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Introduction

Over the years the evolution of the robotics and automation have impacted in different areas, either in industry or academic world. Several projects have received a strong influence from this field, which can be noticed for instance in applications for factory [START_REF] Grau | Industrial robotics in factory automation: From the early stage to the Internet of Things[END_REF], entertainment, education [START_REF] Le | MoreBots: System development and integration of an educational and entertainment modular robot[END_REF], health-care [START_REF] Ho | Developing an robotic system for healthcare from the aspect of lifestyle[END_REF][START_REF] Kalai Chelvam | M3DITRACK3R: A design of an automated patient tracking and medicine dispensing mobile robot for senior citizens[END_REF] search & rescue (SAR) [START_REF] Chen | Robust SLAM system based on monocular vision and LiDAR for robotic urban search and rescue[END_REF] or transport [START_REF] Walenta | A decentralised system approach for controlling AGVs with ROS[END_REF].

Regarding the last one, transport domain is often related to the mobile robotics area and the most recent applications are addressed to impulse and develop systems for intelligent vehicles. In this context, it is interesting to appreciate the growth suffered in the technology involved in the autonomous vehicles. The first project registered about autonomous cars was developed by General Motors Company in 1939, in which an electric vehicle was controlled by an electric circuit embedded in the pavement of the road. Then in 1980, car operations using radar, laser and computer vision methods were proposed by Advanced Research Projects Agency (DARPA) and nowadays, the idea evolved until to the concept of autonomous taxi service, which has been implemented by companies as nuTonomy and UBER in cities such as Singapore, Pittsburgh and San Francisco.

This evolution always was accompanied by the search for three main aspects: efficiency, comfort and security. These aspects are required in tasks for: establishing a vehicle's connectivity with different kinds of devices and networks (See Figure 1); optimizing the motor's performance; reducing the general energetic consumption in the unit; helping drivers to avoid accidents; supervising fatigue, alcoholic drinks and general health conditions driver; or autonomous parking and driving. With respect to the last task, its great utility is not only applicable to daily life activities but also in search and rescue operations where the human access to the disaster zone is almost impossible.

Nevertheless, in order to execute some of the previously mentioned tasks, the car must perceive and analyze all the available information about its surroundings in real time. For this, the mobile platform has a cluster of sensors as IMU (Inertial the robot's localization. In order to build a map, the robot has to traverse the unknown environment and progressively collect measurements of its surroundings and new pose. Furthermore, the presence of uncertainty and noise in the measurements from the sensors accumulates errors over time that consequently distort the estimate of its position and map.

Another interesting point that has to be defined for performing the mapping is the type of environment. The majority of mapping algorithms in the literature review are designed to operate in small indoor (structured) environments. The approach presented in our work is addressed to localization and mapping problems to be applied on outdoor (large) environments. Because of the environment's complexity, such as terrain roughness or lack of structure or dimensions, outdoor environments can provide more troubles for executing the mapping function successfully, compared to a mapping indoor solution.

Nevertheless, that mapping challenge can become more complex since in some situations, e.g. for scenarios of large regions, it can require the use of a group of robots that build the maps in a reasonable amount of time considering accuracy in the map construction [START_REF] Dinnissen | Map merging of multi-robot SLAM using reinforcement learning[END_REF]. Therefore, a set of robots extends the capability of a single robot by merging measurements from group members, providing each robot with information beyond their individual sensors range. This allows a better use of resources and executes tasks which are not feasible by a single robot.

Multi-robot mapping is considered as a centralized approach when it requires all the data to be analyzed and merged at a single computation unit. Otherwise, in a decentralized approach, each robot builds their local maps independent of one another and merge their maps upon rendezvous.

Following this direction, this manuscript presents the development and validation of a new Multi-Robot Mapping framework addressed to outdoor environments applications by using a decentralized approach. Proposed approach has been tested and validated in realistic situations. Results include maps developed with data acquired on the surroundings of the ECN ( École Centrale de Nantes) campus.

In this context, the motivation of this thesis is to develop applications of autonomous or human driven multi-robot systems to build large 3D maps of outdoor environments with restrictions of: map accuracy, reasonable amount of time, efficient use of resources.

Considering our knowledge about precedent works about single and multi robot mapping, our main objective is to implement a Robotic Collaborative Framework for efficient merging of maps based on 2 stages:

• Pre-Local Mapping Stage, for each robot initially.

• Local Mapping Stage, for a team of robots.

In this context, our approach should be :

• distributed: in the sense that must not depend on a centralized processing platform. For that reason, independent inter-robot communication had to be enabled using pre-existing hardware and software tools via a wireless network;

• scalable: i.e. the addition of one or more robots should not compromise the system's performance;

• efficient: in terms of runtime and memory use by optimizing the exchange of maps and other data.

Organization

This manuscript is organized into four parts.

• Chapter 1 reviews some theoretical concepts regarding SLAM and introduces the related works developed in this area.

• Chapter 2 presents the theory and implementations involved on collaborative SLAM with respect to the merging and sharing strategies. At the end of this chapter, a benchmarking metric analysis for both strategies is performed and it discusses the type of strategy utilized in this work.

• Chapter 3 exposes in detail the Collaborative framework used in this manuscript. This framework is based on the benchmarking results obtained in the chapters 2.

• Chapter 4 comprised of the frameworks implementation and several experiments performed in this context, with their corresponding results.

• Finally, conclusions of the entire work and proposed future works are presented.

Scientific contributions

Therefore, the main contributions of this work are:

• The proposal of a multi-robot architecture for performing a decentralized mapping to outdoor environments (presented in [START_REF] Contreras | Efficient Decentralized Collaborative Mapping for Outdoor Environments[END_REF]), that in its skeleton includes:

-the use of low-cost GPS data previously for the generation of the Pre-Local maps;

-a Sharing algorithm in order to get an efficient exchange of Pre-Local maps (exposed in [START_REF] Contreras | CoMapping: Efficient 3D-Map Sharing Methodology for Decentralized cases[END_REF]);

-an Intersecting technique between point-clouds tailored to the registration process during the Local mapping (Topic related publication include in [START_REF] Contreras | Efficient Decentralized Collaborative Mapping for Outdoor Environments[END_REF]).

• The experimental validation and execution of our system using real data in large environments for urban and rural scenarios (exposed in [START_REF] Contreras | CoMapping: Multi-robot Sharing and Generation of 3D-Maps applied to rural and urban scenarios[END_REF]).

• Results of the merging process analysis based on alignment metrics (published in [START_REF] Contreras | CoMapping: Multi-robot Sharing and Generation of 3D-Maps applied to rural and urban scenarios[END_REF]).

• Results of the sharing process analysis based on compression metrics (it is not published yet).

The publications that have come out of this work are: Chapter 1

• L.

Fundamentals on SLAM

In mobile robotics, several works have been developed for the execution of tasks such as navigation, avoiding of obstacles, localization [START_REF] Contreras | FPGA Implementation of EKF for Mobile Robot Localization[END_REF][START_REF] Contreras | FPGA implementation of the EKF algorithm for localization in mobile robotics using a unified hardware module approach[END_REF] or mapping, using different kind of implementations [START_REF] Leutenegger | Keyframe-based visual-inertial slam using nonlinear optimization[END_REF][START_REF] Bonato | A Floating-Point Extended Kalman Filter Implementation for Autonomous Mobile Robots[END_REF][START_REF] Achtelik | Collaborative stereo[END_REF][START_REF] Williams | Efficient Solutions to Autonomous Mapping and Navigation Problems[END_REF][START_REF] Krajník | A Practical Multirobot Localization System[END_REF]. In all the cases, the Simultaneous Localization and Mapping (SLAM) is present.

Based on this topic, this chapter is organized the following way: section 1.1 faces the topics and theory involve in SLAM problem. Section 1.2 exposes the approaches to the SLAM. Finally section 1.3 reviews the implementations related to map registration either with a visual and Lidar approach.

SLAM

Basically, the SLAM problem idea starts when we must face questions as: how could a robot navigate in an unknown environment while at the same time it constructs and updates a map of its surroundings using on board sensors? For that reason, the SLAM problem can be categorized into two challenges: the self-localization and the construction of the map from the navigated environment. Figure 1.1 illustrates a classic SLAM scheme using a sensory systems with one or multiple devices (i.e: rangefinders, cameras, inertial measurement units). In the SLAM front-end stage the sensor data is processed in order to obtain the vehicle odometry for the short term. From this estimated odometry, in the following back-end stage is executed the creation of the environment model.

Nevertheless, in this type of situations the loop closure problem can be present (see during the path. Nevertheless, it is sensitive to accumulative errors generated by skid problems.

B) Inertial sensors :

An inertial measurement unit (IMU) generally includes a gyroscope to measure angular velocities, and accelerometer to measure accelerations. In the beginning, methods based on theses devices were used in the defence area for the control of missiles, aircraft, ships and submarines. Currently, many electronic devices involves this kind of IMU technology such as laser-gyroscopes, solid-state accelerometers based on micro-electro-mechanical systems, etc.

Sensors for "physical constants"

For that case we have two types: inertial systems and magnetometers.

A) Inertial systems :

Accelerometers can also measure the acceleration of gravity g, which allows to stabilize the attitude angles by observing the vertical. It is possible also that Gyroscopes measure the Earth's rotation, but this measurement needs to be compensated by the most sensitive sensors.

B) Magnetometers :

Based on the magnetic compasses, a set of 3 magnetometers installed orthogonally allows to orient a platform with respect to the terrestrial magnetic north. However, these kind of devices are sensitive to distortions of the earth's magnetic field caused by the presence of ferromagnetic masses or other sources.

Environmental sensors

Mainly mobile robotics projects involve these kind of sensors, separated in two big groups : Rangefinder and cameras. A) Rangefinder : These devices measure distances to a target in the environment, according to different technologies: sonar (ultrasound), Lidar (ultraviolet, visible, or near infrared light), radar (radio waves), etc. They can be used directly to estimate distances to known targets and they are widely used in robotics applications for generating models of the environment and localizes the robot in that model.

B) Cameras :

In this case, we have a different types of cameras depending the applications, such as colour or B/W, perspective or panoramic, sensitive in the visible or infrared spectrum, monocular, stereo, etc.). They can be used to obtain indirectly camera's tracking and map of the surroundings too.

