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In the introduction to his Théorie analytique de la chaleur (1822), Joseph Fourier states that :

Les causes primordiales ne nous sont point connues ; mais elles sont assujetties à des lois simples et constantes, que l'on peut découvrir par l'observation, et dont l'étude est l'objet de la philosophie naturelle. A few paragraphs later, he adds : L'étude approfondie de la nature est la source la plus féconde des découvertes mathématiques. Non seulement cette étude, en orant aux recherches un but déterminé, a l'avantage d'exclure les questions vagues et les calculs sans issue ; elle est encore un moyen assuré de former l'analyse elle-même, et d'en découvrir les éléments qu'il nous importe le plus de connaître, et que cette science doit toujours conserver : ces éléments fondamentaux sont ceux qui se reproduisent dans tous les eets naturels. There are two main ideas in these statements.

First, Fourier means that the nature is ruled by general principles that can apply to several domains. These principles, usually formulated mathematically, can be inferred from a careful observation of the nature in a particular case, and then used to describe many other problems, in a clear framework that avoids imprecise statements. But Fourier also implies that purely mathematical discoveries can arise from nature observation. For instance, Joseph Fourier himself studied experimentally the propagation of heat and then introduced the heat equation, a diusion equation which can apply to many other phenomena. But his study also led him to pave the way for a new mathematical tool, the Fourier transform, which has an utmost importance not only in diusive physics, but in many domains of physics and more generally to many domains implying mathematical modelling.

In the case of turbulence, the general principles ruling the motion of incompressible uids have been gathered in a mathematical formulation at the mid-19th century : the incompressible Navier-Stokes equations. Compared to the heat equation, the solutions to these incompressible equations are much less known (in 3D). The existence of solutions for a viscous uid in 3D has been shown by Leray in 1934, but their uniqueness and regularity are still open questions. In the case of an inviscid uid, for which the Navier-Stokes equations are called Euler equations, the unicity has been proven false but the existence and regularity in the general 3D case also remain open problems. The existence of singularities in these solutions is of major interest ; in particular, it may be related to the dissipation anomaly and to intermittency, two properties of turbulence widely observed both in experimental and numerical results that are not clearly related to the incompressible Navier-Stokes equations yet.

In this thesis, we follow the second idea of Fourier and investigate what can be learnt about such singularities from an experimental study of a turbulent ow. We therefore make the bold assumption that such singularities exist. We do not expect to see such mathematical and abstract objects in a real ow, but we can reasonably expect that the existence of singularities would have an impact on real turbulent ows, and that we should be able to detect prints of them. We can thereupon wonder : how are these prints of singularities distributed ? What does the velocity eld around them look like ? How do they appear ? How do they evolve in time ?

These are the questions we try to answer in this thesis. To this aim, we use a detection method based on the mathematical work by Duchon and Robert, which is described in chapter 2, after a general presentation of the problem of the singularities of the 3D incompressible Navier-Stokes and 13 INTRODUCTION Euler equations in chapter 1. This detection method is applied to 3D velocity elds measured at the center of an experimental turbulent swirling ow, the von Kármán ow, described in chapter 3.

The velocity elds are measured by tomographic particle image velocimetry (TPIV), either timeresolved or not ; this technique is presented in chapter 4. Several tens of thousands of velocity elds have been acquired, with dierent spatial resolution that vary from the inertial range down to the dissipative range ; the dierent data sets are detailed in chapter 5. We then present some statistical results in order to characterize the distribution of the detected prints of singularities in chapter 6. Chapter 7 supplements this analysis by establishing a link between the possible prints of singularities and the intermittency. In chapter 8, we report the analysis of the topology of these prints. Finally, chapter 9 gives some preliminary results concerning the time evolution of the prints of singularities.

Part I

Presentation of the problem and method used

Chapter 1

From turbulence to singularities

In this chapter we show how the rather abstract mathematical problem of the Navier-Stokes singularities emerges from the practical issue of understanding and modeling the turbulent motion of uids.

1 Some properties of turbulence

In this section, we quickly dene what is turbulence and present three properties of turbulent ows which are related to the problem of singularities.

Turbulence ?

Turbulence is the phenomenon happening in a ow when inertial eects prevail over viscous ones.

In such a case, viscous forces are too small to hinder the uid motion. For instance, let us consider the casual situation of a breakfast, involving a cup of coee and a liquid honey pot. If the coee is too hot, one might want to add some milk and to stir the mixture to homogeneize the temperature.

Doing so, one would notice that even in the case of a simple circular stirring motion, the milk will form interesting complex structures before being quickly homogeneously spread in the coee. On the contrary, if one thereafter wishes to take some honey, one will notice rst that it requires more strength as it is more dicult to stir ; and second that the breadcrumbs left in the pot by the previous user are much more quiet than the milk in the coee. The ow generated in the coee is a typical example of turbulent ow : the liquid has a low viscosity, and therefore the motion induced by a relatively weak stirring can develop freely. The motion in the honey pot is very laminar : the liquid honey is very viscous and any motion is damped quickly.

Reynolds showed that this denition of turbulence is relevant in his paper of 1883 [Reynolds, 1883] and that the dimensionless number named after him was the proper control parameter when discussing turbulence. The Reynolds number of a ow involving a uid of kinematic viscosity ν (expressed in m 2 /s) streaming at a global velocity V (in m/s) over a length L (in m) is :

Re = U L ν (1.1)
This ratio indeed compares the inertial eects, in the numerator, and the viscous ones, in the denominator. Thus, the single value of either U , L or ν does not matter, it is their relative amount which is important. In practice, the threshold value or the range of values of the Reynolds number corresponding to the transition from a laminar to a turbulent ow depends on the geometry.
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In the breakfast situation studied above, taking the diameters of the coee cup and of the honey pot equal to 10 cm, the stirring speed equal to 2 rounds per second, the coee kinematic viscosity to 10 -6 m 2 /s and the honey viscosity equal to 7 × 10 -3 m 2 /s, we nd Re cof f ee = 6 × 10 4 and Re honey = 10 : the coee ow has a large Reynolds number and the honey ow a small one.

Multiplicity of scales

Turbulent ows are characterized by a multiplicity of scales. Indeed, when looking at a turbulent ow, seeded with bubbles or particles, or when looking at turbulent velocity elds, one can see patterns or structures of dierent sizes. For instance, gure 1.1 shows two dierent turbulent velocity elds measured in the von Kármán ow (see chapter 3), a turbulent swirling ow. The Reynolds is 3 × 10 5 for both velocity elds, but the rst one (a) covers the whole height of the ow, whereas the second one (b) covers only a part of it, shown by the white square on gure (a).

Note that (b) was acquired at a dierent time, it is not a zoom on (a) but it could be a zoom on a velocity eld acquired in the same conditions as (a). We can see a vortex on (a) around (x, y) = (-5 cm, -2 cm) which has a diameter of a few centimeters, and another on (b) around (x, y) = (-1 cm, -2 cm) which has a diameter of less than 1 cm : these are two similar structures of dierent sizes.

(a) (b)

x (cm) This multiplicity of scales can also be felt when computing the spatial spectrum of a turbulent velocity eld. Such a spectrum is shown in gure 3.11 in chapter 3. It shows that a turbulent velocity eld can be splitted in a wide range of modes having a non-negligible energy : indeed, there is a slow algebraic decay in k -5/3 covering several decades. This is the famous Kolmogorov law widely observed in experimental and numerical works. To account for this multiplicity of scales, the cascade picture is usually invoked. According to this picture, schematically depicted on gure 1.2, energy is injected in turbulent ows around a large scale L, i.e. small wavenumbers are excited when stirring a uid. Then, the energy is somehow transferred to smaller scales : larger and larger wave numbers get progressively excited. This energy cascade stops at some scale, called dissipative, viscous or Kolmogorov scale : structures whose size matches this scale or modes with 1. SOME PROPERTIES OF TURBULENCE 19 corresponding wavenumbers are damped by viscous eects and have less energy. One therefore distinguishes between the inertial range of scales, in which inertial eects are stronger and energy is transferred towards smaller scales, and the dissipative range of scales, in which dissipative eects become more important and where energy is dissipated by viscous dissipation. In steady state and for an homogeneous ow, this picture allows to derive a power law for the spectrum in the inertial range out of dimensional analysis : in the inertial range, viscous eects are negligible, and the relevant variables are the wavenumber k (in m -1 ), the energy at this wavenumber E(k) (in m 3 /s 2 ), and the inter-scale energy transfer rate (in m 2 /s 3 ). In steady state and for a homogeneous ow, can be considered constant over space and equal to the energy injection rate and to the energy dissipation rate. The only way to relate the three quantities is the following : E(k) ∝ 2/3 k -5/3 . This law for the energy spectrum was obtained by Kolmogorov in a more rigorous way, in his theory of 1941. Extrapolating the cascade image to the limit of zero viscosity, one can imagine that there is no dissipation range and that the inertial range extends towards innity. Such an algebraic decay towards innity would imply a singular velocity eld. Inertial range Dissipative range 

Intermittency

However, real turbulence is more complex than a in-space and in-time homogeneous cascade : it features intermittency. A signal is said to be intermittent when it features occasional bursts in a rather low background, and when the bursts becom scarcer and scarcer as the observation resolution is decreased. This is the case for some turbulent quantities. A consequence of intermittency is the fact that these intermittent turbulence statistics are not scale-invariant (see [Frisch, 1995]).

Turbulence intermittency can be characterized by the structure functions of the velocity increments.

Let v(x, t) be the velocity at location x and at time t. The velocity increment over r is dened by : 20 CHAPTER 1. FROM TURBULENCE TO SINGULARITIES δv(x, r, t) = v(x + r, t)v(x, t)

(1.

2)

The longitudinal structure function of order p is dened by :

S p (x, r, t) = δv • r |r| p (1.
3)

The brackets correspond to an ensemble average (assuming that a probabilistic description of turbulence is relevant and that the velocity eld can be seen as a random function with its own probability measure, see [Frisch, 1995]). For homogeneous isotropic turbulence (i.e. if the velocity increment distribution is independent from space, time and from the increment direction), the arguments (x, t) can be dropped and the structure function will depend on r = |r| only. These structure functions will be sensible to intermittency because they involve dierent powers p of the velocity increments : for large p, only the largest values of the velocity increments (the bursts) will signicantly contribute to the structure function. If there were no intermittency, the structure functions would be self-similar : S p (r) ∝ r αp with α some exponent. This is the prediction of Kolmogorov's 1941 theory (with α = 1/3), which is not observed experimentally for large p.

Several models for the structure functions exist, that account for intermittency. For instance, Kolmogorov modied his theory of 1941 and added a space-dependent dissipation rate (x) in order to better comply with the experimental results [Kolmogorov, 1962]. Another model, introduced by Parisi and Frisch, is the multifractal model [START_REF] Parisi | On the singularity structure of fully developed turbulence[END_REF]. This model suggests that inviscid ows (ν = 0) can develop singularities which are responsible for intermittency, but this model does not necessarily require these singularities and can be formulated without involving them. Note that a link between intermittency and singularities had already been established : in [START_REF] Frisch | Intermittency in nonlinear dynamics and singularities at complex times[END_REF], the authors show that singularities in the complex time domain close to the real axis are responsible for the intermittent bursts.

Dissipation anomaly

Turbulence is a dissipative phenomenon. Joule evidenced it with an experience rather close to the one described in chapter 3 : one propeller is rotating in a calorimeter ; it is driven by a mass falling due to its weight. When falling, the potential energy of the mass is converted into kinetic energy, which is transferred to the propeller and then to the uid. After some time, Joule notices that the propeller and the uid are at rest, the mass is still down, but that the temperature of the uid has increased. It can be concluded that the mechanical energy of the mass was converted into heat by the uid. This experience was repeated recently in the SHREK set-up [START_REF] Saint-Michel | Probing quantum and classical turbulence analogy in von Kármán liquid helium, nitrogen, and water experiments[END_REF],

which is equipped with a calorimeter and it was found that the injected energy equals the released heat.

In the cascade picture of turbulence, energy dissipation is due to viscous eects that become signicant when small-enough modes appear. These viscous eects are responsible for part of the momentum transfer but are irreversible and come along with heat production.

However, a well-known experimental fact questions this explanation : the anomalous dissipation or 0-th law of turbulence. It is the fact that the energy dissipation does not depend on the Reynolds number, and thus on the viscosity, at large Reynolds numbers. This can be seen on gure 3.5, showing the dimensionless time-average of the total dissipation rate plotted as a function of the Reynolds number in a von Kármán ow. This composite curve was obtained with several set-ups.

At low Reynolds numbers, the dimensionless dissipation is proportional to the Reynolds to the 2. THE INCOMPRESSIBLE NAVIER-STOKES EQUATIONS 21 power -1, i.e. to the viscosity. However, at high Reynolds number, it becomes constant, at least up to Re = 10 8 .

The dissipation anomaly may be seen as a hint that singularities occur in the limit of zero viscosity or of innite Reynolds number. Indeed, the viscous dissipation is proportional to the square of the velocity gradient :

= ν(∇u) 2 , or, with dimensionless quantities marked with a * : * = (∇ * u * ) 2 /Re

The dissipation anomally can therefore be written :

lim Re→+∞ (∇ * u * ) 2 /Re = C (1.4)
with C independent from Re and where the dissipation is summed over space. Therefore, (∇ * u * ) 2 tends to +∞ like Re when Re tends to +∞ : the velocity gradient increases in order to compensate for the increase of Re (this can be explained by a renement of the ow scales for instance). In the limit ν = 0 or Re = ∞, (∇ * u * ) 2 = ∞. Therefore, in this limit and for a nite domain, there is at least one point in the ow where the velocity gradient diverges, i.e. where there is a singularity. Of course, this is not a rigorous proof : the limit of the velocity eld when ν tends to 0 may not be equal to the velocity eld obtained when ν = 0. But this rather supports the existence of singularities when ν = 0.

The incompressible Navier-Stokes equations

The incompressible Navier-Stokes equations are the partial dierential equations describing the motion of incompressible uids. They constitute a mathematical representation of the problem, involving a limited number of physical phenomena ; therefore, they are valid under certain assumptions only. They allow to account for and better understand part of the properties of turbulence detailed in the previous section.

2.1 From the compressible to the incompressible equations : underlying hypotheses

Compressible equations

The compressible Navier-Stokes equations date back to the half of the 19th century. They include two conservation equations : one for the mass and one for the momentum, and they apply for the whole ow described. For a Newtonian uid following Stokes' hypothesis, they are written as follows :

∂ t ρ + ∂ i (ρu i ) = 0 (1.5) ρ du i dt = -∂ i p + µ∆u i + µ 3 ∂ i (∂ j u j ) + f i (1.6)
In these equations, ρ(x, t) is the density of the uid, u i (x, t) with i ∈ 1, 2, 3 are the three components of the velocity eld, p(x, t) is the pressure eld, µ = ρν is the dynamic viscosity of the uid, f i (x, t) stands for the possible volumic forces acting on the uid (gravity or magnetic forces for instance).

The rst one is the mass conservation equation, stating that an elementary volume of uid can be dilated or compressed and that its density will vary accordingly, but that its mass will remain constant.

The second one is the momentum conservation equation, corresponding to Newton's second law applied to an elementary volume of uid at spatial position x and at time t. It states that its motion is governed by the forces applied on it. In this equation, the left-hand-side term is the elementary volume acceleration, the rst right-hand-side (r.h.s.) corresponds to the pressure forces, the second r.h.s. term to the viscous forces and the third one to other forces.

The compressible Navier-Stokes equations can also be derived with the kinetic theory of gases (see e.g. chapter Ia of [Eyink, 2008]). Such a derivation makes more clear an important hypothesis which should be veried for the Navier-Stokes equation to apply : the separation of scales. This hypothesis states that there should exist a range of scales between the smallest length scale of the ow min,f low and the scale over which molecular interactions happen mol :

mol << << min,f low

(1.7)
In other words, the Knudsen number Kn = mol / min,f low should be very small. Usually, the Kolmogorov scale is considered to be the smallest length scale of the ow min,f low : it is the scale at which the viscous eects are large enough to absorb the inertial eects and stop the energy cascade. mol is usually the mean free path for a gas or the distance between molecules for a liquid.

This condition ensures that elementary volumes exist, which can both be considered point-like in the ow so that elementary forces apply to them, and which are not subject to molecular eects, these molecular eects happening between the atoms or molecules that constitute the elementary volumes but not between elementary volumes. With this condition, the Navier-Stokes equations are closed : they do not depend on smaller scale variables.

For air at atmospheric pressure, the mean free path is about 70 nm. In water, distance between particles is about 0.1 nm. In this thesis, we use water or water-glycerol mixtures and the smallest Kolmogorov scale we will deal with is 15 µm : this is 150000 times higher than the distance between particles. Therefore, scale separation is eective.

Incompressible equations

If the density of the uid owing is constant, the ow is said to be incompressible. In such a case, the compressible Navier-Stokes equations simplify into the incompressible Navier-Stokes equations (INSE) :

∂ j u j = 0

(1.8)

∂ t u i + u j ∂ j u i = -∂ i p + ν∆u i + f i (1.9)
where p = p/ρ and f i = f i /ρ. The ' will be removed in the following for convenience.
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In this case, the pressure eld can be deduced from the velocity eld, it is not anymore an unknown quantity as in the compressible equations. Indeed, taking the divergence of equation 1.9 and using 1.8, we get a Poisson equation for the pressure : ∆p = -(∂ i u j )(∂ j u i )

(1.10)

A uid can be considered incompressible in a given ow if the Mach number of this ow is small enough. Indeed, in such a case, the density can be considered constant. The INSE then apply. The Mach number M a of a ow is the ratio between the reference velocity of the ow v and the sound speed in the considered uid c : M a = v c (1.11) In air at atmospheric pressure, the sound speed is around 340 m/s and in water it is around 1500 m/s. In this thesis, the maximum velocity we will deal with are of the order of 3 m/s ; in water the corresponding Mach number is 2 × 10 -3 : the incompressible approximation holds.

Link with turbulence properties

The analysis of the INSE allows to describe more formally the competition between inertial and viscous terms and thus the energy cascade.

We dened turbulence as the phenomenon occuring when inertial eects dominate the viscous ones, i.e. when the Reynolds number is high. The Reynolds number appears in the dimensionless INSE, obtained using a reference velocity U , a reference scale L and the density of the uid ρ to make the dierent quantities dimensionless (reference time is L/U and reference pressure ρU 2 ) : (1.12) In this equation, the * means that the quantities are dimensionless. The role of the Reynolds number is very clear : when it is very high, the viscous term ∆ * u * i /Re becomes negligible compared to the non-linear terms u * j ∂ * j u * i and ∂ * i p * (except at the places where ∆ * u * i is very large too). In the limit Re = ∞, there is no viscous term and the remaining equations are called the Euler equations.

∂ * t u * i + u * j ∂ * j u * i = -∂ * i p * + 1 Re ∆ * u * i + f i ρU 2 /L
The non-linear terms of the Navier-Stokes equation allows to account for the multiplicity of scales observed in turbulent ows. They may also be responsible for instabilities and divergences. The link with the multiplicity of scales can be seen from the very simple trigonometry formula :

cos(k • x) 2 = cos(2k • x) + 1 2 (1.13)
Given an initial velocity eld with only one mode of wavevector k, a second mode of wavevector 2k

will appear in the Navier-Stokes equation due to the quadratic term. Repeating this process with the new mode, many other modes can appear.

However, viscous dissipation will temper this scenario. It can be estimated from the energy conservation equation, obtained by multiplying equation 1.9 by u i :

∂ t u 2 i 2 + u j ∂ j u 2 i 2 + = -u i ∂ i p + ν∆ u 2 i 2 -ν∂ j u i ∂ j u i + u i f i (1.14)
CHAPTER 1. FROM TURBULENCE TO SINGULARITIES Inertial eects correspond to the term u j ∂ j u 2 i /2 and the viscous dissipation is -ν∂ j u i ∂ j u i , always negative. Let u be the amplitude of velocity uctuations at scale . The respective order of magnitude of the discussed terms at scale are u 3 / and νu 2 / 2 . u 3 / can be interpreted as the inter-scale energy transfer rate ; let us assume it homogeneous in space and scale, equal to , as long as the viscous eects are negligible. One then nds that νu 2 / 2 ≈ u 3 / ≈ when ≈ η, η being the Kolmogorov scale dened as follows :

η = ν 3 1/4
(1.15)

For ≈ η, νu 2 / 2 ≈ : the inter-scale energy transfer is equal to the viscous dissipation, whose main contribution is due to the dissipative scales. The Kolmogorov scale is usually considered as the smallest length scale of a turbulent ow.

The analysis of the Navier-Stokes equations improves our understanding of turbulence, and especially of the energy cascade. The non-linearity of the INSE is probably responsible for the intermittency. However, no mechanism leading from the INSE to the observed intermittency, which would go along with a derivation of the expression of the longitudinal structure functions starting from the INSE, exists so far. Likewise, no explanation of the dissipation anomaly using the INSE exists. On the contrary, the dissipation anomaly had to be used as a rst principle by Kolmogorov while deriving its famous 4/5 th law [Kolmogorov, 1941] concerning the third order longitudinal structure function. In brief, two major properties of turbulence possibly related to the existence of singularities still resist the attempts of connection with the turbulence equations, the INSE. From the mathematical side, mathematicians are still struggling to prove or disprove the existence of singularities in the solutions of the 3D incompressible Navier-Stokes and Euler equations. 3 The possible singularities

Singularities are mathematical objects which require a particular handling. In the case of the 3D Euler and Navier-Stokes equations, a lot of work has been done without a nal result yet.

A singularity cannot occur in a real ow, but the existence of singularities in the mathematical solutions of the Euler or Navier-Stokes equations would probably have consequences on real ows.

3.1 What is a singularity ?

Continuity

Mathematically, a singularity can be dened as opposed to continuity. The continuity is rigorously dened as follows : a function

f : Ω ⊂ R n → R m x → f (x)
is continuous at a point x 0 if and only if :

∀ > 0, ∃ δ > 0 | ∀x ∈ R n , ||x -x 0 || < δ =⇒ ||f (x) -f (x 0 )|| < (1.16)
One can say that f features a singularity if it is not continuous on Ω. The singularity is what occurs at the point where f is not continuous.
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In the denition of continuity given above, we see that the amplitude variation of the function f cannot be too high for a given variation of the variable x. We can thus say that a singularity occurs in a velocity eld when there is an innite variation of the amplitude of the velocity over a nite distance (gure 1.3 (a)) ; or a nite variation of the amplitude of the velocity over a zero-distance (gure 1.3 (b)). In both cases, the singularity corresponds to a renement of scales of the velocity eld, i.e. a renement of the sizes of the patterns of the velocity eld : there are signicant variations of the velocity over very small scales.

Regularity

More generally, one can say that a continuous function features a singularity if one of its derivatives is not continuous. For instance, the function f : x → √ x (dened on R + ) is continuous in 0 but its derivative is not. We can say that it is less smooth than a function whose rst derivatives are continous. To characterize the degree of smoothness of a function, one can use the concept of Hölder regularity. The regularity of a function can be characterized by a Hölder exponent h : a function

f : Ω ⊂ R n → R m x → f (x)
is h-Hölder continuous on Ω if and only if :

∃ C > 0 | ∀x, y ∈ Ω, ||f (x) -f (y)|| ≤ C||x -y|| h (1.17) If h ≥ 1, f is dierentiable. If h > 0, f is continuous. If h ≥ 0 only,
f is bounded but may feature discontinuities like the one in gure 1.3 (b). The larger h, the more regular f and the higher the order of its rst discontinuous derivative.

(a) (b) Figure 1.3: Examples of 1D singularities.

Singularities in partial dierential equations

Singularities and regularity are well-dened mathematical concepts. However, from a physical point of view, they are not very meaningful : innite quantities are not compatible with principles such as mass or energy conservation ; a zero-length scale is quite an abstract concept : a scale can be CHAPTER 1. FROM TURBULENCE TO SINGULARITIES small compared to another but not absolutely small. Also, singularities are not compatible with numerical simulations, which are discrete representations of a given problem : innite time-or spacederivatives would require innitely small time-or space-steps, or at least very small ones, which require huge computing and storage capacities. Therefore, when dealing with a partial dierential equation (PDE) coming from physics, it is important to show that it is regular enough, in order to ensure that it is physically relevant and that it can be simulated.

Actually, mathematicians usually try to prove that PDEs follow the three conditions : there is a solution to this PDE, it is unique and it is regular. In order to prove that, the usual strategy consists in showing the existence of a solution in a space including both regular and irregular functions, and then to prove the unicity and the regularity. To this end, the PDE should rst be extended to irregular solutions, i.e. given a meaning in the case of irregular solutions : indeed, derivatives are not dened for such solutions. This is achieved with the so-called weak derivatives in the framework of the distribution theory. The extended PDE is called weak formulation of the initial PDE, obtained by replacing the derivatives by weak derivatives. Its solutions are called weak solutions ; they are usually seeked in Sobolev spaces, in which the functions should have a nite p-norm ( ||u|| p ), with p > 1, as well as some of their derivatives.

Clues on the possible singularities of the 3D incompressible Euler and Navier-Stokes equations

In 2D, it is known that both the incompressible Navier-Stokes equations (see [Ladyzhenskaya, 1969])

and the incompressible Euler equations (see [Yudovich, 1963] for existence and unicity) have a unique solution which is regular. In 3D, the problem seems to be more dicult, and only partial results were obtained, even if these equations date back to the 19 th century. In the case of the Navier-Stokes equations, the existence and smoothness is one of the "Millenium problems" for which the Clay Mathematics Institute of Cambridge (Massachusetts) will award 1 million dollars. The problem of singularities motivated not only theoretical works, but also numerical and experimental works which aimed at providing some knowledge on the possible singularities.

Theoretical works

The existence of solutions to the 3D incompressible Navier-Stokes equations was shown by Jean Leray in 1934. He obtained the weak formulation and managed to exhibit weak solutions in the general case [Leray, 1934]. The weak formulation is written as follows :

R 3 R u i ∂ t φ i + R 3 R u i u j ∂ j φ i = - R 3 R p∂ i φ i -ν R 3 R u i ∂ k ∂ k φ i R 3 R u i ∂ i ψ = 0
for any test functions φ and ψ. These test functions are very regular functions that can be dierentiated. The derivatives are shifted to these functions by integration by parts, and u and p need not be dierentiable anymore ; they should only have integration properties.

However, the uniqueness and regularity of these solutions are still open questions. Concerning the possible singularities, some results have been obtained. If they exist, such singularities will always come along with an unbounded velocity [Constantin, 2008]. This rules out cases of the type of gure 1.3 (b). If they exist, singularities are also very scarce : indeed, a consequence of [START_REF] Cafarelli | Partial regularity of suitable weak solutions of the Navier-Stokes equations[END_REF] is that Navier-Stokes singularities cannot form space-time continuous curves : therefore, they would pop-up from time to time but not persist. Stationary singular solutions to the Navier-Stokes equations have been exhibited in [START_REF] Li | Homogeneous solutions of stationary Navier-Stokes equations with isolated singularities on the unit sphere[END_REF]. However, this does not prove that the Navier-Stokes equations could develop a singularity in nite time starting from smooth initial conditions.

In particular, these solutions display a singular axis : this is not compatible with the result of [START_REF] Cafarelli | Partial regularity of suitable weak solutions of the Navier-Stokes equations[END_REF] ; therefore, such velocity elds cannot form from smooth initial conditions.

The velocity eld of these stationary solutions is given, in spherical coordinates, by :

u r = 1 r   -1 - 2(γ + 1) (γ + 1)ln( 1+cos(θ) 2 ) -2 - 1 -cos(θ) 1 + cos(θ) 3(γ + 1) (γ + 1)ln( 1+cos(θ) 2 ) -2 2    u θ = 1 r 1 -cos(θ) sin(θ) 1 + 2(γ + 1) (γ + 1)ln( 1+cos(θ)
2

) -2

u Φ = 1 rsin(θ) (bln(1 + cos(θ)) + a) if γ = -1 u Φ = 1 rsin(θ) b ln(1 + cos(θ)) + a if γ > -1
with a, b and γ parameters. Such velocity elds corresponding to two sets of parameters are shown on gure 1.4.

In the case of the 3D incompressible Euler equations, the general existence and the regularity are still to prove (or disprove). The uniqueness is false [Shnirelman, 1997]. An important result is the fact that singularities occuring in the solution of a Euler equation, if they existed, would always come along with an unbounded vorticity [START_REF] Beale | Remarks on the breakdown of smooth solutions for the 3D Euler equations[END_REF].

There are also hints that singularities can dissipate energy. Such a dissipation mechanism was suggested by Onsager in [Onsager, 1949], where he conjectures that in the inviscid case, too smooth velocity elds (that are Hölder continuous with h > 1/3) cannot dissipate energy in this way. This conjecture was proven for instance in [Duchon and Robert, 2000], where the authors derive an energy budget valid for the weak solutions and which implies an additional dissipation term, stemming from the lack of smoothness of the velocity eld. This work is the foundation of this thesis ; it is detailed in chapter 2.

Numerical works

The result of [START_REF] Beale | Remarks on the breakdown of smooth solutions for the 3D Euler equations[END_REF] on the divergence of the vorticity suggests to look for places where the vorticity is extreme in order to nd possible singularities. Several numerical works were carried out in order to study large vorticity structures. Of course, they do not allow to draw a denitive conclusion because of the nite resolution of numerical simulations.

In [START_REF] Brachet | Numerical evidence of smooth self-similar dynamics and possibility of subsequent collapse for three-dimensional ideal ows[END_REF] the Euler equations are simulated on a 256 3 grid with periodic boundary conditions. It is found that large-vorticity zones are pancakes that become thinner and thinner until their thickness reaches the simulation resolution ; it is not known whether they would have become even thinner at later times or not. In this work, the so-called analyticity strip width method [START_REF] Sulem | Tracing complex singularities with spectral methods[END_REF]] is also performed. It consists in monitoring the imaginary part of a singularity in the complex space domain, i.e. the distance of the singularity to the real axis. This distance governs the Fourier spectrum of the velocity eld ; if a singularity was to occur, then this distance CHAPTER 1. FROM TURBULENCE TO SINGULARITIES (a) (b) Figure 1.4: Velocity streamlines of two stationary singular solutions of the Navier-Stokes equations exhibited in [START_REF] Li | Homogeneous solutions of stationary Navier-Stokes equations with isolated singularities on the unit sphere[END_REF] with a = b = 1. (a) γ = 1/2. For z < 0, streamlines are spiraling towards the semi-axis z < 0, and for z > 0, they are slowly spiraling away from the semi-axis z > 0, forming a bell shape. (b) γ = -1. For z > 0, the streamlines are spiraling downwards to the point (x, y, z) = (0, 0, 0) and for z < 0, streamlines are spiraling towards the semi-axis z < 0.

would tend to zero. In [START_REF] Brachet | Numerical evidence of smooth self-similar dynamics and possibility of subsequent collapse for three-dimensional ideal ows[END_REF], this method did not allow to conclude to a nite-time blow-up of the 3D incompressible Euler equations. In [START_REF] Pumir | Collapsing solutions in the 3D Euler equations[END_REF], an adaptative mesh rened 50 to 600 times at relevant places is used ; no evidence of nite-time blow-up is found neither.

The fact that in pancake-like structures the quantities depend only on one direction (perpendicular to the pancakes) probably leads to a depletion of non-linearity and prevents any singularity from developing further [Frisch, 1995]. However, a more recent simulation of the 3D incompressible Euler equations on a logarithmic lattice [START_REF] Campolina | Chaotic blowup in the 3D incompressible Euler equations on a logarithmic lattice[END_REF] strongly suggested that the 3D incompressible Euler equations could develop singularities, and that current computers were not able to simulate them by direct numerical simulations (DNS). It should still be kept in mind that using a logarithmic lattice implies a strong assumption : many modes have to be removed, this is assumed to have no impact on the result.

Large-vorticity structures were also studied in DNS of 3D incompressible Navier-Stokes equations, with continuously increasing resolution and Reynolds number. In [START_REF] She | Intermittent vortex structures in homogeneous isotropic turbulence[END_REF], these equations are simulated on a 90

3 grid, the Taylor-scale based Reynolds number being R λ = 90 ; in [START_REF] Vincent | The spatial structure and statistical properties of homogeneous turbulence[END_REF], a grid of 240

3 points is achieved, with R λ = 240. In both works, the authors noticed that large-vorticity zones were elongated thin tubes. In [START_REF] Vincent | The dynamics of vorticity tubes in homogeneous turbulence[END_REF], it

3. THE POSSIBLE SINGULARITIES 29 is shown that these tubes result from the rolling-up of sheets of large vorticity and that they are surrounded by zones of large dissipation rate. With the improvement of computational power, it was possible to study larger Reynolds numbers : in [START_REF] Yeung | Extreme events in computational turbulence[END_REF], a grid of 8192

3 points is achieved, together with a Taylor-scale based Reynolds number R λ ≈ 1300. At such a large Reynolds number, the authors still observed vorticity tubes, but they found that the very strongest vorticity events were rather blobs, characterized by the colocation of a large vorticity and a large dissipation rate.

Experimental works

A few experimental works tried to tackle the singularities problem, or can be related to it.

For instance, in [START_REF] Douady | Direct observation of the intermittency of intense vorticity laments in turbulence[END_REF], the authors take advantage of the fact that large-vorticity zones are also low pressure zones, which can therefore concentrate small bubbles. The organization of bubbles can be observed with fast cameras. The authors observed that the large-vorticity zones where the bubbles gather are also elongated tubes which appear very quickly and then disappear more slowly.

In [START_REF] Saw | Experimental characterization of extreme events of inertial dissipation in a turbulent swirling ow[END_REF], the authors rely on the work [Duchon and Robert, 2000] and on the fact that singularities may dissipate energy. They analyze 2D-3C velocity elds (3 components of the velocity on a 2D plane) measured by stereoscopic particle image velocimetry (SPIV) and look for places where there could be dissipation due to singularities. They nd four kinds of structures :

fronts, spirals, jets and cusps, but their 2D measurements do not allow them to know whether they are dierent slices of a single structure, possibly seen at dierent times, or not.

The existence of singularities in a solution of the 3D incompressible Euler and Navier-Stokes equa-

tions remains an open question. Let us all the same discuss the physical consequences of the possible existence of such singularities.

Physical consequences of the possible existence of singularities

From a physical point of view, an innite velocity amplitude or an innitely small length scale is not meaningful : it breaks conservation principles or it is too abstract : a quantity can be very large or very small compared to another but not innitely large or small. If singularities cannot occur in real ows, is it physically relevant to study the Euler and Navier-Stokes singularities ? Is it really a physical problem or only mathematical one ? Would the existence of the Navier-Stokes and Euler singularities have an impact on a real turbulent ow ?

Navier-Stokes case

The existence of singularities in a mathematical solution to the 3D incompressible Navier-Stokes equations would lead to the invalidation of the assumptions used to derive those equations from the compressible equations. Therefore, the existence of a singularity in a real ow modelled by such a solution is not implied, even if there would probably be an impact on this real ow.

Indeed, in the case of a singularity occuring in the solution of the 3D INSE, the velocity norm would increase to innity and a real ow modelled by this solution would become compressible. Therefore, the emergence of a singularity in the real ow is not implied at all as the 3D INSE would stop being a proper model. The real ow would probably be impacted though but would display only prints or remainings of the singularity and not a genuine one. The singularities problem would be shifted to the compressible Navier-Stokes equations, in which the compressible eects would maybe CHAPTER 1. FROM TURBULENCE TO SINGULARITIES prevent the apparition of a singularity. Note that even if the compressible Navier-Stokes equations could develop singularities in nite time, they would also stop being a proper model for a real ow as the scale separation assumed to derive them would not be achieved anymore. This suggests that the existence of a singularity in the solution of a mathematical model should be seen as an indication that this model is not physically relevant anymore and that additional physics should be added. Other examples exist : for instance, in fracture mechanics, the elasticity equations and the special boundary conditions near a crack tip lead to a divergence of the stress at the crack tip, the energy remaining all the same bounded. However, in a real material the stress does not take innite values : when it reaches some threshold value, the material does not follow the linear elastic equations anymore ; damage develops and the material will break. Everything happens as if the singularity was replacing a physical phenomenon not accounted for by the model. In the case of the INSE, the possible singularities would even have their own dissipation term, accounting for the dissipation due to the missing phenomena : Duchon and Robert showed in [Duchon and Robert, 2000] that a new dissipation term appears in the energy budget of the weak solutions of the INSE, which can be non-zero in the case of a singularity.

As a conclusion, the existence of singularities in the solutions of the INSE is of physical importance for two reasons. First, it should have an impact on real ows which would display prints of singularities, and second, it would invalidate the INSE as a proper model for incompressible ows. As the singularities should be very scarce, the INSE would probably remain a proper model most of the time though.

Euler case

Contrary to the 3D INSE, the 3D incompressible Euler equations are not a proper model for real viscous ows, even without singularities, because they do not feature any viscous eect. However, the existence of singularities in the solutions of the 3D incompressible Euler equations may have an impact on the solutions of the 3D INSE, and thus on real ows.

Indeed, in the Navier-Stokes equations, the viscous eects are negligible at large scales. The largescale behaviour of the 3D incompressible Euler and Navier-Stokes equations should therefore be similar, and, if singularities were developing in the Euler equations, they may also start forming in the INSE before evolving dierently. They would therefore have an impact on the INSE that could be measured. The following reasoning, inspired by the multifractal model [START_REF] Parisi | On the singularity structure of fully developed turbulence[END_REF],

shows what this impact could be.

Let u be a solution of the incompressible Navier-Stokes equation 1.9 and assume that it is locally h-Hölder continuous, i.e. behaving as follows :

||δu|| = ||u(x + ) -u(x)|| ∝ || || h (1.18)
We can then reproduce the energy cascade reasoning with δu ∝ h instead of δu ∝ 1/3 . The Hölder condition leads to the following estimates of the viscous dissipation and inertial energy terms :

ν∂ i u j ∂ i u j ≈ ν δu 2 2 ≈ ν 2h 2 ≈ ν 2h-2 (1.19) u j ∂ j u 2 i 2 ≈ 3h ≈ 3h-1 (1.20)
Both terms are comparable when 3h-1 ≈ ν 2h-2 i.e. when ≈ ν 1/(1+h) . We dene η h = ν 1/(1+h) .

All this can be interpreted as a local cascade with a particular scaling : there is an inertial range with δu ∝ h in which viscous eects are negligible and where energy is transferred to smaller scales.

THE POSSIBLE SINGULARITIES

The dissipative scales are of the order of η h . The viscous dissipation absorbs the inter-scale transfer and no structures smaller than ≈ η h can develop ; therefore, the velocity eld is smooth below this scale : δu( ) ∝ . For h = 1/3, we nd the usual scaling, in particular, η 1/3 is the Kolmogorov scale. However, for other h, the situation is dierent ; for h < 1/3, η h is smaller than the Kolmogorov scale.

According to this reasoning, the event {∃A ⊂ R n , ∃x ∈ A| ∀y ∈ A, ||v(x)v(y)|| ∝ ||x -y|| h } with -1 < h < 1 cannot occur in a solution of the 3D INSE : indeed, the viscosity would smooth the velocity eld below η h and the Hölder condition ||v(x)v(y)|| ∝ ||x -y|| h would hold only for ||x -y|| > η h . However, it could occur in a solution to the 3D incompressible Euler equation where there are no viscous eects. We therefore call it a Euler-type singularity, as opposed to a

Navier-Stokes-type singularity, if h = -1 : even viscous eects cannot smooth the velocity eld as the regularization scale is η -1 = 0, and the velocity eld is therefore singular. The singular elds shown in gure 1.4 are Navier-Stokes-type singularities. Euler-type singularities (-1 < h < 1) could be an example of a singularity of the 3D incompressible Euler equations which have an impact on the 3D INSE : such events developing in the 3D INSE would lead to a multiplicity of dissipative scales, in particular smaller than the Kolmogorov scale. This would be quite a change in the classical picture of turbulence. The existence of too small length scales could however question the scale separation required for the derivation of the Navier-Stokes equations. Such events would also lead to a multiplicity of scalings, and would impact the statistics of the velocity eld. This is the idea behind the multifractal model, which provides good t of experimental data. Also, according to this model, the smaller h, the less probable the occurence of a locally h-Hölder continuous velocity eld. This suggests that Navier-Stokes-type singularities are very scarce, in accordance with the result of [START_REF] Cafarelli | Partial regularity of suitable weak solutions of the Navier-Stokes equations[END_REF], and rules out too small η h , ensuring the scale separation. But it is not known yet whether the previous reasoning corresponds to the reality or not. The multifractal model also has a probabilistic formulation which does not require such a phenomenology. Besides, the organization of the ow as a juxtaposition of places where δu ∝ h with dierent h was never directly evidenced. One should therefore be careful with this representation. In particular, the above reasoning does not constitute a rigorous proof that singularities with h > -1 cannot occur in a solution of the Navier-Stokes equations.

Summary

In this chapter we introduced the 3D incompressible Navier-Stokes equations, the partial dierential equations which govern the motion of incompressible uids and which therefore feature turbulence.

The regularity of these equations, as well as the 3D incompressible Euler equations, are still open mathematical problems. The possible singularities are incidentally related to intermittency and to the dissipation anomaly, two turbulence features which are not clearly connected with the 3D INSE yet.

Even if singularities have no physical meaning and are not to occur in the physical world, their mathematical existence should have an impact on real ows. Therefore, we claim that studying a real ow allows to give insight into the possible singularities of the Euler and Navier-Stokes equations, or at least their formation. This is detailed in the next chapter.

Chapter 2

The problem of singularities addressed by the experiment

In this chapter we explain how we tackle the problem of singularities with an experimental approach.

We use a detection criterion which is based on the work of Duchon and Robert [Duchon and Robert, 2000] in order to detect prints of singularities, i.e. places that might correspond to the formation of singularities or to aborted singularities. This criterion was already introduced in [START_REF] Kuzzay | New method for detecting singularities in experimental incompressible ows[END_REF] and applied to 2D-3C data in [START_REF] Saw | Experimental characterization of extreme events of inertial dissipation in a turbulent swirling ow[END_REF] ; in this thesis we will apply it to 3D-3C

data. The detection principle can be applied to any velocity eld, obtained either by a numerical simulation or an experimental measurement ; we then compare both approaches and explain why we chose an experimental approach. Finally, we detail the outline of the method used in this thesis.

1 Prints of singularities as extreme events of inter-scale transfer rate at small scale Our detection method is based on the work by Duchon and Robert [Duchon and Robert, 2000]. A singularity corresponds to an innite renement of scales, and this mathematical work states formally that such a singularity may come along with a non-zero inter-scale transfer down to innitely small scales. This inter-scale transfer interpretation establishes a link with the LES equations.

1.1 Duchon and Robert's paper 1.1.1 An energy budget for the weak solutions

In their paper [Duchon and Robert, 2000], Duchon and Robert derive an energy budget for weak solutions of the INSE, in a rigorous mathematical framework. In the absence of forcing, this energy budget is expressed as follows :

∂ t u 2 i 2 + ∂ j [u j ( u 2 i 2 + p)] = ν∆ u 2 i 2 -ν∂ j u i ∂ j u i + D(u) (2.1)
In this equation, u is a weak solution of the INSE, and the derivatives should therefore be understood in the weak way, i.e. in the sense of distributions, so that they are well-dened if u is singular. If u is regular, the equation also holds with the classical meaning of the derivatives. Compared to the classical energy budget 1.14, there is a new term D(u). [Onsager, 1949] that a singularity would generate additional dissipation due to the lack of regularity of the velocity eld. Such an energy budget is also obtained in the case of 0 viscosity, i.e. in the case of the Euler equations, with the same consequence (additional dissipation due to a lack of regularity). 

u (x) = φ * u(x) = φ (y)u(x -y)d 3 y (2.
2)

The smoothed velocity eld u is the convolution product of the velocity eld u and a smoothing function φ . The idea of smoothing is to average locally the velocity eld in order to remove uctuations over scales smaller than ∝ . The velocity eld should be less and less smoothed as is decreased. φ is then dened from a "mother" function φ as follows :

φ : x → φ(x/ ) φ(y/ )d 3 y (2.3)
The integral of φ is equal to 1, the values φ (x) can thus be seen as weights in the averaging process. φ is usually a simple function such as a hat function or a Gaussian. In this whole thesis, we will use a Gaussian :

φ (x) = exp -30x 2 2 2 (2π 2 /30) 3/2
(2.4)

Figure 2.1 shows φ (x)/φ (0) for dierent values of . The larger , the wider the lter. 1.1.3 The balance equation for the regularized point-split energy density

Smoothing the INSE 1.8-1.9, one obtains the smoothed incompressible Navier-Stokes equations (the forcing is equal to 0) :

∂ j u j = 0 ∂ t u i + ∂ j (u i u j ) = -∂ i p + ν∂ k ∂ k u i
This also has a meaning if u is a weak solution, and combining these equations with the weak INSE, Duchon and Robert then obtained the balance equation for the regularized point-split energy density (valid in the sense of distributions) :

1 2 ∂ t u i u i + ∂ i T i = 1 2 ν∂ j ∂ j (u i u i ) -ν∂ j u i ∂ j u i -Π DR (2.5)
where : 

T i = 1 2 u j u j u i + p u i + pu i + 1 4 (u i u j u j ) -(u j u j ) u i
Π DR = 1 4 ∇φ (ξ) • δu(δu) 2 dξ (2.6)
We call Π DR the Duchon-Robert term.

Duchon and Robert then showed that the limit of equation 2.5 when → 0 was equation 2.1, with :

lim →0 Π DR = D(u) (2.7)
In the case of a singularity, D(u) may not be equal to zero, as suggested by Onsager. In such a case, Π DR would remain large even for very small . This provides a new criterion to look for singularities. In practice, very small means of the order or smaller than the Kolmogorov scale η, which is usually considered as the smallest length scale of a turbulent ow. In this thesis, we call prints of singularities and study the places where the Duchon-Robert term Π DR computed at ≈ η takes very large values. These are prints of singularities in the sense that they may correspond to singularities which start developping and are aborted by physical eects not embedded in the INSE (in the case of experiments) or by a lack of resolution (in the case of numerics). However, it is also possible that such events have nothing to do with singularities : for instance, they may be regular places that are less regular or places where the amplitude of the uctuations is larger, leading to a larger Π DR .

1.2 Physical interpretation and weak Kármán-Howarth-Monin equation Equation 2.5 can be interpreted as a local, in space and in scale, energy budget, meaning that the variation of energy contained in scales > at a given point (∂ t (u i u i )/2) is due to : spatial transport and pressure terms embedded in the term ∂ i T i viscous diusion due to scales > : ν∂ j ∂ j (u i u i )/2

viscous dissipation due to scales > : ν∂ j u i ∂ j u i inter-scale energy transfer towards scales < : Π DR Strictly speaking, this is not an energy budget as u i u i is not positive-denite and cannot therefore be considered as an energy. However, it resembles the term u i u i and has the same limit u i u i (which is an energy) when tends to 0. Therefore, we can say that it corresponds to an energy. Similar remarks can be applied to the other terms. Equation 2.5 is very useful, as it can be used to study locally the energy transfers in a turbulent ow. In the previous chapter, we explained that singularities were characterized by a renement of the characteristic length scales of the ow. In this scope, the paper of Duchon and Robert becomes more meaningful : the occurence of a singularity would come along with an innite renement of scales, and therefore a large inter-scale transfer Π DR down to very small scales . The limit when → 0 would then be non-zero.

Of course, this interpretation is valid only in a mathematical abstract continuum with innitely small scales. In the physical world, the continuum approximation is valid only down to a nite scale, and we already mentioned that the occurence of a singularity would violate the assumptions of incompressibility and/or of scale separation, therefore bringing additional physics into play. However, if singularities existed in the mathematical world, we can reasonably expect to see their growth in the physical world, characterized by a large inter-scale transfer Π DR at very small scales.

36CHAPTER 2. THE PROBLEM OF SINGULARITIES ADDRESSED BY THE EXPERIMENT

In the previous chapter, we mentioned how the competition between inertial and viscous eects was responsible for the dierent behaviours in the inertial and dissipative ranges. Also, we explained how it could lead to dierent dissipative scales : the renement of scales stops when the viscous eects become important enough. This suggests that singularities may not correspond to large values of the Duchon-Robert term itself, but to large values of the ratio between the Duchon-Robert and the viscous dissipation terms.

However, in this thesis we deal with velocity elds measured by experimental means and which can therefore feature some noise. Computing the ratio of noisy quantities leads to noise amplication, especially for a noisy denominator. This is the case of the dissipation term ν∂ j u i ∂ j u i , which is the product of one smoothed quantity and one unsmoothed quantity. We therefore need a dierent viscous dissipation term, better suited to experimental data. For instance, the Duchon-Robert term seems to be very suited for the analysis of experimental data. Indeed, it is not directly - The weak Kármán-Howarth-Monin equation is thus obtained.

The new viscous dissipation term is :

D ν = ν ∆φ (ξ) δu(x, ξ) 2 2 dξ = ν ∆φ (ξ) [u(x + ξ) -u(x)] 2 2 dξ (2.8)
It can be shown that :

D ν = 1 2 ν∂ j ∂ j (u i u i ) -ν∂ j (u i ∂ j u i ) + ν∂ j u i ∂ j u i (2.9)
Note that :

1 2 ν∂ j ∂ j (u i u i ) = 1 2 ν(∂ j ∂ j u i u i ) = ν(∂ j [u i ∂ j u i ])
(2.10) so that lim →0 D ν = ν∂ j u i ∂ j u i , for a regular velocity eld at least. The limit of D ν when → 0 is the usual dissipation term, and D ν is therefore positive for small enough .

Replacing 2.9 in 2.5, we get the weak Kármán-Howarth-Monin equation : 2.11) where :

1 2 ∂ t u i u i + ∂ i J i = -D ν -Π DR ( 
J i = T i - 1 2 ν∂ i [(u j u j ) + u j u j ] + ν(u j ∂ i u j ) (2.12) (the viscous diusion term is now embedded in J i ).
This equation is very close to the balance equation for the regularized point-split energy density 2.5 and can be interpreted similarly ; only, it is better suited to analyze experimental data. It also resembles the Kármán-Howarth-Monin relation (see for instance [Frisch, 1995]), but it features local quantities whereas the Kármán-Howarth-Monin relation deals with average quantities. [Germano, 1992].

LES are numerical simulations of turbulent ows where only part of the inertial scales are resolved, and where the interactions with smaller scales are modelled. The simulated equations are the ltered INSE :

∂ j u j = 0 ∂ t u i + ∂ j u i u j = -∂ i p + ν∂ k ∂ k u i -∂ j τ ij
where the so-called subgrid stress tensor τ ij = (u i u j )u i u j has been introduced. This is the term corresponding to the interactions with smaller scales which should be modelled.

The LES energy equation is obtained by multiplying these ltered incompressible Navier-Stokes equations 1.3 by u i . A budget of the energy contained in the scales larger than ≈ is then obtained :

∂ t (u i ) 2 2 + ∂ j u j (u i ) 2 2 + u j p -νu i ∂ j u i + u i τ sgs = -ν∂ k u i ∂ k u i + ∂ j u i τ sgs (2.13)
In the following, we will use the notations :

D ν,LES = ν∂ k u i ∂ k u i (viscous dissipation at scale )
Π LES = -∂ j u i τ sgs (interscale energy transfer to scales smaller than )

Like the weak Kármán-Howarth-Monin equation 2.11, the LES energy equation features a spatial transport and diusion term, a viscous dissipation term due to scales > (D ν,LES ) and an interscale transfer term towards scales < (Π LES ). They can be interpreted in the same manner as terms D ν and Π DR , and in this case, (u i ) 2 /2 is positive-denite and can really be interpreted as an energy. D ν,LES and Π LES seem both suited to the analysis of experimental data as none of them involves the gradient of an unsmoothed quantity. We can therefore wonder whether we should use rather the weak Kármán-Howarth-Monin equation or this LES energy equation for our study, i.e.

the pair (Π DR , D ν ) or the pair (Π LES , D ν,LES ).

There is an argument which suggests to favour the rst pair though. Contrary to Π DR , Π LES is the product of two terms : ∂ j u i and τ sgs . Assuming that the velocity eld is locally h-Hölder continuous, i.e. δu ∝ h , we can nd the scaling of these two terms : ∂ j u i ∝ h-1 and τ sgs ∝ 2h . If h < 1, the rst one will become very large as becomes small, whereas the second one will also become small. Therefore, the uncertainty on the product of the two terms should be quite large.

This may also be the reason why Duchon and Robert used the balance equation for the regularized point-split energy density and Π DR rather than the LES energy equation and Π LES in order to derive the energy budget of weak solutions. In chapter 6, we compare the two pairs of terms and try to establish a link between the weak Kármán-Howarth-Monin and the LES energy equation.

Practical implementation of the detection method

In this section, we discuss some practical issues of the detection method based on the Duchon-Robert term : the scale eectively probed by the smoothing function φ (x) = exp(-30x 

Probed scale

It can be asked whether is exactly the smallest scale probed by φ or whether there is a prefactor.

For instance, we could say that the probed scale is the Gaussian mid-height width ( 2 ln(2)/30 ), because φ is too small for |x| above this length, and the local-averaging stops there. Actually, probing a scale is not a rigorous well-dened concept, so we can choose how to dene it. We chose to dene it based on the 2 dB cut-o wavenumber of φ , seen as a lter. The Fourier transform of φ is :

φ (k) = exp - k 2 2 2 × 30 (2.14)
The 2 dB cut-o (of the energy spectrum) is reached for |k| = k c = 30 ln(2)/ . According to Shannon's criterion, the smallest period of a signal that can be captured by a mode of wavenumber k c is π/k c . Therefore, we dene the smallest scale probed by φ as : 2.15) In this thesis, we will use c most of the time ; it should always be understood as c = c ( ) = π / (30 ln( 2)).

c = π 30 ln(2) ≈ 0.69 ( 

Smoothing function discretization

In this thesis, we deal with experimental velocity elds consisting in a discrete sampling of the ow. Therefore, we compute discrete approximations of the integrals involved in the weak Kármán-Howarth-Monin and LES terms. When is too small, the smoothing function is not well discretized and the integrals cannot be properly computed. This can be seen in gure 2.1 (a) : for = 1 • dx, φ is equal to zero everywhere except in 0 ; this is a crude approximation of the Gaussian φ . We observed on analytical examples that should be greater than or equal to 6 or 7 dx so that the proper values of the weak Kármán-Howarth-Monin and LES terms are obtained.

PIV ltering

The choice of the denition of c was inspired by the analysis of the ltering eect of Particle Image Velocimetry (PIV, see chapter 4).

In an experiment, the measured velocity eld u can be modelled as the original velocity eld u ltered at the resolution scale :

u(x) = ψ exp * u(x) = ψ exp (r)u(x -r)d 3 r (2.16)
where ψ exp is a transfer function modeling the eect of the measurement chain. For a PIV measurement with square interrogation windows, this function can be approximated by a top hat function whose width is the interrogation window size X (see chapter 4). Because of the PIV ltering, we lose all the information about scales smaller than ≈ X. A rst consequence is that it is useless to use smoothing functions φ ltering less than the PIV lter : uctuations over scales smaller than ≈ X would have already been ltered. This is achieved if the 2 dB cut-o k c = π/ c of φ is less than or equal to the 2 dB cut-o k c of PIV. For a square interrogation window of size X, the 2 dB PIV cut-o is equal to 2.8/X ≈ π/X. Therefore, c should be greater than X : the denition of c allows to compare it directly to X. : the ltering due to the PIV and the one due to the Gaussian lter are closer for c ≈ X = 4dx than for ≈ X = 4dx. It can also be seen that for c < X, the smoothing function φ is narrower than the top-hat function corresponding to PIV ltering : it is clear that using such lters after the top-hat lter is meaningless.

(a) (b)

x -0.06 -0.04 -0.02 0 0.02 0.04 0.06 . The space step is dx = 0.005 (dimensionless value), this is the horizontal distance between two consecutive crosses + on (a). The PIV lter is a top-hat lter of width 4dx.
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A second consequence of PIV ltering is that we can only compute the inter-scale transfer and viscous dissipation terms on already coarse-grained velocity elds. For example, we will not compute the Duchon-Robert term :

Π DR (x) = ∇φ (r) • δu(δu) 2 d 3 r (2.17) (2.18) but : ∇φ (r) • δu( δu) 2 d 3 r (2.19) (2.20)
This is a priori a problem when c is in the inertial range as a lot of scales are ltered, and possibly in the dissipative range if there exists scales smaller than the Kolmogorov scale. However, if c >> X, one can invoke the principle of UV locality introduced by Eyink ( [Eyink, 2005], [Eyink, 2008])

and consider that most of the contribution to Π DR comes from scales close to c . Note that this principle is valid only for places where the local Hölder exponent is larger than 0. It is probably 40CHAPTER 2. THE PROBLEM OF SINGULARITIES ADDRESSED BY THE EXPERIMENT the case almost everywhere, but not around possible prints of singularities that we are interested in. Π DR may therefore be underestimated there. In this thesis, we have at most c > 1.7X for 3D measurements because of the limited thickness of the measurement volume. This may not be enough and this fact should be kept in mind while analyzing the results.

Finite volume thickness

During this thesis, we performed 3D measurements of the velocity eld. A priori, this allows to compute 3D elds of the Duchon-Robert term as well as the other terms. However, in tomographic particle image velocimetry (TPIV), one of the dimensions of the measurement volume is smaller (about 8 times smaller) to ensure a proper volume reconstruction (see chapter 4).

In addition to that, the weak Kármán-Howarth-Monin and LES terms cannot be computed over the whole velocity eld. Indeed, they correspond to integrals over space. Fortunately, the integrand is very small over most of the space because φ is a Gaussian ; therefore the integral can be computed even if we do not have access to the whole velocity eld. However, all the points where the integrand cannot be neglected should be considered. We empirically observed that the integrand is not negligible over a sphere of radius ≈ 3 + dx (dx being the space step). This means that the weak Kármán-Howarth-Monin and LES terms cannot be computed over margins as wide as 3 + dx on the sides of the velocity eld : indeed, one does not know the velocity eld outside. This is schematized in gure 2.2. but compared to the previous work [START_REF] Saw | Experimental characterization of extreme events of inertial dissipation in a turbulent swirling ow[END_REF], we can compute the full terms, not a 2D version of them. Indeed, we have access to the velocity out of the plane and can thus compute gradients in the direction perpendicular to the plane ; it was not possible with stereoscopic particle image velocimetry (SPIV) measurements which give access to the three components of the velocity eld on a plane only.

Multi-scale analysis ?

According to what precedes, there is only one length scale at which the weak Kármán-Howarth-Monin and LES terms can be properly computed. How to perform a multi-scale analysis then ? We will vary the Reynolds number and therefore the Kolmogorov scale so that the ratio c /η varies. This is explained in the next chapter.

3 Comparison between the experimental and numerical approaches

The detection method described in the previous sections can be applied to any velocity eld, be it analytical, numerical or obtained from the experiment. The analytical approach is to be handled by mathematicians. As for physicists, the numerical and experimental approaches both have their own advantages and limits, and are therefore complementary. In this thesis, we focus on experimental results. Still, it is interesting to discuss here the respective advantages and limits of both approaches.

In particular, the experimental limits should be kept in mind while analyzing and interpreting the results.

Numerical approach

The numerical approach consists in numerically integrating a discretized version of the 3D incompressible Navier-Stokes equations. The obtained velocity eld behaves like a solution of the 3D

INSE under certain assumptions.

There are mainly two kinds of numerical simulations. Simulations of the rst kind do not compute small scale uctuations and use models to account for their impact on larger scales. They include for instance RANS simulations (Reynolds-Averaged Navier-Stokes) and LES (Large Eddy Simulations).

They are not suited at all to study the problem of singularities as they do not simulate small scales.

Simulations of the second type, namely DNS (Direct Numerical Simulations), do not involve any such model and are supposed to resolve all the scales. We will therefore only consider DNS here.

In a DNS, the spatial and time resolutions are then necessarily nite. In order to reproduce the behaviour of the 3D INSE, a DNS should have a spatial and a time resolution which are smaller than the smallest ow length-and time-scales.

3.1.1 Usual estimation of the computational and storage costs for a DNS

In the case of the Navier-Stokes equations, it is usually considered that the smallest length scale is the Kolmogorov scale η = (ν 3 / ) ≈ L, one should use a space step dx ≤ η, and there would be more than (L/η) 3 ∝ Re 9/4 grid points. The three components of the velocity and the pressure should be computed and stored at each grid point. The total number of operations per time step and the memory should therefore scale like Re 9/4 . Furthermore, the equations have to be integrated with respect to time. To this end, a suciently small time step should be used. The smallest time scale of a turbulent ow can be estimated in the same manner as the Kolmogorov scale, by comparing inertial and viscous

terms : τ = (ν/ ) 1/2 = T (Re • * ) -1/2
where T = L/U is the typical time-scale at large scales. To simulate the Navier-Stokes equations over one large time-scale T , one should therefore use more than T /τ ∝ Re 1/2 space steps. Therefore, the total number of operations needed to simulate the Navier-Stokes over one large time-scale scales like Re 9/4 * Re 1/2 = Re 11/4 . As turbulent ows correspond to large Reynolds numbers, the computational cost is huge. To perform the simulations in a reasonable time period, complicated parallelization algorithms have to be used. The storage costs are also important (∝ Re 9/4 per velocity eld), even if not every velocity eld has to be recorded.

