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Time passes as happily as a stream glides, and as sadly as a tear slides. Sadly without any sound, like an autumn leaf falling to kiss the ground. Kissing the ground for whispers of goodbye, and missing the past at sunsets of sigh.

But sighing does not heal that much, the sorrow that no one else can touch. Only by you, one touch would suffice, and brightly to me, your smiles are so nice.

--May I sing these words to all my dear acquaintances in Ecully.

Ancient Chinese philosophy proposes that one does his/her best and let the Heavenly God decide whether he/she should succeed. In this logic, people should work hard first, looking forward to an award from God. There are even famous lyrics of a popular song that go : "Only 30% for God to tell, but up to 70% you should prepare well. Winners are those who dare sail." Regretfully, I always reverse this logic : let God show me first the direction, and then I persuade myself to pack up for this journey. By this trick, I successfully turn the 30 : 70 mechanism into an all-or-nothing story : either someone guides me and then I gain something through hard working, or no one cares about me such that my life remains worthless. Fortunately, I have been kindly treated ever since the beginning of this story.

The story unfolded itself on the afternoon of November 5th, 2015, a common day of my internship before graduating. I was worrying about my future then, right at the moment when my phone rang and wrote that it was my master tutor Mr. FANG Le. By this call, he informed me, in a gentle and friendly tone as always : "There is a chance, should you choose to accept it, to accomplish a Ph.D thesis in Ecole Centrale de Lyon. This chance will not self-destruct in five seconds." "Of course not in five seconds, Sir. But this would be a big event and I need five days to make the decision." answered I, pretending to be cool. And within less than 24 hours I replied : "I'm in, Sir." The rule in this game is quite simple and fair : although it sounded like a mission impossible, once he trusted me, I trusted him. Apart from his trust and promotion for this chance, I am still grateful to him today, even after 6 years, for his earlier patience and guidance during my master thesis, which has

It was in LMFA that I have met Mr. QU Bo who regarded me as a little brother. I didn't need to cover my feelings during conversations, and I was used to telling him my confusions varying from scientific topics to daily life issues. He would always give me his points of view and suggestions with no reservation. He suggested me to do two hours' lecture of scientific articles every day, but I failed to carry on ; he suggested that one could be considered to be mentally stable when something or someone quitted his life and he could keep debugging his codes with a cup of coffee the next morning, and I think I have met this criterion : when he finally finished defending his thesis and was about to leave, I accompanied him till the railway station : best wishes, a big hug and the farewell ; then the next morning I continued coding my program with a cup of coffee. Such coffee mornings have been repeated over and over again when my friends graduated one by one. Me and Bo keep in touch until nowadays, and he is still refreshing my knowledge with his.

Of course, more knowledge is given by my PhD directors Mr. Wouter BOS and Mme. Aurore NASO, who have been my reinforcement ever since. Always, they encouraged me when I reported something to them, motivated me when I was down, gave me a hand when something was urgent, etc. I will not forget the afternoon of November 22nd, 2018. I was sitting before my desk as if my body had been drained, and Aurore came to me saying : "Ne t'inquiète pas. On a plein d'idées pour interprêter les resultats." She then wrote several statistical quantities to calculate, which really signified something and will be discussed in this thesis. I will also remember the afternoon of December 20th, 2018. I was sitting at my desk and feeling myself like a salted fish, and Wouter came to me with a pen and pieces of papers as usual : "J'ai des idées.". He first wrote some equations that I knew by heart but had no idea to deal with ; then he made some hypotheses that I doubted whether they made sense ; and here came the initial version of our dynamic model. Although I'm not Christian, but I think that I owe a lot to the goodness of God. Yes, God is fair. When he closes one window of yours, he will send you two directors. And I'd like to say : "LMFA, where amazing happens."

Another amazing experience in LMFA should be attributed to the friendship with Miss ZHU Ying. Today, if she still achieves or discovers something by her excellence, I would clap hands with no excitement, because this is what has happened routinely since the day that I knew her : she never stops evolving for seeking the truth. As commented by a professor, she is strong. It was by her generous instruction that I began to learn touch-typing, to do e-readings, to overcome my weakness, and to accept me myself as an ordinary person. Meanwhile, I have turned myself from something into someone, such that I am not only mentally stable, but have also mentally grown up. To me, she is an almighty elder sister. However, I have another two fake family members in this story -Mr. CUI Xiaopeng and Mr. WU Jianzhao, the alleged "uncle CUI" and "big brother" -with whom I could share my deep-dark-fantastic cuisine, tricky ironies, trash talks, negative emotions, etc. They were the guys such that we wouldn't feel embarrassed even if we just sat there for hours without a single word. They did have been the medicine to my delicate emotion. And they were the first that I would turn to when I was in need of help. I hope that this fake familyhood can be maintained such that someday that I can do something for them in return. Of course, the best wishes should be that they would never be in trouble and need help from no one. Brotherhood is also shared between me and Mr. LUO Haining, who has kept running besides me both in the thesis realm and in the sport field, and who has been surprising me by his self-discipline.

But I should say a big "thank you" to my real dear elder brother and elder sister, who worked so hard to provide a good living of our family, and liberated me from extra worries. Thank you for cheering me up when I felt depressed, and thank you for sharing with me the daily happiness about my loveliest nephew and niece. I'm proud of being part of you. Also, I should be thankful for Dan-Gabriel CALUGARU and Laurent POUILLOUX who generously gave me technical backups with humorous jokes when my computer was telling serious jokes. And pleasures are mine to have known GU Baiyang, a wonderful iii classmate of middle school, who generously kept an eye on possible job offers for me, and encouraged me to seek better choices.

For sure, there are still a lot of people such that I can never exhaust the list and to whom I owe grateful and heartful expressions. You are the treasure of my life.

What happens in Vegas, stays in Vegas. But what happens in Lyon, especially the beautiful coffee moments with dear Miss Nespresso, goes with me to any possible place.

Cependant, la vie sépare les gens tout doucement sans aucun bruit. On ne saurait jamais s'il y a le moment de se revoir, mais on dit comme d'habitude : "Au revoir." Un départ ne signifie lui-même jamais la fin d'une histoire, mais plutôt le début d'une autre qui est toute neuve. Or qu'est-ce qui est merveilleux là-dedans ? Avoir pu passer un temps avec vous, c'est ce qui est merveilleux là-dedans. 

Introduction & Outline

Turbulence is related to human lives in many aspects, since it appears widely in domains ranging from natural science to industrial engineering. It is also one of the most difficult problems in fluid mechanics due to its chaotic nature. It is difficult to fully describe turbulent flows even as "simple" as smoke going out of a chimney. But the attempts to improve our understanding of the phenomenon have never stopped. During the 20th century, efforts have been made by physicists and engineers multiplying the angles of attack to understand and model turbulence. By using different hypotheses, from the simplest to more and more complicated, many theories as well as modelling methods have been put forward to explain and predict some general phenomena and macroscopic properties. Simultaneously, experiments and numerical approaches are designed to validate results obtained from theories and models. There are famous and classic subjects such as the Kolmogorov 1941 theory for homogeneous isotropic turbulence, the eddy viscosity models as well as Reynolds stress models for Reynolds-averaged Navier-Stokes simulations, the eddy-damping quasi-normal Markovian theory for spectral equation closure, etc.

In this thesis, we discuss statistical mechanics methods for Euler flows ; we investigate turbulence behavior under dimensionality transition, and model the observations. These features will be briefly presented in the following sections of this chapter.

Statistical mechanics applied to turbulence (Chapters 2 & 4)

During the last decades, the statistical physics of out-of-equilibrium systems has become a particularly active field of research and has seen the blooming of various theoretical results that are often difficult to be experimentally tested. However, turbulence offers an appropriate investigation framework for such theories due to the large number of degrees of freedom that it develops over a wide range of spatio-temporal scales, and indeed, an approach attempting to better understand turbulence has been established on the basis of statistical mechanics. Historically, this approach started with the conjecture of Onsager [START_REF] Onsager | Statistical hydrodynamics[END_REF] who came up with the idea to describe the clustering of like-sign point-wise (thus discrete field) vortices as a result of entropy increase in the context of inviscid two-dimensional turbulence. This work explains somehow the emergence of long lasting large-scale structures in turbulence that can be regarded as two-dimensional, and ushers people to treat two-dimensional turbulence in the way of statistical physics. Tools were then borrowed from statistical mechanics to try to investigate the continuum inviscid two-dimensional case, and independently in the early 90s, Miller [START_REF] Miller | Statistical mechanics of Euler equations in two dimensions[END_REF] and Robert and Sommeria [START_REF] Robert | Statistical equilibrium states for two-dimensional flows[END_REF] use the Boltzmann entropy S, which is one of the fundamental concepts in statistical physics, and they succeed in applying the statistical mechanics method to the Euler equations. This tool is later extended to study more concrete cases, such as the spontaneous geostrophic ocean jets/rings (the Kuroshio and the Gulf-Stream for example) [START_REF] Bouchet | Statistical mechanics of two-dimensional and geophysical flows[END_REF], and the persisting banded structures and the Great Red Spot on Jupiter [START_REF] Bouchet | Emergence of jupiter's vortices and jets from random initial conditions[END_REF], etc. Because these flows all have two dimensions which are much bigger than the third one, they are regarded in the context of two-dimensionality and can be explained as a consequence of statistical equilibria.

The extension of this tool towards three-dimensionality was initiated by Leprovost et al. [START_REF] Leprovost | Dynamics and thermodynamics of axisymmetric flows : Theory[END_REF] by considering the case of the axisymmetric Euler equations. An axisymmetric system is a system such that, when its evolution equation is written in cylindrical coordinates (r, θ, z), all azimuthal derivatives are set to zero : ∂ θ X = 0, meaning that the system can have motions in all three dimensions but depends only on the two coordinates r and z. Thus, an axisymmetric case is termed as "2-dimensional 3-component" (denoted as 2D3C henceforth) or sometimes "2.5-dimensional" : an intermediate situation between two-dimensionality and three-dimensionality. Such ideal flows do not exist in practice but are worth investigating from an academic point of view. Furthermore, tokamaks i.e. fusion plasmas confined by a strong toroidal magnetic field, display close to axisymmetric behavior. In the absence of forcing and viscous dissipation, an infinite number of quantities (such as kinetic energy and helicity) are conserved. Similarly as in the 2D case, a Boltzmann entropy S can be defined, and maximization problems of S (as well as their equivalent variants) under different selected conservation constraints can be written. Again, without solving the Navier-Stokes equations, the solutions of such optimization problems predict the existence of long-lasting and large-scale poloidal structures. Qu et al. [START_REF] Qu | Direct numerical simulation of axisymmetric turbulence[END_REF][START_REF] Qu | Numerical simulation of axisymmetric turbulence[END_REF][START_REF] Qu | Cascades of energy and helicity in axisymmetric turbulence[END_REF] were the first to carry out numerical simulations of axisymmetric flows, with periodic axial boundary condition. By using a fully spectral method, both large-scale structures and relevant functional relationships were observed.

In this thesis, we build upon the investigation by Qu et al. [START_REF] Qu | Direct numerical simulation of axisymmetric turbulence[END_REF][START_REF] Qu | Numerical simulation of axisymmetric turbulence[END_REF][START_REF] Qu | Cascades of energy and helicity in axisymmetric turbulence[END_REF]. Sections 2.1.1 and 2.1.2 are reserved for a more detailed presentation of statistical mechanics applied to turbulent flows, and in Chapter 4 these theoretical considerations are assessed using numerical simulations.

Numerical methods (Chapter 3)

In the current thesis, two different existing codes are adapted for our purposes. Both codes are written in Fortran programming language.

Our first code is transformed from the fully spectral method adapted by Qu [START_REF] Qu | Numerical simulation of axisymmetric turbulence[END_REF] in order to simulate axisymmetric turbulence. The code was initially designed by Chen et al. [START_REF] Chen | Galerkin approximations for dissipative magnetohydrodynamics[END_REF] for numerical studies in magnetohydrodynamics within a cylindrical computation domain. The method in [START_REF] Chen | Galerkin approximations for dissipative magnetohydrodynamics[END_REF] consists in applying the Chandrasekhar-Kendall (denoted as "CK" for short in the sequel) basis which is complete and orthonormal to decompose the velocity field, mainly featured by the utilization of Bessel functions of the first kind for radial (r direction) decomposition and Fourier series for both azimuthal (θ direction) and axial (z direction) decompositions. However, the application of Fourier series in the axial direction imposes periodic boundary conditions to the two ends of z coordinates, leading to a geometry of an axially periodic cylinder. In our case, adaptation of the CK basis is carried out : the discretization in the θ direction is suppressed as is done in [START_REF] Qu | Numerical simulation of axisymmetric turbulence[END_REF] since the flows are ideally axisymmetric, and the discretization in the z direction is performed by sine and cosine functions, in order to confine the cylinder in the axial direction. Section 3.1 is reserved for a full description of this fully spectral method. The code is restructured, converted to modern Fortran language and parallelized via the OpenMP toolkit. Section 4.1 gives the validation of our first code by comparing our numerical results with theoretical predictions from the statistical mechanics method and with numerical findings in [START_REF] Qu | Numerical simulation of axisymmetric turbulence[END_REF].

Our second code is based on the pseudo-spectral method designed by Serre and collaborators [START_REF] Séverac | Large eddy simulation and measurements of turbulent enclosed rotor-stator flows[END_REF] aiming at simulating three-dimensional turbulent flows in a cylindrical cavity. Similarly, Fourier series are used to decompose the velocity field in the azimuthal direction. But at difference with the fully spectral method, Chebyshev polynomials of the first kind are applied to discretize the radial and axial directions, avoiding a singularity point at r = 0. Derivatives are accurately calculated in spectral space while multiplications are conducted in physical space. In our case, a control parameter of the axisymmetry level α is inserted into the codes to allow for a dimensionality between axisymmetric and general three-dimensional spaces. A restructuring and a parallelization via OpenMP are done. Moreover, the code is also adapted into a strictly axisymmetric version. Section 3.2 is devoted to the description of this method, and Section 4.2 offers the validation of the axisymmetric version as a complementary confirmation of theoretical and numerical results known in axisymmetric turbulence by the statistical mechanics method.

Dimensionality transitions (Chapters 5 & 6)

The behavior of turbulent flows depends on the configuration of the system, and can greatly deviate from ones to others. The dimensionality (two-or three-dimensional) is clearly a crucial control parameter. For example, by changing the aspect ratio of a flow, its behavior can be drastically modified. Both forward and inverse, and even split energy cascades can be observed (meaning that energy is transferred simultaneously to large and small scales).

One should remark that strictly speaking, the space dimension d should be integer of either 1 or 2 or 3. In theoretical research, however, it is not a rare procedure to extent results from integer space dimensions to non-integer space dimensions or even to d > 3.

In this thesis, we will numerically study the dimensionality transition from different points of view without explicitly engaging the dimension d. Two kinds of transitions will be focused on :

-the transition from non-swirling (two-dimensional two-component, denoted as "2D2C" henceforth) to swirling flow (2D3C or 2.5-dimensional as explained in Section 1.1). Chapter 5 is reserved for the presentation of this aspect ; -the transition from axisymmetric flows (2.5-dimensional) to general cylindrical threedimensional flows. Results obtained with the second code (equipped with the axisymmetry controlling parameter α) are presented in Chapter 6. Analyses of these two kinds of transition behavior will be carried out in these two chapters, by proposing corresponding models that describe the system dynamics.

To the best of our knowledge, these are the first models concerning dimensional transitions of cylindrical flows. As a starting point, we propose the simplest models, considering global, volume averaged quantities, using techniques reminiscent of early modelling efforts. Thus a brief introduction on models solving Reynolds-averaged Navier-Stokes (called "RANS" hereafter) equations for the mean velocity field is given in Chapter 2, based on the presentation done by Pope in [START_REF] Stephen | Turbulent flows[END_REF]. In particular, we focus on turbulent-viscosity models.

Main contributions and results in this thesis

-Chapters 3 & 4.
A fully spectral code of axisymmetric turbulence is adapted with confinement of the numerical domain. Theoretical predictions of statistical mechanics methods concerning axisymmetric turbulence are validated at higher Reynolds numbers than in the previous investigations [START_REF] Qu | Direct numerical simulation of axisymmetric turbulence[END_REF][START_REF] Qu | Cascades of energy and helicity in axisymmetric turbulence[END_REF]. A pseudo-spectral code in cylindrical geometry is adapted for axisymmetric turbulence with more realistic boundary conditions and the allowance of higher Reynolds numbers than the spectral code. Theoretical results (cascade direction, functional relationships) of statistical mechanics methods are reconsidered.

-Chapter 5.

Investigation of the transition phenomena of axisymmetric turbulence from nonswirling to swirling regimes through simulations. A model based on large-scale motions is established to reproduce the transition.

-Chapter 6.

The pseudo-spectral code is further developed to allow the study of flow transitions from the axisymmetric to the general three-dimensional regime. The nature of the transition observed in simulations is discussed. The extension of the model derived in Chapter 5 to match this second kind of dimensionality transition is attempted.

The main text is concluded by a chapter including the conclusions and perspectives, and some mathematical and technical details are given in the appendices.

Chapitre 2

Theoretical Details

Axisymmetric turbulence is invariant with respect to the azimuthal direction in cylindrical coordinates, and is thus a sort of 2D3C turbulence. Indeed, it shares many similarities with two-dimensional turbulence, and the statistical mechanics method for axisymmetric turbulence can therefore be transposed from that for two-dimensional turbulence by analogy. Also the transitions that we will study in this thesis have been explored for the case of 2D turbulence. In this chapter, for pedagogical reasons we start therefore by discussing 2D turbulence in order to better present axisymmetric turbulence thereafter and to illustrate the relationship between the two. The statistical mechanics used to predict stationary states of both 2D and axisymmetric turbulence will be first detailed (Section 2.1). Then the state of the art concerning the dimensionality transition in hydrodynamics will be presented in Section 2.2. A brief discussion of RANS models will be appended to the end of this chapter (Section 2.3).

Statistical mechanics

Two-dimensional flows

Navier-Stokes equations in two dimensions

The dynamics of unforced incompressible flows is characterized by the Navier-Stokes equations

∇ • u = 0, (2.1) ∂u ∂t + (u • ∇)u = - 1 ρ ∇p + ν∆u, (2.2) 
where u is the velocity field, ρ the density, p the pressure and ν the kinematic viscosity. Though movements evolve in only two dimensions, the velocity can still be written in a three-dimensional form as u = (u, v, 0) with u and v functions of x and y (if we take Cartesian coordinates system for example). One can then find, by taking the curl of u, that the vorticity ω occupies only the z dimension and is always perpendicular to the velocity :

ω = (∇ × u) z . (2.3)
Thus, by taking the curl of Eq.(2.2), one obtains a "new" equation in terms of ω,

∂ω ∂t + (u • ∇)ω = ν∆ω, (2.4) 
which describes the same as Eq.(2.2). Through the incompressibility condition (2.1) and the Cauchy-Riemann theorem, the velocity u, as well as the (scalar) vorticity ω, can be expressed by using a stream function ψ as In Eq.(2.7), {ω, ψ} is the non-linear term. In particular, when a is a function of b, i.e., a = f (b), it can be easily proved that {a, b} = 0. Therefore, some peculiarities can be expected in a state where ω = f (ψ). Under such circumstances, the non-linear effects are absent and the dynamics are affected by viscous dissipation only. In addition to the functional relationship ω = f (ψ), if viscosity is ruled out i.e. ν = 0, or balanced by forcing, the dynamics of the two-dimensional system turns into a stationary form ∂ t ω = 0, which is extremely simple but interesting. A vorticity field that does not evolve with time is dubbed as "coherent". We thus call, in practice, the notable and long-lasting structures "coherent structures". As we will see, coherent structures coupled with ω = f (ψ) relationships are observed in several types of flows.

u = ∂ψ ∂y , - ∂ψ ∂x , ω = ∇ × u • e z = -∆ψ. ( 2 

Quantities conserved in two dimensions

In the inviscid limit, the first conserved quantity we consider is the kinetic energy. Its conservation can be easily proved, for example, under Cartesian coordinates using the spatial homogeneity hypothesis. In fact, defined as E = Apart from E, the statistical moments of ω of any integer order n are also invariants in 2D. Actually, if we remove the right hand side of Eq.(2.4), the two-dimensional Euler momentum equation can be obtained

∂ω ∂t + (u • ∇)ω = 0. (2.9)
Then the following equation can be derived : They form a category of invariants called Casimirs of the system [START_REF] Holm | Nonlinear stability of fluid and plasma equilibria[END_REF].

d dt D ω n (r)dr = D nω n-1 (r) ∂ω(r) ∂t + u • ∇ω(r) dr = 0, ( 2 
Particularly, the enstrophy Z is a conserved quantity and is positive definite. Its conservation blocks the energy to cascade in a forward direction, and inversely forces the energy to cascade from smaller to larger scales, which leads to the emergence of energetic large scales. It is observed that in many cases these energetic scales are associated with well defined coherent structures. A schematic energy spectrum of 2D turbulence can be seen in Fig. 2.1. However, the appearance of such large-scale long-lasting structures can also be theoretically explained from another angle, namely through statistical mechanics theories that will be introduced thereafter. [START_REF] Biskamp | Magnetohydrodynamic turbulence[END_REF]. Energy spectrum of a 2D forced turbulent flow. The forcing takes place at medium scales k in , and energy is largely transferred to larger scales characterized by k E , yielding an inverse energy cascade. Scaling slopes can be obtained via dimensional analysis and are numerically as well as experimentally shown to be -5/3 and -3 for respectively the inverse energy cascade and the direct enstrophy (denoted as Ω in this picture) cascade. ε and η Ω are corresponding energy and enstrophy flux rates.

Statistical mechanics for 2D turbulence

For long, turbulent flows have been decomposed into a mean flow and the fluctuations around them. This allows the mean flow and the fluctuation to be approximated by turbulence models. An effective modelling theory should then be able to provide information on both the mean flow and the fluctuations considering only a moderate number of degrees of freedom but without discarding too much of the physics. Then a tempting idea is to treat turbulent systems by approaches borrowed from statistical mechanics. The following paragraphs review the development of such approaches.

In the late years of the 19th century, Kirchoff [START_REF] Kirchhoff | Lectures on mathematical physics, mechanics[END_REF] first noticed that in the case of twodimensional incompressible inviscid fluids modelled with point-wise vortices (also called "vortex gas"), the equations of motion can be considered as a result derived from a quantity

H = - i =j κ i κ j ln |r i -r j | (2.12)
where κ i is the circulation of the i-th point-wise vortex and r i = (x i , y i ) designates the corresponding position vector. Then the dynamics of the system is characterized by

κ i dr i dt = ∇ i × H. (2.13)
The dynamical equation (2.13) is written in a Hamiltonian form. Indeed, if the variables (x i , y i ) are considered conjugate coordinates (and they actually can be), the point-wise vortex system is a Hamiltonian system. Studies were then undertaken to try to explain Euler dynamics through this Hamiltonian system. In particular, with a Hamiltonian at hand, it is normal to look into the equilibrium properties of the system via methods of statistical mechanics.

Generic attempts date back to the late 1940s initiated by the conjecture of Onsager [START_REF] Onsager | Statistical hydrodynamics[END_REF]. Indeed, 2D turbulence has been observed to be self-organizing into large-scale coherent structures in nature (like jets, ocean rings, cyclones, etc.), in laboratory experiments and in numerical simulations. Onsager put forward a theory describing the formation of coherent structures in 2D systems as a result of equilibrium statistical mechanics. He pointed out that within a bounded region and at high energies, the system with a large but finite number of point-wise vortices of which the dynamics are described by the Hamiltonian (2.12) would evolve to form large structures through the coalescence of like-sign vortices. In fact, provided a confinement of vortex positions in the physical space and the assumption of ergodicity, the volume occupied by possible states of the system in the phase space is finite. This leads to an important result argued by Onsager : beyond a certain threshold of energy, the entropy should decrease somehow when energy is still fed into the system. He gave a simpler example of only two point-wise vortices of the same sign, pointing out that the total kinetic energy becomes higher as the two vortices get closer. Then he presented his conjecture that the only possible means for the vortex gas system to contain more energy is to draw like-sign vortices closer, i.e., to give rise to like-sign vortex clusters. A consequence is that when like-sign vortices are approached to each other, their positions are "better" arranged compared to the initially chaotic configuration, and the entropy is bound to decrease. In fact, when the energy of the system has already past a threshold, fewer possible states can be reached if more energy is injected in, leading to a decrease of the entropy. In particular, the temperature in traditional statistical mechanics is defined as

1 T = ∂S ∂E , (2.14) 
where S designates the entropy that characterizes the number of possible states under the constraint of a fixed energy level E. Then noticeably, the above point-wise vortex system has a negative temperature since the entropy diminishes when kinetic energy increases.

Based on this discontinuous point-vortex model, Onsager then suggested a probabilistic treatment, assuming that the generation of the large-scale two-dimensional vortices could also be regarded as a result that stems from a Hamiltonian system conserving the kinetic energy and the enstrophy (in the absence of viscosity). This conjecture, based on Onsager's sharp insights and intuitions, was not proved nor developed until the work by Joyce and Montgomery almost three decades later.

In 1973, Joyce and Montgomery [START_REF] Joyce | Negative temperature states for the twodimensional guiding-centre plasma[END_REF] adapted the idea of Onsager for their own system of charged rods placed in a plasma and aligned with a uniform magnetic field. In this study of two-dimensional electrostatic guiding center plasma, charged rods are analogous to point-wise vortices in Onsager's case since they force, through the combined effect of the magnetic field, the movement of plasma around them. Then the driven plasma movement is considered equivalent to the velocity field induced by parallel point-wise vortices, and the following results can be used as support for Onsager's conjecture.

In Joyce and Montgomery's study, 2N electric rods are taken into account. Half of them are charged with 1/N while the other half with -1/N , and the system present an overall electric neutrality. Then equivalently, this represents a point-wise vortex field whose global circulation is zero, and of which the vorticity of each vortex is equal to 1/N or -1/N . Hence if one defines ω i = 1/N or -1/N , the Hamilton equations (2.13) can be involved to describe the dynamics. It is interesting that the quantity H in Eq.(2.13) is reminiscent of the stream function ψ (recall that in practical 2D fluid systems, u x = ∂ y ψ, u y = -∂ x ψ), except that ψ characterizes a continuous fluid field while H here characterizes a discrete field. For convenience, the subsequent details are carried out on the basis of the equivalent point-wise vortices model.

In fact, the discrete vorticity field can be expressed as a function of the spatial position r. To obtain this expression, the vortex density distribution function should be first defined :

ρ ± (r) = 1 N N i=1 δ(r -r ± i ), δ(r -r ± i ) = 1 if r = r ± i 0 if r = r ± i , (2.15) 
where ± labels vortices with positive and negative vorticity respectively. Then the distribution of the discrete vorticity field can be established through the density distribution :

ω(r) = ρ + (r) -ρ -(r). (2.16) 
Eq.(2.16) means that the normal value of ω is 1/N , -1/N or 0. After some calculation, it can be found ω = -∆H, which means that the Hamiltonian quantity H can really be regarded as the discrete stream function ψ. Then similarly, the kinetic energy of the system is calculated as

E = ψωdr.
(2.17)

The generalized Boltzmann entropy of a system is defined from the distribution density function f (σ, x) of the system as S = -f log f dσdx. In Joyce and Montgomery's case, this entropy writes

S = -ρ + (r) log ρ + (r)dr -ρ -(r) log ρ -(r)dr. (2.18)
As the vortex number and intensity are defined and by default cannot be changed, the global vorticity, known as the overall circulation Γ, is a conserved quantity :

Γ = ω(r)dr = (ρ + (r) -ρ -(r))dr. (2.19)
In order for the system to be isolated from the "environment", an additional conservation constraint with respect to the kinetic energy E is imposed, i.e., neither forcing nor dissipation is included. This is indeed the case according to Onsager's analysis. Then to derive the Chapitre 2. Theoretical Details final equilibrium state of the system, Joyce and Montgomery consider the maximization of the entropy with E and Γ fixed :

max ρ {S(ρ)|E, Γ} . (2.20)
The desired equilibrium states are the solutions of the variational equation

δS -βδE -αδΓ = 0, (2.21) 
where β and α are Lagrangian multipliers. A first remark is that β is associated with the "temperature" in Onsager's conjecture. In fact, β is the inverse of the thermodynamic temperature in such kind of studies. By substituting the expressions of S, E and Γ, the variational equation becomes

δ -ρ + log ρ + -ρ -log ρ --βψ(ρ + -ρ -) -α(ρ + -ρ -) dr = 0. (2.22)
As δ F (ρ) = 0 yields F (ρ) = 0, it can be deduced from Eq.(2.22)

1 + log ρ + + βψ + α = 0, 1 + log ρ -+ βψ + α = 0. (2.23)
One then obtains

ρ + = exp(-(1 + βψ + α)), ρ -= exp(-(1 -βψ -α)), (2.24) 
which are in forms of Boltzmann distributions. Recalling that ω = ρ + -ρ -, the final expression of the vorticity field reads

⇒ ω = exp(-1) (exp(-(βψ + α)) -exp(βψ + α))
∼ sinh(-(βψ + α)).

