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Résumé 

  



 

 
 

La pollution des sols et sédiments par des polluants organiques persistants (POPs) a augmenté 

ces dernières décennies en raison des processus d’industrialisation et d’urbanisation, affectant 

la qualité de l’environnement et de la santé humaine. Une étude approfondie a été menée dans 

deux zones distinctes (Estarreja au Portugal, noté EST, et Casier Peyraud 6 en France, noté 

PEY) pour évaluer les niveaux de contamination, ainsi que le comportement des contaminants 

dans des anthroposols et les risques potentiels de ces contaminants pour des organismes vivants 

du sol. L’objectif principal a été d’évaluer la mobilité environnementale des retardateurs de 

flamme bromés (RFBs) dans un écosystème terrestre, notamment vers les vers de terre et les 

plantes, dans une prospective d’évaluation du risque de transferts de ces molécules. 

Les niveaux en POPs (RFBs, mais aussi PCBs et PCDD/DFs) dans ces anthroposols ont été 

quantifiés ainsi que dans les plantes collectées sur les sites étudiés. Une évaluation in situ de 

l’activité biologique a été réalisée par la collecte, le dénombrement et l’identification des 

organismes vivants visibles (mésofaune), ainsi que par l’application du test Bait-lamina ©. Une 

espèce de ver de terre (Eisenia fetida) et trois espèces de plants (luzerne (Medicago sativa), 

cresson (Nasturtium officinale) et moutarde blanche (Sinapsis alba)) ont été choisies pour 

réaliser des tests en laboratoire de toxicité et de bioaccumulation. 

Le facteur de bioaccumulation (BAF) ainsi que les indices Sum of Excess of Transfer (SET) et 

Evaluation of the Risk of the Transferred Metal Elements (ERITME) ont été calculés. Le BAF 

permet de déterminer si une substance est accumulée dans un organisme donné et s’il existe un 

risque d’entrée et de diffusion tout au long de la chaine alimentaire. Les indices SET et ERITME 

permettent de classer les sites testés en fonction du transfert efficace des POPs par les 

anthroposols aux organismes testés, et d’avoir une idée du risque potentiel pour l’écosystème. 

L’indice SET donne une idée globale de l’excès de transfert pour tous les contaminants dans 

les matrices étudiées. L’indice ERITME permet d’évaluer le risque environnemental global 

inhérent associé à l’excès de transfert des contaminants considérés.  

Les huit anthroposols étudiés sont assez différents en termes de caractéristiques physico-

chimiques ainsi que de contaminations inorganiques et organiques. En général, les anthroposols 

recueillies sur le site de Peyraud 6 présentent des niveaux plus élevés en POPs. Quelques effets 

toxiques ont été observés à la fois pour E. fetida et pour les espèces de plantes cultivées dans 

ces huit anthroposols étudiés, notamment en ce qui concerne le taux de reproduction d’E. fetida, 

la masse corporelle d’E. fetida, le taux de germination et la hauteur maximale des parties 

aériennes végétales. Les données obtenues ont clairement révélé la bioaccumulation des POPs 

quantifiés chez les adultes et les juvéniles d’E. fetida ainsi que dans les tissus des espèces 

végétales cultivées, même à des concentrations très faibles dans le cas des nouveaux 



 

 
 

retardateurs de flamme bromées. Différentes familles d’POPs ont montré des comportements 

différents en ce qui concerne les corrélations avec les paramètres physico-chimiques et 

l’absorption par E. fetida. Les valeurs de BAFs obtenus montrent le potentiel d’accumulation 

de ces POPs dans les tissues d’E. fetida. Les valeurs de BAF obtenus pour les plantes testées 

indiquent une grande différence dans la disponibilité des contaminants dans les sols des deux 

sites considérés. Bien que les niveaux d’POPs soient significativement plus élevés dans PEY Ic 

que dans EST G, il semble que les POPs soient plus disponibles pour être absorbés par les 

plantes cultivées sur EST G. Cette différence de disponibilité quantifiée peut être due à certains 

facteurs physico-chimiques du sol, à savoir la nature de la MO, la teneur en COT et le pH 

légèrement acide de l’anthroposol EST G.  

Compte tenu des valeurs ERITME, les matrices étudiées peuvent être classées dans un ordre de 

toxicité croissant: PEY Ic> PEY IIb> PEY Iva> PEY IIIa> EST G> EST G> EST K> EST C. 

Cet ordre de toxicité est conforme pour l’ensemble des organismes testés (E. fetida, luzerne, 

cresson et moutarde), et les valeurs d’effet les plus élevées ont été généralement enregistrées 

dans les échantillons PEY et spécialement dans PEY Ic suivi de PEY IIb. Dans le cas des 

échantillons d’EST, les valeurs étaient en général toujours inférieures à celles enregistrées dans 

les échantillons de PEY ; l’anthroposol EST G étant le plus contaminé et les tissus des 

organismes exposés à cet anthroposol, présentaient les taux les plus élevés dans leurs tissus par 

rapport aux trois autres sols d’EST.  

L'approche traditionnelle suggère l’utilisation du calcul du BAF qui est généralement 

considérée pour évaluer le risque de contamination. Toutefois, le BAF présente certaines 

limites, car il ne comporte pas l'effet cumulatif (il considère chaque contaminant 

individuellement, et donc de manière moins globale). Les approches SET et ERITME ont été 

développées pour remédier à cette lacune car elles sont basées sur des mesures réelles dans les 

organismes. Par conséquent, ces index plus réalistes se sont révélés utiles pour l'évaluation des 

risques et la gestion des sites contaminés, car ils tiennent compte de la somme de tous les 

contaminants et pas un par un comme dans le calcul du BAF.  
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Soil and sediment pollution with persistent organic pollutants (POPs) has been a rising concern 

in recent decades mainly due to industrialization and urbanization processes, affecting 

environmental quality and human health. A comprehensive study was conducted in two distinct 

areas (Estarreja in Portugal, noted EST, and Casier Peyraud 6 in France, noted PEY) to assess 

the contamination levels as well as the behavior of contaminants in soils and the potential risks 

posed by these contaminants to soil organisms. The principal aim was to evaluate the mobility 

and environmental availability of brominated flame retardants (BFRs) in a terrestrial 

ecosystem, namely to earthworms and plants, concerning the BFRs transfer risk evaluation. 

Levels of POPs (BFRs, and also PCBs, PCDD/DFs) in the anthroposoils as well as plants 

collected in the studied sites were quantified. An in-situ evaluation of biological activity was 

performed through  monoliths collection, counting and identification of the visible living 

organisms (mesofauna) as well as applying the Bait-lamina© test. One earthworm specie 

(Eisenia fetida) and three plant species (alfalfa (Medicago sativa), watercress (Nasturtium 

officinale) and white mustard (Sinapis alba)) were chosen to conduct toxicity and 

bioaccumulation laboratory tests. 

The Bioaccumulation factor (BAF) as well as the Sum of Excess of Transfer (SET) and 

Evaluation of the Risk of the Transferred Metal Elements (ERITME) indexes were calculated. 

The BAF allow to determine if a substance is accumulated in a certain organism and if there 

exists the risk of entry and diffusion along the food chain. SET and ERITME indexes allow to 

rank the tested sites according to the effective POPs transfer from anthroposoils to the tested 

organisms and have an idea of the potential risk to the ecosystem. The SET index gives a global 

idea of the excess of transfer for all the contaminants in the studied matrices. The ERITME 

index allows to evaluate the possible inherent global environmental risk associated with the 

excess of transfer on the considered contaminants. 

The eight studied anthroposoils are quite different in terms of physico-chemical characteristics 

as well as in inorganic and organic contamination. In general, anthroposoils collected in 

Peyraud 6 site presented higher levels of quantified POPs. Some toxic effects were noticed both 

for E. fetida as for the three plant species cultivated in the eight studied anthroposoils, namely 

concerning the E. fetida reproduction rate, E. fetida body mass, plants seeds germination rate 

and maximal height of plants aerial parts. Data obtained clearly revealed the occurrence of 

bioaccumulation of the quantified POPs in both adults and juveniles E. fetida as well as in the 

cultivated plant species tissues even at very low concentrations in the case of the new BFRs. 

Different POPs families showed different comportments regarding the correlations with 

physico-chemical parameters and uptake by E. fetida.The obtained BAFs values clearly show 



 

 
 

the potential of these POPs to accumulate in E. fetida tissues. The obtained BAFs values for 

plants tested clearly indicates a great difference in the availability of the contaminants in the 

soils of both considered sites. Despite that the levels of POPs were significantly higher in PEY 

Ic than in EST G, it seems that the POPs were more available to be taken up by plants cultivated 

in the anthroposoil EST G. This difference in quantified POPs availability can be due to some 

physico-chemical parameters of the soil, namely the nature of OM, TOC and the slightly acidic 

pH of EST G anthroposoil.  

Considering the ERITME values, the studied matrices can be classified in an apparent 

increasing order of toxicity: PEY Ic > PEY IIb > PEY Iva > PEY IIIa > EST G > EST L > EST 

K > EST C. This order of toxicity is in accordance with the levels of POPs found in the all the 

tested organisms (E. fetida, alfalfa, cress and mustard), where in general the higher values were 

recorded in PEY samples and specially in PEY Ic followed by PEY IIb. In the case of EST 

samples, the values were in general always lower than the ones recorded in PEY samples, being 

the anthroposoil EST G the most contaminated and the tissues of the organisms exposed to this 

anthroposoil the ones that exhibited higher levels in their tissues when compared with the other 

three EST samples.  

The traditional approach suggests using the BAF calculation which is usually required for 

evaluating and assessing contamination risk, however BAF present certain limitations, since it 

do not comprise a cumulative effect, because this index consider each contaminant individually 

and thus in a less global way. The SET and ERITME approaches were developed to overcome 

this shortcoming as they are based on real measures in organisms. Therefore, these more 

realistic indexes have proven useful for risk evaluation and managing contaminated sites as 

they take into account the sum of all the contaminants, and not one by one as in the BAF. 

  

 

 

 

 

 

 

 

 



 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Résumé long 

 

 

 

 

 

 

 



 

 
 

La pollution des sols et des sédiments par des polluants organiques persistants (POPs) a 

augmenté ces dernières décennies en raison des processus d’industrialisation et d’urbanisation, 

affectant la qualité de l’environnement et de la santé humaine. Les POPs englobent plusieurs 

familles de composés différents. Dans cette thèse l’attention va être portée sur certains POPs 

tels que : a) les PCBs, les PCDDs et les PCDFs, composés bien connues, largement utilisées et 

étudiées depuis longtemps et qui persistent dans les réservoirs environnementaux et continuent 

de poser des problèmes liés à leur persistance et toxicité ; b) les PBDEs et les HBCDs, 

largement utilisés comme retardateurs de flamme. Une attention particulière est accordée à 

d’autres composés pas encore déclarés comme des POPs, mais qui présentent des propriétés 

physicochimiques similaires : les nouveaux retardateurs de flamme bromés (nRFBs) qui ont 

commencé à être utilisé pour le remplacement de certains composés bromés et chlorés tels que 

les PCBs, les PBDEs et les HBCDs qui ont vu leur usage interdit au cours des dernières années. 

Normalement les sols et les sédiments sont considérés comme des matrices différentes, mais 

les échantillons étudiés dans cette thèse ont été désignés sous le terme d’anthroposols car ce 

sont des sols et des sédiments qui ont été affectés et contaminés par des activités anthropiques 

au cours du temps. 

Une étude a été menée sur des anthroposols de deux zones distinctes (Estarreja au Portugal, 

noté EST, et Casier Peyraud 6 en France, noté PEY) pour évaluer leurs niveaux de 

contamination, ainsi que leurs comportements dans ces anthroposols et les risques potentiels de 

ces contaminants pour des organismes vivants du sol. L’objectif principal étant d’évaluer la 

mobilité environnementale des retardateurs de flamme bromés (RFBs) dans un écosystème 

terrestre, notamment vers les vers de terre et les plantes, dans une prospective d’évaluation du 

risque de transferts de ces molécules. 

Les niveaux en POPs (RFBs, dont les nRFBs, mais aussi les PCBs et PCDD/DFs) dans ces 

anthroposols ont été quantifiés ainsi que dans des plantes collectées sur les sites étudiés. Une 

évaluation in situ de l’activité biologique a été réalisée par la collecte, le dénombrement et 

l’identification des organismes vivants visibles (mésofaune), ainsi que par l’application du test 

Bait-lamina ©. Une espèce de ver de terre (Eisenia fetida) et trois espèces de plantes [luzerne 

(Medicago sativa), cresson (Nasturtium officinale) et moutarde blanche (Sinapsis alba)] ont été 

choisies pour réaliser des tests en laboratoire de toxicité et de bioaccumulation. 

Le facteur de bioaccumulation (BAF) ainsi que les indices SET et ERITME ont été calculés. 

Le BAF permet de déterminer si une substance est accumulée dans un organisme donné et s’il 

existe un risque d’entrée et de diffusion tout au long de la chaine alimentaire. Les indices SET 

et ERITME permettent de classer les sites testés en fonction du transfert efficace des POPs des 



 

 
 

anthroposols aux organismes testés, et d’avoir une idée du risque potentiel pour l’écosystème. 

L’indice SET donne une idée globale de l’excès de transfert pour tous les contaminants dans 

les matrices étudiées. L’indice ERITME permet d’évaluer le risque environnemental global 

inhérent associé à l’excès de transfert des contaminants considérés.  

Les huit anthroposols étudiés sont assez différents en termes de caractéristiques physico-

chimiques ainsi que de contaminations inorganiques et organiques. Les valeurs de pH sont 

légèrement acides dans les échantillons d’Estarreja et les teneurs en matière organique (MO) et 

en carbone organique (COT) sont relativement élevées, reflétant ainsi une activité agricole 

intensive et l’utilisation du fumier pour la fertilisation du sol dans le cas des anthroposols EST 

C et EST L. En ce qui concerne les échantillons de Peyraud 6, les valeurs de pH varient de 

neutres à légèrement basiques. Les teneurs élevées en MO et en COT étaient probablement dues 

à l’apport de particules fines résultant du dépôt de sédiments provenant de la rivière et du 

développement de la végétation dans ces casiers. En ce qui concerne la texture, les échantillons 

d’Estarreja varient de limoneux sableux à sableux, tandis que ceux de Peyraud 6 étaient 

principalement des limoneux sableux, à l’exception d’un échantillon présentant une texture de 

sable limoneux. Les paramètres agronomiques mesurés  (CaO, K2O, MgO, POlsen et rapport 

C/N) étaient plus élevés dans les échantillons de Peyraud 6, à l’exception du rapport C/N et de 

la teneur en MO qui était un peu plus élevée dans les anthroposols d’Estarreja. Les niveaux 

“pseudo totaux” moyens des ETMs analysés sont plus élevés dans les anthroposols de Peyraud 

6 que dans ceux d’Estarreja, sauf dans le cas des niveaux en As où les concentrations mesurées 

dans les échantillons de la zone d’Estarreja considérée dans cette étude ont montré des niveaux 

relativement élevées par rapport aux valeurs du fond géochimique. Ce fait montre clairement 

une origine anthropique de ces ETMs dans les anthroposols considérés, principalement liée à 

la présence et à l’activité du complexe chimique d’Estarreja et/ou à une activité agricole intense. 

En général, les anthroposols recueillis sur le site de Peyraud 6 présentent des niveaux plus 

élevés en POPs en comparaison aux anthroposols d’Estarreja. Les niveaux de nRFBs (nHBB, 

nPBB, nPBT and PBEB) quantifiés dans tous les anthroposols étudiés étaient très faibles par 

rapport aux autres contaminants organiques quantifiées (comme les PCBs et les PCDD/DFs). 

De plus, les valeurs en nRFBs obtenues n’étaient pas comparables avec la plupart des rares 

données trouvées dans la littérature qui correspondent généralement à des sites fortement 

contaminés dans des pays asiatiques (généralement des sites de production et/ou élimination de 

déchets électroniques). 

Quelques effets toxiques ont été observés à la fois pour E. fetida et pour les espèces de plantes 

cultivées dans ces huit anthroposols étudiés, notamment en ce qui concerne le taux de 



 

 
 

reproduction et la masse corporelle d’E. fetida, ainsi que le taux de germination et la hauteur 

maximale des parties aériennes des végétaux testés. Les données obtenues ont clairement révélé 

la bioaccumulation de POPs quantifiés à la fois chez les adultes et les juvéniles d’E. fetida ainsi 

que dans les tissus des espèces végétales cultivées, même à des concentrations très faibles dans 

le cas des nouveaux retardateurs de flamme bromées. Différentes familles des POPs ont montré 

des comportements différents en ce qui concerne les corrélations avec les paramètres physico-

chimiques et l’absorption par E. fetida. Les valeurs de BAFs obtenues montrent le potentiel 

d’accumulation de ces POPs dans les tissues d’E. fetida. Pour les plantes testées, les valeurs de 

BAF obtenues indiquent une grande différence dans la disponibilité des contaminants dans les 

sols des deux sites considérés. Bien que les niveaux des POPs soient significativement plus 

élevés dans PEY Ic que dans EST G, il semble que les POPs soient plus disponibles pour être 

absorbés par les plantes cultivées sur EST G. Cette différence de disponibilité quantifiée peut 

être due à certains facteurs physico-chimiques du sol, à savoir la nature de la MO, la teneur en 

COT et le pH légèrement acide de l’anthroposol EST G.  

Pour l’ensemble des organismes testés (E. fetida, luzerne, cresson et moutarde), les valeurs 

d’effet les plus élevées ont été généralement enregistrées dans les échantillons PEY et 

spécialement dans PEY Ic suivi de PEY IIb. Dans le cas des échantillons d’EST, les valeurs 

étaient en général toujours inférieures à celles enregistrées dans les échantillons de PEY ; 

cependant l’anthroposol EST G, le plus contaminé, présentait les taux les plus élevés dans les 

tissus des organismes exposés sur cet échantillon par rapport aux trois autres échantillons EST.  

La plupart des études utilisent le calcul du BAF qui est généralement considérée pour évaluer 

le risque de contamination. Toutefois, le BAF présente certaines limites, car il considère chaque 

contaminant individuellement et ne comporte pas l'effet cumulatif. 

Les résultats obtenus pour le calcul du BAF ont montrée qu’il existe un potentiel de 

bioaccumulation des POPs dans les tissues de E. fetida et que ces organismes peuvent être 

considérés comme déconcentrateurs de PCDDs, PCDFs,  PBDEs et PBBs (BAF<1) et 

considérés comme macroconcentrateurs de PCBs, nHBB, nPBT et PBEB (BAF>2). Dans le cas 

des plantes collectées in situ et les plantes cultivées sur les anthroposols étudiés, les valeurs de 

BAF obtenues indiquent l’existence d’une différence aux niveaux de la biodisponibilité des 

contaminants dans les différentes matrices et aussi une accumulation des certains contaminants 

dans les tissues des plantes, notamment au niveau des racines. Les valeurs de BAF montrent 

qu’il existe une possibilité de transfert de ces POPs dans la chaîne trophique (et donc pour des 



 

 
 

herbivores via les plantes et des carnivores via les vers de terre) et l’occurrence d’effets toxiques 

pour les organismes testés. 

Les approches SET et ERITME ont été développées car elles sont basées sur des mesures réelles 

dans les organismes, sans garder l’aspect « mono-molécule » comme c’est le cas pour les BAFs. 

Par conséquent, ces index se sont révélés utiles pour l'évaluation des risques et la gestion des 

sites contaminés, car ils tiennent compte de la somme de tous les contaminants et non d'un par 

un comme dans le BAF.  

Les valeurs obtenues pour SET et ERITME sont présentées dans le tableau ci-dessous.  

 

 EST C EST G EST K EST L PEY Ic PEY IIb 
PEY 

IIIa 
PEY IVa 

SET 12.96 15.57 12.72 14.60 101.26 96.57 14.25 66.30 

ERITME 5220 6095 5392 5860 50886 45695 7784 24907 

 

Compte tenu des valeurs ERITME, les matrices étudiées peuvent être classées dans un ordre de 

toxicité croissant: PEY Ic> PEY IIb> PEY IVa> PEY IIIa> EST G> EST G> EST K> EST C.  

Dans cette étude, où les anthroposols étudiés étaient caractérisés par un mélange de différentes 

familles de POPs et d’ETMs, avec certains contaminants présents à de faibles teneurs, il a été 

plus approprié d’appliquer les indices SET et ERITME car ils tiennent compte de la somme de 

tous les contaminants. 

Les valeurs de BAFs calculées pour E. fetida étaient supérieures à 1 dans le cas des PCBs et 

des nRFBs, ce qui suggère l’occurrence du transfert de ces contaminants des matrices pour les 

tissues des vers de terre exposés. Lorsque qu’on considère les valeurs de AQ (le coefficient 

d’accumulation pris en compte dans les calculs de SET et ERITME), les résultats n’indiquent 

pas la même tendance que celle indiquée par les BAFs, car les valeurs de AQ indiquent que le 

transfert excédentaire n’a eu lieu que pour les PCBs-ndl (PCBs non dioxin like), les PCBs dl-

noncop (PCBs dioxine like non coplanaires) et les PBDEs. 

Ainsi, les approches SET et ERITME ont été développés pour remédier à cette lacune car elles 

sont basées sur des mesures réelles dans les organismes. Ces indices montrent clairement 

qu’une bioaccumulation anormale et inattendue de contaminants peut se produire dans des sols 

même légèrement contaminés et ainsi dépasser les limites tolérées pour la consommation 

humaine. Ainsi, dans cette étude, où les anthroposols étudiés étaient caractérisés par un mélange 



 

 
 

de différentes familles de contaminants, et certaines d’entre elles étaient présentes à de faibles 

concentrations, il est apparu plus approprié d’appliquer les indices SET et ERITME car ils 

tiennent en compte de la somme de tous les contaminants, et pas chaque contaminants, un par 

un comme dans le calcul des BAFs. 
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Soil contamination has been a rising concern in recent decades due to industrialization and 

urbanization processes, with considerable waste disposal and the atmospheric deposition of 

particles by run-off (Ross and Birnbaum, 2003; Liu et al., 2016).  

Soils and sediments can be considered as two of the most important compartments in 

ecosystems, playing key functions for the living community (Blum, 1988). After long periods 

of continuous emission and considerable deposition, soils and sediments can act as sinks and 

reservoirs, holding and retaining huge quantities of contaminants, resulting in negative and 

sometimes irreversible effects (Reddy and DeLaune, 2008). An illustration of the origin and 

processes associated with contamination dispersion in ecosystems is presented in Figure 1. Due 

to natural but mainly anthropogenic sources, an appreciable quantity of contaminants can be 

transported atmospherically, sometimes over long-distances from the source location (Figure 

1). Contaminants can thus be deposited directly and/or indirectly on the surfaces of soils and 

water bodies, with the soils and sediments acting as sinks and reservoirs as well as new sources 

of contamination (Figure 1).  

 

 

Figure 1 – Illustration of the type of sources and processes associated with contamination 
dispersion in ecosystems (Ross and Birnbaum, 2003).  
 

Living organisms are in intimate contact with all the ecosystem matrices exposed through 

contact with and/or the ingestion of the available fraction of these contaminants. Plants as well 



 Introduction and Objectives 

3 
 

as a large share of terrestrial and aquatic organisms occupy the basis of the food chain and are 

the port of entry through which contaminants reach higher trophic levels.   

The contamination of environmental compartments by Metallic Trace Elements (MTEs) has 

raised worldwide concern over several decades. Due to their non-biodegradable nature and 

relatively long biological half-lives, MTEs can affect ecological dynamics and ecosystem 

health. They can easily enter the food chain via different paths such as contaminated soils, water 

and atmospheric transport and deposition (Fytianos et al., 2001). The main anthropogenic 

activities responsible for MTEs emissions are urbanization, industrialization, the combustion 

of fossil fuels, metal smelting processes and the intensive incorporation in soils of pesticides, 

fertilizers and manures such as sewage sludge (Singh and Kumar, 2006). The accumulation of 

MTEs such as Cadmium(Cd), Copper (Cu), Chromium (Cr), Nickel (Ni), Lead (Pb) and Zinc 

(Zn) can be significant in soils in industrialized and urban areas, which may pose environmental 

risks, and may affect ecosystems and human health due to their potential uptake by plants and 

animals and leaching by ground- and surface waters (Römkens et al., 2009). The risk associated 

with metals in soils depends on the soil’s properties (such as pH and organic carbon content) 

which affect chemical speciation, solubility and free metal ion activity in the soil solution, 

which in turn controls metal availability (de Vries et al., 2007). Sediment deposits mainly occur 

in artificial drainage basins, though they can result from river dredging and natural deposition 

on river margins. Sediments can also act as a sink or a source of contamination with MTEs, 

namely for water columns and water bodies, and consequently for the biota (Smith and Pappas, 

2007). Large quantities of trace elements can be easily stored in sediments, reaching values that 

can present risks to biota, and they can even enter the food chain. 

Due to the increasing anthropogenic pressures generated by organic compounds in terrestrial 

ecosystems, it is important to study the presence, fate, and transfer processes of contaminants 

in organisms, and the potential phenomena of trophic biomagnification. This type of research 

is essential to correctly evaluate and manage the risks posed by organic pollutants for 

ecosystems and human health. 

Compounds such as polychlorinated biphenyls (PCBs) and the legacy of brominated flame 

retardants (BFRs), namely polybrominated biphenyls (PBBs), polybrominated biphenyl ethers 

(PBDEs), hexabromocyclodecanes (HBCDs) and tetrabromobisphenol A (TBBPA), are 

anthropogenic compounds classified as Persistent Organic Pollutants (POPs). Although their 

use has already been restricted or prohibited, these historical compounds are ubiquitous, 

persistent and bioaccumulative (UNEP, 2002).  
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Since the regulation, restriction and banning of PCBs, PBDEs and HBCDs, new alternative 

flame retardants have been placed on the market to replace those used previously (Ezechiáš et 

al., 2014). At present, the new alternative flame retardants (the most common of which are the 

decabromodiphenyl ethane (DBDPE), the bis(2,4,6-tribromophenoxy) ethane (BTBPE), the 

bis(2-ethylhexyl) tetrabromophthalate (BEH-TEBP), the 2-ethylhexyl-2,3,4,5-

tetrabromobenzoate (EH-TBB), the hexabromobenzene (nHBB), the pentabromobenzene 

(nPBB), pentabromotoluene (nPBT) and PBEB (pentabromoethylbenzene)) remain poorly 

studied and documented (Ezechiáš et al., 2014). These new brominated and chlorinated 

compounds present physicochemical properties like those of POPs and are potentially 

hazardous for the environment. The new alternative compounds are expected to occur at lower 

concentrations than PCBs and PBDEs, whether in the biotic or abiotic compartments. 

In the literature review soils and sediments will be dealt with separately, but the samples studied 

will be designated as anthroposoils throughout this dissertation, due to the fact that these soils 

and sediments have been formed or heavily modified in consequence of long-term human 

activity. 

 

The principal aim of the present study is to assess and understand the mobility and 

environmental bioavailability of POPs in anthroposoils. Mobility criteria and controlling factors 

will be defined to understand the behavior of the pollutants considered in the environmental 

matrices examined. The main objectives of the present work correspond to the following 

questions: 

 Do the anthroposoils selected show detectable selected POPs concentrations? 

 Which POPs families are present in these anthroposoils? 

 Are the POPs available for accumulation by earthworms and plants? 

 In the case of bioaccumulation, what are the toxic effects caused by the POPs levels in 

the animal and plant species investigated? 

 What is the degree of bioaccumulation of POPs in the species tested? 

 Concerning the evaluation of the real risks, what can be expressed by the indexes 

calculated such as Bioaccumulation factor (BAF), Sum of Excess of Transfers (SET) 

and Evaluation of the Risk of the Transferred Metal Elements (ERITME)? 

 Are these reference indexes useful in the Environmental Risk assessment approach? 

Several methods have been proposed to determine bioavailable contaminant concentrations. 

Two of the most common ones are the use of earthworms or plants as indicators of soil quality. 
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The advantage of using earthworms is that they are natural residents in the soil matrix, the 

present tolerance to different types of soil, and they have a large epidermal surface and ingest 

more soil than many other soil dwelling organisms (Lanno et al., 2004), resulting in significant 

pollutant exposure. POPs are taken up by earthworms via passive diffusion from the soil 

porewater through the cuticle and via internal sorption of the compounds from soil passing 

through the gut and intestine (Lord et al., 1980; Belfroid et al., 1995). Plant species offer the 

advantage of being native to the soil environment and the uptake of POPs frequently occurs via 

a diffusion mechanism from soil particles to soil pore water and subsequent uptake by plant 

roots as well as via assimilation from the aerial parts following volatilization from the soil 

(Limmer and Burken, 2016). The use of both earthworms and plants present some 

disadvantages such as: occurrence of mortality, mobility (in the case of earthworms) that can 

affect the accumulation kinetics and rates, growth and possible biotransformation of certain 

POPs into by-products.  

In the present study, one species of earthworms (Eisenia fetida) and three plant species (Sinapis 

alba, Medicago sativa, Nasturtium officinale) will be used to estimate the potential 

toxicological effects of these contaminants regarding parameters such as plant growth and 

earthworm reproduction. Finally, the potential transfer of the emerging compounds considered 

to the biocenosis (plants and earthworms) will be evaluated and the bioaccumulation indexes 

will be calculated to express the magnitude of the bioaccumulation present.  

 

To achieve these objectives and answer the associated questions, this thesis dissertation is 

divided into six main chapters. 

 Chapter 1 comprises an extensive but not exhaustive literature review of the 

characteristics and environmental presence and significance of the POPs selected 

(PCBs, PCDDs, PCDFs, PBDEs, HBCDs, PBBs, nHBB, nPBB, nPBT and PBEB). An 

overview of the relevant legislation and guidelines for selected contaminants in Europe 

is briefly presented.  

 Chapter 2 presents an overview of the mobility of certain POPs as well as their 

bioavailability and potential bioaccumulation in living organisms, namely earthworms 

and plants. First, a brief description is given of the assessment of POPs toxicity and 

bioaccumulation in living organisms on the basis of laboratory tests with earthworms 

and plants according to ISO guidelines. Secondly, several controlling factors and the 
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potential mobility of BFRs in the environmental compartments are discussed based on 

the literature. 

 Chapter 3 starts with the description of the methodologies and protocols used for the 

field sampling campaigns and for the general soil physicochemical characterization. 

After that, the chemical protocols for the analytical quantification of the POPs and 

MTEs selected in the anthroposoils studied are described. All the protocols followed for 

the preparation of earthworms and plants in the reproduction and bioaccumulation tests 

are described, followed by the chemical procedures used for the quantification of the 

levels of POPs bioaccumulated in earthworm and plant tissues. The calculation and use 

of the bioaccumulation factor as well as the SET and ERITME indexes to infer the risks 

posed by contamination to the ecosystem are described. The approach used for the in-

situ evaluation of biological activity and soil quality by monolith sampling and using 

the Bait-lamina test is briefly described. Finally, the statistical methods that were used 

to analyse the results obtained are detailed. 

 In Chapter 4, all the results are presented and discussed concerning: i) anthroposoil 

physicochemical characterization; ii) the levels of POPs presents in soils; iii) the 

laboratory experiments with Eisenia fetida (E. fetida) to analyze the effects on 

reproduction and potential contaminant bioaccumulation; iv) the studies of germination 

and growth of the three plant species used and their potential bioaccumulation of 

contaminants. Also, several indexes for risk evaluation are calculated and their 

significance is discussed. 

 Finally, Chapter 5 presents the conclusions and final remarks, namely the potential use 

and possible limitations of using Environmental Risk Assessment (ERA) approaches, 

considering the presence and effects of the POPs studied. 
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This Chapter presents an extensive but not exhaustive literature review concerning the 

characteristics and environmental presence and significance of the POPs selected (PCBs, 

PCDDs, PCDFs, PBDEs, HBCDs, PBBs, nHBB, nPBB, nPBT and PBEB). An overview of the 

relevant legislation and guidelines for selected contaminants in Europe is briefly presented.  

 

Some chemical pollutants are well known for their capacity to persist in the environment, 

reaching the air, water, soils and/or sediments and for their capacity for accumulation at levels 

that can be a problem for the living community and human health (El-Shahawi et al., 2010). 

These pollutants are often designated as persistent organic pollutants and they can be divided 

into two types according to their sources: (i) chemical compounds intentionally produced and 

used, such as pesticides and other industrial products; (ii) compounds non-intentionally 

produced and dispersed during the combustion and/or incineration of wastes, biomass residues 

and during industrial processes.  

POPs comprise several different families of compounds and all of them are characterized by 

being: a) persistent, thus resisting chemical and/or biological degradation; b) potentially 

bioaccumulated by living communities and, once inside the food chain, they can be easily 

biomagnified through the different trophic levels; c) toxic for living beings; and d) mobile over 

long distances which facilitates their long-range transport even to remote areas (Jones and de 

Voogt, 1999 ; Li et al., 2006 ; Hertz- Picciotto et al., 2008 ; El-Shahawi et al., 2010). 

Due to their typical properties they are widely dispersed for long periods in every environmental 

compartment and the presence of POPs such as PAHs, PCBs, PCDDs, PCDFs and BFRs has 

already been reported:  

 in aquatic environments and aquatic organisms (Koumanova, 2008; Harman, 2011; 

Wenning and Martello, 2014); 

 in the atmosphere (Castro-Jiménez, 2007; Palm, 2011; Hageman et al., 2011);  

 in soils, sediments and terrestrial organisms (Jaspers et al., 2014; Duarte et al., 2018; 

Ren et al., 2018),  

 in the human body (Jaspers et al., 2014; Bruce-Vanderpuije et al., 2019)  

 in remote areas such as Arctic regions (Kallenborn et al., 2011; Kallenborn (ed.), 2016).  

Regarding soils and sediments, POPs can reach these environmental compartments through the 

atmospheric deposition of resuspended soil dust, road dust, and air particles of anthropogenic 

origins (emissions from traffic, industry and incineration processes), both in wet and/or dry 

conditions (Meuser, 2010; Cachada et al., 2012a); dispersion due to underground leakages of 
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wastewater pipes (Meuser, 2010); leaching and dispersion from abandoned industrial sites and 

illegal residue deposits (Meuser, 2010). POPs can be subjected to several physical, chemical 

and biological processes that influence their degradation or persistence in the environment 

(Stokes et al., 2006; Lohmann et al., 2007; Wang et al., 2016). Moreover, atmospheric transport 

and deposition combined with the phenomena of the “cold condensation effect” explain the 

presence of the POPs in pristine areas at Arctic and Antarctic latitudes (Wania and Mackay, 

1993). 

Due to the worldwide impact of these pollutants, in 1998 the Aarhus protocol on POPs was 

signed as part of the Geneva Convention on Long-distance pollution in European countries 

(UNECE, 1998). The main goal of this protocol was to promote the elimination of any 

discharges, emissions and losses of POPs. This protocol also refers to the immediate banning 

of the production and use of certain products, the later elimination of others such as 

polychlorinated biphenyls (PCBs) and reducing the emissions of PCDDs, PCDFs and 

hexachlorobenzene (HCH) below the levels observed in the 1990s. In 2001, a global treaty 

known as the Stockholm Convention was signed to protect human health and wildlife from 

POPs (UNEP, 2002). This accord focuses on the elimination and reduction of POPs release into 

the environment with 5 principal goals: 1) the elimination of dangerous POPs (starting with the 

12 worst, usually referred to as the dirty dozen); 2) support for transition processes to safer 

alternative compounds; 3) the targeting of additional POPs for future actions; 4) promoting the 

cleaning of old stockpiles and equipment that contain POPs; 5) developing strategies and work 

for an POPs-free future. 

In the present thesis work, attention is given to certain POPs such as: a) PCBs, PCDDs and 

PCDFs, which are well known and widely used compounds that have been studied for a long 

time and that continue to persist in environmental reservoirs, and still pose environmental 

problems due to their persistence and toxicity; and b) PBDEs and the HBCDs, widely used as 

flame retardants. Particular attention is given to other compounds not yet declared as POPs, but 

which present similar physicochemical properties (Sapozhnikova and Lehotay, 2013): certain 

BFRs that have begun to replace certain brominated and chlorinated compounds such as PCBs, 

PBDEs and HBCDs that have been banned. Further details on the characteristics of all these 

compounds and their toxicity to living organisms will be given in the next subchapters.  
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1.1. Polychlorinated biphenyls (PCBs) 

 

PCBs are a family of organochloride aromatic compounds expressed by the chemical formula 

C12H(10-n)Cln in which the number of chlorine atoms can vary from 1 to 10. This allows PCBs 

to be categorized by the degree of chlorination (number of chlorine atoms) in 10 homologous 

groups from monochlorobiphenyls to decachlorobiphenyls. More than 60% of PCBs are tetra- 

to hexachlorophenyls. There are a total of 209 PCB congeners from which 12 present a planar 

structure and properties similar to those of dioxins which are usually referred to as dioxin-like 

PCBs (PCBs-dl). The remaining 197 congeners – those not conforming to the planar structure– 

are referred to as non-dioxin like PCBs (PCBs-ndl). PCBs of a given homolog with different 

chlorine substitution positions are called isomers or congeners. PCBs are named based on a 

numbering system developed by the IUPAC. This system numbers PCBs from 1 to 209, based 

on the position of the halogen atoms on the rings (Ballscmitter and Zell, 1980). Seven PCBs 

can be used to characterize the presence of PCB contamination. Six of these seven are PCBs-

ndl (CB-28, -52, -101, -138, -153 and -180), and one is a PCB-dl (CB-118). These seven PCBs 

are often called “indicator PCBs” (PCBi) (UNEP,2013). The high-chlorinated PCBs are less 

volatile than the low chlorinated ones, and the ability to accumulate in lipids increases with 

increasing chlorine substitution (Ritter et al., 1995a).  

The three most important physical properties of PCBs are low vapor pressure, low water 

solubility (both decreasing with increasing chlorination), and high dielectric constants (IPCS, 

1976). The log Kow (octanol – water partition coefficient) of PCBs ranges from 4.3 up to 8.3 

due to their high lipophilic nature. Table 1 gives a summary of the main physicochemical 

properties of each group of PCBs.  

Thus, the differences in chemical structure produce varying levels of toxicity. The commercial 

production of PCBs began in the USA in 1929. Properties such as chemical and physical 

stability, electrical resistance, low volatility, resistance to degradation at high temperatures and 

their resistance to degradation by thermal rupture, oxidants and other chemical effects 

contributed to the intensive production of PCBs and their widespread use (PNUE, 2010). 
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Table 1 – Principal physicochemical characteristics of each group of PCB isomers (Robertson 
and Hansen, 2001).  

Congener group 
Boiling 

point (°C) 

Melting 

point (°C) 

Vapor 

pressure 

(Pa) at 25 

Water 

solubility 

(g/m3) at 25 °C 

log Kow 

Biphenyl 71 256 4.9 4.3 0.92 

Monochlorobiphenyl 25 – 77.9 285 1.1 4.7 0.25 

Dichlorobiphenyl 24.4 – 149 312 0.24 5.1 0.065 

Trichlorobiphenyl 28.87 337 0.054 5.5 0.017 

Tetrachlorobiphenyl 47 – 180 360 0.012 5.9 4.2 x 10-3 

Pentalorobiphenyl 76.5 – 124 381 2.6 x 10-3 6.3 1.0 x 10-3 

Hexalorobiphenyl 77 – 150 400 5.8 x 10-4 6.7 2.5 x 10-4 

Heptalorobiphenyl 122.4 – 149 417 1.3 x 10-4 7.1 6.2 x 10-5 

Octalorobiphenyl 159 – 162 432 2.8 x 10-5 7.5 1.5 x 10-5 

Nonachlorobiphenyl 182.8 – 206 445 6.3 x 10-6 7.9 3.5 x 10-6 

Decachlorobiphenyl 305.9 456 1.4 x 10-6 8.3 8.5 x 10-7 

 

The commercial products were complex mixtures most commonly used in dielectric fluids in 

capacitors and transformers. PCBs are now ubiquitous environmental pollutants, occurring in 

human and animal tissue, and most environmental compartments. Even though PCBs 

production has been banned in most countries since the 1970s and 1980s, it is estimated that 

over 1 million tons of PCBs were produced and about one third of this quantity is thought to be 

still circulating in the environment (Birkett and Lester, 2003). According to Baird & Cann 

(2005) the major sources of PBCs are mainly urban areas, notably because of their use as 

coolant fluids in power transformers and capacitors, as plasticizers, as heat transfer fluids in 

machinery and as waterproofing agents. These compounds are released into the environmental 

compartments from sources such as poorly maintained waste sites that contain PCBs, improper 

dumps of PCBs waste like transformer fluids, leaks or releases from electric transformers and 

the disposal of PCBs-containing products in municipal or other landfills not prepared to stock 
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this type of hazardous waste (Faroon et al., 2003). The burning of organic wastes in municipal 

and industrial incinerators is also a major source of PCBs release (Zhang et al., 2011a).  

Most of the historical production of PCBs occurred between 1930 and 1993 and took place in 

the Northern Hemisphere in the United States, West Germany, the former Soviet Union, France, 

the United Kingdom, Japan, Czechoslovakia, China, Spain and Italy with the total amount 

produced around 1.3 million of tons (Breivik et al., 2002, 2007). Most of the intentional 

production of PCBs has stopped, but considerable amounts are still detected in the environment 

(Breivik et al., 2002). PCBs are persistent soil contaminants due to their hydrophobicity and 

resistance to biodegradation (Weber et al., 2008). Soil is very effective in the uptake and 

retention of PCBs, making PCBs resistant to repeated air-soil exchange. The degradation of 

PCBs in soils is slow. Soil samples taken from rural sites in western United Kingdom and 

Norway in 1998 showed that the lighter PCBs are found further north and away from source 

regions than the heavier PCBs. Heavier molecules struggle to travel long distances such as to 

Arctic and Antarctic regions (Ockenden et al., 2003). In France, the use of PCBs in certain 

industrial applications started to be forbidden in 1975. Later, in 1987, the sale, acquisition and 

use of equipment containing PCBs were forbidden (INERIS, 2011). 

In 2001, PCBs were classified as POPs and listed in annexes A and C of the well-known 

Stockholm Convention that requires the prohibition of PCB usage by 2025 and the correct 

management of PCBs-containing wastes by 2028 (UNEP, 2009). 

Tables 2 and 3 present some of the already recorded median, mean and range values of ΣPCBs 

in soils and sediments around the world (non-exhaustive lists).
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Table 2 – Median, mean concentration and range of ΣPCBs (µg.kg-1 dw) in soils in Europe (non-exhaustive list). 

Country Land-use type No of PCBs 
ΣPCBs 

Reference 
Mean / Median Range (Min – Max) 

Portugal Urban Σ19PCBs - / 8.8 2.3 – 55 Cachada et al., 2012b 

Portugal Urban Σ19PCBs ; Σ5PCBi - / 7.9 ; - / 2.6 0.62 – 73; 0.15 – 41 Cachada et al., 2009 

France Remote/Urban/Industrial Σ7PCBi - / - 0.09 - 150 Motelay-Massei et al., 2004 

Spain 

Urban Σ7PCBi 4.44 / - 0.19 – 10.5 

Nadal et al., 2007 Chemical Σ7PCBi 4.63 / - 0.26 – 15.0 

Unpolluted Σ7PCBi 0.77 / - 0.29 – 2.11 

Italy Urban Σ19PCBs ; Σ5PCBi - / 14 ; - /6.6 1.8 – 172; 0.72 – 86 
Cachada et al., 2009 ; 

Morillo et al., 2007 

Italy 

Industrial A Σ24PCBs 1.14 / 0.55 0.01 – 8.3 

Donato et al. (2006) 
Industrial B Σ24PCBs 0.21 / 0.07 <0.001 – 2.6 

Industrial C Σ24PCBs 0.15 / 0.08 0.01 – 0.8 

Industrial D Σ24PCBs 0.03 / 0.017 0.0007 – 0.38 

Greece Landfill Σ7PCBi - / - 3.96 – 399 Chrysikou et al. (2008) 
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Table 2 (cont) – Median, mean concentration and range of ΣPCBs (µg.kg-1dw) in soils in Europe (non-exhaustive list). 

Country Land-use type No of PCBs 
ΣPCBs 

Reference 
Mean / Median Range (Min – Max) 

Germany Agricultural Σ6PCBs - / - 0.95 – 3.84 Manz et al. (2001) 

Germany Urban Σ12PCBs - / - 1.60 – 21.9 Krauss and Wilcke (2003) 

Austria Forest Σ6PCBs - / - 6.4 - 95 Weiss et al. (1998) 

UK Rural to urban Σ84PCBs 4.7 / 1.5 0.39 – 21 Desborough et al. (2016) 

UK Rural Σ33PCBs 5.07 / 2.5 0.27 – 80.6 Heywood et al. (2006) 

UK Rural to urban Σ6PCBs 31.8 / 6.5 1.7 – 1200 Creaser et al. (1989) 

Scotland Urban 
Σ19PCBs ; 

Σ5PCBi 
- / 22 ; - / 9.4 4.5 – 78; 1.9 – 43 

Cachada et al., 2009 ; 

Morillo et al., 2007 

Slovenia Urban 
Σ19PCBs ; 

Σ5PCBi 
- / 6.8 ; - / 2.1 2.8 – 48 ; 0.67 – 29 

Cachada et al., 2009 ; 

Morillo et al., 2007 

Sweden Rural / Urban Σ44PCBs - / 7.1 2.3 – 986 Backe et al. (2004) 

Sweden Urban 
Σ19PCBs ; 

Σ5PCBi 
- / 5.7 ; - / 2.3 2.3 – 77; 0.54 – 47 Cachada et al., 2009 

Russia Agricultural Σ17PCBs 13.9 / - 5.0 – 31.0 Wilcke et al. (2006) 

- = not indicated; nd = not detected. 
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Table 3 – Median, mean concentration and range of ΣPCBs (µg.kg-1 dw) in sediments in Europe (non-exhaustive list). 