For instance, a state-of-the-art simulation [START_REF] Yeung | Extreme events in computational turbulence[END_REF] recently achieved to simulate homogeneous isotropic turbulence (HIT) in a cube of 8192 3 gridpoints. The Taylor-based Reynolds number was 1300, corresponding approximately to a Reynolds number of 640000 in a von Kármán ow (see chapter 3), and the resolution was around η. More than 250 000 cores were used on a machine rated at more than 10 petaops ( 1015 ) in aggregated speed, and a storage capacity of 0.5 petabyte was used. Simulations of real ows are more complex than simulations of HIT. For instance, the largest Reynolds number reached in a DNS of a von Kármán ow by the team of Caroline Nore is 6000. A DNS of ten impeller rotations of the full von Kármán ow at a Reynolds number of 6000, with a resolution equal to the Kolmogorov scale, takes one million computation hours with the SFEMANS code [START_REF] Cappanera | Turbulence in realistic geometries with moving boundaries : when simulations meet experiments[END_REF]. This gives around 200000 velocity elds, but only 30 independent ones. Such a DNS took 10 days to complete on a cluster of 2000 cores. For comparison, according to the ranking available at www.top500.org in June 2019, the fastest supercomputer could deliver almost 150 petaops with slightly less than 250000 cores (requiring a power of 10MW).

Note that in this subsection, we obtained a scaling depending on the Reynolds number, but the prefactor is also important. The Kolmogorov length-and time-scales are estimations of the smallest ow length-and time-scales, but they may involve prefactors ; for instance, the smallest ow length scale could be η/5 requiring a simulation resolution even smaller : dx ≈ η/10. In [START_REF] Yeung | Eects of nite spatial and temporal resolution in direct numerical simulations of incompressible isotropic turbulence[END_REF],

the authors point out the inuence of the spatial and temporal resolutions on the characteristics of the extreme vorticity events and suggest that the resolution used in [START_REF] Yeung | Extreme events in computational turbulence[END_REF] was not small enough.

The case of singularities

In the previous chapter, we showed that if singularities existed, they would probably come along with scales smaller than the dissipative scale involved in turbulent ows. Therefore, the space-and time-steps of the DNS should be quite smaller than η and τ . To comply with that, there are two possibilities : either keeping constant space-and time-steps and decreasing the Reynolds number, in order to increase η and τ ; or decreasing the space-and time-steps, which requires to increase the computational power and memory compared to the above estimations.

For instance, using the scaling suggested by the multifractal model, given a minimum Hölder exponent h min in the ow (see previous chapter), the smallest length in the ow should be η h min = LRe -1/(1+h min ) . The total number of operations per time step and the memory should then scale
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like Re 3/(1+h min ) and the total number of operations needed to simulate the Navier-Stokes over one large time-scale like Re 3/(1+h min ) * Re (1-h min )/(1+h min ) = Re (4-h min )/(1+h min ) . However, these scalings are based on the existence of such scaling exponents in turbulent ows, which is still to prove.

Also, adaptative meshes can be used with a variable space step for which the above estimations are too conservative : indeed, the mesh is rened only where needed (where the local Hölder exponent is small for instance) and can be coarser elsewhere. In [START_REF] Pumir | Collapsing solutions in the 3D Euler equations[END_REF], the mesh is thus rened 50 to 600 times at relevant places.

Experimental approach

The experimental approach consists in measuring velocity elds in a real ow, which is assumed to follow the 3D incompressible Navier-Stokes equations. As detailed in the previous chapter, this is the case if the incompressibility and scale separation hypotheses are valid, i.e. if the ow velocity is smaller than the sound speed in the uid and if the smallest ow length-scale is much larger than the molecular scale.

Comparison

Agreement with the Navier-Stokes equations

A DNS allows to study a discretized version of the 3D incompressible Navier-Stokes equations with a nite number of modes ; measuring the velocity in an experiment allows to study a physical phenomenon that can well be accounted for by the 3D INSE. In both cases, the velocity eld can be considered as a solution of the 3D INSE only as long as certain assumptions are veried. It is likely not to be the case if a singularity occurs, as such singularities are known to come along with innitely small scales and innitely large velocity amplitudes. In a DNS, the obtained velocity eld will stop correspond to the 3D INSE when scales smaller than the simulation resolution will be generated. In an experiment, there is also a constraint on the smallest ow length scale, which should be much larger than the molecular scale. However, this is probably much less limiting than in a simulation. For instance, in the von Kármán ow used in this thesis, the Kolmogorov scale is around 15 µm at Re = 3 × 10 5 (and larger at smaller Reynolds numbers), and the molecular scale is around 0.1 nm, i.e. more than 5 orders of magnitude lower. In a DNS, the spatial resolution is usually set around the Kolmogorov scale, and decreasing it requires to decrease the Reynolds number. Therefore, the hypothesis on the smallest ow length scale will probaby hold longer in the case of the experimental approach. The most limiting assumption of the experimental approach is probably the incompressibility assumption.

Sampling

Singularities, if they exist, are scarce. Therefore, a large amount of velocity elds should be collected to have a chance to detect a print of singularity. Simulations are not well suited to that : they produce correlated velocity elds at a huge cost ; producing independent velocity elds would be even more costly. On the contrary, in an experiment, one just needs to use a low enough acquisition rate to be sure that two following velocity elds are uncorrelated ; what happens between these two velocity elds is totally ignored.

However, state-of-the art DNS of homogeneous isotropic turbulence involve velocity elds so large that they allow to gather enough statistics on few frames. For instance, in [START_REF] Yeung | Extreme events in computational turbulence[END_REF],

one velocity eld contains 8192 If the resolution should be of the order of η/10, then the number of points separated by η would be only ≈ 800 3 ≈ 5 × 10 8 .

3 ≈ 5 × 10

Resolution and Reynolds number

Singularities are characterized by very ne scales ; therefore, a ne resolution is needed when looking for prints of them. Also, their apparition might be conditioned on the Reynolds number, as suggested at the end of [START_REF] Yeung | Extreme events in computational turbulence[END_REF]. Therefore, large Reynolds numbers should be studied.

In this thesis, we obtain an experimental resolution of the order of the Kolmogorov scale for a

Reynolds number of 6000. In a close future, we should be able to get down to η/5 or to increase the Reynolds number up to 50000 while keeping the resolution around the Kolmogorov scale (see chapter G). The DNS of [START_REF] Yeung | Extreme events in computational turbulence[END_REF] 

Measurement error

In numerics, there is no measurement error, contrary to the experiments. However, singularities of the Navier-Stokes equations should come along with large velocities, and singularities of the Euler equations should come along with large vorticities. Therefore, such events should not be hidden in the noise. However, it is possible that spurious measurements lead to the detection of irrelevant events. Furthermore, in the case of Particle Image Velocimetry (PIV) measurements, it is possible that the occurence of prints of singularities breaks down the grounding assumption that the tracked particles follow the uid. In this case, the event would probably be detected but the velocity eld around it would be inaccurate.

Dynamic range

In order to perform scale-by-scale analyses of a ow, the size of the velocity eld should be large compared to the space step. In a DNS, all scales from the large scale to the space step are simulated and available. The dynamic range, i.e. the ratio between the largest scale and the space step, is 8192 in the DNS of HIT previously mentioned. In the case of PIV measurements, the dynamic range is limited by the sensor size and the minimum interrogation window size (see chapter 4) ; currently in 2D PIV it is at most a few hundreds. In the case of tomographic PIV, where the thickness of the velocity eld is limited and where the seeding particle concentration cannot be too high, implying larger interrogation volume size, the dynamic range based on the smallest dimension is rather of the order of a few tens. Also, we showed in the previous section that for an experimental velocity eld, which has a nite width, the weak Kármán-Howarth-Monin and LES terms can only be computed on a restricted almost 2D area. In a DNS of homogeneous isotropic turbulence, this is not the case as these terms can be computed over the boundaries (which are periodic).
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Forcing

There is an additional dierence between simulations of homogeneous isotropic turbulence (HIT)

and experiments : the forcing, i.e. the way the energy is injected. Indeed, in experiments, the forcing comes from the boundary conditions : for instance, an impeller rotating in a uid will rotate it, but there is no forcing in the bulk of the ow. In the case of a simulation of (HIT), there are periodic boundary conditions so the forcing cannot be due to these boundary conditions ; a volume forcing, local in scale (at large scales) is usually used.

This dierence in forcing could impact the formation of a singularity. In the ocial formulation of the problem of singularities, as stated by the Clay Institute, the considered space is either R 3 or R 3 /Z 3 , so there are either no or periodic boundary conditions. The existence and smoothness should be proved for a 0 forcing only.

Conclusion

The comparison between the experimental and numerical approaches shows that both have pros and cons. It is dicult to conclude as it is not clear what the smallest resolution of a DNS should be. The main advantage of the experiment approach is to allow length scales much smaller than the Kolmogorov scale, even if they cannot be measured. Either DNS neglect these smaller scales, which could impact the velocity eld and possibly hinder the formation of possible singularities, or they resolve these smaller scales, but cannot reach too large Reynolds numbers.

Outline of the method

We will now sum up the goal of the thesis and the strategy used to reach it.

The guideline is the following : analyzing 3D velocity elds obtained by experimental means in a real turbulent ow in order to provide more insight into the possible singularities that might occur in the solutions to the 3D incompressible Navier-Stokes and Euler equations. We look for prints of them, i.e. places where the inter-scale transfer or the ratio of inter-scale transfer to viscous dissipation is extreme. We then examine how these prints are distributed, how they look like and how they evolve with respect to time, assuming that these prints behave to some extent like the possible singularities.

In order to do so, we generate a turbulent ow at several Reynolds numbers using the von Kármán set-up described in chapter 3. We do not resolve the Kolmogorov scale at all Reynolds numbers but we vary it to study dierent scale ranges, from the inertial one to the dissipative one. The dierent cases investigated are presented in chapter 5.

We measure the velocity eld in this ow by particle image velocimetry methods detailed in chapter 4, either time-resolved or not.

Non-time-resolved measurements allow to get uncorrelated velocity elds and thus to sample more properly the extreme events. We used such measurements to study the distribution of inter-scale transfer and viscous dissipation, and of their extreme values, as reported in chapters 6 and 7. We used both stereoscopic and tomographic particle image velocimetry (resp. SPIV and TPIV), giving access to the three components of the velocity eld in repectively two and three dimensions. The latter one can then be used to study the topology of the prints of singularities, this is exposed in chapter 8.
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Time-resolved measurements are used to study the time evolution of extreme events, in an Eulerian frame. This is the subject of chapter 9.

The current spatial resolution of our experimental set-up is around the Kolmogorov scale. We showed in the previous chapter that singularities, if they exist, involve scales smaller than this Kolmogorov scale. Therefore, improving the experimental resolution is required to study this kind of events. In appendix G, we present the design of an experimental set-up ve times bigger than the one used in this thesis and meant to improve the spatial resolution. The design of this set-up was one of the tasks of this thesis, but the set-up itself was not used during this thesis.

Part II

Description of the experimental set-up and measurements

Chapter 3

Implementation of the von Kármán ow : the VK2 set-up

In this chapter, we describe the turbulent ow used in this thesis, as well as the corresponding experimental set-up. The advantages of using such a ow are then detailed.

Flow description

A von Kármán ow is a general type of ow generated between two rotating impellers facing each other. This is quite a wide denition, gathering a lot of ows, since the relative size of the impellers and the distance between them can be varied, as well as their rotation frequencies, the shape of their blades or the boundary conditions. A summary of the scientic work dealing with these ows can be found in [Marié, 2003].

Geometry

In this thesis, we consider a particular von Kármán ow, whose geometry is shown in gure 3.1.

The extension of the ow is nite, limited by a cylinder of radius R. The aspect ratio, dened as the distance between the disks H divided by the cylinder radius, is 1.8.

There are two identical impellers, one at the bottom and one at the top. They are disks supporting eight blades, as depicted on gure 3.2. These blades are circular arcs passing through the center of the impeller and whose radius is such that the exit angle dened on gure 3.2 is 72 • . These impellers correspond to the TP87 or TM87 impellers described in [Ravelet, 2005] (P stands for plastic and M for metallic). In this thesis, we only consider the case where they are exactly counterrotating, their rotation frequency being imposed. We distinguish between the positive direction of rotation, called contra, when the convex side of the impellers pushes the uid, and the negative direction, called anti, when it is the concave side of the impellers which pushes the uid.

The geometry of our von Kármán ow is invariant by rotations R θ around the cylinder axis, which we will call vertical axis, with θ a multiple of 45 

R π R θ (a) (b) 
Re = 2πR 2 F ν (3.1)
The transition to turbulence was studied during the PhD thesis of Florent Ravelet [Ravelet, 2005, Ravelet et al., 2008] (for similar impellers but with twice more blades). It starts around Re = 150 and for Re > 6000 the ow is fully turbulent. In the laminar regime, the ow is made of two rotating cells corresponding to the two impellers and separated by a mixing layer with a strong When the ow is turbulent, the velocity eld is of course much more complex. However, for the contra direction the average velocity eld is similar to the laminar one. For the anti direction, the situation is more complicated : when the impellers start counter-rotating at the same frequency, the average velocity eld is similar to the laminar velocity eld, as depicted on gure 3. . The color scale corresponds to the velocity normalized by 2πRF , the color scale for (a) is dierent from the colorscale of (b), (c) and (d).

the average velocity eld switches to a state with only one rotating cell, as shown on gure 3.3 (b).

The statististical invariance with respect to the R π symmetry is then broken, and the ow is said to bifurcate. This bifurcation is described in [START_REF] Ravelet | Multistability and memory eect in a highly turbulent ow : experimental evidence for a global bifurcation[END_REF]. One impeller pumps and rotates most of the uid, while the other one has much less eect. There is not even a second smaller cell conned to the dominated impeller : as can be seen in [START_REF] Cappanera | Turbulence in realistic geometries with moving boundaries : when simulations meet experiments[END_REF], even very close to the dominated impeller, the azimutal velocity has the same direction as the dominating impeller. Such a bifurcation happens without modifying the rotation frequency of the impellers, and when the ow is bifurcated, it cannot come back to a symmetrical state. Note that there are two possible bifurcated states : the single rotating cell can either follow the bottom impeller (this is the case shown on gure 3.3 (b)) or the top one. For impellers counter-rotating at the same frequency, the average time before the ow bifurcates is very large : the ow is said to be marginally stable. In practice, this almost never happens, but one must all the same be careful and check whether the ow is symmetrical or not.

The bifurcation can also happen when the rotation frequency of only one of the impellers is increased : this impeller will then beat the other and impose its rotation direction to most of the 1. FLOW DESCRIPTION 53 ow. In contra direction, when increasing only one impeller rotation frequency, there is no bifurcation but the cell corresponding to the faster impeller becomes larger than the other and the mixing layer between the two cells is moved towards the slower impeller.

Global dissipation rate, dissipation anomaly and characteristic scales

Let us call T the average torque (over time) applied on the uid by one impeller. The total applied torque is 2T and the total power is 2(2πF )T . The dimensionless average torque applied by one impeller on the uid is called K p :

K p = T ρR 5 (2πF ) 2 (3.2)
The behaviour of K p with respect to the Reynolds number Re was studied in several congurations for TP87 impellers or similar impellers with the same behaviour. The K p vs. Re curves are plotted in gure 3.5. In the laminar regime, there is no dierence between contra and anti directions, and both dimensionless torques behave as 1/Re : dissipation is proportional to viscosity. However, in the turbulent regime, the laminar curve splits into three dierent curves, each saturating to a constant value for high Re. The lowest one corresponds to the contra direction, the middle one corresponds to the anti direction in a symmetrical state and the top one to the anti direction in a bifurcated state : in turbulent regime, the applied torque and power are higher for anti direction than for contra one, and higher for a bifurcated state than a symmetrical one in anti direction.

In the bifurcated state, the impeller imposing its rotation to most of the uid applies a higher torque than the other one. The saturation of the dimensionless torque value was observed up to Re = 10 8 thanks to VKS and SHREK experiments [Saint-Michel et al., 2014]. It corresponds to the dissipation anomaly mentioned in chapter 1 and widely observed in turbulent ows : the dissipation is independent of viscosity at high Reynolds numbers.

The average energy dissipation rate per unit mass in our von Kármán ow depends on K p . In steady state, the energy dissipation rate is equal to the power injected by the impellers. Let us call m the total mass of uid in the ow. As the aspect ration is 1.8, we have :

m = ρπR 2 H = 1.8ρπR 3 (3.3) Therefore : = 2(2πF )T m = 2ρR 5 (2πF ) 3 K p 1.8ρπR 3 = 2R 2 (2πF ) 3 K p 1.8π (3.4) 
The dimensionless average energy dissipation rate per unit mass is (the asterisk means that a quantity is dimensionless) :

* = R 2 (2πF ) 3 = 2K p 1.8π (3.5)
The dimensionless Kolmogorov length, time and velocity scales of the ow (respectively η * , τ * and v * k ) are : [Ravelet, 2005, Ravelet et al., 2008]) ; all other symbols were obtained with TM87 impellers. Red symbols correspond to the contra direction of rotation whereas blue symbols correspond to the anti direction of rotation with a symmetrical ow and the green symbols correspond also to the anti direction of rotation with a bifurcated ow. Pentagons were obtained with a water-glycerol mixture and squares with only water ; both pentagons and squares correspond to measurements performed in the VK2 set-up. Diamonds correspond to measurements performed in the VKS set-up, the working uid being liquid sodium (unpublished data, courtesy of the VKS collaboration : M. Faure, N. Bonnefoy, S. Miralles, N. Plihon, J.-F. Pinton, Ph. Odier, G. Verhille, M. Bourgoin, S. Fauve, F. Petrelis, M. Berhanu, N. Mordant, B. Gallet, S. Aumaitre, F. Daviaud, A. Chiaudel, R. Monchaux, P. Gutierrez). Triangles correspond to measurements performed with liquid helium in the SHREK set-up [START_REF] Saint-Michel | Probing quantum and classical turbulence analogy in von Kármán liquid helium, nitrogen, and water experiments[END_REF] : left-pointing triangles were obtained with helium-4 at T=2.3 K and right-pointing triangles with helium-4 at T=2 K (superuid phase). The colourful circles correspond to numerical simulations : empty circles correspond to DNS and yellow-lled circles to LES (courtesy of Caroline Nore). This gure is a compilation of results published in [Dubrulle, 2019] and [START_REF] Cappanera | Turbulence in realistic geometries with moving boundaries : when simulations meet experiments[END_REF].

η * = η R = (Re 3 * ) -1/4 (3.6) τ * = 2πF τ = (Re • * ) -1/2 (3.7) v * k = v k 2πRF = (Re/ * ) -
Concerning the injection length scale of our von Kármán ow, it is between the impeller height (0.2R) and the cylinder radius (R).

We can also compute the dimensionless Taylor length scale λ * . Usually, the Taylor length scale is dened by :

(u rms i ) 2 λ 2 = (∂ i u i ) 2 (3.10)
where u i is one of the velocity components and where there is no implicit summation in ∂ i u i .

This scale corresponds to the end of the inertial range ( [Frisch, 1995]). For homogeneous isotropic 

λ * = λ/R = 5(u rms tot * ) 2 Re • * (3.13)
The Taylor-scale Reynolds number is therefore given by :

R λ = λu rms tot / √ 3 ν = 5Re 3 * (u rms tot * ) 2 (3.14) 
In turbulent regime, at large Reynolds numbers, * and u rms tot * are independent of Re. Therefore, the dimensionless Kolmogorov scales, the dimensionless Taylor scale and the Taylor-scale Reynolds number only depend on the Reynolds number.

The Taylor-scale Reynolds number is especially useful to compare the level of turbulence in a von Kármán ow and in a direct numerical simulation (DNS) of homogeneous isotropic turbulence (HIT). Indeed, as the geometry and the forcing are dierent, it is not really meaningful to compare the integral Reynolds numbers. For a given Taylor scale Reynolds number R λ obtained in a DNS of HIT, the integral Reynolds number of a von Kármán ow leading to this value of R λ can be obtained by reversing 3.14, as we know * (Re) and u rms tot * (Re) in our von Kármán ow. It is not a priori equal to the Reynolds number of the DNS computed with the integral scales of the DNS.

VKset-up description

In this thesis, we used the already existing VK2 set-up to generate the described von Kármán ow.

This set-up, shown on gures 3.6 and 3.7, has a total height of about one meter ; the cylinder diameter is 20 cm and the distance between the two impellers is 14 cm. It was already used and described in previous PhD theses [Monchaux, 2007[START_REF] Saint-Michel | L'écoulement de von Kármán comme paradigme de la physique statistique hors-équilibre[END_REF] and works [START_REF] Saw | Experimental characterization of extreme events of inertial dissipation in a turbulent swirling ow[END_REF].

During this thesis, we modied it in order to put 4 or 5 cameras around it despite its smallness, and thus to perform tomographic particle image velocimetry (TPIV).

The tanks

The VK2 set-up includes two tanks : a cylindrical one where the ow is generated and an outer one, lled with the same liquid and intended to reduce optical deformations. Both are xed on a structure made of X95 rails and steel plates. This structure is xed itself on an anti-vibration marble table. 

The outertanks

Because of its curvature, direct observations through the cylindrical tank yield important optical deformations. To avoid them, an outertank lled with the same uid as the inner tank is added so that the observation directions cross the outertank perpendicularly on at surfaces. In this thesis, we used three dierent outertanks.

The rst one was preexisting [Monchaux, 2007[START_REF] Saint-Michel | L'écoulement de von Kármán comme paradigme de la physique statistique hors-équilibre[END_REF], Saw et al., 2016] and is used for stereoscopic particle image velocimetry (SPIV) which involves only two cameras. It has a square The two other tanks were built during this thesis by Vincent Padilla on Jean-Marc Foucaut's advice, in order to install 4 or 5 cameras around the ow and perform TPIV. The rst one to be built, which we call outertank A and which is shown on gure 3.9, allows to put ve cameras whose optical axes are in two dierent planes (one vertical and one horizontal). In this conguration, the particle images on cameras 1 and 2 were distorted because the optical axes of these cameras were not perpendicular to the cylinder (see next chapter). Therefore, we built another outertank, outertank B. This outertank, shown in gure 3.10 allows to use ve cameras too, but their optical axes are all in the same horizontal plane, and therefore all crossing the (vertical) cylinder perpendicularly.

Such a conguration was used in the PhD thesis of [Martins, 2016] in the case of a channel ow.

The possible drawback was the possible depletion in reconstruction quality because observation directions are closer to each other in this new conguration. However, it turned out that this conguration allowed good reconstruction too (see section 3.2 and appendix D) and it was nally used for most of the measurements.

Outertanks A and B both have PMMA faces glued on a nylon base which is xed by anges on the bottom steel plate. They both have glass windows on the faces through which the laser beam passes, so that it does not spoil the PMMA (for outer tank B, it is even anti-reective glass). Outer tank A also includes a mirror to reect the laser volume so that cameras which are in forward and backward scattering receive approximately the same amount of light ; in the case of outer tank B, the beam leaves the outer tank through a second glass window before it is reected by an external mirror.

Impellers, transmission and engines

The impellers are TP87 impellers, made of polycarbonate and machined by a 3-axis milling machine.

Their geometry is the one shown in gure 3.2. The width of the blades is 2 mm.

They are slotted and screwed by one screw in their rotating shaft through an intermediary hub.

The diameter of the shafts is 30 mm, they are guided by two angular contact ball bearings each.

The sealing at the shaft is ensured by mechanical sealings, which require a pressure inside the tank of 1.8 bar for an optimal functioning (see [START_REF] Saint-Michel | L'écoulement de von Kármán comme paradigme de la physique statistique hors-équilibre[END_REF]).

Each shaft is xed to a pulley at its end, which is rotated by a belt connected by another pulley to the engine. As the pulley xed to the engine has a diameter twice smaller than the one xed to the shaft, the rotation frequency of the engines is twice the rotation frequency of the impellers.

The electrical engines are Yaskawa Servopack SGMGH. They can provide a power of 1.8 kW and a torque of 11.5 N.m each. They are controlled by a Labview program developed by Cécile Wiertel-Gasquet, and provide a measure of their rotation frequency and torque. They are xed on a structure separated from the one holding the tanks, xed on the oor and therefore independent from the structure supporting the tanks. The only links between the two structures are the anti-vibration table which is placed on the oor, and the belts. With this separation, the tanks are not subject to the engine vibrations.

In order to get a more accurate measurement of the torque and rotation frequency, one SCAIME torquemeter is located on each pulley. The measured torque is thus free from belt contributions, but not from the ones of the bearings and sealings (see [START_REF] Saint-Michel | L'écoulement de von Kármán comme paradigme de la physique statistique hors-équilibre[END_REF] for a deep investigation of this problem).

Fluid

The uids used in this thesis were either water or water-glycerol mixtures. Changing the uid allows to vary the viscosity and then to reach dierent Reynolds number with a limited frequency range of the impellers. The impeller rotation frequency is limited at lower values by the accuracy of the engine control, and at higher values by the engine power.

At low Reynolds numbers, using a water-glycerol mixture is more suited. Accurate engine control at low frequency is indeed not possible with our equipments, the lower limit of the engine rotation frequency being 0.2 Hz (0.1 Hz on the impeller rotation frequency because of the pulley ratio). At this frequency, the relative amplitude of the frequency variations is 1%. This frequency corresponds in water to a Reynolds number of 6000, i.e. the smallest turbulent Reynolds number of our ow.

We could then in principle avoid using glycerol but at such a frequency with water lling the tank, torques are too small to be measured with our system. In addition, we observed sedimentation of particles in water at this frequency, the gravity forces being stronger than inertia forces. This does not aect the measured velocity (see chapter 4) as the fall speed is still lower than the particle velocity, but after few minutes the particles concentration has signicantly decreased which requires to stir strongly the liquid to lift the particles again. With a water-glycerol mixture, this sedimentation phenomenon is much less pronounced as the rotation frequencies are higher (for the same Reynolds numbers) and the liquid density is closer to the density of the particles. Also, at low impeller rotation frequencies, the acquisition frequency of the cameras should be smaller in order to get decorrelated frames because the velocity eld is longer to decorrelate. This can result in very long acquisition times.

At higher Reynolds number, we use pure water. Indeed, at higher rotation frequencies problems of torque measurement, sedimentation and acquisition frequency do not exist and water remains much more convenient as it does not require dilution nor cleaning. viscosity of the mixture.

The refractive index of water is around 1.33 whereas the one of pure glycerol is around 1.47. This is closer to the PMMA refractive index. Using a water-glycerol mixture would then theoretically decrease optical distorsion due to multiple changes of refractive indices but in practice we did not observe any major dierence in the measurement quality between the two kinds of liquid.

Cooling circuit

The energy injected by the impellers into the ow is dissipated by viscous eects (at least) which convert kinetic energy into heat. To keep the ow at a constant temperature and avoid variation of the uid viscosity with temperature (and thus of the Reynolds number), a cooling circuit is used.

It consists in two windings of copper pipe located behind the impellers (a disk is added between the windings and the impeller both at the top and the bottom in order to reduce the impact of the ow generated in the windings on the von Kármán ow). The copper pipes are plugged into a Lauda thermostat allowing to regulate the temperature of the uid in the cooling circuit with an accuracy of 0.1

• C. The studied ow being fully turbulent, we can reasonably assume that the uid temperature is homogeneous.

With this cooling system, it is also possible to tune the viscosity by modifying the uid temperature.

3 Why using this ow ?

In this section we detail the advantages of using the von Kármán ow for the particular purposes of this thesis.

In addition to practical advantages, this set-up is well suited for the multi-scale analysis of turbulence as the Reynolds number can be varied easily by playing either on the impeller rotation frequency or on the uid viscosity. The latter can be tuned either by modifying the glycerol fraction or the temperature of the uid. When changing the Reynolds number, the Kolmogorov scale η changes too. Therefore, keeping a constant spatial resolution, i.e. without zooming in or out, we can still study dierent scale ranges as the ratio ∆x/η is modied (∆x being the vector spacing). The ratio ∆x/L (with L the integral scale) remains constant though, and the scale separation is not very pronounced at small Reynolds numbers.

This principle was already used several times by the group, for example in [Debue et al., 2018a].

In this paper, a composite spectrum covering 3 decades is obtained by combining dierent spectra obtained at dierent Reynolds numbers. This spectrum is reproduced in gure 3.11. Velocity measurements in the von Kármán ow at three dierent Reynolds numbers were needed to achieve this spectrum : Re=6 × 10 3 , Re=6 × 10 4 and Re=3 × 10 5 . The corresponding Kolmogorov scales are respectively 0.3 mm, 75 µm and 15 µm. The vector spacing ∆x was not exactly the same for all cases. Indeed, the magnication was smaller for the rst case, hence a larger ∆x ; and the interrogation window sizes (see next chapter) were 16 or 32 pixels, hence the factor 2 between the resolutions of other cases. In order to obtain the composite spectrum, wavenumbers are rescaled by the Kolmogorov scale and the spectra by 2/3 η 5/3 . This spectrum features both the inertial and dissipative ranges. This conrms that this method allows to study dierent scale ranges with a constant or limited range of spatial resolution. This is very important because PIV methods have a nite resolution ; with this method we can still study small scales. Also, the ow itself has been widely studied, especially during the past thirty years, both experimentally and numerically. We therefore have a good knowledge of it : for example we know that it can bifurcate when the TP87 impellers are rotating in the anti direction, or we know how the mean ow looks like as well as the behaviour of other velocity statistics. We can therefore check the consistency of the velocity measurements obtained with the new 3D PIV methods. Concerning the computation of energy transfer and dissipation terms in the special case of the von Kármán ow, no such work already exists but the same analysis we perform is being done by the team of Caroline Nore on the results of von Kármán ow simulations obtained with the SFEMANS code.

Comparing our results will again allow to check their consistency.
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Another advantage is that the von Kármán ow is not homogeneous. It features dierent kinds of ows : strong shear in the equatorial plane between the two counter-rotating cells, inuence of a wall near the cylinder, simple advection within one cell along the cylinder axis. This allows to study the inuence of the ow type. Note that there is always a global swirl though. In this thesis, we only focus on one particular point of the ow, its center, i.e. the intersection between the equatorial plane and the cylinder axis. The turbulence is close to homogeneous and isotropic turbulence (HIT) around this point : indeed, this area is invariant by rotation around the cylinder axis and the R π symmetry. Variations of the rms of the velocity are small (see C.4). It is not exactly isotropic, as shown in [START_REF] Ouellette | Smallscale anisotropy in Lagrangian turbulence[END_REF], the vertical direction being dierent from the others (for instance, it has a rms 30% smaller, see also chapter 5), but it was shown in the appendix of [Debue et al., 2018a] that the slopes of the spectra are the same for the three velocity components.

This quasi-homogeneity and -isotropy makes the comparison of our results with others obtained in DNS of HIT more meaningful.

Lastly, the cylindrical geometry of the von Kármán ow is interesting because the presence of swirl may favour the existence of singularities and because the cylinder axis seems to be a preferred place for possible singularities to occur. Indeed, an axisymmetrical ow cannot feature singularities if the swirl component is zero (i.e. if the azimutal component of the velocity is uniformly zero) : the ow is then 2D and the result in [Ladyzhenskaya, 1968] applies. When the swirl is non-zero, it was proven in [START_REF] Hou | Dynamic stability of the 3D axisymmetric Navier-Stokes equations with swirl[END_REF]] that axisymmetrical ows are regular for nite time, in a domain excluding the symmetry axis, implying that any singularity would necessarily be located along the symmetry axis (in this case, the dimension is usually considered to be 2.5 because the ow is axisymmetric but there is a non-zero azimutal velocity component). Of course, these theorems do not apply to fully turbulent 3D ows which are not axisymmetric, but they may be interpreted as indications of the favourable conditions for the occurence of singularities.

Chapter 4

Tomographic particle image velocimetry and its application to our set-up

In this thesis, we use Tomographic Particle Image Velocimetry (TPIV) in order to measure turbulent velocity elds at the center of our von Kármán ow. TPIV is an Eulerian measurement method which allows to get the three components of the velocity on a 3D grid (it is said to be a 3D-3C method). Both non-time-resolved and time-resolved TPIV are used. The former allows to obtain a large amount of uncorrelated elds in order to statistically sample the ow and to gather as many extreme events as possible. The latter allows to study the time evolution of the extreme events.

In this chapter, we detail the working principles of TPIV, along with the way to estimate resolution, quality and error of the measurements. Optimization tests for our set-up are then briey exposed.

1 General principles TPIV, as well as other laser velocimetry methods, relies on particles seeding the ow, lighted by a laser and whose images are acquired by cameras. Processing of the acquired images allows to get the particle displacements and velocities.

Typical set-up

A typical PIV set-up, as the one sketched on gure 4.1, involves a laser and one or more cameras.

For 2D-2C measurements (yielding two velocity components on a 2D grid), one camera is enough ; more cameras can be used to get an additional component or dimension. The laser beam can be shaped by optics such as lenses and mirrors in order to obtain a laser sheet or volume with a proper thickness and dimensions corresponding to the considered area. PIV lasers are usually pulsed lasers because continuous lasers are less powerful ; they must then be synchronized with the cameras.

The considered ow is seeded with particles which scatter the laser light, their images are then recorded by the cameras. Acquisition parameters are set from a computer connected with the laser and the cameras, and the recorded images are transferred to this computer for analysis. The idea is to acquire images with a small interframing time dt and to measure the particle displacements over this small time in order to deduce their velocity. A good synchronization with a high accuracy on dt is then required ; it is handled by a separated device.

PIV analysis consists in measuring the displacement of groups of particles by image correlation at some particular time. In order to get one velocity eld, two images are required. The interframing time between the two images should be such that the displacements of the particles can be properly 65
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Cameras Computer Flow Optics Laser sheet or volume estimated ; in practice, the maximum displacement of the particles on the images should be of the order of ten pixels. If the interframing time is too small, there is no dierence between the two images ; if it is too large, the images are completely decorrelated. In both cases, the velocity eld cannot be deduced.

In order to measure uncorrelated velocity elds, i.e. in the case of non-time-resolved PIV, one should wait enough time between two pairs of images. The triggering signal then looks like the upper part of gure 4.2. So-called slow or low-speed lasers and cameras are usually used for non-time-resolved measurements. Slow lasers allow to produce two very close pulses, by using two cavities with a slightly shifted triggering time, but need a longer time to be ready for the next pair of pulses. Slow cameras are designed to record a pair of images separated by a very small dt, but need a longer time to be ready to acquire the next pair.

In order to measure correlated velocity elds and perform time-resolved PIV, the time period between two pairs of images should also be small. In this case, the common practice is to acquire a whole set of images separated by a constant interframing time. The corresponding triggering signal is shown on the lower part of gure 4.2. The correlation is then performed on consecutive images : the n th velocity eld is obtained by correlating images n and n + 1. Each image (except the rst one and the last one) is therefore used to compute two velocity elds. The time period between two consecutive velocity elds is dt. For time-resolved measurements, so-called fast or high-speed lasers and cameras are required. These are designed to produce a pulse or acquire an image every interframing time dt. This is more challenging compared to slow equipment. Therefore, the features of fast equipments are slightly less good compared to slow ones. For instance, fast cameras have bigger pixels. At very high frequencies, the sensor size of fast cameras has to be decreased, because the interframing time dt is too short to store the full image ; therefore, the measurement area is smaller. Fast cameras usually have an internal memory as the interframing time dt is too short to transfer images to the computer ; therefore, the acquisition time is limited by the memory 

Particles

PIV consists in seeding a ow and measuring the average velocity of groups of particles. It therefore relies on two main assumptions : the particles properly follow the uid and their presence does not modify the ow.

Because of their inertia, particles cannot follow too fast structures. It is possible to estimate whether spherical particles will follow a ow or not. Following [Rhodes, 2008, Boutier, 2012], let us dene a Reynolds number Re p , a Mach number M p and a Knudsen number K n characterizing the ow around the particle :

Re p = |v p -v f |d p ν , (4.1) 
M p = |v p -v f | c , (4.2) K n = L p d p , (4.3) 
where :

v pv f is the dierence between the uid velocity v f and the particle velocity v p , 68 CHAPTER 4. TPIV AND ITS APPLICATION TO OUR SET-UP d p is the particle diameter, ν is the viscosity of the uid, c is the sound speed in the uid, L p is the mean free path of the uid molecules.

When Re p << 1, M p << 1 and K n << 1, Stokes' law is holding : the drag force applied by the uid on a spherical particle is :

-→ F p = -6πµ d p 2 ( - → v p -- → v f ) (4.4)
where µ = ρν is the uid dynamic viscosity, ρ being its density.

The relaxation time of a spherical particle is the time constant of the dierential equation :

m p d( - → v p -- → v f ) dt = -6πµ d p 2 ( - → v p -- → v f ) (4.5)
where m p = 4 3 π dp 2 3 ρ p is the mass of the particle, ρ p being its density.

It is the typical time needed by the particle to match its velocity with the one of the uid, equal to :

t p = ρ p d 2 p 18µ (4.6) 
If t p << t f , t f being a typical time of the uid motion, the particle is assumed to follow the ow.

The ratio of these two typical times is called the Stokes number :

S t = t p t f = ρ p d 2 p 18µt f (4.7)
It should be much smaller than 1 to ensure that the particles follow the ow in the stated conditions on Re p , M p and K n . In order to compute S t , we need to choose which t f to use. In turbulence, in the inertial range and at the beginning of the dissipative range, the typical level of velocity uctuations at scale is u ≈ U ( /L) 1/3 , with U and L the integral velocity and length scales (see [Frisch, 1995] for instance). Therefore, the typical time scale of structures at scale is t ≈ /u ≈ T ( /L) 2/3 with T = L/U the integral time scale. This is a decreasing function of : smaller structures have smaller typical time scales. Therefore, t f should be the time scale at the smallest resolved scale of the ow ∆ res : for PIV, it would be of the order of the interrogation window size. We have :

t f = T ∆ res L 2/3 (4.8)
If we consider that there are places in the ow where u ≈ U ( /L) h with h ∈ [-1; 1], as in the phenomenological interpretation of the multifractal model (see chapter 1), then :

t f = T ∆ res L 1-h (4.9)
with 1h possibly higher than 2/3 : the corresponding time scale is smaller than for h = 1/3

and it is more dicult for the particles to follow the ow. We can estimate the smallest resolved exponent h, i.e. the smallest exponent h associated with time scales (at the resolution scale ∆ res )
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h ≥ h(r) = 1 - ln( ρpd 2 p r 18µT ) ln( ∆res L ) (4.10)
In the next chapter, we compute the Stokes number based on the Kolmogorov scale and of the smallest resolved h for the ow parameters considered in this thesis.

Another problem which can occur when the density of the particles is higher than the density of the uid is sedimentation. It results in a systematic error on the velocity because this adds a drift component to the velocity of the particles in addition to the velocity of the uid. Also, because of this sedimentation, the density of the seeding decreases gradually with time and requires new seeding or strong stirring to suspend them again. This phenomenon can be characterized by the falling speed v g of the particles in the uid. In a uid at rest, once the particles (assumed spherical here) have reached their falling speed, we have :

0 = 4 3 π d p 2 3 (ρ p -ρ) - → g -6πµ d p 2 - → v g (4.11)
with -→ g the acceleration due to gravity. Hence :

- → v g = d 2 p (ρ p -ρ) - → g 18µ (4.12)
In the next chapter, we compute the falling speed of the particles for the ow parameters considered in this thesis.

The falling speed and the Stokes number are both proportional to the square of the particle diameter d p . However, the size of the particles cannot be arbitrarily decreased ; otherwise, they would not scatter enough light.

Lighting and light scattering

Lighting is a critical point in PIV. A powerful light source is needed along with cameras featuring a large dynamic range and a low noise level in order to get a good contrast and a ne intensity resolution. This is why lasers are mainly used as they allow to focus the power in a thin sheet or in a nite volume. Mirrors as well as cylindrical and spherical lenses allow to shape the light ; they should minimize the light losses (transmission for mirrors and reection for lenses).

Diusion of light by particles is at the heart of PIV. It is well accounted for by Mie's theory which describes the behaviour of an electromagnetic plane wave scattered by a sphere using Maxwell's equations. Main results of Mie's theory are the increase of scattered intensity with the particle size, the anisotropy of scattered intensity and dependance of the scattered intensity with the light polarisation. As a consequence, the particles used in a PIV set-up should not be too small. Sometimes, a metallic coating is used to increase the scattered intensity. Also, when using several cameras placed in dierent directions, they may receive dierent light intensities. This may be a problem when gathering the images taken by dierent cameras as the same particle will have dierent intensities on dierent pictures, and will therefore be more dicult to identify. This problem can be solved by image processing or by experimental means : for example, adding a mirror at the end of the light beam will allow cameras initially receiving only backward scattered light to receive a forward scattered light too, as shown on gure 4.3. This technique is used in this thesis. Note that in the case of gure 4.3 where all cameras are in the same plane, another solution would be to light the measurement volume from the direction perpendicular to the plane containing the cameras ; however, it is not possible in the experimental set-up used in this thesis.

(a) (b) The light scattered by the particles then reaches the cameras after crossing lenses. Optical settings of the lenses and cameras must follow general guidelines.

Optical settings

There are two main important guidelines regarding the optical settings. First, the particle image size on the sensor should be between 2 and 3 pixels. It should not be too small to avoid peak locking [START_REF] Prasad | Eect of resolution on the speed and accuracy of particle image velocimetry interrogation[END_REF] and to allow subpixel accuracy. Indeed, if the particle image size is smaller than the camera pixel size, then it will be seen as one pixel by the processing algorithms. The measured displacement in pixels will then be an integer. If the particle image size is a few pixels, then the intensity of the diraction spot can be tted and the position of the particle determined more accurately, with a sub-pixel resolution. The displacements will then be measured with more accuracy. Usually, three points are enough to t a diraction spot. On the contrary, if the size of the particle images is too large, particle images will overlap. This will deplete 3D reconstruction and correlation quality. The seeding concentration could be decreased to avoid that but the space resolution would then be worse. The particle image diameter can be estimated by the Airy disk diameter Φ d [Adrian, 1997] :

Φ d = 2.44f # λ(1 + M ) (4.13)
where :

f # = f D is the numerical aperture of the lens, dened as the ratio of its focal length f over the diaphragm diameter D, λ is the wavelength of the scattered light, M = sensor size f ield size is the magnication of the set-up, dened as the ratio between the sensor size over the real size of the observed eld.
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The second guideline concerns the focal depth of the set-up which should be larger than the eld depth. This ensures that all particles images are well focused and that their images are not blurred and therefore too large. The focal depth δ is given by the following formula :

δ = 2f # Φ d 1 + M M 2 = 4.88f 2 # λ (1 + M ) 2 M 2 (4.14)
The previous formula for the focal depth is valid when there is only one optical medium. This is not the case for the experimental set-up used in this thesis, where the light beams scattered by the particles are passing through three dierent media, as depicted on gure 4. This conguration can be modelled by a simpler one where only two optical media are involved, as shown on gure 4.4 (b). Indeed, plexiglas and water or water-glycerol mixture have a relatively close optical index, so that we can assume that the liquid in the cylindrical tank, the cylindrical tank, the liquid in the outertank and the outertank correspond to one single medium. In such a two-media conguration, the formula for the focal depth in the small-angle approximation, derived in the appendix A, is the following :

δ = 4.88f 2 # λ n i n e (1 + M ) 2 M 2 (4.15)
where n i is the optical index of the medium containing the observed eld and n e is the optical index of the external medium where the camera is located. When n i > n e , then the focal depth is larger than when both optical indices are equal, for a xed magnication M . It is then possible to observe a thicker eld. In the case of several cameras observing the same area from dierent angles, additional devices called Scheimpugs should be used. Indeed, if there is an angle between the camera sensor and the CHAPTER 4. TPIV AND ITS APPLICATION TO OUR SET-UP light sheet, but no angle between the lens and the camera sensor, then part of the measured area will be out of focus and the corresponding image area will be blurred, as shown on gure 4.5 : even with a non-zero eld depth, the focus zone of the camera on the left does not overlap the light sheet whereas the one on the right does. The Scheimpug condition states that the light sheet, the sensor plane and the lens plane should intersect on a single line so that the whole considered area on the light sheet is in focus. The Scheimpugs devices achieve this condition by tilting the sensor plane compared to the lens plane. However, this leads to distortion of the images as the magnication will not be the same over the whole image. This should be accounted for in the calibration.
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Correlation

Once the images are acquired, the velocity eld is obtained by image correlation.

Basic 2D-2C correlation

Initially, PIV was a 2D-2C method allowing to compute two components (2C) of the velocity on a 2D plane (the two in-plane components). A single camera was needed. In order to compute a velocity eld, two consecutive images separated by an interframing time dt are needed . Both images are splitted into rectangles called interrogation windows. The correlation between two images, i.e.

between two consecutive light intensity elds, is then computed window by window. For each window, the displacement corresponding to the maximum of correlation (the correlation peak) is multiplied by a calibration factor in order to get the real displacement and divided by dt to get the corresponding velocity. Such a method is therefore intrinsically ltering : each obtained velocity vector roughly corresponds to an average of the real velocity eld over an interrogation window and over dt.
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The cross-correlation between two images is done eciently using fast Fourier transforms. Peak detection can be performed by tting a function, a Gaussian for instance, on the correlation map.

This allows to reach sub-pixel accuracy on the displacements : indeed, the maximum of the tting function can be located between two pixels. The particle image size should not be too small in order to achieve this sub-pixel accuracy and to avoid peak locking. The quality of the peak detection also depends on the peak shape : it should be well pronounced in order to distinguish it from spurious peaks which can arise in the correlation map. In [START_REF] Keane | Theory of cross-correlation analysis of PIV images[END_REF], four guidelines allowing to get a proper peak are obtained based on synthetical data :

There should be at least ten particles in each interrogation window. This can be achieved by tuning the particle concentration and the interrogation window size. Note that when the particle concentration is too high, it is not possible to distinguish between the particles and the correlation peak cannot be detected. Increasing the interrogation window size will result in a worse resolution.

The maximum displacement over one interframing frame should be smaller than one quarter of the interrogation window size, so that enough particles remain in the same interrogation window during dt. Indeed, particles going out of the interrogation window cannot contribute to the correlation peak, and may contribute to the spurious peaks.

The out-of-plane displacement during dt should be smaller than one quarter of the light sheet width, so that particles remain in the interrogation window during dt and can be seen in both images.

The fourth rule concerns the variation of the displacement in one interrogation window : it should be smaller than the particle diameter. Indeed, if the displacement variation over one interrogation window is too large, the correlation peak will also be too large.

Advanced correlation algorithms

Correlation methods have been improved to increase the measurement accuracy, resolution and eciency. Here, we describe a few advanced features.

Window shifting and deformation consists in shifting, rotating and distorting the interrogation windows based on a rst guess of the velocity eld, so that the interrogation windows follow the ow. This allows to reduce the amount of particles leaving the interrogation windows during the interframing time dt, and to reduce the interrogation window size as the second rule of [START_REF] Keane | Theory of cross-correlation analysis of PIV images[END_REF] does not make sense anymore. Actually, this window shifting and deformation method goes along with multipass processing.

In multipass processing, a rst guess of the velocity eld is realized based on xed interrogation windows. For this rst guess, the rules of [START_REF] Keane | Theory of cross-correlation analysis of PIV images[END_REF] apply. For the next pass, the interrogation windows are shifted, rotated and distorted and their size can also be decreased.

Iterating this procedure allows to improve the accuracy and the resolution of the measurement. To achieve multipass processing, a procedure should be dened to assign a velocity vector to interrogation windows for which the algorithm could not nd any peak. This procedure can also be used to detect and replace spurious velocity vectors. Such a procedure is for instance implemented by the general outlier detection lter, described in [START_REF] Westerweel | Universal outlier detection for PIV data[END_REF].

Of course, doing several passes will increase the computation time. In Davis, the software sold by LaVision, pixels are binned together for the rst passes. It is equivalent to depleting the pictures CHAPTER 4. TPIV AND ITS APPLICATION TO OUR SET-UP resolution : each packet of n × n pixels will be replaced by one bigger pixel with intensity equal to the average of the smaller pixels, and the obtained images will have n 2 times less pixels. The computing time for the correlation will then be decreased. Of course, no binning is done for the last pass.

LaVision also uses Gaussian interrogation windows in their software : they are circular, and the light intensity is weighted by a Gaussian function of the window radius. The idea of using weighted functions was already discussed in e.g. [START_REF] Nogueira | Limits on the resolution of correlation PIV iterative methods[END_REF]. It allows to reduce the impact of particles that are close to the edges of the interrogation window and which may go out of the interrogation window during the interframing time dt. The amount of outlier vectors is then decreased.

Overlapping of interrogation windows consists in oversampling the pictures. For instance, given an interrogation window size X, the distance between two consecutive interrogation window centers will be X without overlap, X/2 with an overlap of 50% and X/4 with an overlap of 75%. Window overlapping allows to improve the resolution for Gaussian interrogation windows as shown in appendix C but not for square interrogation windows [START_REF] Foucaut | PIV optimization for the study of turbulent ow using spectral analysis[END_REF]. It allows to compute the gradients more accurately : for instance, using an order-2 centered scheme, the error will be in O(X 2 ) without overlap and O(X 2 /4) with an overlap of 50%. A priori, adding overlapping windows increases the computation time but in the user manual of Davis, LaVision claims to manage to compute the correlation with or without overlap in the same amount of time.

2 Tomographic Particle Image Velocimetry (TPIV) principles

TPIV is a method based on image correlation. Compared to basic 2D PIV, it involves 3D tomographic reconstruction implying additional steps. In this section, we present the steps of the TPIV method, as well as the related resolution and error. We then discuss the links with other correlation-based methods.

Volume correlation

The last step of TPIV is the volume correlation. It is very similar to the 2D correlation described in 1.5 but it is performed on 3D light intensity volumes representing the position of the particles in space. The correlation algorithms described in 1.5 all the same apply to such a 3D correlation.

Also, in this case, the problem of particles going out of the light sheet is much less important as it concerns only the sides of the volume.

TPIV provides a way to reconstruct such a 3D volume.

Volume reconstruction

The specicity of TPIV is the tomographic reconstruction of a 3D light intensity volume from a few 2D images acquired from dierent cameras. The problem is modelled as pictured on gure 4.6 : the reconstructed light intensity volume is discretized in N v voxels (3D pixels) of nite size. The j th voxel (1 ≤ j ≤ N v ) has a location (x j , y j , z j ) and an intensity E j . If there is a particle at location (x j , y j , z j ) in the measurement volume, then the intensity E j should be high, otherwise it should be close to zero, as coded by the grey scale on gure 4.6. Therefore, the lower the seeding concentration, the more sparse the vector E j . where w i,j is a weighting coecient corresponding to the contribution of the particle at location (x j , y j , z j ) to the intensity of pixel i.

Tomographic reconstruction then consists in solving the inverse problem of deducing E j for 1 ≤ j ≤ N v from I i with 1 ≤ i ≤ N p . It can be achieved by algebraic methods, such as the Multiplicative Algebraic Reconstruction Technique (MART), an iterative method initially developped for medical tomography. This is the method used in this thesis. Starting from a rst guess E 0 j , the 3D light intensity eld at iteration k + 1 is deduced from its value at previous iteration as follows :

E k+1 j = E k j i=1 N p I i Nv j=1 w i,j E k j µw i,j (4.17) 
µ is a relaxation parameter allowing to control the convergence of the algorithm. After 5 iterations, the solution has already a good accuracy [Scarano, 2013].

The reconstruction problem is underdetermined as there are too many voxels in the measurement volume compared to the number of pixels in the N c cameras. There are therefore several solutions to the problem. As a consequence, the MART algorithm may converge to a solution which does not correspond to the distribution of real particles. It can for instance yield ghost particles, following the principle sketched on gure 4.7 : two particles, in blue, are observed by two cameras. If the red particles were also there, the intensity seen by the cameras would not be much changed. The MART algorithm could therefore converge to a solution with 4 particles, whereas there are only two : in this case, the red particles would be ghost particles.

Ghost particle

Real particle

Camera sensor

Intensity peak The reconstruction quality is a decreasing function of the number of particles on the camera sensors (usually expressed in particle per pixel, ppp). Indeed, the higher the number of particles on the camera sensors, i.e. the less sparse the I i vector, the higher the number of possibilities for E j : the problem is more underdetermined and there will be more ghost particles. Therefore, the solution will have a poorer quality (a lower signal-to-noise ratio). Also, a large concentration in ppp is often due to a large physical concentration (in particle per m 3 ), which leads to laser light diusion in all directions and a loss on contrast. However, as the spatial resolution is improving with the physical seeding density, it cannot be decreased to much. Seeding densities up to 0.05 particle by pixel (on camera sensors) can be handled with a 4-cameras system according to [START_REF] Elsinga | Tomographic particle image velocimetry[END_REF]. A technique exists that allows to limit the amount of ghost particles : the Motion Tracking-Enhanced MART [START_REF] Novara | Motion trackingenhanced MART for tomographic PIV[END_REF] ; it is quite resource consuming though.

The more cameras, the better the reconstruction because the problem will be less underdetermined.

Acceptable reconstruction quality can be reached with 4 or 5 cameras and saturates for higher N c , as shown in [START_REF] Elsinga | Tomographic particle image velocimetry[END_REF], Scarano, 2013]. The viewing angles of the cameras, i.e. the angles between the axes of the cameras and the smallest volume dimension (y direction on gure 4.6) should be neither too small nor too high. If the viewing angles are too small, reconstructed particles will be elongated. Also, dierent cameras will give almost redundant information. If the viewing angles are too large, then the lines of sight cross a larger part of the volume and the reconstruction will be more dicult : one pixel will contain information about more voxels. The spatial conguration of 2. TPIV PRINCIPLES 77 the cameras also matters : in [Scarano, 2013], it is shown that a 3D cross-conguration is relatively better than a planar 2-D conguration.

The reconstruction quality will also depend on the quality of the mapping between cameras pixels and volume voxels, i.e. on the accuracy of matrix (w i,j ). This matrix is generated during the calibration step.

Calibration and self-calibration

The aim of the calibration step is to obtain, for each camera, the projection function associating a point on the sensor to a point in the measurement volume. This projection function is coded by the matrix (w i,j ). After the calibration, the cameras and the lenses should not move at all, otherwise the calibration should be done again. The calibration is done in two steps : rst, a rough calibration is done with a 3D calibration plate ; then, it is rened by a method called self-calibration.

Plate calibration

The plate calibration consists in taking, for each camera, one picture of a calibration plate having marks on at least two depth levels. Such a calibration plate is shown on gure 4.8. The calibration plate is placed at the measurement area and the pictures should be taken in the measurement conditions (same uid, same intermediary optical interfaces) in order to take all the optical path into account. Knowing the real marks position and the position of their images on the cameras sensors allows to t a 3D mapping function for each camera Φ : (x, y, z) → (x c , y c ). This mapping function can be a pinhole function [Tsai, 1986] or a third-order polynomial [START_REF] Solo | Distortion compensation for generalized stereoscopic particle image velocimetry[END_REF]. A good accuracy on the position of marks is therefore required ; the higher the number of points, the more accurate the t. In order to have more points in the direction normal to the plate, it is possible to replace it by a plane with marks and to shift it gradually along the normal direction. 

Volume self-calibration

After the plate calibration, the maximum calibration error is typically above 0.5-2 pixels whereas it should be less than 0.1 pixel to perform proper TPIV [Wieneke, 2008]. A correction of the 3D 78 CHAPTER 4. TPIV AND ITS APPLICATION TO OUR SET-UP mapping obtained during the plate calibration is then required. It can be achieved by the volume self-calibration procedure proposed in [Wieneke, 2008].

This method uses uncorrelated images of particles obtained with a low seeding concentration. The idea is to triangulate particles with some tolerance using images from all the cameras. should not be too small, otherwise no particle can be triangulated because the plate calibration is not accurate enough. Each triangulated particle is located at slightly dierent positions by dierent cameras, as sketched on gure 4.9 : the lines of sight do not intersect. The average position is considered as the true one, and is reprojected on each camera. The dierence between the initial particle image and the reprojected image is called disparity. For example, on gure 4.9, the disparity for camera i is The measurement volume is then divided into subvolumes. For each subvolume, a disparity is computed using several frames (for more details, see [Wieneke, 2008]), and the mapping function is corrected accordingly . The whole process is then iterated until disparities become smaller than 0.1 pixel.

(x i , y i ) -(x i , y i ).
Volume self-calibration allows to get information from the whole measurement volume and not only for a nite number of marks. For instance, when acquiring thousands of pictures, it can be performed every thousand frames to correct the mapping function which may have become wrong because of vibrations or thermal expansion of the cameras and optics. It is a very powerful tool, able to correct a disparity up to 20 pixels.

Image preprocessing

Volume reconstruction requires good quality images, with a homogeneous light and a good contrast.

In principle, raw camera images should be good enough not to do any preprocessing which could impact the result. However, image preprocessing cannot always be avoided to get proper volume reconstruction. Here are a few preprocessings implemented in Davis (the software sold by LaVision)

and tested during this thesis (results are exposed in section 3) :

Backgound subtraction : probably the most important preprocessing that can be done. It consists in subtracting the time-average of the images, i.e. the camera background. This considerably reduces the amount of ghost particles. Sometimes, the minimum (over time) is subtracted instead of the time-average.
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Subtraction of the sliding minimum : another way to remove the image background. The goal is to increase the contrast by subtracting the local minimum (over few pixels) intensity.

Normalization with local average : it consists in normalizing the intensity by a local average of the intensity, in order to get a homogeneous lighting over the whole image and from an image to the other.

Gaussian smoothing : the idea is too smooth the particle images in order to get an homogeneous, large enough particle image size. Indeed, according to [START_REF] Nobach | Limitations of accuracy in PIV due to individual variations of particle image intensities[END_REF], variations in particle image intensities limit PIV accuracy.

Summary of the method

The TPIV sequence of steps is summarized in gure 4.10 :

3D plate image acquisition Acquisition of particle images at low concentration

Plate calibration

Volumic self-calibration

Image acquisition

Image preprocessing

Volumic reconstruction

Volume correlation 

TPIV error and quality indicators

Estimating the measurement error in PIV is quite a challenge ; in TPIV it is even more dicult.

Here, we analyze the measurement procedure in order to compute the combined uncertainty. This allows to identify critical steps but it is dicult to know exactly the uncertainty corresponding to the reconstruction and correlation steps. Therefore, we then present quality indicators based on the reconstructed intensity volume and methods to estimate the noise and error from the velocity elds.

Measurement procedure analysis following the GUM method

There exists an international consensus on the expression of uncertainty in measurement ; the general method is detailed in the Guide to the expression of uncertainty in measurement (GUM) [Joint Committee for Guides in Metrology-Working Group 1, 2008], developed among others by the Bureau International des Poids et Mesures (BIPM) and the International Standardization Organization CHAPTER 4. TPIV AND ITS APPLICATION TO OUR SET-UP (ISO). In [START_REF] Gomit | Démarche d'estimation des incertitudes en PIV basée sur la méthode GUM[END_REF], the authors try to apply this method to 2D PIV. Here, largely following this paper and an example seen in a course on 3D-3C PIV given by Laurent David during the 11ème Ecole d'automne de Vélocimétrie et granulométrie laser en mécanique des uides, we try to apply it to TPIV.

The rst step consists in analyzing the measurement procedure in order to establish an estimate of the measurand (the quantity subject to measurement), which is the velocity here. The analysis can be performed via a 5M or Ishikawa diagram, listing the possible causes of uncertainty. This diagram is shown in gure 4.11. Once the possible causes have been identied, the estimate of the measurand can be derived. In our case, the measured velocity u can be modelled as follows : 4.18) where :

Flow velocity

Machine

u = (d pix -e recons ) * f dt -e P T U -e particles ( 
d pix is the displacement in pixels obtained by the correlation algorithm, e recons is the error on d pix due to the inaccuracy of the calibration,

f is a pixel-to-meter conversion coecient,
dt is the interframing time, e P T U is the inacurracy of dt due to the fact that the PTU is not perfect (the PTU is the device handling the synchronization between the laser and the cameras),
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e particles is error due to the fact that particles may not follow exactly the ow.

Note that the measured velocity u is ltered over space and time : it is the velocity of a group of particles integrated over dt. We discuss here the uncertainty on the ltered velocity. The eect of the ltering is discussed in next section.

The second step consists in estimating the uncertainty due to the quantities involved in the expression of u.

The uncertainty on d pix (whose value is usually between 5 and 10 pixels) depends on the eciency of the correlation algorithm, but also on the quality of images and of the 3D reconstruction (ghost particles, shape of the particles) or on the ow itself (in case of large gradients). In the case of 2D PIV, several methods have been proposed to compute the uncertainty on d pix for each velocity vector ; some of them are tested in [START_REF] Sciacchitano | Collaborative framework for PIV uncertainty quantication : comparative assessment of methods[END_REF], among which the correlation statistics method [Wieneke, 2015]. However, they are not implemented in 3D yet. A rough general estimation of the error on d pix is 0.1 pixel. e recons corresponds to the error on the position of the particles due to the inacurracy of the calibration. It also contains errors due to optical distortions. Because of it, the volume correlation is done on an inaccurate light intensity volume. The error due to calibration can be estimated everywhere from the disparity maps. It can even be done for each frame separately thanks to recent advances of the self-calibration [Wieneke, 2018]. For acceptable TPIV, e recons should be below 0.1 pixel.

The error on f is due to the plate calibration and to the self-calibration. f is constant over the whole measurement volume, the error on it too. Considering that the position of the marks on the calibration plate can be estimated with an accuracy of one pixel, and that the distance between two most remote marks is of the order of 1000 pixels on the camera images, we can assume that the relative error on f is around 1/1000 th . The error on dt is due to the resolution of the PTU. For LaVision's PTU X used in this thesis, it is 10 ns. In this thesis, dt is always larger than 10 µs. For LaVision's PTU X, e P T U is the jitter time, less than 50 ps.

