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1. Abbreviations  

 

aa Amino acid  

ABA Abscisic acid  

ASM Acibenzolar-S-methyl ester (commercialized as Bion) (see also BTH) 

BA benzyl adenine, a cytokinin for growth media  

BABA Beta-aminobutyric acid 

BAK1 BRI1 associated kinase 1  

BIK1 BOTRYTIS-INDUCED KINASE1 

BTH Benzothiadiazole (commercialized as Bion) 

bZIP Basic leucin zipper transcription factors 

CD2-1 C-terminal epitope of flagellin  

cDNA Complementing DNA  

CDPK Calcium-dependent protein kinase 

CEP1 C-TERMINAL ENCODED PEPTIDE 1 

CERK1 Chitin elicitor receptor kinase 1 

cfu Colony forming units  

CLE CLAVATA3/EMBRYO-SURROUNDING REGION 

COI1 Coronatine-insensitive 1 

Col-0 Columbia-0 Ecotype 

CRP Cysteine-Rich Peptide 

dag Days after germination  

DAMPs Damage/danger associated molecular pattern  

dap Days after propagation  

DDM1 DECREASE IN DNA METHYLATION 1 

DET Differently expressed transcripts  

DORN1 DOES NOT RESPOND TO NUCLEOTIDES 1 

DRM DOMAINS REARRANGED METHYLTRANSFERASE 

dsRNA Double stranded RNA  

eATP Extracellular ATP 

eDNA Extracellular DNA 

EFR Elongation factor Tu receptor  



v 
 

EF-Tu Elongation factor thermo unstable  

EGF Epidermal growth factor  

elf18/26 18/26 amino acids peptide of the N-terminus of EF-Tu 

ETI Effector triggered immunity  

ETS Effector-triggered susceptibility  

FER Feronia , RALF receptor  

FLC FLOWERING LOCUS C 

flg22 22 amino acids peptide of the N-terminus of flagellin  

FLS2 Flagellin sensing 2  

FRK1  Flagellin responsive kinase 1  

GLV Green-leaf volatiles 

gRNA Guide RNA  

H3ac Histone 3 acetylation  

H3K4me2 Histone 4 lysine 4 di-methylation  

H3K4me3 Histone 4 lysine 4 tri-methylation  

H3K9ac Histone 3 lysin 9 acetylation  

H4ac Histone 4 acetylation  

HAC1 Histone acetyltransferase 1 

HR Hypersensitive response  

HypSys Hydroxyproline-containing glycopeptides 

IBA Indole-3-butyric acid, auxin used for growth media  

INA 2,6-dichloro-isonicotinic acid 

ISR Induced systemic resistance  

JA  Jasmonic acid  

JA-Ile  Jasmonoyl-Isoleucine 

LPS Lipopolysaccharides 

LRR Leucin rich repeat  

LysM Lysine motif  

MAMP Microbe associated molecular pattern  

MAPK Mitogen-Activated Protein Kinase 

MET1 METHYLTRANSFERASE1 

miRNA MicroRNA 

MOM1 MORPHEUS´MOLECULE 1 
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mRNA Messenger RNA 

MS Murashige & Skoog Medium 

MTI Microbe triggered immunity  

NADPH Nicotinamidadenine Dinucleotidephosphate 

NPR1 NON-EXPRESSOR OF PR1 

NRPD (Pol IV) RNA polymerase IV 

NRPE (Pol V) RNA polymerase V 

OD Optical density  

OGs Oligogalacturonides 

PAMPs Pathogen associated molecular pattern  

PCR  Polymerase chain reaction  

Pep Danger peptide  

PEPR Pep receptor  

PGN Peptidoglycans 

PIP PAMP-induced peptides 

POL II  Polymerase II 

PR  Pathogenesis-Related 

PROPEP Precursor of Pep 

PROSCOOP Precursor of SCOOP 

PRR Pattern recognition receptor  

PSK Phytosulfokines 

Pst  Pseudomonas syringae pathovar tomato DC3000  

PSY1 PLANT PEPTIDE CONTAINING SULFATED TYROSINE 

PTI Pathogen triggered immunity  

PTMP Small post-translationally modified peptides 

qPCR Quantitative polymerase chain reaction  

RALF Rapid alkalization factor  

RAM Root apical meristem  

RbohD Respiratory-burst oxidase homologue 

RdDM RNA-directed DNA methylation  

RDR6 RNA-DEPENDENT RNA POLYMERASE 6 

RGF Root meristem growth factor  

RLK Receptor like kinase  
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RLP Receptor like protein  

RLU Relative light unit 

ROS Reactive oxygen species  

SA Salicylic acid  

SAM Shoot apical meristem  

SAR Systemic acquired resistance  

SCOOP Serine rich endogenous peptide  

scSCOOP12 Scrambled serine rich endogenous peptide 12 

SE Standard error  

siRNA Small interfering RNA  

ssRNA Single stranded RNA 

TMV Tobacco Mosaic Virus 

UV Ultraviolet  

WAK1 Wall associated kinase 1  

Ws Wassilijewska ecotype 
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2. Summary  

 

Due to the sessile nature, plants cannot simply escape a stressful situation. However, plants 

developed a multilayered immune system to counteract certain stresses. The immune system 

can for instance be triggered by herbivore feeding and pathogen or virus infections. Highly 

specialized components of the immune system enable the plant to detect a dangerous 

situation. These danger signals can have exogenous or endogenous origins. Exogenous danger 

signals derived from microbes are called microbe associated molecular patterns (MAMPs). 

The best studied MAMP is flg22, a conserved motif of the bacterial flagella. On the other hand, 

endogenous danger signals are referred to as damage/danger associated molecular patterns 

(DAMPs). Actively processed and/or secreted peptides upon an infection that modulate 

immune response are referred as phytocytokines. Next to their activity as defense amplifiers, 

phytocytokines have been shown to regulate developmental processes. In addition to these 

classes of exogenous and endogenous elicitors there are also synthetic elicitor molecules. 

These molecules are known to induce a systemic defense activation at distant non-challenged 

sites. This effect is called systemic acquired resistance (SAR). Along with SAR comes an 

extensive transcriptional reprogramming of defense-related genes and gene priming. Priming 

describes a mechanism in which a subset of genes is kept at a “ready-state” to facilitate a 

subsequent transcriptional regulation. Priming is often connected to epigenetic regulation of 

gene expression.  

In this work, I describe the discovery and characterization of a novel phytocytokine. I will 

begin with the bioinformatics-based discovery of a peptide family that we termed SCOOP (for 

Serine riCh endOgenOus Peptide). I then show that a peptide, covering a conserved motif 

present in all members of the SCOOP family, induces various defense responses in 

Arabidopsis. Moreover, I show that the SCOOP12 peptide promotes resistance against 

Pseudomonas syringae and I demonstrate that perception of the SCOOP12 relies on the BAK1 

coreceptor. I show the SCOOP peptide family contains several members apart from SCOOP12 

that induce defense responses. Finally, I present a role of the SCOOP peptide family in plant 

developmental processes. The knock-out mutant of the putative SCOOP12 precursor 
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proscoop12 shows an increased root length while treatments with three different SCOOP 

peptides induce severe phenotypical changes in the root tissue.  

In the second part I investigate the effect of two other classes of elicitors (exogenous and 

synthetic elicitors). I show that treatments with a synthetic elicitor (BTH, a salicylic acid 

analogue) can lead to long-term transcriptional memory at certain genes. I found that 

subsequent challenging of such plants with the exogenous elicitor flg22 reverted this 

transcriptional memory bringing their expression back to the original pre-treatment level. 

This memory behaviour we describe as “de-priming” memory response. I made very similar 

observations in apple (Malus x domestica), suggesting that this response is highly conserved 

in plants. Finally, I describe a potential role for DNA methylation in the observed 

transcriptional memory behaviour. I show that plants defective in DNA methylation pathways 

showed a different memory behaviour. 

In conclusion, my thesis investigates effects on plant transcription, development and defense 

by endogenous (the SCOOP peptide family), exogenous (flg22) and synthetic (BTH) plant 

elicitors. My thesis shows (1) how diverse the function of these elicitors can be and (2) how 

the plant defense system can affect plant development and trigger memory. 
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2.1. Résumé en français 

 

De par leur nature d’organismes sessiles, les plantes ne peuvent fuir une condition stressante. 

Toutefois, les plantes ont développé un système immunitaire multicouche pour contrer 

certains stress. Le système immunitaire peut, par exemple, être déclenché par le broutage 

d’herbivores ainsi que par des infections bactériennes ou virales. Des composés hautement 

spécialisés du système immunitaire permettent à la plante de détecter les situations 

dangereuses pour elle. Ces signaux de danger peuvent avoir des origines endogènes ou 

exogènes. Les signaux de danger exogènes sont dérivés des micro-organismes se nomment 

microbe associated molecular patterns (MAMPs). Le MAMP le plus étudié est flg22, un motif 

conservé présent dans les flagelles bactériens. D’un autre côté, les signaux de danger 

endogènes sont identifiés en tant que damage/danger associated molecular patterns 

(DAMPs). Les phytocytokynes sont, quant à elles, des peptides activement produits et 

sécrétés durant une infection et modulant la réponse. De manière conjointe à leur activité 

d’amplificateur des mécanismes de défense de la plante, les phytocytokines jouent un rôle 

dans le processus développemental. En plus de ces catégories d’éliciteurs exogènes et 

endogènes, il existe également des éliciteurs synthétiques. Ces molécules peuvent induire 

une activation des défenses systémiques sur des sites distants et non-infectés. Cet effet est 

dénommé résistance acquise systémique (SAR). Le SAR génère une reprogrammation 

transcriptionnelle extensive des gènes associés à la réponse défensive et au priming. Le 

priming décrit un mécanisme par lequel un petit nombre de gènes est maintenu dans un 

« état de réponse » pour faciliter une régulation transcriptionnelle subséquente. Le priming 

est souvent connecté à la régulation épigénétique de l’expression génique.  

Dans ce travail, je décris la découverte et caractérisation d’une nouvelle phytocytokine. Je 

commencerai par présenter l’identification bioinformatique d’une famille de peptides que 

nous avons baptisé SCOOP (Serine riCh EndOgenOus Peptide). Je montrerai ensuite qu’un 

peptide, présentant un motif conservé par tous les membres de la famille SCOOP, induit des 

réponses défensives variées chez Arabidopsis. De plus, je mets en évidence que le peptide 

SCOOP12 induit une résistance contre le pathogène Pseudomonas syringae et démontre que 

la perception de SCOOP12 nécessite le corécepteur BAK1. Je présente également que la 

famille de peptides SCOOP contient plusieurs membres, autres que SCOOP12, qui induisent 



xi 
 

une réponse défensive. Finalement, j’expose un rôle de la famille SCOOP dans le processus 

développemental de la plante. Le mutant knock-out du précurseur putatif de SCOOP12, 

proscoop12, présente une augmentation de la longueur des racines alors que des traitements 

avec d’autres peptides SCOOP induisent des changements phénotypiques sévères au niveau 

des tissus racinaires.  

Dans la seconde partie, j’investigue les effets de deux autres classes d’éliciteurs (exogènes et 

synthétiques). Je montre que les traitements avec un éliciteur synthétique (BTH, un analogue 

de l’acide salicylique) peuvent conduire à une mémoire transcriptionnelle de longue durée de 

certains gènes. J’ai observé que le challenge expérimental de ces plantes avec l’éliciteur 

exogène flg22 désactive cette mémoire transcriptionnelle en ramenant le niveau d’expression 

de ces gènes à leur niveau initial pré-traitement. Nous avons identifié ce comportement 

comme un « désamorçage » (de-priming) de la réponse-mémoire. J’ai effectué des 

observations similaires sur le pommier (Malus x domestica), suggérant que cette réponse 

puisse être hautement conservée chez les plantes. Finalement, je décris le rôle potentiel de 

la méthylation de l’ADN dans le phénomène observé de mémoire transcriptionnelle. Je 

démontre que les plantes avec des voies métaboliques de la méthylation de l’ADN 

défectueuses présentent un comportement mémoire différent.  

En conclusion, ma thèse investigue les effets éliciteurs endogènes (la famille de peptides 

SCOOP), exogènes (flg22) et synthétiques (BTH) sur la transcription, le développement et les 

défenses des plantes. Ma thèse met en lumière (1) la diversité des fonctions de ces éliciteurs 

et (2) de quelle manière les mécanismes de défense des plantes peuvent affecter le 

développement et activer une mémoire.  
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3. General Introduction  

 

Why working on plants? What makes it so important to work on plants and why is this 

research so relevant but still often underrated in a cross-border context of science?  

These are questions I often asked myself during the last years. However, during my studies I 

discovered how multifaceted, fascinating and unexpected this part of science can be. Why 

working on plants? – not only the work is fascinating but also important. Plants are the main 

source of energy to terrestrial ecosystems. Plants are capable to convert sunlight, CO2 and 

water into sugar. Carbohydrates are therefore available for other organisms. Especially at the 

IRHS in Angers we profit a lot from this in the form of delicious apple fruits.  

Because of their sessile nature, plants cannot avoid danger by simply moving away. Therefore, 

plants need to be protected in a different manner compared to animals. In fact, plants are 

home to millions of potentially disease-causing pathogenic microbes that can have a negative 

influence on plant growth. Whereas beneficial microbes can have positive effects (Delmotte 

et al., 2009). Despite this apparent challenging condition plant were able to entrench in most 

environments. As a key to success, plants have developed a very reliable defense system. This 

plant immune system consists of several layers of constitutive and inducible responses to fight 

back the millions of microbes (Jones and Dangl, 2006b).  

Next to the constitutive defense system, which consists of properties such as the waxy 

cuticular that covers the leaf surface, tichomes, thorns, secondary metabolites which harm 

invading pathogens, as well as lignified cell walls, defense responses can be induced (Thordal-

Christensen, 2003). One key to activating the plant immunity is the sensing of danger.  

These danger signals can originate from the infectious agent or from the plant itself. 

According to the latest classification of these immunogenic agents, plant host factors can be 

divided into two categories. The damage-associated molecular patterns (DAMPs) and 

peptides which are actively processed and/or secreted upon infection in order to modulate 

the immune response (phytocytokines) (Gust et al., 2017). 
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Whereas peptides derive from infectious agents are referred to as Microbe- Associated 

Molecular Patterns (MAMPs) or as Pathogens- Associated Molecular Patterns (PAMPs) one of 

the best characterized molecule among them is flagellin (Boller and Felix, 2009).  

The activation of defense responses at a MAMP recognition site is followed by systemic 

defense activation even at distant non-challenged sites. This mechanism is called systemic 

acquired resistance (SAR). Along with SAR comes an extensive transcriptional reprogramming 

of defense-related genes and gene priming. Priming describes a mechanism in which a subset 

of genes is kept at a “ready-state” to facilitate a subsequent transcriptional regulation. 

Epigenetic mechanisms, such as DNA methylation and histone modification and their 

influence on the chromatin reconfiguration, are shown to have influence on plant adaptation 

to different biotic stresses (Espinas et al., 2016).  

3.1. MAMPs and DAMPs – defense inducing molecular signatures  

 

Plants have developed mechanisms to detect various forms of danger, including the attack by 

pathogens as well as tissue and cellular damage. Since plants lack an adaptive immune system 

they have strong need for rapid detection of all kinds of pathogens. Thus, the perception of 

defense-inducing molecular signatures like MAMPs and DAMPs is viable for the fast initiation 

of defense responses. Exogenous as well as endogenous elicitors will be described in the 

following chapter.  

3.1.1. Microbe-associated Molecular Patterns (MAMPs) 

MAMPs are highly conserved and crucial molecules, often they are found in a whole clade of 

microbes. Formally MAMPs were referred as PAMPs. However, these structures are not 

exclusively restricted to pathogens and the term MAMPs is more accurate (Boller and Felix, 

2009). MAMPs have the ability to elicit defense responses upon their perception. Prominent 

examples for MAMPs are peptidoglycans. These are the building blocks of the bacterial cell 

wall. Another example are bacterial elongation factors and finally flagellin monomers, which 

are required for the movement of motile bacteria (Newman et al., 2013; Choi and Klessig, 

2016). The class of MAMPs can be separated according to their origin. Fungal MAMPs can also 
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be perceived by plants. One of best studied receptors is the chitin elicitor receptor kinase 1 

(CERK1). This receptor plays an important role in chitin triggered immunity (Miya et al., 2007; 

Wan et al., 2008). Next to chitin, ergosterol, which is an important building block of the fungus 

itself, can serve as defense elicitors (Klemptner et al., 2014). Moreover, recently it was shown 

that the linear 1,3-β-D-glucans, which is also present in the walls of fungi and oomycetes, are 

recognized by the plant (Mélida et al., 2018). Additional MAMPs can derive from viruses. 

Viruses are often transmitted through vector organisms like aphids or nematodes. These 

organisms wound the plant by sucking or feeding on it and thereby transmit the virus into the 

plant cells (Bragard et al., 2013). Typical viral molecules that can be observed by the plant are 

virus-specific coat proteins, movement proteins or replicases (Conti et al., 2017). However, in 

contrast to other MAMPs, virus derived MAMPs mostly induce virus-specific defense 

responses. This includes the activation of the RNA silencing machinery and located cell-death 

in order to restrict viral spread (Padmanabhan and Dinesh-Kumar, 2014). Finally, bacterial 

MAMPs include the bacterial flagellin. Flagellin is the hallmark of a peptide MAMP (Felix et 

al., 1999). As mentioned before, flagellin monomers are the building blocks of the bacterial 

flagellum (Taguchi et al., 2008). The N- and C- terminus of this protein are highly conserved. 

It was shown that only nanomolar concentrations of a conserved part of 22 amino acids (aa) 

from the N-terminus of Pseudomonas syringae pv. tomato (Pst DC3000) flagellin elicits 

defense responses (Felix et al., 1999; Smith et al., 2004). This small conserved peptide is 

referred to as flg22 and is perceived by most plant species via the leucin-rich repeat receptor 

like kinase (LRR-RLK) FLAGELLIN SENSING 2 (FLS2) (Gomez-Gomez et al., 1999; Bauer et al., 

2001; Chinchilla et al., 2006). Plants defective in FLS2 are completely “blind” to flagellin and 

were found to be more susceptible to Pst. DC3000 infections. Interestingly, the exposure of 

Arabidopsis pants to flg22 results in a protective effect. Pre-treatments with exogenously 

applied flg22 leads to enhanced resistance to Pst. DC3000 (Zipfel et al., 2004). However, not 

all epitopes of flagellin are as universal as flg22, for instance the flgII-28 has only been found 

to be perceived by several solanaceous species. A C-terminal epitope of flagellin, called CD2-

1 has only been found to be perceived by rice (Cai et al., 2011; Veluchamy et al., 2014; 

Katsuragi et al., 2015). Although flg22 recognition by FLS2 is very efficient some microbial 

species or strains have diverged their MAMPs to render them unrecognizable by the plant. It 

was shown that the flg22 peptide covering flagellin of Erwinia amylovora does not elicit a 

defense response in Arabidopsis or only in very high concentration. However, only two 
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mutations of FLS2 can increase the recognition of E. amylovora flagellin peptide (Helft et al., 

2016). This indicates that plants can readily evolve in order to adapt to novel or modified 

microbes. Interestingly, flg22 can be transported by the plant into distal tissues. This process 

is established by endocytosis of flg22 together with the FLS2 and results in long-distance 

transport of flg22 (Jelenska et al., 2017).  

Another well-known MAMP is the ELONGATION FACTOR THERMO UNSTABLE (EF-Tu). This 

MAMP is essential for elongation during protein synthesis (Jeppesen et al., 2005). EF-Tu is a 

highly conserved 18 or 26 amino acids (aa) (elf18/26) and shows a 90% homology between 

hundreds of bacteria species. EF-Tu is perceived via the PRR EF-Tu RECEPTOR (EFR) (Kunze et 

al., 2004; Zipfel et al., 2006).  

Next to these examples also non-proteinaceous MAMPs like peptidoglycans (PGN), β-glucans 

and lipopolysaccharides (LPS) have been identified and shown to elicit defense responses 

(Proietti et al., 2014; Zipfel, 2014; Gust et al., 2017).  

3.1.2. Damage/Danger-associated Molecular Patterns (DAMPs) 

Peptides that are produced by the plant itself and trigger a defense response by the same 

plant are generally referred as DAMPs. However, with the increasing knowledge of the action 

of DAMPs the classification is more and more diverse. The endogenous danger signals can be 

divided into primary, “classical” DAMPs, which are passively released upon plant tissue 

damage and secondary endogenous danger signals. This second class can again be divided 

into (1) secondary endogenous peptides which are processed and released upon herbivore or 

microbial infections and induced plant defense responses and (2) secondary endogenous 

danger signals which are linked to the regulation of plant growth and development. These 

endogenous peptides are also referred to as phytocytokines. However, a large proportion of 

phytocytokines play roles in plant development and growth as well as in plant defense (Gust 

et al., 2017) 

Primary endogenous danger signals are passively released upon wounding. Wounding and 

herbivore attacks results in the release of intracellular and cell wall-associated molecules into 

the apoplastic space (Mithöfer and Boland, 2012; Ferrari et al., 2013; Choi and Klessig, 2016; 

Duran-Flores and Heil, 2016). Well-known primary DAMPs include the oligomeric fragments 
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of plant cell-wall pectin, termed oligogalacturonides (OGs). OGs are produced by the 

polygalacturonase enzyme. This enzyme is secreted by fungi during plant infection (D'Ovidio 

et al., 2004). OGs can be sensed by the plant with the wall-associated (receptor) kinase 1 

(WAK1) (Brutus et al., 2010). Other molecules that are considered as DAMPs are extracellular 

(e) nucleotides like eATP. In Arabidopsis eATP is perceived by the lectin receptor kinase DOES 

NOT RESPOND TO NUCLEOTIDES 1 (DORN1) (Choi et al., 2014). Interestingly, eATP has strong 

influence on jasmonate (JA) signaling (Tripathi et al., 2018). JA signaling is typically induced 

upon infection by necrotrophic pathogens and chewing herbivores (Reymond and Farmer, 

1998). Upon herbivory, the green-leaf volatiles (GLV) are released from wounded leaves 

(Scala et al., 2013). GLV have direct antimicrobial effects and can thus serve as primers of 

systemic immunity upon local damage. It was found that also fructans in fructans-

accumulating plants have actions as primary DAMPs (Versluys et al., 2016). 

Additionally, to passively released danger signals plants produce secondary endogenous 

danger peptides. These molecules are shown to modulate immune responses to herbivory 

and microbial infections (Albert, 2013; Mott et al., 2014). Typically, the molecules are 

produced as larger precursor proteins and are processed by proteolytic cleavage and then 

secreted upon wounding, microbial infection or MAMP treatment (Yamaguchi and Huffaker, 

2011). One of the first danger peptides was initially discovered in tomato. There, systemin 

was shown to be an 18aa long polypeptide that is processed from a 200aa prosystemin 

precursor upon wounding and herbivory (Pearce et al., 1991; Ryan and Pearce, 2003). For 

many years the processing mechanism was unknown, but just recently, phytaspases and 

aspartate-specific proteases, have been found to be implicated in systemin processing 

(Beloshistov et al., 2018).  

Systemin was shown to induce various defense reactions including the induction of the 

expression of protease inhibitors which are crucial for defense reactions against herbivores 

(Zavala et al., 2004; Zhu-Salzman et al., 2008; Hartl et al., 2011). In several solanaceous plants 

a second class of systemins are produced. They are referred to as hydroxyproline-rich 

systemins (HypSys) (Pearce et al., 2001b; Pearce et al., 2009). In Nicotiana tabacum two 

HypSys (NtHySysI/II) have been identified and shown to induce defense responses in a similar 

way that Systemin does while not sharing any sequence homology to the prosystemin 

identified in tomato (Pearce et al., 2001b; Pearce, 2011).  
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Another family of endogenous danger peptides are the Arabidopsis PAMP-induced peptides 

(PIP). The AtPIP family harbors 11 members in Arabidopsis of which two members (AtPIP1 

and AtPIP2) have been shown to trigger immune responses similar to that of flg22 (Hou et al., 

2014). AtPIP1 and AtPIP2 are produced as preproteins (PrePIP1 and PrePIP2) upon microbial 

infection as well as MAMP treatment. The preproteins harbor a signal domain that enables 

the secretion in a signal peptide-dependent manner. AtPIPs are perceived by the receptor 

LRR-RK RLK7 (Hou et al., 2014).  

Another peptide family that has been shown to be widespread throughout the plant kingdom 

are the rapid alkalization factors (RALFs). They have been identified in flowering plants, 

lycophytes and mosses (Murphy and De Smet, 2014). All 39 RALF peptides, encoded by the 

Arabidopsis genome carry a N-terminal signal peptide (Sharma et al., 2016). RALFs were first 

identified by their ability to cause alkalization of tobacco cell suspensions (Pearce et al., 

2001a). Not all RALF peptides are the result of the cleavage of propeptides, those that require 

processing are processed during secretion or in the apoplast by the Arabidopsis subtilase SITE-

1-PROTEASE (AtS1P) (Pearce et al., 2001a; Stegmann et al., 2017). Next to wide abundance of 

different plant species in which RALFs can be found, the high number of biological processes 

in which RALFs are involved is remarkable. Individual RALFs play roles in combining biotic and 

abiotic stresses, induce the plant defense, play roles in fungal infection resistance and act 

with elf18 to induce plant immunity (Gupta et al., 2010; Atkinson et al., 2013; Stegmann et 

al., 2017). RALF members have also been shown to be involved in controlling the pollen tube 

and therefore to be important in the regulation of sexual reproduction (Stegmann and Zipfel, 

2017). The perception of AtRALF23 is established by the malectin-like receptor kinase 

FERONIA (FER) (Stegmann et al., 2017).  

Another family that has been well-studied and originally identified in Arabidopsis is the plant 

elicitor peptide (Pep) family. This family harbors 8 members named AtPep1-8 (Huffaker et al., 

2006; Yamaguchi and Huffaker, 2011; Bartels and Boller, 2015) and has been identified in 

various plant species (Lori et al., 2015). The precursors of the eight AtPep peptides (PROPEP1-

8) have a tissue-specific expression pattern and the expression of individual members is 

induced by wounding, MAMP treatment, microbial infection and by treatments with their 

own AtPep peptides (Huffaker et al., 2006; Albert, 2013; Mott et al., 2014; Bartels and Boller, 

2015). The Atpep peptides are perceived by two leucin-rich repeat receptor kinases, named 
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AtPEPR1 and AtPEPR2 (Yamaguchi et al., 2006; Krol et al., 2010; Yamaguchi et al., 2010). 

AtPeps are involved in various defense responses against bacteria, fungus, oomycetes as well 

as in responses to insect attacks (Huffaker et al., 2006; Yamaguchi et al., 2010; Huffaker et al., 

2013; Yasuda et al., 2017). However, it is still not known how PROPEP proteins are processed 

and secreted. It has been proposed that the peptides are processed (probably by metacaspase 

4 (personal communication with Tim Hander)) and released only upon wounding (Bartels and 

Boller, 2015). An indication on how wide-spread this peptide family is, was provided by recent 

work on Rosaceae species. In 95 Rosaceae varieties up to 180 PROPEP 1-4 sequences could 

be identified. Homologues of PROPEPs could be found in different varieties of apple, pear, 

peach and strawberry (Ruiz et al., 2018b; Ruiz et al., 2018a).  

3.2. Phytocytokines and small endogenous signaling peptides  

 

Secondary endogenous danger signals which are involved in plant growth and development, 

but are not primarily involved in plant defense responses, could be referred to as 

phytocytokines (Gust et al., 2017). According to this classification prominent small peptides 

including CLAVATA3/EMBRYO-SURROUNDING REGION (CLE), C-TERMINAL ENCODED PEPTIDE 

1 (CEP1), ROOT MERISTEM GROWTH FACTOR (RGF), phytosulfokines (PSK), AtPeps, AtPIPs 

and RALF and many more belong to this group. The full overview of all endogenous signaling 

peptides is shown in Figure 1. AtPeps, AtPIPs and RALF belong to phytocytokines because, 

next to their involvement in defense responses, they have also been shown to influence plant 

growth and development (Hou et al., 2014; Murphy and De Smet, 2014; Gully et al., 2015). 

Several of these endogenous signaling peptides have also been shown to be involved in 

development and functioning of nodulation (Kereszt et al., 2018). Phytocytokines belong to 

small endogenous signaling peptides, they are also referred to as plant peptide hormones in 

order to separate them from classical plant hormones such as auxin, cytokinin and ethylene, 

which have been assumed to be the main players in cell to cell communication and 

intercellular signaling processes (Davies, 2004).  
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Figure 1: Small endogenous signaling peptides mediates a high number of plant physiological 

responses. This illustration of small endogenous peptides involved in several plant physiological 

processes was taken from (Tavormina et al., 2015). Not all small peptides presented in the figure 

are discussed in this introduction. For more information the original review as well as (Czyzewicz et 

al., 2013) provide an exhaustive overview.  

 

In Arabidopsis, the CLE peptide (CLAVATA3/EMBRYO SURROUNDING REGION-RELATED) 

family is a large family with 32 members. CLE genes play various roles in stem cell homeostasis 
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and in different types of meristems as well as many biological roles in growth and 

development (Wang et al., 2015; Dao and Fletcher, 2017). A common feature of all CLE 

members is that they all derive from a roughly 150aa long precursor protein containing an N-

terminal secretion signal and the C-terminal 14aa long CLE motif (Cock and McCormick, 2001; 

Wang and Fiers, 2010). One of the best characterized CLE family members is CLV3 (Clavata 3). 

CLV3 is involved in the maintenance of the shoot apical meristem (SAM), while other CLE 

family members are involved in cell fate regulation in the root apical meristem (RAM) and 

(pro) cambium  (Kondo et al., 2006; Betsuyaku et al., 2011; Matsubayashi, 2014; Czyzewicz et 

al., 2015). The perception of CLV3 is not yet been completely elucidated. Three major receptor 

kinase complexes have been proposed for signaling in the SAM, namely CLV1, CLV2, CORYNE 

as well as RPK2 (Clark et al., 1995; Kinoshita et al., 2010; Matsubayashi, 2014). However, in 

other tissues and for other CLE peptides the perception has been proposed to be established 

by other receptors (Betsuyaku et al., 2011). Interestingly, signaling of various CLE peptide 

family members have been shown to integrate with signaling of classic plant hormones (Wang 

et al., 2015). These interactions include auxin, brassinosteroids and cytokinin signaling 

(Whitford et al., 2008; Kondo et al., 2011; Kondo et al., 2014). The same observations have 

been made in other plant species apart from Arabidopsis. 47 CLE genes have been identified 

from rice (Kinoshita et al., 2007) one of which (OsCLE48)  has been shown to be induced by 

auxin application (Guo et al., 2015).  

Many small signaling peptides are involved in root growth and root development. The number 

of identified peptides is steadily increasing for different root tissues (Oh et al., 2018). The C-

TERMINAL ENCODED PEPTIDE (CEP) family was identified by a in silico approach and contains 

15 members (Ohyama et al., 2008). One member, CEP1 is a 15aa long small peptide and has 

been shown to be involved in the regulation of lateral root growth by regulating root 

meristem activity (Ohyama et al., 2008). Moreover, CEP family members have been shown to 

lead to increased expression in response to Nitrogen (N) starvation. During N starvation CEPs 

are transported from the roots to the shoots and there perceived by two LRR-RLK receptors 

(CEPR1 and CEPR2). This leads to a systemic signal which results in the upregulation of N 

transporter genes in the roots (Tabata et al., 2014). The nature of this signal was recently 

uncovered, the two polypeptides CEPD1 and CEPD2 are transported from the shoot to the 

root (Ohkubo et al., 2017). Moreover, CEP members have been shown to be involved in the 
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development of lateral roots (LR). CEP1 overexpression leads to the inhibition of root growth 

and is therefore, in line with CEP5, a negative regulator of root growth (Ohyama et al., 2008; 

Roberts et al., 2016) 

A peptide family mainly involved in the development of the primary root is ROOT MERISTEM 

GROWTH FACTOR (RGF). Members of this family play roles in the root meristem maintenance 

(Oh et al., 2018). RGF1 requires sulfation of a tyrosine residue to achieve its activity in the 

maintenance of root stem cells (Matsuzaki et al., 2010). The perception of RGF is not yet been 

investigated in great detail. The rgf insensitive (rgi) is a quintuple mutant consisting of the 

genes PLETHORA1, PLETHORA2, RGFR1,2,3 (Ou et al., 2016; Shinohara et al., 2016). It is up to 

now not clarified whether all five receptors are equally involved in the perception of RGF 

peptides.  

A well- known small peptide family are the phytosulfokines (PSK). PSKs were originally found 

to act as growth factors in low-density suspension cultures (Matsubayashi and Sakagami, 

1997; Matsubayashi et al., 1999; Yang et al., 1999). In Arabidopsis five PSK precursor genes 

have been identified, coding for 80aa long precursor proteins (Yang et al., 2001). The PSK 

peptide is only 5aa long and was shown to regulate cell expansion in the root elongation and 

differentiation zone (Kutschmar et al., 2009). PSK has a close homologue, PLANT PEPTIDE 

CONTAINING SULFATED TYROSINE (PSY1) which is an 18aa long peptide and that has been 

shown to possess similar functions as PSK (Amano et al., 2007). PSK is recognized by two LRR-

RK, PSKR1 and PSKR2 while PSY1 is perceived by the close homologue PSYR1 (Amano et al., 

2007). PSKR1 interacts with the well-known co-receptor BAK1 in PSK signaling (Ladwig et al., 

2015). Next to the control of root growth the interaction of PSK with its receptors is involved 

in hypocotyl cell expansion control (Stührwohldt et al., 2011). Moreover, a role for PSKRs as 

negative regulators of innate immunity has been proposed (Mosher et al., 2013; Tang et al., 

2017). The pskr1 mutant showed enhanced resistance against the hemibiotrophic pathogen 

Pseudomonas syringae as well as increased defense responses following elf18 application 

(Igarashi et al., 2012).  
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3.3. Plant innate immunity   

 

In contrast to higher animals, plants do not possess mobile cells as part of their immune 

system. The mobile immune system is integrated by specialized cells, which detect and 

destroy enemies. The plant immune system however, is supposed to be present in every 

single cell and needs to allow each one of those to detect danger. In order to induce an 

effective defense response and to initiate signal cascades to alert parts of the plant about an 

imminent attack (Schilmiller and Howe, 2005; Jones and Dangl, 2006b). The plant immune 

system was shaped by millions of years of coevolution between plants and the corresponding 

pathogens. This convergent evolution results in a tremendous complexity at the molecular 

level (Asai and Shirasu, 2015). While the host plant is defending like a fortified castle, the 

invading pathogens developed special weapons to conquer the established walls of the plant 

immune system. The first layer of defense and therefore the “watch towers” of the plant 

defense can be found in the cell surface in form of pattern-recognition receptors (PRR). These 

receptors detect broadly conserved pathogen molecules (pathogen/ microbe-associated 

molecular patterns, PAMP/MAMPs). This system is known as PAMP- (or pattern)- triggered 

immunity (PTI) or sometimes also referred as MTI (MAMP- triggered immunity). A weapon of 

pathogens to overcome the first layer of defense are effectors. Effectors are targeted to the 

pant apoplast or cytoplasm. However, also against these weapons plants developed specific 

defense mechanisms. Effectors are recognized by receptors called Resistance (R) proteins, 

which recognize the presence of pathogen effectors directly or indirectly and induce a strong 

counter attack. This mechanism is known as effector-triggered immunity (ETI) (Jones and 

Dangl, 2006b).  

3.3.1. They reveal themselves - the first layer of defense 

The first layer of defense must be a broad system since plants are under continuous attack 

from various pathogens. Plants need to be able to detect a large diversity of different 

pathogens. The plant PRRs can recognize highly conserved structures common amongst 

numerous classes of microbes. Most of these structures are vital for the microbial life style 

and therefore underlie a negative selection pressure which is altered by the microbes to 

overcome the recognition (Boller and Felix, 2009; Monaghan and Zipfel, 2012). PTI is 
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therefore discussed as an evolutionary old defense system, which is strengthened by the fact 

that many PRRs are conserved amongst higher plants (Boller and Felix, 2009). The first layer 

of defense is established by the recognition of MAMPs by PRRs. 

3.3.2. Recognize the enemy – pattern recognition receptors (PRRs)  

The innate immunity system of multicellular organisms requires the acquisition of cell surface 

receptors that can differ between “self” and “non-self” molecules. This is achieved by the 

large family of pattern recognition receptors (PRRs). PRRs are capable of activating one or 

more signaling pathways. Microbes are often found in the plant apoplast and therefore 

separated from the plant cell interior. To sense environmental information across the plasma 

membrane in a selective manner, plants use families of plasma membrane- localized PRRs. 