Country Origin No of PCBs 
ΣPCBs 

Reference 
Mean/Median Range (Min – Max) 

France River Σ7PCBsi - / 41.5 0.13 – 417.1 Mourier et al. (2014) 

France River Σ15PCBs - / - nd – 2310 Lorgeoux et al. (2016) 

France River Σ7PCBi - / 33.7 0.67 – 234 Liber et al. (2019) 

Czech Republic River Σ7PCBi - / 38.58 0.33 – 467.08 Stiborova et al. (2017) 

England Marine Σ55PCBs - / - 0.082 – 38 Camacho-Ibar and McEvoy (1996) 

Russia Lake Σ34PCBs - / - 0.08 – 6.1 Iwata et al. (1995) 

- = not indicated; nd = not detected. 
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Several earthworm species have been shown to significantly accumulate PCBs. In a study with 

four different species (Eisenia andrei, Eisenia fetida, Eisenia hortensis and Lumbricus 

terrestris), Ville et al. (1995) observed the accumulation of PCBs in earthworm tissues. 

Earthworms collected in rice fields in Japan showed levels of 150000 pg.g-1 fresh weight  of 

PCBs-dl in their tissues (Nakamura et al., 2007).  Also, Bu et al. (2010) observed the capacity 

of E. fetida to accumulate PCBs-dl. Vermeulen et al. (2010) conducted a study to investigate 

the accumulation of PCBs in the soil-earthworm-hedgehog food chain, where the accumulation 

of these compounds was effective in Lumbricus rubellus tissues at mean levels of 9.77 up to 

21.86 ug.kg-1 dw. E. fetida and Allolbophora caliginoa trapezoides species were collected from 

a typical E-waste dismantling area in east China and the accumulation of PCBs in earthworm 

tissues was observed at levels of 1.17 up to 78.6 ug.kg-1 dw due to ingestion and direct contact 

with heavily contaminated soils (Shang et al., 2013).  

The presence of PCBs in plants has already been reported by some authors. Concentrations of 

Σ3PCBs were reported in Lolium perenne (3.5 µg.kg-1 dw) and in Melaleuca leukadendra (2.64 

up to 7.00 µg.kg-1 dw) in Australia (Müller et al., 2001). Zhao et al. (2006) detected levels of 

Σ17PCBs of about 2.80 µg.kg-1 dw in grass samples in China. Chrysikou et al. (2008) in a study 

on the distribution of certain POPs in soils and vegetation near a landfill in Greece found levels 

of 3.64 up to 25.9 µg.kg-1 dw for Σ7PCBi in Solanum eleagnifolium and Solanum trifolium plant 

species. Also, several studies reported PCBs uptake and translocation by edible vegetables such 

as: soybeans (Suzuki et al., 1977), carrots (Iwata and Gunther, 1976), beets, turnips and beans 

(Sawhney and Hankin, 1984). It was also observed that the lower chlorinated congeners (PCB-

28, -52 and -101) were found to be more abundant in the shoots than in the roots of these plant 

species (Iwata and Gunther, 1976; Suzuki et al., 1977; Sawhney and Hankin, 1984). 

In France, sediment from cores collected in the Seine river were analyzed and it was found that 

the concentration gradient over time was similar to the variation of the production and 

utilization of PCBs over previous decades. Indeed, the significant decrease of these compounds 

in the sediments deposited during the 80s was directly related to the restriction and/or banning 

in 1975 of PCBs use in open industrial systems (Mourier et al., 2014; Lorgeoux et al., 2016). 

Nyberg et al. (2015) concluded that the PCBs levels recorded in the sediments of the Baltic sea 

and on the west Swedish coast have significantly decreased over the last 40 years, probably as 

a result of the legislative restriction and/or prohibition implemented in the 1970s. Also, in 

America, PCBs concentrations in young seals seem to have decreased by about 81% from 1984 

to 2009 in Gertrude Island in Washington, probably as a result of the legislation adopted by 
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USA in 1976 and by Canada in 1977, which led to a reduction in the input of PCBs in the 

environment (Ross et al., 2013). 

 

 

  

THINGS TO KEEP IN MIND 

 

 PCBs are dispersed worldwide and can be found in every essential ecosystem 

compartment due to atmospheric transport and subsequent deposition on land surfaces. 

The sources and the environmental fate and related transfer and dispersion mechanisms 

have already been thoroughly investigated and extensively reviewed in the literature. 

 Several earthworm and plant species have been shown to significantly accumulate 

PCBs, especially the lower chlorinated congeners (CB-28,-52 and -101). 

 Although PCBs production has been banned in most countries since the 1970s and 

1980s, considerable quantities of PCBs are still circulating in the environment. PCBs 

are persistent in the environment due to their hydrophobicity and resistance to 

biodegradation, as they are strongly retained by soil particles. 

 In the particular case of this work, PCBs and their dispersion and mobility 

mechanisms will be used as an example of a chlorinated family of POPs to try to 

compare and infer the possible similar fate of BFRs in the environment. 
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1.2. Polychlorinated dibenzo-p-dioxins (PCDDs) and Polychlorinated 

dibenzofurans (PCDFs) 

 

PCDDs and PCDFs, usually referred to as “dioxins”, are a group of persistent organic pollutants 

which comprises a total of 210 compounds, 75 PCDDs and 135 PCDFs congeners (Huwe, 2002; 

Loganathan and Masunaga, 2015). They are characterized by Kow values ranging from 4.04 x 

10-5 to 1.35 x 10-3 and a vapor pressure between 8.3 x 10-13 and 8.1 x 10-7, depending on the 

homolog group considered (Srogi, 2007). Dioxins have been referred to as ‘the most toxic man-

made compounds’ and  have therefore generated much concern regarding their potential health 

risks. These compounds are chemically very stable, highly hydrophobic, with great affinity to 

organic matter (OM), and unless transported in association with particulate organic matter, 

PCDDs and PCDFs usually present limited mobility. Despite this, these organic compounds are 

highly persistent, and their presence is widespread in the environment, namely in the terrestrial 

ecosystem. They are easily bioaccumulated in organic matrices, especially in the tissues of 

organisms, so they are easily introduced into the food chain to reach higher trophic levels (Van 

den Berg et al., 1998; Baker and Hites, 2000). PCDDs and PCDFs induce toxic responses such 

as immunotoxicity, carcinogenicity and dermal toxicity, and adverse effects on reproduction 

development and endocrine functions have already been reported in the literature (Van den 

Berg, 1998).  

PCDDs and PCDFs stem from by-products originating from chlorinated chemical production 

and combustion processes. They have never been intentionally produced for industrial proposes 

or even deliberately released into the environment (IPCS, 1989). Since 2001, PCDDs and 

PCDFs have been included in the Stockholm Convention and subjected to progressive reduction 

and elimination where feasible, like the other POPs described (UNEP, 2002). 

Simonich and Hites (1995) and Barrie et al. (1992) reported that volatilized lower chlorinated 

PCDDs and PCDFs can be transported over large distances from temperate industrial regions 

and deposited in cold climate regions (Arctic and Antarctica). Although the distribution of 

PCDDs and PCDFs occurs mainly via atmospheric transport pathways (Czuczwa and Hites, 

1984; Kallenborn et al., 1998; Lohman and Seigneur, 2001), their strong affinity for particulates 

also leads to significant associated sediment and soil stockage (Eitzer, 1993). PCDDs and 

PCDFs can be absorbed and accumulated in soils and sediments and are readily redistributed 

into other ecosystem compartments and therefore bioaccumulated by living organisms and 
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easily introduced into the food chain (Connell, 1990; Broman et al., 1992; Berglund et al., 

2001).  

Tables 4 and 5 present some of the already recorded median, mean and range values of PCDDs 

and PCDFs in soils and sediments around the world (non-exhaustive lists). 

Some earthworm species have been shown to significantly accumulate PCDDs and PCDFs. 

Reinecke and Nash (1984) observed the accumulation of PCDDs and PCDFs in two earthworm 

species Allolobophora catiginosa and Lumbricus rubellus tissues. Earthworms collected in rice 

fields in Japan showed levels of 900 pg.g-1 dw  of PCDDs and PCDFs in their tissues (Nakamura 

et al., 2007). In another study, earthworms belonging to E. fetida and Allolbophora caliginoa 

trapezoides species were collected from a typical E-waste dismantling area in east China. They 

were found to have an accumulation of PCDDs and PCDFs in their tissues due to ingestion and 

direct contact with heavily contaminated soils at levels between 0.13 and 0.59 µg.kg-1 dw 

(Shang et al., 2013). Henriksson et al. (2017) also confirmed the accumulation of PCDDs and 

PCDFs in E. fetida tissues at concentrations of 1500 up to 15000000 pg.g-1 dw as a result of 

both in situ and exposure in laboratory conditions to contaminated soils from Sweden.  

 

Table 4 – Mean concentration and range of PCDDs concentrations in sediments around the 
world (non-exhaustive list).  

Country Origin Range (Min – Max) Reference 

France River sediments 0.013a – 3.77a Liber et al., 2019 

Germany River sediments 0.30a – 290a Götz et al., 2007 

Germany Lake sediments 5.27b – 1401.74b Bruckmeier et al., 1997 

Spain 
Estuarine 

sediments 
0.08c – 1.76c Gómez-Lavín et al., 2011 

Switzerland Lake sediments 10b – 1378b Zennegg et al., 2007 

- = not indicated; a values expressed in µg.kg-1 dw; b values expressed in ng.kg-1 dw; c Values expressed 
in pg.g-1 dw 
 

 

Table 5 – Mean concentration and range of PCDFs concentrations in sediments in Europe (non-
exhaustive list).  
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Country Origin Range (Min – Max) Reference 

France River sediments 0.002a – 2.28a Liber et al., 2019 

France River sediments 0.5a – 478a Götz et al., 2007 

Germany Lake sediments 8.64b – 2297.78b Bruckmeier et al., 1997 

Spain 
Estuarine 

sediments 
0.07c – 2.23c Gómez-Lavín et al., 2011 

Switzerland Lake sediments 15b – 1069b Zennegg et al., 2007 

- = not indicated; a Values expressed in µg.kg-1 dw; b Values expressed in ng.kg-1 dw; c Values expressed 
in pg.g-1 dw. 
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THINGS TO KEEP IN MIND 

 

 PCDDs and PCDFs are quite widely dispersed and can be frequently found in 

essential ecosystem compartments due to atmospheric transport and considerable 

deposition on land. The sources, the environmental fate and the related transfer and 

dispersion mechanisms of PCDDs and PCDFs are well-known and have already been 

reviewed in the literature. 

 Some earthworm species have been shown to significantly accumulate PCDDs and 

PCDFs, namely the low molecular weight congeners, in appreciable concentrations in 

their tissues.  

 Since PCDDs and PCDFs can easily be bioaccumulated in the tissues of organisms 

they can then easily enter the food chain and reach higher trophic levels. PCDDs and 

PCDFs are well-known to induce toxic responses such as immunotoxicity, 

carcinogenicity and dermal toxicity, as well as adverse effects on reproduction, 

development and endocrine functions, which have already been reported in the literature.  

 PCDDs and PCDFs have similar physical-chemical properties but different 

biological potencies, due to the difference in molecular structure as PCDDs are derivates 

of dibenzo-p-dioxin and PCDFs are derivates of dibenzofuran. 

 These compounds are chemically very stable, highly hydrophobic and have great 

affinity to OM. Unless transported in association with particulate organic matter, they 

present limited mobility.  

 PCDDs and PCDFs are well-known to induce toxic responses such as 

immunotoxicity, carcinogenicity and dermal toxicity, as well as adverse effects on 

reproduction, development and endocrine functions, which have already been reported 

in the literature.  

 In the particular case of this work, PCDDs and PCDFs and their dispersion and 

mobility mechanisms will be used as another example of a chlorinated family of POPs 

in order to compare them and draw inferences regarding the possible similar fate of 

BFRs in the environment. 
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1.3. Brominated Flame Retardants (BFRs) 

 

Among all the different and numerous POPs released into the environment, flame retardants 

are of great concern to the scientific community. Since fires have been one of the major causes 

of property damage and death throughout history, technological research has been carried out 

to combat them (Khandual, A., 2014). By incorporating heat resistant chemicals in products, it is 

possible to reduce the potential of ignition and combustion of a wide range of manufactured 

products such as textiles, plastics, building materials and electronic equipment widely used both 

in commerce and residential environments (Alaee et al., 2003).  

BFRs are the largest group commonly sold on the market due to their low cost and high 

performance and efficiency (Birnbaum and Staskal, 2004). BFRs can generate halogen atoms 

from the thermal degradation of the parent compound to chemically reduce and “retard” the 

development of fires (de Wit, 2002). At present, there are more than 75 kinds of BFRs (Alaee 

et al., 2003; Covaci et al., 2011). They are commonly used in polyurethane foam, plastics for 

electric and electronic equipment, printed circuit boards, expanded and extruded plastic, textile 

back-coating in furniture, various textiles used in public environments, and rubber for coating 

wires among other things (de Wit et al., 2010). 

The BFRs most widely produced and used are PBBs, PBDEs and HBCDs. The lower 

brominated congeners (between 1 and 5 bromine-substitutions per molecule) have higher 

bioavailability due to their high Kow compared to the higher brominated congeners (Darnerud 

et al., 2001). PBDEs are generally used as mixtures containing multiple PBDEs. HBCDs are 

composed of three stereoisomers: α-, β-, and γ-HBCD, which have a high capacity for 

bioaccumulation. BFRs can easily migrate to environmental compartments during the whole 

lifetime of the products in which they are incorporated. The main release and migration of BFRs 

occur during the use of these products. Thus, they can be released into the air and dust through 

volatilization, weathering and absorption processes (Cao et al., 2013). Also, during the end of 

product life, the BFRs in the products can be released during waste disposal and contaminate 

soils and groundwater via leaching processes (Chen et al., 2012). Vastag (2008) referred to their 

environmental persistence, bioaccumulative characteristics and potential toxicity to living 

organisms. Indeed, the endocrine disrupting potential of BFRs in both animals and man was 

mentioned in a literature review by Legler and Brouwer (2003).  

Regarding their application chronology, BFRs can be classified as “traditional” or “legacy 

BFRs and “novel” or “new” BFRs (New BFRs). Legacy BFRs mainly correspond to the 



Chapter 1. Characteristics, environmental presence and significance of several persistent organic 
pollutants 

23 
 

compounds no longer used or commercialized, namely PBDEs, PBBs and HBCDs. New BFRs 

correspond to the replacements of legacy BFRs, including DBDPE, nHBB, nPBB, nPBT and 

PBEB, among others.  

Some of these BFRs are similar in structure to PCBs and PBBs. All are persistent, 

bioaccumulate in living organisms, highly mobile in the food chain, and toxic. BFRs are 

characterized by low water solubility, high Kow (values > 6) and Koa (values > 8), which means 

they are lipophilic, and have medium to low vapor pressures (Covaci et al., 2011; Bergman et 

al., 2012). Their physicochemical and biochemical properties combined with their resistance to 

chemical and biological degradation lead BFRs to be persistent and easily incorporated in every 

compartment of the ecosystem, resulting in exposure and negative health effects for animals 

and humans (Linares et al., 2015; Loganathan, 2012). 

 

1.3.1. Legacy Brominated Flame Retardants  

 

1.3.1.1. Polybrominated diphenyl ethers (PBDEs)  

 

PBDEs are a family of BFRs commonly used to replace chlorinated flame retardants such as 

PCBs, due to the similarity of their respective properties.  

PBDEs are a family of organohalogenated compounds with high molecular weight expressed 

by the chemical formula C12H(10-n)Brn in which the number of bromine atoms can vary from 1 

to 10. There are a total of 209 PBDEs congeners numbered from 1 to 209, based on the position 

of the bromine atoms on the rings (Rahman et al., 2001). The industrial production of these 

compounds is done by mixing diphenyl ethers and bromine and the resulting congeners present 

different levels of bromination. Therefore, they occur most commonly in the following different 

forms: tetra-, penta-, octo- and deca-BDEs. Table 6 gives a summary of the main 

physicochemical properties of the PBDEs congeners usually found in environmental 

compartments. 

According to La Guardia et al. (2006) the commercialized industrial mixtures of PBDEs 

congeners are c-Penta-BDE, c-Octa-BDE and c-Deca-BDE (where “c-“means “commercial”) 

which include, respectively, the following BDEs: BDE-47 (tetra-BDE) and BDE-99; BDE-153 

(hexa-BDE) and BDE-183 (hepta-BDE); BDE-209 (deca-BDE). Small quantities of BDE-28 

(tri-BDE), BDE-100 (penta-BDEs) and BDE-154 can also be found in these mixtures (Lebeuf, 

2009). 
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Table 6 – Physicochemical properties of the most common PBDEs congeners found in the 
environment (Akortia et al., 2017). 

Congeners 

group 

Boiling point 

(°C) 

Melting point 

(°C) 

Vapor 

pressure (Pa) 

Water solubility 

(µg L-1) 
log Kow 

Tetra-BDE - 
79 – 82 (BDE 

47) 

2.7 – 3.3 x 10-4 

(20°C) 
10.9 (25°C) 5.9 – 6.2 

Penta-BDE 
>300°C 

(decomposition) 

92 (BDE 99) 

92 – 97 (BDE 

100) 

2.9 – 7.3 x 10-5 

(20°C) 
0.0009 (20°C) 6.5 – 7.0 

Octa-BDE - ~ 200 
1.2 – 2.7 x 10-7 

(20°C) 
- 8.4 – 8.9 

Deca-BDE decomposition 290 - 306 
<1 x 10-4 

(25°C) 
- 10 

- = not indicated. 

 

The total worldwide production of PBDEs between 1970 and 2005 is estimated to be around 

1 300 000 to 1 500 000 tons (UNEP, 2019). These compounds were mainly used in several 

different types of industrial and manufacturing processes used to produce products such as 

electrical and electronic equipment, components for vehicles and textiles.  

Like certain other POPs, PBDEs are widespread in the environment in appreciable 

concentrations and can cause harmful toxicity effects. PBDEs can be released into the 

environment via atmospheric emissions from manufacturing and other industrial processes 

(Gouteux et al., 2008; Li et al., 2015, Wang et al., 2010a) as well as from waste incineration 

and recycling processes (Wang et al., 2010b; Hearn et al., 2012).  

Emitted contaminants may be transported over large distances in the air and be deposited on 

land surfaces (Newton et al., 2014; Cetin et al., 2016). Also, the application of sewage sludge 

to soil as a nutrient amendment can be a significant way of loading BFRs on agricultural land 

due to the high levels of contamination usually verified in sewage waste streams (Kim et al., 

2017). The lipophilic properties of PBDEs allow them to easily bind to organic matter and thus 

persist in soils where half-lives of about 28 years have been reported (Andrade et al., 2010). 
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The presence of PBDEs in the environment was reported for the first time in 1966 (Jensen, 

1996). Certain regulatory measures were implemented due to the significant worldwide 

dispersion of PBDEs and their ubiquitous presence in every environmental compartment. 

PBDEs are lipophilic substances (Li et al., 2008) and when in the environment they can easily 

be biomagnified in the food chain (de Wit et al., 2010) and tend to bioaccumulate in living 

organisms (Kuo et al., 2010). The occurrence of bioaccumulation in wild fauna has already 

been observed in several studies, even in remote areas with no local point sources or industrial 

production like the Arctic (Law et al., 2003; Strandberg et al., 2001; ter Schure et al., 2004 a,b). 

The bioaccumulation of PBDEs in soil dwelling invertebrates, namely earthworms, has already 

been reported in the literature (Nyholm et al., 2010; Gaylor et al., 2013), since these organisms 

are one of the main pathways of entry of the contaminants into terrestrial food-chains (Nie et 

al., 2015). Contaminated soils can be a source of transfer of PBDEs into suspended solids and 

sediments of aquatic environments due to run-off events (Muresan et al., 2010). Several authors 

have already reported the bioaccumulation and trophic transfer of PBDEs in the ecosystems of 

fresh water and marine organisms (Law et al., 2006a, 2006b; Klosterhaus et al., 2012; Poma et 

al., 2014). Potential human exposure and intake of PBDEs can occur due to the inhalation of 

soil fragments suspended in outdoor air, the dermal absorption of settled particles, the ingestion 

of soil particles adhered to vegetables grown on contaminated land and the direct oral intake of 

soil by toddlers through hand-to-mouth behavior (Abdallah et al., 2015; Akortia et al., 2017). 

Some plant crops show the ability to translocate PBDEs from soil into vegetative structures and 

this may also result in consistent low-level exposure through diet (Navarro et al., 2017). 

Considering the existence of potential risks to human health posed by contaminated soils, 

reference screening values have already been established by government agencies (NEPC, 

2013; USEPA, 2017). 

Non-exhaustive lists with the median, mean concentration and range of PBDEs concentrations 

found in soils and sediments around the world are presented in tables 7 and 8. 
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Table 7 – Mean concentration and range of PBDEs concentrations in soils in Europe (non-exhaustive list). All values are reported on ng.g-1 dw 
basis, except if otherwise indicated. 

Country Land-use type Congeners Mean / Median Range (Min – Max) Reference 

France Urban and rural Σ8PBDEs - / - 0.3 – 13 Gaspéri et al., 2016 

France 

Forest 

Σ8PBDEs 

1.20 / - 0.225 – 5.11 

Muresan et al., 2010 Agricultural 1.93 / - 0.242 – 43.9 

Urban 2.24 / - 0.324 – 18.0 

Italy 

Pasture (0-1 cm deep) 

Σ13PBDEs 

1.55a / - 0.310 – 3.85a 

Parolini et al., 2012 Pasture (1-4 cm deep) 0.72a / - 0.086 – 1.74a 

Pasture (4-7 cm deep) 0.43a / - 0.149 – 1.06a 

England Rural – urban Σ8PBDEs 15b,c / - 2.3 – 49c Drage et al., 2016 

England  

Urban 

Σ6PBDEs 

1.76a / - 0.430 – 4.09a 

Harrad and Hunter, 2006 Suburban 0.321a / - 0.146 – 0.489a 

Rural 0.22a / - 0.046 – 0.403a 

United 

Kingdom 

Grassland 
Σ22PBDEs 

- /0.61a 0.065 – 6a 
Hassanin et al., 2004 

Forest - /2.5a 0.110 – 12a 
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Table 7 (cont) – Mean concentration and range of PBDEs concentrations in soils in Europe (non-exhaustive list). All values are reported on ng.g-

1 dw basis, except if otherwise indicated. 

Country Land-use type Congeners Mean / Median Range (Min – Max) Reference 

Norway Forest Σ22PBDEs - /0.97a 0.13 – 3.0a Hassanin et al., 2004 

Sweden Urban Σ13PBDEs 12b,c / - 0.87 – 46b,c Newton et al., 2015 

Slovakia Urban / industrial Σ15PBDEs 0.47b / - 0.086 – 1.63 Thorenz et al., 2010 

Estonia 
Industrial  

Σ11PBDEsa 
- / - nd – 1.70 

Kumar et al., 2009 
Urban / rural - / - 0.03 – 0.37 

Scotland 

Rural and background 

Σ7PBDEsa 

0.856 / - 0.09 – 4.52 

Rhind et al., 2013 Rural and background 1.22 / - 0.107 – 15.4 

Rural and background 1.42 / - 0.09 – 10.5 

Scotland Background 

Σ7PBDEsa 

0.68c / - 0.02c – 1.57c 

Zhang et al., 2014  Background 1.88c / - 0.41c – 10.5c 

 Background 2.55c / - 0.20c – 13.2c 

- = not indicated; nd = not detected; a Excluding PBDE-209; b value calculated from original data; c values expressed in ng.g-1 OM; 
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Table 8 – Mean concentration and range of PBDEs concentrations in sediments in Europe (non-exhaustive list). All values expressed in µg.kg-1 
dw. 

Country Origin Congeners Mean / Median Range Reference 

France River Σ8PBDEs - / - nd – 60 Lorgeoux et al., 2016 

France River Σ8PBDEs - / 3.81 0.06 – 239 Liber et al., 2019 

Portugal River Σ40PBDEs - / - 0.03 – 18 Lacorte et al., 2003 

Spain River Σ7PBDEs - / - 0.86 – 2.49 de la  Cal et al., 2003 

Spain River Σ7PBDEs - / - 2.4 – 41.7 Eljarrat et al., 2004 

Spain River Σ8PBDEs - / - nd – 44.3 Barón et al., 2014 

Italy River Σ8PBDEs 2.14 / - 0.26 – 10.8 

Giulivo et al., 2017 

Greece River Σ8PBDEs 1.68 / - nd – 4.52 

Slovenia 

River Σ8PBDEs 5.60 / - nd – 14.0 Croatia 

Bosnia and Herzegovina 

Czech Republic River Σ10PBDEs - / 19.34 7.08 – 300.46 Stiborova et al., (2017) 

Netherlands River Σ9PBDEs - / - 1.4 – 272 Covaci et al., 2002b 

United Kingdom River Σ3PBDEs - / - nd – 1170 Allchin et al. (1999) 

Norway Lake Σ11PBDEs - / - 0.36 a – 26.95 Schlabach et al. (2004) 

- = not indicated; nd = not detected. 
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1.3.1.2. Hexabromocyclodeacanes (HBCDs) 

 

HBCDs are nonaromatic brominated alicyclic hydrocarbons expressed by the chemical formula 

C12H18Br6. The commercial mixture is composed by the three principal diastereomers: alpha 

(α-HBCD), beta (β-HBCD) and gamma (γ-HBCD) in the following quantities 10-13 %, 1–12 

% and 75–89 %, respectively (Covaci et al., 2006). The main physicochemical properties of 

HBCDs are presented in Table 9. 

 

Table 9 – Physicochemical properties of the three HBCDs isomers (ECHA, 2008). 

Isomer 
Vapor pressure 

(Pa)  at 21 °C 

Water solubility 

(µg L-1)  at 25 °C 
log Kow Log Koc 

α-HBCD 

6.3 x 10-5 

48.8 5.07 

4.66 β-HBCD 14.7 5.12 

γ-HBCD 2.1 5.47 

 

HBCDs is applied in industrial processes and products as a flame-retardant additive. The most 

common retardant application is the polystyrene foam used in insulation materials and  product 

packaging. HBCDs can also be found in textile materials and electronic/electric equipment. In 

2001, the total worldwide production of HBCDs reached 16 700 tons, most of which was 

consumed in the European region (Bilitewski et al., 2012; Koch et al., 2015). In recent years 

the production and use of HBCDs has increased and it is now the third most used BFRs 

worldwide (Bilitewski et al., 2012). Nowadays, around 10 000 to 100 000 tons of HBCDs are 

produced in or imported to Europe (ECHA, 2008). 

HBCDs presents physicochemical characteristics quite similar to those of PBDEs and even 

other POPs (de Wit, 2002). The presence of HBCDs in remote areas such as the Arctic region 

has been detected in the blubber of marine animals such as walrus, beluga and narwhal in 

concentrations of 0.6, 1.4 and 3.4 ng.g-1 lipid weight (lw), respectively (Tomy et al., 2008).  

HBCDs is monitored due to its widespread presence and potential toxicity, and in 2011 this 

compound was classified as persistent, bioaccumulative and harmful to wildlife and humans. 

Later, in 2013, HBCDs was included in Annex A of the Stockholm Convention (Lin et al., 

2013). 

Tables 10 and 11 presented levels of HBCDs found in soils and sediments around the world 

(non-exhaustive lists). 
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Table 10 – Mean concentration and range of ΣHBCDs concentrations in soils around the world (non-exhaustive list).  

Country Land-use type Range Reference 

Sweden Industrial <0.1 – 25 Remberger et al. (2004) 

China Industrial to Rural 0.43 – 15.2 Lu et al., 2018 

China 
Industrial 0.31 – 9.99 

Gao et al. (2011b) 
e-waste recycling area 0.22 – 2.34 

China Residential to agricultural 7.75 – 60.74 Tang et al. (2014) 

- = not indicated; nd = not detected; all values expressed in µg.kg-1 dw. 
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Table 11 – Mean concentration and range of ΣHBCDs concentrations in sediments in Europe (non-exhaustive list).  

Country Origin Range Reference 

France River nd – 26.05a Liber et al., 2019 

Spain River ndb – 513.6b Eljarrat et al., 2004 

Spain River ndb - 2430b Guerra et al., 2009 

Spain River ndb - 189b Herrero et al., 2018 

Czech Republic River 0.21b – 351b Kukǔcka et al., 2015 

Czech Republic River <0.80b – 126.42b Stiborova et al., 2017 

Netherlands Estuary 14b – 71b Verslycke et al., 2005 

Belgium River <0.2b – 950b 

Morris et al., 2004 
Netherlands Estuarine and River <0.8b – 9.9b 

England Estuarine and River <2.4b – 1680b 

Ireland River <1.7b – 12b 

England Lake 0.9b – 4.8b Harrad et al., 2009 

Sweden River and Lake <0.1b – 25b Remberger et al., 2004 

Norway Lake 0.43b – 3.9b Evenset et al., 2007 

- = not indicated; nd = not detected; a values expressed in µg.g-1 dw; b values expressed in µg.kg-1 dw. 
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1.3.1.3. Polybrominated biphenyls (PBBs)  

 

PBBs corresponds to the brominated analogs of PCBs and, like the latter, there are 209 possible 

PBBs congeners. Like other brominated POPs, PBBs were widely used as additives in 

commercial flame-retardant mixtures. The widely reported accident at the Michigan Chemical 

Company in St. Louis, Michigan in 1973, where around 250 – 500 kg of the commercial PBBs 

formulation Firemaster BP-6 was accidentally mixed into cattle feed distributed to several 

farms, leading to widespread contamination with PBBs. This accident caused the sickness of 

thousands of animals and the heavy contamination of milk, with severe effects on the health of 

the resident population (Egginton, 2009). The effects of PBBs were found to be essentially the 

same as those seen for PCBs. After this accident, PBBs were phased out and their production 

in Europe ended in 2000. 

THINGS TO KEEP IN MIND 

 

 Legacy BFRs are relatively dispersed and can be found in essential ecosystem 

compartments due to their atmospheric transport and subsequent deposition on land 

surfaces, like other POPs.  

 Legacy BFRs were already reported to be present in the tissues of organisms’ 

susceptible to enter the food chain and reach higher trophic levels.  

 These compounds are chemically very stable, highly hydrophobic, with great affinity 

to OM, and unless transported in association with particulate organic matter, they 

present limited mobility like PCBs and PCDD and PCDFs, suggesting that their 

environmental fate and behavior are similar to POPs that have already been thoroughly 

investigated.  

 Legacy BFRs are classified as persistent, bioaccumulative and harmful to wildlife 

and humans.  

 PBDEs are already well referenced in the literature on their presence in 

environmental compartments and organism tissues. Some earthworm species have been 

shown to significantly accumulate low molecular weight congeners, with appreciable 

concentrations being found in their tissues.  

 In the case of PBBs and HBCDs, there is a lack of studies and literature data 

regarding the presence and environmental fate of these compounds in soils, sediments, 

earthworms and plants. 
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1.3.2. New or Alternative Brominated Flame Retardants (nBFRs) 
 

As both PBDEs and HBCDs were classified as Persistent Organic Pollutants in the Stockholm 

Convention, the commercial formulations of PBDEs (c-Penta-BDE, c-Octa-BDE and c-Deca-

BDE) and HBCDs were progressively banned and a range of new generation BFRs known as 

“alternative” or “new” BFRs (nBFRs) emerged and began to be used as replacements for the 

legacy compounds. Their general physicochemical characteristics are similar to those of PBDEs 

and similar patterns of environmental contamination and toxicity effects have been reported 

(Covaci et al., 2011; Ezechiáš et al., 2014). There are more than 75 different compounds that 

can be used as BFRs but the most common are: DBDPE, which replaces Deca-BDE formulas; 

BTBPE, used in place of Octa-BDE; BEH-TEBP and EH-TBB that are used to replace Penta-

BDE mixtures. nHBB, nPBB and nPBT are also used also to replace PBDEs in a wide range of 

polymers (Covaci et al., 2011; Ezechiás et al., 2014). 

Different classes of BFRs are characterized by different properties; PBDEs, HBCDs and PBBs 

are considered as additive BFRs and are more present in the products leached into the 

environment than the other type of BFRs, i.e. the reactive ones that are more stable and less 

susceptible to be released into the environment (De Wit, 2002; Eljarrat and Barceló, 2011).  

In the present work, we will focus only on four of these nBFRs: nHBB, nPBB, nPBT and PBEB; 

their main physicochemical properties are presented in Table 12. 

 

Table 12 – Physicochemical properties of the four nBFRs studied in the present work (Bergman 
et al., 2012; Simonsen et al., 2000). 
Compound Molecular 

weight (g.mol-1) 

Log Kow Water solubility 

(g.L-1) 

Koc Vapor 

pressure (Pa) 

nHBB 552 6.11 77000 50300 11400 

nPBB 473 6.44 - 26886 3510 

nPBT 487 6.25 78000 60200 60000 

PBEB 501 6.76 35000 114000 15600 

 

The physicochemical properties of the nBFRs presented in Table 8 are similar to those of legacy 

BFRs. The vapor pressure values of nHBB, nPBB and nPBT are quite low, indicating the low 

volatility of these compounds and the same range of the values as the PCBs, PBDEs and 

HBCDs. Log Kow is an important parameter in the estimation of the potential bioaccumulation 

of contaminants in the tissues of the organisms exposed as it gives an indication of the 

compounds’ degree of lipophilicity. Lipophilic substances show higher values of log Kow. A 
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log Kow higher than 3 indicates that the substance is hydrophobic and thus potentially 

biaoaccumulative (Amiard, 2011). The log Kow values observed in nBFRs are similar to those 

of legacy BFRs and higher than 3, indicating the potential of these compounds to be 

bioaccumulated in the tissues of living organisms. The Koc parameter is the coefficient of 

partitioning between the organic carbon fraction and the water present in soils or sediments 

controlled by the organic carbon levels present (Tissier et al., 2005). Values of Koc higher than 

1000 indicate that a given compound is significantly absorbable. The nBFRs considered present 

Koc values far higher than 1000, thus they are  highly absorbable by organism tissues and so 

more bioaccumulative. 

nBFRs are emergent substances and therefore only limited information on them can be found 

in the literature. The information available usually concerns only the date when 

commercialization began, the industrial uses and applications of the product, the quantities 

produced, and only in rare cases certain indications regarding its environmental distribution and 

fate, toxicity for the biological community and effect on human health. Up to now, nBFRs have 

not been subject to regulatory control but some of them already feature in Annex III of REACH 

which describes the potential toxic risks of these substances to the environment. Covaci et al. 

(2011) already reported the presence of nBFRs in the Arctic region, which shows the occurrence 

of long-range transportation to remote areas very far from the sites where nBFRs are produced 

and/or used.  

 

1.3.2.1. Hexabromobenzene (nHBB) 

 

nHBB is an additive nBFRs mainly produced in Eastern Asia and largely used in the industrial 

production of paper, wood processing, textile materials, plastic products, and electric and 

electronic components (Covaci et al., 2011; Cruz et al., 2015; Yamaguchi et al., 1988; Watanabe 

et al., 1986). Although data on producers and production volumes are scarce, the main 

producers of this compound seem to be the USA, Japan and China (Gauthier et al., 2007; 

Yamaguchi et al., 1988). Other than by commercial production, nHBB can be released into the 

environment as a result of the pyrolysis of Octa- and DecaBDE technical products (Buser, 

1986).  

Levels of nHBB in soils and sediments found worldwide are presented in Tables 13 and 14 

(non-exhaustive lists). 
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Table 13 – Median, mean concentration and range of nHBB concentrations in soils around the world (non-exhaustive list). 

Country Land-use type Mean/Median Min - Max Reference 

Sweden Urban 0.0069c / - <0.00079c – 6.1c Newton et al. (2015) 

Australia 

Polymer industry 0.12a / - <0.03a – 1.37a 

McGrath et al. (2017) Waste disposal 17.2a / - <0.03a – 90.9a 

Non-industrial <0.03 a / - <0.03a – <0.03a 

China E-waste processing region 0.798 a / - 0.0983a – 2.93a Hong et al. (2016) 

China 
BFR industry 0.89 a / - <0.02a – 17a 

Li et al. (2016) 
BFR industry 0.31 a / - <0.02a – 2.0a 

China Residential, industrial, agricultural, forest 3.4 a / - <0.017a – 720a Wei et al. (2016) 

China Forest 0.0072b / - <0.0020b – 0.042b Zheng et al. (2015) 

Vietnam 

Rice paddy (e-waste processing region) - / - <0.2a – 6.8a 

Matsukami et al. (2017) 
E-waste open burning sites - / - <0.2a – 0.90a 

E-waste processing workshops - / - <0.2a – 210a 

Rice paddy (e-waste processing region) - / - <0.2a – 0.27a 

Vietnam 
Around e-waste processing workshops - / - nd – 16a 

Someya et al. (2016) 
e-waste open burning sites - / - nd – 1.3a 

- = not indicated; nd = not detected; a value expressed in ng.g-1dw; b value expressed in ng.g-1ww; c value expressed in ng.g-1OM. 
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Table 14 – Median, mean concentration and range of nHBB concentrations in sediments around 
the world (non-exhaustive list). 

Country Origin Mean/Median Range Reference 

Spain River - / - nd – 2.4 Guerra et al. (2010) 

China River 8672 / - - Wu et al. (2010) 

Japan 
River - / - 6 – 60 

Watanabe et al. (1986) 
Estuary - / - 0.5 – 6 

Japan River - / - nd – 4.3 
Watanabe and Sakai 

(2003) 

- = not indicated; nd = not detected; all values expressed in ng.g-1dw. 
 

Over the last decade, nHBB has been also found in air samples collected in the polar regions, 

showing evidence for its long-range atmospheric transport (Gouteux et al., 2008; Möller et al., 

2011). nHBB shows its potential for bioaccumulation once in the environmental compartments. 

The bioaccumulation of nHBB in soil dwelling invertebrates, namely the earthworm E. fetida, 

has already been reported in the literature by Belfroid et al. (1995). Studies reporting the 

detection of levels of nHBB in birds’ eggs and tissues and in marine organisms can also be 

found in the literature (Gauthier et al., 2007; Verreault et al., 2007; Wu et al., 2011). On the 

French Atlantic coast, nHBB was detected at a range from 0.03 up to 4.3 ng.g-1 lw in the tissues 

of juvenile common sole from three nursery zones (Munschy et al., 2007). 

Although not much is known about the processes of transformation and degradation of nHBB 

in soils, Nyholm et al. (2010) concluded in a test study with soils that the degradation process 

of this compound is rapid in aerobic conditions and much slower under anoxic conditions, 

indicating that nHBB is probably persistent in the environment, like the well-known POPs, 

PCBs, PCDDs and PCDFs. 

 

1.3.2.2. Pentabromobenzene (nPBB) 

 

nPBB is used in the same applications of other polybromobenzenes such as nHBB. Despite this, 

very little information is available in the literature concerning this compound. Nevertheless, 

levels of nPBB have already been detected in the soil of an e-waste processing region in China 

at concentrations of 0.022 up to 0.285 ng.g-1 dw (Hong et al., 2016). Also, Li et al. (2016) 

reported levels of 0.03 up to 3.4 ng.g-1 dw in soils collected near two BFRs production plants 
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in China. Someya et al. (2016) detected levels of nPBB up to 0.56 ng.g-1 dw in soils collected 

around e-waste processing workshops in Vietnam. 

 

1.3.2.3. Pentabromotoluene (nPBT) 

 

nPBT is a halogenated flame retardant expressed by the chemical formula C7H3Br5. The 

commercial designations for this compound are Flammex 5-BT from Berk Ltd© (United 

Kingdom) and FR-105 from Ameribrom (ICL Industrial Products, Israel) and Chemtura US 

(Covaci et al., 2011; Eljarrat and Barceló, 2011). The nPBT is mostly used in the manufacture 

of polyesters, polyethylene, polypropylene, polystyrene, textile materials and rubber products. 

The estimated production of nPBT in Europe is between 1000 and 5000 tons per year. In China, 

the estimated production is about 600 tons per year (Covaci et al., 2011; Eljarrat and Barceló, 

2011). Other than by commercial production, nPBT can be released into the environment as a 

result of the pyrolysis of Octa- and DecaBDE technical products (Gouteux et al., 2008).  

Concentrations of nPBT were detected in soils from urban areas in Sweden at levels up to 0.018 

ug.kg-1 dw (Newton et al., 2015). Schwarzbauer et al. (2001) recorded levels up to 25 ug.kg-1 

OM in river sediments in Germany and Lopez et al. (2008) measured concentrations of nPBT 

in Dutch river sediments ranging from 0.01 to 0.33 ug.kg-1 dw. 

nPBT does not seem to be readily biodegradable (Simonsen et al., 2000). According to de Wit 

et al. (2006), nPBT has the potential for long-range transportation in the atmosphere like other 

BFRs such as PBDE. Indeed, levels of nPBT were detected in air samples from the remote area 

of the Greenland Sea (Mӧller et al., 2011) and from Egbert station, 70 km north of Toronto, in 

Canada (Gouteux et al., 2008). The presence of nPBT was also detected in the tissues of small 

marine organisms (Wu et al., 2011), in the fatty tissues of seals and whales (Montie et al., 2010) 

and in birds’ eggs in Canada (Gauthier et al., 2007). 
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1.3.2.4. Pentabromoethylbenzene (PBEB) 

 

PBEB is an additive BFR essentially used in polyester resins applied in circuit boards, textile 

materials, cable coats and polyurethane foams (Hoh et al., 2005). This compound was produced 

in USA between 1970s and 1980s under the commercial designation FR-105. After 1986, no 

USA production or import volumes have been reported (Hoh et al., 2005). PBEB appears in the 

OSPAR list of chemicals, being described as persistent, bioaccumulative and toxic (OSPAR, 

2007), but it is not currently produced in any of the OSPAR signatory countries (Covaci et al., 

2011; de Wit et al., 2010). Other than by commercial production, PBEB can be released into 

the environment as a result of the pyrolysis of Octa- and DecaBDE technical products (Gouteux 

et al., 2008). 

Concentrations of PBEB were reported in river sediments in Spain, ranging from non-detected 

levels to 9.6 ng.g-1 dw (Guerra et al., 2010) and in river sediments in China where the mean 

concentration measured was 132 ng.g-1 dw (Wu et al., 2010). 

Hoh et al. (2005) reported the presence of PBEB in air samples collected in Chicago. The 

presence of PBEB was already detected in the tissues of small marine organisms (Wu et al., 

2011), seals and whales (Montie et al., 2010) and birds in Canada (Gauthier et al., 2007; Venier 

et al., 2010).  
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THINGS TO KEEP IN MIND 

 

 The principal source of nBFRs in the environment are e-waste dismantling areas and 

the dispersion of nBFRs mainly occurs due to atmospheric transport and its subsequent 

deposition on land surfaces like other POPs.  

 The log Kow values observed for nBFRs are similar to those of legacy BFRs and 

higher than 3, indicating the potential of these compounds to be bioaccumulated in the 

tissues of living organisms, a fact that has already been reported in the literature but 

mainly for certain aquatic animals and quite often reported, since these compounds are 

high lipophilic. 

 The risks associated with the presence of legacy BFRs are well-known, but nBFRs 

are emergent substances and therefore only limited information on them can be found in 

the literature. The information available usually concerns only the date of beginning of 

commercialization, industrial uses and applications, the quantities produced and, only in 

rare cases, indications regarding environmental distribution and fate, toxicity for the 

biological community and effect on human health. Also, data on the presence of nBFRs 

in soils, earthworms and plants is scarce. The presence of nBFRs in sediments has 

already been reported in the literature. 

 Its general, their physicochemical characteristics are similar to those of PBDEs and 

similar patterns of environmental contamination and toxicity effects have been reported, 

suggesting that its dispersion mechanisms, availability and bioaccumulation processes 

might be similar to those of PCBs, PCDDs, PCDFs and PBDEs. 
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1.4. Regulatory measures and legislation governing BFRs in Europe 
 

The presence of BFRs in environmental matrices gives rise to concerns regarding the fate of 

POPs and their persistence, their potential for long distance transportation and toxicity to the 

environment and biota. Also, the potential biomagnification capacity of these contaminants 

through the different food chain levels represents a danger to ecosystems.   

Due to all the concerns posed by POPs, these BFRs compounds have been the subject of several 

legal proceedings, judgements and even restrictions and bans regarding their usage. Table 15 

provides a summary of timelines for decisions on the legislation on BFRs and their banning 

around the world.  