According to section 1.2, e particles has two components : one due to the fact that particles cannot follow too fast velocity variations and the other due to sedimentation. The latter one corresponds to the falling speed computed in section 1.2. For particles of 10 µm diameter and density 1.2 in water, it is equal to 6 µm/s. The rst one is more dicult to estimate. For non-time-resolved measurements, it is not possible to nd it as the time evolution of the velocity cannot be known. It can be considered negligible if the Stokes number is low enough.

The next steps of the GUM method consist in determining the combined standard uncertainty and then the expanded uncertainty from the standard uncertainties on each quantities involved in the expression of u. In principle, the GUM method therefore allows to nd the rigorous uncertainty on the velocity measurement for each velocity vector. In practice, it is dicult to know the standard uncertainty of each quantity (for d pix it is not yet implemented in 3D, for e particles it implies to know the local ow time scale). Here, we stop after the second step of the GUM method. It nevertheless allows to identify the main sources of uncertainty. The uncertainty on d pix and e recons are of the order of a few percents of d pix . The relative error on dt and f are of the order of 1/1000 th . If e particles can be neglected, it appears that the overall relative error is of the order of a few percents, and mainly due to the reconstruction and correlation steps. It is therefore relevant to express it in pixels ; its value is of the order of 0.2-0.3 pixel [START_REF] Westerweel | Particle image velocimetry for complex and turbulent ows[END_REF].

The GUM method is rigorous but can hardly be applied. However, there exists indicators that do not give the exact error on the measurement but that allow to assess the quality of a volume 82 CHAPTER 4. TPIV AND ITS APPLICATION TO OUR SET-UP reconstruction or of a 3D velocity eld.

Quality indicators based on the volume reconstruction

There exists several quality indicators to assess the quality of a volume reconstruction (see e.g. [Martins, 2016]) ; in this thesis we used two of them, presented here.

Ghost level The ghost level is the ratio between the amount of false reconstructed particles, called ghost particles and the amount of real ones. Of course, it is not possible to distinguish between them in the measurement volume. However, when reconstructing a volume larger than the illuminated one, the tomographic algorithm also reconstructs ghost particles outside the illuminated volume.

Considering that the concentration of ghost particles is the same inside and outside the illuminated volume, it is possible to compute the ghost level. Let us consider a measurement volume dened by

(x, y, z) ∈ [-X, X] × [-Y, Y ] × [-Z, Z].
The expanded light beam is nite in the z direction and has a thicknesss equal to 2Z. If a volume reconstruction of the 3D light intensity eld E(x, y, z) is performed on an area (x,

y, z) ∈ [-X, X] × [-Y, Y ] × [-Z , Z ] with Z > Z, then the average E x,y of E over [-X, X] × [-Y
, Y ] will be similar to the one depicted on gure 4.12.

𝐸 2 𝐸 𝑥,𝑦 (𝑧) 𝐸 1 𝑧 𝑍 -𝑍 𝑍′ -𝑍′ Figure 4
.12: Typical intensity z-prole for a volume reconstruction For |z| < Z, there are both real and ghost particles whereas for Z < |z| < Z , there are only ghost particles ; hence a lower average intensity. With E 1 = E x,y (Z < |z| < Z ) and E 2 = E x,y (|z| < Z), the ghost level can be computed as :

E 1 E 2 -E 1 (4.19)
According to [Scarano, 2013], the ghost level should be smaller than 100% to ensure a good reconstruction quality.
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Normalized intensity variance Another indicator is the normalized intensity variance which measures the contrast of the reconstructed light intensity eld. It is dened as :

E 2 -E 2 E (4.20)
where the brackets correspond to the average over the whole lighted volume

[-X, X] × [-Y, Y ] × [-Z, Z].
A good reconstruction with few ghosts particles will feature strong intensity peaks corresponding to particles over a low background ; on the contrary, for a bad reconstruction the intensity peaks will be lower, closer to the background level and to the lower intensity peaks corresponding to the ghost particles. According to [START_REF] Lynch | Experimental determination of tomographic PIV accuracy by a 12-camera system[END_REF], the normalized intensity variance should be higher than 20 to ensure a good reconstruction quality.

Noise and uncertainty estimation based on the velocity elds

There are also dierent methods to estimate the noise and the uncertainty on the velocity measurement directly based on the velocity eld.

1D Fourier spectrum Computing the 1D Fourier spectrum of the measured velocity eld is fruitful as it allows to gure out what is the resolution and what is the noise level (see subsection 2.7.1). Recently, a method was proposed in [START_REF] Cuvier | PIV noise estimation derived from spectrum analyses[END_REF] to estimate the noise level from two dierent analyses of the images with slightly dierent interrogation window sizes. The method was tested for 2D PIV only but can be applied to 3D PIV as well.

Velocity auto-correlation Computing the 2-point correlation of the velocity u(x)u(x + r) allows to estimate the noise level. Indeed, as the noise is uncorrelated, the 2-point correlation will feature a spurious peak for r = 0. The dierence between the peak height and the neighbouring values of the correlation function corresponds to the mean square of the noise.

Velocity divergence For 3D-3C measurements of incompressible ows resolving the smallest scales of the ow, the velocity divergence can be computed and used to estimate the uncertainty on the velocity. Indeed, in such a case, the three components of the velocity are available ; also, their derivatives can be computed in the three directions with low truncature error as the smallest scales of the ow are resolved. There are several ways to use the divergence.

For instance, in [START_REF] Zhang | Turbulent ow measurement in a square duct with hybrid holographic PIV[END_REF] and [START_REF] Worth | A tomographic PIV resolution study based on homogeneous isotropic turbulence DNS data[END_REF], the joint pdf of ∂ x u x and -∂ y u y -∂ z u z is plotted. For a zero divergence, it should be a straight line of slope 1 ; with uncertainty on the velocity, it rather looks like an ellipsoid around the identity line. In [START_REF] Zhang | Turbulent ow measurement in a square duct with hybrid holographic PIV[END_REF], the distribution of (∂xux+∂yuy+∂zuz) 2 (∂xux) 2 +(∂yuy) 2 +(∂zuz) 2 is also computed. When using a center scheme for the derivative computation, the uncertainty on the velocity can be directly related to the uncertainty on the divergence. The latter can easily be computed as it is the root mean square of the error on the divergence, equal to the divergence itself as its value should be 0 for an incompressible ow. As shown in [START_REF] Atkinson | The accuracy of tomographic particle image velocimetry for measurements of a turbulent boundary layer[END_REF], for a space step dx, and assuming that the uncertainties on the three velocity components of the velocity are independent but have the same standard deviation, the uncertainty on one velocity component δu is related to CHAPTER 4. TPIV AND ITS APPLICATION TO OUR SET-UP the uncertainty on the divergence δ(∂ i u i ) by :

δu = 2 dx 2 3 δ(∂ i u i ) (4.21)
2.7 PIV and TPIV spatial resolution PIV and TPIV in particular have a nite space resolution : indeed, particles and interrogation volumes have a non-zero size. Here, we discuss the smallest scale resolved by PIV. We then derive a formula relating PIV or TPIV resolution with the optical settings, allowing to estimate the maximum resolution possible and to identify what are the limiting factors.

Resolution considerations

The absolute limit of PIV resolution is the seeding density [START_REF] Willert | Digital particle image velocimetry[END_REF]. Indeed, the ow velocity is sampled by the particles, and the uid velocity between two particles cannot be known. The smallest scale that PIV could resolve is therefore the average distance between two particles. Given a (mean) seeding density d, the average distance between two particles is 1/ √ dδ for 2D PIV (with δ the laser sheet thickness) and 1/ 3 √ d for 3D PIV (in particular TPIV).

However, on top of this physical limit, PIV resolution is limited by the whole measurement procedure which produces noise and has a ltering eect. In the spirit of [START_REF] Foucaut | PIV optimization for the study of turbulent ow using spectral analysis[END_REF], we can write the 1D Fourier spectrum of a velocity eld measured by PIV as follows :

E meas (k) ∝ (E real (k) + E noise )|H(k)| 2 (4.22)
where :

E meas is the measured 1D Fourier spectrum k is the wavenumber E real is the real 1D Fourier spectrum E noise is the noise level (constant, not depending on k) H(k) is the transfer function of the PIV system

The resolution limit due to noise can be written k < k noise with k noise such that k < k noise =⇒ E real (k) > αE noise , with α a coecient standing for the stringency on this limit. It means that uctuations over too small scales, corresponding to k > k noise , are considered to be unresolved as they are covered by noise. The noise level depends on several parameters including the interrogation window size X. The larger the interrogation window, the larger the number of particles inside it and remaining inside it during the interframing time ; therefore, the better the correlation peak.

For example, for standard square windows, it is shown to be proportional to 1/X [START_REF] Foucaut | PIV optimization for the study of turbulent ow using spectral analysis[END_REF]. The noise level also depends on the quality of pictures and on the eciency of the correlation algorithm : for instance, window shifting and deformation improve the noise level because less particles leave the window during the interframing time ; the use of weighting function also improves the noise level as the impact of particles leaving the interrogation windows is decreased.

The resolution limit due to to the ltering can be written k

< k c with k c such that k < k c =⇒ |H(k)| 2 > β,
where β is a coecient standing for the stringency on this limit. It means that uctuations corresponding to k > k c are considered to be unresolved as they are too ltered ; therefore, they do not contribute signicantly to the measured velocity eld. Filtering occurs because of the windowing inherent to PIV : the measured velocity vectors are deduced from the time evolution of patterns of several particles, they can be seen as local space-averages of the real velocity. The ltering depends on the shape of the transfer function. For example, for square interrogation windows, it can be well approximated by a sinc function [START_REF] Foucaut | PIV optimization for the study of turbulent ow using spectral analysis[END_REF], the Fourier transform of a gate function :

H(k) = sin(kX/2) kX/2 (4.23)
where X is the interrogation window size. In this case, PIV is roughly the same as a moving average.

Using β = 1/2 gives k c ≈ 2.8/X. According to Shannon-Nyquist theorem, properly sampling such a wavenumber requires a sampling period equal to πX/2.8 ≈ X : modes sampled with a space step smaller than X have an energy divided at more than 2. We can then say that the resolution is the interrogation window size. Note that using a larger β would have given a resolution larger than X. For standard square interrogation windows, modifying the window overlap does not impact the resolution, it only has an oversampling eect. It is useful as it gives more vectors to interpolate the velocity eld while distorting the windows and may therefore contribute to reduce noise. Also, an overlap of 50% allows to compute the derivatives using the centered scheme with points separated by X instead of 2X.

Knowing the PIV transfer function would theoretically allow to deconvolute the signal to get only E real (k) + E noise . However, the real transfer function of a PIV system is much more complicated than a simple sinc function and it is not possible to deconvolute it directly [START_REF] Nogueira | Limits on the resolution of correlation PIV iterative methods[END_REF].

Iterative correlation algorithms can nevertheless be seen as a way to partly deconvolute the signal, under certain conditions, for example if weighting functions are used [START_REF] Nogueira | Limits on the resolution of correlation PIV iterative methods[END_REF]. In this case, the resolution can be lower than the interrogation window size (i.e. k c > π/X), even with β = 1/2 [START_REF] Nogueira | Analysis and alternatives in two-dimensional multigrid particle image velocimetry methods : application of a dedicated weighting function and symmetric direct correlation[END_REF]. However, it is not possible to use such weighting functions with too small interrogation windows [START_REF] Nogueira | Local eld correction PIV, implemented by means of simple algorithms, and multigrid versions[END_REF].

As mentioned in [START_REF] Foucaut | PIV optimization for the study of turbulent ow using spectral analysis[END_REF], the optimal X is such that k noise = k c . Indeed, if k noise < k c , noise is the most limiting so X should be increased and if k noise > k c , ltering is limiting so X should be reduced. In [START_REF] Foucaut | PIV optimization for the study of turbulent ow using spectral analysis[END_REF], a method is proposed in the case of square interrogation windows to optimize the interrogation window size. In the general case, it is possible to nd the cut-o wavenumber of the PIV transfer function for a particular X by analyzing a case with no ow :

the obtained velocity eld will be only white noise, so that the obtained spectrum is proportional to the transfer function. Knowing the cut-o wavenumber for dierent X, the real velocity elds can be analyzed with dierent interrogation window sizes X until the proper X is found, for which the noise level E noise fulllls :

E meas (k c ) = (E real (k c ) + E noise )|H(k c )| 2 = (α + 1)βE noise .
As a conclusion, PIV resolution would ideally be the average distance between particles. However, due to the imperfections of the PIV processing, it is higher. Interpreting this as the need for a given PIV processing chain to use a minimum number N of particles to get a resolution satisfying the α and β criteria, the resolution can be expressed, for 2D PIV, as :

N dδ PIV resolution is thus a decreasing function of the seeding density. However, the seeding cannot be too dense for three reasons : it would modify the ow, it would prevent the light propagation and the density of particles on the camera images cannot be too high, otherwise the correlation algorithm would fail. Relating the PIV resolution to the particle density on cameras allows to identify resolution limits due to optical parameters.

Relation between PIV resolution and optical settings

In this section, we relate the theoretically optimal resolution for 2D PIV and TPIV to the optical settings, using the fact that particle images should not be too close on the cameras. Note that we do not take into account the two other limits on the seeding density (it should be low enough not to impact the ow nor hinder the light).

In this section, the following notations are used :

s : minimum distance between two particle images, side to side. Typically, s = 1 pixel.

c : camera pixel size. For Image sCMOS cameras, c = 6.5 µm and for Miro m340 cameras, c = 10 µm.

Φ d = 2.44f # λ(1 + |M |) : Airy disk diameter.
f # : the numerical aperture of the lens.

λ : wavelength of the laser.

|M | : absolute value of the magnication.

d : seeding density.

δ = 2 • 2.44f # λ (1+|M |) 2 M 2
: camera focal depth, taken equal to the light sheet thickness. In the case of two optical media of indices n i and n e , δ = 2

• 2.44f # λ n i ne (1+|M |) 2 M 2
(see 1.4).

N : number of particles per interrogation window.

Each particle should have an area on the camera sensor at least equal to :

π(Φ d /c + s) 2 4 pixel (4.26)
The maximum density on the camera images is therefore :

4 π(Φ d /c + s) 2 particle per pixel (ppp) (4.27)
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Case of 2D PIV In the case of 2D PIV, the maximum particle density in the light sheet is then : per m 2 (4.28) Replacing in 4.24, we obtain a theoretical 2D resolution equal to :

dδ = 4|M | 2 π(Φ d + cs) 2 particles
r 2D th = πN (Φ d + cs) 2 4|M | 2 = √ πN Φ d + cs 2|M | m (4.29)
Φ d should be between 2 and 3 pixels ; it depends on both |M | and f # . There is a loose constraint on f # in 2D PIV : a small aperture (corresponding to a high numerical aperture f # ) can be balanced by a bright light sheet. Indeed, the laser sheet being thin, the laser energy is not limiting. The constraint on the eld depth δ is also loose as the light sheet can be quite thin. Therefore, |M | can be increased without too much care and ne resolution can be reached.

For N = 10 (for instance in the case where the resolution is equal to the interrogation window size and where there should be at least 10 particles per interrogation window) and s = 2 pixels, the tables B.1 to B.4 of appendix B give the values of r 2D th , δ and Φ d for c = 6.5 pixels (Imager sCMOS cameras) and c = 10 pixels (Phantom Miro m340 cameras) in the cases n i = n e and n i = 1.4 = n e = 1. In all cases, a resolution of 0.1 mm can be reached, with suitable values of Φ d and δ. For instance, in the case c = 6.5 pixels and n i = n e , f # = 8 and M = 0.7 is a proper set of parameters. For larger pixel size, |M | and/or f # should be increased. For n i = n e , the eld depth is increased for the same set (|M |, f # ) ; to lower it while keeping Φ d constant, f # should be decreased.

Case of 3D PIV In the case of 3D PIV, the maximum density in particle per voxel is obtained by dividing the concentration in ppp by the lighted volume thickness, taken equal to the eld depth of the cameras, converted into pixels :

4 π(Φ d /c + s) 2 |M |δ/c particle per voxel (ppv) (4.30)
The maximum seeding density is then :

d = 4|M | 3 /c 3 π(Φ d /c + s) 2 |M |δ/c = 4|M | 2 π(Φ d + cs) 2 δ particles per m 3 (4.31)
The resolution is proportional to at least :

r 3D th = 3 πN (Φ d + cs) 2 δ 4|M | 2 m (4.32)
Compared to 2D PIV, there are more constraints. Φ d should still be between 2 and 3 pixels, but δ cannot be too small as we want a 3D velocity eld ; it should be equal to a few times the resolution.

f # cannot be too high, otherwise the aperture is very small and requires a strong light intensity on the whole measurement volume, i.e. a very high laser energy.

For N = 10 and s = 2 pixels, the tables B.5 to B.8 of appendix B give the values of r 3D th , δ and Φ d for c = 6.5 pixels (Imager sCMOS cameras) and c = 10 pixels (Phantom Miro m340 cameras) in the cases n i = n e and n i = 1.4 = n e = 1. Because of the more numerous constraints, the possible resolutions are worse than for 2D PIV. For c = 6.5 pixels and n i = n e , a good set of parameters is f # = 11 and |M | = 0.3 -0.4. The resolution is then between 0.5 and 0.8 mm and the eld CHAPTER 4. TPIV AND ITS APPLICATION TO OUR SET-UP depth between 6 and 7.5 times the resolution. f # = 8 and |M | = 0.7 -0.9 is also possible, yielding a better resolution of 0.2-0.25 mm but the ratio δ/r 3D th is then smaller. For larger pixel size, |M | and/or f # should be increased to keep Φ d between 2 and 3 pixels. In this case, the resolution is a bit worse than for c = 6.5 pixels but the ratio δ/r 3D th is a bit higher. For n i = n e , the same sets of f # and |M | can be used as previoulsy, but the resolution is slightly worse whereas the ratio δ/r 3D th is slighty better.

Comparison with other correlation-based methods

In this section we briey compare TPIV with two other PIV methods : stereoscopic PIV (SPIV) and scanning PIV.

Stereoscopic PIV

Stereoscopic PIV is a correlation-based method allowing to measure the three components of the velocity eld on a 2D grid. It requires only two cameras, but Scheimpugs and a 3D calibration plate are needed. Volume self-calibration is not required. Less powerful lasers can be used as only a sheet should be lighted and not a volume. The third component of the velocity can also be measured because the cameras look at the ow from dierent angles ; therefore, the 3D motion of the particles is projected into two dierent planes, which allows to nd the three components of the displacement (the sheet has a small but non-zero width so that the out-of-plane component of the motion does not bring them out of the laser sheet during the interframing time dt).

SPIV was used in our group before this thesis and the implementation of TPIV for the VK2 set-up.

Velocity elds measured by SPIV in this set-up are also analyzed in this thesis and were used in several papers [Debue et al., 2018a[START_REF] Debue | Dissipation, intermittency, and singularities in incompressible turbulent ows[END_REF].

Compared to TPIV, SPIV provides only two dimensions and therefore does not allow to compute the gradients in the third direction. It is then impossible to compute the exact Π DR , D ν , Π LES and D ν,LES terms dened in chapter 2 (only 2D versions can be computed) and dicult to really analyze the ow topology. Also, noise occuring in the correlation step due to out-of-the plane motion is much more important. However, the method is much less time-consuming as it does not require volume reconstruction and as the correlation is performed on 2D arrays only. This allows to compute more velocity elds and to get more converged statistics and more extreme events (of the quantities that can be computed). Also, SPIV allows to reach better spatial resolutions, as seen above and also observed in [START_REF] Atkinson | The accuracy of tomographic particle image velocimetry for measurements of a turbulent boundary layer[END_REF] for instance.

Scanning PIV

Scanning PIV is another 3D PIV method. It consists in scanning the measurement volume with a thin light sheet, fast enough so that the scanning time is much smaller than the ow smallest time scale. It requires one high-speed camera and a high-speed laser, both synchronized with a mechanical device allowing to shift the light sheet at high frequency.

Compared to TPIV, this method does not require volume reconstruction : indeed, the light intensity volume is obtained by juxtaposing the images acquired in the same scan. Therefore, it is less timeconsuming and is free from the noise due to volume reconstruction, and especially the ghost particles. Also, it allows to measure thicker elds. However, scanning PIV may be less accurate due to the fact that one volume is made of pictures acquired at dierent times. The acquisition frequency of the camera must be very high, but high-speed cameras have smaller sensors and bigger pixels ; the 3. TEST OF DAVIS AND TPIV OPTIMIZATION FOR OUR SET-UP 89 size of the eld and the resolution are then worse than for TPIV. Time-resolved scanning PIV is also hardly possible because far too high frequencies are needed.

3 Test of Davis software and optimization of the TPIV parameters for our set-up

In this thesis, we used TPIV to measure the velocity eld at the center of the turbulent von Kármán ow generated in the VK2 set-up described in chapter 2. The location of the measurement volume is shown in gure 5.11 of chapter 5. We used the commercial software Davis developed by LaVision. However, we do not know the exact inner functioning of this software. Also, even if TPIV measurements have already been reported in a von Kármán ow ( [START_REF] Worth | A tomographic PIV resolution study based on homogeneous isotropic turbulence DNS data[END_REF] for instance, with set-up description in [START_REF] Gan | An experimental investigation of forced steady rotating turbulence[END_REF]), the corresponding set-up is ten times bigger than ours and has a dodecahedral tank instead of a circular one in our case. We therefore performed some tests to have a better knowledge of the behaviour of Davis and to nd the optimal TPIV parameters in the particular case of the VK2 set-up. Here, we just summarize the main results of these tests.

More details are provided in the appendices C and D.

Test of Davis software

During the second part of the time-resolved measurement campaign of 2018, we acquired one batch of images with the uid at rest (no rotation of the impellers). We analyzed the images with dierent sets of volume correlation parameters and obtained a so-called case-control (CC) data set made of eleven cases. This allowed to test the inuence of the dierent parameters and to have a better knowledge of the whole PIV measurement chain which involves a software that we did not develop.

We were especially interested in estimating the measurement noise and the cut-o wavenumbers for dierent interrogation window sizes, overlaps and shapes.

The main results of these tests of Davis are the following :

Increasing the overlap of Gaussian interrogation windows has the same impact as decreasing the interrogation window size : the resolution is improved but the noise level increases.

Compared to a square interrogation window of similar size, using a Gaussian interrogation windows yields a lower noise level but a worse spatial resolution.

The details of the tests can be found in appendix C.

Optimization of the TPIV parameters for our set-up

In order to optimize the TPIV parameters in the particular case of the VK2 set-up, we studied the impact of : the outer tank (outer tank A vs. B), the seeding particles (silver-coated vs. lighter non-silver-coated particles), the reecting mirror at the end of the laser line, the inter-framing times dt, 90 CHAPTER 4. TPIV AND ITS APPLICATION TO OUR SET-UP the seeding concentration.

We also studied the impact of the impeller rotation frequency.

We used the quality criteria described above to compare the impact of the dierent parameters.

Overall, these tests show that TPIV is quite robust and not signicantly sensitive to the chosen parameters. In order to get the best results, outer tank B should be used because it avoids astigmatism. Non-silver-coated particles should also be favoured as they yield a better contrast and as there is no eect of the impeller rotation frequency when using these particles. However, a reecting mirror should be used in addition to these particles so that cameras in backward scattering get enough light. The highest concentration reachable is of the order of 0.09 ppp.

The details of the tests can be found in appendix D.

Chapter 5

Presentation of the experimental data sets

In this chapter we present the three experimental data sets that are used in this thesis, i.e. the conditions in which they were obtained, the equipment used and the statistics of the velocity elds. This will give insight for the interpretation of the results in part III. The three data sets consist in velocity elds measured in the VK2 set-up described in chapter 3.

The rst data set was obtained by non-time-resolved stereoscopic PIV before this thesis ; it is a statistically relevant set of independent 2D-3C velocity elds at dierent Reynolds number in the anti direction of rotation. With such velocity elds, only 2D versions of the Duchon-Robert and viscous dissipation terms can be computed. This data set allowed to start the study of the statistics and extreme events of these terms, before getting the equipment and skills to perform 3D measurements.

The second data set was obtained by non-time-resolved tomographic PIV during two measurement campaigns performed during this thesis ; it is a statistically relevant set of independent 3D-3C velocity elds measured at dierent Reynolds number in the anti direction of rotation and in the contra direction of rotation for one Reynolds number. It is meant to conrm the 2D analysis and to study the 3D structure of the velocity eld around the extreme events of viscous dissipation or of the Duchon-Robert term.

The third data set was obtained by time-resolved tomographic PIV, during another measurement campaign performed during this thesis ; it consists in 40 subsets of time-correlated 3D-3C velocity elds measured at a Reynolds number equal to 6000 with the impellers rotating in the anti direction of rotation. This is the largest Reynolds for which the spatial resolution of the measurement is in the dissipative range. It allows to study the time evolution of the extreme events that we are interested in.

Notations and denitions

In the following, we will deal with Eulerian quantities measured at dierent spatial locations and at dierent times. In all cases, such quantities are measured on a rectangular Eulerian grid at regular time intervals. Let x, y and z be the cartesian coordinates and t the time coordinate ; we then call ∆x, ∆y and ∆z the corresponding space steps of the Eulerian grid and ∆t the time interval. In this thesis, we always have ∆x = ∆y = ∆z. We will also call n x , n y and n z the number of points of the Eulerian grid in the x, y and z directions respectively and n t the number of time steps. The 92 CHAPTER 5. PRESENTATION OF THE EXPERIMENTAL DATA SETS Eulerian grid is then :

[x 1 , x 1 + ∆x, ..., x 1 + (n x -1)∆x] × [y 1 , y 1 + ∆y, ..., y 1 + (n y -1)∆y] × [z 1 , z 1 + ∆z, ..., z 1 + (n z -1)∆z] (5.1)
and the dierent time steps are :

[t 1 , t 1 + ∆x, ..., t 1 + (n t -1)∆t]

(5.2) with x 1 ,y 1 and z 1 the smallest values of the space coordinates at which the quantities are measured and t 1 the smallest time at which they are measured (we usually take t 1 = 0). A measured Eulerian scalar quantity X (for instance a velocity component u i ) can then be stored in a 4-dimension array (X i,j,k,l ) with 1 ≤ i ≤ n x , 1 ≤ j ≤ n y , 1 ≤ k ≤ n z and 1 ≤ l ≤ n t such that X i,j,k,l is the quantity measured at position (x 1 + (i -1)∆x, y 1 + (j -1)∆y, z 1 + (k -1)∆z) and at time t 1 + (l -1)∆t. This is the convention used in this thesis.

Averages

We can then dene the time-average of X at position (x 1 + (i -1)∆x, y 1 + (j -1)∆y, z 1 + (k -1)∆z) as :

X i,j,k t = 1 n t nt l=1 X i,j,k,l (5.3) 
It can be written X t , the dependance on space being implicit. The space-average of X at time t 1 + (l -1)∆t is dened as :

X l x,y,z = 1 n x n y n z nx i=1 ny j=1 nz k=1 X i,j,k,l (5.4)
It can be written X x,y,z , the dependance on time being implicit.

The space-time-average of X is dened as :

X x,y,z,t = 1 n x n y n z n t nx i=1 ny j=1 nz k=1 nt l=1 X i,j,k,l (5.5)
These denitions extend easily to quantities X measured at a single spatial point or which do not depend on space (n x = n y = n z = 1), or to quantities measured on a single plane (n z = 1).

Root mean squares

In the case of the velocity components u i , we dene the time root-mean-square (rms) of the uctuations of each component u rms i and the total time rms u rms tot as follows :

u rms i (x, y, z) = (u i -u i t ) 2 t (5.6) u rms tot (x, y, z) = 3 i=1 (u rms i (x, y, z)) 2
(5.7)

(5.8)
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We then dene the space-time rms as follows :

U rms i = (u i -u i t ) 2 x,y,z,t = u rms i (x, y, z) 2 x,y,z
(5.9)

U rms tot = 3 i=1 (U rms i ) 2 = u rms tot (x, y, z) 2 x,y,z (5.10) 
( 5.11) Eective number of independent frames

When the acquisition frequency f acq is too high compared to the typical frequencies of the ow, i.e. when the time step ∆t = 1/f acq between two consecutive velocity elds is too small, consecutive values of the velocity components measured at the same point u i (x, y, z, t) and u i (x, y, z, t + ∆t) are correlated. This is expected for time-resolved measurements, but should be avoided when the goal is to statistically sample the ow. In the case where consecutive velocity elds are correlated, the total number of time steps n t does not correspond to the number of independent velocity elds, and it is not a good indication of the amount of statistics. To better account for it, we can compute the eective number n t,ef f of independent frames based on the denition in [START_REF] Sciacchitano | PIV uncertainty propagation[END_REF]. For each velocity component u i at each point x, one can dene the auto-correlation coecient ρ i (x, ∆t, p) :

ρ i (x, ∆t, p) = u i (x, t)u i (x, t + p∆t) t u i (x, t) 2 t
(5.12)

The corresponding eective number of independent samples of the velocity component i at point x is then given by :

n t,ef f,i (x) = n t +∞ p=-∞ ρ i (x, ∆t, p) = n t ρ i (x, ∆t, 0) + 2 +∞ p=1 ρ i (x, ∆t, p) (5.13)
Here, we assumed that ρ is an even function of p. In practice, the summation is stopped before the rst negative ρ i . n t,ef f,i is strongly varying through space in the von Kármán ow considered in this thesis (between less than half its space average to twice its space average, see gure 5.3). We noticed that it takes higher values, in average and at the center of the von Kármán ow, for the velocity component along x. Therefore, in the following we give n t,ef f,x x,y,z as a conservative indication of the eective number of independent velocity elds, though the previous remarks should be kept in mind.

2D-3C data set

The 2D-3C data set was acquired by Saw et al (see e.g. [START_REF] Saw | Experimental characterization of extreme events of inertial dissipation in a turbulent swirling ow[END_REF]) before this thesis.

However, it was used during this thesis for the analysis presented in chapter 7. It consists in 5 cases (A, B, C, D and E) of SPIV measurements obtained at Reynolds numbers ranging from 6000 to 300000 with the impellers rotating in the anti direction of rotation. For each case, several thousands of almost uncorrelated frames were acquired. These cases are the same as the cases studied in [Debue et al., 2018a] and [START_REF] Debue | Dissipation, intermittency, and singularities in incompressible turbulent ows[END_REF] For all cases, the Stokes number is smaller than 1. The smallest resolved Hölder exponent h(10),

i.e. the smallest Hölder exponent such that the typical time scale corresponding to the resolution scale is ten times larger than the seeding particle reponse time, is varying from one case to another.

It is higher for cases B and C compared to case A because the resolution is smaller. Therefore, the typical time scale of the structures having a size of the order of the resolution is smaller than for -0.6 -0.1 0.0 -0.6 -0.7 v g (m/s) -4.9 × 10 -5 -4.9 × 10 -5 -4.9 × 10 -5 -3.3 × 10 -5 -1.9 × 10 -6

Table 5.2: Seeding parameters for the SPIV cases A to E case A ; for very low h it will be smaller than the particle response time. In case A, the ow time scales are the same as for cases B and C but as the spatial resolution is worse, the typical time scale of a structure of a given Hölder exponent h at the resolution length scale will be larger. For cases D and E, the ow time scales are larger, allowing to resolve smaller h. Overall, this estimation of the smallest resolved Hölder exponent shows that the scarcity of low Hölder exponents will hinder their study much more than the inertia of the particles.

The velocity shifts are all negative, because the particles are heavier than the uid. They are smaller than the average velocity components and even smaller than the root mean squares of the uctuations of the velocity components (see table 5.4). Therefore, the sedimentation does not aect the velocity measurement.

Acquisition 1.3.1 Laser

The laser used is a Solo II PIV laser sold by New Wave Research. It is a Nd:YAG (neodymium:Yttrium-Aluminium-Grenat) laser producing a green light at 532 nm. It has two cavities, each of them having a repetition rate of 30 Hz and delivering a maximum rated energy of 30 mJ per pulse. The pulse width is between 3 and 5 ns.

Cameras

The cameras used are two Dantec Flow Sense 2M cameras. These cameras have a CCD sensor of 1600×1200 square pixels of 7.4 µm square. Their dynamic range is either 8 or 10 bits and the maximum acquisition frequency is 15 Hz.

Conguration

The spatial arrangement of the cameras and of the laser is shown on gure 5.1. The laser beam is expanded into a vertical sheet by a sheet optics and then reected by a mirror in order to enter the outer tank through a narrow face. It then crosses the cylindrical tank, passing through the cylinder axis, and is absorbed by a home-made beam dumper. The angle between the laser sheet and the faces of the square outer tank or between the laser sheet and the camera optical axes is 45 • . Both cameras are equipped with Scheimpugs.

Acquisition parameters

The measurement area is contained in a meridian plane of the cylindrical tank. For case A, the measurement area is covering the whole space between the impellers and the walls, whereas for cases B to E it is covering only a smaller area of roughly 4 cm × 4 cm near the center of the ow, as illustrated on gure 5.2. In this thesis, we call x the horizontal direction, y the vertical direction and z the out-of-plane direction. The exact dimensions of the measurement areas for cases A to E, as well as the corresponding magnications, are given in table 5.3.

Because of small dierences between the rotation frequencies of the impellers, the measurement area was not exactly centered on the mixing layer. Figure 5.5 shows the average velocity elds for cases A to E. For cases B to E, the measurement area is slightly below the mixing layer.

Table 5.3 also gives the number of frames n t acquired for each case. In all cases, the velocity elds were acquired with an acquisition frequency f acq = 15 Hz, meaning that the time interval between two consecutive velocity elds is ∆t = 1/f acq ≈ 0.067 s. This acquisition frequency is quite Figure 5.3 shows the eective number of independent samples n t,ef f,i (x) for the three velocity components for case A. The white square shows the measurement area of cases B to E. One can see that n t,ef f,i (x) is strongly varying through space, with a factor 7 between the smallest and largest values. Even in the zone at the center where the velocity elds of cases B to E were acquired (represented by a white square), there is a factor 5 between the smallest and largest n t,ef f,i (x) for components along x and z. For the component along y in the center area, the ratio between the largest and smallest values of n t,ef f,i (x) is smaller. Note that these ratios are also observed for cases B to E even if the absolute values of n t,ef f,i (x) are dierent. Even if n t,ef f,i (x) is strongly varying through space, we still give their space averages for the velocity component along x (the component giving the worst values) in table 5.3 as an indication of the eective number of independent frames.

It is smaller for case A than for cases B and C because the space average was done on a larger area including wide domains where the eective number of independent frames is small. For cases D and E, it is smaller than for cases B and C because the impeller rotation frequency is smaller (therefore, the time-scales, including the decorrelation time, are smaller). Also, for case D only, the total number of frames is smaller, resulting in an even smaller n t,ef f,x x,y . For all cases, n t,ef f,x x,y seems to be large enough. For case D though, it may be too low, making it more dicult to see extreme events.

1.4 Correlation parameters and velocity statistics In all cases, the overlap is 50%, but for some cases the interrogation window size is 16 pixels whereas for others it is 32 pixels ; the number of points is then respectively of the order of 160 × 160 or 80 × 80. For case E, the interrogation window size is of the order of the Kolmogorov scale ; therefore, the resolved scales belong to the dissipative range, as is clear from the 1D spectra along the y direction on gure 5.4. Note however that the saturation above ηk y ≈ 0.7 corresponds to noise and that the uctuations above this wavenumber should not be considered. For cases A to D, the resolved scales belong to the inertial range, the interrogation window size being one to two orders of magnitude higher than the Kolmogorov scale. The corresponding spectra on gure 5.4 follow quite well the Kolmogorov k -5/3 scaling. They are slightly steeper at smaller wavenumbers ; at larger wavenumbers they become really steeper because of the cut-o due to the windowing inherent to Table 5.4 also gives the space-time average of the velocity components u i x,y,t , the root-meansquare of the uctuations of the velocity components U rms i and the total root-mean-square of the uctuations U rms tot . For all cases, the rms values are much higher than the average values. This is expected as the average value is 0 at the very center of the ow, and should therefore be small in the surroundings. The dimensionless rms values of cases B to D are very similar, which supports the fact that the dimensionless statistical quantities become independent of the Reynolds number in the limit of high Reynolds numbers. The dimensionless rms values are dierent for case A because the average is done over a larger area ; for case E they are dierent probably because the Reynolds number is smaller.

3.8 × 10 -4 2.7 × 10 -2 1.3 × 10 -2 0.7 × 10 -2 1.3 × 10 -3 adim 1.2 × 10 -4 8.7 × 10 -3 4.1 × 10 -3 1.1 × 10 -2 1.7 × 10 -3 Average of u y m/s 5.3 × 10 -3 0.8 × 10 -1 0.8 × 10 -1 1.7 × 10 -2 2.1 × 10 -2 adim 1.7 × 10 -3 2.5 × 10 -2 2.5 × 10 -2 2.7 × 10 -2 2.8 × 10 -2 Average of u z m/s 1.5 × 10 -2 1.3 × 10 -2 1.4 × 10 -2 9.2 × 10 -3 8.3 × 10 -3 adim 4.8 × 10 -3 4.2 × 10 -3 4.5 × 10 -3 1.5 × 10 -2 1.1 × 10 -2 Rms of u x uctuations m/s 8.5 × 10 -1 1.0 × 10 0 1.0 × 10 0 2.0 × 10 -1 1.9 ×
The average velocity elds are shown on gure 5.5. One can see that the measurement area slightly varies around the center of the ow for cases B to E. It can be due to the fact that the cameras were not exactly centered on the center of the ow. The vertical shift can also be explained by a small dierence between the rotation frequencies of the bottom and top impellers, resulting in a shift of the mixing layer (through which u y t changes sign). The maps of the rms values are not provided here. The one for case A is shown in chapter 3. For cases B to E, the rms values are varying by less than 10 percent across the measurement area.

The probability density functions of the components are shown in gure 5.6 in semi-logarithmic coordinates. They seem close to Gaussian distributions. For cases B to E, the pdfs of the components along directions x and z are very close to each other. This can be explained by a statistical invariance by rotation around the cylinder axis, as a rotation of 90

• around this axis maps the z direction onto the x direction. The pdfs of the component along the y direction are narrower, in accordance with the smaller rms values. For case E, peak locking is observed. In principle, this is due to too small particle images. Here the magnication used for case E is similar to those of cases B to D ; the peak locking may be due to a too small numerical aperture f # (see chapter 4).

Here are the main informations of this section :

The 2D-3C data set is made of 5 cases acquired by SPIV in the VK2 set-up. The velocity elds were measured in a meridian plane of the set-up. For case A, the measurement area covers the whole height and width of the set-up whereas for other cases it is a 4 × 4 cm 2 area at the center of the ow.

The Reynolds number and/or the spatial resolution is varied from a case to another in order to probe dierent scale ranges. For case E, the spatial resolution is in the dissipative range.

For all cases, the impellers are rotating in the anti direction of rotation.

Each case provides a statistically relevant set of velocity elds ; for case D the eective number of independent frames is lower.

For case E, there is peak locking aecting the measurements. The 3D non-time-resolved dataset consists in 6 cases (T1, T2, T3, T4, T5 and T6, T standing for tomographic) of TPIV measurements performed during two measurement campaigns, in January 2017 and in April-May 2018. In all cases, the liquid used was water at T=20 • C ; however, the rotation frequency of the impellers was varied in order to vary the Reynolds number from 6000 to 300000 (the Reynolds number of a given case is decreasing with the case number). The campaign of January 2017 was our rst campaign of TPIV measurements ; therefore, the acquisition parameters were not optimized. Several cases were acquired but for many of them the quality indicators dened in chapter 4 were not good, and we kept only cases T5 and T6, acquired at a Reynolds number of 6000 with the impellers rotating in the anti and contra direction of rotation respectively. During the campaign of April-May 2018, the acquisition parameters were improved and we acquired cases T1 to T4, at dierent Reynolds numbers but with the impellers rotating in the anti direction of rotation only. Note that for cases T4 and T5, the ow parameters are exactly the same, only the acquisition parameters (laser, seeding particles, outer tank, eld size, magnication) are dierent.

Comparing them then allows to see the impact of these parameters and to check the repeatability of the measurements.

Flow parameters

Like the 2D-3C data set, cases were acquired at dierent Reynolds numbers in order to vary the Kolmogorov scale (the Kolmogorov scale is increasing with the case number) and therefore to probe dierent scale ranges. Cases T1 and T2 allow to probe the inertial range, case T3 allows to probe the transition range between the inertial and dissipative ranges and cases T4 to T6 allow to probe the dissipative range. For case T6, the Kolmogorov scale is slightly larger than cases T4 and T5 because the impellers are rotating in the contra direction of rotation ; therefore the average dissipation rate is a bit lower. • C for all cases. The impellers were rotating in the anti direction of rotation for all cases except case T6 (for which it was contra). The uctuations of frequency (measured by the torquemeters) were of the order of a few percents of the average rotation frequency ; it was even less than one percent for case T1.

Case

Seeding parameters

The particles used were dierent in the rst and in the second campaign. During the rst campaign of January 2017, they were the same as for the 2D-3C data set, i.e. silver-coated glass hollowspheres sold by Dantec, with a diameter of 10 to 30 µm, the average being 15 µm and their density 1.4 g/cm 3 .

Due to the silver coating, these particles are quite heavy, resulting in more important sedimentation (especially in water) ; and they also scatter a lot of light, generating a strong background and a bad contrast on the images. Therefore, during the second campaign, we tried dierent, non-silver-coated particles. These particles are borosilicate glass particles sold by LaVision, with a diameter between 9 and 13 µm and a density of 1.1 g/cm 3 .

The Stokes number St τ k based on the Kolmogorov time scale τ k , the smallest resolved Hölder exponent h [START_REF] Frisch | Turbulence and Predictability in Geophysical Fluid Dynamics and Climate Dynamics[END_REF] and the velocity shift v g (see chapter 4) are given in table 5.6. or case T4 to case T5, we see that the Stokes number is 2 to 3 times smaller with the non-silver coated lighter particles.

Case

The smallest resolved Hölder exponent h(10), i.e. the smallest Hölder exponent such that the typical time scale at the resolved length scale is ten times larger than the seeding particle reponse time, is increasing with the Reynolds number. Indeed, even if the probed scale is higher in terms of the Kolmogorov scale for higher Reynolds number cases, the impeller rotation frequency is higher, so the time scales are smaller and it is more dicult for the seeding particles to follow them.

The velocity shift is negative, because the particles are heavier than the uid. It is smaller than the average velocity components and even smaller than the root mean squares of the uctuations of the velocity components (see table 5.9). Therefore, the sedimentation does not aect the velocity measurement. It is also one order of magnitude smaller for the non-silver-coated particles than for the silver-coated particles in water at 20 Conguration The spatial arrangement of the cameras and of the laser is shown on gures 5.7, 5.8 and 5.9. The inner cylindrical tank is surrounded by outer tank A described in chapter 3.

The laser beam is rst reected by two dichroic mirrors in order to reach the lenses. It is rst expanded in all directions by two spherical lenses forming a telescope, and then expanded only in the vertical direction (y) by two cylindrical lenses. A third dichroic mirror reects the beam towards a 5 mm-wide slit before it reaches the tanks. It is reected by a standard mirror so that camera 3, which is in backward scattering with respect to the incoming beam, receives as much light as camera 5, which is in forward scattering. There is a slight angle between the direction of the incident beam and the mirror so that the reected beam does not come back exactly into the laser, but is deviated towards a beam dumper.

The ve cameras are placed in two dierent planes : cameras 1 and 2 are in a vertical (zy) plane whereas cameras 3, 4 and 5 are in a horizontal (xz) plane. The lines of sight of cameras 1 and 2 are therefore not perpendicular to the walls of the cylindrical tank, which results in astigmatism and distorted particle images.

Campaign of April-May 2018

Laser The laser used is the Solo II PIV laser used for the 2D-3C data set.

Cameras The cameras used were Imager sCMOS cameras, similar to the ones used during the rst campaign of January 2017.

They were mounted on Scheimpugs sold by Lavision and equipped with Zeiss Milvus 2 lenses of focal length 100 mm. The numerical aperture was f # = 11.

Conguration The spatial arrangement of the cameras and of the laser is shown on gure 5.10.

The inner cylindrical tank is surrounded by outer tank B described in chapter 3.

The laser beam is rst expanded by a volume optics sold by Lavision and gathering two spherical lenses and a cylindrical one. After this device, the beam is slightly diverging. It is then reected by three optical mirrors in order to reach the measurement volume, and the edges of the beam are CHAPTER 5. PRESENTATION OF THE EXPERIMENTAL DATA SETS cut by a slit in order to make the section of the beam rectangular. The beam goes in and out of the outertank by two optical glass windows. It is reected by an optical mirror in the same manner as for the campaign of January 2017, so that cameras 2 and 3, which are in backward scattering with respect to the incoming beam, receive as much light as cameras 1 and 4, which are in forward scattering.

The ve cameras are placed in the same horizontal (xz) plane. The distance between the cameras and the outer tank is around 20 cm. Note that for case T2, one camera did not record all of the pictures for some reason; therefore, we did not use any image of this camera and performed the volume reconstruction with 4 cameras only. 

Acquisition parameters

The measurement area is a rectangular volume located at the center of the cylinder. The size in the z direction is smaller because it corresponds to the light beam thickness, and it cannot be too large to ensure an accurate volume reconstruction. For the campaign of January 2017, we tried a very strong magnication, implying a relatively small volume of roughly 2 cm × 2 cm × 0.5 cm.

However, with such a strong magnication, the particle diraction spots were too large. Thus, in the campaign of April-May 2018, we used a lower magnication to get a proper particle image diameter. This did not aect signicatively the resolution because we could use smaller interrogation volumes ; in addition, it allowed to have a larger eld size and more measurement points. Figure 5.11 shows the location and size of the measurement volume for both campaigns. The exact dimensions of the measurement areas, as well as the corresponding magnications, are given in table 5.7. This table also gives the number of frames n t acquired for each case, as well as the acquisition frequency f acq and the space average of the eective number of independent frames (based on the decorrelation of the velocity component along x which is the longer to decorrelate). As already mentioned, the eective number of independent frames is highly uctuating through space, between one half and twice the average value given in the table. Cases T5 and T6 have the lowest n t,ef f,x x,y,z ; indeed, the acquisition frequency was 5 Hz, which is quite high compared to an impeller rotation frequency of 0.1 Hz. Having noticed that, we chose to reduce the acquisition frequency for the lower Reynolds cases of the campaign of April-May 2018. We thus managed to reach higher eective numbers of independent frames.

The settling of particles does not impact the measured velocity, but results in a decrease of the seeding concentration. Therefore, we had to stir the uid regularly (every 2000 frame typically, with an impeller rotation frequency of 5 Hz) in order to resuspend the particles. We then waited long enough in order to reach a stationary state back.

Image preprocessing, calibration and volume reconstruction

For cases T1 to T5 and part of case T6, the image preprocessing only consisted in subtracting the time average of the image, taken over 400 to 2000 images. For case T6, a special image preprocessing consisting in substracting a local average (in an area of 5 pixels square), then normalizing the intensity with a local average (over an area of 300 pixels square), then applying a Gaussian smoothing 2. 3D NON-TIME-RESOLVED DATA SET 111 (with a kernel of 3 pixels square) and nally applying a sharpening lter was tested on part of the images, without changing signicantly the quality of the reconstruction and of the correlation.

The calibration was done in two steps : a rst guess was done with a 3D calibration plate with two levels, which was then rened by a few iterations of volume self-calibration using 200 images. For cases T1 to T3, and T5 and T6, the total set of images was splitted in subsets of 2000 images and one self-calibration was done for each subset. For case T4, subsets of 400 images were done and one self-calibration was done for each of them. 

Volume correlation parameters and velocity statistics

Table 5.9 gives the parameters of the volume correlation as well as the main characteristics of the velocity elds for cases T1 to T6.

Cases T1 to T4 have more points than cases T5 and T6 because the interrogation window size is smaller (in pixels). The overlap was 75% for all cases, which is the value recommended by Lavision when using their software (Davis). The interrogation volume size in pixels or in meters is the same for cases T1 to T4, but as the Kolmogorov scale is not the same for these cases, the probed range of scales is dierent from one case to another, as can be seen on gure 5.12. For cases T1 and T2, the interrogation volume size belongs to the inertial range ; for case T3 it is between the inertial range and the dissipative range and for case T4 it is equal to 4.7 times the Kolmogorov scale.

Concerning cases T5 and T6, both have a spatial resolution belonging to the dissipative range ;

their interrogation window size is smaller when expressed in units of η because the magnication was larger. It is even smaller for case T6 compared to T5 because for case T6, the impellers are rotating in contra direction, for which the average dissipation rate is smaller, and the Kolmogorov scale therefore larger. Table 5.9 also gives the mean and standard deviation of the correlation value of the volume correlation performed on the images ; the values are high, and higher for the lower Reynolds number cases. As we deal with 3D measurements, an estimation of the uncertainty based on the root mean square of the divergence can be computed, based on the fact that for an incompressible ow the divergence should be zero (see chapter 4). In table 5.9, values were computed based on the square root of the space-time average of the square of the divergence, computed with an order-2 centered scheme. Note that the spatial variations of the square root of the time-average of the square of the divergence are smaller than 10%. For cases T1 to T3, computing such a quantity is not really meaningful as the resolution is above the Kolmogorov scale, so the gradients are not resolved. For case T4, the value is consistent with the maximum disparity. For cases T5 and T6, it is almost ve times smaller than for case T4 ; it is of the order of the average disparity and not of the maximum disparity. It is not yet understood why.

Table 5.9 nally gives the values of the space-time averages and the root mean squares of the three velocity components. Values of the space-time averages of the velocity components are of the order of a few percents of the root mean squares, except for case T6 where the velocity component along the y direction is higher than the corresponding space-time average. This is due to the fact that the mixing layer was below the measurement area, probably due to the fact that the top impeller was rotating faster than the bottom one. This can be seen on the average velocity eld shown in appendix E. This appendix also shows the average velocity eld for cases T1 to T5 ; for these cases the measurement area is not exactly centered on the mixing layer but the mixing layer is contained in the measurement area. The values of the root mean square of the uctuations are consistent with the values of the 2D-3C data set. Spatial variations of the root time-mean square are less than 10% and are not shown there. to T6. They are very similar to the pdfs of the 2D-3C data set. One observes a slight peak locking which is more important for lower Reynolds numbers. For case T6, the pdf of the velocity component along y is not centered on 0, in agreement with the larger average value of this component.
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Here are the main informations of this section :

The 3D non-time-resolved data set is made of 6 cases acquired by TPIV in the VK2 set-up.

The velocity elds were measured in a thin volume located at the center of the ow.

The 3D non-time-resolved cases were acquired during two campaigns. Cases T5 and T6 were acquired during the rst one for which the acquisition parameters were not optimized.

The Reynolds number and/or the spatial resolution is varied from a case to another in order to probe dierent scale ranges. For case T4, the spatial resolution is in the dissipative range.

The impellers were rotating in anti direction for all cases but case T6 for which they were rotating in contra direction.

Each case provides a statistically relevant set of velocity elds ; for cases T5 and T6 the eective number of independent frames is lower though.

For each case, the volume reconstruction quality is good. The uncertainty on the velocity components (estimated with the rms of the velocity divergence) is between 5 and 10 % of the rms of the uctuations of the components for case T4 and between 1 and 2 % for cases T5 and T6. The 3D time-resolved dataset consists in 1 case (T4t, the small t standing for time-resolved) acquired with high-speed laser and cameras during a measurement campaign in May 2018. The liquid used was water at T=20 • C ; the rotation frequency of the impellers was 0.1 Hz in order to get a Reynolds number of 6000. Other cases were acquired but not analyzed during this thesis. The ow parameters for case T4t are exactly the same as for case T4 of the non-time-resolved 3D data set (hence the name), but for case T4t the following frames are strongly correlated in time, which allows to study the time-evolution of the velocity eld, whereas case T4 is meant to study the statistics of the velocity eld.
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Flow parameters

Case T4t was meant to study the time-evolution of the structures on the dissipative range ; hence, the Reynolds number is 6000 in order to get a large enough Kolmogorov scale, of the order of our spatial resolution. The ow parameters are given in table 5.10. The amplitude of the rotation frequency uctuations was 5% of the average velocity, the standard deviation being 1% of it.

Case T4t

Rotation frequency (Hz) 0.1 Taylor length scale λ (mm)

Rotation direction anti

5.3

Table 5.10: Flow parameters for the 3D time-resolved data set.

Seeding parameters

The particle used for case T4t are the same as for case T4 ; as the ow parameters are the same, the Stokes number is the same. As the resolution is larger than for case T4, h [START_REF] Frisch | Turbulence and Predictability in Geophysical Fluid Dynamics and Climate Dynamics[END_REF] is slightly lower than for case T4 : h(10) = -1.6.

Acquisition

Laser

The laser used is a Quantronix Darwin Duo provided by our collaborators of the Laboratoire de Mécanique des Fluides de Lille. It is a Nd:YLF (neodymium:Yttrium-Lithium-Fluoride) laser producing a green light at 527 nm. It has two cavities, each of them having a repetition rate between 3. 3D TIME-RESOLVED DATA SET 117 0.1 and 10 kHz. The energy per cavity is 30 mJ/pulse when the repetition rate is between 0.1 and 1 kHz. It is lower for higher rates ; at 10 kHz the total maximum power is 100 W. The pulse width is smaller than 210 ns. The M 2 factor is smaller than 25.

The energy of the two output beams is tuned by playing on the polarization of the beams in order to get the desired energy and to have the same energy for both pulses. Usually, a Pockels cell is used to modify the polarization of one of the beam so that both beams have the same. However, in this case a λ/2 polarizer is used instead. It divides by two the wavelength but gives the same polarization to the two beams. Playing on the polarization with the λ/2 polarizer also allows to get better pictures as it was noticed that PMMA was better transmitting particular polarizations (for some unknown reason). Furthermore, playing on the polarization allows to avoid the light scattered by dusts smaller than the seeding particles, because smaller objects select a polarization due to their smaller size whereas larger ones have a more isotropic scattering.

Cameras

The cameras used are four Phantom Miro m340 provided by our collaborators of the Laboratoire de Mécanique des Fluides de Lille. These cameras have a CMOS sensor of 2560×1600 pixels of 10 µm square. They have a dynamic range of 12 bits, a minimum exposure time of 1 µs and a maximum acquisition frequency at full frame of 800 Hz. They can acquire at a rate of 4 kHz but only 512×512 pixels are then used ; for such small images, it is dicult to do the calibration with our current 3D calibration plate whose dots are too far from each other for such a small eld (at the chosen magnication). For case T4t, the sensor size was 1600×1600 pixels. As these cameras have a memory of 38.5 Go, up to 3226 images can be acquired in a row for this sensor size. The exposure time for case T4t is 4997 µs and the interframing time is 3 µs.

The cameras were mounted on Scheimpugs designed by our colleagues from Laboratoire de Mécanique des Fluides de Lille (the same as for the measurement campaign of January 2017). They were equipped with Nikon Macro lenses of focal length 105 mm. The numerical aperture was f # = 11.

Conguration

The spatial arrangement of the cameras and of the laser is shown on gure 5.14. The inner cylindrical tank is surrounded by outer tank B described in chapter 3, as for the campaign of April-May 2018

(cases T1 to T4).

After the λ/2 polarizer, the laser beam is reected by two dichroic mirrors which raise it up to the level of the lenses and of the measurement volume. The distance between the output of the laser and the rst lens is 1.11 m. The rst lens is a converging spherical lens located at its focal distance of the beam waist (the natural divergence of the beam is used, so no diverging spherical lens is used).

The beam is then expanded in the vertical (y) direction by a diverging cylindrical lens, before being cut by a rst slit of height ∆y =35 mm. The beam is then converged by a converging cylindrical lens ; right after it, the beam height is 42 mm. The beam is then reected by a dichroic mirror and crosses a second slit of width ∆z =5 mm, before entering the outer tank through an anti-reective glass window. After having crossed the inner cylindrical tank, the beam gets out of outer tank B by another anti-reective glass and is reected by a dichroic mirror so that cameras 2 and 3, which are in backward scattering with respect to the incoming beam, receive as much light as cameras 1 and 4, which are in forward scattering. There is a slight angle between the direction of the incident beam and the mirror so that the reected beam does not come back exactly into the laser, but is deviated towards a beam dumper. 

Acquisition parameters

The measurement area is a rectangular volume centered on the center of the cylinder, it is almost the same as case for T4 (see gure 5.11). The exact dimensions of the measurement area, as well as the corresponding magnication, are given in table 5.11. With the fast cameras used, the images are stored in the camera memory and then transferred to the computer. The number of correlated 3. 3D TIME-RESOLVED DATA SET 119 images that one can acquire is then limited by the camera memory. For case T4t, we acquired the images by sets (called runs) of 3226 images (allowing to compute 3225 velocity elds or frames).

The images of one run are correlated between them, but the images of dierent runs are not. It takes about half a run for the velocity eld to decorrelate, hence an eective number of independent frames of the order of twice the number of runs. Compared to case T4, the velocity elds are thinner.

Case T4t

Field 

Image preprocessing, calibration and volume reconstruction

For case T4t, the image preprocessing only consisted in computing the time average of the images for each run and subtracting it to the images of the corresponding run.

The calibration was done in two steps : a rst guess was done with a 3D calibration plate with two levels, which was then rened by a few iterations of volume self-calibration using 200 images.

One self-calibration was done for each run. Table 5.12 gives the average, standard deviation and maximum disparity for case T4t. They are comparable to those for case T4, but slightly lower.

Table 5.12 also gives the parameters and quality indicators for the volume reconstruction step. 4

MART iterations were used. The ghost ratio and the normalized intensity variance are both correct ; they are slightly worse than for case T4. This can be explained by the fact that one more camera is used for case T4.

Volume correlation parameters and velocity statistics

Table 5.13 gives the parameters of the volume correlation as well as the main characteristics of the velocity elds for case T4t. The velocity elds of this case have less points than for case T4 because the fast cameras have less pixels than the slow ones. The overlap is 75%, as for cases T1 to T4.

The interrogation volume size in pixels is the same as for case T4, but the interrogation volume size in meters is slightly larger than for case T4 because the pixels of the fast cameras are larger than for case T4. However, it is still in the dissipative range. The mean and standard deviation of the correlation value for case T4t are similar to those for case T4. The estimation of the uncertainty based on the rms of the divergence is lower than for case T4. Ghost ratio 8%

Normalized intensity variance 28

Table 5.12: Volume reconstruction parameters and quality indicators for case T4t.

Table 5.13 also gives the values of the space-time averages and the root mean squares of the uctuations of the three velocity components. Values of the space-time average are dierent but this is probably a problem of convergence as there are less independent frames for case T4t. However, the values of the rms are coherent. The pdfs of the velocity components for case T4t are shown on gure 5.15. They are very similar to those of case T4. A slight peak locking can also be seen. Statistics of the inter-scale energy transfer and viscous dissipation terms
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The aim of this thesis is to characterize the extreme events of the Duchon-Robert term Π DR , interpreted as extreme events of energy transfer term through scales and which may be prints of the singularities possibly developed by the 3D Euler or Navier-Stokes incompressible equations. In this chapter, we characterize the amplitude of the extreme events of Π DR in dierent scale ranges, by comparing them to the average behaviour of Π DR , by analyzing the distribution of this term and by comparing its statistics to the ones of the viscous dissipation term D ν . We also show that using the pair (Π LES , D ν,LES ) instead of (Π DR , D ν ) leads to overall similar results, though some discrepancies reveal that they have slightly dierent physical meanings. Overall, the space-time average of the Duchon-Robert term is increasing with the ratio c /η whereas the viscous dissipation is decreasing with it ; both terms are equal for c ≈ 20η. For cases T4 and T5, the viscous dissipation is much larger than the Duchon-Robert term whereas for case T1 it is the contrary : this conrms that cases T4 and T5 allow to study the dissipative range whereas case T1 corresponds to the inertial range ; cases T2 and T3 are in-between.

It can be noticed that the curves corresponding to cases T2 and T3 do not overlap, and more generally that the dierent curves corresponding to either Π DR or D ν cannot be connected smoothly.

It is especially striking for the Duchon-Robert term, but it is also true for the viscous dissipation is the average dissipation rate computed from torque measurements. η is the Kolmogorov scale.

whose curves feature a kind of saturation at low values. This is probably due to the ltering inherent to PIV discussed in chapter 2 : when c is too close to the interrogation volume size (which is represented by a vertical dashed line for each case), the UV locality principle does not hold because most of the scales contributing to Π DR or D ν have been ltered. The values of Π DR and D ν are therefore signicantly decreased. The eect is stronger for the Duchon-Robert term which involves the velocity increments to the cube whereas the viscous dissipation term only involves the velocity increments to the square. According to this reasoning, one should consider only the rightmost point of each curve, or the two rightmost points, for which there are enough contributions from the smaller scales. Also, one should not compare the rst rightmost point to the second one in a same curve as they correspond to a dierent ltering. For cases T1 to T4, the rst (resp. second) rightmost point of a given curve should be compared to the rst (resp. second) rightmost points of the other curves ; indeed, the acquisition (except for the interframing time dt), correlation and processing parameters were exactly the same for these four cases ; therefore, the dierences between those points are only due to physical eects and not to measurement nor processing. As case T5 was acquired and processed in dierent conditions, the comparison is more dicult. We can see that the curves corresponding to cases T4 and T5 almost overlap (both for Π DR and D ν ), but is it is dicult to interpret, as the acquisition and processing parameters are dierent.
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In the following, we will present only results (pdfs, joint pdfs, extremes) corresponding to the rightmost points of the curves corresponding to cases T1 to T4. Indeed, these points correspond to the lowest impact of PIV ltering and to the same acquisition and processing parameters from one case to another. Dierences are then only due to the physics, and the comparison is therefore meaningful. For these rightmost points, c is equal to 1.7 times the interrogation window size. For case T4, c /η = 8 ; for case T3, c /η = 27 ; for case T2, c /η = 45 and for case T1, c /η = 150.

