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Introduction

Contexte et contribution de la thèse

Avant-propos sur la combinatoire et la combinatoire algébrique

Traditionnellement, la combinatoire est définie comme l’«art de compter», avec
des applications allant de l’informatique théorique (compter le nombre d’opérations
nécessaires à l’exécution d’un algorithme) à la physique statistique (compter le nom-
bre d’états possibles d’un système), en passant bien entendu par les mathématiques.

Souvent, la quantité à compter est fonction d’un entier n (typiquement la taille
des données en entrée pour un algorithme, ou la taille du système en physique). On
aura donc une séquence infinie u0, u1, u2, · · · de nombres, dont on pourra étudier le
comportement quand n devient grand (par exemple pour déterminer la complexité
de l’algorithme, ou le comportement macroscopique d’un système). Pour manipuler
une telle suite, il est commode d’en regrouper tous les termes sous la forme d’une
série formelle :

H(z) = u0 + u1z + u2z
2 + · · · .

Très souvent, les propriétés définissant la suite se traduisent sous forme d’équations
(algébriques, différentielles, ...) sur la série. Par exemple, un vérifie une relation de
récurrence linéaire si et seulement si H(z) est une fraction rationnelle :

H(z) =
P (z)

Q(z)
.

Ces observations ouvrent la porte à des manipulations algébriques pour étudier le
comportement (en particulier asymptotique) de la séquence de départ : on entre
dans le domaine de la combinatoire algébrique.

Cette branche de la combinatoire, comme son nom l’indique, utilise des outils
algébriques pour étudier des problèmes de combinatoire — et vice-versa. Elle cherche
notamment souvent à ajouter de la structure sur les objets étudiés : par exemple
une structure d’algèbre en définissant un produit adapté, une relation d’ordre, ou
bien d’autres relations plus générales.

La recherche puis l’exploitation de telles structures permettent de voir l’objet
sous un jour nouveau, de mettre en évidence son agencement interne, et globalement
de mieux le comprendre.
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 Introduction

Inversement, faire apparaître un point de vue combinatoire sur des objets al-
gébriques (comme par exemple associer des partitions aux caractères d’un groupe)
permet une meilleure visualisation de certains problèmes, et facilite une approche
algorithmique.

Profils des structures relationnelles

Revenons à nos fonctions de comptage et aux séries qui les encodent. Une instance
classique de cette situation est le comptage du nombre ϕ(n) de graphes simples sur
n sommets à un isomorphisme près. On obtient

Hϕ(z) = 1 + z + 2z2 + 4z3 + 11z4 + · · ·

Ce problème peut être reformulé comme suit. On considère le graphe de Rado
R, soit le graphe infini obtenu avec probabilité 1 lorsque, pour chaque paire (v, v′)
de sommets dans un ensemble infini dénombrable, on tire à pile ou face l’existence
d’une arête reliant v à v′. Intuitivement, on définit un sous-graphe induit (du graphe
de Rado par exemple) comme un sous-ensemble de sommets doté des même arêtes
que dans le graphe d’origine.

Proposition 0.0.1. Tout graphe simple apparaît, à isomorphisme près, comme sous-
graphe induit du graphe de Rado R.

Il s’ensuit que ϕ(n) peut aussi être défini comme le nombre de sous-graphes
induits à n sommets de R, à un isomorphisme près.

Plus généralement, on considère une structure relationnelle R, c’est-à-dire un
ensemble infini dénombrable muni d’une ou plusieurs relations (binaires ou non).
Le profil ϕ de la structure relationnelle R compte, pour chaque entier n, le nom-
bre ϕ(n) de sous-structures de R induites sur des sous-ensembles de taille n, à un
isomorphisme près.

Ce cadre très général contient comme cas particuliers les problèmes suivants, qui
ont été étudiés indépendamment:

• En combinatoire des mots [Lot97] : l’étude de la complexité d’un mot infini,
c’est-à-dire le nombre de ses facteurs de taille n;

• En combinatoire des permutations [KK02; AMB07] : l’énumération de classes
de permutations, ensembles de permutations définies par évitement de motifs;

• En théorie des graphes, des ordres partiels, des tournois [BBM06; Bal+09;
BP10] : comptage des sous-graphes finis d’un graphe infini à isomorphisme
près;

• En théorie des groupes [Cam09; Mac85a; Mac85b] : étude du profil orbital
d’un groupe de permutations infini, comptage des orbites d’un groupe.

Pour être précis, il faudrait dans certains cas élargir le cadre aux classes héréditaires
de structures finies ; se reporter à [Kla08; Bol98] pour une vue d’ensemble.
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Comportement asymptotique et conjecture de Cameron

L’étude des profils de structures relationnelles constitue un domaine de recherche à
part entière depuis les années 1970 [Fra00; Pou06]. Leur comportement asympto-
tique en particulier a été largement étudié. On sait par exemple ([Pou76][Cam90,
Section 3.1]) qu’un profil est toujours croissant au sens large. Les recherches rappor-
tent également, dans chacun des cas mentionnés plus haut, un phénomène de «saut»
dans les possibilités de comportement asymptotique du profil : sa croissance semble
en effet être soit polynomiale au sens faible : ank 6 ϕ(n) 6 bnk à partir d’un certain
rang de n et pour certains a, b et k; soit plus rapide que tout polynôme [Pou78;
Pou06; BBM06; Kla08]. Pouzet a démontré que ce phénomène apparaît pour toute
structure relationnelle dès lors qu’elle satisfait quelques conditions naturelles.

Des résultats concordant dans les différents contextes [PT13; KK02; Bal+09]
suggèrent que l’on pourrait renforcer ce théorème:

Conjecture 0.0.2. Si un profil est à croissance bornée par un polynôme, alors il
est équivalent à un polynôme : ϕ(n) ∼ ank; de plus, f est un quasi-polynôme:

ϕ(n) = ak(n)nk + · · ·+ a0(n)

où les coefficients ai(n) sont des fonctions périodiques.

Notons au passage que, si un profil se trouve être un quasi-polynôme, alors il
est automatiquement équivalent à un polynôme en invoquant le résultat de Pouzet
selon lequel le profil est croissant.

Dans le cadre restreint des profils orbitaux, soit quand le profil compte les orbites
de sous-ensembles d’un groupe de permutations, cette question a été soulevée par
Cameron dans [Cam90, Section 3.6].

Cas des groupes oligomorphes

Compter des objets sous une action de groupe est un thème récurrent en combina-
toire, ce qui fait des profils orbitaux un cas particulièrement intéressant. Dans un
contexte où nous nous intéressons aux valeurs du profil et à son comportement, il
est naturel de nous restreindre aux groupes dont le profil ne prend que des valeurs
finies, dits oligomorphes.

Il est à noter que ces groupes apparaissent naturellement dans le cadre de la
théorie des modèles. En effet, comme noté par Cameron dans [Cam90, Section 2.5],
une structure relationnelle dénombrable R est ℵ0-catégorique (ce qui signifie que sa
théorie est ℵ0-catégorique, ou encore dans ce cas que R est l’unique modèle dénom-
brable de sa théorie) si et seulement si son groupe d’automorphismes est oligomorphe.

L’une des contributions de la présente thèse est de démontrer la conjecture de
Cameron sur le profil des groupes oligomorphes. Elle se présente en réalité comme
le corollaire d’une autre conjecture, que nous allons maintenant nous attacher à
introduire.
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Structure d’algèbre et conjecture de Macpherson

Comme il est bien connu (voir par exemple [Sta97]), la quasi-polynomialité d’une
séquence se traduit sur la série génératrice associée par le fait qu’elle soit de la forme

P (z)

(1− zd1)(1− zd2) · · · (1− zdk)
, (0.1)

avec 1 = d1 6 · · · 6 dk et P (z) ∈ Z[z].
Les séries de cette forme apparaissent naturellement en algèbre commutative. Soit

en effet A une algèbre commutative graduée connexe. Si A est de type fini, alors sa
série de Hilbert est nécessairement de la forme (0.1), où les di sont les degrés d’un
système minimal de générateurs homogènes [CLO97, Chapter 9, §2]; la réciproque
n’est pas nécessairement vraie.

Ce type de lien entre algèbre et propriétés du profil a motivé l’introduction
par Cameron d’une structure d’algèbre sur les orbites des groupes de permutation,
appelée algèbre des orbites Q[AG] (plus généralement algèbre d’âge Q[AR] pour une
structure relationnelle R quelconque) dont la série de Hilbert coïncide avec celle du
profil [Cam97].

Une approche possible pour montrer que le profil est un quasi-polynôme dans le
cas où il est borné par un polynôme est alors d’étudier l’algèbre des orbites : si elle
est de type fini, le profil est un quasi-polynôme équivalent à un polynôme.

La question suivante se pose alors assez naturellement.

Question 0.0.3. Soit R une structure relationnelle à profil borné par un polynôme.
Son algèbre d’âge Q[AR] est-elle de type fini?

La réponse à la question 0.0.3 est négative en général (par exemple, les algèbres
d’âge de tournois sont de type fini si et seulement si le profil est borné [Pou06,
Theorem 27]); dans le cas des groupes, elle a fait l’objet d’une conjecture due à
un ancien étudiant de Cameron, Macpherson — lequel, comme souligné par un des
rapporteurs de [FT18], ne se sentait pas alors assez confiant pour employer le terme
de «conjecture», lui préférant celui de «question».

Conjecture 0.0.4 (Macpherson, 1985 [Mac85a]). Soit G un groupe de permutation
dont le profil est borné par un polynôme. Alors, son algèbre des orbites Q[AG] est
de type fini.

Cette conjecture, plus forte donc que celle de Cameron, est l’objectif central de
cette thèse. Le cas particulier d’un profil borné avait déjà été résolu par Pouzet, qui
avait par ailleurs prouvé que l’algèbre des orbites était un domaine intégral dès lors
que le groupe n’avait pas d’orbite (d’éléments) finie [Pou08].

Résultats de la thèse

La présente thèse démontre la conjecture de Macpherson, et avec elle la conjecture
de Cameron.

Entre autres notions et outils, l’un des ingrédients essentiels de la démonstration
dans le cas général est la notion de systèmes de blocs ; leur étude dans ce but a
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été inspirée par les décompositions monomorphes de structures relationnelles, qu’ils
généralisent. En effet, la génération finie de l’algèbre d’une structure relationnelle
dotée d’une décomposition monomorphe finie admet une caractérisation combina-
toire découverte par Pouzet et Thiéry [PT18]; ce cas était donc très bien connu.

La méthode initialement utilisée reposait ensuite très largement sur la théorie des
invariants : une adaptation de la preuve du théorème de Hilbert sur l’algèbre des
invariants a permis de démontrer que la propriété de génération finie de l’algèbre se
relevait à tout surgroupe d’indice fini, ouvrant la voie à une série de réductions suc-
cessives du problème à des sous-groupes d’indices finis, jusqu’à se ramener à un cas
plus simple. Une démarche expérimentale, c’est-à-dire une exploration informatique
des cas les plus délicats, a par ailleurs aidé à franchir certains obstacles résistants et
s’est révélée cruciale pour compléter la preuve.

Bien que cette première preuve soit intéressante en elle-même, c’est finalement
une histoire légèrement différente qui sera narrée dans ce manuscrit. Les résultats
suggérés par l’approche informatique y restent cependant déterminants.

De fait, après une résolution positive des conjectures, la question un peu plus fine
de la propriété de Cohen-Macaulay pouvait être abordée. L’un des intérêts de cette
propriété est que le numérateur de la série de Hilbert est dans ce cas à coefficients
entiers naturels.

L’idée était légitimée par divers cas particuliers : les algèbres d’invariants de
groupes finis, notamment, sont réalisables comme algèbres des orbites, et ont cette
propriété bien connue. L’exploration de ce problème, qui demande une compréhen-
sion plus exhaustive de la structure de l’algèbre, a conduit à repenser la preuve
originale des conjectures, et a mené à une classification des groupes oligomorphes à
profil borné par un polynôme (que nous appelons P -oligomorphes), notre résultat
le plus important. Informellement, un groupe P -oligomorphe (clos) est décrit de
manière unique par un groupe de permutations fini doté d’un système de blocs dont
chacun est décoré par une paire de groupes — l’un fini, l’autre infini — obéissant à
un système de critères précis. La classification des groupes se traduit naturellement
par une classification des algèbres correspondantes, qui sont en fait (à un quotient
pour ainsi dire inoffensif près) des algèbres d’invariants à graduation non standard.

Theorem 0.0.5. Si G est un groupe P -oligomorphe, son algèbre des orbites Q[AG]
est isomorphe à l’algèbre d’invariants d’un certain groupe fini G<∞, agissant sur des
variables dont les degrés se déduisent de G, quotientée par x2 = 0 pour certaines de
ces variables x. En particulier, Q[AG] est de Cohen-Macaulay, et le profil est un
quasi-polynôme équivalent à un polynôme.

Les groupes P -oligomorphes se révèlent donc être une classe de groupes nette-
ment plus rigide que prévu, et leurs algèbres, finalement bien connues, ne constituent
pas fondamentalement une nouvelle classe d’algèbres commutatives.

Cette classification est l’angle sous lequel se trouve finalement présenté notre tra-
vail. En plus d’admettre les deux conjectures comme corollaires directs, elle amène
une compréhension profonde des groupes P -oligomorphes et de leurs algèbres. En
particulier, en procurant un encodage fini et explicite de ces groupes, elle permet de
les implémenter efficacement et de calculer leur profil en utilisant une généralisation
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de l’énumération de Pólya. Les groupes P -oligomorphes peuvent donc désormais
être construits, manipulés, denombrés.

Contenu et plan de la thèse

Cette thèse est divisée en trois grandes parties, plus une annexe. La première partie
est consacrée aux préliminaires : elle expose les prérequis des différents domaines
impliqués, et fournit des exemples qui deviendront partie prenante de notre travail
et de la résolution des conjectures.

Combinatoire algébrique : comptage, séries, produits; treillis

Nous commençons par introduire quelques notions fondamentales de combinatoire
algébrique : ensembles gradués et fonctions de comptage, dont les profils sont une
instance, ainsi que leurs séries génératrices. Nous donnons des exemples, et nous
basculons résolument du côté «algébrique» en introduisant la notion de produits
gradués, par lesquels nous pouvons doter nos ensembles gradués d’une structure
d’algèbre pertinente. Nous explorons les interactions entre les algèbres graduées et
leurs séries de Hilbert, qui constituent le cas échéant une mine d’informations sur la
fonction de comptage.

Dans une section un peu à part, nous abordons les notions d’ordre, de poset et de
treillis. Nous donnons quelques propriétés de base de ces objets, qui nous serviront
par la suite, ainsi que l’exemple qui nous concerne particulièrement du treillis des
partitions d’ensemble.

Théorie des groupes et des invariants

Dans un second chapitre, nous nous penchons sur le cas des groupes de permu-
tations, et plus généralement des actions de groupes, dont nous évoquons les pro-
priétés fondamentales. Nous citons l’exemple, crucial, de l’action induite sur les
sous-ensembles.

Nous abordons également les concepts de classes, d’indice et de normalité, dont
nous serons appelés à nous servir abondamment.

La section suivante est consacrée à la théorie des invariants : nous introduisons la
notion d’algèbre d’invariants d’un groupe de permutations fini, et nous mettons en
lumière leurs propriétés structurelles, en particulier celle d’être de Cohen-Macaulay.

Enfin, nous consacrons une section à l’énumeration de Pólya, une méthode ex-
trêmement efficace de dénombrement d’objets sous une action de groupe; forts du
résultat de classification que nous aurons obtenu d’ici la fin de ce document, nous
pourrons mettre cette méthode à profit pour calculer les profils des groupes P -
oligomorphes de manière systématique.
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Structures relationnelles et groupes oligomorphes, algèbres des
orbites; conjectures

Dans le chapitre suivant, qui ouvre la deuxième grande partie de ce manuscrit, nous
plongeons au cœur du sujet qui nous intéresse plus directement, et entreprenons
d’exposer les problématiques à l’origine de cette thèse. Nous introduisons tout
d’abord les structures relationnelles et leurs profils, ainsi que leurs algèbres d’âge,
et nous dressons un état de l’art sommaire du domaine.

Nous glissons ensuite vers le cas particulier des groupes oligomorphes: les profils
des structures relationnelles homogènes comptent en fait les orbites d’un groupe;
et les profils orbitaux peuvent tous être réalisés comme profils d’une structure ho-
mogène. Nous donnons des exemples et présentons ici la conjecture de Cameron.

Avant de doter l’ensemble des orbites de sa structure d’algèbre graduée, nous
considérons la notion de clôture d’un groupe pour la topologie de la convergence
simple, et concluons que nous pouvons, et devrions, dans le cadre de l’étude des
âges et profils, travailler sous l’hypothèse de clôture des groupes. En effet, prendre
la clôture d’un groupe ne change pas ses orbites de sous-ensembles.

Nous présentons ensuite une construction de l’algèbre des orbites (un peu dif-
férente de celle que nous avons donnée pour les algèbres d’âge, quoique les deux se
répondent), ainsi que quelques propriétés pratiques : en particulier, nous décrivons
les comportements de l’algèbre vis-à-vis des restrictions, sous-groupes, produits di-
rects... Enfin, nous énonçons la conjecture, ou plutôt question, de Macpherson, ainsi
que la résolution du cas particulier d’un profil borné par Pouzet.

Préparation du terrain par des études de cas et quelques no-
tions de théorie de groupes

Nous enchaînons avec un chapitre qui engage la transition vers le travail personnel
de l’auteure de la thèse. Les résultats présentés ici ne se prétendent pas originaux
et les notions préexistent, mais bon nombre de preuves sont de la main de l’auteure
et les raisonnements menant à la réalisation de nos objectifs se trouvent amorcés.
En particulier, ce chapitre s’intéresse à la mise en œuvre d’une stratégie largement
usitée, à savoir celle qui consiste à tenter de séparer le problème pour l’étudier sur
des cas le plus élémentaires possible, avant d’en déduire le cas général.

La première section constitue une étude de cas, naturel car relativement «sim-
ple», et qui s’avérera plus essentiel que prévu : celui des produits en couronne. Nous
en donnons la définition et les abordons sous l’angle des conjectures, qui trouvent
chez eux une résolution presque immédiate dès lors qu’ils présentent une certaine
forme.

La seconde section introduit la notion centrale de notre preuve, dont l’examen a
été encouragé par celle de décomposition monomorphe des structures relationnelles,
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comme mentionné plus haut : les systèmes de blocs des groupes de permutations.
Nous en citons quelques exemples utiles, à la suite de quoi nous nous intéressons
au cas des groupes primitifs, soit ceux qui n’en possèdent pas. Sous l’hypothèse
de P -oligomorphie, ces groupes, dits hautement homogènes, ont un profil qui vaut
uniformément 1, et sont classifiés (à clôture près) — ce qui facilitera grandement
notre entreprise.

Un dernier élément nous est nécessaire : le sous-produit direct. Cette notion
de théorie des groupes (en l’occurrence) formalise le concept de synchronisation
entre deux ensembles stables sur lesquels un groupe agit simultanément, comme
par exemple deux orbites d’éléments. Comme il s’avère qu’une synchronisation est
déterminée par un sous-groupe normal, et que les groupes primitifs P -oligomorphes
en sont très pauvres, ces groupes auront un comportement prévisible et agréable
sous ce rapport.

Première étape de la preuve : étude des systèmes de blocs

Toute la suite de la thèse constitue un travail original. Les trois chapitres suivants,
rassemblés dans une troisième grande partie, sont consacrés à la preuve proprement
dite de la classification des groupes P -oligomorphes, et par corollaire des conjectures
présentées plus haut.

Dans ce premier chapitre, nous explorons les informations apportées par la don-
née d’un système de blocs; en particulier, en désignant un surgroupe plus simple
(essentiellement un produit direct de produits en couronne), un tel système fournit
une borne inférieure sur la croissance du profil. Nous amenons aussi doucement
l’idée de considérer des blocs de blocs dans ce même objectif.

Nous exploitons ensuite les structures de treillis sur l’ensemble des systèmes de
blocs (finis, infinis, ou sans restriction) pour tenter de maximiser la borne obtenue,
afin de choisir un système d’étude du groupe le plus pertinent possible.

En dernier lieu, nous en venons à notre construction phare, celle d’un système
de blocs infinis de blocs finis (sobrement nommés superblocs) soigneusement sélec-
tionné et défini de manière unique, que nous appelons le système emboîté. En plus
d’optimiser la borne, il a l’immense mérite de faire apparaître des groupes haute-
ment homogènes partout où cela est possible, facilitant de ce fait la dissection des
synchronisations au sein du groupe.

Deuxième étape : classification sur la brique de base

Ce chapitre est consacré au cas d’un groupe dont le système emboîté consiste en un
seul superbloc. Nous rappelons quelques exemples naturels, comme le produit en
couronne d’une part, dans lequel les actions au sein de chacun des blocs finis sont
toutes indépendantes; d’autre part l’exact opposé, avec une seule action diagonale,
c’est à dire simultanée, sur le contenu des blocs; enfin, la situation intermédiaire
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d’un produit en couronne sur lequel on aurait ajouté une action diagonale supplé-
mentaire. Nous annonçons dans la foulée un résultat de classification dans ce cas
particulier, qui affirme très simplement que ces exemples contiennent en fait tous les
cas de figure. La section suivante en entreprend la preuve.

La première étape consiste à étudier la manière dont les blocs finis permutent
entre eux. Elle établit que nous pouvons, modulo renumérotation, considérer que
toutes leurs permutations peuvent s’effectuer sans modifer l’ordre des éléments de
chacun des blocs (ce que nous appelons de manière imagée le lemme de l’échelle),
donc en particulier sans interaction avec l’action du groupe sur le contenu des blocs.

En vertu de quoi, nous pouvons ensuite et indépendamment nous intéresser au
stabilisateur des blocs, seul vecteur de l’action du groupe au sein des blocs. Cette
seconde étape définit la notion de tour d’un groupe mono-superbloc, destinée à
observer les synchronisations internes de cette action.

Nous classifions les tours de ces groupes, aidés en cela, d’une manière qui est
transparente pour le lecteur mais sur laquelle nous reviendrons plus tard, de l’explo-
ration informatique de nombreux exemples. Les tours se révèlent avoir une forme
extrêmement rigide et dont toute l’information tient en deux groupes finis : la
restriction à un bloc et un sous-groupe normal de cette restriction, qui est en fait la
restriction à un bloc en supposant qu’un autre est fixé point par point.

En invoquant le sous-produit direct, nous montrons ensuite que la tour détermine
entièrement le stabilisateur, et donc le groupe entier puisque le groupe agissant
par permutation des blocs est essentiellement connu — ce qui permet de relever la
classification des tours à celle des groupes eux-mêmes.

Troisième étape : généralisation de la classification; résolution
des conjectures et autres bénéfices immédiats

Dans le dernier chapitre de cette troisième partie, nous finalisons la preuve de la
classification en deux étapes : nous exhibons le sous-groupe normal d’indice fini
minimal K à partir du système emboîté, puis nous l’utilisons pour mettre en év-
idence la structure de produit du groupe P -oligomorphe dont il est issu, et de là
définir un encodage fini de ce groupe. Nous montrons ensuite que cet encodage clas-
sifie intégralement les groupes P -oligomorphes clos (ou encore les âges des groupes
P -oligomorphes).

L’algèbre des orbites de K est de Cohen-Macaulay, et nous en connaissons une
décomposition de Hironaka; comme le groupe entier G agit par permutation sur
les générateurs, en nombre fini, de cette algèbre, l’algèbre de G se trouve donc (à
un quotient naturel près) être une algèbre d’invariants. En particulier, elle est de
Cohen-Macaulay, et les conjectures de Macpherson et de Cameron sont démontrées.
Nous en profitons pour citer quelques autres conséquences et bénéfices immédiats
de la classification : calcul du profil; une structure relationnelle de même âge moins
gourmande en relations que la structure traditionnellement associée; dénombrement
des groupes P -oligomorphes.
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Un aperçu de la démarche expérimentale et de l’implémentation
des groupes P -oligomorphes

Ce premier chapitre de l’annexe est consacré au travail de programmation. La
première section, sans répertorier tous les tests effectués dans d’autres contextes
moins décisifs, donne une idée de la démarche expérimentale qui a conduit à la
classification des tours sur un superbloc seul. Nous fournissons et décrivons le code,
écrit dans le langage GAP, et nous joignons quelques exemples d’exécutions qui ont
contribué à établir des conjectures, que nous avons ensuite pu prouver de manière
théorique.

D’autre part, une fois obtenue, la classification a permis d’implémenter les groupes
P -oligomorphes, au travers d’une hiérarchie de classes dans le logiciel SageMath.
Nous incluons ici quelques courts extraits de ce code, qui serait trop long à joindre
intégralement mais dont nous donnons un aperçu d’utilisation type.

La preuve initiale des conjectures

Nous donnons également en annexe l’approche initiale utilisée pour prouver les con-
jectures de Macpherson et de Cameron, avec des résultats intermédiaires intéres-
sants, bien que cette approche soit globalement plus faible et ne permette pas de
classifier les groupes. Elle repose sur de la théorie des invariants, et en particulier
sur un résultat de réduction du problème : si un sous-groupe normal d’indice fini de
G a son algèbre de type fini, alors G aussi; ceci s’appliquant également à la propriété
d’être de Cohen-Macaulay. Il suffit donc de prouver la génération finie sur un tel
sous-groupe, et en bonus la propriété de Cohen-Macaulay. Ceci permet une série
de réductions pratiques destinées à simplifier le groupe P -oligomorphe et donc le
problème.

Nous énumérons les réductions qui nous seront utiles, puis prouvons le théorème
qui les autorise en adaptant la preuve du théorème de Hilbert sur l’algèbre des
invariants, ainsi qu’une preuve de Stanley.

Enfin, nous appliquons les réductions à un groupe générique et utilisons d’autres
résultats de la thèse pour conclure.
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Context and contribution of the thesis

Foreword on combinatorics and algebraic combinatorics

Traditionally, combinatorics are defined as the “art of counting”, with a range a
applications from theoretical computer science (counting the necesary operations to
run some given algorithm) to statistical physics (counting the possible states of a
system), not to mention mathematics of course.

Oftentimes, what needs to be counted depends on an integer n (typically the size
of the input data for an algorithm, or the size of the system in physics). We will
thus obtain an infinite sequence of numbers u0, u1, u2, · · · , of which we can try to
study the behavior when n grows (for instance in order to determine the complexity
of the algorithm, or the macroscopic behavior of a system). To manipulate such a
sequence, it is convenient to gather its terms into a formal power series :

H(z) = u0 + u1z + u2z
2 + · · · .

Properties of the sequence commonly correspond to (algebraic, differential, ...) equa-
tions on the series. For instance, un satisfies a relation of linear recurrence if and
only if H(z) is a rational fraction:

H(z) =
P (z)

Q(z)
.

This paves the way for some algebraic manipulations destined to study the behavior
(asymptotic in particular) of the original sequence: we enter the world of algebraic
combinatorics.

This branch of combinatorics, as suggested by its name, uses algebraic tools
to tackle combinatorics problems — and the other way around. It often implies
adding some more structure on the studied objects: for example a structure of
algebra by defining an adapted product; an order on the objects; or other relations
or operations.

The research and exploitation of such structures allow to see the object in a
new light, to highlight its internal arrangement, and more generally to understand
it better.

15
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On the other hand, bringing a combinatorial viewpoint to algebraic objects (for
instance by associating partitions to the characters of a group) enables to visualize
some situations more clearly, and makes it easier to use an algorithmic approach to
the problem.

Profiles of relational structures

Let us get back to counting sequences, or equivalently counting functions, and to
the series encoding them. A classical instance of this situation is the counting of the
number ϕ(n) of graphs on n vertices, up to an isomorphism. One gets

Hϕ(z) = 1 + z + 2z2 + 4z3 + 11z4 + · · ·

This problem can be rephrased as follows. Consider the Rado graph R, that is the
infinite graph obtained with probability 1 if, for every pair of vertices in a countably
infinite set, one flips a coin to decide if they are linked by an edge. Intuitively, we
define an induced subgraph (of the Rado graph for example) as a subset of vertices
endowed with the same edges as in the original, embedding graph.

Proposition 0.0.6. Every simple graph appears, up to isomorphism, as an induced
subgraph of the Rado graph.

Consequently, ϕ(n) can also be defined as the number of induced subgraphs on
n vertices of R, up to an isomorphism.

More generally, consider a relational structure R, that is a countably infinite set
endowed with one or more relations, binary or not. The profile ϕ of the relational
structure R counts, for each integer n, the number ϕ(n) of induced substructures of
R on subsets of size n, up to isomorphism.

This very general case admits the following particular cases, that have been
studied independently:

• In combinatorics of words [Lot97]: the study of the complexity of an infinite
word, which is the number of its factors of length n;

• In combinatorics of permutations [KK02; AMB07]: the counting of classes of
permutations, some permutation sets defined by pattern avoidance;

• In graph theory, posets and tournament theory [BBM06; Bal+09; BP10]:
counting of the finite subgraphs of an infinite graph up to isomorphism;

• In group theory [Cam09; Mac85a; Mac85b]: study of the orbital profile of an
infinite permutation group, counting of the orbits of a group.

To be specific, one would need in some cases to broaden the setting to hereditary
classes of finite structures; see [Kla08; Bol98] for an overview.
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Behavior and conjecture of Cameron

The study of the profiles of relational structures is a whole research domain since the
seventies [Fra00; Pou06]. Their asymptotic behavior in particular has largely been
investigated. We know for instance ([Pou76][Cam90, Section 3.1]) that a profile is
always non decreasing. Studies also mention, in each of the cases presented above,
a phenomenon of “gaps” in the possibilities of asymptotic behavior: the growth of a
profile is either weakly polynomial: ank 6 ϕ(n) 6 bnk for n large enough and some
a, b and k; or faster than any polynomial [Pou78; Pou06; BBM06; Kla08]. Pouzet
proved that this phenomenon occurs for every relational structure under some mild
conditions.

Consistent results in the various contexts [PT13; KK02; Bal+09] suggest that
this theorem might be strenghened:

Conjecture 0.0.7. If the profile of a relational structure is bounded above by a
polynomial, then it is asymptotically equivalent to a polynomial: ϕ(n) ∼ ank; fur-
thermore, f is a quasi-polynomial:

ϕ(n) = ak(n)nk + · · ·+ a0(n)

where the coefficients ai(n) are periodic functions.

Note that, if a profile is quasi-polynomial, then it is automatically asymptotically
equivalent to a polynomial, knowing that it does not decrease.

In the particular case of orbital profiles, when the profile counts the orbits of a
permutation group, this conjecture is due to Cameron in [Cam90, Section 3.6].

The case of oligomorphic groups

Counting objects under a group action is a recurrent endeavor of combinatorics,
which makes the case of orbital profiles particularly interesting. In a context where
we focus on the values and behaviors of profiles, it is natural to narrow our interest
to groups with a profile that only takes finite values, called oligomorphic.

Note that these groups spontaneously appear in the domain of model theory. In-
deed, as highlighted by Cameron in [Cam90, Section 2.5], a denumerable relational
structure R is ℵ0-categorical (which means that its theory is ℵ0-categorical, or in
this case that R is the unique denumerable model of its theory) if and only if its
automorphism group is oligomorphic.

One of the contributions brought by this thesis is to prove the conjecture of
Cameron on the profile of oligomorphic groups. It will actually be a corollary of
another conjecture, that we will now proceed to introduce.

