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niveau central apparaît donc plus tard au cours du développement. Dans ce cas, les premières 

réactivités aux stimulations sensorielles sont donc des réflexes. Par exemple, la stimulation 

tactile induit des réflexes spinaux (e.g. retrait de la jambe après une stimulation tactile au talon, 

Hooker, 1952), visibles bien avant que les connections nerveuses entre les récepteurs sensoriels 

et le cerveau n’apparaissent.  

 Parallèlement, Gottlieb (1991) a développé un modèle, appelé « canalisation 

expérientielle » qui décrit les influences bidirectionnelles sur le développement individuel des 

caractéristiques génétiques propres à l’individu et de l’environnement dans lequel il évolue 

(Fig. 1). Gottlieb intègre ainsi la notion de « plasticité » par de nombreux exemples de l’impact 

des expériences sensorielles (i.e. environnementales) sur le développement ultérieur (e.g. 

comportemental et cérébral) de l’individu. 

 

Fig. 1 : Schéma simplifié du modèle de « canalisation expérientielle » de Gottlieb montrant les 
interactions réciproques existantes entre les quatre composantes du développement : 
environnement, comportement, activité neuronale et génétique. 
 

Au cours du développement, les synapses (i.e. connexions entre les neurones, et entre 

les neurones et les récepteurs), déterminées par le génome, sont nombreuses. Puis, certaines 

vont régresser si elles ne sont pas stimulées, alors que d'autres vont au contraire se fixer pour 
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Abstract   Historically, newborns, and especially premature 
newborns, were thought to Bfeel nothing. However, over the 
past decades, a growing body of evidence has shown that new- 
borns are aware of their environment, but the extent and the 
onset of some sensory capacities remain largely unknown. The 
goal of this review is to update our current knowledge 
concerning newborns’ perceptual world and how ready they 
are to cope with an entirely different sensory environment fol- 
lowing birth. We aim to establish not only how and when each 
sensory ability arises during the pre-/postbirth period but also 
discuss how senses are studied. We conclude that although 
many studies converge to show that newborns are clearly sen- 
tient beings, much is still unknown. Further, we identify a series 
of internal and external factors that could explain discrepancies 
between studies, and we propose perspectives for future studies. 
Finally, through examples from animal studies, we illustrate the 
importance of this detailed knowledge to pursue the enhance- 
ment of newborns’ daily living conditions. Indeed, this is a 
prerequisite for assessing the effects of the physical environ- 
ment and routine procedures on newborns’ welfare. 
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Gottlieb’s (1971) thorough comparative analysis of the literature 
on animal and human sensory development evidenced a 
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seemingly invariant sequence of the onset of different sensory 
functions. All the sensory systems of the bird and mammal 
species studied develop before birth in a similar order. The se- 
quential patterns are similar whatever the degree of development 
at birth. The tactile system is the first functional system and is 
active very soon after conception, followed by the vestibular, 
then chemical, auditory, and, finally, visual systems. This se- 
quence has been described for altricial as well as for precocial 
species, although some of altricial species’ systems (auditory 
and visual) develop only after birth (Alberts & Ronca, 1993; 
Gottlieb, 1968, 1971). One consequence is that fetuses of differ- 
ent species not only develop in common environmental condi- 
tions but also share the same sequence of development of their 
perceptual experiences (Alberts & Ronca, 1993). The gradual 
onset of sensory capacities—and thereby inputs—implies that 
the pattern of sensory stimulations is expected to progress during 
development increasing from a limited sensory world during the 
early stages of development to a wider and richer framework of 
perception later (pre- or postnatal stages). Authors argue that the 
early limitations are adaptive as they limit the quantities of inputs 
and thus interferences within and between senses (Turkewitz & 
Kenny, 1982). Therefore, instead of considering the developing 
individual at different stages as an immature system not yet 
adapted, it should be considered as adapted for each develop- 
mental stage. In other words, fetuses and the subsequent young 
infants are not individuals with limited skills that are Bhandicaps 
to be overcome but individuals with the capacities required at 
each particular stage of their development for normal (typical) 
maturation of the system (Alberts & Cramer, 1988; Turkewitz & 
Kenny, 1982). Individuals develop within the framework of an 
ontogenetic niche (i.e., mammals’ maternal womb) that changes 
with time, therefore, development—in particular, behavioral de- 
velopment—is a series of adaptations to a series of ontogenetic 
niches (Alberts, 2008; Alberts & Harshaw, 2014). This approach 
underscores the relationship between an individual’s developing
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sensory abilities and its developmental environment, which in- 
duces constraints and therefore limits or enhances sensory in- 
puts. From this point of view, ongoing sensory experiences 
shape subsequent sensory and, to a larger extent, behavioral 
development. As we discuss below, disrupting the dynamics of 
stimulations has neural and behavioral consequences (Lickliter, 
2005). 

In the context of human development, good knowledge of 
the perceptual sensitivities/abilities at birth are particularly 
important to promote adapted medical, nursing, and environ- 
mental care during the perinatal period. This is especially sig- 
nificant for high-risk infants, such as preterm infants, who 
may lack stimulations from their intrauterine developmental 
niche (i.e., vestibular or gustatory stimulations) and at the 
same time receive an excess of other stimulations from the 
new e x t rauterine e nviro nment ( visu al stimu l ations) 
(Lickliter, 2000). Although some sensory stimulations per- 
ceived after birth could have been perceived previously during 
the final fetal stages (e.g., maternal voice and odor; DeCasper 
& Fifer, 1980; Schaal, Hummel, & Soussignan, 2004), most 
sensory stimulations perceived after delivery are novel and 
intense (Bartocci et al., 2001; Darcy, Hancock, & Ware, 
2008; Lasky & Williams, 2009; Livera et al., 2008; Prazad 
et al., 2008). At birth, newborns must be able to breathe 
through their nose, to feed by suckling, and to tolerate light. 
Background noise heterogeneity and temperature variations 
are also novel experiences in addition to many routine proce- 
dures performed after birth, such as administrating eye drops, 
taking blood samples, and other manipulations (diaper 
change, baths) that are sources of novel sensory stimulations 
which must be taken carefully into consideration in relation to 
their impact on newborns’ welfare (Gibbins et al., 2008; Long, 
Philip, & Lucey, 1980; Mörelius, Hellström-Westas, Carlén, 
Norman, & Nelson, 2006; Owens & Todt, 1984; Tristão, 
Garcia, de Jesus, & Tomaz, 2013). In the past, invasive ma- 
nipulations were performed without apprehension as new- 
borns were considered to be insensitive to pain (Anand & 
Hickey, 1987). Although this is no longer the case, the onset 
and the extent of their sensory capacities are still unclear. 

Most reviews on newborns’ sensory perception are now 
more than 10 years old (e.g., Kenner & Lubbe, 2007; 
Lecanuet & Schaal, 2002) or deal with only one or two sen- 
sory modalities (e.g., Browne, 2008; Hall, 2000; Schaal et al., 
2004). Since these reviews, many reports have enhanced our 
knowledge. Therefore, it is timely to review our current 
knowledge concerning premature and full-term newborns’ 
umwelt. The concept of umwelt was formulated by Jakob 
von Uexküll in 1934 to describe individuals’ subjective uni- 
verse determined by their sensory perceptions and cognitive 
abilities. Over the past decades, reports evidence that new- 
borns perceive a wide range of stimulations from their envi- 
ronment. Our first goal of this review is to present an overview 
of our current knowledge of newborns’ perception of sounds, 

flavors, odors, tactile and visual stimuli, and their develop- 
ment during the pre-/post birth period. Because the perinatal 
period is a crucial moment, as it is the transition from the fetal 
to the postnatal stages, we focus here on the first few days after 
birth and the fetal stage when it can explain newborns’ abili- 
ties. Our second goal is to examine discrepancies among re- 
sults and interpretations. Therefore, we analyze in detail not 
only what studies tell us about newborns’ senses but also how 
these senses are assessed. Thus, we identify a series of internal 
and external factors that could explain these discrepancies. In 
the last part, we propose perspectives for future research, 
based on research in animal models, and discuss the current 
predominant models of development. 

One challenge is to pinpoint the precise onset of sensory 
perception for different modalities. Many studies test a senso- 
ry modality only when it is possible, which means that we 
know when it is functional but not when it started to function. 
In this review, we distinguish results of tests made at different 
stages of development until sensitivity arose from those ob- 
tained at a stage when no tests have been made earlier (we 
then specify: at least at . . .). 
 
 
Current knowledge of newborns’ umwelt 
 
Tactile perception 
 
Fetal  stage: Skin sensory receptors are present at least at 
7 weeks post conception (PC) and are connected to the spinal 
cord at 8 weeks PC. However, connections between the spinal 
cord and the brain are established later and are not functional 
before 20 to 24 weeks PC (Anand & Hickey, 1987; Glover & 
Fisk, 1999; Hamon, 1996; Laquerrière, 2010). 