Therefore, PRRs transduce the signal of danger into intracellular signals (Macho and Zipfel, 

2014; Zipfel, 2014; Tang et al., 2017). PRRs can be broadly categorized into receptor-like 

kinases (RLKs) and receptor-like proteins (RLPs). The structure of RLKs consists of an 

extracellular receptor domain, a membrane-spanning domain and an intracellular kinase 

domain. This last domain is missing in RLPs (Morillo and Tax, 2006; Toer et al., 2009; Ben 

Khaled et al., 2015; Boutrot and Zipfel, 2017). In the Arabidopsis genome, more than 600 RLKs 

have been identified and were associated with numerous different signaling pathways and 

responses (Shiu and Bleecker, 2001; Shiu et al., 2004). This large family can be separated into 

two classes (Shiu and Bleecker, 2003; Tör et al., 2009). The first one includes RD kinases 

containing a conserved arginine (R) residue in front of an aspartate (D), which provides the 

catalytic activity and is important for the function as a kinase (Schwessinger et al., 2011). The 

second class are non-RD kinases, these kinases lack these two specific amino acids. To achieve 

the initiation and amplification of phosphorylation signals non-RD kinases may require a co-

receptor (Dardick et al., 2012). A key characteristic for RLKs is their extracellular domain which 

determines their classification into further classes like leucin-rich repeat (LRR), epidermal 

growth factor (EGF)-like, lysine-motif (LysM) or leucin motif. Whereas, RLK-LRR are the 

receptors for peptide ligands such as MAMPs and DAMPs (Chinchilla et al., 2006; Yamaguchi 

et al., 2006; Zipfel et al., 2006). The second class of PRRs are the RLPs. They bind their ligands 

at the ectodomain but lack the intracellular kinase domain. Therefore, they require to bind 

the assembly with a co-receptor upon ligand binding in order to transduce the signal (Zipfel, 
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2014). Various defense-associated, physiological and developmental functions rely on PRRs 

(Shiu and Bleecker, 2001; ten Hove et al., 2011; Araya et al., 2014).  

The most well-studied PRR in plants is the receptor for the bacterial flagellin FLS2 (Chinchilla 

et al., 2006). FLS2 is the analogue of the mammalian TLR5 and perception and defense 

responses caused by the perception of flg22 by these receptors have been well studied in 

plants and mammals (Fliegmann and Felix, 2016; Hajam et al., 2017). The extensive search for 

FLS2 orthologues lead to the identification of FLS2 orthologues in tomato, rice, grapevine and 

tobacco (Hann and Rathjen, 2007; Robatzek et al., 2007; Takai et al., 2008; Trdá et al., 2014).  

PRRs with a non-RD kinase domain have been shown to interact with a RD receptor kinase. 

The RD receptor kinase functions as a co-receptor upon ligand binding. One of the best 

characterized co-receptors is the LRR-RLK BRI1-ASSOCIATED KINASE 1 (BAK1). BAK1 is a 

member of the SERK family and interacts with BRI1 to regulate brassinosteroid signaling. 

AtBAK1 form ligand-dependent heteromeric complexes with several defense inducing signals 

(Chinchilla et al., 2007; Roux et al., 2011; Schwessinger and Ronald, 2012; Jordá et al., 2016). 

The BAK1 mutants are drastically impaired in the perception of defense inducing signals.  

A recent study in the field of PRR receptors could be a breakthrough in the research on 

receptor interactions. In the last years the number of identified and characterized receptor 

families increased continually. It is assumed that these receptors interact with each other. By 

investing of 40.000 potential extracellular domains of receptors and their interactions it was 

found that BAK1 interacts with a high number of receptors (Smakowska-Luzan et al., 2018). 

This research could help to uncover further receptor co-receptor complexes and their 

interactions.  

3.3.3. It is time the defend – Effector-triggered immunity (ETI), the second layer of defense 

The perception of a of a MAMP or DAMP and the induction of a PTI response is in general a 

very efficient defense system. However, certain pathogens or pathogen strains found a way 

to inhibit PTI responses. By introducing virulence effectors into the host pathogens developed 

a possibility to inhibit specific steps of pathogen detection or subsequent downstream 

signaling processes. This process is referred to as effector-triggered susceptibility (ETS) (Jones 

and Dangl, 2006b; Boller and He, 2009; Dodds and Rathjen, 2010). This mechanism is a crucial 
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element of the host-pathogen coevolution cycle. Also, the host side developed a mechanism 

to defend against pathogen effectors by introducing a robust resistance response called 

effector-triggered immunity (ETI) (Jones and Dangl, 2006b; Jacob et al., 2013; Cui et al., 2015). 

ETI is famously also known as gene-for-gene resistance (Flor, 1971). This second layer of 

defense is based on a surveillance system detecting either directly secreted effectors or 

indirectly detecting a modified internal signal originating from the effector attack (Boller and 

He, 2009). This detection system is based on resistance (R) genes. These genes code mostly 

for intracellular NB-LRR proteins (Nucleotide Binding Proteins with Leucin-Rich Repeat 

domains) (Jones and Dangl, 2006b). The induced defense response by the perception of 

effectors by NB-LRR is regarded to be more rapidly induced, longer lasting and more severe 

than PTI. The ETI response culminates in the hypersensitive response (HR). HR is the apoptosis 

of the infected and the surrounding cells (Greenberg and Yao, 2004; Jones and Dangl, 2006b; 

Truman et al., 2006; Tsuda and Katagiri, 2010). The induction of HR response is under tight 

regulation. The HR signaling is strongly inhibited by PTI signaling, indicating a strict separation 

of the two layer of plant defense (Hatsugai et al., 2017).  

Regarding the co-evolution of plants and their host, ETI is seen as the more dynamic process 

in comparison to PTI. ETI is often highly specific between a particular plant cultivar and a 

pathogen race (Dangl and Jones, 2001). Plants constantly adopt their R genes, while the 

pathogens change their effectors. This race of effector evolution and adaptation is known as 

the “arms race” and is nicely outlined in the zigzag model proposed by Jones and Dangl (2006) 

(Figure 2). 



General Introduction  

15 
 

 

Figure 2: The “zigzag” model describing the coevolution of plants defense mechanisms and 

the pathogen countermeasures. The first level of plant defense is the induction of PTI. The 

detection of MAMPs induces these basal defense responses. Pathogens can evade from PTI or 

block its activation by carrying specific effectors that attenuate defense response and render the 

plant susceptibility to the pathogen (ETS). The recognition of pathogen effectors induces a strong 

defense response, stronger than the PTI response. This response leads to the cell-death like HR 

and finally to ETI. (adopted from (Jones and Dangl, 2006b)) 

3.4. Defense responses induced during PTI  

 

Plants developed a physical barrier against pathogens that make them generally resistant 

against the majority of invaders. This barrier is termed non-host resistance and consist of the 

plant cuticle, the cell wall and constitutively produced antimicrobial compounds. All land 

plants protect their external surface of the aerial epidermis with a waxy cuticle (Osbourn, 

1996; Somerville et al., 2004; Yeats and Rose, 2013).  The detection of an elicitor induces a 

complex set of responses intended for resisting against a pathogen attack (Bigeard et al., 

2015). Moreover, the perception of MAMPs and DAMPs triggers similar PTI responses 

(Yamaguchi and Huffaker, 2011). However, the kinetics and kind of induced defense response 

depends on the perceived elicitor. For example, the induction of protease inhibitors is 

specifically induced after perception of HAMPs (Herbivore associated molecular patterns) and 

some DAMPs but not MAMPs (Zebelo and Maffei, 2015; Zhu-Salzman and Zeng, 2015). The 

most common PTI responses will be discussed in the following paragraph. 
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3.4.1. Electrical signaling  

The fastest defense response appears to take place at the only cell compartment that is in 

direct contact to the environment. At the plasma membrane a modulation of ion fluxes is 

among the earliest cellular responses to biotic and abiotic stresses (Ebel and Mithöfer, 1998; 

Shabala et al., 2006; Fürstenberg-Hägg et al., 2013). In form of an altered membrane potential 

a signal can travel though the plant. The generated action potential-like signal serve as a 

systemic defense signal (Maffei and Bossi, 2006). This signal on the cell surface can propagate 

with a speed of up to 40 m sec-1 (Volkov and Brown, 2006). A strong membrane depolarization 

was observed induced by the MAMPs elf18 and flg22. The depolarization was induced within 

1-5 minutes after elicitor treatment and lasted for around 1 to 1.5 hours (Jeworutzki et al., 

2010) 

3.4.2. Ion fluxes 

Upon elicitor perception plasma membrane channels are opened within 1-2 min. This causes 

a strong increase of intracellular Ca2+ and H+ (Lecourieux et al., 2002). On the other hand the 

elicitor perception also causes a anion efflux (Boller, 1995). The strongly increased Ca2+ 

concentration is of particular interest since Ca2+ is known to function as second messenger in 

various cellular processes (Lecourieux et al., 2006). Moreover, innate immunity is regulated 

by calcium-dependent protein kinases (CDPKs) and act as sensor for Ca2+ (Boudsocq et al., 

2010). Also, other defense responses are regulated by CDPKs. The production of reactive 

oxygen species (ROS) is regulated by phosphorylation of the ROS producing enzyme NADPH 

oxidase (Kobayashi et al., 2007).  

3.4.3. Oxidative burst  

One of the fastest defense response is the burst of reactive oxygen species (Torres et al., 

2006). The plasma membrane-localized NADPH oxidase (RbohD) is mainly responsible for the 

ROS burst. This enzyme produces membrane- impermeable superoxide (O·-2), which is 

converted into hydrogen peroxide (H2O2) in the apoplast (Liu and He, 2016). It was shown that 

the aquaporin AtPIP1;4 is crucial for the transport of H2O2 across the plasma membrane into 

the cytoplasm and therefore important for defense response induction (Tian et al., 2016). The 

plant is capable to produce tremendous amounts of ROS, which directly inhibit the pathogen 
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or herbivore growth (Apel and Hirt, 2004). The plasma membrane-associated cytoplasmic 

kinase BIK1 interacts and phosphorylates RbohD upon elicitor perception (Li et al., 2014). 

Furthermore, by triggering the synthesis of SA and MAPK activation, ROS serves as a second 

messenger (O'Brien et al., 2012).  

3.4.4. Changes in protein phosphorylation and MAPK activation  

External stimuli are transduced into intracellular responses by the activation of MITOGEN-

ACTIVATED PROTEIN KINASES (MAPK). This cascade starts with the phosphorylation of a MAP 

Kinase Kinase Kinase (MAPKKK), which phosphorylates a MAPKK, which in turn 

phosphorylates MAPK. These phosphorylated MAPK have various protein targets in the 

nucleus and the cytoplasm (Meng and Zhang, 2013). Regarding defense responses, MAPK 

cascades are activated after MAMPs and DAMPs perception. The Phosphorylation and 

activation of MPK3 and MPK6 is used as an assay for defense signaling (Asai et al., 2008; 

Rodriguez et al., 2010; Galletti et al., 2011).  

3.4.5. Callose deposition  

One of the later defense responses in the deposition of callose. In Arabidopsis, callose 

deposition can be detected from 16h onwards after MAMP treatment by fixing and staining 

the tissue with aniline blue (Gomez-Gomez et al., 1999).In the leaf tissue callose is located in 

the papillae, a tissue that stretches from the plasma membrane to the cell wall. However, the 

exact role of callose deposition in plant defense remains unclear. Callose deposition goes 

hand in hand with that of ROS, phenolic compounds and several cell wall proteins. These 

events have confirmed antimicrobial or cell wall reinforcing functions (Voigt, 2014). 

3.4.6. Transcriptional changes  

Upon pathogen invasion as well as perception of MAMPs and DAMPs plants launch a 

profound and dynamic reprogramming of gene expression. Nearly all previously described 

defense responses are regulated by a set of different genes (Tsuda and Somssich, 2015; Li et 

al., 2016). Studies of Arabidopsis revealed that already after 30min after flg22 treatment, 

expression of roughly 1000 genes were up regulated and only 200 genes down regulated 

(Zipfel et al., 2004). Among the induced genes are also the PRR FLS2 and EFR. These results 
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reveal a positive feedback loop of PTI activation (Shiu et al., 2004; Zipfel et al., 2004). 

Comparative expression analysis of gene expression after infection with virulent 

pseudomonas bacteria and a nonpathogenic strain showed that transcriptional response to 

the conserved bacterial patterns starts before the bacteria itself starts to multiply. The 

earliest induced genes are related to defense responses and salicylic acid (SA) biosynthesis. 

Genes involved in photosynthesis are down regulated. This indicates that sources are shifted 

towards the limitation of pathogen growth (Lewis et al., 2015). 

3.4.7. Inhibition of seedling growth 

The addition of MAMPs and DAMPs to the seedling growth medium leads to a strong 

inhibition of growth in a concentration dependent manner. This effect depends on the 

interaction of the elicitor and its receptor (Krol et al., 2010). The exact molecular mechanism 

behind the arrested seedling growth remains unclear. One possible explanation would be the 

shift of resources from growth towards defense mechanism (Walters and Heil, 2007; Boller 

and Felix, 2009). 

3.4.8. Hormonal integration of immune responses  

Several classical plant hormones are shown to be involved in defense responses. Among them 

jasmonic acid (JA), and salicylic acid (SA) are the major defense-related phytohormones. 

Moreover, other hormones are involved namely, ethylene, abscisic acid, auxin, gibberellins, 

cytokinins and brassinosteroids (Shigenaga and Argueso, 2016). In general, JA and SA are 

positive regulator of plant defense. JA regulates immunity against necrotrophic pathogens 

and SA immunity against biotrophic pathogens (Pieterse et al., 2009; Berens et al., 2017). 

The fatty acid derivate JA has been reported to be an important downstream signaling upon 

necrotrophic pathogen attacks. JA levels increase locally after tissue damage (Wasternack, 

2007; Bari and Jones, 2009). The active form of JA, JA-Ile is perceived by coronatine-insensitive 

1 (COI1) This perception regulates a group of MYC transcription factors in initialize 

transcriptional reprogramming (Wasternack and Hause, 2013). Differently regulated genes 

are defensins, proteins with antimicrobial and enzyme inhibitory functions and marker genes 

for JA-dependent defense signaling (Manners et al., 1998). JA application triggers immunity 

against necrotrophic pathogens in Arabidopsis but also in rice and Medicago truncatula as 
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well as a systemic priming of defense responses which is referred as induced systemic 

resistance (ISR) (Bostock, 2005; Schilmiller and Howe, 2005; Taheri and Tarighi, 2010; Berens 

et al., 2017). 

A pathogen infection causes increased accumulation of SA in various eudicots while 

exogenous application of SA or its analogues triggers immune responses and resistance 

against pathogens (Berens et al., 2017). SA is perceived by a receptor complex containing 

several NPR (non expressor of PR) proteins (Yan and Dong, 2014). This signaling acts as 

activator of a large set of defense-related genes. These genes are referred to as pathogenesis-

related (PR) genes (Dong, 2004). PR genes are diverse however several of these genes are 

shown the code for proteins with direct anti-microbial activity (van Loon et al., 2006). 

Moreover, the activation of PR genes at the site of infection often leads to similar responses 

in distal tissue. This tissue activates defense responses in order to be in a “ready state” to an 

imminent pathogen threat. This effect is called systemic acquired resistance (SAR) (Conrath, 

2006; Vlot et al., 2008). However, SA seems not to serve as a mobile signal per se inducing 

immunity in uninfected tissue while several other molecules have been proposed to fulfill 

such a role (Shah and Zeier, 2013). An overview of the chronological induction of PTI 

responses is given in the Figure 3. 

 

Figure 3: The chronology of PTI responses. After elicitor application various plant cell responses 

can be measured. Altered membrane potentials (Vm) and ion fluxes are the earliest events. The next 

responses are related to production of defense molecules and messenger (JA, SA and ROS/H2O2). 

Finally, metabolic changes can lead to profound defense responses and long-lasting adaptations. 

(adopted from (Maffei et al., 2007)) 
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3.5. Systemic acquired resistance (SAR)  

 

Already in the year 1933 the concept of a acquired immunity in order to increase resistance 

upon a reinfection in plants was postulated (Chester, 1933). The term SAR was first proposed 

30 years later upon work on tobacco. When the three lower leaves of a tobacco plant were 

infected with Tobacco mosaic virus (TMV) the upper leaves developed much weaker infection 

symptoms after a second infection 7 day subsequent to the first infection (Ross, 1961; Klessig 

et al., 2018). SAR is a complex mechanism of induced defense that can lead to a long-lasting 

resistance against a broad spectrum of unrelated pathogens (Durrant and Dong, 2004). Upon 

a local infection a transport of defense signals throughout the plant is initiated. These signals 

are generated and transported through the phloem via the apoplast to the uninfected distal 

tissue (Tuzun and Kuć, 1985; Gao et al., 2015; Singh et al., 2017). The nature of the systemic 

signal has not yet been uncovered however, in the last years at least 13 different possible 

signals have been proposed (Gao et al., 2015). One of the first proposed signals was SA. 

Indeed, SA, methyl SA (MeSA) as well as the accumulation of PR transcripts is required for SAR 

(Mishina and Zeier, 2007). Arabidopsis mutants unable to accumulate SA do not acquire 

systemic resistance upon infection with necrotizing pathogens while Arabidopsis plants 

overproducing SA show enhanced defense to pathogens (Conrath, 2006). PR gene 

accumulation is often seen as the molecular basis of SAR. Some of the typical SAR-induced PR 

genes code for enzymes possible able to hydrolyze microbial cell wall components (Van Loon 

and Van Strien, 1999). However, the accumulation of PR proteins does not per se explain the 

SAR phenomenon (Conrath, 2006). A key component for SAR is NPR1 (NON-EXPRESSOR OF 

PR1). NPR1 is an important downstream signaling element of SA. Overexpression of NPR1 

leads to stronger PR gene expression after pathogen infection and a strongly enhanced 

disease resistance (Cao et al., 1998; Friedrich et al., 2001). SA can directly bind to NPR1 which 

leads to its monomerization (Wu et al., 2012). NPR1 monomers are transported to the nucleus 

and directly interact with basic leucin zipper transcription factors (bZIP) in order to activate 

defense gene expression (Gao et al., 2015; Birkenbihl et al., 2017). Another hallmark of SAR 

is the priming of defense responses whereas SAR-dependent priming is associated with faster 

and stronger defense responses to a secondary infection (Martinez-Medina et al., 2016) 
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3.5.1. Synthetic SAR activators  

Since it was discovered that SA is an endogenous signal for SAR activation synthetic chemicals 

able to mimic SA and SAR induction have been identified. These synthetic elicitors are often 

termed plant activators and they trigger defense reactions and an induction of defense 

responses by mimicking interactions of natural elicitors or defense signaling molecules 

(Bektas and Eulgem, 2014). One of the first identified synthetic elicitors is polyacrylic acid and 

was shown to induce resistance of tobacco against TMV and to activate PR1 gene expression 

(Gianinazzi and Kassanis, 1974). The first indication that exogenous application of SA 

contributes to the establishment of SAR is given by treatments with acetylsalicylic acid 

(Aspirin). Aspirin treatment causes induced resistance against TMV of tobacco by PR protein 

accumulation (White, 1979). This discovery paved the way to the discovery of more potent 

plant defense activators that are more suitable in crop protection. Two have the first 

discovered ones that are still widely used compounds are 2,6-dichloro-isonicotinic acid (INA), 

Beta-aminobutyric acid (BABA) and (1,2,3) thiadiazole-7-carbothioic acid S-methyl ester (BTH) 

(Metraux et al., 1990; Ward et al., 1991; Görlach et al., 1996; Baccelli and Mauch-Mani, 2016).  

INA was discovered by Ciba-Geigy and was shown to promote activation of defense in 

cucumber against fungal pathogens. Moreover, the resistance was also achieved in distal 

tissue indicating an activation of SAR (Metraux et al., 1991). INA provides also resistance 

against pathogens in pear, pepper and rice as well as in laboratory experiments tobacco and 

Arabidopsis (Metraux et al., 1991; Ward et al., 1991). However, INA does not trigger any 

changes in plant SA levels (Delaney et al., 1994) but has been reported to mimic biochemical 

and physiological effects of SA such as inhibition of catalase and the induction of cellular H2O2 

accumulation (Conrath et al., 1995; Bektas and Eulgem, 2014). INA-induced PR gene 

expression is blocked in the npr1 mutant this strengthen the role of INA in SAR (Wang et al., 

2006). However, INA has phytotoxic side effects in crops and is therefore it has never been 

commercialized as agrochemical but is still used as tool to study SAR (Oostendorp et al., 2001).  

BABA induces resistance against a very high number of stresses such as attacks by viruses, 

bacteria, fungi, oomycetes, nematodes and arthropods and also abiotic stresses like heat, cold 

and salt stresses (Balmer et al., 2015). After spraying of Arabidopsis plants with BABA, BABA 

get transported inside the plant whereas the young plant tissue act as sink (Jakab et al., 2001). 

Also, BABA was shown to boost SA pathway by enhanced PR1 gene expression (Zimmerli et 
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al., 2000). The enhanced defense response of BABA treated plants is explained by enhanced 

callose deposition and ROS burst (Ton and Mauch-Mani, 2004; Flors et al., 2008; Pastor et al., 

2013). BABA induced drought and salt stress is regulated by interference with abscisic acid 

(ABA) (Zimmerli et al., 2007). Moreover, drought stressed wheat plants have been shown to 

have a reduced water use and therefore increased desiccation tolerance upon BABA 

treatment (Du et al., 2012). Another indication that BABA is a multifaceted synthetic elicitor 

is given by the observations that BABA boosts hormonal signaling pathways and the plant 

responses to the hormones (Flors et al., 2008) 

BTH (benzothiadiazole) also known as acibenzolar-S-methyl ester (ASM) is a potent inducer 

of plant immune responses (Oostendorp et al., 2001). Until now BTH has been tested in more 

than 120 pathosystems (Faize and Faize, 2018). In Europe BTH is commercialized as “Bion”. 

Application of BTH has been shown to control downey mildew infections in vegetables and to 

control a range of fungal, bacterial and viral diseases of important crops like tomato, 

cucumber, broccoli, tobacco, melon, pear and apple trees (Scarponi et al., 2001; Zavareh et 

al., 2004; Pajot and Silué, 2005; Jiang et al., 2008). In apple it was shown that application 

controls fire blight, which is caused by the bacterium Erwinia amylovora (Brisset et al., 2000; 

Maxson-Stein et al., 2002). BTH itself does not show any direct effect on plant pathogens and 

is therefore not antimicrobial (Friedrich et al., 2003). BTH is a functional analogue of SA since 

it induces the same SA-characteristic expression profile (Friedrich et al., 2003). It was 

suggested that BTH is metabolized by the plant into acibenzolar by the enzyme SABP2. SABP2 

silenced tobacco plants do not induce SAR typical gene expression while acibenzolar fully 

induced SAR in the same plants (Tripathi et al., 2010). One potent mechanism of BTH in order 

to prime plant defense is the potentiated activation of the defense associated MAPKs, MPK3 

and MPK6. BTH induces the accumulation of the non-phosphorylated forms as well as an 

increased mRNA level of these two MAPK (Beckers et al., 2009). Moreover, BTH has the 

capacity to induce the expression of the important PRRs; FLS2, BAK1 and CERK1 (Tateda et 

al., 2014). This indicates that BTH primes defense responses at the receptor level and by 

mimicking SA signaling, also large sets of defense gene transcripts. This transcriptional 

response includes WRKY transcription factors. The genes AtWRKY29, AtWRKY6, AtWRKY53 

are strongly transcribed after stress application following pre-treatment with BTH. Moreover, 

BTH pre-treatment triggers several histone modifications that are found at actively transcript 
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genes. AtWRKY29 shows an elevated level of H3K4me3, H3K4me2, H3ac and H4ac and 

AtWRKY6 as well as AtWRKY53 enhanced levels of H3K4me3 and H3K4me2. These findings 

are strengthened by the observation that BTH-induced trimethylation of H3K4 is reduced in 

the npr1 mutant (Jaskiewicz et al., 2011). Since BTH was commercialized in the year 1989 it 

was demonstrated several times that BTH application has positive effects on plant health 

(Faize and Faize, 2018). However, it was shown that about 75% of applied BTH was photolyzed 

within 4 hours on apple leaf tissue and only a small fraction undergo metabolism by the plant 

(Sleiman et al., 2017). This study reveals that even after the long time BTH is available on the 

market still numerous plant responses to this molecule remain to be discovered.  

3.5.2. DAMPs as plant vaccines  

In the last years the idea was raised that synthetic peptides could be replaced by DAMPs since 

they are capable to trigger immunity in a similar fashion compared synthetic peptides 

(Quintana-Rodriguez et al., 2018). Interestingly, it was assumed that plant and algal extracts, 

which contains many DAMPs, enhance the resistance against herbivore attacks in cabbage, 

tomato and maize. Moreover, algae extract lead to enhanced fungal and bacterial resistance 

in banana, apple, grapevine, melon, tomato, cucumber and carrot (Quintana-Rodriguez et al., 

2018). For example, leaf extract of devil`s trumpet elicits resistance against downy mildew in 

pearl millet (Devaiah et al., 2009). Seaweed extract has the capacity to enhance the resistance 

in cucumber plants to different fungal pathogens (Jayaraman et al., 2011). Resistance against 

herbivores and pathogens after an exposure with the plants own volatile organic compounds 

has been described in more than 30 plant species (Heil and Karban, 2010). Several volatile 

organic compounds can also have direct antimicrobial or insect-repellent effects (Quintana-

Rodriguez et al., 2018). In summary, it seems that DAMPs could be a good tool to increase 

plant resistance in agriculture. Especially, extracellular fragments of DNA (eDNA) induces 

resistance in various plant species by increased formation of H2O2 and the activation of MAPKs 

(Duran-Flores and Heil, 2018). However, the increased “ready state” of the plant defense, 

which is referred as defense priming, was up to now not observed caused by other DAMPs 

apart of volatile organic compounds or crude plant extracts including eDNA. Indicating that, 

DAMPs as plant vaccines might not be the optimal choice for plant treatments.  
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3.6. Defense priming – The third layer of defense?  

 

The ultimate achievement in plant immunity and maybe partly the compensation of a missing 

adaptative immune system, plants developed the capacity to memorize a previous stress by 

promoting a primed state of enhanced defense. Defense priming is established in the plants 

tissue exposed to a priming stimulus as well as systemically to unharmed, or untreated parts 

of the plant (Reimer-Michalski and Conrath, 2016). When plants are in a primed state, plants 

are capable of responding to very low stimulation with a faster and stronger defense response 

than unprimed plants. This effect has also been defined as systemic immunity or systemic 

stress tolerance. The effect of defense priming is also referred as plant sensitization and 

trained immunity (KuĆ, 1987; Ding et al., 2012; van der Meer et al., 2015). In general, a primed 

plant can show a modified set of responses in comparison to unprimed (naïve) plants. The 

possible mechanisms are summarized in Figure 4. Plants that have been primed by a priming 

stress, including treatments with chemical SAR inducer, DAMPs or any abiotic stress, are 

capable of responding faster to a subsequent triggering stress. Other possible effects of 

priming include a stronger and more sensitive response to a triggering stress. Whereas plants 

react to a lower threshold of the triggering stress. It is also possible that primed plants induce 

different gene network(s) in response to subsequent stress, which might be better adapted 

to the specific stress than it is the case for unprimed plants (Lämke and Bäurle, 2017). After 

the priming stimulus, the plant undergoes a period of stress memory (Stief et al., 2014). 

Priming involves the gathering of information. The duration of the priming memory may be 

in the range of several days to weeks and in some cases transgenerational (Mauch-Mani et 

al., 2017). Two mechanisms involved in defense priming have been proposed. The first is the 

accumulation of signaling or transcription factors and the second epigenetic changes that 

allow plants to memorize the “ready state” (Bruce et al., 2007).  
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Figure 4: Modified responses of primed plants in comparison to unprimed (naïve) plants. 

Plants that faced a priming stress show different responses to a triggering stress than naïve plants. 

Primed plant responses are indicated in purple and unprimed responses in black. The primed plants 

may respond to the triggering stress faster/earlier, stronger or more sensitized than the unprimed 

plants. Primed plants may induce different networks of genes than unprimed plants. (adopted from 

(Lämke and Bäurle, 2017)).  

3.6.1. Transcriptional memory – one way to manifest stress priming  

It has been proposed that one layer of defense priming memory can be found at the 

transcriptional level. (Bruce et al., 2007). The priming stimulus can cause a continuous change 

in gene expression, although the plant is not facing the stimulus anymore. Whereas, the 

transcriptional modification includes an activation or repression as well as a modified 

transcriptional response, like a hyperinduction upon a second stimulus. Also, other typical 

transcriptional responses might contribute to priming memory. An induction of 

transcriptional feedback loops leading to the autoactivation of a transcription factor could 

take place after the initiative stress stimulus. Moreover, posttranscriptional modifications 

which influence the protein stability and a modification could contribute to an enhanced 

memory (Lämke and Bäurle, 2017).  
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3.6.2. Synthetic elicitors in defense priming  

An enhanced capacity to react to a subsequent stress might be also established by an 

enhanced perception of a certain stress. Evidence for this post challenge prime state at the 

receptor level is given by treatments with the previously mentioned BTH. BTH treated plants 

show enhanced responsiveness to flagellin and chitin by increased expression levels of the 

receptors FLS2, CERK1 and the co receptor BAK1 (Tateda et al., 2014). Also, BABA has similar 

effects on plant receptors. The plasma membrane-localized and with FLS2 associated protein 

lectin receptor kinase VI.2 is required for BABA-induced resistance and is important for 

priming of MAMP-triggered immunity (Huang et al., 2014) 

At the downstream level primed plants show the capacity of an increased ROS response upon 

a challenge. Priming treatments with SA, BTH and BABA lead to an enhanced ROS burst in 

response to a challenge with pathogens, MAMPs and DAMPs (Pastor et al., 2013; Tateda et 

al., 2014; Mauch-Mani et al., 2017). An interesting example of the enhanced primed 

resistance is the result that primed plants can block pathogen-mediated reopening of stomata 

during Pseudomonas infection. This led to the finding that BABA pre-treated plants might 

show drought stress tolerance mediated by the stomata closure (Camañes et al., 2012; 

Baccelli and Mauch-Mani, 2016). Furthermore, the previous described MAPKs also show 

enhanced activation in primed plants in response to pathogen challenge or biotic stresses 

(Beckers et al., 2009; Yi et al., 2015). Many other defense signals and transcription factors are 

activated by the initial triggering of the MAPK cascade (Conrath et al., 2015). In summary, 

priming at a transcriptional level is very multifaceted and affects all parts of plants metabolism 

and enables the plant to remember stressful situations for a limited time. However, 

epigenetic modifications enable plants to acquire memory and can cause long-term changes 

in gene responsiveness.  

3.6.3. Epigenetic memory – the better way to manifest stress priming? 

Epigenetic phenomena are widely spread among organisms and include genetic imprinting, 

paramutation, transposon activation, gene silencing and changes in the chromatin structure. 

Epigenetics was first defined in the year 1942 by Conrad Waddington as “The branch of 

biology which studies the causal interactions between genes and their products which bring 

the phenotype into being” (Waddington, 2012)(reprint). It is hypothesized that priming and 
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the way a plant reacts to biotic and abiotic stresses relies strongly on epigenetic regulations 

(Bruce et al., 2007; van den Burg and Takken, 2009). It is assumed that the initial priming 

stimulus alters the chromatin structure or methylation level in such a way that gene 

promotors are more accessible and therefore facilitated to activate (Mauch-Mani et al., 2017; 

Ramirez-Prado et al., 2018).  

DNA methylation is a widely studied epigenetic mechanism and is shown to be a dynamic 

regulatory mechanism of defense genes and stress priming. In plants, methylation of cytosine 

DNA base residues can have been classified in three sequence contexts, methylation can be 

separated in symmetric (CG, CHG) and asymmetric (CHH) DNA methylation patterns (where 

H is very base excepted of G). DNA methylation in all sequence contexts can be triggered by 

small interfering RNAs (siRNA) via a de novo methylation pathway termed RNA-directed DNA 

methylation (RdDM). The onset of RdDM begins with the production of RNAs by the 

Polymerase IV (Pol IV). The produced RNAs undergo several processing steps leading to the 

production of siRNAs that are loaded into ARGONAUTE 4 (AGO4). The formed complex has 

been proposed to base-pair with a nascent RNA scaffold which is produced by POL V. This 

complex is established the physical interaction of AGO4 with the large subunit of POL V, 

named NUCLEAR RNA POLYMERASE E1 (NRPE1). The methylation of DNA is finally established 

by the subsequent interaction with DOMAINS REARRANGED METHYLTRANSFERASE2 (DRM2). 

The second possible mechanism leading to DNA methylation is the POL II-RDR6-dependent 

RdDM pathway. Here, single stranded RNA (ssRNA) are transcribed by POL II and converted 

into double stranded RNA (dsRNA) by RNA-DEPENDENT RNA POLYMERASE 6 (RDR6) and then 

processed into 21-22 nucleotides (nt) long siRNA. These siRNA are loaded into AGO6 that can 

also interact with the scaffold RNA transcribed by POL V, which therefore establishes DNA 

methylation. The established DNA methylation marks in CG and CHG context are maintained 

through mitosis and meiosis via a pathway which is catalyzed by METHYLTRANSFERASE1 

(MET1) and CHROMOMETHYLASE3 (CMT3), respectively (Espinas et al., 2016; Ramirez-Prado 

et al., 2018; Zhang et al., 2018). Factors involved in the establishment and maintenance of 

methylation have been found to control plant immunity and therefore provide evidence of 

epigenetic regulation of plant immunity. For instance, plants that are globally defective in 

maintaining CG and non-CG methylation in met1-3 show enhanced defense responses when 

exposed to Pseudomonas syringae pv. tomato DC3000 (Dowen et al., 2012). Moreover, it was 
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shown that the global level of DNA methylation during defense response upon bacterial 

infection is reduced and that expression of defense-related genes is promoted by DNA 

hypomethylation during pathogen infection (Yu et al., 2013). Evidence that DNA methylation 

is part of defense priming was given by a study that showed a different capacity of 

hypermethylated and hypomethylated mutants to prime the activity of defense-related genes 

and callose deposition (López Sánchez et al., 2016). Moreover, another important factor for 

DNA methylation namely AGO4 is involved in immunity. The ago4 mutant is more susceptible 

to Pseudomonas infection (Agorio and Vera, 2007). 

The claim that “priming smells of epigenetics” is mainly based on findings involving histone 

modifications at defense-related genes (Waterborg, 2011). Histone modifications influence 

chromatin compaction and therefore the accessibility of genes for transcription as well as 

replication and recombination (Mauch-Mani et al., 2017). Modifications of histones are 

posttranslational and can, among others, consist of the addition of methyl or acetyl residues. 

Well characterized examples of these modification are acetylation of histone H3 at the lysine 

(K) 9 (H3K9ac). This histone mark is associated with the positive gene transcription activity. 

On the other hand, the histone mark H3K27me3, which is a trimethylation of histone H3 at 

the lysine 27, is associated with repressed gene transcription activity (Pasini et al., 2008; Zhou 

et al., 2010). Especially, the histone mark H3K4me3 is considered as a primary marker of stress 

memory (Conrath et al., 2015). It was shown that the maintenance of heat stress memory is 

mediated by H3K4 methylation at the side of a heat-inducible transcription factor (Lämke et 

al., 2016). Participation in defense priming was also shown in the case of histone 

acetyltransferases and deacetylases. The mutant hac1-1 (histone acetyltransferase 1) is 

involved in bacterial resistance and defense priming following PTI reactions (Singh et al., 

2014). It seems that HAC1 links repetitive stress responses activation to defense priming. In 

line with these results is the finding that knock out of RPD3/HDA1‐class histone deacetylase 

(HDA19) results in a de-repression of SA-based defense (Choi et al., 2012). Moreover, the 

great majority of genes involved in SAR seems to be primed resulting by an interplay with 

different histone modifications (Conrath et al., 2015; Mauch-Mani et al., 2017). One report 

that shows concrete involvement of histone methylation of defense priming reported that 

treatment with BTH increases the appearance of H3K4me2 and H3K4me3 on three important 

defense-related transcription factors (WRKY29, WRKY6, WRKY53). BTH induced priming at 
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these genes showed a transcriptional memory after a lag phase of several days (Jaskiewicz et 

al., 2011). However, since also abiotic stress can induce defense priming (Singh et al., 2014) 

and defense inducing agents reduce between 20 and 85% of plant infection, it might be that 

plants in the field are already primed due to the various stresses they have to face 

continuously (Walters, 2009).  

3.6.4. Transgenerational stress priming 

The finding that certain DNA methylation patterns are inheritable paved the way to the 

hypothesis that some traits that are regulated by DNA methylation could be passed on to 

subsequent generations. Several studies showed an effect in the progeny of plants infected 

with tobacco mosaic virus or exposure to UV light or flg22 treatment. Progeny of plants 

infected with tobacco mosaic virus showed greater resistance while plants of which parents 

were exposed to UV or flg22 resulted in a greater homologous recombination frequency 

(Roberts, 1983; Molinier et al., 2006). Interestingly, also the chemical SAR activator BABA was 

shown to induce resistance in the progeny (Slaughter et al., 2012). After comparison of 

transgenerational resistance in RdDM mutants with wild type plants, it was suggested that 

transgenerational SAR is achieved through induced hypomethylation at non-CG DNA sites. 