 
Table 15   – Timelines for decisions around the world regarding legislation and decisions to 
ban certain BFRs over recent decades (Webster and Stapleton, 2012). 
1973 PBBs contamination in Michigan 

1975 Technical Bulletin 117 and 133 implemented in California 

1977 Ban of TRIS in children’s sleepwear 

1978 Removal of chlorinated TRIS (TDCPPs) from children’s sleepwear 

1980s Early papers on the presence of PBDEs in environmental samples 

1998 Discovery of rising trend of PentaBDEs in Swedish breast milk 

2004 Ban on use of Penta BDE and Octa BDE in the European Union 

2004 Phaseout of the manufacture of PentaBDE and OctaBDE in the 
United States 

 Dust hypothesized to be a major source of exposure to PBDEs 

2008 Discovery of the components of Firemaster 550 in dust 

2009 PentaBDE and OctaBDE effectively added to the Stockholm Convention 

2013 DecaBDE scheduled to be phased out in the United States 

 

Since 2004, the risks associated with PBDEs, HBCDs and PBBs have been assessed through 

an integrated risk assessment project called the FIRE project (Flame retardants Integrated Risk) 

that includes the procedures of exposure assessment, laboratory screening studies, QSAR 

modelling and in vivo modelling with the aim of assessing and evaluating the effects of BFRs 

(FIRE, 2004). In 2006, EU countries adopted legislation to both ban and phase out PBDEs. The 

Waste of Electrical and Electronic Equipment (WEEE) and Restriction of Hazardous 

Substances (RoHS) Directives focus on reducing the amount of discarded toxic materials. 

Another regulation adopted by the EU is the REACH system (Registration, Evaluation, 
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Authorization, and Restriction of Chemicals) with the aim of identifying and restricting and/or 

authorizing for use chemical substances of concern due to their potential to be carcinogenic, 

mutagenic, reproductively toxic, persistent, and bioaccumulative for the biological community.  

In 2009, several BFRs were included in the list of POPs in the framework of the Stockholm 

Convention. PentaBDE and OctaBDE were both included in Annex A, which contains 

substances prohibited from use, production, import and export. Annex A already included other 

BFRs such as HBB as well as other POPs, namely PCBs, Hexachlorobenzene and toxaphene. 

More recently, in 2013, HBCDs were also included in this annex with few exceptions and for 

use in expanded and extruded polystyrene. In the specific case of PBDEs, several regulatory 

measures were implemented in Europe. Since 2004, the commercial mixtures c-Penta-BDE and 

c-Octa-BDE can be used or incorporated in industrial products only at concentrations below 

0.1% in mass. Also, products or materials that contain more than 0.1% in mass of PBDEs cannot 

be commercialized as flame retardant materials (INERIS, 2012). After 2006, as defined in the 

European directive 2002/95/CE, new electric and electronic equipment cannot contain any 

PBDEs and PBBs. In 2008, the commercial mixture Deca-BDE was also banned from industrial 

processes (EU official journal). Since 2009, Tetra-BDE and Penta-BDE have appeared in 

Annex A of the Stockholm Convention (UNEP, 2009). In 2017, Deca-BDE was also included 

in the annex and some restrictions and phase-out initiatives have been implemented globally. 

Penta-BDE and Octa-BDE formulations have already been banned from use in many domains 

(EU, 2003; NICNAS, 2007; Stapleton et al., 2012).  
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Chapter 2 presents an overview of the mobility of certain POPs and the occurrence of 

bioavailability and the potential bioaccumulation in living organisms, namely earthworms and 

plants. First, a brief description of the assessment of POPs toxicity and bioaccumulation in 

living organisms based on laboratory tests with earthworms and plants according to ISO 

guidelines is given. Secondly, several controlling factors and the potential mobility of BFRs in 

environmental compartments are discussed in the light of the literature. 

 

Soils and sediments are a major part of the terrestrial environment. Their formation is a complex 

process and they act as sinks and reservoirs, notably for contaminants (Luoma and Ho, 1993).  

The significant increase of soil contamination with emergent compounds in recent years has led 

to growing interest from the scientific community and international agencies in developing soil 

monitoring and assessment strategies. Soil pollution assessment is usually, or conventionally, 

based on the quantification of the contaminant levels found in the soils studied and their 

comparison with specific threshold values indicated in the legislation. In addition to not 

providing any indication of the real effects of contamination on the living community, this 

classic approach does not consider certain aspects such as: (i) the possible toxicity and effects 

of other chemicals that were not included in the group analyzed, (ii) the possible interactive 

effects between the contaminants on the biota, and (iii) their levels of bioavailability or 

degradation/metabolization.  

In the literature, several definitions can be found for the concept of bioavailability. The 

bioavailability of a contaminant refers to the fraction that can be taken up by an organism from 

the environmental compartment through both passive and active routes of exposure and which 

directly influences its toxicity level (Smith et al., 2010). In terrestrial environments, the 

bioavailability and toxicity of a certain contaminant to terrestrial invertebrates and plants can 

be influenced and controlled by several important characteristics: the nature of the contaminant 

(Adriano, 2001); soil-contaminant contact time (Hatzinger and Alexander, 1995; Alexander et 

al., 2000; Sharer et al., 2003; Ahmad et al., 2004), soil properties such as pH, cation exchange 

capacity, organic matter  and clay contents (Bradham et al.,2006; Spurgeon et al., 2006; Criel 

et al., 2008); the trophic level and biological characteristics of the organism exposed (Guerin 

and Boyd, 1992; Katayama et al., 2010; Semple et al., 2007); environmental and climatic 

conditions, such as temperature and precipitation (Sijm et al., 2000; Pravecek et al., 2005; 

Ruggiero et al., 2002).  
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The complexity and wide number of factors governing the fate and bioavailability of the 

contaminants combined with the site-, chemical- and soil-specific nature of bioavailability leads 

to the need to consider a more realistic approach for the bioavailability assessment. 

Bioavailability assessment would surely be more realistic if the organisms exposed were 

considered rather than only taking into account the total concentrations of contaminants and 

soil characteristics. 

Moreover, the correlation between the efficiency of chemical extractions to mimic natural 

processes and real bioaccumulation in organisms such as plants and earthworms is a good way 

to ascertain the real risks (Sheppard and Evenden, 1992).  

This chapter is divided in two subchapters. In the first one, the mobility of POPs and their 

potential bioaccumulation in earthworms and plant tissues is discussed. In the second part, we 

focus on the mobility of BFRs (the family of POPs that correspond to the main issue of the 

present study) in the environment and their potential transfer to living organisms. 

 

2.1. Mobility of persistent organic pollutants and potential bioaccumulation 

in earthworms and plants 

 

2.1.1. Bioaccumulation in earthworms 

 

Soil invertebrates can be considered as good sentinel organisms for soil chemical contamination 

since they are in direct contact with soil and soil pore water or by food exposure, in contrast to 

many other invertebrate organisms that are only indirectly exposed through the food chain 

(Kammenga et al., 2000). 

Earthworms tend to migrate over very short distances and represent the largest biomass fraction 

of most soils (Edwards, 2004). In most terrestrial environments, earthworms are considered as 

ecosystem engineers owing to their essential role in soil formation, organic matter breakdown 

processes, soil aeration and nutrient cycling (Edwards, 2004). Thus, earthworms are good 

indicators of land-use impact and soil fertility, contributing to pedogenesis and the evolution of 

the soil profile, thereby affecting the physical, chemical and microbiological properties of the 

soil (Barlett et al., 2010). In addition, earthworms are also responsible for increasing the 

mineralization and humification of OM by food consumption, respiration and gut passage 

(Lavelle and Spain, 2001). OM breakdown and the casting activity of earthworms in soils can 

contribute indirectly to stimulating an increase in microbial mass and activity and the 
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mobilization of nutrients (Emmerling and Paulsch, 2001). Moreover, earthworm burrowing 

activities significantly promote the increase of water filtration and soil aeration (Lavelle et al., 

2007).  Earthworms are primary consumers of OM in soil and thus they can be exposed to both 

organic and inorganic contaminants that are adsorbed to soil OM particles (Bouche, 1983, 1992; 

Hopkin, 1989). 

The significant role of earthworms in OM breakdown and the cycling of nutrients has 

contributed to increased interest in their use as indicator organisms in biological impact studies 

of soil contamination. In laboratory tests for soil ecotoxicological studies, certain organism life-

cycle parameters such as growth and reproduction rates and the accumulation and excretion of 

pollutants can be measured, giving a good idea of what can be observed in the real ecosystem.  

Due to their intensive interactions with soil, earthworms are very sensitive to, and significantly 

affected by, contaminants reaching the soil system, so they can be considered as valuable 

bioindicators (Lanno et al., 2004). Earthworms are exposed to soil contaminants through 

different routes of exposure.  These organisms live in direct contact with the soil pore water 

and therefore with the dissolved contaminants. Earthworm skin is known to be very permeable 

to water (Wallwork, 1983) and it represents the main route for contaminant uptake (Jager et al., 

2003; Vijver et al., 2005). Earthworms also ingest large amounts of soil, thus they are 

continuously exposed to contaminants adsorbed to solid particles passing through their 

digestive tract (Morgan et al., 2004).  

Earthworms show a considerable capacity to accumulate organic and inorganic contaminants 

present in soils (Morrison et al., 2000). Moreover, according to Blouin et al. (2013) earthworms 

can be responsible for changes in the availability of inorganic and organic pollutants in soils 

due to the stimulation of the microbial population that accelerates the degradation of the 

contaminants through metabolization and/or volatilization processes. They can also be 

responsible for reducing or increasing the level of contaminant sorption onto soil particles 

through the digestion of organic matter and its subsequent degradation, leading to modifications 

in soil chemistry (pH and Eh). In a study with the earthworm Lumbricus rubellus, Vijver et al. 

(2005) evaluated the weight of each pathway for metal uptake and concluded that the main 

route of exposure is dermal absorption whereas pore water uptake via ingestion makes only a 

small contribution to metal accumulation. 

In the case of POPs, earthworms can accumulate them passively by dermal absorption, and 

actively through ingestion. The relative importance of dermal and dietary exposure depends on 

the soil contaminant individually and the importance of the dietary pathway increases as a 
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function of the hydrophobicity of the contaminant (Jager et al., 2003; Ma et al., 1998). Some 

studies have already demonstrated that earthworms are able to accumulate POPs and therefore 

represent a factor of exposure and a means for POPs to enter the terrestrial food chain. These 

POPs are substances such as pharmaceuticals, synthetic fragrances, detergent metabolites, 

polycyclic aromatic hydrocarbons, biogenic sterols, disinfectants and pesticides (Kinney et al., 

2008, 2012; Carter et al., 2014). 

Several earthworm species have been shown to significantly accumulate POPs. In a study with 

four different species (Eisenia andrei, Eisenia fetida, Eisenia hortensis and Lumbricus 

terrestris), Ville et al. (1995) observed the accumulation of PCBs in earthworm tissues. Also, 

Bu et al. (2010) found the capacity of E. fetida to accumulate PCBs-dl. Vermeulen et al. (2010) 

conducted a study to investigate the accumulation of PCBs and PBDEs in the soil-earthworm-

hedgehog food chain, where the accumulation of these compounds was effective in Lumbricus 

rubellus tissues. Reinecke and Nash (1984) observed the accumulation of PCDDs and PCDFs 

in the tissues of two earthworm species Allolobophora catiginosa and Lumbricus rubellus. 

Earthworms belonging to E. fetida and Allolbophora caliginoa trapezoides species were 

collected from a typical E-waste dismantling area in east China and showed the accumulation of 

PCBs, PCDDs, PCDFs and PBDEs in their tissues due to ingestion and direct contact with 

severely contaminated soils (Shang et al., 2013). Henriksson et al. (2017) also confirmed the 

occurrence of PCDDs and PCDFs in E. fetida tissues resulting from both in situ and exposure 

in laboratory conditions to contaminated soils from Sweden. 

Bioaccumulation phenomena can be defined as species-specific (Heikens et al., 2001; 

Hendrickx et al., 2004; Nahmani et al., 2007). This process is controlled by the various 

physicochemical properties of the contaminants and the environmental compartment (Vijver et 

al., 2005), such as contaminant concentration and speciation (Heikens et al., 2001; Hobbelen et 

al., 2006; Spurgeon et al., 2006; Nahmani et al., 2007), the type and characteristics of the soil 

(Hendrickx et al., 2004; Kizilkaya, 2005; Hobbelen et al., 2006; Spurgeon et al., 2006), the 

temperature (Olchawa et al., 2006) and the duration of exposure (Nahmani et al., 2007).  

Earthworms are the basis of the terrestrial food chain as they serve as a major food source for 

amphibians, reptiles, birds and mammals. For this reason, the bioaccumulation of contaminants 

in earthworm tissues leads to a risk of transfer to higher trophic levels (Marino et al., 1992).  

In recent decades, earthworms have received growing recognition as an important test organism 

for studying the adverse effects of contaminants on soil organisms in view to establishing a set 

of standard guidelines. At the beginning of the 1980s, the European Union and the Organization 



Chapter 2. Organic contaminants mobility in anthroposoils and bioaccumulation in earthworms and 
plants 
 

47 
 

for Economic Cooperation and Development (OECD) defined acute toxicity tests for 

earthworms based on mortality and growth rate (OECD, 1984). Later, these tests were 

implemented with chronic toxicity assays based on reproduction rate measurement (OECD, 

2004).  

In the present work, E. fetida was the species chosen to conduct the toxicity and 

bioaccumulation tests. E. fetida is probably the standard test organism used most in terrestrial 

ecotoxicology studies, due to its rapid life cycle, and easily controlled breeding and 

reproduction in the laboratory (Reinecke and Reinecke, 2004).  

 

 

 

  

THINGS TO KEEP IN MIND 

 

 Earthworms can be considered as good test organisms for soil POPs contamination 

once they are in direct contact with soil and soil pore water or through food exposure. 

Earthworms are the basis of the food chain and provide privileged pathways for POPs 

entry, leading to the risk of transfer to higher trophic levels and the occurrence of 

biomagnification. 

 Several studies have already demonstrated that earthworms can accumulate POPs 

such as PCBs, PCDDs, PCDFs and PBDEs in their tissues at considerable levels without 

causing mortality or severe toxic effects. 

 Earthworms accumulate POPs passively through dermal absorption, and actively 

through ingestion. The importance of the dietary pathway increases as a function of the 

contaminant’s hydrophobicity. 

 The phenomenon of bioaccumulation is species-specific and controlled by the 

physicochemical properties of the contaminants and the environmental compartment: 

contaminant concentration and speciation, the type and characteristics of the soil, the 

temperature and the duration of exposure. 
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2.1.2. Bioaccumulation in plants 

 

Plants are usually considered as important ecological tools, covering around 47% of the total 

land surface on Earth. Moreover, plants play an important role in the purification and 

detoxification of environmental compartments such as air, water and soils (Kvesitadze et al., 

2004). The plant root system directly and/or indirectly influences the soil, constituting a zone 

called rhizosphere, a zone of intense exchange between the soil and the roots (Heller et al., 

1998; Lambers et al., 2009; Adhya et al., 2018). Moreover, roots are responsible for 

modifications in the physico-chemical  and biological characteristics of the rhizospheric soil 

such as: reduction of soil pH due to the emission of protons by roots during the absorption of 

cations (ionic exchange between root and soil); reduction of redox potential caused by the 

abundant presence of OM; typology of OM present resulting from the original soil OM 

modified by the polysaccharides and organic acids typically exuded by roots (Stengel and Gelin, 

1998).  

The process of root uptake is undoubtedly the principal source of entry and accumulation of 

POPs present in the soil compartment (Ryan et al., 1988). This process involves a complex 

combined mechanism of compound-specific active and passive uptake (Carman et al., 1998). 

Usually, three main pathways through which POPs can enter a plant are considered: a) root 

uptake and subsequent translocation by the transpiration steam; b) shoot uptake from the air; 

and c) root uptake and later transport in oil cells which are found in oil-containing plants such 

as cress and carrot (Topp, 1986; Ryan et al., 1988; Ericksson et al., 1989; Zhang et al., 1999). 

The uptake of POPs by plants is strongly dependent on the plant species and characteristics 

(type of root system, tissues and enzymes) as well as on the physico-chemical characteristics 

of the contaminants (water solubility, vapor pressure, molecular weight, Kow) and the 

environmental conditions (temperature, pH, OM and soil moisture contents) (Schroll et al., 

1994). The plant translocation system is water-based, thus POPs are not drawn into the inner 

root tissues or xylem fluid (Simonich and Hites, 1995; Kipopoulou et al., 1999). According to 

Simonich and Hites (1995), organic pollutants are accumulated from the air by the leaf surface. 

The fact that the migration of POPs from the outer leaf tissues to the inner ones is a slow process 

and that the phloem system is water-based explains why the higher concentrations of the 

pollutants are usually found in leaves and not in the tissues of other plant parts (Simonich and 

Hites, 1995; Boopathy, 2000). Once they have entered the plant structure, POPs can be: a) 

translocated to other plant tissues associated with the transpiration stream (Schroll et al., 1994), 
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b) transformed into less toxic compounds by degradation processes (Schnoor et al., 1995; 

Newman, 1997), or c) incorporated in plant tissues and thus remain stored and unavailable 

(Field and Thurman, 1996). The translocation of POPs absorbed by roots into different plant 

organs results from the nutrient transport processes via the: a) transpiration stream, where water 

and dissolved substances pass from roots to shoots through the xylem, b) assimilate stream, 

where the transport of assimilates from leaves to the lower plant parts (shoot axis and roots) as 

well as to apex and fruits occurs through the phloem system. 

As mentioned already, plant POPs uptake is species dependent since the degree of uptake is 

directly related to the plant’s lipid content in case of lypophilic POPs (Simonich and Hites, 

1995; Meredith and Hites, 1987; Hermanson, 1990). According to Ryan et al. (1988), POPs  

degradation processes do not occur within the plant tissues and since the plant root uptake and 

translocation of POPs from the soil is passive, the plant uptake process can be defined as a set 

of consecutive partition reactions between soil particles and soil water, soil water and plant 

roots, plant roots and plant transpiration system, and plant transpiration system and plant stems. 

According to Schnoor (1999), it is possible to predict the uptake of POPs by plants regarding 

the octane rating of the contaminant once the POPs are absorbed and translocated within the 

plant tissues only when the POPs present a log Kow between 0.5 and 4. Moreover, the molecular 

weight of a compound is one of the main limiting factors during the passage of POPs into plant 

roots (Sӧchtig, 1964).  

Plant contaminant uptake can pose serious risks from an ecosystem to human health 

perspective, since plants are at the bottom of the food chain and thus at the beginning of an 

exposure pathway via food intake to animals (Currado and Harrad, 2001). 

The process of bioaccumulation of PCBs in plants can be considered as a complex blend of the 

physico-chemical nature of the substance and its interaction with the plant biota (Wang et al., 

1997). Moreover, the uptake of PCBs with a log Kow ranging between 4.5 (for the monos) and 

8.2 (for the decas) is expected to decrease directly in line with the degree of chlorination 

(Schnoor, 1999). Liu and Schnoor (2008) concluded that some mono to tetra PCBs are absorbed 

by plant roots but only the lower chlorinated ones undergo translocation to aerial plant tissues. 

Members of the Cucurbitaceae family have been shown to accumulate PCBs in their tissues 

(Hülster et al., 1994). In a study with pumpkin plants, Aslund et al. (2008) also found that the 

PCBs concentration increased within the stem and leaves after a short period of exposure to 

contaminated soils, but the concentrations measured in the plant roots remained unchanged. 

This can be explained mainly by the occurrence of translocation processes (Aken et al., 2010). 
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Nonetheless, the PCBs levels measured in plant tissues are dependent on PCBs concentrations 

present in soils as well as on the plant species, the organic components of the soil and 

temperature (Strek and Weber, 1982). These findings have been also confirmed by other studies 

by Smith et al. (2007), Mackova et al. (2007) and Aken et al. (2010). 

PCDDs and PCDFs are highly lipophilic compounds primarily sorbed by plant roots or soil 

components, though they are not usually translocated within plant tissues (Reischl, 1989). 

Despite that, several previous studies showed that bioconcentrations from soil of PCDDs and 

PCDFs clearly exist in zucchini plants two orders of magnitude higher than those found in 

vegetables such as pumpkin and cucumber, despite the fact that these three plants belong to the 

Cucurbita family (Hulster et al., 1994).  

Elevated concentrations of PBDEs were also already reported in spinach in Japan (Ohta et al., 

2002). An interesting fact is that not only were higher levels of PBDEs quantified in spinach 

but also the congener composition was different from that of the root vegetables, namely potato 

and carrot, analyzed in the study, a finding that can be explained by a difference in 

contamination pathways. 

The presence of POPs in plant tissues leads to toxic effects such as the inhibition of plant growth 

and malformations on newly developed aerial parts (Weber and Mrozek, 1979) as well as a 

reduction in plant height and fresh weight (Strek and Weber, 1982).  

In the present study, alfalfa (Medicago sativa), watercress (Nasturtium officinale) and white 

mustard (Sinapis alba) were the plant species chosen to conduct the toxicity and 

bioaccumulation tests. Research on different plant species was carried out and the 3 species 

selected were chosen according to their growth rates (maximum biomass quantity reached in 

30 days), their uses (cultivation, grassland, garden), root type (tracer or pivoting) and family 

(monocotyledone, dicotyledone). 
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THINGS TO KEEP IN MIND 

 

 Plants are usually considered as important ecological tools that play a major 

role in environmental compartments such as air, water and soils. The plant root 

system directly and/or indirectly influences the soil properties, constituting a zone 

of intense exchange between soil and roots, in the so-called rhizosphere. 

 Plants are at the bottom of the food chain and thus at the beginning of an 

exposure pathway via food intake to animals and humans due to the consumption 

of aerial parts and root systems in some cases. 

 Several studies have already demonstrated that plants can accumulate POPs 

such as PCBs, PCDDs, PCDFs and PBDEs in their tissues at considerable levels 

without causing mortality or severe toxic effects due to root uptake and/or 

atmospheric deposition.  

 The process of root uptake is undoubtedly the principal source of entry and 

accumulation of POPs from soil. This process involves a complex combined 

mechanism of compound specific active and passive uptake that takes place in the 

rhizosphere zone, comprising three main pathways through which POPs can enter 

a plant: a) root uptake and subsequent translocation by the transpiration steam, b) 

shoot uptake from the air, and c) uptake and transport in oil cells in the case of oil 

containing plants.  

 The bioaccumulation phenomenon is species-specific and strongly dependent 

on the plant’s characteristics (type of root system, tissues and enzymes) as well as 

on the physico-chemical characteristics of the contaminants (water solubility, 

vapor pressure, molecular weight, Kow) and the environmental conditions 

(temperature, pH, OM and soil moisture contents). 
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2.2 Mobility of BFRs in the environment and potential transfer to living 

organisms 

 

POPs are well-dispersed in the environment in every ecosystem compartment and can undergo 

biogeochemical cycles (Figure 2).  

It is largely accepted that POPs sorption and bioavailability in soil systems is mainly controlled 

by the chemical properties of the soil, namely its OM and organic carbon contents (Senesi and 

Loffredo, 2009). Nevertheless, the structural and functional composition of OM is the main key 

player in POPs adsorption and behavior in soil, having a greater impact than organic carbon 

content in these processes (Vlčková and Hofman, 2012). Also, properties of POPs and 

especially BFRs, such as low solubility, high Kow and high hydrophobicity, are responsible for 

the prevalence of these compounds to be found mainly in soils, sediments and biota, with these 

matrices being considered their main environmental reservoirs (Iqbal et al., 2017). 

Under specific environmental conditions, POPs and subsequently BFRs can undergo 

degradation due to several physico-chemical processes such as photodegradation, 

decomposition, chemical reactions with other compounds present in the compartment and 

changes in the compound structure due to environmental factors such as temperature and pH 

(Kot-Wasik et al., 2004; Mamy et al., 2015; Nolte and Ragas, 2017). Biotic processes include 

the phenomena of bioaccumulation and entry into the food chain, biotransformation and 

bacterial and microbial biodegradation (Vrkoslavová et al., 2011; Eljarrat et al., 2011; Lal et 

al., 2010). 
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Figure 2 – Schematic representation of the environmental behavior of brominated flame 
retardants and chlorinated compounds (from Watanabe and Sakai, 2003). 
 

As shown in Figure 2, both BFRs and chlorinated compounds can undergo a large number of 

chemical (quite significant debromination) and biological processes that control their potential 

transfer, sinking and accumulation in environmental compartments as well as in the living 

community. Almost all the BFRs used are highly brominated compounds that are less mobile 

due to their low volatility, water solubility, bioaccumulation and strong adsorption to soil and 

sediments. On the contrary, the lower brominated ones that include the decomposition products 

of BFRs are characterized by high mobility due to their high volatility, water solubility and 

greater bioaccumulativity than the highly brominated compounds (Watanabe and Sakai, 2003). 

Both brominated and chlorinated compounds undergo the same processes of volatilization into 

the atmospheric compartment, dissolution in water with considerable accumulation in aquatic 

organisms, and sinking by adsorption to soil and sediment particles. These characteristics 

support the assumption that the environmental behavior of lower brominated compounds is 

similar to those of chlorinated compounds such as PCBs, PCDDs and PCDFs (Watanabe and 

Sakai, 2003). 

The lipophilicity of POPs and BFRs favor their bioavailability and thus their transfer to 

organisms, accumulation in the tissues of the latter and their potential entry and transfer through 

the several trophic levels of the food chain. Three main processes are involved here: 

bioconcentration, bioaccumulation and biomagnification.  
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Bioconcentration occurs when an organism absorbs and stores a contaminant at levels higher 

than those found in the environmental medium. The bioconcentration factor is defined by the 

ratio between the concentration of a contaminant in an organism and the concentration found 

in the environmental compartment (Arnot and Gobas, 2006).  

Bioaccumulation occurs when the absorption of the contaminant is faster than the excretion 

process, and the internal concentration increases with time. Absorption can occur through a 

direct pathway (bioconcentration) and/or through biomagnification along the food chain 

(Mackay and Fraser, 2000). The potential for bioaccumulation usually tends to be positively 

correlated with the lipid solubility of the compound, once the chemical crosses the lipid layers 

of cells to reach the body tissues (Arnot and Gobas, 2006). 

Biomagnification is the process that results from the entry of a contaminant via the food supply. 

This process can be considered as a specific type of bioaccumulation where the contaminant 

level found in the organism’s tissues is greater that the concentration measured in its food and 

its surrounding environment (Mackay and Fraser, 2000). The level of this input is highly 

dependent on species-specific biochemical-physiological processes and on the 

biotransformation (metabolization) and elimination capacities of the compounds. 

In recent decades, numerous studies have been conducted in which POPs levels were analyzed 

in a wide range of environmental matrices with a general trend towards a reduction of the 

concentrations measured. This decrease is related to the restrictions and even prohibitions of 

concerning certain POPs. 

The levels of POPs and notably BFRs found in the tissues of organisms belonging to different 

levels of the trophic chain indicate that these compounds are available to be absorbed and 

bioaccumulated by organisms and readily lead to the occurrence of biomagnification 

phenomena. In San Francisco Bay, concentrations of PBDEs (330 up to 5500 ng.g-1 lw), 

HBCDs (330 up to 5500 ng.g-1 lw) and PBEB (< LOD up to 0.2 ng.g-1 lw) were measured in 

the tissues of white croaker, in double-crested cormorant eggs and in seal tissues (Klosterhaus 

et al., 2012). These measured concentrations in animals tissues are some orders of magnitude 

higher than the concentrations of the analysed contaminants in correspondent environmental 

compartments thus suggesting the occurrence of biomagnification processes. The presence of 

POPs and legacy and new BFRs has been already observed in remote polar areas. McKinney et 

al. (2011) detected concentrations of PCBs (1797 up to 10537 ng.g-1 lw), PBDEs (4.6 up to 78.4 

ng.g-1 lw) and HBCDs (< 0.3 up to 41.1 ng.g-1 lw) in polar bears from Alaska. Houde et al. 

(2017) reported range of legacy BFRs (PBDEs (Σ13PBDEs: 0.5 up to 25.8 ng.g-1 lw) and HBCD 
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(< LOD up to 23.3 ng g-1 lw)) and nBFRs (nHBB (< LOD up to 1.20 ng.g-1 lw) and PBEB (< 

LOD up to 0.03 ng.g-1 lw)) in seal tissues from the Canadian Arctic zone. In these reference 

studies, the levels of PCBs were usually higher than those of PBDEs, which in turn were also 

higher than the levels of HBCDs and BFRs found in animal tissues. The concentrations of 

PBDEs in these seals showed an increase during the period 1984 – 2003. In 2009 the PBDEs 

levels measured were significantly lower, an observation probably related to the ban of c-Penta-

BDE and c-Octa-BDE formulations since 2004 (Ross et al., 2013).  

 

 

 

 

THINGS TO KEEP IN MIND 

 

 PCBs levels found in the environment are decreasing but they are still present in 

available quantities and can be bioaccumulated by living organisms 

 BFRs are present in the environmental compartments at much lower levels than 

PCBs, PCDDs and PCDFs, but despite this they are available for incorporation and 

bioaccumulation in the tissues of living organisms. 

 The presence and availability of POPs makes their biomagnification possible 

through food chain levels. 

 Both brominated and chlorinated compounds undergo the same processes of 

volatilization to the atmospheric compartment, and dissolution in water with subsequent 

accumulation in aquatic organisms and sinking by adsorption to soil and sediment 

particles. This fact supports the assumption that lower brominated compounds presents 

a similar environmental behavior to chlorinated compounds such as PCBs, PCDDs and 

PCDFs. 
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This Chapter provides a complete description of the location and context of the sites studied. 

The methodologies and protocols used for the field sampling campaigns, pre-treatment and 

storage of soils and plants collected in situ are also described. This is followed by a description 

of the chemical protocols for determining general soil physico-chemical properties and the 

analytical quantification procedures for the MTEs selected in the anthroposoils and plant 

samples studied. The analytical procedures for the quantification of POPs in the anthroposoils 

and plant samples studied are also detailed. All the protocols followed for the preparation of 

earthworms and plants used in the reproduction, growth and bioaccumulation tests are 

described, as are the chemical procedures used to quantify the levels of POPs bioaccumulated 

in the earthworms and plants tissues tested.  

The calculation and use of a bioaccumulation factor as well as the SET and ERITME indexes 

to infer the risks posed by the contamination to the ecosystem are detailed. The approach used 

for the in situ evaluation of biological activity and soil quality by monolith sampling and the 

use of the Bait-lamina© test is briefly described. Finally, the statistical methods that were used 

to analyze the results obtained are presented. 

 

3.1. Selection of sampling areas 

 

3.1.1. Origin of anthroposoil samples  

 

The areas selected for this investigation represented different types of land-use (industrial, 

agricultural and pastoral, forest). The following criteria were considered for the selection of the 

sampling sites and sample collection: 

 Areas with different types of contamination origin and land-use were selected; 

 Samples were collected from two distinct areas in two countries that conformed to the 

study priorities, and data were already available in these specific action zones of the two 

Human-Habitat Observatories (CNRS Labex DHRIIM Observatoires Homme-Milieux 

Estarreja and Vallée du Rhône); 

 Vegetated areas for soil sampling were selected. 
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Two different areas were sampled: 

 Site A – Estarreja, close to a chemical complex, a coastal area in the North/Central-

West Portugal (40º 46’ 37.55’’; 8º 34’ 44.56’’);  

 Site B - Casier Girardon Peyraud 6 -PK 61.500, in the Rhone river margin, France (45º 

18’ 04.94’’; 4º 47’ 54.44’’) 

 

The location of sampling sites A and B is illustrated in Figures 3 and 4. 

 

 

Figure 3 – Estarreja (Site A), location of sampling points. 
 

 

 

Figure 4 – Casier Girardon Peyraud 6 (Site B), location of sampling points. 
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Site A: Estarreja, Portugal 

The Estarreja sampling site is on the North-Eastern edge of the Aveiro sedimentary basin (Costa 

and Jesus-Rydin, 2010). In this area, the Precambrian Schistose bedrock is covered by 

Quaternary deposits (12 m thick), composed of interstratified conglomerates, sandstone, shale 

and marlstone (Costa and Jesus-Rydin, 2001). The dominant soil types in this area are Podzols 

and Cambisols (Inácio et al., 2008).  

This area is considerably impacted by the industrial activity of the Estarreja Chemical Complex. 

According to Costa and Jesus-Rydin (2001), the largest industrial companies belonging to this 

complex are: (i) QUIMIGAL which produced ammonium sulfate from sulfuric acid and 

ammonia (1952-1990s), nitric acid and ammonium nitrate (1974-1990s), and since 1978 to now 

it has produced nitric acid, aniline and nitrobenzene in an industrial unit named ANILINA 

PORTUGAL; (ii) CIRES, which, in 1963, started the production of synthetic resins such as 

polyvinyl chloride (PVC) from vinyl chloride monomer (VCM, which was also produced there 

until 1986); (iii) DOW PORTUGAL, which has produced aromatic-based isocyanide polymers 

since 1978; (iv) UNITECA – a Chlor alkali plant installed in 1956 to produce sodium and 

chlorine compounds from rock salt. Until 1975, three effluent streams were used to transport 

the liquid effluents from this Chemical complex: Vala de S.Filipe, Vala de Breja and Vala do 

Canedo. These man-made streams run through surrounding agricultural fields and were used to 

transfer industrial liquid effluents containing aniline, benzene, monochlorobenzene, 

mononitrobenzene and various MTEs into the “Esteiro de Estarreja”, a river branch of the 

nearby lagoon “Ria de Aveiro” (Costa and Jesus-Rydin, 2001). 

Soil contamination by several MTEs and the data describing these soils were reported 

previously [Inácio et al. (1998), Rodrigues et al. (2006, 2010), Cachada et al. (2009) and Reis 

et al. (2009)]. Soil contamination with POPs, namely PAHs and PCBs were already reported 

by Cachada et al. (2012b) in the surroundings of the Estarreja Chemical complex. 

Composite soil samples (around 30 kg each) were collected in Estarreja at four sampling points 

surrounding the Estarreja Industrial Complex. Thus, samples labeled C, G, K and L of soils 

with different land uses (agricultural, industrial, prairie and forest, respectively) were used 

(Figure 5).  
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Figure 5 – Estarreja (Site A), overview of sampling points. 
 

Site B: Casiers Girardon, Lyon, France 

At the end of the 19th century, submersible longitudinal and herring-bone dikes were 

constructed in certain sections of the Rhône river (France), delimiting dike fields called “Casiers 

Girardon”. These structures were constructed to regulate river flows and form a fixed deep 

single-bed channel suitable for navigation while at the same time store fine sediments on the 

banks, leading to the formation of dike fields over time (Besacier-Monbertrand et al., 2014). 

In the 20th century, the installation of hydropower plants led to the diversion of the main river 

channel into a series of parallel secondary channels. The former sections were bypassed and 

most of the time only filled with a residual minimum water flow. In these bypassed zones, most 

of the dike fields were progressively filled by sediment and for the most part colonized by trees. 

Due to the fall in water levels and filling by sediment these fields have become completely 

disconnected from the main river channel. In very few cases, these fields are intermittently 

connected to the river with variable degrees of water transfer, mainly due to rainy episodes 

during the winter which cause the river to overflow. 

Considerable sedimentation took place in these zones of the river, leading to the potentially 

significant accumulation of both organic and metallic pollutants associated with the sediments 

that have been stored (Thorel et al., 2018).  
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In the future, dismantling operations will be carried out in the Casiers to improve the ecological 

and hydraulic functioning of the river. All the sediments stored will be reincorporated in the 

river bed. The potential existence of organic contaminants such as PCBs in these stored 

sediments may give rise to concerns about the ecological risk posed by the dismantling 

operations (Thorel et al., 2018).  

Four sediment samples (named PEY Ic, PEY IIb, PEY IIIa and PEY IVa of around 30 kg each) 

of riverine origin were collected on the Old Rhone from the Casier Girardon Peyraud 6, PK 

61.500, Sector Péage-de-Roussillon, located 50 km south of Lyon (France) (Figure 6).  

 

 

Figure 6 – Casier Girardon Peyraud 6 (Site B), aspect of sampling points. 
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3.1.2. Origin of plant samples 

 

Several entire plants of Common nettle and Japanese knotweed, belonging to the species Urtica 

dioica and Fallopia japonica, respectively (Figure 7), were also collected from the two 

sampling points of the Casier Girardon Peyraud 6, PK 61.500 (Rhone river margin, France), 

PEY Ic and PEY IIIa. 

 

 

 

Figure 7 – Plants collected in situ from Casier Girardon Peyraud 6 (Site B), from (a) PEY Ic 
and from (b) PEY IIIa, belonging to the species Urtica dioica and Fallopia japonica, 
respectively. 
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3.1.3. Anthroposoil and plant sampling procedures 

 

Anthroposoil samples were collected from a depth of 0 – 50 cm. At each sampling point, several 

samples were collected within an area of 1 m2 and combined to obtain a single composite 

sample (approximately 30 kg). After collection, the soil samples were stored in plastic 

containers lined with aluminium foil in a climatized cold chamber in the laboratory. 

Around 10 entire plants specimens (aerial parts + roots) were collected in the same points of 

the soil sampling and stored in plastic bags until their arrival in the laboratory.  

 

3.1.4. Anthroposoil and plant sample pretreatment and storage 

 

For the quantification of MTEs, a representative portion of each anthroposoil sample collected 

was dried in an oven at 40°C until reaching constant weight and then sieved at 1 cm. For the 

organic contaminants, soil and sediment samples were stored in glass jars and/or in aluminium 

foil in a cold chamber prior to analysis.  

After arriving in the laboratory, the plant samples were thoroughly washed with tap water to 

remove all traces of dust and soil and rinsed with distilled water at least 3 times. In certain 

cases, an ultrasound bath was used. Roots were separated from aerial parts and both were dried 

in an oven at 40°C until reaching constant weight. The dried samples were ground and stored 

in plastic bags at room temperature for further analysis. 
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3.2. Anthroposoil and plant analysis 

 

3.2.1. Physicochemical characterization 

 

Using standard methods, the following basic parameters were determined for the dried and 

sieved anthroposoils:   

 pH (in KCl and water; NFX 31-117),  

 water content (ISO 11465:1993),  

 loss on ignition to determine the OM content (Dean, 1974; Heiri et al., 2001),  

 organic carbon (OC; ISO 10694:1995),  

 cation exchange capacity (CEC; NFX 31-130),  

 elemental elements such as Ca, Mg and P analysis (NFX 31-108),  

 phosphorus Olsen (NFX 31-160),  

 C/N ratio 

 particle size distribution (laser diffraction in a Malvern Mastersizer ®2000).  

 

3.2.2. Contents of metallic trace elements in anthroposoil samples 

 

Pseudo-total determination of the MTEs Cd, Cr, Cu, Ni, Pb and Zn were performed on soils 

and sediments. For the Estarreja soil samples, the analysis was conducted at Acme Labs Canada 

according to their own protocol AQ200. Briefly, 0.5 g dw of solid sample was leached by a 

modified aqua regia digestion procedure (1:1:1; HNO3:HCl:H2O) and the extracts were 

analyzed by ICP-ES/MS to determine the “aqua regia fraction” (hereafter referred to as pseudo-

total levels). Reference soil materials (DS10 and OREAS45EA) were used to check the 

efficiency of the mineralization and/or calibration of the metals studied. The limits of 

quantification (LOQs) of the various trace elements were the following (in mg.kg-1 in between 

brackets): Cd (0.1), Cr (0.1), Cu (0.1), Ni (0.1), Pb (0.1), and Zn (1.0). 

For the Peyraud sediment samples, 1.0 g dw of each sample was dissolved using an acid mixture 

(6:2; HCl:HNO3), followed by heating in a CEM Mars 5 type microwave oven. After filtration 

through ash-free filter paper (Whatman No. 541), the filtrate was adjusted to a final volume of 

25 ml with ultrapure water. The trace elements Cd, Cr, Cu, Ni, Pb and Zn were measured by 

ICP and/or FAAS (Zeeman effect) (Zhao et al., 1994). Certified Reference Material (CRM 281 

from BCR) and control samples, such as Surface Water Level 2 (Spectrapure standards), were 
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used to check the efficiency of the mineralization and/or calibration of the metals studied. LOQs 

of the various trace elements were the following (in µg.kg-1 for Cd, Cr, Cu, Ni, Pb and in mg.kg-

1 for Zn, in between brackets: Cd (0.1), Cr (0.1), Cu (1.0), Ni (5.0), Pb (0.22) and Zn (0.1). All 

the measurements were performed in triplicate for each sample. The reagents used were of 

analytical or ultrapure grade and the glassware was subjected to a cleaning procedure prior to 

use, with a 5% HNO3 (v/v) cleaning solution for at least 12 hours, and then rinsed thoroughly 

with deionized water. 

 

3.2.3. Contents of persistent organic pollutants in anthroposoil samples 

 

POPs include a large number of compounds belonging to different families. In the present study, 

only certain compounds will be considered due to their presence in the environmental matrices 

studied.  

Despite the existence of 209 PCB congeners, the present study will focus only on 18 PCB 

congeners distinguished as dioxin-like (PCB congeners 77, 81, 105, 114, 118, 123, 126, 156, 

157, 167, 169, 189) and non-dioxin like, such as PCB congeners 28, 52, 101, 138, 153 and 180. 

The PCB indicator (∑7PCBi) comprises the non-dioxin like congeners plus congener 118. The 

latter are considered the most persistent with a predominant presence in both biotic and abiotic 

matrices, and characterized by higher toxicity, representing around 80% of the total PCBs 

(INERIS, 2011d).  

The PCDDs were targeted by analyzing seven congeners (2.3.7.8 TCDD, 1.2.3.7.8 PeCDD, 

1.2.3.4.7.8 HxCDD, 1.2.3.6.7.8 HxCDD, 1.2.3.7.8.9 HxCDD, 1.2.3.4.6.7.8 HpCDD and 

OCDD) and the PCDFs by analyzing ten congeners (2.3.7.8 TCDF, 1.2.3.7.8 PeCDF, 2.3.4.7.8 

PeCDF, 1.2.3.4.7.8 HxCDF, 1.2.3.6.7.8 HxCDF, 1.2.3.7.8.9 HxCDF, 2.3.4.6.7.8 HxCDF, 

1.2.3.4.6.7.8 HpCDF, 1.2.3.4.7.8.9 HpCDF and OCDF). The compounds referred to are usually 

subjected of regulatory actions (Commission Directive 2006/13/EC). 

Regarding the BFR compounds, seven indicator PBDEs were analyzed (congeners 28, 47, 99, 

100, 153, 154, 183 and 209) as representative of the principal constituents of Penta and Octa-

BDE, widely used commercial formulations. PBDE 209 is the main constituent of the Deca-

BDE commercial formulation. Three PBB congeners (52, 101 and 153) and the three HBCD 

isomers (α, β and γ) were quantified. Fourteen nBFRs were assessed in the samples: PBEB, 

nPBT, TBCT, nHBB, nPBB, pTBX, OBIND, T23BPIC, ETHBB, TBBPA-bME, BTBPE, 

TBBPA-bDiBPrE, Tri BRPs, Tetra BRPs and Penta BRPs (see Table of abbreviations). 
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For the 8 composite anthroposoil samples, an aliquot of each soil sample was placed in an 

extraction cell for POPs extraction and the Accelerated Solvent Extraction procedure was 

performed using a SpeedExtractor (Buchi). A mixture of toluene/acetone [70/30, v/v] was 

injected into the cell at a pressure of 100 bar and a temperature of 120°C. Three injection cycles 

of 5 min each were carried out to extract all the apolar compounds. The extracted organic phase 

was dried in a rotary evaporator (Buchï R200), weighed, dissolved in 15 mL hexane and the 
13C labelled internal standards were added.   

To separate PCBs and PBDEs for the analysis, three cleaning steps were carried out using acidic 

silica, Florisil® and celite/carbon purifying columns. In the first cleaning step, the interfering 

compounds were removed in the first silica gel column activated with sulfuric acid. PCBs and 

PBDEs were separated on the second Florisil® column while the separation of coplanar (non-

ortho) PCBs from non-planar PCBs and PBDEs was performed on a mixture of 

Florisil®/Carbopack C/Celite 545 activated overnight at 130°C. Recovery standards were 

added to the extracts obtained and they were evaporated until dryness under a gentle stream of 

nitrogen. The dry extracts were diluted to a final volume of 20 and 50 μL toluene to analyze the 

coplanar PCBs and non-coplanar PCBs with PBDEs, respectively. 

To separate nRFBs from the other compounds, the sample extract was loaded twice in 15 ml 

hexane in the coupled columns. PBBs and several nBFRs (pTBX, TBCT, PBBz, HBBz, PBT, 

PBEB and OBIND) were eluted twice with 45 mL hexane (Extract 1). The eluted fraction was 

evaporated to 1ml solvent and purified in a carbon/Florisil® column. The extract obtained was 

evaporated to dryness under a gentle nitrogen stream and the solvent changed to 20 ml of 

toluene. 

To separate HBCDs and other nBFRs another aliquot of the extract obtained in the chemical 

extraction step was eluted through three silica columns with 130 ml of dichloromethane. The 

eluted fraction was evaporated to 150 ml dichloromethane after which sodium hydroxide was 

added (1 ml, 1 M). HBCDDs, T23BPIC, EHTBB, BEHTEBP, BTBPE, DBDPE, TBBPA-bME 

and TBBPA-bDiBPrE were extracted from the aqueous phase by 5 ml followed by an additional 

2 ml of hexane. 