An early study tested the reactions of aborted fetuses of 
different ages in response to tactile stimulations with the hair 
of an esthesiometer (Hooker, 1942). As the entire anatomical 
pathway was not completely achieved by the time of the ex- 
periment, the reactions were considered a spinal cord reflex 
(withdrawal). From this single study, it seems that at least at 
7 weeks PC, stimulations of the face induce movements by the 
fetus and that during the following weeks of development, 
sensitivity extends along an anteroposterior axis to the entire 
body and is complete by 14 weeks PC (Hooker, 1952; 
Humphrey, 1978). During twin pregnancies, evoked move- 
ments (i.e., a movement of one fetus following a contact with 
the other fetus within seconds) have been recorded from the 
age of 12 weeks PC and their occurrence increases with age, 
illustrating maturation of tactile perception (Arabin, 
Geinbruch, & von Eyck, 1993; Piontelli et al., 1997; 
Zimmer, Goldstein, & Alglay, 1988). A few hand-head con- 
tacts can be observed at least at 10 weeks PC and their occur- 
rence increases rapidly (de Vries, Visser, & Prechtl, 1985). In 
parallel, thumb sucking is rarely observed before 15 weeks PC
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but becomes more frequent afterwards (Hepper, Shahidullah, 
& White, 1991). A pressure on the maternal abdomen can also 
be perceived by the fetus (from 32 to 40 weeks PC) who reacts 
with co-occurring heart rate changes (Bradfield, 1961; Issel, 
1983; Walker, Grimwade, & Wood, 1973). 

Reactions to tactile nociceptive stimulations can be re- 
vealed by fetuses’ beta-endorphin and cortisol rates at least 
at 20 weeks PC as they increase after intrauterine needling 
(in the fetal innervated umbilical vein). This timing is con- 
comitant with the first connections between the brain and the 
peripheral structures (Giannakoulopoulos, Glover, Sepulveda, 
Kourtis, & Fisk, 1994). 

 
After birth: Numerous studies evidence that newborns react to 
painful procedures. At delivery, the rates of blood beta- 
endorphin of full-term newborns extracted with forceps seem 
to be higher than after spontaneous vaginal delivery, suggest- 
ing pain perception in response to strong tactile stimulation 
(Puolakka, Kauppila, Leppäluoto, & Vuolteenaho, 1982). 
After birth, newborns (premature and full term) react to a heel 
lance procedure with typical facial expressions (i.e., raising or 
lowering brow, narrowing or tightly closing eyes, wrinkling 
nose, and raising upper lip; Gibbins et al., 2008; Grunau & 
Craig, 1987) and/or crying (Gaspardo, Miyase, Chimello, 
Martinez, & Martins Linhares, 2008; Owens & Todt, 1984). 
Invasive or noninvasive procedures can induce these behav- 
ioral expressions and cortical activation (Fabrizi et al., 2011; 
R. Slater et al., 2006; C. P. White & Cooke, 1989), hormonal 
modifications, such as beta-endorphin and cortisol levels 
(Giannakoulopoulos et al., 1994; Mörelius et al., 2006; 
Puolakka et al., 1982), and oxygen consumption (Long, 
Lucey, & Philip, 1980). For instance, from at least 25 weeks 
PC, nociceptive tactile stimulations induce an increase of ox- 
ygenation level (i.e., total hemoglobin concentration) in the 
contralateral somatosensory cortex, whereas no activation is 
observed in response to a soft touch (R. Slater et al., 2006). 

Recent studies on haptic touch evidenced that before their 
fifth day of life, full-term newborns can discriminate object 
textures (Molina & Jouen, 2003), weights (Hernandez-Reif, 
Field, Diego, & Largie, 2001), or shapes (Streri, Lhote, & 
Dutilleul, 2000). Premature newborns, at least at 28 weeks 
PC, can also discriminate different objects by their shape 
(Marcus, Lejeune, Berne-Audéoud, Gentaz, & Debillon, 
2012). 

 
Olfactory perception 

 
Fetal stage: Olfaction involves three systems: the principal 
olfactory system that processes most odors (e.g., vanilla, choc- 
olate), the trigeminal system that processes so-called tactile 
odors (e.g., mint, spice), and the vomeronasal system that 
processes pheromones (e.g., stress pheromone; Lecanuet & 
Schaal, 1996). The development of electronic microscopy 

has facilitated investigation of the fetal olfactory sensory sys- 
tem. The principal olfactory system is mainly an epithelium 
composed of numerous hair cells that appear at 7 weeks PC 
and is proposed to be mature at 11 weeks PC (Piatkina, 1982). 
The trigeminal system appears at 4 weeks PC with the emer- 
gence of the trigeminal nerve. Finally, the vomeronasal fibers 
can be differentiated from those of the principal olfactory sys- 
tem as early as 7 weeks PC. The olfactory bulb appears at 
6 weeks PC, and the first synapses between nasal fibers and 
cortex are functional at 7–8 weeks PC (Bossy, 1980; Piatkina, 
1982). Although most elements of the olfactory system are 
present at 8 weeks PC, some only emerge later, such as the 
nasal receptors at 28 weeks PC (Chuah & Zheng, 1987). 

Due to amniotic fluids surrounding the fetus, responses 
related to olfactory abilities are difficult to dissociate from 
those d ue  to  gustat i v e  a bilities a t  t he  fetal s t a ge. 
Consequently, the earliest evidence of reactions to odors 
comes from studies of premature newborns tested with air- 
borne odorants. 
 
After birth: Several authors report that newborns react to 
strong and subtle olfactory stimulations. At least at 28 weeks 
PC, premature newborns react to odors (e.g., vanilla, butyric 
acid, colostrum, milk) and discriminate between odors 
(vanilla vs. anise, for example; Goubet et al., 2002). Three- 
day-old full-term newborns respond behaviorally and physio- 
logically to very subtle odors produced by areolar glands, 
whatever their feeding habits (Doucet, Soussignan, Sagot, & 
Schaal, 2009). Newborns’ olfactory perception appears to be 
highly responsive. The earliest evidence of reactions to more 
tactile olfactory stimulations (pungent odors like spicy or 
mint odors) can be observed from 29 weeks PC age. Indeed, 
after a mint odor stimulation, full-term and 32-week old PC 
premature newborns increase their global activity, but younger 
(28-week old PC) premature newborns rarely react (Sarnat, 
1978). Behavioral (global activity, body agitation and facial 
grimaces) and cortical reactions indicate that full-term and 
premature newborns are able to detect odors like peppermint, 
disinfectants, or detergents (Bartocci et al., 2001; Bartocci 
et al., 2000; Gauthaman, Jayachandran, & Prabhakar, 1984). 
Reactions to tactile olfactory stimulations that involve the tri- 
geminal system are faster than reactions to other olfactory 
stimulations; for example, premature newborns react quicker 
to eucalyptol than to nonanoic acid (Pihet, Mellier, Bullinger, 
& Schaal, 1997). A hedonic responsiveness of at least 
31 weeks PC newborns to odors has been evidenced: smelling 
vanilla induces respiratory acceleration and more appetitive 
reactions (e.g., licking, sucking), whereas smelling butyric 
acid induces a decrease of respiration rates and facial expres- 
sions typical of disgust (e.g., wrinkling nose, raising upper lip, 
turning head away; Schaal et al., 2004). 

According to numerous authors, full-term as well as pre- 
mature newborns are able to memorize and recognize odors
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they are exposed to after birth. After a brief familiarization to 
an odor (10 presentations lasting 10 seconds each), premature 
newborns are able to discriminate between this odor and a 
novel odor (vanilla vs. anise) at least at 28–34 weeks PC 
(Goubet et al., 2002). Also, after a familiarization phase to a 
vanilla odor released in their incubator for 17 hours, premature 
newborns (around 32 weeks PC) express fewer pain reactions 
during a painful procedure performed concurrently with a va- 
nilla odor release than did nonexposed newborns (Goubet, 
Rattaz, Pierrat, Bullinger, & Lequien, 2003). This rapid post- 
natal learning is particularly efficient when olfactory percep- 
tion is associated with suckling (Marlier, Schaal, & 
Soussignan, 1998a, b). For example, an odor applied on their 
mother’s breast or nipple during their first days of life be- 
comes attractive for the exposed full-term newborns, even 
after very short and limited exposures (Delaunay-El Allam, 
Marlier, & Schaal, 2006; Schleidt & Genzel, 1990). 
Furthermore, 2-day-old breastfed full-term newborns do not 
show any preference for either their mother’s colostrum or 
amniotic fluid (the chemosensory properties of both fluids 
are very similar). However 4-day-old newborns (after colos- 
trum has been replaced by milk) orient their head more toward 
the milk odor than toward the amniotic fluid odor (Marlier 
et al., 1998b). On the contrary, bottle-fed newborns never 
prefer formula milk to their amniotic fluid, but the contrary 
(Marlier et al., 1998a). Breast-suckling seems to trigger odor 
learning and development of preferences. 