(Luna et al., 2012; Luna and Ton, 2012). Next to the possibility of inherited DNA methylation 

marks, an alternative is that histone modifications are inherited through nucleosome 

recycling or the copying of modifications onto newly incorporated histones. This hypothesis 

is based on findings on the widely studied gene FLOWERING LOCUS C (FLC). This transcription 

factor acts as repressor of floral transition and is regulated by the histone mark H3K27me3. 

During embryogenesis the vernalized state of FLC is reset by the activity of an H3K27 

demethylase (Crevillén et al., 2014). Mutants lacking the demethylase inherit the 

vernalization state to their offspring. Intergenerational stress memory was confirmed in a 

study on hyperosmotic stress priming. Plants which were stressed during their vegetative 

development passed on the stress memory for at least two generations. However, this stress 

memory was reset after one stress-free generation (Wibowo et al., 2016). Transgenerational 

epigenetic stress memory is meiotically stable and extends for at least one stress-free 

generation. One study showed that stress-dependent mobilization of retrotransposons and 

their directed integration in the genome can be stably inherited. This stable integration could 
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possibly lead to a more stress-resistant progeny (Thieme et al., 2017). This finding could open 

a door for the introduction of beneficial plant traits.  

3.6.5. Memory is not for free – costs and omission of stress priming  

Induced transgenerational resistance could possibly results in a costs for the plant. On the 

level of hormonal regulation of plant defense, it was shown that the progeny of plants primed 

with a SA pathway inducing pathogen downregulate JA-dependent defense. This results in an 

increased susceptibility in these plants against JA- pathway dependent bacterial infections 

(Luna et al., 2012). Overall, defense priming is assumed to be beneficial for the plants with a 

generally positive cost-benefit balance in times of stresses. However, the advantage of a 

primed “ready state” becomes only obvious upon a subsequent exposure to a second stress, 

whereas a primed plant can outperform an unprimed plant. If this second stress is not 

accruing only the costs of priming influence the plants fitness. The activation and 

maintenance of the prime state of enhanced defense in form of the deposition of dormant 

signaling enzymes as well as the storage in form of epigenetic marks on defense gene 

promotors could result in fitness consequences (Conrath et al., 2015; Martinez-Medina et al., 

2016). However, defense priming has lower costs than the direct activation of defense. In 

summary, research on the impact of defense priming on possibly negative effects is currently 

underrepresented. A possible model of the impact of defense priming on defense responses 

and plant fitness is summarized in Figure 5.  
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Figure 5: Summary of the relation between defense responses (solid lines) and plant fitness 

(dashed lines) in primed (red) and unprimed plants (blue). A) Defense reaction during priming 

and in the primed state is only transient and weakly induced. B) The direct activation of defense and 

the resulting fitness costs without priming stimulus is higher than the fitness cost of the priming 

stimulus. C) Upon a triggering stress, primed plants are capable of mobilizing cellular defense in a 

faster, earlier, stronger and more sustained fashion than unprimed plants. D) Primed plants do 

defend better against the triggering stress than unprimed plants. Adapted from (Martinez-Medina et 

al., 2016). 

In the last years it became clear, that plants are also able to forget certain stresses. It might 

be an advantage for the plant to forget a previous stress in case the plant is sensing a false 

alarm signal (Crisp et al., 2016). In the case of a maladaptive effect of stress memory it is 

reasonable to consider possible mechanisms for resetting. A screen for factors involved in the 

erasure of epigenetic stress memory resulted in the identification of two genes. DECREASE IN 

DNA METHYLATION 1 (DDM1) and MORPHEUS´MOLECULE 1 (MOM1) are key factors to 

prevent transgenerational memory (Iwasaki and Paszkowski, 2014). Moreover, the role of 

RNA metabolism has great potential as a regulatory mechanism in memory resetting. Three 

mechanisms have been proposed to facilitate resetting of the transcriptome. At the 

transcriptional level are fast activation exonucleases (1) as well as miRNA silencing (2) and 

siRNA silencing (3) that could play a role in a directed resetting of gene expression (Crisp et 

al., 2016). However, not much is known how about how changes in mRNA stability influence 

transcriptional memory.  
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One research group showed a rather unusual memory response pattern by a subset of 

hydration stress response genes. Several exposures to hydration stresses has been assumed 

to prime the response to a subsequent hydration stress. However, it was found that a subset 

of genes responds to a first stress but then returns to a basic pre-stressed expression level 

during watered recovery and do not respond to subsequent stresses. The transcription factor 

MYC2 was identified to be a critical component for the memory behaviour of this subset of 

genes (Liu et al., 2014; Liu et al., 2016). 

3.7. Antisense transcription  

 

Next to the epigenetic regulation of gene expression another emerging regulation of 

transcription involves the expression of antisense transcripts. It has been previously reported 

that next to transcription of genes in sense they can also be transcribed in antisense 

orientation. Antisense transcripts include partial or complete sequences complementary to 

other transcripts and are endogenous RNA molecules (Wang et al., 2005). They play an 

important role in various processes, including the response to biotic and abiotic stresses 

(Terryn and Rouzé, 2000). Antisense transcripts are widespread in both prokaryotes (Wagner 

and Simons, 1994) and eukaryotes (Vanhée-Brossollet and Vaquero, 1998). Moreover, 

evidence suggest that transcription of antisense RNAs have the potential to alter RNA 

processing, transport, stability and translation (Vanhée-Brossollet and Vaquero, 1998). 

Interestingly, antisense transcripts can modulate transcript levels via an RNA silencing 

mechanism. Double stranded RNAs emerging from sense and corresponding antisense 

transcripts could be processed into siRNA which then trigger silencing (Borsani et al., 2005; 

Wang et al., 2005). Moreover, it was shown that antisense transcripts are widely presents in 

apple. Notably, the percentage of antisense in apple is higher than that identified in annual 

plants like Arabidopsis (Celton et al., 2014).  
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3.8. The aims of this thesis. 

 

The plant immune system is under complex genetic and epigenetic regulation and can be 

triggered by external as well as endogenous signaling peptides. At the beginning of my thesis 

the number of discovered and characterized small endogenous signaling peptides was 

constantly increasing. However, the number of potential small endogenous peptides in the 

Arabidopsis genome is tremendously high. In fact, the Arabidopsis genome harbors more than 

thousand genes that potentially code for secreted peptides (Lease and Walker, 2010). Apart 

from the induction and regulation of defense responses by small endogenous peptides, the 

plant is capable of remembering previous stresses by a mechanism referred as priming. At 

the beginning of my thesis the research focused mainly on the molecular mechanism of 

priming memory maintenance. Less published research focused on the plants capability to 

forget previous stresses. Thus, the overall focus of my thesis is to uncover to molecular 

mechanisms of induction, maintenance and omission of plant defense responses and memory 

by endogenous, exogenous and synthetic plant elicitors.  

To achieve the first aim of my thesis I was working in close collaboration with the 

bioinformatic group at IRHS Angers. This group developed a bioinformatic pipeline to predict 

previously unidentified small endogenous plant peptide families. As a proof of concept, my 

goal was to characterize the properties and effects of the newly predicted small peptide 

family termed SCOOP (Serine riCh endOgenOus Peptide). The first very promising results 

opened the door for the discovery of various interesting effects of several small peptides of 

the SCOOP family. I show that the SCOOP family peptides are involved in defense responses 

and root development in Arabidopsis. My work on the SCOOP peptide family is described in 

the chapters 4 and 5.  

The second aim of my thesis was to study the ability of plants to memorize treatments with 

defense priming elicitors as well as the influence of a subsequent exposure to exogenous 

elicitors. The goals here were (1) to uncover the long-term transcriptional memory a salicylic 

acid-related defense priming compound induce in a plant (2) to test if this memory is stable 

following a subsequent exogenous elicitor treatment.  To demonstrate the generality of my 

findings I carried out experiment on Arabidopsis and apple. My work on the plant stress 
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memory behavior and the loss of the primed state of transcription by a subsequent stress is 

described in chapter 6. 
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4. The SCOOP12 peptide regulates defense responses and root 

development in Arabidopsis thaliana. 

 

The work described in this chapter was resulting from a collaboration between the 

bioinformatic group and me. A modified and extended version of this chapter was published 

in Gully et al., (2018) (Appendix in this thesis). The SCOOP peptide family regulates defense 

response and root development in Arabidopsis thaliana. My contribution was all experiments 

involving the application of peptides and certain pathogen infections (protection assay and 

pseudomonas infection of proscoop12) as well as creating a CRISPR-Cas9 mutant in the Col-0 

background and data compilation. The phospholipid pathway activating capacity of SCOOP12 

was investigated in a collaboration with the iEES-Paris.  

4.1. Abstract  

 

Small secreted peptides are important actors in plant development and stress response. Even 

though numerous Arabidopsis thaliana genes have the potential to produce these peptides, 

the vast majority of them have not yet been characterized for their biological functions. In 

this study, using a targeted in silico approach, we identified a small family of 14 Arabidopsis 

genes encoding precursors of Serine rich endogenous peptides (PROSCOOP). Plants defective 

in one of the family members (PROSCOOP12) show enhanced root growth. Searching through 

all Brassicaceae homologs of PROSCOOP12 we identified a conserved motif indicating that it 

encodes for a putative secreted peptide. The exogenous application of the synthetic peptide 

SCOOP12 induced various defense responses and pathogen tolerance in Arabidopsis. Our 

findings show that SCOOP12 has numerous properties of damage/danger-associated 

molecular pattern (DAMP) and is perceived in a BAK1 co-receptor dependent manner. In 

conclusion, we demonstrate that SCOOP12 fulfills all structural features of a post-

translationally modified peptide that modulates defense responses and root elongation. 
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4.2. Introduction 

 

Plants are facing continuous attacks by pathogens. To counter constant pathogen 

aggressions, plants have developed sophisticated perception and defense systems. These 

plant responses are regulated by complex networks involving regulatory proteins and 

hormones and are associated with massive changes in gene expression (Buscaill and Rivas, 

2014). Among the involved actors, it has been shown that small secreted peptides, also 

named peptide phytohormones, play an important role through their direct interaction with 

pathogens or through their function in development and cell-to-cell communication involving 

ligand-receptor interactions (Murphy et al., 2012; Marmiroli and Maestri, 2014). 

 

The secreted peptides derive from protein precursors having a shared N-terminal signal 

peptide which target the protein to the secretory pathway. They can be categorized into two 

major classes: (i) the small post-translationally modified peptides (PTMP) which are the 

targets of posttranslational maturations and are produced through a proteolytic processing 

and (ii) the cysteine-rich peptides (CRP) characterized by an even number of cysteine residues 

involved in intramolecular disulfide bonds (Tavormina et al., 2015). Although they are mainly 

involved in plant growth and development processes, it has been shown that numerous genes 

encoding secreted peptides are also involved in plant defense mechanisms (Albert, 2013). For 

instance, the CRP class includes the antimicrobial peptides (such as knottins and defensins) 

which interact and disrupt the pathogen cell membrane (Goyal and Mattoo, 2014). Regarding 

PTMPs, families such as the phytosulfokines, CLE/CLV3, IDA/IDL or PSY are actors in processes 

regulating a large panel of plant-pathogen interactions (Lee et al., 2011; Shen and Diener, 

2013; Vie et al., 2015; Rodiuc et al., 2016).  

 

Among secreted peptides, those showing immunity-inducing activity have been classified as 

damage/danger associated molecular pattern, i.e. DAMPs (Heil et al., 2012), by analogy with 

the exogenous microbe-associated molecular patterns, i.e. MAMPs (Boller and Felix, 2009). 

By using lytic enzymes, a pathogen can penetrate the plant cell wall and the cell wall 

fragments released into the apoplastic space can be perceived by neighboring cells, resulting 

in defense reactions. Oligalacturonides and cutin monomers are examples of DAMPs which 
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get released upon fungal infection (Fauth et al., 1998). Also, other molecules, which are not 

located in the extracellular space under normal conditions such as DNA, ATP and some sugar 

molecules can serve as DAMPs. Their perception by neighboring cells elicits innate immunity 

as well (De Lorenzo et al., 2011). The small peptide AtPep1 is a well-documented DAMP 

(Bartels and Boller, 2015). A first induction of AtPep1 and other peptides of this gene family 

by wounding or pathogen attack has a positive feedback on the expression of its own 

precursors as well as defense marker genes that is thought to amplify defense signaling 

pathways (Huffaker and Ryan, 2007).  

 

However, only a small fraction of the gene space likely to encode signaling peptides has been 

described and their diversity appears to be largely underestimated (Matsubayashi, 2014). 

Indeed, the Arabidopsis genome contains more than a thousand genes harboring secreted 

peptide features for which the biological function is currently unknown(Lease and Walker, 

2006, 2010). This lack of data can be explained by the fact that this type of genes has only 

recently been detected due to their small size and their low sequence conservation 

(Silverstein et al., 2007). Furthermore, the frequent functional redundancy inside these gene 

families (Matsubayashi, 2014) renders mutant knock-out approaches less successful. The 

mining of previously published transcriptomes is an efficient way to explore this unknown 

gene-space and decipher functions of new genes for which, without reference, the inference 

of function by similarity cannot be applied. Based on transcriptome meta-analysis and 

bioinformatics predictions in a ‘guilt by association’ approach, we identified a peptide family, 

whose one member at least is involved in plant immunity and root development. 

This work describes the identification of a gene family specific to the Brassicaceae genus 

encoding putative secreted peptides. The functional characterization of PROSCOOP12, one of 

its members in Arabidopsis, shows that this small gene could act as moderator in the response 

to different pathogen aggressions and in root development presumably via controlling ROS 

detoxification. Based on the prediction of conserved motifs present in this family, we then 

illustrate that the small endogenous SCOOP12 peptide displays most properties of a DAMP. 
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4.3. Results  

4.3.1. Identification of the PROSCOOP gene family 

As previously mentioned, the Arabidopsis genome harbors more than a thousand genes with 

properties of a potentially secreted peptide. Among them, one gene that we termed 

PROSCOOP12 (AT5G44585 in TAIR10) caught the attention of the bioinformatic group at INRA 

Angers. This gene has an uncommon and highly informative transcription profile. By meta-

analysis of the CATMA micro-array dataset (Gagnot et al., 2008) PROSCOOP12 was found to 

be constrictively expressed in roots but strongly induced in leaves in response to a large panel 

of different biotic stresses. In roots PROSCOOP12 shows a constitutive expression in normal 

growth condition but is down-regulated in numerous conditions affecting root elongation 

such as nitrogen starvation (Krapp et al., 2011). These observations led us to investigate the 

role of PROSCOOP12 in root development in greater detail.  

The screening of the Arabidopsis genome revealed that PROSCOOP12 belongs to a small 

family of 14 unknown genes with a similar intron-exon structure (2 or 3 exons), encoding 

proteins ranging from 72 to 117 amino-acids (aa) with a N-terminal signal peptide, targeting 

proteins to the endoplasmic reticulum present in all members of the family. The genes of the 

PROSCOOP family are organized in two tandemly arrayed clusters on chromosomes 1 and 5 

(Figure 6A). The largest 37 kb long gene cluster on chromosome 5 contains numerous vestiges 

of transposable elements (Helitron type) which could have impacted evolution of this family 

through local duplication events. Manual annotation revealed two additional yet non-

annotated genes (PROSCOOP2 and PROSCOOP3) located between AT5G44565 and 

AT5G44568. Both share significant similarities with the other clustered PROSCOOP genes. Our 

manual annotation also led to the correction of the structure of AT5G44570 (PROSCOOP5) in 

which an over-predicted 3’ coding exon has been removed. The size of the proteins, the 

number and the organization of paralogs, the aa composition (with the absence of cysteine) 

and the presence of a signal peptide are common features shared by the PTMP families 

previously published (Matsubayashi, 2014). This newly identified family has been named 

SCOOP, for Serine riCh endOgenOus Peptide. Its members termed PROSCOOP1 to 14 encode 

putative precursors of the mature SCOOP1 to 14 peptides. 
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In order to identify divergent yet still conserved smaller regions (ranging from 6 to 12 aa), 

Sebastien Aubourg and his colleagues of the bioinformatic group used the MEME algorithm 

(Bailey et al., 2015), excluding full length alignments, on the 74 identified homologs. This 

sensitive approach allowed the identification of two significantly conserved 11 aa-long motifs 

(Figure 6B). These motifs were good candidates for functional mature peptides following the 

putative proteolytic processing of the corresponding precursor. Indeed, both motifs are 

proline-, serine-, arginine- and glycine- rich, as in previously described PTMP families such as 

CLV3/CLE (Betsuyaku et al., 2011), IDA (Vie et al., 2015), PIP (Hou et al., 2014) and CEP 

(Roberts et al., 2013). Motif 1 is more ubiquitous than Motif 2 since it was detected in 72 sites 

(e-value of 9.8e-213) compared to 39 sites (e-value of 3.4e-179) out of the 74 PROSCOOP 

homologs (present in all Brassicaeae species). Therefore, we have focused our downstream 

analysis on motif 1 (Figure 6B), named SCOOP thereafter. 
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Figure 6: A) PROSCOOP family gene organization: coding exons and introns are represented by 

blue boxes and blue broken lines respectively. Remains of transposable elements (Helitron type) 

are represented by orange boxes and the green one indicates a putative non-coding RNA of 

unknown function. The TAIR gene names and corresponding PROSCOOP nomenclature are 

indicated. B) Conserved motifs identified in the PROSCOOP family proteins: The conserved motives 

were found within all 74 homologous PROSCOOP proteins in Brassicaceae genomes. P-values and 

motif locations are only shown for the 14 members from Arabidopsis. 

 

In order to assess the evolutionary conservation of the PROSCOOP family, an extensive search 

for homologs in GenBank was carried out. We identified this family in several Brassicaceae 

genomes reaching from Eutrema salsugineum to Camelina sativa and the number of 

identified homologs in these genomes ranged from 1 to 13. Outside Brassicaceae genus, no 

similar protein has been detected despite low stringency searches. The phylogenetic tree built 

from the multiple alignment of the 74 identified PROSCOOP homologs shows that tandem 

duplications occurred before speciation of the 8 different Brassicaceae species (Figure 7) 
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Figure 7: Phylogenetic tree of PROSCOOP homologs. The tree was built with the neighbor-joining 

method from the multiple alignment of 74 homologous Brassicaceae proteins. Gaps were ignored 

for tree building and 1000 bootstrap replicates were used to determine the robustness of each node 

(values > 50% are highlighted in yellow). Except for Arabidopsis thaliana for which PROSCOOP 

nomenclature is used, each protein is labelled with two letters (species) and its GenBank ID or XP 

number. 

4.3.2. Use of the CRISPR-Cas9 system to generate proscoop12 in Col-0 background  

 

While a T-DNA mutation in PROSCOOP12 was available in the Wassilewskija (Ws) Arabidopsis 

accession, no mutation in that gene was available for Columbia (Col-0). In order to obtain a 

PROSCOOP12 mutant in Col-0 accession, we used the CRISPR-Cas9 approach to knock-out 

PROSCOOP12 in this accession. A guide RNA (gRNA) was designed to target the first exon of 

PROSCOOP12. Following transformation PROSCOOP12 was genotyped by sequencing for the 
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presence of mutations. In one line we detected a single alanine (A) insertion within the gRNA 

binding sequence (Figure 8A). The resulting frame shift leaded to an early stop codon only 

10aa downstream the editing event. To confirm the sequencing result a 450 base pairs (bp) 

long PCR product was digested with the restriction enzyme HaeII, which enzyme recognition 

sequence (RGCGCY) is disrupted by the CRISPR-Cas9-targeted mutation in PROSCOOP12. The 

PCR product could not be digested in proscoop12 confirming the sequencing results (Figure 

8B). In the previously mentioned T-DNA mutant proscoop12 in the Ws background 

PROSCOOP12 was not transcribed (Figure 8C).  

 

Figure 8: Confirmation of mutations in PROSCOOP12 in two accessions. (A) The mutant in Col-

0 (Columbia) background was created using the CRISPR-Cas9 approach. The guide-RNA was 

designed in the first exon. DNA of 15 proscoop12 mutants was extracted and sequenced. The 

alignment to the reference sequence (TAIR10) shows that proscoop12 has a single base insertion. 

(B) A 450bp long fragment covering the guide-RNA sequence was amplified by PCR. The PCR 

product of Wt and proscoop12 DNA was digested using the restriction enzyme HaeII. (C) 

Confirmation of absence of transcription of PROSCOOP12 in the T-DNA knock-out line by RT-PCR 

in Ws (Wassilewskija). Actin2 expression (ACT2) is used as control. 

4.3.3. PROSCOOP12 is involved in root development 

Previous results on the AtPep/PROPEP peptide family, showed that this small peptide could 

play an important role in developmental processes. It was shown that AtPep1 perception 

might inhibit root growth via regulation of GLUTAMINE DUMPER (GDUs) genes encoding 

amino acid exporters (Ma et al., 2014), and second a publication uncovered an acceleration 

of starvation-induced senescence upon Pep perception (Gully et al., 2015). Based on these 

findings and the transcriptomic analysis that suggested PROSCOOP12 may play a role in root 

development, we compared the root length of wild type and proscoop12 plants. Indeed, 
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proscoop12 plants developed significant longer roots than control plants in both accessions 

(Figure 9).  

 

 

 

 

4.3.4. The SCOOP12 peptide has the main features of DAMPs 

The structural features of the PROSCOOP12 protein suggested that it should be classified as 

a secreted PTMP. However, at the functional level, its transcriptional behavior suggested that 

it may play a role as a DAMP. Indeed, the induction of PROSCOOP12 expression by a large 

panel of biotic stresses and the root phenotypes identified in proscoop12 revealed some 

analogies with the AtPROPEP1 and AtPROPEP2 genes which encode for the precursors of the 

AtPep1 peptide, a well-characterized DAMP (Bartels and Boller, 2015). Likewise, both genes 

are also induced by biotic stress (Huffaker et al., 2006) and the AtPep1 DAMP is involved in 

root development since the overexpression of PROPEP1 and PROPEP2 resulted in significantly 

Figure 9: phenotypic comparison between 

wild-type and proscoop12 plants.  

Root growth phenotypes were determined 

after 11 days. Wt plants were compared with 

proscoop12 in the two accessions Col-0 and 

Ws.  Student’s t-test revealed that the different 

root length between wild-type and mutant is 

highly significant (***, P < 0.001).  
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longer roots (Huffaker et al., 2006). Therefore, we wanted to test if PROSCOOP12 encodes for 

a peptide that may act as a DAMP and compare it to AtPep1  

4.3.5. The SCOOP12 peptide induces immune responses in Arabidopsis 

Based on the identification of the conserved motif 1 (Figure 6A), a putative mature peptide 

SCOOP12 was defined (PVRSSQSSQAGGR) and synthetized in order to explore its biological 

function. Despite the non-predictable post-translational modifications of the mature peptide, 

we tested the exogenous application of the synthetic SCOOP12 peptide as previously 

described for the CLE and RGF PTMP families (Matsuzaki et al., 2010; Murphy et al., 2012; 

Whitford et al., 2012). Treatment of plants with SCOOP12 induced a wide range of long- and 

short-term immune responses (Figure 10). One of the fastest defense responses is the 

production of ROS (Torres et al., 2006). We show here that SCOOP12 induced a more intensive 

ROS burst compared to AtPep1 but weaker than flg22 (Figure 10A). Next, we wanted to study 

the effect of SCOOP12 on genes closely linked to early defense mechanisms. The FLG22-

INDUCED RECEPTOR-LIKE KINASE1 (FRK1) has previously been shown to be induced by 

pathogens, pathogen-derived elicitors and salicylic acid through MAPK (mitogen-activated 

protein kinases)-mediated signaling (Asai et al., 2002; Boudsocq et al., 2010) and AtPep1 

(Flury et al., 2013). Therefore, we wanted to test if exposure to SCOOP12 could influence FRK1 

expression. Here, we measured FRK1 steady-state transcript levels in detached leaves floating 

for 2h in solutions supplemented with SCOOP12 or AtPep1. Compared to controls, AtPep1 

and SCOOP12 treatments resulted in a 15-fold and 8.5-fold increase in FRK1 expression, 

respectively (Figure10B). The deposition of callose is known to be triggered by conserved 

PAMPs (Luna et al., 2011) as well as DAMPs such AtPep1. Callose staining after 24h of 

treatment with the elicitor peptides showed that SCOOP12 induced a callose deposition, yet 

at a weaker level compared to flg22 or AtPep1 (Figure 10C and 10D). One of the long-lasting 

defense responses is an inhibition of growth caused by the elicitor. The addition of MAMPs 

or DAMPs to the medium can lead to a strong inhibition of seedling growth in a concentration-

dependent manner, which is dependent on the receptor-MAMP interaction (Krol et al., 2010). 

Our results indicate that perception of SCOOP12 also lead to an arrest of growth. The effect 

is comparable to the flg22 MAMP and the AtPep1 DAMP (Figure 10 EFG). 

 



The SCOOP12 peptide regulates defense responses and root development 

45 
 

 

Figure 10: Defense responses induced by SCOOP12. (A) Reactive oxygen species (ROS) 

measured in RLU (relative light units) production in wild-type Arabidopsis leaf-discs (Col-0), treated 

with 1µM for each peptide or without elicitor (control). Graphs display averages of 12 replicates. (B) 

Induction of (FRK1) gene transcription in soil-grown plants treated with 1µM of the indicated peptide 
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or without elicitor (control). The bars represent the mean of three biological replicates. (C) 

Quantification of callose deposition. The bars represent the means of 4 replicates. (D) Localization 

of callose deposition by aniline blue staining. (E-G) Quantification of seedling growth inhibition. 5 

days old seedlings were transferred from solid MS medium to liquid medium supplied with the 

indicated elicitors (all applied in a final concentration of 1µM) and were grown for additional 8 days 

before fresh weight and root length was quantified and pictures were taken. For all experiments: 

error bars show ±SE of the mean. (H) Arabidopsis wild-type (Col-0) plants were pre-treated for 24h 

by leaf infiltration with 1µM of the indicated elicitor or without peptide. Subsequently, leaves were 

infected with 105 cfu ml-1 Pst. DC3000, and bacterial growth was assessed 1 and 2 days after 

infection. (I) Induction of PROSCOOP12 in the same tissue and approach as described in B. The 

bars represent the mean of 6 biological replicates. Error bars show ±SE of the mean. Significant 

differences according to Student’s t-test results: *, P < 0.05; **, P < 0.01; ***, P < 0.001. 

 

Small endogenous peptides are known to be active at a very low centration. In order to 

confirm this property for the SCOOP12 peptide we performed dose effect experiment by 

using the seedling growth experiment. The results show that flg22 causes an inhibition of 

seedling growth at concentrations as low as 1nM. A concentration of 100nM SCOOP12 causes 

a highly significant reduction in seedling fresh weight while the root length is less severely 

affected. Moreover, SCOOP12 inhibits seedlings growth with a concentration of 50nM. (Figure 

11).  
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Figure 11: Dose-dependent effect of SCOOP12. Quantification of seedling growth inhibition. 5 

days old seedlings were transferred from solid MS medium to liquid medium supplied with flg22 or 

SCOOP12 with the indicated concentration and were grown for additional 8 days before fresh weight 

and root length was quantified and pictures were taken. The bars represent the mean of 6 replicates. 

Error bars show ±SE of the mean. Significant differences according to Student’s t-test results: *, P 

< 0.05; ***, P < 0.001. 

4.3.6. Pre-treatment with the SCOOP12 peptide protects Arabidopsis against Pseudomonas 

infection 

It has previously been shown that priming of plants with the flg22 elicitor as well as with 

oligogalacturonides could result in enhanced tolerance against subsequent bacterial 

infections. For instance, plants pre-treated with these elicitors showed significantly reduced 

lesion size following an infection with Botrytis cinerea (Raacke et al., 2006; Ferrari et al., 2007). 

Using a similar assay, we found that plants pre-treated with flg22 as well as with SCOOP12 

and AtPep1 were less susceptible to Pseudomonas syringae pv. tomato DC3000 infection 

(Figure 10H). The effect of the two endogenous peptides SCOOP12 and AtPep1 was weaker 
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than flg22, which is consistent with the fact that flg22 induced stronger defense response 

compared to SCOOP12 (Figure 10 AC). 

4.3.7. SCOOP12 induce the expression of PROSCOOP12 and PROPEP2 

It has previously been shown that small endogenous peptides can induce the expression of 

their own precursors resulting in a positive feed-back loop. For instance, expression of several 

PROPEP genes can be induced by different AtPep peptides (Huffaker and Ryan, 2007). This led 

us to investigate the change in steady state transcript level of PROSCOOP12 after SCOOP12 

exposure. Moreover, we decided to add AtPep1 in our assay for comparison since it is also 

known to induce transcription of another peptide precursor, prePIP1 (Hou et al., 2014). The 

results show, that PROSCOOP12 is upregulated by SCOOP12 in comparison to the control 

treatment (Figure 10 I). Therefore, there is a positive feedback loop linking SCOOP12 to its 

putative precursor PROSCOOP12. Next, we wanted to know if SCOOP12 is capable of inducing 

the expression of PROPEP family members. However, SCOOP12 does not induce expression 

of PROPEP1, while PROPEP2 is induced by a SCOOP12 application (Figure 12 AB). Indicating a 

cross regulation between the two peptide families.  
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Figure 12: Transcriptional response of PROPEP1 and PROPEP2 to SCOOP12 and AtPep1. A) 

transcription of PROPEP1 is induced by AtPep1 but not by SCOOP12. B) Transcription of PROPEP2 

increases 3 folds by SCOOP12 application. Expression levels were determined by normalization to 

ACR12 transcripts, and bars indicate the fold change of transcription relative to the control treatment 

of two independent biological replicates. Error bars show the relative ±1 SE of the mean. Significant 

differences according to Student’s t-test results: *, P < 0.05.  

4.3.8. proscoop12 does not show an altered response to Pseudomonas infection  

It was shown that the overexpression of the AtPep1 precursor PROPEP1 results in an 

enhanced resistance to the root pathogen Pythium irregulare (Huffaker et al., 2006). 

Moreover it was shown that the two precursors PROPEP2 and PROPEP3 are enhanced 

expressed by a Pseudomonas infection (Ross et al., 2014). However, it was so far not shown 

that a mutant of a PROPEP member is more susceptible to Pseudomonas infection. We 

decided to infect the proscoop12 plants in the Ws background with Pseudomonas (Figure 13). 

Even though we have found that the SCOOP12 peptide induces various defense responses, a 

knock-out in PROSCOOP12 does not result in an altered response to Pseudomonas (Figure 13 

AB).  
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Figure 13: P. syringae pv Tomato DC3000 (Pst DC3000) (P.s.t) infection Assay of Wild-Type 

Arabidopsis (WS) and proscoop12. A) Leaves were infected with 105 cfu ml-1 Pst. DC3000, and 

bacterial growth was assessed 1 and 2 days after infection. B) No phenotypic infection symptoms 

difference could be observed between wildtype and proscoop12 plants. 

4.3.9. SCOOP12 activity depends on the correct amino-acid order  

In order to demonstrate the specificity of SCOOP12 sequence, we synthesized a peptide based 

on a randomized version of the same 13 amino acids and tested plant responses to this 

scrambled SCOOP12 (scSCOOP12). Furthermore, we synthesized peptides with double 

alanine replacements (SCOOP12 S5/7A) and single replacements (SCOOP12 S5A; SCOOP12 

S7A) to test the importance of the two highly conserved serine residues on positions 5 and 7 

of SCOOP12 (Figure 6B) for its activity. Plants treated with scSCOOP12 as well as with the 

modified peptides did not show seedling growth inhibition. Total seedling fresh weight as well 

as root length were not different from that of control plants (Figure 14). Finally, treatments 

with scSCOOP12, SCOOP12 S5/7A and SCOOP12 S5A did not induce a ROS burst and only 

SCOOP12 S7A resulted in a low, still significant ROS burst (Figure 14). These results highlight 

the importance of the amino acid order and the presence of the highly conserved serine 

residues for the perception of SCOOP12 by the plant.  
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Figure 14: SCOOP12 activity depends on the correct amino-acid order and two highly-

conserved Serine. Assays were carried out with scrambled peptide (scSCOOP12) and alanine 

replacements of conserved serine residues at position 5 and 7 of SCOOP12 (PVRSSQSSQAGGR) 

(SCOOP12 S5/7A; SCOOP12 S5A; SCOOP12 S7A). (A) Quantification of seedling growth inhibition 

with the indicated elicitors. Bars of quantified fresh weight and root length represent mean of six 

replicates. (B) Reactive oxygen species (ROS) in RLU (relative light units) production in wild-type 

Arabidopsis leaf-discs (Col-0), treated with 1µM for each peptide or without elicitor (control). Graphs 

display averages of 12 replicates. Error bars show ±SE of the mean. Significant differences 

according to Student’s t-test results: *, P < 0.05; ***, P < 0.001. 

4.3.10. SCOOP12 is only perceived by Arabidopsis and Brassica napus  

Next, we wanted to test the conservation of plant responses to SCOOP12. For that purpose, 

plants were selected in which we identified PROSCOOP homologues (Brassica napus, Figure 

7) and plants for which this gene family has not been identified (Nicotiana benthamiana and 

Lycopersicon esculentum). We measured ROS production following application of SCOOP12 
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in these plants and included flg22 as a positive control. We detected a ROS burst caused by 

flg22 in all four plant species. On the other hand, SCOOP12 only resulted in a ROS burst in A. 

thaliana and at a lower, yet still significant level, in B. napus (Figure 15). Therefore, only the 

two plant species containing homologues of the PROSCOOP gene-family members, showed a 

response to SCOOP12 treatments. 

 

Figure 15: ROS burst measurements on selected plant species treated with SCOOP12. ROS 

burst assay was performed on Arabidopsis thaliana (Col-0), Lycopersicon esculentum, Nicotiana 

benthamiana and Brassica napus. The flg22 and SCOOP12 peptides were added to a final 

concentration of 1µM. Bars display the average of the maximum ROS burst in RLU (relative light 

units) of 12 replicates. 

4.3.11. The BAK1 co-receptor is involved in SCOOP12 perception 

A well characterized co-receptor of several receptors of small peptides is BRI1-associated 

kinase1 (BAK1). It has been shown to dimerize with BRI1 (Brassinosteroid-Insensitive 1), the 

brassinosteroid receptor (Li et al., 2002). Interaction of BAK1 with receptor like kinases that 

act as elicitor receptors, was proposed to be due to conformational changes occurring after 

ligand binding which results in the formation of the receptor complex (Chinchilla et al., 2009; 

Liu et al., 2017). To test if BAK1 is involved in the perception of SCOOP12, a seedling growth 

inhibition assay was performed on bak1-4 plants. Compared to wild-type controls, bak1-4 

plants did not display any significant growth inhibition upon SCOOP12 treatment (Figure 16A). 

In order to identify the SCOOP12 receptor, the same approach was carried out on fls2 (the 
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flg22 receptor) and pepr1/pepr2 plants. Contrary to BAK1, our results suggest that these 

receptors are not involved in the perception of SCOOP12 (Figures 16BC). 

 

 

Figure 16: Seedling growth inhibition assay on selected receptor mutant backgrounds. (A) 

bak1 plants were insensitive to SCOOP12. Neither fresh weight (top) nor root length (center) were 

affected by SCOOP12 treatment. The FLS2 (B) and PEPR1/PEPR2 (C) receptor mutants were not 

affected in their perception of SCOOP12. Plants were grown for 8 days in presence of 1µM 

SCOOP12 or control solution. Bars of quantified fresh weight and root length represent mean of six 

replicates. Error bars show ±SE of the mean. Significant differences according to Student’s t-test 

results ***, P < 0.001. 

In order to confirm the involvement of BAK1 in the perception of SCOOP12 we tested a double 

mutant bak1-5 bkk1-1. The mutant bak1-5 harbors a single amino acid substitution and does, 

in contrast to bak1-4, still accumulate wild type level of BAK1-5 protein (Roux et al., 2011). 

However, the double mutant bak1-5 bkk1-1 is nearly completely impaired in defense 

responses caused by flg22, elf18 and AtPep1 (Roux et al., 2011). The results show that bak1-

5 bkk1-1 is nearly completely impaired in the perception of SCOOP12. However, the root 

length of bak1-5 bkk1-1 treated with SCOOP12 is significantly shorter compared to the 

untreated control (Figure 17).  
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Figure 17: Seedling growth inhibition assay using the bak1-5 bkk1-1 double mutant. bak1-5 

bkk-1 plants are nearly completely impaired in SCOOP12 perception. Fresh weight is not affected 

by SCOOP12 treatment while root length shows a reduction upon SCOOP12 treatment. Plants were 

grown for 8 days in presence of 1µM SCOOP12 or control solution. Bars of quantified fresh weight 

and root length represent mean of six replicates. Error bars show ±SE of the mean. Significant 

differences according to Student’s t-test results ***, P < 0.001; *, P< 0,05.  