Polychlorinated and BFRs compounds quantification was carried out by gas chromatography 

coupled with high-resolution mass spectrometry (GC/HRMS) using a 7890A gas 

chromatograph (Agilent) coupled with a JEOL JMS 700D or a JMS 800D double-sector high 

resolution mass spectrometer (JEOL, Tokyo, Japan). The system included a HT8PCB capillary 

column (60 m × 0.25 mm × 0.25 μm) for PCBs, a DB5MS (J&W) capillary column (30 m × 

0.25 mm × 0.25 μm) for PCDD/Fs, PBDEs, PBBs and HBCD and an RTX1614 capillary 
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column (15 m × 0.25 mm × 0.25 μm) for PBDE 209. Injection was carried out in splitless mode 

and helium was used as a carrier gas (1 ml/min). The injection volume was 2 μl. The GC 

program for PCBs was: 1 min at 120°C, 20°C/min to 200°C, 3°C/min to 260.5°C and 30°C/min 

to 330°C and held for 3.5 min. For PBDEs and PBBs, the program was: 2 min at 120°C, 

10°C/min to 215°C, 3°C/min to 270°C, 30°C/min to 330°C and held for 3.5 min. For PCDDs, 

PCDFs and HBCD, the program was: 3 min at 120°C, 20°C/min to 170°C, 3°C/ min to 260.5°C 

and 25°C/min to 300°C and held for 5 min. Finally, the following program was used for PBDE 

209: 1 min at 180°C, 20°C/min to 280°C and 3°C/min to 260.5°C. The mass spectrometer 

resolution was set up at 10 000 (FWHM) and the spectrometric signals were recorded in Single 

Ion Monitoring (SIM) mode while focusing on two abundant ions selected in the molecular ion 

isotopic pattern. Ionization was achieved in electron ionization mode (40 eV electron energy). 

The signals obtained were integrated by JEOL DioK software (v.4). A quality assurance/quality 

control A procedural blank (consisting of a sodium sulfate and celite matrix treated with the 

same SOP as the sediment samples) and an internal quality control (QC) standard were included 

in each batch of ten samples. The associated in-house charts were in accordance with the 

acceptable limits fixed for these QC runs, i.e. set at ±2σ of the average value. The analytical 

methods were conducted according to ISO 17025 standards: the QA/QC requirements were 

fulfilled throughout the whole study. Furthermore, the laboratory continuously participated in 

proficiency tests on PCDDs, PCDFs, PCBs and PBDEs with acceptable results (Z-score b ± 2). 

The limit of detection (LOD) was determined by a signal-to-noise ratio equal to 3 (S/N=3) and 

systematically calculated by JEOL Diok software for each congener in each sample. For the  

PCBi, the LOD value varied from 0.0049 (PCB 118) to 0.01 (PCB 28) μg.kg−1 dw. For the 

PBDEi, the LOD was from 0.032 (BDE 28) to 13.55 (BDE 209) ng.kg−1 dw. For the PCDD/Fs, 

the LOD values ranged from 0.051 (2, 3, 7, 8 TCDD) to 1.645 (1.2.3.6.7.8 HxCDD) ng.kg−1 

dw. The recoveries ranged from 60 to 120%. They were calculated for every analyte quantified 

under isotopic dilution, based on their internal standard response as well as expressed in terms 

of the sample mass for each POPs famillies. 

The POPs levels were then normalized according to organic carbon contents, by dividing the 

POPs concentrations measured in the anthroposoil samples by the TOC (total organic carbon) 

content. 

 

In addition, a DTPA extraction was performed on the 8 samples studied, for which 10 g dw of 

soils and sediments were shaken for 2 h in 20 ml of the extraction solution (0.005 M DTPA, 

0.1 M triethanolamine TEA, 0.01 M CaCl2 and buffered at pH 7.3) (Lindsay & Norvell, 1978). 
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After centrifugation (10 min at 4000 rpm), the suspension was filtered (0.45 µm cellulose 

acetate filter) and acidified with HNO3 (ultrapure grade reagent) before analysis. The extract 

analysis for POPs determination was performed as already described above in this subsection. 

MTEs and POPs concentrations in the DTPA extracts obtained were also measured by 

GC/HRMS. 

 

3.2.4. Contents of persistent organic pollutants in plant samples 

 

For the POPs extraction at least 1 g of dry material of each plant part tissue was placed in an 

extraction cell of a SpeedExtractor (Buchi) with a mixture of toluene/acetone (70/30, v/v). 

Three pressurizing cycles at 120°C for 5 minutes each were carried out to extract all the apolar 

compounds. The extracted organic phase was evaporated (Buchi R200), weighed, dissolved in 

15 ml of hexane and the internal standards 13C were added. 

To separate the PCBs and PBDEs for analysis, the purification steps were performed using acid 

silica, Florisil® and celite/carbon purification columns. The quantification of these compounds 

was performed by gas chromatography coupled with high resolution mass spectrometry (GC-

HRMS, 7890A (Agilent) / JEOL 800D (JEOL, Tokyo, Japan)). A procedure blank (consisting 

of sodium sulfate and celite treated according to the same procedures used for the samples 

analyzed) as well as an internal quality standard were included for each sequence of ten 

samples. Acceptably limits for the quality control were defined as ± 2σ of the mean value. For 

the  PCBi, the LOD value varied from 0.0049 (PCB 118) to 0.01 (PCB 28) μg.kg-1 dw. For the 

PBDEi, the LOD ranged from 0.032 (BDE 28) to 13.55 (BDE 209) ng.kg-1 dw. For the 

PCDD/Fs, the LOD values ranged from 0.051 (2,3,7,8 TCDD) to 1.645 (1.2.3.6.7.8 HxCDD) 

ng.kg-1 dw.  

 

3.3. Earthworm reproduction and bioaccumulation assays  

 

Reproduction and bioaccumulation essays with E. fetida were conducted according to the 

standard guidelines OECD 222 (OECD, 2004) and OECD 317 (OECD, 2010), respectively. 

Earthworms were obtained from Provademse laboratory cultures (Lyon). Laboratorial cultures 

of earthworms were bred in large containers and under controlled conditions (temperature of 

20 ± 2°C and continuous lightning) and the individuals were maintained in a mixture of peat, 
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dried manure and distilled water (the substrate was periodically moistened, monitored and 

renewed).  

The assays were performed in plastic boxes (20 per 10 cm height) with approximately 600 g 

(not dried) of each soil or sediment sample and an artificial ISO soil used as control soil. The 

water content was adjusted for around 70% of soil or sediment maximum water holding 

capacity (WHC). Individual sexually matured earthworms with well-developed clitellums 

(earthworm weight 0.65 ± 0.05 g wet weight) were maintained in the ISO soil at least 24 h 

before being exposed to the soil and sediment samples. Four replicates per sample studied and 

for the control soil (ISO soil) were performed. For each replicate, ten adult earthworms were 

added to each container and remained there for 28 days (Figure 8). Once a week, 5 g of a mixture 

of baking powder and dry biological horse manure (previous analysed to MTEs and POPs 

concentrations and presenting negligible levels) were added to each replicate, as well as 

deionized water if necessary, to maintain constant soil water content.  

After 28 days of exposure corresponding to the reproduction period, adults were collected by 

hand from each test box, counted and weighed. Juveniles continued to be exposed for another 

period of 28 days and at the end of the test they were removed by water filtration through a fine 

sieve (the soil quantity was reduced and only the fine fraction and the earthworms remained, 

thus making it easier to collect them). Juveniles were also counted and weighed. After counting, 

both adults and juveniles were dried and freezed stored in prior to analysis. 
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Figure 8 – Experimental system used for E. fetida reproduction and bioaccumulation tests. 

 

 

3.4. Earthworm extraction and analysis 

 

Adults and juveniles collected respectively at the 28th day and 56th day of the reproduction test 

were used to quantify the bioaccumulated levels of the POPs studied in their tissues.  

The lipid content of E. fetida tissues was determined using the procedure described by Smedes 

(1999), consisting in a gravimetric determination after an extraction with 2-propanol and 

cyclohexane. The extraction ratio used was of 1g tissue (fresh weight, fw) to 1.6 ml of 2-

propanol and 2.0 ml cyclohexane. 

For the POPs extraction at least 1 g of dry earthworm tissue was placed in an extraction cell of 

a SpeedExtractor (Buchi) with a mixture of toluene/acetone (70/30, v/v). Three pressurizing 

cycles at 120°C for 5 minutes each were carried out to extract all the apolar compounds. The 

extracted organic phase was evaporated (Buchi R200), weighed, dissolved in 15 ml of hexane 

and the internal standards 13C were added. 

To separate the PCBs and PBDEs for analysis, three purification steps were performed using 

acid silica, Florisil® and celite/carbon purification columns. The quantification of these 

compounds was performed by gas chromatography coupled with high resolution mass 
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spectrometry (GC-HRMS, 7890A (Agilent) / JEOL 800D (JEOL, Tokyo, Japan)). A procedure 

blank (consisting of sodium sulfate and celite treated according to the same procedures used for 

the samples analyzed) as well as an internal quality standard were included for each sequence 

of ten samples. Acceptability limits for the quality control were defined as ± 2σ of the mean 

value. For the Σ PCBi, the LOD value varied from 0.0049 (PCB 118) to 0.01 (PCB 28) μg.kg-1 

dw. For the ΣPBDE, the LOD ranged from 0.032 (BDE 28) to 13.55 (BDE 209) ng.kg-1 dw. 

For the PCDD/Fs, the LOD values ranged from 0.051 (2,3,7,8 TCDD) to 1.645 (1.2.3.6.7.8 

HxCDD) ng.kg-1 dw. Two extraction and analysis replicates were done for each considered 

sample. 

The POPs levels were then normalized according to lw for E. fetida, by dividing the POPs 

concentrations measured by the lw content.  

 

3.5. Plant germination, growth and bioaccumulation assays  

 

For the plant essays, previous works in the literature on several different plant species, regarding 

their characteristics, use, germination and growth time needs, helped us to choose several 

candidates. Finally, according to their growth rate (maximum biomass reached in 30 days), their 

use (cultivation, grassland, garden), type of roots (tracer or taproot) and family 

(monocotyledone, dicotyledone), the following three plant species: alfalfa (Medicago sativa), 

watercress (Nasturtium officinale) and white mustard (Sinapis alba), were selected for 

cultivation in the anthroposoils considered. 

Terracotta pots with a diameter x height (15 x 15 cm) were coated with aluminum foil to avoid 

contamination from pot material that could interfere with the POPs quantification results.  

To limit the output of fine soil particles, river gravel (previously washed and oven dried at 

500°C) was placed at the bottom of the pots, obstructing the inlet but leaving space for the water 

to rise by capillarity. All the pots were then filled with the 8 anthroposoils studied up to 1 cm 

from the top, 5 pots per soil per plant species. 

The filled pots were placed on aluminum trays to facilitate watering with demineralized water, 

and under artificial lighting (Light type Sylviana).  

According to seed size, white mustard was sown about 2-3 cm deep at a rate of 100 seeds per 

pot. Alfalfa was sown about 1 cm deep at a rate of 200 seeds per pot. The watercress was sown 

about 1 cm deep at a rate of 200 seeds per pot (Figure 9). 
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The pots were exposed to a photoperiod of 16h daylight and 8h darkness for about 6 weeks in 

an acclimatized chamber. They were watered three times a week (Monday, Wednesday and 

Friday) by pouring water into the aluminum trays. The amount of water added to the trays 

depended on the quantity remaining inside the trays. The pots were randomly changed on the 

shelves to avoid any place effect on the plant germination and growth rates (Figure 9).  

 

   

Figure 9 – Experimental system used for plant growth and bioaccumulation tests. 

 

After 6 weeks exposure, the cultivated plants were removed. The aerial parts (stems and leaves) 

were separated from the roots and rinsed with demineralized water several times (4 to 5 times), 

after which an ultrasonic bath was used to wash the root parts (Figure 10). Aerial parts of each 

plant were counted and measured to determine the germination rate and the height at the end of 

the growth test. The aerial and root parts are then weighed (to obtain the fresh weight) and then 

put in an oven at 35°C for one week to slow dry prior to storage for chemical analysis. After 

drying period, the aerial and roots parts were reweighed to obtain the water content of plant 

tissues. 
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Figure 10 – Cultivated plants after harvesting (a) and after rinsing with distilled water (b) prior 
to weighing and storage for chemical analysis. 

 

3.6. Plant extraction and analysis 

 

For the POPs extraction at least 1 g of dry plant tissue part (after combining all the plants from 

the same culture pot) was placed in an extraction cell of a SpeedExtractor (Buchi) with a 

mixture of toluene/acetone (70/30, v/v). Three replicates were used to all plant tissues, except 

in case of cress and alfalfa roots that had only 2 replicates for each tested anthroposoil. Three 

pressurizing cycles at 120°C for 5 minutes each were performed to extract all the apolar 

compounds. The extracted organic phase was evaporated (Buchi R200), weighed, dissolved in 

15 ml of hexane and the internal standards 13C were added. 

To separate the PCBs and PBDEs for analysis, there purification steps were performed using 

acid silica, Florisil® and celite/carbon purification columns. The quantification of these 

compounds was performed by gas chromatography coupled with high resolution mass 

spectrometry (GC-HRMS, 7890A (Agilent) / JEOL 800D (JEOL, Tokyo, Japan)). A procedure 

blank (consisting of sodium sulfate and celite treated according to the same procedures used for 

the samples analyzed) as well as an internal quality standard were included for each sequence 

of ten samples. Acceptability limits for the quality control were defined as ± 2σ of the mean 

value. For the ΣPCBi, the LOD value varied from 0.0049 (PCB 118) to 0,01 (PCB 28) μg.kg-1 

dw. For the ΣPBDE, the LOD ranged from 0.032 (BDE 28) to 13.55 (BDE 209) ng.kg-1 dw. 

For the PCDD/Fs, the LOD values ranged from 0.051 (2,3,7,8 TCDD) to 1.645 (1.2.3.6.7.8 

HxCDD) ng. kg-1 dw.  

 

 

3.7. Bioaccumulation Factor (BAF), SET and ERITME index determination 

 
When a contaminant enters the soil ecosystem, not all the organisms in the soil will be affected 

in the same way and magnitude. Biological mechanisms such as uptake, sequestration, 

biotransformation and excretion of specific contaminants are highly variable and determine an 

organism’s vulnerability. This vulnerability also depends on the way that a contaminant reaches 

the soil system as well as on the contaminant’s properties (Van Straalen, 2004). Differences in 

the organism’s body characteristics can also explain the differences in the way that a 

contaminant can affect a certain organism. Hard-bodied species and those that usually remain 
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in the soil top layer are preferentially exposed via food, while the soft-bodied and soil-dwelling 

species that live in the soil pore space are more exposed to the contaminants found in the pore 

water (O’halloran, 2006). At the end of the food chain, predators can be exposed to 

contamination through food or prey (Van Straalen et al., 2001).  

Bioaccumulation factors (BAFs) are used in risk assessment to estimate the trophic transfer of 

contaminants from soil to wildlife and can be helpful for predicting risks associated with this 

transfer. BAFs can be derived from laboratory studies through the determination of 

concentrations or kinetic estimation methods. In the present study, bioaccumulation tests were 

performed on the soils and sediments collected to determine the uptake by E. fetida of the POPs 

analyzed. Bioaccumulation factor for earthworms (BAF) was calculated by the expression:  

 

  BAF = [POPs]earthworm/[POPs]anthroposoil (Egeler, 2009; OECD, 2010). 

 

BAF calculation is usually required for the evaluation and risk assessment of contamination, 

but questions can arise regarding the quality and correctness of the BAF values obtained. For 

example, in many of the experiments reported, it is not clear if the equilibrium of contaminant 

levels in soils and in earthworm tissues was reached if the uptake kinetics was not measured 

and if only a fixed exposure time was considered (e.g., Kelsey et al., 2005; Gao et al., 2009; 

Hallgren et al., 2006). Jager et al. (2003) suggested that BAFs can be better expressed 

dynamically as a ratio of the uptake and elimination rate constants (ks and ke). Indeed, only a 

few studies have reported these ratio values [Amorim et al., 2002; Mäenpää et al., 2008; Sousa 

et al., 2000). Most of the studies of POPs uptake kinetics in earthworms showed only BAFs 

[Ma et al., 1995; Belfroid et al., 1994, 1995; Zhang et al., 2009).  

The POPs levels considered to calculate the BAFs were normalized according to lipid weight 

and organic carbon contents, for E. fetida and anthroposoils, respectively. 

The SET index (Pauget and De Vaufleury, 2015) quantifies the excess transfer in comparison 

with an internal concentration of reference (Ciref) which is the concentration of a contaminant 

in the tissues of the species exposed to a non-contaminated matrix. Figure 11 presents a 

schematic representation of the SET and ERITME calculation methods. 
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Figure 11 – Schematic representation of the SET and ERITME calculation method (adapted 
from Baures (2018), based in Pauget and De Vaufleury (2015)). 
 

A coefficient (AQ) is obtained by dividing the concentration level of a certain contaminant in 

an organism exposed to the soil or sediment tested by the Ciref.  If AQ < 1 a normal transfer 

occurs, but if AQ > 1 the transfer can be considered as anomalous, thus an excess transfer for 

the element considered. Finally, the SET value for a soil or sediment is the sum of the individual 

AQ values obtained for each of the elements considered:  

    SET = ∑ (AQ – 1). 

  

The ERITME index (Pauget and De Vaufleury, 2015) is useful for evaluating the potential risks 

associated with the excess transfer of the contaminants quantified. This excess transfer 

associated with each contaminant is weighted according to a risk coefficient, a toxicity point 

(TP) defined by ASTDR (ASTDR, 2019). In fact, it is extremely difficult to evaluate the global 

risk associated with a complex matrix with a cocktail of contaminates that have different 

toxicity risks. The ERITME index allows assigning a weight to each contaminant toxicity and 

at the end a sum of the individual weights provides an idea of the global risk associated with 

the matrix considered. The ERITME value for a soil or sediment can be calculated by the 

expression:    

  ERITME = ∑ RC, where RC = (AQ – 1) x TP.  
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In the present work, the BAFs will be calculated for each POP studied in all the organisms 

tested, as well as the SET and ERITME which will be adapted to evaluate the E. fetida 

bioaccumulation results and that will since now named ERITME-POP, when calculated for 

POPs. 

 

3.8. In situ evaluation of biological activity - SQBI approach and Bait-lamina 

test  

 

Soil organisms can be divided into different classes according to their body width, a parameter 

that can vary by several orders of magnitude within soil communities (Barrios et al., 2007; 

Parker et al., 2010). Soil diversity comprises microbiota such as bacteria, archaea and fungi, as 

well highly diverse microfauna, mesofauna, macrofauna and even megafauna (Bardgett, 2002; 

Wurst et al., 2012). Another part of the soil ecosystem is constituted by several types of 

photosynthetic organisms such as lichens and plants which play an important role in the 

ecosystem structure (Orgiazzi et al., 2016). Soil microbiota is responsible for the decomposition 

processes that allow C and nutrient cycling and is important in the regulation of plant growth 

regulation and disease defence mechanisms (Wurst et al., 2012). The soil microfauna 

(organisms <100 µm) is composed mainly by nematodes, protozoa and rotifers that act to 

improve nutrient availability for other species, as well as facilitating the dispersion of the 

rhizosphere microbiota through their constant contact with plant roots (Wurst et al., 2012). Soil 

mesofauna correspond to organisms with a width of 100 µm–2 mm belonging to the following 

main groups: Acari, Collembola, Tardigrada, Protura, Diplura and Enchytraeidae. Usually, 

these organisms live in very close contact with the soil porewater and soil pore air and are 

highly dependent on soil aeration and moisture, thus greatly influenced by soil physico-

chemical properties and health (Wurst et al., 2012). Soil macrofauna (width > 2mm), usually 

known as “ecosystem engineers”, play a key role in litter fractionation and predation on other 

soil-dwelling organisms. The most significant group of the soil macrofauna are the 

Macroarthropods which include isopods, spiders and insects as well as soft-bodied organisms 

(annelids and gastropods) (Jouquet et al., 2006). This group of soil organisms are the main 

actors of the changes occurring in the physical, chemical and structural characteristics of the 

soil. They are also important in several soil functions, such as decomposition and nutrient 

cycling and water infiltration processes. As predators, macroarthropods control other biota and 
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they also have a positive effect on plant growth and yield as well as on the elimination of certain 

plant diseases (Wurst et al., 2012).  

Due to the entry of contaminants in the soil system, species abundance can be affected and even 

significantly decline. The most common ecological indexes are sometimes unable to show the 

real effect of contamination in the soil ecosystem and living community. Species can decline, 

sometimes until their extinction or, on the other hand, indirect effects and/or compensatory 

mechanisms can favor certain groups, leading to their higher abundance in contaminated sites 

(Pedersen et al., 1999; Nahmani and Lavelle, 2002). 

 

In the present study, three monoliths were collected in each of the EST and PEY selected 

anthroposoils with the dimensions of 20 cm x 20 cm x 20 cm, and the visible living organisms 

(such as earthworms, spiders, ants, larvae and snails) present in these anthroposoils portions 

were identified.  

The number and diversity of organisms can be related to their feeding activity in the soil and 

the Soil Quality Biological Index (SQBI) can be calculated (Parisi et al., 2005). To calculate 

this index, the living organisms found were grouped according to their main function in the 

ecosystem as Predators (spiders, chilopods), Decomposers (millipedes, gastropods), Ecosystem 

engineers (ants, earthworms) and Phytophages (larvae, beetles, insects). 

Due to the low number of organisms sampled and the difficulty in their correct identification 

and several inaccuracies in the calculation, it was not possible to calculate the SQBI. However, 

differences in the quantity and distribution of organisms between the 8 anthroposols studied 

were observable.  

 

The Bait-lamina© test is an ecological tool commonly used for the refined screening of a 

contaminated site in view to performing a simple, cheap and relatively fast on-site assessment 

of the functioning and/or biological activity of soils and sediments (Von Törne, 1990; Helling 

et al..,1998; Kratz, 1998; Kula and Römbke, 1998; Paulus et al., 1999; Geissen and Brummer, 

1999; Larink and Sommer, 2002; Knacker et al. 2003; Van Gestel et al., 2003; Filzek et al., 

2004).  

Bait-lamina© strips are PVC strips containing small holes filled with a suitable bait substrate 

used to examine the feeding rates of invertebrates (and microorganisms) in soil or sediment. 

The strips with food material are deployed in the field, inserted into the substrate and left for 

approximately 4 weeks. Perforation rates depend on the activity and density of the soil 

community, especially the bacterial community, micro-organisms and to a lesser extent 
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springtails, enchytraeids and earthworms. A lightbox is used to score the bait strips as either 

‘fully pierced’, ‘partially pierced’ or ‘not pierced’ by the invertebrate fauna, depending on 

whether the holes are “empty”, “partially empty” or “full”. In Figure 12, a Bait-lamina© strip 

and the holes filling criteria used are presented along with the test apparatus in the soil. 

Although many bait strips can be deployed in situ (reducing the variability in the results), 

making it is easy to see the differences in the feeding rates of the several invertebrates present, 

it is the environmental conditions (namely the water content in the soil or sediments) rather than 

the degree of contamination that impact the feeding routine, thereby influencing the results 

(Kula and Römbke, 1998). 

In the present study, 60 strips were placed in situ during spring time in 2018 at intervals of 15 

centimeters into each of the studied soils and sediments (with the exception of soil IVa from 

the Peyraud-6 sampling site due to the occurrence of a flood episode). Each strip had 16 holes 

filled with a mixture of cellulose, activated carbon and wheat bran. The exposure time of the 

strips depends on various parameters of which soil water content is the most important (ISO 

18311:2016; Römbke et al. 2006).  

The strips were collected twice, with 30 strips collected after 4 weeks of exposure (as it is 

indicated in the ISO 18311:2016 procedure); the last 30 strips were collected after 6 weeks. 

After collection, each strip was carefully examined to identify and count the totally empty, the 

partially empty and the remaining filled holes. This allowed to calculate the global feeding 

activity of each soil and sediment. The final global feeding activity coirresponds to the average 

value obtained by considering both the percent of feeding activity per 16 holes of 1 strip and 

the percent of holes per horizon of the buried bait-lamina strips.  

This method is useful for performing rapid, easy and inexpensive evaluations of soil biological 

activity and quality, giving indications on the potential biological activity and capacity of the 

soil.  
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Figure 12 – Bait-lamina©  test apparatus: (a) lamina-bait strip; (b) strip in the soil; (c) strips 
after being collected from the soil; (d) set of 20 bands in the soil. 
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3.9. Statistical methods 

 

SPSS statistics v.23 software© was used for the calculation of the descriptive statistics and for 

the statistical analysis of the data (correlation, linear regressions and factor analysis). Factor 

analysis with the “Principal Component Analysis” (PCA) extraction method is a statistical 

technique often used to simplify complex data-sets. PCA reduces the dimensionality of the data 

by transforming it into a set of new uncorrelated reference variables called principal 

components (PC) (Johnson et al., 2002). 

The PCA analysis was performed with the aim of identifying the underlying factors that can 

explain the pattern of correlations within the set of variables observed.  

All the variables were standardized to make the variables comparable and eliminate possible 

incorrect effects in the statistical analysis due to differences in units and /or scales. The 

approach used consisted in data transformation by subtracting a reference value (the average of 

the variable) from each value and dividing it by the standard deviation (Kent, 2011). At the end 

of this transformation, the data obtained were centric-reduced data. A Standard PCA was 

applied to these transformed data. 

Also, linear regression analysis was performed to check the existence of correlations or not 

between all the soil parameters and the POPs concentrations found in the soil, earthworms and 

plant tissues analyzed. 

Concerning the results of E.fetida reproduction, the homoscedasticity and normality of the 

results were tested and if not validated, non-parametrical statistic tests were performed.  

A Kruskal-Wallis statistical test was performed with the results from the E. fetida reproduction 

test to assess the possible significant differences in the mean mass gain or loss results during 

the exposure time. The p value was below 5%, indicating the existence of significant 

differences, so a Wilcoxon pairs comparison test was performed to distinguish the different 

statistical classes. 

A Kruskal-Wallis test was also applied to the mean mortality results to detect possible 

significance differences between the samples studied. The p value was 0.9995 indicating  the 

absence of differences within the results. 

In the case of the number of juveniles produced (reproduction rate), the results showed a normal 

distribution and good homoscedasticity. Thus, an ANOVA test was performed to determine the 

existence of significant differences within the results. The p value (=0.0005) was below 5%, 

indicating the existence of significant differences, thus a Wilcoxon pairs comparison test was 

performed to distinguish the different statistical classes. 
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A Kruskal-Wallis statistical test was performed with the results from the plants germination 

and growth test to assess the possible significant differences in the mean mass gain or loss 

results during the exposure time. The p value was below 5%, indicating the existence of 

significant differences, so a Wilcoxon pairs comparison test was performed to distinguish the 

different statistical classes. 
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In this chapter, the results will be presented and discussed in four parts: 

 Part A: The physicochemical, chemical and biological characterization of the 

anthroposoils studied: 

 the physicochemical characterization of anthroposoils, 

 the quantified levels of POPs in the anthroposoils studied, 

 the quantified levels of POPs in plants collected in situ, 

 the biological characterization of the anthroposoils studied, 

 in order to know in particular which detectable POPs concentrations and families are 

present in these anthroposoils and if such concentrations are limiting/toxic for life; also 

whether such POPs are transferred to plants in situ. 

 

 Part B: Toxicity and bioaccumulation laboratory tests with E. fetida and plants: 

 the results of laboratory tests with E. fetida concerning the effects on 

reproduction, and potential POPs bioaccumulation in their tissues; 

 the results of germination and growth tests of the three plants species based on 

the potential bioaccumulation of POPs in their tissues; 

  in order to know, in particular, if the POPs available can be accumulated, and up to 

 what degree, by soil organisms and plants. Also, in case of bioaccumulation, what are 

 the toxic effects caused by POPs levels in the animal and plant species tested? 

 

 Part C: Statistical analysis by Principal Component Analysis (PCA): the PCA analysis 

of the results obtained (anthroposoils and E. fetida only): 

 MTEs and all POPs,  

 Only POPs, 

 Only PCBs, PCDDs and PCDFs, 

 Only BFRs, 

  in order to see if relations/correlations exist between the different anthroposoils, 

 notably with the different POPs families, and the effects on and bioaccumulation in E. 

 fetida. 

 

 Part D: The calculation of indices to infer potential risk to the ecosystem: 

 BAF,  

 SET, ERITME and ERITME-POP index calculations,  
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  in order to know, in an Environmental Risk assessment approach, what can be 

 expressed by the indexes calculated such as BAF, SET, ERITME and ERITME-POP. 

 Also, whether these reference indexes will be useful in an Environmental Risk 

 Assessment approach. 

 

In each part, the results obtained for the samples of the two different sites [Estarreja (called 

EST; Portugal) and Peyraud 6 (called PEY; France)] will be compared with each other and 

discussed, likewise with the available literature data. 

 

PART A: The physicochemical, chemical and biological characterization of 

the anthroposoils studied 

 

4.1. Physicochemical characterization of anthroposoils 

 

The selected soils and sediments have different origins and had been subjected to different 

pollution sources, thus presenting significant differences in their physicochemical parameters. 

Table 16 shows the results obtained for the general physicochemical and agronomic parameters 

of anthroposoils collected in Estarreja (Portugal) and Peyraud 6 (France).  

 
Table 16 – Results of the physicochemical and agronomic parameters determined in Estarreja and 
Peyraud 6 anthroposoils: pH, organic matter content (OM); total organic carbon (TOC); cation exchange 
capacity (CEC) and particle size distribution (sand, silt and clay) (n= 3). 

Parameter 
Estarreja Peyraud 6  

Mean Median Min Max Mean Median Min Max 

pH (KCl) 4.41 4.50 3.66 4.98 7.57 7.52 7.48 7.74 

pH (H2O) 5.25 5.24 4.74 5.77 8.08 8.06 7.86 8.35 

OM (g.kg-1 dw) 20.6 19.9 18.2 24.2 32.6 31.2 26.3 41.5 

TOC (g.kg-1 dw) 11.9 11.6 10.6 14.1 18.9 18.2 15.3 24.1 

CEC (méq.kg-1) 40.9 41.1 19.2 62.4 89.3 93.1 63.3 108 

Sand (%) 80.8 82.5 64.6 93.6 68.1 66.9 62.3 76.0 

Silt (%) 18.2 16.6 6.10 33.4 27.7 28.7 20.9 32.7 

Clay (%) 1.05 0.95 0.30 2.00 4.23 4.40 3.10 5.00 

CaO (g.kg-1 dw) 1.17 1.10 0.95 1.55 6.76 6.48 6.06 8.02 

K2O (g.kg-1 dw) 0.03 0.04 0.01 0.06 0.09 0.10 0.07 0.12 

MgO (g.kg-1 dw) 0.03 0.03 0.02 0.05 0.19 0.18 0.17 0.20 

POlsen (g.kg-1 dw) 0.04 0.03 0.01 0.11 0.09 0.11 0.01 0.14 

C/N ratio 24.0 18.5 15.0 44.0 12.3 12.0 12.0 13.0 
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The pH values are acid in the samples from Estarreja and both OM and organic carbon (TOC) 

contents are relatively high, thus reflecting intensive agricultural activity and the use of manure 

for soil fertilization in the case of EST C and L anthroposoils (see Figure 5, Subchapter 3.1.1). 

Concerning the Peyraud 6 samples, pH values ranged from neutral to slightly basic and the high 

contents in OM and TOC were probably due to the input of fine particles resulting from river 

deposition as well as vegetation development. Regarding texture, the samples from Estarreja 

varied from sandy loam to sandy while the samples from Peyraud 6 were mainly sandy loam 

except one sample that presented a loamy sand texture. 

The agronomic parameters measured (CaO, K2O, MgO, POlsen and C/N ratio) were higher in the 

Peyraud 6 samples except for the C/N ratio and OM content which was somewhat higher in the 

Estarreja anthroposoils.  

In general, the results of the parameters determined are in accordance with and of the same 

order as those obtained in other previous studies performed in these two areas (Cachada et al., 

2009, 2012a; Rodrigues et al., 2010, 2013; Franquet et al., 2016; Thorel et al., 2018), and thus 

not limiting for the presence of living organisms and their development.  

A summary of the pseudo-total concentrations of quantified MTEs is shown in Table 17. The 

measured levels showed a considerable degree of variation with many elements exhibiting wide 

ranges far beyond the mean. 

The mean “pseudo total” levels of the MTEs analyzed are higher in Peyraud 6 samples than in 

Estarreja samples, except in the case of As concentrations. The results obtained in these 

Estarreja samples studied for the various MTEs are in accordance with the values reported by 

Cachada et al. (2012b) and Rodrigues et al. (2013) for soils collected in the same area. Inácio 

et al. (2008) reported that the Portuguese Western region, characterized by the presence of 

sedimentary detritic rocks and where Arenosols and Podzols are the typical soil types (as 

verified in Estarreja area), is naturally impoverished in most MTEs. Despite this, the samples 

from the Estarreja area considered in the present study showed relatively high levels of MTEs 

when compared with the background values found by Inácio et al. (2008). This fact clearly 

shows an anthropogenic origin (mainly related to the presence and activity of the Estarreja 

Chemical Complex and/or intense agricultural activity) of these MTEs in the anthroposoils 

considered.  

The results obtained in the PEY samples for the various MTEs are in accordance with the values 

reported by Elbaz-Poulichet et al. (1996) and Thorel et al. (2018) in the sediments of the Rhone 
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river and Chiffoleau et al. (1994) in sediments collected in the Seine Estuary, both of which 

correspond to drainage basins long impacted by high human activity.  

 
Table 17 – Mean, median, minimum and maximum of pseudo-total concentrations of quantified MTEs 
(in mg.kg-1 dw) measured in Estarreja (EST) and Peyraud 6 (PEY) anthroposoils (n= 3). 

MTE Local Mean Median Min Max 

Al 

EST 2950 2500 200 6600 

PEY 20054 19228 16721 25041 

As 

EST 38.6 35.3 1.60 82.2 

PEY 10.7 10.5 8.80 13.0 

Cd 

EST 0.10 0.10 0.10 0.10 

PEY 0.88 0.70 0.52 1.59 

Cr 
EST 4.00 4.00 1.00 7.00 

PEY 52.4 45.4 43.4 75.5 

Cu 
EST 13.3 11.0 5.50 25.6 

PEY 31.9 24.7 23.9 54.3 

Fe 
EST 3825 3450 700 7700 

PEY 14041 13698 11909 16860 

Hg 
EST 0.14 0.12 0.08 0.26 

PEY 0.43 0.31 0.09 0.99 

Mn 

EST 39.5 29.5 2.00 97.0 

PEY 453 426 401 558 

Ni 

EST 3.03 2.60 1.40 5.50 

PEY 24.9 20.9 20.0 37.7 

Pb 

EST 14.9 15.1 9.90 19.6 

PEY 24.9 20.9 22.5 47.0 
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Zn 

EST 28.5 25.5 13.0 50.0 

PEY 158 131 131 248 

 

The MTEs levels obtained for the 8 anthroposoils considered are also comparable to those found 

in a large number of industrial and urban areas worldwide. In a study in Tarragona (Spain) 

Nadal et al. (2007) measured the mean levels of Cd, Cr and Pb in soils from 4 different land 

uses (petrochemical, chemical, urban/residential area and unpolluted sites) that ranged from 

0.11 to 0.21 mg.kg-1 dw, 11.9 to 17.5 mg.kg-1 dw and 18.3 to 42.0 mg.kg-1 dw, respectively. 

The values are in the same range as the EST samples studied and slightly lower than the 

concentrations measured in the PEY samples. 

 

The Reference Values of the MTEs considered defined in the legislation in Spain for soils and 

in France and the Netherlands for soils and sediment quality, are presented in Table 18.  

 
 
Table 18 - Reference values or total concentrations for some MTEs that figures in some European 
countries for soils and sediments (in mg.kg-1 dw). 

Country Legislation Matrice Specification Cd Cu Fe Ni Pb Zn 

Spain 
Laws of 
06/2009, 

26/02/2009 
Soils 

Urban 4 100 
No 

value 
100 100 500 

Industrial 20 200 
No 

value 
200 500 1000 

France 

Law of 
08/01/1998 

Soils - 2 100 
No 

value 
50 100 300 

Law of 
14/06/2000 

Sediments 
Level 1 1.2 45 

No 
value 

37 100 276 

Level 2 2.4 90 
No 

value 
74 200 552 

Netherlands 
New Dutch 
List, 2000 

Soil or 
sediment 

Target 
 value 0.8 36 

No 
value 

35 85 140 

Intervention 
value 12 190 

No 
value 

210 530 720 

 
For Fe, no target and/or limit values are indicated in any of the legislations considered.  

In the case of the Estarreja samples, most of the “pseudo total” levels measured were all above 

the regulatory target values in force in Spanish, French and The Netherlands. Some exceptions 

were noticed for Cu levels quantified in EST C, EST G and EST K that were higher than the 
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values indicated in the three legislations considered. In EST G and EST L, Pb levels were also 

above the Dutch target value (85 mg.kg-1 dw) and higher than the values defined by Spanish 

legislation for urban soils and by French guidelines (100 mg.kg-1 dw in both cases). In EST C, 

EST K and EST L, values were higher than the Dutch target level (140 mg.kg-1 dw) and the 

level indicated by French legislation for soils (300 mg.kg-1 dw).  

 “Pseudo total” MTE concentrations measured in PEY samples for some elements were above 

the reference values defined in the French and Dutch guidelines. Cadmium levels in the PEY 

samples were lower than the Dutch target value (0.8 mg.kg-1 dw) except for PEY Ic (1.59 mg.kg-

1 dw). Considering the French legislation, only the PEY Ic sample presented a higher Cd content 

than contamination Level 1 (L1), value (1.2 mg.kg-1 dw). The Cu level in the PEY Ic sample 

was higher than contamination Level 1 (L1), value (45 mg.kg-1 dw) defined by French standards 

and higher than the target value defined by Dutch legislation (36 mg.kg-1 dw). Copper levels in 

the other PEY samples were lower than the regulatory values. Regarding Ni concentrations, 

only the PEY Ic presented a value above the Dutch target level (35 mg.kg-1 dw). All the PEY 

samples presented Pb levels below the values defined in the legislations considered. Regarding 

Zn concentrations, only PEY Ic presented a value above the Dutch target level (140 mg.kg-1 

dw) while all the values were lower than that stipulated by French legislation for sediments. 

The anthroposoils studied presented levels of certain of the MTEs analyzed in ranges above the 

values defined by the legislation considered. In the case of use and/or remobilization of these 

anthroposoils, decontamination procedures are required to avoid the dispersion of 

contamination through the ecosystem, especially in the case of the PEY site as it is located on 

the river margin in direct contact with the Rhone river.  

 

4.2. Levels and sources of persistent organic pollutants in anthroposoils 

 

The concentrations of the POPs obtained in the surface soils of both sampling sites are presented 

in Tables 19 and 20. The concentrations of PCBs, PCDDs, PCDFs, PBDEs, HBCD, PBBs, 

nHBB, nPBB, nPBT and PBEB in the 8 anthroposoil samples studied are expressed in Table 

19 in dw basis and in Table 20 the concentrations are normalized to the TOC contents. The 

TOC contents in EST anthroposoils ranged from 10.6 to 14.1 gC.kg-1 and from 15.3 to 24.1 

gC.kg-1 in the case of PEY anthroposoils (Table 16 in section 4.1). The TOC normalized 

concentrations will be used by preference in the results and discussion. 
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The mean concentrations of ∑PCBs-cop in the soils studied were in the range of 0.49 to 0.80 

µg.kg-1 TOC and 0.80 to 2.65 µg.kg-1 TOC, for EST and PEY samples respectively. Among the 

4 congeners considered (CB-77, -81, -126, -169), CB-77 explained 38% to 90% of the total sum 

of coplanar ones. Regarding the ∑PCBs-noncop, the mean levels found in EST anthroposoils 

were from 1.92 to 15.4 µg.kg-1 TOC, and in the range of 63.9 to 437 µg.kg-1 TOC in the PEY 

samples. Among the 8 congeners considered (CB-105, -114, -118, -123, -156, -157, -167, -189), 

CB-118 explained about 30 to 50% of the total concentration. The mean levels of ∑PCBs-ndl 

were in the range of 21.7 to 143 µg.kg-1 TOC in the EST samples and from 364 to 2461 µg.kg-

1 TOC in the PEY samples. Among the 6 congeners considered (CB-28, -52, -101, -138, -153, 

-180), CB-153, CB-138-and CB-180 explained about 80 to 90% of the total sum in the 

anthroposoils studied. The concentrations of ∑PCBs-ndl also represented around 90% of the 

total sum of all the PCB congeners quantified. 

The levels of PCBs measured in the Estarreja sample were below those detected in the same 

area by Cachada et al. (2009; 2012a) and below those detected in soils from industrial, urban 

and remote areas along the Seine River Basin in France, some of them corresponding to areas 

severely impacted by industrial pollution linked to processing and recycling or lubricants as 

well as transformer maintenance and conditioning procedures (Motelay-Massei et al., 2004). 

Despite that, the levels measured in the Estarreja samples are all in the same range as the values 

measured in an area close to a chemical factory in Italy that produced PCBs until the 1980s 

(Donato et al., 2006). Among all the existing PCB congeners (except 209), Buckland et al. 

(1998) indicated that CB-153 and CB-138 are the most abundant and most frequently found in 

urban and forest soils due to atmospheric input, a fact also verified in the samples studied. 

The French legislation considers a limit of 0.68 mg.kg-1 dw for the 7 indicator PCBs in 

sediments (Arrêté du 9 août 2006, NOR: DEVO0650505A). According to the Dutch legislation 

for soil remediation purposes, the admissible reference value for the sum of the 7 indicator 

PCBs is 0.02 mg.kg-1 dw and the intervention value is defined at 1.0 mg.kg-1 dw (Verbruggen 

and Brand, 2014). The values found in the anthroposoils studied were significantly lower when 

compared with these legislation values, so the areas studied cannot be considered as 

contaminated sites based in the regulatory indications considered. The levels of PCBs detected 

in the PEY samples (old sediments deposited for several years, reaching a historical record of 

PCB inputs) were somewhat lower than the values found in sediments from the same or nearby 

areas (Mourier et al., 2014; Lorgeoux et al., 2016; Liber et al., 2019). The levels found in the 

PEY samples were of the same order of values as those recorded in marine and lake deposited 

sediments from England and Russia (Camacho-Ibar and McEvoy, 1996; Iwata et al., 1995).  
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Among the large number of studies, there are contradictory reports on the dominant removal 

mechanisms for PCBs in soil including volatilization, physical transport processes and 

biodegradation (Gan & Berthouex, 1994). According to Alcock et al. (1996) the two most 

important mechanisms of PCB removal are biodegradation and volatilization, with 

volatilization being dominant. However, this idea contradicts an experiment that compared the 

vapor loss of PCBs from soil and sand, and which found that there was almost no loss of PCBs 

by volatilization from either matrix (Haque et al., 1974). In a long-term field experiment on 

agricultural soils amended with sewage sludge (1968 – 1994), Alcock et al. (1996) obtained 

values for ΣPCBs half-lives of 8.5 years.  

In the EST samples, the mean concentrations of ∑7PCDDs ranged from 1.21 to 5.52 µg.kg-1 

TOC. In the PEY anthroposoils the mean levels measured ranged from 6.23 to 39.9 µg.kg-1 

TOC. Generally, octachlorodibenzo-p-dioxin (OCDD) and 1,2,3,4,6,7,8-hepta CDD 

(1,2,3,4,6,7,8-HpCDD) accounted for the largest proportion of PCDD/Fs (>80%) in all the 

anthroposoils studied.  The mean levels of ∑7PCDDs found in the samples studied were in the 

same range as those detected by Liber et al. (2019) in the Rhone river core sediments and by 

Gómez-Lavín et al. (2011) in estuarine sediments from Spain.  

In the EST samples, the mean concentrations of ∑10PCDFs ranged from 0.16 to 1.05 µg.kg-1 

TOC. In the PEY anthroposoils the mean levels measured ranged from 1.06 to 5.38 µg.kg-1 

TOC. Among PCDF homologs, octachlorodibenzofuran (OCDF) and 1,2,3,4,6,7,8-HeptaCDF 

(1,2,3,4,6,7,8-HpCDF) were the predominant congeners and contributed around 60% of the 

PCDFs in the anthroposoils studied. In the case of ∑10PCDFs, the mean concentrations 

measured were of the same order as those recorded by Liber et al. (2019) in sediments from the 

River Rhone, but significantly lower than the values found by Götz et al. (2007) in sediments 

from the River Elbe in Germany.  

Dioxin-like compounds have been detected in most Australian soils, ranging from the limit of 

detection 0.54 to 3.8 ngWHO98TEQ kg-1 dw (Muller et al., 2004). Dioxin-like compounds in 

soils from urban (with sources such as combustion of fuels, residential wood burning, 

incineration of domestic waste) and industrial locations (with sources such as chemical 

manufacturing, metal smelting and refining activities) were substantially higher than in 

agricultural and remote locations (Muller et al., 2004).  The overall loss of organic chemicals 

from soils is often biphasic, where a short period of rapid dissipation is followed by a longer 

period of slow chemical release (Beck et al., 1995). The extractability and bioavailability of 

POPs in soil has been demonstrated to decrease with time (Mueller et al., 2006). It has already 

been reported that the half-lives of dioxin-like compounds vary from more than four years to 



 Chapter 4. Results and discussion 

91 
 

more than twenty years, with greater persistence observed for higher chlorinated homologues 

(Molina et al., 2000). The elimination of PCDDs/Fs in soil may take a much longer period of 

time since the principal removal mechanism is thought to be off-site removal (McLachlan et 

al., 1996).  