• u 0 , u 1 , ..., u k : Sequence of control inputs • m 0 , m 1 , ..., m i , m j : The map of the environment • z k : measurements acquired by the robot at each time k With respect to the Figure 1.4, the robot uses its exteroceptive sensors in order to observe the environment by detecting some landmarks that allow a more accurate localization in the map. Those estimates or beliefs of the robot pose and landmarks positions are modeled by a PDF (Probability Density Function). Actually, during the robot navigation, landmarks observations are stored in a vector m and when the mobile unit navigates on other region, it is possible to fuse the previous belief with the new one obtained from another landmark; updating finally the PDF associated to that landmark. PDF are often approximated to a Gaussian distribution to consider the mean and co-variance in its compact and parametric representation. Nevertheless, other applications need other kind of approximations, e.g. nonlinear behaviour systems [START_REF] Thrun | Probabilistic Robotics (Intelligent Robotics and Autonomous Agents)[END_REF]. In general, SLAM case can be focused to find the PDF described in Equation (1.1)

P (x k , m|z 0:k , u 0:k ), (1.1) 
wherein mapping and localization are included. m and x k represent the posterior PDF for landmark and robot pose. The robot state x k depend on the stored measurements z 0:k and the control inputs u 0:t . In the majority of cases, the Bayes theorem performs the SLAM algorithm in a recursive way. In that case, the entire algorithm of each iteration is split in two stages: Predictive and Estimate related to the Equations (1.2) and (1.3), respectively.

Predictive Stage:

P (x k , m|x k-1 , u k ), (1.2) 
Estimate Stage:

P (z k |x k , m), (1.3) 
Equations (1.2) and (1.3) considers a Markov process due to the following state x k depends just on the previous state x k-1 and its control input u k . Bayesian structures allow to represent the iterative process as:

Predictive Stage:

P (x k , m|z 0:k-1 , u 0:k , x 0 ) = P (x k |x k-1 , u k ) × P (x k-1 , m|z 0:k-1 , u 0:k-1 , x 0 )dx k-1 ,
(1.4) Estimate Stage:

P (x k , m|z 0:k , u 0:k , x 0 ) = η × P (z k |x k , m) × P (x k , m|z 0:k-1 , u 0:k-1 ), (1.5) 
where η is used as constant of normalization.

Meanwhile, SLAM problem can be interpreted in two forms: full and online.

Equation (1.6) corresponds to the Full way of the SLAM problem, wherein the computation of the posterior pose over the entire path along with the map is the objective.

In the other hand, Online option is represented by Equation (1.7), in which the posterior pose over the momentary one is calculated with the map, considering just the variables estimate at the instant k [START_REF] Thrun | Probabilistic Robotics (Intelligent Robotics and Autonomous Agents)[END_REF].

Full SLAM formulation:

p(x 0:k , m|z 0:k , u 0:k ), (1.6) 
Online SLAM formulation:

p(x k , m|z 0:k , u 0:k ), (1.7) 
Having in mind that the Collaborative Mapping framework developed in this Ph.D. thesis is addressed to real-time applications, we focused basically on online approach.

Another formulation more intuitive is the graphical SLAM representation [START_REF] Dellaert | Square root sam[END_REF][START_REF] Grisetti | A tutorial on graphbased SLAM[END_REF]. Figure 1.5 shows this idea in which a graph represents the variables involved in SLAM process. This representation is a DBN way (Dynamic Bayesian Network) and can help to understand the next SLAM approaches presented in this manuscript.

Meanwhile, in SLAM implementations, landmarks plays a relevant role. The key lies in that the features have to be recognizable from different viewpoints. They can be found in different kind applications. For instance, in vision-based projects the extraction stage considers point features, lines or textured surfaces. In applications based on range sensing (laser/sonar), the extraction is focused in line segments, 3D planes or corners. 

Metric maps

Another option is the metric representation, known also as occupancy grid maps, wherein the idea is to discretize the world into cells. The occupancy grid representation can be organized on a criterion of classification depending on the kind of grid structure: rigid or variable.

A) Metric maps: Fixed structure

In this category, the grid is defined by square (2D) or cubic (3D) regions of equal size, which are called cells (for 2D grids) or voxels (for 3D grids), to subdivide the volume to be mapped [START_REF] Roth-Tabak | Building an environment model using depth information[END_REF]. The approach presents two main drawbacks: high requirement of memory for large regions and presents difficulty to represent spaces in finer resolutions for precise tasks. This approach considers two main assumptions:

• each cell can be modelled in three states (free, occupied, or unknown space)

• the cells; i.e. the random variables; are independent of each other To explain better this model, let us consider that an occupancy grid map has a determined grid of cells, wherein each cell is associated to a binary random variable that represents the occupancy. Binary Bayes filter [START_REF] Thrun | Probabilistic Robotics (Intelligent Robotics and Autonomous Agents)[END_REF] is used in the construction of an occupancy grid map by updating grid cells corresponding to new sensor measurements. Given the pose x 1:t of the sensor, the "belief" of a grid cell n to be occupied given a group of observations z 1:t can be denoted as bel t (n) = P (n|z 1:t , x 1:t ), (1.9)

Regarding this last notation, it can be indicated the state of a cell for instance when it is occupied P (n) = 1; not occupied P (n) = 0 or it has no knowledge P (n) = 0.5 However in the robotics community usually logodds representation of a cells occupancy is preferred, wherein the odds of cell n to be occupied is 

P (n) P (-n) = P (n) 1 -P (n) , (1.10)
Defining the log-odds belief L(n) as the logarithm of this ratio

L(n) = log[ P (n) 1 -P (n) ], (1.11) 
As we mentioned previously, the odds of a single cell is updated based on the binary Bayes Filter [START_REF] Thrun | Probabilistic Robotics (Intelligent Robotics and Autonomous Agents)[END_REF] P (n|z

1:t , x 1:t ) P (-n|z 1:t , x 1:t ) = P (n|z t , x t ) 1 -P (n|z t , x t ) × P (n|z 1:t-1 , x 1:t-1 ) 1 -P (n|z 1:t-1 , x 1:t-1 ) × 1 -P (n) P (n) , (1.12) 
wherein:

• P (n|z 1:t ) corresponds to the new occupancy probability of the cell,

• P (n|z 1:t-1 ) is the cells previous estimation,

• P (n|z t ) corresponds to the probability that the cell is occupied, considering the current observation obtained through the sensor model,

• P (n) is the initial supposition of the cells occupancy.

Applying the logarithm function in the Equation (1.12) and assuming a common uniform cell prior probability of P (n)=0.5 (no knowledge previously), the equation can be re-written as

log[ P (n|z 1:t , x 1:t ) P (-n|z 1:t , x 1:t ) ] = log[ P (n|z t , x t ) 1 -P (n|z t , x t ) ] + log[ P (n|z 1:t-1 , x 1:t-1 ) 1 -P (n|z 1:t-1 , x 1:t-1 ) ] + log[ 1 -0.5 0.5 ], (1.13)
Resulting in a log-odds belief representation as follows:

L(n|z 1:t , x 1:t ) = L(n|z 1:t1 , x 1:t1 ) + L(n|z t , x t ), (1.14) 
As it can be seen, the use of log-odds representation for cell occupancy allows a faster update because it computes simply additions instead of multiplications. Another important remark is the update step does not require the computation neither of logarithm functions nor sensor models, which may be calculated previously.

B) Metric maps: Variable structure

This category corresponds to the Quadtree and Octree-based occupancy grid for 2D and 3D representations respectively. Quadtree and octree are hierarchical data structures for spacial subdivision. Quadtree representation is a set of nodes, which discretizes a 2D space into cells, which then are split into 4 sub-regions recursively until getting the desired resolution. Analogously, octree representation corresponds to the discretization of a 3D space into voxels, which then are split into 8 sub-volumes recursively until the established resolution is obtained. The concept of octree was proposed for first time by the computer graphics community for efficient rendering of 3-D volumes [START_REF] Meagher | Geometric Modeling Using Octree Encoding[END_REF]. This volumetric approach avoids many deficiencies of approaches using a rigid-size grid [START_REF] Payeur | A computational technique for free space localization in 3-d multiresolution probabilistic environment models[END_REF]. The idea of subdivision of space and the tree structure of an octree are depicted in Figure 1.10. Since an octree map is a particular case of a grid map, each node contains the occupancy probability of the respective volumetric cell. An interesting point about the octree representation is that can be implemented on map compression methods [START_REF] Hornung | Oc-toMap: An efficient probabilistic 3D mapping framework based on octrees[END_REF], which will be discussed in more detail in the next chapter. cost. The sparsification can be a solution to face that problem [START_REF] Thrun | Simultaneous mapping and localization with sparse extended information filters: Theory and initial results[END_REF] in which the near-zero elements of the normalized data matrix are configured to zero, getting a more "sparse" and slight covariance matrix. However, Eustice et al. [START_REF] Eustice | Sparse extended information filters: insights into sparsification[END_REF] shows this type of solution keeps some inconsistencies with respect to practical implementation, because in real scenario recovering the mean and co-variance of the state at every time is necessary.

Other relevant characteristics in the covariance matrix (see Equation (1.15)) are the correlations. Actually, the convergence of the algorithm depends on these correlations. In the beginning, covariance matrix is filled with zero off-diagonal elements because it was assumed these (initial) features are not correlated. The correlations starts with the robot motion, producing after that the covariance matrix becomes dense.

Initial state:

Final state:

P ini =      P xx 0 0 • • • 0 P m 1 m 1 0 • • • 0 0 P m 2 m 2 • • • . . . . . . . . . . . .      , P =      P xx P xm 1 P xm 2 • • • P m 1 x P m 1 m 1 P m 1 m 2 • • • P m 2 x P m 2 m 1 P m 2 m 2 • • • . . . . . . . . . . . .      (1.15)
Some advantages of EKF-SLAM are: it solves the Online-SLAM problem and its resultant graph stays relatively compact by increasing just in cases of exploration of new regions. On the other hand, drawbacks of this approach are: the state vector in EKF-SLAM is much larger than the state vector in EKF localization due to the quantity of map features. The approach is computationally expensive for large-scale SLAM because the covariance matrix grows quadratically with the number of features. Map size is limited by the number of features. Moreover, the EKF-based SLAM cannot converge to the correct map because simply the correlations between the landmarks are not considered (according to [START_REF] Castellanos | Building a global map of the environment of a mobile robot: the importance of correlations[END_REF]).

Particle Filter

Particle Filtering approach is supported on the Monte Carlo experiment and tailored to the SLAM application (Rao & Blackwell work). This approach was used to develop the FastSLAM, which is a project presented by Montemerlo et al. [START_REF] Montemerlo | Fastslam: A factored solution to the simultaneous localization and mapping problem[END_REF] [START_REF] Montemerlo | FastSLAM 2.0: An Improved Particle Filtering Algorithm for Simultaneous Localization and Mapping that Provably Converges[END_REF].

