-P-A-AA65 13217.40 12852.32 2.76 1389.42	13178.75 12237.53 7.14	3600	4.78
	12-65-12000-P-B-BB65 1536.93 1515.89 1.37 1658.40	1595.3	1475.17 7.53	3600	2.76
	12-65-12000-P-A-CC70 12764.73 12619.95 1.13 2004.17	12690.57 11425.88 9.97	3600	9.46
	12-65-12000-P-B-DD70 1358.72 1324.32 2.53 1606.24	1377.68 1282.72 6.89	3600	3.24
	Average	-	-	1.14 829.95	-	-	5.21 2880.81 3.91
	able to solve the WDP in CA, but the computation time largely depends on
	the request and bid structure. For example, the CA problems in the well-
	known set CATS (Leyton-Brown, Pearson, & Shoham, 2000) have a huge
	number of bids for each instance but a small number of items (requests in
	our CE) per bid : MIP solvers obtain optimal solutions in less than one se-
	cond. The instances of another set REL (Lau & Goh, 2002) have roughly the
	same number of items and number of bids for each instance, and in that
	case commercial solvers are dominated by dedicated algorithms. These re-
	sults from previous experiments concerning the WDP in CA might explain
	our conclusion.								

  It would be better if the two pro-
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	tion à un réseau et la collaboration avec d'autres entreprises est devenue La collaboration entre transporteurs se réfère à un partenariat entre plu-problème de détermination des gagnants (WDP) (Ackermann et al., 2011)
	une stratégie principale pour eux d'acquérir des avantages concurrentiels sieurs transporteurs au même niveau d'opérations logistiques. Plusieurs pour affecter les demandes aux transporteurs gagnants. La séquence d'évé-
	dans un environnement sévère. Pour atteindre des économies d'échelle, de transporteurs forment une coalition et échangent leurs demandes de trans-nements suivante décrit la procédure d'échange de demandes entre trans-
	plus en plus de PME de transport ont formé des réseaux de collaboration en port pour explorer une meilleure complémentarité entre les demandes. porteurs dans le transport de chargement partiel :
	partageant les tâches et les moyens de transport, afin de réduire les coûts, Cette complémentarité des demandes peut améliorer la planification des
	d'améliorer la réactivité à l'évolution du marché, et de saisir plus d'oppor-tournées tout en augmentant les taux de remplissage des véhicules ou 1. Chaque transporteur évalue ses demandes comme rentables ou
	tunités commerciales. en éliminant les retours vides des véhicules et, par conséquent, réduire non rentables en résolvant un problème de ramassage et de li-
	La concurrence féroce sur les marchés mondiaux, l'introduction de pro-leurs coûts de transport. Un problème pour la collaboration entre trans-vraison avec des fenêtres de temps, profits et demandes réservés
	duits avec des cycles de vie plus courts, l'augmentation des coûts de car-porteurs est de savoir comment échanger (réaffecter) de façon optimale les (PDPTWPR) (chapitre 3).
	burant et des prix du travail, la croissance de la législation du transport demandes de transport entre les transporteurs afin que leur profit total soit
	et des attentes accrues des clients ont diminué les marges bénéficiaires des maximisé. L'autre problème est de savoir comment répartir équitablement 2. Demandes non rentables sont soumises au commissaire-priseur en
	transporteurs (Cruijssen et al., 2007). Ainsi, comme une stratégie efficace le bénéfice obtenu grâce à la collaboration entre transporteurs dans une coa-tant que les demandes de sous-traitance.
	pour les petites ou moyennes transporteurs afin d'améliorer la rentabilité lition afin de garantir la durabilité de cette alliance (Chen, 2016). Dans cette
	en réduisant les ré-positionnements à vide de véhicules et l'augmentation thèse, nous nous concentrons sur le premier problème qui est également 3. Le commissaire-priseur annonce les demandes de sous-
	des taux de remplissage des véhicles, la collaboration entre transporteur désigné comme problème de planification de transport collaboratif (CTP) traitance/vente à tous les transporteurs.
	est en train d'émerger et d'attirer un intérêt croissant des praticiens indus-(Wang & Kopfer, 2011, 2014 ; Wang et al., 2014). 4. Chaque transporteur soumet des offres avec prix demandé au
	triels et des chercheurs (Dai & Chen, 2009). Certains projets de pilotage mis Dans cette thèse, nous proposons un cadre pour la collaboration entre commissaire-priseur, et chaque offre comprend une ou plusieurs de-
	en oeuvre aux États-Unis révèlent que le Transport Collaborative Manage-transporteur. Dans ce cadre, la collaboration entre transporteurs est réa-mandes de transport. Ce problème est appelé le problème de géné-
	ment (CTM) (y compris la collaboration entre transporteur) peut réduire le lisée par un échange combinatoire composé d'un commissaire-priseur ration d'enchère (BGP)
	kilométrage parcouru par les véhicules vides de 15%, le temps d'attente et réel/virtuel et plusieurs transporteurs (enchérisseurs). Chaque transpor-
	le temps de pause des véhicules de 15%, les coûts des conducteurs de 15% teur joue un rôle double d'acheteur et de vendeur dans le but d'amélio-
	et peut augmenter le taux de remplissage de véhicules de 33% (Sutherland, rer sa rentabilité grâce à l'échange de demandes de transport avec d'autres
	2009). transporteurs. Le commissaire-priseur est responsable de la résolution d'un