(2.25)

Thus, the vorticity of the point-wise vortices system is a functional of the stream function, which implies {ω, ψ} = 0. This means that the current result is a stationary solution of a 2D Euler system. Although the obtained dynamics (2.25) is far from being turbulent, subsequent simulations of freely decaying two dimensional turbulence within doubly periodic domains roughly evolve towards systems where the functional relation (2.25) is well verified [START_REF] Montgomery | Relaxation in two dimensions and the "sinh-Poisson[END_REF].

The work of Joyce and Montgomery was a more rigorous support for the conjecture of Onsager. However, there are some scants of the current model. In fact, the point-wise vortex model makes sense only when the dilute (low density) limit is satisfied. When the system presents a higher and higher density of point-wise vortices, the dynamics tends to depart from what a continuous system should be. Even Onsager himself was uncertain how the statistics of discrete point-wise vortices could be adapted for situations where the vorticity field should be continuous. Besides, Onsager underlined that on the basis of the dilute vortex gas model, a continuous velocity field could be approximated by a certain number of different ways which led to a variety of equilibrium states. All these difficulties call the advent of a more proper theory for applying statistical mechanics approaches on continuous two-dimensional turbulence systems.

Separately but almost simultaneously, a theory suitable for continuous vorticity fields has been proposed by Miller [START_REF] Miller | Statistical mechanics of Euler equations in two dimensions[END_REF] and Robert and Sommeria [START_REF] Robert | Statistical equilibrium states for two-dimensional flows[END_REF] in the early 1990s. In their work, they consider a bounded domain with bounded vorticity magnitude (by some |ω| max ). One crucial advance is the introduction of a probability distribution of local vorticity level ρ(σ, r, t). The presence of this distribution function is the response to the difficulty of describing the micro-structure of the local vorticity ω(r, t).

In a two-dimensional Euler system, if damping and forcing effects are both ruled out, the vorticity transport equation is characterized by pure advection mixing. This results in finer and finer structures without limit i.e. infinitely thin filaments. When sufficiently long time is elapsed, such fine structures are no longer within the observable scope and become difficult to describe. As statistical mechanics has always a preference for macroscopic information, these extremely thin filaments are, in this sense, undesirable and should be modelled by some means that allow to predict them in a macroscopic way. The aforementioned vorticity level distribution function ρ(σ, r, t) allows in a statistical manner to measure the probability of the vorticity ω in vicinity of r to be evaluated between σ and σ + dσ at moment t. A first property of ρ is the normalization over all possible value levels of ω :

ρ(σ)dσ = 1.
(2.26)

Indeed, this allows also the definition of the average and the fluctuation :

ω(r, t) = ρ(σ, r, t)σdσ, ω (r, t) = ω(r, t) -ω(r, t).
(2.27)

The averaged vorticity is the average within the local lattice of area l 2 , and l can be understood as the smallest observable/concerned scale in statistical mechanics for Euler turbulence. According to this statement, ω(r, t) forms a local macroscopic vorticity field. Quantities based on ω are called "coarse-grained" (also termed as "macroscopic") quantities, since non-negligible fluctuation information is excluded in generic relations of ω n for n > 1 i.e. ω n = ω n . The authors consider the "fine-grained" (also termed as "microscopic") statistical quantities :

E = 1 2 ρσψdσdr = 1 2 ωψdr, (2.28) 
Γ n = ρσ n dσdr = ω n dr.

(2.29)

The authors point out that under an imposed scale l, E and Γ n approximate the invariants within accuracies ε E and ε n . Thus, accuracies get better along with l getting smaller. At a sufficiently small l, although local small-scale oscillations are erased, the E and Γ n approximate rather well E and Γ n and should be invariant in Euler conditions. But situations are different for coarse-grained quantities since (henceforth c.g. stands for "coarse-grained" and f.g. for "fine-grained")

E c.g. = E f.g. = 1 2 ωψdr, Γ c.g. = Γ f.g. = ωdr, Γ c.g.

2

= ω 2 dr = Γ f.g.

2

= ω 2 dr = ω 2 dr + ω 2 dr, (2.30) where ω 2 ≡ ω 2 -ω 2 is called the local centered variance of the vorticity.

Similar to the work of Joyce and Montgomery, a generalized Boltzmann entropy of the continuous system is defined using the distribution function ρ :

S(ρ) = -ρ log ρdσdr.
(2.31)

In fact, this entropy is proved equivalent to the logarithm of the system's disorder which represents the number of available microstates corresponding to the macrostate ρ(σ, r) calculated by combinatorial analyses [START_REF] Chavanis | Coarse-grained distributions and superstatistics[END_REF]. The authors succeed in vindicating that the statistical equilibrium state of the system verifies the maximization of S under the constraints of conserved E f.g. and Γ f.g. n :

max ρ S(ρ)|E f.g. , Γ f.g. n .
(2.32)

Precise mathematical justifications are presented in [START_REF] Robert | Statistical equilibrium states for two-dimensional flows[END_REF]. It is then reasonable to determine the critical points of the system by solving the variational problem

δS -βδE f.g. - n α n δΓ f.g. n = 0, ⇐⇒ δ(ρ log ρ) - β 2 δ(ρσψ) - n α n δ(ρσ n ) dσdr = 0, (2.33) 
where β and α n are Lagrangian multipliers to relevant constraints. By taking the derivation with respect to ρ, one finds

ρ = 1 Z exp(-(1 - β 2 σψ - n α n σ n )) (2.34)
with Z a normalizing factor. This is a first result of the Miller-Robert-Sommeria theory that engages all the fine-grained conserved quantities. The ω-ψ functional relationship can take diverse forms corresponding to different initial conditions. For more details, Robert and Sommeria [START_REF] Robert | Statistical equilibrium states for two-dimensional flows[END_REF] point out that the case of Joyce and Montgomery is a low density limit of the current theory. In [START_REF] Miller | Statistical mechanics of Euler equations in two dimensions[END_REF] and [START_REF] Chavanis | Classification of self-organized vortices in two-dimensional turbulence : the case of a bounded domain[END_REF], it is shown that in the strong mixing or low energy limit characterized by βσψ 1, the maximization problem (2.32) is equivalent to the minimization of coarse-grained enstrophy under the constraints of conserved fine-grained energy and fine-grained circulation

min ω 1 2 Γ c.g. 2 |E f.g. , Γ f.g. . (2.35)
They note that to the lowest order of the expansion of βσψ 1, only the circulation and the fine-grained enstrophy are relevant among the moments of averaged vorticity. Then for some specific initial conditions resulting in a Gaussian vorticity distribution at equilibrium state, a linear ω -ψ functional relationship can be deduced. In fact, to obtain the critical points of minimization problem (2.35) S(ρ)|E f.g. , Γ f.g. , Γ f.g.

,

(2.37) a Gaussian distribution, also called the Gibbs state, can be obtained :

ρ(σ, r) = 1 Z(r) exp(- 1 2 (σ + βψ + α) 2 ) (2.38)
with Z(r) ensuring the normalization of the integral of ρ against σ. When the inequality of βσψ 1 no longer holds, higher moments Γ f.g. n get involved, and the ω -ψ relationship becomes non-linear and recovers the sinh functional when all constraints of Γ f.g. n are taken into account. However, except the cases where extreme values of vorticity show up, a good approximation can be expected when only the conservation of the first invariants is retained.

Axisymmetric flows

General invariants in a three-dimensional Euler flow consist of the kinetic energy and the helicity only. The difference with respect to 2D is the presence of the vortex stretching term in the vorticity equation which leads to an increase of enstrophy. Furthermore, there is a crucial difference between two-dimensional and three-dimensional turbulence : in two dimensions, a system can be characterized by scalar fields like ψ and ω, which are key variables in the statistical mechanics approach ; due to the complexity, however, such a characterization manner cannot be easily fitted into a case of general three-dimensional turbulence unless additional symmetry is present in the system. Axisymmetric turbulence is such a 3D system with additional symmetry. As will be introduced in the sequel, the axisymmetric Euler equations are susceptible to be represented by scalar fields, and have an infinite number of conserved quantities in the inviscid case, which possibly allows the application of the Miller-Robert-Sommeria theory.

An axisymmetric turbulence is characterized by the condition ∂ θ = 0, signifying azimuthal invariance with respect to a fixed axis. Therefore, it is considered as intermediary between 2D and 3D, and sometimes termed as "2.5-dimensional". Such kind of systems are generally described under cylindrical coordinates, and one adopts usually a cylindrical geometry in both experiments and numerical simulations. On the experimental side, a von Kármán flow being axisymmetric in the average sense [START_REF] Ravelet | Multistability and memory effect in a highly turbulent flow : Experimental evidence for a global bifurcation[END_REF], Monchaux et al. [START_REF] Monchaux | Properties of steady states in turbulent axisymmetric flows[END_REF] shows the presence of coherent structures within the poloidal plane of the cylindrical device, and functional relationships between scalars that will be presented in the following subsections are measured in the averaged flow. On the numerical simulation side, Qu et al. [START_REF] Qu | Numerical simulation of axisymmetric turbulence[END_REF][START_REF] Qu | Direct numerical simulation of axisymmetric turbulence[END_REF][START_REF] Qu | Cascades of energy and helicity in axisymmetric turbulence[END_REF] consider a cylinder with a solid lateral wall but periodic top and bottom boundaries. Under this configuration, functional relationships are also observed in simulations of freely decaying flows. The cascades of energy, helicity, circulation, and angular momentum are also studied in stationary out-of-equilibrium cases where forcing and dissipation balance each other. To date, the theoretical predictions are in satisfactory qualitative agreement with experimental and numerical results. This motivates further researches on this 2.5dimensional regime. Theoretical details, experimental observations and numerical results will be discussed in this subsection.

Axisymmetric 3D Euler equations

To apply statistical mechanics to an axisymmetric system, we begin with the incompressible axisymmetric Euler equations written in cylindrical coordinates :

∂u r ∂r + u r r + ∂u z ∂z = 0, ∂u r ∂t + u r ∂u r ∂r + u z ∂u r ∂z - u 2 θ r = - 1 ρ ∂p ∂r , ∂u θ ∂t + u r ∂u θ ∂r + u z ∂u θ ∂z + u θ u r r = 0, ∂u z ∂t + u r ∂u z ∂r + u z ∂u z ∂z = - 1 ρ ∂p ∂z .
(2.39) u r , u θ , u z are the three components of the velocity field, p is the static pressure, and ρ is the fluid density. A first remark is that all derivative terms with respect to the toroidal coordinate θ disappear due to the axisymmetry, and that the velocity and pressure fields therefore depend only on poloidal coordinates r and z. As a result, the system can be studied on one poloidal plane, which offers some convenience when extending the statistical method (as well as when post-processing data). Furthermore, the incompressible equation relates u r and u z , and is independent from u θ . This equation can be rewritten as

1 r ∂(ru r ) ∂r + ∂u z ∂z = 0. (2.40) 
Then like in the two-dimensional situation, there exists a scalar function ψ(r, z) such that

u r = - 1 r ∂ψ ∂z , u z = 1 r ∂ψ ∂r ,
(2.41) which is the stream function characterizing the poloidal movements. It then becomes obvious that the dynamics of an axisymmetric system can be characterized by the couple of scalar fields (ψ, u θ ). Further, Leprovost [START_REF] Leprovost | Dynamics and thermodynamics of axisymmetric flows : Theory[END_REF] points out that the radial and axial components in Eqs.(2.39) can be combined by considering the equation for a new variable ξ, the alleged "potential vorticity" or "pseudo-vorticity", which is defined as

ξ = ω θ r = 1 r ∂u r ∂z - ∂u z ∂r , (2.42) 
where ω θ is the azimuthal component of the vorticity field ω = ∇ × u. which then reveals that when steady states are attained, σ, ξ and ψ satisfy the following functional relationships :

σ = F (ψ), ξ = F (ψ) 2y F (ψ) + G(ψ). (2.49) 
In Eqs.(2.49), F and G are arbitrary functions and depend on detailed information of the steady state. They are determined by initial and boundary conditions which lead to the current steady state.

Statistical mechanics of axisymmetric turbulence

To apply statistical mechanics, one should start by finding out all the conserved quantities. The first conserved quantity in an inviscid flow is the kinetic energy, which can be written as

E = 1 2 (u 2 r + u 2 z )dr + 1 2 u 2 θ dr = 1 2 ξψdr + 1 2 σ 2 r 2 dr. (2.50)
Otherwise, it is proved in [START_REF] Leprovost | Dynamics and thermodynamics of axisymmetric flows : Theory[END_REF] that in an axisymmetric Euler system, the only remaining conserved quantities are the Casimirs

I f = f (σ)dr and H g = ξg(σ)dr, (2.51) 
where f and g are arbitrary functions. This is equivalent to the conservation of any moments of the angular momentum and the generalized helicities

I n = σ n dr and H m = ξσ m dr. (2.52)
One can remark that the dynamics of angular momentum σ is described by a pure advection mixing equation. For a similar reason as that for the vorticity filamentation in 2D, σ structures of smaller and smaller scales are developed along with the evolution of the flow due to the pure mixing process. This means that a similar coarse-graining procedure is needed to define a resolvable scale limit below which the information is less interesting. Therefore, it is convenient to have again at our disposal the concept of local probability density function ρ(r, η) which shows the probability of the value of σ at position r to be between the levels η and η + dη. The coarse-grained angular momentum is thus defined as σ(r, t) = ρ(r, η, t)ηdη.

(2.53)

Like in two dimensions, the theory consists in finding solutions of the maximization problem of a mixing entropy under some conservation constraints. In the current case, the mixing entropy is defined as

S = -ρ log ρdηdr, (2.54) 
while the conversed quantities are naturally the coarse-grained energy, angular momentum moments, generalized helicities and the integral of ρ (normalization principle of probability density functions) with ξ = ξ hypothesis :

E = 1 2 ξψdr + 1 2 σ2 r 2 dr, I n = σn dr, H m = ξσ m dr, ρdη = 1.
( 

-1 -log ρ - β 2 η 2 r 2 -µξη -αη -ζ = 0. (2.59)
This leads then to the Gibbs state in axisymmetric turbulence :

ρ(η, r) = 1 Z(r) exp - β 2 η 2 r 2 -(µξ + α)η , (2.60) 
where Z(r) ensures the normalization of the integral of ρ against η. Equations connecting ξ, ψ and σ can also be obtained : taking the variation of Eq.(2.58) against ξ yields

-βψ -µσ = 0 ⇐⇒ F (ψ) = - β µ ψ; (2.61)
since Eq.(2.60) corresponds to a Gaussian distribution of σ, one can derive the expression of σ :

σ = - r 2 β (µξ + α) ⇐⇒ G(ψ) = - α µ .
(2.62)

Eq.(2.62) is considered, up to a Lagrangian multiplier α, as a Beltramized solution of the system meaning that there is an alignment between the velocity u and the vorticity ω.

However, it is theoretically proved in [START_REF] Naso | Statistical mechanics of Beltrami flows in axisymmetric geometry : equilibria and bifurcations[END_REF] that the critical solutions (2.61) and (2.62) are essentially saddle points of the system, and are linearly unstable facing some "optimal" perturbations consisting of special spectral modes. In practical scenarii, such perturbations can probably occur due to forcing or dissipation effects. Thus the stationary states predicted by Eqs.(2.61) and (2.62) might not survive after a sufficiently long period. But in reverse, these stationary states can be expected to exist during a certain length of time [START_REF] Naso | Statistical mechanics of Beltrami flows in axisymmetric geometry : equilibria and bifurcations[END_REF]. This expectation can be proved valid by the presence of big structures and the underlying functional relationships in numerical and experimental results discussed in the sequel.

Experimental and numerical results

In experiments of "axisymmetric" turbulence, the most important device is the "French washing machine" generating a von Kármán flow. Equipped with two counter-rotating impellers on top and bottom of the vessel, the device is essentially a cylindrical vessel with radius and a tunable height (distance between the impellers) to modify the aspect ratio. Each impeller is composed of a disc containing highly curved blades. Readers are suggested to refer to [START_REF] Ravelet | Multistability and memory effect in a highly turbulent flow : Experimental evidence for a global bifurcation[END_REF] for complementary details about the experimental setup. Under different rotation frequencies of the impellers, various flow regimes, with axisymmetric mean flows, are established with a Reynolds number varying from 10 2 to 3 × 10 5 . Such a turbulent flow is only statistically axisymmetric.

Herbert et al. [START_REF] Herbert | Dual non-Kolmogorov cascades in a von Kármán flow[END_REF] carried out such experiments to clarify the energy cascade direction in axisymmetric flows. They find the scaling laws of the energy spectra were compatible with the fact that kinetic energy is mainly transferred to and concentrated in large scales of the order of the cylinder radius, revealing the existence of coherent structures. Monchaux et al. [START_REF] Monchaux | Properties of steady states in turbulent axisymmetric flows[END_REF] performed von Kármán experiments with the purpose of seeing whether stationary out-of-equilibrium systems share any resemblance with classical equilibrium systems. In a test case at Re = 2.5 × 10 5 , big circulating structures are observed in the poloidal plane, represented by either the time averaged velocity field or the most probable velocity field, showing that a stationary state is attained during the selected period. In their sequential experiments, the authors exclude 50% of the flow volume in the vicinity to the impellers and the lateral wall, and show that functional relashions similar to Eq.(2.49) are satisfied. Surprisingly, the mean flow is therefore a solution of the (inviscid and unforced) Euler equations. They obtained cubic forms of the F function

F (ψ) = p 1 ψ + p 3 ψ 3 (2.63)
for both mean and most probable fields, where p 1 and p 3 are prefixes depending on the Reynolds number. In each case, the corresponding F expression is used to deduce the G function which is then shown to be linear and around zero.

Direct numerical simulations of strictly axisymmetric turbulence are performed by Qu et al. [START_REF] Qu | Numerical simulation of axisymmetric turbulence[END_REF][START_REF] Qu | Direct numerical simulation of axisymmetric turbulence[END_REF][START_REF] Qu | Cascades of energy and helicity in axisymmetric turbulence[END_REF]. By developing a fully spectral numerical method initially designed by Li et al. [START_REF] Li | Inverse cascades of angular momentum[END_REF] for magnetohydrodynamics, the authors study both freely decaying and spectrally forced flows. One striking fact is that energy condensation and functional relationships are observed in decaying cases. In forced flows, a dual cascade where energy goes inversely to small wave-numbers and helicity goes forward to large wave-numbers is observed. However, the flows turn out to be less coherent in the presence of energy injection, probably due to the optimal perturbations induced by the applied spectral forcing.

Theoretical results of statistical mechanics of the Euler equations being verified by experiments of statistically axisymmetric turbulence, one of the goals of the current thesis is to try to reproduce the predictions of direct numerical simulations of strictly axisymmetric turbulence with higher Reynolds number. Two different numerical methods with confined boundaries will be used (see Chapter 3). Moreover, as stated in the beginning of this section, axisymmetric turbulence is a rich subject that is worth deeply looking into. Since it is an intermediate situation between two-and three-dimensional regimes, transition behaviors crossing from two-dimensionality to three-dimensionality, where the axisymmetric regime plays the role of a bridge, are of interest and deserve investigations. Concerning the dimensionality transition in hydrodynamics, theoretical results are summarized in the next section.

Transition behavior

Most phenomena in nature are three-dimensional. But sometimes when one dimension is contracted and becomes much less prominent than the other two, the geometry can be considered as two-dimensional, whereas some typical three-dimensional features may still survive at the same time. Atmospheric flows such as cyclones and ocean currents are good examples where two-dimensional properties can be recognized at large scales and three-dimensional properties can be observed at small scales. They are largely forced by gradients of solar heating simultaneously at scales smaller and larger than the layer thickness : vertical gradients cause three-dimensional convection whereas horizontal gradients drive planetary scale flows [START_REF] Xia | Upscale energy transfer in thick turbulent fluid layers[END_REF].

Under ideal circumstances -such as in theoretical deduction or numerical simulations -flows can be strictly two-dimensional, and it is also possible and interesting to inquire the flow behaviors by going from the two-dimensional to the three-dimensional limit. This is the purpose of the current section : we first succinctly revisit researches on the two-to-three dimensionality transitions in hydrodynamics (detailed reviews can be referred to Alexakis and Biferale [START_REF] Alexakis | Cascades and transitions in turbulent flows[END_REF] andPPouquet et al. [START_REF] Pouquet | Helicity dynamics, inverse, and bidirectional cascades in fluid and magnetohydrodynamic turbulence : a brief review[END_REF]), and then shed light on two other kinds of dimensionality transitions which are the sujects of this thesis.

Dimensionality transition caused by thickness tuning in layer flows

Celani et al. [START_REF] Celani | Turbulence in more than two and less than three dimensions[END_REF] consider the three-dimensional Navier-Stokes system with periodic boundary conditions in all three directions. They impose a square geometry to x and y dimensions with a length of L x , and at the same time a tunable length L z to the z dimension. By continuously changing the thickness of L z , a transition between two-and three-dimensionality can be reached. A stochastic Gaussian forcing is activated spatially only in the x and y directions and spectrally in a narrow band around wave-number k f . Then, the authors find that even with a thin planar layer geometry of L z /L x = 1/32, a split cascade that conveys energy simultaneously to smaller and larger wave-numbers than k f is established, and both the inverse and direct cascades are characterized by a scaling power law proportional to -5/3. This is intuitively comparable to atmospheric or oceanic flows : eddies whose scales are much larger than the layer thickness behave like a two-dimensional flow, while eddies much smaller than the layer thickness act in a three-dimensional manner. Further, their numerical data also reveal a tendency that when L z is increased and gets close to the injection scale l f , the inverse energy flux becomes negligible, leading to a conjecture for a critical aspect ratio above which the system yields a typical cascade of three-dimensional homogeneous isotropic turbulence.

The reliability of this conjecture is numerically reinforced by Benavides and Alexakis [START_REF] Santiago | Critical transitions in thin layer turbulence[END_REF]. Coincidentally, Benavides and Alexakis consider also a thin layer flow with a tunable length in the z direction. In their study, the flow is modelled by a horizontal twodimensional field in the x and y dimensions coupled to one single Fourier mode in the z dimension, corresponding to a drastic truncation in the vertical direction :

u 2D (t, x, y) =       ∂ψ ∂y - ∂ψ ∂x 0       , u q (t, x, y, z) =    v x (x, y, t) sin(qz) v y (x, y, t) sin(qz) v z (x, y, t) cos(qz)    . (2.64) 
In this model, u 2D is the two-dimensional part of the system and u q is the threedimensional counterpart. ψ(t, x, y) is the stream function that characterizes u 2D in the (x, y) plane, meaning that u 2D is incompressible since it is not difficult to find ∇ • u 2D = 0.

The parameter q determines the thickness H of the vertical direction : H = π/q. The incompressibility condition of u q and the dynamic equations of the system are

∂u 2D ∂t + u 2D • ∇u 2D = -u q • ∇u q -∇P + ν∆u 2D -µ∆ -2 u 2D + F, ∂u q ∂t + u 2D • ∇u q = -u q • ∇u 2D -∇p q + ν∆u q , (2.65) 
with overlines standing for averaging in the z direction, and P and p q pressures for respectively the two-and three-dimensional parts. F is a two-dimensional forcing on (x, y) and is switched on at a scale of order l f . By varying the height H from big to small values, the authors observe the energy cascade transition discovered by Celani et al. [START_REF] Celani | Turbulence in more than two and less than three dimensions[END_REF] : a transition that connects a unidirectional forward cascade and a bidirectional (simultaneously forward and inverse) cascade. As the layer thickness diminishes even more, a second transition that connects the bidirectional cascade and a unidirectional inverse cascade also appears. Therefore, two critical thicknesses of definite regime changes -H 3D and H 2D -are obtained. For H > H 3D , the flow geometry consists of small scale vortex tubes in physical space, and the cascade is presented by a typical Kolmogorov energy spectrum at large wave-numbers. When H is smaller than but close to H 3D , a slight inverse energy transfer begins to appear, and as H goes smaller but still larger than H 2D , a more obvious inverse cascade is observed and a k -5/3 scaling is recognized in both forward and backward inertial ranges. Large scale 2D coherent structures and small scale 3D vortex tubes coexist in physical space. These results largely conform with the findings in [START_REF] Celani | Turbulence in more than two and less than three dimensions[END_REF]. The only difference is that in this model, H 3D is not equivalent to the forcing scale l f , but is about one-order smaller than l f . For H < H 2D , all three-dimensional contributions suffer an exponential decay as time advances, yielding a purely two-dimensional system along with an inverse energy cascade. For H larger than but close to H 2D , the three-dimensional behavior is strongly intermittent. Last but not least, it is reported in their work that the changes of dimensionality taking place when H passes across H 3D and H 2D are rather continuous instead of an expected discontinuous way.

Similarly, experimental studies of the connection between dimensionality and cascade properties are performed in thin layer experiments. Such experiments were initially designed to reproduce almost two-dimensional strongly stratified flows (e.g. Sommeria [START_REF] Sommeria | Experimental study of the two-dimensional inverse energy cascade in a square box[END_REF], Flór and van Heijst [START_REF] Flór | An experimental study of dipolar vortex structures in a stratified fluid[END_REF]). More recently these experiments were used to investigate the transition from 2D to 3D flows. For example, Shats et al. [START_REF] Shats | Turbulence decay rate as a measure of flow dimensionality[END_REF] consider an electromagnetically driven layer flow, and present the dimensionality as the deviation of the viscous damping rate α compared to that predicted by quasi-two-dimensional model α L . They find that in single electrolyte layers, the anomalous damping ratio of a D = α/α L departs from 1 when the layer thickness-forcing scale ratio h/l f is greater than 0.2, and that in the presence of a large-scale vortex, the departure of a D from 1 takes place at h/l f = 0.04, showing that the two-dimensionality seems to be easily broken as the layer gets slightly thicker. The authors suggest that as a D becomes larger, the layer flow displays higher three-dimensionality. Further, they determine the energy cascade direction by measuring the third-order structure function S 3 . They find that for small damping deviations, S 3 is positive and therefore indicates an inverse energy cascade expected in two dimensions ; for larger damping deviations S 3 is negative, revealing a direct energy cascade associated with 3D dynamics. Thus, a relation between dimensionality and energy cascade direction is made. In the electromagnetically driven layer experiments conducted by Xia et al. [START_REF] Xia | Upscale energy transfer in thick turbulent fluid layers[END_REF], an even thicker layer of h/l f > 0.5 exhibits a robust inverse energy cascade.

While the above investigations focus on the transition caused by continuously changing the geometry of thin layer flows, other investigations, which are more theoretical, aim at a more basic control of the dimensionality, as will be presented in the next subsection.

Dimensionality transition controlled by explicit parameters

One can notice that in the previous subsection, although sometimes the cases correspond to very thin layers, they are three-dimensional flows in a strict sense. It is interesting to see whether one can straightforwardly operate on the dimensionality of a flow, although this may appear abstract when the dimensionality is not an integer. Such ideas of non-integer dimensions originate in statistical mechanics and quantum field theory in parallel with the adaptation of non-integer dimensional mathematical tools.