 
Transnatal transmission: Reactions to odors depend not only 
on perceptual abilities but also on previous exposure and pos- 
sibly learning. Indeed, fetuses are exposed to odors during 
pregnancy. The amniotic fluid contains components that de- 
rive m a inly from thei r mot her ’s d iet ( Li ley, 1972 ). 
Consequently, nutrients with strong odors, ingested during 
pregnancy (like cumin or curry, for instance) imprint the 
amniotic fluid with odors (e.g., Mennella, Johnson, & 
Beauchamp, 1995; Schaal, Marlier, & Soussignan, 1995). 
Fetal breathing movements induce a continuous movement 
of the amniotic fluid in contact with their nasal chemorecep- 
tors (Badalian, Chao, Fox, & Timor-Tritsch, 1993; Schaal 
et al., 2004). Thus, fetuses can perceive and memorize differ- 
ent odors. For example, when presented with an anise odor, 
full-term newborns of mothers who consumed anise during 
pregnancy orient their head more toward this odor than do 
nonexposed newborns who turn their head away (Schaal, 
Marlier, & Soussignan, 2000). Anise was provided by the 
experimenters but was consumed on a voluntary basis. 
Therefore, inheritance of maternal taste preference cannot be 
ruled out, independently of the exposure to the substance in 
utero. However, many studies highlight newborns’ olfactory 
learning competencies (Delaunay-El Allam et al., 2006; 
Goubet et al., 2002; Schleidt & Genzel, 1990). Full-term new- 
borns turn their head toward the odor of their own amniotic 

fluid more than toward that of unfamiliar amniotic fluids 
(Schaal et al., 1995; Schaal, Marlier, & Soussignan, 1998). 
This preference for their own amniotic fluid after birth under- 
scores the existence of transnatal memory of odors perceived 
in utero and recognized after birth. 
 
Gustatory perception 
 
Fetal stage: Taste buds appear at 7 weeks PC and are fully 
developed at 14–15 weeks PC (Hersch & Ganchrow, 1980; 
Witt & Reutter, 1997), while gustative receptors, mainly lo- 
calized within the taste buds, appear at 11–12 weeks PC and 
seem to be mature between 13 and 15 weeks PC (Bradley & 
Stern, 1967). At this stage, the receptors could become func- 
tional as they are already connected to the taste buds through 
nervous fibers (Witt & Reutter, 1998). 

A pioneering study established that fetuses are able to swal- 
low as early as 12 weeks PC (Pritchard, 1965), so their taste 
perception has been assessed by changing the composition of 
the amniotic fluid and recording subsequent modifications of 
swallowing rates. Swallowing rates of 34-week-old PC fe- 
tuses increases after an injection of saccharin and decreases 
after an injection of lipiodol into the amniotic fluid (Liley, 
1972). Therefore, at least at 34 weeks PC, fetuses seem able 
to express gustatory preferences or at least to adapt their be- 
havior in relation to what they perceive in the amniotic fluid. 
 

 
After birth:  Few reports concern premature newborns’ per- 
ception of gustatory components. Nevertheless, several con- 
vergent studies establish that as early as 2 hours after birth, 
full-term newborns’ facial expressions change in reaction to 
intraoral gustatory stimulations. Water induces no particular 
facial expression, whereas sweet solutions can induce smiling 
or sticking their tongue out, and bitter or sour solutions induce 
arm movements, avoidance movements (turn head away) and 
grimaces including four typical facial expressions (raising or 
lowering brow, narrowing or tightly closing eyes, wrinkling 
nose, and raising upper lip; Ganchrow, Steiner, & Daher, 
1983; Steiner, 1979). These four typical facial expressions 
correspond to typical universal rejection responses also 
expressed by fetuses (Humphrey, 1970) and even adults 
(Craig, 1992). Distaste can be expressed in different ways. 
After tasting a bitter solution, newborns open their mouths, 
whereas they close them after tasting a sour solution 
(Ganchrow et al., 1983; Rosenstein & Oster, 1988; Steiner, 
1979; Steiner, Glaser, Hawilo, & Berridge, 2001). Moreover, 
full-term and premature newborns ingest less and/or perform 
less teat suctions after tasting a sour, salty, or water solution 
than after tasting a sweet solution (Crook, 1978; Desor, 
Maller, & Andrews, 1975; Tatzer, Schubert, Timischl, & 
Simbruner, 1985). In conclusion, newborns’ responsiveness 
clearly appears hedonic. Indeed, they prefer sweet solutions,
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show distaste for bitter and sour solutions and are relatively 
indifferent to water and salt. 

 
Auditory perception 

 
Fetal stage: Ears are composed of an inner, a middle and an 
external part. The inner and middle ears are involved in the 
transduction of sounds (Pujol & Lavigne-Rebillard, 1992; 
Pujol, Puel, Gervais D’aldin, & Eybalin, 1993). Anatomical 
studies show that the first hair cells appear in the inner ear at 
11 weeks PC and are mature at 14 weeks PC (Pujol et al., 
1993). The innervation of these cells starts at 20 weeks PC 
and is completed between 24 and 28 weeks PC (Pujol & 
Lavigne-Rebillard, 1985; Pujol, Lavigne-Rebillard, & Uziel, 
1991). Using a method called acoustic auto emission, 
Morlet et al. (1995) recorded low-intensity sounds produced 
by the hair cells of 30 weeks PC fetuses following a sound 
stimulation showing that hair cells can react to sounds at least 
at that age. The cochlea develops in the middle ear between 15 
and 20 weeks PC (Pujol & Lavigne-Rebillard, 1992). 

The earliest clear evidence of auditory perception by fe- 
tuses is at least 19 weeks PC. Changes in body movements 
can be observed following continuous broadcast of a pure tone 
of 500 Hz with increasing intensity (from 65 dB to 120 dB) 
through the maternal abdominal wall (Hepper & Shahidullah, 
1994). Fetuses also react to different external vibro-acoustical, 
musical or speech stimulations by changing their suction and 
heart rates (Kisilevsky et al., 2009; Kisilevsky, Pang, & Hains, 
2000; Leader, Baillie, M artin, & Vermeulen, 1982 ; 
Petrikovsky, Schifrin, & Diana, 1993; Visser, Mulder, Wit, 
Mulder, & Prechtl, 1989). 

 
After birth:  At birth, newborns are confronted directly with 
environmental auditory stimulations that are no longer soft- 
ened by the maternal abdominal wall and the amniotic liquid 
(Gerhardt & Abrams, 1996; Querleu, Renard, Versyp, Paris- 
Delrue, & Crèpin, 1988). Full-term and premature newborns 
respond to a range of auditory stimulations (e.g., clicks, bells 
ringing, vibro-acoustical stimulations) with various facial ex- 
pressions and body movements coupled with cortical activa- 
tion and changes in heart and respiration rates (Allen & 
Capute, 1986; Rotteveel, de Graaf, Colon, Stegeman, & 
Visco, 1987; Starr, Amlie, Martin, & Sanders, 1977). Very 
premature newborns’ (26–31 weeks PC) cerebral oxygen sat- 
uration and heart rates increase and their respiratory rates de- 
crease in response to subtle variations (5 dB) of sound inten- 
sity (Kuhn et al., 2012). In another pragmatic way, activation 
of premature newborns’ brain has been recorded at 30– 
35 weeks PC (mean age = 34 weeks PC), and this seems to 
indicate discrimination abilities between two vowels (I and Y; 
Cheour-Luhtanen et al., 1996). Similarly, using suction rate 
and amplitude, full-term newborns differentiate between 
words of two and three syllables and between different one- 

syllable words (Bertoncini, Bijeljac-Babic, Blumstein, & 
Mehler, 1987; Bijeljac-Babic, Bertoncini, & Mehler, 1993). 
 
Transnatal transmission: Several studies evidence that repet- 
itive exposure to particular sounds since the fetal stage induces 
learning. Indeed, fetuses perceive sounds produced by their 
own activity (Benzaquen, Gagnon, Hunse, & Foreman, 1990; 
Querleu, Renard, Boutteville, & Crepin, 1989), their mother’s 
body (e.g., mother’s respiration, heart rate), and their mother’s 
environment, although the latter are filtered by the abdominal 
wall (Gerhardt & Abrams, 1996; Querleu et al., 1988). A 
mother’s voice transmits to her fetus better than other voices 
as it spreads both through air and through her body tissues and 
is heard more often than any other voice (e.g., Richards, 
Frentzen, Gerhardt, Mccann, & Abrams, 1992). In utero, fe- 
tuses (at least at 33 weeks PC) react differently to their 
mother’s voice than to another woman’s voice (Kisilevsky 
et al., 2009). Then, 3 days after delivery, newborns discrimi- 
nate between their mother’s voice and an unfamiliar woman’s 
voice, even when they have been separated from their mother 
for most of these 3 days (DeCasper & Fifer, 1980). Fetuses 
and newborns are not only sensitive to their mother’s voice 
but also to other types of acoustic flow, whether they are 
linguistic or not. Thus, fetuses (at least at 33 weeks PC) are 
able to discriminate between their native language and other 
languages (Kisilevsky et al., 2009). Full-term newborns of 
mothers exposed to a particular speech passage during the last 
6 weeks of pregnancy suckle at higher rates during the reading 
of this passage than when an unfamiliar text is read (DeCasper 
& Spence, 1986). Moreover, full-term newborns exposed to 
4 hours of music during the 72 hours before delivery are more 
active when hearing this sound 3 to 5 days after birth than 
newborns who have never heard this sound before (James, 
Spencer, & Stepsis, 2002). Finally, newborns who are regu- 
larly exposed to aircraft noise during their prenatal life react 
less to a similar sound after birth than do nonexposed babies 
(Ando & Hattori, 1970). Thus, perception of environmental 
sounds during the fetal stage induces some early prenatal 
learning of vocal and nonvocal sounds and transnatal memory 
of these sounds. 
 