Selon un rapport autorisé fourni par Eurostat en 2013 (économie d'entreprise-analyse de classe de taille), les PME a gagné 54% de la part de marché de l'UE dans le secteur de transport et de stockage 1 . Par conséquent, les stratégies d'opérations plus efficaces pour améliorer la compétitivité et de gagner plus de profit pour les PME dans le transport de marchandises/secteur de la logistique ont été largement solicitées au cours de la dernière décennie. La logistique collaborative (CL) est l'une de ces stratégies. Comme un moyen efficace pour réduire les retours à vide de véhicules et d'augmenter leurs taux d'utilisation, CL a attiré un intérêt croissant de praticiens industriels et de chercheurs universitaires[START_REF] Dai | Mathematical model and solution approach for collaborative logistics in less than truckload (LTL) transportation[END_REF]). Au point de vue économique et écologique, CL est en effet un moyen essentiel pour réduire les distances parcoures par les véhicules, en particulier pour éviter deadheads, i.e. , les déplacements de véhicules vides[START_REF] Ackermann | Combinatorial auctions in freight logistics[END_REF].En général, CL doit faire face à deux sous-problèmes, i.e. , la réaffectation des demandes de transport et le partage de profit parmi les transporteurs[START_REF] Krajewska | Collaborating freight forwarding enterprises[END_REF][START_REF] Berger | Solutions to the request reassignment problem in collaborative carrier networks[END_REF] Dai & Chen, 1. http://ec.europa.eu/eurostat/statistics-explained/index.php/ Business_economy_-_size_class_analysis
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For the GRASP × ILS, we report the best feasible solution of each instance, denoted by LB, found by the algorithm when the stopping criteria is reached. The upper bound (U B), the lower bound (LB), and the Gap between U B and LB obtained by the GUROBI MIP solver are recorded. The running time is reported when the optimal solution is found or a prespecified time is reached instead. A bold face indicates a better feasible solution obtained from the GRASP × ILS or GUROBI, and an asterisk means the solution is proven to be optimal by the GUROBI MIP solver. At last, the relative improvement of the GRASP × ILS over the GUROBI MIP solver is also reported, denoted as Imp.

Table 4.3 and Table 4.4 compare the performance of the GRASP × ILS algorithm and GUROBI on small size instances. For the instances with up to 10 reserved requests and requests for auction, and 31 potential bids. Both approaches are able to solve the model to optimality, but the GRASP × ILS algorithm consumes less CPU time than GUROBI. Table 4.5 and Table 4.6 give in the same format the results for medium size instances for two cases of price generation methods. Observe that the GUROBI MIP solver begins to exhibit poor performance with the increase of problem size. By contrast, the performance of GRASP × ILS still remains stable with only a fraction of running time of the GUROBI MIP solver. 