Actually, the technique computes iteratively the full posterior system state (robot and landmarks poses) and presents a logarithmic growth with respect to the number of landmarks, allowing a real-time mapping for a lot of landmarks. FastSLAM evolved to hybrid versions [START_REF] Eliazar | Dp-slam 2.0[END_REF][START_REF] Davison | Real-time 3D SLAM with wideangle vision[END_REF]; implementing grid maps instead of feature ones. Nevertheless, assumptions of linearity and Jacobian matrices derivation were a drawback.

Homogeneous transformations

Registration process usually involves the computation of the relative pose of the sensor and transformations of internal frames in the robot. Also the process needs to transform the environmental data in one map considering a frame of reference. In the case of 2D modelling, any relative pose could represented by a rotation of a angle and a translation by a vector [START_REF] Burgard | Collaborative multi-robot exploration[END_REF]. Assuming a point cloud P c were acquired respect to the frame F 2 and we desire to observe this set of points in other coordinate system F 1 , then this operation of re-localization can be performed by one matrix multiplication using homogeneous coordinates as follows:

x 1 = T 1 2 x 2 , (1.18) 
where x 1 and x 2 is a point of P c represented in the frames of reference F 1 and F 2 respectively. T 1 2 is called the homogeneous transformation matrix. Equation (1.18) and can be expressed with more detail as follows:

  x y 1   =   cosθ sinθ t x -sinθ cos t y 0 0 1     x ′ y ′ 1   (1.19)
in which θ is an angle's rotation respect to the z-axis and t x and t y correspond to the components of the translation's vector t. The previous idea can be extended to 3D modelling which will be treated in the present work.

Registration for Rangefinder SLAM

In general, SLAM projects based on rangefinder sensors (i.e. Velodyne Lidar) show models of environment more consistent and useful for mobile robotics that Visualbased. However, the majority of SLAM projects have to face the problem of high Lidar scan rate, which compared to its tracking can be really harmful for this task, since it is possible the apparition of distortion in the map construction.

We can find registration applications using rangefinder sensor for construction of maps [START_REF] Kohlbrecher | A flexible and scalable SLAM system with full 3D motion estimation[END_REF][START_REF] Dubé | SegMap: 3D Segment Mapping using Data-Driven Descriptors[END_REF], and with different types of alignment methods: using NDT (Normal Distribution Transform) or RANSAC (Random sample consensus) based on standard optimization techniques for statistic models of 2D/3D points. But in general we can organized these map alignment methods in two groups: with and without ICP optimization.

In this scenario, in [START_REF] Nüchter | 6D SLAM -3d mapping outdoor environments: Research articles[END_REF] was performed a review of different 6-DOF Lidar methods based on 2D or 3D depth sensors, but their proposal of navigation is a non-continuous, specifically stop-scan-go. Then, continuous strategy implementation with 2-axis Lidar for 3D point cloud generation was presented in [START_REF] Bosse | Continuous 3D scan-matching with a spinning 2D laser[END_REF]. This implementations involve the construction of voxel grid from laser points and in each voxel a computation step of shapes is executed in order to select only cylindrical and planar areas for matching step.

In the same way of continuous strategy implementations with 2-axis Lidar for matches geometric structures of a set local point generated were presented in [START_REF] Zlot | Efficient Large-Scale 3D Mobile Mapping and Surface Reconstruction of an Underground Mine[END_REF] [8], for finally to get a 3D point-cloud. In these cases, it was also considered a sensor fusion among IMU and Lidar data. However, the applications use batch processing to build maps with accuracy and hence are not applicable to real-time map construction. Meanwhile, Moosmann et.al [START_REF] Moosmann | Velodyne slam[END_REF] showed a SLAM implementation using a 3D laser (Velodyne HDL64) considering the spinning effect of the devices to de-skew the range image along the path. The projects construct maps in 3D grid structure format with small surfaces. Moreover, in [START_REF] Ceriani | Pose interpolation slam for large maps using moving 3d sensors[END_REF] was proposed a 6-DOF SLAM based on a sparse voxelized map model using 3D laser sensor. The method included a generalization of ICP in the traking step.

Non-ICP approaches

Other methods were developed using the Lidar as main sensor [START_REF] Nelson | BLAM: Berkeley Localization And Mapping[END_REF], [START_REF] Deschaud | IMLS-SLAM: scan-to-model matching based on 3D data[END_REF], [START_REF] Zhang | LOAM: Lidar odometry and mapping in real-time[END_REF] but with registration approaches different to ICP-based (see Figure 1.20).

In [START_REF] Deschaud | IMLS-SLAM: scan-to-model matching based on 3D data[END_REF] was developed a new low-drift SLAM algorithm using 3D Lidar sensor.

The technique is based on a scan-to-model matching framework which uses a sampling strategy for the Lidar scans. The architecture of the method involved an Implicit

1) Lidar-Odometry node

The node is composted by the following steps: Feature extraction, Correspondence estimation and Motion estimation.

A) Feature extraction

The step begins with feature points extraction from the cloud P k . The feature points are selected from sharp edges and planar surface patches. Let us define S as the set of consecutive points i returned by the laser scanner in the same scan, where i ∈ P k . An indicator proposed in [START_REF] Zhang | LOAM: Lidar odometry and mapping in real-time[END_REF] evaluates the smoothness of the local surface as following:

c = 1 | S | . X L (k,i) j∈S,j =i (X L (k,i) -X L (k,j) ) , (1.23) 
where X L (k,i) and X L (k,j) are the coordinate of two points from the set S. Moreover, a scan is split into four subregions to uniformly distribute the selected feature points within the environment. In each subregion are determined maximally two edge points and four planar points. The criteria to select the feature points as edge points is related to maximum c values, and by contrast the planar points selection to minimum c values. When a point is selected, it is thus mandatory that none of its surrounding points are already selected. Besides, selected points on a surface patch cannot be approximately parallel to the laser beam, or on boundary of an occluded region. An example of extraction process is shown in Figure 1.22.

B) Correspondence estimation and Motion estimation

When the correspondences of the feature points are found, then the distances from a feature point to its correspondence are calculated. Those distances are named as d E and d H for edge points and planar points respectively. The minimization of the overall distances of the feature points leads to the Lidar odometry. That motion estimation is modeled with constant angular and linear velocities during a sweep.

Let us define E k+1 and H k+1 as the sets of edge points and planar points extracted from P k+1 , for a sweep k + 1. The Lidar motion relies on establishing a geometric relationship between an edge point in E k+1 and the corresponding edge line: where T L k+1 is the Lidar pose transform between the starting time of sweep k + 1 and the current time t i . Analogously, the relationship between a planar point in H k+1 and the corresponding planar patch is:

f E (X L (k+1,i) , T L k+1 ) = d E , i ∈ E k+1 , (1.24) 
f H (X L (k+1,i) , T L k+1 ) = d H , i ∈ H k+1 , (1.25) 
Equations (1.24) and (1.25) can be reduced to a general case for each feature point in E k+1 and H k+1 , leading to a nonlinear function:

f (T L k+1 ) = d , (1.26) 
in which each row of f is related to a feature point, and d possesses the corresponding distances. Levenberg-Marquardt-Fletcher method [START_REF] Hartley | Multiple View Geometry in Computer Vision[END_REF] is used to solve the Equation (1.26). Jacobian matrix (J) of f with respect to T L k+1 is computed. Then, the minimization of d through nonlinear iterations allows solving the sensor motion estimation:

T L k+1 ←-T L k+1 -(J T J + λdiag(J T J)) -1 J T d , (1.27) 

Registration for other types of SLAM

The other big group related to registration is the Visual/Hibrid SLAM implementations. Registration for Visual SLAM is associated to mapping techniques using a camera as device sensor. The difference of Visual SLAM with the SFM-based approaches (explained before), lies in that the implementation can be online. Visual SLAM applications can consider Keyframes-BA concept or Direct Image Alignment techniques in their core.

Non-Direct Image Alignment Approaches

For that case, we will mention some of the most relevant Visual SLAM projects oriented to the construction of semi-dense maps using Non-Direct Image Alignment approaches.

A) FAB-MAP case

The FAB-MAP (Fast Appearance Based Mapping) project [START_REF] Cummins | FAB-MAP: Probabilistic Localization and Mapping in the Space of Appearance[END_REF] was oriented to the loop closure detection subject, focussing on the place recognition topic. Its implementation includes a stochastic solution based on BoW (Bag-of-words) image recovery systems, in which scenes are represented as a group of invariant descriptors, named as words. These words are selected from a vocabulary. The method assumes that some features can appear or disappear together in some circumstances. Results of this project showed loop-closures detection over a 2 km path length for an unknown outdoor environments. In the second version of the algorithm, it achieved to detect until 1000 km of path length [START_REF] Cummins | Appearance-only SLAM at large scale with FAB-MAP 2.0[END_REF].

B) ORB-SLAM

In this case, a real-time Monocular Visual SLAM using ORB descriptors was proposed in [START_REF] Mur-Artal | Orb-slam: A versatile and accurate monocular slam system[END_REF]. The technique uses the same features for all steps: tracking, mapping, re-localization and loop-closing. It includes three threads which run in parallel: tracking, local mapping and loop-closing. The method can be applied for different types of environments: small/large or indoor/outdoor (Figure

Direct Image Alignment Approaches

In this approach, a direct comparison of the entire frame without feature extraction is performed. 

T = sR t 0 1 , (1.28) 
The idea is to try to minimize the photometric error e p of Equation (1.29), in order to obtaining the matching. Similarity transformations can be used to find the transformation that minimizes this error e p . In this way, the problem can be reduced a optimization topic where the cost function is defined in (1. 

e d (p, T ) = X 2,z -D 2 (π(X ′ 2 )), (1.31) 
A) LSD-SLAM

In [START_REF] Engel | Semi-Dense Visual Odometry for a Monocular Camera[END_REF] was developed a direct Image Alignment technique in real-time, oriented to monocular visual odometry applications in the beginning. The technique determines continuously a semi-dense inverse depth map for the current frame, that is used in camera tracking step with a dense image alignment. Actually, the depth of all the pixels are estimated, presenting a non-negligible image gradient. The estimates were modelled with Gaussian distributions over the inverse depth. Later, the same authors proposed a direct SLAM technique for monocular [START_REF] Engel | LSD-SLAM: Large-Scale Direct Monocular SLAM[END_REF] devices named LSD-SLAM, which runs in real-time too. Instead of using features, it directly determines image intensities for tracking and mapping. Tracking uses direct image alignment by estimating the geometry for semi-dense depth maps. These estimates were obtained by filtering over many pixel-wise stereo comparisons. The algorithm can be use for large-scale environments and the loop-closures detection (FABMAP-based) option can be enabled. Then, Caruso et al. [START_REF] Caruso | Large-Scale Direct SLAM for Omnidirectional Cameras[END_REF] presented an extension of the monocular LSD-SLAM to omni-directional fish-eye cameras. 