Visual perception 
 
Fetal stage: The central zone of the retina (mainly composed 
of cones involved in chromatic vision) is not as fully devel- 
oped at birth as the peripheral zones (mainly composed of rods 
involved in achromatic vision; Abramov et al., 1982). These 
peripheral zones (parafovea and midperipheral retina), where 
the photoreceptors develop from 26 weeks PC, are functional 
at birth (Hendrickson & Drucker, 1992). The nervous connec- 
tions develop slowly from 26 to 29 weeks PC and continue to 
develop up to 15 months after birth (Burkhalter, Bernardo, & 
Charles, 1993).
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Reports show that fetuses react physiologically (increased 

heart rate) and behaviorally (body movements) to an extra 
uterine light (amnioscopy, light stimulation Kiuchi, Nagata, 
Ikeno, & Terakawa, 2000; Peleg & Goldman, 1980; Smyth, 
1965). For instance, according to Fulford et al. (2003), fetuses 
of at least 36 weeks PC react to a constant-intensity light 
source diffused through the maternal abdomen by increased 
activity in their frontal cortex. 

 
After birth: Authors evidenced decades ago that newborns are 
able to perceive many nonsocial basic stimuli at birth. For 
example, premature newborns respond to a flash of light by 
cortical activation (evoked potential) from 23 to 24 weeks PC 
on (Chin, Taylor, Menzies, & Whyte, 1985; Taylor, Menzies, 
MacMillan, & Whyte, 1987), and blinking at least at 25 weeks 
PC (Allen & Capute, 1986). According to Haynes, White, and 
Held (1965), newborns would be able to accommodate their 
vision to perceive images 19 cm away (images at shorter or 
longer distances would be blurred). When presented visual 
stimulations at 20 to 40 cm, newborns appear particularly sen- 
sitive to black and white patterns, to contrasting variations, to 
vertical more than to horizontal bars and to patterned more than 
plain stimuli (A. M. Brown et al., 2015; Fantz, 1963; Miranda, 
1970). From at least 34 weeks PC, newborns can perform oc- 
ular motility, object fixation, and detection and tracking of a 
moving target (Ball & Tronick, 1971; Bidet-Ildei, Kitromilides, 
Orliaguet, Pavlova, & Gentaz, 2014; Dunkeld & Bower, 1980; 
Ricci, Cesarini, et al., 2008; Ricci, Romeo, et al., 2008; Ricci 
et al., 2010; Romeo et al., 2012), and recognition of an object 
independently of its state (moving or stationary; A. Slater, 
Morison, Town, & Rose, 1985). Newborns are able to perceive 
directional movements (forward vs. backward optical flow 
movements) as they adapt their walking movements, the so 
called newborn stepping, accordingly (Barbu-Roth et al., 
2009; Barbu-Roth et al., 2014). 

Newborns’ visual abilities related to social stimuli have 
been widely investigated. Full-term newborns look longer at 
a normal face-like pattern than at a disordered/scrambled face 
pattern (Farroni et al., 2005) and longer at a human biological 
motion (translational displacement) than at any other kind of 
motion (Bidet-Ildei et al., 2014; Simion, Regolin, & Bulf, 
2008). They can differentiate familiar from unfamiliar faces 
(Di Giorgio, Leo, Pascalis, & Simion, 2012), smiling from 
non-smiling faces (A. Slater et al., 1998) and are sensitive to 
gaze orientation (Farroni, Csibra, Simion, & Johnson, 2002; 
Guellaï, Coulon, & Streri, 2011; Guellaï  & Streri, 2011). 
Moreover, they are able to detect and to imitate adult facial 
expressions (Meltzoff & Keith, 1977). 

Finally, a wide range of studies conclude reliably that new- 
borns possess important cognitive visual abilities. Full-term 
newborns are able to perceive subtle changes in size, grating 
density, shape (Streri & Gentaz, 2004), quantity (two vs. three 
or four vs. six black dots; Antell & Keating, 1983) and color, 

discriminating orange from red but not blue from gray 
(Adams, Courage, & Mercer, 1991; Adams, Maurer, & 
Cashin, 1990; Adams, Maurer, & Davis, 1986). 
 
Transnatal transmission: Reports evidence prenatal light per- 
ception so the system must be functional at least partially 
before birth (Kiuchi et al., 2000; Peleg & Goldman, 1980; 
Smyth, 1965). Del Giudice (2011) tried to model the possibil- 
ity of light transmission to the uterine cavity on the basis of 
mother’s abdominal thickness and clothes. According to this 
study, external light could cross these layers and the light 
intensity in the uterine cavity could be sufficient to enable fetal 
vision in particular contexts. This author hypothesizes that 
visual perception during fetal development could impact the 
development of visuomotor connections and postnatal out- 
comes. To our knowledge, no data sustain this hypothesis or 
any kind of transnatal transmission linked to prenatal visual 
information, but the possibility of prenatal visual experience 
suggests fascinating future research on visual transnatal 
transmission. 
 
Cross modality and laterality 
 
Cross modality: Numerous recent studies evidence the capac- 
ities of human newborns to associate information from differ- 
ent sensory modalities, like touch and vision or vision and 
audition, to recognize a person or an object (for a review, 
see Lickliter & Bahrick, 2007). Two hours after birth, new- 
borns look longer at their mother’s face than at an unfamiliar 
face, only if their mother has talked to them previously, so that 
they could associate her face with the voice heard and learned 
in utero (Coulon, Guellaï, & Streri, 2011). In the same way, 
after a habituation period with a video of a speaking woman, 
newborns look more at this familiar face during a choice test, 
only if the sound of her voice is added to the image during the 
habituation period (Coulon et al., 2011; Guellaï et al., 2011). 
During their first days of life, they are also able to detect the 
congruence or incongruence between lip movements and a 
vowel sound. This demonstrates audiovisual connections 
(Coulon, Hemimou, & Streri, 2013). Newborns can also trans- 
fer tactile/visual information. Less than 72 hours after birth, 
they are able to recognize objects visually (prism or cylinder) 
that they have held previously in their hand (Streri & Gentaz, 
2004). Newborns habituated either visually or tactilely to an 
object (either a smooth or a rough cylinder) explored the un- 
familiar object longer than the one to which they had been 
familiarized when both objects were presented in the other 
modality of perception (tactile or visual; Sann & Streri, 
2007). Here again, they are able to transfer information per- 
ceived through one perceptual modality to another. 
 
Laterality: Lateralization has been deduced from observations 
indicating that fetuses and full-term newborns present a
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preferential head orientation (i.e., they turn their heads more 
often to the right than to the left; Rönnqvist & Hopkins, 1998; 
Ververs, de Vries, van Geijn, & Hopkins, 1994). According to 
Hammer and Turkewitz (1974), full-term newborns respond 
with increased heart rates and more head movements when 
stimulated with a supple brush on their right cheek than on 
their left cheek. 

Moreover, a few studies suggest auditory laterality: 
Newborns would turn more often toward low intensity sounds 
(66 db) produced near their right ear and high intensity sounds 
(87 db) near the left ear (Turkewitz, Birch, Moreau, Levy, & 
Cornwell, 1966), and they seem to react more (suction rate) to 
a voice broadcast near their right ear and to music near their 
left ear (Bertoncini et al., 1989). Concurrently, newborns’ 
electrical brain activity when listening to speech sounds is 
greater in the left than in the right hemisphere (Hahn, 1987). 

In conclusion, from very early on, fetuses and newborns 
live in a rich sensory world. At birth, newborns are able to 
perceive subtle information through different sensory modal- 
ities (tactile, visual, olfactory, gustatory, and auditory) and to 
associate different types of information providing a multimod- 
al knowledge of their environment. However, many questions 
concerning newborns’ umwelt remain unsolved. 

 
 

Why does the newborns’ umwelt remain largely 
unknown? 

 
The first part of this review clearly revealed the lack of infor- 
mation concerning many aspects of newborns’ sensory world. 
In particular, the onset and the extent of their sensory abilities 
are still not clearly and fully characterized. Different factors 
can lead to discrepancies between results, some related to 
intrinsic factors (sex, age of the subjects), and others to extrin- 
sic factors (environment, care practices) that may or may not 
have been taken into account, and of course methodologies 
used can differ greatly among studies investigating the same 
modality. 

 
Intrinsic  factors 

 
Age: Newborns’ gestational age and age after birth, in hours or 
even days at the time of the tests, vary largely among studies 
(Adams et al., 1994; days after birth: Adams et al., 1990; 
Bartocci et al., 2001; Coulon et al., 2011; hours after birth: 
Farroni et al., 2002; Fulford et al., 2004; Goubet et al., 2002; 
Guellaï & Streri, 2011; gestational age: Hykin et al., 1999; 
Sininger, Abdala, & Cone-Wesson, 1997). Some studies do 
not even mention the precise age of their subjects, although 
age can be a major factor inducing discrepancy, given the 
maturation processes involved. 