4.3.12. SCOOP12 rapidly activates phospholipid signaling pathways in Arabidopsis cell 

suspensions 

Lipid signaling pathways act as multifunctional regulatory mechanisms in plants. They 

incorporate several groups of inducible enzymes that convert membrane phospholipids into 

signaling molecules. Phosphatidic acid (PA) is a well-known biologically active lipid that is 

produced in response to numerous hormonal and stress signals including, notably, flg22 (van 

der Luit et al., 2000). Here, we show (experiments done by collaborators at the iEES in Paris) 

that application of SCOOP12 induces an accumulation of PA in Arabidopsis cell suspensions 

(Figure 18). This effect is observed as early as 5 min following SCOOP12 application in a low 

concentration of 100nM (Figure18 BC). The scSCOOP12 had no effect on PA accumulation. 
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Two modes of PA accumulation are known: PLD-dependent via direct hydrolysis of membrane 

phospholipids and DGK-dependent via phosphorylation of diacylglycerol (DAG). In our 

experiment a labelling protocol that favors visualization of DGK-derived PA was used (Arisz 

and Munnik, 2013). PIP2 is a substrate to phosphatidylinositol-specific phospholipase C (PI-

PLC) that produce DAG. We have also observed that the level of phosphatidylinositol 4,5-

bisphosphate (PIP2) is transiently reduced following SCOOP12 treatment (Figure18 B). These 

results suggest that SCOOP12 initiates a signaling cascade implicating PI-PLC (causing the 

depletion of PIP2) and subsequent production of PA via phosphorylation of DAG by DGK.  

 

Figure 18: Rapid activation of PA production in Arabidopsis cell suspensions following 

treatment with SCOOP12. (A) Separation of P33-labelled lipids using thin-layer-chromatography 

with contrasting effects of SCOOP12 (10µM) and scrambled scSCOOP12 (10µM) on the level of PA 

accumulation visible after 5 min of treatment. Significant differences according to Student’s t-test 

results: ***, P < 0.001. (B) Time–scale of the SCOOP12 (1µM) influence on PA and PIP2 

accumulation in Arabidopsis cell suspensions (C) Dose–scale of the SCOOP12 influence on PA and 

PIP2 accumulation in Arabidopsis cell suspensions after 5 min of treatment. All experiments were 

performed with at least three biological replicates. Error bars show ±SE of the mean. PA, 

phosphatidic acid; PIP2, phosphatidylinositol 4,5-bisphosphate; PI, phosphatidylinositol; PC, 

phosphatidylcholine; a.u., arbitrary units. 

4.4. Discussion  

 

The comparison of the PROSCOOP family with other previously published genes encoding 

such secreted peptides highlights numerous shared features but also interesting specificities.  
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At the structural level, the PROSCOOP proteins distinguish themselves by the absence of a 

highly conserved C-terminal region. Indeed, the detected motives are quite divergent 

compared to the other PTMP precursors (Matsubayashi, 2011). This divergence could explain 

the fact that no PROSCOOP homologs could be detected outside of the Brassicaceae 

genomes. This restricted phylogenetic profile is opposite to the other described secreted 

peptides which are conserved both in monocot and eudicot plants. Furthermore, contrary to 

the majority of the known PTMPs, the conserved motifs are not localized at the C-terminal 

extremity of their precursors, and their maturation could involve two steps of proteolytic 

processing or a trimming step (Matsubayashi, 2011). 

Out of the 14 Arabidopsis PROSCOOP proteins, three include two duplicated SCOOP motifs 

(Figure 6), reminiscent of the previously described cases of the CEP and PIP families (Roberts 

et al., 2013; Vie et al., 2015) and also of the CLE18 protein in which each copy of the conserved 

CLE motifs has a specific function (Murphy et al., 2012). The motif composition classifies 

SCOOP in the superfamily of ‘SGP-rich peptide’ among PIP, CLE, IDA, PEP and CEP families 

(Hou et al., 2014). At the functional level, the triggering of ROS burst, FRK1 transcription and 

callose deposition move SCOOP12 close to the cytosolic AtPep and apoplastic PIP families 

(Huffaker et al., 2006). Our results suggest a functional link between AtPep1 and SCOOP12 

since both peptides induce the transcription of PROSCOOP12 (Figure10 I). This collaboration 

between different peptide families has also been described with AtPEP1 and PIP1 which act 

cooperatively to amplify triggered immunity. Furthermore, the signaling induced by AtPep1 

(Schulze et al., 2010), PIP1 (Hou et al., 2014) and SCOOP12 (Figure16,17) is dependent on the 

BAK1 co-receptor. Our results also show that proscoop12 in WS background does not show 

an altered resistance to Pseudomonas syringae infection. Similar results were obtained for 

the AtPep receptor mutants (pepr1 and pepr2). These mutants where not more resistant, 

while a pre-treatment of AtPep1-6 peptides increased the resistance to a subsequent 

Pseudomonas infection (Yamaguchi et al., 2010).  

In addition to the role of peptides as amplifiers of the immune response, these peptides are 

involved in root development but via different mechanisms. A high number of PTMP are 

expressed in the root tip and play a role in primary root development. One of the most 

prominent one is the CLE family, which is involved in developmental processes in the root 

apical meristem (Casamitjana-Martínez et al., 2003; Stahl and Simon, 2009; Murphy et al., 

2012). The cle40 mutant, one member of this family, shows an enlarged root phenotype. This 
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is due to repression of WUSCHUL (WUS) expression (Hobe et al., 2003; Stahl et al., 2009). It is 

possible that also PROSCOOP12 influences the expression of important root growth factors. 

In figure 12 we show that transcription of PROPEP2 is induced by SCOOP12 application. 

Previously it was reported that an overexpression of PROPEP1 and PROPEP2 lead to an 

increased root and aerial growth (Huffaker et al., 2006). The overexpression of the PIP1 

precursor or its exogenous application inhibits Arabidopsis root growth as described for CEP 

(Roberts et al., 2013), AtPep1 (Poncini et al., 2017) and SCOOP12 peptide (Figure 10F). Acting 

as growth factors and contrary to SCOOP12, the PTMP PSK and PSY1 are involved in root 

elongation (Amano et al., 2007; Matsuzaki et al., 2010). Our results could be a first indication 

of a complex root growth regulation system implemented by the interaction of multiple 

peptide families. 

However, these comparisons show that despite common structural and functional 

characteristics, the SCOOP family is different from previously described secreted peptides. 

The divergence observed in the C-terminal sequence of PROSCOOP proteins suggest a large 

set of biological functions through a diversity of receptors which will be the targets of future 

studies. The functions of such plant secreted peptides at the boundaries of development- and 

stress-signaling pathways open the way to future strategies that jointly consider product 

quality/quantity and new resistance traits. 

In conclusion, SCOOP12 belongs to a new family of putatively secreted peptides (specific to 

the Brassicaceae species) displaying all the structural features of post-translationally modified 

peptides. SCOOP12 could play a role in the moderation of defense responses, as well as root 

growth. 

4.5. Material and methods  

4.5.1. Plant material  

Plant material used was wild-type Arabidopsis thaliana L. Heynh cultivar 6 Columbia (Col-0) 

as well as the cultivar Wassilewskija (Ws) and the mutants proscoop12 (T-DNA line 

FLAG_394H10 in Ws background, primers used for genotyping are detailed in Table 1). The 

proscoop12 mutant in Col-0 background was created using the CRISPR-Cas9 approach. We 

searched proscoop12 gene-specific sgRNA and potential off-target sites in the Arabidopsis 
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genome using the crispor tefor program (http://crispor.tefor.net). bak1-4 (T-DNA line 

SALK_116202), fls2 (Gomez-Gomez and Boller, 2000) and pepr1/pepr2 described by (Flury et 

al., 2013). All in vitro plants (on Murashige and Skoog) were grown under short day conditions 

(photoperiod of 8h light at 22°C/16h dark at 21°C, with 70% of relative humidity). Plants used 

for all other assays were grown under long day conditions (photoperiod of 16h light at 

22°C/8h dark at 21°C, with 60% relative humidity). B. napus (Darmor-bzh) and L. esculentum 

(Sweet Baby) were grown under short day conditions. 

4.5.2. Root length experiment 

Proscoop12 and Ws as well as proscoop12 and Col-0 seedlings were grown on solid MS plates 

for 2 weeks. Plates were placed in a vertical position. After 11 days, the primary roots length 

was measured and compared. For each genotype, two repetitions have been done with at 

least 10 seeds per plate.  

4.5.3. Plant inoculation with pseudomonas syringae pv Tomato DC3000 (Pst DC3000) 

Wassilewskija and proscoop12 mutant plants were grown 5 weeks on soil. Eight leaves per 

plant were infiltrated with bacterial suspensions of at a concentration of 105 colony forming 

units (cfu/ml) (OD600 of 0.02) in sterile 10mM MgCl (also used for mock-inoculation) using a 

needleless syringe. Plants were maintained at high humidity. Samples were taken using a 

cork-borer (d=8mm) to cut one leaf discs per infected leaf. Leaf discs were ground in 10mM 

MgCl, diluted to the indicated concentration and plated as droplets of 10µl on YEB plates with 

the appropriate selection. Plates were incubated at 28°C and colonies counted two hours 

after the infection (0 dpi) as well as 1 and 2 dpi. Pictures were taken after 1 and 2 dpi.  

4.5.4. Protection assay  

Mature leaves of Arabidopsis thaliana plants were infiltrated by needless syringe infiltration 

with the indicated elicitor peptide or control solution and were kept under long day growth 

conditions for 24h. The P. syringae pv tomato DC3000 (Pto. DC3000) strain was grown in 

overnight culture on YEB medium plates supplemented with appropriate antibiotics. Cells 

were harvested from the plate and re-suspended in sterile 10mM MgCl and diluted to an 

OD600 of 0.02. Bacteria solution was needles syringe infiltrated into the pre-treated leaves. 
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Plants were maintained at high humidity. Samples were taken using a cork-borer (d=8mm) to 

cut one leaf discs per infected leaf. Leaf discs were ground in 10mM MgCl, diluted to the 

indicated concentration and plated as droplets of 10µl on YEB plates with the appropriate 

selection. Plates were incubated at 28°C and colonies counted two hours after the infection 

(0 dpi) as well as 1 and 2 days post infection. Eight plants were infected for each pre-treatment 

and sampling time point. The experiment was performed two times with similar results. 

4.5.5. Seedling growth inhibition assay  

Seedlings were germinated on MS agar and grown for 5 days before transferring one seedling 

per well to 24 well plates containing 500 µl MS media or MS media supplied with the indicated 

elicitor peptide to a final concentration of 1 µM (six replicates per elicitor peptide treatment). 

Photos were taken, fresh weight and root length were measures after 8 additional days. 

4.5.6. Elicitor peptides  

Peptides of flg22 (QRLSTGSRINSAKDDAAGLQIA), Arabidopsis thaliana Plant Elicitor Peptide 1 

(AtPep1) (ATKVKAKQRGKEKVSSGRPGQHN), SCOOP12 (PVRSSQSSQAGGR), scSCOOP12 

(GRPRSASSGSVQQ), SCOOP12 S5/7A (PVRSAQASQAGGR), SCOOP12 S5A (PVRSAQSQAGGR) 

and SCOOP12 S7A (PVRSSQASQAGGR) were obtained from Eurogentec SA (Angers, France) 

and diluted in water to the final concentration used for the assays. 

4.5.7. Measurement of reactive oxygen species 

For ROS assays leaf discs of three weeks old soil grown plants, were placed into each well of 

a white 96-well plate (Thermo Scientific, Waltham, USA) in 0,1 ml of water and kept in the 

dark overnight. For elicitation and ROS detection, horseradish peroxidase and luminol were 

added to a final concentration of 10 µg ml-1 and 100 µM, respectively. Luminescence was 

measured directly after addition of elicitor peptides in a FLUOstar OPTIMA plate reader (BMG 

LABTECH, Offenburg, Germany). 

4.5.8. Callose deposition  

Leaf discs were vacuum infiltrated for 10 min with the indicated elicitor solution and kept 

floated in elicitor or control solution for 24h. After leaf discs were fixed and destained in 1:3 
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acetic acid/ ethanol until leaf tissue was completely transparent. After washing the leaf discs 

in 150 mM K2HPO4 for 30 min, the plant material was stained for 2 h in 150 mM K2HPO4 and 

0,01% aniline blue. Callose depositions were quantified with a Leica DM1000 microscope 

equipped with a Qimaging Micropublisher 3.3 RTV camera using a DAPI filter.  

4.5.9. Determination of gene expression by qPCR 

Detached leaves of three weeks old plants were collected and floated for two hours in water 

supplied with the indicated elicitor or control solution. After the treatment, material was 

frozen and ground in liquid nitrogen. RNA from 100 mg of tissue was extracted using the 

NucleoSpin RNA plant extraction kit (Macherey-Nagel Hoerdt, France). The DNase treatment 

was performed according to the manufacturer’s recommendations. Per PCR reaction, 

complementary DNA was synthesized from 10 ng of total RNA extract with oligo(dT) primers 

using Moloney Murine Leukemia Virus Reverse Transcriptase according to the manufacturer’s 

instructions (Promega). For quantitative real-time reverse transcription PCR (qPCR) in a 96-

well format, the Chromo4™ System (Bio Rad) was used. Expression was normalized to that of 

the gene ACR12 (AT5G04740) using the qGene protocol (Muller et al., 2002). All the gene-

specific primers used are detailed in Table 1. 

Table 1: List of Primer used in this study  

Name   Gene ID Sequence fw Sequence rev 

ACR12 AT5G04740 TTGTTCGATGATCGCCGGAA TGGAACAACGTCGTCATCGT 

PROSCOOP1 AT5G44565 AGCATCCTCTTTCACCATACCG ATTCTGACCACCACCACCTC 

PROPEP1 AT5G64900 TCTCCGACAACGTCCTCTCC ACGGCCTGAGCTAACTTTCT 

PROPEP2 AT5G64890 CGGTAACTTTTAACCAGCCGG TTAGTTTGGCCAGGACGACC 

FRK1 AT2G19190 TAGATGCAGCGCAAGGACTA ACCGCTTCCTTCAACAGAGA 

primers used for genotyping of proscoop12 
 

ACT2 AT3G18780 CTAAGCTCTCAAGATCAAAGGC AACATTGCAAAGAGTTTCAAGG 

PROSCOOP12 AT5G44585 ATGGGTCAAGTTCTAATTGTGC TAATCTATGGCGATAGGATCAGC 
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5. The SCOOP family contains several defense-response inducing 

peptides that can regulate root growth 

 

Parts of this chapter are published in modified version in Gully et al., (2018): “The SCOOP12 

peptide regulates defense response and root development in Arabidopsis thaliana”. In this 

chapter my contribution to this paper included the complete experimental part (excepted the 

in-silico prediction of the applied peptides) and data compilation. This chapter could be the 

onset of a second publication and additional future work introducing additional peptides of 

the SCOOP family apart of SCOOP12 as well as interesting root phenotypes caused by 

members of the SCOOP peptide family.  

5.1. Abstract  

 

Small endogenous peptides are involved in controlling plant defense responses as well as 

most plant regulatory processes. Especially the regulation of root growth is under focus of 

research on small endogenous peptides. Small peptides have an important role in root 

development. Next to classical plant hormones Small peptides are a growing class of 

regulatory molecules. These molecules are involved in many aspects of root development. 

This includes the meristem maintenance, lateral root development, gravitropic response and 

vascular formation. Here we extend the knowledge of the recently discovered small peptide 

family SCOOP. Here, we show that the SCOOP family contains several defense responses 

inducing peptide in Arabidopsis. Additionally, we show an interesting effect of SCOOP 

peptides on root morphology and development. In conclusion we show that the SCOOP family 

is very complex and these peptides play an important role in root metabolisms or 

development. 
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5.2. Introduction  

 

Plants are complex organisms and regulation of plant growth, development, reproduction and 

response the various environmental stresses need to be tightly regulated by a complex 

network of signaling pathways. For a long time, it was considered that plant hormones like 

salicylic acid, ethylene, jasmonic acid, auxins, gibberellins, cytokinins, abscisic acid and 

brassinosteroids are the main signaling molecules during these processes. However, in recent 

years it was found that the plant regulation system is more complex than initially proposed. 

An increasing number of small peptides have been discovered and lead to an increased 

intricacy in nearly all facets of plant development and defense. The large number of small 

peptides can be classified into two different categories. The first contains primary 

endogenous danger signals which are passively released upon host damage and secondary 

endogenous peptides. The secondary endogenous peptides are actively processed and 

released upon tissue damage. Peptides of the second category can be divided into peptides 

which are processed and released upon an herbivore attack or a microbial infection and 

peptides which have been linked to the regulation of plant growth and development. These 

peptides are referred to as phytocytokines (Gust et al., 2017). This category contains peptides 

like CLAVATA3/EMBYRO-SURROUNDING REGION (CLE) peptides (Kondo et al., 2006), AtPeps 

(Yamaguchi and Huffaker, 2011), AtPIPs (Hou et al., 2014), RALFs (Murphy and De Smet, 

2014), phytosulfokines (PSK) (Matsubayashi et al., 2006) and the SCOOP peptide family 

described in this thesis. Out of these examples PSK, AtPeps, AtPIPs, RALF and SCOOP have 

been shown to be involved in regulation of plant immune responses to herbivore or microbial 

attack (Mosher et al., 2013; Hou et al., 2014; Murphy and De Smet, 2014; Yasuda et al., 2017). 

The perception of members of these peptide families is dependent on the SERK (SOMATIC 

EMBRYOGENESIS RECEPTOR KINASE) family member BAK1 (Hou et al., 2014; Yasuda et al., 

2017). BAK1 serves as coreceptor to various of these peptides. At a functional level 

phytocytokines have been shown to play key roles in root development. After proteolytic 

post-translational modification, whereas the peptide is processed from a precursor protein, 

it is secreted out of the cell and regulates many aspects of root growth and development 

including gravitropism, meristem maintenance, lateral root development and protoxylem 

differentiation (Delay et al., 2013). The root growth is also strongly influenced by stresses. 
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Plants can redirect root growth and morphology to diminish stress exposure. This plant 

response is referred to as stress-induced morphogenic response. These responses can be 

summarized by three components. The elongation of cells can be inhibited, cell division can 

be locally stimulated, and cell differentiation can be altered (Potters et al., 2007). Small 

peptide families contain a different number of members. The CLE is a large family that 

contains 32 peptides which are expressed in various tissues (Jun et al., 2010). The AtPIP family 

contains at least 11 members (Hou et al., 2014) and the AtPep family at least 8 members 

(Bartels and Boller, 2015). This shows that peptide families can contain various numbers of 

small peptides, whereas members may play different roles in plant development and defense. 

For certain families (AtPep and PIP) it was shown that the small processed peptide can induce 

the expression of its own precursor protein, effectively resulting in a positive feedback loop. 

Expression of different PROPEP proteins have been shown to be induced by various processed 

peptides (Huffaker and Ryan, 2007). Moreover, expression of prePIP1 is induced by 

treatments with the AtPIP1 small peptide (Hou et al., 2014). In the previous chapters, we 

show that the recently discovered SCOOP peptide family, includes various defense response 

activating peptides. In this chapter we report on the roles of three SCOOP peptides on root 

development and root stress responses.  

5.3. Results  

5.3.1. SCOOP12 and AtPep1 induce the expression of various PROSCOOP family members 

It has previously been shown, that small endogenous peptides can induce the expression of 

their own precursors resulting in a positive feed-back loop. For instance, expression of several 

PROPEP genes can be induced by different AtPep peptides (Huffaker and Ryan, 2007). This led 

us to investigate the change in steady state transcript level of all 14 PROSCOOP family 

members after SCOOP12 exposure. Moreover, we decided to add AtPep1 in our assay for 

comparison since it is also known to induce the transcription of another peptide precursor, 

prePIP1 (Hou et al., 2014). The results show that PROSCOOP 2, 7, 8, 12 and 13 are upregulated 

by the AtPep1 treatment (Figure 19). Most importantly, the direct precursor PROSCOOP12 is 

upregulated by SCOOP12 in comparison to the control treatment (Figure 10,19). Therefore, 

there is a positive feedback loop linking SCOOP12 to its precursor PROSCOOP12 but also of 
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other members of the PROSCOOP family such as PROSCOOP7. These results suggest that there 

is a feedback loop of SCOOP12 to its precursor and to PROSCOOP7 and that AtPep1 is capable 

of inducing five members of the PROSCOOP family. 

 

Figure 19: Transcriptional response of the PROSCOOP gene family to SCOOP12 and AtPep1. 

SCOOP12 and AtPep1 induce the expression of several PROSCOOP gene family members. 

Expression level of the PROSCOOP gene family members (A to N) were determined by qPCR with 

a normalization to ACR12 transcripts, bars indicate the fold change of transcription relative to the 

control treatment of at least five independent biological replicates. Error bars show the relative ±1 

SE of the mean. Significant differences according to Student’s t-test results: *, P < 0.05; **, P < 0.01; 

***, P < 0.001.  

5.3.2. Several SCOOP peptides induce ROS burst in Arabidopsis  

In line with our previous results and the induction of PROSCOOP family member gene 

expression by SCOOP12 we decided to focus on the highly conserved motif found in all 

PROSCOOP family members (Figure 6B). We synthesized peptides covering the motif of all 14 

family members (Table 2). The peptides were named according to their putative precursor 
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protein. The motif contains two highly conserved serine (S) residues on position 5 and 7 of 

the peptides. Excepted of SCOOP3 all synthesized peptides harbor these two amino acids.  

 

Table 2: List of peptides, covering the identified motif on the corresponding PROSCOOP 

family member. In total 14 PROSCOOP family members were identified. All 14 harbor the highly 

conserved motif. The peptides covering two highly conserved serine residues on position 5 and 7 of 

the peptides (marked in red). SCOOP3 is the only exception, here the serine on position 7 is replaced 

by a glutamate (marked in green) residue.  

Peptide  Sequence  

SCOOP1 ETP PSR SRR GGG G 

SCOOP2 PVR SSR SPR SPS F 

SCOOP3 ELR PSS EWR RKM I 

SCOOP4 ASF HSA SPK DKG P 

SCOOP5 IVR RSR SQR GRQ Y 

SCOOP6 EAR PSK SKK GGG R 

SCOOP7 RAG PSK SGQ GGG R 

SCOOP8 DFE GSI SGQ AGG G 

SCOOP9 GTG PSH SGH GGS S 

SCOOP10 FTG PSG SGH GGG R 

SCOOP11 DVG ASS SGQ GGG R 

SCOOP12 PVR SSQ SSQ AGG R 

SCOOP13 YLP PSK SRK GKG P 

SCOOP14 FVP PST SHK GQG P 

 

In this extensive screen we then wanted to test if apart of SCOOP12 also other peptides of 

this family have the potential to induce defense responses in Arabidopsis. Like previously 

described in chapter 4 we first tested short term defense and tested all SCOOP peptides for 

their ability to induce a ROS burst in Arabidopsis. The results show that indeed 9 peptides are 

capable to inducing a significant accumulation of ROS. The five peptides SCOOP3, 8, 10, 11 

and 14 did not trigger a response. Notably, the response to flg22 was stronger in comparison 

to all of the active SCOOP peptides (Figure 20). The ROS induction by SCOOP12 is comparable 

to that of SCOOP6 and 7. Interestingly, SCOOP7 showed a response comparable to SCOOP12 

in intensity. This is well in line with our finding that expression of PROSCOOP7, the putative 

precursor of SCOOP7 is induced by SCOOP12 (figure 19).  
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Figure 20: ROS induction by the SCOOP peptide family. Reactive oxygen species (ROS) in RLU 

(relative light units) production in wild-type Arabidopsis leaf-discs (Col-0), treated with 1µM for each 

peptide or without elicitor (control). Graphs display averages of 12 replicates. Error bars show ±SE 

of the mean. Significant differences according to Student’s t-test results: ns (not significant), **, P < 

0.01; ***, P < 0.001.  

5.3.3. The PROSCOOP family contains several growth inhibiting peptides 

Next, we wanted to know if also long-term defense responses are induced by the SCOOP 

peptides. Therefore, we grew seedlings in media supplied with the 14 SCOOP peptides. A 

continuous activation of defense responses is known to inhibit the plants growth (Walters 

and Heil, 2007). Our results show that most SCOOP peptides induce an inhibition of 

Arabidopsis seedling growth. The peptides SCOOP3, 8 and 11 did not significantly inhibit 

seedling growth (Figure 21AB). In comparison with the obtained results of ROS accumulation 

we found that the peptides SCOOP10 and 14 do induce a seedling growth inhibition but no 

ROS accumulation (Figure 20,21). SCOOP10 induces a significant inhibition of root growth 

(Figure 21B) but the total fresh weight is not affected in comparison to the control treatment 

(Figure 21A). The repression of root growth and total fresh weight is comparable to that of 

control treatments with AtPep1 and flg22. The most pronounced inhibition of root growth 

was induced by SCOOP12, 6 and 7.  
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Figure 21: Quantification of seedling growth inhibition. 5 days old seedlings were transferred 

from solid MS medium to liquid medium supplied with the indicated elicitors (all applied in a final 

concentration of 1µM) and were grown for additional 8 days before fresh weight and root length was 

quantified and pictures were taken. The bars represent the mean of 6 biological replicates. Error 

bars show ±SE of the mean. Significant differences according to Student’s t-test results: ns (not 

significant) **, P < 0.01; ***, P < 0.001. 

5.3.4. Exogenous application of SCOOP12 induces a strong root pigmentation  

In chapter 4 we showed that proscoop12 displays an enhanced root growth. That was a reason 

for us to focus our observations on root tissue. During the seedling growth inhibition 

experiment (Figure 21) we noticed a strong root pigmentation caused by SCOOP12 but not by 

flg22 or AtPep1 (Figure 22A). The elicitors were added in a final concentration of 1µM to the 

growth media. We assumed that SCOOP12 causes a strong hypersensitive response in the 

roots and therefore cell death of affected cells. To investigate this hypothesis, we performed 

a cell death staining with neutral red. The staining solutions stains exclusively intact and alive 
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cells. The experiment showed that the roots are still intact, and no cell death is caused by the 

SCOOP12 treatment (Figure 22B).  

 

Figure 22: SCOOP12 induces a strong root pigmentation. Seedlings were treated as before 

described for the seedling growth inhibition assay. A) Roots of seedlings grown for 8 days in media 

supplied with the indicated elicitor peptide applied in a final concentration of 1µM. B) neutral red 

staining of the same roots shown in A.  

5.3.5. Root pigmentation is caused by SCOOP6 and SCOOP7 in a tissue specific manner  

In our previous results, we showed that the inductions of defense responses are most 

pronounced for the peptides SCOOP12, 6 and 7. These three peptides have the strongest 

effect on root growth. After the observation of a strong root pigmentation caused by 

SCOOP12, we decided to focus on SCOOP6 and 7 as other strong elicitor peptides. By the 

treatment of SCOOP12 we confirmed our previous observations. SCCOP12 causes a strong 

pigmentation of the entire root tissue. Moreover, the root architecture seemed to be altered. 

We could observe an increased number or an expansion of cells in the root transition and/or 



The SCOOP family contains several defense inducing peptides 

69 
 

root elongation zone caused by SCOOP12 (Figure 22A). The roots treated with SCOOP12 have 

increased secondary root growth, while the primary root apical meristem show reduced 

growth (Figure 23). This altered root shape was not observed by treatments with SCOOP6 and 

7. However, application of SCOOP6 causes a root pigmentation in a tissue specific manner. 

Exclusively the root differential and/or the elongation zone show root pigmentation with this 

peptide. The treatments with SCOOP7 lead to similar, but less pronounced, observations. 

These results are in line with our previous results on the effect of the SCOOP peptides on root 

growth, since these peptides show the strongest inhibition of root growth (Figure 21). 

Interestingly, the peptide SCOOP9 also had a similar effect on root growth yet no root 

pigmentation was observed (data not shown).  

 

Figure 23: Tissue specific root pigmentation caused by SCOOP6, 7, 12. Seedlings were grown 

for 8 days in media supplied with the indicated elicitor peptide with a final concentration of 1µM or 

with control solution.  

5.3.6. Perception of SCOOP6 and SCOOP7 is dependent on SERK family members  

We have shown in chapter 4 that the perception of SCOOP12 depends on the SERK family 

member BAK1. In order to test if also SCOOP6 and SCOOP7 are perceived by members of the 

SERK family we decided to test the response of bak1-5 bkk1-1 plants to this treatment. The 

bak1-5 harbors a single amino acid substitution and does, in contrast to bak1-4, still 

accumulate the wild type level of BAK1-5 protein (Roux et al., 2011). However, the double 

mutant bak1-5 bkk1-1 is almost completely impaired in defense responses caused by flg22, 



The SCOOP family contains several defense inducing peptides 

70 
 

elf18 and AtPep1 (Roux et al., 2011). Therefore, we used this double mutant for treatments 

with SCOOP6 and SCOOP7. The results show that bak1-5 bkk1-1 is almost completely 

insensitive to SCOOP6 (Figure 24AB), indicating the role of SERK family members as co-

receptors of SCOOP family peptides perception. Moreover, the response to SCOOP7 is less 

pronounced than in the wildtype situation. However, this might be due to the higher variance 

within the replicates (Figure 24CD).  

 

Figure 24: Seedling growth inhibition assay with plants defective in SERK family members. 

A) bak1-5 bkk1-1 plants are insensitive to SCOOP6 and SCOOP7. Neither fresh weight A, C nor 

root length B, D were significantly affected by SCOOP12 treatment. Plants were grown for 8 days in 

presence of 1µM SCOOP12 or control solution. Bars of quantified fresh weight and root length 

represent mean of six replicates. Error bars show ±SE of the mean. Significant differences according 

to Student’s t-test results ***, P < 0.001. 

5.4. Discussion 

 

The SCOOP family harbors various peptides with interesting properties. In Table3 we 

summarized our current knowledge on the 14 members of the SCOOP family. It is important 

to note that all SCOOP peptides are based on a bioinformatic prediction approach, whereas 
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all 14 PROSCOOP family members harbor a conserved motif. Out of the 14 synthesized 

peptides only 4 (SCOOP3, 8, 10, 11) do not show any activity in the applied assays. SCOOP14 

did not induce a ROS burst but showed an inhibition of seedling growth. The strongest activity 

was observed for SCOOP12, as this peptide induced short- and long-term defense responses 

and a strong pigmentation of root tissue. The peptides SCOOP6 and SCOOP7 show similar 

results and an induction of a ROS burst, an inhibition of seedling growth as well as a 

pigmentation of roots. In chapter 3 we show that bak1-4 is involved in the perception of 

SCOOP12. By testing the bak1-5 bkk1-1 double mutant we confirmed that also SCOOP6 and 

SCOOP7 were perceived by members of the SERK family. However, by challenging a double 

mutant we cannot be sure which mutant is mainly responsible for the perception of SCOOP6 

and 7. We intended to find a reason for the different activity of the SCOOP peptides. The 

activity of the SCOOP peptides seems to rely on the amino acid composition. By sorting the 

peptides by their activity and the charge of the single amino acids, we could not find a clear 

indication which amino acid is crucial for SCOOP peptide perception and activity (Figure 25). 

 

Table 3: Summary of our current knowledge on the SCOOP peptide family. Experimental results 

are summarized from chapter 3 and 4. The peptide sequence and results of ROS, seedling growth 

inhibition, callose deposition assay are presented. As well as the involvement of tested SERK family 

members and the observed root pigmentation. Abbreviations: Yes, shows a significant or visible 

induction; no: no significant or visible induction; nd: not determined  

 

However, the two highly conserved Serine residues on positions 5 and 7 of the 13 aa long 

peptides, seems to be important for the perception by the plant. SCOOP3 is the only peptide 

for which the polar Serine (S) residue is replaced with a negatively charged Glutamic acid (E) 

residue. SCOOP3 does not show any activity in the applied assays. Overall, it is notable that 
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none of the inactive peptides (SCOOP3, 8, 10, 11) and weakly active peptide (SCOOP14) 

harbor positively charged aa at position 6 (Figure 25). Most of the active peptides (excepted 

of SCOOP4 and SCOOP12) have a positively charged aa at position 6. However, it remains 

unclear which effects the aa composition has on the peptide 3D structure since a reliable 

structure prediction is difficult for short peptides (Gupta et al., 2014). The SCOOP family 

contains at least 9 active peptides. The AtPIP family has at least 11 prePIP proteins whereas 

only 2 peptides are shown to have a defense inducing effect in Arabidopsis (Hou et al., 2014). 

The AtPep family contains at least eight PROPEP proteins and their corresponding small 

peptides. Out of the eight AtPep peptides the small peptides AtPep 1 and AtPep2 show the 

strongest defense inducing activity. The alignment of the 8 PROPEP proteins shows that the 

conserved motif is less variable and longer than it is the case for the SCOOP peptide family 

(Bartels et al., 2013). Indicating that the variability within the peptides and the short length 

of the conserved region might prevent a better prediction of members of peptide families. 

The synthesized peptides are based on the conserved motif found in all PROSCOOP genes. 

However, the in planta peptides are for the moment not known. The experimental 

determination and confirmation of all peptides could improve our knowledge about their 

properties and functional roles in plants.  

 

Figure 25: Amino acid composition of the 14 SCOOP peptides. Peptides that showed an activity 

in the applied assays are indicated in white. Peptides without activity in red and peptides with partial 

activity in orange. The alignment of all 14 SCOOP peptides shows that most of the active peptides 

harbor a positively charged aa at position 6.  
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Various peptides have been shown to effect and regulate root growth. As described in chapter 

3 also PROSCOOP12 is a negative regulator of root growth (Figure 9). Moreover, we showed 

that PROSCOOP12 expression is induced by SCOOP12 and PROPEP2 expression is enhanced 

by SCOOP12 application (Figure 19). These results suggest a functional link between the two 

peptide families. A collaboration between different peptides has also been described for 

AtPep1 and PIP1 which act cooperatively to amplify triggered immunity. However, the 

SCOOP12 peptide has a similar effect on root growth inhibition like AtPep1 but still seems to 

have additional effects on roots. The observed radial swollen root tips phenotype is 

commonly reported to be caused by salt, drought and osmotic stress (Burssens et al., 2000; Ji 

et al., 2014). In case of these stresses, the root tip swelling is connected to a decrease of cell 

cycle activity in the root meristem. The decrease appears in the zone with CycB1 expression. 

CycB1 is associated with actively dividing cells (Ferreira et al., 1994). This indicates a shrinkage 

of the meristematic region. The short peptide RGF (ROOT GROWTH FACTOR) was shown to 

be an important factor for the maintenance of the root stem cell niche by restoring CycB1 

expression in a mutant with reduced root meristem size and loss of coordination between cell 

elongation and expansion in the elongation- differentiation zone. It is possible that the SCOOP 

peptide family members negatively regulate the expression of RGF. It would be interesting to 

apply the peptides to the CycB1 reporter line to further investigate the lateral swollen root 

tip phenotype. Moreover, the strong secondary root growth could be explained by a cross-

regulation of other peptide families with SCOOP peptides. Most of the RGF/GLV/CLEL gene 

family members are expressed during lateral root development (Fernandez et al., 2013). The 

overexpression of many of these gene family members results in a reduction of lateral root 

growth (Delay et al., 2013). It is possible that SCOOP peptides have expression promoting 

effect on certain members of these peptide families, like we could show for PROPEP2 (Figure 

12). It would be interesting to investigate to transcription expression level of members of 

these peptide families after SCOOP peptide treatments. A strong pigmentation of plant tissue 

is usually observed during various stress conditions. Often the darkening of leaf tissue is 

connected to the accumulation of anthocyanin. In many plants the anthocyanin accumulation 

is induced by biotic and abiotic stresses (Brosché and Strid, 2002; Li and Strid, 2005). However, 

our observations were not made in shoot tissue and Arabidopsis roots usually do not show 

an accumulation of anthocyanin. However, a pigmentation of roots could be observed by low-

sulfur conditions in Arabidopsis (Jackson et al., 2015). For the moment we cannot explain the 



The SCOOP family contains several defense inducing peptides 

74 
 

root pigmentation. We cannot exclude a possible interference of SCOOP peptides with the 

uptake and metabolization of molecules like sulfur. Moreover, the exact localization of cells 

which show the pigmentation will require further investigations. In conclusion, we show that 

the PROSCOOP family contains several peptides with defense activating properties. 

Moreover, these peptides can have remarkable effects on root development and phenotype. 

The SCOOP peptides could therefore bridge the gap between small peptides involved in plant 

developmental processes and peptides mainly serving as DAMPs.  