When considering only the rightmost point of each curve, it can be seen that the space-time average of the viscous dissipation term follows fairly well a power law of exponent -4/3 for c > 30η. This is the scaling for the inertial range that can be derived from the theory of Kolmogorov of 1941. For lower scales, it seems to saturate at a value higher than 0.5 . This saturation is in agreement with a regularization of the velocity eld by the viscous eects and with increments δu over a distance scaling like . However, the saturation value can hardly be estimated here as we do not have enough points to see the saturation plateau (the leftmost points are too aected by PIV ltering).

Note that here, is the global dissipation rate corresponding to the power dissipated in the whole von Kármán ow. It is probably dierent from the local dissipation rate corresponding to the measurement area and which is the theoretical limit of D ν when c /η tends to 0. Note that using either or the saturation value of D ν does not aect much the value of the Kolmogorov scale which depends on the dissipation to the power -1/4 only : a dissipation twice smaller would generate a Kolmogorov scale 1.2 times larger. The Duchon-Robert term which corresponds to non-linear eects and which can be interpreted as inter-scale transfer seems to saturate for c > 50η. Such a saturation corresponds to the 1941 Kolmogorov scaling in the inertial range. Again, it is dicult to estimate accurately the saturation value but it is consistent with the viscous dissipation saturation value in the dissipative range. In this dissipative range, the curve of the space-time average of the Duchon-Robert term is steeper. The expected scaling corresponding to a regularized velocity eld is 2 ; however, we do not have enough data points to really see it. The curve corresponding to case T4 seems to be increasing as 2 but it is not due to physical eects only : the PIV ltering eect is also involved so it cannot be concluded that the Duchon-Robert term is actually scaling like 2 in the dissipative range.

The inuence of the forcing on the space-time average of the Duchon-Robert term and of the viscous dissipation can be studied based on gure 6.2 (for the dissipative range only). On this gure, the space-time averages of these terms have been plotted for cases T4 and T5 again, and for case T6. They are normalized by the space-time average of the viscous dissipation term obtained at the smallest possible scale, which is the closest value to the exact viscous dissipation. Such a normalization is better to compare the ANTI and CONTRA cases, compared to the normalization involving the global dissipation rate estimated from torque measurements : indeed, the dissipation rate is a priori not homogeneous and its spatial distribution is not a priori the same for ANTI or CONTRA directions. For cases T4 and T5, the impellers are rotating in the ANTI direction of rotation whereas for case T6 they are rotating in the CONTRA direction ; the rotation frequency is the same for the three cases. The acquisition and correlation parameters for cases T5 and T6 are exactly the same. As the average dissipation rate is lower for the CONTRA direction compared to the ANTI direction, the Kolmogorov scale is larger and smaller ratios of c /η can be studied. No dierence can be seen on gure 6.2. One could have perhaps expected that curves corresponding to cases T5 and T6 would not overlap due to the same PIV ltering eect which prevents curves of cases T2 and T3 from overlapping. This eect is probably mitigated by the normalization by a value which is itself ltered.

As a conclusion, we conrmed that our dierent cases allow to study scales from the dissipative range to the inertial one. The space-time averages of the Duchon-Robert term and of the viscous ℓ c /η The forcing does not seem to impact the ratio between the space-time averages of Π DR and D ν .

1.2 Standard deviation (computed over space and time)

We now analyze the behaviour of the standard deviation, computed over space and time, of the Duchon-Robert and viscous dissipation terms. This allows to quantify the dispersion of these two terms.

Figure 6.3 shows the standard deviations, computed over space and time, for cases T1 to T5. The global behaviour with respect to scale is the same as for the space-time averages : Π DR is increasing and saturating at the largest values, whereas D ν seems to saturate at the lowest values and then decreases, roughly following the ( c /η) -4/3 scaling. However, the saturation value of Π DR at large c /η is around three times the saturation value of D ν at low c /η. Also, the standard deviations of the Duchon-Robert term are three to four times higher than its space-time averages whereas the standard deviation of the viscous dissipation term are of the same order as its space-time averages.

The impact of ltering seems to be weaker for the standard deviations than for the space-time averages. We do not understand why. On the contrary, there is a more pronounced dierence between the standard deviation of the Duchon-Robert term of cases T4 and T5. For a given value of c /η, the distribution of the Duchon-Robert term will be more spread for case T4 than for case T5.

This may be due to dierent acquisition or correlation parameters, or to a lack of statistics for case T5. This shows that one should be careful while comparing such a quantity as the Duchon-Robert
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2.7 term for cases obtained in dierent conditions. The standard deviation of the viscous dissipation of cases T4 and T5 still agrees ; this is perhaps due to the fact that it is a smaller order quantity that converges faster.

Again, the impact of the forcing can be studied (in the dissipative range only) by comparing the standard deviations of the Duchon-Robert term and of the viscous dissipation of cases T4 to T6.

The standard deviations are normalized by the space-time average of the viscous dissipation term obtained at the lowest scale as it is the closest to the real dissipation rate. No dierence can be noted between the two directions of rotation.

As a conclusion, the behaviour of the standard deviations (computed over space and time) with respect to scales is similar to the one of the space-time averages. The standard deviation of the viscous dissipation is of the same order as its space-time average whereas the standard deviation of the Duchon-Robert term is three to four times higher than its space-time average. a subtler behaviour

The global behaviour of Π DR and D ν with respect to scales as described by their space-time averages and standard deviations is in line with the classical picture of turbulence. We now study more in details the behaviour of Π DR and D ν by analyzing their probability density functions (pdfs) and their extreme values.

2.1 Evolution of the pdfs of Π DR and D ν with respect to c /η Case T 4,
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Case T 4, indeed, viscous dissipation is more important in the dissipative range. Note that the shape of these pdfs is very close to a parabola (the dashed lines) with a slightly smaller right tail (the left tail which saturates is probably spurious). We performed Lilliefors tests on these pdfs to check whether they corresponded to log-normal distributions or not ; this hypothesis was always rejected at the 5% level. When centered-reduced, these pdfs collapse : unlike the Duchon-Robert term, the shape of the distribution does not seem to vary with c /η, only the amplitude is varying. Even if the Lilliefors tests were negative, suggesting that D ν does not follow a log-normal distribution, the fact that the pdf of D ν is only characterized by its average and standard-deviation reminds much of K62 theory.

ℓ c = 8η Case T 3, ℓ c = 27η Case T 2, ℓ c = 45η Case T 1, ℓ c = 150η (D ℓ ν -< D ℓ ν > xyzt )/σ(D ℓ ν ) 0 
This behaviour of the tails can be well accounted for by computing the skewness S and the kurtosis K dened as follows : We now focus on the very extreme values of Π DR and D ν .

S(X) = (X -X ) 3 (X 2 -X 2 ) 3/2 (6.1) K(X) = (X -X ) 4 (X 2 -X 2 ) 2 (6.2) Table 6.
For each case T1, T2, T3 and T4, we computed the maxima over space of the absolute value of the Duchon-Robert term and of the viscous dissipation :

M DR (t) = max xyz (|Π DR (x, y, z, t)|) (6.3) M ν (t) = max xyz (|D ν (x, y, z, t)|) (6.4)
We ordered them :
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ν : A SUBTLER BEHAVIOUR 133 M DR (t i 1 ) > M DR (t i 2 ) > ... > M DR (t in t ) (6.5) M ν (t j 1 ) > M ν (t j 2 ) > ... > M ν (t jn t ) (6.6)
We then dene the n th highest maxima as follows :

M DR (n) = M DR (t in ) (6.7) M ν (n) = M ν (t jn ) (6.8)
Thereafter, the n th highest maximum over space is called abusively n th highest extreme event. It is abusive because if there are two extreme events on the same instantaneous velocity eld, one of them will be omitted by this technique. However, it is unlikely as these events are rare and the velocity elds are not very large ; this will therefore not aect the results signicantly. Also, we will analyze the velocity elds corresponding to the ten highest extreme events in chapter 8 ; if the joint apparition of two maxima is an important feature, we will notice it. When increasing c /η, the joint pdfs are moving below the identity lines corresponding to Π DR = ±D ν . This corresponds to a decrease of the a and b coecients. It means that D ν takes overall larger values than Π DR in the dissipative range, whereas it is the contrary in the inertial range ; this is in line with behaviour of the space-time averages 6.1. However, it is noticeable that the ratio Π DR /D ν can be lower than 1 in the inertial range, or larger than 1 in the dissipative range (with a small probability though). Also, when increasing c /η, the side edges seem to become more curved. At all values of c /η, the bottom angle of the triangle, corresponding to the small values of D ν , is very wide compared to the others. This is in agreement with the saturation of the pdfs of D ν at small values shown on gure 6.5(b). This phenomenon happens only for low-enough values of the Duchon-Robert term. The observation of the corresponding velocity elds did not reveal any interesting features. These low values of ratio D ν may appear during the computation of this term. The analysis of the joint pdfs showed that the extreme events of the Duchon-Robert term are not necessarily the same as the extreme events of the ratio Π DR /D ν . Here, we characterize the behaviour of this ratio by studying its distribution for dierent values of c /η. 27) log 10 (40) 

Π ℓ DR /D ℓ ν > 0 Π ℓ DR /D ℓ ν < 0 Π ℓ DR /D ℓ ν > 0 ∪ Π ℓ DR /D ℓ ν < 0 log 10 (0.11) log 10 (0.27) log 10 (|Π ℓ DR /D ℓ ν |) -6 -4 -2 0 2 4 10 -4 10 -2 10 0 Π ℓ DR /D ℓ ν > 0 Π ℓ DR /D ℓ ν < 0 Π ℓ DR /D ℓ ν > 0 ∪ Π ℓ DR /D ℓ ν < 0 log 10 (2.6) log 10 (1.5) (c) (d) log 10 (|Π ℓ DR /D ℓ ν |) -4 -2 0 2 4 10 -4 10 -2 10 0 Π ℓ DR /D ℓ ν > 0 Π ℓ DR /D ℓ ν < 0 Π ℓ DR /D ℓ ν > 0 ∪ Π ℓ DR /D ℓ ν < 0 log 10 (6.0) log 10 (3.6) log 10 (|Π ℓ DR /D ℓ ν |) -4 -2 0 2 4 10 -4 10 -2 Π ℓ DR /D ℓ ν > 0 Π ℓ DR /D ℓ ν < 0 Π ℓ DR /D ℓ ν > 0 ∪ Π ℓ DR /D ℓ ν < 0 log 10 (
Π ℓ DR /D ℓ ν > 0 Π ℓ DR /D ℓ ν < 0 (c) (d) (log 10 (|Π ℓ DR /D ℓ ν |) -log 10 (|Π ℓ DR /D ℓ ν |) )/σ

Extreme events of the ratio Π DR /D ν

As we dened the highest maxima of the Π DR and D ν dissipation terms, we now dene the highest maxima and lowest minima of the ratio Π DR /D ν . We condition the highest maxima on values of D ν higher than a threshold T , whose choice is based on the joint pdfs, in order to avoid very small values of D ν which we believe to be spurious. The thresholds used are given in table 6.2.

For each case T1, T2, T3 and T4, we computed the maxima and minima over space of the logarithm of the absolute value of the ratio Π DR /D 

M ratio (t i 1 ) > M ratio (t i 2 ) > ... > M ratio (t in t ) (6.11) 
m ratio (t j 1 ) < m ratio (t j 2 ) < ... < m ratio (t jn t ) (6.12)

We then dene the n th highest maxima and n th lowest minima as follows :

M ratio (n) = M ratio (t in ) (6.13) m ratio (n) = m ratio (t jn ) (6.14) Thereafter, the n th highest maximum over space is called abusively n th highest extreme event of the ratio |Π DR (x, y, z, t)/D ν (x, y, z, t)| and the n th lowest minimum over space n th lowest extreme event of the ratio |Π DR (x, y, z, t)/D ν (x, y, z, t)|. As for the extreme events of Π DR (x, y, z, t) and D ν (x, y, z, t), it is abusive because if there are two extreme events on the same instantaneous velocity eld, one of them will be omitted by this technique. However, it is unlikely as these events are rare and the velocity elds are not very large ; this will therefore not aect the results signicantly. Also,

we will analyze the velocity elds corresponding to the ten highest extreme events in chapter 8 ; if the joint apparition of two maxima is an important feature, we will notice it. the pdfs of the logarithm of the ratio, both the minimum and the maximum are increasing with scales. The centered-reduced values of the maximum and minimum seem to be quite independent from c /η. For the minimum value, this corresponds to the collapse of the left tails of the pdfs of the ratio. For the maximum values, this may be related to the use of a threshold. Also, even if the centered-reduced maximum seems independent from c /η, it is much less probable at lower values of c /η. Values of the logarithm of the n th highest and lowest extreme event of the ratio |Π DR (x, y, z, t)/D ν (x, y, z, t)| with n ∈ {1, 10, 100, 1000}. Pentagons correspond to c /η = 8 (obtained with case T4), triangles to c /η = 27 (obtained with case T3), stars to c /η = 45 (obtained with case T3) and crosses to c /η = 150 (obtained with case T1). The vertical dashed lines correspond to the interrogation volume size of each case.(a) Raw values. (b) Values are centered-reduced. 4 Comparison with the statistics of the terms coming from the LES equations In chapter 2, we mentioned that using the pair (Π LES , D ν,LES ) instead of (Π DR , D ν ) would probably give similar results as it is another way of measuring the inter-scale transfer and the viscous dissipation ; only, Π DR should be more suited than Π LES when the velocity eld is not very regular.

We performed the same statistical analyses as previously with these other terms and computed joint statistics in order to check this assertion. We found that overall, the picture of the energy transfer and dissipation is the same but that there are small dierences though. We tried to explain these dierences and it appears that they are due to slightly dierent physical meanings of the terms of the two pairs. We rst report the experimental results and then provide an attempt of explanation. As a conclusion, when considering global quantities, using either one or the other of the pairs (inter-scale transfer, viscous dissipation) does not lead to signicantly dierent conclusions. The ratio between the global quantities is however scale dependent.

Global behaviour with respect to scales

T 1, Π ℓ DR T 1, D ℓ ν T 1, Π ℓ LES T 1, D ℓ ν,LES T 2, Π ℓ DR T 2, D ℓ ν T 2, Π ℓ LES T 2, D ℓ ν,LES T 3, Π ℓ DR T 3, D ℓ ν T 3, Π ℓ LES T 3, D ℓ ν,LES T 4, Π ℓ DR T 4, D ℓ ν T 4, Π ℓ LES T 4, D ℓ ν,LES (ℓ c /η) -4/3
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For either the inter-scale transfer or the viscous dissipation terms, the pdfs have the same shape and behaviour when c /η is varied. For the viscous dissipation terms, the pdfs of D ν,LES do not feature a saturation at low values, compared to the pdfs of D ν . As there is no major dierence between the pdfs of D ν,LES and Π LES compared to those of D ν and Π DR , we do not show them here. However, we give the skewness and kurtosis of these pdfs instead.

As the pdfs, they feature the same behaviour with respect to scales as the skewness and kurtosis of D ν and Π DR . It can still be noted that the kurtosis of Π DR is quite higher than the one of Π LES , especially at c /η = 8, in the dissipative range, where it is more than twice higher. 

Joint behaviour of Π LES and D ν,LES

Overall, the joint behaviour of Π LES and D ν,LES is the same as the joint behaviour of Π DR and D ν : the joint pdfs have the same triangular shape meaning that a strong viscous dissipation can occur for any value of the inertial transfer whereas a strong inter-scale transfer is always correlated to a strong viscous dissipation.

The ratio Π LES /D ν,LES is taking higher values when c /η is increased, as can be seen from gure When considering the centered-reduced pdfs, we can notice two dierences though. First, the centered-reduced pdfs of the ratio Π LES /D ν,LES conditioned on positive values of the ratio and the one conditioned on negative values are not collapsing when c /η is increased, as can be shown on gure 6.15. This is at variance with the behaviour of the corresponding pdfs for the ratio Π DR /D ν . This means that the asymmetry between positive and negative values of Π LES holds both in the inertial and in the dissipative range. Second, both the left and right tails of the unconditioned centered-reduced pdfs of log 10 (|Π LES /D ν,LES |) seem to be independent from c /η (as can be seen All the pdfs are shifted towards higher values of the ratio when c /η is increased. This is in accordance with the behaviour of the space-time averages and standard deviations : the dierence between these quantities for Π DR and Π LES was smaller in the inertial range than in the dissipative range.

The pdfs conditioned on negative values of the ratio reach their maximum for a value of |Π DR /Π LES | which is slightly higher than for the pdfs conditioned on positive values. It is not very clear whether the dierence between the maxima is decreasing or not when c /η is increased. The pdfs conditioned on negative values of the ratio are atter than the ones conditioned on positive values in that sense that the maximum is lower but the tails are higher. They are also more symmetrical, especially at c /η = 8 : the pdf conditioned on positive values of the ratio is very skewed towards higher values. This skewness of the pdf of the ratio is decreasing when c /η is increasing : values higher than the most probable ones are not anymore favoured in the inertial range.

Joint pdfs of Π LES and Π DR

The joint behaviour of Π DR and Π LES can also be captured by their joint pdf, shown on gure 6.17. These joint pdfs spread around the lines corresponding to the most probable ratio. For c /η = 8, the asymmetry of the pdf of log 10 (|Π DR /Π LES |) can be seen in the joint pdf which is not symmetrical with respect to the line corresponding to the most probable ratio. 

Π ℓ DR /Π ℓ LES > 0 Π ℓ DR /Π ℓ LES < 0 Π ℓ DR /Π ℓ LES > 0 ∪ Π ℓ DR /Π ℓ
Π ℓ DR /Π ℓ LES > 0 Π ℓ DR /Π ℓ LES < 0 Π ℓ DR /Π ℓ LES > 0 ∪ Π ℓ DR /Π ℓ LES < 0 log 10 (1.1) log 10 (0.86) (c) (d) log 10 (|Π ℓ DR /Π ℓ LES |) -6 -4 -2 0 2 4 6 10 -4 10 -2 10 0 Π ℓ DR /Π ℓ LES > 0 Π ℓ DR /Π ℓ LES < 0 Π ℓ DR /Π ℓ LES > 0 ∪ Π ℓ DR /Π ℓ
Π ℓ DR /Π ℓ LES > 0 Π ℓ DR /Π ℓ LES < 0 Π ℓ DR /Π ℓ LES > 0 ∪ Π ℓ DR /Π ℓ LES < 0 log 10 (1.
2) log 10 (1.04) Here, we try to provide a physical explanation for the dierences between the two pairs of interscale transfer and viscous dissipation terms. First, we highlight the subtle dierence between the inter-scale transfer terms ; then we analyze the expression for D ν in order to see how it diers from D ν,LES .

Dierent roles of Π DR and Π LES

The dierent roles of the inter-scale transfer terms Π DR and Π LES are highlighted when one con- siders the transport equation of the energy contained in the ltered velocity eld u , the transport equation of the energy contained in the subgrid uctuations uu , and the transport equation of the scalar product u • (uu ). These equations are derived in appendix F. We recall them here :

∂ t u i 2 2 + ∂ j [u j u i 2 2 + u i τ ij + u j p ] = ν∆ u i 2 2 -D ν,LES -Π LES (6.15) ∂ t (u i -u i ) 2 2 + ∂ j [u j (u i -u i ) 2 2 -(u j -u j ) u i 2 2 ] +∂ j [u i τ ij - 1 2 (u j u i u i ) + 1 2 u j (u i u i ) + (u j -u j )(p -p )] = ν∆ (u i -u i ) 2 2 -ν∂ j (u i -u i )∂ j (u i -u i ) -Π LES + 2Π DR (6.16) ∂ t u i (u i -u i ) + ∂ j [u j u i u i -u j u i u i + 2τ ij ] +∂ j [ 1 2 (u j u i u i ) - 1 2 u j (u i u i ) + u j (p -p ) + (u j -u j )p ] = ν∆(u i (u i -u i )) -ν∂ j u i ∂ j (u i -u i ) + 2Π LES -2Π DR (6.17)
Note that the sum of these three equations is the transport equation 1.14 of the total energy of the velocity eld u obtained in chapter 1. Indeed :

u i 2 2 = u i 2 2 + (u i -u i ) 2 2 + u i (u i -u i ) (6.18)
These equations show that the time variation of the energy contained in the ltered velocity eld at scale , of the energy contained in the subgrid uctuations and of the scalar product u • (uu ) are all due to spatial transport (the term in ∂ j []), viscous diusion (the term in ν∆()), viscous dissipation (the term in ν∇()∇()) and inter-scale transfer terms (the remaining terms of the right-hand-side). Analyzing these equations allows to make a ne dierence between Π DR and Π LES : Π LES only appears in the transport equation of the energy contained in the ltered velocity eld at scale .

Therefore, it can be considered as the rate of energy leaving the scales larger than . However, in the transport equation for the energy contained in the subgrid uctuations, the incoming energy transfer term is -Π LES + 2Π DR . The Duchon-Robert term is involved here. As for the scalar product u • (uu ), the inter-scale energy transfer term is 2Π LES -2Π DR , i.e. the dierence between the transfer coming from the large scale Π LES and the transfer arriving to the small scales -Π LES + 2Π DR . This suggests that the energy transfer between the scales larger than and the 150 CHAPTER 6. STATISTICS OF THE ENERGY TRANSFER AND DISSIPATION TERMS scales smaller than (the so-called uctuations) happens in two steps, as sketched in gure 6.19 : rst, energy is transferred from scales larger than to the scalar product u • (uu ), then it is transferred from the scalar product to scales smaller than . The two inter-scale transfers are not a priori equal, and therefore Π DR and Π LES are not equal (note that if Π DR = Π LES , then the energy transfer from scales larger than to the scalar product u • (uu ), and the energy transfer from the scalar product to scales smaller than are equal too). Hence, dierences between Π DR and Π LES may be due to this two-step energy transfer. These equations allow to explain why the space-time averages Π DR and Π LES dier on average from a factor close to 2 in the dissipative range, but tend to be overall equal in the inertial range.

Energy contained in

Indeed, averaging the equations 6.16 and 6.17 over space and time and assuming homogeneity (in space and time) leads to :

Π LES -2 Π DR = ν ∆ (u i -u i ) 2 2 -ν ∂ j (u i -u i )∂ j (u i -u i ) (6.19) Π DR -Π LES = -ν ∆[u i (u i -u i )] 2 + ν ∂ j u i ∂ j (u i -u i ) (6.20)
The brackets stand for space-time averages.

In the dissipative range, u i tends to u i . The right-hand-side terms of equation 6.19 are terms of second order whereas terms of equation 6.20 are of order one. This suggests to neglect the r.h.s.

terms of equation 6.19, leading to Π LES = 2 Π DR . In the inertial range, the r.h.s. terms of equation 6.19 involve the laplacian of (u iu i ) 2 and the gradient of u iu i , whereas the r.h.s. terms of equation 6.20 involve the laplacian of u i (u iu i ) and the gradients of u i and u iu i .

As u iu i contains the small scales, and u i the large scales, we can reasonably assume that the derivatives of u iu i are larger than those of u i : the viscous eects are important only for the small scales. If we neglect the r.h.s terms of equation 6.20, we then get Π LES = Π DR .

Further, we also noticed that the most probable ratio Π DR /Π LES was about 0.5 in the dissipative range with a strong skewness of the pdf of the logarithm of the ratio favouring values higher than 0.5, and that this most probable ratio was increasing to close to 1 in the inertial range. This can be interpreted in the scope of equation 6.16 : the energy transfer received by the scales smaller than is 2Π DR -Π LES . Favouring values of Π DR /Π LES larger than 0.5 is equivalent to favouring direct inter-scale transfer to small scales. 4.6.2 Link between D ν and D ν,LES .

The dierences between the two viscous dissipation terms can be understood by analyzing the denition of D ν . We have :

D ν = ν ∇ 2 φ (ξ) δu(x, ξ) 2 2 dξ = ν ∇ 2 φ (ξ) u(x + ξ) 2 -2u(x + ξ)u(x) + u(x) 2 2 dξ = ν ∇ 2 φ (ξ) u(x + ξ) 2 2 dξ -ν ∇ 2 φ (ξ)u(x)u(x + ξ)dξ + ν ∇ 2 φ (ξ) u(x) 2 2 dξ = ν∂ i ∂ i (u j u j ) /2 -νu i ∂ j ∂ j u i = ν(∂ i u j ∂ i u j ) + ν(u j ∂ i ∂ i u j ) -νu i ∂ j ∂ j u i
The rst term of the last line is the total viscous dissipation ltered at scale (the one involved in the K62 theory). The second one corresponds to the total power of viscous forces (which can be splitted in viscous diusion and viscous dissipation) ltered at scale . The last one also resembles the power of viscous forces, but it is mixing the total velocity eld and the ltered velocity eld.

When tends to 0, the last two terms cancel, and the rst term tends to the total viscous dissipation, as D ν,LES = ν∂ i u j ∂ i u j . However, for in the inertial range, there is no reason why both terms should be equal.

Summary of chapter 6

The main results of this chapter are the following :

Using either the pair (Π LES , D ν,LES ) or the pair (Π DR , D ν ) leads to the same, expected picture of the global behaviour of energy transfers : in the dissipative range, the average viscous dissipation term is more important than the inertial one ; in the inertial range, the average viscous dissipation term is decreasing following the Kolmogorov 1941 scaling (∝ -4/3 ) whereas the inertial term becomes more important and seems to saturate, also in accordance with the Kolmogorov 1941 scaling (∝ 0 ).

The shape of the pdfs of the viscous dissipation term seems to be independent from the scale whereas the pdf of the inertial term is more skewed and pinched in the dissipative range than in the inertial one, meaning that direct inter-scale transfer is favoured in the dissipative range, and that the probability of extreme events decreases less than the one of medium-amplitude events when c /η is decreased.

CHAPTER 6. STATISTICS OF THE ENERGY TRANSFER AND DISSIPATION TERMS

However, the extreme events of the inertial term are always correlated to extreme events of the viscous dissipation term. This potentially hinders the formation of singularities. This also motivates the study of extreme events of the ratio of the inertial term over the viscous dissipation term. This ratio takes smaller values in the dissipative range compared to the inertial one, with still largest values around 10.

There are some dierences in the statistics of the pair of terms (Π LES , D ν,LES ) compared to the pair of terms (Π DR , D ν ). In particular, the extreme events of the ratio Π DR /D ν are less probable in the dissipative range than in the inertial range, whereas the extreme events of the ratio Π LES /D ν,LES are as probable in the dissipative range as in the inertial range.

The dierences between both pairs of terms are probably due to the fact that the terms have slightly dierent physical meanings : Π LES corresponds to the inter-scale transfer leaving the scales larger than whereas Π DR is part of the inter-scale transfer reaching the scales smaller than ; D ν,LES corresponds to the viscous dissipation of the scales larger than whereas D ν corresponds to the sum of the total viscous dissipation ltered at scale and diusive terms.

Though Π DR and Π LES have dierent denitions and meanings, their behaviour is similar. In the dissipative range, their behaviour is more dierent than in the inertial range. This may be a sign that some lack of regularity aects Π LES , as explained in chapter 2, and encourages to use Π DR only.

Chapter 7

Link with intermittency

In this chapter, we reproduce an article published in PRE in 2018. This article aims at showing the link between the prints of singularities that we study in this thesis and the intermittency in turbulence. It starts with statistical analyses of 2D versions of the Duchon-Robert term and of a viscous term, very similar to those performed in the previous chapter on the 3D terms. There is also an analysis of the tail of the pdf of the (2D) Duchon-Robert term by means of a Generalized Pareto Distribution t. The impact of extreme events of the (2D) Duchon-Robert term on the structure functions of the velocity increment is then highlighted : the prints of singularities seem to be responsible for the intermittency. This strongly supports the phenomenological interpretation of the multifractal model which invokes the existence of a nite set of Hölder exponents in the ow in order to explain the intermittent scalings of the structure functions. Indeed, the extreme events of the Duchon-Robert term mark in principle the low regularity areas of the ow ; these areas could be characterized by a low Hölder exponent.

A posteriori remarks

Before reproducing the PRE article, we make some remarks allowing to compare the results of the paper with the other results of this thesis that have been obtained later with improved methods or techniques.

Data set parameters

The data set used in this paper is the 2D data set presented in chapter 5 ; the cases have the same name. However, one could be surprised to nd slightly dierent values of the Kolmogorov scale in table I of the paper. This is due to the fact that in the paper, they are computed with the value of the average dissipation rate obtained in [START_REF] Saw | On the universality of anomalous scaling exponents of structure functions in turbulent ows[END_REF]] by a t of the structure functions, wherea in this thesis we use the average dissipation rate based on the torque measurements. This also explains why the Taylor-scale Reynolds numbers are dierent. However, this does not aect the meaning of the paper.

Viscous term

In this paper, we used a viscous term slightly dierent from the one used in this thesis because the latter one had not been derived yet. The viscous dissipation term used in the paper is :

D ν,P RE = -ν ∇ 2 φ (ξ)u i (x)u i (x + ξ)dξ (7.1)
whereas the one used in this thesis is :

D ν = ν ∇ 2 φ (ξ) δu(x, ξ) 2 2 dξ = ν ∇ 2 φ (ξ) [u(x + ξ) -u(x)] 2 2 dξ (7.
2)

It can be shown that :

D ν = ν∂ i ∂ i (u j u j ) /2 + D ν,P RE (7.3)
Actually, D ν,P RE rather corresponds to a viscous diusion term than a viscous dissipation term. This is why it can take negative values. Also, the joint pdfs of Π DR and D ν are dierent from the joint pdfs of Π DR and D ν,P RE . However, this does not appear clearly in the paper as linear coordinates are used whereas logarithmic coordinates were preferred in chapter 6.

In addition to using a dierent viscous dissipation term, only 2D versions of this term and of the Duchon-Robert term were studied in the PRE article.

2D vs. 3D

The main dierence between the PRE article and the other results of this thesis is the fact that only 2D versions of the Duchon-Robert term and of the viscous term are computed in the article.

Indeed, the paper was written based on the 2D data set, i.e. on 2D-3C velocity elds obtained by stereoscopic PIV (SPIV). It is not possible to compute the derivative in the direction perpendicular to the measurement plane. In the 2D versions of the Duchon-Robert and of the viscous terms, all derivatives along this direction are set to 0.

This may explain the dierences between the space-time averages of the 2D and 3D terms, plotted on gure 7.1. On this gure, the space-time averages of Π DR and D ν for SPIV cases A to E and TPIV cases T1 to T5 are plotted. Note that in 2D, we used a smoothing function φ such that φ (x) ∝ exp(-x 2 /(2 2 )) so that c = π / ln(2) ≈ 3.8 . In 2D, c is not limited by the thickness of the measurement volume, therefore we have access to larger scales. The dierence between c and X (interrogation window size) is large enough and the principle of UV locality applies (see second part of chapter 2). This probably explains why there is not any bend of the SPIV curves at small c (contrary to TPIV curves), and this allows to compare the dierent points of a given curve with each other. In 3D, c is closer to the interrogation volume size X so that the contributions from smaller scales are more ltered, and the 3D terms are underestimated too (see second section of chapter 2). Also, there is a strong dierence of ltering between two points of the same curve ; however, the ltering is the same for the rightmost (or n th rightmost) points of two dierent curves, and two such points can be compared. For the rightmost point, c /X is the largest so that the impact of PIV ltering is the lowest. These rightmost points are surrounded by a circle on gure Space-time averages of Π DR and D ν for SPIV cases A to E and TPIV cases T1 to T5. For SPIV cases, Π DR is in purple and D ν is in yellow, whereas for TPIV cases Π DR is in blue and D ν is in red. Dierent cases have dierent symbols. The vertical black dashed lines correspond to the interrogation window or volume size of the dierent cases ; for case E, it is outside the gure, at c /η = 1.5. The surrounded points are the rightmost points of the curves corresponding to TPIV cases ; for these points the impact of PIV ltering is the lowest. should be equal to the average dissipation rate (equal to the average inter-scale transfer rate in steady state). This 2D eect is probably due to the missing out-of-plane derivative in 2D cases. This suggests that the underestimation due to the missing derivative in 2D is stronger than the underestimation due to the strong ltering of small scales in 3D. For the viscous dissipation term, the dierence in the denition is also probably involved.

The 2D eect may also explain the dierences between the pdfs of the Duchon-Robert term : the increase of intermittency in the dissipative range is hardly seen on the 2D data (gure 2 of the paper).

Though there are dierences, the main statistical behaviour is captured by the 2D terms. This allows to trust to some extent the results of the paper that have not been re-evaluated in 3D. As for the re-evaluated results, it is of course better to consider the 3D ones, presented in chapter 6. In the presence of a singularity in the velocity field, this formulation yields a nonzero dissipation (inertial dissipation) in the limit of an infinite resolution. Moreover, at finite resolutions, it provides an expression for local interscale energy transfers down to the scale where the energy is dissipated by viscosity. In the presence of a quasisingularity that is regularized by viscosity, the formulation provides the contribution to the viscous dissipation due to the presence of the quasisingularity. Therefore, our formulation provides a concrete support to the general multifractal description of the intermittency. We present the maps and statistics of the interscale energy transfer and show that the extreme events of this transfer govern the intermittency corrections and are compatible with a refined similarity hypothesis based on this transfer. We characterize the probability distribution functions of these extreme events via generalized Pareto distribution analysis and find that the widths of the tails are compatible with a similarity of the second kind. Finally, we make a connection between the topological and the statistical properties of the extreme events of the interscale energy transfer field and its multifractal properties. DOI: 10.1103/PhysRevE.97.053101

Dissipation, intermittency, and singularities in incompressible turbulent flows

I. INTRODUCTION

A defining feature of any turbulent field is the existence of fluctuations varying across a wide range of spatial and temporal scales. The shape of the energy spectrum of these fluctuations has been derived by Kolmogorov for a stationary, isotropic, homogeneous, and mirror-symmetric turbulence [1]. The starting point is the incompressible Navier-Stokes equations (INSE):

∂ t u i + u j ∂ j u i = - 1 ρ ∂ i p + ν∂ j ∂ j u i + f i , ( 1a 
)
∂ j u j = 0, ( 1b 
)
where u i is the d-dimensional velocity field, p the kinematic pressure, ρ the density (which we set to 1), f i a d-dimensional forcing, and ν the molecular viscosity. The second moment of the INSE with the local homogeneity (HH) assumption gives the classical Kármán-Howarth-Monin equation (hereafter KHM):

1 2 ∂ t E( ) -= 1 4 ∇ • δu(δu) 2 + ν∇ 2 E, where denotes the statistical average, = u • [ f (r + ) + f (r -)] /2
is a measure of the mean energy injection * Corresponding author: berengere.dubrulle@cea.fr rate, δu = u(x + )u(x) is the velocity increments over a distance , and E( ) = u(x) • u(x + ) = u 2 -(δu) 2 /2 is a measure of the kinetic energy at scale . Assuming isotropy and looking for stationary self-similar solutions in the inertial range ν 3/4 -1/4 L, Kolmogorov obtained δu 2 = C 2/3 2/3 , or equivalently

E(k) = C K 2/3 k -5/3
, where C K is the Kolmogorov constant, k is the wave number, and (δu • / ) 3 = -4 /5.

The resulting standard phenomenological description (K41) is that of a cascade process, in which the energy driving the flow, injected at the large length scales ∼ L comparable to the system size, is transferred to the smaller scales in a self-similar manner down to the Kolmogorov length scale η = ν 3/4 -1/4 , where it is dissipated by the viscous processes. In a steady state, the mean rate of energy injection equals the inter-length-scale energy transfer rate at each scale down to the Kolmogorov scale, where it becomes the viscous energy dissipation . This self-similar picture was challenged by Landau, as one of the basic assumptions of the K41, namely that is constant, is flawed. Measurements show that it exhibits short bursts in the time series or intense fluctuations over localized regions. The breaking of exact self-similarity was subsequently confirmed by the scaling properties of the velocity structure functions S p = [δu(x, )] p , which deviate from the self-similar law S p ∼ p/3 . This led Kolmogorov to formulate in 1962 a refined scaling hypothesis [2,3] to bridge the large-scale and small-2470-0045/2018/97(5)/053101 (21) 053101-1 ©2018 American Physical Society scale behavior using the quantity , characterizing viscous dissipation averaged over a ball of size , as

∼ [δu(x, )] 3 . (2)
This results in p) , showing that all the corrections to self-similarity are given by the statistics of , via the function τ (p).

S p = p/3 p/3 ∼ τ (p)+p/3 ∼ ζ (
However, Kraichnan [4] suggested that if such a relation holds, then should represent some well-defined local energy flux rather than a local energy dissipation averaged over a volume of linear dimension . The problem of defining the local subscale-energy-flux was considered by Meneveau [5] by employing wavelets to measure the energy transfer to scales smaller than at any space point x, but this analysis was shown to be flawed [6]. Eyink used the coarse-graining approach to obtain a local energy balance in space and scale from the INSE and thereby was able to identify the local energy flux from the large scales to the small scales as

(x) ≡ -Tr[(∇u )τ ],
(3a)

τ ij = (u i u j ) -u i u j , ( 3b 
)
where the superscript refers to a coarse-grained field at scale and τ represents a stress tensor (because of the small-scale components < ). Physically we can view (x) as the effective dissipation of the energy contained in the scales larger than by the action of the stress, coming from scales smaller than , on the gradients of the large-scale motion [6].

As discussed in Ref. [6], the above definition guarantees that whenever δu(x, ) = O( h ), then = O( 3h-1 ). Such a formulation then allows us to link the occurrence of intermittency to the local scaling and regularity properties of the velocity field. Indeed, we find that if h > 1/3, vanishes as → 0 and the weak solutions to the Euler equations do conserve energy; conversely, if h < 1/3, then there may exist solutions which dissipate energy, i.e., even in the absence of viscosity ν = 0. This behavior of the weak solutions was conjectured by Onsager in 1949 [7]. Now, if such a solution starts to develop in a viscous fluid, it will be regularized at a scale η h ∝ ν 1/(1+h) , at which h becomes 1. We refer to this behavior of the solution as an instance of a quasisingularity. The viscous dissipation becomes dominant and constant below η h , while the energy flux vanishes like 2 . For h 1/3, this results in a "spot" of large energy dissipation at the location of the quasisingularity and this explains the intermittency.

Another way of interpreting the above behavior is at the probabilistic level, in which case we postulate that the solutions of the INSE obey the scaling δu(x, ) ∼ h only in a statistical sense [START_REF] Frisch | Turbulence: The Legacy of A. N. Kolmogorov[END_REF]. The probability of occurrence of such an event then varies as P (h, ) ∼ C(h) [START_REF] Frisch | Turbulence: The Legacy of A. N. Kolmogorov[END_REF]. In Ref. [START_REF] Eyink | [END_REF] Eyink used a simple Borel-Cantelli argument to show that such a statistical interpretation implies, almost with certainty, that the velocity field realizations are singular. Moreover, a precise connection between structure function scaling exponents and intermittency can be made by using the multifractal formalism, i.e., in the form of the spatial dimension of the singularity set by means of an explicit variational formula [START_REF] Frisch | Turbulence and Predictability in Geophysical Fluid Dynamics and Climate Dynamics[END_REF]. The latter yields τ (p) = min h [p(3h -1) + C(h)], whereas in the deterministic interpretation, C(h) has the meaning of the codimension of the set of points where a quasisingularity of exponent h occurs.

Irrespective of the interpretation, we see that to understand intermittency, it is interesting to study the local energy transfer (x). However, a closer examination of the expression for the local flux in Eq. ( 3) shows that it is a sum of products of two terms: (a) ∇ j u i = O( h-1 ) and (b) τ ij = O( 2h ). Therefore, if we take the case of h = 1/3 as an illustrative example, then in the limit → 0 the term (a) is unbounded and the term (b) goes to zero smoothly. So, even though the product is theoretically bounded, it is very likely that any attempt to determine at small scales by using the data from experiments will be prone to unavoidable noise issues, thereby resulting in values which are either too large or small compared to the exact value.

In this paper, we discuss another expression of the local flux, which is devoid of the above-mentioned potential flaw. A weak formulation has been used to derive the local energy balance equation for the three-dimensional (3D) incompressible Euler and NS equations in Ref. [START_REF] Duchon | [END_REF]. This local energy balance is similar to the classical Kármán-Howarth-Monin (KHM) relation, but it is local in space and does not require the velocity field to be homogeneous or regular. It describes the temporal evolution of the point-split kinetic energy at a given scale and position x. It has three main constituent terms:

(1) a spatial flux term, describing how the input energy is transported within the flow; (2) a local energy transfer D I describing how the energy is transferred locally through scales by nonlinear interactions; (3) a term describing the energy transfer and dissipation by viscosity. The → 0 limit of D I gives the contribution to the local dissipation stemming from the eventual lack of smoothness in the solution (singularities), also known as inertial dissipation, D I .

Such a generalization of the classical KHM relation allows us to handle possible singularities and quasisingularities and to study their impact on the energy transfer and dissipation; it also puts Kolmogorov's 1962 refined similarity hypothesis in a natural framework. This motivates us to explore the statistics of the interscale flux and viscous terms in a fully developed turbulence as the scale is varied from in the inertial range down to the dissipation scale and analyze how they relate potential singularities or quasisingularities with intermittency.

In the present paper, we perform an experimental study of the connection between the local energy flux and intermittency by analyzing the velocity fields measured via stereo particle image velocimetry (SPIV) in the turbulent von Kármán swirling flow. We generate turbulence at very high Reynolds numbers in a cylindrical vessel filled with fluid by using two independently rotating impellers. Our experimental setup allows us to perform experiments for a long duration of time (ranging from minutes to hours), so as to accumulate sufficient statistics for a reliable data analysis. We also perform direct numerical simulations of the INSE at a moderate resolution to compare with the trends from the analysis of the experimental data.

We connect the high-order statistics of the interscale transfer with the statistics of the velocity field and show that they are compatible with the refined similarity hypothesis. We condition the velocity structure functions on the regions of large or small inertial dissipation and show that the intermittency corrections are governed by the extreme events of the inertial 053101-2 dissipation. Furthermore, we characterize the statistics of these extreme events via generalized Pareto distribution analysis (a peak over threshold approach) and discuss its link with the multifractal analysis.

In Sec. II we give a brief overview of the mathematical background and present details of the experimental setup and the numerical simulations. We present the results of our study in Sec. III and provide a discussion and the conclusions in Sec. IV.

II. METHODS

A. Mathematical background

In this section we briefly review the mathematical framework which we use to analyze the data from the experiments and the supporting numerical simulations. In our discussion we closely follow the material in Refs. [START_REF] Duchon | [END_REF][START_REF] Eyink | Turbulence Theory, course notes[END_REF]. We consider a weak solution u of the NS equation Eq. ( 1a) in the absence of forcing, i.e., f = 0, to keep the analysis simple. We now introduce a regularized velocity field u (x,t) = φ * u(x,t), (4) where

φ (ξ ) = 1 3 φ(ξ / ) ( 5 ) 
is an infinitely differentiable function with compact support on R 3 , even, non-negative with integral one. The regularized velocity field obeys regularized NS equations given by

∂ t u i + ∂ j (u i u j ) = -∂ i p + ν∂ k ∂ k u i , ( 6a 
)
∂ j u j = 0. ( 6b 
)
We remark that we can regard u as a continuous wavelet transform of the velocity field u with respect to the wavelet φ, provided the latter has the correct properties [START_REF] Farge | [END_REF]. We multiply Eq. (1a) and Eq. ( 6a) by u and u, respectively, and add them together; after the rearrangement of terms we obtain the following balance equation:

∂ t u i u i + ∂ i T i = E -2ν∂ j u i ∂ j u i , T i = u j u j u i + p u i + pu i -ν∂ i u j u j , E = u i u j ∂ i u j -∂ i (u i u j ) u j . ( 7 
)
We rewrite E as

-2E = ∇φ (ξ ) • δu(δu) 2 dξ -∂ i (u i u j u j ) + ∂ i [u i (u j u j ) ], ( 8 
)
where δu is the velocity increment over a distance ξ and ∇ the gradient over ξ [START_REF] Duchon | [END_REF]. Also,

ν∂ j u i ∂ j u i = -ν ∇ 2 φ (ξ )u i (x)u i (x + ξ )dξ -ν∂ j ∇ j φ (ξ )u i (x)u i (x + ξ )dξ. (9)
Finally, we note that 2E (x) ≡ u i u i = φ (ξ )u i (x)u i (x + ξ )dξ . Therefore, we have

∂ t E (x) + ∂ j J j = 1 4 ∇φ (ξ ) • δu(δu) 2 dξ + ν ∇ 2 φ (ξ )u(x) • u(x + ξ )dξ ≡ -D I -D ν , ( 10 
)
where

J i = u i E + 1 2 p u i + pu i - 1 4 [(u i u j u j ) -u i (u j u j ) ] -ν∂ i E + ν ∇ i φ (ξ )u j (x)u j (x + ξ )dξ . ( 11 
)
Equation ( 10) is a local nonrandom form of the classical KHM equation and describes the evolution of the point-split kinetic energy at scale and at position x through three main ingredients: (1) a spatial flux term ∇ • J, which describes how the input energy is transported within the flow; (2) an interscale flux D I , which describes how the energy cascades locally across the length scales; and (3) D ν , which describes space transfer and dissipation of energy by viscosity. Note that the main assumption in the derivation of the weak Kármán-Howarth-Monin (WKH) equation, namely the existence of a singularity or quasisingularity, breaks the homogeneity assumption; however, if the singularities fluctuate in time and space, homogeneity may be recovered, albeit in a statistical sense [START_REF] Frisch | Turbulence: The Legacy of A. N. Kolmogorov[END_REF].

The contribution to the local dissipation because of the possible lack of smoothness of the velocity field is given by [START_REF] Eyink | Turbulence Theory, course notes[END_REF] note that the order of limits is important: we first take the high Reynolds number limit ν → 0 and then → 0. The sign of D I depends on the space dimension. In one dimension, for the Burgers equation D I 0. In two dimensions D I = 0. In 3D, the condition of existence of a suitable weak solution only implies that the spatial average D I 0, while the instantaneous local D I depends on the regularity of the velocity field. It is zero if the velocity field is regular and nonzero in the presence of a singularity of the Euler equation. As long as h < 1/3, the local energy transfer, which scales like 3h-1 , is prone to increase locally with decrease in the scale until reaching = η h where it is dissipated. This results in a huge variation of the local energy dissipation and intermittency [START_REF] Drivas | [END_REF]. Such a scenario has already been validated on the shell models of turbulence [15]. This suggests that a natural analog of the quantity is D I [START_REF] Drivas | [END_REF]. In the present paper we show conclusively by making use of the analytical, numerical, and experimental analysis that it is indeed the case.

D I = lim →0 lim ν→0 D I ;

B. Experimental setup and the description of the flow field

We use the von Kármán flow setup at SPEC to conduct experiments for this study. Here we briefly describe the experimental setup and refer to Appendix A 1 and Refs. [16,17] 053101-3 A, B, C, D, andE) and the DNS run. F is the rotation frequency of the impellers in Hz; Re is the Reynolds number based on the radius of the tank; Re λ is the Taylor-microscale Reynolds number; is the dimensionless energy dissipation, reported in Ref. [17] for the data sets A-E; η is the Kolmogorov dissipation length scale; and x represents the spatial resolution in the measurements and the DNS. The second to last column, Samples, indicates the number of velocity field samples over which the statistical averaging is performed (product of number of time frames and number of spatial points), and the last column shows the symbols used to represent the experimental data sets. for more details. The setup consists of a cylindrical tank of height H = 20 cm and radius R = 10 cm to hold the test fluid.

Case

We drive the fluid to and maintain it in a turbulent state at high Reynolds numbers by means of two independently rotating impellers at frequency F , located at the top and the bottom of the cylindrical tank. We measure the radial u r , axial u z , and azimuthal u φ components of the velocity fields by using high-zooming lenses coupled to a standard particle image velocimetry (SPIV) technique. We perform our measurements within a 4 cm × 3 cm region located on the meridian plane, around the symmetry point of the experimental setup (see Fig. 16 in Appendix A 2). At this location, a shear layer induced by the differential rotation produces a strong turbulent motion [18,19]. We used the SPIV data from these experiments in Ref. [17] to present an extensive characterization of the intermittency by using the velocity structure functions in such a flow configuration. However, in this study our goal is more fundamental and we want to trace the origin of the intermittency corrections and connect them with extreme events of local dissipation D I and D ν . The Reynolds number based on the radius of the tank is Re = 2πR 2 F /ν, where ν is the kinematic viscosity of the fluid in the tank. The local energy injection rate has been computed in [17]. In our experiments, we use a mixture of water and glycerol and by varying their proportion we can control the viscosity of the fluid; this in turn allows us to tune the Kolmogorov scale η. This feature coupled with the use of the multiscale imaging method in our experiments enables us to access scales in the range of η to 5000η (i.e., three decades of inertial range) in a fully turbulent flow. Table I summarizes the parameters corresponding to the different data sets used throughout this paper.

C. Direct numerical simulations

In our analysis of the experimental data, we check for the influence of experimental errors, anisotropy, inhomogeneity, finite boundaries, and projection effects (our measurements are on a plane and not over a volume). We implement these checks by comparing the results from the analysis of the experimental with those from the direct numerical simulations (DNS) of the 3D NS Eq. (1a). To carry out the DNS, we use the NSE solver VIKSHOBHA, an efficient, parallel numerical code based on a pseudospectral method. We use this to determine the fluid velocity u on a cubic, triply periodic domain with sides

L = L x = L y = L z = 2π .
The use of the periodic boundary conditions allow us to express u as a Fourier series. However, in any DNS only a finite number of Fourier modes can be used. Therefore, to limit the number of Fourier modes, we make use of a Galerkin truncation and solve the NSE in Fourier space with N 3 c modes. The velocity field is now given by u(x,t)

= k ûk exp [ik • x], where k = (n 1 ,n 2 ,n 3 )2π/L and n i ∈ [-N c ,N c -1].
In other words, we discretize the computational domain and use an N 3 c number of grid points to represent u in the real (physical) space. We use the incompressibility condition ∇ • u to eliminate the pressure by introducing a transverse projection operator P i,k (k) = δ i,jk i k j /k 2 , which projects the nonlinear term u • ∇u on the plane perpendicular to k. To implement the pseudospectral method, we compute the linear terms in Fourier space and the nonlinear term in real space, which we then transform to Fourier space; to remove aliasing errors we use a 2/3-dealiasing rule, so that the maximum wave number in our simulations is k max = N c /3. We evolve the NS equations in time by using a second-order Runge-Kutta scheme, while exactly solving the linear part.

In the present work, we take N c = 512 and use the Taylor-Green forcing at wave number kf = 1 with an amplitude f 0 = 0.12 (see Appendix A 7 for more details). We use several independent velocity samples to compute the same diagnostics as for the experimental flow field, but now in a 3D volume rather than on a plane.

III. RESULTS

We now present the results from our analysis of the experimental flow field and the numerical simulations.

A. Wavelet structure functions

The local energy transfers are computed by using the wavelet transforms. Therefore, it is natural to make a link between the intermittency of the velocity field and the local energy transfer via the wavelet structure functions, rather than the classical structure functions. They are defined by using the 053101-4 following quantities:

G ij (x, ) = d y∇ j ( y)u i (x + y), S ij (x, ) = 1 2 [G ij (x, ) + G ji (x, )], A ij (x, ) = 1 2 [G ij (x, ) -G ji (x, )], (13) 
where (x) = -d (x/ ) is a Gaussian function and d is the space dimension. We then compute the wavelet velocity increments as

δW (u)(x, ) = δ 2 L + δ 2 ⊥ 1/2 , ( 14 
)
where

δ L ( ) = max ij |S ij (x, )|, δ ⊥ ( ) = max ij |A ij (x, )|, (15) 
respectively. We use the increments δW (u)(x, ) to infer the general scaling properties of the velocity fields by defining the structure functions as

S p ( ) = |δW (u)(x, )| p , ( 16 
)
where denotes an average over space and time. This way of defining the structure functions has some similarities with those based on the principal values of |G R ij (x)| as reported by Kestener and Arneodo in Ref. [20]. Like in Ref. [20], our approach does not involve the derivatives of the velocity field, nor does it introduce any additional noise. Moreover, our definition is free of singular values computation, a procedure which may generate some noise. Therefore, ours is the smoothest possible definition of the structure functions, which enables us to quantify the scaling properties of a given velocity field.

We first check that this definition provides a description of the intermittency that is compatible with what is obtained by using the classical velocity increments. In Fig. 1(a) we plot the structure functions S p ( ), p ∈ (1,[START_REF] Eyink | [END_REF] for the five experimental flows A to E (see Table I for more details). We observe that the plots of S p ( ) rescaled by p/3 η ζ (p) vs /η collapse on a universal curve for the cases A to E, which are different for different p. In Table II we summarize the exponents ζ (p), which we obtain for the different orders of S p ( ). The scaling behavior is similar to what is observed for the structure functions computed by directly using velocity increments [17]. Also, the scaling exponents are in good agreement with those computed by using extended self-similarity [21]. Moreover, we find that these structure functions compare well with those computed from the DNS velocity field; in particular, we have a good agreement with the experimental data set E, which has similar Re λ .

We note that the structure functions from different experimental data sets deviate significantly, by being systematically lower, from those at higher Re λ . In [17], this difference between different experimental cases was attributed to inhomogeneities of the dissipation. A way to test this hypothesis is to consider rescaled wavelet structure functions, i.e., S p ( )/[S 1 ( )] n/3 , since in such a case the dependence with respect to cancels. We plot these rescaled structure functions in Fig. 1(b) and find an improvement in their collapse on the universal curves for all the data sets A to E. Now they follow the expected scaling law τ (p/3) , which is compatible with the scaling S 3 ( ) ∼ . Also, the agreement with the control DNS is also improved.

B. Spatiotemporal statistics of the local energy transfer and viscous dissipation

We now explore the connection between the intermittency study presented above and the statistics of the local energy transfer and viscous dissipation. We compute D I and D ν for the experimental data sets A to E. Note that in our experimental setup, the velocity fields are such that their fluctuations have spatially homogeneous statistics; they do not depend on space.

Probability distribution functions

In Figs. 2(a) and 2(b) we show the probability distribution functions (PDFs) of the local interscale transfer D I and the viscous dissipation D ν , respectively, at different scales, by accumulating data from the instantaneous fields. Both quantities are very intermittent in space and time. D ν is predominantly positive; the percentage of the positive values varies between 67% and 90%, as we move from the large length scales to small length scales close to η, respectively. The existence of negative values is due to the fact that D ν is the sum of a transport term and a dissipation term, both originating from the viscous part [see Eq. ( 9)]. The relative importance of the latter increases with the decreasing scales. This also explains the difference with the traditional viscous dissipation term ν = ν∂ i u j ∂ i u j (see Fig. 3), whose PDF is close to the log-normal form. In the inset Fig. 2(b1) we plot the PDFs of the positive values of D ν , which show a clear impact of the viscous dissipation at the smaller scales. In contrast, the PDFs of D I are rather symmetric with both large positive and negative values representing direct and inverse (backscatter) energy transfer, respectively. These PDFs display wide tails, irrespective of whether we choose the total dissipation or the standard deviation of D ν to normalize D ν . The tail width of the PDFs of D I / initially increases and then decreases, as we move from large to small scales. If D I is normalized by its standard deviation, we observe that the decrease of the tail width of the PDFs is less pronounced at small scales; this results in the overlap of the PDF tails for the length scales 90η and 3η. This suggests that the behavior of D I in the dissipation range can be as intermittent as it is in the inertial range.

A quantitative measure of the above effect is given by the number of "extreme events" of interscale transfer, i.e., instances when D I / D I 1000 over the measurement area. In our analysis, we count the number of such events in one data set of 3 × 10 4 snapshots. We do not find any extreme event satisfying the above criterion at scale ≈ 160η; only 4 extreme events at scale ≈ 80η; 18 extreme events at scale ≈ 40η; and 36 extreme events at scale ≈ 2η. In Fig. 4 we show the pseudocolor plots of the instantaneous D I for the data sets E and C at scales ≈ η and ≈ 12η, respectively. In particular, we show these typical maps of local energy transfer in the absence and presence of the extreme events in the upper and lower panels, respectively.

The characterization of the flow topology around the extreme events of inertial dissipation is an important question and it has been suggested that it differs from that associated with the viscous dissipation [16]. The pseudocolor plots of D I Figs. 4(c) and 4(d) show that these extreme events are located within the coherent structures. Moreover, another important feature which is evident from Fig. 4(c) is the presence of these extreme events of energy transfers at the scales of the order of the dissipation length scale. As a result, the local energy balance has a significant contribution from the interscale transfer, irrespective of how it is dissipated at small scales (viscous dissipation or lack of smoothness of the velocity fields [16,22]). This behavior is compatible with the multifractal description of turbulence [START_REF] Frisch | Turbulence and Predictability in Geophysical Fluid Dynamics and Climate Dynamics[END_REF], in which the singularities with exponent h < 1/3 dissipate energy at scales η h ∼ Re -1/(1+h) < η. Even though the number of extreme events increases with decreasing scale, their contribution to the total energy dissipation decreases with it. This is clear from the comparison of Fig. 2(a) and its inset. For example, if we look for events which are larger than 500 times the average dissipation rate , we find only 3 such events at ∼ η as compared to 306 events at ∼ 12η.

The above discussion highlights the need to identify the correlation between D I and D ν . We do so by computing the logarithm of the joint PDFs of these two quantities at different scales; we show them in Fig. 5. The logarithm of the joint PDFs is such that the maxima of |D I | coincide with minima of |D ν | (and vice versa). This suggests that the extreme events of interscale transfer correspond to the minima of viscous dissipation (and vice versa).

Behavior of the spatiotemporal averages

The mean of D I converges very slowly, if at all, perhaps because of the presence of the extreme events of both positive and negative signs in its distribution. Also, the convergence is more difficult at the large length scales than at the small length scales of a given data set; this is so because any statistical analysis of the former involves a lower number of independent blocks of data compared to the latter. In Appendix A 5 we give the details of the convergence tests, which we have performed on the following quantities, namely, D I , D ν , and |D I | at different scales (see Figs. 19, 20, and 21, respectively). In summary, the mean is in general not converged for any of the scales we considered for the data sets B, C, and D, even over 3 × 10 4 frames. We observe a satisfactory convergence of the mean only for the first few scales for the data sets C and E. However, if we consider the absolute values of D I , this problem is absent and the convergence of the mean is ensured at all scales for all the data sets A-E (over 3 × 10 4 frames).

In Figs. 6(a) and 6(b) we plot the spatiotemporal average of D I / and |D I |/ versus universal coordinates /η, respectively, for the different experimental data sets (we use different symbols to represent them). We also show the variation of the mean energy dissipation D ν with scale /η on these plots. We remark that D ν is second order in velocity increments and is also everywhere positive; therefore, it does not suffer from the convergence issues (see Fig. 20). Moreover, if we plot D ν vs /η, its values from different data sets collapse on a single curve. It displays -4/3 power-law scaling down to 30η and it tends to at small scales. We observe that compared to D ν the data collapse is not so good for D I and results in scatter, a signature of the lack of convergence of this quantity for some data sets.

The behavior of absolute value of the local energy transfer |D I | is significantly different from that of D I . The former reaches a value of about 2 to 3 times for scales > 30η, whereas the latter stays below /3. This large difference can attributed to the fact that our measurements are on a plane, which prevents us from computing the contribution of the velocity increments in the azimuthal direction. This may change the proportion of the events with positive signs compared to that with negative signs, especially the extreme ones.

To check the above arguments, we compare our results with the data from the homogeneous, isotropic 3D DNS. For the DNS run we expect the sum of D I and D ν to be equal to the mean energy dissipation . Figure 7 shows that such a relation is very well satisfied for the scales < 40η, beyond which the finite-size effects lead to deviation. As expected, the relation is not satisfied for |D I | , which makes the sum exceed , as now both positive and negative instances contribute without cancellations. From these plots, we can infer that the inertial range exists, if at all, for scales larger than, but close to, 10η. We observe that D ν obtained from the DNS agrees well with the experimental data, whereas D I obtained from the DNS is 3 times larger than that from the experiments. This observation is in agreement with the arguments about the projection effects related with SPIV, which highlights the limitation of the experimental measurements.

C. Higher order statistics and refined similarity hypothesis

We explore the higher order statistics of the local energy transfer and viscous dissipation by defining the following 053101-8 structure functions:

I p = D I p , ( 17 
) ν p = D ν p , ( 18 
)
respectively. We compute these structure functions for p = i/3, where i ∈ (1,[START_REF] Eyink | [END_REF], and plot them in Fig. 8. We observe that for a given order p, I p and ν p from different data sets rescaled by ( I 1 ) p η τ (p) and ( ν 1 ) p η γ (p) , respectively, collapse on a single universal curve. For a given order p, the universal curve is a power law with exponent τ (p/3) = ζ (p)p/3 and γ (p/3) for I p/3 and ν p/3 , respectively. The computation of the exponent γ (p/3) from the multifractal theory is postponed to Sec. III F. We find that the magnitude of γ (p/3) is always smaller than the exponent τ (p/3), which we obtain for the intermittency correction to the structure functions.