However, premature newborns differ from full-term babies 
in different ways. For instance, they have smaller skulls and 

weaker muscles, higher heart rates, and less pronounced var- 
iations between the different phases of sleep (Clairambault, 
Curzi-Dascalova, Kauffmann, Médigue, & Leffler, 1992; 
Curzi-Dascalova, Peirano, & Morel-Kahn, 1988; Eiselt 
et al., 1993; Forslund & Bjerre, 1983; Joseph, Lesevre, & 
Dreyfus-Brisac, 1976). Gestational age clearly impacts inter- 
individual variations as only 46% of the premature newborns 
(32–34 weeks PC) react by changes in heart rate after an 
auditory stimulation, whereas 83% of the full-term newborns 
do (Kisilevsky & Hains, 2011). Moreover, Fabrizi et al. dem- 
onstrated that the neural circuitry enabling to discriminate 
touch from nociception appears in late premature/early term 
newborns, that is, around 35–37 weeks PC. Reactions to tac- 
tile stimulations are therefore closely related to the subject’s 
age. Few studies focus on differences between premature and 
full-term newborns’ behavioral and physiological reactions. 
Nevertheless, authors evidence differences in the behavioral 
expression of stress. Premature newborns’ cries are higher 
pitched and they horizontal-mouth-stretch more frequently 
than full-term newborns who show more taut tongues in re- 
sponse to nociceptive stimulations (Johnston, Stevens, Craig, 
& Grunau, 1993). Thus, both perception and reactions can 
differ between premature and full-term subjects at the same 
postnatal age. 

Three complementary studies underline the fact that age 
does not impact sensory modalities equally, and both prenatal 
and postnatal experiences play a major role in sensory matu- 
ration. The fact that the performances of premature newborns 
concerning some visual abilities (e.g., ocular motility, object 
tracking, fixation) are the same at birth (34–37 weeks PC) and 
at the expected term age suggests that they develop these 
abilities prenatally. However, postnatal experience appears 
crucial to acquire other visual abilities (e.g., attention at dis- 
tance, ocular alignment and convergence). Indeed, premature 
newborns are more efficient at the expected term age than at 
birth and more efficient than full-term newborns of a similar 
conceptional age (Jandó et al., 2012; Romeo et al., 2012; 
Weinacht, Kind, Mönting, & Gottlob, 1999). 
 
Conclusion: Future studies on sensory perception should con- 
sider gestational age systematically as well as precise age after 
birth. Moreover, both prenatal (infants of different gestational 
age tested at birth) and postnatal (infants of a same gestational 
age at birth tested at different ages postdelivery) maturations 
must be investigated separately as both phases differently im- 
pact newborns’ development. 
 
Sex: Although it should be easy to take newborns’ sex into 
account, this information is often missing or neglected even 
in recent studies. However, several authors agree that female 
and male newborns develop differently in some ways from 
very early on. According to Thordstein, Löfgren, Flisberg, 
Lindecrantz, and Kjellmer (2006), cortical functions mature
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earlier in females than in males (distributions of cortical activ- 
ities differ between sexes during sleep and wakefulness), and 
male baseline heart rates are significantly lower than those of 
fe ma le s ’  (Na g y,  Orvos, Bárd o s,  &  M olná r,  2 000 ). 
Consequently, sex may be a key player in perception or reac- 
tion to a given stimulus. 

Few studies consider the impact of newborns’ sex on their 
reactions to sensory stimulations. However, differences be- 
tween males and females have been highlighted in response 
to sensory stimulations. For example, according to Friedman, 
Bruno, and Vietze (1974) after visual habituation to one stim- 
ulus, a female’s attention (looking longer) is more sustained 
than that of a male when a new stimulus with subtle changes is 
introduced (gestational age at birth not specified in this study). 
Female full-term newborns appear more reactive to sounds, 
especially high-frequency sounds, than male newborns 
(Cassidy & Ditty, 2001). Seventy-five percent of the female 
fetuses (25–26 weeks PC) move after vibro-acoustic stimula- 
tion through their mothers’ abdominal wall, but only 33% of 
the male fetuses do (Leader et al., 1982). 

 
Conclusion: Very few studies compare female and male new- 
borns’ sensory abilities. However, the fact that differences 
have been evidenced between male and female adults’ sensory 
perceptions highlights the need for a full range of new studies 
of newborns. 

 
Arousal: All day long, newborns oscillate between phases of 
sleepiness and wakefulness. Several states have been de- 
scribed for full-term (Prechtl, 1974) and premature newborns 
(Holditch-Davis, Scher, Schwartz, & Hudson–Barr, 2004). 
Nevertheless, the assessment of a precise state remains diffi- 
cult, and so is keeping a newborn in the targeted state for an 
experiment. Nevertheless, as biological cycles clearly impact 
newborns’ heart and respiration rates as well as cortical activ- 
ity (Clairambault et al., 1992; Curzi-Dascalova, Lebrun, & 
Korn, 1983; Parmelee, Wenner, Akiyama, Schultz, & Stern, 
1967; Peirano, Curzi-Dascalova, & Korn, 1986), their state of 
wakefulness could influence their perception of, and reactions 
to, stimulations. Unfortunately, only a few studies focus on the 
impact of newborns’ arousal state on their sensory perception. 
The behavioral and physiological reactions of full-term new- 
borns to sensory stimulations differ according to their arousal 
state. For example, changes in body temperature in response 
to an odor (e.g., milk, amniotic fluid, vanilla) are more pro- 
nounced when newborns are awake (eyes open and no or a 
few movements) or during irregular sleep (eyes closed, irreg- 
ular respiration, a few small movements) than during regular 
sleep (eyes closed, regular respiration, and no movements; 
Soussignan, Schaal, Marlier, & Jiang, 1997). Auditory senso- 
ry laterality seems to be influenced by wakefulness. 
According to Turkewitz et al. (1966), newborns react more 
to sounds broadcast on their right side when in a quiet sleep, 

but more to those broadcast on their left side when fully 
awake. 
 
Conclusion:  Although a growing number of studies try to 
control arousal state, most studies do not mention the new- 
borns’ wakefulness level at the time of the experiment. It 
appears crucial, at least, to focus on a precise state to deter- 
mine sensory perception or, better, to test this perception in 
different states. 
 
Extrinsic factors 
 
Delivery modalities: Delivery is a moment when newborns 
experience major respiratory, physical, and sensory disrup- 
tions. Hence, stress level may vary according to delivery mo- 
dalities (e.g., vaginal delivery with or without local anesthesia, 
breech presentation, instrumental delivery, cesarean section). 
However, most studies of newborns do not take this factor into 
account or even mention the type of birth. Others restrict their 
analyses to newborns born by vaginal delivery with or without 
local anesthesia (when stated). Finally, some mention their 
subjects’ delivery modalities but do not evaluate their poten- 
tial impact. 

Nevertheless, several studies indicate an impact of delivery 
modality on newborns’ physiology: concentrations of beta- 
endorphins in full-term newborns’ umbilical cords were 
higher after a vacuum extractor delivery than after a normal 
delivery (Puolakka et al., 1982), and umbilical cortisol con- 
centrations (positively correlated with infant alertness) were 
higher when labor had been longer (Bell, White-Traut, Wang, 
& Schwertz, 2012). Epidural analgesia seems to impact the 
alertness of newborns, impairing their neurobehavioral perfor- 
mances at least on the day following birth (Emory, 
Schlackman, & Fiano, 1996). Thus, delivery modalities can 
impact newborns’ reactions and probably perception. 
 
Conclusion: Despite the few data available, it appears impor- 
tant to take all the characteristics of the delivery process, from 
uterine posture to delivery modality and administration of an- 
esthesia into account. As newborns’ sensibility thresholds can 
vary according to type of birth. 
 
Environmental characteristics and “ routine” care proce- 
dures: Human newborns are confronted with many external 
stimulations in the hospital environment (Bartocci et al., 2001; 
Darcy et al., 2008; Lasky & Williams, 2009; Livera et al., 
2008; Prazad et al., 2008). Nevertheless, reports on sensory 
perception rarely describe newborns’ sensory environment in 
detail beyond the particular stimulations studied, although it 
can vary immensely between hospitals. Many studies under- 
line a short-term impact of external sensory stimulations on 
physiological and behavioral measures of newborns (Bertelle, 
Mabin, Adrien, & Sizun, 2005; Goubet et al., 2003; Jaldo-
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Alba, Muñóz-Hoyos, Molina-Carballo, Molina-Font, & 
Acuña-Castroviejo, 1993; Philbin, 2000; Rivkees, Mayes, 
Jacobs, & Gross, 2004; Weinert, Sitka, Minors, Menna- 
Barreto, & Waterhouse, 1997). For instance, premature new- 
borns’ sleep durations and weight gains are influenced by 
environmental conditions such as levels of noise and light 
(Bertelle et al., 2005; Mann, Haddow, Stokes, Goodley, & 
Rutter, 1986). Intersensory interactions have been evidenced 
early after birth indicating that full-term newborns change 
their visual preference after an auditory stimulation with 
bursts of white noise (Lewkowicz & Turkewitz, 1981). 
Therefore, unexpected and uncontrolled stimulations from 
the environment may impact the response to the targeted 
stimulation. 

Neonatal care procedures differ according to the mothers’ 
personal choice and the hospitals’ practice guidelines. Feeding 
modality (breastfeeding vs. bottle feeding), practices of skin- 
to-skin, practices of tight or loose swaddling, and/or repetition 
of painful procedures can influence sensory development and/ 
or reactions to stimulations. For instance, neonatal procedural 
pain exposures modify the threshold or intensity of reactions 
to subsequent stimulations (for review, see Grunau, Holsti, & 
Peters, 2006). 