There exist various theoretical examples such as the non-integer space-time dimension d = 4 -ε [START_REF] Wilson | Critical exponents in 3.99 dimensions[END_REF] and the ε-expansion [START_REF] Wilson | The renormalization group and the ε expansion[END_REF] in critical phenomena by Wilson et al., the dimensional renormalization in quantum electrodynamics by Bollini and Giambiagi [START_REF] Guido | Dimensional renormalization : The number of dimensions as a regularizing parameter[END_REF], the dimensional regularization method in quantum field theory [START_REF] Gerard T Hooft | Regularization and renormalization of gauge fields[END_REF] by 't Hooft and Veltman, etc. Regarding mathematical tools, the integration in non-integer dimensional space is proposed by Wilson [START_REF] Kenneth | Quantum field-theory models in less than 4 dimensions[END_REF], the generalization of scalar Laplacian operators (by Palmer and Stavrinou in [START_REF] Palmer | Equations of motion in a non-integer-dimensional space[END_REF]) as well as of other vector calculus (by Tarasov in [START_REF] Tarasov | Vector calculus in non-integer dimensional space and its applications to fractal media[END_REF]) to non-integer dimensions are suggested, in favor of theoretical studies on fractal media problems. The same idea is then inherited in theoretical investigations on hydrodynamics.

In fluid mechanics, one intuitive proposition is to directly embed the dimension d as a control parameter somehow into the governing equations of the system. The dimensionality is no more measured by the aspect ratio of geometries, but by the dimension parameter d instead. To achieve this, Frisch et al. [START_REF] Frisch | Crossover dimensions for fully developed turbulence[END_REF] extend a second-order closure model of homogeneous isotropic turbulence, namely the eddy-damped quasi-normal Markovian approximation, into its arbitrary-dimension version where d is thus extended to non-integer values. The feasibility relies on related mathematical tools that allow, for example, the integration over "spherical" surface of non-integer dimension, the derivation of non-integer order, etc. The derivation of this model is out of the scope of this presentation. Readers interested in more details are recommended to refer to [START_REF] Fournier | d-dimensional turbulence[END_REF]. As a result, d appears explicitly in the final governing equations as a tunable parameter. Again, the energy cascade direction serves as a criterion to judge the dimensionality. Several findings can be cited from their work. First, a critical crossover dimension d c = 2.03 at which the cascade direction reverses is given in [START_REF] Frisch | Crossover dimensions for fully developed turbulence[END_REF]. Although in [START_REF] Fournier | d-dimensional turbulence[END_REF] d c is declared to be 2.05, it is clear that using this adapted model, the dimensionality transition takes place at a point very close to the two-dimensionality limit. Second, by ruling out the viscous dissipation and energy injection and by assuming a E(k) ∝ k -m scaling at the initial moment, they find that the solution with m = 5/3, corresponding to a Kolmogorov scaling, is stable for any d 2. Third, situations with d < 2 are not realizable with this model. Indeed, the authors find that when d < 2, even when the energy spectrum is initially imposed to be positive, it usually (but not necessarily) drops to negative values after arbitrarily short time. Therefore, a methodology other than the EDQNM model is needed to consider non-integer dimensions smaller than 2.

For d < 2 and still in the context of homogeneous isotropic turbulence, Frisch et al. [START_REF] Frisch | Turbulence in noninteger dimensions by fractal fourier decimation[END_REF] conduct Fourier decimation operation to the velocity field, which consists in a quenched mode filtering process :

u(x) = k e ik•x θ k ûk , (2.66) 
where θ k is a random number whose value is determined as

θ k = 1 with probability h k 0 with probability 1 -h k , k ≡ |k|, h k = C k k 0 d-2
.

(2.67)

C is constant and is normally set as 1 in their study. k 0 is a reference wave-number corresponding to the largest scale of the system. The parameter d is the dimensionality and varies within the interval of (0, 2]. This process is inspired by the fact that in a sphere of radius k, the number of modes involved in the dynamics scales as k d for large k [START_REF] Sankar | Thermalized solutions, statistical mechanics and turbulence : An overview of some recent results[END_REF]. When the number of triad interactions in the spectral space is decimated, the authors observe a critical dimension of d c = 4/3 at which the -5/3 spectrum scaling begins to emerge. An inverse energy cascade is observed for 4/3 < d < 2, and as d approaches 2, the range of the -5/3 scaling becomes wider. The Kolmogorov constant C Kol that appears in the spectrum expression E(k) = C kol ε 2/3 k -5/3 diverges as (d-4/3) -2/3 , revealing that d c = 4/3 is in fact the cut-off dimension valid for this method.

At difference with the energy closure and Fourier decimation manners, Yakhot and Orszag [START_REF] Yakhot | Renormalization group analysis of turbulence. i. basic theory[END_REF] considered the possibility of extending the turbulence dimensionality by applying a renormalization group procedure. They also succeed in determining a critical dimensionality at which the energy flux sign changes, and find d c = 2.56 for Kolmogorov flows. This shows that the value of d c depends on what kind of models and hypotheses one adopts to approximate turbulence dynamics.

Another abstract way to control the dimensionality transition is studied by Giuliani et al. [START_REF] Giuliani | Critical "dimension" in shell model turbulence[END_REF]. Instead of inserting explicitly the dimension d in equations, the authors choose to treat the problem from the angle of conserved quantities. When viscosity and forcing are not considered, the first conserved quantity is the kinetic energy, and the second one is the enstrophy in two-dimensional flows or the helicity in three-dimensional flows. They then use the Gledzer-Ohkitani-Yamada shell model [START_REF] Borisovich | System of hydrodynamic type admitting two quadratic integrals of motion[END_REF][START_REF] Yamada | The inertial subrange and non-positive Lyapunov exponents in fully-developed turbulence[END_REF] without dissipation and energy injection :

∂ ∂t + νk 2 n ûn = ik n (a n û * n+1 û * n+2 + b n 2 û * n-1 û * n+1 + c n 4 û * n-1 û * n-2 ) + f n . (2.68) 
This is a governing equation in the spectral space, assuming that each shell is coupled with the nearest and the next-nearest shells. Herein, n = 1, . . . , N is the shell number, k n = k 0 r n is the shell wave-number, boundary conditions are set as

a N -1 = a N = b 1 = b N = c 1 = c 2 = 0,
and the superscript * signifies data from the last time step. By assuming zero dissipation and forcing ν = f n = 0, the energy invariance

n |û n | 2 = C imposes a n + b n+1 + c n+2 = 0. A simplified treatment is selected by letting a n = 1, b n = δ and c n = δ -1.
The second quantity can hence be expressed as

Q = n k α n |û n | 2 with 2 α = 1 δ -1 . (2.69)
For a two-dimensional case, α = 2 and δ = 5/4, giving rise to

Q = Z = n k 2 n |û n | 2 ; when a three-dimensional case is desired, α = 1 + iπ/ ln 2 and δ = 1/2, yielding Q = H = n (-1) n k n |û n | 2 .
Therefore, by continuously varying δ from 1/2 to 5/4, the system passes from two-dimensionality to three-dimensionality. A critical value δ c = 1 is thus found at which the energy flux changes sign, but in a discontinuous way.

Dimensionality transition studied in the present thesis

In the present thesis, we investigate two kinds of dimensionality transitions, a concrete kind and an abstract kind. Both of them are related to axisymmetric turbulence in confined cylindrical configurations.

The concrete transition treats strictly axisymmetric flows, and considers the continuous change from non-swirling (weak toroidal energy component, thus purely 2D2C) regime to swirling (strong toroidal energy component, thus 2D3C) regime. This can be realized by controlling the energy injections in the toroidal and poloidal directions via a fully spectral method. Technical details of the numerical implementation are presented in Section 3.1.

The abstract transition focuses on passing from axisymmetric (azimuthal invariant) regimes to general three-dimensional (free azimuthal variation) regimes. Axisymmetric flows are mathematically described by the peculiarity of ∂ θ = 0. However, they can also be described from another angle : for axisymmetric flows, the variation period in the azimuthal direction is +∞. Similarly, general 3D flows retained in a cylinder can be considered as flows of which the azimuthal variation period is 2π. Then here comes an interesting question : What are flows with an azimuthal variation period between +∞ and 2π ? If one looks into the dimensionless Navier-Stokes equations, one can find that such situations of intermediate periodicity can be fitted in a dimensionless cylinder. To illustrate this, we start from the three-dimensional Navier-Stokes equation under cylindrical coordinates. As is normally done, one can normalize the equations by using characteristic quantities of time τ , length L and velocity U . The idea is that instead of defining one universal length scales to feature structure sizes of the flow, we choose two different scales L P and L T to respectively characterize variation lengths for poloidal and toroidal components. By fixing r = L P r and z = L P z in the poloidal direction, one has

∂ r = (1/L P )∂ r and ∂ z = (1/L P )∂ z .
With L T in the toroidal direction, one has : rθ = L T (rθ) = L T r θ. Thus, the azimuthal derivative terms are rewritten as (1/r)∂ θ = (1/L T )(1/r)∂θ. In the Navier-Stokes equations with length normalized only, a ratio L P /L T appears in azimuthal derivative terms. It can be further reduced into one single control parameter :

α = L P L T . ( 2 

.70)

This leads to the three-dimensional Navier-Stokes equations written as :

∂u r ∂r + u r r + 1 r α ∂u θ ∂ θ + ∂u z ∂z = 0, ∂u r ∂t + u r ∂u r ∂r + u θ r α ∂u r ∂ θ + u z ∂u r ∂z - ū2 θ r = - 1 ρ ∂p ∂r + ν ∂ 2 u r ∂r 2 + 1 r ∂u r ∂r + 1 r 2 α 2 ∂ 2 u r ∂ θ2 + ∂ 2 u r ∂z 2 - u r r 2 - 2 r 2 α ∂u θ ∂ θ , ∂u θ ∂t + u r ∂u θ ∂r + u θ r α ∂u θ ∂ θ + u z ∂u θ ∂z + u r u θ r = - 1 ρ 1 r ∂p ∂ θ + ν ∂ 2 u θ ∂r 2 + 1 r ∂u θ ∂r + 1 r 2 α 2 ∂ 2 u θ ∂ θ2 + ∂ 2 u θ ∂z 2 + 2 r 2 α ∂u r ∂ θ - u θ r 2 , ∂u z ∂t + u r ∂u z ∂r + u θ r α ∂u z ∂ θ + u z ∂u z ∂z = - 1 ρ ∂p ∂z + ν ∂ 2 u z ∂r 2 + 1 r ∂u z ∂r + 1 r 2 α 2 ∂ 2 u z ∂ θ2 + ∂ 2 u z ∂z 2 .
(2.71)

One notices that there is a mapping θ ∈ [0, 2π/α] → θ ∈ [0, 2π] in Eq.(2.71). The limit α = 0 corresponds to the situation of L T → ∞, standing for an infinitely large azimuthal period, and matches thus the strictly axisymmetric regime ; in the other limit α = 1, one has L P = L T and the general three-dimensional regime with a 2π azimuthal periodicity is recovered. By this means, extension can be made to situations of α > 1, this represents some kind of vibratory regime in the azimuthal direction, but this is out of the scope of the current thesis. By continuously varying the value of α from 0 to 1, a transition from the axisymmetric to the general three-dimensional regime can be realized.

To our knowledge, this is the first time that these two kinds of transitions are investigated. Results and analyses will be presented in Chapter 5 for the transition from axisymmetric non-swirling to swirling (2D2C-→2D3C) regime, and in Chapter 6 for the transition from axisymmetric to general three-dimensional (2D3C-→3D3C) regime. In this thesis, some techniques reminiscent of early RANS models are used to model the transitions. A summary of principles of these models is given in the next section.

Statistical modelling of turbulence

RANS equations for the mean velocity are not directly solvable due to the unclosed Reynolds stress u i u j with u i and u j velocity fluctuations in the i and j directions (in a Cartesian representation). Hence a closure should be formulated somehow by modelling u i u j . Turbulent-viscosity models of the Reynolds stress are based on the turbulentviscosity hypothesis put forward by Boussinesq in the 19th century :

u i u j = 2 3 kδ ij -ν T ∂U i ∂x j + ∂U j ∂x i , (2.72) 
with k the turbulent energy, δ ij the Kronecker symbol, ν T the turbulent viscosity (or eddy viscosity), U i and U j mean velocity components in related directions, and x i and x j corresponding coordinates. The turbulent viscosity ν T is considered to be the product of a specific velocity u * and a specific length l * :

ν T = u * l * . (2.73)
Within the frame of the turbulent-viscosity hypothesis, we need to approximate these u * and l * as well as some other quantities. The logic is that once u * and l * specified, ν T is obtained and u i u j can be calculated according to Eq.(2.72), so the RANS equations for the mean velocity field can be solved. We focus here on three kinds of models 1. Algebraic models, among which the mixing-length model is the most representative. The mixing-length model was devised by Prandtl for two-dimensional boundary-layer flows, who considered that the mixing-length l * = l m is analogue to the molecular free path. Besides, it was assumed that the specific velocity is the product of the mixing length and the absolute value of averaged stream-wise velocity gradient. This gives

ν T = u * l * = l 2 m ∂U ∂y . (2.74)
Later, some developments of this model to fit three-dimensional flows were suggested by Smagorinsky [START_REF] Smagorinsky | General circulation experiments with the primitive equations : I. the basic experiment[END_REF] basing u * on the mean strain rate and by Baldwin and Lomax [START_REF] Baldwin | Thin-layer approximation and algebraic model for separated turbulent flows[END_REF] basing u * on the mean rotation rate, with the latter widely used in industrial applications.

2. Turbulent-kinetic-energy model. Still, l * in this model was taken as the mixing length l m , but u * was modelled in another manner as

u * = ck 1/2 , =⇒ ν T = ck 1/2 l m , (2.75) 
with c a model constant. This model was separately proposed by Kolmogorov [START_REF] Nikolaevich | The equations of turbulent motion in an incompressible fluid[END_REF] and Prandtl [START_REF] Prandtl | Über ein neues formelsystem fur die ausgebildete turbulenz. nach. ges. wiss. göttingen[END_REF], and is termed as "one-equation model" since there remains the turbulent kinetic energy k to be modelled through its transport equation. Each term (production, diffusion and dissipation) in this transport equation was modelled as a function of l m and k, thus making the whole turbulent-viscosity model solvable.

Especially, the dissipation rate ε was simply considered to scale as k 3/2 /l m . However, later extensions of turbulent-viscosity model required that apart from k, ε should be modelled by its own transport equation, giving rise to the k-ε model.

3. k-ε model. This is a kind of "two-equation model" : the same l m and k modelling as above are kept in this model ; an additional modelling process is imposed for the dissipation rate ε using its transport equation. However, the exact transport equation of ε possesses eight terms to approximate. Consequently, the transport equation of ε was empirically simplified by terms representing its diffusion, production and dissipation mechanisms.

Turbulent-viscosity models assume that the Reynolds-stress depends on the local values of k, ε and ∂U i /∂x j , which is questionable in regions of strong inhomogeneity. Therefore, corrections such as those for near-wall regions [START_REF] Shih | Fundamentals in turbulence modeling[END_REF][START_REF] Tennekes | A first course in turbulence[END_REF] and low-Re [START_REF] Durbin | Near-wall turbulence closure modeling without "damping functions[END_REF] were proposed.

Besides, other proposals such as deriving and modelling the transport equation of ν T [START_REF] Spalart | A one-equation turbulence model for aerodynamic flows[END_REF] were intended but merely for aerodynamic applications. Otherwise, some fundamental changes of the turbulent-viscosity model (2.72) was performed, with the Reynolds-stress developed to the second order approximation, but still based on the modelling of k and ε [START_REF] Charles | Analytical methods for the development of reynolds-stress closures in turbulence[END_REF]. Thus derived was the non-linear k-ε model with improved performance and applicability compared to the standard k-ε model.

In parallel with turbulent-viscosity models, another kind of Reynolds-stress model aims at modelling the transport equation of u i u j . However, with such a principle, the modelling of the Reynolds-stress flux, the pressure-strain-rate correlation and the dissipation tensor are needed, with a tremendous diversity of proposals to be found in the literature. In Chapter 5 for example, we illustrate the form of the pressure strain correlation proposed by Hanjalić and Launder [START_REF] Hanjalić | A Reynolds stress model of turbulence and its application to thin shear flows[END_REF], since we will use its form to model the transitions in axisymmetric turbulence. Different Reynolds-stress models having their own advantages, shortcomings and suitable application range, they provide a basis of reference for modelling trials of various other cases. Particularly, during the establishment of the models in this thesis, some ideas will be borrowed from these RANS models through analogy of situations, mechanisms, etc.

Chapitre 3

Numerical Methods

Two kinds of numerical methods will be introduced in this chapter, the first being fully spectral and the second being pseudo-spectral. Both methods integrate the Navier-Stokes equations in a confined cylindrical vessel. They differ in boundary conditions. In general, the no-penetration condition is valid for both methods, but the no-slip condition is applied strictly in the pseudo-spectral method only. The sketch of the flow domain is given in Fig. 3.1. Various domain aspect ratios can be considered by imposing different values of the radius R and height H. Qu et al. [START_REF] Qu | Direct numerical simulation of axisymmetric turbulence[END_REF][START_REF] Qu | Numerical simulation of axisymmetric turbulence[END_REF][START_REF] Qu | Cascades of energy and helicity in axisymmetric turbulence[END_REF] were the first to numerically investigate strictly axisymmetric turbulence. For this, they used a fully spectral method. In their simulations, the upper and lower bounds of the vessel are open by setting periodic conditions to them, and a partial slip is allowed on the lateral wall. To follow this work, we decide to add gradually the restrictions comparable to realistic experimental set-ups. Therefore, the first part of simulations, using the fully spectral method, focuses on simulations with partial slip but totally confined boundaries, and the second part of simulations, using a pseudo-spectral method, on simulations with more realistic (no-slip) boundaries.

The fully spectral method (FSM)

The main idea of spectral methods is to use an orthonormal basis to decompose the velocity and the pressure fields. As one will notice, the current fully spectral method (FSM) consists actually in a Galerkin-type approximation : the basis satisfies naturally the wished boundary conditions. The advantage of fully spectral methods is that the derivations are calculated in their spectral form which are analytical and accurate. However, the disadvantage, as one will see in the sequel, is that the nonlinear term will occupy a large amount of computational resources. To illustrate these two points as well as other specialties, this section gives the details of the theoretical derivation and the numerical implementation of the method. Initially devised by Chen et al. [START_REF] Chen | Galerkin approximations for dissipative magnetohydrodynamics[END_REF] for magnetohydrodynamics in cylindrical domain, the code was later developed by Li et al. [START_REF] Li | Two-dimensional turbulence with rigid circular walls[END_REF] for 2D turbulence with circular boundaries, and then adapted to axisymmetric turbulence by Qu [START_REF] Qu | Numerical simulation of axisymmetric turbulence[END_REF].

Eigenfunction of the curl

The basis of our FSM is derived from the eigenfunctions of the curl operator under cylindrical coordinates, inspired by the work of Montgomery et al. [START_REF] Montgomery | Three-dimensional magnetohydrodynamic turbulence in cylindrical geometry[END_REF][START_REF] Chen | Galerkin approximations for dissipative magnetohydrodynamics[END_REF][START_REF] Shan | Nonlinear magnetohydrodynamics by Galerkin-method computation[END_REF] and Chandrasekhar and Kendall (CK) [START_REF] Chandrasekhar | On force-free magnetic fields[END_REF] on magnetohydrodynamic (MHD) flows.

These eigenfunctions of the curl operator can form an orthonormal basis to expand divergence-free vector fields under cylindrical coordinates, therefore including incompressible velocity fields, up to certain symmetries and boundary conditions. The expansion can basically be written as

u(r, θ, z, t) = qmn ξ qmn (t)A qmn (r, θ, z), (3.1) 
where ξ qmn are called CK mode coefficients with q, m, n mode numbers of r, θ, z dimensions respectively, and A qmn is the basis depending on CK eigenfunctions :

A qmn = I -1 2 qmn [λ qmn ∇Ψ qmn × e z + ∇ × (∇Ψ qmn × e z )] , (3.2a) 
(∇ 2 + λ 2 qmn )Ψ qmn = 0. (3.2b) 
A first remark is that ξ qmn and A qmn are generally complex, since Ψ qmn can possibly be complex functions. Imposing some extra constraints, they can be restricted to be in the real number space purely. Without loss of generality, the inner product here is defined as the average of the integral over the cylinder volume :

A 1 (r, θ, z), A 2 (r, θ, z) = 1 V V A 1 (r, θ, z), A * 2 (r, θ, z)rdrdθdz, (3.3) 
where A 1 and A 2 are two vectors belonging to the CK basis, V is the volume, and the superscript symbol * denotes the conjugate of a complex field. In this context, the prefix

I -1/2
qmn in Eq.(3.2a) is a coefficient ensuring that the CK basis is normalized :

1 V V A qmn A * qmn rdrdθdz = 1. (3.4) 
A second remark is that A qmn is divergence-free. Thus the velocity field, expanded in the form (3.1), meets naturally the incompressibility condition :

∇ • u = 0. (3.5) 
A third remark, resulting from the second one, is that all A qmn vectors are eigenfunctions of the curl : ∇ × A qmn = λ qmn A qmn . One can then deduce the expression of the vorticity field ω, curl of u, without lots of difficulty :

ω(r, θ, z, t) = qmn λ qmn ξ qmn (t)A qmn (r, θ, z). (3.6)
Moreover, this virtue can lead to the simplicity of the spectral expression of the Navier-Stokes equations, as will be shown in Section 3.1.3.

The concrete expressions of A qmn depending on detailed symmetries and boundary conditions will be developed in the next subsection.

Expressions of CK basis for axisymmetric flows confined in a closed cylindrical domain

We aim at imposing the axisymmetry condition : ∂ θ = 0. Then the expression of CK basis of the current thesis originates in solving the Helmholtz equation (3.2b), except that the mode index m must be excluded. Like solving the Laplace equation, the variable separation approach is adopted assuming that the solutions can be written as

Ψ qn (r, z) = R(r)Z(z), (3.7) 
where R and Z are scalar functions of r and z. This develops Eq.(3.2b) into

R R + 1 r R R + λ 2 qn = - Z Z . (3.8)
As the left-hand side of Eq.(3.8) is a function of r and the right-hand side of z, they must be reduced to a constant independent from both r and z, denoted as α qn , giving

R + 1 r R + (λ 2 qn -α qn )R = 0, (3.9a) 
Z + α qn Z = 0. (3.9b)
Notice that Eq.(3.9b) is the harmonic oscillation equation if α qn is chosen positive. The corresponding solutions on z are periodic, or say trigonometric functions reflecting to Fourier modes. Thus we prefer to denote α qn = k n conventionally, which is reminiscent of Fourier wave-numbers. Solutions are then well known as

Z(z) = Ae iknz + Be -iknz (3.10) 
with A and B complex constants. Return to the equation concerning r. Choices are that λ 2 qn -α 2 qn = λ 2 qn -k 2 n > 0, making Eq.(3.9a) the 0th order Bessel differential equation of the first kind. With λ 2 qn -k 2 n = γ 2 q , solutions are then well known as

R(r) = CJ 0 (γ q r), (3.11) 
where J 0 is the 0th order Bessel function of the first kind and C is a constant. By substituting Eqs.(3.10) and (3.11) in Eq.(3.7), one obtains a first form of Ψ qn :

Ψ qn = J 0 (γ q r)(Ae iknz + Be -iknz ). (3.12) 
Further reduction of this expression needs the definition of boundary conditions in the z direction. For instance, Qu et al. [START_REF] Qu | Numerical simulation of axisymmetric turbulence[END_REF][START_REF] Qu | Direct numerical simulation of axisymmetric turbulence[END_REF][START_REF] Qu | Cascades of energy and helicity in axisymmetric turbulence[END_REF] considered periodic boundaries on the z dimension and set A = 0, giving rise to

Ψ qn = J 0 (γ q r)e -iknz . (3.13)
Since a confinement with no-penetration (slipping is allowed) condition on top and bottom is in our consideration, we pose A = a + bi and B = -a -bi to obtain

Ψ qn = J 0 (γ q r) sin(k n z). (3.14)
We notice that Ψ qn is no longer a mapping to the complex number space. As a result, the derived CK basis is a set of vector fields in the real number space, accompanied by real expansion coefficients.

Chapitre 3. Numerical Methods

In order to distinguish this expansion in the real number space from its general complex form, it will be denoted subsequently as

u(r, z, t) = qn C qn (t)B qn (r, z), (3.15) 
where B qn is the basis in the real number space and C qn is the related real coefficient. By substituting Eq.(3.14) in Eq.(3.2a), one obtains the final expression of the basis :

B qn (r, z) = I -1 2 qn    -k n γ q J 1 (γ q r) cos(k n z) λ qn γ q J 1 (γ q r) sin(k n z) γ 2 q J 0 (γ q r) sin(k n z)    , (3.16a) =⇒u(r, z, t) = qn C qn (t)I -1 2 qn    -k n γ q J 1 (γ q r) cos(k n z) λ qn γ q J 1 (γ q r) sin(k n z) γ 2 q J 0 (γ q r) sin(k n z)    , (3.16b) =⇒ω(r, z, t) = qn λ qn C qn (t)I -1 2 qn    -k n γ q J 1 (γ q r) cos(k n z) λ qn γ q J 1 (γ q r) sin(k n z) γ 2 q J 0 (γ q r) sin(k n z)    . (3.16c)
Similarly, I qn is the normalization constant guaranteeing :

1 V V B qn • B qn dV = 1, (3.17) 
and its expression will be deduced in Appendix A.1. The determination of parameters γ q and k n remain to be done.

γ q is determined by imposing the no-penetration boundary condition on the lateral wall at r = R with R now the cylinder radius :

u r (r = R, z) = qn C qn (t)I -1 2 qn (-k n γ q J 1 (γ q R) cos(k n z)) = 0. (3.18)
We then share the same approach as Qu [START_REF] Qu | Numerical simulation of axisymmetric turbulence[END_REF] which imposes that J 1 (γ q R) is zero for all q modes. γ q is therefore the qth root of equation J 1 (Rx) = 0, and should actually be strictly positive. As a result, the q modes will be counted starting from 1 : q = 1, 2, 3, ..., representing the qth strictly positive zero of J 1 (Rx).

Generally, λ qn and k n should take both positive and negative values. For the case where the z direction is treated periodically, n = 0, ±1, ±2, ±3, ... with k n = 2nπ/H where H is the cylinder height, and both positive and negative λ qn should be considered. The orthogonality and the completeness of the CK basis thus derived are theoretically demonstrated by Yoshida et al. [START_REF] Yoshida | Remarks on spectra of operator rot[END_REF][START_REF] Yoshida | Discrete eigenstates of plasmas described by the Chandrasekhar-Kendall functions[END_REF][START_REF] Yoshida | Eigenfunction expansions associated with the curl derivatives in cylindrical geometries : completeness of Chandrasekhar-Kendall eigenfunctions[END_REF]. To fulfill the completeness of our basis (3.16a), both positive and negative λ qn should similarly be considered, but differences are that k n should be chosen as

k n = nπ/H with n = 1, 2, 3, ... (3.19)
We then rewrite the expansion (3.15) as

u(r, z, t) ≡ ±λ qn C qn (t)B qn (r, z) ≡ +λ qn C qn (t)B qn (r, z) + -λ qn C qn (t)B qn (r, z) ≡ qn C +λ qn (t)B +λ qn (r, z) + qn C -λ qn (t)B -λ qn (r, z), (3.20) 
where r varies from 0 to R, and z varies from 0 to H. We introduce the notation ±λ qn to represent a summing over qn series of both positive and negative λ, and the notation C +λ qn B +λ qn (respectively C -λ qn B -λ qn ) refers to the terms on the side of +λ (respectively -λ). Using this notation, the poloidal stream function ψ, the angular momentum σ and the pseudo-vorticity ω have their analytically expanded form as

ψ(r, z) = -r u r (r, z)dz = r ±λ qn C qn I -1/2 qn γ q J 1 (γ q r) sin(k n z), (3.21a) σ(r, z) = ru θ (r, z) = r ±λ qn C qn I -1/2 qn λ qn γ q J 1 (γ q r) sin(k n z), (3.21b) 
ξ(r, z) = ω θ r = 1 r ±λ qn C qn I -1/2 qn λ 2 qn γ q J 1 (γ q r) sin(k n z). (3.21c) 
A first remark is that the basis B qn satisfies the divergence-free condition as mentioned before, resulting in the natural satisfaction of the incompressibility condition ∇ • u = 0. Besides, one can notice that under B qn , u θ is zero on all boundaries and on the axis of r = 0. However, since J 0 (γ q R) = 0, u z = 0 on the lateral wall. The slip of u z is therefore allowed on this wall. Similarly, the slip of u r is allowed on the top and the bottom of the cylinder since cos(0) = cos(k n H) = 1 = 0, but one has u r = 0 on r = 0. Finally, penetration is strictly prohibited on all wall boundaries. The axis of r = 0 is in fact a location of singularity for our system. In the presence of axisymmetry, u r and u θ should be strictly 0 on r = 0, which is an additional boundary condition well satisfied by B qn .