Algebra structure and conjecture of Macpherson

It is a commonly used property (see for instance [Sta97]) that the quasi-polynomiality
of a sequence corresponds to its series being of shape

P (z)

(1− zd1)(1− zd2) · · · (1− zdk)
, (0.2)
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with 1 = d1 6 · · · 6 dk and P (z) ∈ Z[z].
These series naturally appear in commutative algebra. Indeed, let A be a con-

nected graded commutative algebra. If A is finitely generated, then its Hilbert series
is necesarily of the form (0.2), where the di are the degrees of a minimal set of ho-
mogeneous generators [CLO97, Chapter 9, §2]; the reciprocal is not true however.

This kind of link between algebra and properties of the profile motivated the in-
troduction by Cameron of a structure of graded algebra on the orbits of a permuta-
tion group, called the orbit algebra Q[AG] (more generally age algebra for a relational
structure), of which the Hilbert series coincides with that of the profile [Cam97].

A possible approach to show that the profile is a quasi-polynomial when bounded
by a polynomial is then to study the orbit algebra of the group: if it is finitely
generated, the profile is a quasi-polynomial.

The following question is then quite natural.

Question 0.0.8. Let R be a relational structure with profile bounded by a polyno-
mial. Is its age algebra finitely generated ?

The answer to question 0.0.8 is negative in general; for instance, the algebras
of tournaments are finitely generated if and only if the profile is bounded [Pou06,
Theorem 27]). In the particular case of groups however, this property has been
conjectured by Macpherson — who, as noticed by one of the reviewers of [FT18],
did not feel confident enough about the fact to even call it a conjecture, using the
word question instead.

Conjecture 0.0.9 (Macpherson, 1985 [Mac85a]). Let G be a permutation group of
profile bounded by a polynomial, then its orbit algebra Q[AG] is finitely generated.

This conjecture, stronger than Cameron’s, is the core aim of this thesis. The
particular case of a bounded profile had already been solved by Pouzet, who also
proved that the orbit algebra is an integral domain as soon as the group does not
have finite orbits of elements [Pou08].

Results of the thesis

This thesis brings a proof to the conjecture of Macpherson, and thus to Cameron’s
as a consequence.

Among other notions and tools, one of the key ingredients of the proof in the
general case is the notion of block systems ; studying them has been inspired by
the monomorphic decompositions of relational structures, that they generalize. In-
deed, the finite generation of the age algebra of a relational structure with a fi-
nite monomorphic decomposition has a combinatorial characterization uncovered
by Pouzet and Thiéry [PT18]; this case was thus very well known.

The initially used method was then widely based on invariant theory : an adap-
tation of Hilbert’s proof of his famous theorem enabled to show that the property of
finite generation could be lifted to any finite index supergroup, allowing for a series
of reductions of the problem (to finite index subgroups), until we find ourselves in
a simpler situation. An experimental approach by exploring many examples on a
computer proved crucial to complete the solution.
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Although this first proof is interesting in itself, we will finally tell another story
in this manuscript. (The results suggested by the computational exploration stay
decisive nevertheless.)

Indeed, after a positive answer to the conjectures was found, the slightly more
subtle question of the Cohen-Macaulay property could be approached. One of the
interests of this property is that the numerator of the Hilbert series has then positive
integer coefficients.

The idea seemed legitimate, considering various particular cases: the invariant
algebras of finite groups, notably, can be realized as orbit algebras and have this
well known property. The investigation of this problem, requiring a more exhaustive
understanding of the structure of the algebra, led to rethink the original proof of the
conjectures, and finally to a classification of P -oligomorphic groups (up to closure),
which is how we call the permutation groups with profile bounded by a polynomial.
This classification is our most important result. Informally, a P -oligomorphic group
is uniquely and entirely described by a finite permutation group endowed with a
block system, each block of which is decorated by a pair of groups — one finite,
the other infinite — satisfying some explicit conditions. The classification of groups
also hands a classification of the orbit algebras, that are just (up to a so-to-speak
harmless quotient) invariant algebras with an unusual graduation.

Theorem 0.0.10. Let G be a permutation group whose profile is bounded by a
polynomial. Then, Q[AG] is isomorphic to the algebra of invariants of some finite
permutation group acting on variables of known degrees, quotiented by the relations
x2 = 0 for some of the variables. In particular, Q[AG] is Cohen-Macaulay, and the
profile is a quasi-polynomial that is equivalent to a polynomial.

The class of P -oligomorphic groups seems thus to be significantly more rigid
than expected, and their algebras, actually well known, cannot be fundamentally
considered a new class of commutative algebras.

Our work is finally presented here as a journey to the classification. Not only
does it admit the two conjectures as direct corollaries, but it brings a deep under-
standing of P -oligomorphic groups and their algebras. In particular, by providing
an explicit finite encoding of the groups, it allows for an efficient implementation of
these on a computer and a computation of their profiles using a generalization of
Pólya enumeration. The P -oligomorphic groups can now be constructed, manipu-
lated, enumerated.

Content and plan of the thesis

This thesis is divided into three main parts, plus an appendix. The first part is
dedicated to preliminaries: it exposes the prerequisites from the different domains
involved, and provides some examples that will become important actors in our work
towards the conjectures.
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Algebraic combinatorics: counting functions, series, products;
lattices

We begin with the introduction of a few fundamentals of algebraic combinatorics:
graded sets and counting functions, of which profiles are instances, and their gener-
ating series. We give examples and dive into the algebraic aspects by presenting the
concept of graded product, which we can use to endow our graded sets with a relevant
structure of graded algebra. We explore the interactions between the graded alge-
bras and their Hilbert series, that provide substantial information on the counting
function.

In a bit of a side section, we evoke the notions of order, poset, and lattice. We
cite a few basic properties of these objects, as well as the example of the lattice of
set partitions, that will be of particular interest to us.

Group and invariant theories

In a second chapter, we broach the subjet of permutation groups, and more generally
group actions, of which we list some fundamental properties. We give the crucial
example of the induced action on subsets.

We also bring to mind the notions of cosets of a subgroup, index and normality,
that we will be using a lot in the sequel.

The next section is dedicated to invariant theory: we introduce the concept of
invariant algebra of a finite permutation group, and we highlight some of their struc-
tural properties, in particular their being Cohen-Macaulay.

Finally, we proceed to explain the functioning of Pólya enumeration, an extremely
effective method for counting objects under a finite group action; taking advantage
of the classification result we will have obtained by the end of this document, we
will later use this method to systematically compute the profiles of P -oligomorphic
groups.

Relational structures and oligomorphic groups, orbit algebras;
conjectures

In the next chapter, that opens the second main part of this manuscript, we finally
turn to the domain that this thesis originates from, and expose the problems that we
aim at proving. We first introduce relational structures and their profiles, as well as
their age algebras, and we briefly outline some important results from this research
field.

We then transition to the particular case of oligomorphic groups: the profiles
of homogeneous relational structures actually count the orbits of a group; and the
orbital profiles can always be realized as profiles of a homogeneous relational struc-
ture. We provide some examples and present here the conjecture of Cameron.
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Before endowing the set of orbits with its graded algebra structure, we dwell on
the notion of closure of a group with relation to the simple convergence topology,
and conclude that we can and should, while studying ages and profiles, work only
with closed groups. Indeed, taking the closure of a group does not impact its orbits
of subsets.

Next, we expose a construction of the orbit algebra (seemingly a bit different from
the one we gave for the age algebras, although they essentially coincide), as well as
a few practical properties: in particular, we describe the behavior of the algebra
when it comes to restrictions, subgroups, direct products... Finally, we present the
conjecture, or rather question, of Macpherson, together with the solution of the case
of a bounded profile found by Pouzet.

Preparing the ground by case studies and a few more notions
from group theory

We go on with a chapter that transitions to the personal work of the author of the
thesis. The results presented here do not claim to be original and the notions pre-
exist, but many of the included proves are by the author and the reasoning towards
our objectives is initiated. In particular, this chapter intends to lay the groundwork
for the use of a quite reknown strategy, that of trying to divide the problem one is
facing in order to study it on the most elementary possible cases, before taking on
the general case.

The first section is a case study, natural because relatively “simple”, that will
prove more fundamental than expected: that of wreath products. We give the def-
inition and consider them from the angle of the conjectures, that are both easily
validated on them as soon as they satisfy some natural conditions.

Then, we introduce the central notion of our proof, whose examination, as men-
tioned earlier, was inspired by that of monomorphic decompositions of relational
structures: the block systems of permutation groups. After giving a few examples,
we focus on the case of primitive groups, those that do not have any non trivial ones.
Under the hypothesis of P -oligomorphism, these groups, called highly homogeneous,
have a constantly equal to 1 profile, and are classified (up to closure) — which will
make things easier for us.

We will need a last prerequisite: the subdirect product. This notion from group
theory (here) formalizes the concept of synchronization between two stable sets a
group acts on simultaneously, such as for instance two orbits of elements. As it turns
out that a synchronization is determined by a normal subgroup, and that primitive
P -oligomorphic groups have very few, these groups will have a pleasant behavior
regarding this matter.
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First step of the proof: study of block systems

The sequel of the thesis is an original work. The next three chapters, gathered into
a third part, are dedicated to the proof of the classification itself, and consequently
of the conjectures presented above.

In this first chapter, we explore the information brought by the knowledge of a
block system; in particular, by handing a simpler supergroup of finite index (essen-
tially a direct product of wreath products), such a system provides a lower bound
on the growth of the profile. We slowly bring up the idea of considering blocks of
blocks with the same goal.

We then exploit the lattice structures on (finite, infinite or unrestricted) block
systems to try to maximize the obtained bound, in order to choose a relevant system
where to best study the group.

Eventually, we come to our flagship construction, that of a carefully selected
and uniquely defined system of infinite blocks of finite blocks — simply named
superblocks. We call this special system the nested block system of the group. Besides
optimizing the bound, it has the nice property of revealing highly homogeneous
groups wherever possible, making it easier to dissect synchronizations within the
group.

Second step: classification on the elementary brick

This chapter is dedicated to the case of groups of which the nested block system
consists of only one superblock. We remind a few natural instances, such as wreath
products on the one hand, in which the actions within each of the finite blocks are
all independent; and the exact opposite on the other hand, with a single diagonal, si-
multaneous action on the elements of the blocks altogether; finally, the intermediary
situation of a wreath product with an additive diagonal action. We assert a result of
classification in this case, that simply states that these examples actually incorpo-
rate all possibilities. The remainder of the chapter takes on the proof of this theorem.

The first stage consists in the study of the way the finite blocks permute. It
shows that we can, up to relabelling, assume that all of their permutations can
occur without changing the order of the elements within each block (a fact to which
we give the full of imagery name of “ladder lemma”), in particular without interacting
with the action of the group within the blocks.

We can then and independently examine the block stabilizer, sole actor of the
action within the blocks. This second step defines the tower of a group with a single
superblock, destined to study the internal synchronizations of this action.

We classify the towers of these groups, helped by the computer exploration of
numerous examples, in a way that is transparent for the reader but that we will
dwell on later. Towers turn out to have a very rigid shape, with all the information
concentrated into two finite groups: the restriction to a block and a normal subgroup
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of this restriction, which is actually the restriction to a block after assuming that
another one is fixed.

Using the subdirect product, we then show that the tower entirely determines
the block stabilizer, and thus the whole group since the action on the blocks is
essentially known — which makes it possible to lift the classification of towers to
the groups themselves.

Third step: generalization of the classification; solution of the
conjectures and other immediate repercussions

In the last chapter of this third part, we finish the proof of the classification in two
steps: we exhibit the minimal normal subgroup of finite index K of G from the
nested block system, and then we use it to uncover the product structure of the
P -oligomorphic group G and to define from there a finite encoding of this group.
We show that this finite encoding classifies the P -oligomorphic groups, up to closure
(and thus classifies the ages of all P -oligomorphic groups).

The orbit algebra of K is Cohen-Macaulay, and we do know a Hironaka decompo-
sition; as the groupG acts on the finitely many generators of this algebra, the algebra
of G is therefore (up to a natural quotient) an algebra of invariants. In particular, it
is Cohen-Macaulay, and the conjectures of Macpherson and Cameron are positively
solved. We take the opportunity to list a few other immediate consequences: com-
putation of the profile; a relational structure of same age that requires less relations
than the traditionally associated structure; enumeration of P -oligomorphic groups.

A glimpse at the experimental approach and the implementa-
tion of P -oligomorphic groups

This first chapter of the appendix deals with the programming work. The first sec-
tion, without mentioning all tests that have been performed in less decisive contexts,
gives an outline of the experimental approach that led to the classification of towers
on a single superblock. We provide the code, written in the GAP language, and
describe it. We include a few examples of runnings that contributed to conjecturing
some results, before proving them theoretically.

On the other hand, once obtained, the classification allowed to implement P -
oligomorphic groups, through a hierarchy of classes in the SageMath software. We
include here some short extracts of that code, which is too long to fit in here; we
provide an instance of use instead.

The initial proof of the conjectures

We also include in the appendix the original approach used to solve the conjectures
of Macpherson and Cameron, with some interesting intermediary results, although
this method is weaker as a whole and does not end up classifying the groups. It relies
on some invariant theory, particularly on a reduction result: if a normal subgroup of
finite index of G has a finitely generated algebra, then so does G; this remains true
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for the Cohen-Macaulay property. It is thus sufficient to prove the finite generation
on such a subgroup, as well as the Cohen-Macaulay property. This allows for a series
of convenient reductions that simplify the group and therefore the problem step by
step.

We list the reductions we will need, and then prove the theorem that allows
them by adapting the proof the Hilbert theorem on the invariant algebra, as well as
a proof of Stanley.

Finally, we apply the reductions to a generic group and use other results of this
thesis to conclude.



Part I

Background
A flavor of algebraic combinatorics,

with touches of group theory
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Summary

This part exposes the background and necessary material to understand this thesis
and the different objects we will be dealing with. No result here is from the author
of the thesis, and we try to provide references in which they can be found in a wider
perspective.

Chapter 1 will first introduce some basic elements of algebraic combinatorics,
starting with graded sets, counting functions, and generating series. We then tran-
sition to more algebraic aspects: endowing a graded set with a relevant product
allows to turn it into a graded algebra, of which the Hilbert series coincide with the
series of the counting function. We recall some general properties of these objects,
and provide examples. Eventually, we bring up another kind of structure, which is
that of partially ordered sets, often called posets, and we highlight the case of lattices.

Chapter 2 is dedicated to objects and methods from the world of algebra, espe-
cially group theory and invariant theory. We first present some generalities about
permutation groups — a subclass of which will be our main objects of study —
and more generally group actions. Then, we explore a tiny bit of invariant theory,
and give some fundamental results. Finally, we describe the enumeration method of
Pólya, which can allow to count objets under a finite group action.
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Chapter 1
Notions of algebraic combinatorics
and some features most classical

This chapter is dedicated to some classical objects and tools of algebraic combina-
torics.

Section 1.1 first introduces the notion of combinatorial class, or more generally
of graded set, and that of counting function. We give classical examples and provide
some vocabulary regarding the asymptotic behaviors of counting functions. We
introduce the concept of generating series, and illustrate their usefulness with a few
properties.

Then, Section 1.2 dwells on graded algebras and their Hilbert series: a first
subsection of general commutative algebra recalls some of their properties, and we
then give a glimpse of how we can enrich a graded set into a graded algebra.

Last, Section 1.3 defines the notion of relation, and develops the particular cases
of orders and lattice structures.

1.1 Combinatorial classes and generating series

1.1.1 Examples of combinatorial classes and counting func-
tions

Informally, a combinatorial class C is a countable set of objects endowed with a
notion of size, or degree. A bit more precisely, it is a graded set C = tnCn such that
each Cn, the subset of objects of size n, is finite.

A very basic instance of this, the collection of words on a finite alphabet A form
a combinatorial class A ∗, with the length of words as degree. If A is just the 2
letters alphabet {a, b}, we have

A ∗ = {ε, a, b, aa, ab, ba, bb, aaa, . . .} = {ε} t {a, b} t {aa, ab, ba, bb} t · · ·

where ε denotes the empty word. The number ϕ(n) of words of size n is 2n (more
generally mn if A contains m letters).
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and some features most classical

The function ϕ : N → N is an instance of what is called a counting function. It
can of course equivalently be seen as a sequence (and be called a counting sequence)
ϕ = (ϕn)n∈N = (ϕ(n))n∈N, but we will usually prefer the function notation, which
keeps room for other indices. Counting functions are a core feature in combinatorics,
and some of them are quite famous.

Definition 1.1.1. A partition (or integer partition) λ is a vector (λ1, λ2, . . . , λl)
such that the λi’s are weakly decreasing integers: λ1 > λ2 > · · · > λl. The length
`(λ) of λ is l, its width is λ1 and its size is the sum n of integers λ1 + · · · + λl. We
also say that λ is a partition of n.

For instance, there are 5 partitions of size 4 (we willingly omit here both commas
and parentheses):

4

3 1

2 2

2 1 1

1 1 1 1

The number of partitions of size n is usually denoted by p(n). One can also count
the partitions with a restriction on the length, for instance by considering only those
with length less than an integer k. The obtained counting function pk(n) is actually
the same as if we decided to count the partitions with width less than k.

This is easily understandable by considering the reprentation of partitions as
Young diagrams . For instance, the following Young diagram represents the partition
(6, 3, 2, 2), the number of squares of the i-th row being λi.

If one chooses to read the diagram by columns rather than rows, one obtains the
partition (4, 4, 2, 1, 1, 1), of which the associated Young diagram is the following.

The second one was simply obtained by a reflection according to the first diagonal
(the axis y = x using the matrix style coordinates), which obviously exchanges the
length and width of the diagram, and thus of the partitions they represent.

As other very classical examples of combinatorial classes and counting functions,
one can mention graphs, of size their number of vertices; or binary trees, of size
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their number of nodes; or Dyck paths, of size half their length. These last two are
actually counted by the same sequence: the most famous Catalan numbers. This
kind of observation usually leads to the search for a structural bijection between
the two families: in this case, there is a huge variety of Catalan objects and nice
bijections between them, bringing a deep understanding of these objects.

1.1.2 Growths

Definition 1.1.2 (Asymptotic behaviour of sequences). Let f = (fn)n be a se-
quence of (real) numbers. We say that f (or with slight abuse fn) is

1. bounded (above) by a polynomial , and we write fn = O(nk), if there exist some
number α and some integer k such that we have fn 6 αnk for n large enough.

2. polynomial in the weak sense if there exist some numbers α, β and some integer
k such that we have αnk 6 fn 6 βnk for n large enough. The integer k is
sometimes called the growth rate of f . If it is equal to 1 (resp. 2, 3), we say
that f has linear (resp. quadratic, cubic) growth.

3. (asymptotically) equivalent to another sequence (gn)n which takes only finitely
many times the value 0, and we write fn ∼ gn, if we have limn→∞

fn
gn

= 1.
When gn is a polynomial in n, we say that f is polynomial in the strong sense,
or just polynomial.

4. exponential if there exist some numbers α, β, γ such that we have α exp(γn) 6
fn 6 β exp(γn) for n large enough.

Example 1.1.3.

(1) The counting function of words over a finite alphabet is exponential (see pre-
vious subsection).

(2) The counting function of combinations (basically unsorted partitions) is expo-
nential as well: indeed, there is a bijection between the combinations of size n
and the subsets of {1, . . . , n− 1} (just identify a combination to the set of its
descents), of which there are 2n−1.

(3) The counting function of integer partitions is neither bounded by a polynomial
nor exponential or above. We know an equivalent to it, thanks to Hardy and
Ramanujan:

p(n) ∼ 1

4n
√

3
exp

(
π

√
2n

3

)
.

(4) On the other hand, the sequence pk counting the partitions with a length or
width restriction is polynomial, as we have:

pk(n) ∼ nk−1

k!(k − 1)!
.




Chapter 1 — Notions of algebraic combinatorics

and some features most classical

1.1.3 Generating series

When studying a sequence of numbers, it is often a good idea to encode it into a
power series, as the coefficients of the series. It is in particular very relevant in the
context of the study of profiles, a notion we will introduce in a later chapter and
that is at the core of this work.
Although all the results of this subsection remain true for any sequence of numbers,
real or complex, we will stick to the vocabulary and notation of our use case, which
is that of counting functions.

Definition 1.1.4. The generating series (in z) Hϕ(z) of a sequence ϕ = (ϕ(n))n of
numbers is the formal power series defined by

Hϕ(z) =
∑
n

ϕ(n)zn .

Some properties of the sequence translate into properties of the series, as in the
case of the following fundamental result, that can be found in [Sta97] (where it is
both stated and proved over C rather that Q, but the field does not actually matter).

Proposition 1.1.5. Let ϕ = (ϕ(n))n be a sequence of rational numbers or integers,
and α1, . . . , αd ∈ Q be fixed rational numbers with αd non zero. The following are
equivalent:
(i) The generating series of ϕ has a rational shape:

Hϕ(z) =
P (z)

Q(z)

with P some polynomial over Q of degree less than d and Q(z) = αdz
d + · · ·+

α1z + 1 ;
(ii) For all n > 0, ϕ satisfies the relation of linear recurrence:

ϕ(n+ d) + α1ϕ(n+ d− 1) + α2ϕ(n+ d− 2) + · · ·+ αdϕ(n) = 0

where the αi are the coefficients of Q.

The proof being rather short, we recall it here.

Proof. Let V1 and V2 be the vector spaces over Q of the sequence that verify (i) and
(ii) respectively. Now in (i), we may choose the d coefficients of P (z) arbitrarily,
hence V1 is of dimension d. In (ii) we may choose ϕ(0), ϕ(1), . . . , ϕ(d− 1) and then
the other ϕ(n)’s are uniquely determined; hence V2 is of dimension d as well. Last,
if ϕ is in V1, then equate coefficients of xn in the identity Q(x)

∑
n>0 ϕ(n)xn = P (x)

to get that ϕ is in V2, which ends the proof.

Definition 1.1.6. A quasi-polynomial (or pseudo-polynomial) of degree d is a func-
tion ϕ : N 7→ Q of the form:

ϕ(n) = αd(n)nd + · · ·+ α0(n)

where each αi is a periodic function (with integer period) and αd(n) is not identically
zero.
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Trivially, the αi’s have a common period N (which is not unique, but one can
choose to take N as the least common multiple of the periods); such an integer
is called a quasi-period of ϕ. From this observation, one can equivalently define
a quasi-polynomial as a function for which there exist N > 0 and polynomials
ϕ(0), . . . , ϕ(N−1) such that we have ϕ(n) = ϕ(i)(n) whenever n verifies n ≡ i (modN).

Proposition 1.1.7. Let ϕ : N 7→ Q be a function, the following are equivalent.
(i) The function ϕ is a quasi-polynomial of quasi-period N .
(ii) ∑

n

ϕ(n)zn =
P (z)

Q(z)

where P and Q are polynomials over Q, every zero z0 of Q satisfies zN0 = 1
(in particular, Q is essentially a product of cyclotomic polynomials) provided
that the fraction is reduced to lowest terms, and the polynomial degrees satisfy
deg(P ) < deg(Q).

(iii) ∑
n

ϕ(n)zn =
P (z)∏

i(1− zdi)

not necessarily reduced to lowest terms, with di|N for each i, and deg(P ) less
than that of the denominator.

Furthermore, in case these are satisfied and ϕ is a counting function (meaning it
takes its values in N), P has integer coefficients in (iii).

The first equivalence of the proposition above is a natural consequence of Propo-
sition 1.1.5. The equivalence with the third item is immediate in one direction and
only needs numerator and denominator multiplication by some cyclotomic polyno-
mials in the other. (For the last sentence, just notice that if P had some non integer
coefficients, that of smallest degree could not be "compensated" by other terms when
expanding the product.)

Example 1.1.8. The generating series of pk is

k∏
i=1

1

1− zi
.

To get convinced of that, one can use the famous identity 1
1−Z = 1 + Z + Z2 +

· · · on each term and then try to develop the product. The sequence is therefore
(eventually) a quasi-polynomial. That can be “checked” easily on the case k = 2.
How many partitions of n into 2 parts at most? It is not difficult to obtain bn

2
c+ 1,

which is indeed a quasipolynomial since it behaves as n
2

+ 1 on the even integers and
as n

2
+ 1

2
on the odd integers.

1.2 Combinatorial algebras and Hilbert series
A more advanced technique when studying objects, combinatorial objects in partic-
ular, besides counting them and considering the generating series of their counting
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function, is to add some algebraic structure (over Q) on them. The crucial part
is to endow them with a product that makes sense, and by that we mean as first
requirement that it must be graded. We will also require it to be commutative.
We will start this section by recalling some definitions and properties about graded
algebras as abstract algebraic structures, then we will give a few examples.

1.2.1 Graded algebras and their Hilbert series

In any case that we may be interested in in the sequel, algebras will always be
commutative, so we state right now that all algebras are assumed to be com-
mutative in this thesis and in this section in particular. All algebras will also be
considered over Q.

Definition 1.2.1. A graded algebra is an algebra A:
(i) on which there is a notion of degree, that is a linear decomposition A =

⊕
nAn;

(ii) of which the product · is graded , which means it induces an application from
An × Am to An+m for each n,m ∈ N.

We say (as a recursive definition) that the degree deg(a) of an element a of A is n
if a lives in An or it is a sum of which the highest degree term is of degree n. A
graded product is thus a product · that satisfies:

deg(a · b) = deg(a) + deg(b)

for all a, b ∈ A.
The subspace An is called the homogeneous component of degree n of A, and its
elements are said to be homogeneous (of degree n).
Finally, A is said to be connected if A0 is just the base field (so Q in our case).

The absolute prototype of a graded (commutative) algebra is of course the alge-
bra of polynomials Q[x], with the classical notion of polynomial degree. It is also
connected.

Definition 1.2.2. The Hilbert function of a (commutative) graded algebra A is the
function h : n ∈ N 7→ dim(An) (where dim(An) is the dimension of An as a vector
space). The Hilbert series HA(z) of A is the generating series of its Hilbert function.

Lemma 1.2.3. Let A, A1 and A2 be graded (commutative) algebras. We have then:

1. A = A1 ⊕ A2 =⇒ HA = HA1 +HA2

2. A = A1 ⊗ A2 =⇒ HA = HA1HA2 .

We now introduce a few notions and properties that we will mainly be using in a
context of invariant theory, dwelled on a bit later. For this reason, one should expect
a scarcity of examples until then (although the polynomial algebras are trivial illus-
trations, and those familiar with the theory may think of symmetric polynomials).

The algebra A will be assumed to be connected and graded (and still commuta-
tive).



§ 1.2 — Combinatorial algebras and Hilbert series 

Definition 1.2.4. The Krull dimension of A is the maximal size of a set of elements
of A that are algebraically independent (meaning that they verify no polynomial
equation). If A is of Krull dimension r, a homogeneous system of parameters (some-
times abreviated into h.s.o.p.) for A is a set {θ1, . . . , θr} of homogeneous elements
of A that are algebraically independent.

Equivalently, an h.s.o.p. for A can be defined as a set {θ1, . . . , θr} of homogeneous
elements such that A is a finitely generated module over the subalgebra Q[θ1, . . . , θr]
(then r is necesarily the Krull dimension of A).

Theorem 1.2.5 (Noether’s normalization lemma). If A is finitely generated, an
h.s.o.p always exists.

Refer for instance to [ZS75, Theorem 25] for this theorem.

Corollary 1.2.6. If a (commutative) graded algebra A is finitely generated, then its
Hilbert series is of the form

HA(z) =
P (z)∏

i∈I(1− zdi)

with P having integer coefficients and degree less than that of the denominator, and
I being a finite set. In particular, with Proposition 1.1.7, the Hilbert function of A
is a quasi-polynomial in this case.

Example 1.2.7. The Hilbert series of the multivariate polynomial algebraQ[x1, . . . , xn]
is 1

(1−z)n . If x and y are two indeterminates (of degree 1), then the Hilbert series of
the algebra of polynomials Q[x, y3], for instance, is 1

(1−z)(1−z3)
.

Of course, the multivariate polynomial algebraQ[x1, . . . , xn] is of Krull dimension
n. One can also notice that a commutative Q-algebra A’s being of Krull dimension
n means that there exists an injective morphism from Q[x1, . . . , xn] to A, but not
from Q[x1, . . . , xn+1] to A, which can give an idea of the size of A. Recalling the last
item of Example 1.1.3, we derive the following lemma.

Lemma 1.2.8. If a (commutative) graded algebra A has Krull dimension m, then
its Hilbert function has a growth rate of at least m− 1.

The classical result that follows can be found for instance in [Sta79b].

Proposition 1.2.9. Let A be a connected graded commutative algebra. The following
sentences are equivalent.

(i) A is a free module (necessarily finitely generated) over the subalgebra Q[θ1, . . . , θr]:

A =
s⊕
j=1

ηjQ[θ1, . . . , θr] . (1.1)

The ηj’s may be chosen homogeneous as well.

(ii) For every h.s.o.p. {ψ1, . . . , ψr}, A is a free module over Q[ψ1, . . . , ψr].
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In the eventuality of (i) (and thus (ii)), the family of elements {ηj} verify Equa-
tion 1.1 if and only if it is a linear basis of the vector space A/(θ1, . . . , θr) (the
quotient by the ideal generated by the θi’s).

Definition 1.2.10. A connected graded commutative algebra that verify the sen-
tences of Proposition 1.2.9 is said to be Cohen-Macaulay (although the usual defi-
nition is a bit wider). Equation 1.1 is called a Hironaka decomposition of A.

Proposition 1.2.11. The Hilbert series of a Cohen-Macaulay algebra A is of the
form P (z)∏

i(1−zdi )
where P has integer coefficients.

Sketch of proof. This is a direct consequence of the equalityA =
⊕s

j=1 ηjQ[θ1, . . . , θr].
The Hilbert series of Q[θ1, . . . , θr] is

∏
i(1 − zdi)−1 where di is the degree of θi, so

the series of A is indeed P (z)∏
i(1−zdi )

with the coefficient of zk in P being the number
of ηj’s of degree k.

1.2.2 Examples of combinatorial vector spaces and algebras

In order to bring more structure to a graded set, the first natural thing to do is to turn
it into a vector space, by considering the space of finite formal linear combination
of the objects, or put otherwise a vector space of basis indexed by the objects of
the graded set. The obtained vector space V is then naturally graded : V =

⊕
n Vn.

This is hardly an end in itself but will allow to define interesting graded products
on our objects (actually on their vector space).

This will hand graded algebras, from which we might be able to retrieve more
information. In particular, a well constructed structure of graded algebra on a family
of combinatorial objects will have its Hilbert series equal to the generating series
of the counting function of the objects (see previous subsection for some interesting
properties).

We give a few simple examples of such algebras.

Example 1.2.12 (Graded products on words). Let A be an alphabet, and A ∗ the
set of words over A .

(1) We can endow the vector space formally generated by A ∗ with a graded prod-
uct called the concatenation of words:

A ∗ × A ∗ −→ A ∗

ω · υ 7−→ ωυ

For instance, over the two letters alphabet {a, b}, we have abbab · aba =
abbababa.