Skin-to-skin impacts full-term and premature newborns’ 
physiological stability, neurodevelopment, thermal and 
sleeping balance, food intake, and possibly survival 
(Bystrova et al., 2003; Feldman & Eidelman, 2003; Ferber 
& Makhoul, 2004; Lawn, Mwansa-Kambafwile, Horta, 
Barros, & Cousens, 2010; Mikiel-Kostyra, Mazur, & 
Boltruszko, 2002; Scher et al., 2009), especially when it oc- 
curs within the first 5 minutes post birth (Takahashi, 
Tamakoshi, Matsushima, & Kawabe, 2011). Thus, premature 
newborns held skin to skin show fewer signs of pain and stress 
in response to a care procedure (reduced beta-endorphin and 
cortisol concentrations, shorter crying bursts, fewer grimaces 
and decreased heart rates) than newborns who were not held 
skin to skin (Gitau et al., 2002; Gray, Watt, & Blass, 2000; 
Mooncey, Giannakoulopoulos, Glover, Acolet, & Modi, 
1997). More generally, developmental care procedures (low 
light and sound levels, postural and motor support) seem to 
decrease pain expressions and oxygen desaturation events 
during routine interventions (Sizun, Ansquer, Browne, 
Tordjman, & Morin, 2002). Nevertheless, most perceptual 
studies neither describe nor obviously take into account these 
practices when analyzing reactions to sensory stimulations. 

 

 
Conclusion: Studies on perception should put greater weight 
on environmental conditions and nursing procedures experi- 
enced by newborns. These practices can influence levels of 
stress/comfort inducing various arousal states and consequent- 
ly behavioral reactions. Overlooking these criteria may well 
impact interpretation of reactions to a stimulation by 

modifying at least sensory thresholds if not the whole percep- 
tual range. 
 

 
Socioemotional context: Most studies do not describe or take 
into account the emotional states of mothers or of other people 
present (during pregnancy but also at the time of the test). 
However, recent studies are starting to draw attention to the 
influence of mothers’ prenatal stress, which could induce a 
higher level of cortisol in response to a painful stress in new- 
borns (Davis, Glynn, Waffarn, & Sandman, 2011) and conse- 
quently influence the newborn’s alertness (Bell et al., 2012). 

A few authors agree on the fact that human fetuses perceive 
their mother’s emotions. Fetuses increase their movements 
and decrease their respiration rates when their mother listens 
to music, and particularly when their mother likes that sound 
(Zimmer et al., 1982). An instantaneous cognitive stress per- 
ceived by the mother (through a cognitive task) enhances her 
fetus’s heart rate variability whereas a more constant maternal 
stress (evidenced by a high level of cortisol) induces higher 
motor activity (DiPietro, Costigan, & Gurewitsch, 2003; 
DiPietro, Kivlighan, Costigan, & Laudenslager, 2009). 
Likewise, full-term newborns seem to be sensitive to the emo- 
tional context of social stimuli from their first days of life: 
Indeed, they are more attentive to  a smiling than to  a  
nonsmiling face (A. Slater et al., 1998) or to a happy than to 
an unhappy voice (Mastropieri & Turkewitz, 1999). 
 

 
Conclusion: As newborns are sensitive to particular emotions, 
we speculate that the emotional state of the persons present 
during a test could influence newborns’ reactions. 
 
Experimental measures and procedures 
 
Assessment methods and precision of data evaluations as well 
as stimulation procedures vary greatly among studies. 
 

 
Data: Measurement methods extend from physiological reac- 
tions (heart and/or respiratory rates, O2 saturation: Gaspardo 
et al., 2008; Gibbins et al., 2008; Johnston, Stevens, Yang, & 
Horton, 1995; Owens & Todt, 1984), hormonal changes (beta 
endorphin and cortisol concentrations: Giannakoulopoulos 
et al., 1994; Gitau et al., 2002), electrophysiological responses 
(skin conductance: Harrison et al., 2006; Tristão et al., 2013), 
cortical activity (electroencephalogram: Draganova et al., 
2005; Fabrizi et al., 2011; Starr et al., 1977), to behavioral 
responses (Bertoncini et al., 1989; Guellaï & Streri, 2011; 
Schaal et al., 1998). As already stated, expected responses 
should be adapted to the subject’s characteristics. For exam- 
ple, cortical responses could change with age: after a visual 
stimulation, premature 24-week old PC newborns present a 
single positive peak of activity, whereas 36-week PC old new- 
borns present a second negative peak (Taylor et al., 1987).
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Differences between authors’ choices of criteria are less 

easy to understand. Thus, when measuring heart rate, some 
authors consider that variations of five beats/min during 
5 seconds can be interpreted as a response to a stimulation, 
while for others, variations must exceed 15 beats/min dur- ing 
15 seconds to reach the same conclusion, even for same- age 
subjects (Aladjem, Feria, Rest, & Stojanovic, 1977; Issel, 
1983; Kawakami et al., 2002; Walker et al., 1973). 

Although behavioral observations have a great potential for 
the evaluation of newborns’ sensory abilities, the behavioral 
analyses presented in many reports are based on the experi- 
menter’s subjective interpretation of the newborns’ reactions, 
without any real quantification of their behavior (e.g., Adams 
et al., 1994). The most commonly used measures are scales 
that score zero or one (sometimes 0 to 3) a list of behavioral 
items like crying, body movements, facial expressions or gen- 
eral state (Debillon, Gras-Leguen, Boscher, & Fleury, 1998; 
Grunau & Craig, 1987; Ratynski, Cioni, Franck, Blanchard, & 
Sizun, 2002; Stevens, Johnston, & Horton, 1994). These 
scales are mainly qualitative and do not take into account 
quantitative variations of newborns’ reactions. Moreover, they 
focus mainly on pain assessment (Gibbins et al., 2008; 
Grunau, Johnston, & Craig, 1990). Here, again, measures 
have to take subjects’ characteristics into consideration. For 
instance, in response to painful procedures, females present 
more facial expressions (Guinsburg et al., 1999) whereas 
males cry sooner (Grunau & Craig, 1987). Therefore, accord- 
ing to the parameter chosen (face/sound), the conclusions can 
differ suggesting either that female or male babies are the 
more sensitive. As physiological measures, behavioral evalu- 
ations must be adapted to the age of the subject. For instance, 
premature newborns express less body and facial movements 
than do full-term newborns (Craig, Whitfield, Grunau, Linton, 
& Hadjistavropoulos, 1993), and younger (<32 weeks PC) 
newborns’ latencies of facial expression in response to a heel 
lance procedure are longer (R. Slater et al., 2009). 

 

 
Procedures: Comparisons between studies can be difficult due 
to the variety of stimuli used to assess similar abilities. Thus, 
auditory perception is studied by using different types of 
sound stimuli: from noise to tones or clicks or vibro-acoustic 
stimuli, once again independently of the fetus’ or newborn’s 
age (Hepper & Shahidullah, 1994; Kisilevsky, Fearon, & 
Muir, 1998; Kisilvesky & Muir, 1991; Kuhn et al., 2012). 

Overall, absence of reaction does not mean absence of per- 
ception. As mentioned above, sensory receptors are globally 
present from the first postconceptional weeks onward, so fe- 
tuses could be able to perceive stimuli relatively early during 
pregnancy. However, connections between sensory receptors 
and the brain become fully functional some time after their 
emergence. Thus, the withdrawal reaction observed after tac- 
tile stimulation of a 7-week-old PC fetus (Hooker, 1942) may 

well be a spinal cord reflex more than a reaction to a 
perception. 

More generally, care must be taken before drawing any 
conclusion from a reaction or absence of reaction to a stimu- 
lation that the procedure and the measures chosen really ad- 
dress the question and that no underling process interferes 
with the observed response. For instance, failure to detect a 
preference between two stimuli should not lead to the conclu- 
sion that the infant cannot perceive a difference between them. 
Absence of preference does not necessarily mean absence of 
discrimination. Newborns may disengage from a detected 
stimuli only because it does not reach expectations related to 
their previous experience and knowledge (Aslin, 2007). The 
use of some behaviors to investigate newborns’ sensory per- 
ception is now challenged, and a need for complementary, and 
often more detailed measures, has emerged. For example, 
gaze duration has been a major parameter used to assess many 
aspects of infants’ perception and cognition. As questions 
become more complex, authors like Aslin (2007) plead for 
the development of new methods and more fine-grained eval- 
uations (i.e. gaze duration, gaze patterns, direction of first 
look, frequency of switching). 
 
Conclusion:  Studies of sensory reactions should address a 
large panel of parameters rather than a single one. Different 
types of reaction should be evaluated and associated with 
particular intrinsic (age, sex) and extrinsic factors (contexts). 
This integrative approach would enhance the robustness of the 
results. 
 
 
Perspectives and reflections 
 
This review updates our knowledge concerning newborns’ 
umwelt, from the earliest development of fetuses’ sensory 
systems to newborns’ capacities to perceive and react to ex- 
ternal stimulation during their first days of life. We show that 
newborns are able to perceive many sensory stimulations and 
that they can associate stimuli perceived through various sen- 
sory modalities (cross modality). We stress the fact that the 
level and the expression of reactions vary according to many 
intra- and extrinsic factors and that they must be taken into 
account before cautiously interpreting data. New methods 
need to be developed to enhance common physiological and 
current behavioral evaluations. 
 