Conclusions

In this chapter, we have seen in detail the literature review about Mapping systems.

It has briefly described the theoretical foundations of SLAM problem, as well as taken a look at various approaches to solve the problem. We have also see related works for map registration either visual or Lidar-based. For that, it was necessary checking the optimization methods to align point clouds in the map registration step.

In the next chapter, we will see the state-of-art of the collaborative robot systems and the concepts of efficient communication necessaries for the development of the merging and sharing strategy of this manuscript. Ce chapitre est organisé en deux parties. La première est dédiée à la stratégie de fusion pour la cartographie. Les travaux connexes appliquant cette stratégie y sont présentés. Une analyse comparative est également exposée à la fin de cette section.

Dans la deuxième partie de ce chapitre, nous allons voir la stratégie de partage de cartes ainsi que son état de l'art. Les travaux ont été divisés en deux groupes : ceux basés sur la sélection de cartes et ceux sur la compression de cartes. Ensuite une comparaison entre les méthodes actuelles de compression a également été analysée puis discutée afin de trouver la technique la plus adaptée à nos besoins. Afin de clarifier l'orientation de nos travaux, un tableau récapitulatif des méthodes les plus pertinentes d'implémentations SLAM simples et collaboratives a été ajouté. Sur la base de l'analyse documentaire, le télémètre 3D LiDAR a été choisi dans le travail présent. En effet, celui-ci s'est avéré très utile pour générer une carte plus précise de l'environnement pour la robotique mobile.

Chapter 2 Strategies for cooperative SLAM

A set of robots extends the capability of a single robot by merging measurements from group members, providing each robot with information beyond their individual sensors range. This permits a better use of resources and executes tasks which are not feasible by a single robot. In this case, the problem of multi-robot SLAM can be solved in two approaches: centralized and decentralized-based. Multi-robot mapping is considered as a centralized approach when it requires all the data to be analyzed and merged at a single computation unit. Otherwise, in a decentralized approach, each robot builds their local maps independently of one another and merge their maps upon rendezvous.

The structure of this chapter is organized into two parts: The first one corresponds to map merging strategy, in which related works applying this strategy are presented.

A benchmarking analysis is also discussed at the end of that section. In the second part of this chapter, it will be shown the map sharing strategy with its respective state-of-art and benchmarking results.

Multi-robot SLAM

As mentioned previously, robot team can expand the capabilities of just one robot in terms of: share the workload, increase robustness, efficiency, cooperative behaviours, considering also that the final obtained map can be a global bigger map by using the map data from all individual robots. In general an accuracy mapping depends on a accurate localisation system either for a single or a set of robots.

In this context, a detailed analysis was done in [START_REF] Fox | Collaborative Multi-Robot Localization[END_REF][START_REF] Fox | A Probabilistic Approach to Collaborative Multi-Robot Localization[END_REF] about if the collaborative multi-robot SLAM can really improve the localization quality compared to the one performed by a single robot. In this work, it was presented a Markov localization approach based on sample, to localize a group of robots in real-time. In a multi-robot Figure 2.1: Multi-robot system. Image source: [START_REF] Vidal-Calleja | Large scale multiple robot visual mapping with heterogeneous landmarks in semistructured terrain[END_REF] Montecarlo localization scenario, assuming that individual robot poses are independent, then it is possible to formulate the update of the robots R n belief Bel(x n,t ) at instant t, which is detected by another platform's R m belief Bel(x m,t ) as described in Equation (2.1):

Bel(x n,t ) = P (x n,t |u n,0,t ) × P (x n,t |x m,t , r mn,t , θ mn,t ) × Bel(x m,t )dx m,t , (2.1) 
wherein u n,0,t corresponds to the sequence of motion control at the instant t. To perform the collaboration task, the platform R m must send its range and bearing observations r mn,t , θ mn,t and its belief Bel(x m,t ) to the other robot. The method involves a detection model that permits the robot team to detect each other based on visual data and to share their individual believes. In this way the uncertainty of the robots during localization is reduced. The tests were executed for indoor environments, using two mobile robots equipped with cameras and laser range finders for detecting the other robot. Results demonstrated that the uncertainty in localization was reduced significantly compared to a single robot implementation.

Otherwise, despite their many advantage points about cooperating mapping, the use of set of robots can give more new problems because then is necessary to think what kind of strategies for exploration, sharing or merging will be used it. In the context of this PhD project, we will focus in developing the two last strategies, assuming the robots are operate by human drive or tele-operation. Related works applying merging and sharing strategies are presented in the following sections.

Map Merging Strategies

Until this stage, it was considered that each mobile platform is able to build its own map of the surroundings (i.e. point clouds format) by using either visual or rangefinder sensor's system. Now, related works using map merging strategy between robots will be discussed.

and other data [START_REF] Nettleton | decentralised SLAM with low-bandwidth communication for teams of vehicles[END_REF][START_REF] Özkucur | Supervised feature type selection for topological mapping in indoor environments[END_REF][START_REF] Dinnissen | Map merging of multi-robot SLAM using reinforcement learning[END_REF][START_REF] Zhang | Aerial and Ground-based Collaborative Mapping: An Experimental Study[END_REF][START_REF] Martins | On the usage of generalpurpose compression techniques for the optimization of inter-robot communication[END_REF]. This last approach is experimentally studied in this manuscript too.

Even if the focus of this present work is the Lidar-based implementations, some collaborative Visual and Hybrid SLAM solutions [START_REF] Vidal-Calleja | Large scale multiple robot visual mapping with heterogeneous landmarks in semistructured terrain[END_REF][START_REF] Hu | Cloud robotics: architecture, challenges and applications[END_REF][START_REF] Zou | CoSLAM: Collaborative Visual SLAM in Dynamic Environments[END_REF][START_REF] Hunziker | Rapyuta: The roboearth cloud engine[END_REF][START_REF] Mohanarajah | Cloud-based collaborative 3d mapping in real-time with lowcost robots[END_REF][START_REF] Zhang | Aerial and Ground-based Collaborative Mapping: An Experimental Study[END_REF][START_REF] Schmuck | Multi-uav collaborative monocular slam[END_REF] will be reviewed because their structure and merging strategy can be interesting to have a general idea about the current Cooperative SLAM frameworks.

In this context, Forster et al. [START_REF] Forster | Collaborative monocular slam with multiple micro aerial vehicles[END_REF] presented a project about Collaborative Monocular SLAM with Multiple Micro Aerial Vehicles (MAVs). In the system, each MAV unit was equipped with a monocular camera for operating in both indoor/outdoor unknown environments in real-time. Centralized approach was considered in the framework, where the MAVs sent features of their selected key-frames and their individual pose estimates to a central processing unit which was the responsible for constructing individual maps for each MAV and merges taking into account the existence of view overlaps. Each vehicle calculates its motion individually using a Visual Odometry (VO) algorithm. If an overlap occurs within the map of the same MAV, then loop-closure and optimization processes start. On the other hand, if an overlap takes place between two maps of different vehicles, so these maps are merged into a single one and then the system assumes a common map. Results mentioned that bandwidth requirements for the proposed implementation are significantly reduced, demonstrating a balanced distribution of workload.

In the same line, Vidal-Calleja et al. in [START_REF] Vidal-Calleja | Large scale multiple robot visual mapping with heterogeneous landmarks in semistructured terrain[END_REF] proposed collaborative EKF-based SLAM framework for large semi-structured outdoor environments. The framework assumed an heterogeneous structure including UAVs and UGVs equipped with monocular cameras. 3D points and 3D line segments were used to modelled the environment from sequences of aerial and ground images. These models has to include the geometric structure of the environment because then they are used to register and fuse the data acquired from different viewpoints. Example of different acquisitions of the project are illustrated in Figure 2.3. Meanwhile, in [START_REF] Michael | Collaborative Mapping of an Earthquake-damaged Building via Ground and Aerial Robots[END_REF] an heterogeneous cooperative SLAM was proposed. The framework generated in real-time 3D point cloud and a 2D occupancy grid map for indoor environments oriented to Urban Search And Rescue (USAR) situations. Figure 2.4 shows the heterogeneous robot team used during the exploration. In the case of the cooperative 3D map reconstruction, an ICP refinement between maps from the aerial and ground robots was used by minimizing the difference between the two clouds of points. One of the results of merged maps from both vehicles is exhibited in Figure 2.5. Also in this field, in [START_REF] Chebrolu | Collaborative Visual SLAM[END_REF] was developed a collaborative Monocular SLAM framework. The project allowed a team of two ground mobile robots navigating in an indoor environment to individually perform the SLAM process (based on the LSD-SLAM [START_REF] Engel | LSD-SLAM: Large-Scale Direct Monocular SLAM[END_REF]); as well as the estimation of their poses and building an individual map of the environment as a pose-graph of keyframes. Each vehicle sent to a central server its local keyframe information. The central server executes the merging when a field-of-view overlap occurs; creating a global map as final result. This global map Matrix Representation of T metrics : (12 parameters)

T metrics =     R 11 R 12 R 13 ε x R 21 R 22 R 23 ε y R 31 R 32 R 33 ε z 0 0 0 1     (2.10)
In the Equation (2.10) we can appreciate the elements of the transform T metrics in a matrix representation. The matrix elements ε x , ε y and ε z could be used to evaluate the technique in the

x, y, z-axis and then using an Euler representation ε pitch , ε roll and ε yaw can be used for the orientation evaluation too.

Euler Representation of T metrics : (6 parameters)

(ε x , ε y , ε z , ε pitch , ε roll , ε yaw ) (2.11)
However, in order to diminish the number of parameters to analyze the alignments, Rodrigues' rotation formula can give us a better idea of the orientation evaluation, re-expressing T metrics in terms of an Axis-Angle representation.

Axis -angle representation of the R 3×3 θ = θ. u (2.12)

where the angle θ scalar multiplied by the unit vector u is the axis-angle vector.

In the same way, translation evaluation can be reduced to analyze only the module of the vector with components ε x , ε y and ε z (see Equation (2.13)).

Proposed compact representation of T metrics : (2 parameters)

ε t = ε 2 x + ε 2 y + ε 2 z , ε r = θ, (2.13) 

Benchmarking results

In this subsection, it shows obtained results by performing several tests in order to analyze the behaviour of the merging process prior and post the ICP alignment.

Theses experiments involved the use of the metrics I [START_REF] Jessup | Robust and Efficient Multirobot 3-D Mapping Merging With Octree-Based Occupancy Grids[END_REF] and the metrics II (proposed approach).