These results are in agreement with a refined similarity hypothesis, that had been suggested in [23]:

S p ( ) (S 3 ( )) p/3 ∼ I p/3 I 1 p/3 . ( 19 
)
We compute these structure functions for the data from the DNS run and plot them in Fig. 8. I p and ν p from the DNS are in agreement with the experimental data sets for orders up to p = 4/3, but show increasing deviations both at small and large length scales. We find that the agreement is better for ν p than it is for I p , which may be attributed to the aforementioned projection effects related to SPIV.

D. Conditioned wavelet structure functions: The role of extreme events of inertial dissipation

The discussion in the previous section allows us to draw an important conclusion that in the turbulent regime the intermittency corrections are governed by the local energy transfers. This motivates us to explore this connection further by conditioning the structure functions on the regions of high or low inertial dissipation (i.e., local energy transfers at the resolution scale). We implement this for each of the data sets A to E by defining two special sets of points A and B corresponding to the locations of low and high values of |D I

x |, respectively. We divide the PDF of |D I

x | at the smallest scale of a given experimental data set (A to E) into 10 deciles: the set of points forming the first decile (the spatial regions with |D I

x | being in the 10% lower values of the inertial dissipation, that is, values close to 0) are assigned to the set A and the points forming the last decile (the spatial regions with |D I

x | in the highest 10% in magnitude) are assigned to the set B. Therefore, the extreme events of D I

x are in set B. We then compute the wavelet structure functions defined by

S C n ( ) = |δW (u)(x, )| p A,B , (20) 
where the average is taken on either set A or set B. We show these structure functions in Fig. 9 for orders p ∈ (1,9) and compare them with the original, unconditioned, wavelet-based structure functions. We observe that the structure functions conditioned on the events of small inertial dissipation are less intermittent than the unconditioned ones and display p/3 power-law scaling behavior. In contrast, the structure functions conditioned on the extreme values of the inertial dissipation have intermittency, which is similar to those that are unconditioned. This clearly shows that the intermittency is essentially governed by the extreme events of the inertial dissipation.

E. Extreme value analysis of the spatiotemporal probability distribution functions

We now know from the detailed study of the various structure functions presented in the previous sections that the extreme events of D I control the intermittency and their PDFs are strongly non-Gaussian. Also, these extreme events are located in the tails of the PDFs. Therefore, we now use the tools of the extreme value analysis to further explore the statistical properties of these extreme events. We characterize the tails of the PDFs by using the generalized Pareto distribution (GPD) given by

f GP D (x; μ,σ,ξ ) = 1 σ 1 + ξ x -μ σ -1-1/ξ , ( 21 
)
where μ ∈ R is the location parameter representing the chosen threshold, σ > 0 is the scale parameter representing the typical order of extreme fluctuations, and ξ is the tail shape parameter, representing the rate of decay of extremes in the tail.

We apply this analysis to the PDFs of D I at different scales (based on 3 × 10 4 samples) and obtain fits by using the maximum likelihood estimation criterion (implemented in the MATLAB routine "gpfit"). We fit in each case the parameters μ, σ , and ξ for the quantiles 0.975, 0.99, and 0.995 indicating strong, rare, and extreme events, respectively. As a result, we obtain the spatial and scale dependence of these three parameters μ( ), σ ( ), and ξ ( ) for the above-mentioned three types of events. We varied the series size and find that these indicators have better convergence properties than the moments of D I ; thus, they are better suited for interpreting the behavior of the tails.

In our use of the GPD analysis, we are also motivated by the possible links it can provide with the multifractal properties of the local energy transfer field D I (x,t). The GPD analysis of a multifractal field, characterized by a spectrum D(h), yields the following scale dependence for the three parameters:

μ( ) ∼ h min , σ( ) ∼ h min , ξ ∼ 1/p * , ( 22 
)
where h min = min[h/D(h) = 0] and p * = dD(h) dh | h min (see Refs. [24,[START_REF] Abry | Proc. GRETSI Symposium Signal and Image Processing[END_REF] for additional details).

Quantile value parameter μ

The parameter μ describes the value at which a given quantile is achieved, i.e., the typical value of an extreme event that has the probability given by the quantile. In Figs. 10(a) and 10(b) we show the variation of μ normalized by as a function of /η from the negative and positive tails of the PDF, respectively. We observe that for the positive tails [see Fig. 10(b)], the normalized quantile threshold μ/ follows a smooth curve, which is almost flat over the range of scales (10η,300η) coinciding with the inertial range. This behavior corresponds to the value h min = 0. We also find that outside the above-mentioned range of scales, both at the small and large length scales, μ decreases to zero rather sharply. For the 053101-10 negative tails [see Fig. 10(a)], the plots of μ do not follow a smooth curve and are more scattered. This difference between the behavior of the positive and negative tails may be an indication of the fact that the positive and negative events of D I (x,t) are not equivalent and correspond to different processes. Moreover, we notice discontinuities on moving from one experimental data set to another, thereby implying that μ is sensitive to the Reynolds number. In Fig. 10(c) we show the plots of μ -/ versus μ + / and we find that on average the μ + is larger than μ -, tracing the asymmetry of the distribution towards positive values.

Intermittency parameter σ

The parameter σ quantifies the "width" of the tails of a PDF; therefore, it is an indicator of the importance of the extreme events. In Figs. 11(a respectively. We observe that, when plotted in this manner, only the lowest or the lower two quantiles follow a universal curve for the different experimental data sets A to E and this behavior is independent of whether we choose the positive or the negative tail. For the highest quantile, we notice a Reynolds number dependence in the form of sharp discontinuities on moving from one data set to the next. We may attribute the observation of this behavior to the lack of statistics-the higher the quantile the lower the number of events-therefore, resulting in a poor fit. However, at the highest quantile, we can improve the data collapse of different experimental data sets by explicitly introducing the Reynolds number dependence. This is based on the assumption that the intermittency parameter follows a shape governed by the similarity of second kind, first suggested by Castaing [START_REF] Castaing | [END_REF]27] and derived by Dubrulle and Graner from finite scale invariance [28]:

ln σ = β(exp[α ln( /L)] -1), ( 23 
)
where β = β 0 ln(Re) and α = α 0 / ln(Re), and L is a large scale (L = 1 in our nondimensional units). In the limit ln(Re) → 0, we recover the classical similarity ln(σ ) ∝ ln( /L), but at finite Re we have to include corrections to the similarity. In the present case, this assumption implies that ln(σ )/ ln(Re) versus ln( )/ ln(Re) should collapse on a universal curve for the different data sets. We show this in the insets Figs. 11(a.1) and 11(b.1) for the negative and the positive tails of the PDFs, respectively. As we expected, the collapse between the different data sets is better for the highest quantile. Moreover, the curve is a straight line, as required by the shape relation Eq. ( 23). However, the slope of the straight line, which traces h min , depends on the quantile: it increases from 0 to -0.25 as the quantile changes from 0.975 to 0.995, respectively. This means that h min decreases with the value of the quantile. We find that in all the cases the value of h min is smaller than those inferred by using the parameter μ.

In Fig. 12 we show the plots of σ -/ vs σ + / , where σ - and σ + denote the intermittency parameters for the negative and positive tails of the PDFs, respectively. We observe that these parametric curves display some curvature, indicating that the two quantities are not correlated in a simple way. In addition, we find that the intermittency parameter of the positive tail has the tendency to be higher than the negative tails; this implies that the positive extreme events are more intermittent than those with negative sign. 

Power-law parameter ξ

The parameter ξ quantifies the index of the power law of an equivalent GPD. If ξ 0, this indicates that the distribution is bounded and well behaved. The ξ > 0 implies a pathological distribution with diverging moments: if the shape parameter ξ > 1/n, the moments of order n and greater do not exist [START_REF] Leadbetter | Extremes and Related Properties of Random Sequences and Processes[END_REF]. In Figs. 13(a) and 13(b) we plot the parameter ξ vs /η for the negative and positive tails of the PDFs, respectively; we show analogous plots in the insets Figs. 13(a.1) and 13(b.1) for this parameter vs /R for the negative and positive tails of the PDFs, respectively, where R is the radius of the cylindrical tank. Figures 13(a.1) and 13(b.1) show that the curves for different quantiles collapse on each other indicating that the Kolmogorov length scale is not the relevant scale to explain the behavior of this parameter. ξ is close to zero at large length scales and increases continuously as we decrease the scale; at the smallest scale in our data sets its value is close to 0.6 for the highest quantile. This means that the second-order moments are not defined and it also explains why it is so difficult to achieve the convergence of the mean.

The steepening of ξ vs implies that the parameter p * = 1/ξ decreases as a function of scale. Moreover, at the Kolmogorov scale, we do not observe any indication of the saturation of the power-law parameter, which means that we are potentially exploring more and more singular regions.

Figure 14 shows that the correlation plot of ξ from the negative tail (ξ -) vs that from the positive tail (ξ + ) of the PDFs is roughly linear; we also observe that ξ -has a tendency to be larger than ξ + . This means that the convergency to a singularity, if any, is faster for the extreme events of D I with negative sign.

F. Compatibility with multifractal analysis

The above GPD analysis has provided us with two important pieces of information regarding the multifractal spectrum of the local energy transfer: (1) h min is between -0.25 and 0 with dependence on the quantity and quantile considered;

(2) p * changes between 1.67 and ∞, if we move from the Kolmogorov scale to the injection scale. We compare this prediction with the direct estimates of these quantities obtained from the scaling exponents τ (p) listed in Table II. We use the Legendre transform formula

τ (p) = min h [ph + 2 -D(h)] ( 24 
)
to obtain the values of D(h), which we show in Fig. 15.

We obtain h min = -0.88 and p * = 4. This value of h min is much smaller than that obtained from the GPD analysis, which suggests that the latter requires higher quantile to converge this quantity. The value of p * obtained by using D(h) is obtained in the GPD analysis for scales close to = 10 -2 R (=1 mm), which sets the characteristic size of the structure. We recall that the local energy transfer scales as h = 3 h v -1, where h v is the scaling exponent of the velocity. This suggests that the above structures correspond to those with h v ≈ 0. This estimate is compatible with the observations of Saw et al. [16] of extreme events of inertial dissipation, that look as shock-or front-like structures with elongated shape, of about 10 x in the direction perpendicular to the front.

The obtained D(h) can also be used to compute other quantities of interest, like the exponent γ . Indeed, since D ν scales like 2h -2, we get

|D ν | p ∼ ξ ν (p) , ξ ν (p) = min h [p(2h -2) + 2 -D(h)]. (25) 
Approximating

C(h) = 2 -D(h) by a parabola C(h) = (h - a) 2 /2b, with a = 1/3 + 3b/2 to ensure that ζ (3) = 1, we get ξ ν (p) = 2p(a -1) -2bp 2 , γ (p/3) = 2 3 bp - 2 9 bp 2 . ( 26 
)
Using b = 0.025, we get the value of Table II.

IV. DISCUSSION AND CONCLUSIONS

We know that at small scales turbulence displays strong deviations from the homogeneity and self-similarity assumptions of Kolmogorov's phenomenological theory. In this work, we have carried out a detailed exploration of the idea that these strong deviations are linked to the existence of singularities or quasisingularities in the turbulent flows, which produce extremely localized and violent events of dissipation [START_REF] Drivas | [END_REF]15]. Therefore, both the homogeneity and the regularity conditions have to be relaxed and the weak formulation approach needs to be adopted to describe the local energy transport and dissipation [START_REF] Duchon | [END_REF]. We discuss in detail the local energy balance equation derived by using the weak solution formulation (see Refs. [START_REF] Duchon | [END_REF][START_REF] Eyink | Turbulence Theory, course notes[END_REF]). In particular, we elaborate on the expressions for the local energy transfers and local energy dissipation; we show how in our approach they generalize the average quantities in the Kármán-Howarth-Monin equation. We call this framework the weak Kármán-Howarth-Monin (WKH) equation.

We emphasize that this approach offers several interesting possibilities, as we describe below. WKH provides a natural framework to study possible quasisingularities and II), in Eq. ( 24). The red dash-dot line indicates the tangent f (h) = 4(hh min ), where h min = -0.88. singularities (see Ref. [22] for more details). In the presence of a quasisingularity or a singularity in the velocity field, it yields a nonzero inertial dissipation term D I in the limit → 0. Moreover, even after we perform a coarse-graining on the velocity field, the signatures of quasisingularities and singularities are present at finite resolutions in the form of D I being nonzero along the lines in the scale space that originate from the singularity at = 0. We can use the study of the velocity field at the dissipation scales around the extreme events of D I (u,x,t) to classify the possible quasisingularities and singularities [16]. Therefore, WKH provides a concrete description of the multifractal framework. Also, the analysis of the tail of the PDFs of D I (u,x,t) provides information about the topology of the quasisingularities.

The main advantage of the WKH framework is to localize in space and time the different terms, which contribute to the energy cascade at any scale and associate them with special topologies of the velocity fields. This approach can be then used far beyond the Kolmogorov scale, e.g., to study energy transfers in geophysical flows [START_REF] Faranda | [END_REF]. We find this to be complementary to the traditional methods used in turbulence, which focus only on the structures associated with enstrophy or viscous dissipation (these were thought be the only relevant entities as the end product of the energy cascade). In our framework, the local energy transfer and inertial dissipation term appears as the most relevant quantity, which may be used to devise and validate new models of turbulence. Also, we can compute the main terms describing the local energy transfers D I and D ν , once the velocity field is known. Interestingly, as discussed in Ref. [22], it is now possible to explore these concepts in experiments since the advent of the particle image velocimetry methods. Moreover, the weak formulation introduces a natural smoothing that makes the computation of these quantities much less sensitive to the noise than the original direct formulation.

Motivated by these considerations, we use the experimental measurements in a turbulent swirling flow to provide a study of the statistics and the scaling properties of D I and D ν . We 053101-14 find that the energy transfers are very intermittent because of the presence of extreme events at the dissipative scale, which may be regarded as the footprints of the quasisingularities or singularities existing at sub-Kolmogorov scale [16]. We show that these extreme events govern the intermittency corrections of the velocity field and follow from a refined similarity analysis based on local energy transfers [6,31]. We characterize the distribution of these extreme events by using the generalized Pareto distribution (GPD) analysis. The width of the tails is shown to be compatible with a similarity of the second kind, first proposed by Castaing [27]. Finally, we make a connection between the topological and the statistical properties of the extreme events of the inertial dissipation field and its multifractal properties.

In our analysis we are constrained to use the velocity fields measured on a plane because of the experimental limitations. We recognize that it is important to perform the same analysis on the velocity field measured over a volume, but the latter is still an experimental challenge because of the extreme refinement needed for such an analysis. We partly fill this gap by performing a 3D DNS at a moderate resolution and check that our results are not affected by the measurement constraints. Given that the numerical simulations of the INSE are performed over a finite resolution, it is yet not clear whether the extreme events of the local energy transfer will still be present, if they are indeed triggered by the potential sub-Kolmogorov scale Navier-Stokes singularities or quasisingularities. In the absence of these extreme events, we expect a different behavior of the tails of the distributions of the local energy transfers. However, an elaborate validation of our experimental results in numerical simulations requires very large simulations, which is a challenging task.

APPENDIX: METHODS

Experimental setup

We visualize turbulent von Kármán flows in a plexiglass cylinder of radius R = 100 mm, filled with water at a controlled temperature of 20 • C. The flows are driven by two counterrotating curve-bladed impellers at a frequency F , rotating with their blades concave face pushing forward (called ANTI in previous publications of our group). The setup is oriented with its axis of symmetry in the vertical direction. Using high-zooming lenses coupled to standard stereo particle image velocimetry (PIV), we obtain 3-component velocity fields (radial u r , axial u z , azimuthal u φ ) of the flows in a vertical plane containing the symmetric axis, with nominal spatial resolution between x = 0.24 mm and x = 3.4 mm (the laser sheet that defines the measurement plane is ∼1 mm thick). The torque and frequency of each impeller is measured using a torque meter (SCAIME Inc.). More details on the setup can be found in [16]. The Reynolds number of the flow is given by Re = 2πR 2 F /ν, where ν is the fluid's kinematic viscosity. We use different mixtures of glycerol and water in order to vary the viscosity of the working fluid, and thus the Reynolds number. Monitoring the torques C 1 and C 2 applied to each impeller, we obtain the dimensionless energy injection rate as

= 2π (C 1 + C 2 )F ρπH R 4 (2πF ) 3 . (A1)
We have checked in a scale 4:1 heat-insulated version of our experiment in helium that in the stationary regime, the global energy input is balanced by a global heat output, so that also measures the energy dissipated in the flow. Due to flow inhomogeneity, however, the energy dissipation is not homogeneous within the whole flow. Therefore, we use in this paper local estimates, derived from second-order structure functions in [17]. From this, we can compute the Kolmogorov dissipative scale as η = ( /ν 3 ) -1/4 . We have further shown that in our experimental setup the dimensionless energy dissipation rate saturates towards a constant value = 0.05 above Re c = 3500 [32], corresponding to the critical Reynolds number for the onset of fully developed turbulence [33]. Varying the viscosity while keeping Re > 3500 thus enables us to monitor the size of the dissipative scale, while remaining in the regime where the flow is fully turbulent. Measurements at different values of x/η were then obtained by acting on the frequency F , the mixture composition, and the zooming lens. Table I summarizes the parameters corresponding to the different cases. In cases A and B, the SPIV system has been zoomed on a 4 cm × 3 cm zone at the center of the experiment; see Fig. 16.

Velocity fields

The results of this paper are based on series of SPIV measurements taken at frequency 15Hz (3 to 12 times the eddy turnover time) over 35 to 40 minutes, resulting in samples of 30 000 frames that can be considered as statistically independent. For each sample, the velocity field is reconstructed using peak correlation performed over 50% overlapping windows of size 16 to 32 pixels. As a result, we get instantaneous
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FIG. 17. Radial (a) and vertical (b) velocity profiles at z = 0 (resp. x = 0). Red: case A; green: case B; blue: case C; gray: case E. Square: u r ; circles: u y ; stars: u z . The coordinates have been nondimensionalized by R the radius of the cylinder. snapshots of the three components of the velocity field on a grid of approximate size 90 × 70. In the sequel, we work with dimensionless quantities, using the radius of the vessel R as the unit of length, and the impeller rotation period (2πF ) -1 as the unit of time. A typical map of the time-averaged velocity fields for the global experiments is provided in Fig. 16 for the cases A and C, showing the location of the zoom window. One observes a continuity in the flow topology between the zoomed and unzoomed case, showing that the calibration is consistent in between the two cases. To quantify further the discrepancy between the different zoomed and unzoomed field and estimate error bars, we plot in Fig. 17 mean radial and vertical profiles near the stagnation point. From this comparison, we can estimate a relative error on velocity measurements of 10%, resulting in an uncertainty of 30% for third-order quantities.

Wavelet spectrum

Given that the weak formulation was derived using continuous wavelet transform, it is informative to first compute the wavelet power spectrum of our velocity fields, given by

E W (k) = 1 C k d 2 b W T i ,u, k k ,b 2 , ( A2 
)
where (η ) -5/3 FIG. 18. Wavelet spectrum for the 5 different cases of Table I: blue circle: case A; red square: case B; yellow diamond: case C; purple triangle: case D; green stars: case E. The dotted line is (η/ ) -5/3 . The spectrum and the the scale have been made nondimensional using η, the Kolmogorov scale, and , the energy dissipation.

W i ( ,u,a,b) = u i (x) x -b a d 2 x a (A3)
is the 2D continuous wavelet transform of u i with respect to the Mexican hat wavelet (Laplacian of a Gaussian), C is a normalizing coefficient, and k is the centroid velocity wave number, defined through the Fourier transform of as

k = k| ˆ (k)|dk | ˆ (k)|dk . (A4)
As discussed in [START_REF] Farge | [END_REF], this global wavelet spectrum converges towards the Fourier energy spectrum provided has enough vanishing moments. Its advantage is that it is less noisy than the Fourier energy spectrum, since it can be interpreted as a moving average of the energy spectrum over the wave number space [START_REF] Farge | [END_REF]. The wavelet spectrum is provided in Fig. 18 following a "universal" representation E W ( )/ 2/3 /η 5/3 = F (η/ ), with = k /k, for the cases we considered in the paper. One sees that the superposition of the 5 cases follows a -5/3 law over a large interval of wave number, that can be interpreted as an inertial range. Case A corresponds to injection scales, cases B, C, and D correspond to inertial range, while case E is in the dissipative range.

Diagnostics for energy transfer and dissipation

Given any instantaneous velocity field, we can compute the 2D-3C velocity increments δ u( r) = u( x 2D + r 2D )u( x 2D ), x 2D , and r 2D being the coordinates onto the plane of measurements. In this paper, for simplicity, we omit the 2D superscript.

Following Eq. ( 10), we may then use our measurements to compute the quantity D I and D ν : For this, we use a simple shift in the definition of D ν to write it in term of a continuous wavelet transform as

D I = 1 4 ∇φ (ξ ) • δu(δu) 2 , D ν = -ν ∇ 2 φ (ξ )u(x) • u(x + ξ )dξ. ( A5 
D ν (x) = -νu i (x)W T i ( ,u, ,x), ( A6 
)
where W T i ( ,u, ,x) is the continuous wavelet transform of u i with respect to the wavelet = ∇ 2 φ. Taking φ as a Gaussian transforms into the Mexican hat wavelet. The advantage of such a formulation is that it transforms the problem of computation of D ν (x) into the problem of computing 3 continuous wavelet transform, which is very fast using algorithms based on FFT. In the sequel, we use the 2D continuous wavelet MATLAB package provided by the toolbox YAWTB [START_REF]The toolbox YAWTB is[END_REF].
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In the same way, one can use continuous wavelet transforms to compute efficiently D I . Indeed, developing its expression, we get 18 terms looking typically like

T 11 = 1 4 ∇ 1 φ (ξ )u 1 (x + ξ )|u(x + ξ )| 2 , ( A7 
)
which can be expressed as

T 11 = 1 4 W T 1 (∇ 1 φ,u|u| 2 , ,x). (A8)
Using complex wave numbers and complex wavelet transforms, we can then compute the whole term D I using only 9 complex continuous wavelet transforms.

For the DNS, we have used the same method, using the 3D continuous wavelet MATLAB package provided by the toolbox YAWTB.

Convergency analysis

To check the convergency of the quantity D I and D ν , we have computed the running average of a variable ensemble of velocity fields, ranging from 0% of the total number of frames to 100% of the total number. The results are displayed in Figs. 19 and 20. One sees that the average is converged in all cases and for all scales for D ν , and only for the first scales for the high-resolution data set C and E for D I . For all other cases and scales, the average of D I is not converged within our statistics. If one looks for the average of the absolute value of D I , the convergency is ensured for all cases and scales, as can be seen in Fig. 21.

Generalized Pareto distribution analysis

To perform the extreme value analysis we have chosen the so-called peak-over-threshold approach formalized by Pickands [34]. In this approach one considers a series of independent and identically distributed variables X 1 ,X 2 , . . . ,X n and studies the probability P (X > t) of exceeding a threshold t corresponding to a large quantile. The Pickands theorem states that such exceedings asymptotically obey a generalized Pareto distribution (GPD) distribution with cumulative distribution function:

F G (x; μ,σ,ξ ) = 1 -1 + ξ x -μ σ -1/ξ , (A9)
where μ ∈ R is the location parameter representing the chosen threshold and σ > 0 is the scale parameter, representing the typical order of extreme fluctuations. The sign of ξ discriminates the kind of tail decay of the parent distribution: When ξ = 0, the distribution is of Gumbel type with exponentially decaying tail and Eq. (A9) reduces to

F G (x; μ,σ,ξ ) = 1 -exp - x -μ σ . ( A10 
)
The case ξ > 0, corresponds to a Fréchet distribution with a fat tail decaying as a power law. Conversely, the case ξ < 0 corresponds to the Weibull distribution with a bounded tail. In the Fréchet ξ > 0 case, only the moments up to 1/ξ exist, meaning that there is a nonzero probability of observing infinite values for the observable analyzed. The parameters are estimated using the MATLAB function gpfit that use a maximum likelihood estimator.

Chapter 8

Topology of the extreme events of the Duchon-Robert term In this chapter, we analyze the structure of the ow around the extreme events of the Duchon-Robert term, raw (Π DR ) or normalized by the viscous dissipation term (Π DR /D ν ). Indeed, these events may be prints of the possible singularities developed by the 3D incompressible Euler or Navier-Stokes equations. The chapter is splitted into two parts : rst, we analyze the topology of the ow using the invariants of the velocity gradient tensor which allow to identify four types of topologies.

This analysis can easily be implemented on a computer in order to process a large amount of data ; however, it does not reveal the complexity of the ow around a given point. Therefore, in the second part we describe the structure of the velocity eld around the extreme events based on direct visual observation of the corresponding velocity elds.

1 First blind approach using the velocity gradient tensor invariants In this section, we use the velocity gradient tensor invariants to characterize the topology of the velocity eld. We rst recall the principle of this method, and then present the global distribution of the topologies in the von Kármán ow. Thereafter, we analyze the global behaviour of Π DR and D ν with respect to the invariants before giving the distribution of the topologies among the extreme events.

The velocity gradient tensor invariants method

The velocity gradient tensor (VGT) invariants method (see [START_REF] Chong | A general classication of three-dimensional ow elds[END_REF]) consists in studying the velocity streamline pattern at a given point and at a given time. For an incompressible ow, only four categories of topologies (i.e. velocity streamlines congurations) can be found.

Let us consider an instantaneous velocity eld u(x). A streamline x(t) is dened by ẋ = u(x). Let us consider a particular point x 0 where the velocity is u 0 . If the velocity eld is regular enough to be expanded in Taylor series, then for δx small enough, u(x 0 + δx) ≈ u 0 + ∇u • δx where • corresponds to the product between a matrix and a vector : with (∇u

) ij = ∂ j u i , (∇u • δx) i = j ∂ j u i δx j .
Therefore, the streamline equation in the neighbourhood of x 0 is ẋ ≈ u 0 + ∇u • (xx 0 ). In the inertial frame initially centered on x 0 and moving at constant speed u 0 , the streamline equation becomes ẋ ≈ ∇u•(x). This is a linear dierential equation whose solution depends on the eigenvalues of ∇u, or equivalenty on its three invariants, i.e. the coecients of its characteristic polynomial.

CHAPTER 8. TOPOLOGY OF THE EXTREME EVENTS OF Π DR

Depending on whether the eigenvalues are real or not, degenerated or not, and positive, negative or null, only a nite number of congurations are possible, described in [START_REF] Chong | A general classication of three-dimensional ow elds[END_REF]]. In the particular case of an incompressible ow, there is an additional constraint on the eigenvalues : their sum should be 0. Hence, there are only four possible topologies. Calling the three eigenvalues λ 1 , λ 2 , and λ 3 ; and the VGT invariants P , Q and R (so that the characteristic polynomial is λ 3 + P λ 2 + Qλ + R), we have in the particular case of incompressible ows : the sheet (S), or unstable node/saddle/saddle, when 27R 2 + 4Q 3 < 0 but R > 0. All three eigenvalues are then real, but two of them are positive. The uid is compressed in one direction and stretched in the two others. the vortex stretching (VS), or stable focus/stretching, when 27R 2 + 4Q 3 > 0 and R < 0.

P = λ 1 + λ 2 + λ 3 = 0, Q = λ 1 λ 2 + λ 1 λ 3 + λ 2 + λ 3 = -tr((∇u) 2 )/2, R = -λ 1 λ 2 λ 3 = -tr((∇u) 3 )/3 = -det(∇u).
There are then two complex eigenvalues that are conjugated ; the real eigenvalue is positive, resulting in the stretching. In one plane, the motion of the uid is a converging spiral ; in the remaining direction the uid is stretched.

FIRST BLIND APPROACH USING THE VGT INVARIANTS

181 the vortex compressing (VC), or unstable focus/compressing, when 27R 2 + 4Q 3 > 0 but R > 0. There are then two complex eigenvalues that are conjugated but the real eigenvalue is negative, resulting in the compressing. The uid is compressed in one direction ; in the plane containing the two other directions, its motion is a diverging spiral.

In the Q-R plane, the R = 0 line distinguishes between stable (converging in two directions and diverging in one) and unstable (diverging in two directions) topologies ; the line 27R 2 + 4Q 3 = 0 separates the cases with complex eigenvalues (which will feature rotation) from the cases with only real eigenvalues. Note that Vieillefosse [Vieillefosse, 1983] showed that for an elementary uid particle in an inviscid uid and not subject to the action of the remaining uid (i.e. without pressure anisotropic eects), Q and R follow the equations :

Q = -3R/2 (8.1) Ṙ = Q 2 /3 (8.2)
where Ẋ corresponds to the material derivative of X. Integrating these equations leads to :

3 Q2 + Q 3 = Q 3 0 (8.3) or : 27R 2 + 4Q 3 = 4Q 3 0 (8.4)
where Q 0 is a constant. The lines 27R 2 + 4Q 3 = 4Q 3 0 are usually called Vieillefosse lines. Two of them with Q 0 = 0 are shown in green in gure 8.1 ; the one corresponding to Q 0 = 0 is shown in red.

Therefore, Q diverges towards -∞ and R towards +∞ in nite time and a singularity occurs, on the right branch of the 27R 2 + 4Q 3 = 0 line.

In some works, for instance in [START_REF] Danish | Multiscale analysis of the invariants of the velocity gradient tensor in isotropic turbulence[END_REF], the vortex stretching and compressing zones are further splitted into two sub-zones each : Q < 0 and Q > 0. The former corresponds to the strain-dominated zone whereas the latter corresponds to the enstrophy-dominated zone. Indeed, splitting the VGT ∇u in its symmetrical and antisymmetrical parts S and A, we have :

tr((∇u) 2 ) = tr(S 2 + AS + SA + A 2 ) = tr(S 2 ) + tr(A 2 ) (8.5)
because the traces of AS and SA are zero, as they are the product of one symmetrical and one antisymmetrical matrix. As S is the strain rate tensor, tr(S 2 ) measures the strain ; furthermore, it can be shown that tr

(A 2 ) = -ω 2 /2. Therefore, Q = -tr((∇u) 2 )/2 = ω 2 /2-tr(S 2 ) 2 and Q < 0 =⇒ ω 2 < 2 • tr(S 2
) : the strain dominates the enstrophy.

Usually, it is considered that the VGT is properly computed, and therefore that the true topology of the ow is obtained only if the Kolmogorov scale is resolved, as it is generally assumed to be the smallest scale of the ow. Also, the VGT invariants method can only apply to points where the velocity is regular enough to be expanded in Taylor series. In this thesis, we are looking for prints of singularities, where the velocity eld is unlikely to be expanded in Taylor series and around which the smallest scale of the ow should be smaller than the Kolmogorov scale, and therefore than our resolution (we resolve the Kolmogorov scale only for cases T4 and T4t, but not lower scales).

However, we still think that using the VGT invariants method is relevant because we have a nite experimental resolution, i.e. we work with velocity elds ltered at the experimental resolution. CHAPTER 8. TOPOLOGY OF THE EXTREME EVENTS OF Π DR These elds are therefore regular and the method can be applied. We then do not claim to obtain the exact topology of the ow, but the topology at the experimental resolution. This is interesting as it can give informations about the way singularities appear.

The VGT invariants method is very practical as it can be implemented on a computer and applied to a wide number of points. It allows to study the global distribution of the topologies in our von Kármán ow in order to compare it with the distribution of the topologies among the extreme events of inter-scale transfer.

Global topology study in the von Kármán ow 1.2.1 Global topology distribution

Before studying the topologies of the extreme events of inter-scale transfer, we computed the global distribution of the topologies in the von Kármán ow. It is needed to have a reference when studying how the topologies are distributed among the extreme events. Also, the distribution of the topologies (obtained with the VGT invariants method) in a turbulent ow is one of the noticeable features of turbulence (see [START_REF] Elsinga | Universal aspects of small-scale motions in turbulence[END_REF] for references) : the Q-R joint pdf has a tear-drop shape. Though it can be accounted for by a stochastic model [Chevillard andMeneveau, 2006, Chevillard et al., 2008], it is not yet related to the Navier-Stokes equations. Therefore, it was interesting to see whether we could observe it in the particular case of the von Kármán ow which has a particular geometry. Figure 8.2 shows the Q-R joint pdf for cases T1 to T4. The gradients were computed with a secondorder centered scheme. For case T4, the joint pdf has the well-known tear-drop shape, with the bottom-right tail following the Vieillefosse line with R > 0. This shape indicates that the most probable topology is the vortex stretching, followed by the vortex compressing, then the sheet and nally the lament. This shape also suggests that very large values of the gradient happen on the Vieillefosse line with R > 0, at the interface between the vortex compressing and the sheet zones. When X/η is increased (X being the interrogation volume size), the tear-drop shape is progressively blurred, evolving towards an almost square shape. The evolution is due to the fact that the Kolmogorov scale is not resolved anymore, i.e. that only larger (inertial) scales are probed. The square shape means that Q and R are more independent for higher values of X/η. Also, as the Q-R joint pdf is more symmetrical with respect to the R = 0 axis, the proportions of vortex stretching and compressing are closer to each other, and so do the proportions of sheet and lament.

We are now interested to see whether particular topologies favour extreme events of the Duchon-Robert term. A rst approach is to study the behaviour of the Duchon-Robert term with respect to Q and R, i.e. to compute the conditional average of the Duchon-Robert term, conditioned on Q and R.

Average behaviour of Π DR and D ν with respect to Q and R

The conditional averages of the Duchon-Robert term for the dierent values of c /η previously studied are shown in gure 8.3. For large values of Q and R, that are rare, the conditional averages are scattered : indeed, the averages are not converged because there are not enough points with such (Q, R).

The most striking feature of the average of Π DR conditioned on Q and R is the evolution of the zone of negative values of Π DR (delimited by the red line) when c /η is varied. Indeed, for case T4 (for which the resolution is in the dissipative range), this zone is restricted to a part of the vortex compressing area, with positive but not too high Q. However, when c /η is increased, the negative zone disappears (only zones of low but non-negative Π DR can be seen), and reappears at the largest value of c /η studied, but it is now in a part of the VS area. The existence of a zone with negative values of the Duchon-Robert term in the vortex compressing area is in agreement with the existence of a negative zone of the so-called energy transfer term in this same area, obtained in [START_REF] Chevillard | Modeling the pressure Hessian and viscous Laplacian in turbulence : comparisons with direct numerical simulation and implications on velocity gradient dynamics[END_REF]. It can be understood if Π DR is interpreted as inter-scale transfer towards smaller scales. Indeed, as vortex compressing is the motion opposite to vortex stretching, which is a mechanism often invoked to explain the energy transfer towards small scales, it is natural to see vortex compressing as a mechanism to transfer energy towards larger scales. However, according to this reasoning, the whole vortex compressing zone should correspond to negative Π DR , which is not the case. The negative zone stops at the Q = 0 line, distinguishing between strain-and rotation dominated zones ; this suggests that there is a link between the strain-rotation competition and the sign of the inter-scale transfer. However, the other boundary of the negative zone, at large Q, does not correspond to such a particular line. Note that in [START_REF] Chevillard | Modeling the pressure Hessian and viscous Laplacian in turbulence : comparisons with direct numerical simulation and implications on velocity gradient dynamics[END_REF], the negative zone of the energy transfer does not correspond exactly to the zone of negative Π DR that we obtained ; it corresponds to larger values of Q. When the resolution is in the inertial range, backward energy transfer is associated with vortex stretching. This contradicts the previous reasoning and suggests that the topology (obtained by the VGT invariants method) at a given scale alone cannot explain the inter-scale transfer at this scale ; either other scales are needed, which is unlikely if the energy cascade is local in scale, or other mechanisms are needed to explain the sign of the inter-scale transfer.

Figure 8.3 was obtained for c = 1.7X (X being the PIV interrogation volume size), the largest c we can reach on the current data. As explained in chapter 2, the ratio c /X should not be too small, otherwise most of the contributions to Π DR are ltered. However, with a too large c , Π DR can only be computed on a small area (see chapter 2). Therefore, there are less samples and the statistics may be less converged. Therefore, we present in gure 8.4 the conditional averages of Π DR obtained for c = 1.2X, for which the statistics are better converged (there are almost ve times more points for c = 1.2X compared to c = 1.7), even if there are less contributions from the smaller scales. On this gure, we can see that the negative Π DR zone does not disappear for any value of c /η. Also, in the inertial range, there is not only a negative zone which appears in the VS area, but there is still a negative zone in the VC area, which is shifted to Q < 0 compared to the dissipative range.

A second feature of these conditional averages of Π DR is the spreading of the zone of low values (still positive though, at least with the amount of statistics we have) along the left part of the Vieillefosse line, at the boundary between the vortex stretching and the lament zones. This spreading becomes more important when c /η is increased.

Lastly, the conditional average of Π DR gives us a hint of the topology associated with the extreme events. Indeed, whatever c /η, the largest values of the conditional average of Π DR are found in the lower right part of the Q-R plane, i.e. in the sheet zone. There is also a secondary zone of large values for large negative R, around Q = 0 in the dissipative range and for Q < 0 in the inertial range ; it is less pronounced though. Of course, the extreme events may not follow the average trend ; this is just an indication.

It is also interesting to compare the conditional average of Π DR with the one of D ν , in order to see whether there is some topology for which, in average, Π DR is high and D ν is small. The conditional average of D ν is shown in gure 8.5 for cases T1 to T4. It is striking to see that, for the four cases, the isolines of the conditional average of D ν are close to the isolines of the Q-R joint pdf (the white lines). This suggests that the joint pdf of Q and R could be expressed as

P (Q, R) = f ( D ν QR )
where is taken close to the scale at which the velocity eld is ltered. f is a decreasing function. Therefore, the largest values of D ν QR are obtained for small P (Q, R) The analysis of the conditional averages of Π DR and D ν suggests that the extreme events of Π DR or Π DR /D ν should rather have a sheet topology. However, the conditional averages only give the trend, the extreme events could behave dierently. Therefore, we now compute directly the topologies (with the VGT invariants method) at the extreme events of Π DR or Π DR /D ν . in the whole ow, and among the 1000 strongest extreme events of Π DR , D ν and Π DR /D ν , for cases T1 to T4. The number 1000 is a compromise between the need to have enough events to get relevant statistics and the wish to consider only the very strongest events.

Tables 8.1 and8.2 show that in the inertial range (i.e. when the dissipative scales are not resolved, or ltered), the distribution of the topologies among the extreme events of Π DR is close to the distribution in the whole ow ; only the rotating topologies are slightly favoured, at the expense of the others. This tendency is stronger for the extreme events of D ν . For the extreme events of Π DR /D ν , the situation is dierent : the proportion of vortex compressing is lower whereas the proportion of sheet is larger (the proportion of the lament and vortex stretching remaining almost constant). topology in the whole ow, the amount of sheet topology among the extreme events of Π DR is the same as in the inertial range, and is therefore relatively smaller than the amount of sheet topology in the whole ow. Vortex stretching seems to be really favoured whereas the proportion of vortex compressing topology is smaller than in the whole ow. Among the extremes of D ν , it is also the vortex stretching topology which is really favoured, the vortex compressing topology being slightly less probable than in the whole ow and the proportion of sheet and lament topologies being very small. Concerning the extremes of Π DR /D ν , the vortex stretching and the sheet topologies are favoured ; however, the proportion of vortex stretching topology is similar to what is observed in the inertial range, whereas the proportion of sheet topology is 1.5 times higher.

These results are partly at variance with what could be inferred from the conditional averages :

as expected, the extremes of D ν correspond mainly to rotating topologies, and especially to vortex stretching in the dissipative range. On the contrary, the extremes of Π DR do not favour the sheet topology as could be expected from the conditional average behaviour, but rather the vortex stretching topology. These extremes most probably correspond to the zone of large Π DR QR located in the vortex stretching zone for Q around or less than zero and for large negative R. The sheet topology is favoured by extremes of Π DR /D ν , as expected, along with the vortex stretching topology.

Limitations of the VGT invariants method

The VGT invariants method is ecient as it can be implemented on a computer and applied to a large number of points ; however, it does not account for the complexity of the velocity eld around a given point. Therefore, some information is lost. Also, it does not distinguish between events that are fully in the observation volume and for which the maximum Π DR can be observed, and events which are only partly in the observation volume and for which only a local maximum of Π DR can be observed, the maximum over the whole structure being outside the eld of view. Furthermore, the result of the method is quite scattered.

For instance, gure 8.6 shows the velocity eld around the 4 th strongest Π DR event of case T4, as well as the Π DR eld and the topology obtained with the VGT invariants method in a plane perpendicular to the axis of the vortex which seems to form. The extremum is at the intersection between the black lines in gures (a) and (b) and at the intersection of the white lines in gure (d).

Overall, a vortex seems to form between one mass of uid coming from the right (in gures (b), (c) and (d)) and one other coming from the top-left. The extreme of Π DR is just below the vortex, at a place where the uid which wrapped around the vortex hits the uid coming from the right.

According to the VGT invariants method, the topology is a sheet (it is not clear from the gure because of the way the colors are plotted, but the method indeed returns a sheet topology). This does not account for the vortex which is above ; also, Π DR cannot be computed at the center of 1. FIRST BLIND APPROACH USING THE VGT INVARIANTS 189 the vortex where the topology is vortex stretching (because of limited thickness of the observation volume, see chapter 2), it could be higher there. Lastly, in gure (d), it can be seen that the topology is quite scattered, and that the extreme point is between a sheet zone, a vortex stretching zone and a vortex compressing zone ; it is therefore not obvious that the topology obtained with the VGT invariants method is the proper one.

The results obtained with the VGT invariants methods are probably not wrong because they were obtained with a large number of points ; therefore, even if the wrong topology is obtained for some points, it does not impact the overall result. Indeed, the obtained Q-R joint pdf has the typical tear-drop shape which was already largely observed ; also, the conditional averages feature some clear trends which have little chance to be random. But looking at the whole velocity eld around the extreme events allows to have more information, for instance to give indications on how they can form. For that reason, we also observed directly the velocity eld around the few strongest extreme events (as it takes much more time, only few of them could be studied). the roll-vortex, as shown in gure 8.8 : a sheet or a thick sheet of streamlines rolls up, and the streamlines then spiral along the rolling axis either in one or the other direction. The incoming velocity is perpendicular to the vortex axis.

the U-turn or sharp bend, as shown in gure 8.9 : the velocity streamlines suddenly change their direction. This kind of structure was observed only for some of the ten strongest negative events (6 of them), i.e.events for which |Π DR | is very high but where Π DR is negative; however, there is also large positive Π DR in these structures.

For one of the extremes, the 3 rd strongest extreme, the extreme point is between two such vortices, as shown in gure 8.10. It is not very clear whether the extreme occurs because of the interaction between them or if it is linked with only one of them.

For all extreme events, Π DR is large (in absolute value) along most of the structure, but the very extreme zone which is quite localized, does not have a particular location. For instance, in the case of the vortices, it is near the vortex center but never exactly at the center. Therefore, it does not follow the symmetry of the structure (which is at variance with D ν , see below). As a consequence, it is dicult to understand exactly how the extreme occurs ; it seems to come along with the described structures but to be only a by-product, not the main feature of the structure. This is at variance with analytical stationary solutions like the Burgers vortex or the singular velocity elds obtained by [START_REF] Li | Homogeneous solutions of stationary Navier-Stokes equations with isolated singularities on the unit sphere[END_REF], as discussed later. We often noticed that the extreme was correlated with more curvated or twisted streamlines, or to strongly diverging or converging streamlines, but a more systematical analysis should be carried out to conrm that.

For most of the events, the sign of Π DR changes in the neighbourhood of the extreme event. In addition to the fact that only negative events were corresponding to sharp changes of direction, we noticed another dierence between positive and negative zones of Π DR : most of the time, the velocity streamlines or beams of velocity streamlines seem to diverge in negative Π DR zones and to converge in positive Π DR zones. This is probably related to the divergence operator involved in the expression of Π DR .

All the extreme events of Π DR correspond to large values of both the velocity norm and of the vorticity norm : measured velocities are around twice the total rms of the velocity, i.e. of the order of the velocity at the tip of the impeller ; vorticities reach values close to the maximum vorticity measured in the ow, between 20 and 30 times the standard deviation of the vorticity norm. This is reminiscent of the results of [Constantin, 2008] (divergence of the velocity norm in the case of a singularity occuring in the 3D INSE) and of [START_REF] Beale | Remarks on the breakdown of smooth solutions for the 3D Euler equations[END_REF] (divergence of the vorticity norm in the case of a singularity occuring in the 3D incompressible Euler equations). In the case of the vortices, the vorticity is large in the core of the vortex, its isosurfaces being tubes sharing the same axis as the vortex ; the velocity is large just outside the vortex, its isosurfaces being often tubes too, parallel to the vortex but outside it. In the case of the sharp bends, the vorticity isosurfaces are either tubes or pancakes. x (mm) x (mm) x (mm) 2/3 • dx in order to compare it with the estimation of the error based on the divergence rms computed in chapter 5. We can see that near the extreme point, the divergence is 10 to 20 times higher than the rms value (see chapter 5). These high values correspond to the fact that particles do not follow properly the ow around the extreme events. Indeed, for an incompressible ow the divergence should be zero, and in the unlikely case where the ow was locally compressible, the velocity should be locally so large (because of a large Mach number) that the particles could not follow the ow. In the case of the vortices they are most often concentrated in the vortex core Splitting Π DR as follows may explain this observation :

Π DR (x) = 1 4 ∇φ (r) • δu(δu) 2 d 3 r (8.6) = - 1 4 φ (r)∇ δu(δu) 2 d 3 r (8.7) = - 1 4 φ (r)(∇ • δu)(δu) 2 d 3 r - 1 4 φ (r)δu • ∇(δu) 2 d 3 r (8.8)
We integrated by parts and expanded the divergence term in order to obtain the above results. As the divergence applies only on r, the rst right-hand-side term can be rewritten :

-

1 4 φ (r)(∇ • u)(δu) 2 d 3 r
If the second rhs term is small compared to the rst one, it is clear that the signs of Π DR and of the divergence are opposite. The rst extremes of D ν occur in vortices similar to those described previously while considering the extremes of Π DR , but no U-turn was observed. They also correspond to large values of |ω| and Π DR . The extreme value of D ν does not necessarily correspond to the maximum local value of Π DR . Some extreme events of D ν occur in the same velocity structure as extreme events of Π DR : the 1 st , 2 nd , 4 th ,7 th ,9 th , and 10 th extremes of D ν occur respectively in the neighbourhood of the 1 st , 4 th , 11 th ,8 th ,6 th , and 2 nd extreme events of |Π DR |.

The situation is the same for the rst extremes of |ω|, a sharp U-turn was also observed. The 7 th and 8 th extreme events of |ω| correspond respectively to the 5 th and 1 st extreme events of Π DR , and the 4 th extreme event of |ω| corresponds to the 5 th extreme event of D ν (they are in the neighbourhood of each other, they do not occur exactly at the same point). • bend) and which can be in the surroundings of a vortex or not. Figure 8.12 shows the 2 nd , 3 rd and 7 th extreme events of the ratio |Π DR /D ν | conditioned on large enough values of D ν . The 2 nd and 3 rd extremes occur near a vortex, the 7 th does not. We also analyzed the rst extreme events of Π DR , D ν , |ω| and |Π DR /D ν | for cases T1 to T3 in order to compare the structures corresponding to these events with the ones corresponding to extreme events in the dissipative range.

Overall, we found the same structures, except that they are distorted and therefore seem more complex. For instance, gures 8. 13 and 8.14 respectively show a roll-vortex and a screw-vortex observed around extreme events of case T1. The overall structure can be recognized but the vortex axis is distorted ; the streamlines sometimes form beams which themselves are bent or twisted.

When only inertial range scales are resolved, the measurement error or lack of resolution is more present : we observed several oscillations of the streamlines or discontinuities in the velocity eld that are probably due to the nite resolution of PIV. The fact that we nd the same kinds of structures is probably due to the fact that we only vary the Kolmogorov scale from one case to another and not the injection length scale ; therefore, the spatial resolution becomes closer to the Kolmogorov scale for case T4, but remains as close to the injection length scale as for case T1.

The structures which develop are therefore the same, but get more distorted for cases T1 to T3

because the inertial eects are more important than the viscous eects. We noticed more extremes corresponding to sharp bends or twists, with no vortices around (except for the extremes of |ω|).

This is probably also related to the stronger inertia of the ow which may prevent the uid to completely roll up.

Concerning the extremes of |Π DR |, there are more negative extreme events among the 10 rst extremes in the inertial range than in the dissipative range. This is in agreement with the tendency of the ow to favour direct inter-scale transfer in the dissipative range compared to the inertial range : we saw in chapter 6 that the pdf of Π DR is more skewed in the dissipative range ; also, in the previous section, we observed that only vortex compressing topologies can lead to negative Π DR in the dissipative range whereas some vortex stretching topologies can also lead to negative Π DR in the inertial range. The extremes of D ν feature large values of Π DR in their surrounding, as in the dissipative range.

For each one of the cases T1 to T3, we can nd 2 or 3 extreme events of D ν among the ten strongest that occur close to one of the ten strongest extreme events of Π DR .

On the contrary, we could not nd structures including both one of the ten strongest events of |ω| and one of the ten strongest events of Π DR . Extreme events of |ω| all the same correspond to high values of Π DR and D ν . We only observed vortices among the ten strongest events of |ω|, no sharp bend nor twist.

Concerning the extreme events of |Π DR /D ν |, we found no vortex, only bends or twists of the streamlines.

Discussion

We found only three dierent structures leading to extreme events of either Π DR , D ν , |ω| or |Π DR /D ν |. We can wonder whether this set can be further reduced to two or even one structure. Indeed, the two vortical structures are close to each other, and the screw-vortex may be only a part of the roll-vortex, or a part of it a little time after, once the rolling is over but when the uid leaving the structure is still spiraling. Concerning the U-turn, the link with the vortices is less obvious : maybe a vortex can form in the bend, or the U-turn is a distorted vortex which opens.

Another possibility is that the three structures all correspond to a single structure which is advected at dierent speeds. Indeed, the velocity elds we analyzed are obtained in the laboratory frame of reference ; they would have a dierent aspect in another frame of reference, even if it is also an iner- 8.15: Impact of the frame of reference on the velocity eld aspect. (a) Velocity streamlines around the 2 nd extreme event of Π DR of case T4 seen in the laboratory frame of reference. (b) Velocity streamlines around the same event but in the frame of reference having a constant velocity (equal to the spatial average of the velocity over the observed eld) with respect to the laboratory frame. (c) Velocity streamlines around the 2 nd negative extreme event of Π DR of case T4 seen in the laboratory frame of reference. (b) Velocity streamlines around the same event but in the frame of reference having a constant velocity (equal to the velocity at the extreme point) with respect to the laboratory frame. Blue streamlines are arriving towards zones of high vorticity whereas black ones are leaving such zones. The three black lines intersect at the point where Π DR is maximum.

DIRECT OBSERVATION OF THE EXTREME EVENTS

203 is sometimes dicult to nd a frame of reference in which the velocity eld structure looks like a vortex. For instance, for the velocity eld shown in gure 8.9, changing the inertial frame only leads to a very at vortex which does not look much like a roll-vortex. Incidentally, in this case the vorticity isosurfaces are at whereas they rather look like tubes for vortices. Anyway, the two examples show that only looking at the velocity elds gives a frame dependent analysis which may lack generality. Studying spatial derivatives, such as the vorticity (which can be captured either by vorticity lines or isosurfaces) would provide more general information. Note that the VGT invariants method is frame independent as it is based on the velocity gradient.

It is interesting to compare our ndings with previous works. The closest work to ours is described in [START_REF] Saw | Experimental characterization of extreme events of inertial dissipation in a turbulent swirling ow[END_REF] ; it consists in a study of the topology around the extreme events of a 2D version of Π DR in the same von Kármán ow studied here. In this work, the velocity was measured by SPIV, which only gives access to the three components of the velocity eld in a plane ; therefore the gradients in the direction perpendicular to the plane cannot be computed. According to this study, the 2D cross-section of the velocity eld around an extreme event of (the 2D projection of ) Π DR is either a front, a jet, a cusp or a spiral. Of course, we also observed spirals or cusps : a cross-section of a roll-or screw-vortex perpendicular to the vortex axis will yield a spiral, and it is easy to gure out that the cross-section of a U-turn or sharp bend will yield a cusp. Inspecting more carefully our extreme events, we could also nd fronts : they can be seen in cross-sections of roll-vortices containing the vortex axis. Indeed, in a roll-vortex, a mass of uid rolls up and is then expelled along the vortex axis in two opposite directions. The 2D projection of the velocity on a plane containing the vortex axis does not show the rotation but the separation of the ow in two directions. front should also appear when looking from the right (d), as this view also corresponds to a plane containing the vortex axis, but it is not really the case ; the ow separates without a front. It may be due to the observation frame or to the position of the (yz) plane. We could also observe one jet, around the 8 th negative extreme of Π DR . The velocity structure around this extreme is in-between the U-turn and the screw-vortex ; it seems to be a U-turn with a strong shear along the bend axis which gives a small swirl to the whole structure. This shear gives the jet topology, which can be seen on the top view (a) of gure 8.17.

Our work can also be compared with previous works studying the large vorticity zones in turbulent ows : indeed, we noticed that extreme events of Π DR , D ν or Π DR /D ν always come along with a large vorticity, the large vorticity zones being mostly tubes and sometimes (especially for negative Π DR ) atter (pancakes). For instance, in the numerical study [START_REF] Vincent | The dynamics of vorticity tubes in homogeneous turbulence[END_REF], the authors suggest that the formation of the vorticity tubes results from a shear instability and report that rst, the zones of high vorticity that appear are pancake-like, they then atten, bend and nally roll-up. This mechanism is in very good agreement with the roll-vortex topology that we widely observed in our results. This supports the idea that vortices (corresponding to vorticity tubes) correspond to the same structure as the sharp bends or U-turns which feature pancake-like vorticity zones : the U-turns probably evolve towards vortices. Also, the authors show that this mechanism of vorticity tube formation has an important role in the energy cascade ; this is exactly how we detected these events : we looked for extreme values of Π DR or Π DR /D ν , which can be interpreted as extreme events of inter-scale transfer. We however noticed that Π DR took both large positive and negative values around these events, which suggest that the energy transfer is a complex mechanism. Finally, the authors also mention that the large dissipation zones are located in the vicinity but outside the vortex cores, as was also noticed in [Brachet, 1991]. We also observed this conguration. As these authors explain, this shows that the observed structures are not spirals.

Therefore, they are unlikely to be the singular velocity elds obtained in [START_REF] Li | Homogeneous solutions of stationary Navier-Stokes equations with isolated singularities on the unit sphere[END_REF].

The 3D elds of the Duchon-Robert term, viscous dissipation term, velocity norm and vorticity norm corresponding to these singular, stationary velocity elds are shown in gures 8.18 and 8.19. The velocity streamlines are really converging towards the singular axis z < 0 in both cases. We could not observe such a spiraling behaviour in our results ; we could see streamlines coming closer to each other but not converging systematically towards an axis. Also, on these singular velocity elds, all the plotted quantities (Duchon-Robert term, viscous dissipation term, velocity norm and vorticity norm) are increasing when coming closer to the z = 0 axis, and take very high values around it. In our observations, this was the case only for the vorticity. It is not due to the fact that the velocity eld is singular on the semi-axis z < 0 : in the case of the Burgers vortex (gure 8.20), a stationary axisymmetrical but regular solution to the Navier-Stokes equations (see [Burgers, 1948]), all the plotted quantities increase when coming closer to the z = 0 axis. The singular velocity elds obtained by [START_REF] Li | Homogeneous solutions of stationary Navier-Stokes equations with isolated singularities on the unit sphere[END_REF] and the Burgers vortex are idealized stationary solutions of the INSE, with a lot of symmetries ; this may explain the fact that we do not observe similar congurations in a real ow. It may also be due to the fact that our Reynolds number is not high enough. Indeed, in [START_REF] Yeung | Extreme events in computational turbulence[END_REF], the authors analyze a DNS of homogeneous isotropic turbulence at a Reynolds number larger than ours by two orders of magnitude. Events of enstrophy and viscous dissipation up to 10000 times the mean are observed, whereas we only observe events of the order of 420 times the mean for the enstrophy and 45 times the mean for the viscous dissipation. The authors report that the maxima of vorticity and viscous dissipation are very close to each other at these very extreme events, whereas at lower Reynolds number, for which the largest events are not as strong, the maxima of vorticity and viscous dissipation are not colocated. Unfortunately, the velocity elds We will now discuss the link with the topology analysis based on the VGT invariants method presented in the rst section of this chapter. Unfortunately, there is not one global observed structure corresponding to each one of the four topologies returned by the VGT invariants method. Actually, all of these elementary topologies are involved in the global structures we observed, as can be seen in gure 8.21. This gure shows the topology obtained with the VGT invariants method at each spatial point for the extreme events shown in gures 8.7 to 8.10. In the case of vortices the vortex core is always made of vortex stretching (VS) topology, more or less mixed with vortex compressing (VC) topology. This is quite natural as they are rotating topologies. The vortices are then surrounded by VC or sheet (S) areas, and sometimes small areas of laments (F). Concerning the U-turn (gure 8.21 (c)), it is more dicult to relate the elementary topologies to their location in the global structure, but it shows that a VS or VC topology returned by the VGT invariants method does not necessarily corresponds to a global vortex. The observed structures (roll-vortex, screw-vortex and U-turn) may be characterized by a pattern in the Q-R space ; this could be seen by computing the Q-R joint pdf conditioned on the extreme events of a given type.

In the rst section of this chapter, we also found that negative values of Π DR were obtained mainly in a zone of the VC area. We did not notice such a systematic distribution in the few velocity elds we analyzed. 

Summary of chapter 8

In this chapter, we analyzed the topologies around the extreme events of the Duchon-Robert term Π DR and of the ratio Π DR /D ν , both with a method based on the invariants of the velocity gradient tensor (VGT) and by direct observation of the velocity elds.

The VGT invariants method is a statistical method which can be easily implemented on a computer and applied to a large number of points. For an incompressible ow, it allows to distinguish between four dierent elementary topologies. We showed that the global distribution of these topologies at the center of the von Kármán ow is characterized by a tear-drop shape of the Q-R joint pdf, which becomes slightly blurred when the resolution becomes much higher than the Kolmogorov scale.

The averages of Π DR and D ν , conditioned on the invariants of the VGT, show that large values of Π DR are mostly obtained in the sheet zone, and to a lesser extent in the vortex stretching zone 212 CHAPTER 9. TEMPORAL EVOLUTION OF EXTREME EVENTS OF Π DR In this thesis, we only had time to start with the third option. We report the rst observations here, in two parts. First, we analyze the temporal evolution of Π DR , D ν , ω and |v| at the location of the ve strongest extreme events of Π DR of case T4t. Second, we analyze the temporal evolution of the velocity gradient invariants at the location of these ve strongest extreme events and compare them to the average evolution.

1 Temporal evolution of Π DR , D ν , ω and |v| Figure 9.1 (a) shows the temporal evolution of Π DR , D ν , ω and |v| at the location of the strongest event of Π DR , over the whole run (3225 time steps) containing this event. ω is squared and multiplied by ν to be compared with Π DR and D ν ; their axis is on the left. The axis for |v| is on the right. Figure 9. 1 (b) shows the temporal evolution of the maximum and minimum of Π DR , computed over the plane where Π DR is available. It can be seen that Π DR , D ν and ω are quite intermittent : they are low most of the time, with some bursts from time to time. The small bursts of these three quantities are not always correlated.

Few events characterized by the simultaneous occurence of a peak of νω 2 and a deep of |v| can be observed, they probably correspond to a vortex crossing the observation point, the vorticity being high in its core while the velocity is low.

We now concentrate on the temporal evolution when the extreme events of Π DR occur. Figures 9.2 and 9.3 are obtained in the same way as 9.1 but each one of them is focussed on the instant at which one of the 5 strongest extreme events of Π DR occurs. The largest negative value of Π DR is obtained in the neighbourhood of the third extreme event, ten time-steps later.

The ve gures are dierent ; there is not a common pattern which emerges. However, some common features can be found :

All the events last 400 to 500 ms, except the fourth one which is shorter. This is of the order of the Kolmogorov time scale (90 ms).

In all cases except the 4 th extreme, a large vorticity, with the maximum of νω 2 of the order of the maximum of Π DR , precedes or is preceded by the extreme event of Π DR . The 2 nd and 5 th extremes of Π DR correspond to a sharp increase of νω 2 ; the negative peak of Π DR preceding the 1 st extreme corresponds to a sharp decrease of νω 2 .

The second extreme of Π DR corresponds to a sharp decrease of the velocity norm, whereas the fourth one corresponds to a sharp increase of |v|.

The maximum of D ν is always smaller than about half the maximum of Π DR .

Temporal evolution of the velocity gradient tensor invariants

We supplement the above analysis by studying the temporal evolution of the velocity gradient tensor (VGT) invariants, i.e. of the local topology. We insist here on the fact that our data allows to perform only an Eulerian analysis of the time evolution next to the extreme event. We are not able to track the extreme and to study the evolution of the topology during its formation, as does Vieillefosse in [Vieillefosse, 1983] where he shows the occurence of a singularity in idealized conditions. But we can study what happens at the xed spatial point where the extreme occurs : it is equivalent to looking at the extreme event going by. 