Promoting  quantitative behavioral  observations 
 
Even the most premature newborns can express behavioral 
reactions. Numerous studies underline the fact that fetuses 
and premature and full-term newborns modify their behavior 
in reaction to sensory stimulations. For instance, as early as 
19 weeks PC, fetuses are able to move in reaction to an
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auditory or a vibro-tactile stimulation through the maternal 
abdominal wall (Hepper & Shahidullah, 1994; Leader et al., 
1982). Twenty-three week-old PC newborns are able, like 
full-term newborns, to produce typical facial expressions 
(raise or lower brow, squeeze eyes, wrinkle nose, stretch 
lips; Gibbins et al., 2008; Grunau et al., 1990). Premature 
newborns can produce subtle movements of their extremities 
(finger extension) after a heel lance (Morison et al., 2003) and 
emit various types of vocalizations (Gaspardo et al., 2008; 
Johnston et al., 1993). 

Behavioral responses are observed sometimes when no 
physiological changes can be evidenced. For example, prema- 
ture newborns of less than 28 weeks PC modify their facial 
expressions after a blood sample procedure although no phys- 
iological changes (heart rate and oxygen saturation) are re- 
corded (Gibbins et al., 2008). The delivery of a sweet solution 
during a painful procedure decreases negative facial expres- 
sions, although, again, no effects on heart rate or cortical ac- 
tivities are observed (Gaspardo et al., 2008; R. Slater et al., 
2010). This indicates that appropriate behavioral approaches 
should be promoted in the future to improve the range of 
responses, including the subtlest responses, recorded after sen- 
sory stimulations. 

So far, behavioral data such as facial expressions (Gibbins 
et al., 2008; Grunau et al., 1990), body movements (Durier 
et al., 2015; Morison et al., 2003), crying (Gaspardo et al., 
2008; Owens & Todt, 1984), gaze durations (Guellaï & 
Streri, 2011), or head orientation (Schaal et al., 1998) have 
proved very useful to evaluate newborns’ responses to differ- 
ent kinds of stimulation. However, quantitative behavioral 
evaluations are still lacking, although they would be a prom- 
ising way to develop noninvasive methods to evaluate new- 
borns’ reactions to sensory stimulations. These evaluations 
should include the occurrence of numerous behavioral items, 
their duration, their temporal pattern of occurrence, their con- 
text and so on. The development of this behavioral approach 
would be a rigorous way to adapt and improve current meth- 
odologies and yield detailed data concerning newborns’ sen- 
sory perception. 

As mentioned previously, investigations should favor 
multimethodological approaches (behavior, physiology, hor- 
mones) in order to achieve a global assessment of newborns’ 
sensory umwelt. 

 
Other biological models to highlight the long-term impact 
of early sensory stimulations 

 
Investigations of animal models help improve our understand- 
ing of human behavioral development; they create a fertile 
ground to elaborate new hypotheses and research directions. 
Animal studies can be a source of inspiration and awareness 
concerning the impact of inappropriate stimulations and han- 
dling procedures, especially as pertinent congruences between 

humans and other animals in very early life, have been 
underlined (Gottlieb & Lickliter, 2004). 
 
Animal models of early  human  development:  Two main 
models of development predominate in the literature. The first 
model, the core knowledge theory (Carey & Spelke, 1996) 
considers the existence of at least four core systems for 
representing objects, actions, numbers, and space, while a fifth 
may correspond to the representation of social partners. This 
model proposes that each of these systems is deeply rooted in 
phylogeny. Indeed, studies of animals show that supposed 
human-specific abilities at birth can also be evidenced for 
other animal species. Thus, monkeys (Sugita, 2008) or chicks 
(Rosa Salva, Farroni, Regolin, Vallortigara, & Johnson, 2011; 
Rosa Salva, Regolin, & Vallortigara, 2010, 2012) can detect 
and discriminate faces. Newborns of several animal species 
show a preference for biological motion (monkeys: J. Brown, 
Kaplan, Rogers, & Vallortigara, 2010; Miura & Matsushima, 
2012; fish: Nakayasu & Watanabe, 2014; chicks: Rugani, 
Rosa Salva, Regolin, & Vallortigara, 2015; Simion et al., 
2008; Vallortigara, Regolin, & Marconato, 2005) and animat- 
ed objects (Rosa Salva, Mayer, & Vallortigara, 2015; 
Vallortigara, 2012) as do human newborns (Bardi, Regolin, 
& Simion, 2011; Di Giorgio, Lunghi, Simion, & Vallortigara, 
2016; Woodward, Phillips, & Spelke, 1993). While this model 
emphasizes evolutionary history and its impact on human in- 
fants’ early competencies, the other predominant model, the 
developmental psychobiological systems view, also called ex- 
periential canalization, with its bidirectional influences 
(Gottlieb, 1991), emphasizes the permanent reciprocal coac- 
tions of environmental and species-specific characteristics. 
This model and the first model are therefore complementary. 
According to Gottlieb (1991), 
 

individual development is characterized by an increase 
of complexity of organization at all levels of analysis as 
a consequence of horizontal (same level coactions, i.e. 
gene-gene, tissue-tissue . . .) and vertical (between 
levels, i.e. behavior-environment . . .) co-actions among 
an organism’s parts, including its environment. 

 
This statement has two major implications. First, stimula- 

tions that embryos, fetuses, and then the young receive from 
their environment shape their behavioral development as 
much as their genetic background does. Second, sensory de- 
velopment and then sensory inputs of one modality can influ- 
ence the sensory development of another modality. 

This model emphasizes the importance of the sequential 
onset of sensory functions and its related sensory limitations 
during individual development (Gottlieb, 1971; Turkewitz & 
Kenny, 1982), which has been confirmed by many animal- 
based investigations. Early sensory stimulations, at a stage 
when a modality is not normally stimulated, not only may
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not enhance abilities but in addition could have deleterious 
effects. For instance, abnormal visual stimulations of young 
mammals lead to impaired neuro-sensory development of the 
vision circuitry (e.g., rats: Borges & Berry, 1978; cats: Hubel 
& Wiesel, 1970; mice: Vistamehr & Tian, 2004). From 
animal-based studies emerges the idea of an optimal range 
of stimulations. For instance, quail chicks’ postnatal visual 
responsiveness is enhanced after moderate prenatal visual 
stimulation (Lickliter, 1990a), while a prolonged prenatal vi- 
sual stimulation impairs visual development as for auditory 
development (Sleigh & Lickliter, 1995). This could be most 
important to help improve nursing care procedures for preterm 
infants. Thus, skin-to-skin contacts have a significant effect 
decreasing salivary cortisol levels, and supposedly stress; the 
fact that massages produce more inconsistent effects (Gitau 
et al., 2002) could be explained by differences in strength of 
the tactile stimulations. Prenatal overstimulation, either visual 
or vestibular, of birds alters postnatal responsiveness to spe- 
cific auditory stimuli, such as maternal vocalizations, and im- 
pairs hierarchical use or learning of another sensory input 
(quail: Lickliter, 1990b; Lickliter, 1994; Lickliter & 
Hellewell, 1992; ducks: Radell & Gottlieb, 1992). Senses 
are therefore interconnected very early during development, 
and intersensory interference may occur following a wrongly 
timed or wrongly proportioned stimulation, eliciting an im- 
paired sensory and/or behavioral development. 

This is especially important during the fetal stage as prena- 
tal experiences of sensory stimulations are transmitted 
transnatally. For example, intrauterine exposure of rats to eth- 
anol enhances self-administration after birth in operant condi- 
tioning experiments (Miranda-Morales, Nizhnikov, & Spear, 
2014). When pregnant rats are exposed to space flight condi- 
tions, the development of their fetuses’ vestibular system is 
modified, suggesting that stimulation by maternal movements 
is a significant factor to be taken into consideration in studies 
of vestibular sensory development (Ronca, Fritzsch, Bruce, & 
Alberts, 2008). More generally, prenatal stimulations can dis- 
rupt the organization of the developing brain (Mooney, Siegel, 
& Gest, 1985). Piglets are able to recognize a human voice 
heard during the sow’s pregnancy. They appear distressed 
when that human voice was previously associated with a neg- 
ative maternal emotional state during pregnancy (Tallet, 
Rakotomahandry, Guérin, Lemasson, & Hausberger, 2016). 
Transnatal transmission has been demonstrated mainly for 
humans’ chemical perception and, to some extent, for their 
auditory perception, but more information is still needed for 
both these modalities and others. 

 
Laterality: Laterality remains understudied both in terms of 
stimulation and reaction modality. Newborns’ lateralized re- 
sponses can yield information concerning their perception and 
brain processing of stimuli as shown by numerous animal 
studies (see a review in Rogers, 2014). A lateralized handling 

procedure at birth influences foals’ subsequent emotional re- 
actions in an approach/contact test; they differ in relation to 
body side stimulated previously (de Boyer des Roches et al., 
2011). The authors hypothesized that sensitivity differed be- 
tween bodysides inducing different emotional values associ- 
ated with handling. Chicken embryos are oriented in the egg 
so that their right eye can receive external light through the 
shell. Incubation in the dark meaning lack of lateralized expo- 
sure to light leads to an absence of visual specialization of 
each hemisphere after hatching (Rogers, 2008). As mentioned 
above, only a few studies mention an impact of the side of 
sensory stimulations on newborns’ responses (Hammer & 
Turkewitz, 1974; Turkewitz et al., 1966). This aspect remains 
a promising path to explore both in terms of information 
concerning the sensory system and in terms of routine 
practices. 