For the tests, it was assumed that the initial transformation matrix between both maps is known, exactly the identity matrix (without translation/rotation). Several different initial guesses for the transformation (63 in total) were used to evaluate the effectiveness of ICP transform refinement for erroneous initial guesses using both metrics.

as previously mentioned, the key of a coherent merging lies in presenting concordance between the qualitative analysis and the quantitative one. In this context, we proposed 2 logic functions to verify the alignments either in translation (column 18) or rotation (column 19) based on the results as follows:

Condition for alignment in translation:

ε t 0.91m, ( 2 

.14)

Condition for alignment in rotation:

ε r 0.13rad, (2.15) 
The final logic function for establishing coherent map alignment is expressed as:

Total condition for coherent merging:

(ε t 0.91)&(ε r 0.13), (2.16) 
Results of our metrics confirm harmony and concordance among qualitative (column 16) and quantitative analysis (column 17).

In order to expose the results in a more intuitive way, the following figures illustrates the different cases presented during the experiments, considering different variable of interest compared with the metrics of translation and rotation. Figure 2.12(b) validates the Equation (2.14), since all the aligned cases presenting ε t 0.91m. Meanwhile Figure 2.13 shows the behaviour of the transformation initial in the rotation of the angle yaw with respect to the metric of rotation ε r . Equation (2.15) is also validated in Figure 2.13(b) by demonstrating that all the aligned cases presenting ε r 0.13m. Finally these metrics will be used in future chapters to analyze the alignments results obtained with our framework. between the mobile platforms. Robots have to face the challenge of reducing information traffic between them. This situation is present e.g. when two vehicles meet up after perform its individual mapping task, and they must send/receive its full map data until that time. For that case, delays can impact the transfer process deployment. An idea can be that each robots informs each other of how much data they need from each other in an eventual rendezvous case [START_REF] Meghjani | Multi-robot exploration and rendezvous on graphs[END_REF]. Another interesting approach is that the quantity of transferred data has to be defined according to the network constraints. Actually, the Sharing methodology presented in this manuscript is inspired in these ideas, reducing notably the total amount of transferred map information.

In this chapter we will see concepts and the literature involved in the sharing strategy, as well as their respective benchmarking results.

Efficient Communication

Generally multi-robots projects use wireless networks to share information between vehicles. Most of the cases using such networks, the goal is to reduce the quantity of information in order to not penalize the data traffic (network congestion). For robotic applications, this type of problem in network data flow can prejudice later on other tasks such as cooperative mapping or navigation for large-scale environments.

Moreover for some scenarios, such as USAR (Urban Search And Rescue) environments can present restrictions of partial-connectivity that can be a really trouble for the execution of multi-robot tasks. For that reason, an efficient model of communication also represents a key role in a scalable implementation, because there is a direct relationship between the number of robots and the amount of shared data.

In that context, the preparation of the data in the pre-broadcasting process is mandatory because it can avoid overloading the multi-robot. This preparation can consist in filtering redundant or unnecessary data in some cases. Nevertheless, if we take a look at state-of-art of mobile robotics applications, we can verify that there are not enough works focused in the field of the efficient inter-robot communication. [START_REF] Lazaro | Multirobot slam using condensed measurements[END_REF]3] developed some models applied to the communication for robotic teams, in some cases through new data representations used in the applications. Some other works proposed information utility indicators metrics, e.g. based on the field of information theory [START_REF] Rocha | Information Sharing: a Distributed Control Approach Based on Entropy[END_REF], which depends on a threshold defined by the indicators the robot unit decides to share or not the data with other robots.

In general, there are two ways to reduce the transferred map information: by map selection and map compression approach. In our work, we will propose a mixture of those approaches, which is divided into 2 stages:

• Map Selection stage: the map data generated by each robot is prepared and filtered by map selection approach-based technique.

• Map Compression stage: once the maps were redefined in the previous stage, then the data is encoded by compression approach-based technique.

In this manuscript, we propose a novel sharing technique based on map selection approach, used in [START_REF] Contreras | CoMapping: Efficient 3D-Map Sharing Methodology for Decentralized cases[END_REF]. Furthermore, it is worth mentioning that a benchmark of compression approach-based sharing techniques was executed in order to obtain the technique more suitable to our project. Now, we will present those stages with their corresponding approaches.

Map Selection Stage

Assuming, each robot executed its SLAM process and generated its own map, now they are ready to share their maps and performing map fusion. However, in several cases the sharing and processing of maps of large dimensions can limit the performance of the system with respect to runtime and memory usage. As a consequence, a map selection approach-based sharing technique is presented in order to overcome this problem where each robot only sends a part of its map to the other robots. A selected part of the map for being transferred to the other robot is determined according to an algorithm criterion and the scenario conditions.

Map selection approach I

Regarding this subject, a Cooperative Graph-based SLAM was presented in [START_REF] Lazaro | Multirobot slam using condensed measurements[END_REF], using condensed graphs and a new efficient communication approach. The model considered a non-linked infrastructure, allowing only robot-robot communication. Figure 2.14 (a) depicts the behaviour of this technique where robots stars by trading and range scans. In the Figure 2.14(b) the first robot determines which of the nodes (robot and landmarks poses) are relevant for it. After the identification of those special nodes between robots, the transference of graphs of interest (nodes and restrictions) are performed (see Figure 2.14(c)(d)). Finally both robots add the new graphs in its own maps. In that work, the authors assumed that the probability of sending successfully a message is not direct proportional to its size. This hypothesis was not directly derived in [START_REF] Lazaro | Multirobot slam using condensed measurements[END_REF] but basically the idea is based on that long messages have to be split into packets, wherein each packet has a non-zero probability of being lost, so the loss of a single packet affect the streaming of the entire data. more and more attention from the research community, due to its wide range of applications such as 3D content authoring, mobile 3D Capture,3D CAD, 3D printing, 3D virtual reality or 3D mapping can require them.

As a consequence, these kinds of techniques offer an apparent solution to efficiently solve the communication problem as treated in this manuscript.

Compression approaches

Initially the data compression approach must be analyzed if it is a feasible option to optimize the co-working between robots. The general concept of data compression is the information's representation using fewer bits than the original format.

Compression techniques can be classified in two categories:

• lossless: which permit reconstructing the original data (map, position, etc) without error.

• lossy : which removes unnecessary information [START_REF] Lazaro | Multirobot slam using condensed measurements[END_REF].

Lossless compression

This kind of technique reduces data by considering statistical redundancy, in which the resultant compressed data can be completely recoverable later. This statistical redundancy can be explained in the form of images, for instance, a picture can contain areas of color constant over a group of pixels; an approach can be the data is coded as "blue pixel, blue pixel, blue pixel ...", but we can take advantage of the statistical redundancy and coding it as "X blue pixels". This idea is inspired in the run-length encoding.

In that context, around 1977 Abraham Lempel and Jacob Ziv proposed two methods addressed to this kind of compression [START_REF] Ziv | A universal algorithm for sequential data compression[END_REF][START_REF] Ziv | Compression of individual sequences via variable-rate coding[END_REF]. Renamed by scientist community as LZ77 and LZ78, these methods are considered as reference for lossless compression based on dictionary. To get a general idea about the functionality of the LZ77 and LZ78, the structure of these methods assumes a dictionary for a set of bytes based in the composition of the input data, in which the patterns of repetition of the data feed the dictionary. When a repeated pattern is found in the input data, it is replaced and links dictionary data base. This process allows to obtain an output data with smaller size.

Among all the current lossless methods, we selected the most representatives for our objective of multi-robot communication. perception's system is the human ear, which detects sounds in a range approximately of 20Hz,20kHz . In comparison to the last example, applications of lossy audio compression using band-pass filters that reduce or discard signal components of frequencies outside of the human hearings range.

Currently applications of internet telephony based on VoIP protocol are using this kind of audio compression to reduce the size of voice packets to improve the effectiveness of transmission.

A) Point Cloud compression:

Regarding the compression of map data, which is the area of our interest, there were also research projects specially for 3D point clouds [START_REF] Kammerl | Real-time compression of point cloud streams[END_REF][START_REF] Zhang | Point cloud attribute compression with graph transform[END_REF]. Both works dealt in developing a point cloud compression either for static or time-varying point clouds.

[58] introduced a octree-based codec that incorporated bit reordering to reduce the entropy of the occupancy code associated to octree subdivisions. The technique assumed color coding (based on frequency of occurrence) and normal coding (based on efficient spherical quantization) too.

Analogously, authors in [START_REF] Schnabel | Octree-based Point-Cloud Compression[END_REF] assumed surface approximations in order to predict occupancy codes and proposed an octree-based color codec. [START_REF] Kammerl | Real-time compression of point cloud streams[END_REF] presented a real-time octree-based codec which involved temporal redundancies with fast XOR prediction. This approach predicted just geometric aspects (not colors attributes) focused for applications with limited movement. In [START_REF] Thanou | Graph-based compression of dynamic 3d point cloud sequences[END_REF], a time-varying point cloud codec was proposed, in which this codec is able to predict graph-encoded octree structures between consecutive frames. The codec employed spectral wavelet-based features and a lossless encoding step was applied to the differences. Moreover, the codec was incorporated by using color coding method proposed by [START_REF] Zhang | Point cloud attribute compression with graph transform[END_REF].

Recently Mekuria et al. [START_REF] Mekuria | Design, implementation, and evaluation of a point cloud codec for tele-immersive video[END_REF] proposed a real time codec for 3D point clouds for augmented and immersive 3D video aplications. Mekuria's structure was based on a stage of octree subdivision too. His codec considers parallelizability (parallel computing by using multicore architectures) and the inter-frame redundancy 6 . Now, we will talk about the concept involved in all the mentioned previous works:

A SLAM framework case with compression approach

In the case of robotic applications with compression approach-based communication, some works were developed by Martins et. al [START_REF] Martins | On the usage of generalpurpose compression techniques for the optimization of inter-robot communication[END_REF], presenting also a Multi-robot SLAM framework. Its framework tries to be independent of the SLAM method, using e.g the GMapping software [START_REF] Grisetti | Improved techniques for grid mapping with rao-blackwellized particle filters[END_REF]. In the experiments all the robots running GMapping and communicating over a MANET(Mobile Ad-Hoc, infrastructure-less network). He does not properly proposed a methodology of reducing the dimension of the exchanged maps, but transferring the entire maps projected on a common frame. He focused on reducing the size of the maps in terms of memory space for the processing units dedicated to the robots by using lossless compression methods.

Their tests conducted over indoor scenarios for off-line and real-time execution.