Numerical verification of the completeness of B qn

Mathematical demonstration of the orthonormality and the completeness of B qn under these boundary conditions is given in Appendix A, while numerical verifications of this completeness will be introduced in this paragraph. The principle is to decompose velocity fields in the spectral space and then to recompose them back in the physical space. The qualitative comparison consists in visualizing whether the original fields are identical to the recomposed ones, while quantitively, relative errors between original and recomposed energy will be compared : Err = (E original -E recomposed )/E original . Testing cases are shown in Tab.3.1. Visualization comparisons are presented in Fig. 3.2. From Tab.3.1, one can see that for Case 1, the resolution of (q max , n max ) = (52, 45) is sufficient, and the fields are well recovered with high accuracy. As Case 2 contains much higher-order frequencies in the axial direction, a truncation of q max = 45 in the z dimension is no longer sufficient (Err = 1.57%). But if q max is raised to a sufficiently high value, like q max = 225 in Case 3, the relative error decreases again to a negligible level. These testing results then numerically prove the completeness of the basis B qn . 
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Spectral form of the Navier-Stokes equation

Using the CK basis B qn , we know that the velocity field u meets analytically the incompressibility condition. Therefore, ∇ • u is no longer within our consideration in the sequel, and we are going to focus only on the dynamics of the system, of which the spectral form can be derived via B qn . The derivation begins with a reformulation of the Navier-Stokes equation :

∂u ∂t = u × ω - 1 ρ ∇p t + ν∇ 2 u, (3.22) 
where ω = ∇ × u is the vorticity vector, and p t = p + ρu 2 /2 is the total pressure. Then one carries out inner product operation (3.3) between Eq.(3.22) and a certain basis vector B qn , assuming that the velocity field is decomposed as in Eq.(3.16b), which leads to the presence of the expansion constant C qn on the left-hand side of the equation :

∂ ∂t C qn = 1 V V B qn • (u × ω) - 1 ρ ∇p t + ν∇ 2 u dV. (3.23)
The reason of the reformulation (3.22) resides in the fact that the pressure term disappears after the integration : Recall that the radial component of B qn on the lateral wall equals to zero, and so does the axial component on the top and the bottom boundaries. The second term on the right-hand side of Eq.(3.24) vanishes since the CK basis is naturally divergence-free. This emphasizes one of the advantages of using the CK basis : there is no need to treat explicitly the pressure term. Another advantage refers to the treatment of the viscous term :

V B qn • ∇p t dV = V ∇(p t B qn )dV - V p t ∇ • B qn dV = 0. ( 3 
∇ 2 u = ∇(∇ • u 0 ) -∇ × ∇ × u = - ±λ qn λ 2 qn C qn B qn , (3.26) 
knowing that all B qn are eigenvectors of the curl. Therefore, the Navier-Stokes equation reduces to :

∂ ∂t C +λ qn = ±λ q 1 n 1 ±λ q 2 n 2 λ q 2 n 2 C q 1 n 1 C q 2 n 2 1 V V B +λ qn • (B q 1 n 1 × B q 2 n 2 ) dV -νλ 2 qn C +λ qn , ∂ ∂t C -λ qn = ±λ q 1 n 1 ±λ q 2 n 2 λ q 2 n 2 C q 1 n 1 C q 2 n 2 1 V V B -λ qn • (B q 1 n 1 × B q 2 n 2 ) dV -νλ 2 qn C -λ qn .
(3.27)

One can see that essentially, the numerical method consists in simulating the time evolution of C qn . However, the first term on the right-hand side of the spectral equations, called the convolution term, complicates the procedure. Here we give the full expression of the

integral 1 V V B ±λ qn • (B q 1 n 1 × B q 2 n 2 ) dV : 1 V V B ±λ qn • (B q 1 n 1 × B q 2 n 2 ) dV = 1 V H z=0 2π θ=0 R r=0 rdrdθdzI -1 2 qn I -1 2 q 1 n 1 I -1 2 q 2 n 2 {cos(k n z) sin(k n 1 z) sin(k n 2 z)k n γ q γ q 1 γ q 2 J 1 (γ q r) [γ q 1 λ q 2 n 2 J 1 (γ q 2 r)J 0 (γ q 1 r) -γ q 2 λ q 1 n 1 J 1 (γ q 1 r)J 0 (γ q 2 r)] + sin(k n z) cos(k n 1 z) sin(k n 2 z)k n 1 γ q γ q 1 γ q 2 J 1 (γ q 1 r) γ q 2 λ ± qn J 1 (γ q r)J 0 (γ q 2 r) -γ q λ q 2 n 2 J 0 (γ q r)J 1 (γ q 2 r) + sin(k n z) sin(k n 1 z) cos(k n 2 z)k n 2 γ q γ q 1 γ q 2 J 1 (γ q 2 r) γ q λ q 1 n 1 J 0 (γ q r)J 1 (γ q 1 r) -γ q 1 λ ± qn J 1 (γ q r)J 0 (γ q 1 r) . (3.28) 
One can notice that this convolution term does not vary along with the time-advancing.

Because the computation to obtain this term is very time-expensive, it should indeed be pre-calculated before the simulation. Its size can be largely constrained after some analyses of the n-n 1 -n 2 dependence, but it still gives rise to a seven-dimensional array which occupies a large amount of RAM resources. Consider an illustration example with a truncation of n max = 45 and q max = 52. The size of the convolution array attains 24.9 Gb, although it has already been reduced to 1/30 of its original by the n-n 1 -n 2 dependence. Due to this truncation limit, the Reynolds number of simulations cannot reach a very high level. But still, the Reynolds numbers allowed by this new CK basis B qn is higher than those in [START_REF] Qu | Numerical simulation of axisymmetric turbulence[END_REF][START_REF] Qu | Direct numerical simulation of axisymmetric turbulence[END_REF][START_REF] Qu | Cascades of energy and helicity in axisymmetric turbulence[END_REF].

Forcing method

Since the method is fully spectral, it is intuitive to apply a spectral forcing approach. The principle is similar to that in [START_REF] Qu | Numerical simulation of axisymmetric turbulence[END_REF][START_REF] Qu | Direct numerical simulation of axisymmetric turbulence[END_REF][START_REF] Qu | Cascades of energy and helicity in axisymmetric turbulence[END_REF], namely a negative viscosity forcing [START_REF] Kaneda | Energy dissipation rate and energy spectrum in high resolution direct numerical simulations of turbulence in a periodic box[END_REF]. The difference is that in [START_REF] Qu | Numerical simulation of axisymmetric turbulence[END_REF], only one single parameter α is set to control the injection rate in both the poloidal (meaning the r-z plane) and the toroidal (meaning the θ direction) components, while in our simulations, we use two different parameters, named c P and c T (the subscript "P" stands for "poloidal" and "T" for "toroidal"). To avoid ambiguity, the negative viscosity ν -is replaced by -ν in the following.

We define the poloidal and toroidal portions of the kinetic energy E P and E T as

E P ≡ 1 V V 1 2 (u 2 r + u 2 z ) 2 dV, E T ≡ 1 V V 1 2 (u 2 θ ) 2 dV. (3.29)
By the same deduction procedure as in Appendix B for other statistical quantities, one can easily prove that their modal expressions write 

E P,qn = 1 4 (C +λ qn + C -λ qn ) 2 , E T,qn = 1 4 (C +λ qn -C -λ qn ) 2 . ( 3 
with "transfer P,qn " and "transfer T,qn " modal energy transfer terms by nonlinear effets. From Eq.(3.31), it is clear that c P governs exactly the poloidal forcing and c T exactly the toroidal energy injection. By adjusting separately the values of (c P , c T ), scenarii of different toroidal movement intensities can be achieved (this will be presented in Chapter 5 where the transition from non-swirling to swirling turbulence will be studied.).

A first remark from Eq.(3.31) is qn transfer P,qn =qn transfer T,qn , because the integral of the total energy transfer is equal to zero. In [START_REF] Qu | Numerical simulation of axisymmetric turbulence[END_REF][START_REF] Qu | Direct numerical simulation of axisymmetric turbulence[END_REF][START_REF] Qu | Cascades of energy and helicity in axisymmetric turbulence[END_REF], energy is shown to be transferred to the largest scales in axisymmetric turbulence. The Reynolds friction term corresponding to an all-scale dissipation (in fact, it aims particularly at removing ernergy at big scales) is however not included in Eq. (3.31). This choice is motivated by the fact that [START_REF] Qu | Numerical simulation of axisymmetric turbulence[END_REF][START_REF] Qu | Direct numerical simulation of axisymmetric turbulence[END_REF] find that the insertion of this term is not necessary, probably due to the presence of the cylindrical wall. The geometry in the current thesis is well confined in all directions, and the solid walls are therefore expected to prevent even more the flow structures from growing unlimitedly.

Time step

The time scheme used in this FSM is the 4th-order Runge-Kutta scheme. For the determination of time step, we use an adaptive time step method. The time step ∆t is determined by evaluating the Courant number at every time :

C(t m ) = U (t m )∆t(t m ) ∆x ⇐⇒ ∆t(t m ) = C(t m )dx U (t m ) , (3.32) 
where U is a characteristic velocity that reflects the velocity of largest magnitude at time t m , and dx is a characteristic meshing length referring to the smallest discretized length gap within the domain. Because the numerical method is fully spectral, we choose U related to the root mean square of the total kinetic energy

U (t m ) = 2E(t m ) 3 with E(t m ) = 1 2 ±λ qn C 2 qn (t m ), (3.33) 
and define ∆x as the reciprocal of the maximal effective wave-number

∆x = 1 k 2 max + γ 2 max = 1 (n max π/H) 2 + γ 2 max . (3.34)
The criterion of C is fixed empirically at 0.05 and is validated to be optimal by Qu [START_REF] Qu | Numerical simulation of axisymmetric turbulence[END_REF] through a series of tests. All of our computations converge well with this value. This gives rise to a variable time step mechanism during the simulation. However, ∆t may be large after a long period of energy dissipation. To ensure that the time discretization is fine enough, another condition is superposed : if ∆t is evaluated to be greater than 0.001, then it is forced to be 0.001, i.e. the upper bound of ∆t is 0.001.

As mentioned in Section 3.1.3, the integral (3.28) needs to be pre-calculated. A numerical approximation rule of definite integration is needed. To obtain the result with high precision, we choose to adopt the Gaussian quadrature method.

Simulation resolution

A classic way to check that the resolution is sufficient for a given Reynolds number is to implement a series of simulations of the same flow with increasing resolutions. When simulations of resolutions higher than a certain level yield identical behavior, this level is said sufficient for the flow. Rigorous as it is, this method is expensive in both aspects of time and computational resources. In the context of our numerical method, the resolution is assessed by comparisons between the smallest simulated scale and the dissipative scales of the turbulent flow, inspired by the standard practice in pseudo-spectral DNS of isotropic turbulence [START_REF] Li | Two-dimensional turbulence with rigid circular walls[END_REF]. Since dissipative scales are the smallest scales of a flow, the resolution can be considered of good quality if the smallest simulated scales are smaller than the dissipative scales.

We introduce first the concept of the effective wave-number k, defined as |λ qn | :

k(q, n) = |λ qn | = k 2 n + γ 2 q . (3.35)
Thus the smallest simulated scale is determined by the largest effective wave-number :

k(q max , n max ) = k 2 max + γ 2 max . (3.36) 
As per Kolmogorov's theory, the energy dissipative scale depends only on the viscosity ν and the energy dissipation rate ε E , and is derived by dimensional analysis to be

k E = C E ε 1/4 E ν -3/4 , (3.37) 
with C E ∼ O(1) a constant. Besides, we consider also the dissipative scales of enstrophy Z, angular momentum I 1 and helicity H 1 by similarly assuming that they depend only on ν and respective dissipation rates ε Z , ε I 1 and ε H 1 . Then by dimensional analyses, these scales are derived to be

k Z = C Z ε 1/6 Z ν -1/2 , k I 1 = C I 1 ε 1/2 I 1 ν -1 , k H 1 = C H 1 ε 1/5 H 1 ν -3/5 , (3.38) 
where C Z , C I 1 and C H 1 are constants of magnitude O [START_REF] Onsager | Statistical hydrodynamics[END_REF]. By investigating the spectral governing equations of E, Z, I 1 and H 1 , the spectral formulae of their dissipation rates can be derived as well :

ε E = ν ±λ qn λ 2 qn C 2 qn , ε Z = 2ν ±λ qn λ 4 qn C 2 qn , ε I 1 = 4ν π q,odd n λ 2 qn (C -λ qn -C +λ qn )sign(J 0 (γ q R)) nγ q , ε H 1 = ν ±λ qn λ 3 qn C 2 qn .
(3.39)

The scales defined in (3.37) and (3.38) are compared to the smallest numerical scales in our simulations. This testing method has been applied to all simulations using the FSM.

Verification tests

Some first tests are performed here to validate the FSM before using it. We choose to verify the conservation, during an early period, of the kinetic energy E and of some of the Casimirs I n and H m . For an inviscid flow constrained by the same boundary conditions as ours, their conservation is mathematically demonstrated in [START_REF] Leprovost | Dynamics and thermodynamics of axisymmetric flows : Theory[END_REF]. Respectively, we investgate numerically the behavior of E, I 0 , I 1 , H 1 and H 2 with zero viscosity. This can be easily accomplished since their modal expressions are derived in Appendix B. Then tests of different resolutions, from the lowest to the highest available, are implemented with ν = 0, R = π and H = 1.7π. Time signals (see Fig. 3.3) are plotted using the dimensionless time scale τ , the initial turnover time, defined as

τ = l init U init , (3.40) 
where l init is the initial integral length scale and U init is related to the root mean square of the initial kinetic energy :

l init = ±λ qn k 2 n + γ 2 q -1 E qn (t = 0) ±λ qn E(t = 0, q, n) , (3.41a) 
U init = 2E(t = 0) 3 . (3.41b) 
From Fig. 3.3, one can conclude that the kinetic energy E and the helicity H 1 are well conserved for all resolutions (in fact, it can be proved that they are mathematically conserved under the current basis B qn even with truncation), and that the rest of the quantities diverge due to the truncation effect. But tendencies allow to tell that the higher the resolution, the later and the less the conservations are violated.

The pseudo-spectral method (PSM)

For axisymmetric cases with higher Reynolds numbers, the fully spectral method described in the previous section is no longer usable due to the huge resource occupation caused by Eq. (3.28). Therefore, we turn to a pseudo-spectral method (PSM) based on the Chebyshev (Gauss-Lobatto) collocation expansion method. For this, we use a code devised by Raspo et al. [START_REF] Raspo | A spectral projection method for the simulation of complex threedimensional rotating flows[END_REF] and developed by Peres et al. [START_REF] Peres | A 3D pseudospectral method for cylindrical coordinates. application to the simulations of rotating cavity flows[END_REF] and integrating the full Navier-Stokes equations (with ∂ r , ∂ z and ∂ θ = 0) in a closed cylindrical domain. We use this code for two different aims : (i) to investigate strictly axisymmetric turbulence at higher Reynolds numbers than those permitted by the FSM and with boundary conditions closer to those of realistic setups including in particular the von Kármán experiment ; and (ii) to investigate the transition from axisymmetric (∂ θ = 0) to 3D turbulence. For this, we adapte the code in two different ways.

The initial version of the code, developed by Raspo et al. [START_REF] Raspo | A spectral projection method for the simulation of complex threedimensional rotating flows[END_REF], is first briefly described in Section 3.2.1. We then present in Section 3.2.2 the modifications that we have done so as to investigate the flows of interest. The results of some validation tests are finally presented in Section 3.2.4. 

Brief description of the initial version of the code

The specialty of pseudo-spectral methods lies in the fact that derivatives are calculated in spectral space to ensure the numerical precision, while multiplication of terms will be conducted in physical space to reduce time expenses. The code developed by Raspo et al. [START_REF] Raspo | A spectral projection method for the simulation of complex threedimensional rotating flows[END_REF] uses Chebyshev polynomials to decompose the radial and axial components of flow fields, while azimuthal components are descretized by Fourier modes.

We will show that the Chebyshev (Gauss-Lobatto) collocation method allows to impose real wall boundary conditions to the flow domain. In fact, as the poloidal plane is treated in the physical space, it is more intuitive and convenient to add desired conditions to the domain boundaries.

Apart from the decomposition bases, the PSM that we use here has several differences compared with the FSM presented in the last section :

1. The current PSM decomposes the three velocity components separately, while the FSM has recourse to a vectorial basis that decomposes the three components once for all. Thus, unlike Eq.(3.27), there will be three control equations concerning the three components separately.

2. Most of the calculations will be manipulated in the physical space in the form of matrix products. One of the advantages of this Chebyshev collocation method is that the 1st-and the 2nd-order derivatives of the expanded variable can be analytically expressed in the physical space in a matrix form. Therefore, the flow evolution within the poloidal plane will be directly simulated in the physical space. This is the most important element which will make high Reynolds numbers accessible. The time discretization method of the PSM is proposed by Raspo et al. [START_REF] Raspo | A spectral projection method for the simulation of complex threedimensional rotating flows[END_REF], featured by its modified projection method, is directly applicable in our cases.

Forcing method

To mimic the mechanical forcing by counter-rotating impellers, angular velocities Ω of opposite signs are added to the upper and the lower bounds of our computational domain, and they play the role of "rotors". The lateral wall is fixed. The curved blades are not taken into consideration for the sake of simplicity (see Fig. 3.4). However, the junction areas between the rotors and the lateral walls present some singularity. Take the upper bound of the cylinder as example. The rotation velocity attains its maximum ΩR at the outer radius of the rotors, but the nodes on the lateral boundary and vertically right under the rotor layer should be motionless, meaning that there is a drop of |u θ | from ΩR to 0 at this junction area. The lower bound should deal with the same problem. To regularize this singularity, a boundary layer function of V θ (z) = e -(z-1)/µ is applied on the lateral wall which softens the discontinuous drop into an exponential decrease. Here µ is an arbitrary shape parameter that equals 0.006 and is independent of the grid size. Otherwise, it is shown by Serre and Bontoux [START_REF] Serre | Vortex breakdown in a three-dimensional swirling flow[END_REF] that the value 0.006 represents reasonably the gap size of the junction in experimental devices. Axisymmetric flows are mathematically described by the peculiarity ∂ θ = 0. However, they can also be described from another angle : for axisymmetric flows, the variation period in the azimuthal direction is +∞. Similarly, general 3D flows retained in a cylinder can be considered as flows of which the azimuthal variation period is 2π. Then here comes an interesting question : what are flows with an azimuthal variation period between +∞ and 2π ? If such intermediary flows can be simulated, then there should be some variation tendencies that characterize their physics. One subject to look into is the characteristic length scale of toroidal structures (denoted as L T ). For axisymmetric flows, since the azimuthal variation period is infinity, the toroidal characteristic length scale should also be infinitely long : L T = +∞. For a general 3D flow, the toroidal characteristic length scale should be of the same order as that in the poloidal plane (denoted as L P ), and conventionally we define them to be identical and equal to the cylinder radius R : L T = L P = R. However, for cases where the azimuthal variation period is between +∞ and 2π, one has L T ∈ [R, +∞). Then toroidal lengths can in fact be normalized by L T instead of L P , while original normalization of poloidal lengths is kept. We can define dimensionless coordinates r, z and θ such that :

r = Rr, z = H 2 z = R G z, rθ = L T rθ = L T r θ = L T R Rr θ, (3.42) 
with G ≡ 2R/H the aspect ratio of the poloidal plane. We introduce the notation α = R/L T and the toroidal normalization becomes rθ = Rr θ/α. By applying this toroidal characteristic length scale and the α parameter, the Navier-Stokes equations can be rewritten as Then, the cases of α ∈ [0, 1] represent the flows of which the regime is between axisymmetric and general three-dimensional.

1 G ∂ ūr ∂ r + 1 G ūr r + 1 G 1 r α ∂ ūθ ∂ θ + ∂ ūz ∂ z = 0, Re Ω G 2 ∂ ūr ∂ t + Re Ω G 1 G ūr ∂ ūr ∂ r + 1 G ūθ r α ∂ ūr ∂ θ + ūz ∂ ūr ∂ z - 1 G ū2 θ r = - Re Ω 2G 2 ∂ p ∂ r + 1 G 2 ∂ 2 ūr ∂ r2 + 1 G 2 1 r ∂ ūr ∂ r + 1 G 2 1 r2 α 2 ∂ 2 ūr ∂ θ2 + ∂ 2 ūr ∂ z2 - 1 G 2 ūr r2 - 1 G 2 2 r2 α ∂ ūθ ∂ θ , Re Ω G 2 ∂ ūθ ∂ t + Re Ω G 1 G ūr ∂ ūθ ∂ r + 1 G ūθ r α ∂ ūθ ∂ θ + ūz ∂ ūθ ∂ z + 1 G ūr ūθ r = - Re Ω 2G 2 1 r α ∂ p ∂ θ + 1 G 2 ∂ 2 ūθ ∂ r2 + 1 G 2 1 r ∂ ūθ ∂ r + 1 G 2 1 r2 α 2 ∂ 2 ūθ ∂ θ2 + ∂ 2 ūθ ∂ z2 - 1 G 2 ūθ r2 + 1 G 2 2 r2 α ∂ ūr ∂ θ , Re Ω G 2 ∂ ūz ∂ t + Re Ω G 1 G ūr ∂ ūz ∂ r + 1 G ūθ r α ∂ ūz ∂ θ + ūz ∂ ūz ∂ z = - Re Ω 2G ∂ p ∂ z + 1 G 2 ∂ 2 ūz ∂ r2 + 1 G 2 1 r ∂ ūz ∂ r + 1 G 2 1 r2 α 2 ∂ 2 ūz ∂ θ2 + ∂ 2 ūz ∂ z2 . ( 3 
2. One can observe that in Eq.(3.43), ∂ θ is replaced by ∂θ where θ signifies the rescaled azimuthal coordinate. This means that there is a mapping of the definition domain of θ to a rescaled definition domain of θ. For the sake of numerical feasibility, this rescaled azimuthal definition domain should be θ ∈ [0, 2π].

In general, the result of the upper two arguments is that when adapting the algorithm, one inserts the α-like factors before the azimuthal derivation terms :

∂ ∂θ → α ∂ ∂ θ and ∂ 2 ∂θ 2 → α 2 ∂ 2 ∂ θ2 , (3.44) 
with θ varies also from 0 to 2π. This means that we consider velocity fields slowly varying in the azimuthal direction.

Spatial and temporal resolution

We will check the spatial and temporal resolution for the PSM by using the same method as for the FSM : the mesh size will be compared with the dissipation scales of different statistical quantities, while the time step fineness will be judged by calculating the Courant number. However, differences arise from the fact that we now use a nonhomogeneous mesh :

1. Spatial resolution. Dissipation rates of various quantities are calculated through the decomposition and integration methods mentioned in Appendices C and D, and will be used to derive the dissipative wave-numbers like those in Section 3.1.6. The effective wave-number of the largest mesh size will be chosen to compare with them.

Because of the property of Gauss-Lobatto collocation points, the largest mesh size lies at the center of the domain. We denote its radial and axial dimensions as ∆R max and ∆H max , and define the corresponding maximal effective wave-number as

k max = 2π ∆R max 2 + 2π ∆H max 2 .
(3.45)

This effective wave-number will then be compared with the dissipation wave-numbers of E, Z, I 1 and H 1 .

2. Temporal resolution. Like in the FSM, we use the Courant number as a criterion to determine the required time step. The time step appears in the calculation of solver matrices. These matrices need to be recalculated if ∆ t changes its value. We then adopt a fixed time step mechanism to simplify the procedure and to avoid extra time expense, given the fact that the calculation of these matrices takes several minutes. Due to the non homogeneity of the grid, we calculate the Courant number for each velocity component on each grid node. For axisymmetric flows, the Courant numbers are calculated as :

C r (r, z, t) = u r (r, z, t)∆t ∆R(r, z) , (3.46a) 
C z (r, z, t) = u z (r, z, t)∆t ∆H(r, z) , (3.46b) 
with ∆R(r, z) and ∆H(r, z) the local grid sizes in the radial and axial directions respectively. The maximal value among them, max(C r (r, z, t), C z (r, z, t)), will be picked out as the characterizing Courant number of the current time step. For non-axisymmetric flows, the Courant numbers are calculated as :

C r (r, θ, z, t) = u r (r, θ, z, t)∆t ∆R(r, θ, z) , C θ (r, θ, z, t) = u θ (r, θ, z, t)∆t r∆ θ , C z (r, θ, z, t) = u z (r, θ, z, t)∆t ∆Z(r, θ, z) ,
C max (r, θ, z, t) = max(C r (r, θ, z, t), C θ (r, θ, z, t), C z (r, θ, z, t)).

(3.47)

Verification test of axisymmetric freely decaying flows

In this subsection, a verification test of the PSM code will be conducted. For this, we simply run simulations by using respectively the PSM and the FSM, and compare the results of both. For the FSM, the code is written for strictly axisymmetric flows ; for the PSM, axisymmetric flows can be simulated by setting α = 0. The two cases are for the same geometry (R = π and H = 1.7π), initial condition (see Fig. and are freely decaying from the initial condition. As mentioned in Section 3.2.1, the PSM code indeed allows to simulate flows with partial slip boundary conditions, which is reflected in Fig. 3.5b by the fact that u r is not zero on top and bottom of the cylinder. Wave number 
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Coherent Structures in Statistically Stationary Axisymmetric Turbulence

The general behavior of axisymmetric turbulence was recently studied in [START_REF] Qu | Direct numerical simulation of axisymmetric turbulence[END_REF][START_REF] Qu | Numerical simulation of axisymmetric turbulence[END_REF][START_REF] Qu | Cascades of energy and helicity in axisymmetric turbulence[END_REF] in cylindrical geometry, periodic in its axial direction, at fairly low Reynolds number. Coherent structures predicted by statistical mechanics of the Euler equations were nevertheless observed in freely decaying flows. In the current thesis, both our FSM and PSM codes for axisymmetric flows allow not only the confinement of the cylinder, but also the possibility for higher Re. It is therefore interesting to try to numerically assess in forced flows the possible existence of coherent structures. Particularly, the PSM allows to investigate a configuration which is close to the von Kármán flow [START_REF] Monchaux | Properties of steady states in turbulent axisymmetric flows[END_REF], where coherent structures are experimentally seen. In this chapter, therefore, we will present the results obtained by FSM and PSM in statistically steady states, and compare our observations with those in [START_REF] Qu | Direct numerical simulation of axisymmetric turbulence[END_REF][START_REF] Qu | Numerical simulation of axisymmetric turbulence[END_REF][START_REF] Qu | Cascades of energy and helicity in axisymmetric turbulence[END_REF] and [START_REF] Monchaux | Properties of steady states in turbulent axisymmetric flows[END_REF].