The mean concentrations of PBDEs (excluding BDE-209) were relatively lower compared with 

those of PCBs. The mean Σ7PBDEs (excluding BDE-209) were from 0.74 to 3.04 µg.kg-1 TOC 

in EST samples and from 3.01 to 25.30 µg.kg-1 TOC in PEY anthroposols. The Σ7PBDEs 

(excluding BDE-209) measured are correspond to the sum of the levels of congeners BDE-47 

and BDE-99. When including BDE-209, the mean levels of Σ8PBDEs are significantly higher, 

ranging from 13.96 to 343.63 µg.kg-1 TOC in the EST samples and from 268.06 to 4073.61 

µg.kg-1 TOC in the PEY anthroposols. Composition analysis clearly showed that in all the 

anthroposoils studied, BDE-209 is the most predominant congener, explaining more than 90% 

of the total PBDEs, followed by congeners BDE-47 and BDE-99. Congener BDE-28 was close 

to the LOD in both the EST and PEY samples.  

Concerning the PBDEs, the levels detected in the EST samples were very low when compared 

with those obtained in the PEY samples and with the values found in other studies on industrial, 

urban and agricultural soils in Europe (Gaspéri et al., 2016; Muresan et al., 2010; Hassanin et 

al., 2004). In the PEY samples, the PBDE concentrations measured were slightly lower than 

the values detected in river sediments in France (Liber et al., 2019) and in terrestrialized river 

sediments from Italy, Greece, Slovenia, Croatia and Bosnia and Herzegovina (Giulivo et al., 

2017).  The persistence of PBDEs in soil was demonstrated in measurements from various field 

experiments, to be more than four years (Eljarrat et al., 2008) and even more than twenty years 

(Sellström et al., 2005).  Soderstrom et al. (2004) stated that PBDEs and BDE209 are more 

environmentally persistent than currently believed, based on laboratory degradation studies. 

Atmospheric deposition is thought to be the dominant mechanism of soil PBDE contamination 

globally, as PBDEs have been detected in remote areas with no possible source of transport 

other than atmospheric deposition (Schmid et al., 2007). PBDEs were measured in surface soils 

from remote/rural locations throughout the United Kingdom and Norway with ∑PBDEs 

concentrations ranging between 0.07 and 12.0 ng.kg-1 dw (Hassanin et al., 2004). 

The ΣHBCDs mean concentrations measured were from 10.2 up to 2063 µg.kg-1 TOC in EST 

anthroposoils and 4.31 to 211 µg.kg-1 TOC in PEY samples. Contrary to the trend of the other 

POPs quantified, ΣHBCDs exhibited higher levels in EST samples. This fact is related to the 

past and present industrial activities in the Estarreja Chemical Complex and confirmed by the 

high level of ΣHBCDs measured in the EST G sample (2063 µg.kg-1 TOC) collected near the 
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Chemical Complex area. Regarding the 3 HBCD isomers, α- and γ-HBCD dominated (in equal 

proportions) followed by β-HBCD. 

The levels of HBCDs detected in the PEY samples studied were in the same range as those 

detected in sedimentary cores also collected in the same zone in the River Rhone (10 km North 

in a straight line from the PEY site) by Liber et al. (2019).  

The Σ3PBBs mean levels were somewhat lower in all the samples studied, with values ranging 

from 0.06 to 0.15 µg.kg-1 TOC in the EST samples and from 0.33 to 1.01 µg.kg-1 TOC in the 

PEY samples. Among the 3 congeners quantified, only BB-153 was higher than the LOD but 

in very low quantities in anthroposoils PEY IIb and PEY IIIa. BB-52 and BB-101 were close 

to the LOD value for all the EST and PEY samples.  

The nHBB mean concentrations found ranged from 0.06 to 0.14 µg.kg-1 TOC and from 0.03 to 

1.68 µg.kg-1 TOC, in the EST and PEY samples, respectively. The nPBB mean levels measured 

were from 0.02 to 0.06 µg.kg-1 TOC in the EST samples and from 0.29 to 1.15 µg.kg-1 TOC in 

the PEY samples. Mean levels of nPBT in the EST anthroposoils ranged from 0.03 to 0.04 

µg.kg-1 TOC and from 0.04 to 1.37 µg.kg-1 TOC in the PEY samples. The PBEB mean 

concentrations measured were from 0.002 to 0.02 µg.kg-1 TOC and from 0.02 to 0.05 µg.kg-1 

TOC, in the EST and PEY anthroposoils, respectively.  

The levels of quantified nRFBs (nHBB, nPBB, nPBT and PBEB) in all the anthroposoils 

studied were very low in comparison with the other POPs quantified in these samples. In 

addition, the nBFRs values obtained were not comparable with most of the few data found in 

the literature which usually correspond to highly contaminated sites in Asian countries (usually 

e-waste manufacturing and/or disposal sites) (Hong et al., 2016; Someya et al., 2016; 

Matsukami et al., 2017). Despite this, the values of nHBB and nPBT detected in the samples 

studied are in the same range as some of those obtained by Newton et al. (2015) in urban soils 

from Sweden. The concentration of PBEB obtained in the samples studied were lower than 

those measured in river sediments collected along the Llobregat river basin in Spain as reported 

by Guerra et al. (2010). This basin is severely impacted by effluents from different industries 

(tannery, textile, pulp, and paper) and urban wastewaters. PBEBs are present in a wide range 

of everyday products released into the environment, mainly from household product waste 

disposal and incineration. 

The anthroposoils studied presented appreciable and quantifiable levels of the POPs analyzed, 

showing historical contamination due to mainly past and/or present industrial activities. In the 

case of the PEY samples it is well known that PCBs remain present in the ecosystem, despite 

all the regulations and actions taken to ban their use in recent decades (Liber et al., 2019). 
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PBDEs were also detected in the studied soils studied. nBFRs, whose use in industrial 

manufacturing is recent, have not yet been detected or quantified in the anthroposoils studied. 

Due to the presence of all these POPs, especially in the PEY site, POPs decontamination or 

immobilization procedures will be required if these sites are subject to dismantlement or 

changes in anthroposoil storage methods (Thorel et al., 2018).  
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Table 19 – Mean concentrations of the POPs (in µg.kg-1 dw) quantified in Estarreja (EST) and Peyraud 6 (PEY) anthroposoils (n=2). 

 EST C EST G EST K EST L PEY Ic PEY IIb PEY IIIa PEY IVa 

∑PCBs-cop 0.004 0.01 0.001 0.01 0.50 0.14 0.04 0.11 

∑PCBs-noncop 0.08 0.17 0.03 0.11 8.30 6.71 0.98 2.38 

∑PCBs-ndl 0.74 1.55 0.31 0.10 46.6 28.7 5.57 14.7 

∑7PCDDs 0.03 0.06 0.02 0.02 0.76 0.34 0.10 0.15 

∑10PCDFs 0.003 0.01 0.002 0.003 0.10 0.03 0.05 0.03 

∑7PBDEs 0.02 0.03 0.03 0.01 0.41 0.44 0.05 0.41 

∑8PBDEs 0.44 3.37 0.20 0.20 74.1 70.7 4.10 50.9 

∑HBCDs 0.31 22.4 0.14 0.16 3.99 0.91 0.07 2.39 

∑3PBBs 0.001 0.002 0.001 0.001 0.02 0.01 0.01 0.01 

nHBB 0.001 0.001 0.001 0.002 0.01 0.03 0.002 0.001 

nPBB 0.0004 0.001 0.0002 0.0003 0.02 0.02 0.01 0.01 

nPBT 0.0004 0.0003 0.0004 0.001 0.03 0.001 0.001 0.002 

PBEB 0.0001 0.0001 0.0002 0.0003 0.0004 0.0003 0.001 0.001 
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Table 20 – Mean concentrations of the POPs (in µg.kg-1 TOC) quantified in Estarreja (EST) and Peyraud 6 (PEY) anthroposoils (n=2). 

 EST C EST G EST K EST L PEY Ic PEY IIb PEY IIIa PEY IVa 

∑PCBs-cop 0.35 0.80 0.10 0.49 26.6 0.80 2.65 4.69 

∑PCBs-noncop 7.41 15.4 1.92 9.08 438 387 63.9 98.5 

∑PCBs-ndl 70.3 143 21.7 80.8 2461 1654 364 609 

∑7PCDDs 3.01 5.52 1.21 1.40 39.9 19.3 6.23 6.38 

∑10PCDFs 0.31 1.05 0.16 0.23 5.38 1.98 3.54 1.06 

∑7PBDEs 1.88 3.04 1.86 0.74 21.4 25.3 3.01 17.1 

∑8PBDEs 41.4 344 14.0 16.5 3911 4074 268 2111 

∑HBCDs 29.1 2063 10.2 12.7 211 52.5 4.31 99.1 

∑3PBBs 0.09 0.15 0.06 0.08 1.01 0.64 0.48 0.37 

nHBB 0.10 0.06 0.08 0.14 0.29 1.68 0.15 0.03 

nPBB 0.04 0.06 0.02 0.02 1.15 1.11 0.29 0.52 

nPBT 0.04 0.03 0.03 0.04 1.37 0.04 0.06 0.10 

PBEB 0.01 0.01 0.02 0.002 0.02 0.02 0.05 0.03 
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4.3. Biological characterization of the anthroposoils studied 

 
The living population inhabiting soil includes macrofauna, mesofauna, microfauna and 

microflora. Soil microorganisms mainly live within the pores between soil particles, free or 

attached to surfaces such as in thin water films surrounding soil particles.  

Figure 13 shows the distribution and the number of organisms found in the monoliths collected 

from EST and PEY anthroposoils classified as phytophagous, decomposers and predators. The 

monoliths were collected from 7 of the 8 anthroposoils studied. In soil PEY IVa, sampling was 

not possible because this site was flooded.  

The number of decomposers found in the soils was significantly higher than the other ecological 

categories (Figure 13). Despite that, the low quantity of decomposers (group represented mainly 

by earthworm species) verified in anthroposoil EST L can be explained by the high sand 

fraction (93.6 %). The sandy texture (and coarse sand) can be a negative factor for earthworms, 

affecting their presence either because of the abrasive action of sand grains that damage 

earthworm skin or because sandy soil usually retains less water (Laossi et al., 2010).  

Figure 14 shows the organisms found in the monoliths of the PEY anthroposoils studied. 
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Figure 13 – Distribution of the number of individual organisms found in the monoliths collected 
from EST (a) and PEY (b) anthroposoils (n = 3). 
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Figure 14 – Organisms found in the monoliths collected of PEY anthroposoils. 
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The Bait-lamina© test was performed in 7 of the 8 anthroposoils studied. In soil PEY IVa it 

was not possible to perform the test once this site was flooded. Figure 15 shows the Bait-

lamina© test apparatus. 

 

 

 

 
Figure 15 – Bait-lamina© test apparatus: (a) lamina-bait strips; (b) strips in the soil; (c) strips after 

collection from the soil. 
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Table 21 presents the results for the global feed activity after 6 weeks of strip exposure. 

 

Table 21 – Results for the global feed activity (GFA) after 6 weeks of exposure of the Bait 
lamina© test strips in the anthroposoils tested (n=60 strips per anthroposoil). 

Anthroposoils EST C EST G EST K EST L PEY Ic PEY IIb PEY IIIa 

GFA (%) 58.4 31.4 37.7 7.40 49.0 29.9 34.3 

 
In Figure 16, the results of global feed activity are graphically presented, and certain differences 

can be noticed between the anthroposoils tested. Soil L presented a much lower value (7.4 %) 

when compared with the other anthroposoils, which can be explained by its slightly acidic pH 

(4.74) and high sand content (93.6 %) that do not favor the presence or biological activity of 

certain soil organisms. Soil EST C presented the higher value for global feed activity (58.4 %), 

related to the fact that this anthroposoil was still used for farming and presented significant OM 

content and C/N values (Chapter 3, Figure 5), thus it was rich in macro and micronutrients, 

favoring the existence of a significant quantity of soil organisms. 

The results obtained for GFA are in agreement with the macrofauna present verified in each of 

the anthroposoils studied. 

 

 
Figure 16 – Global feed activity (GFA) after 6 weeks of exposure of the strips (Bait-lamina© 
test) in the anthroposoils tested (n=60 strips per anthroposoil). 
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4.4. Levels and sources of organic contaminants in plants collected in situ 

 

Several entire plants of Common nettle and Japanese knotweed, belonging to the species Urtica 

dioica and Fallopia japonica, respectively (see Chapter 3, Figure 7), were collected in situ from 

the two sampling points, PEY Ic and PEY IIIa. The POPs analyses were performed on the 

different parts of the plants: roots and aerial parts (as well as, when possible, the distinction 

between stem and leaves) (Table 22). 

 
Table 22 – Concentrations of POPs quantified (in µg.kg-1 dw) in the plants collected in situ in 
soils PEY Ic and PEY IIIa (mean ± standard deviation; n = 3 or more). 

 

Common nettles (PEY 

Ic) 
Japanese knotweed (PEY IIIa) 

Aerial 

parts 
Roots Leaves Stems Roots 

ΣPCBs-cop 0.01±0.001 0.01±0.002 0.03± 0.003 0.01±0.001 0.01±0.004 

ΣPCBs-noncop 0.14±0.001 0.33±0.02 0.61±0.01 0.09±0.01 0.42±0.46 

ΣPCBs-ndl 1.43±0.18 3.39±0.32 3.80±0.05 0.66±0.10 2.21±1.11 

Σ7PCDDs 0.001 0.003 0.003±0.001 0.001 0.006±0.001 

Σ10PCDFs 0.000 0.001 0.001 0.001 0.001  

Σ7PBDEs 0.05±0.02 0.05±0.01 0.23±0.01 0.03±0.01 0.03±0.02 

Σ8PBDEs 0.45±0.20 0.23±0.13 2.25±0.39 0.53±0.38 2.42±0.19 

ΣHBCDs 0.06±0.03 0.04±0.01 0.09±0.03 0.06±0.04 0.68±0.37 

 

Among the POPs quantified in the aerial parts and roots of the two plants analyzed, the PCBs-

ndl are those that show higher levels, followed by the sum of the 8 PBDEs. Similar levels of 

PCBs-noncop and HBCDs were recorded. On the contrary, the PCDDs and PCDFs appear only 

in very low concentrations (0.01 µg.kg-1 dw or less). 

The presence of PCBs in plants has already been reported by some authors. The levels obtained 

in the plants studied were in the same range as the concentrations of Σ3PCBs reported in Lolium 

perenne (3.50 µg.kg-1 dw) and in Melaleuca leukadendra (2.64 up to 7.00 µg.kg-1 dw) in a 

suburban residential area in Brisbane in Australia (Müller et al., 2001). Zhao et al. (2006) 
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detected levels of Σ17PCBs of about 2.80 µg.kg-1 dw in grass samples in China. In a study on 

the distribution of certain POPs in soils and vegetation near a landfill in Greece, Chrysikou et 

al. (2008) found levels from 3.64 to 25.9 µg.kg-1 dw for Σ7PCBi in Solanum eleagnifolium and 

Solanum trifolium plant species. Also, several studies reported PCBs uptake and translocation 

by edible vegetables such as: soybeans (Suzuki et al., 1977), carrots (Iwata and Gunther, 1976), 

beets, turnips and beans (Sawhney and Hankin, 1984). It was also observed that the lower 

chlorinated congeners (PCB-28, -52 and -101) were found to be more abundant in the shoots 

than in the roots of these plant species (Iwata and Gunther, 1976; Suzuki et al., 1977; Sawhney 

and Hankin, 1984). Liu and Schnoor (2008) concluded that some mono to tetra PCBs are 

absorbed by plant roots but only the lower chlorinated ones undergo translocation to aerial plant 

tissues. Members of the Cucurbitaceae family have been shown to accumulate PCBs in their 

tissues (Hulster et al., 1994; White et al., 2005). In a study with pumpkin plants, Aslund et al. 

(2008) also found that the PCBs concentration increased within the stem and leaves after a short 

period of exposure to contaminated soils, but the concentrations measured in the plant roots 

remained unchanged. 

PCDDs and PCDFs are highly lipophilic compounds primarily sorbed by plant roots or soil 

components, though they are not usually translocated within plant tissues (Reischl, 1989). 

Despite this, several previous studies showed that bioconcentrations of PCDDs and PCDFs 

clearly exist in zucchini plants two orders of magnitude higher than those found in vegetables 

such as pumpkin and cucumber, even though these three plants belong to the Cucurbita family 

(Hulster et al., 1994). Levels measured in the two plant species collected in situ in the present 

study were much lower than those measured by Müller et al. (1994) in carrots, lettuce and peas 

(values from 0.05 up to 0.48 µg.kg-1 dw).   

Some plant crops show the ability to translocate PBDEs from soil into vegetative structures and 

this may also result in consistent low-level exposure through diet (Navarro et al., 2017). 

Elevated concentrations of PBDEs were also already reported in spinach in Japan (Ohta et al., 

2002). An interesting fact is that not only were higher levels of PBDEs quantified in spinach 

but also the congener composition was different from that of the root vegetables, namely potato 

and carrot, analyzed in the study, a finding that can be explained by a difference in 

contamination pathways.  

Hassanin et al. (2005) investigated time trends in atmospheric BDEs concentrations in archived 

grass samples. The general trend observed was of non-detectable levels of BDEs in the early 

samples, increasing PBDE concentrations in the 1970s, the highest concentrations in the 1980s/ 

1990s (with a peak in 1999) and recent declines. The PBDE concentrations in grass varied 
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substantially, by a factor of 120 from 0.01 to 1.20 µg.kg-1 dw. BDE-47 and BDE-99 generally 

dominated the profiles, with BDE-28, -35, -100 and -153 contributing less than 25% of PBDE. 

BDE-28 showed an anomalous behavior as  concentrations of BDE-28 have risen whilst 

concentrations of other congeners have fallen in recent years. Possible explanations include 

additional recent sources of BDE-28 in brominated products other than the penta-mix PBDE 

formulation (now banned in the EU) and the possible formation of BDE-28 from other 

congeners in the environment. The values obtained in the two plant species collected in situ 

were in the same range of those found by the author referred to. 

The occurrence of POPs transfer from soil to plant parts is shown by the levels detected in plant 

parts for most of the POPs analyzed. This fact emphasizes the need to carry out laboratory tests 

with different plants to try to better understand the potential toxicity associated with the uptake 

of POPs and to evaluate the degree of potential bioaccumulation of POPs in different plant 

parts. 

 

 

MAIN RESULTS  

 

 The 8 anthroposoils studied are quite different in terms of physico-chemical 

characteristics as well as regarding inorganic and organic contamination. 

 Despite the levels of contamination found, plants still grow on such sites and the 

transfer of POPs was well demonstrated.  

 What is the bio-availability or toxicity effect of POPs? 

 Special attention was given to the emergent nBFRs. These compounds have begun 

to be even more present in environmental compartments but there is very little literature 

or studies available regarding their distribution, fate, potential uptake and accumulation 

by terrestrial organisms, namely earthworms and plants. 

 Once nBFRs are present in the anthroposoils studied and in the plant species 

collected in situ, these compounds can easily reach other soil organisms and be 

incorporated, thus they can migrate along the food chain. The presence of nBRFs raises 

the issue of toxicity effects, so it is important to conduct toxicity tests with representative 

terrestrial organisms (Subchapter 4.6). 

 What is the bio-availability or toxicity effect of BFRs? 
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PART B: Toxicity and bioaccumulation laboratory tests with E. fetida and 

plants 

 

4.5. Toxicological tests  

 
4.5.1. Tests with earthworms - Reproduction test 

 

The results from the reproduction tests are summarized in Table 23, including the effects on 

body mass, mortality rate and the number of juveniles produced after the exposure period. For 

each series of samples tested, an ISO soil was used as control sample (ISO EST and ISO PEY). 

 

Table 23 – Results from the reproduction tests at the end of exposure time.  

MATRICE EFFECT ON BODY MASS (%) MORTALITY (%) JUVENILES NUMBER 

EST ISO -22.2 ± 7.75  2.50 ± 5.00 307 ± 46 

EST C -5.64 ± 3.86 2.50 ± 5.00 256 ± 32 

EST G 10.9 ± 1.70 2.50 ± 5.00 93 ± 23 

EST K 7.82 ± 12.5 5.00 ± 10.0 166 ± 104 

EST L -5.43 ± 11.1 2.50 ± 5.00 242 ± 38 

PEY ISO -32.3 ± 4.32 0 120 ± 82 

PEY Ic -42.1 ± 3.07 2.50 ± 5.00 122 ± 58 

PEY IIb -39.7 ± 6.15 27.5 ± 48.6 127 ± 87 

PEY IIIa -38.4 ± 7.23 7.50 ± 5.00 121 ± 61 

PEY IVa -41.4 ± 6.64 2.50 ± 5.00 286 ± 87 

Mean values (n=4) and ± =Standard Deviation (SD). 
 
At the end of the 28 days of exposure, the mortality rate was very low in the anthroposoils 

studied, except in the case of PEY IIb where all 10 earthworms in a replicate were dead after 2 

weeks exposure. A Kruskal-Wallis test for the comparison of mean values was performed and 

no significant differences in mortality rate were found between the E. fetida exposed to the 8 

anthroposoils studied. 

Differences were observed in the weight loss or gain of earthworms considering the mean 

values of adult body weight at the beginning and at the end of the exposure time. Changes in 

biomass were measured on adult E. fetida (negative values indicate a mass loss). A Kruskal-

Wallis test showed significant differences between all the EST samples (p value = 0.01) and all 

the PEY samples (p value = 0.03 in the lockers). The p value was below 5%, indicating the 
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existence of significant differences, so a Wilcoxon pairs comparison test was performed to 

distinguish the different statistical classes. The highest mass losses were found in E. fetida 

exposed to ISO soils, probably due to the low nutrient quantities in this control sample. 

Mass gains were observed for E. fetida exposed to EST G and EST K anthroposoils and only 

slight losses of mass were observed for individuals exposed to anthroposoils EST C and EST L 

(Table 23). This is probably related to the relatively high OM contents of EST anthroposoils. 

Mass losses in E. fetida were observed in all the PEY samples despite these anthroposoils being 

rich in OM content, while the pH values are within the range of ideal values for the good growth 

and development of E. fetida. It is probable that the sandy character of these anthroposoils and 

the presence of relatively high concentrations of certain MTEs and POPs inhibited the growth 

and physiological development of E. fetida. Statistical analysis highlighted the existence of 

significant differences in the loss or gain of mass in adults at the end of the test when compared 

with the initial E. fetida mass (p value = 0.001 in EST samples; p value =0.01 in PEY samples). 

Figure 17 presents the boxplot diagrams showing the variation in the mass (loss or gain) of E. 

fetida adults at the end of the bioaccumulation test. Different colors correspond to different 

statistical groups. 

After 8 weeks exposure, the E. fetida juveniles were collected and counted (Table 23). 

Statistical analysis highlighted the existence of significant differences in the number of 

juveniles by soil (p value = 0.002 in EST samples; p value =0.01 in PEY samples). Figure 18 

presents the boxplot diagrams showing the distribution of E. fetida juveniles at the end of the 

bioaccumulation test. Different colors correspond to different statistical groups. 
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Figure 17 – Boxplots showing the variation in the mass (loss or gain) of E. fetida adults at the 
end of the bioaccumulation tests in EST (a) and PEY (b) anthroposoils. Different colors 
correspond to different statistical groups (p value = 0.001 in EST samples, p value =0.01 in 
PEY samples) (n=4).  
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Figure 18 – Boxplots showing the distribution of E. fetida juveniles at the end of the 
bioaccumulation test in EST (a) and PEY (b) anthroposoils. Different colors correspond to 
different statistical groups (p value = 0.002 in EST samples, p value =0.01 in PEY samples) 
(n=4). 
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Very low mortality was verified in the earthworms exposed to the PEY samples (Table 23) and 

the numbers of juveniles produced were in general lower than those from EST anthroposoils, 

probably due to the inhibition effects caused by the sandy texture that can negatively affect the 

normal biological activities of earthworms in addition to the higher MTE and POPs levels found 

in the PEY samples. The results obtained in the reproduction assay were in agreement with 

those reported by Lemtiri et al. (2016) obtained in a study where the role of E. fetida on the 

availability of metals and their effects on metal uptake by plants at different soil concentrations 

was evaluated.  Exposure to high levels of POPs (higher than 100 ng.g-1 dw) is quite often 

related to an impairment in earthworm reproduction (Datta et al., 2016; Lin et al., 2012; Yasmin 

and D’Souza, 2010). 

Among the EST samples, a large number of juveniles was observed in ISO soil while the lower 

number corresponds to soil G (Figure 18a). There was a slight difference in the production of 

juveniles between soils K and G. Soils C and L showed a number of juveniles close to the 

number observed for ISO soil.  Concerning the PEY samples, no significant differences were 

observed (Figure 18b). It should be noted that a larger number of juveniles occurred in PEY 

IVa which can be related to the high OM content that served as feed for the earthworms and 

thus helped their development. For the EST samples, two statistical groups were observed. The 

first consisted of the ISO, C and L soils with a higher number of juveniles (average between 

224 and 307), while the second group consisting of G and K soils, had fewer juveniles (averages 

of 93 and 166, respectively) (Figure 18a). 

Significant levels of Zn found in the PEY anthroposoils can explain the reproduction inhibition 

observed in the E. fetida individuals exposed. Van Gestel et al. (1993) showed that earthworms 

can regulate their internal Zn concentration for a certain range of concentrations (80 up to 100 

mg.kg-1). The Zn values found in the PEY anthroposoils were higher (from 131 up to 248 mg.kg-

1), thus the internal concentrations of E. fetida exposed to these anthroposoils may probably 

exceed 100 mg kg-1 and become toxic/inhibitive for earthworm development. In Coelho et al. 

(2018) (see Annex I), already analyzed the effect of the presence of a mix of contaminants 

(MTEs) on E. fetida reproduction. In the present study, another 3 sediments were considered 

and verified the same trend of inhibition, notably in the range of MTEs.  

The decrease in growth as well as reproduction rate can also be correlated with the reduction of 

feeding activity as a strategy for the earthworms to avoid exposure to contaminants (Ribeiro et 

al., 2001; Mosleh et al., 2003). 

The results of the reproduction test tend to show that the physico-chemical properties of soils 

(pH, particle size, sand content) probably play a major role in the effects of antroposoils on E. 
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fetida. Pearson correlation coefficients higher than 0.7 were obtained for the relation between 

the physico-chemical properties and the levels of POPs detected in E. fetida tissues (Annex II, 

Table I.1). Despite this, and since there are significant differences between the EST and PEY 

anthroposoils, the effects on growth, body mass and reproduction rates observed may have been 

due to the bioaccumulation of certain contaminants. This emphasizes the need to perform 

bioaccumulation tests with E. fetida to assess and understand the bioaccumulation of POPs in 

E. fetida tissues.  

 

4.5.2. Tests with plants - Germination and growth test 

 

The germination and growth tests with plants were carried out with alfalfa (Medicago sativa), 

watercress (Nasturtium officinale) and white mustard (Sinapis alba), firstly to evaluate the 

effect on germination (up to 7 days) then on growth (for 60 days) (see subchapter 3.5). Figure 

19 shows the boxplots for the distribution of the germination rate of alfalfa, cress and mustard 

cultivated in the EST (a) and PEY (b) anthroposoils. The germination rate was significantly 

higher for the control (noted T), EST G, PEY Ic and PEY IIb for all the three plants tested 

compared to the other samples. This good germination can be associated with the relatively 

high but not toxic levels of some MTEs (such as Zn and Cu) found in these anthroposoils that 

are oligoelements for plant development. The three plant species tested, cultivated in 

anthroposoils EST C, EST K and PEY IVa showed very low germination rates, perhaps due to 

the compactness of these three anthroposoils.  
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Figure 19 – Boxplots showing the distribution of the germination rate of alfalfa, cress and mustard 
cultivated in the EST (a) and PEY (b) anthroposoils (T = Test control; Cr = Cress; Alf = Alfalfa and  
Mus = Mustard). (n=3 for T and n=5 for others). Different colors correspond to different statistical 
groups (p values of 0.0007, 0.0005 and 0.0.014 in EST samples for Cr, Alf and Mus; p values of 0.003, 
0.0005 and 0.0009 in PEY samples for Cr, Alf and Mus). 
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It has been found that different species do not respond similarly to toxic chemicals (Gong et al., 

1999). For Gong et al. (2001), seed germination that depends on the energy reserves in 

cotyledons is a less sensitive endpoint than early seedling growth. 

Nevertheless, two physiological phenomena during germination were established: an increase 

in oxygen use (when respiration begins) and imbibition (when the seed rehydrates). The 

dormant seed is in a dehydrated state and has a moisture content of only 10% of its fresh weight 

(Ernst, 1998). During the germination process, the plant seeds incorporate a great quantity of 

water that can influence the uptake rate of contaminants, mainly at the initial growth stage 

(Wolny et al., 2018). Also, soil texture (sand and silt contents) and compacity influence the 

availability of water in soil, since water is less available to seeds in more compact and sand-

rich soils. Our results also suggest that the respiration of the seeds may be affected, particularly 

since the MTEs (Hg, Ars), or POPs as PCBs contents of the anthropsoils used may be potential 

inhibitors of respiration. 

 

Figure 20 shows the boxplots for the distribution of aerial part mean heights of alfalfa, cress 

and mustard cultivated in the EST (a) and PEY (b) anthroposoils. The aerial part mean heights 

were higher for the control, EST G, EST C, PEY Ic and PEY IIb for all the three plants tested. 

In the case of alfalfa and cress, the anthroposoils played an important role in maximum height, 

but in the case of mustard a higher aerial part height was expected when compared with the 

other two species tested due to the plant’s characteristics. In the case of anthroposoil EST L, 

the low plant height may be linked to the slightly acid pH (4.75), lower OM content, the 

noticeable Pb concentration and the presence of several POPs seen at low levels.  
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Figure 20 – Boxplots showing the distribution of aerial parts height of alfalfa, cress and mustard 
cultivated in the EST (a) and PEY (b) anthroposoils (T = Test control; Alf = Alfalfa; Cr = Cress; Mus = 
Mustard). (n=3 for T and n=5 for others). Different colors correspond to different statistical groups (p 
values of 0.005, 0.007 and 0.0.003 in EST samples for Cr, Alf and Mus; p values of 0.004, 0.003 and 
0.073 in PEY samples for Cr, Alf and Mus). 
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Figure 21 shows the boxplots for the distribution of the dry weight of aerial parts of alfalfa, 

cress and mustard cultivated in the EST (a) and PEY (b) anthroposoils. As expected, the dry 

weight of the aerial parts was higher for the control, EST G, EST C, PEY Ic and PEY IIb 

anthroposoils for all the three plants tested. This was obviously related to the fact that the higher 

germination rates and the higher weight of the aerial parts were verified in these samples. 

The differences in aerial part dry weight between the species tested were certainly related to the 

differences in germination rates and to the physiological characteristics that determine the 

capacity of each plant species to cope with contamination.  

Also, the presence of certain POPs can be linked to toxicity effects that inhibit the correct 

development of the aerial tissues; also, the presence of the contaminants can cause damage in 

the plant tissues already developed as a result of exposure.  In a study on the phytoxicity of 

contaminated sediments deposited on soils, Bedell at al. (2006) verified that the biomass of 

aerial parts of maize and ryegrass decreased due to the presence of certain contaminants. 
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Figure 21 –   Boxplots showing the distribution of dry weight of aerial parts of alfalfa, cress and mustard 
cultivated in the EST (a) and PEY (b) anthroposoils (T = Test control; Alf = Alfalfa; Cr = Cress; Mus = 
Mustard). (n=3 for T and n=5 for others). Different colors correspond to different statistical groups (p 
values of 0.0003, 0.0006 and 0.008 in EST samples for Cr, Alf and Mus; p values of 0.001, 0.004 and 
0.019 in PEY samples for Cr, Alf and Mus). 
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Figure 22 shows the boxplots for the distribution of the dry weight of aerial parts of alfalfa, 

cress and mustard cultivated in the EST (a) and PEY (b) anthroposoils. As expected, the dry 

weight of the aerial parts was higher for the control, EST G, PEY Ic and PEY IIb anthroposoils 

for all the three plants tested. Root development did not seem to be inhibited in these 

anthroposoils. Low root dry weight was verified for anthroposoils EST C, EST K, EST L and 

PEY IVa, which may have been due to the physico-chemical characteristics of these 

anthroposoils, such as pH, OM content, compactness to the presence of certain levels of MTEs 

and/or POPs that can affect the correct development of plant roots.  

Moreover, the inhibition effect of the presence of PCBs on plant growth and development in 

soils has already been well documented. Strek and Weber (1982) found that PCBs induced an 

inhibition up to 47% for soybean, beet and pigweed growth and height. Weber and Mrozek 

(1979) performed a toxicity study of PCBs in soybean plants, where they found that PCBs 

applied to the soil tested significantly inhibited the height and fresh weight of aerial parts in 

application rates of 1-100 ppm of PCBs. In the present study, inhibition effects were already 

observed, particularly in the case of plants cultivated in PEY samples. This could have occurred 

due to the high levels of PCBs found in these anthroposoils. Also, the biomass loss can be 

explained by the fact that the products of PCBs and their degradation products become 

phytotoxic to plants due to the increase in their concentration, bioavailability and solubility 

(Mehmannavaz et al., 2002). 
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Figure 22 – Boxplots showing the distribution of dry weight of roots (b) of alfalfa, cress and mustard 
cultivated in the EST (a) and PEY (b) anthroposoils (T = Test control; Alf = Alfalfa; Cr = Cress; Mus = 
Mustard). (n=3 for T and n=5 for others). Different colors correspond to different statistical groups (p 
values of 0.0007, 0.005 and 0.0.0013 in EST samples for Cr, Alf and Mus; p values of 0.003, 0.006 and 
0.003 in PEY samples for Cr, Alf and Mus). 
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MAIN RESULTS  

 

 Toxic effects were observed for E. fetida and the three plant species cultivated in 

the anthroposoils studied, in particular E. fetida reproduction rate, E. fetida body mass, 

plant seed germination rates and the maximal height of plant aerial parts. 

 Levels of POPs accumulated in organisms (Subchapters 4.7.1 and 4.7.2). 

 It can be assumed that the toxic effects were caused mainly by the mix of 

contaminants present in the anthroposoils tested, with in some cases the slight influence 

of certain physico-chemical parameters.  

 A PCA will be performed to identify possible correlations between the phsysico-

chemical soil properties and POPs levels in anthroposoils and E. fetida tissues, capable 

of explaining the effects of contamination in exposed individuals of E. fetida 

(Subchapter 4.8). 

 SET and ERITME indexes will be calculated to rank the sites tested according to 

the effective POPs transfer from anthroposoils to the organisms tested and provide an 

idea of the potential risk to the real ecosystem (Subchapter 4.9). 



 Chapter 4. Results and discussion 

119 
 

4.6. Levels of organic contaminants in Eisenia fetida and in the plants tested 

 

4.6.1. Eisenia fetida 

 
 
Since hydrophobic organic contaminants are mainly distributed to the lipids within the 

organism, the concentrations of POPs measured in earthworms are expressed as lipid-

normalized chemical concentrations (lw). The lipid contents were determined according to the 

chemical procedure described in subchapter 3.4. The lipid contents of E. fetida obtained in the 

present study ranged from 1.73 % in juveniles to 4.07 % in adults based on dw. The results 

obtained were a little lower than the lipid contents of 9 – 10 % reported by Fadaee (2012) and 

Gunya et al. (2016) for E. fetida. 

The concentrations of PCBs, PCDDs, PCDFs, PBDEs, PBBs, nHBB, nPBB, nPBT and PBEB 

in the tissues of E. fetida exposed to the 8 anthroposoils studied are listed in Tables 24 and 25 

in dw basis, for adults and juveniles respectively. In Tables 26 and 27 the concentrations are 

normalized to the lipid contents. The lw normalized concentrations will be used by preference 

in the results and discussion. 
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Table 24 – Mean concentrations of the quantified POPs measured in adult earthworm tissues (in µg.kg-1 dw) after exposure to Estarreja (EST) and Peyraud 6 
(PEY) soils (n=2).  

ADULTS 

 EST ISO EST C EST G EST K EST L PEY ISO PEY Ic PEY IIb PEY IIIa PEY IVa 

∑PCBs-cop 0.06 0.05 0.06 0.04 0.05 0.05 0.64 0.23 0.14 0.29 

∑PCBs-noncop 8.83 5.38 6.22 5.48 5.73 4.16 43.9 57.0 11.6  21.8 

∑PCBs-ndl 63.5 41.7 50. 3 40.5 43.8 34.4 348 308 91.9 141 

∑7PCDDs 0.002 0.004 0.005 0.002 0.003 0.003 0.20 0.13 0.05 0.05 

∑10PCDFs 0.002 0.002 0.003 0.002 0.002 0.001 0.04 0.02 0.04 0.01 

∑7PBDEs 0.058 0.004 0.003 0.003 0.004 0.19 0.29 0.39 0.33 0.36 

∑8PBDEs 0.43 0.09 0.08 0.08 0.09 0.55 0.89 1.10 1.01 1.03 

∑3PBBs <LOD <LOD <LOD <LOD <LOD <LOD 0.002 0.003 <LOD <LOD 

nHBB 0.04 0.01 0.01 0.01 0.01 0.06 0.06 0.08 0.05 0.03 

nPBB 0.004 0.001 0.001 0.001 0.001 0.014 0.016 0.019 0.018 0.018 

nPBT 0.010 0.002 0.001 0.001 0.002 0.077 0.085 0.068 0.062 0.051 

PBEB <LOD <LOD <LOD <LOD <LOD 0.001 0.001 0.002 0.001 0.001 

LOD = Limit of detection. 
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Table 25 – Mean concentrations of the quantified POPs measured in juvenile earthworm tissues (in µg.kg-1 dw) after exposure to Estarreja (EST) and Peyraud 
6 (PEY) soils (n=2). 

 JUVENILES 

EST ISO EST C EST G EST K EST L PEY ISO PEY Ic PEY IIb PEY IIIa PEY IVa 

∑PCBs-cop 0.11 0.11 0.20 0.19 0.08 0.03 0.40 0.15 0.07 0.14 

∑PCBs-

noncop 
5.77 4.57 7.57 5.33 2.50 1.86 22.7 30.1 4.72 10.2 

∑PCBs-ndl 38.0 32.7  55.7 33.3 15.5 13.6 216 211 43.6 75.8 

∑7PCDDs 0.004 0.02 0.03 0.02 0.03 0.01 0.27 0.23 0.07 0.07 

∑10PCDFs 0.01 0.01 0.02 0.02 0.01 0.004 0.04 0.03 0.04 0.01 

∑7PBDEs 0.03 0.03 0.19 0.12 0.02 0.16 0.75 0.54 0.29 0.31 

∑8PBDEs 0.98 0.96 5.67 3.94 0.49 3.85 5.67 3.73 2.84 2.14 

∑3PBBs <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD 

nHBB 0.04 0.03 0.16 0.12 0.02 0.29 0.19 0.10 0.21 0.12 

nPBB 0.01 0.01 0.04 0.03 0.003 0.06 0.05 0.03 0.03 0.02 

nPBT 0.02 0.02 0.15 0.10 0.01 0.18 0.12 0.07 0.09 0.05 

PBEB 0.002 0.003 <LOD 0.01 0.002 0.001 0.001 0.002 0.001 0.001 

LOD = Limit of detection. 
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Table 26 – Mean concentrations of the quantified POPs measured in adult earthworm tissues (µg.kg-1 lw) after exposure to Estarreja (EST) and Peyraud 6 (PEY) 
soils (n=2). 
  

 

ADULTS 

EST ISO EST C EST G EST K EST L PEY ISO PEY Ic PEY IIb PEY IIIa PEY IVa 

∑PCBs-cop 3.47 2.86 3.32 2.39 2.96 2.98 36.9 13.4 8.09 16.7 

∑PCBs-noncop 510 311 360 317 331 240 2540 3293 670 1261 

∑PCBs-ndl 3670 2408 2909 2339 2532 1988 20088 17789 5312 8154 

∑7PCDDs 0.09 0.21 0.32 0.11 0.15 0.16 11.3 7.55 2.81 2.87 

∑10PCDFs 0.11 0.13 0.20 0.09 0.12 0.06 2.38 1.22 2.14 0.59 

∑7PBDEs 3.53 0.23 0.17 0.17 0.23 10.9 16.8 22.3 18.9 20.8 

∑8PBDEs 25.0 5.03 4.62 4.39 5.32 31.7 51.4 63.3 58.1 59.7 

∑3PBBs <LOD <LOD <LOD <LOD <LOD <LOD 0.12 0.17 <LOD <LOD 

nHBB 2.08 0.35 0.29 0.29 0.35 3.64 3.30 4.39 2.72 1.62 

nPBB 0.20 0.06 0.06 0.06 0.06 0.81 0.93 1.10 1.04 1.04 

nPBT 0.58 0.12 0.06 0.06 0.17 4.45 4.91 3.93 3.58 2.95 

PBEB <LOD <LOD <LOD <LOD <LOD 0.06 0.06 0.12 0.06 0.06 

LOD = Limit of detection. 
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Table 27 – Mean concentrations of the quantified POPs measured in juveniles earthworm tissues (in µg.kg-1 lw) after exposure to Estarreja (EST) and Peyraud 
6 (PEY) soils (n=2). 

 

JUVENILES 

EST ISO EST C EST G EST K EST L PEY ISO PEY Ic PEY IIb PEY IIIa PEY Iva 

∑PCBs-cop 3.19 3.17 5.60 5.34 2.17 0.96 11.3 4.09 2.02 3.97 

∑PCBs-noncop 162 128 213 150 70.2 52.3 637 844 133 288 

∑PCBs-ndl 1066 919 1564 934  435 381 6078 5922 1226 2130 

∑7PCDDs 0.19 0.42 0.78 0.44  0.74 0.20 7.65 6.33 1.92 1.93 

∑10PCDFs 0.21 0.25 0.59 0.44 0.26 0.11 1.22 0.89 1.08 0.35 

∑7PBDEs 0.96 0.84 5.20 3.43 0.42 4.61 21.2 15.2 8.01 8.74 

∑8PBDEs 27.5 27.1 160 111 13.7 108 159 105 79.7 60.0 

∑3PBBs <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD 

nHBB 1.18 0.82 4.52 3.37 0.42 8.12 5.34 2.84 5.76 3.48 

nPBB 0.23 0.17 1.07 0.70 0.08 1.80 1.26 0.82 0.79 0.48 

nPBT 0.59 0.65 4.07 2.70 0.34 4.97 3.34 1.82 2.39 1.38 

PBEB 0.06 0.08 <LOD 0.34 0.06 <LOD <LOD <LOD <LOD <LOD 

LOD = Limit of detection. 
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The levels of all the POPs quantified were higher in E. fetida exposed to PEY anthroposoils 

and higher in juveniles rather than in adults exposed to both the anthroposoils tested. 

Mean concentrations of ∑PCBs-cop in the adult E. fetida tissues were in the range of 2.39 to 

3.32 µg.kg-1 lw and 8.09 to 36.9 µg.kg-1 lw, for the EST and PEY samples, respectively. Mean 

concentrations of ∑PCBs-cop in the juveniles E. fetida tissues were in the range of 2.17 to 5.60 

µg.kg-1 lw and 2.02 to 11.3 µg.kg-1 lw, for EST and PEY samples respectively. Among the 4 

congeners considered (CB-77, -81, -126, -169), CB-77 explains more than 50% of the total sum 

of coplanar ones. Regarding the ∑PCBs-noncop, the mean levels found in the tissues of E. 

fetida adults exposed to EST anthroposoils were from 311 to 360 µg.kg-1 lw, and in the range 

of 670 to 3293 µg.kg-1 lw in those exposed to PEY samples. The mean levels found in the 

tissues of E. fetida juveniles exposed to EST anthroposoils were from 70.2 to 212 µg.kg-1 lw, 

and in the range of 133 to 844 µg.kg-1 lw in those exposed to PEY samples. Among the 8 

congeners considered (CB-105, -114, -118, -123, -156, -157, -167, -189), CB-118 explains 

more than 50% of the total concentration. The mean levels of ∑PCBs-ndl measured in E. fetida 

adults were in the range of 2339 to 2909 µg.kg-1 lw in the EST samples and 5312 to 20088 

µg.kg-1 lw in the PEY samples. The mean levels of ∑PCBs-ndl measured in E. fetida juveniles 

were in the range of 435 to 1564 µg.kg-1 lw in EST samples and 1226 to 6078 µg.kg-1 lw in 

PEY samples. Among the 6 congeners considered (CB-28, -52, -101, -138, -153, -180), CB-

153, CB-138-and CB-180 explain about 80 to 90% of the total sum. The concentrations of 

∑PCBs-ndl also represent around 90% of the total sum of all the PCB congeners quantified. 

The levels of PCBs detected in the E. fetida exposed are significantly higher than those 

indicated by Shang et al. (2013) in a study with contaminated soils from an E-waste dismantling 

area in China where E. fetida and Allolbophora caliginosa trapezoides showed PCB levels of  

0.31 to 29.3 µg.kg-1 dw in their tissues. Despite the difference in the ranges of values, the same 

trend in the large contribution of PCB-28, -138 and -153  to the total sum (more than 80% of 

the total sum of PCBs) was also verified in both the study of Shang et al. (2013) and the present 

study. 