5.5. Material and methods  

5.5.1. Plant material  

Plant material used was wild-type Arabidopsis thaliana L. Heynh cultivar 6 Columbia (Col-0) 

as well as bak1-5 bkk1-1 as described by (Roux et al., 2011) were grown under short day 

conditions (photoperiod of 8h light at 22°C/16h dark at 21°C, with 70% of relative humidity). 

Plants used for expression analyzation were grown under long day conditions (photoperiod 

of 16h light at 22°C/8h dark at 21°C, with 60% relative humidity). 

5.5.2. Elicitor peptides 

SCOOP elicitor peptides were used as described in table 2. As well as AtPep1 

(ATKVKAKQRGKEKVSSGRPGQHN) and flg22(QRLSTGSRINSAKDDAAGLQIA)  

5.5.3. Seedling growth inhibition assay  

Seedlings were germinated on MS agar and grown for 5 days before transferring one seedling 

per well to 24 well plates containing 500 µl MS media or MS media supplied with the indicated 

elicitor peptide to a final concentration of 1 µM (six replicates per elicitor peptide treatment). 

Photos were taken, fresh weight and root length were measures after 8 additional days. 

5.5.4. ROS measurements  

For ROS assays leaf discs of three weeks old soil grown plants, were placed into each well of 

a white 96-well plate (Thermo Scientific, Waltham, USA) in 0,1 ml of water and kept in the 

dark overnight. For elicitation and ROS detection, horseradish peroxidase and luminol were 
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added to a final concentration of 10 µg ml-1 and 100 µM, respectively. Luminescence was 

measured directly after addition of elicitor peptides in a FLUOstar OPTIMA plate reader (BMG 

LABTECH, Offenburg, Germany). 

5.5.5. Determination of expression  

Detached leaves of three weeks old plants were collected and floated for two hours in water 

supplied with the indicated elicitor or control solution. After the treatment, material was 

frozen and ground in liquid nitrogen. RNA from 100 mg of tissue was extracted using the 

NucleoSpin RNA plant extraction kit (Macherey-Nagel Hoerdt, France). The DNase treatment 

was performed according to the manufacturer’s recommendations. Per PCR reaction, 

complementary DNA was synthesized from 10 ng of total RNA extract with oligo(dT) primers 

using Moloney Murine Leukemia Virus Reverse Transcriptase according to the manufacturer’s 

instructions (Promega). For quantitative real-time reverse transcription PCR (qPCR) in a 96-

well format, the Chromo4™ System (Bio Rad) was used. Expression was normalized to that of 

the gene ACR12 (AT5G04740) using the qGene protocol (Muller et al., 2002). All the gene-

specific primers used are detailed in Table 4 

Table 4: Primers used for experiments in this chapter 

Name Gene ID Sequence forward Sequence reverse 

PROSCOOP1 AT5G44565 AGCATCCTCTTTCACCATACCG ATTCTGACCACCACCACCTC 

PROSCOOP2 NA TAATTGTGCTGGTCTCATGCTC GCGGTGGCGGCGGTTTTT 

PROSCOOP3 NA GGTCCTTTGAATTTGAGACTTTTG TAATACGAGCTCTTCGACCATAC 

PROSCOOP4 AT5G44568 ATCTCAAGTTGGAGTCGCCC TTATCTTTAGGCGATGCAGAGTGA 

PROSCOOP5 AT5G44570 ATACAATCCACCGACGCTGC GGATAGAGCATTTGTGGCTGC 

PROSCOOP6 AT5G44572 CTTGCAGCCTTAGCCAATCG TCATCAATCTCCTCCCGTGG 

PROSCOOP7 AT5G44574 CACTTGCCTTAGCGTAACGG TGGTGAGTTTTCTCCACGCT 

PROSCOOP8 AT5G44575 TCCCAACCCATACGGAGTCT TTTGTTGACCACCACCGGC 

PROSCOOP9 AT5G44578 TCCGTATCCGTATGGTGGCA ATGCTGCTACCACCATGTCC 

PROSCOOP10 AT5G44580 TGGGGAGGAAGCGGATGAAT CACTGCCTGATGGTCCTGTA 

PROSCOOP11 AT5G44582 TTGTAATCACTGGAAGGAGG GTTGCGACCACCACCTTGT 
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PROSCOOP12 AT5G44585 TTCTTCTCCTCTGCACCGTC TAAAACGTCCACCAGCTTGG 

PROSCOOP13 AT1G22885 TGATATCCTTTCAAGTTGGAGTCG TTATGGACCTTTTCCTTTGCGC 

PROSCOOP14 AT1G22890 CTCACAAGTTGGACTAGGCGA GGGCCTTGTCCTTTGTGTGA 

ACR12 AT5G04740 TTGTTCGATGATCGCCGGAA TGGAACAACGTCGTCATCGT 
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5.6. Appendix: Are PROSCOOP genes under epigenetic control? 

5.6.1. Introduction 

Plants need to have the capacity to reprogram gene expression in order to respond rapidly to 

various stresses. Chromatin modifications play important roles in regulating gene expression 

and in transcriptional reprogramming. A lot of work was done on the influence of chromatin 

modifications and remodeling of defense-related genes (Berr et al., 2012). However, most 

studies focused on epigenetic modifications initiated by pathogen perception and hormone 

homeostasis changes upon defense signaling but less on epigenetic changes upon perception 

and signaling of small endogenous peptides. One of the widely discussed epigenetic change 

involved in plant resistance is the modulation of the chromatin structure. The histone tails 

can undergo diverse reversible post-transcriptional histone modifications. These 

modifications include acetylation, methylation, phosphorylation, ubiquitination, 

sumoylation, carbonylation and glycosylation (Kouzarides, 2007). The modifications can 

directly modulate the chromatin structure or promote the recruitment of specific effectors 

which determines the function of the chromatin modification and their functional outcome 

(Yun et al., 2011). Depending on their targets, histone methylation and/or ubiquitination can 

activate or repress transcription. One of the most intensely studied chromatin marks 

connected with gene repression is H3K27me3 (Roudier et al., 2011). Next to the influence of 

chromatin marks also the involvement of ATP dependent chromatin- remodeling enzymes as 

contributors to fast and reversible and/or heritable gene expression control is currently in 

focus of research in the plant innate immunity (Berr et al., 2012). The research on chromatin 

modifications and plant immunity focus mostly on histone modifications of hormonal 

pathways like salicylic acid and the jasmonic/ethylen mediated plant defense signaling. These 

signaling pathways are part of the multilayer defense system of plants, consisting of PTI and 

ETI responses, leading to SAR. The well-defined markers for SA-mediated basal and R gene-

mediated defense signaling PR1 and PR2 genes are among the most intensely investigated 

genes regarding chromatin modifications. Several studies have shown that the activation of 

PR1 is correlated with an increase in the level of acetylated histones at the PR1 locus in 

Arabidopsis and tobacco (Butterbrodt et al., 2006; Mosher et al., 2006; Koornneef et al., 

2008). The resulting induction of SAR by increased PR gene expression is often linked to 
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priming for stronger activation of various defense responses that are induced following the 

attack by pathogens (van Hulten et al., 2006). Moreover, priming of innate immunity is 

correlated with chromatin modification of the promotor region of WRKY transcription factors 

as well as SA and PTI correlated genes (Jaskiewicz et al., 2011; Luna et al., 2011; Po-Wen et 

al., 2013). Regarding peptide triggered immunity much less is known. Recently it was shown 

that the histone methyl transferase SET DOMAIN GROUP (SDG8) and SDG25 regulate AtPep1 

and flg22 triggered immunity, ETI as well as SAR. These two genes affect global and locus-

specific H3K4 and H3K36 methylation leading to the regulation of plant immunity genes (Lee 

et al., 2016). In order to increase the knowledge of the influence of chromatin modification 

on small endogenous peptides we wanted to investigate the distribution of the chromatin 

mark H3K27me3 at PROSCOOP12 and PROSCOOP7. We choose these two members of the 

SCOOP family because we had a first identification, by chromatin immunoprecipitation 

sequencing (ChIP-seq) on WT seedlings, that these two genes might have an increased level 

of H3K27me3. In summary we show the influence of treatments with the recently discovered 

peptide SCOOP12, on the chromatin mark H3K27me3. Here we focus on the H3K27me3 

chromatin mark present on the SCOOP peptide family members PROSCOOP7 and 

PROSCOOP12.  

5.6.2. Results and discussion  

After we investigated the effects of the SCOOP peptides on plant immunity as well as the 

effect on root growth, we were interested in the expression regulation of PROSCOOP. We 

showed in chapter 5 that PROSCOOP7 and PROSCOOP12 expression was enhanced by 

treatments with SCOOP12 (Figure 19). Next, we investigated possible mechanisms involved 

in the feedback loop of the small peptide to its putative precursor. Our in-house ChIP-seq of 

H3K27me3 data on untreated WT seedlings revealed that this chromatin mark is widely 

distributed over SCOOP family members (Figure 26A). Especially in the promotor regions of 

PROSCOOP1, 6, 7 and 8 as well as in the gene body of PROSCOOP12 a clear peak of H3K27me3 

is noticeable. The genes PROSCOOP2 and 3 are not annotated but present between 

PROSCOOP1 and PROSCOOP4 (Figure 26A). The H3K27me3 peak on the first exon of 

PROSCOOP12 and the peak in the promotor of PROSCOOP7 raised our interest. In order to 

investigate the changes of H3K27me3 level upon treatments we designed primers covering 

the DNA sequences of the H3K27me3 peaks on PROSCOOP7 and PROSCOOP12. On 
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PROSCOOP12 we designed three primer sets. Primer set 1 amplifies in the promotor of 

PROSCOOP12, while set 2 amplifies a region directly covering the H3K27me3 peak in the first 

exon and the set3 a region in the second exon (Figure 26B). The primer sets 4 and 5 amplify 

regions at or before PROSCOOP7. Set 4 at the H3K27me3 peak in the promotor and set5 after 

the peak in the first exon of PROSCOOP7 (Figure 26C). Next, we decided to treat Arabidopsis 

plants with SCOOP12. The treatments were applied with the same experimental setup than 

used in Figure 19. Chromatin of SCOOP12 treated and untreated control plants was extracted. 

After, an immunoprecipitation (IP) with a specific antibody for the H3K27me3 chromatin mark 

was performed. A real-time PCR of input and IP samples with the primer sets was performed 

and normalized to the expression of 18S. Our results show that H3K27me3 is increased by 

SCOOP12 treatment at PROSCOOP12 at the primer sets 2 and 3 as well as at set 4 on 

PROSCOOP7 (Figure 26DE). On PROSCOOP12 at primer set 2 and 3 H3K27me3 is weakly 

increased by a fold change of 1.5 in comparison to the control (Figure 26D). On PROSCOOP7 

set 4 H3K27me3 was found to be doubled upon SCOOP12 treatment (Figure 26E). However, 

the data presented here are preliminary and miss a repetition and thus only provide a first 

indication that the expression of PROSCOOP genes might be influenced by specific chromatin 

marks. The results are rather unexpected since the presence of H3K27me3 in the promotor 

of genes is related to the repression of expression (Roudier et al., 2011). We show that the 

expression of PROSCOOP7 and 12 is increased by SCOOP12 treatment. However, the 

H3K27me3 fold change is not strong in comparison to previous studies. It might be possible 

that the regions at the two genes are not representative and do not contribute to the 

expression regulation. Moreover, it is possible that other chromatin marks influence the 

expression of the PROSCOOP genes. In order to further investigate the role of chromatin 

modifications at PROSCOOP genes it would be necessary to add additional replicates and to 

test additional chromatin marks such as H3K4me3. Moreover, it would be interesting to 

investigate the influence of SCOOP12 on the whole genome chromatin marks of H3K27me3 

distribution as well as the with gene expression promoting associated chromatin mark 

H3K4me3. These experiments would provide new insights into the epigenetic regulation of 

small peptide influenced gene expression.  



The SCOOP family contains several defense inducing peptides 

80 
 

 

Figure 26: H3K27me3 distribution at PROSCOOP genes. A) Distribution of H3K27me3 chromatin 

mark over all members of the SCOOP peptide family. B, C) H3K27me3 distribution at the two 

SCOOP family members PROSCOOP7 and PROSCOOP12. 3 Primer sets to investigate the level 

of H3K27me3 at PROSCOOP12 and 2 primer sets for PROSCOOP7. D,E) ChIP-real-time PCR 

result of H3K27me3 IP after SCOOP12 treatment for all 5 primer sets. The real-time results are 

represented relative IP to input expression normalized to 18S. The results show one biological 

replicate.  
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5.6.3. Material and methods  

5.6.3.1. ChIP 

For chromatin extraction we used an adopted protocol from (Ikeuchi et al., 2015). For 

sonication we used the M220 Focused-ultrasonicator (Covartis USA). Immunoprecipitation 

was performed with specific H3K27me3 antibodies (ab8580) (Abcam USA). 

5.6.3.2. Real time PCR and specific primer  

For quantitative real-time reverse transcription PCR (qPCR) in a 96-well format, the 

Chromo4™ System (Bio Rad) was used. The relative IP to input values are normalized to that 

of 18S (AT2G03810). The primer sequences are shown in table 5.  

Table 5: List of primers used for ChIP coupled with real time PCR 

Name Sequence forward Sequence reverse 

18S  TCCCTTCACGGCCGGCTTCT TCGCGGGCGGCGAACCAC 

Set1  TTATGAAATGCTATGTACAACCGC TAGAGGAATAACTGTAATAGAGCG 

Set2  GTTCCCTCCACCTGCATGTA AAACCGGTTAGTAGGACTGAATG 

Set3  TCGATTTATATGTTTTGTTAATTTCTCA GATCTTACTGGTCCCGAAGC 

Set4  GTATGCATGAAATCGCCAGTTATA CGATTCCAAGTTTAACTCCTTTTG 

Set5  ACTCAGTTTTTCTCTCTGCTTGG GAGCCGTTACGCTAAGGCAA 

 

6. Biotic stress-induced priming and de-priming of transcriptional 

memory in Arabidopsis and apple  

 

“Without forgetting it is quite impossible to live at all.” 

Friedrich Nietzsche – German philosopher (1844–1900) 

This chapter contains results of a project I started before we discovered the SCOOP peptides, 

as described in the previous two chapters. The intention of this project was to uncover the 

influence of synthetic plant defense inducing compounds on Arabidopsis and apple. Our 
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findings are rather unusual and have the potential to uncover an unknown mechanism of 

plant memory. My contribution to this chapter is the complete experimental part, data 

compilation and writing of the first manuscript draft as well as the data analyzation with help 

of Jean-Marc Celton, Alexandre Degrave, Marie-Noelle Brisset and Etienne Bucher. This 

chapter will serve as manuscript for a publication.  

6.1. Abstract  

 

Under natural growth conditions plants experience various and repetitive biotic and abiotic 

stresses. Salicylic acid (SA) is a key phytohormone involved in the response to biotic 

challenges. Application of synthetic SA analogues can efficiently prime defense responses and 

leads to improved pathogen resistance. Because SA analogues can result in long-term priming 

and memory, aimed at identifying genes with the potential to memorize treatments with an 

SA analogue and explored the role of DNA methylation in this memorization process. Here, 

we show that treatments with SA analogues can lead to long-term transcriptional memory of 

particular genes in Arabidopsis. We found that subsequent challenging of such plants with a 

bacterial elicitor reverted this transcriptional memory bringing their expression back to the 

original pre-treatment level. We also made very similar observations in apple (Malus 

domestica), suggesting that this expression pattern is highly conserved in plants. Finally, we 

found a potential role for DNA methylation in the observed transcriptional memory behavior. 

We show that plants defective in DNA methylation pathways showed a different memory 

behavior. Our work improves our understanding of the role of transcriptional memory in 

priming and has important implication concerning the application of SA analogues in 

agricultural settings. 

6.2. Introduction 

 

Plants are under continuous attack by pathogens because they are rich sources of nutrients. 

However, they protect themselves by physical barriers, such as a waxy cuticular layer or by 

protective periderm. In addition to these barriers plants have evolved an immune system 
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comprising constitutive and inducible defenses. The inducible immune system is based on the 

specific recognition of pathogen-derived molecules (Chisholm et al., 2006; Jones and Dangl, 

2006a). This so-called pattern-triggered immunity (PTI) is achieved by plasma membrane 

localized pattern-recognition receptors (PRRs) which directly interact with highly conserved 

pathogen/microbe – associated molecular patterns (PAMPs/MAMPs) (Gomez-Gomez and 

Boller, 2002; Zipfel et al., 2004). One of the best-studied examples of a MAMP, that is capable 

of activating plant immunity, is the bacterial flagellin which is the major component of the 

bacterial motility organ (Macnab, 2003). The perception system of flagellin is widely 

conserved across the plant kingdom since most plants respond to flagellin (Felix et al., 1999). 

The fastest MAMP-triggered defense responses are typically induced within 5 min and 

decrease within a 30min time frame (Maffei et al., 2007). These events include the following 

plant responses: apoplastic alkalinisation, burst of reactive oxygen species (ROS), activation 

of mitogen-activated protein kinases (MAPKs) and intracellular calcium burst (Romeis et al., 

2001; Asai et al., 2002; Boller and Felix, 2009). However, late responses are induced within 

several hours to days. Late defense responses include the accumulation of callose, the 

inhibition of growth, the differential expression of defense genes and the production of 

salicylic acid (SA) (Boller and Felix, 2009). In line with short and long-term defense responses, 

plants are also capable of inducing long-lasting systemic immunity. By local compatible or 

incompatible interactions, such systemic immunity can be initiated. This results in systemic 

acquired resistance (SAR). SAR-like responses can be induced by exogenous application of SA 

or SA analogues (White, 1979; Metraux et al., 1990; Ward et al., 1991). However, SA does not 

seems to serve as a mobile signal per se inducing immunity in uninfected distal tissues, while 

several other small molecules have been proposed to fulfil such a role (Shah and Zeier, 2013).  

Defense-related stimuli enhance the capacity of plants to activate defense responses 

(Conrath et al., 2006; Beckers and Conrath, 2007). Exogenous application of SA and other 

benzoic acid derivates have been shown to induce resistance of tobacco against tobacco 

mosaic virus (TMV) and to cause the accumulation of pathogenesis-related (PR) transcripts 

(White, 1979). This discovery paved the way for companies to identify more potent related 

compounds. These compounds are referred to as synthetic plant defense elicitors (Bektas and 

Eulgem, 2014). One of the most frequently used elicitors is benzo(1,2,3)thiadiazole-7-carbo-

thioic acid S-methyl ester (BTH), which is commonly named acibenzolar S-methyl (ASM) and 
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which is commercialized by Syngenta (Cole, 1999; Friedrich et al., 2003). In Europe this 

compound is commercialized as “Bion”. Application of BTH has been shown to restrain 

downey mildew infections in vegetables and to control a range of fungal, bacterial and viral 

diseases of important crops like tomato, cucumber, broccoli, tobacco, melon, pear and apple 

trees (Scarponi et al., 2001; Zavareh et al., 2004; Pajot and Silué, 2005; Jiang et al., 2008). In 

apple, it was shown that application can limit the extent of fire blight disease, which is caused 

by the bacterium Erwinia amylovora (Brisset et al., 2000; Maxson-Stein et al., 2002). The SAR-

inducing ability of compounds such as BTH is frequently associated with a primed state in 

which plants are able to `recall´ a previous infection or exposure to stress. Primed plants are 

therefore capable of responding more rapidly and/or effectively to a subsequent biotic or 

abiotic stress (Conrath et al., 2006). The molecular mechanisms behind priming are largely 

unclear. Priming has been associated with the accumulation of post-translational 

modification of cellular compounds. These compounds have important roles in signal 

transduction and/or amplification. In general, an accumulation or modification of these 

compounds does not activate a broad panel of plant’s defense responses (Conrath et al., 

2006). Epigenetic regulation of gene expression is another widely discussed mechanism 

involved in defense priming. It has been shown that histone modifications at promotors of 

defense-related transcription factors such as WRKY6, 53 and 29 contribute to priming of gene 

expression by BTH (Jaskiewicz et al., 2011). An additional epigenetic regulation mechanism is 

DNA methylation. In plants, DNA methylation is present in all three possible sequence 

contexts (CG, CHG, CHH , whereas H is A,T or C) and has been shown to influence defense 

responses (Dowen et al., 2012; López Sánchez et al., 2016). DNA methylation in the CG context 

can be maintained by DNA METHYLTRANSFERASE1 (MET1) and in all sequence contexts, it can 

be triggered by the RNA-directed DNA methylation (RdDM) pathway. In RdDM, one of the 

main players is NUCLEAR RNA POLYMERASE D1 (NRPD1), the largest subunit of RNA 

Polymerase IV (Pol IV), which plays a key role in the initiation of siRNAs production (Herr et 

al., 2005). Another emerging regulation of gene expression involves antisense transcripts. It 

has been previously reported that genes transcribed in sense orientation, can also be 

transcribed in antisense orientation. Antisense transcripts include partial or complete 

sequences complementary to other transcripts and are endogenous RNA molecules (Wang et 

al., 2005). They play an important role in various processes, including the adaptation to biotic 

and abiotic stresses (Terryn and Rouzé, 2000). Antisense transcripts are widespread in both 
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prokaryotes (Wagner and Simons, 1994) and eukaryotes (Vanhée-Brossollet and Vaquero, 

1998). Here we show that stresses can lead to long lasting transcriptional memory (priming) 

and that priming can be reversed (de-priming) by subsequent stresses. Furthermore, our 

results show that antisense transcripts contribute to transcriptional memory and that DNA 

methylation is required for proper stress response. 

6.3. Results  

6.3.1. BTH induces short- and long-term defense responses in Arabidopsis. 

While it is known that bacterial elicitors such as flg22 induce various defense responses in 

numerous different plants, less is known about the action of synthetic plant defense elicitors 

such as BTH. Here, we tested the short and long-term responses of plants treated with BTH. 

One of the fastest plant defense response is the accumulation of ROS (Bolwell et al., 2002). 

Therefore, we first tested if a BTH treatment resulted in a detectable ROS burst in Arabidopsis. 

We found that BTH applied at a final concentration of 1mM induced a weak albeit significant 

(p-value < 0.05) ROS burst, whereas a control treatment with flg22 lead to a strong 

accumulation of ROS (Figure 27). However, it was shown that a lower BTH concentration of 

100µM does not induce a significant ROS burst (Tateda et al., 2014). The increased BTH 

concentration could explain these different results. (Figure 27A). One of the long-term 

defense responses is the deposition of callose. As shown by (Kohler et al., 2002; Tateda et al., 

2014) BTH induces a deposition of callose in leaf tissue. We also observed that application of 

BTH lead to a strong accumulation of callose in Arabidopsis leaves (Figure 27B, C). Another 

long-lasting defense response is growth inhibition. Addition of bacterial elicitors to the growth 

medium was shown to result in a strong inhibition of growth (Krol et al., 2010). Our results 

indicate that repetitive spraying with BTH led to similar effects. Seven days after germination 

(dag) young plants were sprayed with BTH and then treated two additional times at three 

days intervals (Figure 27D). Plants treated three times with BTH showed a reduction of fresh 

weight after a recovery phase of 8 days following the last BTH exposure in comparison to the 

water control (Figure 27E, F).  
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Figure 27: BTH induces short- and long-term defense responses in Arabidopsis: A: Production 

of reactive oxygen species (ROS) measured in RLU (relative light units) in wild-type Arabidopsis 

leaf-discs (Col-0), treated with 1µM flg22, 1mM BTH or without elicitor (control). Graphs display 

averages of 12 replicates B: Quantification of callose deposition. The bars represent the mean of 4 

replicates. C: Localization of callose deposition by aniline blue staining. D: Temporal order of applied 

Arabidopsis treatments. The first treatment was applied 7 dag (days after germination), the third 

treatment 13 dag. E: Quantification of fresh weight of 21 dag old Arabidopsis plants. Plants were 

previously sprayed three times with water or BTH (1mM) according the scheme shown in D. F: 

Pictures of 21 dag old plants previously sprayed with water or BTH (1mM). Error bars show ±SE of 

the mean. Significant differences according to Student’s t-test results: *, P < 0.05; **, P < 0.01; ***, 

P < 0.001. 

To test the more general effect of BTH on other plants, we choose to investigate the growth 

repression effect, observed in Arabidopsis, on apple grown under two different growth 

conditions. Grafted apple plants exposed six times to BTH showed a lower number of 

internodes in comparison to a mock treatment (Suppl. Figure 28A). Moreover, in-vitro apple 

plantlets grown for 4 weeks on media supplied with BTH showed a strong inhibition of growth 

(suppl. Figure 28B).  
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(Supplementary) Figure 28: Growth repression effect of BTH on grafted and in vitro apple 

plants. A: Total number of internodes of grafted apple plants treated six times with BTH (1mM) or 

water. Two months after grafting, plants were treated every three days. Number of internodes was 

counted three days after the last treatment. Bars represent the mean of at least two biological 

replicates. B: Pictures of in vitro grown apple plantlets. After propagation plantlets were grown for 4 

weeks after propagation on media supplemented with or without 1mM BTH. Error bars show ±SE of 

the mean. Significant differences according to Student’s t-test results: **, P < 0.01. 

6.3.2. Transcriptional response and memory resulting from BTH treatment in Arabidopsis 

BTH is associated with inducing a primed state of gene expression. In order to identify primed 

(and memorized) genes resulting from BTH application, we performed a series of microarray-

based transcription profiles. Additionally, we investigated the role of a subsequent biotic 

stress exposure on BTH-induced long term transcriptional memory. To investigate this, we 

applied a series of treatments by spraying young Arabidopsis plants 7 dag. With a first 

application we primed gene expression with BTH. After a 3 days recovery phase, 10 days old 

plants were treated with the bacterial elicitor flg22. 11 days following the last treatment, 

plants were harvested and RNA extracted for subsequent gene expression profiling using two 

independent replicates (Figure 29A). Four different treatment combinations were used: A 

control treatment where plants were sprayed two times with water (w) (sample name: ww). 

Three combinations whereby either BTH (b) or water (w) was used in the first treatment and 
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water or flg22 (f) in the second treatment (sample names: bw, wf and bf, respectively, Figure 

29B). Gene expression changes induced by these treatment combinations were assessed 

using microarrays. The long-term effect of flg22 or BTH was investigated by comparing these 

samples against ww (ww Vs. wf and ww Vs. bw, respectively). To determine the effect of flg22 

after previous BTH application we compared the samples bw against bf. The effect of BTH 

before a subsequent flg22 application was determined by comparing wf against bf. The 

impact of both compounds in succession was studied by comparing ww against bf (Figure 

29C). In order to facilitate this complex analysis, we decided to sort differently expressed 

transcripts (DETs, which include antisense transcripts) by using a binary code. For that 

purpose, every DET was assigned to a four digits number code. These four digits represent 

the examined microarray comparisons. The first position in the number code represents the 

comparison ww Vs. wf, the second ww Vs. bw, the third bw Vs. bf and the forth the 

comparison wf Vs. bf. A 1 in the binary code indicates the presence of DETs in the 

corresponding comparison, while a 0 the absence (Figure 29D). This binary code allowed us 

to provide a global overview of the different comparisons. By applying this binary code, we 

sorted all DETs into 16 categories (Figure 29E). The category with the binary code 1000 

contains transcripts that are exclusively differently expressed in the comparison ww Vs. wf 

and not in any other comparison. The category 1100 contains genes that are differently 

expressed in the comparisons ww Vs. wf and ww Vs. bw but not in the other two comparisons. 

Transcripts that are differently expressed in all four comparisons can be found in the category 

1111 (Figure 29D and E). This categorization of DETs revealed that a substantial number of 

transcripts are only differently expressed in one comparison and not in any of the others. 

Indeed, the categories 1000, 0100, 0010, 0001 contained between 2107 DETs (for 0010) and 

4428 DETs (for 0001), respectively. 110 transcripts were found to be differently expressed in 

all four comparisons (Figure 29E, category 1111).  
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Figure 19: Arabidopsis transcriptome analysis set-up and results. A: Experimental set-up of 

applied treatments. The first treatment was applied to young Arabidopsis plants 7 dag (days after 

germination), the second 10 dag and plants were harvested at 21 dag. B: List of applied treatments 

after 7 and 10 dag as well as the sample name. C: List of examined microarray comparisons and 

number of DETs. D: DETs of comparison 1 to 4 were sorted by applying a binary code whereas a 1 

represents the presents and a 0 the absence of a transcript. E: All DETs were sorted with help of 

applying the binary code into 15 categories (excluding category 0000). The table shows the number 

of DETs in all categories.  

Next, we analyzed all categories in greater detail. First, to compare the effects of BTH and 

flg22, we investigated transcripts that are commonly differently expressed following 

application of flg22 (ww Vs. wf) and BTH (ww Vs. bw). These transcripts are separated into 

the categories 1100, 1110, 1101, 1111, which can be summarized as category 11XX. This 

category contains 1801 DETs. A scatter plot of the category 11XX shows that the majority of 

common transcripts showed a similar expression profile (Figure 30A). Most transcripts that 

are up or down regulated by flg22 application are globally regulated in a similar fashion after 
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BTH treatment (Figure 30A). Next, we investigated DETs, present in the category 11XX in 

greater detail. Therefore, the category was divided into two sub-categories which are up- and 

down-regulated by BTH. Indeed, only 11.7% of the 909 transcripts upregulated by BTH (11XX 

up by BTH) were down-regulated by flg22 thus showing a transgressive expression profile. We 

observed a similar trend for the BTH down-regulated transcripts (11XX down by BTH) where 

only 3.1% are transgressive. Both sub-categories show a similar distribution of sense and 

antisense transcripts, where 25% of all DETs are antisense transcripts (Figure 30B).  

 

Figure 20: Common differentially expressed transcripts resulting from flg22 and BTH 

treatments. A: Scatter plot of the log2 expression values of 11XX DETs showing ww Vs. wf on the 

X axes and ww Vs. bw on the Y axes. B: The category 11XX was divided into 11XX up by BTH and 

11XX down by BTH subcategories. The graph represents the percentage of transcripts expressed 

in sense and antisense in both sub-categories as well as transcripts showing transgressive 

expression pattern and therefore do not follow the global expression trend.  
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Next, we investigated the impact of subsequent stresses on BTH-induced transcriptional 

priming. The category 0110 contains genes that are differently expressed by applying BTH 

alone and by applying flg22 after a previous BTH exposure (ww Vs. bw and bw Vs. bf, 

respectively). 541 DETs were found in this category. The expression profile of these transcripts 

caught our attention because it showed that transcripts that were initially up-regulated by 

BTH were down-regulated by a subsequent flg22 exposure. Conversely, transcripts that were 

first down-regulated by BTH were up-regulated by subsequent flg22 treatment (Figure 31A). 

Only 2.6% of all transcripts in this category show a transgressive expression profile (Figure 

31B). This suggested that subsequent stresses could erase the primed state of certain DETs. 

Therefore, we investigated how many of those 0110 DETs went back to a basal expression 

level. Because the application of BTH is closely related to the priming of genes (Katz et al., 

1998; Kohler et al., 2002) (and this study) we tested if a subsequent flg22 treatment lead to a 

de-priming of genes. Here, we define de-priming as a primed transcript expression returning 

to a basal (pretreatment-like) expression level by a subsequent stress. To assess the number 

of de-primed genes, we compared the transcription level of DETs of category 0110 with that 

of DETs of the comparison ww Vs. bf (Figure 29C). DETs of the category 0110, which are not 

significantly differently expressed in ww Vs. bf can be considered as de-primed. Out of the 

541 DETs of category 0110 86.3% are not significantly differently expressed in the comparison 

ww Vs. bf anymore (p-value > 0.05) (Figure 31B). Only 11.1% of these transcripts maintained 

their priming state after the flg22 challenge.  

Closer inspection of the DETs in category 0110 revealed an uneven distribution of sense and 

antisense DETs. We investigated the two sub-categories of this category. The sub-category 

0110 up by BTH contains DETs that are up regulated by BTH and show globally the inverted 

expression by subsequent flg22 treatment. The sub-category 0110 down by BTH contains 

DETs down regulated by BTH and up regulated by subsequent flg22 treatment. While 

transcripts in the sub-category 0110 up by BTH consist of 52.4% antisense transcripts, 

transcripts in 0110 down by BTH only contain 18.7% antisense transcripts and 80.2% sense 

transcripts (Figure 31C).  
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Figure 31: DETs of the categories 0110 show an inversion of gene expression profile by a 

second stress. A: Scatter plot of transcripts present in the category 0110. The category contains 

DETs of the comparison ww Vs. bw (Y axes) and bw Vs. bf (X axes). B: Classification of transcripts 

present in category 0110. The 541 transcripts were compared to DETs of ww Vs. bf. 86.3% of the 

transcripts are not differently expressed by the combination of both treatments and are considered 

as de-primed. 11.1% are differently expressed and therefore primed and 2.6% do not follow the 

global expression trend in 0110. C: Distribution of sense and antisense transcripts in the sub-

categories 0110 up by BTH and 0110 down by BTH. The sub-category 0110 up by BTH contains 

52.4% antisense transcripts.  

Next, we studied the gene ontology overrepresentation of DETs in the category 11XX and 

0110 (antisense transcripts included). DETs in the category 11XX show an overrepresentation 

in gene ontology correlated with the regulation of gene expression and epigenetics, rRNA 

metabolic process and translation (Supplementary figure 32A), while DETs in category 0110 
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are only overrepresented in the gene ontology response to stress and stimulus compared to 

the reference (Supplementary figure 32B). 

 

(Supplementary) Figure 32: Gene ontology analysis of DETs in category 11XX and 0110. A: 

PANTHER Overrepresentation test of DETs in category 11XX. Gene ontology was available for 1131 

out of the 1801 DETs. DETs correlated with the regulation of gene expression and epigenetics 

(GO:0040029) are overrepresented with 4.85 fold enrichment compared to the Arabidopsis 

reference. B: Overrepresentation test of category 0110. Gene ontology for 404 of the 541 DETs 

were available. DETs correlated with the response to stress and stimulus (GO:0006950, 

GO:0050896) are overrepresented in this category. Gene ontology overrepresentation test was 

probed using the PANTHER webtool using a fisher`s exact test (Mi et al., 2017) 

6.3.3. Transcriptional response and memory of stress treatments in apple  

Next, we wanted to test if our observations in Arabidopsis were also relevant for other plant 

species. For that purpose, we performed a similar treatment regime as for Arabidopsis on in 

vitro grown apple plantlets followed by microarray-based expression profiling using the latest 
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version of the apple genome (Daccord et al., 2017). Plants were treated 14 days after 

propagation (dap) and 17 dap. After 14 days of recovery plantlets were harvested, RNA 

extracted and subjected to transcription profiling (Figure 33A). In total 3 different treatment 

combinations, on two independent biological replicates were applied (Figure 33B). Similar to 

our experiments in Arabidopsis we explored the effect of BTH as a first treatment (ww Vs. bw) 

as well the influence of flg22 application after BTH treatment (bw Vs. bf). In order to identify 

DETs that returned to a basic expression level, we investigated the effect of a combination of 

BTH and flg22 treatment on apple plants (ww Vs. bf) (Figure 33C). In the comparison ww Vs. 

bw 3920 DETs were detected. Notably, these DETs result from a treatment 17 days before 

harvesting and RNA extraction. In the comparison bw Vs. bf 847 DETs were found. 342 DETs 

are common in the comparison ww Vs. bw and bw Vs. bf. These common DETs are equivalent 

with the category 0110 of the Arabidopsis setup.  

 

Figure 33: Whole genome expression profiling and applied comparisons in apple. A: 

Experimental set up of apple plantlet treatments. Apple plantlets were treated the first time 14 dap 

(days after propagation) followed by one additional treatment 17 dap. Leave tissue was harvested 

31 dap. B: Combinations of applied treatments and sample names. C: List of examined microarray 

comparisons and number of DETs.  
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The plot of the 342 common DETs confirmed our observations in Arabidopsis (Figure 34A). In 

total, 82.7% of these transcripts are de-primed and only 8,2% are still significantly differently 

expressed and therefore primed (Figure 34B). 9.1% of the transcripts are transcribed in a 

transgressive way (Figure 34B). Next, we determined how many transcripts lost their priming 

status by comparing the common DETs with the comparison ww Vs. bf (Figure 34C). However, 

for apple an overrepresentation of antisense transcripts such as we have seen for Arabidopsis 

was not observed. The subcategory of common DETs which are up regulated by BTH showed 

47.3% antisense transcripts and DETs down regulated by BTH are expressed with a 57.1% 

antisense contribution (Figure 34C). In total, common DETs have a higher content of antisense 

transcripts than found in our Arabidopsis comparisons. This observation is in line with a 

previous report that apple has globally a high percentage of antisense transcripts (Celton et 

al., 2014).  
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Figure 34: De-priming in apple. A: scatter Plots of common transcripts present in the comparisons 

ww Vs. bw (Y axes) and bw Vs. bf (X axes). B: The common transcripts are compared to ww Vs. bf. 