(2) The shuffle product on words over A is defined recursively by:

ω�υ =


ω if υ = ε,

υ if y = ε,

ω1(ω′� υ) + υ1(ω� υ′) otherwise,
with ω1, υ1 ∈ A such that ω = ω1ω

′, υ = υ1υ
′
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where ε is the empty word. The result of the product is the sum of all possible
shufflings that preserve the order of letters of ω and υ, respectively. We have
for instance:

ab� ba = abba+ abba+ abab+ baba+ baab+ baab

= 2abba+ 2baab+ abab+ baba

We call the algebra thereby defined a shuffle algebra (although this term is
traditionally used to designate the associated Hopf algebra).

Example 1.2.13 (Set algebra). Let Ω be a countably infinite set, and E(Ω) be the
set of all of its finite subsets, which is naturally graded by cardinality. We define
the following product on the vector space formally generated by E(Ω), the disjoint
union product . It is first defined on subsets by:

F1 · F2 =

{
F1 ∪ F2 if F1 ∩ F2 = ∅
0 otherwise

where F1 and F2 are two finite sets, and then by linearity. This product, which is
not integral but still graded, enables one to endow E(Ω) with a structure of graded
commutative algebra. The unit is the empty set.

In this thesis, we will be using a slightly different version, where one considers
the space of possibly infinite linear combinations of finite subsets, provided that
the cardinality of subsets involved in the combination is bounded. In other words,
if we denote by QEn(Ω) the vector space of (possibly infinite) linear combinations
of subsets of size n, then we will be considering the direct sum

⊕
nQEn(Ω). The

product stays the same.
We call this version the set algebra of Ω, and denote it by Q[EΩ].

1.3 Orders and lattices

1.3.1 Orders, posets

Definition 1.3.1. • A relation ρ on a set Ω is a collection of subsets of Ω of
shared cardinality r, or a collection of r-tuples (in this case the relation is
oriented). If a subset (resp. tuple) is in ρ, we say that E is in relation for ρ.

• The integer r is called the arity of the relation. A relation of arity 1 (resp. 2)
is said to be unary (resp. binary).

Definition 1.3.2. A poset P is a set endowed with a relation of order , that is a
relation ≤ which is
(i) reflexive: ∀a ∈ P , a ≤ a ;
(ii) transitive: ∀a, b, c ∈ P , if a ≤ b and b ≤ c then a ≤ c ;
(iii) antisymmetric: ∀a, b ∈ P , if a ≤ b and b ≤ a then a = b .
Furthermore, if for every a, b ∈ P we have either a ≤ b or b ≤ a, then the order is
said to be total (or linear). We write a < b when we have a ≤ b and a 6= b.

A subposet P ′ of P is a subset of P such that the partial order of P ′ is that of
P restricted to elements of P ′.
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Example 1.3.3.

(1) The set of real numbers R is endowed with the classical linear order on numbers
6 ; (Q,6) is a subposet thereof, as well as any subset of R. In (C, 6), the
relation 6 is not total any more.

(2) The lexicographic order is a total order on words.

(3) The relation of inclusion ⊆ is an order on subsets of {1, . . . , n} (or any set),
that is not total: the boolean order .

(4) There are many interesting orders on the permutations (of finite degree), such
as the weak order or the Bruhat order, that we mention without detailing.

Definition 1.3.4. For a, b ∈ P we say that b covers a, and we write a l b, if we
have a < b and there is no c ∈ P such that we have a < c < b. Such relations are
called cover relations .

Cover relations alone define the whole poset, as the other relations can be deduced
by transitivity. Hence, in order to represent a poset, we only need to picture elements
and cover relations: the Hasse diagram of the poset is used to display them. Usually,
the following convention is applied: a is linked by an edge to b and placed below it if
and only if al b is verified. As a result, smaller elements are located at the bottom
of the picture, as pictured in Figure 1.1.

Definition 1.3.5. An element a ∈ P is said to be minimal (resp. maximal) if there
is no b ∈ P such that we have b < a (resp. b > a).

We give a generic abstract example to illustrate all this.

a b

c

d e

Figure 1.1: Example of a Hasse diagram.

The cover relations of this poset are dl cl b, dl a and el b. The elements d
and e are minimal, a and b are maximal. The order is not total since a and b can
not be compared.

1.3.2 Joins and meets and lattices

Let E be a subset of elements of a poset P . The meet (or greatest lower bound) of
E, denoted by ∨E, is the unique element l, such that we have

a ≤ l ⇐⇒ ∀e ∈ E, a ≤ e (1.2)
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if it exists, and ∅ otherwise. Symmetrically, the join (or least upper bound) of E,
denoted by ∧E, is the unique element u, such that we have

a ≥ u ⇐⇒ ∀e ∈ E, a ≥ e (1.3)

if it exists, and ∅ otherwise. When E is a pair of elements {e1, e2}, we also write
∨E = e1 ∨ e2 and ∧E = e1 ∧ e2.

Definition 1.3.6. Let ρ be a relation on a set Ω. Its transitive closure is the smallest
relation on Ω that contains ρ and is transitive.

For instance if P is a poset, the transitive closure of its cover relations is the
poset itself.

Definition 1.3.7. A chain of a poset P is a set of elements {a1, a2, . . .} such that
the natural restriction of the order on this set is total.

Of course, a whole poset may be a chain: such is the case of (Q,6), for instance.
This specific poset is usually called the rational chain.

Definition 1.3.8. A meet-semilattice (resp. join semi-lattice) is a poset P such
that ∨X (resp. ∧X) is different from ∅ for any subset X of P .

A lattice is a poset which is a meet-semilattice and a join semilattice.

Lattice Poset (not a lattice)
a

b c

d

e f

g

a

b c

e f

g

Figure 1.2: Example and counter-example of a lattice.

Lemma 1.3.9. A meet semilattice (resp. join semillatice) with a unique maximal
element (resp. minimal element), then called a maximum (resp. minimum), is a
lattice.

The Hasse diagram on the right in Figure 1.2 gives an example of a poset which
is not a lattice. Indeed we see b ∨ c = ∅ and symmetrically e ∧ f = ∅. In contrast,
the Hasse diagram on the left is this is a lattice.

Another example of a lattice is the already mentioned boolean order on subsets
of a finite set, ordered by inclusion. The number of subsets is of course 2m if m
is the size of the full set, and the resulting Hasse diagram is a (hyper)cube of the
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{a, b, c}

{a, b} {a, c} {b, c}

{a} {b} {c}

∅

Figure 1.3: Lattice of the boolean order on a set of size 3

matching dimension. Following is the case of a set of size 3 (on which you can get
to see the cube shape).

Last, but not least, is the lattice of set partitions , ordered by refinement . We say
that a set partition {E1, E2, . . . , Er} refines another one {F1, F2, . . . , Fs} if for any
Ei there exists Fj such that Ei is a subset of Fj. As an example, {{1, 2}, {3}, {4}}
refines {{1, 2}, {3, 4}}, and the partition with only one part is the maximum of
the lattice while the partition into singletons is its minimum. We will have the
opportunity to come back to this specific lattice. We include here a nice picture of
the lattice of partitions of a set of size 4, made by Tilman Piesk (singletons are not
colored).

Figure 1.4: Lattice of set partitions on a set of size 4



Chapter 2
Group and invariant theories

In this second chapter of preliminaries, we explore the tools we will be needing from
group theory and invariant theory.

Section 2.1 is an overview of the basics about permutation groups and group
actions in general. We bring to mind notions like orbits, normality, and stabilizers,
and we mention examples of group actions.

Section 2.2 then provides a very brief reminder of some fundamental results of
invariant theory, and Section 2.3 deals with Pólya enumeration, of which we expose
the functioning.

2.1 Elements of group theory

2.1.1 Permutation groups

Definition 2.1.1. Let Ω be a set. The symmetric group on Ω, called then the
domain, is the group of all bijections Ω → Ω with the composition of functions as
composition law, denoted by SΩ. Such bijections are called permutations .

In this thesis, all domains will be assumed to be countably infinite at most.
When Ω is the finite set {1, . . . , n} for n ∈ N, we usually write Sn instead of SΩ.
If Ω is equal to N, or more generally countably infinite, then we denoteSΩ = S∞.

We call this group the infinite symmetric group.

Definition 2.1.2. A subgroup G of Sn for some n possibly infinite is called a
permutation group . The cardinality n is called the degree of G.

Remark 2.1.3. If there exists a bijection α between two sets Ω and Ω′, then SΩ and
SΩ′ are isomorphic: it is clear indeed that the conjugation by α is an isomorphism
between SΩ and SΩ′ . For this reason, we will sometimes use the notation Sn

when the domain is of cardinality n (which might be countably infinite), even if it
is not {1, . . . , n}. In other words, and for the sake of simplicity of exposition, we
will sometimes blur the distinction between a permutation group and its class of
isomorphism.

41



 Group and invariant theories

Definition 2.1.4. A fixed point of a permutation σ is an element a such that we
have σ(a) = a. The support of a permutation is the set of elements of Ω that are
not fixed points.

The infinite symmetric group is sometimes defined as the union ∪nSn; this is
not the case here, since the permutations of S∞ do not have to be finitely supported
(i.e. of finite support).

A cyclic permutation c, or cycle is a permutation for which there exist some
elements a1, a2, . . . , ak such that we have c(a1) = a2, c(a2) = a3, . . . , c(ak) = a1,
and the other elements are fixed points. In this case, it is of order k (we may also
say it is a k-cycle), and we denote c = (a1 a2 · · · ak). For instance, a permutation
that just swaps two elements of Ω is a 2-cycle, also called a transposition.

It is a folklore result that any permutation can be uniquely written as a compo-
sition (in the sense of the composition of functions) of cycles. The tuple of the cycle
lengths of the cyclic decomposition of a permutation (by decreasing order) is called
its cycle type.

Example 2.1.5 (Remarkable permutation groups).

(1) Take n ∈ N, the cyclic group Cn is the permutation group of degree n generated
by the permutation (1 2 · · · n). It may be seen as the group of rotations of a
necklace with n pearls, and is cyclic of order n.

(2) A permutation of Sn (for n ∈ N) is said to be even when it can be expressed as
a product of an even number of transpositions. Altogether, these permutations
form a subgroup of Sn, the alternating group. It has an infinite analog in the
infinite symmetric group of finitely supported permutations, which is defined
the same way.

(3) The group of increasing bijections Q→ Q is denoted by Aut(Q). By the above
remark, it may be seen as a subgroup of S∞, and as such it is an (infinite)
permutation group (which we will not lack opportunities to mention again
later on).

2.1.2 Groups actions, orbits and transitivity

Definition 2.1.6. Let Ω be a set and G be a group. A (right) action of G on Ω is
an application

G × Ω −→ Ω
( g , a ) 7−→ g.a

with the additionnal properties 1G.a = a ∀a ∈ Ω, and h.(g.a) = (gh).a. We call Ω
the domain of the group action, and |Ω| the degree of this action.

Note that choosing such a group action is equivalent to choosing a permutation
representation, that is a morphism G → SΩ. This double viewpoint between group
actions and permutation groups allows the natural use of notions from one of these
objects in the context of the other (speaking of, the reader probably noticed the
equivalence of the two presented notions of degree).
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Examples 2.1.7 (Some remarkable group actions).

(1) The action of a permutation group naturally induced by its elements on its
domain is called the natural action. We will mostly be using the function
notation for this particular action: g.a = g(a).

(2) The (left) regular action of a group G is its action on itself by g.h = gh (here
the domain is Ω = G).

(3) If G acts on Ω, it induces an action on En(Ω), the set of subsets of size n (for
any n ∈ N), by g.{a1, a2, . . . , an} = {g.a1, . . . , g.an}. This can be extended
to the set E (Ω) of all finite subsets of Ω, and is called the induced action on
subsets .

(4) The induced action on tuples is defined the same way as above, with the sets
of tuples (of fixed length or not) Ωn and tnΩn (respectively).

These last two actions (especially that on subsets) will be at the core of this
thesis.

For the rest of the section, consider a group action of G on Ω.

Definition 2.1.8. The orbit of an element a ∈ Ω under G is G.a = { g.a : g ∈ G}.
The set of orbits of the action is denoted by Ω/G.

Note that the orbits form a partition of the domain.

Definition 2.1.9. A group action of G on Ω is said to be transitive whenever
G.a = Ω for some a ∈ Ω (hence for every a). It is said to be intransitive otherwise.
These notions can be generalized a little: the action is n-transitive if the induced
action on Ωn (see last item of Example 2.1.7) is transitive.

Example 2.1.10. The symmetric group is transitive and n-transitive for any n (less
than its degree). On the other hand, Aut(Q) is transitive but not 2-transitive (since
it preserves a total order on the elements by definition; we will get back to this
later).

2.1.3 Action by conjugation, normality; index

Definition 2.1.11 (Action by conjugation). Any group G can act on itself by
conjugation : g.h = hg = g−1hg. The orbits for this action are called the conjugacy
classes , and two elements lying in the same conjugacy class are said to be conjugate.

As it is well known, two conjugate permutations share the same cycle type; the
reciprocal is true in Sn, which establishes a bijection between its conjugacy classes
and the partitions of n.

Definition 2.1.12 (Normality, simplicity).
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• The action by conjugation of G on itself induces an action by conjugation of
G on its subgroups: two subgroups H and H ′ are said to be conjugate if they
verify g−1Hg = H ′. Subgroups that are stable by conjugation, meaning they
are alone in their conjugacy class, are called normal . Note that if N is normal
in G, then the action by conjugation of G on itself may be naturally restricted
to N .

• Groups that have no non trivial normal subgroups are called simple .

Lemma 2.1.13. The normal subgroups of a group G are exactly the kernels of the
group homomorphisms defined on G.

The alternating group is a famous example of normal subgroup of Sn, as the
kernel of the signature homomorphism, which maps each permutation to 0 if it is
even, and 1 otherwise (and is actually the only existing homomorphism from Sn

onto Z/2Z). Furthermore, it is well known to be a simple group as soon as n is
greater than 5, or equal.

Definition 2.1.14. Let H be a subgroup of G.

• The left (resp. right) cosets of H in G are the gH = {gh : h ∈ H} (resp. Hg)
for g in G. As it turns out that there are as many right cosets as left cosets
for a given subgroup, one can define the index of H in G, which is its number
of (right or left) cosets. It is usually denoted by [G : H].

Cosets are basically the orbits of the left or right regular action of H on G, and
as such, they form a partition of G.

Obviously, for arbitrary elements g and g′ in G, the cosets gH and g′H may be
equal (which means that g and g′ lie in the same coset), so we often appeal to a set
of representatives of the (here, right) cosets, that is elements g1, g2, . . . , gI of G such
that in {Hgi : 1 6 i 6 I}, all cosets of H in G appear. Of course, I can be chosen
to be the index of H, in which case the set of representatives is said to be minimal:
one just needs to take one element gi in each coset.

Remark 2.1.15. One defines the (right) coset action (or action on the cosets) of G
on H by g.Hgi = Hgig = Hgj. Note that the (right) regular action is the particular
case in which you take H = {1G}.

Normal subgroups N are precisely those for which gN = Ng for every g ∈ G,
meaning that each left coset coincides with its fellow right coset; furthermore, the
set of cosets can then be endowed with a group structure (induced by that of G).
The quotient of G by N is the resulting group, denoted by G/N . When G is finite,
we have: [G : N ] = |G/N | = |G|/|N |.

For instance, Aut(Q) is normal of index 2 in Rev(Q). The coset that elements
of Rev(Q) belong to depends only on their reversing the order of the rational chain,
or not.

Note that, if one can exhibit a homomorphism G→ Q of which a given normal
subgroup N is the kernel, one can deduce the index of N using the famous first
isomorphism theorem: [G : N ] = |Q|. The alternating group is thereby of index 2
in the symmetric group Sn.
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2.1.4 Stabilizers

Definition 2.1.16 (Stabilizers and fixed points).

• We call poinwise stabilizer of a subset E = {a1, a2, . . .} of Ω (or sometimes
fixator) the subgroup FixG(E) = {g ∈ G | g.ai = ai ∀i}. When E = {a} is a
singleton, we may also write FixG({a}) = Ga.

• The (setwise) stabilizer of a subset E ⊆ Ω is the subgroup StabG(E) = {g ∈
G | g.a ∈ E ∀a ∈ Ω}. The restriction of an action to a subset E ⊆ Ω is
the group formed by the restrictions of the elements of the stabilizer: G|E =
StabG(E)|E.

• The set of fixed points {a ∈ Ω : g.a = a} of a group element g ∈ G is denoted
by Ωg.

Lemma 2.1.17 (Properties of stabilizers).
1. b = g.a ⇐⇒ Gb = g−1Gag
2. g.a = h.a ⇐⇒ Gag = Gah

From the second item of Lemma 1, we deduce immediately that if G is transitive,
all stabilizers (of singletons) are conjugate.

Theorem 2.1.18 (Orbit stabilizer theorem). If G is finite, we have:

|G.a| = [G : Ga] .

This derives from the bijection g 7→ g.a that links the set of cosets of Ga in G to
the orbit G.a, and that does not require the group to be finite.

2.2 A glance at invariant theory

2.2.1 Invariant algebra of a group action, and some funda-
mentals about symmetric polynomials

The symmetric group Sn (resp. any permutation group G of degree n) has a natural
action on the algebra of polynomials Q[x] = Q[x1, . . . , xn], by permutation of the
variables:

σ.P (x1, x2, . . . , xn) = P (xσ(1), xσ(2), . . . , xσ(n))

where P is a polynomial and σ a permutation from Sn (resp. G).
For instance, if we take P (x) = x3

1 +x1x2 +x2x
2
3 +x4 and σ = (1 2), we will have

(1 2).P (x) = x3
2 + x2x1 + x1x

2
3 + x4 .

For the rest of the section, G will be a finite permutation group of degree n, and
x = {x1, . . . , xn} a finite set of variables.

Definition 2.2.1. We say that a polynomial P is invariant under the action of G
(or G-invariant for short) if it verifies σ.P = P for all σ in G. A polynomial in
x1, . . . , xn that is Sn-invariant is said to be symmetric.
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Example 2.2.2 (Fundamental examples of symmetric polynomials).

(1) The k-th elementary symmetric polynomial in x is defined by

ek(x) =
∑

I⊂{1,...,n}|I|=k

(∏
i∈I

xi

)
.

It is the sum of all products of k different variables in x. For the sake of clarity,
we do not specify the variables when there is no need to. For instance, n = 3
hands these:

e1 = x1 + x2 + x3

e2 = x1x2 + x2x3 + x3x1

e3 = x1x2x3 .

(2) The k-th power sum polynomial in x is defined by

pk =
n∑
i=1

xki .

Define by extension, for a tuple of positive integers k1, . . . , kr:

p(k1,...,kr) =
r∏
j=1

pkj

Note that each ek (resp. pk) is homogeneous of degree k. Furthermore, each of the
two families presented is algebraically independent.

Obviously, a sum or product of two invariant polynomials is invariant itself, hence
the following definition.

Definition 2.2.3. The algebra of invariants of G is the subalgebra of Q[x] that
consists of the G-invariant polynomials, denoted by Q[x]G (sometimes we omit the
underline since there is no ambiguity); we denote by Symn[x] = Q[x]Sn the alge-
bra of symmetric polynomials (when the set of variables is not a relevant piece of
information, we may just write Symn).

We cite two fundamental theorems about the algebra of symmetric polynomials.

Theorem 2.2.4 (Fundamental theorem of the symmetric functions.). We have:

Symn ' Q[e1, . . . , en] .

Theorem 2.2.5. The polynomial algebra Q[x] is a finite dimensional free module
(of dimension n!) over the algebra of symmetric polynomials. More explicitely, we
have

Q[x] '
⊕
j

ηjQ[e1, . . . , en] .

where the ηj’s are polynomials that may be chosen as the “monomials under the
stairs”: xα1

1 · · ·xαn
n such that αi 6 n− i for every i.
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2.2.2 Fundamental results of invariant theory

For the rest of the section, G will be a finite permutation group of degree n, and
x = {x1, . . . , xn} a finite set of variables.

Theorem 2.2.6 (Hilbert). The algebra Q[x]G has Krull dimension n.

As a consequence, the families of elementary symmetric polynomial and power
sums are both homogeneous systems of parameters for Q[x]G; in the context of
invariant theory, we also say that they are sets of primary invariants for G.

Theorem 2.2.7 (Hilbert). The algebra Q[x]G is finitely generated.

The proof relies on the Reynolds operator, which is basically an average of G and
is a projection of the polynomial algebra Q[x] onto Q[x]G.

A finer result is found (with a proof) in [Sta79b].

Theorem 2.2.8. The algebra Q[x]G is Cohen-Macaulay.

Obviously, this means that it admits a Hironaka decomposition involving {ek}k
(resp. {pk}k) as primary invariants; the set {ηj}j of (homogeneous) polynomials
figuring in such a decomposition is then called a set of secondary invariants for
{ek}k (resp. {pk}k).

2.3 Pólya enumeration
This much is very clear: combinatorists like to count things. One incredibly efficient
tool for this purpose comes from group theory and is known as Pólya’s counting
theory.

The classical situation is the following: you have a family of combinatorial objects
(as in the beginning of the very first section of this thesis) that you want to count
modulo some symmetries. As a simple example, we would like to know how many
distinct necklaces with a given number N of pearls one can make out of colored
pearls, with a fixed pool of colors, say red and blue. On the picture below, N is
set to 8. The first two necklaces are the same, but we will consider the last one as
different (we could take the turn around into account as well, but we will not in
order to keep it simpler).

Let us study the case of N = 5, with the choices of color still set to red and
blue, as a way to introduce Pólya’s theory. The problem comes down to considering
the objects under a group action: here, that of the cyclic permutation group C5

generated by some rotation of the necklace. Colorings that lay in the same orbit for
the group action are considered equal, and thus counted only once. Reformulated
with a more mathematical vocabulary, the problem is thus to count C5-orbits of
colorings.

It all starts with the famous "Burnside’s lemma", although this stage name is
misleading (which is the reason why it has occasionally been referred to as "the
lemma that is not Burnside’s" instead).

For the rest of the section, let G be a finite group, X be a set G acts on (our set
of objects), and X/G be the set of orbits of the action of G on X.
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Figure 2.1: Necklaces with red and blue pearls that can be counted by Pólya

Lemma 2.3.1 (Not Burnside’s). We have

|X/G| = 1

|G|
∑
g∈G

|Xg| . (2.1)

In other words, the number of orbits for the action of G on X is the average
number of fixed points of the group elements. The underlying trend at least seems
reasonable: more fixed points means more orbits.

This gives a first, raw answer to our problem (although we will still need to
compute the number of fixed points). Indeed, if X is the set of red and blue colorings
of {1, . . . , 5} and G is C5, then X/G is the set of red and blue necklaces up to rotation
and has a total number of 8 elements.

This is not bad, but what if we wanted more information, like how many of these
8 have 2 red pearls ? This is what Pólya can do for us. Let us begin with a slightly
generalized, weighted version of Burnside’s lemma.

Add a notion of weight on X, which is simply a function w on X, chosen to be
compatible with the group action: all elements of a given orbit must share the same
weight. This allows to extend the notion of weight to the G-orbits: for any h in X,
define w(h̄) = w(h), where h̄ is the orbit of h.

In practice, the weight will help refining and splitting the information, according
to what you are interested in. Equation 2.1 becomes:

∑
h̄∈X/G

w(h̄) =
1

|G|
∑
g∈G

∑
h∈Xg

w(h) . (2.2)

Now there is only little effort to produce in order to obtain the enumeration
theorem of Pólya. In our necklaces example, the elements of X, the colorings, are
essentially functions from Ω = {1, . . . , 5} onto χ = {’blue’, ’red’}, and the action of
C5 on them actually derives from its action on the set of pre-images {1, . . . , 5}.

Let thus your X be the set of functions Ω→ χ, denoted by χΩ, where χ and Ω
are finite sets such that G acts on Ω, and from here on X = χΩ.

Finally, choose the weight of each function h ∈ χΩ to depend only on its set of
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images as follows:
w(h) =

∏
a∈Ω

w′(h(a)) (2.3)

for some weight function w′ defined on χ. The weight function w′ that w derives
from should be chosen according to your needs: for instance, if you are inter-
ested in counting the number of necklaces per amount of red pearls, you should
set w′(’blue’) = z0 = 1 and w′(’red’) = z1 = z, where z is an indeterminate. Using
z instead of just taking 0 and 1 will help keep the pieces of information properly
compartmentalized (whereas choosing weight values in N or R would obviously cause
everything to merge together in the final sum).

The reader can check that the coefficient of zn in the sum
∑

h̄∈X/Gw(h̄) is now
the number of necklaces with n red pearls, as wished for.

Now, there remains to compute the right-hand member of Equation 2.2

1

|G|
∑
g∈G

∑
h∈Xg

∏
a∈Ω

w′(h(a))

(in which 2.3 has been injected), and here comes the clever trick.
How do you characterize the functions h that are fixed points for a given g ?

Remember that G acts on the functions by acting on the pre-images; therefore, a
fixed point h for g is a function which is constant on each cycle of g. Once you are
convinced of that, choosing a function in Xg comes down to choosing an image for
each cycle of g — which totally decorrelates the enumeration from the pre-images
Ω (just assimilating G to the permutation group associated with the group action
gets complete rid of Ω), and makes it way simpler.

Recall the definition of power sum polynomials from Example 2.2.2, and we are
now ready for Pólya’s classical theorem.

Theorem 2.3.2 (Pólya enumeration). We have∑
h̄∈X/G

w(h̄) =
1

|G|
∑
g∈G

pCT(g)(w
′(χ)) =

1

|G|
∑
g∈G

∏
k∈CT(g)

pk(w
′(χ)) (2.4)

where CT(g) denote the cycle type of (the permutation induced by) g and w′(χ) is
the set of images of w′ on χ.

In the case of our necklaces, we obtain 1 + z + 2z2 + 2z3 + z4 + z5, which hands
the repartition of the 8 necklaces with 5 pearls according their amount of red pearls
(or blue, since the situation is symmetric).

Note that each term pCT(g)(w
′(χ)) of the sum only depends on the cycle type of

g, not g itself, so one can choose to sum over the conjugacy classes of G, and divide
the total by the number of classes instead of the order of the group |G|. This can
be particularly interesting when dealing with a large group, especially if there are
few conjugacy classes.

The applications of this technique are almost infinite (we could have counted
cubes with colored vertices, or faces, up to symmetries, or many other things). The
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formula can be adapted to trickier cases, for instance by slightly changing the way
to define the weight in Equation 2.3. We will eventually come to this as a way to
exploit the main result of this thesis.



Part II

Conjectures of Cameron and
Macpherson

and some preliminary work towards their
resolution
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Summary

In this second part, we dive into the domain that this thesis originates from: the
study of profiles of relational structures and oligomorphic groups.

Chapter 3 is an overview of the domain and an introduction to the two con-
jectures that provided this thesis with an aim. It begins with the general case of
relational structures, in order to provide both some context and useful notions for
when we will be studying oligomorphic groups, as well as an alternative point of
view. We then move on to the special case of oligomorphic groups, being careful
to expose the precise links between the two viewpoints. Eventually, we present the
conjecture we are going to work on for the rest of the thesis, a conjecture of Macpher-
son according to which the orbit algebra would be finitely generated as soon as the
profile of the group is bounded by a polynomial. We will call groups from this class
P -oligomorphic.

In Chapter 4, we step towards a proof of the conjecture of Macpherson, by
studying examples and uncovering our first hints on the structure of P -oligomorphic
groups. In particular, some progress is made towards meeting the hope we may
conceive of splitting the problem, and address it on smaller, simpler portions —
from which we would hopefully be able to derive the general case. With this goal in
mind, and inspired by how enlightening the study of monomorphic decompositions
(which we chose not to talk about; see for instance [PT18] to learn more) proved
in the case of relational structures, we bring up the notion of block systems and
of primitive groups. Then, seeking for appropriate ways to bring pieces (of various
natures) back together in our context, we turn to the concept of subdirect product
of groups.
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Chapter 3
Profiles and orbit algebras
State of the art and conjectures

This chapter deals with relational structures and oligomorphic groups, and intends
to present the conjectures we will focus on for the rest of the document.

In Section 3.1, we introduce the profile, the age, and later the age algebra of a
structure, in Subsection 3.1.4. We cite some important known facts about them,
and also allude to the special case of homogeneous structures, which we will be
particularly interested in.

Section 3.2 is then dedicated to oligomorphic groups. We provide some defi-
nitions, and the (original) name of “P -oligomorphic” to designate groups with a
profile that is bounded by a polynomial. We are then able to expose the conjecture
of Cameron, that we aim at proving: the profile of P -oligomorphic groups is asymp-
totically equivalent to a polynomial. We finish identifying oligomorphic groups to
the case of homogeneous structures in Subsection 3.2.2, where we also reduce the
study of our problem to closed groups for a certain topology. In Subsection 3.2.3,
we present an alternative way of constructing the orbit algebra, the analog of the
age algebra in this case, and finally ask, as Macpherson did: is the orbit algebra of a
P -oligomorphic group finitely generated? A positive answer would imply Cameron’s
conjecture.

3.1 Relational structures and their profiles

3.1.1 Relations and relational structures

Recall the notion of relation from Definition 1.3.1 of Part I: in a nutshell a collection
of subsets (resp. tuples) of a set.

Definition 3.1.1. • A relational structure R is a set Ω, called the domain or
basis of the structure, endowed with some relations ρi indexed by a finite or
countably infinite set I. We use the notation R = (Ω, (ρi)i∈I).

• The vector of arities of its relations is called the signature of R.
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• A substructure of R is a relational structure of which the domain is a subset
E of Ω and the relations are the restrictions to this subset of the ρi’s: a subset
of elements of the substructure is in relation if and only if it is in R (for each
ρi respectively). The substructure of domain E ⊂ Ω may also be referred to
as the restriction of R to E.

Example 3.1.2.

(1) Graphs are relational structures endowed with a single binary relation, “being
linked by an edge”, thus of signature 2 (allowing ourselves to forget about
the parentheses in this case). One may add some unary relations to obtain a
colored graph, or get an oriented graph by giving an orientation to the binary
relation, or a hypergraph by adding relations.

(2) Sets endowed with a total order, such as the rational numbers (Q,6), are
particular cases of relational structures, called chains . More generally, posets
are relational structures of signature 2.

3.1.2 Local isomorphisms, age and profile

A morphism of relational structures f between R and R′ is a map between their
respective domains Ω 7→ Ω′ such that, for any subset (or tuple) {a1, a2, . . . , an} ⊂ Ω
and any relation ρ, we have: {a1, a2, . . . , an} ∈ ρ ⇐⇒ {f(a1), f(a2), . . . , f(an)} ∈ ρ.

Definition 3.1.3. A local isomorphism of a relational structure R is a bijective
morphism between two restrictions of R to two subsets F and F ′ of Ω; it is a local
automorphism if F equals F ′, and a global automorphism (or just automorphism) if
both are equal to Ω.

The set of local isomorphisms endowed with the classifical composition of func-
tions is not a group, only a groupoid : elements cannot always be composed). Never-
theless, one can still speak of its natural action on the elements of (the domain of)
the relational structure, and consider the classical notion of orbit for this action.

Just like any action on a set of elements, this one induces an action on the set
of (finite) subsets, as we already described in Example 2.1.7 and recall here: if f is
a local isomorphism, the image by f of a subset {a1, a2, . . . , an} of Ω for this action
is simply given by

f.{a1, a2, . . . , an} = {f(a1), f(a2), . . . , f(an)} ,

where the parentheses are used to denote the action on elements.
Of course, this action on subsets may also be seen as an action on substructures.
The following notion was introduced by Fraïsse in [Fra00].