In the tissues of E. fetida adults exposed to EST samples, the mean concentrations of ∑7PCDDs 

were in the range of 0.11 to 0.32 µg.kg-1 lw. In adult E. fetida exposed to PEY anthroposoils, 

the mean levels measured ranged from 2.81 to 11.3 µg.kg-1 lw. In the tissues of juveniles, E. 

fetida exposed to EST samples, the mean concentrations of ∑7PCDDs were in the range of 0.42 

to 0.78 µg.kg-1 lw. In E. fetida adults exposed to PEY anthroposoils, the mean levels measured 

were from 1.92 to 7.65 µg.kg-1 lw. Generally, octachlorodibenzo-p-dioxin (OCDD) and 
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1,2,3,4,6,7,8-hepta CDD (1,2,3,4,6,7,8-HpCDD) accounted for the greatest proportion of 

PCDD/Fs (>80%) in all the E. fetida tissues analyzed. 
In the tissues of E. fetida adults exposed to EST samples, the mean concentrations of ∑10PCDFs 

were in the range of 0.088 to 0.196 µg.kg-1 lw. In the tissues of E. fetida adults exposed to PEY 

anthroposoils, the mean levels measured ranged from 2.81 to 11.3 µg.kg-1 lw. In the tissues of 

E. fetida juveniles exposed to EST samples, the mean concentrations of ∑10PCDFs were in the 

range of 0.25 to 0.59 µg.kg-1 lw. In the tissues of E. fetida juveniles exposed to PEY 

anthroposoils, the mean levels measured were from 0.35 up to 1.22 µg.kg-1 lw. Among PCDF 

homologs, octachlorodibenzofuran (OCDF) and 1,2,3,4,6,7,8-HeptaCDF (1,2,3,4,6,7,8-

HpCDF) were the predominant congeners and contributed about 60 % of the PCDFs in the 

anthroposoils studied. The levels of PCDDs and PCDFs detected in exposed E. fetida were in 

the same range as those indicated by Shang et al.  (2013) in a study with contaminated soils 

from an E-waste dismantling area in China, where E. fetida and Allolbophora caliginosa 

trapezoides showed levels of PCDDs and PCDFs from 0.19 to 2.18 µg.kg-1 lw in their tissues. 

The same trend of considerable contributions of octachlorodibenzo-p-dioxin (OCDD), 

1,2,3,4,6,7,8-HeptaCDD (1,2,3,4,6,7,8-HpCDD), octachlorodibenzofuran (OCDF) and 

1,2,3,4,6,7,8-HeptaCDF (1,2,3,4,6,7,8-HpCDF)  to the total sum was verified in both the study 

referred to and the present study. 

The mean Σ7PBDEs (excluding BDE-209) quantified in adult E. fetida tissues ranged from 0.17 

to 0.23 µg.kg-1 lw in those exposed to EST samples and from 16.8 to 22.3 µg.kg-1 lw in those 

exposed to PEY anthroposols. The mean Σ7PBDEs (excluding BDE-209) quantified in juvenile 

E. fetida tissues ranged from 0.42 to 5.20 µg.kg-1 lw in those exposed to EST samples and from 

8.01 to 21.2 µg.kg-1 lw in those exposed to PEY anthroposols. The Σ7PBDEs (excluding BDE-

209) measured almost completely correspond to the sum of the levels of congeners BDE-47 

and BDE-99. When including the BDE-209, the mean levels of Σ8PBDEs detected in adult E. 

fetida tissues were significantly higher, ranging from 4.39 to 5.32 µg.kg-1 lw in the EST samples 

and from 51.4 to 63.3 µg.kg-1 lw in the PEY anthroposols. In the E. fetida juvenile tissues, the 

mean levels of Σ8PBDEs ranged from 13.7 to 159 µg.kg-1 lw in the EST samples and from 60.0 

to 159 µg.kg-1 lw in the PEY anthroposols. Composition analysis clearly showed that in all the 

E. fetida tissues analyzed, BDE-209 was the highly predominant congener, explaining more 

than 90 % of the total PBDEs, followed by congeners BDE-47 and BDE-99. Congener BDE-

28 was close to the LOD in both the EST and PEY samples. The levels of PBDEs detected in 

exposed E. fetida were in the same range as those indicated by Shang et al.  (2013) in a study 

on contaminated soils from an E-waste dismantling area in China where E. fetida and 
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Allolbophora caliginosa trapezoides showed levels of PBDEs from 0.15 to 2.44 µg.kg-1 dw in 

their tissues. The same trend of considerable contribution of CB-47 and -99 to the total sum 

(more than 60 % of the total sum of PBDEs) was also verified in both the study referred to 

(although BDE-209 was not analyzed in that study) and in the present study.  
Σ3PBBs were detected only in the tissues of E. fetida adults exposed to two PEY anthroposoils, 

PEY Ic and PEY IIb with values of 0.12 and 0.17 µg.kg-1 lw, respectively.  

The nHBB mean concentrations found ranged from 0.29 to 0.35 µg.kg-1 lw and from 1.62 to 

4.39 µg.kg-1 lw, in the tissues of E. fetida adults exposed to EST and PEY samples, respectively. 

In the tissues of E. fetida juveniles, the levels of nHBB found ranged from 0.42 to 4.52 µg.kg-1 

lw and from 2.84 to 5.76 µg.kg-1 lw, in those exposed to the EST and PEY anthroposoils, 

respectively. The nPBB mean levels measured were 0.06 µg.kg-1 lw in adult E. fetida exposed 

to the EST samples and from 0.93 to 1.10 µg.kg-1 lw in adult E. fetida exposed to the PEY 

samples. The nPBB mean levels measured were from 0.08 to 1.07 µg.kg-1 lw in juvenile E. 

fetida exposed to the EST samples and 0.48 to 1.26 µg.kg-1 lw in the juveile E. fetida exposed 

to the PEY samples. Mean levels of nPBT in the tissues of adult E. fetida exposed to EST 

anthroposoils ranged from 0.06 to 0.12 µg.kg-1 lw and from 2.95 to 4.91 µg.kg-1 lw in the tissues 

of adult E. fetida exposed to the PEY anthroposoils. Mean levels of nPBT in the tissues of 

juvenile E. fetida exposed to EST anthroposoils were from 0.34 to 4.07 µg.kg-1 lw and from 

1.38 to 3.34 µg.kg-1 lw in the tissues of adult E. fetida exposed to PEY anthroposoils. PBEB 

was detected only in the tissues of E. fetida exposed to PEY soils with measured mean 

concentrations from 0.06 to 0.12 µg.kg-1 lw. On the contrary, in the case of juvenile E. fetida, 

PBEB was detected only in the tissues of those exposed to the EST anthroposoils with measured 

mean concentrations from 0.06 to 0.34 µg.kg-1 lw. 

In general, the levels of quantified nBFRs (nHBB, nPBB, nPBT and PBEB) in E. fetida tissues 

were very low in comparison with the other POPs quantified in these samples.  

The data obtained clearly revealed the occurrence of bioaccumulation of the POPs quantified 

in both adult and juvenile E. fetida tissues even at very low concentrations in the case of nBFRs. 

Indeed, in the case of PCBs, PCDDs, PCDFs and PBDEs, strong correlations with r values up 

to higher than 0.70 (see Annex II, Table I.1) were observed between the levels quantified in 

earthworm tissues and the levels found in the anthroposoils for these POPs. In the case of the 

PBBs and the nBFRs considered in the present study (nHBB, nPBB, nPBT and PBEB), no 

significant correlations (r values lower than 0.7) were found between the levels quantified in 

earthworm tissues and the levels measured in the anthroposoils.  
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Indeed, the levels of POPs present in juvenile E. fetida tissues may be due to the occurrence of 

POPs transfer from adults to juveniles or only be the result of a new accumulation of POPs 

from the anthroposoils. These two hypotheses are not mutually exclusive, and another fact is 

that the POPs found in higher levels in E. fetida tissues correspond to ancient and more 

persistent ones in the environment, providing a clear indication that juveniles could accumulate 

POPs from the matrix during the second phase of the reproduction assay (until days 28 and 52). 

Moreover, the influence and contribution of POPs transfer from adults to juveniles cannot be 

neglected. The difference in POPs accumulation in adult and juvenile tissues may be related to 

differences in metabolism and lipid contents between both age stages, and it may also be due 

to the possible occurrence of changes in the chemical properties tested in the anthroposoils 

during the first 28 days of the test, caused by adults foraging and subsequent changes in POPs 

levels and (increasing) bioavailability for the juveniles.  

The same trend of different degrees of accumulation in adults and juveniles was observed for 

the accumulation of MTEs in the same anthroposoils, a phenomenon already reported in Coelho 

et al. (2018).  

The activity of earthworms can decrease soil organic pollutants by stimulating microbial 

biodegradation (Schaefer and Filser, 2007), by enhancing soil aeration, by their own 

metabolism (Blouin et al., 2013) and by gut symbionts (Verma et al., 2006). Microorganisms 

are the foremost agents in the degradation of organic contaminants in soil, as  they enhance in 

an important way the bioavailability of contaminants, facilitating their uptake by other soil 

organisms, namely earthworms (Chaudhry and Ali, 1988; Masciandaro et al., 2013). 

Earthworms live in direct contact with soil porewater and particles and they can accumulate 

POPs via both alimentary and dermal uptake (Krauss et al., 2000; Vijver et al., 2003). It has 

been also observed that worm gut uptake becomes the dominant exposure route for strongly 

hydrophobic contaminants with a log Kow higher than 6 (Jager et al., 2003). 

Earthworms living in highly contaminated soils are expected to accumulate high tissue PBDE 

concentrations since these animals represent the base of the terrestrial food chain for many 

organisms, making them a pathway for the accumulation of PBDEs in organisms at higher 

trophic levels. Moreover, PBDEs are lipophilic and bioaccumulate in the fatty tissues of 

organisms (Voorspoels et al., 2006), thus significant correlations have usually been found in 

biota between PBDE concentrations and lipid content (Law et al., 2006a; Yu et al., 2009; Xiang 

et al., 2007). Literature data indicate that levels of BDE-47 are usually higher than those of 

BDE-99 in adipose tissue and they are much higher than those of BDE-209 (Choi et al., 2003; 

Covaci et al., 2002a; Meironyte et al., 2001).  This occurs partly due to the relative absorption 
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and persistence of these compounds and it may also be due to the fact that BDE 209 is so 

structurally large that it has difficulty in moving from environmental matrices to organism 

tissues.  

Some of the HBCDs present are probably not eliminated or depurated by the organisms, so 

instead this compound can be transformed into another diastereomer via metabolic processes. 

In earthworms, estimated soil-biota accumulation factors (ww soil / ww worm) ranged between 

0.03 and 0.08 based on the total concentration of HBCDs in worm tissue and estimates for the 

w/w concentration in soil after 28 days of exposure to a range of soil concentrations (Swedish 

Chemicals Agency European Commission Risk Assessment hexabromocyclododecane, 2008). 

The diastereomer specific biota-soil accumulation factor for α-HBCDs is more than one order 

of magnitude higher than the value for γ-HBCD (Swedish Chemicals Agency European 

Commission Risk Assessment hexabromocyclododecane, 2008). The refered study indicated 

the existence of a degree of bioisomerization of γ-HBCD to α-HBCD and the preferential 

biotransformation of γ-HBCD.  

Moreover, studies on the accumulation of nBFRs in living organisms are still scarce, a fact that 

makes it difficult to study potential exposure risks and discuss the environmental fate of these 

compounds (Iqbal et al., 2017). In subchapter 4.9, the BAF, SET, ERITME and ERITME-POP 

indexes will be calculated to infer the transfer of contaminants and evaluate the real 

ecotoxicological risk. 
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4.6.2. Plants 

 

The levels of POPs quantified in the three plant species cultivated in laboratory conditions in 

the EST G and PEY Ic soils are presented in Table 28. Among the 8 anthroposoils studied, the 

most contaminated of each sampling site was selected to conduct the analysis of POPs in plant 

tissues (Figures 5 and 6, Subchapter 3.1.1). 

 

 

 

 

MAIN RESULTS  

 

 The data obtained clearly revealed the occurrence of bioaccumulation of the POPs 

quantified in both adult and juvenile E. fetida tissues even at very low environmental 

concentrations in the case of nBFRs.  

 In the case of PCBs, PCDDs, PCDFs and PBDEs clear strong correlations with r 

values up to higher than 0.70 were observed between the levels quantified in earthworm 

tissues and the levels found in the anthroposoils for these POPs.  

 In the case of the PBBs and the nBFRs considered in this study (nHBB, nPBB, nPBT 

and PBEB), no significant correlations were found between the levels quantified in 

earthworm tissues and the levels measured in the anthroposoils.  

 The levels of POPs quantified in juvenile E. fetida tissues may be due to the 

occurrence of POPs transfer from adults to juveniles or it may only be the result of a 

new accumulation of POPs from the anthroposoils.  

 A PCA will be conducted to find the existence of possible correlations 

between the physico-chemical soil properties and POPs levels in anthroposoils and 

E. fetida tissues capable of explaining the effects of the in E. fetida individuals 

exposed to contamination (Subchapter 4.8). 

 BAFs will be calculated to infer the real risk of entry and diffusion along the 

food chain posed by each of the POPs families quantified (Subchapter 4.9).  
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Table 28 – Concentrations of quantified POPs (in ug.kg-1 dw) in the plants cultivated in the EST G and PEY Ic soils. (mean ± standard deviation; 
n = 3 or more except for roots indicated by * (n = 2). 

 

EST G PEY Ic 

CRESS ALFALFA MUSTARD CRESS ALFALFA MUSTARD 

AP R* AP R* AP R AP R* AP R* AP R 

ΣPCBs-
cop 

0.10 ± 
0.004 

0.03 
0.12 ± 
0.03 

0.02 
0.05 ± 
0.002 

0.03 ± 
0.01 

0.11 ± 
0.002 

0.36 
0.09 ± 
0.01 

0.24  
0.07 ± 
0.01 

0.34 ± 
0.14 

ΣPCBs-
noncop 

1.74 ± 
0.08 

0.88 
1.67 ± 
0.37 

0.55 
0.85 ± 
0.04 

0.85 ± 
0.17 

2.31 ± 
0.07 

10.7 
1.62 ± 
0.24 

7.22 
1.54 ± 
0.16 

7.22 ± 
3.65 

ΣPCBs-
ndl 

7.97 ± 
0.48 

9.98 
7.86 ± 
1.94 

6.77 
4.00 ± 
0.15 

10.9 ± 
2.17 

14.0 ± 
0.46 

84.4 
10.6 ± 
1.88 

54.3 
9.53 ± 
0.73 

50.2 ± 
28.9 

Σ7PCDDs 0.01 ± 
0.002 

0.09 
0.01 ± 
0.003 

0.04 
0.01 ± 
0.001 

0.06 ± 
0.03 

0.06 ± 
0.002 

0.46 
0.02 ± 
0.01 

0.18 
0.04 ± 
0.01 

0.35 ± 
0.18 

Σ10PCDFs 0.01  0.02 
0.004 ± 
0.001 

0.01 0.002 ± 0 
0.02 ± 
0.01 

0.01 ± 
0.001 

0.08 
0.01 ± 
0.002 

0.03 
0.01 ± 
0.002 

0.06 ± 
0.03 

Σ7PBDEs 0.53 ± 
0.03 

0.17 
0.45 ± 
0.17 

0.11 
0.31 ± 
0.03 

0.13 ± 
0.01 

0.40 ± 
0.05 

0.64 
0.24 ± 
0.03 

0.36 
0.20 ± 
0.02 

0.42 ± 
0.04 

Σ8PBDEs 2.29 ± 
1.32 

2.62 
1.52 ± 
1.15 

1.46 
4.81 ± 
1.22 

7.46 ± 
7.56 

8.16 ± 
4.53 

23.5 
6.86 ± 
4.65 

21.0 
3.75 ± 
0.94 

17.2 ± 
5.96 

ΣHBCDs 1.28 ± 
0.60 

86.58 
1.80 ± 
1.30 

19.96 
2.58 ± 
0.72 

55.0 ± 
27.1 

2.41 ± 
1.14 

3.16 
0.22 ± 
0.02 

0.60 
0.25 ± 
0.12 

3.86 ± 
5.21 

AP=aerial parts; R=roots 
 



 Chapter 4. Results and discussion 

131 
 

The concentrations of POPs measured in the tissues of the plants cultivated in the EST 

anthroposoil are lower than the levels measured in the plants cultivated in PEY anthroposoils 

(Table 28). This was expected since the levels of POPs in the PEY anthroposoils were much 

higher than those detected in the EST anthroposoils. Despite this general trend, HBCDs are an 

exception as the levels measured in the different plant parts were higher in the case of those 

cultivated in EST anthroposoils.  

Another expected and verified finding was that the roots accumulated higher quantities of POPs 

than the aerial parts for all the POPs considered. 

Usually POPs in soil are in direct contact with the plant root system. The rhizosphere can be 

considered as one of the most important regions where plants can interact with POPs, 

considering the existence of the plant roots together with the root exudates, the rhizosphere soil 

and the microbe community (Gerhardt et al., 2009; Zeng et al., 2017). Usually, the movement 

of POPs into the root area is blocked as the POPs are usually bound to the soil before reaching 

the rhizosphere zone and they are hydrophobic and insoluble in water. Commonly, the 

bioavailable fractions of POPs include only the water-soluble fractions that can be desorbed by 

water and acid-soluble fractions that can be desorbed by root exudates such as carbohydrates, 

organic acids and amino acids (Wu and Zhu, 2016). Certain properties of POPs such as water 

solubility, vapor pressure, molecular weight and octanol/water partition coefficients affect 

POPs availability and uptake by plant roots (Zieve and Peterson, 1984). In the case of 

hydrophobic POPs, root uptake is certainly not a significant pathway of accumulation 

(Simonich and Hites, 1995). It is expected that the most lipophilic POPs (logKow higher than or 

around 4) enter the epidermis of the root and are transported through the xylem system. 

However, POPs with a logKow higher than 5 will not reach the above ground plant tissues due 

to their hydrophobicity (Ryan et al., 1988). In this case, volatilization may be the major potential 

source of leaf contamination through the soil-air pathway (Collins and Finnegan, 2010). 

Plants that grow in soils contaminated with POPs contribute to the increase in the density of the 

microbial population and its diversity in rhizosphere soils, b the higher metabolic capacities for 

POPs in rhizosphere soils than in bulk soils (Fletcher et al., 1995; Alkorta and Garbisu, 2001). 

Also, plant root exudates may change the porosity of the soil and physico-chemical conditions, 

thus facilitating the POPs biodegradation (Oleghe et al., 2017). 

Usually the transport of POPs from the roots to the aerial plant parts is insignificant due to the 

low hydro solubility of these compounds as well as the fact that they are always strongly bound 

to the organic matter fraction of the soil. Moreover, limited and sometimes contradictory 

information on PCBs uptake by plants has been given in the literature while most of the studies 
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have focused only on a single congener or commercial formulation (Iwata and Gunther, 1979; 

Aken et al., 2010; Anyasi and Atagana, 2011). 

The uptake mechanisms of PCBs by plants are currently well-referenced in the literature and 

well-understood: they appear to occur mainly through two general ways. The first is through 

the root system and the other is by adsorption in the foliage and stems that can also involve 

subsequent migration through the epidermal layers (Mackova et al., 2007). The first route 

considered is probably the most important route of direct entry of PCBs in plant tissues, while 

the second is related to the uptake of airborne PCBs by terrestrial plants when the compounds 

absorb to the outer surface of the plants and are dissolved by the lipophilic compounds present 

in the plant cuticle (Gilbert and Crowley, 1997).  Plant roots tend to transfer contaminants from 

the bulk soil to the rhizosphere. A wide range of plant species has been proven to enhance the 

dissipations of PCBs in soil, from trees to different forages, grasses and legumes (Dzantor et 

al., 2000; Chekol et al., 2004; Mackova et al., 2009; Ding et al., 2011). Medicago sativa L. is 

widely known due to its capacity to selectively support the growth of PCBs-degrading bacteria 

(Li et al., 2013; Teng et al., 2011). The increase in soil microbial and enzymatic activity due 

the presence of plants is usually correlated with the increase in PCBs-degradation level (Chekol 

et al., 2004; Aken et al., 2010). Compared to our results, the levels obtained in the parts of the 

three plant species exposed were in the same range, or in some cases a little above, those of the 

PCBs concentrations measured in several laboratory and in situ studies. An accumulation of 

Σ3PCBs in Lolium perenne (3.5 µg.kg-1 dw) and in Melaleuca leukadendra (2.64 to 7.00 µg.kg-

1 dw) collected in Brisbane in Australia was reported (Müller et al., 2001). Also, Zhao et al. 

(2006) detected levels of Σ17PCBs of about 2.80 µg.kg-1 dw in grass samples in China. In a 

study on the distribution of certain POPs in soils and vegetation near a landfill in Greece, 

Chrysikou et al. (2008) found levels from 3.64 to 25.9 µg.kg-1 dw for Σ7PCBi in Solanum 

eleagnifolium and Solanum trifolium plant species. Also, several studies reported PCB uptake 

and translocation by edible vegetables such as: soybeans (Suzuki et al., 1977), carrots (Iwata 

and Gunther, 1976), beets, turnips and beans (Sawhney and Hankin, 1984). It was also observed 

that the lower chlorinated congeners (PCB-28, -52 and -101) were found to be more abundant 

in the shoots than in the roots of these plant species (Iwata and Gunther, 1976; Suzuki et al., 

1977; Sawhney and Hankin, 1984). Liu and Schnoor (2008) concluded that some mono to tetra 

PCBs are absorbed by plant roots but only the lower chlorinated ones undergo translocation to 

aerial plant tissues and this was also verified in the present study. Members of the Cucurbitaceae 

family have been shown to accumulate PCBs in their tissues (Hulster et al., 1994). In a study 

with pumpkin plants, Aslund et al. (2008) also found that the PCB concentration increased 
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within the stem and leaves after a short period of exposure to contaminated soils, but the 

concentrations measured in the plant roots remained unchanged.  

Sandermann (1994) and Coleman et al. (1997) considered a green liver model for the 

metabolism of xenobiotics by plants that comprises a three-way process starting with the 

activation phase consisting of the oxidation of PCBs to very soluble and reactive hydroxylated 

products. The second phase involved the conjugation of activated compounds with plant 

molecules forming lesser toxic and more soluble compounds. In the third and final phase of this 

sequestration process, the products formed are adsorbed into plant organs. Although the studies 

on plant metabolism capacities for PCBs degradation are quite recent (Aken et al., 2010), 

several studies have already shown the effective transformation, degradation and 

metabolization of PCBs in plant cells (Mackova et al., 2007; Kucerova et al., 2000; Chroma et 

al., 2003; Harms et al., 2003; Rezek et al., 2007). These works lead to the conclusion that plant 

metabolism of PCBs is dependent on plant species and on the strain and degree of chlorination, 

as it is more effective in the case of lower chlorinated PCBs. The present study verifies this 

trend and shows that PCBs uptake and accumulation can be selective and different for different 

plant species. 

PCDDs and PCDFs are highly lipophilic compounds primarily sorbed by plant roots and soil 

components, though they are not usually translocated within plant tissues (Reischl, 1989). 

Despite that, several previous studies showed that bioconcentrations of PCDDs and PCDFs 

clearly exist in zucchini plants two orders of magnitude higher than those found in vegetables 

such as pumpkin and cucumber, even though these three plants belong to the Cucurbita family 

(Hulster et al., 1994).  

As already stated by Hulster et al. (1994) and Kersten et al. (1995), although PCBs, PCDDs and 

PCDFs show quite similar characteristics, the uptake of these POPs by plant species can be 

different probably due to the difference in plant physiology and root exudate composition. 

The roots and xylem exudates of zucchini (Curcubitaceae) can solubilize PCDDs and PCDFs 

(Held and Door, 2000), thus explaining the entry of these POPs in root tissues. In the case of 

the plants cultivated in the anthroposoils studied, this was verified with some differences in 

uptake by the different species but in general the levels of PCBs, PCDDs and PCDFs measured 

were higher in the plant roots than those found in the aerial parts. 

The levels measured in the three plant species tested were much lower than those measured by 

Müller et al. (1994) in carrots, lettuce and peas (values from 0.05 to 0.48 µg.kg-1 dw). 

Vegetables are usually expected to contain relatively low BFRs concentrations because of their 

high-water contents, low lipid contents, and their primary positions in ecosystems. But our 
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results showed that PBDEs and HBCDs can be accumulated at appreciable levels in plant roots 

and aerial parts. 

The levels of PBDEs obtained in the parts of the three plant species exposed were quite low 

when compared to those obtained in laboratory tests by Yang et al. (2018) with the cultivation 

of sweet potato vines where mean levels of 19.4 µg.kg-1 dw were recorded. Some plant crops 

show the ability to translocate PBDEs from soil into vegetative structures and this may result 

in consistent low-level exposure through diet (Navarro et al., 2017). Several laboratory studies 

have demonstrated the capacity of vegetables such as spinach (Spinacia oleracea), potatoes 

(Solanum tuberosum), carrots (Daucus carota), lentils (Lens culinaris) as well as some cereals 

(Triticum aestivum and Oryza sativa) to accumulate PBDEs in their tissues (Ohta et al., 2002; 

Bocio et al., 2003). Interestingly, Ohta et al. (2002) in a study on PBDEs accumulation in 

spinach, found that not only the levels of PBDEs quantified in spinach were higher than in the 

other vegetables studied but also the congener composition was different from that of the root 

vegetables, namely potato and carrot, analyzed in the study. As in the studies referred to above, 

in our cultivated plants also some differences in PBDEs accumulation were observed between 

plant species as well as in the congener composition analyzed. In both the roots and aerial parts 

of our cultivated plant species, the congeners present in higher quantities were BDE-209, 

followed by BDE-47 and BDE-99.  

The authors suggested that this can be explained by a difference in contamination pathways. 

Moreover, there are several factors that may greatly affect the uptake of PBDEs by plants. 

According to Vrkoslavova et al. (2010), plants from different species show different affinities 

to PBDEs, even when cultivated in the same soil and under the same conditions. In laboratory 

study with various plant species, Huang et al. (2010)  found that uptake levels of PBDEs in 

ryegrass (Lolium multiflorum), alfalfa (Medicago sativa), pumpkin (Cucurbita moschata), 

summer squash (Cucurbita pepo) and radish (Raphanus sativus) were very distinct even when 

they were cultivated in the same conditions. These authors also found that different tissues 

within the same plant have different affinities to accumulate PBDEs. For maize (Zea mays), 

pumpkin and ryegrass, it was demonstrated that their roots exhibit a higher capacity to 

accumulate PBDEs than their stems and leaves (Huang et al., 2010). Also, in the cultivated 

plants considered in the present study, roots showed a greater affinity to accumulate PBDEs in 

comparison to aerial parts. 
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PART C: Statistical analysis by Principal Component Analysis (anthroposoil 

and E. fetida data) 

 

4.7. Principal Component Analysis (PCA) of the entire data set 
 

To investigate the spatial distribution and establish possible existing relations between: (i) the 

levels of POPs and MTEs found in the anthroposoils studied, (ii) the levels of POPs in E. fetida 

tissues, and (iii) the physicochemical parameters of the anthroposoils, a principal component 

analysis (PCA) was applied. The results obtained with this PCA will be exploited and explained, 

from the most global approach to the narrowest one, following 4 different steps, focusing on:  

 First step: considering the key soil properties, MTEs levels and POPs concentrations 

quantified in the soils and in E. fetida samples; 

 Second step: considering the key soil properties and POPs concentrations quantified in 

the soils and in  E. fetida samples; 

 Third step: considering the key soil properties and the levels of PCDDs, PCDFs and 

PCBs quantified in the soils and in  E. fetida samples; 

 Fourth step: considering the key soil properties and the BFRs concentrations quantified 

in the soils and in E. fetida samples. 

Data on POPs accumulation in the plant species tested will not be considered in this analysis 

since at this moment only a few data are available, thus they are not representative enough to 

be considered. Moreover, for the risk assessment approach using the BAF, ERTIME and SET 

indexes, the data were focused on earthworm availability and transfer. 

 

Step I: Considering the key soil properties, MTEs levels and POPs concentrations 
quantified in soils and Eisenia fetida samples 
 

The first PCA was run to consider the key soil properties, the MTE pseudo-total levels 

quantified in the anthroposoils studied and POPs concentrations quantified in the anthroposoils 

and in the E. fetida tissues. Table 29 gives the loadings of the parameters considered for the 

first five components. 
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Table 29 – Loadings of PCA including key soil properties, pseudo-total levels of MTEs in anthroposoils 
and POPs concentrations in anthroposoils and E. fetida tissues (noted Ef). 

  

Components 

PC1 PC2 PC3 PC4 PC5 

Sand -0.69 -0.49 -0.03 0.27 -0.39 
Silt 0.62 0.50 0.04 -0.29 0.45 
Clay 0.91 0.39 -0.02 -0.09 -0.00 
OM 0.74 0.30 0.35 -0.23 -0.02 
TOC 0.74 0.30 0.35 -0.23 -0.02 
NTDumas 0.87 0.38 0.27 -0.13 0.03 
C/N -0.64 -0.40 -0.20 -0.00 -0.26 
Carbonates tot 0.90 0.26 0.02 0.16 -0.25 
CECMetson 0.87 0.22 0.24 -0.32 0.16 
pH H2O 0.90 0.28 0.10 0.13 -0.23 
pH KCl 0.90 0.29 0.14 0.13 -0.21 
CaO 0.86 0.31 0.01 0.17 -0.27 
K2O 0.87 0.13 0.41 -0.06 0.04 
MgO 0.94 0.25 0.08 0.07 -0.16 
POlsen 0.60 -0.23 0.56 -0.26 0.01 
Cd tot 0.96 -0.15 -0.21 -0.11 -0.06 
Cu tot 0.85 -0.10 -0.27 -0.28 -0.02 
Cr tot 0.98 0.10 -0.07 -0.09 -0.10 
Ni tot 0.98 0.06 -0.11 -0.12 -0.06 
Pb tot 0.86 0.12 -0.39 -0.08 -0.02 
Zn tot 0.97 0.05 -0.16 -0.17 -0.04 
ΣPCBs-dl-cop soil 0.84 -0.32 -0.32 -0.26 0.03 
ΣPCBs-dl-cop Ef 0.72 -0.33 -0.15 -0.12 0.35 
ΣPCBs-dl-noncop soil 0.88 -0.41 0.05 0.01 -0.09 
ΣPCBs-dl-noncop Ef 0.67 -0.48 0.30 0.21 0.20 
ΣPCBs-ndl soil 0.90 -0.38 -0.07 -0.09 -0.07 
ΣPCBs-ndl Ef 0.75 -0.48 0.14 0.09 0.20 
Σ7PCDDs soil 0.86 -0.39 -0.26 -0.14 -0.02 
Σ10PCDDs Ef 0.91 -0.39 -0.05 0.02 0.02 
Σ7PCDFs soil 0.85 -0.01 -0.50 0.05 -0.12 
Σ10PCDFs Ef 0.79 -0.02 -0.35 0.29 0.07 
Σ7PBDEs soil 0.86 -0.25 0.37 -0.04 -0.10 
Σ7PBDEs Ef 0.90 0.04 0.12 0.23 -0.03 
Σ8PBDEs soil 0.87 -0.35 0.25 -0.03 -0.10 
Σ8PBDEs Ef 0.48 0.16 -0.24 0.37 0.13 
Σ3PBBs soil 0.95 -0.18 -0.20 0.02 -0.13 
Σ3PBBs Ef 0.52 -0.55 0.23 0.28 0.26 
PBEB soil 0.49 0.71 -0.13 0.33 -0.15 
PBEB Ef -0.03 0.05 0.12 0.25 0.81 
nPBT soil 0.69 -0.29 -0.52 -0.38 0.11 
nPBT Ef 0.75 -0.01 -0.21 0.45 0.33 
nHBB soil 0.43 -0.42 0.51 0.42 -0.21 
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Table 29 (cont) – Loadings of PCA including key soil properties, pseudo-total levels of MTEs in 
anthroposoils and POPs concentrations in anthroposoils and E. fetida tissues (noted Ef). 

  

Components 

PC1 PC2 PC3 PC4 PC5 

nHBB Ef 0.67 0.23 -0.22 0.45 0.05 
nPBB soil 0.93 -0.29 0.15 0.02 -0.13 

nPBB Ef 0.79 0.14 -0.11 0.45 0.14 

Total variance explained (%) 64.37 9.89 6.57 5.15 4.39 

Cumulative variance explained (%) 64.37 74.26 80.83 85.98 90.37 

 
 
Extraction Method: Principal Component Analysis 
Note: Strong loadings >0.80 are shown in bold style; moderate loadings 0.60 – 0.80 in italics.  
 

With the exception of the PBEB levels measured in E. fetida (PBEB Ef), the component matrix 

shows that strong loadings of all the other variables considered are associated with PC1 which 

explains 64.37 % of the total variance. PC2, which concerns 9.89 % of the total variance, seems 

to be essentially explained by the PBEB contents measured in the anthroposoils (PBEB soil). 

The PBEB concentrations in E. fetida tissues (PBEB Ef) are strongly associated with PC5. This 

fact clearly indicates the possibility of a difference in the behavior and distribution of PBEB in 

the anthroposoils as well as its availability and subsequent uptake and accumulation dynamics 

in E. fetida tissues when compared to the other POPs considered. The PC3, PC4 and PC5 

components contain a mix of all the variables considered for this factor analysis, explaining 

6.57 %, 5.15 % and 4.39 %, respectively, of the total variance. 
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Figure 23 – Loading plots for PC1 and PC2, and PC1 and PC3, showing a clear separation between the 
two physicochemical anthroposoil properties, anthroposoil sand fraction and C/N ratio and all the other 
variables considered in the present study (other key anthroposoil properties, pseudo-total levels of MTEs 
in the anthroposoils and POPs concentrations in the anthroposoils and E. fetida tissues). 
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Figure 24 – Loading plot for PC2 and PC3 showing that most part of the variables considered (key 
anthroposoil properties, pseudo-total levels of MTEs in anthroposoils and POPs concentrations in 
anthroposoils and E. fetida tissues) have identical significance for these two principal component 
factors. 
 
Regarding the loading plots presented in Figures 23 and 24, it can be seen that the major part 

of the variables are well represented on the loading plots considered once they are positioned 

relatively close to the circumference of the correlation circle. In the specific case of the two 

physicochemical parameters, anthroposoil sand content (Sand) and the C/N ratio (C/N), they 

appear to be both negatively correlated with PC1 and PC3 but positively correlated with PC2, 

explained by the PBEB contents measured in the anthroposoils (PBEB soil). The C/N ratio is 

also positively correlated with PC5, explained by the PBEB concentrations in E. fetida tissues 

(PBEB Ef). The loading map corresponding to axes PC2 and PC3 (Figure 24) shows that, except 

for the PBEB levels measured in the anthroposoils, all the other variables seem to have similar 

loads.
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Figure 25 – Observations plots and biplots of PC1, PC2 and PC3 showing the distribution of the variables (key anthroposoil properties, pseudo-total levels of 
MTEs in anthroposoils and POPs concentrations in anthroposoils and E. fetida tissues) and the observations (samples) considered in the present study.
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In the observation plots displaying axes PC1 vs PC2 and PC1 vs PC3 (Figure 25), the EST 

samples are negatively correlated with PC1 and the PEY samples are positively correlated with 

this axis, which can be explained by the significantly higher POPs contents in the tissues of the 

E. fetida individuals exposed to PEY anthroposoils. Moreover, the distribution of the 

observations seems to be site dependent since the samples corresponding to adult and juvenile 

E. fetida for each site appears close to each other. The fact that there are physiological 

differences between the adults and juveniles seems to be a non-conditioning parameter for POPs 

accumulation. 

 

Step II: Considering the key anthroposoil properties and POPs concentrations quantified 
in the anthroposoil and Eisenia fetida samples 
 

To discard the possible existence of a considerable influence of MTEs contents in the 

distribution of variables and results, as well as focus on POPs and notably RFBs in the present 

study, a PCA was run, considering only the most common key anthroposoil properties 

considered and the POPs concentrations quantified in the anthroposoils and in E. fetida tissues. 

Table 30 gives the loadings of the parameters considered for the first five components. With 

the exception of the sand quantities, C/N ratio and the levels of PBEB measured in E. fetida 

(PBEB Ef), the component matrix shows that strong loadings of all the other variables 

considered are associated with PC1 which explains 61.12% of the total variance. PC2, which 

concerns 11.26% of the total variance seems to be essentially explained by the PBEB contents 

measured in the anthroposoils (PBEB soil). The PBEB concentrations in E. fetida tissues 

(PBEB Ef) are strongly associated with PC5. Also, in this case the results clearly indicate the 

possibility of a difference in the behavior and distribution of PBEB in anthroposoils as well as 

its availability and consequent uptake and accumulation dynamics in E. fetida tissues when 

compared to the other POPs considered. The PC3, PC4 and PC5 components contain a mix of 

all the variables considered for this factor analysis, explaining 6.8 %, 5.3 % and 4.95 % of the 

total variance, respectively. 
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Table 30 – Loadings of PCA including key anthroposoil properties and POPs concentrations in 
anthroposoils and E. fetida tissues (noted Ef). 

  
Components 

PC1 PC2 PC3 PC4 PC5 
Sand -0.68 -0.50 -0.09 0.40 -0.25 
Silt 0.62 0.50 0.10 -0.44 0.30 
Clay 0.90 0.39 -0.01 -0.12 -0.06 
OM 0.75 0.30 0.36 -0.14 -0.08 
TOC 0.75 0.30 0.36 -0.14 -0.08 
NTDumas 0.88 0.39 0.25 -0.08 0.00 
C/N -0.66 -0.41 -0.14 0.05 -0.25 
Carbonates tot 0.90 0.26 -0.05 0.22 -0.19 
CECMetson 0.87 0.23 0.30 -0.30 0.04 
pH H2O 0.90 0.28 0.03 0.21 -0.17 
pH KCl 0.90 0.29 0.07 0.21 -0.14 
CaO 0.87 0.31 -0.06 0.24 -0.20 
K2O 0.89 0.14 0.37 0.04 0.06 
MgO 0.94 0.25 0.03 0.12 -0.13 
POlsen 0.62 -0.21 0.57 -0.07 -0.01 
ΣPCBs-dl-cop soil 0.82 -0.32 -0.23 -0.38 -0.16 
ΣPCBs-dl-cop Ef 0.71 -0.33 -0.13 -0.32 0.25 
ΣPCBs-dl-noncop soil 0.88 -0.41 0.02 0.02 -0.11 
ΣPCBs-dl-noncop Ef 0.70 -0.48 0.18 0.18 0.31 
ΣPCBs-ndl soil 0.89 -0.38 -0.06 -0.11 -0.14 
ΣPCBs-ndl Ef 0.76 -0.48 0.08 0.03 0.24 
Σ7PCDDs soil 0.84 -0.39 -0.22 -0.23 -0.14 
Σ10PCDDs Ef 0.91 -0.39 -0.08 -0.04 -0.01 
Σ7PCDFs soil 0.82 -0.02 -0.50 -0.09 -0.20 
Σ10PCDFs Ef 0.78 -0.03 -0.44 0.11 0.10 
Σ7PBDEs soil 0.88 -0.25 0.33 0.07 -0.09 
Σ7PBDEs Ef 0.92 0.04 -0.00 0.21 0.04 
Σ8PBDEs soil 0.89 -0.34 0.21 0.04 -0.11 
Σ8PBDEs Ef 0.48 0.16 -0.41 0.14 0.13 
Σ3PBBs soil 0.94 -0.18 -0.21 -0.03 -0.18 
Σ3PBBs Ef 0.54 -0.55 0.11 0.21 0.39 
PBEB soil 0.48 0.71 -0.24 0.31 -0.04 
PBEB Ef -0.01 0.05 -0.00 -0.05 0.86 
PBT soil 0.65 -0.29 -0.37 -0.56 -0.15 
PBT Ef 0.76 -0.00 -0.41 0.15 0.39 
nHBB soil 0.47 -0.42 0.33 0.58 0.02 
nHBB Ef 0.67 0.23 -0.40 0.26 0.12 
nPBB soil 0.93 -0.28 0.10 0.06 -0.13 
nPBB Ef 0.80 0.14 -0.31 0.24 0.21 
Total variance explained (%) 61.12 11.26 6.88 5.37 4.95 
Cumulative variance explained (%) 61.12 72.38 79.26 84.63 89.58 

Extraction Method: Principal Component Analysis 
Note: Strong loadings >0.80 are shown in bold style; moderate loadings 0.60 – 0.80 in italics.  
 
 



 Chapter 4. Results and discussion 

143 
 

 
 

 
Figure 26 – Loading plots for PC1 and PC2 and PC1 and PC3 showing a clear separation between the 
two physicochemical anthroposoil properties, anthroposoil sand fraction and C/N ratio and all the other 
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variables considered (other key anthroposoil properties and POPs concentrations in anthroposoils and 
E. fetida tissues). 
 

 
Figure 27 – Loading plot for PC2 and PC3 clearly showing that the most of the variables (key 
anthroposoil properties and POPs concentrations in anthroposoils and E. fetida tissues) have identical 
significance for these two PCA components. 
 
Regarding the loading plots presented in Figures 26 and 27, it can be seen that the major part 

of the variables are well represented on the loading plots considered once they are positioned 

relatively close to the circumference of the correlation circle. In the specific case of the two 

physicochemical parameters, soil sand content (Sand) and the C/N ratio, they appear to be both 

negatively correlated with PC1 and PC3 but positively correlated with PC2, which is explained 

by the PBEB contents measured in the anthroposoils (PBEB soil). The C/N ratio is also 

positively correlated with PC5, which is explained by the PBEB concentrations in E. fetida 

tissues (PBEB Ef).  The loading map corresponding to axes PC2 and PC3 (Figure 27) shows 

that, except for the PBEB levels measured in the anthroposoils, all the other variables, namely 

the anthroposoil properties, seem to have similar loads. 
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Figure 28 – Observation plots and biplots of PC1, PC2 and PC3, showing the distribution of the variables (key anthroposoil properties and POPs concentrations 
in anthroposoils and E. fetida tissues) and the observations (samples) considered in the present study.



 Chapter 4. Results and discussion 

146 
 

In the observation plots displaying axes PC1 vs PC2 and PC1 vs PC3 (Figure 28), the EST 

samples are negatively correlated with PC1 and the PEY samples are positively correlated with 

this axis, which can be explained by the significantly higher POPs contents in the tissues of the 

E. fetida individuals exposed to the PEY anthroposoils. Moreover, the distribution of 

observations seems to be site-dependent once the samples corresponding to adult and juvenile 

E. fetida for each site appear close to each other in most of the cases. Some physiological 

differences between the adults and juveniles seem to be a non-conditioning parameter for POPs 

accumulation, although the accumulation of POPs in the E. fetida tissues contributes to the mass 

loss in the adults and the inhibition of reproduction (see subchapter 4.5.1). 

 
 
Step III: Considering the key anthroposoil properties and the levels of PCDDs, PCDFs 
and PCBs quantified in anthroposoils and Eisenia fetida samples 
 

After performing a PCA considering the key anthroposoil properties and all the POPs 

concentrations quantified in anthroposoils and in E. fetida tissues, in Step III only 3 families of 

the POPs studied will be considered for the PCA (PCBs, PCDFs and PCDFs). The objective is 

to see in more detail the existence (or not) of significant differences in the distribution of 

variables and results when only PCBs, PCDDs and PCDFs are considered. In Table 31, the 

loadings of the parameters considered for the first five components are displayed. 

With the exception of the sand quantities and the C/N ratio, the component matrix shows that 

strong loadings of all the other variables considered are associated with PC1 which explains 

67.5 % of the total variance. PC2, which concerns 12.4 % of the total variance, seems to be 

partially explained by the PCB, PCDD and PCDF contents measured in the anthroposoils and 

E. fetida samples. In this case the results clearly indicate the similarity in the behavior and 

distribution of the 3 POPs families considered in anthroposoils as well as their availability and 

subsequent uptake and accumulation dynamics in E. fetida tissues. The PC3, PC4 and PC5 

components contain a mix of all the variables considered for this factor analysis, explaining 

6.37%, 4.90% and 3.56% of the total variance, respectively. 
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Table 31 – Loadings of PCA including key anthroposoil properties and the PCDDs, PCDFs and PCBs 
concentrations in anthroposoils and E. fetida tissues (noted Ef). 