Additionally, an interesting benchmark was performed by the same authors [START_REF] Martins | A Cooperative SLAM Framework with Efficient Information Sharing over Mobile Ad Hoc Networks[END_REF] when they analyzed the performance of different compression techniques applied to 2D grid maps. From this analysis, the LZ4 method [START_REF] Rodeh | zfs -a scalable distributed file system using object disks[END_REF] was chosen as the method more suitable for this kind of applications. However this benchmark tool was focused on only 2D grid map and did not consider some octree-based approaches, that is why, in the next subsection we will study the performance of this and other methods on 3D point cloud data.

Compression's method selection Benchmarking Sharing Metrics

In this subsection we will study some metrics to analyze the map compression, nevertheless, we will focus on the ratio compression metric since is the most relevant aspect in our type of applications for multiple robots where we must face challenges such as exchanging of large-scale maps with network and environmental constraints.

This metric is defined by: Ratio metric:

R = L u L c , (2.19) 
in which R corresponds to the compression ratio metric, L u is the length of the uncompressed information, and L C is the length of the compressed data. Compression ratio metric is really important since a better ratio permits to reduce the transference traffic in the multi-robot network.

Otherwise, speed of a method's compression and decompression can be important too; because a frequent and extremely slow technique can affect other tasks of postcompression an thereby impacts negatively on the general mission, for example in the critical assignments of catastrophic situations where the speedy cooperative mapping are crucial to save a human life.

Some of these speed metrics are defined by

Compression Speed metric:

V c = L u T c , (2.20) 
Decompression Speed metric:

V d = L u T d , (2.21) 
Round-Trip Speed metric: Finally, in [START_REF] Martins | A Cooperative SLAM Framework with Efficient Information Sharing over Mobile Ad Hoc Networks[END_REF] was proposed an indicator defined by: Temporal Efficiency metric:

V r = 2.L u T c + T d , (2.22 
E t = R T c + T d , (2.23) 
wherein E t is named as an indicator of temporal efficiency. In this case, it can be obtained by the division of the compression ratio R by the total time T c + T d .

The objective of all these indicators is to analyze how compression techniques impact in data transference. Benchmarking results will also provide an idea about what kind of method we have to use for our cooperative framework.

Benchmarking Results

A) Experiments:

According to the results obtained on [START_REF] Martins | A Cooperative SLAM Framework with Efficient Information Sharing over Mobile Ad Hoc Networks[END_REF], the LZ4 method [START_REF] Rodeh | zfs -a scalable distributed file system using object disks[END_REF] is the compression algorithm with the best performance for 2D metric maps.

Thereby, we will perform the analyze between LZ4 , LZMA(High compression), LZMA2(Fast version) and octree-based methods. The idea is to execute these techniques over 3D maps (point cloud format) generated by a SLAM method algorithm. The techniques are applied to different type of datasets, considering different datasets size in order to study the behaviour of these techniques for this specific kind of scenario: multi large-scale mapping with network and environmental restrictions. The size of the five datasets were: 92790, 319373, 701863, 1117410 and 2451639 points.

The 3D maps of the previous datasets were in point cloud format and were obtained from the processing of raw sensor measurements of a Velodyne VLP-16 3D

Lidar, with 360 and 30 degrees of horizontal and vertical field of view. The SLAM technique for processing the Lidar measurements and generating the 3D cloud was the LOAM 7 . All tests were run on an Intel Core i7 55000U CPU, with 8 GB of RAM, running an Operative System Linux Ubuntu 14.04 LTS and using the ROS framework.

Considering aspects as the randomness in algorithm execution, interprocess interference inherent and CPU status, each compression method was run over the datasets 50 times, This assumption allows to infer to real-world applications because of statistical approach exclude outlier cases.

Comparison results also include the average and standard deviation of the compression and decompression times for each technique on different datasets, as well as, the compression metrics achieved for each case.

B) Results and Discussion:

Now, we will present the results achieved for all the metrics mentioned previously considering different datasets. First of all, we can see in Figure 2.21, the trend of the radio compression metric R with respect to the dataset size in Bytes. The compression ratio subtly decreases as the size of the point cloud grows in all the methods. This decreasing behaviour is interesting since we can notice the compression behaviour depends on the amount of data which will be transferred. Thus, for our collaborative mapping application, we will have to define a maximum number of points to exchange between vehicles N p max . Based on the Figure 2.21, this parameter N p max could be defined in a value less than 20 000 000 points since from this amount of points the compression rate decreases. This N p max parameter will be used in the next chapters for the experiments. In this ratio metric, the Octree-based method showed the best performance.

Conclusions

In the first part of this chapter, it was discussed some current implementations of the Collaborative-Robot Systems focused in the merging strategies. At the end of this chapter a benchmark between metrics for merging strategy was exposed, with qualitative and quantitative results of analysis .

In the second part, it has included the state-of-art of implementations based on sharing strategy addressed to robotic collaborative mapping. Related works were split in two: Map selection and Map compression-based. At the end, a benchmark between current compression methods was also exposed and discussed in order to find the most suitable technique for our necessities.

Finally, Table 2.2 shows an overview about the most relevant single and collaborative SLAM implementations described until this chapter in order to clarify the direction of our work. As mentioned before, due to the complexity of terrain roughness or lack of structure or dimensions, outdoor environments were chosen as subject challenge in this work. Based on the literature review, 3D rangefinder is chosen as sensor in the present work since it has demonstrated to be very useful to generate more accurate map environment for mobile robotics.

In the next chapter, it will be exposed the architecture of our framework to face the trouble of the collaborative mapping. of the sharing region S. This map sharing region is a cube whose edge length 2L is determined iteratively. The Points from A contained in this cube region are extracted to generate a new point cloud A sel . In each iteration the cube region is reduced until the number of points from A sel is smaller than the manual parameter N p max , which represents the maximum number of points that the user wants to exchange between robots. Once the loop ends, A sel is sent to the other robot. Analogously on the other mobile robot "n", the points from B included in this region are also extracted to obtain and share B sel with the another robot "i".

Finally, the clouds A sel and B sel are encoded and sent in octree format to reduce the use of bandwidth resources of the multi-robot network. Then maps are decoded and reconverted in 3D point cloud format to be used in the Registration step.

Registration Step a) Intersecting algorithm

The intersecting volumes of the two maps A sel and B sel are computed and denoted as A int and B int , obtained from the exchanged map bounds [START_REF] Jessup | Robust and Efficient Multirobot 3-D Mapping Merging With Octree-Based Occupancy Grids[END_REF] (see Algorithm There are different kind of normal estimation methods, in this case we will focus on a solution based on the PCA (Principal Component Analysis). The PCA is an analysis of the eigenvectors and eigenvalues of a covariance matrix generated with the information from the nearest neighbours of the query point. In this case, each point p i is associated to a covariance matrix M C with the following expression:

M C = 1 k k k-1 (p i -p) • (p i -p) T , M C • v j = λ j • v j , j ∈ {0, 1, 2} (3.1) 
where k represent the number of point neighbours considered in the neighbourhood of p i . Moreover p is the 3D centroid of the nearest neighbours. λ j and v j are the j-th eigenvalue and the j-th eigenvector of the covariance matrix respectively. The solution to this problem is trivial if we assume that the viewpoint n i is known [START_REF] Rusu | Semantic 3D Object Maps for Everyday Manipulation in Human Living Environments[END_REF],

the solution to this problem lies in orienting all normals n i consistently towards the viewpoint, they just need to satisfy the following equation:

n i • (v p -p i ) > 0 (3.2)
Finally, to estimate the normal point clouds of a dataset, we used functions of the PCL library [START_REF] Rusu | 3D is here: Point Cloud Library (PCL)[END_REF] too. Those normal point clouds are then used and aligned in the next step.

d) Registration step with ICP

This method refines an initial alignment between clouds, which basically consists in estimating the best transformation to align a source cloud B intN to a target cloud A intN by iterative minimization of an error metric function. At each iteration, the algorithm determines the corresponding pairs (b' , a' ), which are the points from A intN and B intN respectively, with the least Euclidean distance.

Then, least squares registration is computed and the mean squared distance E is minimized with regards to estimated translation t and rotation R:

E(R, t) = 1 N p b' N p b' i=1 a' i -(R b' i + t) 2 , (3.3) 
where N p b ′ is the number of points b' .

The resultant rotation matrix and translation vector can be express in a homogeneous coordinates representation (4×4 transformation matrix T j ) and are applied to B intN . The algorithm then re-computes matches between points from A intN and B intN , until the variation of mean square error between iterations is less than a defined 

Chapter 4 Implementation and Results

In this chapter, it will be presented and discussed the results obtained during experiments executed using the proposed CoMapping framework. The experiments were divided in three parts: cooperative mapping with two cars, three cars and finally generation of 3D-Maps applied to rural and urban scenarios.

ROS implementation

The entire framework (stages, algorithms and more) was implemented using ROS. The ROS implementation run on an Intel Core i7 55000U CPU, with 8 GB of RAM, running an Operative System Linux Ubuntu 14.04 LTS (see the ROS architecture in Figure B.2 at the appendix)

Sensor System

The specifications of the Velodyne VLP-16 Real-Time 3D Lidar Sensor [START_REF] Lidar | VLP-16 sensor datasheet[END_REF] are: of GPS data: a high-accuracy DGPS-RTK and standard low cost GPS-GGA. The map with the 1st type of GPS was assumed is perfectly aligned to referent map generated by ZOE for using the DGPS-RTK data as correct transformation matrix T 1 exact (from Equation (2.9)). On the other hand, the map re-located with GPS-GGA information was considered as a map with a coarsely placement, used to fill the initial transformation T 1 2 (from Equation (2.9)). Since the test was performed inside of the ECN campus, it was considered the workspace of flat ground, thus were not taken into account the z-components of the GPS information (DGPS-RTK and GPS-GGA).

Next, Table 4.6 presents the transform returned by the ICP algorithm to align the FLUENCE's map to the ZOE's map. 

Maps created outside of the campus

In that case, the proposed system was validated considering the FLUENCE's path and ZOE's path outside and inside of ECN campus respectively. Similarly to ancient tests, GPS service. The cooperative framework was applied for large scale maps in cases of urban and rural environments too.

During the tests, each robot generates its Pre-Local map in real-time using 3D-Lidar range measurements. The merging process is executed individually considering initially a coarse map alignment (with low cost GPS service) with an optimum data exchange (with octree-approach). The experimental results highlight the efficiency and versatility of the framework for cooperative mapping with two and three vehicles in different scenarios either urban or rural. Indicators were also proposed to demonstrate the success of the map merging process for the group of robots in some urban tests.

Experiments showed the impact of working with intersecting regions, since it can accelerate the alignment process by decreasing the number of points to compute.