Definition 3.1.4. The orbits of substructures of a relational structure R under
the action of its local isomorphisms are called the isomorphism types of R; we say
that substructures of size n lie in isomorphism types of degree n. Altogether, these
isomorphism types are the age AR of R, that is partitionned according to the degree:
AR = tnAn(R).
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Example 3.1.5. Let A be a finite or countably infinite alphabet, of cardinality γ.
Then the set of finite words over A may be viewed as the age of a colored version
of the rational chain Q, such that every color in a set of γ colors (interpreted as a
unary relations) appears along the chain between two distinct rational numbers.

Definition 3.1.6. The profile of a relational structure R is the function that maps
each n ∈ N onto the number of substructures of R of size n up to an isomorphism:
in other words, it is the counting function of the isomorphism types of the structure
per degree.

Example 3.1.7. The graph of vertices indexed by N and edges (i, i + 1) for all
i ∈ N, like an infinite half-path, has its isomorphism types in natural bijection with
the integer partitions.

Figure 3.1: Graph of profile equal to the number of partitions of n

Example 3.1.8. Consider the graph consisting in the juxtaposition (i.e. the direct
sum of graphs) of two countably infinite complete graphs. Its profile counts the
number of partitions of n into at most 2 parts: ϕ(n) = bn

2
c + 1. We find the same

profile for infinitely many complete graphs of size 2.

Figure 3.2: Infinitely many complete graphs of size 2.

We can see here that even though two isomorphic structures do yield the same
profile, the reciprocal is false: the profile is not a complete invariant of the structure.

It is very natural to wonder about the general behavior of profiles, and in par-
ticular about their growths rates (see Subsection 1.1.2 for more details on growth
rates).

Under some mild conditions on the choice of the structure R, the pool of potential
growth rates for a profile presents “jumps”. For instance, no profile grows as log(n)
or nlog(n).

Definition 3.1.9. The kernel of a relational structure R is the set kerR of elements
a ∈ Ω such that the age of R|Ω\{a} is different from that of R (so smaller).

Example 3.1.10. If, in a relational structure R over Ω, every subset of a given
relation ρ contains a fixed element a, then a lies in the kernel of R. In a graph Γ, if
there is only one element of a certain arity (meaning here the number of neighbors),
it lies in the kernel of Γ. If Γ has only finitely many edges, every vertex involved in
an edge is an element of the kernel (since the induced subgraph on these vertices is
alone in its isomorphism type).
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We state but do not prove the following theorem, due to Pouzet.

Theorem 3.1.11 (Pouzet [Pou78; Pou76]). Let R be a relational structure on a
countably infinite set. Then, provided that either the signature of R is bounded or
its kernel is finite, the growth of its profile ϕR is polynomial in the weak sense as
soon as ϕR is bounded above by a polynomial.

(One can find a reminder of the definition of “polynomial in the weak sense” in
Definition 1.1.2.)

Considering this, it is natural to ask, for instance:

Question 3.1.12. Let R be a relational structure on a countably infinite set, with
finite kernel. Is the profile of R equivalent to a polynomial: ϕR(n) ∼ cnk for some
c > 0 and k ∈ N ?

This question still does not have an answer in general, although Pouzet and
Thiéry proved a particular case in [PT13, Theorem 1.7]; this thesis solves another
important particular case, that we will dwell on very soon.

3.1.3 Automorphism group, homogeneous structures

Just like local isomorphisms, the automorphism group Aut(R) of a relational struc-
ture R has a natural action on the set E (Ω) of finite subsets of Ω (see again the fifth
item of Example 2.1.7). As this is the action we are interested in in this thesis and
unless stated otherwise, we will always be referring to orbits of subsets when using
the word “orbit(s)”, rather than orbits of elements.

Let us highlight the following particular case, which will be of special interest to
us.

Definition 3.1.13. A relational structure R of which every local isomorphism can
be extended into a global automorphism is said to be homogeneous .

In this case, the orbits of the groupoid are actually the orbits of a group. Profiles
associated to such homogeneous structures are called orbital profiles .

Example 3.1.14.

(1) The graph consisting of k countably infinite complete graphs set side by side
(direct sum of graphs) is homogeneous, but the half-path of Example 3.1.7 is
not, since its only automorphism is the identity.

(2) The rational chain (Q,6) is homogeneous.

Remark 3.1.15. The case of homogeneous structures is not that marginal, as sug-
gested by the following example.
The Rado graph, defined as the unique countable graph that contains all finite graphs
as induced subgraphs, is homogeneous. It turns out that one can alternatively define
it as the graph obtained with probability 1 if for any pair of vertices one flips a coin
to decide if it is an edge (the reason why this graph is sometimes named the random
graph). In other words, a countably infinite graph is homogeneous with probability
1. Of course, graphs are still a very particular case of relational structures.
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3.1.4 Age algebras and what they tell us about profiles

In this whole subsection, let R = (Ω, (ρi)i∈I) be a relational structure.
As emphasized in Chapter 1 of Part I, when one wants to study a counting

function, such as the profile of R, a good idea is to add a structure of graded algebra
on the counted objects. This is what was accomplished by Peter Cameron in this
case, thanks to a product based on the disjoint union product of the set algebra,
that we presented in Example 1.2.13 of Part I.

We chose to present here a quite abstract definition (figuring in [PT13] for in-
stance) of what is called the age algebra of a relational structure — as oppposed
to the more combinatorial way in which we will later introduce the orbit algebra of
a permutation group, in order to provide both viewpoints on these closely related
objects.

In the set algebra Q[EΩ] of Ω as we defined it, a way to formalize the notion of
infinite linear combination of finite subsets is to see them as maps α : E(Ω) 7→ Q .
A finite subset F of Ω, seen as an element of Q[EΩ], is identified to its indicator
function, that maps F to 1 and anything else to 0.

The definition of the disjoint union product can then be rephrased using this
new vocabulary. The product of two maps α1 and α2 is defined as follows:

(α1 · α2)(F ) =
∑

F1,F2∈E(Ω) / F1tF2=F

α1(F1)α2(F2)

for every F in E(Ω).
An R-invariant element of Q[EΩ] is then a map α that verifies α(F ) = α(F ′)

whenever we have F ' F ′ in R (in order words, F and F ′ have the same isomorphism
type).

It is easily seen that the product of two invariant maps is invariant as well,
leading to the following definition.

Definition 3.1.16. The age algebra of R is the subalgebra of Q[EΩ] that consists
of its R-invariant elements. We denote it by Q[AR].

Viewing an isomorphism type as a collection (presented as a formal sum) of sub-
sets of Ω reveals a correspondence between invariant maps and linear combinations
of isomorphism types (finite combinations if R has only finitely many isomorphism
types of each degree; refer to the definition of set algebra if this is unclear).

This enables to truly see the age algebra as a structure of commutative algebra
on the age of R. One can check that it is graded according to the isomorphism type
degree.

Therefore, the Hilbert series of the age algebra matches the generating series of
the profile of R:

HR(z) =
∑
n

ϕR(n)zn

in which the notation for the Hilbert series of Q[AR] has been simplified for more
clarity.
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Example 3.1.17. The shuffle algebra introduced in Example 1.2.12 of Part I is
isomorphic to the age algebra of the relational structure described in Example 3.1.5.
It is also homogeneous [PT13, p. 27].

Note that, as suggested by the name, the age algebra of a relational structure only
depends on its age, a fact both noted and proved by Pouzet in his survey [Pou06].

Some properties of the profile of R can be derived from properties of the age
algebra, as we will illustrate right away. The following technical result was proved
by Cameron in [Cam97].

Proposition 3.1.18. Let ε be the map that maps every singleton to 1 and the rest
to 0. If R is infinite, then ε is not a zero divisor: ∀u ∈ Q[AR], uε = 0 ⇒ u = 0.

This has a nice consequence on the profile (see [Pou76] or [Cam90, Section 3.1]).

Theorem 3.1.19. The profile of an infinite relational structure is non decreasing.

Indeed, the image of the homogeneous component QAn(R) by the multiplication
by εm is an independent family of QAn+m(R).

Remark 3.1.20. If the age algebra is finitely generated, Corollary 1.2.6 states that
the profile is a quasi-polynomial: ϕR(n) = αd(n)nd + · · ·+ α0(n) with periodic αi’s.
Theorem 3.1.19 implies in this case that the leading coefficient function αd is actually
constant, which answers positively Question 3.1.12 in this particular case.

The following theorem was first conjectured in a particular case by Cameron and
then proved in all generality by Pouzet in [Pou08] (see also [Pou06, Theorem 29]).

Theorem 3.1.21. (Pouzet) If the kernel of R is empty, then its age algebra is an
integral domain.

3.2 Oligomorphic groups and their orbit algebras

3.2.1 Orbital profiles and (P -)oligomorphic groups; conjec-
ture of Cameron

For this whole section, letG be a permutation group on the countably infinite domain
Ω.

Definition 3.2.1. For each n ∈ N, consider the action of G on subsets of size n,
as defined in Example 2.1.7, item (5), and set ϕG(n) to be the number of orbits for
this action. The profile of G is the resulting counting function ϕG.
The group is called oligomorphic if its profile takes only finite values. The set of all
orbits of finite subsets of G can be called (with slight abuse) the age of G.

Example 3.2.2.

(1) Take G = Sm for some m ∈ N. The profile is 1 until n = m and 0 beyond. As
far as the infinite analog S∞ is concerned, the profile is constantly equal to 1,
as well as the one of Aut(Q).
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(2) On the opposite, the trivial permutation group Idm on m elements (or identity
group) has the biggest possible profile for this size of domain, which is the
number of subsets of the domain: ϕIdm(n) =

(
m
n

)
. The infinite analog of the

identity group is not (at all) oligomorphic.

(3) The automorphism group Wk of the direct sum of k infinite complete graphs
is oligomorphic: ϕWk

(n) = pk(n) the number of integer partitions of n into k
parts at most. Indeed, two subsets of which the repartition of the elements in
each complete graph define the same integer partition are isomorphic.

Figure 3.3: Direct sum of infinite complete graphs. The two induced subgraphs,
respectively blue and red, both associated to the partition (3,2,1) are isomorphic.

The announced aim of this thesis is to explore some questions regarding a specific
class of oligomorphic permutation groups, which we decided after a while to give a
proper name to.

Definition 3.2.3. We call a permutation group P -oligomorphic if its profile is
bounded above by a polynomial.

Not to be pronounced as “polygomorphic” !
Here is now, at last, one of our two star conjectures, that we will be able to solve

with this thesis.

Conjecture 3.2.4 (Cameron [Cam90] in 3.6). The profile of a P -oligomorphic per-
mutation group is asymptotically equivalent to a polynomial.

3.2.2 A parenthesis on topology and the link with relational
structures

This subsection is heavily based on 2.3 and 2.4 of [Cam90].
Let Ω be a countably infinite set, and let us introduce, maybe a bit out of the

blue, a natural topology defined on the symmetric group S(Ω), which is that of
pointwise convergence. Consider any enumeration a1, a2, . . . of the domain Ω. Then,
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a sequence (σk)k of permutations tends to the limit σ if and only if, for any i ∈ N,
we have σk(ai) = σ(ai) for all n large enough. Roughly speaking, the σk’s coincide
with σ on more and more points as k grows.

The pointwise convergence topology makes multiplication and inversion contin-
uous: we say that S(Ω) is a topological group. Explicitly, we have:{

σk → σ

τk → τ
=⇒

{
σkτk → στ

σ−1
k → σ−1 .

This topology may be derived from the following metric:

m(σ, τ) =

{
0 if σ = τ

1/2i if σ(aj) = τ(aj) ∀j < i but σ(ai) 6= τ(ai) .

Following is a slightly improved version of the metric, in the sense that this one
makes S(Ω) into a complete metric space:

m′(σ, τ) = max(m(σ, τ),m(σ−1, τ−1)) .

It does define the same topology as the inversion is continuous.

In this whole thesis, when we mention a notion of closure, we will always be
referring to this topology.

Besides, in our study of P -oligomorphic groups, working with closed groups will
be both possible and relevant, as justified by the rest of the subsection.

Remark 3.2.5. The infinite symmetric group S∞ as we defined it is the closure
of the symmetric group of finitely supported permutations ∪nSn, as any infinitely
supported permutation can be approached by a sequence of finitely supported ones.

The closure of the infinite analog of the alternating group is the whole S∞:
indeed, every permutation of S∞ can be obtained as a limit of finitely supported
even permutations (just take a sequence of permutations that does the job and
“correct” the uneven ones with a transposition involving “far enough” elements). In a
nutshell, when considering only closed permutation groups, the notion of alternating
group is not relevant any more.

Remark 3.2.6. The property of closure is reasonably robust, as it is stable under
taking restrictions or setwise or pointwise stabilizers for instance.

We highlighted in the previous section that, sometimes, the isomorphism types
of a relational structure R are the orbits (of finite subsets, as always) of a group, its
automorphism group Aut(R): R is homogeneous. On the other hand:

Proposition 3.2.7. Given any permutation group G on a countably infinite set Ω
one can associate to G a relational structure R of domain Ω such that:
(i) G is a subgroup of Aut(R)
(ii) G and Aut(R) have the same age.
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Proof. This can be done by brute force. Indeed, consider the age of G: {O1, O2, . . .},
and create for every orbit Oi a relation ρi on Ω, of arity the degree of the orbit, such
that a subset is in ρi if and only if it is in Oi. This ensures (i), and the fact that
Aut(R)-orbits are unions of G-orbits. Furthermore, take two subsets E1 and E2 in
the same Aut(R); then they are in the same relations by definition of Aut(R), which
here means one and only one relation since these ones are a partition of the set of
all finite subsets of Ω. Hence, they lie in the same G-orbit.

Note that this structure can be made homogeneous by considering tuples (those
with distinct elements are enough) instead of subsets, and oriented relations. This
way, the only local isomomorphisms still allowed are restrictions of elements of the
group.

The homogeneous structure we just described is called the canonical relational
structure associated with G. Although this structure and the exposed construction
do the job for any permutation group, they are not quite economical in relations...

Remark 3.2.8. What Proposition 3.2.7 demonstrates is that profiles of groups can
be regarded as a particular case of profiles of relational structure, the homogeneous
case. Put otherwise, the definitions of profiles of permutation groups and orbital
profiles are equivalent.

The link with the topology of pointwise convergence is displayed below.

Proposition 3.2.9. A permutation group on Ω is closed if and only if it is the
automorphism group of a relational structure R on Ω.

Proof. Assume σn → σ, with σn ∈ Aut(R). For any tuple t of Ω, we have σn.t = σ.t
for n sufficiently high, so σ.t satisfies a relation of R if and only if t does (since σn
preserves the relations of the structure by definition). Hence σ is in Aut(R), which
is closed. Conversely, if G is closed and R is its canonical relational structure, then
for any σ in Aut(M) and tuple t of Ω, according to condition (ii) of 3.2.7, there
exists a σ′ ∈ G such that we have σ.t = σ′.t. Let a1, a2, . . . be an enumeration of Ω
and σn be the element σ′ obtained when t is (a1, a2, . . . , an), then we have σn → σ,
which implies that σ is in G since G is closed.

What we actually proved is the slightly more specific result:

Proposition 3.2.10. The closure of G in S(Ω) is the automorphism group of its
canonical structure. In particular, a permutation group and its closure have the same
age (and thus the same profile).

Let us get back to the kernel of the canonical structure associated to G, which
we can call the kernel of G for short. Observe that if the G-orbit of an element e
of Ω is finite, then this orbit, seen as a subset, is a fixed point for (the action on
subsets of) G. In other words, it is alone in its own orbit of subset(s), and thus e
is necessarily an element of the kernel. Conversely, if the orbit of e is infinite, then
each orbit of subsets of G will have a representative that does not contain e. Indeed,
consider the orbit of an arbitrary subset

G.{a1, . . . , ak} = {{g(a1), . . . , g(ak)} : g ∈ G} .
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If e is in the same orbit of elements as some of the ai’s, there are still infinitely many
choices of g, for each concerned i, such that g(ai) is different from e; and there are
only finitely many ai’s. This enables us to give the following, equivalent definition of
the kernel of a group, which will be easier to manipulate in the sequel of the thesis.

Definition 3.2.11. The kernel of a permutation group G is the union of its finite
orbits of elements.

As a direct consequence of the definition, one has the following lemma.

Lemma 3.2.12. The kernel of an oligomorphic permutation group is finite.

This is just saying that a union of ϕG(1) <∞ finite subsets is still finite. It allows
to refine a bit our definition (or knowledge) of P -oligomorphic groups. Indeed, using
Theorem 3.1.11, one can derive:

Proposition 3.2.13. The profile of a P -oligomorphic group is polynomial in the
weak sense.

3.2.3 Orbit algebra of an oligomorphic permutation group

Let G be an oligomorphic permutation group, typically of countably infinite domain
Ω. Then again, one can define a structure of graded algebra on the orbits (of finite
subsets, always) of G, such that the Hilbert series of the algebra and the generating
series of ϕG coincide.

Let us consider the vector space QAG formally generated by the age of G, as
described at the beginning of Subsection 1.2.2 of Part I; we need to endow it with a
graded product. We will define such a product on the orbits, before extending the
definition by linearity.

This vector space embeds naturally into (the underlying vector space of) the set
algebra Q[EΩ] of Ω, by identifying each orbit to the formal sum of the subsets it
contains:

ι : O = {e1, e2, . . .} 7−→ ι(O) = e1 + e2 + · · · .

For instance, an orbit of degree 3 will be mapped to a formal sum of subsets of size
3 of Ω. Now, to define the product of two orbits O and O′, identified to a sum of
subsets, we are going to use the disjoint union product of the set algebra.

This will be clearer on an example, that we chose finite for the sake of both
simplicity and saving trees.

Consider the cyclic permutation group C5. Figure 3.4 shows how to (naively)
perform the multiplication between the orbits O1 = C5.{1} (represented in pink)
and O2 = C5.{1, 2} (in blue): first, proceed to the identification; then, develop and
use the product on subsets to obtain a linear combination of subsets of size 1+2 = 3
(this is automatic since the disjoint union product is naturally graded).

The subsets are represented with labels on the elements, the orbits without
labels. Colors are just meant to make visualization easier. Last line shows that
some subsets appear several times in the sum, and can be put together. In the end,
subsets with contiguous elements appear twice, once for each possible position of
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esp’

Figure 3.4: Exemple of an orbital product on the finite case of C5

the pink element; and those with one element apart from the two others appear
once, since there is only one way to obtain them as a disjoint union of blue and pink
subsets. What we obtain is thus actually a linear combination of orbits (by reversing
the identification ι), hence the final result:

espacement .
This is actually a general fact: QAG, seen as a subspace of the set algebra, is

stable by the product of Q[EΩ], which one can begin to get convinced of by observing
this example. In the infinite case, one might fear that the linear combination be
infinite, or that the coefficients be so.

However, to begin with, the result’s being homogeneous of a certain degree d
(the sum of degrees of the two orbits multiplied) implies that the terms of the
linear combination are necesarily finitely many for an oligomorphic group: indeed,
G admits only ϕG(d) < ∞ orbits of degree d, by definition. Furthermore, the
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coefficients of the result are obtained following a certain rule, that one can observe
on the example. Let O be an orbit, and F be any subset in that orbit; then the
coefficient of O in the expansion of O1 ·O2 is

CO1,O2

O = #{(F1, F2) : F1 t F2 = F, F1 ∈ O1, F2 ∈ O2}

a definition that does not depend on the choice of F in O.
In the appropriate vocabulary, this means that the CO1,O2

O ’s are the structure
constants of the algebra we are creating, for the basis of G-orbits. And since they
count ways to split a finite subset (with additional constraints), they are obviously
finite.

If one needs more formalism on all this, one can refer to the construction of
the age algebra of a relational structure given in Subsection 3.1.4, which can be
immediately adapted to the case of permutation groups.

Since it stabilizes QAG in Q[EΩ], the disjoint union product can be lifted to
define a product on QAG:

O1 ·O2 = ι−1( ι(O1) · ι(O2) ) .

We obtain a connected graded commutative algebra on the orbits, called the
orbit algebra of G and denoted by Q[AG].

Example 3.2.14. Seemingly slightly off the subject, let us mention the finite case:
if G is a finite permutation group, then its orbit algebra is finitely generated (likely
with redundancy) by its age, of which all elements are nilpotent of finite order
(bounded by the degree of the finite group G). It is thus of Krull dimension 0.

Before diving into some more details on the orbit algebra, recall Proposition 3.2.7.
It implies that the orbit algebra of G is essentially the age algebra of its canonical
relational structure — so properties of age algebras can be transposed to orbit alge-
bras, which are a particular case of these.

3.2.4 A few properties of orbit algebras, and the conjecture
of Macpherson

We recall here a few technical basics about orbit algebras and orbital profiles, in
particular dealing with subgroups or restrictions, that one expects indeed to be able
to manipulate in a natural way.

Finally, we come to the case of P -oligomorphic groups and expose the conjecture
of Macpherson.

Lemma 3.2.15 (Relations between orbit algebras).

1. Let G be a permutation group acting on E, and F be a stable subset of E.
Then, Q[AG|F ] is both a subalgebra and a quotient of Q[AG].

2. Let G be a permutation group acting on E, and H be a subgroup, both of which
being oligomorphic. Then, Q[AG] is a subalgebra of Q[AH ].
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Proof. We exhibit the natural morphisms for each one of these cases.

1. We have the following commutative diagram

Q[EF ] Q[EE]

Q[AG|F ] Q[AG]

Q[EF ] Q[EE]

⊆

ιG|F

φ

ιG|F

ιG

ψ
ιG

π

where π is the linear morphism mapping a subset of E to itself if it is a subset
of F and to 0 otherwise. The injective morphisms ιG and ιG|F are reversible
where needed, which allows to define the respectively injective and surjective
morphisms φ and ψ by composition.

2. In the following diagram, ιG and ιH are the canonical embeddings of the orbit
algebras into their set algebras.

Q[EE]

Q[AG] Q[AH ]

ιG

φ

ιH

The orbits of G are unions of orbits (of same degree) of H, and since the groups
are oligomorphic these unions are finite. The image of ιG is thus a subset of
the image of ιH , and therefore the diagram is commutative.

Lemma 3.2.16 (Direct product). Let G and H be permutation groups acting on
E and F respectively. Take G ×H endowed with its natural action on the disjoint
union E tF . Then, AG×H ' AG×AH , and Q[AG×H ] ' Q[AG]⊗Q[AH ]; it follows
that HG×H = HGHH .

Lemma 3.2.17. Let G be a permutation group and K be a normal subgroup of finite
index. Then,

ϕG(n) ≤ ϕK(n) ≤ [G : K]ϕG(n) .

In particular, K and G share the same profile growth.

Proof. Let O be a G-orbit of elements. Since K is a normal subgroup, O splits into
K-orbits on which G – and actually G/K – acts transitively by permutation; there
are thus finitely many such K-orbits, all of the same size. In particular, infinite
G-orbits split into infinite K-orbits, and similarly for finite ones.

We finally come to the conjecture that was the origin of this thesis subject, which
was originally enunciated as a “question”.



 Profiles and orbit algebras, and two conjectures about them

Conjecture 3.2.18 (Macpherson, 1985 [Mac85a]). The orbit algebra of a P -oligomorphic
group is finitely generated.

In the broader context of relational structures, the analog of this conjecture
was already known to be false in general: in [PT18], Pouzet and Thiéry gave a
combinatorial characterization of the conditions of satisfaction of this property in a
particular case (of the broader context — stay with me).

On the other hand, the property was known to be satisfied in the particular case
of a bounded profile, and even a refined version (see [Pou06, Theorem 26] and [PT13,
Theorem 1.5]):

Theorem 3.2.19 (Pouzet). Let R be an infinite relational structure. Then, the
following properties are equivalent:

(i) The profile of R is bounded.

(ii) The Hilbert series is of the form HR(z) = P (z)
1−z with P ∈ N[z] and P (1) 6= 1.

(iii) The age algebra Q[AR] is a finite dimensional free module over the free algebra
Q[ε]; in particular, it is finitely generated and Cohen-Macaulay.

Macpherson’s conjecture is stronger than Cameron’s, as one can establish by
combining Corollary 1.2.6 and Remark 3.1.20. In consequence, the rest of this
document will be dedicated to proving this conjecture (and actually, eventually, a
stronger result).



Chapter 4
Laying the groundwork:
First hints on the structure

This chapter intends to begin the work on the conjectures, by trying to get some
insight into the structure of a P -oligomorphic group, and how we could manage their
study.

We start in Section 4.1 with the examination of a natural particular case, which
is that of infinite wreath products. When involving the infinite symmetric group and
a finite group, they have some pleasant properties: namely, they are P -oligomorphic
and verify the conjectures. They form a class of groups that will turn out to be more
essential than one might think.

Section 4.2 introduces the key notion of block system, which is easily illustrated
on wreath products. We mention the existing classification of the P -oligomorphic
groups that do not have any non trivial system; their profile is actually constantly
equal to 1.

Eventually, we present in Section 4.3 the concept of subdirect product, that we
will need in order to handle synchronizations between different actions induced by
a group — for instance actions on different orbits (of elements), or blocks.

4.1 A fundamental case study:
wreath products of permutation groups

Let G and H be permutation groups acting on E and F respectively. Intuitively,
the wreath product G oH acts on |F | copies (Ef )f∈F of E, by permuting each copy
of E independently according to G and permuting the copies according to H. For
our convenience in this thesis, we see this action directly as a permutation group,
isomorphic as a group to the semidirect product (

∏
f∈F G) oH.

For instance, C3oS2 is the permutation group generated by the three permutations
(1 2 3), (4 5 6) and (1 4)(2 5)(3 6).

Examples 4.1.1 (Algebras of wreath products).

1. LetG be the wreath productS∞oSk. The profile counts integer partitions with
at most k parts. The orbit algebra is the algebra of symmetric polynomials over

69
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S∞ S∞ oS5

S5

Figure 4.1: An example of a wreath product: S∞ oS5; the two highlighted subsets,
in red and blue respectively, are in the same orbit.

k variables, that is the free commutative algebra with generators of degrees
1, . . . , k. The generating series of the profile is given by HG = 1∏

d=1,...,k(1−zd)
.

See also Figure 4.1, on which the red and blue subsets are in the same orbit.
The associated integer partition (3, 1) can be read on the blue subset.

2. Let G′ be a finite permutation group. Then, the orbit algebra of G = S∞ oG′
is isomorphic to the invariant algebra Q[x]G

′ which consists of the polynomials
in Q[x] = Q[x1, . . . , xk] that are invariant under the action of G′.

3. Let G′ be a finite permutation group. Then, the orbit algebra of G = G′ oS∞ is
the free commutative algebra generated by the set A+

G′ of the G
′-orbits of non

trivial subsets. The generating series of the profile is given by HG = 1∏
d(1−zd)

,
where d runs through the degrees of A+

G′ , taken with multiplicity.

Sketch of proof. The first item is a special case of the second one, that we examine
now. Two subsets having the same number of elements in each infinite block are
in the same orbit, so if one canonically embeds the orbit algebra of G into the set
algebra of Example 1.2.13, it is a subspace of that generated by the infinite sums

Sα =
∑

card(e∩Bi)=αi

e , α = (α1, . . . , αk)

for each multi-index α of length the number of infinite blocks (that is the degree
of G′), Bi being the i-th block and e the subsets of Ω. Now use the morphism
Sα 7→ Xα =

∏
iX

αi
i to embed Q[AG] into the algebra of polynomials. The action

of G′ on the blocks acts the variables the same way, so the image of Q[AG] is the
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algebra of invariants of G′.

Set now G = G′ o S∞ to prove the third item. A canonical one-to-one corre-
spondence can easily be established between G-orbits and multisets of A+

G′ : a finite
subset of Ω consists of a disjoint union of subsets that are included in the blocks, and
thus each G-orbit is determined by the non trivial G′-orbits of these subsets, while
the order does not matter. Since, the Hilbert series only depends on the structure
of graded vector space, it is then 1∏

d(1−zd)
, where the d’s are the orbital degrees of

A+
G′ , the set of generators.
Define now an alternative notion of degree δ, the number of blocks involved in

(the representatives of) an orbit. In the orbit algebra Q[AG], the product of two
orbits O1 and O2 has one and only one dominant term for δ, followed by lower degree
terms (we say that δ is a filtration, but we will not go into the details about this
notion). It is easy to see that the dominant term is the orbit that corresponds to the
multiset {O1, O2}. Therefore, every G-orbit can be obtained as the dominant term
of such a product of G′-orbits in Q[AG], and since δ decreases on the other terms,
it can actually be realized as a linear combination of products of G′-orbits (this can
be argued by induction on δ). Hence A+

G′ generates all of Q[AG].
On the other hand, and by homogeneity, the shape of the Hilbert series imply

that it is also a free family of elements: one can consider the canonical morphism
with the corresponding polynomial algebra (with indeterminates of the degrees of
A+
G′), and deduce by dimension that it is an isomorphism.

Sk . . .

S∞

Figure 4.2: Example of a wreath product: Sk o S∞, with two subsets in the same
orbit

We enunciate in the sequel some properties of wreath products that will prove
helpful later on.

Proposition 4.1.2. Let F1, F2, P1 and P2 be permutation groups such that F1 (resp.
P1) is a normal subgroup of F2 (resp. P2). Then, F1 o P1 is a normal subgroup of
F2 o P2, and we have (F2 o P2)/(F1 o P1) ' (F2/F1) o (P2/P1).

Sketch of proof. The property of normality is trivial. Denote by ((gi)i, p) the el-
ements of F2 o P2, with i running through the domain of P2, gi in F2 for each i
and p in P2. There is a natural correspondence between the cosets g.(F1 o P1) of
(F2 o P2)/(F1 o P1) and the cosets ((gi.F1)i, p.P1) of (F2/F1) o (P2/P1).
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Corollary 4.1.3. If P1 and P2 have the same finite degree m, we have

[F1 o P1 : F2 o P2] = [F1 : F2]m[P1 : P2] .

If the degree of P1 and P2 is infinite, F1 oP1 is of infinite index in F2 oP2 as soon as
F1 is a proper subgroup of F2.

Sketch of proof. This is a direct consequence of Proposition 4.1.2 and the fact that
a wreath product F oP is of order |F |m|P | where m is the degree of the permutation
group P .

4.2 Blocks of imprimitivity, block systems

A key notion when studying permutation groups is that of block systems; they are
the discrete analogues of quotient modules in representation theory. This notion
is not specific to P -oligomorphic groups but it is the first brick in our solution for
the conjecture of Macpherson, that we introduce in the first subsection. As they
play in a sense a role of elementary groups, the P -oligomorphic groups with no non
trivial block system will be examined (and classified up to closure) in the second
subsection, based on the work of Macpherson and Cameron.

4.2.1 Blocks and block systems

Definition 4.2.1. A set partition {E1, E2, . . .} of the domain Ω is said to be G-
invariant if for any g ∈ G and any index i we have g.Ei = Ej for some j (with the
case j = i allowed).

Definition 4.2.2. A block system for a permutation group G (or system of imprim-
itivity if G is transitive) is a G-invariant partition of Ω; its parts are called blocks of
imprimitivity , or just blocks . Another way of phrasing it is that a block system is
an equivalence relation on the domain that is preserved by the action of G.