Spectrally forced axisymmetric flow

In this section, results obtained for statistically steady flow using the FSM will be presented and compared to those obtained in [START_REF] Qu | Direct numerical simulation of axisymmetric turbulence[END_REF][START_REF] Qu | Numerical simulation of axisymmetric turbulence[END_REF][START_REF] Qu | Cascades of energy and helicity in axisymmetric turbulence[END_REF]. We recall that the computational configuration in [START_REF] Qu | Direct numerical simulation of axisymmetric turbulence[END_REF][START_REF] Qu | Numerical simulation of axisymmetric turbulence[END_REF][START_REF] Qu | Cascades of energy and helicity in axisymmetric turbulence[END_REF] is different from ours. Therein, a periodic boundary condition is imposed in the z direction, which leads to an axial decomposition using complex Fourier series. At difference, the computation domain in our thesis is confined in the z direction, and trigonometric functions in the real number space are employed to decompose the axial direction. The numerical method poses a constraint on the Reynolds number in our simulations, as in [START_REF] Qu | Direct numerical simulation of axisymmetric turbulence[END_REF][START_REF] Qu | Numerical simulation of axisymmetric turbulence[END_REF][START_REF] Qu | Cascades of energy and helicity in axisymmetric turbulence[END_REF]. Indeed, the fact of employing trigonometric functions in the real number space instead of complex Fourier series allows a certain reduction of the size of array (3.28), and thus a possible access to higher Reynolds numbers. Many interesting results, either with or without energy injection, are given and analyzed in [START_REF] Qu | Direct numerical simulation of axisymmetric turbulence[END_REF][START_REF] Qu | Numerical simulation of axisymmetric turbulence[END_REF][START_REF] Qu | Cascades of energy and helicity in axisymmetric turbulence[END_REF], concerning the presence of coherent structures, functional relationships between different variables, energy spectra, cascade directions, velocity probability distribution functions (called "PDF" hereafter), etc. We will evaluate these quantities and make comparisons between our results and those in [START_REF] Qu | Direct numerical simulation of axisymmetric turbulence[END_REF][START_REF] Qu | Numerical simulation of axisymmetric turbulence[END_REF][START_REF] Qu | Cascades of energy and helicity in axisymmetric turbulence[END_REF].

We consider the aspect ratio as in [START_REF] Qu | Numerical simulation of axisymmetric turbulence[END_REF] with R = π and H = 1.7π. We present the results of a simulation, with a kinematic viscosity of ν = 0.0025 and a selected band of wave-number k ∈ [START_REF] Séverac | Large eddy simulation and measurements of turbulent enclosed rotor-stator flows[END_REF][START_REF] Kirchhoff | Lectures on mathematical physics, mechanics[END_REF] for the spectral forcing presented in Section 3.1.4. The stationary Reynolds number Re ≡ 2E/3H/ν is about 1230. To achieve this, the resolution is (q max , n max ) = [START_REF] Shih | Fundamentals in turbulence modeling[END_REF][START_REF] Giuliani | Critical "dimension" in shell model turbulence[END_REF], generating a maximal effective wave-number k max ≈ 59. The curves of E, H 0 and I 1 show an almost quiescent stationary state while those of H 1 and I 2 fluctuate are more intermittent. However, all of these quantities are rather well conserved during 2τ ≤ t ≤ 15τ . The resolution test compares the characteristic physical cut-off wave-numbers defined in Section 3.1.6 with the numerical maximum wave-number.

Temporal results

Time

The curves of the resolution tests show that except at the beginning of the simulation, during the transient state, there is a sufficient overall resolution.

Because statistical mechanics theories predict the existence of coherent structures, it will be interesting to inspect their emergence. Contour plots of the stream function ψ at different times are shown in Fig. 4.2 and those of σ in Fig. 4.3. For σ plots, no notable structures can be observed. For ψ, in contrast, coherent structures are better distinguishable. One can see that at certain moments, big structures appear and persist, while at some others moments, they break into smaller ones which then tend to reunite again to extend their sizes. We reiterate the conclusion drawn in [START_REF] Naso | Statistical mechanics of Beltrami flows in axisymmetric geometry : equilibria and bifurcations[END_REF] that the critical points of the variational problem (2.57) are linearly unstable solutions of the Euler equations. It is also experimentally confirmed by [START_REF] Monchaux | Properties of steady states in turbulent axisymmetric flows[END_REF] that coherent structures cannot resist the impact of some "optimal" perturbations. It is clearly possible that the modal injection method induces some movements playing the role of optimal perturbations that force the coherent structures to wobble and to crush. The dynamics of ψ being stable only during certain time periods, we investigate the averaged behaviors of the system during these periods.

Time-averaged results

There are indeed stable time intervals of different lengths during which the ψ structures keep their sizes and do not move a lot. Fig. 4.4 shows the time-averaged ψ and σ isocontours and functional relationships. Time average has been performed on the interval 4τ t 6τ . Large and smooth structures of ψ are seen. A clear fitting of the function σ = F (ψ) = 0.1ψ + 0.08ψ

3 is extracted by the least square method. By focusing on the coherent bulk where the effect of dissipation is less important than on the boundaries, and with the expression of F (ψ), the fitting of the function G(ψ) = ξ -σ σ/r 2 can also be done, yielding G(ψ) = 0.9ψ. This means that the bulk flow resembles a solution of the axisymmetric Euler equations (2.49).

Energy spectrum

Energy and helicity cascades

The energy and helicity cascades in three-dimensional turbulence have long been the focus of many studies. First described by Richardson [START_REF] Fry | Weather prediction by numerical process[END_REF] in 1922, a three-dimensional turbulent flow transfers energy from bigger to smaller and smaller scales until the viscous dissipation comes into play. Basing on this description as well as a set of additional hypotheses, Kolmogorov [START_REF] Nikolaevich | The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers[END_REF] proposed in 1941, for stationary turbulent flows with sufficiently high Reynolds numbers, a formula of the energy spectrum within the inertial range : where C E is the Kolmogorov constant which is expected to be universal, ε is the stationary energy dissipation rate and k is the wave-number.

E(k) = C E ε 2/3 k -5/3 , (4.2) 
The cascade of helicity is also of interest because it is another invariant in general three-dimensional flows, but its sign is not definite. Brissaud et al. [START_REF] Brissaud | Helicity cascades in fully developed isotropic turbulence[END_REF] first discuss different scenarii in homogeneous isotropic turbulence. For the helicity, the authors propose that H 1 is always transferred in the forward direction ; for the kinetic energy, they propose that the cascade can take place in either the forward or the inverse direction, but in both of the two possibilities the energy cascade obeys the same scaling law (4.2) within the energy inertial range. Further, for the case of direct helicity cascade with inverse energy cascade, they suppose that the scaling law for the direct helicity inertial range is

H 1 (k) ∼ δ 2/3 k -4/3 =⇒ E(k) ∼ δ 2/3 k -7/3 , (4.3) 
with δ the stationary helicity dissipation rate. However, as pointed out by Chen et al. [START_REF] Chen | The joint cascade of energy and helicity in three-dimensional turbulence[END_REF], this scaling behavior is generally absent and may appear when the helicity has one single definite sign. The reason of stating this condition is similar to that in two-dimensional turbulence where the enstrophy Z is invariant and positive definite and thus hinders the forward cascade. Numerical illustration of this mechanism is first given by Borue and Orszag [START_REF] Borue | Spectra in helical three-dimensional homogeneous isotropic turbulence[END_REF], and at the same time, simulations therein reveal a coexistence of direct cascades of both energy and helicity with

H 1 (k) ∼ δ 2/3 ε -1/3 k -5/3 . (4.4)
In later investigations, the helicity is divided into its positive and negative contributions [ [START_REF] Alexakis | Helically decomposed turbulence[END_REF][START_REF] Chen | The joint cascade of energy and helicity in three-dimensional turbulence[END_REF], leading to scaling predictions

E ± (k) ∼ C E ε 2/3 k -5/3 1 ± C H 1 /C E 2k δ ε , ⇐⇒H ± 1 (k) ∼ C E ε 2/3 k -2/3 1 ± C H 1 /C E 2k δ ε , (4.5) 
with C H 1 a constant characterizing the helicity cascade. Biferale et al. [START_REF] Biferale | Inverse energy cascade in three-dimensional isotropic turbulence[END_REF] consider then only one sign of E and H 1 of a homogeneous isotropic flow and observe a local energy cascade in the inverse direction with E(k) ∼ k -5/3 which corresponds to a direct helicity cascade with E(k) ∼ k -7/3 . However, there is no classic theory describing the scaling behavior of axisymmetric turbulence. In von Kármán flows, where only the average flow is axisymmetric, a -1.7 energy scaling for the direct helicity cascade region is reported experimentally by Pinton and Labbé [START_REF] Pinton | Correction to the taylor hypothesis in swirling flows[END_REF] and by Zocchi et al. [START_REF] Zocchi | Measurement of the scaling of the dissipation at high Reynolds numbers[END_REF] through local measurements under the Taylor hypothesis. Without using the Taylor hypothesis, Herbert et al. [START_REF] Herbert | Dual non-Kolmogorov cascades in a von Kármán flow[END_REF] show a dual cascade compatible with cascades of E and H 1 in opposite directions : inverse cascade with E(k) ∼ k -1 and forward cascade with E(k) ∼ k -2.2 for Re ≥ 10 5 . They explain that such a scaling is compatible with direct cascade of H 1 and inverse cascade of E, associated to the non-locality of the energy transfer. This means that the interaction between big scales and small scales caused by strong shear is an important issue in real von Kármán flows since there are strong mean flows which will not allow the flow to be statistically isotropic. In isotropic 2D turbulence, this distinction between local and non-local transfer and its influence on scaling was investigated in [START_REF] Nazarenko | Non-local two-dimensional turbulence and Batchelor's regime for passive scalars[END_REF]. Numerically, strictly axisymmetric flows with periodic boundary conditions in the axial direction is simulated in Qu et al. [START_REF] Qu | Numerical simulation of axisymmetric turbulence[END_REF][START_REF] Qu | Cascades of energy and helicity in axisymmetric turbulence[END_REF]. The spectrum of a helical case (where H 1 has one single definite sign) is studied and a dual cascade of E and H 1 in opposite directions is also found but with different scaling laws : E(k) ∼ k -5/3 for E and E(k) ∼ k -5.5 for H 1 , this latter scaling being probably due to the influence of intermittency.

Results

In our case, because the helicity depicted in Fig. 4.1 is positive definite, a forward helicity cascade accompanied by an inverse energy cascade can be expected. We then choose the stable period of 4τ ≤ t ≤ 6τ , and the energy spectrum is shown in Fig. 4.6a. This spectrum shows the coexistence of an inverse and of a direct cascade (see "total energy"). These cascades can be better characterized by the averaged energy flux spectrum. Indeed, if one combines the two governing equations in Eq.(3.31), a simpler spectral form can be obtained :

∂E(k, t) ∂t = T (k, t) -2νk 2 E(k, t) + F (k, t), (4.6) 
with T (k, t) the transfer spectrum function and F (k, t) the forcing function. Then, the flux spectrum function Π(k) can be defined as

Π(k, t) = k 0 T (κ, t)dκ, (4.7) 
and a positive value designates a gain of energy from smaller scales.

The averaged energy flux is shown in Fig. 4.5, where a clear positive range of the flux function Π(k) for k < 11 can be seen. Meanwhile, one observes in Fig. 4.5 that there is a rather strong energy cascade in the forward direction, meaning that one has a case with a split energy cascade. It is however possible that at higher Reynolds number only one of these cascades persists. It will be shown in Chapter 5 that in the system of interest, energy can be preferentially transferred towards large scales or towards small scales depending on the ratio between the toroidal and the poloidal energy components E T /E P .

In Fig. 4.6a, the inverse energy cascade is shown to be compatible with a -5/3 scaling in [START_REF] Brissaud | Helicity cascades in fully developed isotropic turbulence[END_REF] for homogeneous isotropic cases. One remark is that the peak of energy takes place at k = 2 corresponding to the size of the dipole structures observed in Fig. 4.4a. If one separates the total kinetic energy into its poloidal and toroidal parts as is done in Fig. 4.6a, it can be observed that the inverse energy cascade is mainly conducted by the poloidal contribution and that the direct helicity cascade is dominated by the toroidal contribution, and the same observation can be found in [START_REF] Qu | Numerical simulation of axisymmetric turbulence[END_REF]. On one hand, the absence of big and persistent structures in contour plots of σ can be explained by this phenomenon because little toroidal energy is transferred to big scales ; on the other hand, this also leads to the fact that the integral value of E T is much smaller than E P , with the ratio Turbulence E T /E P estimated to be 0.16, which is similar to that in [START_REF] Qu | Numerical simulation of axisymmetric turbulence[END_REF]. In Fig. 4.6b, the PDFs of both radial and axial velocity components u r and u z are close to a Gaussian distribution, only the azimuthal component exhibits flaring tails, meaning that the intermittency is largest for u θ . Some scaling laws which are not very clear are proposed in Fig. 4.6a. As we will see in the next section, the cascade scaling is even less observable when strong rotation is present in the system. Also, one should always be aware that the effective wave-number k in our context, defined as Eq. (3.35), are considered to be equivalent to, but are in fact different from traditional Fourier wave-numbers, and that there is no theoretical scaling prediction for axisymmetric turbulence. One can also expect that as the Reynolds number gets higher, flatter scaling slopes for the direct helicity cascade may appear. Because a higher Reynolds number of axisymmetric flows is reachable by the PSM, in the next section, results of forced PSM cases will be interpreted and compared with the results of this section and with those of experiments.

Axisymmetric flow generated by counter-rotating discs

In the previous section we used a spectral forcing. In order to approach the experimental boundary conditions, we consider in this section axisymmetric flows which are generated by rotating top and bottom discs. This is performed using the PSM code, again by setting α = 0. We remind that the pseudo-spectral method, which is fundamentally different from the fully spectral method, avoids the direct calculation of the convolution product (array (3.28)) in spectral space and therefore needs less computational resources. This allows to attain higher Reynolds numbers. By using Chebyshev polynomials as decomposition basis, more realistic boundary conditions can be achieved, namely solid wall boundaries without penetration nor slip, which is also a difference with the FSM. The forcing which is closer to experiments allows a better comparison with the results from the experiments by Monchaux et al. [START_REF] Monchaux | Properties of steady states in turbulent axisymmetric flows[END_REF]. In [START_REF] Monchaux | Properties of steady states in turbulent axisymmetric flows[END_REF], the functional relationships of σ = F (ψ) and ξ -F F/r 2 = G(ψ) were investigated. Here we will also focus on these issues. Regarding spectral analysis, the B qn basis which we used to analyze the spectra in the last section is no longer applicable to decompose the velocity field because u θ = 0 at the top and bottom of the cylinder. But the energy spectra of the central flow bulk can still be studied through the B qn basis, by excluding the data at boundary areas.

In a real von Kármán device (see Fig. 4.7), the cylindrical vessel is equipped with two rotating impellers on the top and the bottom. Each impeller consists of a disc and numerous curved blades. By changing the rotation direction and by tuning the rotation speed of each disc, different scenarii can be achieved, but the most classical scenario is to set up a counter-rotation with the same constant angular velocity. In this thesis, the curved blades are not considered in simulations to avoid meshing difficulty and programming complexity. For experimental details we refer to [START_REF] Monchaux | Properties of steady states in turbulent axisymmetric flows[END_REF]. There are also many other different experimental set-ups using the von Kármán device. Investigations point out that the essential elements that have crucial effects to the results are the aspect ratio 2R/H ( [START_REF] Naso | Statistical mechanics of Beltrami flows in axisymmetric geometry : equilibria and bifurcations[END_REF]), the rotation speed asymmetry ( [START_REF] Cortet | Experimental study of the von Kármán flow from Re= 10 2 to 10 6 : spontaneous symmetry breaking and turbulent bifurcations[END_REF]), the blade curvature ( [START_REF] Ravelet | Multistability and memory effect in a highly turbulent flow : Experimental evidence for a global bifurcation[END_REF]) and Reynolds number ( [START_REF] Monchaux | Properties of steady states in turbulent axisymmetric flows[END_REF][START_REF] De | Slow dynamics in a turbulent von Kármán swirling flow[END_REF]). However, Ravelet et al. [START_REF] Ravelet | Multistability and memory effect in a highly turbulent flow : Experimental evidence for a global bifurcation[END_REF] show that even with different curved blades, the scenarii are the same as long as the discs are symmetrically counter-rotating. These conclusions then support the reasonability of comparing our no-blade simulations to experimental flows stirred by impellers, if they share the same aspect ratio and the same symmetrically counter-rotation, and attain sufficiently high Reynolds numbers.

Knowing that the radius of the von Kármán vessel in [START_REF] Monchaux | Properties of steady states in turbulent axisymmetric flows[END_REF] is R = 100 mm and the height (distance between inner faces of impellers) is H = 180 mm, in this section we also set the aspect ratio of our computational domain to be H/R = 1.8. Precisely we have R = π and H = 1.8π (z ∈ [-0.9π, 0.9π]), and collocation point numbers in these two dimensions are (N, M ) = (676, 649) yielding a maximal effective wave-number of 650. The time step is fixed as ∆t = 5 × 10 -5 s. The angular velocity of counter-rotating boundaries is fixed as Ω = 5 and the kinematic viscosity as ν = 0.002, yielding a macroscale Reynolds number of Re Ω ≡ R 2 Ω/ν = 25000. We adopt in this section this definition of Reynolds number not only because it appears in the non-dimensional governing equations (and thus in the algorithm), but also due to the fact that it is a common choice for von Kármán experiments. Indeed, it is reasonable because in such cases, R is the forcing scale and ΩR should be the characteristic velocity that determines the energy level. For comparison, if we pick up the definition of the Reynolds number of the FSM section, our Re Ω = 25000 is equivalent to Re ≡ 2E/3H/ν = 3170 at its stationary state, which is 2.5 times higher than that in the last section.

Temporal results

Temporal signals of the statistical quantities and the resolution tests are shown in Fig. 4.8. We apply again the typical time τ calculated by Eq.(4.1) to normalize the physical time. All of these quantities of E, H 1 , I 1 , I 2 and H 0 are rather well conserved after t = 53τ . Particularly, it is expected that I 1 converges finally to 0 because the angular momentum is largely generated by the rotating discs, and in our case the discs are strictly counter-rotating. The curves of the resolution tests tell that the current spatial resolution is sufficiently fine. Because coherent structures are predicted by statistical mechanics theories of the Euler equations, and more precisely that symmetric counter-recirculating toric cells are reported in experiments, it will be interesting to see whether the simulated flow reproduces these structures. Contour plots of ψ and σ at different times are presented in Figs.4.9 and 4.10, showing the stability of the structures of both variables. Indeed, since in this case the forcing is well localized in space, the applied big scale injection may be less destabilizing than the spectral forcing used in the previous section. The shear layer in the middle that delimits the two recirculating cells is not static and moves in a chaotic manner around its average position at z = 0, which is in agreement with experimental observations [START_REF] Monchaux | Properties of steady states in turbulent axisymmetric flows[END_REF]. Further, compared to Figs.4.2 and 4.3 of the last section, there turns out to be a higher coherence between instantaneous values of ψ and σ, and thus better fittings for the averaged functional relationships of F (ψ) and G(ψ) can be expected.

Time-averaged results

Because the flow is statistically stationary after t = 53τ , an averaging operation is applied to the evolution in the time interval of 53τ till the end of 97τ . Averaged contour pictures of ψ and σ (within the entire domain) are given in Figs. [START_REF] Bouchet | Statistical mechanics of two-dimensional and geophysical flows[END_REF].11a, 4.11b and 4.11c. Coherent structures can be observed for both ψ and σ. For ξ, the structures are difficult to detect since there are extreme value appearing at r ≈ 0. However, when the color scales are adapted to zoom on smaller values, the vorticity structures resemble those of ψ. The averaged fields in [START_REF] Monchaux | Properties of steady states in turbulent axisymmetric flows[END_REF] are shown in Fig. 4.12. One can see that the structures of our case are very similar to those in [START_REF] Monchaux | Properties of steady states in turbulent axisymmetric flows[END_REF], and that both of them are located in areas close to the lateral wall and occupy a radial extent of R/2. As for scatter plots of F (ψ) and G(ψ), the same principle as that in [START_REF] Monchaux | Properties of steady states in turbulent axisymmetric flows[END_REF] is adopted to use only the central flow bulk data of r ≤ 0.81R and -0.56H/2 ≤ z ≤ 0.56H/2. Indeed, boundary areas are locations where viscous effects, strong shears and impeller stirring take place and may lead to obvious deviations from theoretical predictions considering Euler equations which are inviscid and unforced. Scatter plots concerning the flow bulk as well as the fittings obtained via the least square method are presented in Figs. 4.11d and 4.11e. A high similarity between them and those of [START_REF] Monchaux | Properties of steady states in turbulent axisymmetric flows[END_REF] can be seen : they are all cubic and the fittings of G of both possess a Turbulence horizontal band of zero. Compared to those of the FSM in the last section, the current functional fittings are much neater and clearer. The fitting of σ = F (ψ) appears to be in a cubic form of F (ψ) = -41882ψ 3 + 2.05ψ which is compatible with the observation in [START_REF] Monchaux | Properties of steady states in turbulent axisymmetric flows[END_REF]. The fitting of ξ -σ σ/r 2 = G(ψ) turns out to be G(ψ) = -346020ψ 3 + 15.16ψ, and exhibits a wide range of G(ψ) = 0.

Low Reynolds numbers results

For comparison, we now investigate the effect of Reynolds number. For this, we also give the results of cases of which the kinematic viscosity is respectively 10 times and 100 times greater, corresponding to Re Ω = 2500 and Re Ω = 250. For these flows, coherent structures and functional relationships can still be observed. Tendencies (see respectively Fig. 4. 13 and Fig.4.14) are that as Re Ω gets smaller, coherent structures become more circular, and the functional relationships progressively disappear, as expected since the flow is not expected any more to be a solution of the Euler equations.

Energy spectra of central flow bulk

On one hand, the modes of Chebyshev polynomials are not as intuitive as those of the FSM, let alone the comparison to wave-numbers of the Fourier transform. The Chebyshev modes cannot be directly linked with physical length scales, which can be reflected from the fact that the Gauss-Lobatto collocation points are not equi-distant. On the other, the B qn basis derived in FSM part is no longer complete for a decomposition of a velocity field of which u θ = 0 on the top and the bottom of the cylinder. However, if one chooses to consider only the velocity field of the flow bulk, B qn is again valid to decompose the filtered velocity field. Since the temporal signal of the helicity H 1 in Fig. 4.8 possesses one single definite sign (effect of the formation of toric recirculating cells resulting in the alignment of u and ω), one can imagine that there might be a similar dual cascade : forward for the helicity and inverse for the energy. The spectra concerning the flow bulk are depicted in Fig. 4.15. Almost all of the energy is contained in the toroidal component. A flatter slope is observed for k ≤ 15 and a steeper slope of -3 controls the region of k ≥ 20. These slopes can be reasonably associated to inverse and direct cascades, respectively. However, the Reynolds number is too low and the scaling ranges consequently too small to accurately assess asymptotic scaling. Indeed, these slopes are different from existing theoretical attempts, experimental observations and numerical estimations. First, they are not compatible with -5/3 and -7/3 scalings in [START_REF] Biferale | Inverse energy cascade in three-dimensional isotropic turbulence[END_REF] that treats isotropic flows obtained from decimated Navier-Stokes equations. Second, they are different from the -1 and -2.2 power laws in [START_REF] Herbert | Dual non-Kolmogorov cascades in a von Kármán flow[END_REF]. Indeed, although the flow investigated in this section is also subjected to strong mean motions and should have strong non-locality, there is a difference between the flows in [START_REF] Herbert | Dual non-Kolmogorov cascades in a von Kármán flow[END_REF] and our simulated flow : in [START_REF] Herbert | Dual non-Kolmogorov cascades in a von Kármán flow[END_REF], the radial and azimuthal energy components are of the same order and are one-order greater than Turbulence the axial energy component, while in our case, the toroidal (azimuthal) component is one-order more intensive than the poloidal (radial + axial) component. Third, the slopes seen in Fig. 4.15 are different to those obtained by FSM either in [START_REF] Qu | Numerical simulation of axisymmetric turbulence[END_REF] or in the last section of this thesis. One can note that in either the case of [START_REF] Qu | Numerical simulation of axisymmetric turbulence[END_REF] or the case in the last section, the poloidal energy component is more important than the toroidal, but the situation is reversed in the current simulation due to the presence of a strong counter-rotation. A supposition can be put forward that in axisymmetric flows, the scaling behavior is highly dependent on the energy distribution among the radial, azimuthal and axial directions, and can be significantly affected by the adopted filtering principles. At least, the former half of this supposition will be confirmed by simulations presented in the next chapter.

Summary

In this chapter, we compare the results of both the FSM and the PSM to those of existing studies. Coherent structures are observed in both instantaneous and averaged fields, in agreement with theoretical predictions and experimental observations. Functional relationships are clear in averaged fields of off-boundary flow bulks, and are particularly clear in the PSM results where a higher Reynolds number is reached and the flow is forced by rotating discs rather than by a spectral forcing. This is the first time that the existence of such coherent structures and associated relationships is evidenced in strictly axisymmetric forced turbulence (in literature, experimental results were obtained Turbulence in statistically axisymmetric turbulence, numerical results in freely decaying turbulence).

Energy spectra and scaling behaviors are particularly discussed in parallel with a succinct review of relative theoretical, experimental and numerical works in literature. For the results issuing from the FSM, the extracted scaling slopes are comparable to those obtained by Qu et al. [START_REF] Qu | Numerical simulation of axisymmetric turbulence[END_REF][START_REF] Qu | Direct numerical simulation of axisymmetric turbulence[END_REF][START_REF] Qu | Cascades of energy and helicity in axisymmetric turbulence[END_REF]. As for the PSM part, the extracted scaling slopes differ from the reported results in [START_REF] Biferale | Inverse energy cascade in three-dimensional isotropic turbulence[END_REF][START_REF] Herbert | Dual non-Kolmogorov cascades in a von Kármán flow[END_REF]. We suspect that spectra scalings of von Kármán turbulence depend on the energy distribution among the radial, azimuthal and axial components. Let us recall that the numerical and experimental Reynolds numbers are also very different.

The comparison and agreement of the two parts serve us as confirmation of the reliability of the two codes. This step of validation is important because the codes will be used for other studies, concerning the transition behavior from non-swirling axisymmetric flows to swirling axisymmetric flows (see Chapter 5) and the transition from strictly axisymmetric flows to general cylindrical 3D flows (see Chapter 6). Simulations from non-swirling to swirling axisymmetric flows will be conducted by using the FSM code, while the simulations from strictly axisymmetric flows to general cylindrical 3D flows will be conducted by using the PSM code.

Transition from Non-swirling to Swirling Axisymmetric Turbulence

The work presented in this chapter was done in collaboration with Bérengère Dubrulle (SPEC, CEA Saclay) and Hugues Faller (LIMSI). The present chapter is the copy of an early version of a manuscript in preparation, which will be shortly submitted to Physical Review Fluids : Z. Qin, H. Faller, B. Dubrulle, A. Naso and W. Bos, Transition from non-swirling to swirling axisymmetric turbulence.

Introduction

Transitions between different states of fluid flow have been intensively studied since the work of Osborne Reynolds, who systematically characterized the transition from laminar to turbulent pipe flow [START_REF] Reynolds | An experimental investigation of the circumstances which determine whether the motion of water shall be direct or sinuous, and of the law of resistance in parallel channels[END_REF]. In that transition, the control parameter which allows to switch from one state to another is the Reynolds number. More recently, transitions between different turbulent states have received attention [START_REF] Alexakis | Cascades and transitions in turbulent flows[END_REF]. For instance, the transition between two-and three-dimensional turbulence was first investigated by Frisch, Lesieur and Sulem [START_REF] Frisch | Crossover dimensions for fully developed turbulence[END_REF]. The control parameter used in this work was the flow dimensionality D, and the authors reported that the energy cascade direction (forward in three dimensions, backward in two dimensions) changes for a value of D close to 2. Transitions between different turbulent states have recently received even more attention, in particular in the context of thin fluid layers [START_REF] Celani | Turbulence in more than two and less than three dimensions[END_REF][START_REF] Santiago | Critical transitions in thin layer turbulence[END_REF], where the control parameter is the ratio between the thickness of the fluid layer and the scale at which energy is injected. In these numerical investigations the Navier-Stokes equations were integrated in a periodic domain, and the only external force to which the flow was subject was the forcing.