Similarly tests also demonstrated that the proposed map sharing technique developed a transcendental position in the performance of the entire mapping collaborative system by reducing the map size to transmit. Finally, the sharing algorithm remains a suitable candidate to exchange efficiently maps between robots considering the use of clouds of large dimensions.

without affecting the performance of the robot team. In this sense, the proposed CoMapping framework was able to map these kind of environments with a decentralized approach. Its distributed structure did not allow to depend on a centralized processing unit. For that, the scalability of the framework was also demonstrated using a robot team with two and then three vehicles. Additionally, the group mapping performance was not compromised thanks to methodology of stages (pre-local and local Mapping) used in the framework. In this way, the use of the proposed framework permitted that each platform can generate its own pre-local and local map independently.

The mapping performance can also depend on the environment complexity where the roughness of the outdoor terrain plays an important role. In this context, we presented experimental results in order to validate the CoMapping framework. We obtained successfully 3D model of maps in point-cloud format for urban and rural scenarios. Real data acquired from the surroundings of the ECN and from a farm (in the context of ALFS project) were used for during the tests. As a consequence, the proposed architecture can be used for topographical applications where is necessary recreate 3D models of environments or charts of large scale regions thanks to the its merging strategy.

Multi-SLAM : A merging strategy with alignment metrics was proposed for Multi-SLAM applications. The proposed strategy was based on a version of the ICP optimization method which included in the beginning an intersecting technique of clouds in order to speed-up the registration process. This ICP registration process was the core of the proposed Local Mapping stage in the CoMapping architecture. Furthermore, this merging strategy was analyzed quantitatively using the other key contribution of this work: the merging-metrics. This group of metrics helps us to study in detail the alignments in translation and rotation applied to point clouds pre and post-ICP optimization. The qualitative and quantitative analysis determined a logic function (Equation (2.16)) useful in establishing if a fusion of maps is coherent or not.

Data storage and communication : Additionally, the presented work tried always to prioritize the use of resources either for the storage or transmission of voluminous data. In order to solve this trouble, a map sharing strategy was designed assuming two stages: selection and compression. The first stage consisted in filtering the map data generated by each robot using a proposed selection algorithm (Algorithm 1).In the other stage the selected clouds are encoded by Octree-based compression technique, reducing network bandwidth resources. The decision to use Octree compression was determined previously by performing a comparison between compression methods adapted to our scenario. These benchmarking results were obtained thanks to some compression-metrics proposed in this thesis.

Regarding the limitations of this project, we can mention that our work did not consider situations of dynamic environments nor loop closure for multi-vehicles. It was not also finalized the automation of parameter N p max in the proposed sharing algorithm based on the conditions of the tests (e.g. the limits of the bandwidth resources of the multi-robot network). It is important to mention that under the sharing center C determined by our proposed selection algorithm, then it is possible to develop rendezvous strategies which take into account this sharing center for future cooperative frameworks.

Future works

Following this direction, there are a list of potential works that could be considered for future research: Heterogeneous multi-robot system: The case of cooperative mapping using heterogeneous robotic platforms such as ground and aerial vehicles can be studied.

For this case, the objective is looking to improve performance and flexibility of the team tasks as exploration. Moreover, map can be nourished by features captured from different viewpoints. Initial experiments can be focused in indoor environments and extended to outdoor cases, however this change in the scenario can imply a different sensory system for each type of environment.

Architecture multi-mapping based on server-cloud: In applications with multiple robots some tasks such as local mapping or map fusion can be limited in terms of computational cost and storage capacity. Even for a single robot depending on the type of hardware conditions, it is possible not to be able to embed the full-SLAM solution on the hardware platform. In this context, using server-cloud can be a solution. Server-cloud can involve a set of demand network access such as storage, services. In this sense, architectures of multi-robots using a server-cloud as central unit for processing some process as map merging can be deployed (see [START_REF] Mohanarajah | Cloud-based collaborative 3d mapping in real-time with lowcost robots[END_REF] case).

Sensor Fusion: Regarding SLAM solutions implemented in a single vehicle, it can be conceived a sensor fusion with visual and rangefinder measurements including either monocular or stereo cameras. this can significantly improve odometry performance. Moreover observations from inertial measurement units can be also added it in order to become the robot's localization process more robust and therefore the affect positively the consistency of the maps.

GPS-denied environments: Cases of SLAM applications where there is no GPS signal available or the service is restricted for short periods of time might be studied. Nowadays planetary explorations executed by the NASA have to deal with these kind of situations. Other similar cases are the environments post-disaster, in which USAR 1 applications can be implemented inspired on the proposed Mapping framework. However, if the difficulty level for accessing to the damage area is high, then an aerial team of vehicles could be the best option.

1 USAR: Urban Search And Rescue
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 12 Figure 1.2). This problem consists in detecting if a current view-frame has already been visited. For the long term, the use of loop closure techniques allow the odometry becomes localization.
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 1 Figure 1.6 shows a SLAM application from features extraction when we try to track the camera motion.
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 19 Figure 1.9: Example of a 2D grid map of the Intel Research Laboratory.

  Figure 1.11 depicts an example of a metric map with variable structure.
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 118 Figure 1.18: Left: Cad design of Zebedee device. Right: Commercial Version
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 122 Figure 1.22: Extracted feature points from Lidar cloud captured for an indoor environment(corridor). The edge points and planar points are labeled in yellow and red colors, respectively. Lidar moves toward the wall on the left side of the figure at a speed of 0.5m/s. Image Source:[106]
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 1 Figure 1.24: ORB-SLAM for a public dataset in a keyframe (left), generating its respective 3D semi-dense map (right).
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 125 Figure 1.25: Difference to keypoint-based methods[START_REF] Schöps | Semi-Dense Visual Odometry for AR on a Smartphone[END_REF] 

  30): e p (p, T ) = I ref (p) -I(w(p, D ref (π), T )), (1.29) E(T ) = p (I ref (p) -I(w(p, D ref (π), T ))), (1.30) wherein T is the transformation between the two views, p is the pixel position at image frame. I ref , I are the input images and D ref is the depth map from the reference view. For that case, a warping function gives the pixel location from the first image projected in the second image. Meanwhile, the Equation (1.30) can be solve by optimization methods such as Gauss-Newton. A depth error e d can be defined as follows in Equation (1.31), wherein X ′ 2 is the re-localized 3D point post-transformation with T and π projection function of the sensor.
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 126 Figure 1.26: Results of LSD-SLAM, showing the accumulated point-clouds in realtime of all keyframes of a medium-sized trajectory (from a hand-held monocular camera)[START_REF] Engel | LSD-SLAM: Large-Scale Direct Monocular SLAM[END_REF] 

  Un groupe de robots étend les capacités d'un seul robot en fusionnant leurs mesures, fournissant ainsi à chaque robot des informations allant au-delà de leurs besoins individuels. Ceci permet une meilleure utilisation des ressources et l'exécution de tâches non réalisables par un seul robot. Dans ce cas, le problème du multi-robots SLAM peut être résolu selon deux approches : centralisée et décentralisée. La cartographie multi-robots est considérée comme une approche centralisée lorsqu'elle nécessite l'analyse de l'ensemble des données dans une seule plateforme. Sinon, dans une approche décentralisée, chaque robot construit ses cartes locales indépendamment les uns des autres et les fusionne sur rendez-vous.
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 2526 Figure 2.5: Project: Collaborative Mapping of an Earthquake-Damaged Building via Ground and Aerial Robots [68]

  ) in which V c and V d is the Compression and Decompression Speed metric respectively. They are determined by dividing the length of the uncompressed information L u by the total time needed to compress T c or decompress T d . Another indicator named 'Round-Trip Speed metric' V r is used to analyzed the entire process considering total time needed to compress and decompress the data.
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  ). In order to improve the computation speed, point clouds A int to B int first go through a down-sampling process to reduce the number of points in the alignment of our clouds. Feature descriptors as surface normals and curvature are used to improve the matching, which is the most expensive stage of the registration algorithm[START_REF] Rusinkiewicz | Efficient variants of the ICP algorithm[END_REF]. These generated normal-point clouds A intN and B intN are then used by Iterative Closest Point (ICP) algorithm[4].

Figure 3 . 6 :

 36 Figure 3.6: Intuitive description of the Map Intersecting Step behaviour for two point clouds X(green) and W (red). Left: Point clouds and limits used in Algorithm 2, Right: bounding cubic lattice
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 4 threshold. The final ICP refinement for n iterations can be obtained by multiplying the individual transformations: T ICP = n j=1 T j . Finally the transformation T ICP is applied to the point cloud B sel to align and merge with the original point cloud A, generating the Local Map A L then. Each robot thus performed its own merging according to limited data shared from other agents within communication range. Algorithm 3 described the pseudocode of the overall method implemented to Chapitre Mise en oeuvre et résultats Résumé : Dans ce chapitre, nous allons présenter les résultats obtenus lors de la validation de l'architecture CoMapping. Les expériences se divisaient trois groupes : les tests avec deux voitures; avec trois voitures; et dans des environnements extérieurs ruraux et urbains avec service GPS non continu. L'architecture coopérative a été appliquée pour les cartes à grande échelle dans les milieux urbains et ruraux. Pendant les tests, chaque robot a généré sa carte pré-locale en temps réel à l'aide des mesures d'un LiDAR 3D. Le processus de fusion est exécuté individuellement en tenant compte de l'alignement cartographique grossier réalisé au préalable (avec un service GPS à faible coût). Les résultats expérimentaux mettent en évidence l'efficacité de l'architecture pour la cartographie coopérative avec deux et trois véhicules dans différents scénarios, urbains ou ruraux. Des indicateurs ont également été proposés pour démontrer la réussite du processus de fusion des cartes dans certains tests urbains. Les expériences ont montré l'impact du travail avec les régions intersectées, car il peut accélérer le processus d'alignement en diminuant le nombre de points à traiter. De même, des essais ont démontré que la technique de partage de cartes proposée a un rôle fondamental à jouer pour la cartographie collaborative en réduisant la taille de la carte à transmettre. De cette façon, l'algorithme de partage est un candidat approprié pour échanger efficacement des cartes 3D entre les robots.