One can give an equivalent and independent definition of the notion of block: it
is a subset B of Ω such that for every g ∈ G we have either g.B = B or g.B∩B = ∅.
Indeed, starting from one such B, one can build a block system by taking the orbit of
B under the action of G, and then iterate with a block B′ included in the complement
of B in Ω (the complement itself may be chosen as B′); and the parts of a G-invariant
partition obviously satisfy the property of the second definition.

Example 4.2.3.

(1) The partitions {Ω} and {{e} | e ∈ Ω} are always block systems and are
therefore called the trivial block systems.

(2) Following is the list of all block systems of the cyclic permutation group C4:
{{1, 2, 3, 4}}, {{1, 3}, {2, 4}}, {{1}, {2}, {3}, {4}}.
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1 2

34

Figure 4.3: Block systems of C4

(3) Recall the definition of a wreath productGoH from the beginning of Section 4.1
and use the same notations. Then, by construction, the partition (Ef )f∈F
forms a block system, and G oH is not primitive (unless G or H is and F or
E, respectively, is of size 1).

(4) If K is a normal subgroup of G, the K-orbits (of elements) form a block system
for G. This generalizes to any group action induced by G.

4.2.2 Primitive groups and classification of the (closed) P -
oligomorphic ones

Definition 4.2.4. A permutation group is primitive if it admits no non trivial block
system. By extension, an orbit of elements is primitive if the restriction of the group
to this orbit is primitive.

The following two theorems will be fundamental in this thesis.

Theorem 4.2.5 (Macpherson [Mac85b] Theorem 1.1; see also [Cam90] (3.21)). The
profile of an oligomorphic primitive permutation group is either 1 or bounded below
by an exponential.

In the context of P -oligomorphic groups, primitive groups have thus always pro-
file 1. These groups are classified (up to closure; see comment below).

Theorem 4.2.6 (Cameron [Cam90] (Section 3.4)). There are only five closed per-
mutation groups of profile 1, also called highly homogeneous:

1. The automorphism group Aut(Q) of the rational chain (order-preserving bijec-
tions on Q);

2. Rev(Q), generated by Aut(Q) and a reflection;
3. Aut(Q/Z), preserving the cyclic order (see Q/Z as a circle);
4. Rev(Q/Z), generated by Cyc(Q/Z) and a reflection;
5. S∞.

In the vocabulary of model theory, these are the groups preserving, respectively,
the dense linear order, the betweenness order, the circular order, the separation
relation, and a pure set.
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The notion of closure refers here to the topology of simple convergence, that was
described in Subsection 3.2.2. Thanks to Proposition 3.2.10, it plays only a minor
role for our purposes.

We make the following remark, that will prove crucial later on.

Remark 4.2.7. The collection of the five (closed) highly homogeneous groups is
stable under taking finite index normal subgroups. We will sometimes refer to the
three of them having no proper finite index normal subgroup Aut(Q), Aut(Q/Z)
and S∞ by "the three minimal highly homogeneous groups".

Note further that none of the proper normal subgroups of these groups (thus
of infinite index) is closed. For instance and for the record, Aut(Q) has three: the
subgroups of elements with supports that are bounded above, below, or below and
above, respectively.

Lemma 4.2.8. Let G be a (closed) P -oligomorphic permutation group, endowed
with a block system. If an infinite G-orbit of blocks is primitive and the blocks of the
orbit are not singletons, then the action on these blocks is isomorphic to S∞.

Proof. Using Theorem 4.2.6, the action on the set of blocks is given by one of the
five closed highly homogeneous groups. Assume first it is Aut(Q). Since there are at
least 2 elements in each block, that makes at least two subsets which are not in the
same G-orbit: simply consider one singleton and one pair of elements. Then every
word using only the letters 1 and 2 can be related to at least one orbit of subsets: 1
means you take only one element in a given block and 2 that you take a pair. Since
Aut(Q) permutes the blocks, the exact block you take the subsets from does not
matter, only the ordering of the blocks, which is the ordering of the letters. Several
orbits of subsets might be a match for a given word, but picking just one will be
good enough to us. Since there are 2m words of length m, we have highlighted this
way 2m orbits of degrees between m and 2m, each of them contributing by 1 to a
value of the profile between m and 2m. Therefore, we may bound the partial sum of
the profile below:

∑m
n=0 ϕG(n) ≥

∑bm/2c
n=0 2n. The second term is clearly exponential,

which cannot be with a P -oligomorphic group.
Now, if the action on the blocks was described by another one of the four non

symmetric highly homogeneous groups, the words we used would just have to be
considered up to a reflection or a cyclic permutation of the letters, which does not
change the exponential growth.

4.3 Subdirect products and synchronization
The actions of a permutation group on two of its orbits are not independent in gen-
eral; intuitively, there may be partial or full synchronization, which has consequences
on the profile and the orbit algebra. A classical tool to handle this phenomenon is
that of subdirect products.

4.3.1 Definitions

Definition 4.3.1. Let G1 and G2 be groups. A subdirect product of G1 and G2 is a
subgroup of G1×G2 such that the canonical projections π1 : (g1, g2) ∈ G 7→ g1 ∈ G1
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and π2 : (g1, g2) 7→ g2 are surjective.

For instance, suppose G is a permutation group that has exactly two orbits of
elements E1 and E2. If Gi is the group induced on Ei by G, G is a subdirect product
of G1 and G2.

Denote by N1 = FixG(E2) and N2 = FixG(E1) the pointwise stabilizers of E2 and
E1 respectively. Then, N1 and N2 are normal subgroups of G; and N1 ∩N2 = {1},
so we have 〈N1, N2〉 ' N1 ×N2, the direct product of N1 and N2.

Definition 4.3.2. We call synchronization between G1 and G2 the following iso-
morphic quotients (up to restrictions where needed):

G1

N1

' G

〈N1, N2〉
' G2

N2

.

Heuristically, these quotients describe the parts of each group that are bound
together, whereas the Ni are the independent components.

Proposition 4.3.3. Let G be a subdirect product of G1 and G2. With the above
notations, we have

G ' {(g1, g2) ∈ G1 ×G2 | g1N1 = g2N2}.

This in particular means that a permutation group arising as a subdirect product is
uniquely defined by the associated G1, G2, N1 and N2.

4.3.2 Interest and first practical application

As we just saw, possible synchronizations between two groups are directly linked to
their normal subgroups, which is a useful thing to know.

Recall indeed the classification of highly homogeneous groups presented in The-
orem 4.2.6. From Remark 3.2.6 and Remark 4.2.7, we derive the following remark
about the Ni’s introduced in the previous subsection (the pointwise stabilizers asso-
ciated to a subdirect product).

Remark 4.3.4. If G is a subdirect product of G1 × G2 and G1 (or G2, resp.) is a
closed highly homogeneous group, then N1 (resp. N2) is a closed normal subgroup
of G1 (resp. G2), and as such it is either trivial or a (closed) highly homogeneous
group itself.

We derive a very convenient result.

Corollary 4.3.5. Let G be a closed P -oligomorphic permutation group. Possibilities
of synchronizations between primitive orbits (of points or finite blocks) of G are
limited to the following:
(i) no synchronization,
(ii) total synchronization,
(iii) synchronized reflection in the cases of Rev(Q) and Rev(Q/Z) (synchronization

of order 2).
On non trivial finite blocks, only the first two may occur by Lemma 4.2.8.



 Laying the groundwork: first hints on the structure
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Summary

This third part of the thesis is mainly dedicated to the proof of our main result: a
classification of P -oligomorphic groups.

First, Chapter 5 studies how block systems can provide useful information on
the structure of the group and on the algebra, from which we derive a lower bound
on the growth of the profile. In search for a block system that would be most fitted
for the study of a generic P -oligomorphic group, we examine the structure of lattice
of the block systems of such a group, and observe that we can take advantage of this
structure to try to maximize the lower bound. We approach the idea of considering
block of blocks for a better efficiency, and finally construct a special “block system”,
called the nested block system, that we will be exploiting to prove the conjectures. It
consists of finitely many infinite blocks of finite blocks, plus maybe one finite block,
with some additional properties that will help us separate the problem into simpler
cases.

In Chapter 6, we classify the groups of which the nested block system consists
of one block only. We first study the action by permutation of the finite blocks,
and find out that it can be decorrelated from the action inside each block. Then
we study this latter action, for which we need to study synchronization between the
blocks. The possibilities turn out to be quite limited, and we classify them — a step
that was greatly facilitated by a computer exploration. We deduce the classification
of all (closed) P -oligomorphic groups of this form.

Next, Chapter 7 puts the pieces back together. It uncovers a finite index normal
subgroup, actually the minimal one, with a convenient shape. We then use this
subgroup to describe a classification of all P -oligomorphic groups (up to closure)
Finally, we obtain the shape of the orbit algebra from that of the group, and derive
the conjectures of Macpherson and Cameron as corollaries, along with some other
nice consequences.
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Chapter 5
Lattices of block systems and
the nested system

In this whole chapter, G will be a (closed) P -oligomorphic permutation group.
In Section 5.1, we go back to the notion of block system and take a closer look

at how we can exploit it for our purposes. First, we show that each block system
provides a lower bound on the growth of the profile, and we highlight the fact that
studying blocks of blocks can provide an improved bound.

Seeking to maximize this lower bound, we establish the nature of finite lattices
of the posets of block systems in Section 5.2, and use it to derive, in Section 5.3
a construction of a special “block system” (for an extended version of the notion)
satisfying appropriate properties. The later chapters will show that this so-called
nested block system minimizes synchronization and provides a tight lower bound.

5.1 Lattice structures and lower bound

5.1.1 How block systems provide a lower bound on the profile

We first consider the case where the block system is transitive, that is G acts tran-
sitively on its blocks. In this case, all the blocks are conjugated and thus share the
same cardinality.

Lemma 5.1.1. Let G be a P -oligomorphic permutation group, endowed with a tran-
sitive block system B. Then,

1. Case 1: B has finitely many infinite blocks, as in Example 4.1.1 (1) and (2).
Then G is a subgroup of S∞ oSk (where k is the number of blocks), and Q[AG]
contains Symk which is a free algebra with generators of degrees (1, . . . , k).

2. Case 2: B has infinitely many finite blocks, as in Example 4.1.1 (3). Then, G
is a subgroup of G|B oS∞, and Q[AG] contains the free algebra with generators
of degrees given by that of the non trivial orbits of G|B.

Note that the first case can be refined by stating that the orbit algebra contains
the algebra of invariants of the finite group H acting on the blocks (which may be
smaller than the full symmetric group Sk); but this algebra is typically not free.
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. . . . . .

Case 1 Case 2

Figure 5.1: Essential cases for a transitive block system of a P -oligomorphic group

Sketch of proof. The blocks share the same size by transitivity, and if their size (resp.
number) is infinite, then their number (resp. size) has to be finite in order to keep
the group P -oligomorphic (indeed, G is otherwise a subgroup of S∞ o S∞ and its
profile is bounded below by the number of integer partitions). Use Lemma 3.2.15
and Examples 4.1.1 in each case.

Assume that G is endowed with a block system. Then, the proof of the above
lemma applies in the same fashion to the restrictions of G to (the support of) its
orbits of blocks, leading the whole Q[AG] (with just one more use of Lemma 3.2.15)
to also contain the mentionned subalgebras (in the case with finitely many finite
blocks, refer instead to Example 3.2.14). Recall also that in Case 2, we have the
convenient property of Lemma 4.2.8.

Remark 5.1.2. Let G be an oligomorphic permutation group, and E1, . . . , Ek be a
partition of E such that each Ei is stable under G. In our use case, we have a block
system B, and each Ei is the support of one of the orbits of blocks in B.

Then, G is a subgroup of G|E1 × · · · × G|Ek
(precisely, it is a subdirect product

of this direct product). Therefore, by Lemma 3.2.15, Q[AG] contains Q[AG|E1
] ⊗

· · · ⊗ Q[AG|Ek
] as a subalgebra. In particular, the algebraic dimension of Q[AG] is

bounded below by the sum of the algebraic dimensions of the Q[AG|Ei
].

When in addition the actions of G on each Ei are completely independent, the
containments above are equalities; then, Q[AG] is finitely generated if and only if
each Q[AG|Ei

] is.

Remark 5.1.3. Combining Lemma 5.1.1 and Remark 5.1.2, each block system of
G provides a lower bound on the algebraic dimension of Q[AG] — and therefore on
the growth rate of the profile by Lemma 1.2.8.

The following example illustrates that the lower bound on the profile highly
depends on the chosen block system.
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Figure 5.2: Example of a lattice of block systems, on G = (S2 ×S2) oS∞
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Example 5.1.4. Let G = (S2 × S2) o S∞. Following is the poset of all its block
systems, ordered by refinement:

The picture below displays the lower bounds on the algebraic dimension that can
be deduced respectively from each of these block systems, using Lemma 5.1.1 and
Remark 5.1.2:

1

7 2

4

1

For instance, for the block system with two orbits of blocks of size 2, the lower
bound on the algebraic dimension is 4 = 2 + 2 since we have G|B = S2 in each
orbit; for the block system with finite blocks of size 4, the lower bound is 7 because
G|B = S2×S2 has this many orbits of non empty subsets. This latter lower bound
is obviously tight since the inclusion G|B o S∞ ⊂ G is an equality: the algebraic
dimension of Q[AG] is 7 and the growth rate of the profile of G is 6.

This example suggests that better lower bounds are obtained when maximizing
the size of the finite blocks (and then maximizing the number of infinite blocks;
consider also the example S∞ o Idn for that).

Nevertheless, the bound provided by this heuristic alone can be improved at
rather low cost, as advertised by the following example.

5.1.2 Towards blocks of blocks

We study here a generic example, and bring up the idea of considering not only
blocks, but also blocks of blocks. We give some hints on how we could or should do
it, and describe how this may oftentimes provide a refined lower bound.

Example 5.1.5. Consider the permutation group G = C4 o (S∞ o C3); we use here
the parentheses regardless of the associativity to emphasize the action of G on its
natural system of infinitely many (maximal) blocks of size 4.

By Remark 5.1.3, this block system provides a lower bound of 4 on the algebraic
dimension. As we will see, it is very crude; a lot of information was lost when
embedding the action on the blocks S∞ o C3 into S∞. This action was not even
primitive to begin with: one can form 3 infinite blocks (of 4-blocks). Let us exploit
that information. Consider the stabilizer S of the three infinite blocks of finite
blocks. This is a normal subgroup of finite index of G, and therefore it has the
same algebraic dimension using Lemma 3.2.17. But now that these infinite blocks of
blocks are stable parts of the domain, their contributions to the algebraic dimension
can be treated separately; which hands a bound of 3 ∗ 4 = 12 for S, and thus for G.

Let us step toward a generalization and a formalization of the phenomenon ob-
served in the above example.
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. . .

. . .

. . .

C4

C3

S∞

Figure 5.3: Example of C4 o (S∞ o C3)

Let G be a P -oligomorphic permutation group. Take a block system B<∞ of
finite blocks only. Assume further that these finite blocks are maximal: G does not
have any strictly coarser system of finite blocks. This choice is motivated by the
earlier observations (see Example 5.1.4); we will see in Section 5.2 that B<∞ always
exists and is unique.

If G has some finite orbits of elements, their union forms a stable finite block
which contains all other stable finite blocks (a stable block is a union of orbits, that
are obviously finite if the block is).

By definition of a block system, G acts on the set of blocks of B<∞. Furthermore,
this induced action does not admit any non trivial finite block, for else the blocks
of B<∞ would not be maximal. It has no special reason to be primitive though:
its block systems will just have infinite blocks only (plus possibly one singleton,
if B<∞ has a stable block) – and finitely many of them, for the same reasons as
in Lemma 5.1.1. By choosing one such system, we end up with two nested block
systems: an inner one with finite blocks, and an outer one with (finitely many)
infinite blocks; in other words, a finite system of infinite blocks of finite blocks.

Remark 5.1.6. A lower bound can be obtained from such a double, nested block
system by first stabilizing the infinite blocks of finite blocks (which does not change
the growth of the group, as stated by Lemma 3.2.17), and then applying the same
method as in Remark 5.1.3. For the same choice of (maximal) finite blocks, the
lower bound L provided by this method is better than the one deduced from the
matching simple block system via Remark 5.1.3.
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This is pretty much obvious if you consider the typical case highlighted in Ex-
ample 5.1.5.

As for the choice of the infinite blocks of blocks, the general intuition remains
the same as with classical, simple block systems: we feel that the more the better,
as far as the lower bound is concerned.

The next section formalizes these intuitions to construct a canonical block system
(in fact a system of blocks of blocks) that will hopefully maximize the lower bound.

5.2 Optimizing the lower bound through lattice struc-
tures

As suggested by the previous subsection, maximizing the lower bound will involve
maximizing or minimizing block systems with certain properties. To this end, we
will exploit the lattice structure of the poset of block systems, which we recall now.

Proposition 5.2.1. Let G be a permutation group G acting on a set E, finite or
infinite. The poset L(G) of all its block systems, endowed with the refinement order,
is a sublattice of the lattice of set partitions of E. Its maximum and minimum are
respectively the trivial block systems > = {E} and ⊥ = {{e} | e ∈ E}.

Proof. Take two block systems B and B′, and consider their meet in the lattice of
set partitions, namely the set partition:

B ∧ B′ = {B ∩B′ | B ∈ B and B′ ∈ B′} .

It is straightforward to check that this is still a block system for the group. Hence
this is the meet of B and B′ in L(G).

Similarly, consider the join B ∨ B′ in the lattice of set partitions. It is obtained
by taking the equivalence classes of the closure of the relation “being in the same
block in B′ or in B”. There remains to check that B ∨B′ is a block system: if x and
y are in the same part and σ is an element of G, then σ(x) and σ(y) are in the same
part as well. To this end, consider a sequence x0, . . . , xk such that we have x0 = x,
xk = y and any two consecutive elements in the same block for either B or B′; then
the same holds for the sequence σ(x0), . . . , σ(xk).

In conclusion, L(G) is stable under both join and meet operations, and therefore
a sublattice of the lattice of set partitions of E.

In the sequel, we will consider block systems with only finite blocks (resp. only
infinite blocks, up to kernel); the following propositions state that those block sys-
tems form finite sublattices. This will provide us with a canonical maximal (resp.
minimal) block system from which we will derive bounds.

Proposition 5.2.2. Let G be an oligomorphic permutation group, and L<∞(G) be
the subposet of block systems consisting of finite blocks only. Then, L<∞(G) is a
sublattice of L(G), with the trivial block system as minimum. If in addition G is
P -oligomorphic, then L<∞(G) is finite, with a maximum B<∞.
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Proposition 5.2.3. Let G be a P -oligomorphic permutation group, and L∞(G) be
the subposet of block systems consisting of infinite blocks only; if the kernel of G
is non trivial, then finite blocks contained in the kernel are allowed as well. Then,
L∞(G) is a finite sublattice of L(G), with a minimum and the trivial block system
as maximum.

Proving Propositions 5.2.2 and 5.2.3 will require a couple of lemmas.

Lemma 5.2.4. Let G be a P -oligomorphic group, and L be the function that maps
a block system onto the associated lower bound described in the previous subsection
(Remark 5.1.3). Let B < B′ be a cover (not involving the kernel) in the lattice
L<∞(G), then we have L(B) < L(B′).

If instead B < B′ is a cover (not involving the kernel) in the lattice L∞(G), we
have L(B) > L(B′).

Proof. Assume that B < B′ is a cover in L<∞(G). Pick one of the finite blocks B
in B′ that splits into two new blocks B1 and B2 in B; by conjugation, the same can
be said about all the other blocks in the orbit of B. There are two cases: either B1

and B2 may swap or they may not.
If not, then the support OB of the orbit of B is the union of the supports O1 and

O2 of the orbits of B1 and B2 (resp.), and the age of G|OB
contains the (disjoint) ages

of the restrictions G1 and G2 to O1 and O2 (resp.). It also contains the additionnal
orbits of subsets that have non empty intersections with both B1 and B2, so the
inclusion is strict. Using Lemma 5.1.1, the provided bound on the profile is strictly
better with the coarser system (since we took a cover, the situation in B and B′ is
the same everywhere else).

If B1 and B2 do swap, then we get a single orbit of (small) blocks in B, just as
in B′; except that if one denotes by H the restriction of G to one of the small blocks
in B, the restriction to one block of B′ is H o S2, which has a strictly larger age.
Hence, B′ provides a better bound.

As for L∞(G), the result is rather obvious from Lemma 5.1.1.

Lemma 5.2.5. Let G be an oligomorphic permutation group. The poset L<∞(G) is
closed under taking joins (as defined in the lattice of set partitions).

The following simple example illustrates that this statement may fail without
the hypothesis of oligomorphism.

Example 5.2.6. Recall that the (non oligomorphic) permutation group Aut(Z) is
generated by the translation x 7→ x + 1, and take G = Aut(Z) × Aut(Z), acting
on two copies of Z: E = {1, 2} × Z. This group admits an infinite family of block
systems (Bj)j∈Z with non trivial finite blocks of size 2:

Bj := {{(1, i), (2, i+ j)} | i ∈ Z} .

The following picture illustrates the block systems B0 and B1; their join is the trivial
block system with a single infinite block.
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· · · B0 and B1

In general, the join of two of block systems Bi and Bj with i 6= j is composed of
infinite blocks.

Proof of Lemma 5.2.5. Assume that the join of two systems of finite blocks B and
B′ from L<∞(G) contains at least one infinite block. This block is thus a union of
infinitely many blocks from both B and B′, in which every block from one system
intersects at least one block from the other one. If all of the blocks of B involved
were singletons, each of them would be included in one block from B′ and so the
join would not have an infinite block; hence at least one of them, call it B0, is not.

Consider the stabilizer S0 of this B0 (in red in the center of Figure 5.4). In this
subgroup, the union of the blocks from B′ having a non empty intersection with B0

(in blue) is also stable, so as well is their set difference with B0. One can iterate
the argument with the union of blocks from B intersecting this stable domain (the
outer crown of red blocks), and so on.

Figure 5.4: Nested stable areas arising when stabilizing one block of B

This reveals an infinite sequence of finite disjoint (by taking the set difference
every time) domains that are stable under the action of S0, and of which the first
item is B0. Take now two distinct subsets A1 and A2 of E, each of them consisting of
two elements in B0 and just one in any of the other S0-stable domains. An element
of G mapping A1 to A2, if there is any, necessarily belongs to S0, since the pair
included in B0 has no other choice but to be mapped onto the corresponding pair of
A2. Therefore, changing the S0-stable domain in which we take the singleton for A2

(or A1) exhibit infinitely many non isomorphic subsets of size 3 for G, which is to
say infinitely many orbits of degree 3, and makes G a non oligomorphic group.

Proof of Proposition 5.2.2. Thanks to Lemma 5.2.5, we already know that L<∞(G)
is table under taking the join. We will successively prove that L<∞(G) is stable
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under meets, locally finite, and that it admits no infinitely increasing chain. We will
then conclude that it is bounded and finite.

Take two block systems B and B′ in L<∞(G). Consider their meet in the lattice
of block systems:

B ∧ B′ = {B ∩B′ 6= ∅ | B ∈ B and B′ ∈ B′} .

By construction, it has again finite blocks, which proves that L<∞(G) is stable
under taking either joins or meets. In addition to this, the trivial block system
⊥ = {{e} | e ∈ E} is obviously its minimal element.

Let B be an element of L<∞(G). Consider the interval [⊥,B], and take a block
system B′ in that interval. The way a block B in B splits into blocks in B′ forces
the way the blocks in the same orbit split in B′ themselves. Since the blocks of B
are finite, and there are finitely many orbits thereof for G is oligomorphic, there are
finitely many ways of splitting these blocks. Therefore the interval [⊥,B] is finite,
and the same holds for any interval: L<∞(G) is locally finite.

Take a strict chain C in L<∞(G). Using the local finiteness, embed this chain in
a strict chain C ′ where each step is a cover. Thanks to Lemma 5.2.4, L is strictly
increasing along that chain. Since G is P -oligomorphic, L is also bounded, and it
follows successively that C ′ and C are finite.

This ensures the existence of a maximum B<∞, for else we could construct an
infinite chain by starting with an element and then recursively take the join with
an incomparable element. We conclude by remarking that L<∞(G) = [⊥,B<∞] is
finite.

Proof of Proposition 5.2.3. The poset L∞(G) obviously has > = {E} as maximal
element, and it is stable under joins: take indeed two block systems B and B′ in
L<∞(G): their blocks are infinite or included in the kernel. It is straightforward to
check that the blocks of their join satisfy the same property.

Let us prove that L∞(G) is stable under meet. Consider the meet of two block
systems in L∞(G):

B ∧ B′ = {B ∩B′ | B ∈ B and B′ ∈ B′} .

It has finitely many blocks. The union of all the finite ones is finite and stable by
G; it is therefore included in the kernel of G. It follows that the blocks of B∧B′ are
either infinite or included in the kernel of G, as desired.

Consider an interval [B,>] in L∞(G). Every block system B′ from the interval
is obtained by merging together some of the finitely many blocks of B. Hence this
interval is finite, and L∞(G) is locally finite.

We conclude as in the proof of Proposition 5.2.2: there are no infinite chains in
L∞(G) (a bit of care needs to be taken since L(B) may not be strictly increasing
at steps where two finite blocks are merged; but there can be only finitely many
such steps). This in turns ensures the existence of a minimal element B∞ and the
finiteness of L∞(G).
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5.3 The nested block system
Wemay now use the structure of finite lattice on the block systems of a P -oligomorphic
group to select a block system of a special kind (actually a system of blocks of blocks),
which will maximize the associated lower bound by construction, and thus hopefully
provide a best fitted set-up for the study of the group.

Definition 5.3.1. Let G be a P -oligomorphic permutation group. Take:
1. the maximal (coarsest) element B<∞ of L<∞(G)
2. the minimal (finest) element B∞ of the lattice of block systems for the induced

action of G on B<∞.
We call the pair formed by the nested two partitions of E defined this way the nested
block system BB(G) of G.

. . .

. . .

. . .

Figure 5.5: Nested block system of C4 o (S∞ o C3)

Definition 5.3.2. We call an infinite primitive block of maximal finite blocks a
superblock .

Note that, under the preliminary assumption of maximality, the primitivity re-
quirement is equivalent to asking that the infinite block be minimal, so the above
results on lattice structures imply that there is no “choice” for such superblocks–
as opposed to the many choices of blocks, for the classical notion. From this point
of view, the following (straightforward from the construction process of the nested
block system) proposition offers an alternative definition of the superblocks , as the
infinite blocks of blocks in BB(G).

Proposition 5.3.3 (Structure of the nested system). The nested block system con-
sists of finitely many superblocks, and maybe one stable finite block.
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Given BB(G), the deduced lower bound on the growth rate of ϕG is
∑

imi − 1,
where mi is the size of finite blocks of the i-th superblock in BB(G) and the sum is
over all superblocks.

Besides providing a competitive lower bound on the profile growth, the nested
block system can pride itself on some pleasant properties of manageability.
Lemma 5.3.4. Take two stable superblocks; the actions induced by G on their sets
of maximal finite blocks are independent (up to taking a normal subgroup of finite
index).
Proof. By definition, the actions on the finite blocks of each superblock are isomor-
phic to one of the five highly homogeneous groups. Recall then Remark 4.3.5, and
if need be take the finite index subgroup in which the actions of type Rev(Q) and
Rev(Q/Z) are replaced by Aut(Q) and Aut(Q/Z) to avoid synchronizations of order
2. Now the maximality of the finite blocks allows to eliminate the case of total
synchronizations, which leaves none possible.

Put otherwise, superblocks in BB(G) are not that far from independence, which
would allow to use Remark 5.1.2. This thesis will eventually clarify what “not that
far” actually means.
Lemma 5.3.5. Let G be a P -oligomorphic permutation group, and K be a finite
index normal subgroup of G. Then we have BB(K) = BB(G).
Proof. We aim to prove that K has the same superblocks as G. Observe first that
blocks of imprimitivity of any permutation group are still blocks for any subgroup,
as a direct consequence of the definition. Let BB be a superblock, and M be the
action of G (implicitely after stabilization and restriction to the support of BB)
on the set of finite blocks of BB. Then, M is one of the five highly homogeneous
groups; as the action of K on the same set of finite blocks is necessarily a finite index
subgroup of M, it is highly homogeneous as well. We now just need to justify that
the maximal finite blocks of G are still maximal for K. Assume some of them are
not, then there exists m ≥ 2 superblocks (BB(j))16j6m in BB(G) and an ordering of
their respective finite blocks (B

(j)
i )i such that the unions ∪jB(j)

i form new blocks for
K (up to taking the join in L<∞(K)). This can only happen if some of the actions
of K on distinct (B

(j)
i )i fully synchronize for 1 6 j 6 m. Since they are infinite

(highly homogeneous) actions, this is in contradiction with K’s being of finite index.
(Indeed, the action of K on the blocks would be of infinite index in that of G, which
is not possible.)

The reader has probably already wondered at this point why to stop here. We
already have blocks of blocks, why not blocks of blocks of blocks... etc.? The blocks
of blocks of the nested block system allow a good description of wreath products of
type F1 o P o F2, where F1 and F2 are two finite groups that may be trivial and P is
an infinite permutation group (recall Example 5.1.5). But what if we add a layer of
wreath product: F1 oP oF2 oG ? Well, it simply turns out that if G is not finite then
the group is not P -oligomorphic anymore; and if it is, we are actually back to the
same configuration as earlier (by associativity). Of course, if we had not made any
hypothesis on the growth of the profile, it would be relevant to consider any number
of layers of blocks.
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Figure 5.6: Generic look of the nested block system of a P -oligomorphic group



Chapter 6
Classification in the case of a single
superblock

In this chapter, we consider the class of closed P -oligomorphic permutation groups
G with a single superblock, of which we denote by B1, B2, . . . the maximal finite
blocks. This class includes wreath products G = H o S∞ where H is finite. In
Section 6.1.1 we construct other examples by direct products; then, by combining
wreath products and direct products, we introduce a family of permutation groups
that subsumes all these examples. We show that their orbit algebras are invariant
rings of permutation groups, hence finitely generated and Cohen-Macaulay.

. . .?

Figure 6.1: Case of a single superblock

In Section 6.1.2 we announce a classification theorem: any instance of this class is
isomorphic to exactly one permutation group in the family. This answers positively
Macpherson’s question for this class of permutation groups.

The next sections undertake the proof of the classification theorem, which splits
into two main poles: understanding the way the blocks permute, and understanding
the structure of the stabilizer of blocks. Subsection 6.2.1 handles the action on the
set of blocks: the result we obtain here may seem a bit technical but it will simplify
our work of both visualization and manipulation.

Section 6.2.2 introduces the tower of G in order to deal with the action within
the blocks, an object that will be the key tool in the rest of the proof, and that turns
out to be classified.

Finally, Section 6.2.3 shows that this classification can be lifted to the groups
themselves.
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6.1 Examples and classification results

6.1.1 A family of examples beyond wreath products

Definition 6.1.1. We call direct product on blocks of two permutation groups
H and S and denote by H�S the permutation group defined by the action of H×S
on deg(S) blocks of size deg(H) by

br,i.(τ, σ) = bτ(r),σ(i) ,

where b1,i, . . . bm,i is an arbitrary ordering of the elements of each block Bi. It is
isomorphic to the natural action of H ×S on the cartesian product of the supports.

This can be thought of as the action of permuting (by H and S respectively) the
rows and columns of a potentially infinite matrix.