A distinct manner to influence the effective dimension of a turbulent flow consists in applying anisotropic body forces. For instance, a recent investigation showed the existence of a subcritical transition in rotating Rayleigh-Bénard convection [START_REF] Favier | Subcritical turbulent condensate in rapidly rotating Rayleigh-Bénard convection[END_REF], where a condensate appears for a particular choice of the control parameters. Other examples are the application of a magnetic field on a conductive fluid, resulting in the appearance of the Lorentz force, or the application of a solid body rotation, introducing the Coriolis force in the momentum balance [START_REF] Peter Alan | Turbulence in rotating, stratified and electrically conducting fluids[END_REF]. When the order of magnitude of these forces becomes large compared to that of the inertial ones, the flow becomes invariant, or almost, along the direction of the magnetic field or of the rotation axis, respectively. These two configurations therefore exhibit transitions from three-dimensional three-velocity-component (3D3C) to two-dimensional three-velocity-component (2D3C) turbulent flows. In other words, the flows in these examples have three non-zero velocity components, but these three components can vary either in the three dimensions or in a plane only (perpendicular to the axis of rotation or to the magnetic field). Turbulence A different transition between turbulent states is the transition from a 3D3C to a three-dimensional two-component (3D2C) flow. A typical example is strongly stratified turbulence, in which the dynamics is almost entirely confined in the plane perpendicular to the imposed density gradient, but these two velocity components vary strongly in the three directions [START_REF] Sagaut | Homogeneous Turbulence Dynamics[END_REF].

In the present work we will investigate by direct numerical simulation a transition from 2D2C to 2D3C turbulence. This transition occurs in strictly axisymmetric turbulence, solution of the Navier-Stokes equations modified such that the flow is invariant in the azimuthal direction. This system is intermediate between two-and three-dimensional turbulence, and was recently investigated by direct numerical simulation (DNS). It was shown in particular that an inverse energy cascade, responsible for the generation of large scale coherent structures, and a direct helicity cascade towards small scales can coexist in this flow [START_REF] Qu | Direct numerical simulation of axisymmetric turbulence[END_REF][START_REF] Qu | Cascades of energy and helicity in axisymmetric turbulence[END_REF]. As predicted from theoretical works using statistical mechanics tools [START_REF] Leprovost | Dynamics and thermodynamics of axisymmetric flows : Theory[END_REF][START_REF] Naso | Statistical mechanics of Beltrami flows in axisymmetric geometry : Theory reexamined[END_REF][START_REF] Naso | Statistical mechanics of Beltrami flows in axisymmetric geometry : equilibria and bifurcations[END_REF], different behaviors were obtained for non-swirling (zero azimuthal velocity component) and for swirling flows. We investigate here the transition from the non-swirling (two-dimensional two-component, 2D2C) to the swirling (two-dimensional three-component, 2D3C) regime.

The chapter is organized as follows. We first recall the definition of strictly axisymmetric turbulence and give some definitions in Section 5.2. The numerical method and the results of the simulations carried out are presented in Section 5.3. A statistical model is derived and its results are compared with these numerical data in Section 5.4. Finally, our conclusions are reported in Section 5.5.

Axisymmetric turbulence

We consider incompressible, Newtonian and isothermal axisymmetric turbulence. The flow is confined in a cylindrical domain of radius R and of axis length H, and is solution of the Navier-Stokes equations written in cylindrical coordinates (r, θ, z) for the three velocity components u = (u r , u θ , u z ). The system is assumed invariant in the toroidal direction. In practice, this means that u = (u r (r, z), u θ (r, z), u z (r, z)) and that the pressure p = p(r, z), so that any toroidal variation ∂ θ (u, p) is zero. All external effects which can inject energy into the system in this simplified system are modelled by a forcing term added in the momentum equation. Under these assumptions, the flow is solution of the following system of equations :

D t [u r ] = f r + ν∆ r u r - 1 ρ ∂ r p + u 2 θ r , (5.1) 
D t [u z ] = f z + ν∆ z u z - 1 p ∂ z p, (5.2) 
D t [u θ ] = f θ + ν∆ θ u θ - u r u θ r , (5.3) 
where the operator D t is defined as

D t [g] = ∂ t g + u r ∂ r g + u z ∂ z g, (5.4) 
ρ is the fluid density, ν its kinematic viscosity, and ∆ i are the three components of the cylindrical vector Laplacian. Incompressibility is ensured by the relation

1 r ∂ r (ru r ) + ∂ z u z = 0.
(5.5)

Numerical simulations 65

The forcing f considered in this investigation is based on the negative viscosity method [START_REF] Kaneda | Energy dissipation rate and energy spectrum in high resolution direct numerical simulations of turbulence in a periodic box[END_REF] and will be defined more precisely later on.

We will distinguish throughout this study the poloidal plane (r, z) from the toroidal (azimuthal) direction. The interaction between the toroidal and the poloidal dynamics is represented by the last terms on the right-hand sides of Eqs.(5.1) and (5.3). These coupling terms will be of major importance in the following. A simple measure of the flow dimensionality is the ratio γ = E T /E P , where E T and E P respectively denote the toroidal and poloidal components of energy :

E T = u 2 θ 2 , (5.6) 
E P = u 2 r + u 2 z 2 , (5.7) 
and ... are volume averages. If γ = 0 the flow is purely poloidal (u θ = 0), whereas if γ > 0 toroidal and poloidal velocity fluctuations coexist. These energy components are solutions of equations that can be derived from the Navier-Stokes equations (5.1-5.5) and formally write :

dE P dt = F P -ε P + T , (5.8) 
dE T dt = F T -ε T -T , (5.9) 
where ε P and ε T are viscous dissipation terms (ε P , ε T > 0), F P and F T are forcing terms (F P , F T > 0), and the transfer from the toroidal to the poloidal energy components is (deduction in Appendix E.1) :

T = u 2 θ u r r .
(5.10)

Numerical simulations

Method and parameters

The Navier-Stokes equations (5.1-5.5) were integrated by using a fully spectral method based on an expansion of the velocity field in a basis consisting of a combination of Fourier modes in the axial direction and of Bessel functions in the radial one [START_REF] Qu | Direct numerical simulation of axisymmetric turbulence[END_REF] (the code is based on the original design of [START_REF] Li | Two-dimensional turbulence with rigid circular walls[END_REF]). In this approach, n and q are the mode-numbers respectively associated to the axial and radial directions, k n being the axial wave-number and γ q the qth zero of the Bessel function J 1 in the radial direction. This allows to define a global wave-number defined as k(n, q) = (k 2 n + γ 2 q ) 1/2 . As already mentioned, use was made of the negative viscosity method [START_REF] Kaneda | Energy dissipation rate and energy spectrum in high resolution direct numerical simulations of turbulence in a periodic box[END_REF] :

fi (k) = c i νh(k)û i (k), i ∈ {r, θ, z}, (5.11) 
where ĝ denotes the spectral coefficient associated with a function g(r, θ, z), h(k) = k 2 for k f,min k k f,max and zero elsewhere, and c i is a dimensionless forcing coefficient measuring the intensity of energy injection in the i direction (i ∈ {r, θ, z}). Contrary to the configuration investigated in [START_REF] Qu | Direct numerical simulation of axisymmetric turbulence[END_REF][START_REF] Qu | Cascades of energy and helicity in axisymmetric turbulence[END_REF], in which the flow was periodic in the axial direction, we imposed a confinement of the fluid in the cylindrical domain by using a suitable choice of the axial mode-numbers n. 

c P = 1, c T = 3 (c T /c P = 3). Time is normalized by τ = R/(2E/3) 1/2
, where E is the total kinetic energy of the flow time-averaged in the statistically steady state. More than 150 simulations were carried out in a cylindrical domain of radius R = π and height H = 1.7π. In all of them the viscosity was set to ν = 0.01. Calculations were performed using 52 modes in the radial direction and 45 modes in the axial one. The forcing band, 11 k 15, corresponds to scales intermediate in size between the dissipation scale and the cylinder size, as in [START_REF] Qu | Cascades of energy and helicity in axisymmetric turbulence[END_REF], which allows for the existence of cascades towards both small and large scales. The forcing coefficients were set such that c r = c z ≡ c P and c θ ≡ c T . The values of c P and c T were both chosen in the interval [1, 3.6]. Statistically steady states were reached in all cases. The results presented in the following subsection were obtained during them.

Numerical results

We first show in Fig. 5.1 the time evolution of the poloidal and toroidal energy components, for two distinct choices of the forcing parameters such that c T /c P = 1/3 and c T /c P = 3 respectively. Statistically steady states are observed after a transient time. In this regime, although both energy components fluctuate around finite values when c T /c P = 3 (Fig. 5.1(b)), the toroidal energy component E T is found to be zero for c T /c P = 1/3 (Fig. 5.1(a)). In the latter case, the flow therefore remains 2D2C, without swirl (u θ = 0).

A more refined information is provided in Fig. 5.2(a), in which the ratio between the toroidal and poloidal energy components time-averaged during the statistically state, γ, is plotted as a function of the ratio c T /c P (in the range of c T and c P values considered here, γ depends only on the ratio of these parameters). A transition from a 2D2C (E T = 0) to a 2D3C (E T = 0) state, occurring for c T /c P ≈ 1, is clearly visible. For weak toroidal forcing, the flow is purely poloidal, governed by purely two-dimensional dynamics. We recall here that axisymmetric turbulence can, in the absence of toroidal fluctuations, be reformulated, using a suitable change of variables, as purely Cartesian two-dimensional turbulence [START_REF] Mohseni | Statistical equilibrium theory for axisymmetric flows : Kelvin's variational principle and an explanation for the vortex ring pinch-off process[END_REF][START_REF] Chjan | Coherent structures in an energy-enstrophy theory for axisymmetric flows[END_REF]. When c T /c P ≈ 1, a sharp transition is observed towards a swirling state, where both toroidal and poloidal velocity components are finite.

The different natures of the flows for c T /c P < 1 and c T /c P > 1 are also illustrated in Fig. 5.3, in which the poloidal flow time-averaged during the stationary state is shown. Coherent large-scale structures reminiscent of two-dimensional turbulence are clearly visible in the case c T /c P < 1 (Fig. 5.3(a)), which is not the case when c T /c P > 1 (Fig. 5.3(b)), whatever the time interval chosen. The exact type of structures obtained in the former case may depend on the time interval chosen, as is well known in forced two-dimensional wall-bounded turbulence [START_REF] Jan | The effects of solid boundaries on confined two-dimensional turbulence[END_REF].

Finally, we illustrate the different dimensionalities of the flows for c T /c P < 1 and c T /c P > 1 by showing in Fig. 5.4(a,b) energy spectra. When c T /c P < 1 (Fig. 5.4(a)), a clear signature of an inverse energy cascade is observed, unlike in the case c T /c P > 1 (Fig. 5.4(b)). This result is confirmed in Fig. 5.4(c,d), in which the energy flux is shown. For the purely poloidal flow (Fig. 5.4(c)), an important part of the energy is transferred to lower wave-numbers. This is not the case in the swirling regime (Fig. 5.4(d)), where the energy flux is predominantly directed towards the large wave-numbers.

To summarize, we have shown numerically the existence of a transition from 2D2C to 2D3C turbulent flows. The control parameter of this transition is the ratio between the forcing coefficients, c T /c P , the transition occurring for c T /c P ≈ 1. The order parameter is the ratio between the toroidal and poloidal components of energy, γ, which measures the flow "componentionality" : 2D2C for γ = 0, 2D3C for γ = 0. We now derive a model allowing to reproduce this transition. A crucial term to model is the transfer from the toroidal to the poloidal energy components, T , defined in Eq.(5.10). This term was calculated by direct numerical simulation ; its time-average in the statistically steady state is plotted as a function of c T /c P in Fig. 5.2(b). For c T /c P < 1 (2D2C turbulence), no transfer occurs between both flow components, as expected. For 1 < c T /c P 1.3, energy is preferentially transferred from the poloidal to the toroidal fields (T < 0, the poloidal field "feeds" the toroidal one), whereas for higher values of c T /c P it is transferred from the toroidal to the poloidal directions (T > 0).

Statistical model

In order to elucidate the nature of the transition, we developed a statistical model of the dynamics. Our aim was to derive the simplest possible model able to capture the steady states of the system (5.8-5.9), by estimating the five terms appearing on the right-hand sides of these equations.

The derivation of the statistical model is presented in Section 5.4.1-5.4.3. The values of its free parameters are then determined in Section 5.4.5, by using the direct numerical simulation data. We finally calculate analytically, in Section 5.4.6, the stationary solutions E P and E T of the model, and compare them to the direct numerical simulations results.

Dissipation modelling

We first estimate the viscous dissipation terms ε P and ε T . Even though the Reynolds number of our simulations is only moderate, we will use for the sake of simplicity arguments in principle valid for high Reynolds number flows. In this regime, the dissipation rate is in general not set by viscosity, but rather by the nonlinear energy transfer between scales.

This inertial transfer is associated with the nonlinear advection term of the Navier-Stokes equations, which formally writes for axisymmetric flows u r ∂ r g + u z ∂ z g, where g can be any of the velocity components. For such flows the nonlinear advection is therefore due to the poloidal velocity components u r , u z . The dissipation rates ε P and ε T can be therefore estimated as

ε P = d P E P τ , (5.12) 
ε T = d T E T τ , (5.13) 
where d P and d T are dimensionless model parameters, and τ is a typical time scale associated with the poloidal motion :

τ ∼ L/E 1/2 P . (5.14) 
In this expression L is a length scale, undefined at this stage. We will come back to this point later on. Equations (5.12, 5.13, 5.14) form the simplest possible model for the dissipation terms ε P and ε T .

Following [START_REF] Hanjalić | A Reynolds stress model of turbulence and its application to thin shear flows[END_REF], the pressure term is modelled as :

u 2 θ ρ ∂ r p ∼ 1 τ u 2 θ u r , (5.18) 
where the typical correlation time of the triple correlations is τ , defined in Eq.(5.14). Combining Eqs.(5.17) and (5.18) and making the crude assumption that f (r) ∼ g(r) ⇒ f (r)/r ∼ g(r)/r allows to propose the following rough, statistically homogeneous model for the transfer term :

u 2 θ u r r ∼ -τ 2u 2 r u 2 θ r 2 - u 4 θ r 2 ∼ τ u 2 θ r 2 u 2 θ -2u 2 r . (5.19) 
Estimating r as R in the right-hand side of Eq.(5. [START_REF] Chavanis | Classification of self-organized vortices in two-dimensional turbulence : the case of a bounded domain[END_REF]), assuming that u 2 r ≈ u 2 z , and neglecting all correlations between u 2 θ , u 2 r and u 2 z , the transfer can therefore be estimated as :

T = ζτ E T R 2 (E T -E P ) = ζτ E 2 T R 2 1 -γ -1 , (5.20) 
where ζ is a dimensionless parameter of the model and τ can be estimated as in Eq. (5.14).

Inserting the estimates (5.12, 5.13, 5.15, 5.20) in the sytem (5.8, 5.9) leads to a model remarkably similar to a classical Reynolds-stress model formulated in cylindrical coordinates [START_REF] Launder | Numerical prediction of axisymmetric free shear flows with a Reynolds stress closure[END_REF]. More sophisticated approaches might be envisaged if the present estimate does not capture the physics of the system. P /ε T calculated by DNS, plotted as a function of γ (red dots). The (black) line shows the best data fitting 0.19 + 0.41 exp(-1.1γ 2.5 ). Following Eq. (5.13), this fitting provides an estimate of L = L/d T .

Determination of the length scale L

The model derived in the previous subsections requires an expression for the length scale L appearing in the expression of the time scale τ , Eq. (5.14). As a first guess, we assumed that the typical poloidal length scale is proportional to the domain size, and therefore set L = R. Under this assumption, the model only displays a weak qualitative agreement with the numerical data.

Our second choice consists in extracting a length scale L(γ) from the numerical data using Eq.(5.13) (an equivalently choice would have been to use Eq.(5.12) instead). For this, we plotted for each run the quantity E T E 1/2 P /ε T (thereby estimating L/d T according to Eq.(5.13)) as a function of γ. As shown in Fig. 5.5, this quantity is well approximated by the relation :

L ≡ L/d T ∼ E T E 1/2
P /ε T ∼ 0.19 + 0.41 exp(-1.1γ 2.5 ).

(

We will thereafter use this expression of L ≡ L/d T (γ). With this choice, the model can be rewritten as :

dE P dt = β P c P νE P -d P E 3/2 P L (γ) + ζ E T E 1/2 P L (γ) (γ -1) , (5.22) 
dE T dt = β T c T νE T - E T E 1/2 P L (γ) -ζ E T E 1/2 P L (γ) (γ -1) , (5.23) 
where

d P = d P /d T and ζ = ζ/d T .

Determination of the model parameters

The model (5.22-5.23) contains four a priori free parameters β P , β T , d P and ζ , whose value need to be determined. This was done by applying a linear regression to the DNS results, plotting : (i) F i as a function of E i (i ∈ {P, T }, see Eq.(5.15)) ; (ii) ε P as a function of E As shown in Fig. 5.6, all the resulting curves display approximately linear dependencies, which confirms our modelling. We found : β P ≈ 51, β T ≈ 156, d P ≈ 0.28, and ζ ≈ 0.024. The linear approximation is particularly well satisfied for F T and T . For F P and ε P this approximation is less satisfying, in particular for small values of these quantities.

We compare in Fig. 5.7(a) the transfer modellings (5.20, 5.14, 5.21) (with ζ = 0.024) with the definition of T , Eq.(5.10), for different values of γ. A good agreement is obtained, thereby providing a first, partial validation of the model.

Analytical solution of the model and comparison with the numerical data

Steady states of the system (5.22-5.23) can be easily determined. They are solutions of the following equation for γ :

γ γ 2 + 1 -η η γ + 1 -d P η -ζ ζ η = 0, (5.24) 
where η = (β T c T )/(β P c P ). For any η (or, equivalently, any c T /c P ), γ = 0 is a solution. For η η c such that :

η c = 2 -ζ + 2 1 -ζ (d P + 1) ζ + 4d P , (5.25) 
corresponding to a value of (c T /c P ) c ≈ 1.13, another solution exists :

γ = η -1 + (η -1) 2 + 4η[1 + (d P η -1)/ζ ] 2η .
(5.26)

The resulting function γ(c T /c P ) is plotted in Fig. 5.7(b), and displays an excellent agreement with the numerical results.

The asymptotic value of γ = E T /E P defined in Eq. (5.26) for large values of c T /c P (or ζ) is lim ζ→∞ γ = 1 + 1 + 4d P /ζ /2 ≈ 3.95, which is therefore the maximal value of the ratio between the toroidal and poloidal energy components permitted in this system (see Fig. 

Conclusion

Direct numerical simulations of axisymmetric turbulence forced by a negative viscosity method show the existence of a sharp transition between 2D2C, purely poloidal, or non-swirling turbulence, and the 2D3C poloidal-toroidal, or swirling turbulence. On the level of kinetic energy, the steady states of the system are well captured by a statistical model, reminiscent of a Reynolds-stress closure. This model is derived using assumptions usually valid in the limit of high Reynolds number turbulence. It would be interesting to investigate numerically the dependence of the transition on the Reynolds number.

Finally, a transition from 2D3C (strictly axisymmetric) to 3D3C turbulence could be investigated by using similar tools. This will be done in the next chapter of this thesis.

Chapitre 6

Transition from Axisymmetric to General Three-dimensional Turbulence

In the previous chapter, we investigated the transition from non-swirling to swirling flow in a purely axisymmetric set-up. This transition was therefore considering the 2D2C to 2D3C transition. The next step towards realistic flows is the transition from 2D3C to 3D3C flows and this is what will be considered in this chapter. To carry out this investigation, we use the pseudo-spectral code which has been modified as described in Section 3.2. The results will be modelled, as in the previous chapter, by a description in terms of volume-averaged kinetic energy components.

Non-integer dimensions

One of the cornerstones of the theory of isotropic turbulence is its supposed smallscale universality at high Reynolds numbers. In practice only very few flows are close to isotropic. For instance, oceanic and atmospheric flows are three-dimensional but due to the presence of geometrical confinement and body-forces (rotation and/or stratification) the nature of the turbulent motions is at certain scales more two-than three-dimensional.

Compared to academic isotropic flows, realistic flows thus show features which are somewhere between 3D (presence of a direct energy cascade towards small scales) and 2D (presence of well-defined coherent structures) turbulence. Such situations can be investigated numerically by directly integrating the Navier-Stokes equations combined with the appropriate body-forces and boundary conditions. In the present chapter we proceed differently by modifying the Navier-Stokes equations to mimic the anisotropic behavior corresponding to a dynamical dimension which is somewhere between two and three.

The way in which we do this is the following. We consider the Navier-Stokes equations in cylindrical coordinates (a simplified form of Eq.(3.43)) :

D (α) t [u r ] = f r + ν∆ (α) r u r -∂ r p + u 2 θ r , (6.1) 
D (α) t [u z ] = f z + ν∆ (α) z u z -∂ z p, (6.2) 
D (α) t [u θ ] = f θ + ν∆ (α) θ u θ - α r ∂θp - u θ u r r , (6.3) 
where the operator D (α) [g] is defined as

D (α) [g] = ∂ t g + u r ∂ r g + u z ∂ z g + α u θ r ∂θg, (6.4) Turbulence ∆ (α) i
are the three components of the cylindrical vector Laplacian, where, as in D (α) [g], all azimuthal derivatives are multiplied by α or α 2 according to their order.

Incompressibility is ensured by the relation

r -1 ∂ r (ru r ) + ∂ z u z + αr -1 ∂θ(u θ ) = 0.
(6.5)

The above system represents the Navier-Stokes equations for α = 1 and axisymmetric flow for α = 0. In between these two values the flow is expected to show a transition between the two regimes. It is this transition that we will try to characterize in the following.

Numerical set-up

As in the simulations presented in Chapter 5, the computational domain has a cylindrical geometry with an aspect ratio of H/R = 1.7. The kinematic viscosity is ν = 0.01.

In the present chapter the flow is forced through a linear forcing [START_REF] Rosales | Linear forcing in numerical simulations of isotropic turbulence : Physical space implementations and convergence properties[END_REF][START_REF] Lundgren | Linearly forced isotropic turbulence[END_REF] 

f i = βu i . (6.6)
This forcing is different from the spectral-band forcing, as it is applied to all scales of the velocity field.

Its implementation is easier which is convenient since in the pseudo-spectral method, based on Chebyshev polynomials it is more difficult to define the wave-number k used before in the spectral code. The forcing is applied in the poloidal plane only, f θ = 0 and f r = f z with a coefficient β = 0.04 s -1 . Computations with azimuthal forcing showed that a very strong dominant, almost uniform azimuthal flow was generated without a very interesting dynamics, and we focus therefore on the case of pure poloidal forcing. Recalling the fact that in this limit the α = 0 axisymmetric flow does not generate any toroidal component, our choice will allow to see for which value of α this purely poloidal flow becomes unstable.

The physical time step is set to be ∆t = 5 × 10 -4 s, and the temporal resolution is assessed by monitoring the Courant number as a function of time (see Fig. 6.1). The maximal Courant number is chosen in the manner described in Section 3.2.3. Simulations with different α varying from 0 (strictly non-axisymmetric case) to 1 (normal three-dimensional case) are carried out, namely α = 0, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.

With these numerical settings, the attainable large-scale Reynolds number, defined as Re ≡ H 2E/3/ν, is about 300, which is rather low. In particular the case α = 0 is challenging, since due to the inverse cascade that we have evidenced in this case, the energy at the large scales increases importantly and is difficultly dissipated at moderate spatial resolution. Even at the relatively low Reynolds numbers considered, simulations could be carried out for a limited time only and the modified Laplacian ∆ (α) i in expression (6.1) was replaced by the normal Laplacian ∆

(1) i in the following. The non-integer dimension α therefore affects only the nonlinear and pressure terms in these simulations. In order to investigate higher Reynolds number dynamics and to be able to use the modified Laplacian ∆ (α) i , we compared our simulations to results using the spectral vanishing viscosity method [START_REF] Séverac | A spectral vanishing viscosity for the LES of turbulent flows within rotating cavities[END_REF]. This method, of the Large Eddy Simulation type, allows to attain higher Reynolds numbers and details. Results will be presented in Section 6.6.

Results of the simulations

Flow visualizations and azimuthal structures

Fig. 6.2 shows the instantaneous kinetic energy in cross-sections through the median (z = 0) of the cylinder. For values of α 0.15, we observe a self-organization into azimuthally periodic flower-like structures. We have found in the literature mentions of such structures in three-dimensional cylindrical flows in rotor-stator disc cavities. For instance, in the experimental study by Czarny et al. [START_REF] Czarny | Precessing vortex structures in turbulent flow within rotor-stator disc cavities[END_REF] or the numerical work of Craft et al. [START_REF] Craft | Some swirling-flow challenges for turbulent CFD[END_REF] using unsteady k-ε RANS model, the emergence of lobes in flows stirred by one single rotating disc were reported. We do not have discs and we do not know whether these observations are related.

We propose here a phenomenological explanation of the effect. When changing α, the typical gradient length scale in the azimuthal direction changes such that

L T = α -1 L (1)
T , where L

T is the length scale for α = 1, the three-dimensional case, as was explained in Section 3.2.2. We assume that a certain size of structures is generated by the poloidal forcing, typically of the size of the box, since the linear forcing adds energy to all scales. Through nonlinear interactions, these scales destabilize and will also have a finite extend in the azimuthal direction. It can be expected that the azimuthal and poloidal sizes of the structure are of the same order of magnitude. If this is so, a larger number of poloidal structures fits into the box if L T R. The number of structures will thus increase when α diminishes and the number of azimuthal structures will scale as

N s ∼ α -1 .
(6.7)

We have evaluated the spatial frequency of the lobes in the horizontal cross-section by counting the number of flow structures during the steady state (Fig. 

Statistical characterization

We show in Fig. 6.4 the α-dependence of the dimensionless kinetic energy defined as

E = E (Hβ) 2 , (6.8) 
and of dimensionless poloidal energy and azimuthal energy components, defined as

E P = E P (Hβ) 2 , E T = E T (Hβ) 2 .
(6.9)

It can be observed that E and E P reach their maximum at α = 0, then drop abruptly as α increases, and attain an approximately constant value for α 0.3. In between 0 and 0.3, the dimensionality parameter α exerts a significant influence on the dynamics.

The situation is inversed for E T which vanishes at α = 0 and increases for larger α values. Indeed, when axisymmetry is imposed, it was shown in Chapter 5 that a pure poloidal forcing leads to a two-dimensional two-component dynamics. It is therefore normal and reassuring to observe the same dynamics in the present investigation, by using a different forcing and a different numerical code.

Because the azimuthal dynamics is unforced, the only possible sources of the increase of E T are the nonlinear transfer of energy T from the radial energy component (see Chapter 5), and the pressure-velocity correlation, which is zero for α = 0 and which will be analyzed and modelled in the next section.

Therefore, if the dependence of the kinetic energy on α is an indicator of dimensionality, then the transition from the axisymmetric to the three-dimensional regime appears to be within the interval α ∈ [0, 0.3], where E P decreases and E T increases from 0 to an almost constant value. The quantities R r , R z and R θ are therefore defined as the ratio between the strength of the volume-averaged azimuthal derivatives and that of the poloidal derivatives. Their values measure directly the weight of azimuthal variations. Since their definitions involve derivatives, their value is more sensitive to small-scale variations than those of energy-based quantities. R r , R z and R θ are plotted as a function of α in Fig. 6.5. One can note that all of them are increasing functions of α and do not reach stable plateaus. This confirms that the axisymmetry constraint is gradually relaxed as α increases. The log-scale plot of Fig. 6.5b shows that R i (i ∈ {r, θ, z}) increases strongly for α < 0.2. Therefore, if the behaviors of R i can be considered as indicators of small-scale dimensionality, then the transition from the axisymmetric to the three-dimensional regime takes place within the interval α ∈ [0, 0.2].