•

  Measurement Range: Up to 100 m • Accuracy: 3 cm (Typical) • Single and Dual Returns (Strongest, Last) • Field of View (Vertical): +15.0 • to -15.0 • (30 • ) • Angular Resolution (Vertical): 2.0 • • Field of View (Horizontal): 360 • algorithm converged to a value of displacement of 0.0877 m and 1.632 m along the xaxis and y-axis respectively. The proximity of the values of T icpI and Inverse(T icpII ) on x-axis and y-axis reconfirm the reverse alignments for both robots.

  results using GGA vs Ground-Truth data because the values comply with the conditions ε * t 0.91 m and ε * r 0.13 rad. Indicators from [52] also confirm coherent alignments since their metrics are in the interval of ε * t
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Chapitre 1 Notions de base sur SLAM

  

	Résumé : En robotique mobile, plusieurs travaux ont été développés pour
	l'exécution de tâches comme la navigation, l'évitement d'obstacles, la
	localisation ou la cartographie, à l'aide de différents types de projets. Dans
	tous ces cas, les fonctions de Localisation et Cartographie Simultanées
	(SLAM) sont présentes.
	Ce chapitre est organisé de la manière suivante : la section 1.1 décrit la
	théorie impliquée dans le problème SLAM. La section 1.2 expose les
	Contreras, O. Kermorgant, and P. Martinet. Efficient Decentralized Collab-
	orative Mapping for Outdoor Environments. In IEEE International Conference
	on Robotic Computing (IRC), Laguna Hills, USA, 2018.
	• L. Contreras, S. Dominguez O. Kermorgant, and P. Martinet. CoMapping:
	Efficient 3D-Map Sharing Methodology for Decentralized cases. In IEEE Work-
	shop on Planning, Perception and Navigation for Intelligent Vehicles (PPNIV),
	Madrid, Spain, 2018.
	• L. Contreras, S. Dominguez, O. Kermorgant, and P. Martinet. CoMapping:
	Multi-robot Sharing and Generation of 3D-Maps applied to rural and urban
	scenarios. In IEEE International Conference on Control, Automation, Robotics
	and Vision (ICARCV), Singapore, 2018.

approches permettant de résoudre ces difficultés. Enfin, la section 1.3 passe en revue les études antérieures ayant des approches basées sur des caméras et LiDAR pour reconstruire cartes 3D. À la fin de ce chapitre sont présentées les conclusions concernant l'état de l'art des méthodes SLAM.

Dans le chapitre suivant, nous verrons l'état de l'art des systèmes robotisés collaboratifs et les concepts de communication efficace nécessaires à l'élaboration des stratégies de fusion et de partage de cartes.

Table 4 .

 4 

	1: Homogeneous transformation matrices of ICP refinement
				ICP matrix for 1st robot:
				0.997 -0.065 0.036 0.693	
	T icpI =	  	0.065 -0.036 -0.007 0.999 -2.149 0.998 0.007 1.572	  
					0	0	0	1
	Euler YXZ (m,rad)	x 0.693 1.572 -2.149 -0.0081 0.0357 0.0649 y z pitch roll yaw
				ICP matrix for 2nd robot:
			0.996	0.068 -0.049 -1.110	
	T icpII =	  	-0.068 0998 0.049 -0.005 0.999 0.005 -1.557 2.510	  
					0	0	0	1
	Euler YXZ (m,rad)	x -1.110 -1.557 2.510 -0.0066 -0.0488 -0.06793 y z pitch roll yaw
				0.996 -0.068 0.049	0.877	
	(T icpII ) -1 =	  	0.068 -0.049 0.005 0998 -0.005 1.632 0.999 -2.552	  
					0	0	0	1
	Euler YXZ (m,rad)	x 0.877 1.632 -2.552 0.0033 0.0491 0.0681 y z pitch roll yaw

Table 4 .

 4 Results of error pre and post ICP-alignment are exposed in Table4.7 and Table4.8 with their respective merging metrics.

		6: ICP Alignment transform(Euler representation)
	x	y	z	roll	pitch	yaw
	-2.11443 -0.98799 0.00370 -0.00009 -0.00005 -0.01668

Table 4 .

 4 .18190 -0.00384 0.00009 0.00005 -0.00050 ε t = 0.195711 and ε r = 0.0000001 (Our indicators) ε * t =0.25781 and ε * r = 0.001605 (Jessup's indicators[START_REF] Jessup | Robust and Efficient Multirobot 3-D Mapping Merging With Octree-Based Occupancy Grids[END_REF])Regarding the analysis performed in TableA.1, we obtained coherent alignment

		7: Pre-ICP Error(Euler representation)
	x	y	z	roll	pitch	yaw
	-2.04282 -0.80502 0.00000 0.00000 0.00000 -0.01718
	ε t = 2.195713 and ε r = 0.01718 (Our indicators)
	ε * t = 2.868174 and ε * r = 0.045095 (Jessup's indicators [52])
	Table 4.8: Post-ICP Error(Euler representation)
	x	y	z	roll	pitch	yaw
	0.07211 0					

The open source software is based a point-cloud compression technology standard in JTC1/SC29/WG11 (MPEG). Available in http://wg11.sc29.org/svn/repos/MPEG-04/ Part16-Animation_Framework_eXtension_(AFX)/trunk/3Dgraphics/

LOAM: https://github.com/laboshinl/loam_velodyne

Pour la deuxième étape appelée "Local Mapping", les robots envoient une partie de leurs données aux autres robots sur la base de l'algorithme de partage proposé. La fusion des cartes comprend une technique d'intersection des nuages de points permettant d'accélérer le processus.

Ce travail, en utilisant une approche décentralisée, s'adresse aux environnements extérieurs privés d'un service GPS continu. Local Maps from two robots "i" and "n" respectively. In each robot the algorithm first receives only information about the 3D limits of the maps (i.e. bounding cubic lattice of the point clouds) and then decides what part of its map will be shared to the other robot. These limits were determined previously using the function GetBounds() that returns two vectors: in the first one, Amin, their components represent the lowest displacement from the origin along each axis in the point cloud; and the other vector, Amax, is related to the point of the highest displacement.

Data: Point Cloud A; Limits: Vectors Amin, Amax, Bmin and Bmax; (Amin, Amax) = GetBounds(A sel ); foreach b ∈ B sel do ; if Amin x < b x < Amax x and Amin y < b y < Amax y and Amin z < b z < Amax z then As shown in Figure 3.7, now our system receives these pre-local clouds and those ones pass for a Down-sampling process for consistency and working with large datasets. The down-sampling permits to reduce the number of points in our clouds, using a voxelized grid approach. In our software code, the VoxelGrid filter class of the Point Cloud Library (PCL) [START_REF] Rusu | 3D is here: Point Cloud Library (PCL)[END_REF] was included and that one creates a 3D voxel 

///Check that the change in transform was significant; if

else for i = 0 to i < iter max do ; // Estimate the transformation; ICP.setSrc(pc 2 ) ; T i =ICP.AlignT oSrc(pc 1 ) ;

///Check that the change in transform was significant; if

Local. In the first one, robots construct its own map by processing range measurements from a 3D Lidar using GPS data only in the beginning of the stage for relocalizing presenting the map in robot common frame. In the second one, robots define which part of their pre-local maps are shared with the other robots based on a Sharing algorithm and then the registration process uses an intersecting technique of maps to accelerate the stage. The methodology presented in this chapter generated the publication [START_REF] Contreras | Efficient Decentralized Collaborative Mapping for Outdoor Environments[END_REF], which was accepted and presented at the IRC 2018 conference.

• Angular Resolution (Horizontal/Azimuth): 0.1 • -0.4 

Cooperative Mapping with 2 Cars

In this first round of experiments, as we worked with ground vehicles, the ENU (East-North-Up) coordinate system was used as external reference of the world frame {W }, where y-axis corresponds to North and x-axis corresponds to East, but coinciding its origin with the GPS coordinates [Longitude: -1.547963; Latitude: 47.250229].

In this context, the proposed framework was validated by considering initially two vehicles for experiments, a Renault Fluence and a Renault Zoe (see Figure 4.2) customized and equipped with a Velodyne VLP-16 3D Lidar, with 360 • horizontal field of view and a 30 • vertical field of view.

The experiments were perfomed in an outdoor environment inside of the École Centrale Nantes Campus. The area was of approximately 290m x 170m. The vehicles traversed that environment following different paths and collected sensor observations about the world, running the real-time mapping process on two laptops independently for each vehicle.

In this experiment the vehicles build clouds from different paths (see Figure 4. The map of the first robot is shown in green, and in red for the second robot. Figure 4.4 also depicts the "sharing region" and the "intersecting region" determined during the alignment process in each robot. The sharing process between vehicles did not consider octree-based map compression in this experiment yet. For that test, the Similarly as we did in the previous experiment with 2 cars, we computed the inverse of the ICP matrix for FLUENCE robot in order to compared to the ICP matrix for ZOE robot for if the were alignments were reverses (see 4.3). On T icpI for the ZOE case, the algorithm converged to the value of displacement of -1.6632 m and 3.097 m along the x-axis and y-axis respectively. On the contrary for Inverse(T icpII ) in the FLUENCE case, the algorithm converged to a value of displacement of -4.641 m and 4.002 m along the x-axis and y-axis respectively. The relative proximity of the values of T icpI and Inverse(T icpII ) on x-axis and y-axis reconfirm the reverse alignments for both robots.

The decentralized system demonstrated also alignments on opposite directions for test B (ZOE-GOLFCAR case), since 4.5 showed the T icpI almost similar to Inverse(T icpII ) in x-axis and y-axis. 

Conclusions

In this thesis a multi-robot architecture for decentralized mapping was proposed. The work was based on a Lidar solution addressed to large outdoor environments with constrains of map accuracy, operation time and efficient use of resources. The architecture tries to optimize resources by using low-cost GPS information to build the Pre-Local clouds. An octree-based sharing algorithm was proposed and also included in the architecture in order to obtain an efficient transference of Pre-Local maps between robots. The efficiency of this algorithm lies in the reduction of shared map data on the collaborative robot network. Once the map transference is finished each vehicle executes an intersecting technique between point-clouds tailored to the registration process during the Local mapping. This framework was accompanied by a depth analysis for the merging and sharing strategies using proposed alignment and compression metrics for each strategy respectively. Moreover, during this work we faced some practical problems for urban and rural scenarios. Some of these problems were the terrain characteristics and geographical elevations which strongly influenced on the success of the alignment for the experiments. In some tests, there were situations where the ICP algorithm gave local minimum solutions or results with divergence. For those cases, some strategies for dealing with this problem were: the re-parametrization of the ICP method and forcing the initial transformation to share more number of points between, thereby obtaining more number of correspondences.

Contributions

The realization of the present work was inspired by the several number of potential applications for autonomous, human driven mobile robots and other fields. For that reason, we will now mention the contributions in different scientific domains:

3D Topography : One of the challenges that we had to face in this thesis was to define the methodology for mapping large areas in a reasonable amount of time

Appendix A

Benchmarking results for the map merging strategy

For the tests, it was assumed that the initial transformation matrix between both maps is the identity matrix (no translation/no rotation).

The results are organized in table A.1 in the following way:

• column 2 to 7: initial guesses