As opposed to the wreath product, for which every action of H within a block
is independent from what happens within the others, here there is actually only one
diagonal action of H, on all finite blocks at once. These two cases are in this regard
the two oppposite ends of the spectrum of all possible synchronizations between
blocks.

It is then natural to think of a class of groups that would complete the spectrum.
We introduce such groups, as hybrids of wreath products and direct products.

Definition 6.1.2. Let H /H0 and M be three permutation groups, with H and H0

finite. Denote by [H0, H
∞,M] the permutation group generated by the elements of

H oM and H0 �M. For short, denote by [H0, H
∞] = [H0, H

∞,S∞].

Remark 6.1.3. The group [H0, H
∞,M] is P -oligomorphic if and only if we have

M = S∞ or H0 = H = Id1: indeed [H0, H
∞,S∞] contains H oS∞ as a subgroup;

it is therefore P -oligomorphic; the other implications are trivial using Lemma 4.2.8.

Lemma 6.1.4. The permutation group G = [H0, H
∞,M] contains H oM as a normal

subgroup of finite index.

Proof. First note that G can be defined equivalently as the group generated by
H o Id∞ = 〈H∞, Id oM〉, and the finite group H0 � Id∞. For the sake of notation,
and when there is no ambiguity, we identify an element h0 of H0 with the element
(h0, h0, . . .) of H0 � Id∞, and identify H0 with H0 � Id∞.

Note that h0 commutes with the elements of Id oM and, by normality of H in
H0, skew-commutes with those of H o Id∞ , meaning H∞h0 = h0H

∞. It follows that
we have

G =
⋃

h0∈H0

h0.(H oM) .

This union becomes a decomposition into cosets if the range is restricted to some
collection of representatives of the cosets of H in H0. Therefore H oM is normal
and of finite index [H : H0] in G, as desired.

We now describe the orbit algebra of [H0, H
∞,M] as an invariant ring of a

permutation group. Recall that the orbit algebra Q[AHoM] of H oM is the free
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commutative algebra Q[X], with X = (XA)A where A ranges through the non-
trivial H-orbits, and XA denotes the H oM -orbit of A, seen as an element of the
orbit algebra. Finally, lift the action of H0 on the H-orbits A to an action on the
variables XA.

Proposition 6.1.5. With the above notations, the orbit algebra Q[AG] of G =
[H0, H

∞,M] is isomorphic to the invariant ring Q[X]H0.

Sketch of proof. Take an element h0 ∈ H0 and E a subset of the support ofH. Check
that the H oM-orbit of E is mapped onto another such H oM-orbit, as prescribed
by the announced action of H0 on the variables XE.

Remark 6.1.6. The variables of invariant rings are commonly taken of degree 1;
this is not the case here: the degree of the variable XE is given by |E|. This must
be taken into account when computing the Hilbert series using Molien’s formula or
Pólya enumeration.

6.1.2 Classification and application to Macpherson’s conjec-
ture

We may now state the main theorem of this section which classifies the trivial case
when M is highly homogeneous (case H0 = H = Id1 below). Nevertheless, the core
of this section is about the case of non trivial finite blocks, in which M is necessarily
S∞.

Theorem 6.1.7 (Classification on one superblock). Let G be a closed P -oligomorphic
permutation group such that BB(G) consists of a single superblock. Then G is iso-
morphic as a permutation group to [H0, H

∞,M], where H / H0 are two finite per-
mutation groups and M is one of the five P -oligomorphic groups with profile 1. In
addition, H, H0, and M are unique, and satisfy the condition of Remark 6.1.3.

Proof. The statement is obvious if the finite blocks are singletons. Otherwise, by
Lemma 4.2.8, G acts on the set of finite blocks as M = S∞. Use the upcoming
Proposition 6.2.6 to classify the action of G on its blocks (the tower of G) and the
upcoming Proposition 6.2.9 to lift this classification to G itself.

A positive answer to Macpherson’s question follows immediately thanks to the
description of the orbit algebras of the groups [H0, H

∞,M] from Proposition 6.1.5.

Corollary 6.1.8 (Macpherson on one superblock). Let G be a closed P -oligomorphic
permutation group such that BB(G) consists of a single superblock. Then, Q[AG] is
the invariant ring of a finite permutation group, hence finitely generated, Cohen-
Macaulay, and its algebraic dimension is given by the number of H-orbits (of non
trivial subsets), where H is as defined by the classification.

Remark 6.1.9. Until now, the lower bound provided by the nested block system
evoked in Remark 5.1.6 was calculated using Example 4.1.1 when it came to stable
superblocks in BB(G). With the notations of this section, it was based on the
(possibly infinite index) supergroup H0 oM: namely, the provided lower bound for
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the algebraic dimension was the cardinality of the age of H0. Corollary 6.1.8 hands
a refinement of this bound, that is based on the subgroup H oM and tight on the
relevant restriction of the group.

In Chapter 7 the strategy to tackle a group G with several superblocks will be
to consider the restrictions of G on each of its superblocks, and patch together their
properties. This will use the following technical corollary.

Corollary 6.1.10. Let G be a closed P -oligomorphic permutation group such that
BB(G) consists of a single superblock; write it as G = [H0, H

∞,M] using the clas-
sification of Theorem 6.1.7, and let M be the minimal finite index normal subgroup
of M.

Then, any finite index normal subgroup G̃ of G is of the form [H̃0, H
∞, M̃ ], with

H ≤ H̃0 ≤ H0 and M ≤ M̃ ≤M. In particular, H oM is the minimal finite index
normal subgroup of G.

Proof. Since G̃ is of finite index, its nested block system is still equal to BB(G)
by Lemma 5.3.5, and its action on the maximal finite blocks is a normal subgroup
of finite index of M. Using the classification of Theorem 6.1.7, G̃ is of the form
[H̃0, H̃

∞, M̃ ], with the expected group inclusions: H̃0 / H0, H̃ / H, and M̃ / M.
Lemma 6.1.4 also states that it contains H̃ o M̃ as a finite index normal subgroup,
while G containsH oM and thusH oM̃ as finite index normal subgroups. Considering
Lemma 4.1.3, we need to have H̃ = H for G̃ to have finite index in G.

6.2 Proof of the classification

6.2.1 Action on the set of blocks

The sequel of Section 6 is devoted to the statement and proof of the two propositions
used in the proof of Theorem 6.1.7.

From now on, we assume that G acts on the set of finite blocks as M =
S∞. The following two technical lemmas strengthen this assumption by showing
that, for an appropriate enumeration of the elements within in each block, G can
permute the blocks while preserving that enumeration.

Lemma 6.2.1. Take any finite collection (Bi1 , . . . , Bik) of blocks; then FixG(Bi1 , . . . , Bik)
acts on the remaining blocks as S∞.

Proof. Take k in N. As FixG(B1, . . . , Bk) is a normal subgroup of finite index of
StabG(B1, . . . , Bk), it acts on the remaining blocks as a subgroup of finite index of
S∞, which may only be S∞ itself. By conjugation of the blocks, the same holds for
any collection (Bi1 , . . . , Bik) of blocks.

Lemma 6.2.2 (“Ladder lemma”). There exists an ordering b1,i, . . . bm,i of the el-
ements within each block Bi such that (the closure of) G contains Idm�S∞ =
Idm oS∞ as a permutation subgroup.
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Proof. Since G acts by S∞ on the blocks, there exists for each i > 1 a permutation
τ

(0)
1,i ∈ G that swaps B1 and Bi and stabilizes all the other blocks. Take now k ≥ 0;
using Lemma 6.2.1 there exists a permutation τ (k)

1,i that not only swaps B1 and Bi,
but also fixes all the (other) blocks in B2, . . . , Bk.

Take an infinite sequence τ (0)
1,i , . . . , τ

(k)
1,i , . . . . Noting that there are only finitely

many possibilities for the restriction of τ (k)
1,i to B1∪Bi, we can extract a subsequence

with always the same restriction. Thus, using the closure, there exists in G a permu-
tation τ1,i which swaps B1 and Bi and fixes all the other blocks. This permutation
need not be of order 2 though.

Say that τ1,i and τ1,j are equivalent if their restrictions to B1 ∪ Bi and B1 ∪ Bj

coincide up to renaming the elements of Bi (or Bj).
Now consider the map i 7→ τ1,i. It takes finitely many values, and therefore there

exists i and j such that τ1,i and τ1,j are equivalent. Define τ ′i,j = τ1,iτ
−1
1,j τ1,i .

Bi B1 Bj

τ1,i τ1,j

τ1,iτ
−1
1,j τ1,i

−−−−−−→

Bj B1 Bi

Figure 6.2: Example: Straight swap of Bi and Bj (also permuting B1)

Now check that

• τ ′i,j swaps Bi and Bj "straightforwardly": that is its restriction to Bi ∪ Bj is
of order 2 (see Figure 6.2);

• τ ′i,j stabilizes B1;

• τ ′i,j fixes all the other blocks (pointwise).

We may then conjugate τ ′i,j to stabilize some block Bk instead of B1, with k
as large as desired, and still swap straightforwardly Bi and Bj while fixing the
remaining blocks.

Therefore there exists in G, which we recall is assumed to be closed, a per-
mutation τi,j of order 2 that swaps Bi and Bj and fixes all the other blocks. By
conjugation, we can find for each n a similar permutation τn swapping Bn and Bn+1.

Choose an arbitrary ordering b1,1, . . . , bm,1 of B1. Define the ordering b1,2, . . . , bm,2
of B2 so that τ1 is the trivial swap, meaning that it swaps b1,r and b2,r for each r.
Proceed similarly to order the elements of B3 so that τ2 is the trivial swap, and so
on (Figure 6.3 shows the stage k − 1).

Conclusion: the τn’s generate Idm�S∞ as a permutation subgroup of G, as
desired.
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· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

B1 B2 B3 Bk−1 Bk Bk+1

Figure 6.3: Straight swaps between the first k blocks

6.2.2 Towers and their classification

While the previous subsection dealt with the way the finite blocks could permute,
this subsection is going to focus on what can happen within the blocks when they
do not permute (the results obtained above state that the actions on and within the
blocks can be decorrelated anyway).

Definition 6.2.3. Let SB = SGB = StabG(B) be the kernel of the morphism that
maps G onto its induced action on the set of blocks, and, for i ≥ 0, set Hi = HG

i =
FixSB(B1, . . . , Bi)|Bi+1

. We call the sequence H0, H1, H2 · · · the tower of G with
respect to the block system B. The groups Hi are considered up to a permutation
group isomorphism.

Remark 6.2.4. • By conjugation, using Lemma 4.2.8, the tower does not de-
pend on the ordering B1, B2, . . . of the blocks. In others words, Hi can be
obtained by fixing (pointwise) any i blocks and taking the restriction to any
other block.

• Each Hi+1 can be naturally considered a subgroup of Hi. Indeed, choose
a block “far enough”, or take an arbitrary block out of the numbering by
relabelling the blocks, call it say B0, and consider all Hi’s on this block: Hi =
FixSB(B1, . . . , Bi)|B0 . This realizes the Hi’s as a chain of decreasing subgroups
(that can be renormalized, if not already, to the domain {1, 2, . . . ,m}, where
m is the cardinality of the blocks). Furthermore, each Hi is normal in Hi−1.

The above definition and remark also apply to a permutation group of a finite
set, as long as it acts on the (finitely many) blocks as the full symmetric group.

Example 6.2.5 (Fundamental examples). Let H be a finite permutation group.
The tower of H o S∞ (resp. H � S∞) for its natural block system is H,H,H · · ·
(resp. H, Id, Id · · · ). The tower of [H0, H

∞] is H0, H,H,H · · · .

We aim to prove that these are the only possibilities for a tower (so there is actu-
ally only one prototype of a tower, since the first two examples are a specialization
of the third one).

Proposition 6.2.6. Let G be a closed P -oligomorphic permutation group with BB(G)
consisting of a single superblock. Then, the tower of G has the form H0, H,H,H · · · ,
where H0 is a finite permutation group and H is a normal subgroup of H0.
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H0 oS∞ ←→ H0, H0, H0, H0 · · ·

...

[H0, H
∞] ←→ H0, H0, H0, H0 · · ·

H oS∞ ←→ H0, H0, H0, H0 · · ·

...

H �S∞ ←→ H, Id, Id, Id · · ·

<∞

Figure 6.4: Towers of subgroups

Proof. Consider, for any i ∈ N, the restriction Gi of FixG(∪j<iBj) to the four next
blocks. The tower of this permutation group (for a natural extension of the notion
to finite groups of the adequate shape) is Hi, Hi+1, Hi+2, Hi+3. We aim to show that
Hi+1 = Hi+2, which will conclude the proof.

An element s of the blockwise stabilizer Si of Gi is determined by its action on
each block, which we write as a quadruple. Let g be an element of Hi+1. Then Si
has an element x that may be written (1, g, h, h′), with h and h′ also in Hi+1. Let
σ be an element of Gi that permutes "straightforwardly" the first two blocks and
fixes the other two (Lemma 6.2.2 states that such an element actually exists). By
conjugating x with σ in Gi, we get an element y in Si that we may write (g, 1, h, h′),
so that x−1y = (g, g−1, 1, 1). Hence, using Remark 6.2.4, g is actually in Hi+2.

6.2.3 Lifting of the classification from towers to groups

The two results to follow will show that G is uniquely defined by its tower, by first
recovering the blockwise stabilizer of the group from the tower, and then using the
result of "straightforward" permutation we proved in Lemma 6.2.2.

Lemma 6.2.7. The tower of G w.r.t. B uniquely determines its blockwise stabilizer
SB.

Proof. Let (Hi)i be the tower of G w.r.t. B and SB be the blockwise stabilizer of B.
Using that S is closed, it is sufficient to prove that, for any l ≥ 0, the restriction

Sr of S to the first r blocks is determined by the tower; or equivalently to any r
blocks (recall that the order of the blocks is irrelevant). To this end, we will show
that Sr admits an expression that involves only explicit subdirect products and the
Hi’s (which will do the job thanks to Proposition 4.3.3).

In order to proceed by induction on r, we consider the larger family (Hk,r)k≥0,r>0,
where Hk,r is the restriction on r blocks of the fixator of k other blocks in S. Of
course, H0,r = Sr.
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· · ·

k r

Hk,r

Figure 6.5: Fixing the first k blocks and restricting the action to r others (in proof
of Lemma 6.2.7

First, note that we have Hk,1 = Hk for all k. This gives the base case for the
induction. We now take r > 1, and express Hk,r as a subdirect product involving
only Hk′,r′ with r′ < r (and incidentally also k′ + r′ 6 k + r).

Write r = r1 + r2 with r1 > 0 and r2 > 0, partition the r blocks into r1 and r2

blocks, and let E1 and E2 be their respective union. Considering the action of Hk,r

on E1 and E2 provides the desired expression:

Hk,r = Subdirect((G1, G2), (N1, N2)) ,

where:

G1 = Hk,r |E1
= Hk,r1

G2 = Hk,r |E2
= Hk,r2

N1 = FixHk,r
(E2)|E1 = Hk+r1,r2

N2 = FixHk,r
(E1)|E2 = Hk+r2,r1

Remark 6.2.8. If desired, more explicit formulae can be obtained, by imposing the
partition. For instance, even splittings have the pleasant property that G1 = G2

and N1 = N2, which allows to illustrate the process by a binary tree: following is for
example a recursion tree to express H0,8 as a subdirect product of Hi’s, assuming
that the left (resp. right) hand child of a group is the Gi (resp. Ni) of the subdirect
product making this group (so a group is determined by its two children). This
recursion tree generalizes immediately to any H0,2n , which is sufficient to retrieve S
by closure.
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H0,8

H0,4

H0,2

H0,1 = H0 H1

H2,2

H2 H3

H4,4

H4,2

H4 H5

H6,2

H6 H7,1 = H7

Proposition 6.2.9. The permutation group G is the natural semi-direct product of
its blockwise stabilizer SB and L = Idm�S∞. In particular, it is uniquely defined
by its tower w.r.t. B.

Proof. Use first Lemma 6.2.2 to state that G contains L = Idm�S∞ (for "ladder")
as a permutation subgroup.

Take k > 0, the stabilizer StabG̃(B1, . . . , Bk) of the first k blocks is isomorphic
to StabG(B1, . . . , Bk) by Lemma 6.2.7.

Now, the group generated by L|B1∪···∪Bk
and StabG(B1, . . . , Bk)|B1∪···∪Bk

is a sub-
group of the restriction of G (actually of StabG(B1 ∪ · · · ∪Bk)) to the same domain.
Moreover, the latter is of size |Sk|.| StabG(B1, . . . , Bk)| (consider the morphism that
projects onto the action on the blocks); therefore the two groups are equal.

Finally, since G acts on the blocks as the symmetric group, which is the closure
of the group of all finitely supported permutations, each of its elements is also the
simple limit of a sequence of finitely supported permutations. Since we just showed
that the restrictions to any finite number of blocks are uniquely defined by the tower,
so is the whole (closed) group G.

This hands the final element to the proof of the theorem of classification in the
particular case of this section, and we are now free to move on to the general case.
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Chapter 7
Classification of P -oligomorphic groups
and its corollaries

Let G be a closed P -oligomorphic group. In Section 7.1 we exploit the results from
Section 5.1 on the blocks systems of G and the classification of closed P -oligomorphic
groups with one single superblock of Section 6 to give a constructive description of
the minimal finite index subgroup K of G. This subgroup is the first piece of the
classification of G. Its orbit algebra is (a simple quotient of) a graded polynomial
algebra.

In Section 7.3, we use it to define a classification system for P -oligomorphic
groups, up to some slight simplification first, and we explain afterwards how to
handle the general case.

We deduce in Section 7.4 that the orbit algebra of G is (a simple quotient of)
the invariant algebra of a finite permutation group F , and that Macpherson’s con-
jecture thus holds: Q[AG] is finitely generated, and even Cohen-Macaulay. In ad-
dition, K prescribes the algebraic dimension of the orbit algebra of G and provides
a natural system of parameters, and thus (a choice of) the degrees appearing in
the denominator of the Hilbert series. We also show how the classification allows
to apply a variant of Pólya enumeration to systematically compute the profile of a
P -oligomorphic group; we evoke the natural relational structure suggested by this
classification to encode a given group; and we outline how it can be used to enumer-
ate the P -oligomorphic groups.

7.1 The minimal finite index subgroup

Following Definition 5.3.1, let BB(G) be the nested block system of G; recall that
it consists in a partition of the set of maximal finite blocks (but the kernel of G)
into finitely many superblocks (BB(j))j. Let StabG(BB(G)) be the stabilizer of the
superblocks; it is a finite index normal subgroup of G and therefore, by Lemma 5.3.5,
has the same superblocks.

We now consider the restriction G(j) = StabG(BB)|E(j) of StabG(BB(G)) on the
support E(j) of each superblock BB(j). It admits a single superblock, so that we can
use the classification result of Section 6. Consider the minimal finite index normal
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subgroup K(j) = H(j) oM (j) of G(j) of Corollary 6.1.10.
To be concrete, use Lemma 6.2.2 to choose a coherent enumeration of the ele-

ments of each block B(j)
i of B(j): for each i, i′ there exists g ∈ G that maps B(j)

i to
B

(j)
i′ while preserving the enumeration. From now on, we use this chosen enumera-

tion to implicitly identify permutations of B(j)
i and of B(j)

i′ when meaningful. Recall
that M is obtained by considering the homomorphic image M of G(j) acting on the
blocs in BB(j) and, if needed, taking its minimal finite index normal subgroup; H(j)

can be obtained by picking arbitrarily two blocks B(j)
0 and B(j)

1 in BB(j), and taking
the restriction to B(j)

1 of the subgroup of G that fixes B(j)
0 and stabilizes B(j)

1 . Recall
also that M (j) = S∞ whenever the blocks are non trivial; otherwise, H(j) is the
trivial permutation group on one element, and K(j) = M (j) is one of S∞, Aut(Q)
or Aut(Q/Z).

In addition, set by convention B(0)
0 = kerG, BB(0) = {kerG}, and K(0) = IdkerG.

Remark 7.1.1. The groups K(j) and K(j′) are conjugate whenever the superblocks
BB(j) and BB(j′) are in the same G-orbit.

Proposition 7.1.2. Let G be a closed P -oligomorphic group. Then K =
∏

jK
(j) is

isomorphic to the minimal finite index normal subgroup of G.

Let us start by proving the following result.

Lemma 7.1.3. A permutation group of shape
∏

j H
(j) oM (j) (where H(j) is finite and

M (j) is a minimal highly homogeneous group) admits no proper finite index normal
subgroup.

Proof. Let K be such a permutation group. If a subgroup K̃ of K is normal and
of finite index, Lemma 5.3.5 states that K’s superblocks are still superblocks for K̃;
and since they are stable by K, they are for any subgroup. Using the classification
of Corollary 6.1.10, the restrictions of K to any superblocks have no finite index
normal subgroup, so K̃ has the same restrictions and is thus a subdirect product of
these. There remains to show that there is no synchronization between these parts.
Again, the K(j) have no finite index normal subgroups, so no finite synchronization
(that would be linked to a proper normal subgroup of finite index) is to consider;
and the case of infinite synchronizations is excluded by Lemma 5.3.4.

Proof of the proposition. We are going to reduce G down to K by applying two
successive reductions to a normal subgroup of finite index, which will conclude the
proof using Lemma 7.1.3.

Recall that the intersection of two finite index normal subgroups is again a finite
index normal subgroup. Hence the finite index normal subgroups of G form a lattice.
It is not guaranteed a priori to have a minimal element though.

We consider the nested block system BB(G) introduced in Section 5.1. By
Lemma 5.3.5, at each step, the nested block system of the finite index normal
subgroup will still be BB = BB(G). In particular, the kernel will not grow big-
ger. Denote as earlier by (BB(j))j the superblocks of BB(G) and by (E(j))j their
respective supports.
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Let StabG(BB) be the finite index normal subgroup of G that stabilizes the
superblocks in BB(G), which is the first reduction.

Assume first j 6= 0. We may apply the classification result of Lemma 6.1.4 :
StabG(BB)|E(j) contains as a finite index normal subgroup some wreath product
H(j)oM (j), whereM (j) is given by the action of StabG(BB) on the set of maximal finite
blocks of E(j) (possibly up to taking an index 2 normal subgroup), while H(j), which
acts within the blocks, is given by H in the tower H0, H,H,H, . . . of StabG(BB)|E(j) .
This subgroup is isomorphic to K(j), which also implies that it contains no proper
normal subgroup of finite index; therefore, thanks to the aforementionned lattice
structure, it is the minimal finite index normal subgroup of StabG(BB)|E(j) .

The same conclusions can be reached trivially for j = 0 (recall that E(0) is the
kernel of G and K(0) is the trivial group thereupon).

Now is the time for the second reduction. Consider the finitely many cosets of
K(j) in StabG(BB)|E(j) ; the latter (and therefore StabG(BB)) acts by permutation
on these cosets. Now denote by K̃ the kernel of its simultaneous action on the
whole set of cosets for all j. At this point, for each given j, the restriction of K̃
to E(j) is a subgroup of K(j); it could be a proper subgroup at first glance, due to
the constraints inheritated from the action on the other sets of cosets (the cosets
from other E(j), for different j). However, thanks to the minimality of K(j), we do
have K̃ |E(j) = K(j), for every j : K̃ is a subdirect product of the direct product K.
Conclude the proof by replaying that of Lemma 7.1.3 to show that K̃ is actually
the whole direct product, namely K itself, and use Lemma 7.1.3 and the lattice
structure to state its status of minimum.

Remark 7.1.4. From Remark 5.1.2, Q[AK ] is a free algebra, possibly tensored with
some finite dimensional diagonal algebra, which is finitely generated. Explicitely, we
may write:

Q[AK ] =
⊗
i

Q[AKi
]⊗Q[AkerK ] = Af ⊗Q[AkerK ] =

⊕
k

ek Af

the ek being the subsets of the kernel of K; in other words, Q[AK ] is a Cohen-
Macaulay algebra over the free subalgebra Af .

Corollary 7.1.5. The lower bound provided by the nested block system according to
Remark 6.1.9 is tight.

Proof. The algebraic dimension of the algebra of K is the sum of the dimensions of
the Af , which coincide with the lower bound handed by the nested system; and the
algebraic dimension of Q[AG] is the same by finiteness of the index of K.

7.2 Semi-direct product structure and diagonal ac-
tion

We aim at proving that G is a product FK, where F is a finite group acting diago-
nally on BB(G).



 Chapter 7 — Classification of P -oligomorphic groups

We first provide an informal description the concept of diagonal action on BB(G),
that we will properly define a bit later in the subsection. It generalizes the diagonal
action we already came across in Section 6. Informally, such an action will induce
the same action on each block of a given superblock, and possibly permute the
superblocks but not the blocks inside each superblock. Considering Figure 5.6, one
may intuitively picture it as a purely vertical action, that permutes the rows formed
by the elements of Ω on the figure — and preserves the superblock structure of
course.

Define U as the collection of all U = tU (j) where each U (j) is some block B(j)
i in

BB(j). Note that U always contains the kernel B(0).
Choose arbitrarily U0 in U and denote its blocks by (B(j))j.
For each U,U ′, let kU,U ′ be the permutation in K that exchanges U and U ′,

preserves the coherent enumeration, and fixes all the blocks that are neither in U
nor U ′.

For U ∈ U , define the map

ΦU :

{
G −→ SU0

g 7−→ kU0,g(U) g kU,U0 |U0
.

Define K<∞ =
∏

j H
(j), and observe that we have ΦU(K) = K<∞.

Define then ΦU by ΦU(g) = π(ΦU(g)|U0
), where π is the canonical projection of

SU0 onto the right K<∞ cosets.

Lemma 7.2.1. For g in G, ΦU(g) does not depend on U .

Proof. Consider

h = ΦU(g) ΦU0(g)−1 = kU0,g(U) g kU,U0 g
−1 kU0,g(U0) .

Take a block U
(j)
0 . Use that g permutes the superblocks BB(j) to argue that h

stabilizes U (j)
0 . We now prove that the restriction h(j) of h to U (j)

0 is in H(j).
If j = 0, then we have U (j)

0 = U (j) and h(j) is the identity. Otherwise, take some
block B(j)

1 which is not in either of U0, U , g(U0), or g(U), and observe that h is the
identity on B(j)

1 . It follows from the tower of G on the superblock BB(j)
1 that h(j) is

in H(j).
Conclusion: ΦU(g) and ΦU0(g) are in the same right K<∞-coset, as desired.

Since ΦU does not depend on U , we may define Φ = ΦU .

Lemma 7.2.2. Φ is a group morphism.

Proof. Write H = K<∞ and identify it, as needed, with the pointwise stabilizer, in
K, of all the blocks that are not in U0. Then we have (using the normality of K and
the defining property of H in K to commute it past kU0,g′(g(U))g

′kg(U),U0):

Φ(g′)Φ(g) = Φg(U)(g
′) ΦU0(g) = H(kU0,g′(g(U)) g

′ kg(U),U0)|U0
H(kU0,g(U) g)|U0

= (H kU0,g′(g(U)) g
′ kg(U),U0 H kU0,g(U) g)|U0
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= (H kU0,g′(g(U)) g
′ kg(U),U0 kU0,g(U) g)|U0

= (H kU0,g′(g(U)) g
′ g)|U0

= H(kU0,g′(g(U)) g
′ g)|U0

= Φ(g′g) .

Define G<∞ = ΦU0(G).

Proposition 7.2.3. The morphism Φ : G → G<∞/K<∞ realizes the canonical
quotient map from G to G/K. In other words, G is a semi direct product of G<∞
and K.

Proof. Check that K is the kernel of Φ.

A permutation g ∈ G acts diagonally on BB(G) if:
(i) ΦU(g) does not depend on the choice of U in U ;
(ii) g maps each block B(j)

i to some block B(j′)
i .

Note: this definition is relative to the choice of the indexing of the blocks within
each superblock. It assumes that, within an orbit of superblocks, the index set is
the same for each superblock, with the same action of M (j) on that index set.

Proposition 7.2.4. G is the product G<∞K, where G<∞ is embedded in G by acting
diagonally on BB(G).

Proof. It is sufficient to prove that, for any g0 ∈ G<∞, some permutation of G acts
diagonally on BB(G) according to g0.

Take any g in G such that Φ0(g) = g0.
We may assume without loss of generality that ΦU(g) = g0 for all U . Otherwise:

for each block B(j)
j and any U containing it, write ΦU(g) = g0h, and define hi,j = h|U0 ;

observe that hi,j does not depend on U ; define k ∈ K by having it fix all blocks, and
act on each B(j)

j by hi,j; replace g by gk−1.
Take each superblock BB(j) in turn, and let BB(j′) = g(BB(j)). For each block

g(B
(j)
i ) let σ(i) be such that g(B

(j)
i ) = B

(j′)
σ(i). We may assume without loss of

generality that σ(i) = i. Otherwise: observe that σ is in M (j); take k ∈ K that
permutes the blocks of BB(j) according to σ leaving everything else untouched;
replace g by gk−1.

Hence g acts diagonally on BB(G), as desired.

7.3 Classification
We now have all the ingredients to classify P -oligomorphic groups. We first use
the previous sections to extract from a P -oligomorphic group G a finite piece of
information Data(G). It consists of a finite permutation group, endowed with a block
system where each block is decorated with a permutation group of its elements and
one of the five permutation groups with profile 1 (or the trivial group). Conversely,
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we show that, starting from such a permutation group with decorated blocks ∆, one
can construct an oligomorphic permutation group Group(∆).

We check that, up to a natural isomorphism, G can be reconstructed from
Data(G) by Group. More generally, we check that, up to an isomorphism, Data
and Group give a one-to-one correspondence between finite permutation groups with
decorated blocks and P -oligomorphic permutation groups. This concludes the clas-
sification.

7.3.1 Classification of Rev-free P -oligomorphic groups

For the sake of simplicity of exposition, we first tackle the subclass of Rev-free
groups ; that is groups that do not act by Rev(Q) or Rev(Q/Z) on any of their
superblocks. This is actually sufficient to classify ages of P -oligomorphic groups. In
the following section, we detail how Data(G) can be extended to also preserve this
piece of information.

Let G be a closed P -oligomorphic group. Take again the notations introduced
at the beginning of the previous subsection: BB(G) = {BB(j)}j, K =

∏
jK

(j), with
K(j) = H(j) o M (j), and finally the finite blocks (B

(j)
0 )j arbitrarily picked in each

superblock.
Consider the subgroup of G that stabilizes tjB(j)

0 , and take its restriction to
this union of finite blocks; call it G<∞. Similarly, consider the same restriction but
calculated from K, and call it K<∞. Observe that K<∞ is a subgroup of G<∞ that
is isomorphic to

∏
j H

(j).

Definition 7.3.1. Define Data(G) = (G<∞, (B
(j)
0 )j, (H

(j))j, (M
(j))j).

Definition 7.3.2. A permutation group with decorated blocks (F,B, (H(j))j, (M
(j))j)

consists of a finite permutation group F endowed with a block system B = {B(j)}j
together with the choice, for each block B(j), of

• a normal subgroup H(j) of the restriction FixF (∪i 6=jB(i))|B(j) of the pointwise
stabilizer of the other blocks,

• M (j), one of the three minimal groups of profile 1, or the trivial group,

satisfying the following constraints:

(i) the choices must be the same for i 6= j whenever B(i) and B(j) are in the same
F -orbit,

(ii) M (j) must be S∞ whenever B(j) is not a singleton,

(iii) at most one of the M (j) is trivial, and when it is K(j) = H(j) is trivial too.