For the above example, R matching = {{+r 2 }, {-r 3 }}.

To simplify the presentation of the RH algorithm, we give the following two additional definitions : i) A bid b ∈ R matching iff R + b ⊆ R + matching , and R - b ⊆ R - matching , where R + b , R - b are the set of buying requests and the set of selling requests of bid b, respectively. ii) A bid set B = R matching iff

The 

Generation of instances

Since the CE problem was rarely studied in the literature, we could not find existing instances and decided to develop an instance generator by ourselves, to evaluate the performance of the Lagrangian relaxation approach but also for future research of the CE problem. This instance generator in Python can be found via : https://github.com/yuan296103/ CE-instances-generator, and the LTL requests data used in the simulation tests are extracted from the benchmark instances in Ropke et Cordeau ( 2009), available at http://www.diku.dk/~sropke/.

The user can generate complete-bids (C) or partial-bids (P) instances. In both cases, the number of carriers m and the number of requests n are given. Then each request is assigned to carriers one by one. For request k, it is assigned to carrier i with a probability of P ik = 1/Dis ik i∈N 1/Dis ik , where Dis ik represents the transportation cost/traveled distance for carrier i to serve request k individually. Thus, for each carrier, its own request set M i is defined. We use this method to initially allocate requests among carriers since the manner well simulates the realistic situation, i.e. , the closer a carrier is to a request, the more likely for the carrier to get the request.

In complete-bids instances, each carrier can bid for any requests from other carriers and submit all possible bids. Hence, the number of possible bids submitted by carrier i is

In partial-bids instances, the number of bids b is fixed and each carrier can only submit b/m bids, randomly selected from all possible bids.

In the request-based bid price generation, we use two options to generate the price for each request. One takes into account both distance fac-Chapter 5. WDP in Carrier Collaboration Via CE on average). The Lagrangian heuristic is only a bit slower (0.39 seconds on average). Its lower and upper bounds are never equal but the difference never exceeds 1% (0.47% on average) and, in fact, all the optima found by the solver are retrieved. These results show that both solution methods are very efficient on small instances. instances. GUROBI is optimal on 10 instances but not on the other 10 partial-bids instances (code P) with at least 40 requests and 4000 bids, even in one hour of computation. Its average gap and running time are respectively 2.25% and 2020.37 seconds. Our Lagrangian relaxation algorithm finds not only the 10 proven optima but obtains better solutions than the MIP solver in the other cases, with a 1.66% higher profit on average (for the instances which are not solved to optimality by the MIP solver). It looks more stable both in terms of gap (average 0.50%, maximum 1.59%) and speed (average 75.82 seconds). Summarizing, on average, the Lagrangian approach runs faster and finds better solutions than the solver on medium instances.

The results of the 20 large size instances, are given in Table 5.7. The sol-blems could be considered together so that a better outcome can be gained compared to deal with them successively. Furthermore, more sophistical forms of collaboration may be developed to enrich collaborative logistics.

For instance, shippers, carriers, or even customers can be involved together in collaboration. For such kind of collaboration, new models and solution approaches are required. All of the above mentioned issues will be the topics for future research. 

A.1 Introduction générale

La collaboration entre les petites et moyennes entreprises (PME) joue un rôle croissant dans leur fonctionnement/gestion quotidienne. La participa-Modèle résultant :

A.3. Le problème de ramassage et de livraison avec fenêtres de temps, profits et demandes réservées 139 view, 43(2), 173-191. (Cited on pages 20 and 72.) Leyton-Brown, K., Pearson, M., & Shoham, Y. (2000). Towards a universal test suite for combinatorial auction algorithms. In Proceedings of the 2nd acm conference on electronic commerce (pp. 66-76). (Cited on page 118.) Leyton-Brown, K., Shoham, Y., & Tennenholtz, M. (2000). An