The previous results show that a "transition" from axisymmetric to three-dimensional dynamics takes place between α = 0 and α = 1. The behavior of the flow is radically different when α = 0, by comparison with the other values of α considered. The dependence on α for energy-based anisotropy is most important for α < 0.3, while gradient-based quantities are most importantly affected by the value of α when α < 0.2.

Energy based model of the transition

In this section the model proposed in the previous chapter to reproduce the swirling transition is extended to study the transition from 2D2C/2D3C to 3D3C. Exact equations governing the volume-averaged energy budget of the poloidal and toroidal energy can be derived from the Navier-Stokes equations (2.71)

∂E P ∂t = T + F P -ε P + Π, ∂E T ∂t = -T + F T -ε T -Π, (6.11) 
where

Π = u θ rρ ∂p ∂θ = - u r ρ ∂p ∂r + u z ρ ∂p ∂z , (6.12) 
and we recall that F P and F T are energy forcing powers, ε P and ε T are energy dissipation rates, and T is the energy transfer between azimuthal and radial directions (see Chapter 5 and Appendix E). By a similar process to that presented in Appendix E.1, it can be shown that in the non-axisymmetric case, one has again T = u r u 2 θ /r . When the non-complete axisymmetry is introduced, we have that ∂ θ → α∂θ, so that

Π = α u θ rρ ∂p ∂ θ . (6.13) 
This pressure-strain correlation appears as a new term in the energy balance once axisymmetry is broken. In the following we will model this term.

Model for the pressure-strain correlation

The simplest possible model for the pressure-strain correlation is the Rotta model [START_REF] Christian | Statistische theorie nichthomogener turbulenz[END_REF]. The pressure-strain correlation acts to restore isotropy in anisotropic flows. Rotta's model uses a linear relation between the anisotropy of the flow and the strength of Π, and is written in Cartesian coordinates as

Π ij = c Π T R ij - 1 3 R mm δ ij , (6.14) 
where c Π is a parameter to be determined, R ij = u i u j is the second-order velocity correlation, δ ij denotes the Kronecker symbol and T is a characteristic time.

We focus here on the poloidal and toroidal energy components. For fully threedimensional, volume-averaged flows in cylindrical geometry (α=1), the isotropic state can be expected to be such that E θ = E r = E z =⇒ E T = E P /2 = E/3. By analogy with Eq.(6.14), we can therefore assume that :

Π(α = 1) = c Π T E T - 1 3 E , (6.15) 
with the characteristic time being

T = L/E 1/2 .
The question is how this model should be modified for incomplete axisymmetry (0 < α < 1). The simplest modification allowing the correct limits (Eq.(6.15) as α → 1 and 0 Chapitre 6. Transition from Axisymmetric to General Three-dimensional Turbulence

as α → 0) is Π(α) = α c Π T E T - 1 3 E = α c Π 3T (2E T -E P ) . (6.16)
This model will be shown not to describe the data in the following. The reason for this is not clear from the outset, but it will be shown that replacing (6.16) by

Π(α) = α c Π T (E T -λE P ) , (6.17) 
with λ a free constant, the pressure model describes the data more accurately.

The presence of this pressure-strain correlation term changes the energy balance drastically. Indeed, even in the absence of toroidal forcing the pressure-strain correlation allows a transfer from the poloidal to the toroidal component. This can be seen from expression (6.17), where, even for zero toroidal energy, the poloidal energy can be redistributed, as long as α = 0.

Adaptation of the model to α = 0

In the model used in the previous chapter, we have modelled the terms T , F P , F T , ε P and ε T . We recall the equations used :

T = ζτ E T (E T -E P ) L 2 , (6.18) 
F i = c i E i , (6.19) 
ε i = d i E i τ , (6.20) 
with i ∈ {T, P }. In the axisymmetric case we modelled the typical time scale as

τ (α = 0) ∼ L/E 1/2 P (6.21)
since in this case the poloidal velocity field dominates the dynamics and, in the absence of the transfer term, advects the toroidal velocity as if it were a passive scalar. In the fully three-dimensional case the toroidal velocity plays the same role in the dynamics as the poloidal one, and therefore we model the time scale as

τ (α = 1) ∼ L (E P + E T ) 1/2 . (6.22)
For any α ∈ [0, 1], the simplest expression reducing to these forms in the axisymmetric case for α = 0 and in a classic three-dimensional form for α = 1 is :

τ (α) ∼ L (E P + αE T ) 1/2 .
(6.23)

The forcing F i does not need any modelling in the present simulations since all modes are forced so that F i appears in closed form, F i = c i E i . 6.17).

Numerical assessment of the model

In Fig. 6.6 we assess the performance of the dissipation rate model (6.20,6.23). For simplicity, we first choose a constant characteristic scale L independent from α and γ. This choice is shown to work well in Fig. 6.6, the linear fittings yielding δ P ≈ δ T = 0.9. The model therefore does not need any refinement as was needed for the axisymmetric model, where the integral length scale was found to be a function of γ : it does not seem to be an important function of α in the present simulations.

The modelling of the transfer term (6.18,6.23) is assessed in Fig. 6.7. It is observed that the model constant fluctuates around zero. However, the constant of the transfer term is not easy to determine near the axisymmetric limit, because it is zero in the limit α = 0 and c T = 0 and since we have only carried out simulations for the case c T = 0 in the present chapter, we cannot evaluate ζ, at least not near the α = 0 limit. We will therefore retain the same model as in Chapter 5, and change only the form of the integral time scale.

The pressure-strain model is the main novelty introduced in the present chapter. We first show that the simple extension (6.16) of the Rotta model does not work. Fig. 6.8a shows that this form of the model is not satisfied by the data. When we use the expression (6.17) in which an additional model constant λ is introduced, a simultaneous fitting of the parameters c Π and λ allows to reproduce the data relatively well, giving c Π = 0.498 and λ = 1.50, even though the scatter remains important. This is shown in Fig. 6.8b.

To summarize, the model can be written as

T = ζτ E T (E T -E P ) L 2 , F i = c i E i , ε i = d i E i τ , Π(α) = α c Π τ (E T -λE P ) , τ (α) ∼ L (E P + αE T ) 1/2 , (6.24)
where d T ≈ d P = 0.90, c Π = 0.498, λ = 1.50, ζ remains undetermined, and c T and c P 6.5. Insights from the simplified model will be varied in order to form different ratios between them (as is done in Chapter 5). The model is now complete and we will evaluate its properties in the following section.

Insights from the simplified model

Now that we have a closed description for the toroidal-poloidal energy dynamics, we focus on the steady state predictions of the model. The toroidal balance, in the absence of toroidal forcing writes

0 = -T -ε T -Π. (6.25) 
Let us first consider the simplified case where T = 0. This is exact in the α = 0 limit. We have then directly a balance of energy redistribution by the pressure term Π and the toroidal dissipation ε T . Using the expressions of the model, this gives

α c Π τ (E T -λE P ) = -d T E T τ (6.26)
with an expression for the energy ratio,

γ ≡ E T E P = αλ d T /c Π + α . ( 6 

.27)

According to the model, the energy ratio is therefore a nonlinear function of α. We have plotted this relation in Fig. 6.9 and superimposed it to our numerical data. The agreement is satisfactory. What we have learned here is that the nonlinear dependence of the energy ratio on α is a direct consequence of the presence of the pressure-strain term, which redistributes the energy over the different energy components.

Another question is how the results from Chapter 5 change when the value of α is varied simultaneously with a change in the forcing anisotropy c T /c P . Does a clear bifurcation persist or will the traces of this bifurcation be washed away completely by a gradual introduction of the third dimension and thus of the pressure-strain energy redistribution ? In order to check this, we have integrated the model (6.24), with ζ = 0 at c T /c P = 0, Turbulence and ζ = 0.024 (the same value as that used in Chapter 5) for c T /c P = 0. The steady state results are presented in Fig. 6.10. We observe that the transition observed in Chapter 5 gradually smoothens out when α = 0. Particularly, the bifurcation of γ appears to be sensitive to α. For small α close to 0, as is shown in Fig. 6.10c, the behavior of α = 0 is very different from that of α = 0. Indeed, this has already been predicted by Eq.(6.17), explaining that once α = 0, Π will be an important source of energy transfer from the poloidal to the toroidal direction. (c) Log-scale view of γ for small α. 

Results at higher Reynolds numbers

The nature of our forcing and the numerical method we used restrict the value of the Reynolds number which can be reached in our simulations. In particular in the axisymmetric, non-swirling limit, where the dynamics are governed by an inverse cascade, the linear forcing tends to feed large scales too efficiently for the viscous dissipation to damp.

Therefore, since we want to assess whether the observed results are not only a low Reynolds number effect, in the present section we carry out Large-Eddy Simulations where the equations are modified using a Spectral Vanishing Viscosity method [START_REF] Séverac | A spectral vanishing viscosity for the LES of turbulent flows within rotating cavities[END_REF][START_REF] Peres | A 3D pseudospectral method for cylindrical coordinates. application to the simulations of rotating cavity flows[END_REF].

The effective viscosity used is ν = 10 -4 and is therefore 100 times smaller than that used in our DNS. The Reynolds number is increased by the same factor. The dimensional indicator α is now also present in the Laplacian of the Navier-Stokes equations. The forcing is again purely poloidal and linear. The limit α = 0 might be difficultly attainable with such a forcing, but we have succeeded to simulate approximately steady state regimes for the values α = 0.05, 0.15, 0.4, 0.6, 0.8, where γ(t) attained a constant value. The results of these LES calculations are compared to the DNS results in Fig. 6.11. It is observed that the swirl indicator γ increases more rapidly for small values of α when Re is higher. We have not enough data to confirm this trend, but simulations are still running (July 18th). If other values of α confirm the sharper transition towards threedimensionality, the values of c Π and λ in the pressure model and the value of d T in the dissipation model might need adjustment to correctly reproduce this. For λ = 0.5 and d T /c Π = 0.15, Fig. 6.11 shows that the relation (6.27) fits well the data produced by LES. This shows that (6.27) tends to the asymptotic value E T /E P ≈ 0.5 for large α. This is equivalent to the energy distribution in homogeneous isotropic turbulence at stationary state (E r = E z = E θ ). It seems that the different value, λ = 1.5 observed in the DNS, can be due to the limited Reynolds number.

Summary

A continuous change of dimension, from axisymmetric to three-dimensions was introduced in the system of equations. The result is a flow which develops an almost periodic azimuthal pattern of the kinetic energy, with a frequency inversely proportional to α.

Both the kinetic energy and velocity-gradient statistics show a clear transition. The energy model from Chapter 5 is adapted to this case by modelling the pressure-strain correlation term. The functional dependence of the swirl indicator γ as a function of the dimensionality α can be understood, using this model, as a balance between pressure distribution, forcing, and dissipation.

Chapitre 7

Conclusions and Perspectives

Conclusions

The objective of the present thesis was to contribute to a better understanding of axisymmetric turbulence. The main questions that were addressed are :

1. Are the theoretical predictions on axisymmetric turbulence, derived for the inviscid and unforced dynamics, valid in a more realistic context ?

2. What are the characteristics of the 2D2C-2D3C (swirling to non-swirling) transition in the framework of axisymmetric turbulence ?

3. When we introduce a non-integer dimension, how different is the case of axisymmetric turbulence from three-dimensional turbulence ? And how can we characterize this transitional cross-over ?

Strictly axisymmetric turbulence does not exist. However the theoretical results [START_REF] Leprovost | Dynamics and thermodynamics of axisymmetric flows : Theory[END_REF][START_REF] Naso | Statistical mechanics of Beltrami flows in axisymmetric geometry : Theory reexamined[END_REF][START_REF] Naso | Statistical mechanics of Beltrami flows in axisymmetric geometry : equilibria and bifurcations[END_REF] were derived for this case and puzzling agreement was observed between the theory and experimental results of three-dimensional turbulence where only the mean-field was axisymmetric [START_REF] Monchaux | Properties of steady states in turbulent axisymmetric flows[END_REF]. As in the work by Qu et al. [START_REF] Qu | Direct numerical simulation of axisymmetric turbulence[END_REF][START_REF] Qu | Cascades of energy and helicity in axisymmetric turbulence[END_REF], we therefore used direct numerical simulations to understand the properties of strictly axisymmetric turbulence, and to characterize the common features with two-and three-dimensional turbulence.

The numerical tools we used for this were a fully spectral code [START_REF] Qu | Numerical simulation of axisymmetric turbulence[END_REF] and a pseudospectral code [START_REF] Raspo | A spectral projection method for the simulation of complex threedimensional rotating flows[END_REF][START_REF] Peres | A 3D pseudospectral method for cylindrical coordinates. application to the simulations of rotating cavity flows[END_REF]. Both codes were modified in order to obtain the results presented in the previous chapters. The spectral code was modified in order to change the axial boundary condition from periodic to wall-bounded, by changing the expansion basis in the axial direction. The pseudo-spectral code was modified in order to allow for a non-integer dimension. All numerical details were presented in Chapter 3.

The results associated with the three questions above were presented in Chapters 4-6, respectively and will here be briefly summarized.

1. In the case of axisymmetric flow in a closed cylindrical vessel, in the case of spectral forcing at an intermediate wave-number, large-scale structures are observed and the associated predicted relations between the stream function and the vorticity are observed in the bulk of the flow. These structures are however not stable and do not last for more than several eddy turnover times. The destabilization may be caused by the spectral forcing. The toroidal flow does not show clear structures for the case considered.

When the flow is set into movement by counter-rotating top and bottom discs, the toroidal component of the flow is more important than for the case of isotropic forcing. Again large-scale structures are observed and the associated functional relationships among ψ, σ and ξ are observed at a Reynolds number of several thousands.

Chapitre 7. Conclusions and Perspectives

The presence of coherent structures and functional relationships showing that they are solutions of the Euler equations is shown for the first time in strictly axisymmetric forced turbulence.

2. This importance of the type of forcing on the toroidal dynamics motivates to look at the dependence of the toroidal forcing in a systematic way. For this we simulated more than 150 cases using the fully spectral code, where the poloidal and toroidal energy levels were controlled by the forcing parameters c P and c T , resulting in different values of the swirling strength γ = E T /E P . It is observed that in this system the swirling transition is a sharp bifurcation between swirling and non-swirling states, where the non-swirling state is characterized by a poloidal inverse energy cascade. To understand this bifurcation, a statistical model based on large scale dynamics is proposed, with model coefficients fitted from DNS data. The model reproduces well the bifurcation behavior, showing that the energy balance in axisymmetric turbulence can be well approximated by its large-scale dynamics.

3. These interesting observations trigger the question of how close the dynamics are to realistic flows, where the axisymmetry is, at best, only partial. The introduction of a non-integer dimension shows that the purely axisymmetric state is a singular limit and that only little variation in the azimuthal direction is sufficient to break the 2D2C dynamics. The simulations in this chapter are modelled, again, by an ODE model mimicking the dynamics of the toroidal and poloidal energy components. The new term, representing the pressure-strain redistribution of energy, allows to explain the dependence of the swirling level γ on the dimensionality parameter α which we introduced into the system.

These observations logically trigger new questions discussed as perspectives in the following.

Perspectives

Some open questions and random ideas are summarized here.

1. Given the success in describing the transitions in Chapters 5 and 6, one can ask what other types of flows can be described, on a global level, by simple ODE models such as the ones derived in this thesis.

2. We used a Rotta-type model in Chapter 6 to represent the return to isotropy of turbulence, but a free constant λ, in this model determined the isotropic state to which the flow tends to return. How is this value of λ determined as a function of the dimension, the geometry and the Reynolds number ?

3. Are the observed transitions in the current setting robust enough to be observed at very high Reynolds numbers ? Our simulations were limited by RAM and time constraints. Some evidence using LES was obtained in Chapter 6 that the dimensional cross-over is still observable for higher Reynolds numbers, but this should be checked in a more detailed way.

4. Furthermore, we have not attempted a simultaneous parameter-scan of α and γ (dimensionality and swirling strength). The model has shown that the swirl transition is far less abrupt for partially three-dimensional flows than for the purely axisymmetric case. This can be assessed in simulations to predict whether a swirling transition can possibly be observed in experiments.

7.2. Perspectives 91 5. Can the observed dynamics be compared to turbulence in magnetically confined fusion plasmas ? Indeed, in reactors of the tokamak type, the toroidal magnetic field reduces strongly the variations in the toroidal direction and this system is therefore perhaps the real system which is the closest to axisymmetric turbulence. Does the swirling transition exist in such systems, and if it does, what are the consequences for plasma confinement ?

Appendices

Annexe A

Mathematical Demonstration of Orthogonality and Completeness of the Basis B qn

We consider a cylinder of radius R and height H as fluid domain for an axisymmetric flow. In order to set the no-penetration boundary condition on the two ends of the cylinder, we have chosen the expansion method

u(r, z, t) = ±λ q,n>0 C qn (t)B qn (r, z) = ±λ q,n>0 C qn (t)I -1 2 qn    -k n γ q J 1 (γ q r) cos(k n z) λ qn γ q J 1 (γ q r) sin(k n z) γ 2 q J 0 (γ q r) sin(k n z)    , (A.1) 
where k n = nπ/H with n = 1, 2, 3, ..., γ q is the qth strictly positive root of J 1 (Rx) = 0, λ qn = ± γ 2 q + k 2 n , and I qn is the normalization constant. The demonstration will use the inner product defined by Eq.(3.3).

A.1 Orthogonality

The demonstration of orthogonality consists in showing that the inner product of B qn between different q or n or λ qn of opposite signs reduces to zero. The inner product of B q 1 n 1 and B q 2 n 2 writes

B q 1 n 1 , B q 2 n 2 =I -1/2 q 1 n 1 I -1/2 q 2 n 2 1 V H z=0 2π θ=0 R r=0 rdrdθdz [k n 1 k n 2 γ q 1 γ q 2 J 1 (γ q 1 r)J 1 (γ q 2 r) cos(k n 1 z) cos(k n 2 z) +λ q 1 n 1 λ q 2 n 2 γ q 1 γ q 2 J 1 (γ q 1 r)J 1 (γ q 2 r) sin(k n 1 z) sin(k n 2 z) + γ 2 q 1 γ 2 q 2 J 0 (γ q 1 r)J 0 (γ q 2 r) sin(k n 1 z) sin(k n 2 z) . (A.2) of the Basis B qn 1. n 1 = n 2 . One can derive :        cos n 1 π H z cos n 2 π H z dz = H 2π 1 n 1 -n 2 sin (n 1 -n 2 )π H z + 1 n1 + n2 sin (n 1 + n 2 )π H z sin n 1 π H z sin n 2 π H z dz = H 2π 1 n 1 -n 2 sin (n 1 -n 2 )π H z - 1 n1 + n2 sin (n 1 + n 2 )π H z , =⇒          H 0 cos n 1 π H z cos n 2 π H z dz = 0 H 0 sin n 1 π H z sin n 2 π H z dz = 0. , =⇒ B q 1 n 1 , B q 2 n 2 = 0. (A.3)
2. q 1 = q 2 . Recalling J 1 (γ q R) = 0, one obtains the following result :

       J 1 (γ q 1 r)J 1 (γ q 2 r)rdr = r γ 2 q 1 -γ 2 q 2 [γ q 2 J 1 (γ q 1 r)J 0 (γ q 2 r) -γ q 1 J 0 (γ q 1 r)J 1 (γ q 2 r)] J 0 (γ q 1 r)J 0 (γ q 2 r)rdr = r γ 2 q 1 -γ 2 q 2 [γ q 1 J 1 (γ q 1 r)J 0 (γ q 2 r) -γ q 2 J 0 (γ q 1 r)J 1 (γ q 2 r)] , =⇒          R 0 J 1 (γ q 1 r)J 1 (γ q 2 r)rdr = 0 R 0 J 0 (γ q 1 r)J 0 (γ q 2 r)rdr = 0. , =⇒ B q 1 n 1 , B q 2 n 2 = 0. (A.4) 3. n 1 = n 2 = n, q 1 = q 2 = q, but λ q 1 n 1 = |λ qn | and λ q 2 n 2 = -|λ qn |.
In this case the inner product (A.2) becomes

B q 1 n 1 , B q 2 n 2 =I -1 qn 1 V H z=0 2π θ=0 R r=0 rdrdθdz ( k 2 n γ 2 q J 2 1 (γ q r) cos 2 (k n z) -λ 2 qn γ 2 q J 2 1 (γ q r) sin 2 (k n z) + γ 4 q J 2 0 (γ q r) sin 2 (k n z) ) . (A.5)
After some algebra using the following identities :

R 0 J 2 1 (γ q r)rdr = R 2 2 J 2 0 (γ q R), R 0 J 2 0 (γ q r)rdr = R 2 2 J 2 0 (γ q R), H 0 cos 2 nπ H z dz = H 2 , H 0 sin 2 nπ H z dz = H 2 ,
(A.6) of the Basis B qn the function R 1 (r) can be expanded by using 1st-order Bessel functions of the first kind J 1 (γ p r) with J 1 (γ p R) = 0. These functions form an orthogonal and complete basis for any function defined on [0, R] and are equal to 0 at both ends :

R 1 (r) = +∞ p α p J 1 (γ p r), α p = 2 R 2 J 2 0 (γ p R) R 0 R 1 (r)J 1 (γ p r)rdr. (A.14)
Using such basis functions, ψ, u r and u z can be rewritten as

ψ(r, z) = r +∞ p α p J 1 (γ p r)Z 1 (z), (A.15) u r (r, z) = - +∞ p α p J 1 (γ p r)Z 1 (z), (A.16) u z (r, z) = +∞ p 1 r α p J 1 (γ p r) + α p J 1 (γ p r) Z 1 (z) (A.17) = +∞ p α p γ p J 0 (γ p r)Z 1 (z). (A.18)
Similarly, u θ can be separated into two parts concerning respectively r and z, and a decomposition of the r part into a series of J 1 (γ p r) is adequate :

u θ = R 2 (r)Z 2 (z) = +∞ p β p J 1 (γ p r)Z 2 (z), β p = 2 R 2 J 2 0 (γ p R) R 0 R 2 (r)J 1 (γ p r)rdr. (A.19)
We can then decompose the velocity field u by calculating the coefficients C qn :

C qn = 1 V I 1/2 qn V u • B qn rdrdθdz = 1 V I 1/2 qn V              - +∞ p α p J 1 (γ p r)Z 1 (z) +∞ p β p J 1 (γ p r)Z 2 (z) +∞ p α p γ p J 0 (γ p r)Z 1 (z)              •   
-k n γ q J 1 (γ q r) cos(k n z) λ qn γ q J 1 (γ q r) sin(k n z) γ 2 q J 0 (γ q r) sin(k n z)

   rdrdθdz = 1
V I 1/2 qn V +∞ p α p J 1 (γ p r)Z 1 (z)k n γ q J 1 (γ q r) cos(k n z) + +∞ p β p J 1 (γ p r)Z 2 (z)λ qn γ q J 1 (γ q r) sin(k n z) + +∞ p α p γ p J 0 (γ p r)Z 1 (z)γ 2 q J 0 (γ q r) sin(k n z) rdrdθdz.

(A.20)

Due to the orthogonality of Bessel functions of the first kind, the integrals R 0 J 1 (γ p r)J 1 (γ q r)rdr and R 0 J 0 (γ p r)J 0 (γ q r)rdr are equal to 0 when p = q. Thus the expression of C qn can be simplified as

C qn = 1 V I 1/2 qn V
α q J 1 (γ q r)Z 1 (z)k n γ q J 1 (γ q r) cos(k n z)

+ β q J 1 (γ q r)Z 2 (z)λ qn γ q J 1 (γ q r) sin(k n z)

+ α q γ q J 0 (γ q r)Z 1 (z)γ 2 q J 0 (γ q r) sin(k n z) rdrdθdz = R 2 J 2 0 (γ q R)γ q 2π 2V I 1/2 qn H 0 α q k n Z 1 (z) cos(k n z) + β q λ qn Z 2 (z) sin(k n z) + α q γ 2 q Z 1 (z) sin(k n z) dz.

(A.21)

Using integration by parts, one obtains Then the expression of C qn can be recombined yielding C qn = J 2 0 (γ q R)γ q HI 1/2 qn H 0 α q k 2 n Z 1 (z) sin(k n z) + β q λ qn Z 2 (z) sin(k n z) + α q γ 2 q Z 1 (z) sin(k n z) dz = J 2 0 (γ q R)γ q HI 1/2 qn H 0 β q λ qn Z 2 (z) sin(k n z) + α q λ 2 qn Z 1 (z) sin(k n z) dz.

(A. [START_REF] Li | Inverse cascades of angular momentum[END_REF] In order to verify whether the basis is complete, the usual method is to recompose the expanded fields and to compare them with their initial expressions to see if there is a loss of information. We verify first the scalar field ψ. Using the basis B qn , one has u r (r, z) = -±λ q,n>0 C qn I -1 2 qn k n γ q J 1 (γ q r) cos(k n z), C qn I -1 2 qn γ q J 1 (γ q r) sin(k n z). C qn I -1 2 qn γ q J 1 (γ q r) sin(k n z)dz = r ±λ n>0,q J 2 0 (γ q R)γ 2 q HI qn H 0 β q λ qn Z 2 (z ) sin(k n z ) + α q λ 2 qn Z 1 (z ) sin(k n z ) dz J 1 (γ q r) sin(k n z) = r +λ n>0,q J 2 0 (γ q R)γ 2 q HI qn H 0 β q λ qn Z 2 (z ) sin(k n z ) + α q λ 2 qn Z 1 (z ) sin(k n z ) dz J 1 (γ q r) sin(k n z)

+ r -λ n>0,q J 2 0 (γ q R)γ 2 q HI qn H 0 β q λ qn Z 2 (z ) sin(k n z ) + α q λ 2 qn Z 1 (z ) sin(k n z ) dz J 1 (γ q r) sin(k n z)

= 2r

n>0,q J 2 0 (γ q R)γ 2 q HI qn H 0 α q λ 2 qn Z 1 (z ) sin(k n z )dz J 1 (γ q r) sin(k n z)

= r q α q J 1 (γ q r) Then (A.28) is proved, meaning that the decomposition and recomposition via the basis B qn keeps all information of the scalar field ψ. It should be noticed that both +λ and -λ modes are considered in the demonstration, explaining their compulsory coexistence in forming the basis. By a similar interpretation, it is not difficult to demonstrate that the scalar field u θ suffers no information loss through the expansion using B qn . One remark is that the k n in the basis is defined as nπ/H, which is in fact 2nπ/(2H) and is indeed the wave-number in the z direction for the extended odd domain. This also means that by using a spectral method using this basis, we are actually simulating the evolution of the whole odd ψ field defined over [-H, H]. After the advancement of each time step, what we obtain is still an odd field with boundary conditions ψ(r, 0) = ψ(r, H) = ψ(r, -H) = 0, which is a consequence imposed by the properties of sine functions, and which is desirable in our case.

In conclusion, the basis B qn is complete for incompressible axisymmetric velocity fields with boundary conditions : u θ (0, z) = 0, u θ (R, z) = 0, u θ (r, 0) = 0, u θ (r, H) = 0, ψ(0, z) = 0, ψ(R, z) = 0, ψ(r, 0) = 0, ψ(r, H) = 0.