Remark 7.3.3. Let G be a P -oligomorphic permutation group. Based on the results
of Section 7.1, Data(G) is a permutation group with decorated blocks.
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Definition 7.3.4. Let ∆ = (F,B, (H(j))j, (M
(j))j) be a permutation group with

decorated blocks, and Ω the disjoint union tjΩ(j), where Ω(j) is the cartesian product
of B(j) and the domain of M (j). For each j, take the wreath product K(j) = H(j) o
M (j) acting naturally on Ω(j). Finally, let K be the direct product

∏
jK

(j), acting
naturally on Ω.

We define Group(∆) as the smallest permutation group on Ω containing both K
and F acting diagonally on tjΩ(j). Denote additionally H =

∏
j H

(j) = K<∞.

Proposition 7.3.5. Let ∆ be a permutation group with decorated blocks. Define G =
Group(∆), and use the notations above. Then, G is a P -oligomorphic permutation
group.

Proof. The subgroup K of G is the direct product of the wreath products H(j) oM (j),
and therefore P -oligomorphic. This implies the result by Lemma 3.2.17.

We proceed by defining the notion of isomorphism for groups with decorated
blocks, and checking that it matches the classical notion of isomorphism for P -
oligomorphic groups.

Definition 7.3.6. Let ∆ and ∆′ be two permutation groups with decorated blocks.
Then, ∆ and ∆′ are isomorphic if there exists an isomorphism between the under-
lying groups F and F ′ that transports the block system B and the groups H(j) and
M (j) to their equivalents in ∆′.

Lemma 7.3.7. Let ∆ be a permutation group with decorated blocks. Then Group(∆)
is the natural semidirect product K o F/H with the notations of Definition 7.3.4,
and ∆′ = Data(Group(∆)) is isomorphic to ∆.

Proof. Denote G = Group(∆). The groupsK, F andH obtained in Section 7.2 from
G correspond to the groups of same name from Definition 7.3.4, so the results from
that subsection apply and the first part is immediate. In particular, K is a normal
subgroup of G of finite index, which in addition, by Proposition 7.1.2, admits no
finite index normal subgroup and is therefore the unique minimal finite index normal
subgroup of G. This in turn implies the uniqueness of all the other pieces of Data(G):
the nested block system of G is given by BB(G) = (BB(j))j, with BB(j) = (B

(j)
i )i

and, for i in the support of M (j), B(j)
i = B(j) × {i}; the permutation subgroups

G<∞ and K<∞ induced respectively by G and K on tjB(j)
0 are respectively trivially

isomorphic to F and H.

Lemma 7.3.8. Let G be a Rev-free (closed) P -oligomorphic group. Then, G′ =
Group(Data(G)) is isomorphic to G.

Proof. We use the coherent enumeration to identify the elements of each B(j)
i with

that of B(j)×{i}. Through this identification and by construction, we have K ′ = K;
since the finite groups acting diagonally are the same as well and using Proposi-
tion 7.2.4, we have indeed G′ = G.
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7.3.2 Extending the classification to all P -oligomorphic groups

We start with an example illustrating that the straightforward extension of Data to
all P -oligomorphic groups does not give a proper correspondence.

Example 7.3.9. Consider the P -oligomorphic group G = RevQ× RevQ, and the
index 2 subgroup generated by G′ = AutQ×AutQ on the one hand and the reversal
acting simultaneously on the two copies of Q on the other hand.

Let us try to define Data on G and G′ as before; in both cases, we get the same
data:

(id({1, 2}), ({i})i=1,2, (id({i}))i=1,2, (Rev(Q))i=1,2) .

The information about the synchronization of the reversal on the two superblock is
lost.

We now tweak the definition of Data to keep track of reversals in the finite group
G<∞. To achieve this, each copy of R = Q (or of R = Q/Z) where a reversal can
occur will be compressed into a block of two points instead of a single one.

Let BB(j) be a superblock; if its blocks are of size 1 and G acts on them by
M (j) = Aut(Q) orM (j) = Aut(Q/Z), then define B(j)

0 by choosing any two points of
Ω(j); note that B(j)

0 is not a block anymore, but this is fine. Otherwise, define B(j)

0

as B(j)
0 .
Define G<∞ as before, but using tjB

(j)

0 instead of tjB(j)
0 .

Example 7.3.10. With G and G′ as in the previous example, G<∞ and G′<∞ both
act on {1, 2} t {1, 2}. However G<∞ is of size 4, permuting independently the two
blocks, whereas G′<∞ is of size 2, permuting simultaneously the two blocks.

Definition 7.3.11. Define DataG = (G<∞, (B
(j)

0 )j, (H
(j))j, (M

(j))j).

The definition of permutation group with decorated blocks must be extended
accordingly: each M (j) can now be any one of the five closed highly homogeneous
groups; however B(j) must be of size 2 whenever M (j) is of the form Rev(R) and of
size 1 whenever M (j) is of the form Aut(R).

The definition of Group must be adjusted as well: if M (j) is of the form Rev(R)
and therefore B(j) is of size 2, then Ω(j) consists of a single copy of the support
of M (j). Also, the diagonal action of an element f of F on Ω must be adjusted:
assumes thatM (j) is of the form Rev(R) and therefore B(j) is of size 2; let j′ be such
that f maps B(j) to B(j′). Then, f maps the elements of Ω(j) onto those of Ω(j′),
with a reversal whenever the elements of B(j) are swapped by f in B(j′).

Theorem 7.3.12. Closed P -oligomorphic permutation groups are classified by finite
permutation groups with (extended) decorated blocks through the Data and Group
reciprocal correspondences.

Proof. Replay each step of the proof described in Subsection 7.3.1.
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7.4 Corollaries

7.4.1 Resolution of the conjectures and the property of Cohen-
Macaulay

Let G be a (closed) P -oligomorphic group, K =
∏

jK
(j) its minimal subgroup of

finite index, and use again the notations of the previous section. Let DG be the set
of degrees of the non zero degree elements of the ages AH(j) of the H(j)’s.

Theorem 7.4.1. Let G be a permutation group whose profile is bounded by a poly-
nomial. Then, Q[AG] is isomorphic to the algebra of invariants of some finite per-
mutation group acting on variables of degrees DG, quotiented by the relations x2 = 0
for some of the variables. In particular, Q[AG] is Cohen-Macaulay.

Proof. For each superblock BB(j), let Sj be the collection of all the non-trivial
subsets of all blocks of BB(j). Let S = tjSj. By the definition of block systems,
K acts on each Sj and on S. Denote by (θi,j)i the K-orbits in Sj and observe that
they are in bijection with the positive degree part A+

G(H(j)) of the age of H(j).
As in Example 4.1.1, the orbit algebra Q[AK(j) ] of K(j), for j 6= 0, is the free

algebra Q[(θi,j)i]; for j = 0, the orbit algebra is the finite dimensional algebra
Q[(θi,0)i]/(θ

2
i,0 = 0 ∀i) instead. The orbit algebra of K itself is the tensor product⊗

j Q[AK(j) ], generated by (θi,j)i,j.
The group G itself also acts on S; since K is normal in G, this lifts to an action

on the finitely many K-orbits (θi,j)i,j in S. Let G0 be the finite permutation group
induced by this action, and let Q[(θi,j)i,j]

G0 be its invariant ring. Then, Q[AG] is
the following quotient thereof:

Q[AG] = Q[(θi,j)i,j]
G0/(θ2

i,0 = 0 ∀i) .

Recall that invariant rings of permutations groups are finitely generated and
Cohen-Macaulay. Then, the following corollary, our goal since the beginning, is
immediate.

Corollary 7.4.2. The orbit algebra of a P -oligomorphic group is finitely generated,
and even Cohen-Macaulay.

In particular, the conjectures of Macpherson and Cameron both hold.

7.4.2 Computation of the profile using Pólya enumeration

Recall the basics about Pólya enumeration from Section 2.3. We slightly modify the
notation system: a group F acts on a set X, which is a set of functions Ω→ χ.

We want to count the orbits of subsets of a P -oligomorphic group G (precisely,
we want the corresponding generating series, in say z). This boils down to counting
the G-orbits of the K-orbits of subsets, where K is the minimal normal subgroup
of finite index described in Section 7.1; which in turns, thanks to the classification
of Section 7.3 boils down to counting the F -orbits of K-orbits, where F is endowed
with its diagonal action on the nested block system.
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We thus want X to emulate the K-orbits of subsets. Consider the union A =
tjAH(j) of the finite ages of all H(j) (taken as in Section 7.1); then a K-orbit of
subsets essentially corresponds to a function A → N. Indeed, each superblock is
stable under the action of K, and an orbit of subsets of the restriction of K to a
superblock BB(j) can be described by a function AH(j) → N. We therefore take
Ω = A, χ = N and X = NA.

We now only need an adapted weight function on X for Pólya to operate. Re-
member that it usually derives from a weight function on the image set χ. Here,
it is natural to choose w′ : n 7→ zn, for the more times a subset will appear in a
representative of a K-orbit, the heavier this K-orbit needs to be. But of course,
the final weight of the K-orbit also depends on the cardinality of the subset (or on
the orbital degree of the H(j)-orbit of that subset). This is why we need to define
a notion of weight on the set of pre-images A as well: actually simply the orbital
degree d. The total weight of an element k of X is then w(k) =

∏
a∈Aw

′(k(a))d(a).
This is all nice, except for one detail: the reason why Pólya works this well is

because we can forget about the set of pre-images — which we cannot here, since
the weight of k directly depends on the pre-images a via the weight d. This issue can
be addressed by partitioning the computation of the contribution of each g ∈ F , in
Equation 2.4 of Theorem 2.3.2. Indeed, if Ai denotes the homogeneous component of
degree i in A, then Ai is of course stable under the action of F (and more generally
of G). Let us denote by gi the restriction of g ∈ F to Ai and m the maximal
size of a finite block in the nested block system (hence the maximal orbital degree
encountered in A), we then obtain:∑

h̄∈X/G

w(h̄) =
1

|G|
∑
g∈G

Pg =
1

|G|
∑
g∈G

m∏
i=1

∏
l∈CT (gi)

pli(w
′(N)) . (7.1)

Note that since we chose χ = N, the set of weights w′(N) is infinite this time, so
pli(w

′(N)) is a series and not a polynomial. Explicitely, we have:

pli(w
′(N)) = 1 + zli + z2li + · · · = 1

1− zli
.

An implementation can be found at the end of Section A.2 of the Appendix.

7.4.3 Reasoned encoding relational structure

Having access to a complete and explicit classification simplifies a lot of things.
Recall for instance the canonical relational structure that one can associate to a
permutation group, and of which we give a construction in the proof of Proposi-
tion 3.2.7. At that time, we noted that this canonical structure, although it did
verify the properties announced in the statement of the proposition, was not a very
subtle one to do so. Thanks to the classification, we can build a more economical
and reasoned structure. One needs:

(i) The relevant order relations to describe the highly homogeneous actions (see
Theorem 4.2.6 and the remark that follows immediately). For instance, that
is nothing on a superblock with non trivial blocks, but the relation of linear
order on a superblock of singletons permuted by Aut(Q).
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(ii) A set of relations describing F , of which one copy will be added to each member
of the G-orbit of tjB(j)

0 (namely the tjB(j)
i(j) for each choice of i(j) in the set of

possible indices). This will account for the synchronizations between different
superblocks (but not for synchronizations internal to one superblock and not
involving any other).

(iii) For each orbit of superblocks, a set of relations of which there will be a copy on
each pair of blocks both taken from the same superblock; these will basically
describe the gap between [H0, H

∞] and the underlying wreath product H oM
(where the (j) indices have been omitted) within each superblock; and they
only depend on the orbit of the superblock.

7.4.4 Enumeration of P -oligomorphic groups

Another nice outcome of the classification is an algorithmic way to browse all closed
P -oligomorphic permutation groups with a computer, to enumerate them. Let us
assume for now that we narrow our research to transitive groups.

Fix a finite cardinality m. You first need to browse all finite transitive permuta-
tion groups, for which many computer algebra softwares have nowadays a complete
library until some decent degree: 32 for GAP, which represents a very big amount of
data. The second step is to scan the related block systems, and then the normal sub-
groups of the restrictions to the blocks — two tasks that, again, GAP is pretty good
at. Deciding eventually what highly homogeneous groups act on each superblock,
and which ones among the non minimal are involved in a synchronization of order
two is then essentially a matter of basic combinatorics, and will not have any effect
on the age. The only real issue we need to be careful with is the risk of counting the
same group several times, or rather counting several isomorphic groups. A notion of
equivalence relation should be defined, as well as canonical representatives, in order
to address this.

Once a group has been entirely chosen (or even up to the last step, as men-
tioned), one can determine the growth of its profile, by calculating the finite profiles
of the normal subgroups H(j) (actually the cardinalities of the finite ages would be
enough), which is just a simple application of the classical Pólya method.

We extensively discussed how the nested block system provides a tight lower
bound on the growth rate of the profile. If mj is the size of blocks of BB(j) in
BB(G), recall that this lower bound is simply m =

∑
jmj−1. And since, for a given

m, we had only finitely many choices to make all the way through the algorithmics
described above, one can conclude that there are only finitely many transitive P -
oligomorphic groups of a given growth — and by extension of growth bounded by
any given r ∈ N. It could be interesting to compute the first terms of this (new?)
counting sequence.

Removing the hypothesis of transitivity is tricky but not unreasonable regarding
some aspects: the orbits will be stable parts of the domain of F , and thus F can be
obtained by subdirect product of the restrictions thereupon. An exhaustive browsing
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per size m of the finite domain of F should thus be possible.
Nevertheless, there is one new source of trouble in this case: the possibility of a

kernel in the P -oligomorphic group. Since it can be of any finite size, and does not
raise the growth rate of the profile, the pleasant remark we made about the transitive
P -oligomorphic groups is not true anymore if one allows a kernel — it actually fails
immediately: there is of course infinitely many finite permutation groups, of which
the profile is ultimately 0. Similarly, one can add, by direct product for instance, an
arbitrarily large kernel to any P -oligomorphic group without changing the growth
rate of the profile. There are thus clearly infinitely many groups for each growth
rate in general; but there should be finitely many if and only if one only considers
the kernel-free groups.



Part IV

Appendix

Algorithmic aspects and another (weaker)
way to the conjectures

115





Appendix A
Before and after the classification:
experimental approach and resulting
programs

As a crucial part of my research process, I sometimes rely on computer experiments
in order to forge an intuition and guess some fundamental results – which then
“only” need proving. We have nowadays a huge asset that our predecessors did
not, and that is ours to use and benefit from. Besides this renowned technique
of systematic “testing - conjecture - proof”, thinking about how to implement and
manipulate theoretical objects, and the more natural or efficient way to do so, is an
excellent means to get a deep understanding of the objects and to give a concrete and
rigorous shape to an informal intuition, leading to clean and compact mathematical
descriptions. Of course, it seems very important to share the code we wrote, for
the scientific community to benefit from it. This is how we end up having access
to powerful, lively and more and more complete softwares and facilities, such as
SageMath and GAP-system, which are the two main languages I have been using
and have begun contributing to. In addition and from a purely pragmatic point of
view, sharing results as usable code is a good way to guarantee their diffusion and
permanence.

In this chapter, we will dwell on these computational aspects. We will first have
a look at a situation where the computer exploration saved the day, and at the GAP
code that was written and used.

In a second section, we will give a flavour of how the classification found in
this thesis made an implementation of P -oligomorphic groups possible, along with
methods allowing, for instance, an efficient computation of their profile — all of that
using SageMath this time. Unlike in the first section, the code advertised here is
more a result of our work than a tool we used; but it can itself (and that is the whole
point) now be used as a tool, for people to play with or to forge an intuition, just
like I did with my GAP code, using other people’s programs!
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resulting programs

A.1 Towers of finite groups with GAP-system

In order to make some progress in the proof of Macpherson’s conjecture, I was some-
times confronted to a lack of vision, and of a starting point. In this situation, I could
turn to a fantastic tool: computer assisted mathematics. In order words, program-
ming. I naturally followed a protocol that has been successfully experimented for
decades now, although it was not always as popular, and most of all as easy as
today: the protocol of test - conjecture - proof. You explore plenty of examples,
giving them an appropriate shape for reading the information you are interested in,
and guess some results from that material — results that are then yours to prove.

For my own computer experimentation, I started with the SageMath software
(that we will present in next section), but it turned out that I was mostly interested
in the features that actually called to another calculator, GAP-system. Since the
interface between the two still presented some bugs at the time, some of which got
me into quite some trouble, I finally switched to GAP itself.

GAP-system (or just GAP for short) is a free system that allows for mathematical
computations in the domain of discrete algebra. In particular, it provides a vast
range of tools and efficient algorithms to manipulate groups and permutation groups.
It comes with its own programming language (the GAP language), an interactive
environment and a full documentation, of which the reference manual can be found
online.

GAP possesses a large and active community of users and developers, with some
hot spots located in Germany and Scotland among others. It can be installed by
following the instructions on the dedicated webpage.

In the sequel of the section, we will review some of the GAP programs I used
to solve the conjectures (and actually come up with the classification). We will
focus on one of the problems I encountered, which was getting some insight into
the kind of phenomena that could occur on a single superblock. As described in
Subsection 6.2.2, a specific notion was introduced to study this case, the notion of
tower. Only, I was still unsure of how wild such towers could get, and I needed
to forge an intuition. Computational exploration was just the right answer to this
issue, and finally brought way more precise and decisive results than expected, since
it was eventually the key to Theorem 6.1.7, the first brick of the classification.

The goal was to have a look at many towers, and observe what they looked
like; question was: how to proceed? First, I would have to restrain myself to finite
groups, since infinite ones are currently not dealt with by mathematical calculators
in all generality. That being said, I was not interested in all of them. For instance,
considering a block system, I wanted the group to be transitive on the blocks, just
like a P -oligomorphic group is on one of its superblock. It seemed reasonable at
this point to just begin with transitive groups, especially since GAP had all the
infrastructure one could possibly need to explore them; the slightly more general
cases could be studied later — even more so since, in first approximation, the aim

https://www.gap-system.org/Manuals/doc/ref/chap0.html
https://www.gap-system.org/Download/index.html
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was more to restrain the scope of possibilities than to open it up. Not to mention that
the classical notion of block system, widened a bit in the context of this thesis, only
truly exists for transitive groups, and that the pre-existing related GAP functions
would assume (or ask for) the group to be so.

This was not quite enough yet: Lemma 4.2.8 further suggested that research
needed to focus on groups that acted on the blocks as S∞ (as long as the blocks
were not trivial, but towers of primitive groups were obviously of no interest to us
anyway). Even more precise was the condition handed by Lemma 6.2.1, which I was
to include. Note that a block system satisfying even just the first condition would
necesarily be maximal, which would nicely narrow the field of research.

For convenience in the (hopefully) limited time of the exploration, I would say
that a group is “nice” (or acts “nicely”) on a given block system if the induced ac-
tion on the blocks satisfied the condition, and it was likely that I would need to
implement a function destined to test this. Since the property obviously depends on
the choice of the block system, it was likely I would need to browse through some
transitive groups (probably of some given degree), and then through the maximal
block systems for each of them, and select the pair (G,B) if G was nice on B to
have its tower computed and printed...

Now, for the sake of comparing the obtained towers, I had in mind a model of
use where I would just type something like

f(card, Nb)
where Nb would be the number of blocks desired and card the cardinality of each

block, or of the whole domain, and get some towers of this shape, that would come
from relevant, “nice” groups. Of course, I would begin with very small values and
increase them step by step, in order to avoid waiting forever or making my computer
explode.

At this point, the plan was clear enough. The first step was to find, if possible,
for a given permutation group gp, an “adapted block system”, that is a block system
such that the group would be “nice” on it. Having my model of use (above) in mind,
I wanted to be able to provide one additionnal argument to the function, say Nb, so
that it would look for block systems with this many blocks. Later, I decided to add
yet another argument card that would specify the degree of the group: even though
the piece of information is technically redundant, it would prevent the programs
from having to recompute it at every step, for every tested group, which could gain
a tiny little bit of time.

(Note that the method just described is obviously not optimal and today, I would
do things differently. For a start, instead of testing for every group a quite rigid con-
dition on the shape of the block system and throw away the majority of them,
which will then require other rounds of extensive and costly tests to be handled as
well, I would probably build a database as groups pass by, and explore it afterwards.)

The following three functions, each one using the next, handle this first part of
the job. Some explanations will be given below.
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Lines behind a # symbol are comments and are ignored when one runs the pro-
gram. Although they are supposed to help make the code user-friendly, they can be
ignored by the reader as well :) .

For now the programs appear (almost) as I used them in the context of my per-
sonal research, and they do not follow GAP’s conventions of proper documentation
or syntax.

adapted_block_system := function(gp, card, Nb)
# gp is a permutation group, card its degree, Nb the desired number of blocks

ss# computes, if possible, a block system on which gp is "nice"
ss# returns the block system as a list
ss# used in tower; uses is_nice_on_B
local repres, B;
B := MaximalBlocks(gp, [1..card]);
# only tries one such system, but it is likely to be enough for our purposes
if Size(B[1]) = card/Nb and is_nice_on_B(gp, B) then
return B;

else
return [];

# if not found
fi;

end;

is_nice_on_B := function(gp, B)
# gp is a permutation group and B a block system for gp

ss# checks if gp is a semi direct product
ss# of the actions on and within the blocks of B
ss# (concretely checks that however many blocks are fixed pointwise,
ss# the action on the remaining blocks is symmetric)
ss# returns a boolean
ss# used in adapted_block_system; uses Gonblocks_is_sym
local Nb, Gonblocks, stab, moving_blocks, indep_on_blocks, n, hom, Fix;
Fix := gp;
# initialization
moving_blocks := List(B);
Nb := Size(B);
indep_on_blocks := Gonblocks_is_sym(Fix, moving_blocks);
n := 1;
while n <= Nb-2 and indep_on_blocks do
Fix := Stabilizer(Fix, B[n], OnSets);
# fixes the first n-1 blocks, stabilizes the next one
hom := ActionHomomorphism(Fix, B[n]);
Fix := Kernel(hom);
# fixes the first n, the others are free
Remove(moving_blocks, 1);
# one less moving block
indep_on_blocks := Gonblocks_is_sym(Fix, moving_blocks);
n := n+1;

od;
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return indep_on_blocks;
end;

Gonblocks_is_sym := function(gp, B)
# gp is a permutation group and B a block system for gp

ss# checks if G acts as the symmetric group on the blocks of the block system
B
ss# returns a boolean
ss# used in is_nice_on_B
local Gonblocks;
Gonblocks := Action(gp, B, OnSets);
return Gonblocks = SymmetricGroup(Size(B));

end;

Most GAP functions used here do what one would expect them to do: MaximalBlocks
computes a maximal non trivial block system; ActionHomomorphism computes the
permutation representation of the group associated with the specified action (see
Subsection 2.1.2), i.e. the associated injective morphism that embeds the group in
the relevant symmetric group (the keyword OnSets is used to precise the type of
action); Action directly computes the image of this morphism, thus returning a per-
mutation group; Remove removes the element of specified position in the list provided
as first argument; Size, List, Stabilizer, Kernel, SymmetricGroup do (resp. con-
struct) what you expect them to do (resp. construct). The function is_nice_on_B
proceeds by pointwise fixing more and more blocks of B, starting with 0 and ending
with all but 2, and checking at every step that the action on the blocks that we did
not ask (yet) to be fixed is still symmetric.

The following function, stab_blocks, computes the block stabilizer of the group
gp on a block system B. It will be used to compute the tower of gp on B.

stab_blocks := function(gp, B)
# gp is a permutation group and B a block system for gp

ss# returns the block stabilizer of the group gp on the block system B
ss# used in tower
local hom;
hom := ActionHomomorphism(gp, B, OnSets);
return Kernel(hom);

end;

The following two functions are meant to compute and print in a convenient
way the tower of the group provided as input, searched for of specified shape. Note
that, the requirements being quite rare among all permutation groups of degree
card, even transitive, the use of these functions on random groups would probably
be fastidious. For instance, only 59 of the 25000 transitive groups of degree 24
will be selected and provide some actual data. Since we will use the programs for
exploration of a rather large amount of instances, called by a function that will do
all the work for us, this will not be an issue in this context. The optional argument
print_group_option (that GAP passes along packed into a list, since it allows for
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several optional arguments — but we will provide at most one here) enables one to
ask for the group to be printed, before the tower is. This may occasionally be useful
when printing several towers using a loop, although it did not turned out decisive
for us.

tower := function(gp, card, Nb)
# gp is a permutation group, card its degree, Nb the desired number of blocks

ss# returns the tower of gp on a block system of the specified shape, as a list
ss# returns [] instead if gp cannot act "nicely" on such a block system
ss# or if gp admits no block system of the specified shape
ss# used in print_tower; uses adapted_block_system and stab_blocks
local B, hom, Gonblocks, stab, H0, tower, n, Fix;
B := adapted_block_system(gp, card, Nb);
# B = [] if such a system does not exist
tower := [];
if B <> [] then
Fix := stab_blocks(gp, B);
# stabilizer of all blocks, will then fix more and more
n := 1;
while n < Nb+1 do
hom := ActionHomomorphism(Fix, B[n]);
H0 := Image(hom);
Add(tower, H0);
# save of result
Fix := Kernel(hom);
# one more fixed block, for next H
n := n+1;

od;
fi;
return tower;

end;

print_tower := function(gp, card, Nb, print_group_option...)
# gp is a permutation group, card its degree, Nb the desired number of blocks

ss# argument print_group_option is optional and should be a boolean
ss# prints the tower if the group has the required minimal blocks
ss# used in print_all_towers; uses tower
local tentative_tower, print_group, H, to_print;
tentative_tower := tower(gp, card, Nb);
# computation of the tower
if Length(print_group_option) <> 0 then
# handling of the option
print_group := print_group_option[1];

else
print_group := false;
# default value

fi;
if print_group and tentative_tower <> [] then
# if we asked to see the group and it has the required shape
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Print("Group : ", StructureDescription(gp),"\n");
Print(" Tower : ");

fi;
for H in tentative_tower do
# prints the terms H of the tower
to_print := StructureDescription(H);
while Size(to_print) < 8 do
# for the terms of towers to appear aligned (for small blocks)
to_print := Concatenation(to_print, " ");

od;
Print(to_print, " ");

od;
if tentative_tower <> [] then
Print("\n");

fi;
end;

Finally, print_all_towers function can be used to print the towers of a certain
shape (Nb blocks) for transitive groups of degree card under the conditions previously
described. Option print_groups can still be used in case there is a need for it, but
it makes the comparison of towers less convenient.

print_all_towers := function(card, Nb, print_groups...)
# card is the size of domain, Nb the desired number of blocks

ss# argument print_groups is optional and should be a boolean
ss# prints all towers that meet the conditions
ss# uses print_tower
local print_option, index, gp;
if Length(print_groups) <> 0 then
print_option := print_groups[1];

else
print_option := false;

fi;
for index in [1..NrTransitiveGroups(card)] do
# runs through all transitive groups of that degree
gp := TransitiveGroup(card, index);
print_tower(gp, card, Nb, print_option);

od;
end;

Examples of outputs we can get are exposed below; the third one takes a few
seconds to compute. The first one, for instance, is looking for towers of transitive
groups acting “nicely” on 6 blocks of 3 elements. Each tower is printed on a different
row, and the Hi’s of distinct towers are aligned on the i-th column. The printed
groups are named using GAP’s library of group names (for instance, D10 represents
the dihedral group on 5 elements, and the symbols : and x are used for the semi-
direct and direct products, respectively).

gap> print_all_towers(18, 6);
C3 1 1 1 1 1
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C3 C3 C3 C3 C3 1
S3 C3 C3 C3 C3 1
C3 C3 C3 C3 C3 C3
S3 C3 C3 C3 C3 C3
S3 S3 S3 S3 S3 C3
S3 S3 S3 S3 S3 C3
S3 S3 S3 S3 S3 S3
gap>
gap> print_all_towers(25, 5);
C5 1 1 1 1
D10 1 1 1 1
C5 : C4 1 1 1 1
A5 1 1 1 1
S5 1 1 1 1
C5 C5 C5 C5 1
D10 C5 C5 C5 1
C5 : C4 C5 C5 C5 1
C5 C5 C5 C5 C5
D10 C5 C5 C5 C5
C5 : C4 C5 C5 C5 C5
D10 D10 D10 D10 C5
D10 D10 D10 D10 C5
D10 D10 D10 D10 D10
C5 : C4 D10 D10 D10 D10
C5 : C4 C5 : C4 C5 : C4 C5 : C4 C5
C5 : C4 C5 : C4 C5 : C4 C5 : C4 C5
C5 : C4 C5 : C4 C5 : C4 C5 : C4 D10
C5 : C4 C5 : C4 C5 : C4 C5 : C4 D10
C5 : C4 C5 : C4 C5 : C4 C5 : C4 C5 : C4
A5 A5 A5 A5 A5
S5 A5 A5 A5 A5
S5 S5 S5 S5 A5
S5 S5 S5 S5 A5
S5 S5 S5 S5 S5
gap>
gap> print_all_towers(24, 8);
C3 1 1 1 1 1 1 1
C3 C3 C3 C3 C3 C3 C3 1
S3 C3 C3 C3 C3 C3 C3 1
C3 C3 C3 C3 C3 C3 C3 C3
S3 C3 C3 C3 C3 C3 C3 C3
S3 S3 S3 S3 S3 S3 S3 C3
S3 S3 S3 S3 S3 S3 S3 C3
S3 S3 S3 S3 S3 S3 S3 S3

What to retain from all this? One seemingly odd observation: in between the
first and last elements of the tower, all groups are equal; there can only be a strict
decrease after the first group, and before the last one. The fact seemed so surprising
to me at first that I did not give it proper consideration right away. When I showed
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the results to my advisor and he asked “Did you notice that these towers only decrease
at the beginning or the very end?”, my answer was “Yes of course, I don’t know why,
maybe my programs are wrong or my conditions too restrictive”. Fortunately, he
was more confident than me and said “OR... you could try to prove it’s always
true”... which it was indeed. This very crucial point led to the infinite analog, that
the tower of a P -oligomorphic group has shape H0, H, H, H · · · ; and from there
to the classification on a single superblock, which I believe to be the hardest part of
the work presented in this thesis.

A.2 An implementation of P -oligomorphic groups
with SageMath

Born in 2005, SageMath, or just Sage for short, is a software of computer algebra
based on the Python language, under the GNU General Public License. It aims to
offer a free alternative to traditional softwares such as Maple or Magma, with a vast
range of possibilities brought by functional interfaces with other more specialized
systems (among which GAP-system, Pari, Singular...), along with its own original
tools. Sage is based on free collaborative development, just like GAP, and has grown
more and more complete and more and more used over the years, especially in the
fields of combinatorics and algebra. Users can submit tickets with modifications or
additions they would like to see into Sage, in order to share them with the com-
munity. If the ticket is reviewed and validated by other developers, the change will
be added into Sage in its next release version (and, in the meantime, it will be
patched on the development version). A whole documentation is available online,
but [Cas+13] is a very good way to get familiar with the various uses of the software
(English and German translations are avaible and all pdf files are free to download).

This chapter exposes some Sage programs I implemented, not so much as a tool
to help me prove the conjecture of Macpherson, unlike the GAP code of the previous
section, but rather as a result of my research. I first present a piece of code that was
successfully submitted to be integrated into Sage; it is based on Pólya enumeration
and did not need new theory to be implemented.