82.7% are de-primed, 8.2% stay primed and 9.1% are transgressive and do not follow the global 

trend. C: The common DETs are divided into the sub-categories up by BTH and down by BTH  

6.3.4. DNA methylation and de-priming of gene expression 

To investigate the mechanism behind the de-priming of genes by a second stress, we chose 

to follow the expression profile of AMY1 (At4G25000), a gene found in the Arabidopsis sub-

category 0110 up by BTH. To enhance the contrast resulting from the treatments on 

Arabidopsis we added a third treatment at 13 dag and harvested at 21 dag (Figure 35A). AMY1 

has previously been shown to be induced by biotic and abiotic stress and play an important 

role in starch metabolism (Stanley, 2002; Doyle et al., 2007). Again, to be able to measure the 

long-term memory on AMY1 transcription, sampling was performed eight days after the last 

treatment. In the sample bbf AMY1 was found to be significantly down-regulated in 
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comparison to the bbw treatment showing that we can follow de-priming by qPCR. Three BTH 

treatments (bbb) further enhanced the expression of AMY1 in comparison to bbw and bbf 

(Figure 35B). However, we could not detect a significant differential expression of AMY1 in 

the sample bww and bfw in comparison to the water control treatment. The expression 

profile of AMY1 confirms the previous observations with respect to the enhanced expression 

of this gene by BTH and de-priming upon a subsequent flg22 exposure after BTH. Therefore, 

we used AMY1 as a marker gene to investigate the molecular mechanisms involved in de-

priming gene expression. To test if DNA methylation was involved in the memory or de-

priming process, we applied the same combinations of treatments to nrpd1-3 and met1-3 

plants. For nrpd1-3, the expression profile is similar to that of wild type plants. However, the 

amplitude is four times lower for all samples (Figure 35C). The met1 mutant did not show a 

significant response to any of the applied treatments, suggesting that AMY1 activation and 

priming may directly or indirectly depend on DNA methylation. 
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Figure 35: Expression of AMY1 serves as marker for de-priming of transcription. A: set-up of 

treatments applied to Arabidopsis plants. The first treatment was applied 7 dag (days after 

germination) followed by two additional treatments. Plants were harvested 21 dag. B: Expression 

profile of AMY1 by different sequences of treatments of wild type plants. C, D: The same treatment 

orders are applied to nrpd1-3 and met1-3. All expression values are normalized to that of the gene 

ACR12 (AT5G04740). Bars represent the mean of at least four biological replicates. Error bars show 

±SE of the mean. Significant differences according to Student’s t-test results: *, P < 0.05; ***, P < 

0.001; ns: not significant. 

6.4. Discussion 

6.4.1. BTH could have negative effects on plant vitality in an energy trade-off balance  

In their natural environment plants are continuously exposed to a multitude of variable 

stresses. In an agricultural setting, plants such as apple need to be protected from various 
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diseases with pesticides since the lack thereof may be causing tremendous declines in yield. 

In order to reduce the use of pesticides, compounds are now being developed that can 

enhance natural pathogen defense mechanisms in plants. Because BTH can contribute to 

defense priming (Jaskiewicz et al., 2011; Conrath et al., 2015) (and this work) it could 

therefore have the potential to reduce yield loses. Here, we show that the application of BTH 

induces callose depositioning and a ROS burst in Arabidopsis (Figure 27A, B). While other 

reports did not see this (Tateda et al., 2014), this might be due to the tenfold higher BTH 

concentration of 1mM final concentration that was used in our assay. The induction of 

defense responses is widely connected to loss of energy in a trade-off balance (Walters and 

Heil, 2007). In line with the results we show here, the application of BTH induced an inhibition 

of growth in both, Arabidopsis and apple plants ((supp.) Figure 28). These results indicate that 

BTH application at a higher concentration could have negative effects on plant growth.  

6.4.2. De-priming of transcription is tightly regulated 

With the series of microarray experiments performed here, we found that flg22 and BTH 

treatments globally result in similar transcriptional changes in Arabidopsis. The category 11XX 

(Figure 30) contains transcripts that are differently expressed by flg22 and BTH treatments, 

these transcripts show the same trend in expression as well as sense and antisense transcript 

distribution. BTH is an analogue of SA that is naturally produced by the plant (Bektas and 

Eulgem, 2014). SA is an important plant hormone that plays a role in the signaling pathway 

following flg22 perception (Yi et al., 2014). Therefore, it is reasonable that common 

deregulated transcripts resulting from the two different treatments globally show a similar 

expression profile in Arabidopsis. We then tested how a subsequent stress affects BTH-

induced transcriptional memory. We show that, a flg22 treatment after BTH reverses the 

transcriptional memory in Arabidopsis (Figure 31A) and in apple (Figure 34A) of certain DETs. 

We termed such effects de-priming. It has previously been shown that BTH pre-treatments 

resulted in increased transcription of a subset of genes upon a second stress (Conrath, 2011; 

Jaskiewicz et al., 2011). Indeed, a similar de-priming phenomenon was observed for genes 

responding to repetitive drought stress. (Liu et al., 2014) showed that a subset of dehydration 

stress-response genes reacted to a first stress but did not respond to a second stress and 

stayed at a basic non-stressed expression level. These genes are referred as `revised-

response` memory genes. Together with a follow-up work it was shown that the transcription 
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factor MYC2 plays a critical role for gene activation upon a second drought stress (Liu et al., 

2014; Liu et al., 2016). These results indicate that the regulation of de-priming in plants could 

depend on precise regulation of such a single gene. With our work we show that the number 

of de-primed transcripts by a subsequent exposure to a second biotic stress reflects the 

majority of commonly regulated transcripts (Figure 31B, Figure 34B). It is remarkable that we 

only find 2.6% of DETs in the Arabidopsis category 0110 and 9.6% of DETs for apple which 

show a transgressive expression profile and do not follow the global trend of de-priming 

(Figure 31B, 34B). Therefore, the number of transgressive DETs is low. Notable is also that the 

total number of DETs of the comparison bw Vs. bf in Arabidopsis and apple respectively: this 

comparison represents the lowest number of DETs in comparison to all other examined 

microarrays of both plant species (Figure 29C, 33C). This indicates that the global level of 

transcription is reduced by the subsequent flg22 treatment after BTH exposure. 

6.4.3. DNA methylation could contribute to the priming properties of BTH 

Two plant memory mechanisms have been proposed: The accumulation of proteins or 

transcription factors is one of them, epigenetic changes is a second potential mechanism 

(Bruce et al., 2007). Our results show a strong effect on priming and de-priming by global 

methylation decrease. We identified AMY1 in the Arabidopsis category 0110 as a good marker 

for transcriptional memory because: (1) It has been shown that AMY1 is a secreted protein 

that is expressed following biotic and abiotic stresses (Doyle et al., 2007), (2) it shows a 

memory accumulating property following multiple treatments (Figure 35B) and (3) of Its de-

priming property upon a succession of BTH and flg22 treatments (Figure 35B). Notably, we 

found that AMY1 activation is strongly reduced in met1-3 only being activated after three 

subsequent BTH applications. This suggests that DNA methylation may be required directly or 

indirectly to activate and/or prime AMY1. However, due to the weak activation of AMY1 in 

met1-3, the de-priming effect of flg22 after BTH treatment could not be observed with this 

method (Figure 35D). We thus cannot conclude on whether MET1 is required for the 

activation or the maintenance of the primed state of AMY1. In nrpd1-3 we found a low 

expression value but still detected the de-priming expression profile, indicating that DNA 

methylation via the RdDM pathway may be required to achieve the full potential of BTH 

treatments. Therefore, DNA methylation may be contributing to the priming and de-priming 

events which will have to be more closely investigated in the near future.  
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Figure 36: Proposed model of de-priming effect on plant fitness. Here we suggest a model of a 

possible beneficial effect of transcriptional de-priming. If plants are not exposed to a first priming 

treatment the second treatment might cause stronger deficits on plant fitness (red line) in comparison 

to plants that are primed (blue line). However, the priming reflects a fitness costs for plants due to 

the induced defense response and the maintenance of the primed transcription and/or epigenetic 

memory. The second treatment could cause a less pronounced fitness cost in comparison to the un-

primed plants. We propose that the de-priming of a DET subset could lead to an additional positive 

effect on plant fitness by fine tuning the plant defense response and returning non-beneficial DETs 

to a basic expression level (dashed green line).  

6.4.4. De-priming could limit the impact of sequential stresses  

It was shown that treatment with BTH increases the expression of the flg22 receptor FLS2 as 

well as the closely related co-receptor BAK1 (Tateda et al., 2014). An increased expression of 

BAK1 was shown to have strongly reduced growth and extensive cell death (Domínguez-

Ferreras et al., 2015). It might be possible that the subsequent flg22 exposure after BTH could 

fine tune the plant expression profile to prevent negative effects of BTH and to enhance the 

resistance of the plant. The gene ontology analysis of the category 0110 in our Arabidopsis 

comparisons revealed that most DETs belong to cellular and metabolic processes ((Suppl.) 

Figure 28). Indicating, that changes in the expression profile not only effects transcripts 

related with defense responses. In Figure 36 we propose a model of the effect of expressional 

de-priming. We hypothesize that the de-priming of a subset of transcripts could enhance 

plant fitness. The second treatment and the resulting de-priming of transcripts could prevent 
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the plants from negative effects of the priming treatment and/or fine tune the plant response 

to the more recent stress. It was shown with several examples that plants deal with stressful 

situations by inducing silencing mechanisms via antisense transcription and that endogenous 

siRNAs derived from a pair of sense and antisense transcript can enhance the tolerance to 

various stresses (Borsani et al., 2005; Chinnusamy et al., 2007; Jin et al., 2008; Sunkar, 2010; 

Khraiwesh et al., 2012) The strong overrepresentation of antisense transcripts in the 

Arabidopsis sub-category 0110 up by BTH is in line with our hypothesis, that plants induce de-

priming in order to prevent negative or unnecessary effects of the priming stimulus. These 

antisense transcripts are up-regulated by BTH and down-regulated by the subsequent flg22 

treatments. Therefore, it may be that enhanced antisense expression suppresses negative 

effects that the BTH treatment may have on the plant. With our work we describe a rather 

unusual expression profile caused by subsequent stresses in Arabidopsis and apple in which 

plants have an efficient way to memorize stresses by transcriptional priming, and that such 

priming can readily be erased (de-primed) by subsequent stresses. Since our observations 

were made in both apple and Arabidopsis suggests that priming and de-priming may be 

conserved in the plant kingdom. These results have implications on the application of priming 

compounds in the field, as plants are constantly subjected to stresses, which may affect the 

efficiency of such compounds. 

6.5. Material and methods 

6.5.1. Plant material  

Plant material used was wild-type Arabidopsis thaliana L. Heynh cultivar 6 Columbia (Col-0) 

as well as met1-3 (Saze et al., 2003) and nrpd1-3 (Herr et al., 2005). All Arabidopsis plants 

were grown under long day condition (photoperiod of 16h light at 22°C/ 8h light at 22°C, with 

60% relative humidity). Apple cv. Golden Delicious double haploid (GDDH13 described by 

(Lespinasse, 1998)) in-vitro grown plantlets were propagated on MS based medium with BA 

0.25mg/L and IBA 0.1mg/l under short day conditions (photoperiod of 8h light at 22°C/ 16h 

dark at 21°C). Grafted apple plants (GDDH13) were grown in the greenhouse on a MM106 

rootstock. Dormant buds were grafted in winter (February). After 10 days in a cold chamber 
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they were potted in 1L pots and grown in normal greenhouse conditions until they developed 

to about 30 nodes.  

6.5.2. Quantification of the growth inhibiting effect of BTH  

The growth inhibiting effect of BTH (Bion, Syngenta) was examined in grafted apple plants. 

Two months after grafting the plants were treated six times every three days with BTH (1mM) 

by applying the solution with a paintbrush on all leaves and the meristem. The total number 

of internodes was counted 3 weeks after the first treatment. The growth inhibiting effect of 

BTH on apple plantlets was observed by growing plantlets after propagation on MS based 

medium with 0.25mg/L BA, 0.1mg/L IBA and 1µM BTH or the control media without BTH for 

four weeks before the pictures were taken.  

6.5.3. Transcriptomic analysis  

Four Arabidopsis plants represent one biological replicate. Plants were treated with flg22 

(QRLSTGSRINSAKDDAAGLQIA – obtained from Eurogentec SA (Angers, France)) or BTH (Bion) 

– obtained from Syngenta (Basel, Switzerland) and were applied by spraying with final 

concentrations of 1µM and 1mM, respectively. Leaves of 20 apple plantlets represent one 

biological replicate. Plantlets were treated by dipping the whole plantlet into filter sterilized 

flg22 (1µM) and BTH(1mM) solution and placed on fresh growth medium after every 

treatment. Microarray analysis was performed for Arabidopsis with the CATMA array ((V5) 

GPL21364)) and for apple with the ARIANE array (VXXX) Leaves of Arabidopsis and apple were 

collected from two independent biological replicates. The RNA was extracted using the 

NucleoSpin RNA plant extraction kit (Machery-Nagel Hoerdt, France) according the 

manufacturer`s recommendations. For Arabidopsis samples the Message AmpII aRNA 

amplification kit (Ambion) (Thermo fisher scientific USA) and for apple samples the Low Input 

Quick Amp Labeling Kit, two-color (Agilent USA) was used for cDNA synthesis and 

hybridization. The hybridizations were performed on a NimbleGen Hybridization System 4 

(mix mode B) at 42° overnight. Afterwards, the slides were washed, dried and scanned at 2 

µm resolution. NimbleGen MS 200 v1.2 software was used for microarray scans and the 

Agilent Feature Extraction 11.5 software was used to extract pair-data files from the scanned 

images. Statistical analysis was based on dye switch approach as described in (Depuydt et al., 
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2009). All statistical analyses were performed using the R language (R Development Core 

Team, 2009); data were normalized with the lowess method, and differential expression 

analyses were performed using the lmFit function and the Bayes moderated t test using the 

package LIMMA (Smyth et al., 2005) from the Bioconductor project. Differently expressed 

transcripts sorted by applying the binary code were selected for a p-value < 0.05. 

6.5.4. Determination of gene expression by qPCR 

4 plants per biological replicates were harvested, frozen and ground in liquid nitrogen. RNA 

from 100 mg of tissue was extracted using the NucleoSpin RNA plant extraction kit (Macherey-

Nagel Hoerdt, France). The DNase treatment was performed according to the manufacturer’s 

recommendations. Per PCR reaction, complementary DNA was synthesized from 10 ng of 

total RNA extract with oligo(dT) primers using Moloney Murine Leukemia Virus Reverse 

Transcriptase according to the manufacturer’s instructions (Promega). For quantitative real-

time reverse transcription PCR (qPCR) in a 96-well format, the Chromo4™ System (Bio Rad) 

was used. Expression was normalized to ACR12 (AT5G04740) using the qGene protocol 

(Muller et al., 2002). The Primers used are as followed: ACR12 (AT5G04740) acr12FW: 

TTGTTCGATGATCGCCGGAA, acr12REV: TGGAACAACGTCGTCATCGT; AMY1 (At4G25000) 

amy1FW: AATACGGTTCAGAGGCGGAA, amy1REV: CGGAAGTCCCACCTTCGAAA.  

6.5.5. Measurement of reactive oxygen species 

For ROS assays, leaf discs of three weeks old soil grown plants, were placed into each well of 

a white 96-well plate (Thermo Scientific, Waltham, USA) in 0.1 mL of water and kept in the 

dark overnight. For elicitation and ROS detection, horseradish peroxidase and luminol were 

added to a final concentration of 10 µg/mL and 100 µM, respectively. Luminescence was 

measured directly after addition of concentrated BTH solution (final concentration of 1mM) 

in a FLUOstar OPTIMA plate reader (BMG LABTECH, Offenburg, Germany). 

6.5.6. Callose deposition  

Leaf discs were vacuum infiltrated for 10 min with BTH (1mM) solution or water and kept 

floated in the solution for 24h. After leaf discs were fixed and destained in 1:3 acetic acid/ 

ethanol until leaf tissue was completely transparent. After washing the leaf discs in 150 mM 
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K2HPO4 for 30 min, the plant material was stained for 2 h in 150 mM K2HPO4 and 0.01% aniline 

blue. Callose depositions were quantified with a Leica DM1000 microscope equipped with a 

Qimaging Micropublisher 3.3 RTV camera using a DAPI filter.  
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6.6. Appendix: Does BTH/flg22 application influence defense responses and 

Pseudomonas resistance in a long-time memory fashion?  

6.6.1. Introduction 

Plants are under continuous stress but higher plants have evolved mechanisms that enables 

them to cope with environmental changes. This mechanism was established over a long 

period of evolution as sessile organisms (Tardif et al., 2007). The mechanism of priming 

enables plants to respond and adopt to recurring biotic and abiotic stresses. Primed plants 

display faster and/or stronger activation of various defense responses that are induced by a 

subsequent attack by pathogens, insects or in response to abiotic stress (Conrath et al., 2006). 

The activation of systemic acquired resistance (SAR) is key for the plant to overcome a 

pathogen infection. Pre-treatment with various stress-signaling molecules like JA, SA, or ABA 

as well as, pre-exposure to pathogens or herbivores resulted in an increased SAR (Goh et al., 

2003; Jakab et al., 2005; Conrath et al., 2006; Bruce et al., 2007; Conrath, 2011; Rasmann et 

al., 2012; Slaughter et al., 2012; Bruce, 2014). SAR involves several steps and multiple 

pathways that lead to a strong defense response (Conrath, 2006). SAR induction and an 

increased resistance to a subsequent infection can be achieved by treatments with chemical 

stimuli. These compounds induce low-cost changes in the plant metabolism that include the 

accumulation of various metabolites (Mauch-Mani et al., 2017). One of these compounds is 

the SA analogue BTH. BTH is the main active compound of the commercialized plant defense 

inducing product Bion (Görlach et al., 1996). SA itself was shown to trigger several responses 

in plants. At a low dose it was reported to enhance the activation of the flg22- induced 

MITOGEN-ACTIVATED PROTEIN KINASE 3 (MPK3) and MPK6 (Yi et al., 2015). Also BTH induces 

the accumulation of inactive unphosphorylated MPK3 and MPK6 (Beckers et al., 2009). It was 

also shown that a activation of the SA pathway influence flg22 triggered short-term defense 

responses like the oxidative burst and the deposition of callose (Yi et al., 2014). Several studies 

also showed that defense inducing compounds can also change the plant protein levels during 

a priming phase (Balmer et al., 2015). Importantly, the protein levels of pattern recognition 

receptors and coreceptors increase after BTH treatments (Tateda et al., 2014). These findings 

suggest that the plants prepare their defensive system to enhance their sensitivity against 

potential attackers (Conrath et al., 2015). However, recently it was suggested that plants 
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might be also able to forget a previous stress (Crisp et al., 2016) (and this thesis). Priming 

could result in a sensitization in a way they response to false alarm signals (Mauch-Mani et 

al., 2017). The current hypothesis at the moment is that plants might forget previous stresses 

to avoid reduced development, yield and ultimate survival (Crisp et al., 2016). This hypothesis 

is supported by the results that transgenerational defense priming may be linked to the 

severity of the originally faced stress and that the initial stress in only memorized when 

applied repeatedly (Luna et al., 2012). Epigenetics widely contributes to the stress memory in 

plants (Bruce et al., 2007; Tsai et al., 2011; Ramírez-Carrasco et al., 2017). Epigenetics involves 

fast and reversible modifications. Therefore, it is likely that epigenetic mechanisms are 

involved in the removal of immune priming after certain stress-free generations or after 

longer time in the same generation in order to alleviate the potential costs. 

6.6.2. Results and discussion  

After our investigations on the inversion and de-priming of transcriptional memory by a 

subsequent flg22 treatment after BTH exposure, we decided to explore the effect of BTH and 

flg22 treatment combinations on the induction of short-term defense responses. The 

activation of MAP Kinases (MAPK) is one of the fastest defense responses (Pitzschke et al., 

2009). Since it was shown that BTH treatment enhances the protein level of the receptor FLS2 

and the coreceptors BAK1 (Tateda et al., 2014) as well as the level of unphosphorylated MAPK 

(Beckers et al., 2009) we studied the level of phosphorylated MAPK, induced by application 

of flg22, after a pre-treatment of BTH and/or flg22 (Figure 37). Arabidopsis plants were 

treated after 7dag with water (W) or BTH (B) and a second time after 10dag with water or 

flg22 (F). After a recovery period of 11 days plants were treated with flg22 in order to induce 

the phosphorylation of MAPK. Even though these preliminary results miss a loading control 

with coomassie blue staining it is clearly visible that no difference between the two times 

water treated plants the BTH/flg22 treatments can be observed (Figure 37 A). This might be 

due to the long recovery phase of 11 days after the last treatment. In line with this result is 

also our next observation. Plants pre-treated after 7dag and 10dag with water, BTH or flg22 

(WW, WF, BW, BF) were treated after 21dag with flg22 to induce a ROS burst.  All pre-treated 

plants induced a ROS burst with a comparable intensity (Figure 37 B). Finally, we decided to 

test the resistance of pre-treated plants to a Pseudomonas infection. It was previously 

reported that plants pre-treated repetitively with BTH show an increased resistance to 
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Pseudomonas infections (Kohler et al., 2002). Also, our results show that plants pre-treated 

three times with BTH after 7, 10 and 13dag show reduced bacteria growth 1dpi. However, all 

other pre-treatment combinations do not show any difference in bacterial growth (Figure 37 

C). These results miss a control of bacteria extraction after the infection (0dpi) as well as a 

second extraction at 2dpi. However, these results indicate that the inversion and de-priming 

in transcription might not reflect in short-term defense responses as well as resistance to 

Pseudomonas infection. The de-priming and return to a basic expression level pertain only a 

subset of transcripts. It is possible that these de-primed transcripts might be not critical for 

the induced resistance by BTH but might cause negative effects for the plant and loss of 

energy due to priming-related fitness costs. The subsequent stress after BTH could fine-tune 

the expression response of BTH pre-treated plants and could lead to a directed response to 

the current stress the plant is facing. However, the increased resistance against Pseudomonas 

after a three times BTH treatment is in line with the previously published results on BTH. This 

might due to the shorter recovery phase of 8 days after the last BTH treatment. The plant 

memory for BTH response might be limited and the induced resistance is increased after 8 

days but not after 11 days. In conclusion we show, that Bion has an effect on resistance 

against Pseudomonas infection but that the inversion and de-priming of transcription shows 

no effect on the short-term defense responses MAPK activation and ROS bust as well as 

resistance. However, these results have a strong preliminary character and require additional 

experiments and replicates.  
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Figure 37: Short-term defense and resistance to Pseudomonas syringea may not influenced 

by de-priming. A) Western blot against phosphor-p44/42 MAP kinase. Pre-treated plants after 7 

and 10, were exposed to flg22 to induce the phosphorylation of MAPK. Pre-treated plants do not 

show an altered level of phosphorylated MAPK in comparison to the water treated control. B) ROS 

burst of pre-treated plants. Arabidopsis plants were pre-treated after 7 and 10 days with the indicated 

treatment and exposed to 1µM flg22 in order to induce the ROS burst. Pre-treatments do not have 

an effect on the ROS burst intensity. C) Pseudomonas syringea infection of pre-treated plants. 

Arabidopsis Plants were pre-treated by spaying after 7, 10 and 13 days with the indicated treatment. 

Plants three times exposed to BTH (1mM) show a reduced bacteria growth 1dpi (days post infection). 

None of the other applied pre-treatments caused an effect on plant resistance at 1dpi.  
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6.6.3. Material and methods  

6.6.3.1. MAPK phosphorylation  

Plants were pre-treated with a first treatment after 7dag (water (W) or BTH (1mM)(B)) and a 

second treatment after 10dag (water (W) or flg22 (F)). After a 11days recovery phase, all 

leaves of one plant were treated by floating for 15min on solution supplied with 1µM flg22 or 

without (control). After 15min leaves were shock frozen and grounded to fine powder before 

adding 80µl extraction buffer (0.35M Tris-HCl pH6.8, 30% glycerol, 10% SDS, 0.6M DTT, 

0.012% bromphenol blue). After boiling for 5min, 15µl of the protein extract was separated 

by electrophoresis in 12% SDS- polyacrylamide gel and electrophoretically transferred to a 

polyvinylidene fluoride membrane according to the manufactural instruction (Milipore). For 

exposure, monoclonal primary antibodies against phosphor-p44/42 MAP kinase (cell 

Signalling Technologies) and alkaline phosphatase-conjugated anti-rabbit secondary antibody 

(Sigma Aldrich). Signal was detected using CDPstar (Roche).  

6.6.3.2. Plant inoculation with Pseudomonas syringae pv. Tomato (pst. DC3000) 

Plants were pre-treated with the indicated treatments after 7, 10 and 13dag with the 

indicated treatment combination and infected after 21dag. Eight leaves of one plant per pre-

treatment were infiltrated with bacterial suspensions of at a concentration of 105 colony 

forming units (cfu/ml) (OD600 of 0.02) in sterile 10mM MgCl (also used for mock-inoculation) 

using a needleless syringe. Plants were maintained at high humidity. Samples were taken 

using a cork-borer (d=8mm) to cut one leaf discs per infected leaf. Leaf discs were ground in 

10mM MgCl, diluted to the indicated concentration and plated as droplets of 10µl on YEB 

plates with the appropriate selection. Plates were incubated at 28°C and colonies counted 

1dap.  
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7. General Discussion 

7.1. The discovery of the SCOOP peptide family 

 

Considering the complexity of the plant immune system and the tradeoff between defense 

responses and plant development it is reasonable for plants to merge these two fundamental 

mechanisms. The expression of phytocytokines is a plant achievement that facilitates the 

induction of defense responses upon an infection and wounding as well as the regulation of 

plant development. The latest trend in small endogenous peptide research is the use of 

bioinformatic tools. By using the continuous advances in genomics and transcriptomics 

technologies already several small peptides have been identified, among them well known 

and increasingly well-characterized peptides such as CLE, EPIDERMAL PATTERNING FACTOR 

(EPF1), C-terminally encoded peptide 1 (CEP1) and ROOT MERISTEM GROWTH FACTOR (RGF) 

(Matsubayashi, 2014). Finally, our research adds another small peptide family onto this list. 

The bioinformatic prediction of the SCOOP family was only possible because of the advantage 

of using bioinformatics which can overcome the barrier posed by strong gene redundancy 

and the low abundance of peptides in the plant tissue (Matsubayashi, 2014). By finding 

analogues of the SCOOP peptide family in 74 Brassicaceae species and an alignment of the 

PROSCOOP sequences, we show that it is possible to precisely identify potentially active small 

peptide sequences. However, by using a bioinformatic approach we predict peptides that 

might not reflect real in planta peptides. The research on small peptides resulted in the 

identification of several peptides with unknown mature peptide structure. For instance, 

CLE40 was found in a comparable approach than the SCOOP family. By an in silico screen of 

CLV3 homologues CLE40 was found to control stem cell fate in the root meristem (Stahl et al., 

2009). Other examples of small peptides without fully characterized mature peptide aa 

composition are CLE8, CLE45 and IDA. Even though, the full mature peptide has not yet been 

identified, the research on these peptides resulted in the identification of various interesting 

regulatory functions (Matsubayashi, 2014). The applied bioinformatic approach lead not only 

to the prediction of several active peptides but also predicted in which tissue the peptide 

precursors are expressed and helped us to predict functional partners. The use of the CATMA 
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transcriptome database (Crowe et al., 2003; Sclep et al., 2007; Gagnot et al., 2008) is an 

excellent tool to identify previously unknown proteins. The microarray produced in frame of 

the CATMA project contains 677 gene specific tags that map in intergenic regions according 

to an alternative Arabidopsis genome annotation. By investigating the regions of these tags, 

it is possible to reveal possible under-predicted genes in Arabidopsis. Especially small peptides 

could be found by this method (Aubourg et al., 2007).  

7.2. Possible posttranscriptional modifications of the SCOOP family  

 

Next to the identification of in planta peptides, the discovery of posttranscriptional 

modification and secretion processes of small peptides bear a great challenge for researchers. 

Posttranscriptional modifications of small endogenous peptides are known to modulate the 

physiochemical properties, changes the net charge, alters the hydrophilicity and/or the 

conformation. These modulations therefore change the binding and specificity of the 

peptides and their receptors (Matsubayashi, 2014). Three such modifications have been 

identified for peptides up to now: tyrosine sulfation, proline hydroxylation and 

hydroxyproline arabinosylation (Matsubayashi, 2011). Upon them Proline hydroxylation is 

identified in almost all posttranscriptional modified small peptides. Only PSK does not carry 

this modification because it has no proline residues. Interestingly, out of the 4 inactive SCOOP 

peptides (SCOOP3, 8, 10, 11) the peptides SCOOP8 and SCOOP11 do not harbor any proline 

residue. Out of the active peptides only SCOOP5 does not contain a proline residue. However, 

the activity of SCOOP5 might be promoted by a tyrosine sulfation. Overall only SCOOP5 and 

SCOOP13 contain a tyrosine residue. Tyrosine sulfation is a modification that indicates a 

peptide which is synthesized through the secretory pathway (Moore, 2003). Three other 

tyrosine-sulfated peptides have been identified in plants namely, PSK, PSY and RGF 

(Matsubayashi and Sakagami, 1997; Amano et al., 2007; Matsuzaki et al., 2010). Another open 

question in regard to our SCOOP peptide discovery is the possibility of a posttranslational 

proteolytic processing of the precursor protein. The identification of the precursor cleavage 

site of plant peptides is challenging. There is no typical amino acid motif in plants which is 

directly adjacent to mature peptide domains. Moreover, the nature of the cleavage 

mechanism is not always clear in plants. In animals, small peptides are cleaved on the C-
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terminus of paired basic amino acids, such as lysine-lysine, lysine-arginine or arginine-

arginine. The CLV3 peptide in plants is cleaved on the N-terminus at a single arginine residue 

of its precursor protein (Ni and Clark, 2006). Another example is CLE36 which is cleaved 

between a methionine and a serine residue is located two residues upstream of the mature 

peptide domain (Djordjevic et al., 2011). Therefore, the processing site does not define the 

boundary of the mature peptide domain because, next to the proteolytic cleavage, peptides 

undergo proteolytic trimming. In summary, the posttranslational modifications could protect 

the peptide from exoprotease digestion. The conserved active motif of the SCOOP peptides 

is not located at the extreme C-terminus of the precursor proteins which could mean that 

SCOOP peptides have to undergo two proteolytic cleavages. However, the majority of SCOOP 

peptides harbor a second conserved motif which is located closer to the N-terminus than the 

SCOOP motif, the second motif might reflect a possible cleavage site.  

7.3. The identification of the SCOOP receptor(s) – the next big challenge  

 

The next challenge which future research on SCOOP peptides will face is the identification of 

the SCOOP receptor. Several promising methods have been developed in order to identify 

pattern recognition receptors. The most efficient approaches are forward genetic mutant 

screens. The two tools which are often applied are the use of natural variations and the use 

of a mutagenized population. The most prominent example of a receptor that was identified 

by using an EMS mutagenized population of Arabidopsis is the flg22 receptor FLS2 (Gomez-

Gomez and Boller, 2000). Treatments with the active SCOOP peptides causes a strong 

inhibition of seedling growth. This phenotype could be used to identify the receptor or other 

functional partner in the SCOOP perception by screening EMS mutagenized seeds for 

insensitivity to SCOOP peptides. The seedling growth inhibition assay was also the assay of 

choice for the identification of the FLS2 receptor. An alternative method to identify peptide 

receptors are biochemical approaches. One example is the discovery of the PEPR1 receptor 

which was identified using radiolabeled AtPep1 peptide, interacted with suspension-cultured 

Arabidopsis, followed by binding studies (Yamaguchi et al., 2006). Also, possible and likely to 

be successful for the SCOOP peptides is the use of a co-receptor as a molecular bait. It was 

for example shown that it is also possible to identify FLS2 after flg22 treatment and 
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immunoprecipitation of BAK1 (Schulze et al., 2010). We could show that perception of at least 

SCOOP6, 7 and 12 is dependent on BAK1. Moreover, we show that the bak1-4 mutant is 

almost completely impaired in SCOOP12 perception. A BAK1 immunoprecipitation could help 

to identify the SCOOP peptide receptor. However, BAK1 has been shown to serve as co-

receptor to a high number of PRR receptors (Chinchilla et al., 2009). An immunoprecipitation 

might thus lead to many false positive receptor candidates. Another challenge for the 

discovery of the SCOOP peptides might be the possibility that not all SCOOP peptides are 

perceived by the same receptor. The SCOOP peptide motif is very diverse in comparison to 

other small peptides. It could be possible that different SCOOP peptides might be perceived 

by different receptors. This was also shown for the AtPeps. While AtPep 1-6 are mainly 

perceived by PEPR1, AtPep1 and 2 are perceived by PEPR2 (Yamaguchi et al., 2010; Bartels 

and Boller, 2015; Lori et al., 2015). It was recently shown that the complexity of receptor and 

coreceptor interactions can be very high. The investigation of 40,000 potential extracellular 

domains and their interactions revealed a regulatory network consisting of 567 interactions 

(Smakowska-Luzan et al., 2018). Interestingly, the regulatory network confirms BAK1 as the 

most important and interconnected node while the authors identified a previously unknown 

LRR-RK (APEX). The double mutant of BAK1 and APEX is strongly impaired in plant 

development. The authors also confirmed APEX as an interaction partner of PEPR1 and PEPR2 

in mediating AtPep2 induced ROS burst (Smakowska-Luzan et al., 2018). This indicates that 

APEX might also be involved in the perception of the SCOOP peptides. However, our 

predictions of PROSCOOP12 coregulated genes could not confirm APEX to be coregulated.  

7.4. Phytocytokines – peptides between defense and development  

 

The strongly reduced growth phenotype of apex bak1-5 is another observation demonstrating 

the importance of small endogenous peptides and their receptors in plant development. With 

that respect, the SCOOP family is not an exception, since we show that the SCOOP peptides 

are involved in root development. We conclude that the SCOOP family is a new 

phytocytokine. The term phytocytokines was just recently defined as secondary endogenous 

peptides which require a processing step and are passively or actively released. The SCOOP 

family fulfills all properties of a phytocytokine and is comparable with other members of this 
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classification. The AtPIP peptide family that was described in 2014 is probably the closest 

functional homologue of the SCOOP family (Hou et al., 2014). Similar to the PROSCOOP 

proteins the precursor of AtPIPs (prePIPs) harbor an N-terminal secretion signal and a 

conserved C-terminal peptide motive whereas the synthetic peptide PIP1 induces defense 

responses in Arabidopsis. Like SCOOP12, the PIP1 peptide induces the expression its own 

precursor. Both peptide families interact with AtPep signaling by inducing the expression of 

PROPEPs. PIP1 induces the expression of PROPEP1 and SCOOP12 the expression of PROPEP2. 

PIP1 was also shown to amplify FLS2 signaling and therefore bridges the perception of MAMPs 

with the action of phytocytokines (Hou et al., 2014). The three peptide families AtPIP, AtPep 

and SCOOP seems to be tightly linked in their function as amplifier of defense. Even though, 

all three peptides have different receptors, BAK1 is involved in the perception of peptides of 

these families (Chinchilla et al., 2009; Hou et al., 2014). Moreover, the downstream signal 

after perception of members of these three peptides families seems to be identical. The 

expression of FRK1 is enhanced after treatments with peptide members of the three families 

(Flury et al., 2013; Hou et al., 2014). It was proposed that receptors operate in unified 

regulatory networks (Smakowska-Luzan et al., 2018). This thought leads to the idea that the 

corresponding ligands might also act in larger networks. Different small peptides as well as 

their precursors have very similar effects on plant defense responses and plant development. 

It might be, that the peptides cooperate in the action of defense stimulation while the 

precursors have antagonistic effect in root (or whole plant) development. In line of this idea 

the observation that overexpression of AtPROPEP1 results in a bushy root phenotype and the 

most AtPROPEPs and both AtPEPRs were found to be exclusively expressed in roots is an 

interesting novel observation (Huffaker et al., 2006; Ferrari et al., 2013). Overexpression of 

prePIP1 prePIP2 reduces root growth and knocking out these genes leads to an increased root 

growth. This indicates that PROSCOOP12 and prePIP1 have comparable functions in root 

development which might be antagonistic regulated by PROPEP1. A high number of small 

endogenous peptide families are found to have a function in root development (Delay et al., 

2013). An orchestration of peptides in order to control various biological functions was shown 

in the case of the CLE peptides. CLE peptide signaling integrated with phytohormone signaling 

controls developmental processes in various tissues. Especially auxin signaling conjugates 

with different CLE peptides in regulating vascular pattering (Wang et al., 2015). The fact that 

AtPep, AtPIP and SCOOP are expressed in the same tissues and the growing evidence that the 
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Pep-PROPEP-PEPR system is involved in developmental processes (Huffaker et al., 2006; Gully 

et al., 2015) could indicate an orchestration of these families similar to the CLE peptides.  