Average behaviour

We will study the trajectories (Q(t),R(t)) in the (Q,R) plane. Here, Q(t) and R(t) are respectively the second and third VGT invariants computed at the xed location where an extreme event of Π DR occurs. Inspired by [START_REF] Danish | Multiscale analysis of the invariants of the velocity gradient tensor in isotropic turbulence[END_REF], we rst computed the conditional average of ∂Q/∂t and ∂R/∂t, conditioned on Q and R to check whether there was an average behaviour.

Here, ∂/∂t stands for the Eulerian, local derivative with respect to time, dierent from d/dt, the material or Lagrangian derivative. As we have d/dt = ∂/∂t + v • ∇, we are also able to compute the conditional averages of dQ/dt and dR/dt : indeed, we have access to ∂Q/∂t, ∂R/∂t, v, ∇Q and ∇R. 2.2 Eulerian trajectories around extremes in the Q -R plane

We now compare the average behaviour of the Eulerian time derivatives of Q and R with the temporal evolution of Q and R at the location of some extreme events of Π DR , i.e. of the Eulerian temporal evolution of Q and R. It is dicult to draw any conclusion from this short analysis based on 1D signals corresponding to only 5 events. These preliminary results however show the feasibility of studying the time evolution of extreme events of the Duchon-Robert term. A higher acquisition frequency may be more appropriate for subsequent measurements : indeed, we do not lack extreme events and it would allow to better follow the events. Also, a larger measurement volume should be used in order to track Π DR and D ν in space. This is quite a challenge because the volume reconstruction quality is decreasing with the volume thickness in TPIV. As for scanning PIV, it allows larger measurement volumes as no volume reconstruction is required but time-resolved scanning PIV would require very high acquisition frequencies, which, if reachable, come along with a smaller sensor size, i.e. a smaller measurement volume.

Better than 1D analyses, studies of the in-plane evolution of Π DR and D ν and of the 3D evolution of the velocity and vorticity elds will allow to characterize the temporal evolution of the extreme events. They will be coupled with Lagrangian analyses based on a dierent processing of the images used to obtain the velocity elds by TPIV : indeed, Shake-The-Box [START_REF] Schanz | Shake-the-box : Lagrangian particle tracking at high particle image densities[END_REF] analyses are currently in progress.

In this thesis, we analyzed 3D velocity elds measured by tomographic particle image velocimetry (TPIV) in an experimental turbulent swirling ow, in order to infer some knowledge on the possible singularities developed by solutions to the 3D incompressible Navier-Stokes and Euler equations.

We looked for extreme values of the Duchon-Robert term, or of the ratio between the Duchon-Robert term and a viscous dissipation term, computed around the Kolmogorov scale. Indeed, the Duchon-Robert term can be interpreted as inter-scale transfer and singularities are characterized by very small characteristic scales, smaller than the Kolmogorov scale, not smoothed out by viscous eects.

We rst studied the statistics of the Duchon-Robert term, including its extreme values, and compared them to those of the viscous dissipation term and of the LES inter-scale transfer term. We showed that though the Duchon-Robert term was overall smaller in the dissipative range compared to the inertial one, its distribution was more intermittent with extreme events up to 100 times the global average dissipation rate. This suggests that a turbulent velocity eld does not involve a single typical dissipative scale but several ones, or a range of dissipative scales. This should be conrmed by better spatially resolved measurements. We observed that this behaviour of the Duchon-Robert term is similar to the behaviour of the LES inter-scale transfer term but at variance with the be- We then showed, with a 2D-3C analysis, that the extreme events of the Duchon-Robert term are responsible for the intermittent scaling of the velocity increment structure functions. This supports the phenomenological interpretation of the multifractal model, which assumes the existence of low regularity zones to explain the intermittency.

The second part of the results concerns the topological study of the prints of singularities, enabled by the implementation, in the von Kármán ow set-up, of a 3D measurement technique, the TPIV.

We rst made a systematic study of the topology based on the invariants of the velocity gradient tensor, which allowed to compare the topology distribution among the extreme events to the global distribution. We found that extreme events of the Duchon-Robert term favour the vortex stretching topology whereas the extreme events of the ratio between the Duchon-Robert term and the viscous dissipation term favour both the vortex stretching and the sheet topologies. This is somewhat at variance with the conditional average of the Duchon-Robert term whose largest values are reached for sheet topologies. We then broadened the topology study by the direct observation of the velocity elds corresponding to the very extreme events. This revealed three kinds of structures : rollvortices, screw-vortices and U-turns that may correspond to a single structure, seen at dierent times or in dierent inertial frames. These structures correspond to previous experimental and numerical observations at similar Reynolds numbers. The extreme events of the Duchon-Robert
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term come along with a large velocity norm and a large vorticity norm. They also display a large velocity divergence, suggesting that the particles do not follow properly the ow around these events.

Also, observations of extreme events at larger Reynolds numbers showed that they feature the same structures, but more distorted ; this may be the sign that there is not enough separation between the dissipative scale and the integral scale at the Reynolds number for which we resolve the dissipative scales.

The third and last part of the results consists in a preliminary study of the time-evolution of the prints of singularities. We were able to detect very large events of the Duchon-Robert term even if time-resolved measurements do not provide a good statistical sampling of the ow and we could resolve them. We found that they last a few Kolmogorov time scales.

This thesis is a proof of concept of the experimental approach to the problem of the Navier-Stokes singularities using the criterion based on the Duchon-Robert term. We showed that it was possible to implement TPIV in the von Kármán set-up, and then to apply the detection method based on the Duchon-Robert term in a reasonable amount of time. We then detected very strong events, even among the time-resolved data. The 3D velocity elds allow to study the ow topology, as expected, and give promising results, as they agree with previous experimental and numerical observations.

We also showed that we could follow the time evolution of the extreme events, even if we did not have time to investigate this point further ; it opens interesting perspectives for both Eulerian and Lagrangian measurements.

However, in order to talk about prints of singularities with more condence, our experimental resolution should be improved and decreased below the Kolmogorov scale. Indeed, this could allow to distinguish between dissipative structures (whose size is of the order of the Kolmogorov scale) and possible singular structures (which should be smaller). Furthermore, studying larger Reynolds numbers is important as the occurence of possible singularities might be conditioned on this parameter ; this would also ensure a proper scale separation between integral and dissipative scales.

During this thesis, a new experimental set-up, ve times bigger than VK2, was designed in order to divide by 5 our spatial resolution at constant Reynolds number, or to multiply by 8 the Reynolds number at constant resolution. The conception of this set-up, which was not used during this thesis, is reported in appendix G.

A few other points should be addressed too. The relation between vorticity and the Duchon-Robert term should be investigated : is it equivalent to look for extreme events of vorticity or of the Duchon-Robert term ? Or are there large vorticity events which do not involve a large Duchon-Robert term ?

The relation of the Duchon-Robert term with helicity and curvature and torsion of the streamlines should also be investigated. Concerning the experimental aspects, increasing the thickness of the velocity elds would be really useful as it would give access to more scales and would allow the study of the 3D structure of the Duchon-Robert eld. TPIV may not be the most suited method in that respect. Better particles should also be used as we showed that they were not following the uid properly around the extreme events. Concerning the post-treatment, D ν may not be the most suited dissipation term as its pdf saturates at low values, it is especially a problem when studying the ratio Π DR /D ν . Some work should also be done on the visualization and analysis of 3D elds :

we showed that the interpretation could depend on the frame of reference or on the choice of the streamlines ; in the case of time-resolved data, the issue is even more troublesome as there is the time dimension to manage too. Using quantities which are independent from the frame of reference should be more suited. More generally, nding a way to classify automatically the structures of the velocity eld around the extreme events would be useful as it would allow to analyze more velocity elds without human bias. i.e :

h (x) = -p i tan(θ i ) -p e tan(θ e ) + x (f tan(θ e ) -(-p i tan(θ i ) -p e tan(θ e )) f (A.2)
where θ e is such that n i sinθ i = n e sinθ e (A.3)

In the small-angle approximation, we have :

h (x) = -p i θ i -p e n i /n e θ i + x (f n i /n e θ i -(-p i θ i -p e n i /n e θ i ) f (A.4)
For any θ i , h = 0 for :

x = f (n e p i + p e n i ) f n i + n e p i + p e n i = p (A.5)
We showed that all beams coming from a single point on the optical axis converge to a single point on the optical axis at abscissa x = p . The sensor should be at this location so that the images are focused.

Magnication

Knowing p = x, we can deduce the magnication : by denition, .6) Let us now consider the beam sketched on gure A.3 with h = 0. It is issued from a point located in the optical medium i at a distance p = p i + p e from the lens and at a distance h from the optical The rst goal of the case-control data set was to improve our knowledge of the PIV processing done by the software we used (Davis, from LaVision) but did not develop. We wanted to study the impact of the interrogation window size, overlap, and interrogation window shape. The second goal of the case-control data set was to carry out a case-control study of our analyses. To achieve this, we needed cases with the same volume correlation parameters as the real cases.

M = f -p f = f n i f n i + n e p i + p e n i = f f + n e /n i p i + p e (A
f # |M| r 2D th (mm) δ(mm) Φ d (
The case parameters were dened in order to fullll the above objectives : on divergence rms m/s

7 × 10 -4 2 × 10 -3 7 × 10 -4 2 × 10 -3 2 × 10 -3 3 × 10 -3 2 × 10 -3 2 × 10 -3 4 × 10 -3 6 × 10 -3 10 × 10 -3 Average of u x pix 2 × 10 -4 1 × 10 -5 5 × 10 -4 7 × 10 -5 6 × 10 -4 8 × 10 -4 7 × 10 -4 4 × 10 -5 7 × 10 -4 1 × 10 -3 5 × 10 -3
m/s 

m/s -1 × 10 -3 -1 × 10 -3 -1 × 10 -3 -1 × 10 -3 -1 × 10 -3 -1 × 10 -3 -1 × 10 -3 -1 × 10 -3 -1 × 10 -3 -1 × 10 -3 -1 × 10 -3
Average of u z pix -3 × 10 

uctuations m/s 1 × 10 -3 2 × 10 -3 9 × 10 -4 2 × 10 -3 3 × 10 -3 4 × 10 -3 3 × 10 -3 3 × 10 -3 5 × 10 -3 7 × 10 -3 1 × 10 -2
uctuations m/s 2 × 10 -3 3 × 10 -3 1 × 10 -3 3 × 10 -3 4 × 10 -3 6 × 10 -3 5 × 10 -3 4 × 10 -3 8 × 10 -3 1 × 10 -2 2 × 10 -2
Table C.4: Correlation parameters and velocity eld characteristics of the case-control cases.
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Table C.4 also gives the values of the space-time averages and the root mean squares of the three velocity components. Values of the space-time averages of the velocity components along x and z are two or three orders of magnitude lower than the corresponding rms. They are varying from one case to the other. On the contrary, the space-time average of the velocity component along the y direction, i.e. the vertical direction, is the same for all cases. It is of the order of the corresponding rms or lower (down to one tenth for case CC11) for cases with higher noise. However, considering that the convergence of the average is proportional to the rms divided by the square-root of the eective number of independent samples, the obtained value can be considered as relevant. It is nevertheless four orders of magnitude higher than the computed velocity shift v g , and the sign is the opposite. We measured the diameter of the seeding particle and estimated the particle density and found that they were similar to the characteristics given by the provider. The measured displacement may be due to remaining motion (we may not have waited enough after switching o the engines) or to convection. Indeed, the liquid may be warmer than the cooling circuit or than the air outside the tank. The order of magnitude of the velocity due to convection can be estimated as √ α∆T gl with α the expansion coecient, ∆T the temperature dierence, g the gravitational acceleration and l the typical length. With α ≈ 2e -4 K -1 , ∆T ≈ 0.1 K and l ≈ 1 cm, one nds a velocity of the order of 1 mm/s, i.e. the value measured along the y axis. This value is two orders of magnitude below the rms of the uctuations when the impellers are rotating at 1 Hz.

The rms values correspond to the noise level. Indeed, for a uniformly zero velocity eld, they should all be equal to zero. Therefore, the values found correspond to the measurement noise. One can see that the noise is increasing when the interrogation volume size is decresing, and when the overlap is increasing, as expected. It can also be seen that the so-called Gaussian windows contribute to decrease the noise level, by a factor 1/3 roughly. Compared to the average disparity values, the rms of the total uctuations is always higher, except for case CC3 for which it is equal. It is expected as the disparity corresponds to the error due to the volume reconstruction step, whereas the rms of the total uctuations corresponds to the total error. It can also be noticed that the rms of the uctuations along the z axis is larger than the others.

It is interesting to compare the rms value of case CC2 to the uncertainty estimated from the divergence for case T4t. Indeed, the set-up was exactly the same, except that water was lling the tanks instead of the water-glycerol mixture for case T4t. For case T 4t, it is 0.4 mm/s compared to 2 mm/s for case CC2 which is ve times larger. This suggests that using the divergence of the velocity eld to estimate the uncertainty leads to an underestimated uncertainty. This may be due to the approximations inherent to the divergence approach. This comparison is not as relevant for cases CC1 and T5 and T6, or cases CC2 and T4, because the cameras were not the same. Also, for cases T5 and T6, the magnication and the numerical aperture were much dierent. shown in gure C.1. More interestingly, the shape of the spectra are close to the square sinc function, which is the expected spectrum for square interrogation windows (see [START_REF] Foucaut | PIV optimization for the study of turbulent ow using spectral analysis[END_REF]). These sinc functions are represented by the continuous lines on the spectrum gures. This means that the analytical value of the 2 dB cut-o for square interrogation windows can be used as a good approximation of the value of the 2 dB cut-o for Gaussian interrrogation windows. respectively. They both reveal that for Gaussian interrogation volumes, increasing the overlap decreases the cut-o wavenumber. This is at variance with square interrogation windows, for which the overlap does not impact the cut-o wavenumber [START_REF] Foucaut | PIV optimization for the study of turbulent ow using spectral analysis[END_REF]. These gures also show that the cut-o wavenumber corresponding to square interrogation volumes is larger than the one corresponding to Gaussian interrogation volumes of the same (eective) size. Surprisingly, the square sinc function does not t well the spectra obtained for square interrogation windows, and in the case of an interrogation volume size of 64 pixels, it is closer to the spectrum obtained with a Gaussian interrogation window.

The probability density functions of cases CC1 to CC11 are given in gure C.5. The pdfs of the velocity component along y have a maximum shifted towards the negative values, corresponding to the non-zero average. The pdfs of the velocity component along the z direction are similar to the ones of the component along the x direction, except that they are more spread. This corresponds to the larger rms values.

The main results of these tests of Davis are the following :

Increasing the overlap of Gaussian interrogation windows has the same impact as decreasing the interrogation window size : the resolution is improved but the noise level increases.

Compared to a square interrogation window of the same (eective) size, using a Gaussian interrogation windows yields a lower noise level but a worse spatial resolution. As a conclusion, this analysis of the camera images shows that conguration of set B is better, provided there is a mirror, as the contrast is better, particles are not distorted due to astigmatism and there is no strange eect for an impeller rotation frequency of 5Hz.

Volume reconstruction quality

To assess the quality of the volume reconstruction, we compared the mean, standard deviation and maximum of the disparity obtained after the self-calibration, as well as the normalized intensity variance and the ghost level. The corresponding values can be found in the table D.3.

Overall, for all cases the disparity values, normalized intensity variance and ghost level are good and in the proper range allowing good volume reconstruction, there are only small dierences between cases. For the highest concentrations of both sets A and B, the ghost level is higher and the normalized intensity variance smaller, reaching the threshold value (20). For case B3, where there is no mirror, the ghost level is higher than comparable cases of set B.

As a conclusion, the comparison based on self-calibration and volume reconstruction does not allow to identify a signicantly better conguration. It conrms the advantage of using a mirror in the conguration of set B. It shows that the maximum concentration is around 0.09 ppp ; for higher concentration, the normalized intensity variance is too low.

Velocity eld quality

To assess the quality of the correlation step, we compared the correlation value, the rms of the divergence of the velocity and the smallest possible interrogation volume size. The corresponding values can be found in the table D.4.

Overall, the results are homogeneous and no case gives signicantly dierent results than the others. The values of uncertainty based on the rms of divergence are higher than what can be found in the literature.

For both sets A and B, the correlation value is a bit lower for higher concentration cases but the resolution is better and the uncertainty is similar or better than lower concentration cases.

For both sets A and B, increasing the dt results in slightly better uncertainty and resolution.

As a conclusion, the comparison based on the velocity elds does not allow to identify a signicantly better conguration Finally, these tests show that TPIV is quite robust and not signicantly sensitive to the chosen parameters. It is better to use a mirror in the conguration of set B. The highest concentration reachable is of the order of 0.09 ppp. i.e. :

∂ t u i 2 2 + ∂ j [u j u i 2 2 + u i τ ij + u j p ] = ν∆ u i 2 2 -D ν,LES -Π LES (F.8)
The equations for u iu i are :

∂ t (u i -u i ) + ∂ j [u j u i -(u j u i ) ] = -∂ i (p -p ) + ν∆(u i -u i ) (F.9) ∂ i (u i -u i ) = 0 (F.10)
Multiplying it by u iu i , we get :

∂ t (u i -u i ) 2 2 + (u i -u i )∂ j [u j u i -(u j u i ) ] = -∂ i [(u i -u i )(p -p )] + ν(u i -u i )∆(u i -u i ) (F.11)
And then :

∂ t (u i -u i ) 2 2 + u i ∂ j [u j u i -(u j u i ) ] -u i ∂ j [u j u i -(u j u i ) ] (F.12) = -∂ i [(u i -u i )(p -p )] + ν(u i -u i )∆(u i -u i ) (F.13)
We have :

u i ∂ j [u j u i -(u j u i ) ] = u j [∂ j (u i u i ) -u i ∂ j u i ] -u i ∂ j [τ ij + u i u j ] (F.14) = ∂ j [u j u i u i ] -u i ∂ j (u j u i ) -∂ j [u i τ ij ] + τ ij ∂ j u i -∂ j [u j u i 2 2 ] 
(F.15)

Replacing in F.13, we get : 18) or : In chapter 4, we showed that our current resolution was around 0.1 mm for 2D PIV and around 0.5 mm for 3D PIV. The improvement due to the increase of the set-up radius is clear from tables G.1 and G.2 : for the VK2 set-up, the Kolmogorov scale is hardly resolved at Re = 3.1 × 10 4 for 2D PIV and Re = 6.3 × 10 3 for 3D PIV whereas for GvK set-up, the Kolmogorov scale is resolved up to almost Re = 3.1 × 10 5 with 2D PIV and Re = 6.3 × 10 4 for 3D PIV.

∂ t (u i -u i ) 2 2 + ∂ j [u j u 2 i 2 ] -u i ∂ j (u j u i ) (F.16) -∂ j [u j u i u i ] + u i ∂ j (u j u i ) + ∂ j [u i τ ij ] -τ ij ∂ j u i + ∂ j [u j u i 2 2 ] (F.17) = -∂ i [(u i -u i )(p -p )] + ν(u i -u i )∆(u i -u i ) (F.
∂ t (u i -u i ) 2 2 + ∂ j [u j u 2 i 2 -u j u i u i + u i τ ij + u j u i 2 2 + (u j -u j )(p -p )] (F.19) = ν(u i -u i )∆(u i -u i ) + τ ij ∂ j u i + u i ∂ j [(u j u i ) ] -u j u i ] (F.20) i.e. : ∂ t (u i -u i ) 2 2 + ∂ j [u j (u i -u i ) 2 2 -(u j -u j ) u i 2 2 + u i τ ij + (u j -u j )(p -p )] (F.21) = ν∆ (u i -u i ) 2 2 -D ν,LES -Π LES + u i ∂ j [(u j u i ) ] -u j u i ] (F.
Increasing the cylinder radius by a factor 5 compared to the VK2 set-up is enough to obtain a resolution smaller than the Kolmogorov scale, but one could be tempted to increase it even more. Nevertheless, we chose to limit to a factor 5 for quite practical issues : we could already plan that a ve times bigger set-up would be heavy and would need a large room ; also we had a limited budget and even if we did not foresee all the diculties, we could guess that they would increase at least linearly with R. We therefore preferred to be careful ; we did not regret this choice retrospectively.

2 Choice of the uid

In the VK2 set-up, the uid used is either water or a water-glycerol mixture. This allows to play either on the uid viscosity or on the impeller rotation frequency in order to vary the Reynolds number ; this is particularly useful to avoid small rotation frequencies for which the frequency regulation 2. CHOICE OF THE FLUID 275 is less accurate, the particles settle and a low acquisition frequency is required to get independent frames (resulting in long acquisition times). However, this has drawbacks like leaks, or bubbles and dirts in the ow hindering the PIV measurements. Therefore, we asked ourselves whether we should use a dierent uid, i.e. air or other gases, in the new set-up. We then investigated the dierent aspects of the experiment impacted by the choice of the uid before taking a decision.

Range of working parameters

For a given set-up size, the working parameters (rotation frequency, torque and power) depend on the studied Reynolds number and on the uid. The range of working parameters is nite due to some constraints ; therefore the range of Reynolds numbers that can be reached depends on the uid.

The rotation frequency F of the impellers, the average torque T applied by one impeller on the ow and the total power P tot injected by the two of them in the ow are given by the following formulas, deduced from chapter 3 : Re is the Reynolds number, ν is the uid viscosity, K p is the dimensionless torque, depending on the type of ow. For a bifurcated ow, it is the average of the dimensionless torques applied by the two impellers.

F = ν • Re 2πR 2 (G.
Note that these are average values in stationary state ; in practice, there are uctuations. Tables G .3 to G.6 give the values of the impeller working parameters for dierent Reynolds numbers and for the three dierent types of ow, in the case of water, pure glycerol, air and helium lling the tank.

There are simple relations between the working parameters of the engines and those of the impellers :

the power supplied by the engines is equal (up to the mechanical losses) to the power injected by the impellers into the ow ; the rotation frequency of the engines is equal to the rotation frequency of the impellers, or proportional to it if there is a reduction ratio ; the torques of the engines and of the impellers are also equal or proportional to each other.

The constraints on the range of working parameters are the following : nite resolution of the control of the rotation frequency or of the torque by the engines : the rotation frequency and the torque applied cannot be too small. For instance, the engines of the VK2 set-up cannot control the rotation frequency below 0.2 Hz with an accuracy higher than 1%.

nite range of rotation frequencies and torques handled by the engines. A reduction gear can help increasing this range. For instance, the maximum rotation frequency allowed for the engines of the VK2 set-up is 50 Hz. The frequency range is then 50/0.2 = 250.

nite resolution of the torquemeters (we wish to perform torque measurements). The best torquemeter we found is sold by HBM and has a resolution of 0.01 N.m. It cannot measure torques higher than 100 N.m.

nite measurement range of the torquemeters. Several torquemeters with dierent measurement ranges are needed if the required torque range is too large.

additional torques due to the transmission between the engine and the impeller which prevent measurement or accurate control for torques that are too small. limited power of the cooling system which should be able to keep a constant temperature in the ow. The power of the cooling system is related to the power injected in the ow ; it is equal (up to the losses) to the power provided to the engine, see next point.

limited electricity power supply : we decided to use a total power P tot smaller than 10 kW.

Based on these constraints, a rst comparison can be made between the dierent uids.

In the case of pure water, it will be dicult to study low Reynolds numbers as the corresponding rotation frequencies and torques are very low, preventing accurate control and measurement. For an anti bifurcated ow, the maximum Reynolds number that can be reached is around 1.6 × 10 6 because of the required power, for a contra or anti symmetrical ow it can be higher.

For pure glycerol, all the considered Reynolds numbers require a total power higher than 10 kW.

Re = 6000 being considered as the lowest turbulent Reynolds number in this ow, pure glycerol will not be used in the GvK set-up. However, working with a water-glycerol mixture would allow to study Reynolds numbers down to 6.3 × 10 3 as the required power would be smaller than in the case of pure glycerol and the required frequency and torque larger than in the case of pure water.

For air, smaller Reynolds numbers than in the case of water can be reached : the lower limit is smaller and the higher limit is closer to 1.6 × 10 6 . At Re = 6.3 × 10 3 , the frequency and the torque are a bit small but if we give up on the torque measurement and use a reduction gear to achieve an accurate frequency control, this Reynolds number could be reached.

For helium, the upper limit on the Reynolds number due to the limited power is between Re = 3.1 × 10 5 and Re = 1.6 × 10 6 . At Re = 6.3 × 10 3 , accurate frequency control is possible but not torque measurement.

Based on the analysis of the working parameters of the engines, it seems that a set-up allowing to use both water and water-glycerol mixtures is the best solution. A set-up lled with air could also allow to reach Reynolds numbers between 6.3 × 10 3 and 1.6 × 10 6 , using a reduction gear and at the cost of giving up on the torque measurement at lower Reynolds. Using helium, alone or in addition to air, is not convincing because higher Reynolds cannot be reached and at lower Reynolds, the problem is the same as in air. Therefore, we will stop considering this gas in the following. Anti, symmetrical 3.9 × 10 -2 4.9 × 10 0 3.9 × 10 1 4.9 × 10 3 6.1 × 10 

Seeding

The kind of seeding particles is not the same in the case of water or water-glycerol mixture lling the cylinder and in the case of air ; each case has its own advantages and drawbacks. In both cases, particles must follow the ow and have a low velocity shift.

Seeding for liquid In the case of water or water-glycerol mixture lling the cylinder, solid seeding particles will be used, as in the VK2 set-up. In this case we used Dantec silver-coated glass hollowspheres of average diameter 15 µm and density 1.4, and Lavision non-silver-coated hollowspheres of average diameter 10 µm and density 1.1. Typical price is a few hundreds euros for 200 g of particles, and llling the whole GvK tank will require around 100 g. We are used to work with these kinds of particles in the VK2 set-up, but the Stokes number and the velocity shift must be computed for the GvK set-up to be sure that the particles will follow the ow (indeed, time scales are dierent for a given Reynolds number in the VK2 set-up and in the GvK set-up). Also, as the cylinder radius is 5 times bigger, the laser will have to cross a length 5 times longer before reaching the measurement volume at the center of the tank, there will probably be intensity losses at high concentration and a more powerful laser will be required.

Seeding for air In the case of air, the seeding is usually achieved with a fog generator that generates a fog made of droplets of a water-glycol or water-glycerol mixture (around 1% of glycol or glycerol, and other secret components). These droplets have a diameter of a few micrometers and a density close to 1 g/cm 3 . The price of a fog generator is around 4000 euros, and the price of the fog liquid is around 8 euros per liter. Droplets have a nite life time so the fog generator has to produce droplets continuously. As the von Kármán ow is a closed ow, it is not possible to renew the seeding, so the droplets may clog the walls of the tank, which is a real problem when observing the ow through them.

Also, as particles are smaller than in water, they scatter less light. Therefore, there will be less losses while crossing the uid but a high power is still required so that cameras receive enough light.

This last point should not be a major problem as this kind of seeding is known to be widely used.

Stokes number To ensure that the particles properly follow the ow, the Stokes number can be computed (see chapter 4). Tables G.7 to G.9 give the Stokes number based on the Kolmogorov time scale for the GvK set-up in the case of water, glycerol and air lling the tank. For tables G.7 and G.8, the particles considered have a diameter of 15 µm and a density of 1400 kg/m 3 ; this is a quite conservative case. For table G.9, particles have a diameter of 1 µm and a density of 1050 kg/m 3 , which are typical values for the seeding in air.

In all cases, the Stokes number based on the Kolmogorov time scale τ k is much smaller than 1 ; at most it reaches a few percents (in the anti, bifurcated case when the set-up is lled with air the value is too high but we saw in the previous section that the power required for this case is too high and that we would not be able to achieve it). For a water-glycerol mixture, the values are of the same order.

Velocity shift The velocity shift of the particles can be computed according to the formula given in chapter 4. It is given in table G.10. The total root mean square (rms) of the uctuations u tot rms (see chapter 5) at the smallest turbulent Reynolds number (Re = 6000) are given in table G.11 for the GvK set-up (R=50 cm). The u tot rms at higher Reynolds numbers are higher. Table G.9: Stokes number for the GvK set-up lled with air, in the case of seeding particles of diameter 1 µm and density 1050 kg/m 3 .

The velocity shift is negligible compared to the rms of the velocity uctuations in all cases, as it was the case in the VK2 set-up. Therefore, the sedimentation will not aect the measurement in any case ; the problem is rather the sedimentation of the particles over time scales longer than the interframing time. This sedimentation implies to stir the uid regularly and strongly to resuspend the particles. In the VK2 set-up, sedimentation was observed in pure water at all Reynolds numbers. For a water-glycerol mixture having a density close to the particle density, sedimentation Tables G.12 to G.14 give the values of f acq respectively for pure water, pure glycerol and air, for contra and anti (symmetrical) directions of rotation, several Reynolds numbers and several magnications. The camera pixel size c is equal to 10 µm. Table G.12: f acq (Hz) for contra and anti (symmetrical) rotation directions, several Reynolds numbers and several magnications in the case of pure water lling the tank. c = 10 µm.

The fast cameras we use (Phantom Miro m340, see chapter 5) have a maximum acquisition frequency of 800 Hz at full resolution. They can also acquire images at higher frequency but the resolution is decreased. We consider here that the maximum acquisition frequency is 4 kHz. At this frequency, the resolution is 512 × 512 pixels. The acquisition frequency is increasing with |M |, but a high value of |M | is not required as we showed in chapter 4 that a magnication |M | between 0.3 and 0.4 is a good setting.

In the case of pure water lling the tank, the ow can be time-resolved with full camera resolution up to Re = 6.3 × 10 4 with optimal |M |, and at higher Reynolds number with lower |M | or lower camera resolution. In the case of pure glycerol lling the tank, the ow cannot be time-resolved at a fullly turbulent Reynolds number with our cameras. For a water-glycerol mixture, the highest Reynolds number at which the ow can be time-resolved is therefore between Re = 6.3 × 10 3 and Re = 1.6 × 10 6 .

In the case of air lling the tank, the ow can be time-resolved only at Re = 6.3 × 10 3 at full resolution and up to Re = 6.3 × 10 4 with lower resolution.

In the case of water or water-glycerol mixture lling the GvK set-up, the ow can be time-resolved up to higher Reynolds numbers than in the case of air. 7.9 × 10 4 3.9 × 10 5 7.9 × 10 5 3.9 × 10 6 2.0 × |M|=0.9
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Bubbles and cavitation

In the VK2 set-up, before doing any PIV measurement, air bubbles corresponding to air trapped in the mechanical parts have to be removed by stirring the uid for some time. Also, the tank is pressurized to avoid cavitation, i.e. the formation of bubbles due to local decrease in pressure.

In the case of a set-up lled with air, this problem does of course not occur. In the case of a set-up lled with water or with a water-glycerol mixture, we can discuss the impeller rotation frequency f cav at which cavitation occurs based on the formula proposed in [Marié, 2003] :

f cav = 1 2πR P surf -P sat Cρ ≈ 1 2πR P surf Cρ (G.7)
where R is the tank radius, ρ the uid viscosity, P surf the pressure at the top of the tank, P sat the vapor pressure, considered negligible and C a coecient depending on the geometry and weakly on the Reynolds number.

According to this formula, when multiplying the tank radius by ve, f cav will be divided by 5.

However, when multiplying the tank radius by ve, the impeller rotation frequency must be divided by 25 to keep the Reynolds number constant (considering C constant). Therefore, the Reynolds number at which cavitation will appear will roughly be 5 times larger for the GvK set-up than for VK2. In VK2 in water, pressure was required to prevent bubble formation around Re = 3 × 10 5 . This corresponds to Re = 1.5 × 10 6 in GvK for water, a Reynolds number that we would like to study.

Considering the problem of bubbles, using air is clearly better as water or water-glycerol mixture as the problem does not exist with air. For water or water-glycerol mixture, the tank should be pressurized to avoid bubble formation at high Reynolds.

Other practical issues related to the properties of the uid

Here, we discuss other issues that should be considered before chosing the uid.

Optical index Water or a water-glycerol mixtures have a larger optical index than air. This may result in larger distortions, handled to some extent by the 3D calibration map in TPIV. This also allows larger focal depths, as shown in chapter 4.

Price Air and water are free, whereas glycerol must be bought. For instance, the cost of 2 m 3 of glycerol (containing more than 98 % of glycerol) is 4500 euros.

Fluid handling Handling air is of course much easier than handling water or water-glycerol mixture as there is nothing to do. In the case of a liquid, the tank must be lled and unlled ; this will take quite a long time with a set-up of 1 m diameter, especially for viscous mixtures.

Glycerol is not very convenient to use because it makes everything sticky.

Considering the cost of glycerol and of seeding particles, it may be convenient to store the liquids used. This requires further equipments. Also, another problem of VK2 is the dirts producing big bright spots on the camera images. These dirts enter the tank when opening it or handling the liquid. In the case of air lling the tank, it would not be a problem as they are probably too heavy to be carried by the air.

DESIGN OF THE GvK EXPERIMENT

to the tank and the camera, additional space is needed for the thermocooler, the engines, the laser, the desks, etc.

Weight

The total weight of the set-up can be estimated with typical densities and the estimated lengths.

The cylinder is lled with the uid, whose density is 1 kg/m 3 for air, 1000 kg/m 3 for water and 1260 kg/m 3 for pure glycerol. The height of the cylinder is 2 m. Therefore, the weight of uid is 1.6 kg in the case of air, 1600 kg in the case of water and 2000 kg in the case of pure glycerol.

Considering that the cylinder has a thickness of 1 cm and is made of PMMA of density around 1200 kg/m 3 , its weight is around 75 kg.

Considering that the outer tank is a cylinder of radius 0.6 m and of height 2 m, made of aluminium (density around 2700 kg/m 3 ), its weight will be around 200 kg.

The metallic impellers of the VK2 set-up weight 2.8 kg each. Multiplying this weight by 5 3 = 125 gives a weight of 350 kg.

The top cover and the bottom of the tank can be approximated by plain cylinders of radius 0.5 m and height 15 cm. If they are made of steel (density around 8000 kg/m 3 ), the corresponding weight will be around 1000 kg each. This is probably overestimated but will also account for the metal structure holding the whole set-up.

With these estimations, the total weight is around 3 t if it is lled with air (or another gas, the weight of a gas is negligible compared to other components) and 5 t if it is lled with liquid.

Engines, torquemeters and cooling system dimensioning

After the liquid had been chosen, we dened more accurately the range of working parameters of the engines, as well as the corresponding working ranges for the torquemeters and the cooling system.

Engines

The maximum allowed power was decided to be 10 kW ; this would x the upper limits on the frequency and torque ranges. The lower limit was going to be limited by the velocity regulation resolution and torquemeter resolution. Proceeding by trial and error, we found that a range of frequencies of [0. 1,2] Hz allowed to reach all the Reynolds numbers with high enough torques and small enough power. Note that 0.1 Hz is the lowest frequency we could reach in the VK2 set-up. We then chose three target cases that we were interested to study and which had extreme frequencies and torques. We computed the corresponding frequencies and torques for each of them. This dened a frequency range and a torque range that were acceptable, so we adopted these ranges.

The working parameters of these target cases are given in table G.16.

The rst case (mixture containing 68.6% of glycerol in volume) corresponds to the smallest turbulent Reynolds number and to the lowest frequency we will have to use. The second case (mixture containing 95.3% of glycerol in volume) corresponds to the smallest turbulent Reynolds number and to the highest frequency of the chosen range. Note that the required power is higher than 10 kW for the anti symmetrical and bifurcated cases. The third case corresponds to the highest Reynolds number with pure water lling the tank. If the engines can implement these three cases, then the lowest and the highest Reynolds numbers can be reached and according to tables G.3 and G.4, intermediary Reynolds can be reached too with dierent water-glycerol mixtures.

The required range of working parameters for the engines are therefore the following : [0.1, 2] Hz for the frequency ; [1,700] N.m for the torque and [0, 10] kW for the power. Working parameters for the GvK set-up for the three chosen target cases.

Note that in bifurcated state, the 700 N.m value corresponds to the average of the torques applied by the two impellers, therefore one impeller will apply a larger torque and the other impeller a lower one. Therefore, this value should be considered as a conservative upper bound for the torque uctuations in the anti symmetrical state (torques uctuate aroud their average value which is given in table G.16) rather than the largest average value that will be reached in the anti bifurcated state.

Torquemeters

Torquemeters should therefore have a measurement range of [1,700] N.m.

Cooling system

The cooling system should be able to dissipate a power of 10 kW.

Results of the mechanical conception design

After we completed the preliminary design, we wrote the specications. They were sent to three dierent companies ; nally, GP Concept was chosen to carry out the mechanical conception of GvK. The mechanical conception lasted 4 months during which we gave a regular feedback on the propositions of the chosen engineering desk. In this section, we present the main features of the nal design. 

Outer tank

The outer tank is made of aluminium. It holds the cylindrical tank and connects the bottom and the top of the set-up so that there is no stress on the cylindrical tank which is made of PMMA. The There are two kinds of openings in the outer tank : windows and prisms. Both are made of optical anti-reective glass and can be removed. The windows will be used to observe a measurement volume at the center of the tank, at several possible heights. The prisms will be used to observe a measurement volume close to the wall, at several possible heights too. Thanks to the prisms, the lines of sight of the cameras are perpendicular to the optical interface between air and glass. They are not perpendicular to the optical interface between liquid and PMMA but as the corresponding optical indices are close to each other, the resulting distortions will be less important and more easily corrected by the camera calibration.

There are also holes allowing to put hotwires, or temperature or pressure probes for alternative measurements.

To avoid bubbles, the openings for the windows have chamfers which limit the trapping of the bubbles. Also, elbow connectors have been added to the outer tank to force a ow in the space between the inner and the outer tank in order to remove bubbles. As the outer tank is tight, it can also be depressurized during its lling in order to avoid bubbles.

Cylindrical tank

The cylindrical tank is made of two plates of PMMA which are thermoformed and glued together.

This technique allows a better optical quality than casted PMMA. The only drawback is the roughness along the bonding line, but a proper polishing will x this problem.

The nal cylinder has a thickness of 1 cm, as in the VK2 set-up and an inner diameter of 0.98 m.

As the PMMA may deform, verniers are used. They are big screws xed in the outer tank (which is made of aluminium and therefore much less prone to deformation) and which push on the cylindrical tank via pads. Screwing or unscrewing them allows to adjust the shape of the cylinder with a good accuracy, as the cylinder diameter and the shape of the outer tank are known accurately. Anyway, there are small spaces above and below the cylindrical tank which allow the liquid to ow from the cylindrical tank to the outer one ; therefore, there is no pressure dierence between the inside and the outside of the cylindrical tank.

Small holes in the cylindrical tank allow to put the possible hotwires or pressure or temperature probes.

Engines

The chosen engines are electrical asynchronous engines made by Siemens. The rated power is 7 kW (each), the rated torque is 45 N.m and the rated rotation frequency is 1500 rpm. They will be used with Neugart reduction gears which have a reduction ratio of 20. For each engine, two pulleys of dierent sizes are provided ; this allows to achieve the whole requested range of working parameters.

Tightness at the shafts

The tightness at each shaft is ensured by two lip seals placed symmetrically as shown on gure G.5. There are two of them out of precaution and also because placing them in opposite directions ensures the tightness in both cases of over-and under-pressure. The shaft can be lubricated around the lip seals with a special grease in order to limit the fatigue of the seals. In addition to these lip seals, a V-seal is used, which aims at preventing the seeding particles from reaching the lip seals and wearing them out. These torquemeters are placed between the mechanical bearings and the lip seals. Therefore, the measured torques will not be aected by the contribution of the bearings.

These torquemeters do not allow an accurate measurement of the rotation frequency ; therefore, additional sensors with a resolution of 1/10000 th of round are added on the pulleys.

Cooling system

The cooling circuit, rather similar to the one in VK2, is made of two copper windings : one above the top impeller and one below the bottom impeller. Such a winding is shown on gure G.7. Each winding has four levels and is made with a copper pipe which has a diameter of the order of 1 cm and is 50 m long. It was dimensioned with a 0D model and slightly oversized out of precaution. It is connected to a Huber thermocooler, itself connected to the cooling circuit of the building. 5.9 Numerical assessment of the eigen frequencies GP Concept computed the eigen frequencies of the dierent parts of the experiment to ensure that they were much higher than the impeller and engine rotation frequencies. This condition was fulllled except for the metal structure which was then modied accordingly. 

Figure 1 . 1 :

 11 Figure 1.1: Velocity elds measured in the von Kármán ow at Re=3 × 10 5 with water lling the tank and the impellers rotating at 5 Hz. The arrows correspond to the in-plane velocity components and the color to the out-of-plane velocity component. (a) Velocity eld measured in a meridian plane covering the whole height and width of the ow. (b) Velocity eld measured at a dierent time at the center of the ow, in the white square shown on (a).
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 12 Figure 1.2: Schematic representation of the cascade picture

Figure 2 .

 2 Figure 2.1 allows to compare the ltering due to a square interrogation window (whose size is 4 times the space step for an overlap of 75%, see chapter 4) and to the ltering due to the Gaussian smoothing function we use in this thesis at several scales. Figure (b) clearly shows that c is more relevant than : the ltering due to the PIV and the one due to the Gaussian lter are closer for

Figure 2 . 1 :

 21 Figure 2.1: (a) Normalized smoothing function φ (x)/φ (0) = exp -30x 2 /(2 2) for several (a) and square of the corresponding Fourier transforms (normalized too) (b). The space step is dx = 0.005 (dimensionless value), this is the horizontal distance between two consecutive crosses + on (a). The PIV lter is a top-hat lter of width 4dx.
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 22 Figure 2.2: Schematic representation of the margins on which the weak Kármán-Howarth-Monin and LES terms cannot be computed. The red curves correspond to the Gaussian lter φ and the black lines to the margins. Outside the margins, the lter cannot be convoluted with the velocity eld because the velocity is not available out of the velocity eld
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 31 Figure 3.1: Geometry of the considered von Kármán ow. (a) Vertical cross-section. (b) Perspective. The lengths are in units of the cylinder radius R.

Figure 3 . 2 :

 32 Figure 3.2: Geometry of the TP87 impellers. The lengths are in units of the cylinder radius R.

  shear. Each cell motion can be splitted into two components : a toroidal one, corresponding to the rotational motion of the impeller, in blue on gure 3.3 (a) and a poloidal one, in red, corresponding to a pumping motion : impellers expel uid towards the cylinder, and therefore the uid is sucked at the center of the impellers. Both cells are symmetrical with respect to the R π symmetry and therefore have the same size. There is no qualitative dierence between contra and anti directions in the laminar regime, only the direction of rotation is dierent : for instance, the laminar ow corresponding to the contra direction of rotation can be gured out by reversing the blue arrows of gure3.3 (a).
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 33 Figure 3.3: Average ow. (a)Anti direction, symmetrical ow. (b) Anti direction, bifurcated ow (bottom impeller imposing its direction). The blue arrows correspond to the toroidal components and the red arrows to the poloidal components.
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 34 Figure 3.4: Average velocity eld and rms elds at Re = 3 × 10 5 for impellers rotating in the anti direction. The ow is symmetric. (a) The arrows correspond to the average in-plane component and the color to the average out-of-plane component (u z ). (b) u rms x . (c) u rms y . (d) u rms z
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 336 Figure 3.6: Vertical cross-section of the experimental set-up without the outertank.
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 37 Figure 3.7: Photograph of the VK2 set-up with outer tank A.
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 3839 Figure 3.8: SPIV conguration with two cameras

  section and allows to put two cameras whose optical axes form an angle of 90 • , as shown on gure 3.8. The laser sheet is vertical and contains the bisector of these two axes.
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 310 Figure 3.10: TPIV outertank B : Horizontal (a) cross-section and photograph (b). The green rectangles stand for the laser volume.
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 311 Figure 3.11: Composite spectrum of the von Kármán ow. The dierent colors correspond to dierent Reynolds numbers, resolutions and/or magnications.
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 41 Figure 4.1: Typical PIV set-up.
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 42 Figure 4.2: Triggering signal. Top : non time-resolved measurements. Bottom : time-resolved measurements.
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 43 Figure 4.3: Advantage of using a mirror. (a) Cameras 1 and 4 are in forward scattering whereas cameras 2 and 3 are in backward scattering. (b) All cameras are both in forward and backward scattering.
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 44 Figure 4.4: Dierent optical media crossed by the scattered beams in the VK2 set-up. (a) Real conguration. (b) Simplied conguration for computations.
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 45 Figure 4.5: Scheimpug principle.
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 46 Figure 4.6: Representation of the tomographic reconstruction problem (top view). Adapted from[START_REF] Elsinga | Tomographic particle image velocimetry[END_REF] 
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 47 Figure 4.7: Formation of ghost particles. Real particles are in blue and ghost particles in red.
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 48 Figure 4.8: 3D calibration plate from LaVision company. Source : LaVision specication sheet.
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 49 Figure 4.9: Triangulation and reprojection during volume self-calibration. Source :[Wieneke, 2008] 
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 410 Figure 4.10: TPIV sequence of steps
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 411 Figure 4.11: 5M diagram for the velocity measurement by TPIV.

  AND ITS APPLICATION TO OUR SET-UP with δ the light sheet thickness and d the particle density. For 3D PIV it reads :
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 51 Figure 5.1: Top view of the spatial arrangement of the laser and of the cameras. The green line corresponds to the laser beam.

Figure 5 . 2 :

 52 Figure 5.2: Measurement area in the meridian plane for 2D-3C cases.
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 53 Figure 5.3: Number of independent frames n t,ef f (x) as a function of space for case A and the three velocity components. (a) u x (b) u y (c) u z . The white square shows the location of the measurement area for cases B to E.
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 54 Figure 5.4: 1D Fourier spectrum along the y axis for cases A to E. The vertical dashed lines correspond to the PIV 2 dB cut-o wavenumbers.
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 5556 Figure 5.5: Mean ow. The arrows correspond to the in-plane components (u x and u y ) and the color to the out-of-plane component (u z ) normalized by the reference velocity 2πRF (R is the tank radius and F the impeller rotation frequency, see chapter 3). (a) Case A. (b) Case B. (c) Case C. (d) Case D. (e) Case E. The white square on (a) corresponds approximately to the measurement area of cases B to E.
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 57 Figure 5.7: Top view of the spatial arrangement of the laser and of the cameras for the campaign of January 2017. The green line corresponds to the laser beam. Mirrors are represented in blue, lenses for the laser beam in red and the slit in orange. Distances are given in mm.
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 5859510 Figure 5.8: Vertical cross-section a of gure 5.7. Distances are given in mm.
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 511 Figure 5.11: Measurement area for cases T1 to T4 (green) and T5 to T6 (red). (a) Vertical cross-section in a meridian plane. (b) Horizontal cross-section in an equatorial plane.
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 512 Figure 5.12: 1D Fourier spectrum along the y axis for cases T1 to T6. The vertical dashed lines correspond to the PIV 2 dB cut-o wavenumbers.
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 5 Figure 5.13 shows the probability density functions of the three velocity components for cases T1
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 513 Figure 5.13: Velocity probability density functions (pdfs) of the three velocity components. The vertical axes correspond to the pdfs, in logarithmic coordinates and the horizontal axes to the velocity component values in linear coordinates. (a) Case T1. (b) Case T2. (c) Case T3. (d) Case T4. (e) Case T5. (f) Case T6.

  τ k (s) 9.2 × 10 -2
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 5514 Figure 5.14: Top view of the spatial arrangement of the laser and of the cameras for the time-resolved measurement campaign of May 2018. The green line corresponds to the laser beam. Mirrors are represented in blue, lenses for the laser beam in red and the slit in orange. Distances are given in mm.
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 515 Figure 5.15: Velocity probability density functions (pdfs) of the three velocity components for case T4t. The vertical axes correspond to the pdfs, in logarithmic coordinates and the horizontal axes to the velocity component values in linear coordinates. .
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  Global behaviour of Π DR and D ν with respect to scales Before analyzing the extreme values of the Duchon-Robert term Π DR , we studied the average values and the standard deviation of this term and their behaviour with respect to scales.1.1 Space-time averageThe space-time averages of the Duchon-Robert term Π DR and of the viscous dissipation term D ν , normalized by the global dissipation rate (computed from measurements of the rotation frequency and of the torque applied on the impellers) are plotted on gure 6.1 for cases T1 to T5. They are plotted as a function of the scale c dened in chapter 2, normalized by the Kolmogorov scale η. The average of Π DR is plotted in blue and the average of D ν is plotted in red. The dierent cases can be distinguished by dierent symbols ; also, they correspond to dierent ranges of c /η : therefore, the curves corresponding to the highest Reynolds number case (T1) are at the right and the ones corresponding to the lowest Reynolds number cases (T4 and T5) are at the left.
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 61 Figure 6.1: Space-time average of Π DR and D ν terms wrt. scales. The curves corresponding to Π DR are plotted in blue whereas those corresponding to D ν are plotted in red. The vertical dashed lines correspond to the values of the interrogation volume size.is the average dissipation rate computed from torque measurements. η is the Kolmogorov scale.
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 62 Figure 6.2: Space-time average of Π DR and D ν terms wrt. scales for dierent directions of rotation. The curves corresponding to Π DR are plotted in blue whereas those corresponding to D ν are plotted in red.The vertical dashed lines correspond to the values of the interrogation volume size. For cases T4 and T5, the impellers are rotating in the ANTI direction whereas for case T6 they are rotating in the CONTRA direction. D ν ( c,min ) is the viscous dissipation term computed at the smallest value of c .
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 63 Figure 6.3: Standard deviation (computed over space and time) of Π DR and D ν terms wrt. scales. The curves corresponding to Π DR are plotted in blue and those corresponding to D ν are plotted in red. The vertical dashed lines correspond to the values of the interrogation volume size. is the average dissipation rate computed from torque measurements.
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 64 Figure 6.4: Standard deviation (computed over space and time) of Π DR and D ν terms wrt. scales for dierent impeller rotation directions. The curves corresponding to Π DR are plotted in blue and those corresponding to D ν are plotted in red. The vertical dashed lines correspond to the values of the interrogation volume size. For cases T4 and T5, the impellers are rotating in the ANTI direction whereas for case T6 they are rotating in the CONTRA direction.
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 64 Figure 6.5 (a) shows the pdfs of the Duchon-Robert term at dierent values of c /η corresponding to the rightmost points of the space-time average or standard-deviation curves (gures 6.1 and 6.3).Each pdf was obtained from one dierent case among T1, T2, T3 and T4. However, c is always equal to 1.7 times the interrogation window size : indeed, the four pdfs were obtained with exactly the same acquisition (except for the interframing time dt), correlation and processing parameters, therefore only c /η varies from one pdf to another. The horizontal axis is normalized by the global dissipation rate obtained from torque measurements. It can be seen that the pdfs have wide tails, the width of the tails increasing with c /η. This is coherent with the increase of the space-time average and standard deviation of the Duchon-Robert term with this ratio. It is interesting to note that even in the dissipative range, Π DR can take values larger than 50 . More interesting is the behaviour of the centered-reduced pdf of the Duchon-Robert term shown in gure 6.5 (c) :it becomes more skewed towards positive values in the dissipative range, and it also has a wider positive tail. The larger skewness means that direct inter-scale transfer is favoured in the dissipative

Case T 4 ,Figure 6 . 5 :

 465 Figure 6.5: Probability density functions of the Duchon-Robert term Π DR and of the viscous dissipation term D ν for cases T1 to T4. In all cases, c is equal to 1.7 times the interrogation volume size. The vertical axes are in logarithmic coordinates and the horizontal axes in linear coordinates except for (b) where it is in logarithmic coordinates. (a) Pdf of Π DR normalized by the global dissipation rate (computed from torque measurements). (b) Pdf of D ν normalized by the global dissipation rate . The dashed lines correspond to log-normal distributions. (c) Centered-reduced pdf of Π DR . (d) Centered-reduced pdf of D ν .

  1 gives the skewness and the kurtosis of the pdfs of the Duchon-Robert and viscous dissipation terms shown in gure 6.5. In agreement with gure 6.5 (d), the skewness and the kurtosis of the viscous dissipation do not depend on c /η. However, the skewness and kurtosis of the Duchon-Robert term are both increasing when decreasing c /η : in the dissipative range, even if the values of the Duchon-Robert term are overall smaller than in the inertial range, its distribution is much more skewed (towards positive values) and pinched.

Figure 6 . 6 :

 66 Figure 6.6: Values of the n th highest extreme event of the Duchon-Robert term and of the viscous dissipation term with n ∈ {1, 10, 100, 1000}. Pentagons correspond to c /η = 8 (obtained with case T4), triangles to c /η = 27 (obtained with case T3), stars to c /η = 45 (obtained with case T2) and crosses to c /η = 150 (obtained with case T1). The vertical dashed lines correspond to the interrogation volume size of each case. (a) Values are normalized by . (b) Values are centered-reduced.

Figure 6 .

 6 Figure 6.6 gives the values of M DR (n) and of M ν (n) for n ∈ {1, 10, 100, 1000} and for c /η ∈ {8, 27, 45, 150} (as the pdfs shown in gure 6.5). The extremes of D ν all correspond to positive values ; however, M DR[START_REF] Frisch | Turbulence and Predictability in Geophysical Fluid Dynamics and Climate Dynamics[END_REF] and M DR (100) correspond to negative values of Π DR . The extreme events of Π DR are mainly positive ; the amount of negative extreme events is decreasing when c /η is lowered. For instance, there are 223 negative events among the 1000 most extreme events at c /η = 150 and only 90 at c /η = 8. When normalized by the global dissipation rate , the behaviour of M DR (n) and of M ν (n) is similar to the behaviour of the corresponding space-time averages shown on gure 6.1 : M DR (n) is increasing and M ν (n) decreasing with c /η. However, it can be noticed that M DR (n) is larger

3 .Figure 6 . 7 :

 367 Figure 6.7: Logarithm of the joint probability density function of the Duchon-Robert and viscous dissipation terms. The vertical and horizontal axes are in logarithmic coordinates. (a) c /η = 8 (obtained with case T4). (b) c /η = 27 (obtained with case T3). (c) c /η = 45 (obtained with case T2). (d) c /η = 150 (obtained with case T1). The white dashed lines correspond to the identity lines Π DR = D ν .

Figure 6 .

 6 Figure 6.8 shows the pdfs of the logarithm of the absolute value of the ratio Π DR /D ν for four dierent values of c /η in semi-logarithmic coordinates (the horizontal axis correspond to the logarithm of the absolute value of the ratio, shown in linear coordinates). The considered values of c /η correspond again to the rightmost points of gure 6.1 and to the joint pdfs considered on gure 6.7. For each value of c /η, we show three joint pdfs : a pdf conditioned on positive values of the ratio (i.e. on positive values of the Duchon-Robert term since the viscous dissipation is always positive), a pdf conditioned on the negative values of the ratio and an unconditioned pdf. This allows to detect a possible dierent behaviour between direct and indirect energy transfer. The arrows indicate the absolute value of the ratio Π DR /D ν at the maximum of the two conditioned pdfs.

Figure 6 . 8 :

 68 Figure 6.8: Probability density function of the logarithm of the absolute value of the ratio Π DR /D ν . Blue curves correspond to the pdf conditioned on positive values of the ratio, red curves to the pdf conditioned on negative values of the ratio and yellow curves to unconditioned pdf. The arrows show the maxima of the blue and red curves. (a) c /η = 8 (obtained with case T4). (b) c /η = 27 (obtained with case T3). (c) c /η = 45 (obtained with case T2). (d) c /η = 150 (obtained with case T1).

3 .

 3 JOINT BEHAVIOUR OF Π DR AND D ν 137 The shape of the three pdfs are the same for a given value of c /η, and also for dierent values of c /η : there is a wide exponential tail on the left and a sharply decreasing tail on the right. At the extreme right, the pdfs seem to widen but this is probably linked with the saturation of the pdfs of the viscous dissipation term at small values which we do not understand and believe to have no physical meaning. The strong asymmetry of these pdfs means that extremely high values of the ratio Π DR /D ν are much rarer than extremely small values, whatever c /η. This asymmetry was not very obvious from the joint pdfs.

Figure 6 . 9 :

 69 Figure 6.9: Centered-reduced probability density function of the logarithm of the absolute value of the ratio Π DR /D ν . Blue curves correspond to the pdf conditioned on positive values of the ratio, red curves to the pdf conditioned on negative values of the ratio. (a) c /η = 8 (obtained with case T4). (b) c /η = 27 (obtained with case T3). (c) c /η = 45 (obtained with case T2). (d) c /η = 150 (obtained with case T1).

For a given valueCase T 4 ,Case T 4 ,Figure 6 .

 446 Figure 6.10: (Unconditioned) probability density functions of the logarithm of the absolute value of the ratio Π DR /D ν at several scales. (a) Raw pdfs. (b) Centered-reduced pdfs.

Figure 6 .

 6 Figure 6.10 allows to see better the behaviour of the ratio pdfs when c /η is varied. This gure shows the unconditioned raw pdfs on the left and the unconditioned centered-reduced pdfs on the right. The conditioned pdfs feature the same behaviour. When increasing c /η, the maximum of the pdf is shifted towards the right, i.e. towards larger values of the ratio, which is expected : in the dissipative range, viscous dissipation is stronger than inertial eects, whereas it is the contrary in the inertial range. Note that values of |Π DR /D ν | around 10 can all the same be found in the dissipative range. More interesting is the behaviour of the centered-reduced pdfs of log 10 (|Π DR /D ν |) : they become more skewed towards negative values in the dissipative range compared to the inertial range ; this is not very obvious in gure 6.10 for the left tail but much more clear for the right one. This behaviour of the raw and centered-reduced pdfs of log 10 (|Π DR /D ν |) should be compared to the behaviour of their counterparts for Π DR . Indeed, both |Π DR /D ν | and |Π DR | take smaller values in the dissipative range, with still very strong extremes (|Π DR /D ν | around 10, |Π DR | around 100 ). However, whereas the centered-reduced pdfs of Π DR have a wider positive tail in the dissipative range, indicating that the extreme events resist better the viscous eects than medium-amplitude events, the centeredreduced pdfs of log 10 (|Π DR /D ν |) become more skewed towards negative values in the dissipative range, indicating that extreme events of |Π DR /D ν | are more impacted by the viscous eects that medium-amplitude ones, i.e. that their probability decreases more in the dissipative range.

Figure 6 .

 6 Figure 6.11 shows the values of the logarithm of the 1 st , 10 th , 100 th and 1000 th highest and lowest extreme events of the ratio |Π DR (x, y, z, t)/D ν (x, y, z, t)| for dierent values of c /η. In line with

  Figure 6.11: 

Figures 6 .Figure 6 . 12 :

 6612 Figures 6.12 shows the space-time average of the four terms Π DR , D ν , Π LES , and D ν,LES . The behaviour is qualitatively the same for the inter-scale transfer terms Π DR and Π LES on the one

Figure 6 . 13 :

 613 Figure 6.13: Standard deviation (computed over space and time) of Π DR , D ν , Π LES and D ν,LES terms wrt. scales. The curves corresponding to Π DR are plotted in blue, those corresponding to D ν are plotted in red, those corresponding to Π LES are plotted in purple and those corresponding to D ν,LES are plotted in green. The vertical dashed lines correspond to the values of the interrogation volume size.

Case T 4 ,Case T 4 ,Figure 6 .

 446 Figure 6.14: (Unconditioned) probability density functions of the logarithm of the absolute value of the ratio Π DR /D ν at several scales. (a) Raw pdfs. (b) Centered-reduced pdfs.

Figure 6 . 15 :

 615 Figure 6.15: Centered-reduced probability density function of the logarithm of the absolute value of the ratio Π DR /D ν . Blue curves correspond to the pdf conditioned on positive values of the ratio, red curves to the pdf conditioned on negative values of the ratio. (a) c /η = 8 (obtained with case T4). (b) c /η = 27 (obtained with case T3). (c) c /η = 45 (obtained with case T2). (d) c /η = 150 (obtained with case T1).

4 .

 4 Figure 6.16 shows the pdfs of the logarithm of the ratio |Π DR /Π LES | for the values of c /η studied previously. The pdfs conditioned on negative values of the ratio as well as pdfs conditioned on positive values of the ratio are shown in addition to the unconditioned pdfs.

Figure 6 . 16 :

 616 Figure 6.16: Probability density function of the logarithm of the absolute value of the ratio Π DR /Π LES . Blue curves correspond to the pdf conditioned on positive values of the ratio, red curves to the pdf conditioned on negative values of the ratio and yellow curves to unconditioned pdf. The arrows show the maxima of the blue and red curves. (a) c /η = 8 (obtained with case T4). (b) c /η = 27 (obtained with case T3). (c) c /η = 45 (obtained with case T2). (d) c /η = 150 (obtained with case T1).
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 61761846 Figure 6.17: Logarithm of the joint probability density function of Π DR and Π LES . The vertical and horizontal axes are in linear coordinates. The black lines correspond to Π DR = 0 and Π LES = 0. The dashed lines correspond to the most probable ratio Π DR /Π LES , for positive values of this ratio (green) or negative values (red). The axis and color scales are dierent from a gure to another. (a) c /η = 8 (obtained with case T4). (b) c /η = 27 (obtained with case T3). (c) c /η = 45 (obtained with case T2). (d) c /η = 150 (obtained with case T1).
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 619 Figure 6.19: Schematic representation of the 2-step energy transfer. Spatial transport and pressure terms are represented by blue arrows, viscous eects by red arrows and inter-scale transfer terms by green arrows.

7. 1 .