  

Components 

PC1 PC2 PC3 PC4 PC5 

Sand -0.74 0,47 -0,08 -0,46 -0,08 
Silt 0.68 -0,48 0,13 0,52 0,09 
Clay 0.93 -0,28 -0,17 0,05 0,01 
OM 0.78 -0,35 0,18 -0,25 -0,02 
TOC 0.78 -0,35 0,18 -0,25 -0,02 
NTDumas 0.91 -0,38 0,08 -0,07 0,02 
C/N -0.69 0,40 -0,11 -0,31 -0.10 
Carbonates tot 0.91 -0,12 -0,33 -0,22 0,00 
CECMetson 0.91 -0.27 0.27 0,10 -0,07 
pHH2O 0.92 -0.17 -0,24 -0,21 0.00 
pHKCl 0.92 -0,20 -0,20 -0,22 0.01 
CaO 0.88 -0,16 -0,36 -0,23 0.02 
K2O 0.91 -0,20 0,23 -0,10 -0,04 
MgO 0.95 -0,15 -0,20 -0,15 -0.02 
POlsen 0.63 0,02 0,62 -0,18 -0,19 
ΣPCBs-dl-cop soil 0.80 0,42 0,01 0,25 -0.28 
ΣPCBs-dl-cop Ef 0.71 0,43 0,13 0,20 0,35 
ΣPCBs-dl-noncop soil 0.84 0,43 0,12 -0,06 -0,23 
ΣPCBs-dl-noncop Ef 0.67 0,46 0,27 -0,20 0.43 
ΣPCBs-ndl soil 0.86 0,42 0,08 0,03 -0,25 
ΣPCBs-ndl Ef 0.74 0,50 0,21 -0,07 0.38 
Σ7PCDDs soil 0.80 0,48 0,01 0,19 -0.28 
Σ10PCDDs Ef 0.88 0,46 0,04 0,01 -0,04 
Σ7PCDFs soil 0.80 0,27 -0,46 0,22 -0.13 
Σ10PCDFs Ef 0.77 0,28 -0,45 0,13 0.27 

Total variance explained (%) 67.52 12.42 6.37 4.90 3.56 

Cumulative variance explained (%) 67.52 79.95 86.31 91.21 94.77 

Extraction Method: Principal Component AnalysisNote: Strong loadings >0.80 are shown in bold 
style; moderate loadings 0.60 – 0.80 in italics.  
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Figure 29 – Loading plots for PC1 and PC2 and PC1 and PC3 showing a clear separation between the 
two physicochemical anthroposoil properties, anthroposoil sand fraction and C/N ratio and all the other 
variables considered (other key anthroposoil properties and PCDDs, PCDFs and PCBs concentrations 
in anthroposoils and E. fetida tissues). 
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Figure 30 – Loading plot for PC2 and PC3 clearly showing that most of the variables (key anthroposoil 
properties and PCDDs, PCDFs and PCBs concentrations in anthroposoils and E. fetida tissues) have 
identical significance for these two PCA factors. 
 
Regarding the loading plots presented in Figures 29 and 30, it can be seen that the major part 

of the variables are well represented on the loading plots considered as they are positioned 

relatively close to the circumference of the correlation circle. In the specific case of the two 

physicochemical parameters, anthroposoil sand content (Sand) and the C/N ratio (C/N), they 

appear to be both negatively correlated with PC1 and PC3 but positively correlated with PC2. 

The loading map corresponding to axes PC2 and PC3 (Figure 30) shows that all the variables 

seems to have similar loads, except POlsen which appears to be strong correlated with PC3. 
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Figure 31 – Observation plots and biplots of PC1, PC2 and PC3 showing the distribution of the variables (key anthroposoil properties and PCB, PCDD 
and PCDF concentrations in anthroposoils and E. fetida tissues) and the observations (samples) considered in the present study.
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In the observation plots displaying axes PC1 vs PC2 and PC1 vs PC3 (Figure 31), the EST 

samples are negatively correlated with PC1 and the PEY samples are positively correlated with 

this axis, which can be explained by the significantly higher POPs contents in the tissues of the 

E. fetida exposed to PEY anthroposoils. Moreover, the distribution of observations seems to be 

site-dependent as the samples corresponding to adult and juvenile E. fetida for each site appear 

close to each other in most of the cases. The fact that there are physiological differences between 

the adults and juveniles seems to be a non-conditioning parameter for PCBs, PCDDs and 

PCDFs accumulation. 

 
 
Step IV: Considering the key anthroposoil properties and the BFRs concentrations 
quantified in anthroposoils and Eisenia fetida samples 
 
In this final step, only the key anthroposoil properties and the BFRs concentrations studied in 

anthroposoils and E. fetida tissues will be considered for the PCA. The objective in this step is 

to see in more detail the existence or not of significant differences in the distribution of variables 

and results, when considering only the BFRs levels measured. Table 32 gives the loadings of 

the parameters considered for the first five components. 

Except for the sand quantities, the C/N ratio and the concentrations of PBEB measured in E. 

fetida tissues (PBEB Ef), the component matrix shows that in general strong loadings of all the 

other variables considered are associated with PC1, which explains 61.38% of the total 

variance. PC2, which concerns 10.11% of the total variance, seems to be partially explained by 

the nHBB contents measured in the anthroposoils. In this case the results indicate similarities 

in the behavior and distribution of the nBFRs in the anthroposoils as well as its availability and 

consequent uptake and accumulation dynamics in E. fetida tissues. The PC3, PC4 and PC5 

components contain a mix of all the variables considered for this factor analysis, explaining 

7.67%, 6.27% and 4.63% of the total variance, respectively.  
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Table 32 – Loadings of PCA including key anthroposoil properties and BFRs concentrations 
in anthroposoils and E. fetida tissues (noted Ef). 

  

Components 
PC1 PC2 PC3 PC4 PC5 

Sand -0.74 0.48 0.26 -0.36 -0.03 

Silt 0.68 -0.50 -0.23 0.42 0.01 

Clay 0.94 -0.28 -0.07 -0.07 0.11 

OM 0.81 -0.11 -0.34 -0.02 0.10 

TOC 0.81 -0.11 -0.34 -0.02 0.10 

NTDumas 0.94 -0.20 -0.24 0.02 -0.03 

C/N -0.72 0.29 0.09 -0.25 0.27 

Carbonates tot 0.93 -0.08 0.07 -0.32 -0.03 

CECMetson 0.90 -0.09 -0.34 0.22 0.09 

pHH2O 0.94 -0.08 0.01 -0.29 -0.09 

pHKCl 0.95 -0.08 -0.01 -0.26 -0.11 

CaO 0.91 -0.14 0.07 -0.36 -0.06 

K2O 0.92 0.09 -0.24 0.10 -0.21 

MgO 0.97 -0.07 -0.01 -0.20 -0.03 

POlsen 0.62 0.45 -0.42 0.22 -0.11 

Σ7PBDEs soil 0.85 0.47 -0.14 0.05 0.03 

Σ7PBDEs Ef 0.92 0.13 0.15 -0.07 -0.04 

Σ8PBDEs soil 0.83 0.52 -0.06 0.06 0.11 

Σ8PBDEs Ef 0.51 -0.06 0.63 0.27 0.13 

Σ3PBBs soil 0.87 0.24 0.17 -0.08 0.28 

Σ3PBBs Ef 0.45 0.56 0.10 0.16 -0.22 

PBEB soil 0.58 -0.61 0.20 -0.39 -0.27 

PBEB Ef -0.00 -0.13 0.19 0.74 -0.39 

PBT soil 0.55 0.14 0.08 0.21 0.72 

PBT Ef 0.73 0.00 0.55 0.21 0.03 

nHBB soil 0.44 0.69 0.08 -0.08 -0.48 

nHBB Ef 0.70 -0.12 0.58 0.06 -0.00 

nPBB soil 0.88 0.45 0.01 -0.01 0.11 

nPBB Ef 0.81 -0.03 0.51 0.10 -0.01 

Total variance explained (%) 61.38 10.11 7.67 6.27 4.63 

Cumulative variance explained (%) 61.38 71.49 79.16 85.43 90.06 

Extraction Method: Principal Component Analysis 
Note: Strong loadings >0.80 are shown in bold style; moderate loadings 0.60 – 0.80 in italics.  
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Figure 32 – Loading plots for PC1 and PC2 and PC1 and PC3, showing a clear separation between the 
two physicochemical anthroposoil properties, anthroposoil sand fraction and C/N ratio and all the other 
variables considered (other key anthroposoil properties and the BFRs concentrations in anthroposoils 
and E. fetida tissues). 
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Figure 33 – Loading plot for PC2 and PC3 clearly showing that most of the variables (key anthroposoil 
properties and the BFRs concentrations in anthroposoils and Eisenia fetida tissues) have identical 
significance for these two PCA components. 
 
 
Regarding the loading plots presented in Figures 32 and 33, it can be seen that the major part 

of the variables are well represented on the loading plots considered as they are positioned 

relatively close to the circumference of the correlation circle. In the specific case of the two 

physicochemical parameters, anthroposoil sand content (Sand) and the C/N ratio, they appear 

to be both negatively correlated with PC1 and PC3 but positively correlated with PC2, which 

is explained by the PBEB contents measured in E. fetida tissues (PBEB Ef). The loading map 

corresponding to axes PC2 and PC3 (Figure 33) shows that the loads of the variables are quite 

variable, while the POlsen contents and some of the BFRs contents in both anthroposoils and E. 

fetida, have higher loads.
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Figure 34 – Observation plots and biplots for PC1, PC2 and PC3 showing the distribution of the variables (key anthroposoil properties and BFRs concentrations 
in anthroposoils and E. fetida tissues) and the observations (samples) considered in the present study.
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In the observation plots displaying axes PC1 vs PC2 and PC1 vs PC3 (Figure 34), the 

EST samples are negatively correlated with PC1 and the PEY samples are positively 

correlated with this axis, which can be explained by the significantly higher POPs 

contents in the tissues of the E. fetida exposed to PEY anthroposoils. Moreover, the 

distribution of observations seems to be site-dependent as the samples corresponding to 

adult and juvenile E. fetida for each site appear close to each other in most cases. The fact 

that physiological differences exist between the adults and juveniles seems to be a non-

conditioning parameter for BFRs accumulation. Despite this, for some of the POPs 

analyzed a lower accumulation in juvenile tissues was verified perhaps due to differences 

in metabolism between adults and juveniles. As already stated by Chevillot et al. (2017) 

in a study on the bioaccumulation of pharmaceuticals and pesticides in Eisenia andrei, 

these differences in accumulation between adults and juveniles could also reflect changes 

in anthroposoil chemical properties due to adults foraging habits and a decrease in POPs 

concentrations during the first 28 days.  Another fact that must be considered is that the 

juveniles had a shorter time of exposure to anthroposoil contaminated by POPs than the 

adults, since the cocoons did not hatch on the first day of the second exposure phase (day 

28 to 56).  
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 MAIN RESULTS  

 

 The EST samples are negatively correlated with PC1 and the PEY samples are 

positively correlated with this axis. This can be explained by the significantly 

higher POPs contents in the tissues of the E. fetida individuals exposed to PEY 

anthroposoils. 

 The PCA evidenced a difference in the behavior and distribution of PBEB in 

soils as well as its availability and subsequent uptake and accumulation dynamics 

in E. fetida tissues when compared to the other POPs considered. 

 In the specific case of the two physicochemical parameters, soil sand content 

(Sand) and the C/N ratio (C/N) appear to be both negatively correlated with PC1 

and PC3 but positively correlated with PC2. This is explained by the PBEB 

contents measured in the anthroposoils (PBEB soil).  

 The C/N ratio is also positively correlated with PC5, explained by the PBEB 

concentrations in E. fetida tissues (PBEB Ef). 

 Despite the correlations found in all the PCA steps between Anthroposoil sand 

content and C/N ratio, the physico-chemical properties are not the only 

explanation of the POPs availability considered and the levels found in E. fetida 

tissues. 

 The distribution of observations seems to be site-dependent as the samples 

corresponding to adult and juvenile E. fetida for each site appear close to each 

other. The fact that physiological differences exist between the adults and 

juveniles seems to be a non-conditioning parameter for POPs accumulation. 

 PCA results indicate similarities in the behavior and distribution of nBFR in 

soils as well as its availability and subsequent uptake and accumulation dynamics 

in E. fetida tissues 

 Different POPs families showed different behaviors regarding the correlations 

with physico-chemical parameters and uptake by E. fetida. 

 BAFs will be calculated to infer the real risk of entry and diffusion along 

the food chain posed by each of the POPs families quantified (Subchapter 4.9).  

 SET and ERITME indexes will be calculated to rank the sites tested 

according to the effective transfer of POPs from anthroposoils to the organisms 

tested and obtain an idea of the potential risk to the real ecosystem (Subchapter 

4.9). 
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PART D: Calculation of indexes to infer the potential risk to the 

ecosystem 

 

4.8. The interest of calculating indexes (Bioaccumulation factor (BAF), 

SET, ERITME and ERITME-POP) 

 

Regarding the types of organisms tested in the present study, an earthworm and three 

plant species, toxicological effects were observed relating to growth, reproduction rate 

and germination. Moreover, significant levels of POPs were detected in the tissues of the 

organisms tested. Therefore, it can be useful to evaluate the real risk posed by POPs to 

living organisms by calculating the BAF, SET and ERITME-POP indexes; BAF is widely 

used but SET and ERITME have only been used on MTEs until now (Mariet et al., 2017). 

BAF is widely used in risk assessment to determine whether a substance is accumulated 

in a certain organism and if there is a risk of entry and diffusion along the food chain. 

Despite its wide use, BAF presents some limitations as it is calculated for a substance and 

an organism and small quantities or differences of availability between substances can 

lead to high BAF values that do not signify a risk for the organism and thus induce errors 

in the assessment of the real risk posed by certain substances. 

SET and ERITME-POP indexes will allow ranking the sites tested according to the 

effective transfer of POPs from anthroposoils to the organisms tested and obtaining an 

idea of the potential risk to the real ecosystem. SET and ERITME have proven in certain 

studies with MTEs to be effective in predicting the risk for ecosystems and have been 

used with terrestrial organisms, such as snails, that together with earthworms and plants 

constitute the preferential routes of entry of contaminants in the terrestrial food chain 

(Pauget et al., 2013; Pauget and de Vaufleury, 2015; Mariet et al., 2017). 

 

4.8.1. Determination of the bioaccumulation factor (BAF)  

4.8.1.1. BAF for earthworms (E. fetida) 

 

Bioaccumulation values are usually reported through the calculation of the 

bioaccumulation factor (BAF), which is defined as the ratio between the concentrations 

of a certain contaminant in the organism considered and the levels found in the 

environmental medium (OECD, 2010). 
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BAFs are widely used in studies with MTEs and BAFs have already been calculated for 

some of the anthroposoils studied, the results of which can be found in Coelho et al., 2018 

(see Annex I), and the occurrence of transfer of MTEs from soils to E. fetida tissues was 

clearly well observed.  

In this section, BAF values will be presented for the POPs considered. 

 

Tables 33 and 34 present the BAFs calculated for the POPs measured in the tissues of E. 

fetida adults and juveniles, respectively.   

For the E. fetida adults, the BAFs were higher than 1 for the PCBs. In the case of PCDDs 

and PCDFs, the BAFs were lower than 1 for all the samples (Table 33). For the PBDEs, 

only the adult E. fetida exposed to anthroposoil PEY IIIa showed a BAF higher than 1. 

The BAFs for PBBs were generally zero or close to zero for all the samples (Table 33). 

On the contrary, nHBB and nPBT always presented BAFs higher than 1. For nPBB, the 

BAFs were higher than 1, except for the E. fetida exposed to anthroposoils EST G, PEY 

Ic and PEY IIb. In the case of PBEB, the BAFs for E. fetida juveniles were higher than 1 

only in the case of those exposed to PEY anthroposoils and were zero for E. fetida 

individuals exposed to EST samples (Table 33). 

For the E. fetida juveniles, the BAFs for PCBs were generally higher than 1 (Table 34). 

The BAFs were generally lower than 1 for the PCDDs, PCDFs and PBDEs with a few 

exceptions for the E. fetida exposed to anthroposoils EST K and L (for PCDFs) and 

anthroposoils EST G, EST K and PEY IIIa (for PBDEs). BAFs for PBBs were zero for 

all the samples. On the contrary, nHBB and nPBT always presented BAFs higher than 1 

(Table 34). For nPBB, BAFs were always higher than 1, except for the E. fetida exposed 

to anthroposoil PEY IIb. In the case of PBEB, the BAFs for E. fetida juveniles were 

higher than 1 only in the case of those exposed to anthroposoils EST C, EST K and EST 

L (Table 34). 
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Table 33 –BAFs calculated for the POPs quantified in the adult E. fetida tissues exposed to EST and PEY anthroposoils.  

 EST C EST G EST K EST L PEY Ic PEY IIb PEY IIIa PEY IVa 

∑PCBs-dl-cop 8.17 4.14 24.2 6.11 1.39 16.8 3.05 3.56 

∑PCBs-dl-
noncop 

42.0 23.4 165 36.5 5.80 8.51 10.5 12.8 

∑PCBs-ndl 34.3 20.3 108 31.3 8.16 10.8 14.6 13.4 

∑7PCDDs 0.07 0.06 0.09 0.11 0.28 0.39 0.45 0.45 

∑10PCDFs 0.42 0.19 0.57 0.53 0.44 0.62 0.61 0.55 

∑7PBDEs 0.12 0.06 0.09 0.31 0.78 0.88 6.28 1.22 

∑8PBDEs 0.12 0.01 0.31 0.32 0.01 0.02 0.22 0.03 

∑3PBBs 0 0 0 0 0.12 0.26 0 0 

nHBB 3.53 5.02 3.60 2.50 11.2 2.61 14.9 48.1 

nPBB 1.43 0.96 4.00 2.61 0.81 0.99 3.54 2.01 

nPBT 2.94 2.28 1.94 3.00 3.57 101 55.7 30.9 

PBEB 0 0 0 0 3.11 6.19 1.12 2.30 

NB: BAF values >1.00 are shown in bold type. 
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Table 34 –BAFs calculated for the POPs quantified in the juvenile E. fetida tissues exposed to EST and PEY anthroposoils.  

 EST C EST G EST K EST L PEY Ic PEY IIb PEY IIIa PEY IVa 

∑PCBs-dl-cop 9.07 6.98 53.9 4.47 0.43 5.11 0.76 0.85 

∑PCBs-dl-
noncop 

17.3 13.8 78.1 7.74 1.45 2.18 2.07 2.92 

∑PCBs-ndl 13.1 10.9 43.0 5.38 2.47 3.58 3.37 3.50 

∑7PCDDs 0.14 0.14 0.37 0.52 0.19 0.33 0.31 0.30 

∑10PCDFs 0.79 0.56 2.83 1.12 0.23 0.45 0.31 0.34 

∑7PBDEs 0.45 1.71 1.84 0.57 0.99 0.60 2.66 0.51 

∑8PBDEs 0.65 0.46 7.92 0.83 0.04 0.03 0.30 0.03 

∑3PBBs 0 0 0 0 0 0 0.00 0.00 

nHBB 8.27 78.2 41.9 3.00 18.2 1.69 39.4 103 

nPBB 4.05 17.1 46.7 3.48 1.09 0.74 2.69 0.93 

nPBT 15.9 154.8 87.1 8.50 2.43 46.8 37.2 14.4 

PBEB 8.60 0 22.7 26.1 0 0 0 0.00 

Note: BAF values >1.00 are shown in bold style. 
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The BAFs values calculated clearly show the potential of the POPs analyzed to 

accumulate in E. fetida tissues. Earthworms in general are a major food supply to many 

animals (birds, reptiles and small mammals), thus the presence of POPs in their tissues 

can be a significant vector of POPs transfer into the higher trophic levels through 

biomagnification. According to the classification of Dallinger (1993), and regarding the 

BAF values presented in Tables 33 and 34, both exposed adult and juvenile E. fetida can 

be considered as deconcentrators of PCDDs, PCDFs, PBDEs and PBBs (BAF<1) but 

macroconcentrators of PCBs, nHBB, nPBB, nPBT and PBEB (BAF>2), with exceptions 

in the case of a few samples for each of the reference POPs. 

Sellström et al. (2005) determined the levels of PBDEs congeners in earthworm samples 

collected in three research stations and two farms in Sweden and found that BAFs 

declined as the degree of bromination increased, a trend that was also verified in the E. 

fetida exposed to the EST and PEY anthroposoils tested. 

Navarro et al. (2016) observed that Eisenia andrei individuals exposed to contaminated 

soils were able to metabolize certain PBDEs congeners, namely BDE-99 and BDE-153. 

This data also corroborated the fact that the BAFs were lower for these congeners than 

for the others and this classification/graduation of BAFs for BDE congeners was also 

verified in the present study.  

The difference in bioaccumulation rates of the POPs considered in E. fetida tissues 

suggests the existence of differences in the bioavailability of POPs in the soils. The soil 

characteristics, the physicochemical properties of POPs together with the physiology and 

habitat of the organisms exposed could play an important role in the availability, 

bioaccumulation and possible migration of POPs through the soil food chain. This shows 

that higher brominated BDEs, including BDE-209, are still bioavailable in soils and can 

be accumulated in earthworm tissues, presenting an exposure pathway into the terrestrial 

food web, as suggested by Law et al. (2006a). 

Table 35 shows several BAF values calculated for PCBs and PBDEs in two earthworm 

species. 

The uptake and bioaccumulation of contaminants in earthworm tissues cannot be 

generalized between species due to differences in biological, ecological characteristics 

and environmental factors. 
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Table 35 – BAF values obtained for E. fetida in the present study and those reported in two studies 
for two other earthworm species for ΣPCBs and ΣPBDEs exposed in laboratory conditions. 

Specie Habitat  ΣPCBs ΣPBDEs Reference 

E. fetida (adults) 

Epigeic 

1.39 – 165 0.01 – 6.28 

Present study 

E. fetida (juveniles) 0.43 – 78.1 0.03 – 7.92 

Lumbricus rubellus Anecic 1.09 – 2.76 1.99 – 5.67 Vermeulen et al., 

2010 
 

Concerning ecological grouping and species habitat preference, E. fetida is an epigeic 

earthworm meaning that they usually live at the soil surface and feeding on leaf litter. 

Lumbricus rubellus is an anecic species meaning that they live and burrow in the deeper 

soil but comes to the soil surface to feed on leaf litter or mixtures of litter and soil 

particles. In environmental conditions, since E. fetida stays near the surface it can be more 

exposed to POPs contamination than the other species that come to the surface 

sporadically. The three species considered present the same reproduction mode but the 

times of cocoon incubation time vary from around 18 days (E. fetida) to approximately 

90 days (Lumbricus rubellus) (Butt, 1991; Domínguez, 2004). Also, maturity time is 

highly variable among earthworm species, from 28 to 112 days for E. fetida and 

Lumbricus rubellus, respectively (Svendsen et al., 2002; Domínguez, 2004). These 

differences in cocoon incubation and adult versus sexual maturation time can also explain 

differences in the POPs uptake rates and accumulated levels. 

The differences in BAF values for the three species considered shown in Table 35, for the 

specific case of PCBs and PBDEs, can also be explained by the fact that E. fetida presents 

a much higher lipid content than the other two species. This observation had already been 

reported in a study performed by Carter et al. (2014). The higher lipid content, combined 

with the higher lipophilic nature and higher log Kow values of the PCBs and PBDEs 

(8.5x10-7 to 0.92 and 5.9 to 10, respectively) favor uptake into lipids and thus the higher 

BAF values observed for E. fetida. Based on the idea that an increase in object size leads 

to a decrease of the surface area to volume ratio, since E. fetida is the smallest earthworm 

species of the three considered, it would present a higher potential for the diffusion of 

POPs through its tissues than the two larger species considered.  

Concerning the POPs dynamics, in soils with high OM contents (the case of the 

anthroposoils considered in the present study with OM contents between 18.2 and 41.5 

g.kg-1 dw) hydrophobic POPs are essentially retained near the soil surface and not leached 
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(Chiou, 2002). Therefore, the uptake by upper soil species (E. fetida) may occur on a 

larger scale than for the other species that are preferentially in deeper zones. 

The BAF values are quite high for some of the POPs analyzed (up to 154), especially for 

nBFRs. For some of the POPs quantified, the BAFs reported in the present study were 

lower than 10, but despite that the transfer of these POPs to higher trophic levels and the 

subsequent potential toxicity effects caused can occur. POPs properties and soil 

parameters along with habitat preference and biological differences can affect earthworm 

uptake of contaminants in the natural environment differently. To better understand and 

validate the results obtained it would be necessary to carry out more detailed studies. 

 

4.8.1.2. BAF for plants  

 

The BAFs were calculated for plants collected in situ belonging to the species Common 

nettle (Urtica dioica) and Japanese knotweed (Fallopia japonica). BAFs were also 

calculated for the three plant species: alfalfa (Medicago sativa), watercress (Nasturtium 

officinale) and white mustard (Sinapis Alba) cultivated in the anthroposoils considered. 

Table 36 presents the BAFs calculated of the POPs measured in the plant species collected 

in situ in anthroposoils PEY Ic and PEY IIIa. 

The BAFs for POPs for in situ plant species are in general below 1, except for the sum of 

the Σ7PBDEs in Japanese knotweed leaves and for the sum of HBCDs isomers in the 

leaves and roots of Japanese knotweed plants (Table 36). 
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Table 36 –BAFs calculated of POPs quantified in the plants collected in situ in soils PEY Ic and 
PEY IIIa (AP= aerial parts; R = Roots). 

 

Common nettle  
(PEY Ic) 

Japanese knotweed  
(PEY IIIa) 

Aerial parts Roots Leaves Stems Roots 

ΣPCBs-dl-cop  0.02 0.02 0.80 0.16 0.20 

ΣPCBs-dl-noncop  0.02 0.04 0.62 0.10 0.43 

ΣPCBs-ndl 0.03 0.07 0.68 0.12 0.40 

Σ7PCDDs  0.00 0.00 0.03 0.01 0.07 

Σ10PCDFs  0.00 0.01 0.03 0.01 0.02 

Σ7PBDEs 0.12 0.11 4.99 0.71 0.69 

Σ8PBDEs 0.01 0.00 0.55 0.13 0.59 

ΣHBCDs 0.02 0.01 1.38 0.97 10.3 

Note: BAF values >1.00 are shown in bold type. 
 

Table 37 presents the calculated BAFs of the POPs measured in the plants cultivated in 
the anthroposoils EST G and PEY Ic. 
 
According to the data shown in Table 37, the greatest difference is that the BAFs for both 

aerial parts and roots are significantly higher in the plant species exposed to anthroposoil 

EST G (mostly higher than to 1) than the BAFs corresponding to plants exposed to PEY 

Ic. On the contrary, the BAFs for both the aerial parts and roots of plant exposed to PEY 

Ic are below 1 with only very few exceptions. For Σ7PCDDs, only the roots of cress 

cultivated in EST G showed a BAF higher than 1. For Σ10PCDFs, only the roots of the 

three plant species cultivated in EST G showed BAFs higher than 1. In the case of PCBs, 

all the BAFs for the three plant species cultivated in EST G were significantly higher than 

1, clearly showing the occurrence of accumulation of PCBs in both the aerial parts and 

roots of the plants. The BAFs for PCBs in plants cultivated in anthroposoil PEY Ic are all 

lower than 1, except in alfalfa and mustard roots for PCBs-ndl and in cress roots for PCBs-

dl-noncop and PCBs-ndl. For Σ7PBDEs, all the BAFs of plants cultivated in EST G were 

significantly higher than 1 as well as higher than 1 for the roots of mustard and cress 

cultivated in PEY Ic. But when BDE-209 is considered (Σ8PBDEs), only mustard 

cultivated in EST G presents BAFs higher than 1. Regarding the HBCDs, BAFs higher 

than 1 were verified only for the roots of mustard and cress cultivated in anthroposoil 

EST G. 
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Table 37 –BAFs Calculated of POPs quantified in the plants cultivated in anthroposoils EST G and PEY Ic (AP= aerial parts; R = Roots). 

 

EST G PEY Ic 

ALFALFA MUSTARD CRESS ALFALFA MUSTARD CRESS 

AP R AP R AP R AP R AP R AP R 

ΣPCBs-dl-cop 13.8 2.22 5.94 3.30 10.9 3.18 0.17 0.47 0.15 0.68 0.23 0.72 

ΣPCBs-dl-
noncop 10.0 3.31 5.11 5.06 10.4 5.26 0.20 0.87 0.19 0.87 0.28 1.29 

ΣPCBs-ndl 5.06 4.36 2.58 7.03 5.13 6.42 0.23 1.17 0.20 1.08 0.30 1.81 

Σ7PCDDs 0.11 0.69 0.08 0.96 0.11 1.48 003 0.24 0.05 0.46 0.07 0.60 

Σ10PCDFs 0.36 1.03 0.21 1.57 0.50 1.86 0.05 0.29 0.07 0.56 0.10 0.76 

Σ7PBDEs 13.6 3.33 9.25 3.84 16.1 5.16 0.60 0.88 0.49 1.03 0.99 1.58 

Σ8PBDEs 0.41 0.39 1.29 2.00 0.61 0.70 0.09 0.28 0.05 0.23 0.11 0.32 

Σ3HBCDs 0.08 0.89 0.12 2.46 0.06 3.87 0.05 0.15 0.06 0.97 0.60 0.79 

Note: BAF values >1.00 are shown in bold style. 
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The BAFs obtained for the plants tested clearly indicate a considerable difference in the 

availability of the contaminants in both soils considered. Although the levels of POPs 

were significantly higher in PEY Ic than in EST G, it seems that the POPs were more 

available to be taken up by plants in the anthroposoil EST G. This difference in quantified 

POPs availability may be due to the physico-chemical parameters of the soil, namely the 

nature of OM, TOC and the slightly acidic pH of the EST G anthroposoils.  

In a study on the phytoremediation of PCBs in contaminated soils, Pinsker (2011) 

obtained BAFs ranging from 1.9 to 4.2 for cucurbits roots and BAFs lower than 1 in 

shoots. In the refered study, the BAF of tall fescue (Festuca arundinacea) and sedge 

(Cyperaceae) was highest for shoots at around 1.5, and less than 1 in roots. Also the black 

mustard (Brassica nigra) and white heath aster (Symphyotrichum ericoides) had the 

highest BAFs for shoots with 10 and 6.45 and the BAF for roots was also lower than 1, 

like the other plant species tested. The results of the present study are in the same range 

as those verified in the study referred to. 

According to Wang et al. (2011a), when comparing with PCBs with the same number of 

halogen-substitutions, the accumulation tendencies are generally higher for PBDEs rather 

than for PCBs, a characteristic that can be attributed to their higher hydrophobicity. This 

trend is also verified in the results presented in Tables 36 and 37, where the BAFs for 

both the plants collected in situ and those cultivated in laboratory conditions were higher 

for PBDEs than for PCBs. The BAFs obtained in both the in situ and in laboratory 

conditions plants sampled and tested are in same range as the data found in the literature. 

Wang et al. (2011b), in a study with different edible vegetables species, obtained BAFs 

from 0.08 to 7.18 for PBDE accumulation.  The BAFs obtained in the present study are 

in the same range. 

The differences found in the entry and accumulation of the POPs considered in the 3 plant 

species tested in the present study are linked to the chemical and physical properties of 

each compound, such as hydrophobicity, water solubility, and vapor pressure. 

Environmental conditions such as temperature and soil organic content also play an 

important role in the availability and accumulation of POPs. Plant species differ from 

each other in terms of physiological characteristics that control their growth and 

development, and the accumulation of POPs. Root type also plays an important role since 

roots provide anchorage and energy storage and they are the plant part that undergoes 

physical and chemical interaction with the soil (Day et al., 2010). Moreover, roots are 

inserted in the rhizosphere where a huge population of bacteria and fungi are nourished 
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by organic nutrients commonly exuded from roots and some of these micro-organisms 

contribute actively to plant development and health. They are also responsible for 

modifications in soil acidity, adding chelating agents and expanding the effective 

absorption area, resulting in increased water and nutrient uptake.  

It is important to carry out further studies using a wider range of soil types and different 

families of POPs, and a greater number of different plant species to permit more specific 

and accurate conclusions on the differences in the fate, bioavailability, uptake and 

bioaccumulation of POPs.  

In general, the BAFs obtained for E. fetida and the plant species tested were higher for 

most of the POPs quantified. Despite the limitations of BAFs (already mentioned in this 

discussion), it is useful for understanding the extent of entry and accumulation of the 

contaminants in the organisms, considering each contaminant in an individual approach. 

 

4.8.2. Determination of SET, ERITME and ERITME-POP  

 

The SET index can be used to indicate the anomalous transfer of a pollutant while the 

ERITME index allows evaluating the real ecotoxicological risk due to the anomalous 

transfer evidenced by the SET calculation. These indexes were calculated considering 

PCBs, PCDDs, PCDFs, PBDEs, PBBs and HBCDs.  

Figure 35 presents a schematic representation of the SET and ERITME calculation 

methods. The first step for the calculation of the SET and ERITME indexes was to define 

the CIRef value that corresponds to the reference internal concentration of a certain 

contaminant in the organisms studied. After that, a coefficient of accumulation (AQ) was 

also determined for each contaminant considering the CIRef value and the POPs levels 

found in E. fetida tissues. The values obtained for CIRef, AQ and AQ-1 are presented in 

Annex III, Table III.1. In the present study, CIRef values corresponds to the contaminant 

level found in the tissues of E. fetida speciments exposed to the control soils ISO EST 

and ISO PEY). AQ values corresponds to the ratio between the levels found in the tissues 

of E. fetida exposed to the studied soils and the CIRef value. AQ values higher than 1 

indicates the existence of contaminant transfer. 

Regarding the AQ values obtained, no excess transfer was observed in the case of PCBs-

dl-cop, PCDDs and PCDFs. For all the samples studied, excess transfer was observed for 

PCBs-ndl and in the case of PCBs-dl-noncop the excess transfer occurred only in the PEY 

samples. The transfer of PBDEs mainly occurred in the PEY samples, while only lower 
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brominated congeners (BDE-28, -47, -99 and -100) were transferred in excess in the EST 

samples. It was also verified that there was no excess transfer in any of the samples for 

PBBs. 

 

 

Figure 11 – Flow chart representation of the SET and ERITME calculation method (adapted from 
Baures (2018), based on Pauget and De Vaufleury (2015)). 
 

The SET index gives a global idea of the excess transfer for all the contaminants in the 

matrices studied. The values obtained for SET (presented in Table 39) are in agreement 

with the trend shown by the AQ values. In general, the excess transfer and accumulation 

of POPs is much more significant in the PEY samples, which can be explained by the 

abnormal transfer of PCBs-dl-noncop. 

The ERITME index allows evaluating the possible inherent global environmental risk 

associated with the excess transfer of the contaminants considered. The values obtained 

for ERITME-POP are presented in Table 38.  

 

Table 38 – SET and ERITME-POP indexes calculated for each of the anthroposoils studied for 
the POPs concentrations measured. 

 EST C EST G EST K EST L PEY Ic 
PEY 

IIb 

PEY 

IIIa 

PEY 

IVa 

SET 12.96 15.57 12.72 14.60 101.26 96.57 14.25 66.30 

ERITME-

POP 
5220 6095 5392 5859 50886 45695 7784 24907 

 

Considering, the ERITME-POP values the matrices studied can be classified in an 

apparent increasing order of toxicity:  
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PEY Ic > PEY IIb > PEY Iva > PEY IIIa > EST G > EST L > EST K > EST C.  

This order of toxicity is in accordance with the POPs levels quantified in soils and with 

the concentrations found in the exposed E. fetida, alfalfa, cress and mustard, where in 

general the higher values were recorded in the PEY samples and especially in PEY Ic 

followed by PEY IIb. In the case of the EST samples, the values were in general always 

lower than those recorded in the PEY samples, with Anthroposoil G being the most 

contaminated and the tissues of the organisms exposed to this anthroposoil those that 

exhibited higher levels in their tissues when compared with the other three EST samples.  

MTE data on the EST samples had already been published in Coelho et al. (2018). In 

general, the BAFs calculated obtained for MTEs in both the EST and PEY samples were 

lower than 1, and despite high values for Cd and Cu, Zn presenting the highest BAFs. 

The relatively high values obtained for Zn were probably related to the high 

concentrations verified for Zn both in soils and sediments as well as with relatively high 

values for Zn exchangeable and/or bioavailable fractions. Despite this and regarding the 

AQ values (the coefficient of accumulation considered in the SET and ERITME 

calculations), excess transfer was observed for Fe, Ni and Pb in exposed E. fetida. This 

antagonistic trend between the BAF values and the SET/ERITME indexes was also found 

in a study by Mariet et al. (2017), who used snails as bioindicators to assess the 

environmental risk posed by the presence of MTEs. In the present study, the authors found 

that the BAF values were higher than 1 for Cd, Cu and Zn, but despite this no excess 

transfer from soils to snails was observed in the case of Cu, as Cd and Zn were transferred 

in low concentrations (Mariet et al., 2017). The BAFs obtained for Ag, As and Pb were 

lower than 1, suggesting a smaller transfer but the concentrations found in the snail tissues 

were anomalous, thus indicating the occurrence of excess transfer (Mariet et al., 2017). 

Despite this and when considering the AQ values, the results do not indicate the same 

trend shown by BAFs as the AQ values indicate that no excess transfer occurred for PCBs 

(PCBs-dl-cop), PCDDs, PCDFs and PBBs. The transfer from the anthroposoils to E. 

fetida tissues only occurred for PCBs-ndl, PCBs-dl-noncop and PBDEs.  

The present study showed that POPs accumulation is a complex process that cannot be 

predicted by measuring the available fraction of contaminants alone. The BAFs, SET and 

ERITME-POP indexes are useful tools for characterizing the risks posed by contaminated 

soils and sediments. Since BAF is dependent on the initial contaminant concentrations in 

the matrix, there is a certain tendency to under or over-estimate the real risk for the 

organisms exposed. Both SET and ERITME-POP indexes are useful in risk evaluation as 
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they are based on the comparison of the matrices studied with others that have already 

been analyzed. These indexes are independent of soil characteristics and are based on the 

internal concentrations of contaminants measured in the organisms exposed and on the 

real bioavailable fractions of the contaminants in the matrices. The calculation of these 

quotients allows us to infer a global toxicity. The SET and ERITME-POP indexes 

provided a global evaluation of the level of toxicity of each sample studied, considering 

the abnormal excess transfers of contaminants from the matrix to the exposed E. fetida. 

The values obtained for the calculated indexes and the effects observed, especially in the 

reproduction rates, seem to be linked. To date, no studies have used SET and ERITME 

calculations to analyze their results of POPs accumulation in living organisms, so 

comparison with the results obtained by other authors is impossible. Associating the 

calculation of these two indexes with the determination of a certain toxic effect is useful 

in the definition of limit values as well as in the evaluation of the risks using a more 

realistic method of considering the real complexity of ecotoxicological processes. This 

approach can be enhanced if the exposure time of the organisms to the test matrices is 

long enough to reach the equilibrium state and thus calculate the SET and ERITME 

indexes with the equilibrium concentrations. 
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MAIN RESULTS  

 

 The BAFs values calculated clearly show the potential of the POPs analyzed to 
accumulate in E. fetida tissues 

 Adult and juvenile E. fetida can be considered as deconcentrators of PCDDs, PCDFs, 

PBDEs and PBBs (BAF<1) but macroconcentrators of PCBs, nHBB, nPBB, nPBT and 

PBEB (BAF>2), with exceptions in the case of a few samples. 

 For some of the POPs quantified, the BAFs for E. fetida reported in the present study 

were lower than 10, which suggests the existence of a potential of transfer of these POPs to 

higher trophic levels and the subsequent potential toxicity effects caused. 

 The BAFs for POPs for in situ plant species are in general below 1, except for the sum 

of the Σ7PBDEs in Japanese knotweed leaves and for the sum of HBCDs isomers in the 

leaves and roots of Japanese knotweed plants. 

 BAFs for both the aerial parts and roots of the cultivated plant species are significantly 

higher in the plant species exposed to anthroposoil EST G (most of all superior to 1) than 

the BAFs corresponding to plants exposed to PEY Ic 

 The BAFs obtained for the plants tested clearly indicate a significant difference in the 

availability of the contaminants in both the soils considered. Although the levels of POPs 

were significantly higher in PEY Ic than in EST G, it seems that the POPs were more 

available for uptake by plants in the anthroposoil EST G. 

 Considering the ERITME-POP values, the matrices studied can be classified in an 

apparent increasing order of toxicity: PEY Ic > PEY IIb > PEY Iva > PEY IIIa > EST G > 

EST L > EST K > EST C.  

 POPs accumulation is a complex process that cannot be predicted by measuring only 

the available fraction of contaminants. The BAFs, SET and ERITME indexes are useful 

tools for characterizing the risks posed by contaminated soils and sediments. 

 The SET and ERITME-POP indexes provided a global evaluation of the degree of 

toxicity of each sample studied, considering the abnormal excess of transfers of 

contaminants from the matrix to the E. fetida exposed. The values obtained for the 

calculated indexes and the effects observed, especially in the reproduction rates, seems to 
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5.1. Conclusions  

 
Nowadays, the assessment of environmental contamination has changed from the 

classical total concentration-based approach to a more complete method that considers 

the real risk posed by chemical contamination on a case-by-case evaluation. Great 

attention was given to the fate of the contaminants in soils and sediments as well as to the 

hazard and real risk to living organisms, by evaluating potential contaminant mobility and 

bioavailability. Monitoring of soil ecosystems is essential to assess levels of 

contamination and determine the potential impacts of these contaminations on soil 

sustainability. 

The present work focused mainly on BFRs, which belong to the POPs family. These 

compounds represent a large group of major industrial chemicals whose production and 

use has increased significantly in recent decades. Despite its considerable use in fire 

prevention, concerns are rising continuously due to the persistence, bioaccumulation and 

potential toxicity of these compounds for both animals and humans. The current lack of 

knowledge of BFRs and data on them, leads to questions that must be answered. It is of 

great importance to perform more systematic environmental monitoring regarding certain 

environmental compartments and living species to understand how and where BFRs are 

being released into the environment, and what happens after their entry into 

environmental compartments, in order to fully ascertain the risks posed. 

The aim of the present work was to answer the following questions (in bold type) that 

correspond to the main objectives of the present thesis: 

 

1) Do the anthroposoils selected show detectable POPs concentrations? Which POPs 

families are present in these anthroposoils? 

The 8 anthroposoils studied are quite different in terms of physico-chemical 

characteristics and inorganic and organic contamination. 

Among all the POPs quantified in the anthroposoils studied, those present in considerable 

levels were PCBs, PCDDs, PCDFs, PBDEs and HBCDs. The PBBs and the four nRBFRs 

analyzed (nHBB, nPBB, nPBT and PBEB) were detected in very low concentrations. 

When comparing the two sites studied, the EST samples presented lower levels of the 

POPs analyzed than the PEY samples. 
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Despite their noticeable presence, the levels of PCBs, PCDDs, PCDFs, PBDEs and 

HBCDs were in general lower than those found in the literature for sites with similar 

contamination source types and land use in Europe.  

The nBFRs values obtained are not comparable with  most of the few data found in the 

literature that usually deals with highly contaminated sites in Asian countries (usually e-

waste manufacturing and/or disposal sites). There is a considerable lack of studies on the 

presence, distribution and fate of nBFRs in terrestrial ecosystems. 

 

2) Are POPs available for accumulation by earthworms and plants? 

Several entire specimens of common nettle and Japanese knotweed plants were collected 

in situ from the two sampling points PEY Ic and PEY IIIa. Among the POPs quantified 

in the aerial parts and roots of the two plants analyzed, PCBs-ndl were those that 

presented higher levels in plant tissues, followed by the sum of the 8 PBDEs. Similar 

levels of PCBs-noncop and HBCDs were recorded. On the contrary, PCDDs and PCDFs 

occurred in only very low concentrations in plants. The availability of POPs to be taken 

up from soil and the occurrence of POPs transfer from soil to plant parts in the natural 

environment was shown by the levels detected in plant parts for most of the POPs 

analyzed. In the case of BFRs, the levels measured in the plants collected in situ were 

lower when compared with the other POPs measured. 

Bioaccumulation laboratory tests were performed with E. fetida and three plant species 

(alfalfa, cress and white mustard). The data obtained clearly revealed the occurrence of 

bioaccumulation of the POPs quantified in both adult and juvenile E. fetida tissues, even 

at very low concentrations in the case of the nBFRs. Moreover, in the case of PCBs, 

PCDDs, PCDFs and PBDEs, clear strong correlations were observed between the levels 

quantified in E. fetida tissues and the levels found in the anthroposoils for these POPs. 

Despite the existence of such good correlations, these relations were not visible in the 

PCA. The levels of all the POPs quantified were higher in E. fetida exposed to PEY 

anthroposoils and higher in juveniles than in adults exposed to both the anthroposoils 

tested. The levels of POPs quantified in juvenile E. fetida tissues may have been due to 

the occurrence of POPs transfer from adults to juveniles or may only be the result of new 

accumulation of POPs from the anthroposoils. Moreover, the burrowing activity of adults 

as well as different lifestyle and feeding habits may favor higher bioavailability of POPs 

for juveniles and their subsequent higher accumulation in tissues.  
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The POPs concentration measured in the tissues of plants cultivated on EST G 

anthroposoil were lower than the levels measured in the plants cultivated on the PEY Ic 

anthroposoil (Table 28). This fact was expected since the levels of POPs in the PEY soils 

were much higher than those detected in the EST anthroposoils. Despite this general 

trend, HBCDs were an exception as the levels measured in the different plant parts were 

higher in the case of those cultivated on the EST anthroposoils tested. Another point that 

was expected and verified was that the roots accumulated higher POPs quantities than the 

aerial parts for all the POPs considered. 

 

In conclusion, the POPs present in these anthroposoils were available for accumulation 

by soil organisms and plants. 

 

3) In the case of bioaccumulation, what are the toxic effects caused by the POPs 

levels in the animal and plant species investigated? 