7.5. DAMPs and synthetic elicitors as plant defense stimulating compounds  

 

The idea of using classical DAMPs as vaccines to promote the plant defense is also adopted 

by agricultural companies and the first products based on plant extracts are already available 

on the market (Quintana-Rodriguez et al., 2018). This raises the question of possible 

advantages of these plant extract products compared to synthetic elicitors. One advantage of 

crude plant extracts is that is easily and rapidly prepared and has therefore a low economic 

cost. This could make them an option for low-income farmers worldwide. However, the exact 

concentration of the active compound in the plant extract remains unknown. Plant extracts 

contain a high diversity of DAMPs and therefore they are expected to trigger a more diverse 

set of resistance responses compared to an individual DAMP. Moreover, plant extracts could 

have direct pathogen repellent or antimicrobial effects (Quintana-Rodriguez et al., 2018). 

However, the possible effects of plant extracts treatments are not completely clear. It might 

be possible that plant extracts contain pathogens or plant viruses that bear the risk of 

infection on the treated plant. Another disadvantage is the limited stability of the containing 

DAMPs that probably would limit the applicability on the field. Overall, the use of synthetic 

defense-promoting compounds is still the more adapted tool in crop protection. An 

intersection of DAMPs and synthetic elicitors as treatment is given by two studies that showed 

that treatment with BTH leads to a release of volatile organic compounds (VOCs), which can 

be classified as DAMPs, from lima beans. These VOCs elicited resistance against a pathogen 

in neighboring lime bean plants (Yi et al., 2009; Heil and Adame-Álvarez, 2010).  

The most important advantage of synthetic elicitors is the broad activation of defense 

responses including the accumulation of salicylic acid. SA is the most important hormone 

involved in systemic acquired resistance, which is induced in distal non-treated parts of the 

plant. SAR promotes resistance against a broad spectrum of pathogens (Henry et al., 2013; 

Faize and Faize, 2018). The effect of SA in plant defense is therefore of great magnitude. 

However, SA is not being directly used as defense promoting compound. Instead, the 
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compounds of choice are SA analogues. SA itself gets rapidly glycosylated or methylated 

which reduces its activity (Vlot et al., 2009; Yamasaki et al., 2013). Moreover, several 

examples showed a phytotoxic action of SA and, when applied in higher concentrations, an 

inhibition of growth and an induction of strong defense responses (Heil and Baldwin, 2002). 

The methylation of SA generates MeSA, which is a possible mobile molecule active in SAR. 

However, only a few commercialized functional analogous of SA carry a methyl modification. 

Among them is BTH, which might enable the induction of SAR in various plants and against a 

wide range of pathogens. Even though, BTH is a functional analogue of SA, it just mimics a 

subset of SA functions and is interfering with the receptors and triggers similar transcriptional 

and physiological responses. However, SA analogous do not directly interfere with SA targets 

(Bektas and Eulgem, 2014). Moreover, farmers face several problems by using SA analogues. 

This includes a very incomplete disease reduction and the necessarily of frequent application. 

Moreover, a recent study showed that the formulated BTH (Bion) photolyze quickly on 

detached apple leaves with a half-life of only 2,8h (Sleiman et al., 2017). This result might 

explain the requirement of repetitive applications. The problem of a reduced plant fitness, as 

it was previously described for SA, is still an issue for treatments with SA analogues (Canet et 

al., 2010; Faize and Faize, 2018) (and this work). This raises the question if SA analogues and 

especially BTH are really the optimal choice as defense activators. Also, our research shows 

that BTH application causes a growth inhibition effect in Arabidopsis and apple. The negative 

effects of SA analogues and the largely unknown molecular mechanism made it necessary to 

screen for new compounds in defense priming. One research group developed a high-

throughput screening method to identify compounds which potentiate pathogen-activated 

cell death in Arabidopsis cell cultures. This group found and characterized in a series of 

publications five compounds that prime immune response (Noutoshi et al., 2012b; Noutoshi 

et al., 2012c; Noutoshi et al., 2012a). The group screened 10.000 molecules and only three 

induced a priming effect without causing cell death. The newly identified molecules are called 

imprimatins. Interestingly, two of these molecules archive their action by inhibiting the SA 

glucosyltransferase (SAGT) which then allows the accumulation of endogenous SA. (Noutoshi 

et al., 2012a). The idea of overcoming the tradeoff between defense and growth by the 

development of defense-priming compounds which do not directly interfere with SA 

receptors and pathways, but which cause changes in the SA metabolism, transport and 

perception might be the future of defense priming compounds. Another possible strategy to 
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identify new priming compounds was described recently. Kuai and colleagues proposed that 

research should focus on the development of “Just in time” immunomodulating compounds. 

These compounds should be chemicals that boost immunity on demand and only when 

needed (Kuai et al., 2017). They propose to develop an NPR1 agonist, since NPR1 is a key 

factor in SA signaling.  

In fact, the action of NPR1 and the action on defense priming by SA analogues is mostly in 

focus of research while the problem of the defense and development tradeoff remains to be 

investigated in more detail. One of the key factors in the balance of defense and development 

are the target of rapamycin (TOR) kinase and raptor (regulatory-associated protein of mTOR). 

A recent study on rice showed that plants with reduced TOR signaling display enhanced 

disease resistance against bacterial and fungal pathogens. TOR was found to antagonize the 

action of SA and JA. Moreover, the authors could show that silencing of raptor primes SA and 

JA dependent gene expression in response to BTH (De Vleesschauwer et al., 2018). In human 

cancer research a lot of strong and weak inhibitors of mTOR are in focus of research. 

Moreover, numerous anti-cancer drugs are plant natural compounds. Just one example out 

of many is resveratrol, a phytoalexin found in grapes (Zhang et al., 2012a). It would be 

interesting to investigate the effect of a combined treatment of a salicylic acid analogue such 

as BTH and a TOR inhibitor. A combined treatment of plant extracts containing natural TOR 

inhibitors and BTH could lead to stronger plant protection activity.  

7.6. Is a plant able to forget? 

 

One question that this thesis raised is whether plants are able to “forget” a previous stress or 

treatment. The quotation by Nietzsche “Without forgetting it is quite impossible to live at all” 

fits very well to the life of a plant. Plants are not able to escape a stressful situation and face 

many different stresses in short periods of time. The concept of stress memory is in the focus 

of research however the resetting of memory is at least of the same importance. A time when 

the concept of resetting versus consolidation of memory is essential is during the period of 

stress recovery. A stress recovery phase is defined to be a period of time following a stress 

until a new homeostasis is attained (Crisp et al., 2016). A new higher homeostasis can be 
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reached due to the priming and memory of a plant while in other cases the post-stress 

homeostasis resembles the prestress state. This is the case if the stress is brief and a memory 

of the stress would be a maladaptation for the plant. It might also be the case that a stress is 

prolonged but there is still a difference between pre- and post-stress state. This might be due 

to a progression of the plant to a new developmental stage (Crisp et al., 2016). The possibility 

of different developmental stages we avoid in our research by using in-vitro apple plantlets. 

In contrast to apple trees these plants keep their vegetative developmental stage and do not 

multiply sexually. The concept of stress recovery and therefore a reset of memory or 

transcription is especially important when the initial stress could have a long duration and the 

stressful situation could vanish rapidly which then requires a fast adaptation. This is the case 

for drought stress. Therefore, several investigations have analyzed rehydration responses 

during drought stress recovery. One study showed that drought stressed Medicago truncatula 

undergo a global reprogramming of transcription and metabolism during 14-days of drought 

and re-watering. Moreover, 90% of the drought-responsive genes react oppositely to the 

addition of water (Zhang et al., 2014). Thus, a stress and a subsequent stress release leads to 

an inversion of transcription. Another interesting publication showed that not only a stress 

release but also a similar repeated stress can lead to a transcriptional inversion. Liu and 

colleagues showed that a subset of dehydration stress response genes respond to an initial 

drought stress and return to a basic expression level during watered recovery but do not 

respond to a subsequent stress exposure (Liu et al., 2014). Interestingly, with our results we 

show that a subset of genes returns to a basic expression level by applying a second biotic 

stress in form of flg22. Even though BTH and flg22 have the capacity to induce or to prime 

defense responses, a subsequent treatment of flg22 after BTH inverts the expression of a 

subset of transcripts. An inversion of expression by a comparable treatment was, by our 

knowledge, not described before in the literature. A possible explanation could be that BTH 

application is more stressful for the plant than the subsequent flg22 treatment. The flg22 

treatment condition is therefore the more favorable condition. Under natural growth 

conditions plants may sense flg22 continually and the “flg22-stress” condition could be 

considered as a baseline stress. On the other hand, BTH is not seen by the plant in an all-day 

fashion which therefore could be considered as a stress trigger. However, with our research 

we investigate the transcript expression profile several days after the last treatment. Thus, 

we can propose two mechanisms of flg22-induced de-priming of BTH induced transcripts. First 
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it is possible that flg22 treatment leads to an accelerated returning to the basic expression 

level during the last recovery phase before sampling. The second possibility is that flg22 leads 

to an immediate de-priming of BTH-induced transcription expression. To further investigate 

these two possibilities, it would be important to follow the expression profile of the de-

priming marker gene AMY1 that was identified in this thesis directly after the treatments. It 

would also be possible to follow the expression of AMY1 by fusion of the promotor with a 

small and rapidly degrading reported gene such as the yellow florescence protein (YFP) of 

luciferase.  

7.7. Molecular mechanism of de-priming  

 

Investigations of de-priming velocity might give us an indication of the molecular mechanism 

behind our observations. As described in the introduction, stress priming can be established 

on the transcriptional level or by epigenetic changes. Also, the returning to a basic expression 

level could be regulated at the transcriptional or epigenetic level. It was shown that the mRNA 

half-live can have a range of 0.2 to 24 hours in Arabidopsis (Narsai et al., 2007). However, it 

was also shown that stress-responsive mRNAs can be stabilized by RNA binding proteins (Frei 

dit Frey et al., 2010). It would be interesting to investigate the role of the RNA binding protein 

such as Tudor-SN in response to the subsequent flg22 treatment after BTH. Todor SN is one 

of the best studies RNA binding protein (Frei dit Frey et al., 2010). With our research we show 

that among the differently expressed transcripts that show the de-priming pattern, an 

overrepresentation of antisense transcripts can be found. It was reported that naturally 

occurring antisense RNAs (natsiRNAs) have the potential to affect mRNA expression during 

stress in an inverse relationship by silencing sense transcripts, as serval reports have reported 

(Zhang et al., 2012b; Wang et al., 2017). Although, natsiRNAs have the potential to be key 

players in the inversion of transcriptional memory their role in this process remains to be 

explored. It would be interesting to identify natsiRNAs accumulation after BTH and BTH with 

subsequent flg22 treatment by northern blot and to find the target genes. The “forgetting” of 

the transcriptional memory could be also be due to a change at the transcriptional level in 

from of removing template RNA molecules that could be used by the posttranscriptional gene 

silencing (PTGS) or RdDM pathways (Crisp et al., 2016). Also, our results link de-priming with 
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the RdDM pathway. In the nrpd1-3 mutant background the expression of AMY1 is strongly 

reduced. This could be an indication for the existence of a negative regulator for AMY1 which 

is epigenetically silenced in the wildtype situation and that shows an enhanced expression in 

hypomethylated mutant background. AMY1 is from an “epigenetic point of few” a gene which 

is at first sight not under epigenetic control. Our investigations showed no hypo or 

hypermethyltion at the AMY1 gene in the wildtype background (data not shown). However, 

since AMY1 is nearly not expressed in the met1-3 mutant background, we can assume a role 

of DNA methylation, and probably in CG context, in the regulation of AMY1. It would be 

necessary to repeat the microarrays in the met1-3 and nrpd1-3 mutant background to 

investigate the global gene expression profile after BTH and BTH with subsequent flg22 

treatment. Moreover, it would be interesting to investigate the global methylation level by 

bisulfide sequencing of plants treated with BTH and BTH/flg22. With this experiment we 

would be able to identify differently methylated regions (DMRs) involved in de-priming of 

expression.  

One sort of “forgetting” of stress-induced priming is often showed by a change in generations. 

Not many publications showed a transgenerational transmission of acquired traits (over one 

stress-free generation). An interesting publication identified two chromatin regulators to be 

impaired in the resetting of stress induced loss of epigenetic silencing. DDM1 and MOM1 have 

been identified to be factors preventing transgenerational inheritance (Iwasaki and 

Paszkowski, 2014). The activity of MOM1 is linked to transcriptional gene silencing however, 

MOM1 action was also shown to contribute to the accumulation of small interfering RNAs in 

order to control gene silencing by the RdDM pathway (Yokthongwattana et al., 2010). It would 

be interesting to repeat the microarray setup (or to follow the expression of AMY1) in 

Arabidopsis using the mom1 ddm1 double mutant in order to explore the role of these 

chromatin regulators in memory resetting in addition to their role in preventing 

transgenerational epigenetic memory. Interestingly the authors who identified MOM1 and 

DDM1 involvement in resetting transgenerational memory proposed that the prevention of 

transgenerational memory extends far beyond the activity of MOM1 and DDM1. They found 

around 3000 loci which are activated under stress conditions but still 340 transcripts remain 

transgenerationally active in the mom1 ddm1 double mutant (Iwasaki and Paszkowski, 2014). 
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This indicates that also the mechanism of de-priming might be under complex epigenetic and/ 

or transcriptional regulation.  

7.8. Conclusion  

 

With this thesis I show a wide range of different aspects of plant immunity and development. 

Due to the two projects I followed during my thesis I can provide results here describing the 

discovery and characterization of a new small endogenous peptide family called SCOOP and I 

describe an unusual memory response by a subsequent flg22 exposure after treatments with 

the defense priming compound BTH.  

In the first part of my thesis I show that one member of the SCOOP family, namely SCOOP12 

can be classified as a new posttranslational modified phytocytokine with plays roles in plant 

defense responses and root development. Although, the SCOOP peptide family shares many 

features with other described small endogenous peptide families like AtPep and AtPIP, the 

precursor of the SCOOP peptides, PROSCOOPs have a very diverse C-terminus, which 

indicates a great variety of the processed peptides and therefore a broad spectrum of 

functions. Further, I conclude that the SCOOP peptide family contains various members with 

the capacity to induce defense responses and with strong effects on root development. 

However, the exact mode of action of the SCOOP peptides on the root defense and 

development remains for the moment unclear. Moreover, I show that the members of the 

SCOOP peptide family, similar to other peptide families, is perceived by members of the SERK 

receptor family. The perception of SCOOP12 is highly depended on BAK1. In conclusion, my 

research on the SCOOP peptide family could be the onset and initiation for the discovery of 

many additional functions of the SCOOP peptide family in Arabidopsis and other Brassicaceae 

species members.  

In the second part of my thesis I conclude that the priming state of BTH induced 

transcriptional memory can be forced to return to a basic expression by a subsequent flg22 

treatment. I show that this effect is not only present in Arabidopsis but also in the 

economically important plant apple. The identification of a de-priming marker gene lead to 
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first evidence that the global methylation could be crucial for de-priming of BTH-induced 

differently expressed transcripts.  

In conclusion, my thesis investigates effects on plant transcription, development and defense 

by endogenous (the SCOOP peptide family), exogenous (flg22) and synthetic (BTH) plant 

elicitors. My thesis shows how diverse the function of these elicitors can be and how the plant 

defense system as well as the triggers of plant defense can cause tremendous effects on plant 

development and memory. A coarser overview over the main findings on Arabidopsis and 

apple are summarized in Figure 38.  

 

Figure 38: Summary of the main findings. My thesis shows results on mainly on two plant species 

namely Arabidopsis and apple. The SCOOP peptide family was found to be restricted to 

Brassicaceae family while the de-priming expression profile was observed in Arabidopsis and apple. 

Results correlated with my work on the SCOOP peptide family are indicated in blue and results on 

the de-priming expression profile in orange. Dotted lines represent putative interactions.  
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7.9. Outlook  

 

Despite, our investigations into the actions, processing and perception of the SCOOP family 

members, many open questions remain unanswered.  

In the general discussion I propose several methods with the goal to identify the SCOOP 

receptor or the SCOOP receptors as well as the identification of the mature SCOOP peptides. 

These experiments should be carried out to further characterize the SCOOP peptide family. It 

would also be important to expend our knowledge about other SCOOP precursor proteins 

apart from PROSCOOP12. The bioinformatic prediction of the SCOOP family expression profile 

revealed that PROSCOOP12 displays rather an exception in comparison to the other SCOOP 

peptides. This could indicate a different role in developmental processes, since also not all 

SCOOP family members induce defense responses. It would be interesting to confirm the 

bioinformatic prediction by fusion of the PROSCOOP genes with a GUS reporter gene. Besides 

the localization of the PROSCOOP genes it would be interesting to generate knock out and 

overexpression mutants of the PROSCOOP genes. These experiments would be especially 

important because mutants of the precursor proteins of small endogenous peptides did not 

receive a lot of attention so far (Trivilin et al., 2014). The PROPEPs were assumed to act 

redundantly and therefore the receptor mutant was used to indirectly study the lack of 

PROPEPs and PEPs (Bartels and Boller, 2015). However, we have a clear indication, by 

bioinformatic prediction, that members of the SCOOP family are involved in different cellular 

processes. Further, it could be possible to use the CRISPR-Cas9 approach to knock out several 

PROSCOOP members at the same time, due to the conserved motif. The research on SCOOP 

peptide family could be facilitated by specific antibodies targeting the PROSCOOP proteins. 

By in situ hybridization we could generate a tissue specific map of PROSCOOP presence. 

Further, due to the increasing evidence that phytocytokines are involved in developmental 

processes, it would be good to investigate possible interactions within different families like 

AtPep, AtPIP and SCOOP. 

The results presented here show that transcriptional regulation is a very plastic mechanism. 

Since the effect of BTH and the de-priming of a subsequent flg22 exposure affects global 

expression, it would be important to investigate global effects on DNA-methylation of BTH 
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and BTH/flg22. Since we have hints that the DNA methylation state is key to de-priming we 

should perform a bisulfide sequencing in order to find differentially methylated regions that 

might help us to identify factors involved in de-priming. Further, it would be important to not 

only focus on de-priming but also on mechanisms involved in the memory of BTH treatments. 

Not many stresses have been shown to have a transgenerational effect. However, it was 

shown that next generational SAR requires the activity of NPR1, indicating that SA or SA 

signaling can lead to transgenerational resistance in Arabidopsis (Luna et al., 2012). This raises 

the question if this transgenerational inheritance can be also observed in apple. Apple plants 

are frequently treated with salicylic acid analogues like BTH. This question could be addressed 

by comparing methylomes of untreated plants with BTH treated trees. Priming is widely 

associated with histone modifications. Several histone modifications are connected with 

defense priming namely H3K4me3, H3K4me2, H3K9ac, H4K5ac, H4K8ac and H4K12ac. 

Especially, H3K4me3 is considered as primary chromatin mark of stress memory (Conrath et 

al., 2015). Up to now, promoter regions of three defense-associated genes have been shown 

the be under epigenetic control upon BTH treatment (Jaskiewicz et al., 2011). It would be 

interesting to apply ChIP experiments with subsequent sequencing with antibodies of the 

mentioned histone marks. These experiments would open a new door for the identification 

of memory genes under epigenetic control upon BTH and BTH/flg22 treatment. Once more, 

factors are identified showing different histone mark distribution it would be interesting to 

test other defense activating compounds apart from BTH, like BABA, in order to find reliable 

defense priming genes. Moreover, by using flg22 we induce a PTI response, it would be 

interesting to trigger an additional ETI response by using bacteria like Pseudomonas on 

Arabidopsis and Erwinia amylovora on apple plants. We assume that the flg22-induced de-

priming expression profile might counteract negative effects of BTH. This hypothesis needs to 

be experimental tested. We show that BTH causes an inhibition of growth that could be 

explained by a tradeoff between growth and defense. It might be that the subsequent flg22 

treatment causes a shift of resources. Interesting would be to apply a metabolite profiling by 

liquid chromatography coupled with mass spectrometry of BTH and BTH/flg22 treated plants. 

Despite these open questions, the findings presented in this thesis could have an impact on 

the future research on small endogenous peptides and the agricultural use of plant defense 

inducing compounds. With the SCOOP peptides we add now a new peptide family to the class 
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of phytocytokines. This discovery might pave the way to new findings regarding the 

involvement of small endogenous peptides in defense and development. The observed de-

priming memory response in Arabidopsis and apple could appeal the discussion of forgetting 

mechanisms in plants.  
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The SCOOP12 peptide regulates defense response and root elongation in Arabidopsis 

thaliana. 

 

Running title 

Characterization of a new Arabidopsis phytocytokine. 

 

Highlight 

A secreted peptide, member of a Brassicaceae specific gene family, acts on pathogen defense 

response and root development through phospholipid pathway and ROS regulation. 

 

Abstract 

Small secreted peptides are important actors in plant development and stress response. Using 

a targeted in silico approach, we identified a family of 14 Arabidopsis genes encoding 

precursors of serine rich endogenous peptides (PROSCOOP). Transcriptomic analyses 

revealed that one member of this family, PROSCOOP12, is involved in processes linked to 

biotic and oxidative stress as well as root growth. Plants defective in this gene were less 

susceptible to Erwinia amylovora infection and showed an enhanced root growth phenotype. 

In PROSCOOP12 we identified a conserved motif potentially coding for a small secreted 

peptide. Exogenous application of synthetic predicted SCOOP12 peptide induces various 

defense responses in Arabidopsis. Our findings show that SCOOP12 has numerous properties 

of phytocytokines, activates phospholipid signaling pathway, regulates ROS response, and is 

perceived in a BAK1 co-receptor dependent manner. 
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Arabidopsis, defense signaling, root development, DAMP, phytocytokines, secreted peptide, 

oxidative stress 
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DAMP: Damage/Danger-Associated Molecular Pattern; PA: Phosphatidic Acid; PTMP: Post-

Translationally Modified Peptide; CRP: Cysteine-Rich Peptide; ROS: Reactive Oxygen Species. 
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In order to counter constant pathogen aggressions, plants have developed sophisticated 

perception and defense systems. These plant responses are regulated by complex networks 

involving regulatory proteins and hormones and are associated with massive changes in gene 

expression (Buscaill and Rivas, 2014). Among the involved actors, it has been shown that small 

secreted peptides play an important role through their direct interaction with pathogens or 

through their function in development and cell-to-cell communication involving ligand-

receptor interactions (Murphy et al., 2012; Marmiroli and Maestri, 2014, Gust et al., 2017). 

The secreted peptides derive from protein precursors having a shared N-terminal signal 

peptide which target the protein to the secretory pathway. They can be categorized into two 

major classes: (i) the small post-translationally modified peptides (PTMP) which are the 

targets of posttranslational maturations and are produced through a proteolytic processing 

and (ii) the cysteine-rich peptides (CRP) characterized by an even number of cysteine residues 

involved in intramolecular disulfide bonds (Tavormina et al., 2015). Although they are mainly 

involved in plant growth and developmental processes, it has been shown that numerous 

genes encoding secreted peptides are also involved in plant defense mechanisms (Albert, 

2013). For instance, the CRP class includes the antimicrobial peptides (such as knottins and 

defensins) which interact and disrupt the pathogen cell membrane (Goyal and Mattoo, 2014). 

Regarding PTMPs, families such as the phytosulfokines (PSK), CLE/CLV3, IDA/IDL or PSY are 

actors in processes regulating a large panel of plant-pathogen interactions (Rodiuc et al., 

2015; Lee et al., 2011; Vie et al., 2015; Shen and Diener, 2013). Among secreted peptides, 

those showing immunity-inducing activity have been classified as damage/danger associated 

molecular pattern, i.e. DAMPs (Heil et al., 2012; Boller and Felix, 2009). Through the action of 

lytic enzymes, a pathogen can penetrate the plant cell wall; the cell wall fragments thus 

released into the apoplastic space can be perceived by neighboring cells, resulting in defense 

reactions. Oligalacturonides and cutin monomers are examples of non peptidic DAMPs which 

get released upon fungal infection (Fauth et al., 1998). Their perception by neighboring cells 

elicits immunity response as well (De Lorenzo et al., 2011). The small peptide AtPep1 is a well-

documented DAMP (Bartels and Boller, 2015). A first induction of AtPep1 and other peptides 

of this family by wounding or pathogen attack has a positive feedback on the expression of 

its own precursors as well as defense marker genes that is thought to amplify defense 

signaling pathways (Huffaker and Ryan, 2007).  
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It is considered that only a small fraction of the gene space likely to encode signaling peptides 

has been described and their diversity appears to be largely underestimated (Matsubayashi, 

2014). Indeed, the Arabidopsis genome contains more than a thousand genes harboring 

secreted peptide features for which the biological function is currently unknown (Lease and 

Walker, 2006 and 2010). This lack of data can be explained by the fact that this type of genes 

has only recently been detected due to their small size and their low sequence conservation 

(Silverstein et al., 2007). Furthermore, the frequent functional redundancy inside these gene 

families (Matsubayashi, 2014) rendering mutant knock-out approaches less successful. The 

mining of previously published transcriptomes is an efficient way to explore this unknown 

gene-space and decipher functions of new genes for which, without reference, the inference 

of function by similarity cannot be applied. Based on transcriptome meta-analysis and 

bioinformatics predictions in a ‘guilt by association’ approach, we identified a peptide family, 

of which at least one member is involved in plant immunity and root development. This work 

describes the identification of a gene family specific to the Brassicaceae genus encoding 

putative secreted peptides. The functional characterization of PROSCOOP12, one of its 

members in Arabidopsis, shows that this small gene could act as moderator in the response 

to different pathogen aggressions and in root development presumably via controlling ROS 

detoxification. We illustrate that the small endogenous SCOOP12 peptide displays most 

properties of phytocytokines, processed and actively transported actors of endogenous 

danger signal without cellular damage (Gust et al., 2017). 

 

Materials and Methods 

Plant material  

Plant material used was wild-type Arabidopsis thaliana L. Heynh cultivar 6 Columbia (Col-0) 

as well as the cultivar Wassilewskija (Ws) and the mutants proscoop12 (T-DNA line 

FLAG_394H10 in Ws background, primers used for genotyping are detailed in Table S1) bak1-

4 (T-DNA line SALK_116202), fls2 (Gomez-Gomez and Boller, 2000) and pepr1/pepr2 

described by Flury et al. (2013). The proscoop12 mutant in Col-0 background was created 

using the CRISPR-Cas9 approach. We searched proscoop12 gene-specific sgRNA and potential 

off-target sites in the Arabidopsis Col-0 genome using the Crispor Tefor program 

(http://crispor.tefor.net). The 20 bases long-sgRNA with the sequence 

AAGAACTTGACCCATTTTTG was used. Soil grown plants used for Erwinia amylovora and 
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Alternaria brassicicola inoculations as well as all in vitro plants (on Murashige and Skoog) were 

grown under short day conditions (photoperiod of 8h light at 22°C/16h dark at 21°C, with 70% 

of relative humidity). Plants used for all other assays were grown under long day conditions 

(photoperiod of 16h light at 22°C/8h dark at 21°C, with 60% relative humidity). B. napus 

(Darmor-bzh) and L. esculentum (Sweet Baby) were grown under short day conditions. 

 

Plant inoculation with E. amylovora 

Wassilewskija (Ws), Columbia (Col-0) and proscoop12 mutant in both genotypes were grown 

5 weeks on soil. Four leaves of 20 plants were infiltrated with bacterial suspensions of wild-

type strain of E. amylovora CFBP1430 at a concentration of 107 colony forming units (cfu/ml) 

in sterile water or with mock using a needleless syringe. Symptom severity was scaled as 

described in Degrave et al. (2008). For symptom rating (for Ws and proscoop12-Ws), at least 

12 rosette leaves were used per condition in two biological replicates. Maximal symptoms 

appeared at 24 or 48hpi depending on biological replicates. Therefore, representative 

experiments are presented either at 24 or 48hpi. For bacterial counting (for Col-0 and 

proscoop12-Col-0), samples were taken 3 days post infection using a cork-borer (d=5mm) to 

cut one leaf disc per infected leaf. Leaf discs were ground in sterile water, diluted and plated 

as droplets of 10µl on LB plates. Plates were incubated, and colonies were counted the next 

day. Bacteria of 32 leaves of WT and proscoop12 were extracted and quantified.  

 

Seed contamination and leave infection by A. brassicicola 

Fifty surface sterilized seeds per petri dish of Ws and proscoop12 were immerged in a solution 

containing A. brassicicola (strain abra43) with 103 conidia/ml, for one hour and dried under 

sterile conditions. Leaves of Ws wild-type and proscoop12 mutant were inoculated with 5µl 

of an A. brassicicola solution, with a concentration of 103 conidia/ml. Symptoms were 

observed six days after infection. Necrosis areas were quantified using ImageJ. The 

experiments were repeated three times. 

 

Protection assay  

Mature leaves of A. thaliana plants were infiltrated by needless syringe infiltration with the 

indicated elicitor peptide or control solution and were kept under long day growth conditions 

for 24h. The Pseudomonas syringae pv tomato DC3000 strain was grown in overnight culture 
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on YEB medium plates supplemented with appropriate antibiotics. Cells were harvested from 

the plate and re-suspended in sterile 10mM MgCl and diluted to an OD600 of 0.02. Bacteria 

solution was needles syringe infiltrated into the pre-treated leaves. Plants were maintained 

at high humidity. Samples were taken using a cork-borer (d=8mm) to cut one leaf disc per 

infected leaf. Leaf discs were ground in 10mM MgCl, diluted to the indicated concentration 

and plated as droplets of 10µl on YEB plates with the appropriate selection. Plates were 

incubated at 28°C and colonies counted two hours after the infection (0 dpi) as well as 1 and 

2 days post infection. Eight plants were infected for each pre-treatment and sampling time 

point. The experiment was performed two times with similar results. 

 

Transcriptomic analysis 

Microarray analysis was performed with the CATMA array v5 (Hilson et al., 2004). Leaves were 

collected 24h after inoculation from two independent biological replicates. Total RNA was 

extracted using the Qiagen RNeasy kit according to the supplier’s instructions. RNA integrity, 

cDNA synthesis, hybridization and array scanning were performed as described in Lurin et al. 

(2004). cDNA from leaves inoculated with E. amylovora were hybridized against cDNA of 

leaves inoculated with water collected at the same time-point. Statistical analysis was based 

on two dye swaps as described in Gagnot et al. (2008). To determine differentially expressed 

genes, a paired t-test on the log ratios was performed. Spots displaying extreme variance 

were excluded. The raw p-values were adjusted by the Bonferroni method, which controls 

the Family Wise Error Rate. We considered differentially expressed genes with a Bonferroni 

p-value ≤ 0.05 Gagnot et al. (2008). 

 

Determination of gene expression by qPCR 

Detached leaves of three weeks old plants were collected and floated for two hours in elicitor 

or control solution. After the treatment, material was frozen and ground in liquid nitrogen. 

RNA from 100 mg of tissue was extracted using the NucleoSpin RNA plant extraction kit 

(Macherey-Nagel Hoerdt, France). The DNase treatment was performed according to the 

manufacturer’s recommendations. Per PCR reaction, complementary DNA was synthesized 

from 10 ng of total RNA extract with oligo(dT) primers using Moloney Murine Leukemia Virus 

Reverse Transcriptase according to the manufacturer’s instructions (Promega). For 

quantitative real-time reverse transcription PCR (qPCR) in a 96-well format, the Chromo4™ 
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System (Bio Rad) was used. Expression was normalized to that of the gene ACR12 

(AT5G04740, because of its constant transcription profile upon elicitor treatments) using the 

qGene protocol (Muller et al., 2002). All the gene-specific primers used are detailed in Table 

S1.   

 

Seedling growth inhibition assay  

Seedlings were germinated on MS agar and grown for 5 days before transferring one seedling 

per well to 24 well plates containing 500 µl MS media or MS media supplied with the indicated 

elicitor peptide to a final concentration of 1 µM (six replicates per elicitor peptide treatment). 

Photos were taken, fresh weight and root length were measures after 8 additional days. Root 

length of proscoop12 and WT plants was determined on vertical MS plates. 

 

Elicitor peptides  

Peptides of flg22 (QRLSTGSRINSAKDDAAGLQIA), A. thaliana Plant Elicitor Peptide 1 (AtPep1) 

(ATKVKAKQRGKEKVSSGRPGQHN), SCOOP12 (PVRSSQSSQAGGR), scSCOOP12 

(GRPRSASSGSVQQ), SCOOP12 S5/7A (PVRSAQASQAGGR), SCOOP12 S5A (PVRSAQSQAGGR) 

and SCOOP12 S7A (PVRSSQASQAGGR) were obtained from Eurogentec SA (Angers, France) 

and diluted in water to the final concentration used for the assays. 

 

Measurement of reactive oxygen species 

For ROS assays leaf discs of three weeks old soil grown plants, were placed into each well of 

a white 96-well plate (Thermo Scientific, Waltham, USA) in 0,1 ml of water and kept in the 

dark overnight. For elicitation and ROS detection, horseradish peroxidase and luminol were 

added to a final concentration of 10 µg ml-1 and 100 µM, respectively. Luminescence was 

measured directly after addition of elicitor peptides in a FLUOstar OPTIMA plate reader (BMG 

LABTECH, Offenburg, Germany). 

 

Callose deposition  

Leaf discs were vacuum infiltrated for 10 min with the indicated elicitor solution and kept 

floated in elicitor or control solution for 24h. After leaf discs were fixed and destained in 1:3 

acetic acid/ethanol until leaf tissue was completely transparent. After washing the leaf discs 

in 150 mM K2HPO4 for 30 min, the plant material was stained for 2 h in 150 mM K2HPO4 and 
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0,01% aniline blue. Callose depositions were quantified with a Leica DM1000 microscope 

equipped with a Qimaging Micropublisher 3.3 RTV camera using a DAPI filter.  

 

Cell culture conditions  

A. thaliana cells were grown in a liquid MS based (Duchefa-Kalys, France) growth medium (pH 

5.6) with the addition of 2,4-dichlorophenylacetic acid (0.2 mg/l), sucrose (30 g/l), and KH2PO4 

(0,2 g/l). Cells were grown under continuous light (200 µE m-2 s-1) on a rotary shaker and 

weekly sub-cultured to a fresh medium. For radiolabeling experiments 7-day-old cell 

suspensions were used. 

   

Radioisotope labelling of phospholipids 

Arabidopsis cells were aliquoted (7 mL) in individual flasks and kept for 3h under mild rotation 

for equilibration. Radioisotope labelling was done by the addition of 53 MBq.L-1 33P-

orthophosphate. Lipids were extracted according Krinke et al. (2009). Lipids were separated 

by thin layer chromatography (TLC) using an acidic solvent system composed of 

chloroform:acetone:acetic acid:methanol:water (10:4:2:2:1, v/v) (Lepage, 1967) or in a 

solvent system composed of chloroform:methanol:ammonia:water (90:70:1:16, v/v) (Munnik 

et al., 1994). Radiolabelled spots were quantified by autoradiography using a Storm 

phosphorimager (Amersham Biosciences, UK). Individual phospholipids were identified by co-

migration with non-labelled standards visualized by primuline staining or by phosphate 

staining. 

 

Accession numbers 

Transcriptome data are available at Gene Expression Omnibus with the accession GSE22683. 

The samples used (including biological repetitions) are: GSM562282, GSM562283, 

GSM562284, GSM562285, GSM562286, GSM562287, GSM562288, GSM562289, 

GSM562294, GSM562295, GSM562296, GSM562297. 

 

Results 

Identification of the PROSCOOP gene family 

Meta-analysis of CATMA micro-array data (Gagnot et al., 2008) has previously highlighted 

several hundreds of non-annotated small protein-coding genes of unknown functions in 
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Arabidopsis (Aubourg et al., 2007). Further we investigated the whole CATMA resource 

available at this time in order to identify new genes induced by various stresses for further 

functional analyses. Among them, AT5G44585 caught our attention because of its highly 

informative profile: this gene was differentially expressed in 136 experiments (21%), being 

strongly induced in response to a large panel of biotic or oxidative stresses, Erwinia amylovora 

infection being in the top of them. Biological contexts were extracted from each CATdb 

experiment (http://tools.ips2.u-psud.fr/CATdb) and classified in 8 classes (Fig. 1 and Table 

S2). It is noteworthy that no less than 70% of the complete transcriptomic response of 

AT5G44585 could be summarized with three keywords: pathogen response, oxidative stress 

and root growth. Generally, we found this gene to be strongly up-regulated in most biotic and 

oxidative stress conditions, while it was down-regulated in conditions aiming at diminishing 

oxidative stress. Furthermore, AT5G44585 exhibited a constitutive expression in roots in 

growth conditions but is down-regulated in numerous conditions affecting root elongation 

such as nitrogen starvation (Krapp et al., 2011). This advocated for further exploration of this 

gene in oxidative stresses, root development, and in response to pathogen infections. 