 1 On gure 7.1, we can see that the average 2D terms are lower than the average 3D terms, especially in the case of the Duchon-Robert term. A consequence is that the saturation value of the 2D viscous term in the dissipative range is larger than the saturation value of the 2D Duchon-Robert term in the inertial range. On the contrary, they seem almost equal for the 3D terms. In principle, both 1

Figure 7 . 1 :

 71 Figure 7.1: Space-time averages of Π DR and D ν for SPIV cases A to E and TPIV cases T1 to T5. For SPIV cases, Π DR is in purple and D ν is in yellow, whereas for TPIV cases Π DR is in blue and D ν is in red. Dierent cases have dierent symbols. The vertical black dashed lines correspond to the interrogation window or volume size of the dierent cases ; for case E, it is outside the gure, at c /η = 1.5. The surrounded points are the rightmost points of the curves corresponding to TPIV cases ; for these points the impact of PIV ltering is the lowest.
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  . Debue, 1 V. Shukla, 1 D. Kuzzay, 1,2 D. Faranda,3,4 E.-W. Saw, 1 F. Daviaud,1 and B. Dubrulle 1,* 1 DSM/IRAMIS/SPEC, CNRS UMR 3680, CEA, Université Paris-Saclay, 91190 Gif sur Yvette, France 2 LESIA, Observatoire de Paris, Université PSL, CNRS, Sorbonne Université, Univ. Paris Diderot, Sorbonne Paris Cité, 5 place Jules Janssen, 92195 Meudon, France 3 DSM/LSCE, CNRS UMR 8212, CEA, Université Paris-Saclay, 91190 Gif sur Yvette, France 4 London Mathematical Laboratory, 14 Buckingham Street, London WC2N 6DF, United Kingdom (Received 31 August 2017; revised manuscript received 28 March 2018; published 3 May 2018) We examine the connection between the singularities or quasisingularities in the solutions of the incompressible Navier-Stokes equation (INSE) and the local energy transfer and dissipation, in order to explore in detail how the former contributes to the phenomenon of intermittency. We do so by analyzing the velocity fields (a) measured in the experiments on the turbulent von Kármán swirling flow at high Reynolds numbers and (b) obtained from the direct numerical simulations of the INSE at a moderate resolution. To compute the local interscale energy transfer and viscous dissipation in experimental and supporting numerical data, we use the weak solution formulation generalization of the Kármán-Howarth-Monin equation.

FIG. 1 .

 1 FIG. 1. Wavelet structure functions. (a) Plots of S p / p/3 η ζ (p) vs /η for the first nine orders: p = 1 (light blue), p = 2 (orange), p = 3 (yellow), p = 4 (purple), p = 5 (green), p = 6 (pale blue), p = 7 (red), p = 8 (strong blue), and p = 9 (deep orange). The black dashed lines indicate the power-law behavior ( /η) ζ (p) [see Table II for the values of ζ (p)]. (b) Plots of the rescaled structure functions S p /S p/3 3 vs /η. The black dashed lines indicate the power law ( /η) ζ (p)-p/3 . η is the Kolmogorov dissipation length scale and is the dimensionless energy injection rate. The structure function of any order p is obtained by combining the five different experimental data sets, shown here by using different symbols: A (circles), B (squares), C (diamonds), D (triangles), and E (stars). A comparison with the DNS results is shown by plotting S p of different orders as solid curves with the same color scheme as used for the experimental data sets. The structure functions have been shifted by multiplying with an arbitrary factor for visual clarity.

FIG. 2 .

 2 FIG. 2. Plots of the probability distribution function of the instantaneous values of the (a) local energy transfer D I / and (b) viscous dissipation D ν at different scales. The PDFs at the different scales are shown by using different colors: /η = 680 blue curve (data set A), /η = 240 red curve (data set B), /η = 90 yellow curve (data set C), /η = 30 purple curve (data set D), and /η = 3 green curve (data set E). η is the Kolmogorov dissipation length scale and is the dimensionless energy injection rate. Inset (a1): Same as in panel (a) but D I normalized with the standard deviation of the distribution. Inset (b1): A log-log plot of the PDF of viscous dissipation D ν at different scales for the positive values only.

FIG. 3 .FIG. 4 .

 34 FIG.3. Plot of the probability distribution function of the instantaneous values of log( v = ν∂ i u j ∂ i u j ) for the experimental data set E. The black curve indicates a Gaussian with the mean and variance obtained from the experimental data set.

FIG. 5 .

 5 FIG. 5. Plots of the logarithm of the joint probability distribution function of the local energy transfer D I and the viscous dissipation D ν at different scales: (a) /η = 540, (b) /η = 250, (c) /η = 70, and (d) /η = 3. η is the Kolmogorov dissipation length scale and is the dimensionless energy injection rate.

FIG. 6 .

 6 FIG. 6. Spatiotemporal averages of the local energy transfer and viscous dissipation: (a) plots of D I / (red symbols) and D ν / (green symbols) vs /η. (b) Analogous plots for the absolute values of the local energy transfer and the viscous dissipation. The black horizontal dashed line indicates a constant value of 1/3. The black dotted line indicates the power law -4/3 . A comparison with DNS is shown by plotting in (a) 1 3 D I / (red curve) and D ν / (green curve) vs /η; (b) 2 |D I | / (red curve) and |D ν | / (green curve) vs /η. η is the Kolmogorov dissipation length scale and is the dimensionless energy injection rate. The different experimental data sets are represented by different symbols: A (circles), B (squares), C (diamonds), D (triangles), and E (stars).

FIG. 7 .

 7 FIG. 7. Spatiotemporal averages of the local energy transfer and viscous dissipation from the DNS: plots of D I / (red curve) and D ν / (green curve) vs /η. Analogous plots for the average of the absolute values of local energy transfer and the viscous dissipation are shown by dashed red and green curves, respectively. The black horizontal dashed line indicates a constant value of 1. The black dotted line indicates the power law -4/3 . η is the Kolmogorov dissipation length scale and is the dimensionless energy injection rate.

FIG. 8 .

 8 FIG. 8. Plots of the structure function of the (a) local energy transfer I p vs /η and (b) viscous dissipation ν p vs /η. Different orders of the structure functions are distinguished by using different colors: p = 1/3 (light blue), p = 2/3 (orange), p = 1 (yellow), p = 4/3 (purple), p = 5/3 (green), p = 2 (pale blue), p = 7/3 (red), p = 8/3 (strong blue), and p = 3 (deep orange). For the structure function of a given order, the DNS result is represented by a continuous line, while different experimental data sets are represented by different symbols: A (circles), B (squares), C (diamonds), D (triangles), and E (stars). The dotted lines indicate the power law τ (p/3) (for I p ) and γ (p/3) (for ν p ); see Table II for the values of τ (p/3) and γ (p/3). Note: The structure functions shown in (a) and (b) have been rescaled by ( DR 1 ) p/3 η τ (p/3) and ( ν 1 ) p/3 η γ (p/3) , respectively; η is the Kolmogorov dissipation scale.

9 FIG. 9 .

 99 FIG. 9. Role of the extreme events of inertial dissipation. Plots of the structure functions: S C p vs /η conditioned (symbols with black filling) either on the set A (less intense events of D I x; shown in the left panel) or B (extreme events of D I x, shown in the right panel) and the unconditioned S p vs /η. The black dashed lines indicate ζ (n) . The colored lines show p/3 : p = 1 (light blue), p = 2 (orange), p = 3 (yellow), p = 4 (purple), p = 5 (green), p = 6(pale blue), p = 7 (red), p = 8 (strong blue), and p = 9 (deep orange). The structure functions have been shifted by multiplying with an arbitrary factor for visual clarity.

FIG. 10 .

 10 FIG. 10. Quantile threshold parameter from the GPD analysis: (a) μ -/ vs /η and (b) μ + / vs /η from the negative and positive tails of the PDF of D I , respectively. (c) Parametric plot of μ -/ vs μ + / . Different colors indicate different quantile values: 0.975 (cyan), 0.99 (orange), and 0.995 (green). The dotted line indicates |μ + | = |μ -|. Different experimental data sets are indicated by different symbols: A (circles), B (squares), C (diamonds), D (triangles), and E (stars). η is the Kolmogorov length scale.

FIG. 11 .

 11 FIG. 11. Intermittency parameter from the GPD analysis: (a) σ -/ vs /η and (b) σ + / vs /η for the negative and positive tails of the PDF of D I , respectively. Insets: (a.1) and (b.1) show the analogous plots of σ obtained by using the self-similarity of the second kind, i.e., plots of ln(σ/ )/ ln(Re) vs ln( /η)/ ln(Re), where Re is the Reynolds number. Different colors indicate different quantile values: 0.975 (cyan), 0.99 (orange), and 0.995 (green). Different experimental data sets are indicated by different symbols: A (circles), B (squares), C (diamonds), D (triangles), and E (stars). η is the Kolmogorov length scale.

FIG. 12 .

 12 FIG. 12. Intermittency parameter: Parameteric plot of σ -/ vs σ + / . Different colors indicate different quantile values: 0.975 (cyan), 0.99 (orange), and 0.995 (green). Different experimental data sets are indicated by different symbols: A (circles), B (squares), C (diamonds), D (triangles), and E (stars). σ -(σ + ) denotes the intermittency parameter for the negative (positive) tail of the PDF of D I .

FIG. 13 .FIG. 14 .

 1314 FIG. 13. Power-law parameter from the GPD analysis: (a) ξ -vs /η and (b) ξ + vs /η for the negative and positive tails of the PDF of D I , respectively. Insets: (a.1) and (b.1) show the analogous plots of ξ vs /R, where R is the radius of the cylindrical tank. Different colors indicate different quantile values: 0.975 (cyan), 0.99 (orange), and 0.995 (green). Different experimental data sets are indicated by different symbols: A (circles), B (squares), C (diamonds), D (triangles), and E (stars). η is the Kolmogorov length scale.

FIG. 15 .

 15 FIG. 15. Multifractal spectrum: Plot of D(h) vs h computed by using the values of the τ (p), scaling exponents of the local energy transfer structure functions (see TableII), in Eq. (24). The red dash-dot line indicates the tangent f (h) = 4(hh min ), where h min = -0.88.

FIG. 16 .

 16 FIG. 16. Patchwork of mean velocity field in experiments A and C (in the black square). Color codes u y , while u x and u z are in arrows. The coordinates have been nondimensionalized by R the radius of the cylinder.

) 053101- 16 FIG. 19 .

 1619 FIG. 19. Convergence of D I for cases A (a), B (b), C (c), D (d), and E (e).

Figure 8 . 1 :

 81 Figure 8.1: Q-R plane and schemes of the dierent topologies. The red line and the green dashed lines are Vieillefosse lines.

Figure 8 . 2 :

 82 Figure 8.2: Q-R joint pdfs of cases T1 (a), T2 (b), T3 (c) and T4 (d). The white lines correspond to the lines Q = 0, R = 0 and to the Vieillefosse line 27R 2 + 4Q 3 = 0. The axis limits are the same for (a), (b) and (c) but not for (d).

Figure 8 . 3 :

 83 Figure 8.3: Conditional average of the Duchon-Robert term Π DR . c is equal to 1.7 times the interrogation volume size. The white lines correspond to the isolines of the Q-R joint pdfs. The black plain lines correspond to the Vieillefosse line 27R 2 + 4Q 3 = 0. The black dashed lines correspond to the axes Q = 0 and R = 0. The red lines correspond to the isoline corresponding to a conditional average equal to 0. (a) c = 150η (obtained with case T1). (b) c = 45η (case T2). (b) c = 27η (case T3). (b) c = 8η (case T4).

Figure 8 . 4 :

 84 Figure 8.4: Conditional average of the Duchon-Robert term Π DR . c is equal to 1.2 times the interrogation volume size. The white lines correspond to the isolines of the Q-R joint pdfs. The black plain lines correspond to the Vieillefosse line 27R 2 + 4Q 3 = 0. The black dashed lines correspond to the axes Q = 0 and R = 0. The red lines correspond to the isoline corresponding to a conditional average equal to 0. (a) c = 150η (obtained with case T1). (b) c = 45η (case T2). (b) c = 27η (case T3). (b) c = 8η (case T4).

Figure 8 . 5 :

 85 Figure 8.5: Conditional average of the viscous dissipation term D ν . c is equal to 1.7 times the interrogation volume size. The white lines correspond to the isolines of the Q-R joint pdfs. The black plain lines correspond to the Vieillefosse line 27R 2 + 4Q 3 = 0. The black dashed lines correspond to the axes Q = 0 and R = 0. (a) c = 150η (obtained with case T1). (b) c = 45η (case T2). (b) c = 27η (case T3). (b) c = 8η (case T4).

  the percentage of each topology (computed with the VGT invariants method)

Figure 8 . 6 :

 86 Figure 8.6: Velocity eld around the 4 th extreme event of Π DR of case T4. (a) Velocity streamlines. (b) Velocity streamlines from another point of view. (c) In-plane velocity eld and Π DR eld in the plane perpendicular to the observation direction of (b) and containing the extreme event. (d) Topology obtained with the VGT invariants method in the same plane as (c). Blue streamlines are arriving around the largest values of Π DR whereas black ones are leaving this zone.

DFigure 8 . 7 :

 87 Figure 8.7: Velocity eld around the 1 st extreme event of Π DR of case T4. (a) Velocity streamlines. (b) Velocity streamlines from another point of view. (c) In-plane velocity eld (arrows) and Π DR eld (color) in the (xy) plane containing the extreme event. (d) In-plane velocity eld (arrows) and D ν eld (color) in the (xy) plane containing the extreme event. (e) In-plane velocity eld (arrows) in three (xy), (xz) and (yz) planes bounding the observed area, vorticity norm (color on these planes), velocity streamlines and isosurface of the vorticity norm (isolevel : 0.41). (f) In-plane velocity eld (arrows) in three (xy), (xz) and (yz) planes bounding the observed area, velocity norm (color on these planes), velocity streamlines and isosurface of the velocity norm (isolevel : 0.92). Blue streamlines are arriving around the extreme event of Π DR whereas black ones are leaving the extreme zone.

Figure 8 . 8 :

 88 Figure 8.8: Velocity eld around the 5 th extreme event of Π DR of case T4. (a) Velocity streamlines. (b) Velocity streamlines from another point of view. (c) In-plane velocity eld (arrows) and Π DR eld (color) in the (xy) plane containing the extreme event. (d) In-plane velocity eld (arrows) and D ν eld (color) in the (xy) plane containing the extreme event. (e) In-plane velocity eld (arrows) in three (xy), (xz) and (yz) planes bounding the observed area, vorticity norm (color on these planes), velocity streamlines and isosurface of the vorticity norm (isolevel : 0.33). (f) In-plane velocity eld (arrows) in three (xy), (xz) and (yz) planes bounding the observed area, velocity norm (color on these planes), velocity streamlines and isosurface of the velocity norm (isolevel : 0.77). Blue streamlines are arriving at zones of large vorticity whereas black ones are leaving such zones.

Figure 8 . 9 :

 89 Figure 8.9: Velocity eld around the 5 th negative extreme event of Π DR of case T4. (a) Velocity streamlines. (b) Velocity streamlines from another point of view. (c) In-plane velocity eld (arrows) and Π DR eld (color) in the (xy) plane containing the extreme event. (d) In-plane velocity eld (arrows) and D ν eld (color) in the (xy) plane containing the extreme event. (e) In-plane velocity eld (arrows) in three (xy), (xz) and (yz) planes bounding the observed area, vorticity norm (color on these planes), velocity streamlines and isosurface of the vorticity norm (isolevel : 0.33). (f) In-plane velocity eld (arrows) in three (xy), (xz) and (yz) planes bounding the observed area, velocity norm (color on these planes), velocity streamlines and isosurface of the velocity norm (isolevel : 0.77). Blue streamlines are arriving around the extreme event of Π DR whereas black ones are leaving the extreme zone.

Figure 8 . 10 :

 810 Figure 8.10: Velocity eld around the 3 rd extreme event of Π DR of case T4. (a) Velocity streamlines. (b) Velocity streamlines from another point of view. (c) In-plane velocity eld (arrows) and Π DR eld (color) in the (xy) plane containing the extreme event. (d) In-plane velocity eld (arrows) and D ν eld (color) in the (xy) plane containing the extreme event. (e) In-plane velocity eld (arrows) in three (xy), (xz) and (yz) planes bounding the observed area, vorticity norm (color on these planes), velocity streamlines and isosurface of the vorticity norm (isolevel : 0.26). (f) In-plane velocity eld (arrows) in three (xy), (xz) and (yz) planes bounding the observed area, velocity norm (color on these planes), velocity streamlines and isosurface of the velocity norm (isolevel : 0.77). Blue streamlines are arriving around the zones of large vorticity whereas black ones are leaving such zones.

(Figure 8 .

 8 Figure 8.11: In-plane velocity eld, velocity streamlines and divergence (multiplied by 2/3dx, dx being the space step) around four extreme events of Π DR for case T4. (a) 1 st extreme event. (b) 5 th extreme event. (c) 5 th negative extreme event. (d) 3 rd extreme event. Blue streamlines are arriving around the zones of large vorticity or large Π DR whereas black ones are leaving such zones.

2 .

 2 DIRECT OBSERVATION OF THE EXTREME EVENTS 197 approximation of the real velocity eld. They still reveal the existence of extreme events, otherwise the particles would properly follow the ow and the divergence would remain low. It is interesting to see that the sign of the divergence and the sign of Π DR are anti-correlated most of the time.

2. 1 . 2

 12 Extremes of D ν , |ω| and |Π DR /D ν |We also analyzed the velocity eld around the rst extremes of D ν , |ω| and |Π DR /D ν | in order to compare with the extremes of Π DR . We did not notice signicant dierences of the global structures ; some extremes of D ν and |ω| even correspond to the same velocity elds as extremes of Π DR .

  The 10 rst extreme events of the ratio |Π DR /D ν | conditioned on large enough values of D ν correspond to either positive or negative values of Π DR . The maximum values of |Π DR | and D ν found around the extremes are strong but not extreme, the maximum of the ratio arises because the zone of high |Π DR | and the zone of high D ν are shifted with respect to each other ; we never observed a zone with only high |Π DR | and small D ν . Among the observed structures, a few are similar to those observed for the extreme of Π DR , but most of them are characterized by a bend in the streamlines, not very sharp (at most a 90

Figure 8 . 12 :

 812 Figure 8.12: Velocity streamlines, in-plane velocity eld, Π DR eld and D ν eld around 3 extreme events of |Π DR /D ν |. Blue streamlines are arriving around the zones of large |Π DR /D ν | whereas black ones are leaving such zones. (a) Π DR eld for the 2 nd extreme event. (b) D ν eld for the 2 nd extreme event. (c) Π DR eld for the 3 rd extreme event. (d) D ν eld for the 3 rd extreme event. (e) Π DR eld for the 7 th extreme event. (f) D ν eld for the 7 th extreme event.

Figure 8 . 13 :

 813 Figure 8.13: Velocity eld around the 1 st extreme event of Π DR of case T1. (a) Velocity streamlines. (b) Velocity streamlines from another point of view. (c) In-plane velocity eld (arrows) and Π DR eld (color) in the (xy) plane containing the extreme event. (d) In-plane velocity eld (arrows) and D ν eld (color) in the (xy) plane containing the extreme event. (e) In-plane velocity eld (arrows) in three (xy), (xz) and (yz) planes bounding the observed area, vorticity norm (color on these planes), velocity streamlines and isosurface of the vorticity norm (isolevel : 0.68). (f) In-plane velocity eld (arrows) in three (xy), (xz) and (yz) planes bounding the observed area, velocity norm (color on these planes), velocity streamlines and isosurface of the velocity norm (isolevel : 1.13). Blue streamlines are arriving around the zones of large Π DR whereas black ones are leaving such zones.

Figure 8 . 14 :

 814 Figure 8.14: Velocity eld around the 2 rd extreme event of Π DR of case T1. (a) Velocity streamlines. (b) Velocity streamlines from another point of view. (c) In-plane velocity eld (arrows) and Π DR eld (color) in the (xy) plane containing the extreme event. (d) In-plane velocity eld (arrows) and D ν eld (color) in the (xy) plane containing the extreme event. (e) In-plane velocity eld (arrows) in three (xy), (xz) and (yz) planes bounding the observed area, vorticity norm (color on these planes), velocity streamlines and isosurface of the vorticity norm (isolevel : 0.65). (f) In-plane velocity eld (arrows) in three (xy), (xz) and (yz) planes bounding the observed area, velocity norm (color on these planes), velocity streamlines and isosurface of the velocity norm (isolevel : 1.0). Blue streamlines are arriving around the zones of large vorticity whereas black ones are leaving such zones.

Figure

  Figure 8.15: Impact of the frame of reference on the velocity eld aspect. (a) Velocity streamlines around the 2 nd extreme event of Π DR of case T4 seen in the laboratory frame of reference. (b) Velocity streamlines around the same event but in the frame of reference having a constant velocity (equal to the spatial average of the velocity over the observed eld) with respect to the laboratory frame. (c) Velocity streamlines around the 2 nd negative extreme event of Π DR of case T4 seen in the laboratory frame of reference. (b) Velocity streamlines around the same event but in the frame of reference having a constant velocity (equal to the velocity at the extreme point) with respect to the laboratory frame. Blue streamlines are arriving towards zones of high vorticity whereas black ones are leaving such zones. The three black lines intersect at the point where Π DR is maximum.

Figure 8 . 16 :

 816 Figure 8.16: Velocity eld around the 6 th extreme event of Π DR of case T4. (a) View from the top. (b) Velocity streamlines. (c) View in the observation direction of (b). (d) View from the right. The arrows correspond to the in-plane velocity eld and the color to the Duchon-Robert term Π DR . Blue streamlines are arriving around the zones of large vorticity whereas black ones are leaving such zones.

Figure 8 .Figure 8 . 17 :

 8817 Figure 8.17: Velocity eld around the 8 th extreme negative event of Π DR of case T4. (a) View from the top. (b) Velocity streamlines. (c) View in the observation direction of (b). (d) View from the right. The arrows correspond to the in-plane velocity eld and the color to the Duchon-Robert term Π DR . Blue streamlines are arriving around the zones of large vorticity whereas black ones are leaving such zones.
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 2 DIRECT OBSERVATION OF THE EXTREME EVENTS 205 axis direction, one sees a spiral (c) whereas a front appears when looking from the top (a). A

Figure 8 . 18 :

 818 Figure 8.18: Singular velocity eld obtained in[START_REF] Li | Homogeneous solutions of stationary Navier-Stokes equations with isolated singularities on the unit sphere[END_REF] with a = b = 1 and γ = 1/2 (see chapter 1). For z < 0, streamlines are spiraling towards the semi-axis z < 0 and for z > 0, they are slowly spiraling away from the semi-axis z > 0, forming a bell shape. (a) Duchon-Robert eld. (b) Viscous dissipation eld. (c) The color corresponds to the velocity norm, the isosurface corresponds to a constant velocity norm. (d) The color corresponds to the vorticity norm, the isosurface corresponds to a constant vorticity norm. Units are arbitrary.

Figure 8 . 19 :

 819 Figure 8.19: Singular velocity eld obtained in[START_REF] Li | Homogeneous solutions of stationary Navier-Stokes equations with isolated singularities on the unit sphere[END_REF] with a = b = 1 and γ = -1 (see chapter 1). For z > 0, streamlines are spiraling downwards to the point (x, y, z) = (0, 0, 0) and for z < 0, streamlines are spiraling towards the semi-axis z < 0. (a) Duchon-Robert eld. (b) Viscous dissipation eld. (c) The color corresponds to the velocity norm, the isosurface corresponds to a constant velocity norm. (d) The color corresponds to the vorticity norm, the isosurface corresponds to a constant vorticity norm. Units are arbitrary.

Figure 8 . 20 :Figure 8 . 21 :

 820821 Figure 8.20: Velocity eld corresponding to the Burgers vortex [Burgers, 1948]. (a) Streamlines ; they start from large x and y and end at large |z|. (b) Duchon-Robert eld. (c) Viscous dissipation eld. (d) The color corresponds to the velocity norm, the isosurface corresponds to a constant velocity norm. (e) The color corresponds to the vorticity norm, the isosurface corresponds to a constant vorticity norm. Units are arbitrary.

Figure 9 . 1 :

 91 Figure 9.1: Time evolution of several quantities over the whole run where the rst strongest extreme event of Π DR of case T4t occurs. (a) Time evolution of Π DR , D ν , νω 2 (axis on the left) and |v| (axis on the right) at the location where the extreme event occurs. (b) Time evolution of the maximum and minimum of Π DR on the plane where Π DR can be computed.

Figure 9 . 2 :

 92 Figure 9.2: Time evolution of several quantities when extreme events of Π DR of case T4t occurs. (a) First extreme event, time evolution of Π DR , D ν , νω 2 and |v| at the location where the extreme event occurs. (b) First extreme event, time evolution of the maximum and minimum of Π DR on the plane where Π DR can be computed. (c) Second extreme event, time evolution of Π DR , D ν , νω 2 and |v| at the location where the extreme event occurs. (d) Second extreme event, time evolution of the maximum and minimum of Π DR on the plane where Π DR can be computed. (e) Third extreme event, time evolution of Π DR , D ν , νω 2 and |v| at the location where the extreme event occurs. (f) Third extreme event, time evolution of the maximum and minimum of Π DR on the plane where Π DR can be computed.

Figure 9 . 3 :

 93 Figure 9.3: Time evolution of several quantities when extreme events of Π DR of case T4t occurs. (a) Fourth extreme event, time evolution of Π DR , D ν , νω 2 and |v| at the location where the extreme event occurs. (b) Fourth extreme event, time evolution of the maximum and minimum of Π DR on the plane where Π DR can be computed. (c) Fifth extreme event, time evolution of Π DR , D ν , νω 2 and |v| at the location where the extreme event occurs. (d) Fifth extreme event, time evolution of the maximum and minimum of Π DR on the plane where Π DR can be computed.

Figure 9 .

 9 Figure 9.4 shows both the conditional averages of the Lagrangian time derivatives (a) and Eulerian time derivatives (b) of Q and R. They are represented by arrows : the horizontal component corresponds to the derivative of R and the vertical one to the derivative of Q. The color corresponds to the Q -R joint pdf, which has the well-known tear-drop shape. Concerning the Lagrangian derivative, the arrows follow the isolines of the joint pdf, except in the vortex compressing zone just above the right part of the Vieillefosse line. In this area, they are oriented towards the lower values of R. This is consistent with the concavity of the joint pdf in the vortex compressing zone but also questions the existence of the tail of the joint pdf which spreads along the right part of the Vieillefosse line : how do such values of (Q,R) occur if they are in average brought back to smaller R ? This is necessarily explained by deviations to the mean behaviour. This is quite interesting because the (unphysical) singularity of Vieillefosse occurs precisely on this part of the Vieillefosse line.The conditional average of the Eulerian derivative is quite noisier than in the Lagrangian case. It may be due to insucient statistics, or simply to the fact that such an average does not exist. The arrows are not always following the isolines. In particular, in the vortex stretching zone, they are oriented towards large values of Q and |R|. Just above the left part of the Vieillefosse line, this generates a kind of recirculation, with arrows parallel to the isolines of the joint pdf but in the opposite direction compared to the Lagrangian case. Around the concavity of the joint pdf, in the vortex compressing zone, the arrows are also not following the isolines ; they are oriented towards low values of R, as in the Lagrangian case. However, just above the right part of the Vieillefosse line, some arrows are oriented towards the tail of the joint pdf.

Figure 9 .

 9 5 shows the trajectories corresponding to this Eulerian temporal evolution, i.e. the Eulerian trajectory, for the ve strongest events of Π DR (the same that are analyzed in the previous section). The trajectories are made of 100 points. The rst part of the trajectory is the black dashed line and the second one is the black dotted line. The red triangle corresponds to the rst point, the red star to the largest value of Π DR and the red square to the last point. The colorful contours correspond to the logarithm of the Q -R joint pdf. The black plain line is the Vieillefosse line.The trajectories are quite discontinuous ; this may be due to noise and a too large time step. We do not observe a behaviour common to the ve trajectories. Only the rst one (corresponding to the rst extreme event of Π DR ) and the fth one (corresponding to the fth...) are quite similar : they start in the vortex stretching zone and then go towards the tail of the Q -R joint pdf. The second one has the opposite behaviour. The third one remains mostly in the vortex stretching zone and the fourth one is mainly conned to a zone of low values of Q and R. None of the trajectories completely follows or completely opposes the conditional average of the Eulerian derivatives.
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 9495 Figure 9.4: Conditional average of the time derivatives of the second and third VGT invariants Q and R, conditioned on Q and R. The coordinates of the arrows are proportional to the derivatives. The color corresponds to the logarithm of the Q -R joint pdf. The white line is the Vieillefosse line. (a) Lagrangian derivative. (b) Eulerian derivative.

  haviour of the viscous dissipation term, whose centered-reduced pdfs are scale-independent. The study of the joint pdf of the Duchon-Robert term and of the viscous dissipation term showed that the large values of the Duchon-Robert term come along with large values of the viscous dissipation term, though the converse is not true. This should in principle hinder the formation of possible singularities. The ratio between the Duchon-Robert term and the viscous dissipation term can all the same reach values around 10 in the dissipative range.

Figure A. 1 :

 1 Figure A.1: Representation of the problem.

Figure A. 3 :

 3 Figure A.2: Astigmatism

  cases CC1, CC2, CC5, CC7 and CC10 are used to study the impact of the interrogation window size cases CC3, CC4 and CC5 on the one hand (interrogation volume side of 64 pixels), and cases CC8, CC9 and CC10 on the other hand (interrogation volume side of 32 pixels) are used to study the impact of the overlap cases CC5 and CC6 on the one hand (interrogation volume side of 64 pixels), and cases C10 and CC11 on the other hand (interrogation volume side of 32 pixels) are used to study the impact of the interrogation window type
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Figures C. 1 ,

 1 Figures C.1, C.2 and C.3 show the spectra of some cases, normalized by their rst value in order to better see the cut-o. As expected, increasing the window size decreases the cut-o value, as

Figures C. 2

 2 Figures C.2 and C.3 show the normalized spectra for interrogation volume sizes of 64 and 32 pixels

Figure E. 4 :

 4 Figure E.4: Average velocity eld for case T4.

Figure E. 6 :

 6 Figure E.6: Average velocity eld for case T6.
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 42955 10 -4 6.7 × 10 -2 5.4 × 10 -1 6.7 × 10 1 8.4 × Table G.3:Working parameters for the GvK set-up lled with pure water (ρ = 1000 kg/m 3 and ν = 1.6 × 10 -6 m 2 /s). 10 3 1.1 × 10 5 4.2 × 10 5 1.1 × 10 7 2.6 × 10 8 Anti, bifurcated 1.7 × 10 4 4.2 × 10 5 1.7 × 10 6 4.2 × 10 7 1.1 × 10 tot (W) Contra 8.3 × 10 4 1.0 × 10 7 8.3 × 10 7 1.0 × 10 10 1.3 × 10 12 Anti, symmetrical2.4 × 10 5 3.0 × 10 7 2.4 × 10 8 3.0 × 10 10 3.7 × 10 12 Anti, bifurcated 9.5 × 10 5 1.2 × 10 8 9.5 × 10 8 1.2 × 10 11 1.5 × 10 13 Table G.4: Working parameters for the GvK set-up lled with pure glycerol (ρ = 1260 kg/m 3 and ν = 1.12 × 10 -3 m 2 /s). 10 -4 6.3 × 10 -3 2.5 × 10 -2 6.3 × 10 -1 1.6 × Anti, symmetrical 7.2 × 10 -4 1.8 × 10 -2 7.2 × 10 -2 1.8 × 10 0 4.5 × Anti, bifurcated 2.9 × 10 -3 7.2 × 10 -2 2.9 × 10 -1 7.2 × 10 0 1.8 × P tot (W) Contra 1.9 × 10 -4 2.4 × 10 -2 1.9 × 10 -1 2.4 × 10 1 3.0 × Anti, symmetrical 5.4 × 10 -4 6.8 × 10 -2 5.4 × 10 -1 6.8 × 10 1 8.5 × Anti, bifurcated 2.2 × 10 -3 2.7 × 10 -1 2.2 × 10 0 2.7 × 10 2 3.4 × Table G.5: Working parameters for the GvK set-up lled with air (ρ = 1.2 kg/m 3 and ν = 1.5 × 10 -5 m 2 /s). 10 -3 1.6 × 10 -1 6.5 × 10 -1 1.6 × 10 1 4.1 × 10 2 Anti, bifurcated 2.6 × 10 -2 6.5 × 10 -1 2.6 × 10 0 6.5 × 10 1 1.6 × 10 3 P tot (W) Contra 1.4 × 10 -2 1.7 × 10 0 1.4 × 10 1 1.7 × 10 3 2.1 × 10 5

Contra 3 . 9 × 4 Anti, symmetrical 2 . 3 × 4 Anti, bifurcated 1 . 1 × 5 × 2 Anti, symmetrical 7 . 6 × 2 Anti, bifurcated 1 . 5 ×

 394234115276215 10 -3 2.0 × 10 -2 4.0 × 10 -2 2.0 × 10 -1 1.0 × 10 0 τ k 10 0 3.5 × 10 -1 1.2 × 10 -1 1.1 × 10 -2 9.8 × 10 -10 0 2.1 × 10 -1 7.3 × 10 -2 6.5 × 10 -3 5.8 × 10 -10 0 1.0 × 10 -1 3.6 × 10 -2 3.2 × 10 -3 2.9 × 10 -10 -6 5.0 × 10 -5 1.4 × 10 -4 1.6 × 10 -3 1.8 × 10 -10 -6 8.5 × 10 -5 2.4 × 10 -4 2.7 × 10 -3 3.0 × 10 -10 -5 1.7 × 10 -4 4.8 × 10 -4 5.4 × 10 -3 6.0 × 10 -2

5 × 7 Anti, symmetrical 2 . 1 × 6 × 2 Anti, bifurcated 1 . 2 × 2 Table G. 8 : 6 Contra 2 . 6 × 2 × 2 Anti, symmetrical 2 . 1 × 2 Anti, bifurcated 4 . 2 ×

 57216212286262221242 10 -3 3.1 × 10 -4 1.1 × 10 -4 9.8 × 10 -6 8.8 × 10 -10 -3 1.8 × 10 -4 6.5 × 10 -5 5.8 × 10 -6 5.2 × 10 -7Anti, bifurcated1.0 × 10 -3 9.2 × 10 -5 3.2 × 10 -5 2.9 × 10 -6 2.6 × 10 -10 -6 4.0 × 10 -5 1.1 × 10 -4 1.3 × 10 -3 1.4 × 10 -2Anti, symmetrical 6.0 × 10 -6 6.8 × 10 -5 1.9 × 10 -4 2.1 × 10 -3 2.4 × 10 -10 -5 1.4 × 10 -4 3.8 × 10 -4 4.3 × 10 -3 4.8 × 10 -Stokes number for the GvK set-up lled with pure glycerol, in the case of seeding particles of diameter 15 µm and density 1400 kg/m 3 .Impeller rotation frequency (Hz) 6.0 × 10 -2 3.0 × 10 -1 6.0 × 10 -1 3.0 × 10 0 1.5 × 10 1 τ k 10 -1 2.3 × 10 -2 8.2 × 10 -3 7.3 × 10 -4 6.6 × 10 -5Anti, symmetrical 1.5 × 10 -1 1.4 × 10 -2 4.8 × 10 -3 4.3 × 10 -4 3.9 × 10 -5Anti, bifurcated 7.7 × 10 -2 6.8 × 10 -3 2.4 × 10 -3 2.2 × 10 -4 1.9 × 10 -5 10 -5 1.4 × 10 -4 3.9 × 10 -4 4.4 × 10 -3 4.9 × 10 -10 -5 2.4 × 10 -4 6.7 × 10 -4 7.5 × 10 -3 8.4 × 10 -10 -5 4.7 × 10 -4 1.3 × 10 -3 1.5 × 10 -2 1.7 × 10 -1

8 × 3 |M|=0. 3 2. 6 × 3 |M|=0. 5 4. 4 × 4 |M|=0. 7 6. 2 × 4 |M|=0. 9 7. 9 × 4 |M|=1. 1 9. 7 × 4 |M|=1. 3 1. 1 × 4 |M|=1. 5 1. 3 × 1 × 4 |M|=1. 3 1. 3 × 4 |M|=1. 5 1. 5 ×

 83363544724994174314531433455 10 0 4.4 × 10 1 8.8 × 10 1 4.4 × 10 2 2.2 × 10 10 1 1.3 × 10 2 2.6 × 10 2 1.3 × 10 3 6.6 × 10 10 1 2.2 × 10 2 4.4 × 10 2 2.2 × 10 3 1.1 × 10 10 1 3.1 × 10 2 6.2 × 10 2 3.1 × 10 3 1.5 × 10 10 1 4.0 × 10 2 7.9 × 10 2 4.0 × 10 3 2.0 × 10 10 1 4.8 × 10 2 9.7 × 10 2 4.8 × 10 3 2.4 × 10 10 2 5.7 × 10 2 1.1 × 10 3 5.7 × 10 3 2.9 × 10 10 2 6.6 × 10 2 1.3 × 10 3 6.6 × 10 3 3.3 × 10 4 Anti |M|=0.1 1.0 × 10 1 5.0 × 10 1 1.0 × 10 2 5.0 × 10 2 2.5 × 10 3 |M|=0.3 3.0 × 10 1 1.5 × 10 2 3.0 × 10 2 1.5 × 10 3 7.5 × 10 3 10 2 5.5 × 10 2 1.1 × 10 3 5.5 × 10 3 2.8 × 10 10 2 6.5 × 10 2 1.3 × 10 3 6.5 × 10 3 3.3 × 10 10 2 7.5 × 10 2 1.5 × 10 3 7.5 × 10 3 3.8 × 10 4

1 1. 2 × 3 1. 5 × 5 1. 7 × 2 × 9 1. 2 × 1 1. 5 × 3 1. 7 × 3 ×

 12355729215373 5 5.1 × 10 5 1.0 × 10 6 5.1 × 10 6 2.5 × |M|=1.10 5 6.2 × 10 5 1.2 × 10 6 6.2 × 10 6 3.1 × |M|=1.10 5 7.3 × 10 5 1.5 × 10 6 7.3 × 10 6 3.7 × |M|=1.10 5 8.4 × 10 5 1.7 × 10 6 8.4 × 10 6 4.2 × Table G.13: f acq (Hz) for contra and anti (symmetrical) rotation directions, several Reynolds numbers and several magnications in the case of pure glycerol lling the tank. c = 10 µm. 10 2 4.6 × 10 3 9.2 × 10 3 4.6 × 10 4 2.3 × |M|=0.10 3 5.9 × 10 3 1.2 × 10 4 5.9 × 10 4 3.0 × |M|=1.10 3 7.3 × 10 3 1.5 × 10 4 7.3 × 10 4 3.6 × |M|=1.10 3 8.6 × 10 3 1.7 × 10 4 8.6 × 10 4 4.3 × 10 3 1.1 × 10 4 2.3 × 10 4 1.1 × 10 5 5.7 × Table G.14: f acq (Hz) for contra and anti (symmetrical) rotation directions, several Reynolds numbers and several magnications in the case of air lling the tank. c = 10 µm.

5. 1

 1 Figure G.3: 3D view of the GvK set-up designed by GP Concept.

Figure G. 4 :

 4 Figure G.4: Vertical cross-section of the GvK set-up designed by GP Concept.

5 .

 5 RESULTS OF THE MECHANICAL CONCEPTION DESIGN 291 distance between the inner and the outer tank is 4 cm. The tightness is ensured by O-rings and the outer tank can be pressurized.

Figure G. 5 :Figure G. 6 :

 56 Figure G.5: Close-up on the seals ensuring the tightness at the shaft.

  made by ETH Messtechnik. They have two measurement ranges : they can measure torques up to 100 N.m with an accuracy of 0.1 N.m and torques up to 1000 N.m with an accuracy of 1 N.m.

Figure G. 7 :

 7 Figure G.7: 3D view of one of the windings of the cooling circuit.
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  dans notre cas) orientées dans diérentes directions. Il a fallu élargir le châssis existant et fabriquer de nouvelles contre-cuves, des cuves à faces droites placées autour de la cuve cylindrique et remplies du même liquide an de réduire les distorsions optiques. Nous en avons fabriqué deux diérentes, une permettant de placer les caméras dans deux plans diérents, et une ne permettant de les placer que dans un seul plan. A priori, la première permettait une meilleure reconstruction volumique mais les caméras dont les axes optiques ne croisaient pas perpendiculairement la cuve cylindrique souraient d'un problème d'astigmatisme. La deuxième contre-cuve évitait ce problème et permettait d'obtenir une qualité de reconstruction volumique similaire ; nous l'avons donc adoptée. Un miroir a également été placé au bout du faisceau laser an de le rééchir et réduire les diérences d'intensité lumineuse sur les caméras placées en diusion avant et celles placées en diusion arrière. Durant cette thèse, trois campagnes de TPIV ont été réalisées, en collaboration avec le Laboratoire de Mécanique des Fluides de Lille. Les deux premières ont permis de mesurer des champs de vitesse décorrellés, an d'engranger assez de statistiques et d'observer des événements rares. Durant la troisième campagne, des mesures par TPIV résolue en temps ont été réalisées an de pouvoir étudier l'évolution temporelle du champ de vitesse au niveau des extrêmes du terme de Duchon-Robert. Les champs de vitesse ont été reconstruits à partir des images par TPIV en utilisant le logiciel Davis de Lavision. Par rapport à la PIV 2D, la TPIV nécessite, outre les caméras additionnelles, une étape de reconstruction volumique consistant à reconstruire un champ 3D d'intensité lumineuse des particules, auquel l'algorithme de corrélation est appliqué an d'obtenir le champ de vitesse 3D. Cette étape additionnelle, ainsi que la corrélation tridimensionnelle sont coûteuses en ressources de calcul, et nous en avons réalisé une bonne part sur un cluster. Le premier volet de résultats consiste en une étude de la distribution statistique du terme de Duchon-Robert et de ses extrêmes, que nous avons comparée d'une part à celle de la dissipation visqueuse, et d'autre part à celle du terme de transfert inter-échelles utilisé dans les équations LES. En moyenne, le terme de Duchon-Robert croît avec l'échelle à laquelle il est mesuré : il est faible dans la zone dissipative et fort dans la zone inertielle. De plus, il semble constant dans la zone inertielle. La dissipation visqueuse a un comportement inverse : en moyenne, elle est forte dans la zone dissipative alors qu'elle décroît comme l'échelle de mesure à la puissance -4/3 dans la zone inertielle. On observe un comportement semblable pour les écart-types du terme de Duchon-Robert et de la dissipation visqueuse. Ceci est en accord avec la théorie de Kolmogorov et l'image traditionnelle de la cascade : les eets visqueux, négligeables devant les eets inertiels ou le transfert inter-échelles dans la zone inertielle, deviennent prépondérants dans la zone dissipative, mettant n au transfert inter-échelles qui devient très faible. Cependant, l'étude des distributions et des valeurs extrêmes du terme de Duchon-Robert et de la dissipation visqueuse à une échelle donnée révèle des diérences plus subtiles. En eet, la distribution de la dissipation visqueuse ne semble être pilotée que par la moyenne et l'écart-type, sa forme (assez proche d'une gaussienne mais pas exactement) étant la même d'une échelle à l'autre. Cela apparaît clairement quand on trace les distributions centrées réduites de la dissipation visqueuse obtenues à plusieurs échelles : elles se superposent. Au contraire, pour le terme de Duchon-Robert, alors que la moyenne et l'écart-type diminuent quand l'échelle diminue, la distribution devient plus asymétrique (les valeurs positives étant favorisées) et aussi plus intermittente : les extrêmes sont plus forts, en termes de nombre d'écart-types. Ce phénomène est conrmé par l'analyse des extrêmes : alors que le maximum de la dissipation visqueuse à échelle nie, normalisé par l'écart-type de la distribution, est indépendant de l'échelle, le maximum du terme de Duchon-Robert normalisé par l'écart-type de la distribution correspondante augmente quand l'échelle diminue, alors qu'en de ces points. Pour un écoulement incompressible, quatre congurations diérentes sont possibles en fonction des invariants du gradient de la vitesse : l'étirement de vorticité (vortex stretching, VS), la compression de vorticité (vortex compressing, VC), le lament (F) et la nappe (sheet, S). Le calcul du gradient de la vitesse peut être réalisé par un ordinateur, ce qui permet d'analyser un grand nombre de champs. Nous avons d'abord étudié la répartition des diérentes structures dans tout l'écoulement, en traçant la distribution jointe des deuxième et troisième invariants Q et R du gradient du vecteur vitesse. Celle-ci présente une forme de goutte, déjà largement observée dans la littérature. Cette forme devient oue quand l'échelle de Kolmogorov devient plus petite que la résolution spatiale. Nous avons ensuite calculé les moyennes conditionnelles du terme de Duchon-Robert et de la dissipation visqueuse à échelle donnée, conditionnées à Q et R. Quand la résolution est de l'ordre de l'échelle de Kolmogorov, la moyenne conditionnelle du terme de Duchon-Robert est négative dans une sous-partie du domaine VC, avec Q>0. Quand la résolution augmente par rapport à l'échelle de Kolmogorov, la zone où la moyenne conditionnelle du terme de Duchon-Robert est négative se déplace au sein du domaine VC vers la sous-partie où Q<0, et s'étend sur une partie du domaine VS. Cela suggère que la topologie à un point donné ne détermine pas seule le signe du terme de Duchon-Robert. Concernant la moyenne conditionnelle du terme de dissipation visqueuse, il est remarquable que ses isoplèthes soient très proches de celles de la distribution jointe de Q et R, ce qui laisse supposer que l'une est fonction de l'autre. Les moyennes conditionnelles donnent une idée des topologies élémentaires menant aux extrêmes : par exemple, la moyenne conditionnelle du terme de Duchon-Robert est la plus élevée dans le domaine S avec Q et R très grands en valeur absolue tandis que la moyenne conditionnelle de la dissipation visqueuse à échelle nie est la plus élevée dans les domaines de VS et VC avec Q très grand. Cela laisse supposer que les traces de singularités correspondent plutôt à des nappes. Finalement, nous avons directement calculé les topologies élémentaires correspondant aux mille plus fortes valeurs du terme de Duchon-Robert. En contradiction avec la moyenne conditionnelle, il semble que les extrêmes du terme de Duchon-Robert favorisent l'étirement de vorticité comme topologie élémentaire. Les extrêmes du ratio entre terme de Duchon-Robert et terme de dissipation visqueuse favorisent à la fois l'étirement de vorticité et la nappe. Ceci est vrai à la fois dans la zone dissipative et la zone inertielle, mais plus accentué dans la zone dissipative. Utiliser le gradient de la vitesse est pratique puisque la méthode peut être automatisée et appliquée à un grand nombre de points. Cependant, elle ne rend pas compte de la complexité de l'écoulement autour d'un point donné. Nous avons donc également caractérisé les champs de vitesse autour des extrêmes en décrivant directement le champ de vitesses et certaines grandeurs comme le terme de Duchon-Robert et celui de dissipation visqueuse, les normes de la vorticité et de la vitesse ou encore la divergence. Nous avons principalement observé trois types de structures autour des traces de singularités : le tourbillon-vis, le tourbillon-rouleau et le demi-tour. Concernant les extrêmes du ratio entre terme de Duchon-Robert et terme de dissipation visqueuse, nous avons également observé quelques structures moins nettes comme des changements de direction abrupts des lignes de courant ou une forte torsion de ces lignes. La plupart du temps, le point où le terme de Duchon-Robert ou le ratio est le plus fort ne semble pas occuper de point central ou particulier de la structure observée. Dans la plupart des structures observées, le terme de Duchon-Robert prend des valeurs positives et négatives. Les traces de singularités s'accompagnent également de valeurs très fortes de la dissipation et des normes de la vitesse et de la vorticité. Pour les tourbillons, la vorticité est la plus forte au centre du tourbillon, et ses isosurfaces sont des tubes. La dissipation visqueuse est importante en périphérie du tourbillon, plus à l'extérieur que le terme de Duchon-Robert. Pour les demi-tours, soit les isosurfaces de vorticité sont des tubes, soit elles sont plus aplaties. Les demi-tours n'ont été observés que parmi les extrêmes négatifs du terme de Duchon-Robert. Dans la zone inertielle, nous avons observé les mêmes structures, mais plus déformées et plus complexes, probablement à cause des eets inertiels plus forts qui les perturbent. Nous avons comparé les extrêmes du terme de Duchon-Robert à ceux de la dissipation visqueuse et de la vorticité, dans la zone dissipative et dans la zone inertielle. Ces extrêmes correspondent aux mêmes types de structures. Dans certains cas, les extrêmes de dissipation ou de vorticité étaient dans la même structure qu'un extrême du terme de Duchon-Robert. Cela était particulièrement le cas dans la zone dissipative.Nous avons également observé que la divergence était plus forte au niveau des extrêmes qu'ailleurs, son signe étant positif ou négatif, alors qu'elle est censée être nulle. En fait, pour un écoulement incompressible mesuré par TPIV, la divergence donne plutôt une idée de l'erreur de mesure. Ici, l'existence de divergences très grandes s'explique probablement par l'accumulation de particules à certains endroits, en particulier au centre des tourbillons. Les champs de vitesse observés sont donc ceux des particules et non du uide, mais s'approchent de ceux du uide et révèlent tout de même des événements extrêmes.Il se pourrait que les trois types de structure observées correspondent à une ou deux structures seulement, observées à diérents instants ou dans des référentiels diérents. En eet, nos observations sont basées sur les champs de vitesse mesurés dans le référentiel du laboratoire ; leur aspect est parfois assez diérent dans le référentiel allant à la vitesse au niveau de l'extrême par exemple.Nos observations sont en bon accord avec des travaux précédents, étudiant soit les extrêmes du terme de Duchon-Robert, soit les structures de forte vorticité.Au cours de cette thèse, nous avons appliqué la technique de TPIV, résolue en temps ou non, à la mesure des petites échelles du champ de vitesse dans un écoulement de von Kármán. Ces champs de vitesse ont ensuite été analysés à la recherche de traces de possibles singularités pouvant survenir dans les équations d'Euler ou de Navier-Stokes. Ces singularités potentielles se caractériseraient, le cas échéant, par un terme de Duchon-Robert très fort à des échelles très petites, c'est-à-dire aux échelles dissipatives. Nous avons de fait observé de tels événements, le terme de Duchon-Robert étant plus intermittent à petite échelle. Cependant, nous n'avons pas observé de structures du champ de vitesse nouvelles par rapport aux travaux précédents. Cela est peut-être dû à notre résolution expérimentale encore trop élevée. Pour pallier ce problème, un nouveau dispositif expérimental, cinq fois plus gros que le dispositif actuel et conçu en partie pendant cette thèse, est en cours de fabrication. Il permettra d'observer des échelles cinq fois plus petites qu'actuellement, non en améliorant la résolution de la TPIV, mais en agrandissant les échelles de l'écoulement.

  

  THE PROBLEM OF SINGULARITIES ADDRESSED BY THE EXPERIMENTLeray to prove the existence of weak solutions. It is not proved however that D(u) is positive in the general case. Anyway, the work by Duchon and Robert gives shape in a mathematical rigorous framework and thus supports the idea of Onsager

Duchon and 

Robert proved this term to be zero for regular solutions, and greater than or equal to zero for the weak solutions constructed by 34CHAPTER 2.

  1. PRINTS OF SINGULARITIES AS EXTREME EVENTS OF Π DR AT ≈ η

	35
	and :

  38CHAPTER 2. THE PROBLEM OF SINGULARITIES ADDRESSED BY THE EXPERIMENT the discretization of this smoothing function, the problem of PIV ltering and the limited thickness of the measurement volume.

2 /(2 2 )),

  THE PROBLEM OF SINGULARITIES ADDRESSED BY THE EXPERIMENT dissipation rate, which is known to be independent from Re in the limit of large Reynolds numbers : this is the dissipation anomaly. Therefore, if one wishes to simulate the ow in a volume of size

3 * ) -1/4 . In this expression, * = L/U 3 is the dimensionless average energy 42CHAPTER 2.

  THE PROBLEM OF SINGULARITIES ADDRESSED BY THE EXPERIMENT by η, and we collect 30000 such velocity elds, yielding ≈ 10 10 points. The DNS approach seems to allow a better sampling ; this is true only if a resolution of the order of the Kolmogorov scale is enough.

11 

points, separated by a distance around the Kolmogorov scale η. In this thesis, one velocity eld contains around 100 × 150 × 20 ≈ 3 × 10 5 points separated 44CHAPTER 2.

  Velocity eld in laminar and turbulent regimesThe considered von Kármán ow is characterized by a Reynolds number based on the cylinder radius R, the impeller rotation frequency F and the uid kinematic viscosity ν as follows :

	1. FLOW DESCRIPTION	51
	1.2	

Table 3

 3 

	.1 gives the densities and viscosities of few water and glycerol mixtures at 20 • C, based on the
	online calculator available at http://www.met.reading.ac.uk/~sws04cdw/viscosity_calc.html
	(accessed January 24th, 2019).
	The kinematic viscosity is sensitive to liquid temperature : at 20 • C, a variation of 1% of the
	temperature results in a variation between 0.5% (for pure water) to 2% (for pure glycerol ) of the

Table 3 .

 3 1: Properties of several water-glycerol mixtures at 20 • C and the corresponding impeller rotation frequencies in the VK2 set-up for given Reynolds numbers.

  Fast lasers are less powerful than slow ones, this can be a problem when the measured area is too large or too thick (in the case of volumetric measurement) or when particles are too small.

	1. GENERAL PRINCIPLES		67
	size. dt			dt	dt
	dt	dt	dt	…

  Cases were acquired at dierent Reynolds numbers in order to vary the Kolmogorov scale and therefore to probe dierent scale ranges. Cases A to C allow to probe the inertial range, case D allows to probe the transition range between the inertial and dissipative ranges, and case E allows to probe the dissipative range. The Reynolds number of case D is lower than those of cases A to C ; the Kolmogorov scale is then larger and this case thus allows to probe scales closer to the dissipative range. The Reynolds number is the same in cases A to C ; however, these cases allow to probe dierent scales. Indeed, in case A the measurement area is larger and the magnication is smaller than case B (see1.3) ; the probed scales are therefore further from the dissipative range. For case C, the interrogation window size is twice as small as in case B (see1.4), allowing to probe smaller scales than case B.The Reynolds numbers of the dierent cases are given in table5.1, along with the corresponding ow parameters. The liquid used was water at 20

	94	CHAPTER 5. PRESENTATION OF THE EXPERIMENTAL DATA SETS
	1.1 Flow parameters				
		Case	A	B	C	D	E
		Rotation frequency (Hz)		5		1	1.2
	Normalization velocity V=2πRF (m/s)		3.1		0.63	0.75
		Percentage of glycerol in volume		0			59
		Temperature ( • C)		20		5	20
	Liquid	Kinematic viscosity (m 2 /s) Density (kg/m 3 )		1 × 10 -6 998		1.5 × 10 -6 1.3 × 10 -5 1000 1166
		Reynolds number Re Taylor Reynolds number R λ	610	3.1 × 10 5 920	890	4.1 × 10 4 300	5.8 × 10 3 72
	Kolmogorov length scale η (mm)		0.016		0.073	0.32
	Kolmogorov time scale τ k (s) Taylor length scale λ (mm)	0.79	2.6 × 10 -4 0.97	0.96	3.6 × 10 -3 7.9 × 10 -3 2.5 5.4
		].				

• C for cases A to C, water at 5 • C for case D and a water-glycerol mixture containing 59% of glycerol in volume at 20 • C for case E. For all cases, the impellers used are TP87 impellers rotating in the anti direction. The values of λ and R λ for cases A to C are dierent, especially for case A, because the values of the rms are dierent.

Table 5 .

 5 1: Flow parameters for the 2D-3C cases.1.2 Seeding parametersThe particles used were silver-coated glass hollowspheres sold by Dantec. They have a diameter of 10 to 30 µm, the average being 15 µm. Their density is 1.4 g/cm 3 . The Stokes number St τ k based on the Kolmogorov time scale τ k , the smallest resolved Hölder exponent h (dened in 4.10 in chapter 4) and the velocity shift v g (see chapter 4) are given in table5.2. 

Table 5 . 3

 53 

	1. 2D-3C DATA SET

: Acquisition parameters for the 2D-3C cases.

Table 5 .

 5 4 sums up the main correlation parameters and velocity statistics for cases A to E.

  × 10 -3 9.8 × 10 -4 4.9 × 10 -4 9.8 × 10 -4 4.7 × 10 -4η × 10 -3 4.9 × 10 -4 2.4 × 10 -4 4.9 × 10 -4 2.4 × 10 -4 η

	1. 2D-3C DATA SET						99
	PIV and arising at values of ηk y represented by the dashed lines.		
	Case		A	B	C	D	E
	Number of points (n x × n y )	89 × 65	77 × 79	162 × 157	77 × 80	151 × 174
	Overlap				50%		
		pix	32	32	16	32	16
	Interrogation volume size	m	4.3 260	60	30	13	1.5
	Space step	m	2.1 130	30	15	7	0.7
	Average of u x	m/s					

Table 5 .

 5 

	10 -1

6.4 × 10 -1 6.6 × 10 -1 6.7

× 10 -1 1.3 × 10 -1 1.3 × 10 -1 8.5 × 10 -1 1.1 × 10 0

1.1 × 10 0 2.1 × 10 -1 1.9 × 10 -1 4: Velocity elds characteristics and mean and rms values.

Table 5 .

 5 

			T1	T2	T3	T4	T5	T6
		Campaign		April-May 2018		January 2017
	Rotation frequency (Hz)	5	1	0.5		0.1
		Rotation direction			anti			contra
	Normalization velocity V=2πRF (m/s)	3.1	0.63	0.31		0.063
	Liquid	Temperature ( • C)			20		
	(water) properties	Kinematic viscosity (m 2 /s) Density (kg/m 3 )			1.0 × 10 -6 998		
	Reynolds number Re Taylor Reynolds number R λ	3.1 × 10 5 890	6.3 × 10 4 390	3.1 × 10 4 250	80	6.3 × 10 3 75	100
	Kolmogorov length scale η (mm)	0.016	0.054	0.09	0.3		0.4
	Kolmogorov time scale τ k (s) Taylor length scale λ (mm)	2.6 × 10 -4 2.9 × 10 -3 8.2 × 10 -3 0.96 2.1 2.8	9.2 × 10 -2 5.3 5.2	1.6 × 10 -1 7.9

5: Flow parameters for the 2D-3C cases. The Reynolds numbers of the dierent cases are given in table 5.5, along with the corresponding 104 CHAPTER 5. PRESENTATION OF THE EXPERIMENTAL DATA SETS ow parameters. The liquid used was water at 20

Table 5 .

 5 

6: 

Seeding parameters for the SPIV cases T1 to T6.

For all cases, the Stokes number is smaller than 1. Comparing case T1 to case A (2D-3C data set)

  The cameras used are ve Imager sCMOS cameras sold by Lavision and provided by our collaborators of the Laboratoire de Mécanique des Fluides de Lille. These cameras have a CMOS sensor of 2560×2160 pixels of 6.5 µm square. They have a dynamic range of 16 bits and a maximum acquisition frequency of 50 Hz (for full frames). The exposure time of the rst frame is 10 µs and the exposure time of the second frame is 20 ms ; the interframing time is 120 ns.

	2. 3D NON-TIME-RESOLVED DATA SET	105
	2.3 Acquisition	
	2.3.1 Campaign of January 2017	
	Laser The laser used is a SpitLight PIV Compact 400 sold by InnoLas and provided by our collabo-
	rators of the Laboratoire de Mécanique des Fluides de Lille. It is a Nd:YAG (neodymium:Yttrium-
	Aluminium-Grenat) laser producing a green light at 532 nm. It has two cavities, each of them
	having a repetition rate of 10 Hz and delivering a maximum rated energy of 180 mJ. The pulse
	width is between 4 and 6 ns. The M 2 factor is between 1.5 and 2.	

• C ; however it is 3 times larger than for such silver-coated particles in a water-glycerol mixture containing 59% of glycerol in volume (case E of the 2D-3C data set).

Cameras

The cameras were mounted on Scheimpugs designed by our colleagues from Laboratoire de Mécanique des Fluides de Lille. They were equipped with Nikon lenses of focal length 200 mm. The numerical aperture was f # = 22.

Table 5 .

 5 

		Case	T1	T2	T3	T4	T5	T6
		∆x(cm)	5.2	4.9	5.2	5.2	1.8	1.8
	Field size	∆y(cm)	3.6	3.5	3.6	3.5	1.8	1.8
		∆z(cm)	0.67	0.67	0.67	0.67	0.40	0.43
	Magnication		0.37		0.75
	Interframing time dt (µs)	100	450	950	6000	3000	3500
	Number of frames	10000	10200	10000	30000	20000	18219
	Acquisition frequency f acq	5	5	2.5	0.5	5	5
	n t,ef f,x x,y,z	4800	1600	1300	3800	630	680

7: Acquisition parameters for the 3D cases.

Table 5 .

 5 8 gives the average, standard deviation and maximum disparity for each case. The values are quite homogeneous and coherent with what can be found in the literature. The values are smaller for case T2, probably due to the fact that only 4 cameras are used.

Table 5 .

 5 8 also gives the parameters and quality indicators for the volume reconstruction step. For all cases, 4 MART iterations were used. The ghost ratio is always much smaller than 100%, which is considered in the literature as the maximum acceptable value. The normalized intensity variance is always higher than 20, the minimum recommended value in literature. Note that case T2 has the highest ghost ratio and the smallest normalized intensity variance ; this can be explained by the fact that only 4 cameras were used, instead of 5 for the other cases.