Some toxic effects were observed for E. fetida and for the three plant species cultivated 

in the anthroposoils studied, in particular concerning:  

 E. fetida reproduction rate. At the end of 28 days exposure, the mortality rate 

was very low in the anthroposoils studied. Among the EST samples, a large 

number of juveniles were observed in the ISO soil while a lower number were 

found in soil G. Soils C and L presented numbers of juveniles close to those 

observed for ISO soil.  Concerning the PEY samples, no great differences were 

observed. It should be noted that a larger number of juveniles occurred in PEY 

IVa which may be related to the high OM content that served as feed for the 

earthworms and thus helped their development. The number of juveniles produced 

in the PEY samples were in general lower than those from the EST samples, 

probably due to the inhibition effects caused by the sandy texture that negatively 

affects the earthworm’s normal biological activities and by the higher MTEs and 

POPs levels found in the PEY anthroposoils. 

 

 E. fetida body mass. Some differences were noticed in the weight loss or gain of 

earthworms, considering the mean values of adult body weight at the beginning 

and at the end of the exposure time. The highest mass losses were found in E. 

fetida exposed to ISO soils, probably due to the low nutrient quantities in this 

“control” sample. Mass gains were observed for E. fetida exposed to EST G and 
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EST K anthroposoils and only a slight loss of mass was observed for individuals 

exposed to anthroposoils EST C and EST L. This is probably related to the 

relatively high OM contents in EST anthroposoils. In all the PEY samples, mass 

losses in E. fetida were observed even when these anthroposoils were rich in OM 

content and the pH values were within the range of ideal values for the good 

growth and development of E. fetida. Probably, the sandy character of these 

anthroposoils and the presence of relatively high concentrations of MTEs and 

POPs inhibited its growth and physiological development. 

 
 plant seed germination rate. The germination rate was higher for the control 

(ISO soil), EST G, PEY Ic and PEY IIb, compared to the other soils tested for all 

the three plants tested. This good germination can be associated with the relatively 

high, but not toxic, levels of some MTEs found in these anthroposoils. The plants 

cultivated in the anthroposoils EST C, EST K and PEY IVa showed very low 

germination rates for the three plant species tested, which may be due to the 

compactness and/or presence of contaminants (both organic and inorganic) in 

these three anthroposoils.  

 
 maximal height of plant aerial parts. The mean height of aerial parts was higher 

for the control, EST G, EST C, PEY Ic and PEY IIb compared to the other soils 

tested, for all the three plants tested. Nevertheless, in the case of alfalfa and cress 

the anthroposoils played an important role in the maximum height but in the case 

of the mustard a higher aerial part height was expected when compared with the 

two other species tested due to the plant’s characteristics. In the case of 

anthroposoil EST L, the low plant height can be linked to the slightly acid pH 

(4.75), lower OM content and the noticeable Pb concentration.  

 

Thus, it can be assumed that toxic effects were caused mainly by the mix of contaminants 

present in the anthroposoils tested, with in some cases a slight influence of certain 

physico-chemical parameters (namely sand content, pH, OM content).  

 

4) What is the degree of bioaccumulation of POPs in the species tested? 

The traditional approach for the risk assessment of chemical substances is usually linked 

to the direct effects of the chemicals on the organisms and based in a comparison between 
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the concentration in the environmental compartment and the presence or absence of 

effects in the organisms living in, or in close contact with, the soil compartment (Jager, 

1998). The chemical accumulated can pass through the food chain and predators can be 

largely exposed via food ingestion. E. fetida and the plant species used as test organisms 

in the present work, form part of the basis of the terrestrial food chain, and due to their 

abundance they are a large part of the diet of many invertebrate and vertebrate species. 

The assessment of this secondary potential contamination level and the degree of 

bioaccumulation of POPs in the species tested is usually expressed through the calculation 

of BAFs. For the E. fetida adults and juveniles, the BAFs were higher than 1 for the PCBs. 

In the case of PCDDs, PCDFs and PBDEs the BAFs were generally lower than 1 for all 

the samples. For PBDEs, only the adult E. fetida exposed to anthroposoil PEY IIIa 

presented a BAF higher than 1. This fact can be linked to differences in lipid contents, 

1.73% in juveniles and 4.07% in adults, leading to easy entry and accumulation/chelation 

in adults that present higher lipid contents in their tissues. BAFs for PBBs were generally 

zero or close to zero for all the samples. On the contrary, nBFRs presented BAFs higher 

than 1, for most of the samples considered. Attention is required due to the fact that the 

analytical technique used to quantify these compounds presented certain limitations in 

the detection and quantification of the POPs considered in the E. fetida tissues. Regarding 

the PBDEs, data already exists in the literature but information on the presence and 

accumulation of nBFRs in earthworms is very scarce. Moreover, the present study seems 

to be one of the first to have attempted to assess the presence and quantify the levels of 

nBFRs in such terrestrial organisms.  The BAF values clearly showed the potential of the 

POPs analyzed to accumulate in E. fetida tissues. Earthworms in general are a major food 

source for many animals (birds, reptiles and small mammals), thus the presence of POPs 

in their tissues can be a significant vector of POPs transfer into higher trophic levels 

through biomagnification.  

BAFs were also calculated for plants collected in situ and for the three plant species 

cultivated in two of the anthroposoils studied (EST G and PEY Ic). The BAFs for POPs 

for in situ plant species were in general below 1, except for the sum of the Σ7PBDEs in 

Japanese knotweed leaves and for the sum of HBCD isomers in the leaves and roots of 

Japanese knotweed plants. The BAF values calculated for plants collected in situ and for 

both aerial parts and roots are significantly higher in the plant species exposed to 

anthroposoil EST G (mostly higher than 1) than the BAFs corresponding to plants 

exposed to PEY Ic. The BAFs obtained for the plants tested clearly indicate a considerable 
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difference in the availability of the contaminants in both the soils considered. Although 

the levels of POPs were significantly higher in PEY Ic than in EST G, it seems that the 

POPs were more available for plant uptake in anthroposoil EST G. This difference in 

quantified POPs availability may be due to the soil’s physico-chemical parameters, 

namely the nature of OM, TOC and the slightly acidic pH of EST G anthroposoils. 

BAF calculation is usually required and included in evaluation and risk assessment 

models for contamination prediction but it presents certain limitations. BAF comprises a 

cumulative effect, considering each contaminant individually so it is not representative 

of the real risk posed by the mix of contaminants in the environmental matrices. To 

overcome this shortcoming, more complete indexes that take into account the 

concentrations of the contaminants and the weight of toxicity points can be used to better 

evaluate and predict the real risk. 

 

5) Concerning the evaluation of the real risks, what do the indexes calculated such 

as BAF, SET and ERITME express? 

 

The SET index can be used to indicate the anomalous transfer of a pollutant while the 

ERITME index is used to evaluate the real ecotoxicological risk due to the anomalous 

transfer evidenced by the SET calculation. The SET index gives a global idea of the 

excess transfer of all the contaminants in the matrices studied. The ERITME index is used 

to evaluate the possible inherent global environmental risk associated with the excess 

transfer of the contaminants considered.   

Analysis of the ERITME-POP values makes it possible to classify the matrices studied 

by increasing order of toxicity:  

PEY Ic > PEY IIb > PEY Iva > PEY IIIa > EST G > EST L > EST K > EST C.  

This order of toxicity is in accordance with the levels of POPs quantified in the soils and 

with the concentrations found in the E. fetida, alfalfa, cress and mustard exposed, where 

in general the higher values were recorded in the PEY samples and especially in PEY Ic, 

followed by PEY IIb. In the case of the EST samples, the values were in general always 

lower than those recorded in the PEY samples. For anthroposoil G, which was the most 

contaminated, the tissues of the organisms exposed to this anthroposoil exhibited higher 

levels in their tissues when compared with the other three EST samples.  

The BAF values calculated for E. fetida adults and juveniles were higher than 1 in the 

case of PCBs and nBFRs, while the BAF values were lower than 1 for the PCDDs, 
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PCDFs, PBDEs and PBBs. This suggests that a transfer of PCBs and nBFRs had occurred 

from the matrices to the tissues of the E. fetida exposed and that no transfer had occurred 

for the PCDDs, PCDFs, PBDEs and PBBs. Despite this and when considering the AQ 

values (the accumulation coefficient considered in the SET and ERITME calculations), 

the results do not indicate the same trend shown by BAFs since the AQ values indicate 

that no excess transfer occurred for certain PCBs (PCBs-dl-cop), PCDDs, PCDFs and 

PBBs. Transfer from the anthroposoils to E. fetida tissues only occurred for PCBs-ndl, 

PCBs-dl-noncop and for the PBDEs.  

 

6) Are these reference indexes useful in the Environmental Risk Assessment 

approach? 

In the present study, the BAF values calculated for E. fetida were higher than 1 in the 

case of PCBs and nBFRs, suggesting that the transfer of PCBs and nBFRs occurred from 

the matrices to the tissues of exposed E. fetida. When considering the AQ values (the 

accumulation coefficient considered in the SET and ERITME calculations), the results 

do not indicate the same trend as shown by the BAFs since the AQ values indicate that 

the excess transfer occurred only for the PCBs-ndl, PCBs-dl-noncop and PBDEs. 

It has already been clearly demonstrated in the literature, and in the present study, that 

the soil physico-chemical parameters can affect the bioavailability of contaminants to 

living organisms. Assessing the total concentrations of the contaminants in an 

environmental compartment is not enough to efficiently predict the risk posed by them to 

the living community. The traditional approach suggests using the BAF calculation which 

is usually required for evaluating and assessing contamination risk, however questions 

can arise regarding the quality and correctness of the BAF values obtained. BAFs present 

certain limitations, since they do not comprise a cumulative effect, because they treats 

each contaminant individually and thus in a less global way. 

Thus, the SET and ERITME approaches were developed to overcome this shortcoming 

as they are based on real measures in organisms. These indexes clearly show that an 

unexpected abnormal bioaccumulation of contaminants can occur in slightly 

contaminated soils and even exceed the limits tolerated for human consumption. 

Therefore, these more realistic indexes have proven useful for risk evaluation and 

managing contaminated sites. Thus, in the present study, where the anthroposoils studied 

were characterized by a mixture of different families of POPs and MTEs, with some of 

them present in low concentrations, it appeared more appropriate to apply the SET and 
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ERITME indexes as they take into account the sum of all the contaminants, and not one 

by one as in the BAF. 

 

 

5.2. Future Perspectives 

 

To take the present work further, it would be interesting to see whether the use of different 

soils with different characteristics, OM typologies and POPs levels, and their 

bioavailability, leads to significant differences in the PCA results and relations between 

the variables. This would entail: 

 Increasing the number of samples as well as considering soils with different 

typologies in order to identify the influence of the different parameters of POPs 

mobility and transfer to organisms. This can be done by implementing the same 

approach in other contaminated sites with different physico-chemical properties 

and contamination levels; 

 Selecting and studying other anthroposoils with lower or higher C/N ratios and 

sand content to determine whether any difference is noticeable in the PCA; 

 Performing tests on soil OM separation and analyzing the different typologies of 

OM (such as humic acids), and determine whether certain POPs are potentially 

linked or present in these different separated fractions; 

 Performing more detailed granulometric analyses to determine the speciation and 

distribution of contaminants in the different soil fractions; 

 Evaluating POPs bioavailability through various chemical extractions. Since 

DTPA+EDTA extraction did not extract POPs from the anthroposoils studied, 

tests on the aging and/or lixiviation of soil litter, for example, could also be done.  

 

To better understand the bioaccumulation process as a dynamic one, it would be 

interesting to perform kinetic studies for the different POPs considered and find links in 

the differences in levels of the POPs found in adult and juvenile E. fetida tissues. 

Moreover, it is important to establish a relation between the physiological characteristics 

and processes involved in the bioaccumulation of POPs by earthworms. To answer these 

questions, the following tasks could be performed: 
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 Chemical kinetics studies to understand the accumulation rates and variations over 

the time of exposure of the organisms to contaminated matrices, since the 

equilibrium state of certain contaminants is probably not reached during the usual 

exposure period of 56 days; 

 Expose physiologically distinct earthworms and plants as well as other test species 

to better understand how their feeding and burrowing habits signify possible 

species-specific differences in the accumulation and distribution of contaminants; 

 Conduct long term exposure tests to assess the effects of a contaminated soil on 

the various generations of the organisms tested to better understand the 

differences in sensitivity of adults and juveniles to contamination; 

 Explore distribution at the organ level to better understand the internal toxicity 

effects in the organisms and the presence of potential transformation products 

(especially in the case of compounds with low stability in soils) – perform studies 

on cellular toxicity and genotoxicity in earthworms and evaluate the enzymatic 

activity (Superoxide dismutase (SOD), Catalase) and the perturbation of 

photosynthetic activity in plants; 

 Use marked compounds, such as radioactive C14 or others, to better understand 

the mechanisms associated with, and/or responsible for, the mobility and transfer 

of certain POPs families, namely the BFRs since their behavior and transfer to 

terrestrial organisms remain poorly documented in the literature. 

It is important to carry out further studies using a larger number of different earthworm 

species to permit more specific and accurate conclusions on uptake and bioaccumulation 

differences. Firstly, we could begin with the collection of earthworms (notably in terms 

of ecological groups such as epigeic, endogeic and acenic) to evaluate transfer in situ. In 

addition to oligochaetes, other invertebrates from the terrestrial compartment such as 

springtails, insects and snails as well as primary predators and herbivores could be used 

to elucidate how species characteristics and habits can affect the fate, bioavailability, 

uptake and accumulation of different families of POPs. Also, testing with different 

species of different trophic levels allows understanding how and to what extent 

biomagnification occurs. Finally, tests could be carried out on models in which the data 

obtained is introduced to infer dispersion and biomagnifications in the trophic chain. The 

model TerraSysMC developed by Sanexen (Canada) for the ecological risk evaluation of 

contaminated lands could be tested as it combines all the parameters used for risk analysis 
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in both the terrestrial and aquatic compartments. TerraSysMC has already been widely 

tested for MTEs (Hayet, A., 2010) but it could be interesting to test this model for POPs, 

to infer the transfer between organisms from immediate trophic levels (earthworms and 

birds or moles, for example). 

Finally, these additional studies will allow better understanding, prediction and risk 

assessment of contaminant (namely the POPs) accumulation in living communities in 

terrestrial ecosystems and the potential for contaminants to enter the food chain and be 

subject to biomagnification. 
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Annex II 

 

  



Table II.1 – Correlation matrix (Pearson) for anthroposoils physico-chemical properties, metallic trace elements 
concentrations and organic contaminants levels in anthroposoils and in Eisenia fetida tissues (significance level α = 
0.95; coefficients higher than 0.7 are marked in bold). 

Variables Sand Silt Clay OM TOC 
NT 

Dumas 
C/N 

Carb 
tx 

CEC 
Metson 

pH 
H2O 

pH 
KCl 

CaO K2O MgO 
P 

Olsen 

Sand 1               

Silt -0,995 1              

Clay -0,837 0,776 1             

OM -0,659 0,603 0,832 1            

OC -0,659 0,603 0,832 1,000 1           

NT Dumas -0,830 0,777 0,953 0,917 0,917 1          

C/N 0,812 -0,805 -0,696 -0,445 -0,445 -0,740 1         

Carbonates tx -0,602 0,520 0,923 0,737 0,737 0,861 -0,574 1        

CEC Metson -0,859 0,822 0,893 0,857 0,857 0,948 -0,735 0,747 1       

pH H2O -0,624 0,547 0,917 0,725 0,725 0,886 -0,679 0,981 0,786 1      

pH KCl -0,637 0,562 0,916 0,743 0,743 0,902 -0,709 0,970 0,801 0,997 1     

CaO -0,596 0,514 0,916 0,709 0,709 0,850 -0,589 0,995 0,726 0,985 0,974 1    

K2O -0,740 0,697 0,828 0,759 0,759 0,902 -0,759 0,807 0,917 0,851 0,862 0,786 1   

MgO -0,693 0,619 0,954 0,787 0,787 0,916 -0,642 0,987 0,839 0,979 0,972 0,977 0,881 1  

P Olsen -0,378 0,355 0,431 0,523 0,523 0,599 -0,555 0,411 0,727 0,525 0,551 0,391 0,786 0,507 1 

Cd tot -0,593 0,529 0,823 0,619 0,619 0,726 -0,483 0,818 0,771 0,788 0,772 0,779 0,744 0,849 0,507 

Cu tot -0,578 0,528 0,738 0,473 0,473 0,646 -0,567 0,677 0,753 0,716 0,705 0,667 0,658 0,720 0,595 

Cr tot -0,698 0,626 0,948 0,785 0,785 0,884 -0,580 0,931 0,867 0,913 0,904 0,907 0,830 0,957 0,521 

Ni tot -0,704 0,636 0,931 0,757 0,757 0,858 -0,566 0,901 0,864 0,879 0,868 0,873 0,816 0,933 0,519 

Pb tot -0,683 0,626 0,855 0,532 0,532 0,684 -0,468 0,826 0,694 0,768 0,737 0,809 0,643 0,839 0,232 

Zn tot -0,708 0,644 0,915 0,706 0,706 0,832 -0,585 0,872 0,864 0,863 0,851 0,850 0,802 0,909 0,540 

ΣPCDDs soil -0,433 0,382 0,626 0,434 0,434 0,535 -0,388 0,624 0,641 0,606 0,594 0,575 0,614 0,662 0,530 

ΣPCDDs EF -0,446 0,386 0,680 0,531 0,531 0,626 -0,425 0,732 0,685 0,711 0,700 0,683 0,735 0,765 0,589 

ΣPCDFs soil -0,512 0,446 0,769 0,400 0,400 0,579 -0,453 0,796 0,567 0,757 0,731 0,783 0,534 0,779 0,216 

ΣPCDFs EF -0,472 0,411 0,709 0,361 0,361 0,547 -0,448 0,776 0,495 0,737 0,712 0,769 0,535 0,752 0,170 

ΣPCBs cop soil -0,492 0,442 0,663 0,492 0,492 0,560 -0,349 0,610 0,678 0,582 0,566 0,562 0,581 0,655 0,480 

ΣPCBs cop EF -0,445 0,406 0,567 0,477 0,477 0,511 -0,319 0,492 0,589 0,478 0,473 0,456 0,480 0,533 0,400 

ΣPCBs non-cop soil -0,395 0,338 0,625 0,516 0,516 0,603 -0,416 0,697 0,671 0,684 0,677 0,642 0,760 0,737 0,660 

ΣPCBs non-cop EF -0,258 0,216 0,435 0,418 0,418 0,470 -0,330 0,517 0,493 0,519 0,522 0,476 0,610 0,547 0,551 

Σ6PCBs NDL soil -0,443 0,385 0,669 0,543 0,543 0,622 -0,412 0,701 0,704 0,683 0,674 0,647 0,729 0,742 0,626 

Σ6PCBs NDL EF -0,333 0,287 0,515 0,447 0,447 0,510 -0,352 0,563 0,555 0,557 0,555 0,521 0,616 0,596 0,537 

Σ7PBDEs soil -0,438 0,379 0,670 0,742 0,742 0,757 -0,482 0,712 0,781 0,730 0,745 0,661 0,854 0,767 0,803 

Σ7PBDEs EF -0,543 0,472 0,818 0,718 0,718 0,807 -0,548 0,876 0,743 0,869 0,869 0,852 0,804 0,887 0,531 

Σ8PBDEs soil -0,409 0,350 0,647 0,664 0,664 0,696 -0,444 0,700 0,742 0,706 0,713 0,645 0,816 0,750 0,763 

Σ8PBDEs EF -0,335 0,310 0,406 0,276 0,276 0,373 -0,397 0,389 0,336 0,387 0,399 0,367 0,341 0,396 0,179 

Σ PBBs soil -0,520 0,450 0,792 0,557 0,557 0,690 -0,490 0,841 0,710 0,815 0,799 0,806 0,734 0,854 0,499 

Σ PBBs EF -0,137 0,109 0,264 0,219 0,219 0,279 -0,222 0,357 0,321 0,354 0,352 0,319 0,455 0,381 0,428 

PBEB soil -0,555 0,505 0,711 0,398 0,398 0,604 -0,569 0,750 0,396 0,741 0,731 0,794 0,446 0,700 -0,077 

PBEB EF -0,234 0,275 -0,035 -0,022 -0,022 0,003 -0,111 -0,144 0,057 -0,159 -0,153 -0,160 0,071 -0,086 -0,040 

nPBT soil -0,455 0,421 0,551 0,346 0,346 0,406 -0,241 0,438 0,557 0,401 0,380 0,397 0,379 0,482 0,307 

nPBT EF -0,477 0,429 0,641 0,437 0,437 0,567 -0,497 0,645 0,514 0,631 0,632 0,626 0,518 0,645 0,253 

nHBB soil 0,021 -0,054 0,159 0,179 0,179 0,253 -0,231 0,395 0,236 0,402 0,406 0,354 0,571 0,406 0,545 

nHBB EF -0,467 0,419 0,634 0,404 0,404 0,556 -0,510 0,666 0,466 0,650 0,649 0,656 0,510 0,653 0,186 

nPBB soil -0,457 0,392 0,716 0,646 0,646 0,721 -0,481 0,786 0,753 0,781 0,780 0,737 0,838 0,824 0,706 

nPBB EF -0,511 0,455 0,714 0,541 0,541 0,668 -0,555 0,741 0,583 0,733 0,738 0,723 0,619 0,739 0,324 



Table II.2 – Correlation matrix (Pearson) for metallic trace elements concentrations in anthroposoils and organic 
contaminants levels in anthroposoils and in Eisenia fetida tissues (significance level α = 0.95; coefficients higher than 
0.7 are marked in bold). 

Variables Cd tot Cu tot Cr tot Ni tot Pb tot Zn tot 

Cd tot 1      

Cu tot 0,894 1     

Cr tot 0,951 0,847 1    

Ni tot 0,970 0,869 0,996 1   

Pb tot 0,910 0,810 0,902 0,919 1  

Zn tot 0,969 0,920 0,983 0,992 0,927 1 

ΣPCDDs soil 0,950 0,882 0,818 0,855 0,783 0,866 

ΣPCDDs EF 0,939 0,804 0,854 0,874 0,772 0,865 

ΣPCDFs soil 0,913 0,854 0,865 0,880 0,933 0,892 

ΣPCDFs EF 0,783 0,684 0,770 0,772 0,834 0,771 

ΣPCBs cop soil 0,951 0,899 0,835 0,874 0,820 0,890 

ΣPCBs cop EF 0,727 0,695 0,671 0,695 0,618 0,703 

ΣPCBs non-cop soil 0,912 0,761 0,816 0,836 0,702 0,821 

ΣPCBs non-cop EF 0,604 0,465 0,562 0,565 0,417 0,540 

Σ6PCBs NDL soil 0,955 0,834 0,856 0,882 0,762 0,875 

Σ6PCBs NDL EF 0,716 0,599 0,655 0,667 0,543 0,652 

Σ7PBDEs soil 0,796 0,645 0,798 0,794 0,529 0,757 

Σ7PBDEs EF 0,808 0,658 0,870 0,852 0,711 0,818 

Σ8PBDEs soil 0,852 0,698 0,810 0,816 0,589 0,786 

Σ8PBDEs EF 0,450 0,364 0,430 0,433 0,371 0,411 

Σ PBBs soil 0,987 0,873 0,933 0,946 0,885 0,942 

Σ PBBs EF 0,477 0,354 0,398 0,410 0,317 0,393 

PBEB soil 0,352 0,291 0,546 0,498 0,583 0,481 

PBEB EF -0,103 -0,178 -0,111 -0,092 -0,034 -0,103 

nPBT soil 0,848 0,859 0,707 0,759 0,777 0,795 

nPBT EF 0,676 0,572 0,677 0,675 0,627 0,656 

nHBB soil 0,363 0,139 0,307 0,297 0,145 0,249 

nHBB EF 0,608 0,491 0,638 0,628 0,605 0,603 

nPBB soil 0,913 0,758 0,873 0,879 0,705 0,855 

nPBB EF 0,694 0,564 0,734 0,720 0,633 0,689 

 

 



Table II.3 – Correlation matrix (Pearson) for organic contaminants levels in anthroposoils and in Eisenia fetida tissues (significance level α = 0.95; coefficients higher than 0.7 
are marked in bold). 

Variables ΣPCDDs 
soil 

ΣPCDDs 
EF 

ΣPCDFs 
soil 

ΣPCDFs 
EF 

ΣPCBs 
cop soil 

ΣPCBs 
cop EF 

ΣPCBs 
non-cop 

soil 

ΣPCBs 
non -cop 

EF 
Σ6PCBs 
NDL soil 

Σ6PCBs 
NDL EF 

Σ7PBDE
s soil 

Σ7PBDE
s EF 

Σ8PBDE
s soil 

Σ8PBDE
s EF 

ΣPBBs 
soil 

ΣPBBs 
EF 

PBEB 
soil 

PBEB 
EF 

nPBT 
soil 

nPBT 
EF 

nHBB 
soil 

nHBB 
EF 

nPBB 
soil 

nPBB 
EF 

ΣPCDDs 
soil 

1                        

ΣPCDDs 
EF 

0,939 1                       

ΣPCDFs 
soil 

0,850 0,803 1                      

ΣPCDFs 
EF 

0,688 0,781 0,870 1                     

ΣPCBs 
cop soil 

0,981 0,898 0,851 0,668 1                    

ΣPCBs 
cop EF 

0,731 0,804 0,633 0,720 0,759 1                   

ΣPCBs 
non-cop 
soil 

0,933 0,965 0,737 0,646 0,872 0,645 1                  

ΣPCBs 
non-cop 
EF 

0,608 0,792 0,437 0,594 0,541 0,755 0,725 1                 

Σ6PCBs 
NDL soil 

0,975 0,971 0,799 0,673 0,941 0,706 0,986 0,686 1                

Σ6PCBs 
NDL EF 

0,723 0,871 0,570 0,695 0,678 0,870 0,780 0,972 0,770 1               

Σ7PBDE
s soil 

0,770 0,856 0,534 0,476 0,717 0,578 0,909 0,721 0,880 0,732 1              

Σ7PBDE
s EF 

0,685 0,795 0,706 0,746 0,654 0,609 0,774 0,690 0,767 0,706 0,808 1             

Σ8PBDE
s soil 

0,853 0,914 0,614 0,536 0,797 0,621 0,963 0,736 0,941 0,766 0,987 0,800 1            

Σ8PBDE
s EF 

0,445 0,370 0,451 0,343 0,411 0,143 0,429 0,049 0,439 0,071 0,397 0,495 0,418 1           

Σ PBBs 
soil 

0,944 0,948 0,928 0,813 0,918 0,690 0,930 0,629 0,956 0,727 0,801 0,825 0,861 0,469 1          

Σ PBBs 
EF 

0,514 0,687 0,346 0,507 0,441 0,645 0,616 0,940 0,572 0,890 0,561 0,485 0,593 -0,014 0,508 1         

PBEB 
soil 

0,094 0,196 0,539 0,600 0,097 0,103 0,117 0,086 0,124 0,109 0,127 0,512 0,093 0,247 0,388 -0,005 1        

PBEB 
EF 

-0,117 -0,022 -0,179 0,053 -0,108 0,119 -0,074 0,129 -0,098 0,074 -0,076 0,024 -0,085 0,167 -0,142 0,199 -0,054 1       

nPBT 
soil 

0,901 0,754 0,804 0,590 0,957 0,724 0,701 0,370 0,805 0,539 0,496 0,469 0,594 0,340 0,792 0,304 0,020 -0,093 1      

nPBT 
EF 

0,618 0,702 0,688 0,809 0,593 0,701 0,596 0,606 0,618 0,650 0,537 0,776 0,565 0,690 0,695 0,525 0,443 0,254 0,499 1     

nHBB 
soil 

0,388 0,560 0,173 0,264 0,233 0,123 0,674 0,615 0,540 0,519 0,678 0,491 0,683 0,209 0,450 0,573 0,010 0,033 -0,025 0,256 1    

nHBB 
EF 

0,518 0,518 0,654 0,555 0,484 0,263 0,525 0,282 0,532 0,289 0,472 0,598 0,491 0,827 0,641 0,290 0,547 0,109 0,379 0,766 0,275 1   

nPBB 
soil 

0,888 0,950 0,724 0,648 0,834 0,637 0,982 0,733 0,965 0,776 0,958 0,842 0,984 0,434 0,928 0,595 0,220 -0,093 0,638 0,616 0,670 0,557 1  

nPBB 
EF 

0,602 0,660 0,682 0,713 0,567 0,515 0,630 0,498 0,636 0,517 0,622 0,874 0,629 0,807 0,721 0,353 0,524 0,156 0,431 0,928 0,346 0,825 0,677 1 
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Annex III 

Table III.1 - Data used to SET and ERITME indexes calculation for studied organic contaminants – PCDDs and PCDFs congeners. 
 2,

3,
7,

8-
T

C
D

D
 

1,
2,

3,
7,

8-
P

eC
D

D
 

1,
2,

3,
4,

7,
8-

H
xC

D
D

 

1,
2,

3,
6,

7,
8-

H
xC

D
D

 

1,
2,

3,
7,

8,
9-

H
xC

D
D

 

1,
2,

3,
4,

6,
7,

8-
H

p
C

D
D

 

O
C

D
D

 

2,
3,

7,
8-

T
C

D
F

 

1,
2,

3,
7,

8-
P

eC
D

F
 

2,
3,

4,
7,

8-
P

eC
D

F
 

1,
2,

3,
4,

7,
8-

H
xC

D
F

 

1,
2,

3,
6,

7,
8-

H
xC

D
F

 

1,
2,

3,
7,

8,
9-

H
xC

D
F

 

2,
3,

4,
6,

7,
8-

H
xC

D
F

 

1,
2,

3,
4,

6,
7,

8-
H

p
C

D
F

 

1,
2,

3,
4,

7,
8,

9-
H

p
C

D
F

 

O
C

D
F

 

CIRef 0.28 0.88 0.72 4.48 2.42 119.91 627.50 4.87 2.45 4.28 5.60 2.08 0.44 2.61 16.40 2.15 61.08 

[C] Ef EST C 0.13 0.11 0.03 0.19 0.11 0.63 2.39 1.37 0.16 0.15 0.09 0.07 0.05 0.04 0.13 0.03 0.20 

[C] Ef EST G 0.11 0.05 0.04 0.17 0.10 0.75 4.24 1.45 0.27 0.26 0.27 0.14 0.06 0.06 0.20 0.05 0.63 

[C] Ef EST K 0.08 0.07 0.02 0.11 0.07 0.30 1.24 0.83 0.14 0.11 0.07 0.06 0.09 0.03 0.06 0.02 0.12 

[C] Ef EST L 0.11 0.07 0.04 0.12 0.07 0.33 1.20 1.19 0.16 0.14 0.07 0.07 0.06 0.03 0.08 0.01 0.09 

[C] Ef PEY Ic 0.42 0.68 0.53 2.11 1.09 28.35 162.49 4.94 1.86 2.86 2.89 1.46 0.21 1.19 6.98 0.97 17.77 

[C] Ef PEY IIb 0.17 0.33 0.41 1.09 0.66 15.52 112.39 2.31 0.87 1.53 1.37 0.81 0.13 0.69 3.93 0.37 9.06 

[C] Ef PEY 
IIIa 0.13 0.32 0.25 0.65 0.34 6.68 40.26 3.27 1.68 1.47 2.03 0.94 0.19 0.45 4.02 0.73 22.27 

[] Ef PEY IVa 0.09 0.13 0.15 0.52 0.34 6.33 42.12 1.38 0.47 0.88 0.66 0.41 0.08 0.28 1.54 0.21 4.21 

AQ EST C 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

AQ EST G 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

AQ EST K 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

AQ EST L 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 



AQ PEY Ic 1.46 1.00 1.00 1.00 1.00 1.00 1.00 1.01 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

AQ PEY IIb 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

AQ PEY IIIa 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

AQ PEY IVa 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

[AQ-1] EST C 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

[AQ-1] EST G 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

[AQ-1] EST K 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

[AQ-1] EST L 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

[AQ-1] PEY Ic 0.46 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

[AQ-1] PEY IIb 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

[AQ-1] PEY IIIa 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

[AQ-1] PEY IVa 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Toxicity Point 600.00 400.00 400.00 400.00 400.00 400.00 178.00 400.00 178.00 600.00 400.00 400.00 400.00 400.00 400.00 178.00 400.00 

RC OCs EST C 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

RC OCs EST G 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

RC OCs EST K 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

RC OCs EST L 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

RC OCs PEY Ic 278.85 0.00 0.00 0.00 0.00 0.00 0.00 5.65 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 



RC OCs PEY IIb 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

RC OCs PEY IIIa 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

RC OCs PEY IVa 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

CIRef and [C] Ef are in in ng.kg-1 dw. N.B.: Toxicity point values from ASTDR (Agency for Toxic Substances & Disease Registry), 2019. Minimal Risk Levels (MRLs) for 
Hazardous Substances. https://www.atsdr.cdc.gov/mrls/pdfs/ATSDR%20MRLs%20-%20June%202019-H.pdf. 
 

 

  



 
 
Table III.2 - Data used to SET and ERITME indexes calculation for studied organic contaminants – PCB congeners. 
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CIRef 452.65 12.32 34.92 3.17 2250.87 97.35 3747.43 133.56 1071.76 198.98 567.84 229.07 0.42 0.90 3.51 13.22 15.35 13.36 

[C] Ef EST C 39.04 2.22 7.43 0.81 957.59 46.52 3598.75 35.41 435.79 54.27 226.17 27.28 0.76 4.16 11.46 6.47 14.57 4.23 

[C] Ef EST G 43.98 2.62 9.69 1.15 1074.66 56.40 3945.38 50.78 643.46 79.42 311.18 58.83 0.74 4.74 12.91 9.34 16.36 6.23 

[C] Ef EST K 33.43 2.27 5.18 0.51 957.61 48.56 3681.75 35.48 445.04 56.03 221.98 29.03 0.74 4.83 11.64 6.60 12.39 4.27 

[C] Ef EST L 39.17 2.56 7.22 0.70 1023.30 53.97 3955.35 38.00 540.79 69.58 268.23 34.41 0.77 4.91 12.29 7.65 14.07 5.12 

[C] Ef PEY Ic 493.57 36.96 97.18 11.23 9650.23 534.38 20916.43 790.96 5909.54 1238.20 3766.87 1132.38 0.66 5.59 26.74 92.38 138.21 83.95 

[C] Ef PEY IIb 165.94 15.88 44.92 5.41 11.049.08 474.75 32064.96 534.37 7138.15 1166.63 3554.88 980.79 0.41 4.72 25.01 81.03 122.39 74.19 

[C] Ef PEY IIIa 92.50 9.28 33.77 4.42 2164.70 146.86 5840.25 156.80 1714.94 309.88 938.96 269.71 0.51 4.02 11.24 21.55 34.88 19.68 

[C] Ef PEY IVa 235.01 11.93 37.37 4.89 4153.00 191.78 12690.08 217.50 2489.65 352.53 1293.89 422.28 1.14 7.98 20.61 30.38 50.83 30.11 

AQ EST C 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.81 4.60 3.26 1.00 1.00 1.00 

AQ EST G 1.00 1.00 1.00 1.00 1.00 1.00 1.05 1.00 1.00 1.00 1.00 1.00 1.76 5.23 3.67 1.00 1.07 1.00 



AQ EST K 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.76 5.34 3.31 1.00 1.00 1.00 

AQ EST L 1.00 1.00 1.00 1.00 1.00 1.00 1.06 1.00 1.00 1.00 1.00 1.00 1.84 5.42 3.50 1.00 1.00 1.00 

AQ PEY Ic 1.00 3.00 2.78 1.00 4.29 5.49 5.58 5.92 5.51 6.22 6.63 4.94 1.57 6.17 7.61 6.99 9.00 6.28 

AQ PEY IIb 1.00 1.29 1.29 1.00 4.91 4.88 8.56 4.00 6.66 5.86 6.26 4.28 1.00 5.22 7.12 6.13 7.97 5.55 

AQ PEY IIIa 1.00 1.00 1.00 1.00 1.00 1.51 1.56 1.17 1.60 1.56 1.73 1.18 1.22 4.44 3.20 1.63 2.27 1.47 

AQ PEY IVa 1.00 1.00 1.07 1.00 1.85 1.97 3.39 1.63 2.32 1.77 2.28 1.84 2.70 8.82 5.86 2.30 3.31 2.25 

[AQ-1] EST C 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.81 3.60 2.26 0.00 0.00 0.00 

[AQ-1] EST G 0.00 0.00 0.00 0.00 0.00 0.00 0.05 0.00 0.00 0.00 0.00 0.00 0.76 4.23 2.67 0.00 0.07 0.00 

[AQ-1] EST K 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.76 4.34 2.31 0.00 0.00 0.00 

[AQ-1] EST L 0.00 0.00 0.00 0.00 0.00 0.00 0.06 0.00 0.00 0.00 0.00 0.00 0.84 4.42 2.50 0.00 0.00 0.00 

[AQ-1] PEY Ic 0.09 2.00 1.78 25.55 3.29 4.49 4.58 4.92 4.51 5.22 5.63 3.94 0.57 5.17 6.61 5.99 8.00 5.28 

[AQ-1] PEY IIb 0.00 0.29 0.29 0.71 3.91 3.88 7.56 3.00 5.66 4.86 5.26 3.28 0.00 4.22 6.12 5.13 6.97 4.55 

[AQ-1] PEY IIIa 0.00 0.00 0.00 0.40 0.00 0.51 0.56 0.17 0.60 0.56 0.73 0.148 0.22 3.44 2.20 0.63 1.27 0.47 

[AQ-1] PEY IVa 0.00 0.00 0.07 0.54 0.85 0.97 2.39 0.63 1.32 0.77 1.28 0.84 1.70 7.82 4.86 1.30 2.31 1.25 

Toxicity Point 600.00 600.00 600.00 600.00 600.00 600.00 600.00 600.00 600.00 600.00 600.00 600.00 600.00 600.00 600.00 600.00 600.00 600.00 



RC OCs EST C 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 486.29 2158.10 1357.64 0.00 0.00 0.00 

RC OCs EST G 0.00 0.00 0.00 0.00 0.00 0.00 31.69 0.00 0.00 0.00 0.00 0.00 454.22 2539.70 1604.82 0.00 39.42 0.00 

RC OCs EST K 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 456.78 2602.12 1387.35 0.00 0.00 0.00 

RC OCs EST L 0.00 0.00 0.00 0.00 0.00 0.00 33.29 0.00 0.00 0.00 0.00 0.00 501.60 2653.57 1498.40 0.00 0.00 0.00 

RC OCs PEY Ic 54.25 1200.54 1069.70 1527.50 1972.40 2639.55 2748.92 2953.20 2708.31 3133.71 3380.23 2366.05 339.39 3103.12 3966.17 3593.43 4800.81 3169.09 

RC OCs PEY IIb 0.00 173.89 171.87 425.38 2345.29 2325.99 4533.91 1800.52 3396.11 2917.90 3156.24 1969.01 0.00 2531.77 3669.95 3078.13 4182.75 2731.09 

RC OCs PEY IIIa 0.00 0.00 0.00 237.59 0.00 305.11 335.08 104.41 360.07 334.42 439.69 106.45 132.88 2063.18 1318.89 378.38 763.23 283.80 

RC OCs PEY IVa 0.00 0.00 42.15 326.74 507.04 582.01 1431.80 377.08 793.77 463.04 767.18 506.10 1021.56 4691.94 2918.89 779.25 1386.45 752.01 

CIRef and [C] Ef are in in ng.kg-1 dw. N.B.: Toxicity point values from ASTDR (Agency for Toxic Substances & Disease Registry), 2019. Minimal Risk Levels (MRLs) for 
Hazardous Substances. https://www.atsdr.cdc.gov/mrls/pdfs/ATSDR%20MRLs%20-%20June%202019-H.pdf. 
 

 

 

  



 
 
Table III.3 - Data used to SET and ERITME indexes calculation for studied organic contaminants – PBDE and PBB congeners, and HBCD isomers. 
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CIRef 0.00 0.14 0.17 0.05 0.06 0.04 0.06 73.70 0.00 0.00 0.01 6.31 1.28 14.80 

[C] Ef EST C 0.01 0.16 0.17 0.05 0.02 0.02 0.00 0.35 0.00 0.00 0.00 0.02 0.00 0.00 

[C] Ef EST G 0.01 0.22 0.23 0.06 0.02 0.02 0.01 0.46 0.00 0.00 0.00 0.23 0.00 0.05 

[C] Ef EST K 0.01 0.18 0.19 0.05 0.02 0.02 0.01 0.47 0.00 0.00 0.00 0.00 0.00 0.00 

[C] Ef EST L 0.01 0.18 0.21 0.05 0.02 0.02 0.01 0.91 0.00 0.00 0.01 0.03 0.00 0.00 

[C] Ef PEY Ic 0.01 0.59 0.72 0.45 0.10 0.16 0.01 8.45 0.00 0.01 0.03 1.85 0.08 0.74 

[C] Ef PEY IIb 0.00 0.51 0.99 0.59 0.18 0.25 0.02 20.25 0.00 0.01 0.02 3.71 0.00 1.26 

[C] Ef PEY IIIa 0.00 0.01 0.16 0.10 0.03 0.04 0.01 1.28 0.00 0.00 0.01 0.31 0.00 0.11 

[C] Ef PEY IVa 0.02 0.56 0.94 0.41 0.14 0.15 0.01 37.63 0.00 0.01 0.01 0.66 0.10 0.54 

AQ EST C 6.89 1.14 1.00 1.03 1.00 1.00 1.00 1.00 1.00 1.23 1.00 1.00 1.00 1.00 

AQ EST G 7.59 1.54 1.30 1.28 1.00 1.00 1.00 1.00 1.09 1.00 1.00 1.00 1.00 1.00 

AQ EST K 5.90 1.23 1.10 1.08 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

AQ EST L 7.21 1.29 1.23 1.06 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 



AQ PEY Ic 5.28 4.13 4.16 9.47 1.77 4.57 1.00 1.00 1.59 2.10 2.07 1.00 1.00 1.00 

AQ PEY IIb 3.19 3.55 5.70 12.43 3.15 6.99 1.00 1.00 1.74 1.77 1.36 1.00 1.00 1.00 

AQ PEY IIIa 1.55 1.00 1.00 2.16 1.00 1.10 1.00 1.00 1.00 1.49 1.00 1.00 1.00 1.00 

AQ PEY IVa 16.42 3.91 5.40 8.69 2.46 4.36 1.00 1.00 1.39 2.75 1.00 1.00 1.00 1.00 

[AQ-1] EST C 5.89 0.14 0.00 0.03 0.00 0.00 0.00 0.00 0.00 0.23 0.00 0.00 0.00 0.00 

[AQ-1] EST G 6.59 0.54 0.30 0.28 0.00 0.00 0.00 0.00 0.09 0.00 0.00 0.00 0.00 0.00 

[AQ-1] EST K 4.90 0.23 0.10 0.08 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

[AQ-1] EST L 6.21 0.29 0.23 0.06 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

[AQ-1] PEY Ic 4.28 3.13 3.16 8.47 0.77 3.57 0.00 0.00 0.59 1.10 1.07 0.00 0.00 0.00 

[AQ-1] PEY IIb 2.19 2.55 4.70 11.43 2.15 5.99 0.00 0.00 0.74 0.77 0.36 0.00 0.00 0.00 

[AQ-1] PEY IIIa 0.55 0.00 0.00 1.16 0.00 0.10 0.00 0.00 0.00 0.49 0.00 0.00 0.00 0.00 

[AQ-1] PEY IVa 15.42 2.91 4.40 7.69 1.46 3.36 0.00 0.00 0.39 1.75 0.00 0.00 0.00 0.00 

Toxicity Point 178.00 178.00 178.00 178.00 178.00 178.00 178.00 178.00 600.00 600.00 600.00 178.00 178.00 178.00 

RC OCs EST C 1048.81 25.28 000 4.57 0.00 0.00 0.00 0.00 0.00 138.87 0.00 0.00 0.00 0.00 

RC OCs EST G 1172.82 95.59 53.11 49.30 0.00 0.00 0.00 0.00 54.17 0.00 0.00 0.00 0.00 0.00 

RC OCs EST K 871.97 41.09 17.23 15.07 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

RC OCs EST L 1106.12 50.89 40.32 11..30 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

RC OCs PEY Ic 762.62 556.64 561.86 1507.63 136.80 635.99 0.00 0.00 354.58 660.17 644.96 0.00 0.00 0.00 



RC OCs PEY IIb 390.15 454.30 836.53 2034.83 382.89 1065.74 0.00 0.00 441.65 461.74 217.67 0.00 0.00 0.00 

RC OCs PEY IIIa 98.42 0.00 0.00 207.04 0.00 18.45 0.00 0.00 0.00 296.77 0.00 0.00 0.00 0.00 

RC OCs PEY IVa 2745.26 517.80 783.00 1369.00 259.07 598.67 0.00 0.00 236.48 1051.08 0.00 0.00 0.00 0.00 

CIRef and [C] Ef are in in ng.kg-1 dw. N.B.: Toxicity point values from ASTDR (Agency for Toxic Substances & Disease Registry), 2019. Minimal Risk Levels (MRLs) for 
Hazardous Substances. https://www.atsdr.cdc.gov/mrls/pdfs/ATSDR%20MRLs%20-%20June%202019-H.pdf. 
 

 
 