Then, I will dwell on the code I wrote in order to be able to manipulate infinite
generic P -oligomorphic groups. This was made possible by the classification result
of Chapter 7, so it is entirely new technology (as noted in the previous section, com-
puter algebra softwares still lack effective algorithmics to handle infinite groups in
general). Since the code is a bit massive as a whole to be included here, I will just
give some example of use of the features.

First, two methods where added to the category of finite permutation groups,
that allow to compute the finite profile of a finite permutation group, as well as its
generating series (a polynomial in that case, hence the alias profile_polynomial).
These gave birth to a (positively reviewed) Sage ticket, in order to be integrated in
the next release version. I present here the submitted version, with full standard-
ized documentation. The parts delimited by r""" ... """ are the documentation

http://doc.sagemath.org/html/en/
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strings of the methods; they are destined to the user and ignored by the programs.

class FinitePermutationGroups(CategoryWithAxiom):
[...]

class ParentMethods:
[...]

@cached_method
def profile_series(self, variable=’z’):

r"""
Return the (finite) generating series of the (finite) profile
of the group.

The profile of a permutation group G is the counting function that
maps each nonnegative integer n onto the number of orbits of the
action induced by G on the n-subsets of its domain.
If f is the profile of G, f(n) is thus the number of orbits of
n-subsets of G.

INPUT:

- ‘‘variable‘‘ -- a variable, or variable name as a string
(default: ‘’z’‘)

OUTPUT:

- A polynomial in ‘‘variable‘‘ with nonnegative integer coefficients.
By default, a polynomial in z over ZZ.

.. SEEALSO::

- :meth:‘profile‘

EXAMPLES::

sage: C8 = CyclicPermutationGroup(8)
sage: C8.profile_series()
z^8 + z^7 + 4*z^6 + 7*z^5 + 10*z^4 + 7*z^3 + 4*z^2 + z + 1
sage: D8 = DihedralGroup(8)
sage: poly_D8 = D8.profile_series()
sage: poly_D8
z^8 + z^7 + 4*z^6 + 5*z^5 + 8*z^4 + 5*z^3 + 4*z^2 + z + 1
sage: poly_D8.parent()
Univariate Polynomial Ring in z over Rational Field
sage: D8.profile_series(variable=’y’)
y^8 + y^7 + 4*y^6 + 5*y^5 + 8*y^4 + 5*y^3 + 4*y^2 + y + 1
sage: u = var(’u’)
sage: D8.profile_series(u).parent()
Symbolic Ring
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"""
from sage.rings.integer_ring import ZZ

if isinstance(variable, str):
variable = ZZ[variable].gen()

cycle_poly = self.cycle_index()
return cycle_poly.expand(2).subs(x0 = 1, x1 = variable)

profile_polynomial = profile_series

def profile(self, n, using_polya=True):
r"""
Return the value in ‘‘n‘‘ of the profile of the group ‘‘self‘‘.

Optional argument ‘‘using_polya‘‘ allows to change the
default method.

INPUT:

- ‘‘n‘‘ -- a nonnegative integer

- ‘‘using_polya‘‘ (optional) -- a boolean: if ‘‘True‘‘ (default),
the computation uses Polya enumeration (and all values of the
profile are cached, so this should be the method used in case
several of them are needed);
if ‘‘False‘‘, uses the GAP interface to compute the orbit.

OUTPUT:

- A nonnegative integer that is the number of orbits of
‘‘n‘‘-subsets under the action induced by ‘‘self‘‘ on
the subsets of its domain (i.e. the value of the profile
of ‘‘self‘‘ in ‘‘n‘‘)

.. SEEALSO::

- :meth:‘profile_series‘

EXAMPLES::

sage: C6 = CyclicPermutationGroup(6)
sage: C6.profile(2)
3
sage: C6.profile(3)
4
sage: D8 = DihedralGroup(8)
sage: D8.profile(4, using_polya=False)
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8

"""
if using_polya:

return self.profile_polynomial()[n]
else:

from sage.libs.gap.libgap import libgap
subs_n = libgap.Combinations(list(self.domain()), n)
return len(libgap.Orbits(self, subs_n, libgap.OnSets))

Besides this (rather short) addition to Sage, I have implemented classes allow-
ing to build, manipulate, and compute the profile of infinite P -oligomorphic. The
infrastructure involves the following classes.

class PoligomorphicGroup(Parent)
class HighlyHomogeneousGroup(PoligomorphicGroup)

class AutQQ(HighlyHomogeneousGroup)
class RevQQ(HighlyHomogeneousGroup)
class AutQQCircle(HighlyHomogeneousGroup)
class RevQQCircle(HighlyHomogeneousGroup)
class SymInfinity(HighlyHomogeneousGroup)

class DirectProductOfPoligomorphicGroups(PoligomorphicGroup)
class PermutingSuperblocks(PoligomorphicGroup)

class WreathProductOnInfiniteBlocks(PermutingSuperblocks)
class SingleSuperblock(PermutingSuperblocks)

class WreathProductOnFiniteBlocks(SingleSuperblock)
class PoligomorphicGroup_generic(PoligomorphicGroup)

A link to the public repository hosting this code is available on my webpage. It
is not perfect yet and is thus likely to change over time (the outputs presented here,
or the names used, may therefore slightly vary as well).

Following are some examples of standard use.

sage: RevQQCircle()
The group Rev(QQ/ZZ) generated by the automorphisms of the rational circle
and one reflection
sage: G1 = WreathProductInfiniteBlocks(SymmetricGroup(5), RevQQCircle())
sage: G1.number_of_superblocks()
5
sage: G1.as_PoligomorphicGroup().parent()
<class ’__main__.PoligomorphicGroup_generic’>
sage: factor(G1.profile_series())
(-1) * (z - 1)^-5 * (z + 1)^-2 * (z^2 + 1)^-1 * (z^2 + z + 1)^-1 *
(z^4 + z^3 + z^2 + z + 1)^-1
sage: G1.profile(10)
30
sage: G1.profile_first_values(15)
[1, 1, 2, 3, 5, 7, 10, 13, 18, 23, 30, 37, 47, 57, 70, 84]

https://www.lri.fr/~falque/
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sage: var(’u’)
sage: hilbs5 = 1/((1-u)*(1-u**2)*(1-u**3)*(1-u**4)*(1-u**5))
sage: hilbs5.series(u, 16).coefficients(u, sparse=False)
[1, 1, 2, 3, 5, 7, 10, 13, 18, 23, 30, 37, 47, 57, 70, 84]

We are now going to build a more generic P -oligomorphic group G2.

sage: AutQQ()
The group of automorphisms of the rational chain Aut(QQ)
sage: C3 = CyclicPermutationGroup(3)
sage: F = PermutationGroup([(1,2,3),(1,2),(4,5)])
sage: G2 = PoligomorphicGroup_generic(F, block_system = [[1,2,3],[4],[5]],
....: wreath_bases = [[[1,2,3], C3]], hhomogeneous_groups = [[[4], AutQQ()],
....: [[5], AutQQ()]])

The group F that will act diagonally is isomorphic to S3 × S2. A non trivial
block system is given, which determines the number of superblocks (3 here). The
other argument allow to precise how the blocks of the finite group will be extended
into superblocks of the resulting P -oligomorphic group.

All arguments except the first one (a finite permutation group) are optional;
nevertheless, if specified, they need to obey to the system of criteria required by
the classification (see Section 7.3). Default values are the simplest cases (nearly):
a block system that consists of the orbits if F is not transitive, the default block
system handed by GAP if it is (a seed can also be given in this case, see the GAP
documentation about block systems to learn more); and the wreath bases and highly
homogeneous groups set such that each restriction of G2 to a superblock is a wreath
product with S∞ (but G2 is not necesarily a direct product of those: for instance,
with the block system that we gave here, two of the superblocks permute).

Remark that, in our example, the second list in hhomogeneous_groups is re-
dundant and does not have to be specified: the highly homogeneous group of the
superblock associated to [5] would be deduced from the information given for the
other superblocks in the same orbit (as long as there is no contradiction). On the
other hand, it would raise an error if wrongly specified (if the group was not identical
to the one given for [4]).

Since we specified a proper normal subgroup C3 of S3, the first superblock will
not support a pure wreath product. Note that, if the subgroup given was not normal,
it would automatically be corrected to its normal closure.

sage: G2.diagonal_action() == F
True
sage: G2.cardinality()
+Infinity
sage: BB = G2.list_of_superblocks() # superblocks along with the action thereupon
sage: len(BB) # number of superblocks
3
sage: BB0 = BB[0]
sage: BB0.parent()
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<class ’__main__.SingleSuperblock’>
sage: BB0.size_of_blocks()
3
sage: BB0.action_on_blocks()
The closed infinite symmetric group S_infinity
sage: BB0.restriction_to_a_block() # or BB0._H0()
Symmetric group of order 3! as a permutation group
sage: BB0.finite_wreath_base() # or BB0._H()
Cyclic group of order 3 as a permutation group
sage: # a normal subgroup of H0
sage: BB0.print_tower()
H0 H1 H1 H1 H1 H1 ...
with H0 = Symmetric group of order 3! as a permutation group

H1 = Cyclic group of order 3 as a permutation group
sage:
sage: BB0.underlying_wreath_product()
Cyclic group of order 3 as a permutation group wreath

The closed infinite symmetric group S_infinity
sage: BB1 = BB[1]
sage: BB1.is_highly_homogeneous()
True
sage: BB1.action_on_blocks()
The group of automorphisms of the rational chain Aut(QQ)

For the record, we include here the core of the method that computes the se-
ries of the profile using Pólya in the general case (this is extracted from the class
PoligomorphicGroup_generic).

max_deg = self._max_size_of_finite_block() # upper bound of computation
finite_orbits = self._union_finite_ages_per_degree()

homom = [’NULL’]
dom = [’NULL’]
for d in range(1, max_deg+1):
# will enable to consider the actions on orbits of degree d

homom.append(libgap.ActionHomomorphism(self.finite_group,
finite_orbits[d], libgap.OnSetsSets))

dom.append(range(1, len(finite_orbits[d])+1))
CCl = libgap.ConjugacyClasses(self.finite_group)
polya_sum = 0
for gbar in CCl:

g = libgap.Representative(gbar)
# computation of the weight of g
W_g = 1
for d in range(1, max_deg+1):
# run through the orbital degrees of the orbits of the H1’s

g_d = libgap.Image(homom[d], g)
# g acting on the orbits of degree d
CT_d = libgap.CycleLengths(g_d, dom[d])
for k in CT_d:

W_g /= (1 - z**(d*Integer(k)))
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polya_sum += W_g*len(libgap.List(gbar))
result = factor(polya_sum / self.finite_group.order())
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Appendix B
The original way to the conjectures:
an alternative (weaker) proof

This appendix chapter describes what was our first strategy to prove the conjecture
of Macpherson and the Cohen-Macaulay property. Although it does not end up
to the result of the orbit algebra of a P -oligomorphic group being an algebra of
invariants, this approach makes a heavy use of invariant theory techniques.

First, we study how the orbit algebra of an oligomorphic permutation group
G relates to the orbit algebra of a subgroup K of G of finite index, and derive
three important reductions for Macpherson’s question. We then give a proof of the
lifting theorem in Section B.4. Finally, we apply all these reductions in Section B.5
to obtain a proof of Macpherson’s conjecture, and we get a different proof of the
Cohen-Macaulay property by using some more invariant theory.

B.1 Lifting theorem and a first reduction
Let us look back to Lemma 3.2.17. This simple result suggests that some properties
of the the group (such as its profile group) may be deduced from the study of
some finite index (normal) subgroup. The following, more subtle theorem gives an
interesting preservation property at the level of the orbit algebras.

Theorem B.1.1. Let G be an oligomorphic permutation group and K be a subgroup
of finite index. If the orbit algebra Q[AK ] of K is finitely generated, then so is its
subalgebra Q[AG]. If in addition Q[AK ] is Cohen-Macaulay, then Q[AG] is Cohen-
Macaulay too.

Note that the subgroup does not have to be normal, although it will be in our
use case.

This is a close variant of Hilbert’s theorem stating that the ring of invariants
of a finite group is finitely generated; the orbit algebra Q[AK ] plays the role of the
polynomial ring Q[X], while the orbit algebra Q[AG] plays the role of the invariant
ring Q[X]G.

The key ingredient in Hilbert’s proof is the Reynolds operator, a finite averaging
operator over the group. In the setting of orbit algebras, G is not finite; however, we
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will compensate by using the relative Reynolds operator with respect to K, which is
a finite averaging operator over the coset representatives. Then we will just proceed
as in Hilbert’s proof. The same approach can be used to prove that Q[AG] is Cohen-
Macaulay as soon as Q[AK ] is.

Before diving into the proof of Theorem B.1.1, we can appreciate its relevance
by immediately deriving a series of practical applications, each of which helping
simplify the problem. The first one is a reduction of Macpherson’s conjecture to
groups whose orbits of elements admit no finite non trivial block systems.

Corollary B.1.2 (Reduction 1). Let G be an oligomorphic group that admits a non
trivial finite transitive block system. Let K be the subgroup of the elements of G that
stabilize each block. Then, if the orbit algebra of K is finitely generated, so is the
orbit algebra of G.

Proof. By construction, K is the kernel of the canonical projection of G onto its
action by permutation on the blocks and thus a normal subgroup of finite index,
and we may apply Theorem B.1.1.

B.2 Second reduction: ignoring some synchroniza-
tions of order 2

Lemma B.2.1 (Reduction 2). Let G be a (closed) P -oligomorphic permutation
group. Take the normal subgroup of G that is G in which the restrictions to trivial
superblocks (those with singletons as finite blocks) that are of type Rev(Q) (resp.
Rev(Q/Z)) have been replaced by Aut(Q) (resp. Aut(Q/Z)). If the orbit algebra of
this subgroup is finitely generated, then so is the orbit algebra of G.

This reduction is a straightforward consequence of Theorem B.1.1: just take the
kernel of the morphism that maps an element g of G to the tuple (ri)i∈{1,...,m}, m
being the number of trivial superblocks of type Rev(Q) or Rev(Q/Z) and ri being
1 if the action of g on the i-th such superblock is in Aut(Q) or Aut(Q/Z) and −1 if
it is not (if it induces a “flip” on this orbit).

This technically generalizes to superblocks in general, but Lemma 4.2.8 and the
results of Section 4.3 already imply that synchronizations of order 2 may not exist
in a P -oligomorphic group if the finite blocks are non trivial.

Note that in order to simply ignore synchronizations of order 2 (synchronized
“flips”) between restrictions of type Rev(Q) or Rev(Q/Z), it would be sufficient to
reduce only those that do synchronize in the original group, and keep the ones that
do not.

We derive the following convenient remark from the reduction above and the
construction of the nested block system (one may recall intuitively that we chose
the finite blocks as big as possible and then took the smallest possible infinite blocks
of the induced action on the finite blocks; see proof of Theorem 5.3.1).

Remark B.2.2. As the actions of G on the blocks of superblocks are primitive by
construction, and thus highly homogeneous in our setting, they are all independent.
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B.3 Third reduction: assuming there are no finite
orbits of elements

The third application is a reduction of Macpherson’s conjecture to groups with empty
kernel.

Theorem B.3.1 (Reduction 3). Let G be a P -oligomorphic permutation group.
Assume that the orbit algebra of K|E−kerK, where K is the subgroup of G acting
trivially on the kernel of G, is finitely generated. Then the orbit algebra of G is
finitely generated.

This reduction allows, when trying to prove the conjecture of Macpherson, to
make the assumption that our P -oligomorphic group has no finite orbits of elements.

We will need the following two simple results to prove this theorem. It is a simple
corollary of Lemma 3.2.17.

Lemma B.3.2. Let G be an oligomorphic permutation group and K be a normal
subgroup of finite index. Then ker(K) = ker(G).

Proof of Reduction 3. Let Ψ be the canonical projection from G to its finite restric-
tion G| kerG, and K be its kernel, that is the subgroup of the elements of G acting
trivially on kerG (care that there are two entirely distinct notions of “kernel” in
this situation). By construction, K is a normal subgroup of G of finite index. In
particular kerK = kerG. Using Lemma 3.2.16,

Q[AK ] ' Q[AK|E−kerK
]⊗Q[A1kerG

] , (B.1)

where the right hand side of the tensor product is just the set algebra of kerG. Since
it is finitely generated by its singletons, this concludes the proof.

Remark B.3.3. At the level of Hilbert series, Equation B.1 becomes

H(Q[AK ], z) = H(Q[AK|E−kerK
], z)(1 + z)| kerG| .

Hence K|E−kerK has the same growth rate as K and therefore, by Lemma 3.2.17, as
G.

B.4 Proof of the lifting theorem
Let us now turn to the relative Reynolds operator RG

K . It is defined by choosing
some representatives (gi)i of the left cosets of G w.r.t. K:

RG
K =

1

[G : K]

∑
i

gi .

Lemma B.4.1. Let G be an oligomorphic permutation group, and K be a subgroup
of finite index. Then, the relative Reynolds operator RG

K defines a projection from
Q[AK ] onto Q[AG] which does not depend on the choice of the gi’s, and it is a
Q[AG]-module morphism.
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Proof. Take p ∈ Q[AK ]. Note that, for any h ∈ K, h.p = p. Therefore, if gi and g′i
are representatives of the same cosets (i.e. g′i = gihi), we have:

1

[G : K]

∑
i

g′i.p =
1

[G : K]

∑
i

gihi.p =
1

[G : K]

∑
i

gi.p .

Hence the map defined by the Reynolds operator on Q[AK ] does not depend on the
choice of representatives, as desired.

Let us now compute:

g.(RG
K .p) = g.

1

|G : K|
∑
i

gi.p =
1

[G : K]

∑
i

ggi.p =
1

[G : K]

∑
i

gσ(i)hi.p

=
1

[G : K]

∑
i

gσ(i).p =
1

[G : K]

∑
i

gi.p = RG
K .p

where we used that g acts by a permutation σ on the cosets and thus ggi = gσ(i)hi
for some hi’s. This proves that RG

K maps Q[AK ] onto Q[AG].
Finally, take p ∈ Q[AG], and q ∈ Q[AK ]. Then,

RG
K .(pq) =

1

[G : K]

∑
i

(gi.p)(gi.q) =
1

[G : K]

∑
i

p(gi.q) = p
1

[G : K]

∑
i

gi.q = pRG
K .q .

Therefore, RG
K is a Q[AG]-module morphism; furthermore taking q = 1, we get that

RG
K projects Q[AK ] onto Q[AG].

We can now finally prove the main result of this section.

Proof of Theorem B.1.1. Consider I := 〈Q[AG]+〉 the graded ideal of all the non
zero degree elements of Q[AG] (in other words the ideal generated by the non zero
degree orbits) in Q[AK ]. Since Q[AK ] is finitely generated, it satisfies the ascending
condition on chains of ideals. Therefore, I is finitely generated as an ideal. Denote
by (pi)i a generating set for I. Since I is finite dimensional for each degree, we may
assume without loss of generality that the pi’s belong to Q[AG]+.

Claim: The pi’s generate Q[AG] as an algebra, which is therefore finitely gener-
ated.

To prove the claim, we proceed by induction on the degree d: assume that any
element of Q[AG] of degree at most d− 1 lives in the algebra generated by the pi’s.
This is obviously the case for d = 1.

Take p a homogeneous element of degree d of Q[AG], and express it in the ideal
generated by the pi’s as p =

∑
piqi, where the qi are homogeneous elements of Q[AK ]

of degree at most d− 1. Then,

p = RG
K .p =

∑
i

RG
K .(piqi) =

∑
i

piR
G
K .qi .

Since each RG
K .qi belongs to Q[AG], we can apply induction and deduce that it lives

in the algebra generated by the pi’s, and therefore the same holds for p.
Now we prove the second part of the theorem : the lifting of the Cohen-Macaulay

property.
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The proof is adapted from [Sta79b].
We first claim that Q[AK ] is a finitely generated Q[AG]-module. This is equivalent
to saying that Q[AK ] is integral over Q[AG] (see [Sta79b] for the proof of equiva-
lence), which means that every element of Q[AK ] satisfies a polynomial relation with
coefficients in Q[AG] and the one of greatest power being 1. The integrality may
be proved by considering, for f ∈ Q[AK ], the polynomial Pf (X) =

∏
gi

(X − gi(f)),
where the gi’s are representatives of the left cosets of K in G as previously. Each
coefficient is a symmetric polynomial in the images of f , so it is an element of Q[AG].
The polynomial Pf (X) is also monic as required, and we do have Pf (f) = 0 since
X − f is one of the factors.
Let now θ1, . . . , θs be an h.s.o.p (homogeneous system of parameters) for Q[AG] (we
know such elements exist thanks to the Noether normalization lemma). We aim to
prove that Q[AG] is a finitely generated free module over Q[θ1, . . . , θs]. By defini-
tion, Q[AG] is finite over Q[θ1, . . . , θs], and we just showed that Q[AK ] is finite over
Q[AG] so it is also finite over Q[θ1, . . . , θs], which means that θ1, . . . , θs is an h.s.o.p
for Q[AK ].
The orbit algebra ofK is Cohen-Macaulay by hypothesis, which implies in particular
that it is also a finitely generated free module on Q[θ1, . . . , θs] (as with any other
h.s.o.p). We will use a certain free module basis to deduce (the existence of) a free
module basis of Q[AG] on Q[θ1, . . . , θs].
We now show that we can write Q[AK ] = Q[AG]⊕ U , where U is a Q[AG]-module.
Since the Reynolds operator R = RG

K is a morphism of Q[AG]-modules and a pro-
jection from Q[AK ] onto Q[AG], we may take U = {f ∈ Q[AK ]/R(f) = 0} =
{f −R(f) : f ∈ Q[AK ]}.

From the obtained decomposition, we get a decomposition of the following quo-
tient:

Q[AK ]/(θ1, . . . , θs) = Q[AG]/(θ1, . . . , θs)⊕ U/(θ1U + · · ·+ θsU) .

We now use the well know property of Cohen-Macaulay algebras (Proposition 3.1
of [Sta79b]) by which, for any h.s.o.p θ1, . . . , θs of such a Q-algebra A, a given set of
elements forms a free Q[θ1, . . . , θs]-module basis if and only if they are a vector space
basis of A/(θ1, . . . , θs). We take a homogeneous Q-basis for the quotient that is the
concatenation of a basis for the left and right-hand term of the decomposition re-
spectively, and then lift the elements of this basis to homogeneous elements of Q[AG]
or U (depending on the part of the basis they are taken from). These homogeneous
elements form a free module basis of Q[AK ] over Q[θ1, . . . , θs], which leads the ones
lifted to Q[AG], thanks to decomposition of Q[AK ], to be a free Q[θ1, . . . , θs]-module
basis for it.

B.5 Results: Theorem of Macpherson and the Cohen-
Macaulay property

Theorem B.5.1. The orbit algebra of a P -oligomorphic permutation group is finitely
generated.
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Sketch of proof. Consider the nested block system BB(G) introduced in Section 5.3.
Recall that it consists a priori of superblocks and possibly one finite stable block;
use the Reduction 3 to assume that there is no such finite isolated block (meaning
G has no kernel).

We aim to prove the existence of a normal subgroup K of finite index of G with
a simple form, ensuring that its orbit algebra is a finitely generated (almost free)
algebra.

Start withK = G. ReplaceK by the kernel of its action on the set of superblocks
of BB(G). This ensures that K stabilizes each of them. Use Lemma 5.3.5 to argue
that superblocks are still superblocks. Now take one of them. Using Corollary 6.1.8,
and replacing K if needed, we may assume that the restriction of K to the support
of the superblock is some H oS∞.

[Note from the author: when this proof was first written, the classification result
on one superblock was not as sharp and only stated that the restriction to a su-
perblock had the same age as a supergroup of finite index of such a wreath product.
So the rest of the proof was formulated using “has the same age as” and not “is”,
which still led to the right conclusion about the conjecture of Macpherson.]

Repeat for the other superblocks.
Now use Corollary 6.1.10 and Lemma 5.3.5 to argue that there is no synchro-

nization (neither finite nor infinite) left between superblocks.
Then, K is some direct product of groups of the form S∞, Aut(Q), Aut(Q/Z),

and G′ oS∞. From Remark 5.1.2, Q[AK ] is a free algebra which is finitely generated.
Using Theorem B.1.1, it follows that Q[AG] is finitely generated.

Theorem B.5.2. The orbit algebra of a P -oligomorphic permutation group is Cohen-
Macaulay.

To get this theorem, one just needs to apply Theorem B.1.1 to a suitable subgroup
K; so start as in the above proof, but instead of just ignoring the kernel of the group
at the beginning and cutting it off, replace K by the kernel of the homomorphism
(careful, not the same notions!) projecting G onto its action on the stable block.

Then Q[AK ] is the tensor product of a finite dimensional algebra (due to the
kernel; see Example 3.2.14) and a finitely generated free algebra A . If we call
µ1, . . . , µr a linear basis for the finite dimensional part, and θ′1, . . . , θ′m an h.s.o.p for
A (so it actually generates it all), this means we have Q[AK ] =

⊕
i µiQ[θ′1, . . . , θ

′
m];

in other words, Q[AK ] is Cohen-Macaulay.
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Théorie des invariants; Systèmes de blocs d’imprimitivité.
Résumé : Les travaux présentés dans cette thèse de doctorat relèvent de la combinatoire algébrique et de la théorie des
groupes. Précisément, ils apportent une contribution au domaine de recherche qui étudie le comportement des profils des
groupes oligomorphes.
La première partie de ce manuscrit introduit la plupart des outils qui nous seront nécessaires, à commencer par des
éléments de combinatoire et combinatoire algébrique. Nous présentons les fonctions de comptage à travers quelques
exemples classiques, et nous motivons l’addition d’une structure d’algèbre graduée sur les objets énumérés dans le but
d’étudier ces fonctions. Nous évoquons aussi les notions d’ordre et de treillis. Dans un second temps, nous donnons
un aperçu des définitions et propriétés de base associées aux groupes de permutations, ainsi que quelques résultats de
théorie des invariants. Nous terminons cette partie par une description de la méthode d’énumération de Pólya, qui
permet de compter des objets sous une action de groupe.

La deuxième partie est consacrée à l’introduction du domaine dans lequel s’inscrit cette thèse, celui de l’étude des profils
de structures relationnelles, et en particulier des profils orbitaux. Si G est un groupe de permutations infini, son profil
est la fonction de comptage qui envoie chaque n ∈ N sur le nombre d’orbites de n-sous-ensembles, pour l’action induite
de G sur les sous-ensembles finis d’éléments. Cameron a conjecturé que le profil de G est équivalent à un polynôme
dès lors qu’il est borné par un polynôme. Une autre conjecture, plus forte, a été plus tard émise par Macpherson :
elle implique une certaine structure d’algèbre graduée sur les orbites de sous-ensembles, créée par Cameron et baptisée
algèbre des orbites, soutenant que si le profil est borné par un polynôme, alors l’algèbre des orbites est de type fini.
Comme amorce de notre étude de ce problème, nous développons quelques exemples et faisons nos premiers pas vers
une résolution en examinant les systèmes de blocs des groupes de profil borné par un polynôme — que nous appelons
P -oligomorphes —, ainsi que la notion de sous-produit direct.

La troisième partie démontre une classification des groupes P -oligomorphes, notre résultat le plus important et dont la
conjecture de Macpherson se révèle un corollaire. Tout d’abord, nous étudions la combinatoire du treillis des systèmes
de blocs, qui conduit à l’identification d’un système généralisé particulier, constitué de blocs de blocs ayant de bonnes
propriétés. Nous abordons ensuite le cas particulier où il se limite à un seul bloc de blocs, pour lequel nous établissons
une classification. La preuve emprunte à la notion de sous-produit direct pour gérer les synchronisations internes au
groupe, et a requis une part d’exploration informatique afin d’être d’abord conjecturée.
Dans le cas général, nous nous appuyons sur les résultats précédents et mettons en évidence la structure de G comme
produit semi-direct impliquant son sous-groupe normal d’indice fini minimal et un groupe fini. Ceci permet de formaliser
une classification complète des groupes P -oligomorphes, et d’en déduire la forme de l’algèbre des orbites : (à peu de
choses près) une algèbre d’invariants explicite d’un groupe fini. Les conjectures de Macpherson et de Cameron en
découlent, et plus généralement une compréhension exhaustive de ces groupes.

L’annexe contient des extraits du code utilisé pour mener la preuve à bien, ainsi qu’un aperçu de celui qui a été produit en
s’appuyant sur la nouvelle classification, qui permet de manipuler les groupes P -oligomorphes en usant d’une algorithmique
adaptée. Enfin, nous joignons ici notre première preuve, plus faible, des deux conjectures.

Title: Classification of P -oligomorphic groups, conjectures of Cameron and Macpherson
Keywords: Theoretical computer science; Algebraic combinatorics; Profiles; Oligomorphic permutation groups; Invari-
ant theory; Block systems.
Abstract: This PhD thesis falls under the fields of algebraic combinatorics and group theory. Precisely, it brings a
contribution to the domain that studies profiles of oligomorphic permutation groups and their behaviors.
The first part of this manuscript introduces most of the tools that will be needed later on, starting with elements of
combinatorics and algebraic combinatorics. We define counting functions through classical examples; with a view of
studying them, we argue the relevance of adding a graded algebra structure on the counted objects. We also bring up the
notions of order and lattice. Then, we provide an overview of the basic definitions and properties related to permutation
groups and to invariant theory. We end this part with a description of the Pólya enumeration method, which allows to
count objects under a group action.

The second part is dedicated to introducing the domain this thesis comes within the scope of. It dwells on profiles
of relational structures, and more specifically orbital profiles. If G is an infinite permutation group, its profile is the
counting function which maps any n ∈ N to the number of orbits of n-subsets, for the induced action of G on the
finite subsets of elements. Cameron conjectured that the profile of G is asymptotically equivalent to a polynomial
whenever it is bounded by a polynomial. Another, stronger conjecture was later made by Macpherson: it involves a
certain structure of graded algebra on the orbits of subsets created by Cameron, the orbit algebra, and states that if
the profile of G is bounded by a polynomial, then its orbit algebra is finitely generated. As a start in our study of this
problem, we develop some examples and get our first hints towards a resolution by examining the block systems of
groups with profile bounded by a polynomial — that we call P -oligomorphic —, as well as the notion of subdirect product.

The third part is the proof of a classification of P -oligomorphic groups, with Macpherson’s conjecture as a corollary.
First, we study the combinatorics of the lattice of block systems, which leads to identifying one special, generalized such
system, that consists of blocks of blocks with good properties. We then tackle the elementary case when there is only
one such block of blocks, for which we establish a classification. The proof borrows to the subdirect product concept to
handle synchronizations within the group, and relied on an experimental approach on computer to first conjecture the
classification.
In the general case, we evidence the structure of a semi-direct product involving the minimal normal subgroup of
finite index and some finite group. This allows to formalize a classification of all P -oligomorphic groups, the main
result of this thesis, and to deduce the form of the orbit algebra: (little more than) an explicit algebra of invari-
ants of a finite group. This implies the conjectures of Macpherson and Cameron, and a deep understanding of these groups.

The appendix provides parts of the code that was used, and a glimpse at that resulting from the classification afterwards,
that allows to manipulate P -oligomorphic groups by apropriate algorithmics. Last, we include our earlier (weaker) proof
of the conjectures.
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