Several studies underline the impact of the first neonatal 
interactions/handling procedures on behavioral development 
(horses: Hausberger, Henry, Larose, & Richard-Yris, 2007; 
rodents: Lehmann & Feldon, 2000; Pryce et al., 2005). The 
routine procedure involving intensive tactile stimulations of 
horses just after birth induces long term disturbances and lo- 
comotor inhibition (Durier, Henry, Sankey, Sizun, & 
Hausberger, 2012; Henry, Richard-Yris, Tordjman, & 
Hausberger, 2009). Similarly, early postpartum routine prac- 
tices could affect human newborns’ sensory and emotional 
development. 
 
 
Implications for care of newborns 
 
In modern hospital services, at birth, newborn infants, partic- 
ularly when premature, are suddenly confronted with a novel 
(potentially aggressive) environment. Our current knowl- 
edge of sensory development highlights the importance of 
the environmental stimulations and the risk of interference 
created by wrong inputs (quality and/or intensity) or incorrect 
timing in neonatal intensive care units (NICU; Browne, 2011; 
Graven & Browne, 2008). Over the past decades, increasingly 
more recommendations concerning the environment and nurs- 
ing practices within NICU have aimed to decrease mis- 
matches between the stimulations provided and the actual 
needs of the newborn in order to decrease mismatch between 
stimulations provided and the actual needs of the newborn 
(Blackburn, 1998; Graven, 2000; Liu et al., 2007; Long, 
Lucey, et al., 1980; Mann et al., 1986; Philbin, 2000; R. D. 
White, 2011a, 2011b). Still, goals concerning light and noise 
prove difficult to reach (Lasky & Williams, 2009; Philbin, 
Lickliter, & Graven, 2000) and assessments of positive or 
negative outcomes of different environmental conditions 
may be challenging (Laudert et al., 2007). However, a de- 
crease of one or both of these stimulations for part of the 
day has at least a short-term impact on sleep regulation and
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weight gain (Mann et al., 1986; Rivkees et al., 2004). 
Adjustments of overall NICU practices and environmental 
conditions to the premature newborns’ needs have proved to 
lead to better medical, neurodevelopmental, and social out- 
comes (Als et al., 2004; Als et al., 2003). To further improve 
the care of newborn infants, particularly in NICU, we must 
enhance our knowledge of fetuses’ and infants’ developmen- 
tal processes, our assessment of environmental influences on 
the organization and maintenance of these processes and the 
quantification of the stimulations received by the infants from 
their caregiving environment (Philbin et al., 2000). 

 
 

Author  note:    The idea of this review emerged from scientific discus- 
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(Groupement d’Intérêt Scientifique Cerveau-Comportement-Société/ 
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IV) Prise de données et méthodes d’observation 

IV.1) Collecte des données 

Toutes les sessions ont été filmées avec une caméra Sony HDR-PJ350E, placée sur un 

trépied face au participant, à environ 1,5 mètre de lui, afin d’être analysées ultérieurement. 

 

IV.2) Répertoire comportemental  

Le répertoire comportemental, décrit ci-après, a permis de mesurer, selon une approche 

éthologique, les réactions des bébés dans les différentes études : postures (Tableau 3), gestes 

(Tableau 4), expressions faciales (Tableau 5) et vocalisations (Fig. 4).  

 

IV.2.1) Postures 

Tableau 3 : descriptif des différentes postures du tronc, de la tête, des bras, des avant-bras, des 
mains et des yeux. 
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IV.2.2) Mouvements corporels 

Tableau 4 : descriptif des différents comportements ponctuels du tronc, de la tête, des bras, des 
mains, des pieds et des yeux. 
 

 

 



65 

 

IV.2.3) Expressions faciales 

Tableau 5 : descriptif des expressions faciales relatives aux yeux, au nez et à la bouche.  

 

 

 

IV.2.4) Vocalisations 

Le répertoire vocal a été élaboré sur la base des mesures acoustiques des différentes 

vocalisations. Les mesures acoustiques ont été réalisées sous le logiciel ANA (Richard, 1991) 

sur la fréquence fondamentale F0 (harmonique de rang 1) et l’ensemble du spectre (toutes les 

harmoniques) (Fig. 4a). Ainsi, la durée (Durée), la fréquence de début (F0deb) et la fréquence 

de fin (F0fin) de la fréquence fondamentale, ainsi que la fréquence dominante (fréquence ayant 

le plus d’énergie dans l’ensemble du spectre, Fmax) ont été relevées (Fig. 4b).  
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any of the infant groups (girls: preterms: 4/9; early-terms: 0/1; full-terms: 3/5, Fisher Test, 

N=10, df=1, p>0.05; N=9, df=1, p>0.05; N=10, df=1, p>0.05), or of side of presentation (right 

hand: preterms: 5/9; early-terms: 1/1; full-terms: 3/5, Fisher Test, N=10, df=1, p>0.05; N=9, 

df=1, p>0.05; N=10, df=1, p>0.05).  

 

 

 
Fig. 1. Preterms (N=10), early-terms (N=9), full-terms (N=10), all infants (N=29), and adults 
(N=30) (in percentage) reacting to touch or to the fake approach (for the preterms group only, 
the 2 infants who reacted to the fake reacted to the touch also). McNemar’s tests: * P<0.05, ** 
P<0.01; Fisher tests, # # P<0.01; # # # P<0.001. 
 

None of the 30 adults showed a behavioural reaction to the tactile stimulation but one reacted 

to the fake stimulation. Two other adults declared having felt something on their (test) hand but 

had expressed no visible behavioural reaction at the time.  

Two adults could have perceived the stimulation, which is overall a much lower proportion than 

for the whole infant group (N=59, Fisher test, df=1, P=0.002), or full-term (full-terms: N=40, 

df=1, P=0.008) or preterm infants (Preterms: N=40, df=1, P<0.001). No significant differences 

with the early-term group could be evidenced (N=39, df=1, P=1; Fig. 1).  
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Infants with major known congenital, neurological and sensory perception disorders and/or 

analgesic or sedative treatment were excluded. The newborns were tested at two university 

hospitals (Brest and Rennes, France) in their neonatal intensive care units. The two hospital 

sites followed developmental care guidelines: lights and sounds were reduced as much as 

possible. Parents could visit their baby whenever they wanted, at any time during the night or 

the day.  

 

2.2 Procedure 

During the experiment, three different gauzes (5*5 cm) were presented to the infants. Two 

gauzes were impregnated with their mother odour: a) one for 30 minutes (Gshort), b) the other 

for 12 hours (Glong). The third one was not impregnated and served as control (Gcontrol).  

 

2.2.1 Body odour collection 

First we collected the maternal odour on the upper chest (between the base of the neck and the 

breasts) (Fig. 1). 

 

 

 

Fig. 1. Experimental procedure to collect body odour.  
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Table. 1. Description of infants’ attraction and avoidance reactions (these categories are based 
on reports by Young and Décarie, 1974; Steiner, 1979; Ganchrow et al., 1983; Soussignan et al., 
1997; Schaal et al., 2000). 

 

 

 

2.3.2 Statistical analyses 

Friedman test and post hoc Wilcoxon tests were used to compare the number of behavioural 

occurrences between the three stimulations (Gcontrol, Gshort, Glong) for both group of 

participants (infants born preterm or full-term). Categories of behaviours were compared with 

Wilcoxon tests for each gauze presentation, data for the three gauzes were analysed separately. 

Mann Whitney tests were used to compare data for infants born preterm and full-term. 

Bonferroni corrections were used for multiple comparisons. All statistics were computed with R© 

and Statistica©. 
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Table 1. Infants’ attraction and avoidance reactions (these categories are defined according to 
definitions by Young and Décarie, 1974 Steiner, 1979; Ganchrow et al., 1983; Soussignan et al., 
1997; Schaal et al., 2000). 

 

 

 

4.4.2 Statistical analyses 

Non-parametric analyses were computed using Statistica©. For each group of participants (all 

infants, preterm and full-term infants taken separately), Wilcoxon tests (or Sign tests when the 

number of effective comparisons was equal to 5) compared behavioural reactions to the two 

gauze pads (paternal vs non-paternal). Mann Whitney tests compared the reactions of preterm 

and full-term infants.  
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atonal and intermediate vocalisations could differ in relation to duration (i.e. short vs long). 

Tonal sounds were divided according to their low-pitched and high-pitched (based on the 

evaluation fundamental frequencies) and then according to duration. A code was given to each 

vocal type based on its main acoustic features (Fig. 3). 

 

 

 

 

Fig. 3. Our 9 categories of vocalisations: Tonal Low-pitched Short (TLS), Tonal Low-pitched 
Medium (TLM), Tonal Low-pitched Long (TLL), Tonal High-pitched Short (THS), Tonal 
High-pitched Long (THL), Intermediary tonal/atonal Short (IS), Intermediary tonal/atonal Long 
(IL), Atonal Short (AS), Atonal long (AL). X axis in ms and Y axis in Hz, for each spectrogram.  

 

 

Tonal, Intermediate and Atonal vocalisations represented 43.88%, 8.43% and 47.69% of our 

recordings respectively.  
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