	Case		T1	T2	T3	T4	T5	T6
	Average	0.05	0.03	0.04	0.04	0.05	0.07
	Disparity							
	Standard deviation	0.03	0.02	0.03	0.03	0.02	0.04
	(pixels)							
	Maximum	0.3	0.2	0.2	0.2	0.15	0.35
	Volume	n vox x	3204	3204	3260	3140	2713	2530
	size	n vox y	2251	2251	2243	2194	2716	2197
	(voxels)	n vox z	396	396	396	396	509	560
	Number of MART iterations	4	4	4	4	4	4
	Ghost ratio	5%	10%	5%	6%	7%	4%
	Normalized intensity variance	38	35	36	41	39	41

Table 5 .

 5 

8: Volume reconstruction parameters and quality indicators.

Table 5 .

 5 

9: 

Main parameters of the image correlation and velocity statistics for cases of the 3D non-timeresolved data set.

Table 5 .

 5 

		∆x(cm)	4.1
	size	∆y(cm)	3.8
		∆z(cm)	0.42
	Magnication	0.39
	Acquisition frequency f acq (Hz)	200
	1/f acq	µs τ k	5000 0.05
	Number of runs	40
	Number of images per run	3226
	Total number of frames	129000
		n t,ef f,x x,y,z	110

11: 

Acquisition parameters for the time-resolved 3D data set.

Table 5 .

 5 13: Main parameters of the image correlation and velocity statistics for case T4t.

	Part III
	Results

Table 6 .

 6 1: Skewness and kurtosis of Π DR and D ν at several values of c /η. 2.2 Evolution of the extreme values of Π DR and D ν with respect to c /η

Table 6 .

 6 2: Thresholds used to compute the maxima of the ratio Π DR /D ν . is the global average dissipation rate computed from torque measurements.

	ν :

m ratio (t) = min xyz (|Π DR (x, y, z, t)/D ν (x, y, z, t)|) (6.10)

We ordered them :

Table 6 .

 6 The kurtosis of D ν,LES is constant, but 1.4 times larger than the one of D ν .

	c /η Case	Skewness Π LES D ν,LES Π LES D ν,LES Kurtosis
	150	T1	5.8	3.9	150	35
	45	T2	6.3	3.7	150	34
	27	T3	7.4	3.6	240	30
	8	T4	8.9	4.0	260	36

3: Skewness and kurtosis of Π LES and D ν,LES at several values of c /η.

TABLE I .

 I Parameters describing the five experimental data sets (

TABLE II .

 II Values of the multiscaling exponents ζ (p), τ (p), and γ (p) for the velocity, the local transfers, and viscous dissipation structure functions, respectively, of different orders (see text for more details). The values of ζ (p) listed here have been taken from Ref.[17].

	Exponent/Order p	1	2	3	4	5	6	7	8	9
	ζ (p)	0.36	0.69	1	1.29	1.55	1.78	1.98	2.17	2.33
	τ (p/3)	0.03	0.02	0	-0.04	-0.12	-0.22	-0.30	-0.50	-0.67
	γ (p/3)	0.01	0.01	0	-0.02	-0.06	-0.10	-0.16	-0.22	-0.30
					053101-5					

Table 8 .

 8 1: Distribution of the topologies obtained with the VGT invariants method for case T1.

			1000 rst extreme events of
	Topology	Whole ow	Π DR D ν	Π DR /D ν
	Vortex stretching	39%	47%	47%	43%
	Vortex compressing	34%	30%	38%	28%
	Sheet	17%	16%	8%	21%
	Filament	10%	7%	7%	9%

Table 8 . 2 :

 82 Distribution of the topologies obtained with the VGT invariants method for case T2.

			1000 rst extreme events of
	Topology	Whole ow	Π DR D ν	Π DR /D ν
	Vortex stretching	38%	48%	50%	45%
	Vortex compressing	33%	31%	36%	26%
	Sheet	19%	13%	9%	20%
	Filament	10%	8%	5%	9%

Table 8 .

 8 3: Distribution of the topologies obtained with the VGT invariants method for case T3.

Table 8 .

 8 3 shows the distributions of the topologies when the resolution is in the transition range between the inertial and the dissipative ranges, and table 8.4 shows them when the dissipative scales are resolved. Whereas the proportion of rotating topologies has decreased for the benet of the sheet

			1000 rst extreme events of
	Topology	Whole ow	Π DR D ν	Π DR /D ν
	Vortex stretching	37%	60%	68%	47%
	Vortex compressing	31%	21%	27%	15%
	Sheet	22%	13%	4%	31%
	Filament	10%	6%	2%	8%

Table 8 .

 8 4: Distribution of the topologies obtained with the VGT invariants method for case T4.

Table C .

 C B. RESOLUTION, FIELD DEPTH AND AIRY DISK DIAMETER TABLES 2.2 n i = 1.4 = n e = 1 converge). Table C.3 gives the average, standard deviation and maximum disparity for the case-control data set. Table C.3 also gives the parameters and quality indicators for the volume reconstruction step. Four MART iterations were used. The ghost ratio and the normalized intensity variance both have acceptable values, comparable to the other cases. 3: Volume reconstruction parameters and quality indicators for the case-control data set

	238APPENDIX B. RESOLUTION, FIELD DEPTH AND AIRY DISK DIAMETER TABLES
	2 3D PIV						
	pixels) 0.9 1.0 1.2 1.4 1.5 1.7 1.8 2.0 1.2 1.5 1.7 1.9 2.1 δ(mm) Φ d (pixels) 5.0 0.8 0.4 0.2 0.2 0.2 0.1 0.1 9.9 1.5 0.7 0.5 0.4 5.0 0.6 0.8 0.7 0.4 0.8 0.2 0.9 0.2 1.0 0.2 1.1 0.1 1.2 0.1 1.3 9.9 0.8 1.5 0.9 0.7 1.1 0.5 1.2 0.4 1.4 APPENDIX B. RESOLUTION, FIELD DEPTH AND AIRY DISK DIAMETER TABLES 4 0.1 0.5 0.3 0.2 0.5 0.1 0.7 0.1 0.9 0.1 1.1 0.1 1.3 0.1 1.5 0.0 5.6 0.1 0.6 0.3 0.2 0.5 0.1 0.7 0.1 0.9 0.1 1. 2D PIV 235 f # |M| r 2D th (mm) 4 0.1 0.7 0.3 0.2 0.5 0.2 0.7 0.1 0.9 0.1 1.1 0.1 1.3 0.1 1.5 0.1 5.6 0.1 0.8 0.3 0.3 0.5 0.2 0.7 0.1 0.9 0.1 236 1.2 n i = 1.4 = n e = 1 f # |M| r 2D th (mm) δ(mm) Φ d (pixels) 4 0.1 0.5 7.0 0.9 0.3 0.2 1.1 1.0 0.5 0.1 0.5 1.2 0.7 0.1 0.3 1.4 0.9 0.1 0.3 1.5 1.1 0.1 0.2 1.7 1.3 0.1 0.2 1. 2D PIV 237 f # |M| r 2D th (mm) δ(mm) Φ d (pixels) 0.1 0.7 7.0 0.6 0.3 0.2 1.1 0.7 0.5 0.2 0.5 0.8 0.7 0.1 0.3 0.9 2.1 n i = n e f # |M| r 3D th (mm) δ(mm) δ/r 3D th Φ d (pixels) 0.1 1.11 5.03 4.5 0.9 0.3 0.30 0.78 2.6 1.0 0.5 0.17 0.37 2.2 1.2 0.7 0.12 0.24 2.0 1.4 f # |M| r 3D th (mm) δ(mm) δ/r 3D th Φ d (pixels) 4 0.1 1.38 5.03 3.7 0.6 0.3 0.37 0.78 2.1 0.7 0.5 0.21 0.37 1.8 0.8 0.7 0.15 0.24 1.7 0.9 0.9 0.12 0.19 1.6 1.0 1.1 0.10 0.15 1.5 1.1 f # |M| r 3D th (mm) δ(mm) δ/r 3D th Φ d (pixels) 4 0.1 1.25 7.04 5.6 0.9 0.3 0.33 1.09 3.3 1.0 0.5 0.19 0.52 2.7 1.2 0.7 0.14 0.34 2.5 1.4 0.9 0.11 0.26 2.4 1.5 1.1 0.09 0.21 2.3 f # |M| r 3D th (mm) δ(mm) δ/r 3D th Φ d (pixels) 4 0.1 1.54 7.04 4.6 0.6 0.3 0.41 1.09 2.7 0.7 0.5 0.23 0.52 2.2 0.8 0.7 0.17 0.34 2.1 0.9 0.9 0.13 0.26 2.0 1.0 disparity map to Case CC1 to CC11 1.7 1.1 0.11 0.21 1.9 1.1 4 0.9 0.10 0.19 1.9 1.5 1.1 0.08 0.15 1.8 1.7 1.3 0.09 0.13 1.5 1.2 1.5 0.08 0.12 1.5 1.3 1.3 0.08 0.18 2.3 1.8 1.5 0.07 0.16 2.2 1.3 0.10 0.18 1.9 Average 0.03 1.2 Disparity 2.0 1.5 0.08 0.16 1.9 1.3 Standard deviation 0.02 4 0.9 0.1 0.3 1.0 1.1 0.1 0.2 1.1 1.3 0.1 0.2 1.2 1.3 0.07 0.13 1.8 1.8 1.5 0.06 0.12 1.8 0.1 1.82 9.85 5.4 0.8 0.1 1.68 13.79 8.2 1.2 0.1 2.04 13.79 6.8 (pixels) 0.8 Maximum 0.2 2.0 0.1 1.51 9.85 6.5 1.2 0.3 0.49 1.53 3.1 0.9 0.5 0.28 0.73 2.6 1.1 0.3 0.45 2.14 4.7 1.5 0.5 0.26 1.03 3.9 1.7 0.3 0.55 2.14 3.9 0.9 0.5 0.31 1.03 3.3 1.1 Volume n vox x 1566 1.8 1.5 0.0 0.2 2.0 5.6 0.1 0.6 13.8 1.2 0.3 0.2 2.1 1.5 0.5 0.1 1.0 1.7 0.7 0.1 0.7 1.9 0.9 0.1 0.5 2.1 1.5 0.1 0.2 1.3 0.1 0.8 13.8 0.8 0.3 0.3 2.1 0.9 0.5 0.2 1.0 1.1 0.7 0.1 0.7 1.2 5.6 0.3 0.41 1.53 3.8 1.5 0.5 0.24 0.73 3.1 1.7 0.7 0.17 0.48 2.8 5.6 0.7 0.20 0.48 2.4 1.2 0.9 0.16 0.36 2.3 1.4 5.6 0.7 0.19 0.67 3.5 1.9 0.9 0.15 0.51 3.3 2.1 0.7 0.22 0.67 3.0 1.2 size n vox 1388 y 5.6 0.9 0.18 0.51 2.9 1.4 (voxels) n vox 220 z 1.9 0.9 0.14 0.36 2.7 1.1 0.13 0.30 2.2 1.5 1.1 0.13 0.42 3.2 2.3 1.1 0.15 0.42 2.8 1.5 Number of MART iterations 4 2.1 1.1 0.12 0.30 2.6 2.3 1.3 0.12 0.25 2.2 1.7 1.5 0.10 0.23 2.2 1.8 1.3 0.11 0.36 3.1 2.6 1.5 0.10 0.32 3.1 2.8 1.3 0.13 0.36 2.7 1.7 1.5 0.12 0.32 2.7 Ghost ratio 10% 1.8 5.6 0.9 0.1 0.5 1.4 1.3 0.10 0.25 2.5 2.6 0.1 2.50 20.10 8.0 1.1 0.1 2.36 28.15 11.9 1.8 0.1 2.79 28.15 10.1 1.1 Normalized intensity variance 25
		0.3 0.3		1.1 1.1 1.5 1.1 1.1 0.67 0.3 0.75	0.1 0.1 0.09 0.1 0.1 3.12 0.64 4.37	0.3 0.4 0.23 0.3 0.4 4.6 4.37 5.8	2.3 2.3 1.4 1.5 1.5 2.5 6.8 1.4	2.8 2.1
		0.5 0.5		1.3 1.3 0.1 1.3 1.3 0.39 0.5 0.44	0.1 0.1 2.11 0.1 0.1 1.50 0.38 2.09	0.3 0.4 20.10 0.3 0.4 3.8 2.09 4.8	2.6 2.6 1.6 1.7 1.7 9.5 5.5 1.6	1.8 2.4
	8 8	0.7 0.9 8 0.7 0.9		1.5 0.1 1.5 0.1 0.3 1.5 0.1 1.5 0.1 0.5 0.28 0.22 0.7 0.9 0.31 0.25	0.1 0.7 0.1 0.7 0.58 0.1 0.9 0.1 0.9 0.34 0.98 0.74 0.27 0.22 1.37 1.04	0.2 20.1 0.2 20.1 0.3 28.1 0.3 28.1 3.12 1.50 3.5 3.3 1.37 1.04 4.4 4.1	2.8 1.8 2.8 1.8 1.8 1.8 1.1 1.8 1.1 5.4 4.4 2.0 5.0 4.7 1.8 2.0	2.1 2.4 2.7 3.0
		1.1 1.1 8 1.3 1.3		0.3 0.5 0.3 0.5 0.7 0.3 0.5 0.3 0.5 0.19 1.1 0.21 0.9 0.17 1.3 0.19	0.2 0.2 0.2 0.2 0.25 0.3 0.2 0.3 0.2 0.61 0.19 0.85 0.20 0.52 0.17 0.73	3.1 1.5 4.4 2.1 0.98 3.1 1.5 4.4 2.1 3.2 0.85 4.0 0.74 3.1 0.73 3.9	2.1 2.4 2.1 2.4 2.2 1.4 1.6 1.4 1.6 4.0 4.5 2.2 3.8 2.4 4.4 2.4	2.7 3.4 3.0 3.7
		8 1.5 1.5 8 0.1 0.1	8 8	0.7 0.9 0.7 0.9 1.1 0.7 0.9 0.7 0.15 1.5 0.17 0.9 1.3 3.36 0.1 3.76	0.1 0.1 0.1 0.1 0.17 0.2 0.1 0.2 0.46 0.15 0.65 0.1 0.15 38.01 3.25 53.21	1.0 0.7 1.4 1.0 0.61 1.0 0.7 1.4 3.1 0.65 3.8 1.0 0.52 11.3 53.21 14.1	2.7 3.0 2.7 3.0 2.6 1.8 2.0 1.8 3.6 4.3 2.6 2.0 3.5 1.6 16.4 1.6	3.4 4.0 3.7 2.4
		0.3 0.3		1.1 1.1 1.5 1.1 1.1 0.91 0.3 1.02	0.1 0.1 0.13 0.1 0.1 5.90 0.90 8.26	0.6 0.8 0.46 0.6 0.8 6.4 8.26 8.1	3.4 3.4 1.9 2.2 2.2 3.4 9.2 1.9	4.0 2.9
		0.5 0.5		1.3 1.3 0.1 1.3 1.3 0.53 0.5 0.60	0.1 0.1 2.91 0.1 0.1 2.83 0.53 3.96	0.5 0.7 38.01 0.5 0.7 5.3 3.96 6.6	3.7 3.7 2.1 2.4 2.4 13.1 7.5 2.1	2.4 3.3
	11 11	0.7 0.9 11 0.7 0.9	1.5 0.1 1.5 0.1 0.3 1.5 0.1 1.5 0.1 0.5 0.39 0.31 0.7 0.9 0.43 0.35	0.1 0.8 0.1 0.8 0.80 0.1 1.0 0.1 1.0 0.47 1.85 1.40 0.39 0.31 2.59 1.96	0.5 38.0 0.5 38.0 0.6 53.2 0.6 53.2 5.90 2.83 4.8 4.5 2.59 1.96 6.0 5.6	4.0 2.4 4.0 2.4 2.4 2.6 1.6 2.6 1.6 7.4 6.0 2.7 6.7 6.3 2.4 2.7	2.9 3.3 3.7 4.2
		1.1 1.1 11 1.3 1.3	0.3 0.5 0.3 0.5 0.7 0.3 0.5 0.3 0.5 0.26 1.1 0.30 0.9 0.23 1.3 0.26	0.3 0.2 0.3 0.2 0.35 0.4 0.2 0.4 0.2 1.14 0.27 1.60 0.28 0.98 0.24 1.38	5.9 2.8 8.3 4.0 1.85 5.9 2.8 8.3 4.0 4.3 1.60 5.4 1.40 4.2 1.38 5.3	2.9 3.3 2.9 3.3 3.0 1.9 2.1 1.9 2.1 5.4 6.0 3.0 5.0 3.3 5.8 3.3	3.7 4.6 4.2 5.1
		11 1.5 1.5 11 0.1 0.1	11 11	0.7 0.9 0.7 0.9 1.1 0.7 0.9 0.7 0.21 1.5 0.24 0.9 1.3 4.88 0.1 5.46	0.1 0.1 0.1 0.1 0.24 0.2 0.1 0.2 0.87 0.22 1.22 0.1 0.21 80.42 4.84 112.59	1.9 1.4 2.6 2.0 1.14 1.9 1.4 2.6 4.1 1.22 5.2 2.0 0.98 16.5 112.59 20.6	3.7 4.2 3.7 4.2 3.6 2.4 2.7 2.4 4.8 5.6 3.6 2.7 4.6 2.3 23.2 2.3	4.6 5.5 5.1 3.5
		0.3 0.3		1.1 1.1 1.5 1.1 1.1 1.34 0.3 1.50	0.1 0.1 0.19 0.1 0.1 12.48 1.35 17.47	1.1 1.6 0.87 1.1 1.6 9.3 17.47 11.7	4.6 4.6 2.7 3.0 3.0 4.5 13.0 2.7	5.5 4.2
		0.5 0.5		1.3 1.3 0.1 1.3 1.3 0.79 0.5 0.88	0.1 0.1 4.33 0.1 0.1 5.98 0.80 8.37	1.0 1.4 80.42 1.0 1.4 7.6 8.37 9.5	5.1 5.1 3.1 3.3 3.3 18.6 10.5 3.1	3.5 4.8
	16 16	0.7 0.9 16 0.7 0.9	1.5 0.1 1.5 0.1 0.3 1.5 0.1 1.5 0.1 0.5 0.58 0.47 0.7 0.9 0.65 0.52	0.1 1.0 0.1 1.0 1.20 0.1 1.2 0.1 1.2 0.72 3.92 2.96 0.59 0.48 5.49 4.15	0.9 80.4 0.9 80.4 1.2 112.6 1.2 112.6 12.48 5.98 6.8 6.3 5.49 4.15 8.5 7.9	5.5 3.5 5.5 3.5 3.5 3.6 2.3 3.6 2.3 10.4 8.4 3.9 9.3 8.6 3.5 3.9	4.2 4.8 5.4 6.1
		1.1 1.1 16 1.3 1.3	0.3 0.5 0.3 0.5 0.7 0.3 0.5 0.3 0.5 0.40 1.1 0.45 0.9 0.35 1.3 0.40	0.4 0.2 0.4 0.2 0.53 0.4 0.3 0.4 0.3 2.42 0.41 3.39 0.43 2.08 0.37 2.91	12.5 6.0 12.5 6.0 17.5 8.4 17.5 8.4 3.92 6.1 3.39 7.6 2.96 5.9 2.91 7.4	4.2 4.8 4.2 4.8 4.4 2.7 3.1 2.7 3.1 7.4 8.2 4.4 6.9 4.8 7.9 4.8	5.4 6.7 6.1 7.3
		16 1.5 1.5 16 0.1 0.1	16 16	0.7 0.9 0.7 0.9 1.1 0.7 0.9 0.7 0.32 1.5 0.36 0.9 1.3 6.81 0.1 7.62	0.2 0.2 0.2 0.2 0.37 0.2 0.2 0.2 1.85 0.34 2.58 0.2 0.33 152.04 6.91 212.86	3.9 3.0 5.5 4.1 2.42 3.9 3.0 5.5 5.7 2.58 7.2 4.1 2.08 22.3 212.86 27.9	5.4 6.1 5.4 6.1 5.2 3.5 3.9 3.5 6.6 7.7 5.2 3.9 6.3 3.1 30.8 3.1	6.7 8.0 7.3 4.8
		0.3 0.3		1.1 1.1 1.5 1.1 1.1 1.89 0.3 2.11	0.1 0.1 0.30 0.2 0.2 23.60 1.93 33.03	2.4 3.4 1.85 2.4 3.4 12.5 33.03 15.6	6.7 6.7 3.7 4.4 4.4 6.1 17.1 3.7	8.0 5.7
		0.5 0.5		1.3 1.3 0.1 1.3 1.3 1.12 0.5 1.25	0.1 0.1 6.18 0.1 0.1 11.31 1.16 15.83	2.1 2.9 152.04 2.1 2.9 10.1 15.83 12.6	7.3 7.3 4.3 4.8 4.8 24.6 13.7 4.3	4.8 6.6
	22 22	0.7 0.9 22 0.7 0.9	1.5 1.5 0.3 1.5 1.5 0.5 0.82 0.67 0.7 0.9 0.92 0.75	0.1 0.1 1.73 0.1 0.1 1.03 7.41 5.60 0.86 0.70 10.38 7.84	1.8 2.6 23.60 1.8 2.6 11.31 9.0 8.4 10.38 7.84 11.3 10.5	8.0 8.0 4.9 5.2 5.2 13.6 10.9 5.4 12.1 11.2 4.9 5.4	5.7 6.6 7.5 8.3
		1.1 1.1 22 1.3 1.3	0.7 0.57 1.1 0.64 0.9 0.51 1.3 0.57	0.77 4.58 0.61 6.41 0.63 3.93 0.54 5.51	7.41 8.0 6.41 10.0 5.60 7.7 5.51 9.6	9.7 10.6 6.0 6.0 8.9 6.6 10.2 6.6	7.5 9.2 8.3 10.1
		1.5 1.5		1.1 0.47 1.5 0.52	0.54 3.49 0.50 4.89	4.58 7.5 4.89 9.4	8.5 9.9	7.1 7.1	9.2 11.0
				1.3	0.48	3.93	8.1	10.1
				1.5	0.44	3.49	7.9	11.0

Table B.1: c = 6.5 pixels (cameras Imager sCMOS)

Table B.2: c = 10 pixels (cameras Phantom Miro m340)

Table B.3: c = 6.5 pixels (cameras Imager sCMOS)

Table B.4: c = 10 pixels (cameras Phantom Miro m340) Table B.5: c = 6.5 pixels (cameras Imager sCMOS)

Table B.6: c = 10 pixels (cameras Phantom Miro m340) 240APPENDIX Table B.7: c = 6.5 pixels (cameras Imager sCMOS) 2 Comparison of the volume correlation parameters

Table C .

 C 4 gives the main characteristics of the velocity elds of the case-control data set. The eld sizes are varying with the interrogation volume size and with the overlap. The correlation values are similar to cases obtained at low Reynolds number (T4 to T6) but slightly higher than the other real cases. The uncertainty computed from the square root of the space-time average of the square of the divergence is not very useful here as the noise level can be estimated directly from the value of the rms of the uctuations, which corresponds to measurement noise. However, it is interesting to see that both estimations of the noise level are coherent with each other. × 10 -3 2.0 × 10 -3 1.6 × 10 -3 1.6 × 10 -3 1.6 × 10 -3 1.6 × 10 -3 1.2 × 10 -3 8.1 × 10 -4 8.1 × 10 -4 8.1 × 10 -4 8.1 × 10 -4 × 10 -4 5.0 × 10 -4 1.6 × 10 -3 8.1 × 10 -4 4.0 × 10 -4 4.0 × 10 -4 3.0 × 10 -4 8.1 × 10 -4 4.0 × 10 -4 2.0 × 10 -4 2.0 × 10 -4

	Case		CC1	CC2	CC3	CC4	CC5	CC6	CC7	CC8	CC9	CC10	CC11
	Number of points	n x n y n z	39 37 7	65 63 11	21 20 3	43 39 7	84 77 14	84 77 14	114 105 18	42 41 7	87 79 14	172 161 26	172 160 27
	Overlap (%)		75	75	0	50	75	75	75	0	50	75	75
	Interrogation volume type Gaussian	Gaussian	Gaussian	Gaussian	Gaussian	Square	Gaussian	Gaussian	Gaussian	Gaussian	Square
	Interrogation	pix	128	80	64	64	64	64	48	32	32	32	32
	volume size 3.2 Space step m pix m 8.1 Correlation avg.	32 0.96	20 0.97	64 0.97	32 0.97	16 0.97	16 0.97	12 0.97	32 0.97	16 0.96	8 0.97	8 0.93
	value	std.	0.01	0.02	0.01	0.02	0.02	0.03	0.02	0.02	0.04	0.03	0.13
	Uncertainty based pix	0.02	0.04	0.02	0.04	0.04	0.07	0.05	0.06	0.11	0.14	0.24

  Figure C.1: Fourier spectra for cases CC1, CC2, CC5, CC7 and CC10 normalized to their rst values and corresponding square sinc functions.
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	Case name	outer tank	Case name	Particles Average intensity Seeding density Standard deviation dt (ppv) (ppp) (µs) I of intensity σ(I)	Average displacement (pix) σ(I) I	Standard deviation of displacement (pix)	Mirror	Impeller rotation frequency (Hz)
	Spectrum (a.u.) A1 A2 A3 A4 A5 A6 A7 A8 B1 B2 B3 B4 B5 B6 B7 A8 C	10 10 10 -2 -1 0	A B A	sinc 2 (128k x /2) sinc 2 (80k x /2) Case CC1, 128 pix Case CC2, 80 pix Case CC5, 64 pix Case CC7, 48 pix Case CC10, 32 pix A1 600 3 × 10 -5 Table D.1: Summary table of the test parameters 670 1.1 0.01 550 6.8 0.017 1050 11.7 A2 630 570 0.9 A3 540 520 1 5 × 10 -5 Dantec 6.0 A4 840 740 0.9 4.2 × 10 -5 0.014 550 silver-coated 6.6 A5 400 420 1.2 6.7 × 10 -5 0.022 120 15 µm 10.9 A6 480 600 1.2 0.6 × 10 -5 0.002 1050 density : 1.4 11.9 A7 660 460 0.7 4.3 × 10 -5 0.014 11.9 A8 960 700 0.7 2.7 × 10 -4 0.023 0.09 11.3 B1 350 250 0.7 B2 360 320 0.9 1.1 × 10 -3 6.4 × 10 -5 0.022 900 10.4 B3 340 240 0.7 LaVision 8.2 B4 370 320 0.9 2.5 × 10 -5 0.008 700 non-10.4 B5 400 450 1.1 1.6 × 10 -4 0.052 900 silver-coated 10.2 B6 420 470 1.1 4.3 × 10 -5 0.015 180 10 µm B7 500 600 1.2 1.7 × 10 -4 0.06 900 10.5 density : 1.1 0.06 11.1 0.06 10.2 0.08 11.0 Dantex silver-coated 9.5 2.4 × 10 -5 0.012 3500 2.4 × 10 -4 1.8 × 10 -4 1.8 × 10 -4 B8 550 630 1.1	2.8 5.0 2.4 2.8 4.3 4.6 4.7 4.5 4.4 3.4 4.2 4.3 4.3 4.5 4.2 4.3 3.4	With Without With With Without With With	1 5 1 1 5 1 0.1
					sinc 2 (64k x /2)	
					sinc 2 (48k x /2)	
					sinc 2 (32k x /2)	
		10	-3					
					10	-2	10	-1
							k x (rad/pix)	

Table D.2: Average, standard deviation and corresponding ratio of the light intensity on camera images.

Table D .

 D 3: Disparity values, normalized intensity variance and ghost level.

	Case name	Average	Disparity (pixels) Standard deviation	Maximum	Normalized intensity variance	Ghost level (%)
	A1	0.04	0.04	0.4			33	3
	A2	0.05	0.03	0.2			31	3
	A3	0.04	0.04	0.4			32	3
	A4	0.04	0.04	0.4			29	5
	A5	0.06	0.06	0.8			46	2.5
	A6	0.04	0.03	0.7			48	3
	A7	0.04	0.04	0.8			20	20-30
	A8	0.04	0.04	0.7			19	25-35
	B1	0.03	0.02	0.1			40	11
	B2	0.03	0.03	0.3			41	7
	B3	0.04	0.03	0.2			40	25
	B4	0.04	0.03	0.2			40	8
	B5	0.09	0.05	0.3			32	13
	B6	0.04	0.03	0.3			28	13
	B7	0.08	0.04	0.3			25	13
	B8	0.04	0.04	0.5			22	25
	Case name	Correlation value	Uncertainty based on divergence rms	Smallest possible interrogation volume size
		Average	Standard deviation	(pix)	(% of U rms tot )	(pix)	(mm)
	A1	0.86	0.11	0.5		8	64	1.2
	A2	0.8	0.16	0.6		10	56	1.0
	A3	0.78	0.14	0.4		7	56	1.0
	A4	0.76	0.15	0.7		10	48	0.86
	A5	0.66	0.11	0.7		6.8	152	2.7
	A6	0.89	0.11	0.8		7.4	64	1.1
	A7	0.76	0.13	0.6		5.1	44	0.8
	A8	0.76	0.12	0.6		5.1	48	0.9
	B1	0.87	0.16	0.9		10	52	0.93
	B2	0.89	0.12	0.7		10	64	1.2
	B3	0.83	0.21	0.8		9	40	0.72
	B4	0.83	0.16	1		11	56	1.0
	B5	0.9	0.12	0.5		5.7	40	0.72
	B6	0.85	0.17	0.6		5.9	32	0.6
	B7	0.86	0.12	0.5		5.3	40	0.72
	B8	0.82	0.13	0.5		5.2	40	0.72

Table D .

 D 4: Correlation value (average and standard deviation), uncertainty based on the rms of divergence and smallest possible interrogation window size. The uncertainty based on the divergence is expressed both in pixels and in % of the root mean square of the velocity in the ow (U rms tot ). The interrogation window size is expressed both in pixels and in millimeters.

Table G . 1 :

 G1 22) DESIGN OF THE GvK EXPERIMENT for Re = 6000. Building a set-up bigger than the VK2 set-up would therefore allow us to observe scales smaller than the Kolmogorov scale, at least at Re = 6000. Kolmogorov scale in the von Kármán ow for R=10 cm (VK2 set-up) at dierent Reynolds numbers and for dierent ow types.

	For instance, tables G.1 and G.2 give the values of the Kolmogorov scale for the three kinds of ows
	described in chapter 3 (contra ; anti, symmetrical and anti, bifurcated) for R=10 cm and R=50 cm
	respectively.			
			Flow type	
	Reynolds number	Contra	Anti, symmetrical	Anti, bifurcated
	6.3 × 10 3 3.1 × 10 4 6.3 × 10 4 3.1 × 10 5 1.6 × 10 6	0.39 mm 0.11 mm 70 µm 21 µm 6.4 µm	0.30 mm 91 µm 54 µm 16 µm 4.8 µm	0.21 mm 64 µm 38 µm 11 µm 3.4 µm
			Flow type	
	Reynolds number	Contra	Anti, symmetrical	Anti, bifurcated
	6.3 × 10 3 3.1 × 10 4 6.3 × 10 4 3.1 × 10 5 1.6 × 10 6	2.0 mm 0.59 mm 0.35 mm 0.1 mm 31 µm	1.5 mm 0.45 mm 0.27 mm 81 µm 24 µm	1.1 mm 0.32 mm 0.19 mm 57 µm 17 µm

Table G . 2 :

 G2 Kolmogorov scale in the von Kármán ow for R=50 cm (GvK set-up) at dierent Reynolds numbers and for dierent ow types.

5

  Anti, bifurcated 1.6 × 10 -1 2.0 × 10 1 1.6 × 10 2 2.0 × 10 4 2.5 × 10 6

Table

G

.6: Working parameters for the GvK set-up lled with helium (ρ = 0.17 kg/m 3 and ν = 1.2 × 10 -4 m 2 /s).
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  Table G.7: Stokes number for the GvK set-up lled with pure water, in the case of seeding particles of diameter 15 µm and density 1400 kg/m 3 .

	Reynolds number Impeller rotation frequency (Hz)	6.3 × 10 3 4.5 × 10 0	3.1 × 10 4 2.2 × 10 1	6.3 × 10 4 4.5 × 10 1	3.1 × 10 5 2.2 × 10 2	1.6 × 10 6 1.1 × 10 3

  P tot > 10 kW 3.4 × 10 2 Anti, bifurcated 1.6 × 10 1 P tot > 10 kW 1.4 × 10 3 P tot > 10 kW 2.2 × 10 2 Anti, bifurcated 1.0 × 10 1 P tot > 10 kW 8.8 × 10 3 Table G.16:
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	Percentage of glycerol in volume	68.6%	95.3%	0%
	Kinematic viscosity at 20 • C (m 2 /s) Density at 20 • C (m 2 /s) Reynolds number	2.6 × 10 -5 1.19 × 10 3 6000	5.2 × 10 -4 1.25 × 10 3 6000	1.0 × 10 -6 9.98 × 10 2 1.6 × 10 6
	Impeller rotation frequency (Hz)	0.1	2.0	1.0
	T (N.m)	Contra Anti, symmetrical	1.4 4.0	5.8 × 10 2	1.2 × 10 2
	P tot (W)	Contra Anti, symmetrical	8.6 × 10 -1 2.4	7.2 × 10 3	7.7 × 10 2

Table B.8: c = 10 pixels (cameras Phantom Miro m340)
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Direct numerical simulations: Initial data and forcing

To start the DNS run, we use the Taylor-Green initial velocity field given by u x = sin(x) cos(y) cos(z), (A11a) u y =cos(x) sin(y) cos(z), (A11b)

We obtain turbulent steady states of the INSE by using the Taylor-Green forcing:

f x = f 0 sin( kf x) cos( kf y) cos( kf z), (A12a) f y = -f 0 cos( kf x) sin( kf y) cos( kf z), (A12b)

where f 0 and kf are the forcing amplitude and wave number, respectively. We define k f = √ 3 kf as the amplitude of the forcing wave vector k f = ( kf , kf , kf ).

Direct observation of the velocity eld around the extreme events

In this section, we report the main features of the velocity elds observed around the very extreme events of |Π DR |, D ν and |Π DR /D ν | (dened in chapter 6), for cases T1 to T4. We also had a look at the extremes of the vorticity norm. In each case and for each term, we analyzed only the ten strongest extreme events, as well as few events around the 100 th and the 1000 th ones. Viewing a 3D velocity eld is not an easy task, and can lead to biased or awed interpretation depending on the choice of the variables plotted. For each extreme, we chose to plot the following objects :

Velocity streamlines starting from or arriving at the zones where the term considered is the highest (higher than a threshold which depends on the event). Velocity streamlines arriving at the zone were plotted in blue whereas velocity streamlines leaving the zone were plotted in black ; this allows to see the ow direction.

Velocity streamlines starting from or arriving at the highest vorticity zones (with the vorticity higher than a threshold depending on the event). This allowed to better see the vortices but the risk was to see vortices everywhere ; it was therefore necessary to analyze the rst kind of streamlines too.

In-plane components of the velocity (represented by arrows) in the three (xy), (xz) and (yz) planes containing the extreme point, together with either Π DR , D ν , the log of |Π DR /D ν |, the velocity divergence or the topology computed with the VGT invariants method. These terms were plotted only on the part of these planes where they were available.

Isosurface of the vorticity norm corresponding to a given threshold (depending on the extreme) Isosurface of the velocity norm corresponding to a given threshold (depending on the extreme)

We forced the streamline step of the matlab function stream3 to be 1 ; indeed, the default value is 0.1 and leads to sub-resolution structures obtained by interpolation and that may not correspond to the real velocity eld.

Observations in the dissipative range

We now focus on the extreme events of case T4, for which the dissipative scales are resolved.

Extremes of |Π DR |

Among the velocity elds we analyzed, we could identify three kinds of structures leading to very high values of the Duchon-Robert term Π DR (in absolute value). In these structures, the very extreme point is almost never at the center of the structure or at a particular point ; given two points where the velocity eld has apparently the same conguration, it is often not clear why |Π DR | is very large at one of them and not at the other.

The three identied structures are the following : the screw-vortex, as shown in gure 8.7 or 8.15 (a) : the velocity streamlines spiral in one single direction (the vortex axis), the incoming velocity being more or less oriented in this direction. In gure 8.7, they spiral from z > 0 to z < 0 and in gure 8. 15 (a), they spiral from x < 0 to x > 0, as can be guessed from the two-tone streamlines. CHAPTER 8. TOPOLOGY OF THE EXTREME EVENTS OF Π DR for large negative R, whereas large values of the D ν are obtained either in the vortex stretching (VS) or vortex compressing (VC) zones. Also, there is a particular area of the vortex compressing zone where Π DR is negative in average, when is in the dissipative range. When is increased in the inertial range, a new negative area appears in the VS zone. The extreme events of Π DR and D ν mainly favour the vortex stretching topology compared to the global distribution ; the vortex compressing topology is the second most probable topology around them. Some extreme events of Π DR still feature sheet topology whereas this topology is very scarce among extreme events of D ν . Extreme events of Π DR /D ν favour not only the VS topology but also the sheet topology, compared to the global distribution of topologies in the ow.

The VGT invariants method does not account for the complexity of the velocity eld around the extreme events, we therefore also analyzed the velocity elds around these events by direct observation. We found mainly three kinds of structures of the velocity eld arond extreme events of Π DR : the roll-vortex, the screw-vortex and the U-turn or sharp bend. We also noticed that these extreme events correspond to very large values of D ν and of the velocity and vorticity norms. This is also true for extreme events of D ν and vorticity norm. Concerning the extreme events of the ratio Π DR /D ν , we found that in addition to these structures, there are also less pronounced structures like bends or twists of the velocity eld. In the inertial range, we did similar observations, except that the structures were more distorted and complex. Our results are in agreement with previous experimental and numerical works concerning turbulent velocity elds at similar Reynolds numbers ; however they are quite far from analytical stationary solutions to the incompressible Navier-Stokes equations and to numerical result obtained at a larger Reynolds number.

Chapter 9

An Eulerian point of view on the temporal evolution of extreme events of the Duchon-Robert term In this last chapter, we report some preliminary results about the temporal evolution of extreme events of the Duchon-Robert term Π DR , studied from an Eulerian point of view.

All the results of this chapter were obtained from experimental case T4t, for which the Reynolds number is 6.3 × 10 3 ; therefore, the dissipative scales are resolved : indeed, the largest c is equal to 6η (it was equal to 8η for case T4). However, because the observation volume was thinner, the largest c is equal to 0.9 times the interrogation volume size (1.7 times for case T4), which is slightly small. This results in underestimating Π DR and D ν as the contributions from smaller scales are all ltered (see second section of chapter 2).

We did observe extreme events of Π DR , both positive and negative, even if time-resolved measurements do not provide a proper statistical sampling of the ow compared to non-time-resolved measurements, for a given amount of data (there are 129000 velocity elds in case T4t and 30000 in case T4, but the eective number of independent frames is about 35 times larger for case T4 than for case T4t, see chapter 5). Indeed, the strongest event of Π DR (at c = 6η = 0.9X, X being the interrogation volume size) measured in case T4t is larger than 40 (the average dissipation rate computed from torque measurements), and the ve strongest events of Π DR that we consider in this chapter are all larger than 28 . For comparison, the strongest extreme event of Π DR (at c = 8η = 1.7X) measured in case T4 was equal to almost 97 , the ten strongest being all larger than 57 .

Also, our acquisition frequency was large enough to observe the time evolution of the extreme events.

However, because the measurement volume was too thin, we could only compute Π DR and D ν on a plane (see second section of chapter 2). Therefore, it was not possible to track the extreme events through space. It is nevertheless possible :

to study the temporal evolution of the 3D velocity eld around the extreme event location (the measured velocity eld is 3D, only the computation of Π DR or D ν reduces it to a plane), to track the maximum of Π DR over the computation plane, to study the temporal evolution of the ow at the points where the extreme events occur, i.e.

to study the time evolution from an Eulerian point of view.

Appendix A

Focal depth of a lens in the case of two dierent optical indices

In this appendix, we compute the focal depth of a camera, located in an optical medium of optical index n e , which is focused on a eld contained in an other optical medium of larger optical index n i > n e . The problem is modelled on gure A.1 : the observed eld has a width ∆ and is centered on a point A in the medium characterized by the optical index n i . The camera lens is modelled by a lens of focal length f located at point O and the camera sensor is located at point A' ; both are in the same medium of optical index n e < n i . The distance between the camera sensor and the camera lens is p ; the distance between the optical interface and the camera lens is p e and the distance between the center of the eld and the optical interface is p i so that the total distance between the center of the eld and the optical interface is p = p e + p i . The distances are signed, the optical axis being directed from the eld to the camera (from the left to the right of the gure).

Seen from the external medium of optical index n e , everything happens as if the lengths parallel to the optical axis and inside the medium of optical index n i were multiplied by n e /n i . Therefore, if n e < n i , the objects inside the medium seem to be closer than what they are ; therefore, they also seem bigger.

1 Small-angle approximation

As n e < n i , the observed eld seems to be closer from the interface, as is sketched on gure A.2. This gure shows the astigmatism of such a set-up : beams coming from the same point do not seem to come from the same point ; however, we work in the small-angle approximation so that they appear to have approximately the same origin. This visible origin is closer to the optical interface than their real origin. In the VK2 set-up, the small-angle approximation is veried as the maximum angle θ max between a beam and the optical axis will be such that tan(θ max ) = max(lens diameter,f ieldsize)

In this approximation, we can show that all beams issued from a single point on the optical axis in the optical medium characterized by an optical index n i converge to a single point after the lens. Indeed, consider gure A.3. The represented beam starts from a point at height h in the optical medium i with an angle θ i with the optical axis. Here, we take h = 0. At a distance x after the lens, the beam height is : 1) axis. The angle between this beam and the optical axis is θ i . Let us compute the height h of the beam at a distance p of the lens. As previously, we have :

Therefore :

The size of the observed object is multiplied by M.

Focal depth

In the small-angle approximation, a point located at p = p i + p e on the optical axis has an image located on the optical axis at :

Other points located on the optical axis slightly before or after p, i.e. at p ± dp, will have images on the optical axis slightly before or after p , as shown on gure A.4. Therefore, beams coming from these points do not converge to the focal plane at abscissa p and create a blurred spot in this focal plane. The cameras settings should be such that the size of the blurred spot thus created is smaller than the particle image modelled by an Airy disk of diameter Φ d , so that the particle image diameter does not increase. In other words, the focal depth is the length of the segment of the optical axis whose points will create a blurred spot smaller than the Airy disk. 

FOCAL DEPTH

231

A beam issued from the abscissa p ± dp and forming an angle θ i with the optical axis has a height h at abscissa p given by :

Extreme values of h are reached for 

Writing the denition of the focal depth δ yields :

Hence, as D = f /f # : .13) i.e. : .14) As :

(A. 15) we have : .16) or :

Seen from the external medium, the focal depth is δ • n e /n i , but in the medium of optical index n i it is δ.

Appendix B

Resolution, eld depth and Airy disk diameter tables

Tables and gures corresponding to formula in section 2.7.2. All tables were obtained for γ 2D = 1 or γ 3D = 1, N = 10 and c = 2 pixels.

1 2D PIV 1.

Test of Davis software

During the second part of the time-resolved measurement campaign of 2018, we acquired one run of 4575 images with the uid at rest (no rotation of the impellers). We analyzed the images with dierent sets of volume correlation parameters and obtained a so-called case-control (CC) data set made of eleven cases named from CC1 to CC11. This allowed to test the inuence of dierent correlation parameters and to have a better knowledge of the whole PIV measurement chain which involves a software that we did not develop. We were especially interested in estimating the measurement noise and the cut-o wavenumbers for dierent interrogation window sizes, overlaps and shapes.

1 Presentation of the case-control data set

Flow parameters

The liquid lling the tank was a water-glycerol mixture containing 55.3% of glycerol in volume.

After a previous measurement during which the impellers had been rotating at 1 Hz in contra direction for two hours and a half, both engines were turned o and unplugged to avoid residual rotation. We then waited for a few minutes before acquiring the images. In these conditions, the uid is almost at rest, but natural convection can still occur due to temperature gradients. Also, particles may have a motion due to brownian motion or Archimedes' principle. These contributions will be included in the noise measured with these cases. 

Case

Seeding parameters

The particles used for the case-control data set are the same as for cases T1 to T4 and T4t.

Their density is 1.1 ± 0.05 g/cm 3 , which is very close to the liquid density. It is slightly lower, so that particles should go up due to Archimedes' principle. The velocity shift in this liquid is v g = 2.6 × 10 -7 m/s.

Acquisition

The acquisition set-up is exactly the same as for the time-resolved 3D data set, except for the exposure time which was 622 µs.

Acquisition parameters

The measurement area is a rectangular volume centered on the center of the cylinder, it is smaller than for case T4t (see gure 5.11). The exact dimensions of the measurement area, as well as the corresponding magnication, are given in This table also gives the number of frames n t acquired for each case, as well as the acquisition frequency f acq and the space average of the eective number of independent frames (based on the decorrelation of the velocity component along x which seems to be the longer to decorrelate). Here, the eective number of frames is not very meaningful and cannot be really compared to the ones of the cases with a turbulent ow. Indeed, two following frames are anti-correlated because the measured velocity corresponds to the lighting dierence between the two pulses. As the time step is very small compared to the typical time scales of the ow, the dierence between two images is mainly due to the intensity dierence between two pulses. The n th image is very close to the (n+2)

th image (as they correspond to the same pulse), so that the correlation between images n and (n+1) will give a velocity almost opposite to the correlation between images (n+1) and (n+2).

When summing the correlation values ρ i , the negative correlation values will cancel the positive ones ; hence, the resulting n t,ef f,x will be higher than for positive correlation values only. To get a more meaningful value of n t,ef f,x , one can use only one velocity eld out of two, such that the correlation values are always positive. We then get a value of 130 eectively independent frames.

Image preprocessing, calibration and volume reconstruction

The image preprocessing was the same as for case T4t.

The calibration was done in two steps : a rst guess was done with a 3D calibration plate with two levels, which was then rened by a few iterations of volume self-calibration using 200 images acquired previously with the impellers rotating (the acquired frames were too correlated for the k x (rad/pix) Appendix D

Optimization of the TPIV parameters for our set-up

In this thesis, we used TPIV to measure the velocity eld at the center of the turbulent von Kármán ow generated in the VK2 set-up described in chapter 2. The location of the measurement volume is shown in gure 5.11 of chapter 5. TPIV measurements have already been reported in a von Kármán ow ( [START_REF] Worth | A tomographic PIV resolution study based on homogeneous isotropic turbulence DNS data[END_REF] for instance, with set-up description in [START_REF] Gan | An experimental investigation of forced steady rotating turbulence[END_REF]). However, the corresponding set-up is ten times bigger than ours and has a dodecahedral tank instead of a circular one in our case. We therefore tested several TPIV parameters in order to nd an optimal conguration in the particular case of the VK2 set-up. Ideally, we should have tested both particles with both outer tanks but because of the limited time we chose not to test all the possible combinations. For each set, Case 1 is the reference case, obtained with both impellers rotating in contra direction at 1Hz.

Case 2 is obtained by varying the dt to test the impact of this parameter on the correlation.

Case 3 is obtained by removing the mirror reecting the laser beam (the goal of this mirror is to avoid intensity dierences between cameras in forward scattering and cameras in backward scattering, see section 1.3).

APPENDIX D. OPTIMIZATION OF THE TPIV PARAMETERS FOR OUR SET-UP

Case 4 is obtained by rotating the impellers in contra direction at 5Hz. This case was added to the list because it was noticed that for impellers rotating at 5Hz, and with silver-coated seeding the ow, there was a strong background noise. We wanted to test whether it was due to the particles or to the rotation frequency, even if the reason was not obvious.

Cases 5 to 8 are obtained by modifying the seeding concentration. It is dicult to set accurately the concentration in our set-up, because particles can get stuck in several parts (bearings, cooling circuit). Hence it is not proportional to the amount of particles put in the ow.

The particle concentration was measured in three ways : counting by eye on a nite area and dividing by the area, using the 2D peak detection on camera images implemented in the selfcalibration operation of Davis, or counting the particles in the 3D reconstructed light intensity volume, using the particle density 3D operation of Davis. Results were dierent from a method to another. Concentrations given in table D.1 were obtained with the third one. The concentration in ppp is obtained by multiplying the concentration in ppv by the volume thickness in pixels.

TEST CASES 2 Test results

The test cases were compared using criteria based either on the camera images, on the volume reconstruction or on the velocity elds.

Quality of images

For each test case, the following quantities were computed :

The average intensity over all camera images. It can be seen as an indicator of the background noise as particles cover only between 10% and 20% of the images. Note that the intensity on cameras whose optical axis is at 90

• with respect to the laser beam (cameras 1, 2 and 4

for cases of set A, camera 4 for cases of set B) have a lower intensity. However, for cases of set A, the intensity was similar for cameras 3 and 5 (respectively in backward and forward scattering) with or without mirror used. For cases of set B, the intensity was lower for cameras 2, 3 and 4 than for cameras 1 and 5 in the case 3 where there is no mirror.

The standard deviation of the intensity, computed over all camera images. It can be considered as an indicator of the contrast. Indeed, for strong intensity peaks corresponding to particle images, the standard deviation of the intensity will be high, whereas for bad contrast and small dierence between the particle image and background intensity, it will be small. As for the average intensity, the standard deviation was smaller for cameras whose optical axis is at 90

• with respect to the laser beam.

the ratio of the standard deviation of the intensity over the average intensity the average particle diameter, estimated by eye. Particle size was not very homogeneous. For cases of set A, particle images on cameras 1 and 2 were elongated in the vertical direction.

This is probably due to astigmatism : the optical axis of these cameras are not crossing the cylindrical tank perpendicularly as they are not in a horizontal plane. Therefore, the cylindrical tank acts as a lens and the particle images are distorted.

The above quantities are given in table D.2.

Cases of set A have higher values of average and standard deviation of intensity than cases of set B. This is easily explained by the silver-coating of the used Dantec particles. However, the ratio σ(I)/ I is comparable for both sets, it is even better at higher concentration for cases of set B.

Without a mirror, the average and standard deviation of intensity is lower both in sets A and B (for set B, it is better to compare case B3 to case B5 as the reference case B1 has a lower particle concentration than case B3), as expected. The σ(I)/ I ratio is smaller without mirror only in set B. This may be due to the silver-coating, or to the higher concentration of cases B3 and B5 compared to cases A1 and A3.

For an impeller rotation frequency of 5 Hz, we notice that the values of average and standard deviation of intensity are higher than for 1 Hz for set A (cases A4 and A7 for comparison with constant concentration). The σ(I)/ I ratio is a bit better at 5Hz. The reason is not very clear, it may be a lack of statistics. In set B, the rotation frequency has no eect on the intensity.

For cases of set A, increasing the particle concentration results in an increase of the values of average and standard deviation of intensity but a decrease of the σ(I)/ I ratio. For cases of set B, the values of average and standard deviation of intensity decrease with concentration but σ(I)/ I is constant or even increasing.

Appendix E

Average velocity elds of the 3D velocity data sets

The average velocity elds of the cases of the non-time-resolved 3D data set and of case T4t are

shown in this appendix. The representation is always the same : the top-left gure corresponds to the top view of a mid-height (mid-y) plane ; the arrows correspond to the in-plane velocity (i.e.

to the components along x and z directions) and the color to the out-of-plane velocity (i.e. to the component along y). The bottom-left gure corresponds to the front view of a mid-z plane ; the arrows correspond to the in-plane velocity (i.e. to the components along x and y directions) and the color to the out-of-plane velocity (i.e. to the component along z). The bottom-right gure corresponds to the right view of a mid-x plane ; the arrows correspond to the in-plane velocity (i.e.

to the components along z and y directions) and the color to the out-of-plane velocity (i.e. to the component along x). The color scale and the vector scale are the same for the three gures ; the color scale is in units of the reference velocity 2πRF (see chapter 3) and the vector scale is such that the space between two vectors correspond to one tenth of the reference velocity 2πRF (see chapter 3). The white lines on each gure correspond to the location of the two other planes. 

Transport equations of the energy contained in the ltered velocity eld and in the uctuations

In this appendix, we derive the transport equations for the energy contained in the ltered velocity eld u and for the energy contained in the uctuations uu , as well as for the scalar product u • (uu ). These equations involve both the Duchon-Robert term Π DR and the inter-scale energy transfer term appearing in the LES equations Π LES .

Let u be a smooth solution of the 3D incompressible Navier-Stokes equations :

Filtering these equations leads to the transport equations of the ltered velocity components u i , i.e. te ltered Navier-Stokes equations :

Multiplying the ltered Navier-Stokes equations by the ltered velocity, we get :

Introducing the so-called subgrid scale tensor τ ij = (u i u j )u i u j , we obtain :

After few steps we obtain :

We used the denitions Π LES = -τ ij ∂ j u i and D ν,LES = ν∂ i u j ∂ i u j . We know that the Duchon- Robert term can be splitted as :

We recognize the last two terms of the previous equation, hence :

Noticing that the total energy is equal to :

We can use the following transport equation of the total energy :

as well as equations F.8 and F.28 to get the transport equation for the scalar product u i (u iu i ) :

Appendix G

Design of the GvK experiment

In this thesis, we probed the inertial range and the beginning of the dissipative range in order to nd prints of singularities, characterized by a very large inter-scale transfer or a very large ratio of interscale transfer to viscous dissipation. We showed that there were very intense events of inter-scale transfer even in the beginning of the dissipative range, whereas in the classical phenomenology of turbulence, viscous eects are assumed to overwhelm non-linear eects in this range. This suggests that the Kolmogorov scale is not the smallest scale in a turbulent ow and therefore makes the case for the existence of Euler-type singularities (see chapter 2). In order to conrm these results, measurements in the far dissipative range should be done. This could be achieved by improving the spatial resolution of PIV ; however, we showed in chapter 4 that it was limited by the particle density and by optical constraints such as the size of the diraction spot and the focal depth which should be large enough in 3D measurements. Currently, the resolution of our TPIV set-up is around 0.5 mm, which is close to the Kolmogorov scale at the smallest Reynolds number in our VK2 set-up.

Instead of improving the resolution, we can increase the Kolmogorov scale. This is the ground idea of the EXPLOIT project funded by ANR whose goal is to build a set-up similar to VK2 but ve times bigger : the GvK set-up. A part of this thesis was dedicated to the design of this new set-up ;

it is reported in this chapter. The rst step consisted in designing and dimensioning the set-up in order to be able to resolve the Kolmogorov length-and time-scales in good experimental conditions ; mainly physical and experimental issues were adressed. As the designed set-up was too big to be made at the mechanical workshop of the laboratory, we then wrote specications in order to have the mechanical conception and the manufacturing realized by an external company, GP Concept.

1 Choice of the size

The goal of the EXPLOIT project is to observe very small scales in turbulence. Rather than improving the spatial resolution of the measurement technique (PIV), the strategy is to increase the size of the small scales. Usually, the smallest scale of a turbulent ow is considered to be the Kolmogorov scale η. In the case of the von Kármán ow described in chapter 3, the Kolmogorov scale is given by : η = R(Re was not observed. Extrapolating this observation, we can reasonably assume that there will also be sedimentation in air.

Based on the seeding issue, the option of using water or a water-glycerol mixture seems better than using air. In all cases, the seeding particles will properly follow the ow. Costs are comparable.

However, using a water-glycerol mixture seems to be the only way to avoid a velocity shift. The drawback of the seeding in water or water-glycerol mixture is the attenuation of light over a radius of 50 cm. This can be compensated by a higher laser power though. We are used to performing PIV in water or water-glycerol mixtures in the von Kármán ow whereas we have no experience of PIV in air in a closed ow ; in particular, we expect a risk of clogging the tank walls, which will hinder image acquisition.

Time-resolved measurements of the ow

One of the goals of building the GvK experiment is to perform time-resolved velocity measurements.

Such measurements can be achieved with high-speed laser and cameras whose working frequency is high but nite. The time scales of the ow for a given Reynolds number depend on the uid viscosity, and so does the acquisition frequency. We compute here the required acquisition frequency for a set-up lled with either water, glycerol or air.

The acquisition frequency must be set such that the average displacement on the camera sensors is around 5 pixels. This average displacement in pixels d pix depends on the rms of the velocity u tot rms , on the magnication |M |, on the camera pixel size c and on the acquisition frequency f acq :

In the von Kármán ow, u tot rms = a * (2πRF ), R being the tank radius and F the impeller rotation frequency. At the center of the ow, a ≈ 0.35 for the contra direction of rotation, and a ≈ 0.4 for the anti direction of rotation (symmetrical ow). For an average displacement of 5 pixels, f acq should be equal to :

DESIGN OF THE GvK EXPERIMENT Tightness In the case of a liquid, tightness is an important issue, especially for a pressurized set-up containing more than 1 m 3 of water. There were often leaks on the VK2 set-up because a proper tightness could not be achieved. Also, ensuring tightness at the shaft is often done at the expense of the reproducibility and accuracy on torque measurements, because the device (joint or sealings) achieving it produces an additional torque. In the VK2 set-up, this was partly addressed by implementing mechanical sealings, but tuning them was quite dicult (see [START_REF] Saint-Michel | L'écoulement de von Kármán comme paradigme de la physique statistique hors-équilibre[END_REF]).

Of course, in the case of air lling the tank, tightness is not required.

From a practical point of view, using air for the GvK set-up seems to be a better solution.

Conclusion

We nally decided to use water or water-glycerol mixtures rather than air. The main reasons are :

the exibility : we can play either on the impeller rotation frequency or in the uid viscosity to set the Reynolds number. In particular, this allows to perform torque and time-resolved measurements over a wider range of Reynolds numbers.

the unknown behaviour of the seeding in air in a closed ow which could hinder proper PIV measurements.

Other choices

Before writing the specications, we had to choose the geometry of the set-up as well as the measurement areas.

Shape

The VK2 set-up has a cylindrical tank which is vertical ; this could have been dierent for the GvK set-up as the goal was not to build exactly the same set-up as VK2 with a larger radius but to generate turbulence with larger length scales. For example, a tank with a polygonal section could have been chosen as it is a priori easier to build. However, we preferred to keep on with a cylindrical tank as the corresponding ow has been widely studied : we know for instance the statistics of the velocity eld, the behaviour of the dimensionless torque with respect to the Reynolds number, and the dierent states of the ow. Also, as we had chosen to use a liquid, we decided to let the tank vertical so that the calibration plate can be put in it without emptying it completely.

Measurement areas

In the VK2 set-up, the velocity is usually measured at the center of the ow, i.e. around the cylinder axis at the same distance from both impellers. Some measurements have also been made next to the walls, also at the same distance from both impellers. Actually, there is no mechanical structure around the cylindrical tank so that any point in the ow can be observed ; there may be distortions if the observation axis does not cross the cylinder perpendicularly though.

In the case of GvK, it was unlikely that there would not be any structure around the cylindrical tank, or even that the cylindrical tank would be fully transparent. Therefore, we needed to specify the observation directions, which should be kept free from any non-transparent obstacle. Based on the TPIV tests (see chapter 4), we decided to keep only horizontal observation directions. We decided to be able to perform measurements at the center of the ow and at a point next to Required directions that should be kept free from non-transparent obstacles and location of the openings for temperature, pressure or hot wire anemometry measurements. The green line corresponds to the laser beam direction.

the cylindrical tank. The required observation directions corresponding to these two locations are depicted on gure G.1 (we did not plan to use as many cameras, but we wanted to be able to try dierent congurations, hence the large number of directions specied). Concerning the height of the measurement areas, we chose to let several possibilities, and we specied that we would need the measurement areas at 5 dierent heights, including the mid-height of the set-up (same distance from both impellers).

Also, we decided to let the possibility to perform temperature, pressure or hot wire anemometry measurements. The blue circle on gure G.1 corresponds to the specied location of the corresponding sensors. Again, we specied that we would need to put such sensors at nine dierent heights, including the mid-height of the set-up.

4 Dimensioning

Dimensioning of the room for the set-up

Along with the realization of the experimental set-up, a room had to be chosen and adapted to host the set-up. We had to estimate the size and weight of the set-up to this aim.

Height

The VK2 set-up is 1 m high from the bottom torquemeter to the top torquemeter (see chapter 3).

It ts in a room of normal height, even accounting for the space required to lift and remove the top. The estimated total height of the set-up itself is then around 2.5 m and it requires a room of at least 4 m high.

Width

The width of the experimental device itself will be a bit larger than 1 m because the inner diameter of the cylinder is 1 m, and there will be probably an outer tank around it. On top of that, additional space is needed to place the cameras around the set-up. The distance between the cameras and the set-up can be estimated by the distance p e dened in appendix A, where the optical conguration is approximated by a 2-optical media conguration (see chapter 4). p e is related to the magnication M , the optical indices n i and n e and the focal length of the lens f (same notations as in appendix A) by the formula (derived from A.6) :

In the case of the VK2 set-up, this formula allows to nd the distance between the outer tank and the cameras with 10% accuracy. Table G.15 gives values of p e for the GvK set-up for n i = 1, n i = 1.4 and few values of |M | and f . p i is set to the sum of the cylindrical tank inner radius and 12 cm which is the approximate width of both tanks and of the distance between the them. n e is set to 1 (the external medium will be air). n i = 1 corresponds to the case where the tank is lled with a gas, n i = 1.4 to the case where it is lled with a water-glycerol mixture (n i = 1.33 for water and n i = 1.47 for pure glycerol, p e does not vary much between these values).

n i