The screening of the Arabidopsis genome revealed that AT5G44585 belongs to a small family 

of 14 unknown homologous genes with similar intron-exon structure (2 or 3 exons), encoding 

proteins ranging from 72 to 117 amino-acids (aa). Analysis of the N-terminal regions using the 

SIGNALP v4.1 (Nielsen, 2017) and the PREDOTAR v1.04 (Small et al., 2004) software revealed 

a signal peptide targeting proteins to the endoplasmic reticulum to be present in all members 

of the family. DeepLoc v1.0 (Almagro et al., 2017) predict an extracellular localization for the 

14 proteins with scores ranging from 0.88 to 1. The 14 genes are organized in two tandemly 

arrayed clusters on chromosomes 1 and 5 (Fig. 2A). The largest 37 kb long gene cluster on 

chromosome 5 contains numerous vestiges of transposable elements (Helitron type) which 

could have impacted evolution of this family through local duplication events. Manual 

annotation revealed two additional yet non-annotated genes located between AT5G44565 

and AT5G44568. Both share significant similarities with the other tandemly arrayed homologs 

and cognate expressed sequence tags (ESTs) validate their transcription. Our manual 

annotation also led to the correction of the structure of AT5G44570 in which an over-

predicted 3’ coding exon has been removed. The size of the proteins, the number and the 

organization of paralogs, the aa composition (notably the absence of cysteine) and the 

presence of a signal peptide are common features shared by the PTMP families previously 
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published (Matsubayashi, 2014). Furthermore, as described below, we identified a short 

conserved motif in the C-terminal region of these proteins, candidate to be mature functional 

peptides after proteolytic processing. For these reasons, this newly identified family has been 

named PROSCOOP as putative precursors of SCOOP peptide (Serine riCh endOgenOus 

Peptide). The genes are termed PROSCOOP1 to 14 (AT5G44585 being PROSCOOP12) and the 

corresponding mature peptides named SCOOP1 to 14 (Fig. 2A). 

Previously reported RNA-seq approaches (Hruz et al., 2008) allowed us to broaden our 

transcriptome analysis to the PROSCOOP family members that were missing on the micro-

arrays (only 4 of them are present in the Affymetrix Ath1 chip). We could confirm the 

regulation of their transcription in several stress conditions and organs (Fig. 2B). These data 

show a large diversity of transcription profiles inside this family suggesting its involvement in 

different biological functions. Notably, PROSCOOP12 shows a distinct transcription profile as 

it is among the minority of paralogs to be highly induced by different pathogen aggressions 

and expressed in the whole root system. 

In order to assess the evolutionary conservation of the PROSCOOP family, an extensive 

BLASTP search for homologs in GenBank was carried out. We identified this family in several 

Brassicaceae genomes reaching from Eutrema salsugineum to Camelina sativa and the 

number of identified homologs in these genomes ranged from 1 to 13. Outside Brassicaceae 

genus, no similar proteins could be detected despite low stringency searches. The 

phylogenetic tree built from the multiple alignment of the 74 identified PROSCOOP homologs 

shows that gene duplications occurred before speciation of the 8 different Brassicaceae 

species (Fig. S1).  

In order to identify divergent yet still conserved smaller regions, the MEME algorithm (Bailey 

et al., 2015) was used, excluding full length alignments, on the 74 identified homologs. This 

sensitive approach allowed the identification of two significantly conserved 11 aa-long motifs 

(Fig. 3). These motifs are good candidates for functional mature peptides (or a part of them) 

following the putative proteolytic processing of the corresponding precursor. Indeed, both 

motifs are proline-, serine-, arginine- and glycine- rich, as in previously described PTMP 

families such as CLV3/CLE (Betsuyaku et al., 2011), IDA (Vie et al., 2015), PIP (Hou et al., 2014) 

and CEP (Roberts et al., 2013). The motif 1 is more ubiquitous than the motif 2 since it was 

detected in 72 sites (e-value of 9.8e-213) compared to 39 sites (e-value of 3.4e-179) out of 
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the 74 PROSCOOP homologs. Therefore, we have focused our downstream functional analysis 

on motif 1 (Fig. 3), named SCOOP thereafter. 

 

PROSCOOP12 is co-expressed with genes involved in hormone signaling and defense 

In order to make a first assessment of the potential biological relevance of PROSCOOP12 and 

to predict its putative functional partners, we further mined previously published Arabidopsis 

transcriptome data (Gagnot et al., 2008). Based on the assumption that genes with related 

biological functions are likely to be co-expressed (Schöner et al., 2007), we used the results 

of the Gaussian mixture model-based clustering method from the GEM2Net resource (Maugis 

et al., 2009; Zaag et al., 2015). The PROSCOOP12 gene was found to be co-expressed with 83 

genes in a set of experimental samples gathering biotic stress triggered by necrotrophic 

bacteria and fungi. This cluster of 83 genes has been enriched by the integration of functional 

partners based on co-citations, protein-protein interactions and common biological 

pathways) in using TAIR, the Arabidopsis interactome (Arabidopsis Interactome Mapping 

Consortium, 2011) and the STRING database (Szklarczyk et al., 2017). This step resulted in a 

network of 117 genes (Tables S3A and S3B) mainly focused on hormone crosstalk (especially 

SA/JA signaling), pattern-triggered immunity (PTI), brassinosteroid and phenylpropanoid 

pathways and nitrogen metabolism (Fig. S2). Out of 117 genes, 53 are involved in response to 

stimulus (GO:0050896, fdr 1.31e-11), among them, 26 genes are classified in defense 

response (GO:0006952, fdr 5.72e-10), and 14 in transmembrane signaling receptor activity 

(GO:0004888, fdr 1.41e-09) . Numerous key defense actors were found to be clustered with 

PROSCOOP12 such as the NIMIN1, IOS1, NHL6, MLO12, FRK1, LECRKA4.1, CRK13, HA2 genes 

and the WRKY-11, -14, -18, -22, -60 and -70 transcription factors. This relational network 

contains two other genes encoding PTMPs, namely PROVIR10 and PSK4, and two PTMP 

receptor kinases, PSKR1 and PSY1R that are involved in root development and modulation of 

SA/JA defense responses (Mosher et al., 2013). PROVIR10 has been found to correlate 

positively with disease triggered by necrotrophic pathogens (Dobón et al., 2015) and PSK4 

encodes a phytosulfokine, one of the peptide growth factors involved in disease 

establishment (Rodiuc et al., 2015). This approach led us to explore the role of PROSCOOP12 

and its SCOOP12 peptide regarding fungal and bacterial infections. 

 

PROSCOOP12 is involved in pathogen defense and root development 
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Screening Arabidopsis mutant collections (Dèrozier et al., 2011) we identified a T-DNA mutant 

proscoop12 in the Wassilewskija (Ws) background. Homozygous mutant plants did not 

transcribe PROSCOOP12 (Fig. S3). Based on PROSCOOP12 transcription induction in the 

presence of different pathogens, (Fig. 1, Fig. 2B and Table S2), the analysis of co-expressed 

putative partners, and its putative role as a secreted DAMP, we decided to challenge the 

mutant with the necrogenic bacterium Erwinia amylovora and the necrotrophic fungus 

Alternaria brassicicola. 

Compared to wild-type plants, proscoop12 displayed a higher tolerance to E. amylovora 

induced cell death as observed by a reduction of necrotic symptoms in leaves (Fig. 4A). This 

phenotype has only been observed in wrky70 (Moreau et al., 2012). Like WRKY70, 

PROSCOOP12 acts as a negative regulator of defense against this bacterium. The transcription 

factor WRKY70 is known to positively regulate WRKY60 and it is involved in the JA/SA crosstalk 

(Li et al., 2004). Notably, these two genes have been found clustered with PROSCOOP12 in 

our gene network analysis (Fig. S2). Then, we performed a micro-array transcriptomic 

comparison of proscoop12 versus wild-type following bacterial inoculation. Results show that 

3,731 genes were differentially expressed in wild-type in response to E. amylovora, and 4,125 

in proscoop12. Despite the difference in symptom intensity, the vast majority of the bacteria-

responsive genes did not display significant differences in both lines. Indeed, only 131 genes 

displayed a significantly different expression (Bonferroni p-value 5%) between wild-type and 

proscoop12 infected plants (Table S4): 126 up-regulated and 5 down-regulated genes, these 

latter corresponding only to hypothetical proteins or pseudogenes.  

The 126 up-regulated genes that may contribute to the difference in symptoms between 

proscoop12 and wild-type were challenged by functional annotation adding literature 

references to GO terms to provide additional information (Table S4, summarized in Fig. 4B). 

Indeed, 45% of them are connected to defense response (such as HR4, SQP1, AED1, MKK2, 

HD2B, NPR3) and/or protection against oxidative stress (such as ALDH24B, BiP2, APX1, 

ATOM1, APR1, PER50). Moreover, 18% were related to response to other stresses, mainly 

oxidative stress, and 10% could have indirect links with stress since involved in processes such 

as cell wall modifications or proteolysis. Only 13% could not be related to the phenotype, 

often because their function is currently unclear. Finally, the remaining 14% are unknown 

genes. The high percentage of genes directly related to protection to oxidative stress supports 

the hypothesis of a relationship between PROSCOOP12 and the control of ROS production. 
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The response of proscoop12 to a necrotrophic fungus infection was assessed using the 

Arabidopsis – A. brassicicola pathosystem (Pochon et al., 2012). A. brassicicola inoculation of 

rosette leaves produced similar symptoms in wild-type and proscoop12 genotypes (Fig. S4). 

Because seedling infection by A. brassicicola is mainly caused by seed transmission, we have 

also observed the fungus colonization during germination of infected seed lots under 

controlled conditions. Two days after sowing, proscoop12 showed a significantly lower rate 

of germinating seeds prone to A. brassicicola infection compared to the wild-type (Fig. 4C).  

Because our transcriptome analysis suggested that PROSCOOP12 may play a role in root 

development (Fig. 1 and Fig. 2B), we compared the root lengths of wild-type and proscoop12 

plants. Indeed, proscoop12 plants developed significantly longer roots than control plants 

(Fig. 5A and Fig. 5B). No significant difference was observed between wild-type and 

proscoop12 regarding the seedling fresh weight (Fig. 5C). 

A second proscoop12 line was obtained in the Col-0 background using a CRISPR-Cas9 

approach. The frameshift obtained in the first exon disrupts the coding frame 10 aa after the 

editing event, upstream the conserved motif. The phenotypes previously observed with the 

Ws proscoop12 mutant were confirmed in this Col-0 mutant line (Fig. S5). 

 

The SCOOP12 peptide has main features of DAMPs 

The structural features of the PROSCOOP12 protein suggested that it should be classified as 

a secreted PTMP. Besides, at the functional level, its transcriptional behavior suggested that 

it may play a role as a DAMP. Indeed, the induction of PROSCOOP12 expression by a large 

panel of biotic stresses and the root phenotypes identified in the proscoop12 mutant revealed 

some analogies with the AtPROPEP1 and AtPROPEP2 genes which are the precursors of the 

AtPep1 and AtPep2 peptides respectively, well-characterized DAMPs (Bartels and Boller, 

2015). Likewise, both genes are also induced by biotic stress (Huffaker et al., 2006) and the 

AtPep1 DAMP is involved in root development since the overexpression of AtPROPEP1 and 

AtPROPEP2 causes significantly longer roots (Huffaker et al., 2006). Therefore, we wanted to 

test if PROSCOOP12 encodes for peptide that may act as a DAMP by comparing it to AtPep1. 

 

The SCOOP12 peptide induces immune responses in Arabidopsis 

Based on the identification of the conserved motif 1 (Fig. 3), a putative mature peptide 

SCOOP12 was defined (PVRSSQSSQAGGR) from PROSCOOP12 and synthetized in order to 
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explore its biological function. Despite the non-predictable post-translational modifications, 

we tested the exogenous application of the synthetic SCOOP12 peptide as previously 

described for CLE and RGF PTMP families (Murphy et al., 2012; Matsuzaki et al., 2010; 

Whitford et al., 2012). Treatment of plants with SCOOP12 induced a wide range of long- and 

short-term immune responses (Fig. 6). One of the fastest defense responses is the production 

of ROS (Torres et al., 2006). We show here that SCOOP12 induced a more intensive ROS burst 

compared to AtPep1 but weaker than flg22 (Fig. 6A). Next, we wanted to study the effect of 

SCOOP12 on genes closely linked to early defense mechanisms. FRK1 has previously been 

shown to be induced by pathogens, elicitors, salicylic acid (Asai et al., 2002; Boudsocq et al., 

2010) and AtPep1 (Flury et al., 2013). Furthermore, our co-expression network approach 

identified a co-expression of PROSCOOP12 with FRK1 (Fig. S2). Therefore, we measured the 

FRK1 expression level in detached leaves floating for 2h in solutions supplemented by 

SCOOP12 or AtPep1. Compared to controls, AtPep1 and SCOOP12 treatments resulted in a 

15-fold and 8.5-fold increase in FRK1 expression, respectively (Fig. 6B). The deposition of 

callose is also known to be triggered by DAMPs (Luna et al., 2011). Callose staining after 24h 

of treatment with the elicitor peptides showed that SCOOP12 induces a callose deposition, 

yet at a weaker level compared to flg22 or AtPep1 (Fig. 6C and Fig. 6D). One of the long-lasting 

defense responses is an inhibition of growth caused by the elicitor (Krol et al., 2010). Our 

results indicate that perception of SCOOP12 also leads to an arrest of growth. The effect is 

comparable to the flg22 and the AtPep1 DAMP (Fig. 6E, Fig. 6F and Fig. 6G). 

In order to demonstrate the specificity of SCOOP12 sequence, we synthesized a peptide based 

on a randomized version of the same amino acids and tested plant responses to this 

scrambled SCOOP12 (scSCOOP12). Furthermore, we synthesized peptides with double 

alanine replacements (SCOOP12 S5/7A) and single replacements (SCOOP12 S5A; SCOOP12 

S7A) to test the importance of the two highly conserved serine residues on positions 5 and 7 

of SCOOP12 (Fig. 3) for its activity. Plants treated with scSCOOP12 as well as with the modified 

peptides did not show seedling growth inhibition. Total seedling fresh weight as well as root 

length were not different from that of control plants (Fig. 7A). Finally, treatments with 

scSCOOP12, SCOOP12 S5/7A and SCOOP12 S5A did not induce a ROS burst and only SCOOP12 

S7A resulted in a low, still significant ROS burst (Fig. 7B). These results highlight the 

importance of the amino acid order and the highly conserved serine residues for the 

perception of SCOOP12 by the plant. 
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Next, we wanted to test the conservation of plant responses to SCOOP12. For that purpose, 

plants were selected in which we identified PROSCOOP homologues (Brassica napus, Fig. S1) 

and plants that do not contain this gene family (Nicotiana benthamiana and Lycopersicon 

esculentum). We measured ROS production following application of SCOOP12 in these plants 

and included flg22 as a positive control. We detected a ROS burst caused by flg22 in all four 

plant species. On the other hand, SCOOP12 only resulted in a ROS burst in A. thaliana and at 

a lower, yet still significant level, in B. napus (Fig. S6). SCOOP12 seems to be similar enough 

to its closest B. napus homolog (BNCDY22858 with the motif FAGPSSSGHGGGR) to trigger a 

ROS burst. Therefore, only the two plant species containing homologues of the PROSCOOP 

gene-family members, showed a response to SCOOP12 treatments.  

 

Pre-treatment with the SCOOP12 peptide protects Arabidopsis against Pseudomonas infection 

It has previously been shown that priming of plants with the flg22 elicitor as well as with 

oligogalacturonides could result in enhanced tolerance against subsequent bacterial 

infections. For instance, plants pre-treated with these elicitors showed significantly reduced 

lesion size following an infection with Botrytis cinerea (Raacke et al., 2006; Ferrari et al., 

2007). Using a similar assay, we found that plants pre-treated with flg22 as well as with 

SCOOP12 and AtPep1 were less susceptible to Pseudomonas syringae pv. tomato DC3000 

infection (Fig. 8). The effect of the two endogenous peptides SCOOP12 and AtPep1 was 

weaker than flg22, which is consistent with the fact that flg22 induced stronger defense 

response compared to SCOOP12 (Fig. 6A and Fig. 6C).  

 

SCOOP12 and AtPep1 induce the expression of several PROSCOOP genes 

It has previously been shown that small endogenous peptides can induce the expression of 

their own precursors resulting in a positive feed-back loop. For instance, expression of several 

PROPEP genes can be induced by different AtPep peptides (Huffaker and Ryan, 2007). This led 

us to investigate the change in steady state transcript level of all 14 PROSCOOP family 

members after SCOOP12 exposure. Moreover, we decided to add AtPep1 in our assay for 

comparison since it is also known to induce the transcription of another peptide precursor, 

prePIP1 (Hou et al., 2014). The results show that PROSCOOP 2, 7, 8, 12 and 13 are upregulated 

by the AtPep1 treatment (Fig. S7). Most importantly, the direct precursor PROSCOOP12 is 

upregulated by SCOOP12 in comparison to the control treatment (Fig. S7L). Therefore, there 
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is a positive feedback loop linking SCOOP12 to its precursor PROSCOOP12 but also of other 

members of the PROSCOOP family such as PROSCOOP7. However, SCOOP12 did not induce 

the expression of PROPEP1 (Fig. S7O). These results suggest that there is a feedback loop of 

SCOOP12 to its precursor and to PROSCOOP7 and that AtPep1 is capable of inducing five 

members of the PROSCOOP family. 

 

The BAK1 co-receptor is involved in SCOOP12 perception 

A well characterized co-receptor of several receptors of small peptides is BRI1-associated 

kinase1 (BAK1). Interaction of BAK1 with receptor-like kinases that act as elicitor receptors, 

was proposed to be due to conformational changes occurring after ligand binding which 

results in the formation of the receptor complex (Chinchilla et al., 2009; Liu et al., 2017). To 

test if BAK1 is involved in the perception of SCOOP12, a seedling growth inhibition assay was 

performed on bak1-4 plants. Compared to wild-type controls, bak1-4 plants did not display 

any significant growth inhibition upon SCOOP12 treatment (Fig. 9A). The same approach was 

carried out on fls2 (the flg22 receptor) and pepr1/pepr2 plants. Contrary to BAK1, our results 

suggest that these receptors are not involved in the perception of SCOOP12 (Fig. 9B and Fig. 

9C). 

 

SCOOP12 rapidly activates phospholipid signaling pathways in Arabidopsis cell suspensions 

Lipid signaling pathways act as multifunctional regulatory mechanisms in plants. They incorporate 

several groups of inducible enzymes that convert membrane phospholipids into signaling molecules. 

Phosphatidic acid (PA) is a well-known biologically active lipid that is produced in response to 

numerous hormonal and stress signals including, notably, flg22 (van der Luit et al., 2000). We 

demonstrate that application of SCOOP12 induces an accumulation of PA in Arabidopsis cell 

suspensions (Fig. 10A). This effect is observed as early as 5 min following SCOOP12 application in a 

low concentration of 100nM (Fig. 10B and Fig. 10C). The scSCOOP12 had no effect on PA 

accumulation. Two modes of PA accumulation are known: Phospholipase D (PLD)-dependent via direct 

hydrolysis of membrane phospholipids and diacylglycerol kinase (DGK)-dependent via 

phosphorylation of diacylglycerol (DAG). In our experiment a labelling protocol that favors 

visualization of DGK-derived PA was used (Arisz and Munnik, 2013). Phosphatidylinositol 4,5-

bisphosphate (PIP2) is a substrate to phosphatidylinositol-specific phospholipase C (PI-PLC) that 

produce DAG. We have also observed that the level of PIP2 is transiently reduced following SCOOP12 

treatment (Fig. 10B). These results suggest that SCOOP12 initiates a signaling cascade implicating PI-
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PLC (causing the depletion of PIP2) and subsequent production of PA via phosphorylation of DAG by 

DGK.  

 

Discussion 

Considered jointly, our transcriptome, mutant phenotyping and peptide assay results allow 

us to propose a model explaining the roles of the SCOOP12 peptide in Arabidopsis (Fig. 11). 

The induction of numerous genes involved in the protection against oxidative stress such as 

peroxidases, glutathione transferase, phenylpropanoid synthases in proscoop12 in response 

to E. amylovora infection (Table S4) might indicate that its lack of expression could result in a 

decrease in H2O2 levels. This could impair E. amylovora progression in leaves, which is known 

to induce H2O2 production in plants in order to promote cell death and invade plant tissues 

(Venisse et al., 2001; Degrave et al., 2008). In parallel it is known that antioxidant responses 

in roots decrease the H2O2 level in the elongation zone, thereby contributing to root growth 

(Dunant et al., 2007; Tsukagoshi et al., 2010). The constitutive expression of PROSCOOP12 in 

roots (Fig. 2) could therefore contribute to higher levels of H2O2 and act as a moderator of 

root elongation under normal conditions. This is consistent with the greater root length 

observed in proscoop12 (Fig. 5) and with the decrease of PROSCOOP12 expression in roots in 

conditions leading to root lengthening such as nitrogen starvation (Table S2). 

In addition to its function in root elongation, we found PROSCOOP12 to be involved in 

response to biotic stress in aerial parts where its transcription is strongly induced in presence 

of pathogens (Fig. 1 and Fig. 2B). This induction triggers a ROS burst, putatively through the 

inhibition of the antioxidant responses and then participates to the increase of H2O2 level in 

the infected tissues. This mechanism occurs when we apply the synthetic SCOOP12 peptide 

on seedlings, as illustrated by its induction of ROS burst, transcription of the FRK1 defense 

gene, and callose deposition in leaf cells (Fig. 6). SCOOP12-induced PA production (Fig. 10) 

can be a part of a signaling cascade implicating several PA-binding proteins (Pokotylo et al., 

2018). PA binds NADPH oxidase isoforms D and F and stimulates NADPH oxidase activity in 

guard cell protoplasts (Zhang et al., 2009). That is why PA production is likely to be upstream 

of ROS accumulation observed in response to SCOOP12. We have shown that the effects of 

SCOOP12 are BAK1-dependent (Fig. 9A). It is known that the activity of BAK1 in receptor 

complexes is dependent on its phosphorylation state and is controlled by protein 

phosphatase 2A (PP2A) (Segonzac et al., 2014). PA interacts with the scaffolding A1 subunit 
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of PP2A, tether it to membranes and induce its activity (Gao et al., 2013). This process was 

highlighted in connection to PIN1 dephosphorylation by PP2A in auxin signaling cascade. 

However similar reactions are to be expected for BAK1 dephosphorylation in PAMP/DAMP 

receptor complexes and indicate that they may act as intrinsic part of SCOOP12 regulatory 

cascade in plants. 

The negative action of SCOOP12 on antioxidant response is consistent with the reduction of 

symptoms observed in the proscoop12 defective mutant in presence of the necrogenic 

bacterium E. amylovora (Degrave et al., 2008). In this case, the suppression of PROSCOOP12 

seems to enhance the protection against oxidative stress, thus hampering bacterial 

development in infected Arabidopsis leaves.  

The comparison of the PROSCOOP family with other previously published genes encoding 

such secreted peptides highlights numerous shared features but also interesting specificities. 

At the structural level, the PROSCOOP proteins distinguish themselves by the absence of a 

highly conserved C-terminal region. Indeed, the motifs detected with the MEME tool are quite 

divergent compared to the other PTMP precursors (Matsubayashi, 2011). This divergence 

may explain the fact that no PROSCOOP homologs could be detected outside the Brassicaceae 

genomes. This restricted phylogenetic profile is opposite to the other described secreted 

peptides which are conserved both in monocots and eudicots. Furthermore, contrary to the 

majority of the known PTMPs, the conserved motifs are not localized at the C-terminal 

extremity of their precursors, and their maturation could involve two steps of proteolytic 

processing or a trimming step (Matsubayashi, 2011). Out of the 14 Arabidopsis PROSCOOP 

proteins, three include two duplicated SCOOP motifs (Fig. 3), reminiscent of the previously 

described cases of the CEP and PIP families (Roberts et al., 2013; Vie et al., 2015) and also of 

the CLE18 protein in which each copy of the conserved CLE motifs has a specific function 

(Murphy et al., 2012). The motif composition classifies SCOOP in the superfamily of ‘SGP-rich 

peptide’ among PIP, CLE, IDA, PEP and CEP families (Hou et al., 2014). At the functional level, 

the triggering of ROS burst, FRK1 transcription and callose deposition move SCOOP12 close 

to the cytosolic AtPEP and apoplastic PIP families (Huffaker et al., 2006). Our results suggest 

a functional link between AtPep1 and SCOOP12 since both peptides induce the transcription 

of PROSCOOP12 (Fig. S7L). This collaboration between different peptide families has also 

been described with AtPEP1 and PIP1 which act cooperatively to amplify triggered immunity. 

Furthermore, the signaling induced by AtPep1 (Schulze et al., 2010), PIP1 (Hou et al., 2014) 
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and SCOOP12 (Fig. 9A) is dependent on the BAK1 co-receptor. In addition to their role as 

amplifiers of the immune response, these peptides are involved in root development but via 

different mechanisms. The overexpression of the PIP1 precursor or its exogenous application 

inhibits Arabidopsis root growth as described for CEP (Roberts at al., 2013) and SCOOP12 

peptide (Fig. 6F). On the other hand, the constitutive overexpression of PROPEP1 increases 

the root development (Huffaker et al., 2006) whereas AtPep1 treatment inhibits root growth 

(Poncini et al., 2017). Acting as growth factors and contrary to SCOOP12, the PTMP PSK and 

PSY1 are involved in root elongation (Amano et al., 2007; Matsuzaki et al., 2010). These 

comparisons show that despite common structural and functional characteristics, the SCOOP 

family is different from previously described secreted peptides. The divergence observed in 

the C-terminal sequence of PROSCOOP proteins suggest a large broad of biological functions 

through a diversity of receptors which will be the targets of future studies.  

In conclusion, SCOOP12 belongs to a new family of putatively secreted peptides specific to 

the Brassicaceae species. At the functional level, such secreted peptides are classified as 

phytocytokines (such RALFs, systemin and PIPs), i.e. secondary endogenous danger signal. 

Indeed, this classification (Gust et al., 2017) distinguishes them from classical DAMPs (primary 

endogenous danger signals) which are passively released from injured tissue without 

biosynthesis and secretion processes. Through its negative action on antioxidant responses 

and its positive effect on PA/ROS production (PLC pathway), SCOOP12 could play a role in the 

moderation of defense responses, as well as root elongation, to prevent unnecessary energy 

loss in a ‘trade-off’ fashion (Walters and Heil, 2007). The functions of such plant secreted 

peptides at the boundaries of development- and stress-signaling pathways open the way to 

future strategies that jointly consider product quality/quantity and new resistance traits. 

 

Supplementary data 

Supplementary Figure S1. Phylogenetic tree of PROSCOOP homologs. The tree was built with 

the neighbor-joining method from the multiple alignment of 74 homologous Brassicaceae 

proteins. 

Supplementary Figure S2. Relational annotation of genes co-expressed with PROSCOOP12 

and their functional partners. 

Supplementary Figure S3. Confirmation of absence of transcription in the proscoop12 T-DNA 

knock-out line by RT-PCR. 
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Supplementary Figure S4. Effect of A. brassicicola infection on proscoop12 leaves. 

Supplementary Figure S5. Confirmation of proscoop12 mutant phenotype in a second 

genotype. 

Supplementary Figure S6. ROS burst measurements on selected plant species treated with 

SCOOP12. 

Supplementary Figure S7. Transcriptional response of the PROSCOOP gene family to SCOOP12 

and AtPep1. 

Supplementary Table S1. Gene-specific primer sequences used for mutant genotyping and 

qPCR analysis of all the PROSCOOP genes. 

Supplementary Table S2. List of the 136 comparisons in which transcription of AT5G44585 

was deregulated in CATdb (http://tools.ips2.u-psud.fr/CATdb). The AT5G44585 gene is 

tagged by the CATMA5A40400 probe. Column legends: CATdb project references (providing 

Gene Expression Omnibus accessions and complete description of samples), project titles, 

“yellow” and “blue” sample names, organs, Y/B ratios, phenotype keyword extracted from 

the project summary in CATdb pointing the expected phenotype, phenotype classes and color 

codes used in Fig. 1 (1.1: pathogen infections, 1.2: oxidative stress, 1.3: abiotic stresses, 1.4: 

JA-SA related mutants, 2: root growth, 3: hypocotyl growth, 4: silencing mutants, 5: various 

experiments). 

Supplementary Tables S3. List of 117 genes involved in the relational annotation of 

PROSCOOP12 (in addition to Fig. S2). Their protein name and complete functional annotation 

(from TAIR10 and/or literature) are indicated (Table S3A). Putative partner genes have been 

found co-expressed with PROSCOOP12 (according the GEM2Net resource) or have been 

added in the network by curated co-citations in literature, pathways, and protein-protein 

interactions (STRING, Arabidopsis Interactome, KEGG…). The type and the source of the each 

network edge are detailed in Table S3B. 

Supplementary Table S4. Transcriptomic comparison of proscoop12 and wild-type plants 

during E. amylovora infection. Column legend: CATMA probe ID, Arabidopsis gene ID, gene 

name according TAIR10, annotation according gene ontology (molecular function, biological 

process, cellular component), results of microarray hybridizations with raw intensities, Log2 

ratio and Bonferroni P-value (Wt: wild-type, Sc12: proscoop12, Ea: E. amylovora infection, 

H20: control without E. amylovora), functional categories with the color code used in the 
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Figure 4B, keywords regarding functional pathways and references for justification. Pseudo 

color scale representing the differential expression is described in the first line of the table. 
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Figure 1 

 

Fig. 1. Synthesis of the results from the 136 experiments in which AT5G44585 was significantly 

deregulated (Bonferroni p-value <5%) within the CATdb resource, then sorted in 8 classes: 

pathogen infections, oxidative stress, abiotic stresses, JA-SA related mutants, root growth, 

hypocotyl growth, silencing mutants, various experiments. The whole set of results is detailed 

in Table S2. 
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Figure 2 

 

Fig. 2. The PROSCOOP family. (A) Gene organization: coding exons and introns are 

represented by blue boxes and blue broken lines respectively. Remains of transposable 

elements (Helitron type) are represented by orange boxes and the green one indicates a 

putative non-coding RNA of unknown function. The TAIR gene names and corresponding 

PROSCOOP nomenclature are indicated. PROSCOOP2 and PROSCOOP3 are not annotated in 

the last TAIR version but are confirmed by the ESTs EG446167, EG448031, EG446890 and 

CB253842. (B) Transcription of PROSCOOP family: significant (p-value<0.05) differential 

expression induced by specific perturbations (upper panel) and transcription level in different 

Arabidopsis organs (lower panel) are based on RNA-seq data obtained from the 

Genevestigator platform (Hruz et al., 2008). The PROSCOOP12 gene is indicated by a red 

frame. 
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Figure 3 

 

Fig. 3. Conserved motifs identified in the PROSCOOP family proteins. The MEME v4.8.1 

algorithm (parameters -nmotifs 3 -minw 6 -maxw 12) was run on the 74 homologous 

PROSCOOP proteins found in Brassicaceae genomes. P-values and motif locations are only 

shown for the 14 members from Arabidopsis. A third motif corresponding to the cleavage site 

of the signal peptides (green boxes) has also been highlighted by MEME and fits with SIGNALP 

v4.1 predictions. 
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Figure 4 

 

Fig. 4. Mutant phenotype in response to E. amylovora and A. brassicicola infections. (A) Effect 

of E. amylovora infection on proscoop12 mutant. Symptom scale used (0 to 3) is illustrated on 

the right. The asterisk indicates a significant difference from symptom severity in wild-type 

leaves inoculated with E. amylovora (Mann and Withney, α = 0.05). (B) Distribution of the 126 

genes upregulated in proscoop12 versus wild-type inoculated by E. amylovora according their 

functional annotation. The complete results of this transcriptome approach are in Table S4. 

(C) Effect of A. brassicicola seed infection on proscoop12 during germination 2, 3 and 8 days 

post-imbibition. Significant differences according to Student’s t-test results: *, P < 0.05.  
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Figure 5 

 

Fig. 5. Phenotypic comparison between proscoop12 and wild-type plants. (A, B) Root growth 

phenotypes determined after 10 days. Student’s t-test revealed that the different root length 

between wild-type and mutant is highly-significant (*, P < 0.05). (C) Seedling fresh weight 

determined after 10 days. Bars show the combination of 2 biological repetitions (25 seedling 

each) and error bars show ±SE of the mean. 
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Figure 6 

 

Fig. 6. Defense responses induced by SCOOP12. (A) Reactive oxygen species (ROS) in RLU 

(relative light units) production in wild-type Arabidopsis leaf-discs (Col-0), treated with 1µM 

for each peptide or without elicitor (control). Graphs display averages of 12 replicates. Error 
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bars show the ±SE of the mean. (B) Induction of FLG22-INDUCED RECEPTOR-LIKE KINASE1 

(FRK1) gene transcription in soil-grown plants treated with 1µM of the indicated peptide or 

without elicitor (control). Error bars show the ±SD of the mean based on three biological 

replicates. (C) Quantification of callose deposition. Error bars represent the ±SE of the mean 

of 4 replicates. (D) Localization of callose deposition by aniline blue staining. (E, F, G) 

Quantification of seedling growth inhibition. 5 days old seedlings were transferred from solid 

MS medium to liquid medium supplied with the indicated elicitors (all applied in a final 

concentration of 1µM) and are grown for additional 8 days before fresh weight and root 

length was quantified and pictures were taken. For all experiments, error bars show ±SE of 

the mean of 6 biological replicates. Significant differences according to Student’s t-test 

results: *, P < 0.05; **, P < 0.01; ***, P < 0.001. 
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Figure 7 

 

Fig. 7. SCOOP12 activity depends on the correct amino-acid order and two highly-conserved 

Serine. Assays were carried out with scrambled peptide (scSCOOP12) and alanine 

replacements of conserved serine residues on position 5 and 7 of SCOOP12 

(PVRSSQSSQAGGR) (SCOOP12 S5/7A; SCOOP12 S5A; SCOOP12 S7A). (A) Quantification of 

seedling growth inhibition with the indicated elicitors. Bars of quantified fresh weight and 

root length represent mean of six replicates. (B) Reactive oxygen species (ROS) in RLU (relative 

light units) production in wild-type Arabidopsis leaf-discs (Col-0), treated with 1µM for each 

peptide or without elicitor (control). Graphs display averages of 12 replicates. Error bars show 

±SE of the mean. Significant differences according to Student’s t-test results: *, P < 0.05; ***, 

P < 0.001. 
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Figure 8 

 

Fig. 8. SCOOP12 application protects against Pseudomonas infection. Arabidopsis wild-type 

(Col-0) plants were pre-treated for 24h by leaf infiltration with 1µM of the indicated elicitor 

or without peptide. Subsequently, leaves were infected with 105 cfu.ml-1 Pst. DC3000, and 

bacterial growth was assessed 1 and 2 days after infection. Plot represents the mean of 8 

replicates and error bars show the ±SE of the mean. Excepted between AtPep1 and SCOOP12, 

all differences are statistically significant at 1dpi and 2dpi (P<0,05). 
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Figure 9 

 

Fig. 9. Seedling growth inhibition assay on selected receptor mutant backgrounds. (A) bak1 

plants were insensitive to SCOOP12. Neither fresh weight (top) nor root length (center) were 

affected by SCOOP12 treatment. The FLS2 (B) and PEPR1/PEPR2 (C) receptor mutants were 

not affected in their perception of SCOOP12. Plants were grown for 8 days in presence of 1µM 

SCOOP12 or control solution. Bars of quantified fresh weight and root length represent mean 

of six replicates. Error bars show ±SE of the mean. Significant differences according to 

Student’s t-test results ***, P < 0.001. 
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Figure 10 

 

Fig. 10. Rapid activation of PA production in Arabidopsis cell suspensions following treatment 

with SCOOP12. (A) Separation of P33-labelled lipids using thin-layer-chromatography with 

contrasting effects of SCOOP12 (10µM) and scrambled scSCOOP12 (10µM) on the level of PA 

accumulation visible after 5 min of treatment. Significant differences according to Student’s 

t-test results: ***, P < 0.001. (B) Time–scale of the SCOOP12 (1µM) influence on PA and PIP2 

accumulation in Arabidopsis cell suspensions. (C) Dose–scale of the SCOOP12 influence on PA 

and PIP2 accumulation in Arabidopsis cell suspensions after 5 min of treatment. All 

experiments were performed with at least three biological replicates. Error bars show ±SE of 

the mean. PA, phosphatidic acid; PIP2, phosphatidylinositol 4,5-bisphosphate; PI, 

phosphatidylinositol; PC, phosphatidylcholine; a.u., arbitrary units. 
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Figure 11 

 

Fig. 11. Putative model explaining the SCOOP12 functions in root development and biotic 

stress response through the inhibition of protection against oxidative stress. The red dotted 

arrows represent the action of the pathogens, the induction and the repression effects are 

represented by blue and black lines respectively. PI-PLC: phosphatidylinositol-specific 

phospholipase C, DGK: diacylglycerol kinase. 
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