Annexe B

Modal Expression of Statistical

Quantities in the FSM

In this appendix we give the expressions of the principal integral quantities, as a function of the expansion coefficients C qn used in our fully spectral code. These quantities are the kinetic energy E, the first two non-zero moments of the angular momentum I 1 and I 2 , the circulation H 0 and the helicity H 1 . By substituting the expansion of u Eq.(3.16b) and ω Eq.(3.16c) in the definition of the quantities of interest, one can derive their analytical expressions as a function of C qn :

The total kinetic energy qn λ qn γ q -R 2 γ q J 0 (γ q R) 2H nπ = 4 π ±λ q,odd n -C qn λ qn J 0 (γ q R) nγ q |λ qn J 0 (γ q R)| = 4 π q,odd n (C -λ qn -C +λ qn )J 0 (γ q R) nγ q |J 0 (γ q R)| ,

E = 1 V V 1 2 u 2 dV = 1 2V H z=0 2π θ=0 R r=0 ±λ q 1 n 1 ±λ q 2 n 2 C q 1 n 1 C q 2 n 2 I -1 2 q 1 n 1 I -1 2 q 2 n 2 B q 1 n 1 • B q 2 n 2 rdrdθdz = 1 2V H z=0 2π 
(B.2)
The variance of the angular momentum

I 2 = 1 V V σ 2 dV = 1 V H z=0 2π θ=0 R r=0 u 2 θ r 3 drdθdz = 2π V H z=0 R r=0 ±λ q 1 n 1 ±λ q 2 n 2 C q 1 n 1 C q 2 n 2 I -1 2 q 1 n 1 I -1 2
q 2 n 2 λ q 1 n 1 λ q 2 n 2 γ q 1 γ q 2 J 1 (γ q 1 r)J 1 (γ q 2 r) sin(k n 1 z) sin(k n 2 z)r 3 drdz

= 2π V q 1 =q 2 =q,n C +λ qn -C -λ qn C +λ qn -C -λ qn λ 2 qn I -1 qn γ 2 q H z=0 R r=0
J 2 1 (γ q r) sin 2 (k n z)r 3 drdz

+ 2π V q 1 =q 2 ,n C +λ q 1 n -C -λ q 1 n C +λ q 2 n -C -λ q 2 n |λ q 1 n λ q 2 n |I -1 2 q 1 n I -1 2 q 2 n γ q 1 γ q 2 H z=0 R r=0
J 1 (γ q 1 r)J 1 (γ q 2 r) sin(k n z) sin(k n z)r 3 drdz = 2π πR 2 H q 1 =q 2 =q,n

C +λ qn -C -λ qn 2 λ 2 qn γ 2 q I qn R 4 6 J 2 0 (γ q R) H 2 + 2π πR 2 H q 1 =q 2 ,n C +λ q 1 n -C -λ q 1 n
C +λ q 2 n -C -λ q 2 n |λ q 1 n λ q 2 n |γ q 1 γ q 2 I 1 2

q 1 n I 1 2
q 2 n 4R 2 γ q 1 γ q 2 (γ 2 q 1 -γ 2 q 2 ) 2 J 0 (γ q 1 a)J 0 (γ q 2 a)

H 2 = q 1 =q 2 =q,n R 2 C +λ qn -C -λ qn 2 6 + q 1 =q 2 ,n
4γ q 1 γ q 2 C +λ q 1 n -C -λ q 1 n C +λ q 2 n -C -λ q 2 n J 0 (γ q 1 a)J 0 (γ q 2 a) (γ 2 q 1 -γ 2 q 2 ) 2 |J 0 (γ q 1 a)J 0 (γ q 2 a)| ,

(B.3)
The circulation C qn |λ qn |(1 -J 0 (γ q R)) nγ q |J 0 (γ q R)| ,

H 0 = 1 V V ξdV = 1 V H z=0 2π 
(B.4)
The helicity

H 1 = 1 V V ξσdV = 1 V H z=0 2π θ=0 R r=0 ω θ u θ rdrdθdz = 2π V ±λ q 1 n 1 ±λ q 2 n 2 C q 1 n 1 C q 2 n 2 I -1 2 q 1 n 1 I -1 2
q 2 n 2 λ 2 q 1 n 1 λ q 2 n 2 γ q 1 γ q 2 R r=0 J 1 (γ q 1 r)J 1 (γ q 2 r)rdr These modal expressions give us the possibility to analyze the contributions of different modes on the principal statistical quantities. For instance, one can observe that only odd n modes contribute to the angular momentum I 0 and to the circulation H 0 , and that the helicity H 1 can be separated into two parts consisting respectively of positive and negative λ modes. Such a decomposition was used in [START_REF] Qu | Cascades of energy and helicity in axisymmetric turbulence[END_REF] to investigate the individual dynamics of different types of helical modes (see also Alexakis [74]). Generic expressions can also be derived for the enstrophy Z = 1 V V ω 2 /2 dV , the poloidal kinetic energy

E P = 1 V V (u 2 r + u 2 z )/2 dV , the toroidal kinetic energy E T = 1 V V u 2 θ /2 dV , etc.
Annexe C

Calculation of ψ in the Axisymmetric PSM

As shown by Eq.(2.41), there exist relationships between ψ, u r and u z when the flow is axisymmetric. By knowing u r and u z , one can hence derive the ψ field. Due to the no-penetration condition, u r equals zero on the lateral boundary and can therefore be decomposed by Bessel functions of the first kind. We then choose to obtain ψ from u r , and for simplicity, we pick J 1 (γ q r) to decompose the r direction and cos(k n z) in the z direction where γ q is the qth root of J 1 (Rx) = 0 and k n = (nπ)/H with n = 0, 1, 2, .... u r is thus decomposed as The Gauss quadrature is again used to numerically calculate the integrals. As the data obtained by this PSM fall on the Gauss-Lobatto collocation points designed for Chebyshev polynomials on both r and z directions, we have used the Gauss-Chebyshev quadrature method based on Gauss-Lobatto collocation points.

This decomposition method will be applied to calculate not only the ψ field for comparison with that obtained by the FSM as a verification (where radial slip is allowed on vertical ends), but also ψ fields with realistic wall boundaries to extract functional relationships between ψ, σ and ξ. Further, this quadrature method is also used to calculate the kinetic energy E, the angular momentum I 1 , its variance I 2 , the circulation H 0 and the helicity H 1 through their original definitions by direct integration in physical space. In fact, because there may be energy forcing in the form of disc rotation, u θ can be non-zero on top and bottom of the cylinder. Thus the basis B qn engaged in the FSM is no longer complete for such cases, and the statistical quantities can no longer be calculated through their expression of modal sums. 

D.2 Dissipation rates in non-axisymmetric PSM simulations

Since the basis B qn is not rigorously complete for flows forced by rotating discs, the energy dissipation rate ε cannot be calculated through its modal summation form either, and should be analysed in another way. We consider the governing equation of the kinetic energy which writes

1 V D ū • ∂ ū ∂ t + (ū • ∇) ū dV = 1 V D ū • - 1 ρ ∇p + ν∇ 2 ū dV , (D.6)
where V is the normalized volume of the computational domain. In order to calculate the energy dissipation, one should compute the integral of ū • ∇ 2 ū over the whole domain including wall boundaries. ū • ∇ 2 ū can be rewritten as

ū • ∇ 2 ū = ū • [∇(∇ • ū) -∇ × ∇ × ū] = -ū • (∇ × ∇ × ū) = ∇ • (ū × (∇ × ū)) -(∇ × ū) 2 .
(D.7)

One can remark that -(∇ × ū) 2 is always negative and thus contributes to the dissipation. The volume integrals of ∇ • (ū × (∇ × ū)) can be written as The calculation of ε E and ε Z introduced in this appendix corresponds more generally to cylindrical flows, and the axisymmetric case is only a special situation. Thus these methods will be used to calculate ε E and ε Z in Section 4.2 where axisymmetric flows are simulated by the PSM with mechanical forcing, and the obtained ε E and ε Z will be used to test the quality of the mesh resolution. Dissipation rates of different energy components of non-axisymmetric flows in Chapter 6 are also calculated in this way.

1 V D ∇ • (ū × (∇ × ū)) dV = 1 V ∂D (ū × (∇ × ū)) • ndS, (D.

Annexe E

Details for Axisymmetric Modelling

E.1 Governing equations for poloidal and toroidal energy components

To obtain the governing equations for the poloidal and toroidal energy components : and focuses on the nonlinear terms and pressure terms. To deduce the energy governing equations, one multiplies Eq.(E.2a) by u r , Eq.(E.2b) by u θ and Eq.(E.2c) by u z , and sums up the r and z components to express the poloidal energy component. By applying the volume-integration to the obtained equations, one can write the forced governing equations for E P and E T :

E P ≡ 1 V V 1 2 (u 2 r + u 2 z )dV, E T ≡ 1 V V 1 2 (u 2 
∂E P ∂t + 1 V V (∇ • J P - u r u 2 θ r )dV = -ε P + F P , ∂E T ∂t + 1 V V (∇ • J T + u r u 2 θ r )dV = -ε T + F T , (E.3)
where ε P and ε T are viscous dissipation rates in corresponding directions, and F P and F T are energy forcing powers. We especially focus on the second terms (integral forms of the transfer terms) and the disappearance of the pressure terms in Eq.( E.3).

-With the boundary conditions u z (z = 0) = 0 and u z (z = H) = 0, the volumeintegration of Term ( 2) is shown to vanish : This shows that the pressure has no influence on the toroidal-to-poloidal energy redistribution. But if one treats separately the radial and axial energy components, one remarks that the pressure is indeed an active factor to reallocate energy between the r and z directions, since the volume-averaged results u r p/r and u z p/z are not 0. In 

E.2 Dynamic equation of the toroidal-to-poloidal transfer

In this appendix we derive the model for the toroidal-to-poloidal transfer term u r u 2 θ /r . The idea is to derive the transport equation of u r u 2 θ from the Navier-Stokes equations. By manipulating the radial and azimuthal components of the Navier-Stokes equations, an equation for u r u 2 θ can be derived. Since our object is a pure transfer term,

1. 3 .

 3 Dimensionality transitions (Chapters 5 & 6) 3

. 5 ) 6 )

 56 This offers the possibility to combine the incompressibility condition and the dynamical equation by substituting u = (∂ y ψ, -∂ x ψ) in Eq.(2We introduce here the definition of Poisson brackets {a, b} = ∂ x a∂ y b -∂ y a∂ x b, via which (2.6) turns into a simpler form ∂ω ∂t + {ω, ψ} = ν∆ω.(2.7)

D u 2

 2 (r)/2dr, the evolution equation of E over a spatial statistically homogeneous or periodic domain D in either two or three dimensions writes dE dt = -νZ (2.8) with Z = D ω 2 (r)dr the enstrophy. Then in the absence of viscosity, one gets simply ∂ t E = 0, showing the conservation of the kinetic energy in 2D and 3D 1 .

. 10 )

 10 recalling that the case of n = 2 corresponds to the conservation of the 2D enstrophy. The justification Eq.(2.10) is equivalent to say that integrals of any smooth function C(ω) over the domain D are conserved d dt D C(ω(r))dr = 0. (2.11)

Figure 2 . 1 :

 21 Figure 2.1: Picture cited from[START_REF] Biskamp | Magnetohydrodynamic turbulence[END_REF]. Energy spectrum of a 2D forced turbulent flow. The forcing takes place at medium scales k in , and energy is largely transferred to larger scales characterized by k E , yielding an inverse energy cascade. Scaling slopes can be obtained via dimensional analysis and are numerically as well as experimentally shown to be -5/3 and -3 for respectively the inverse energy cascade and the direct enstrophy (denoted as Ω in this picture) cascade. ε and η Ω are corresponding energy and enstrophy flux rates.

Figure 3 . 1 :

 31 Figure 3.1: Sketch of the computational domain.

  .24) (a) Case 1. (b) Case 2. (c) Case 3.

Figure 3 . 2 :

 32 Figure 3.2: Comparison of the stream function ψ in the three cases detailed in Tab.3.1. With naked eye, original (top) and recomposed (bottom) fields show no difference for Cases 1 and 3, while they are slightly different close to the top and bottom of the cylinder for Case 2 due to insufficiency of vertical resolution.

Figure 3 . 3 :

 33 Figure 3.3: Temporal signals of statistical invariants for inviscid simulations under different resolutions. The curves are normalized by initial values of corresponding quantities.

3 .

 3 For each velocity component as well as for pressure, both Dirichlet and Neumann boundary conditions can be imposed to the walls of the cylinder. When Dirichlet boundary condition are imposed (the boundary value can only be 0), one imposes the no-penetration condition ; when Neumann boundary condition is switched on (the value of the boundary derivative against the wall's normal direction can also only be 0), one imposes the no-slip condition.

Figure 3 . 4 :

 34 Figure 3.4: Sketch of the PSM numerical set-up. The impellers are simplified into symmetrically counter-rotating discs.

3. 2 . 2

 22 Adaptation of the code to investigate the transition from axisymmetric to 3D turbulence (∂θ → α∂ θ ; α ∈ [0, 1]) As already mentioned, the original version of the code integrates the Navier-Stokes equation without restriction on the spatial derivatives. Our purpose is to investigate axisymmetric flows (∂ θ = 0), but also flows slowly varying in the azimuthal direction (∂ θ → α∂ θ with 0 α 1).

. 43 )

 43 where t is the dimensionless time, ūr , ūθ and ūz are dimensionless velocity components, Re Ω ≡ R 2 Ω/ν is the large-scale Reynolds number based on Ω, and p ≡ p/(ρR 2 Ω 2 /2) is the dynamic pressure coefficient based on Ω. All of the derived variables are then discretized within (r, z) ∈ [-1, 1] × [-1, 1] by Chebyshev polynomials. There are two arguments to clarify before fitting these equations into numerical simulations :1. Since L T ∈ [R, +∞), one has α ∈ [0, 1]. For the case where α = 0, the toroidal characteristic length scale is infinity. This also leads to the disappearance of azimuthal derivation terms, and Eq.(3.43) returns to its axisymmetric version. For α = 1, toroidal characteristic length scale is R, and Eq.(3.43) keeps the general 3D version.

  3.5), viscosity (ν = 0.005), and boundary conditions : ūr = 0 on lateral walls, ∂ ūr ∂ r = 0 on top and bottom, ūθ = 0 on ∂D, ∂ ūz ∂ z = 0 on lateral walls, ūz = 0 on top and bottom, (3.48)

Fig. 3 .

 3 Fig.3.6 is the contour plots of ψ at a certain time during the evolution and shows qualitatively the coincidence of the two simulations. Further, the coincidence is quantitatively validated by the kinetic energy curves in Fig.3.7 which are perfectly superimposed. Besides, resolution tests and Courant number evolution are also shown (see Figs.3.8 and 3.9), showing the reliability of the two simulations. For details, the resolution for the FSM test case is (q max , n max ) =[START_REF] Shih | Fundamentals in turbulence modeling[END_REF][START_REF] Giuliani | Critical "dimension" in shell model turbulence[END_REF], giving rise to a maximal effective wave-number of 59, and for the PSM test case it is (N, M ) = (246, 257), giving rise to a maximal effective wave-number of 247 ; the time step of the FSM test case varies along the simulation, as mentioned in Section 3.1.5, and ∆t for the PSM test case is fixed as 5 × 10 -4 s.

Figure 3 . 5 :

 35 Figure 3.5: Visualization of initial conditions for the comparison cases.

Figure 3 . 6 :Figure 3 . 7 :Figure 3 . 8 :

 363738 Figure 3.6: Contour plots of ψ for the PSM and the FSM at t = 5 s. Some slight differences can be remarked and may be due to numerical errors.

Figure 3 . 9 :

 39 Figure 3.9: Wave-number comparison.

  signals of the statistical quantities and the resolution tests are shown in Fig.4.1. Time is normalized by a characteristic time defined as

Figure 4 . 1 :

 41 Figure 4.1: Temporal signals of statistical invariants and resolution tests for a forced simulation. In this simulation, velocity fields of 2τ t 15τ are considered stationary and are thus used.

  Presence of a dipole system. (c) Dissolution of the positive structure. (d) Strong disorder of the flow. (e) Reorganization into a new dipole.(f) Tendency of destabilization again.

Figure 4 . 2 :

 42 Figure 4.2: Contour plots of the stream function ψ within the poloidal plane (r, z) ∈ [0, R] × [0, H] at different times. Both emergence and dissolution of big structures can be observed.

Figure 4 . 3 :

 43 Figure 4.3: Contour plots of the angular momentum σ within the poloidal plane (r, z) ∈ [0, R] × [0, H] at different times. No persistent structure appears.

Figure 4 . 4 :

 44 Figure 4.4: Time-averaged ψ, σ and relationships of σ = F (ψ) and ξ -σ σ/r 2 = G(ψ) during 4τ t 6τ . The scatter plots of functions F and G consider only the points within the bulk of (r, z) ∈ [3R/16, 7R/8] × [H/16, 15H/16].

Figure 4 . 5 :

 45 Figure 4.5: Time-averaged energy flux spectrum. Both an inverse and a forward energy fluxes are observed.

  Spectra of E, ET and EP .

  PDFs of velocity components.

Figure 4 . 6 :

 46 Figure 4.6: Energy spectra and velocity PDF of a helical case from the FSM code.

Figure 4 . 7 :

 47 Figure 4.7: Picture from [21], representing the working principle of a von Kármán device. Toroidal mean flow is indicated by blue, poloidal mean flow by red arrows.

Figure 4 . 8 :

 48 Figure 4.8: Temporal signals of statistical invariants and resolution tests for a forced simulation.As explained in Appendix C, the dissipation rate of I 1 and H 1 in a mechanically forced case are not well defined, and hence only the energy and enstrophy dissipation rates are used to check the resolution.

  (a) t = 88τ . (b) t = 90τ . (c) t = 92τ . (d) t = 94τ . (e) t = 96τ . (f) t = 97τ .

Figure 4 . 9 :

 49 Figure 4.9: Contour plots of the stream function ψ within the poloidal plane (r, z) ∈ [0, R] × [0, H] at different times.

  (a) t = 88τ . (b) t = 90τ . (c) t = 92τ . (d) t = 94τ . (e) t = 96τ . (f) t = 97τ .

Figure 4 . 10 :

 410 Figure 4.10: Contour plots of the angular momentum σ within the poloidal plane (r, z) ∈ [0, R] × [0, H] at different times.

Figure 4 . 11 :

 411 Figure 4.11: Time-averaged ψ, σ and relationships σ = F (ψ) and ξ -σ σ/r 2 = G(ψ) during 53τ ≤ t ≤ 97τ for Re Ω = 25000. The scatter plots of functions F and G consider only the points within the region of (r, z) ∈ [0, 0.81R] × [-0.56H/2, 0.56H/2].

Figure 4 . 12 :

 412 Figure 4.12: Pictures cited from [21] showing time-averaged fields. Time-averaged ψ and u θ for Re Ω = 2.5 × 10 5 . The arrow plot represents the ψ field and the colored contour displays the u θ field.

Figure 4 . 13 :

 413 Figure 4.13: Time-averaged ψ, σ and relationships σ = F (ψ) and ξ -σ σ/r 2 = G(ψ) during the stationary state for Re Ω = 2500. The scatter plots of functions F and G consider only the points within the bulk of (r, z) ∈ [0, 0.81R] × [-0.56H/2, 0.56H/2].

Figure 4 . 14 :Figure 4 . 15 :

 414415 Figure 4.14: Time-averaged ψ, σ and relationships σ = F (ψ) and ξ -σ σ/r 2 = G(ψ) during the stationary state for Re Ω = 250. The scatter plots of functions F and G consider only the points within the bulk of (r, z) ∈ [0, 0.81R] × [-0.56H/2, 0.56H/2].

Figure 5 . 1 :

 51 Figure 5.1: Time evolution of the poloidal and toroidal energy components for : (a) c P = 3, c T = 1 (c T /c P = 1/3) and (b)c P = 1, c T = 3 (c T /c P = 3). Time is normalized by τ = R/(2E/3) 1/2, where E is the total kinetic energy of the flow time-averaged in the statistically steady state.
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 5253 Figure 5.2: (a) Ratio between the energy components time-averaged during the steady state, γ = E T /E P , plotted as a function of the forcing parameters ratio, c T /c P , for the complete set of simulations. (b) Transfer from the toroidal to the poloidal energy components, T = u 2 θ u r /r , plotted as a function of c T /c P .

Figure 5 . 4 :

 54 Figure 5.4: Time-averaged (a,b) energy spectra of the total, poloidal and toroidal energy, and (c,d) energy flux. Values of the forcing parameters : (a,c) c P = 3, c T = 1 (c T /c P = 1/3), (b,d) c P = 1.2, c T = 3.6 (c T /c P = 3). The vertical dashed lines indicate the range of wave-numbers in which forcing is applied.
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 555 Figure 5.5: E T E 1/2

3 / 2 P 2 P

 322 /L (γ) (Eqs.(5.12), (5.14) and (5.21)) ; and (iii) T as a function of E T E 1/(γ -1)/L (γ) (Eqs.(5.20), (5.14) and (5.21)).

Chapitre 5 .Figure 5 . 6 :

 556 Figure 5.6: Determination of the model parameters (a) β P , β T (b) d P and (c) ζ by linear regression of the DNS data.

  5.7(b)).

Figure 5 . 7 :

 57 Figure 5.7: (a) Steady state values of the transfer T plotted as a function of γ : models (5.20, 5.14) with Eq.(5.21) and ζ = 0.024, compared with the numerical simulations results. (b) Steady state values of γ plotted as a function of c T /c P : analytical solution of the model (5.26) with β P = 51, β T = 156, d P = 0.28, and ζ = 0.024, compared to the numerical simulations results. The horizontal dashed line shows the asymptotic value 1 + 1 + 4d P /ζ /2.

Figure 6 . 1 :

 61 Figure 6.1: Temporal evolution of Courant number for α = 0.3. After a certain early moment, the Courant number is smaller than 0.5, thereby confirming that the temporal resolution is sufficient.

  6.2). It is shown in Fig.6.3 that the general trend of the number of lobes is well reproduced by the function N s = 2/α.

  (a) α = 0. (b) α = 0.05. (c) α = 0.1. (d) α = 0.15 : 9-lobe pattern. (e) α = 0.2 : 10-lobe pattern. (f) α = 0.25 : 8-lobe pattern. (g) α = 0.3 : faint 5-lobe pattern. (h) α = 0.4. (i) α = 0.5. (j) α = 0.6 : 4-lobe pattern. (k) α = 0.7 : 4-lobe pattern. (l) α = 0.8.(m) α = 0.9.(n) α = 1.0 : symmetric pattern.

Figure 6 . 2 :

 62 Figure 6.2: Typical instantaneous kinetic energy distribution at z = 0 during the statistically steady state of the simulations.

Figure 6 . 3 :Figure 6 . 4 :

 6364 Figure 6.3: Number of lobes observed in the kinetic energy visualization in the horizontal median plane of the cylinder, for different values of α. The trend is reproduced by the function N s = 2/α.

Chapitre 6 .Figure 6 . 5 :

 665 Figure 6.5: Axisymmetry level described by the ratios R r , R θ , R z . For α = 0, the three ratios are 0, as expected due to the axisymmetry constraint. (a) linear-linear scale ; (b) linear-log scale.

  We now introduce gradient-based indicators to measure the axisymmetry level. These indicators are

Figure 6 . 6 :Figure 6 . 7 :Figure 6 . 8 :

 666768 Figure 6.6: Scatter plots of dissipation rates to extract dissipation coefficients d P and d T . The linear fittings show that the model (6.20,6.23) for the dissipation rates appears to work well.

Figure 6 . 9 :

 69 Figure6.9: Energy ratio γ = E T /E P plotted as a function of α for c T = 0. Dots stand for numerical data, while the line stands for Eq.(6.27).

Figure 6 .

 6 Figure 6.10: (a-c) Energy ratio γ = E T /E P plotted as a function of the forcing amplitude ratio c T /c P , for different values of α.

Figure 6 . 11 :

 611 Figure 6.11: Energy ratio γ = E T /E P plotted as a function of α at c T = 0 and c P = 0.04 : comparison between DNS (Re ≈ 300), LES (Re ≈ 30000) and Eq.(6.27) (with λ = 0.5 and d T /c Π = 0.15).
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 0101 (z) cos(k n z)dz = [Z 1 (z) cos(k n z)] z=H z=0 + H 0 k n Z 1 (z) sin(k n z)dz. (A.22)Recall that Z 1 vanishes at the two ends of the cylinder : Z 1 (0) = Z 1 (H) = 0. This leads toH (z) cos(k n z)dz = H 0 k n Z 1 (z) sin(k n z)dz. (A.23) 

(A. 25 ) 1 2

 251 ψ(r, z) = -ru r (r, z)dz = r ±λ n>0,q C qn I qn k n γ q J 1 (γ q r) cos(k n z)dz = r ±λ n>0,q

(A. 26 )

 26 of the Basis B qn We then substitute (A.24) into (A.26) to get ψ(r, z) = r ±λ n>0,q

0 Z 1 2 H H 0 Z 1 Z 1 (Z 1 (

 0120111 (z ) sin(k n z )dz sin(k n z) .(A.[START_REF] Pouquet | Helicity dynamics, inverse, and bidirectional cascades in fluid and magnetohydrodynamic turbulence : a brief review[END_REF] By comparing with (A.15), we now have to proven>0 (z ) sin(k n z )dz sin(k n z) = Z 1 (z).(A.28)In fact, since Z 1 equals 0 at z = 0 and H, we can extend it from the interval [0, H] to [-H, H] to form an odd function. Then the extended Z 1 can be decomposed into a sum of Fourier series over [-H, H] with a period of 2H : n = 1, 2 . . .(A.31)As Z 1 is now an odd function, we have a n = 0, and Z 1 depends only on sine functions :

1 2

 1 qn C +λ qn B +λ qn + C -λ qn B -λ qn • C +λ qn B +λ qn + C -λ qn B -λ qn rdrdθdz qn λ qn γ q J 1 (γ q r) sin(k n z)r 2 drdθdz

J 1

 1 (γ q r) sin(k n z)drdz

  n 1 z) sin(k n 2 z)dz = 2π V qn (C +λ qn + C -λ qn )(C +λ qn -C -λ qn )|λ 3 qn |I qn + C -λ qn )(C +λ qn -C -λ qn )|λ qn | 2 = 1 2 qn ([C +λ qn ] 2 -[C -λ qn ] 2 )|λ qn | = 1 2 qn ([C +λ qn ] 2 λ + qn + [C -λ qn ] 2 λ -

  u r (r, z) = qn ûr,qn J 1 (γ q r) cos(k n z), (C.1)and because u r = -(1/r)∂ z ψ, one has ψ(r, z) = -ru r (r, z)dz = -r q,n=0 ûr,qn J 1 (γ q r)z -r q,n>0 ûr,qn J 1 (γ q r) sin(k n z) k n . (C.2)Special emphasis should be given to the definition of the domain. Whereas (r, z) ∈ [-1, 1] × [-1, 1] for Chebyshev polynomials, the decomposition above requires (r, z) ∈ [0, R] × [0, H]. ūr (r, z) should first be rescaled to u r (r, z) in physical space, and ûr coefficients are calculated by ûr,qn = r, z)J 1 (γ q r)rdrfor n = 0, 4 HR 2 J 2 0 (γ q R) H 0 cos(k n z)dz R 0u r (r, z)J 1 (γ q r)rdr for n = 1, 2, ....(C.3)
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9 )

 9 With the no-penetration and no-slip condition, (ū × (∇ × ū))•n is zero on wall boundaries except ūθ ∂ z ūθ on the top and the bottom of the cylinder due to the disc rotation. Thus, one has1 V D ∇ • (ū × (∇ × ū)) dV =1 the energy injection. Otherwise, if disc rotation is switched off, this term vanishes and has no contribution.In conclusion, the expression of the energy dissipation takes the formεE = 1 V D ν(∇ × ū) 2 dV . (D.11)By a similar way, one can deduce that the enstrophy dissipation rate takes the form εZ = 1 V D ν(∇ × ω) 2 dV . (D.12)

-

  With the boundary condition u r (r = R) = 0, the volume-integration of the combination of terms (1) and (3) also equals 0 :

Figure E. 1 :

 1 Figure E.1: Ratio of E r /E z . The energy isotropization between the radial and axial directions can be observed : as γ increased, the ratio is stabilized around 1 though it has a slight rising tendency for large γ.
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1: Testing cases verifying the completeness of B qn . P 10 is the 10th-order Legendre polynomial.

turned me from nothing into something. I, something not good at all but was then hoping to be something slightly better, headed to the

one gets

since λ 2 qn = k 2 n + γ 2 q . By now the orthogonality of the basis B qn has been demonstrated, and the expression of the normalization constant I qn can be obtained by considering the case where n 1 = n 2 = n, q 1 = q 2 = q and λ q 1 n 1 = λ q 2 n 2 :

=⇒I qn = λ 2 qn γ 2 q J 2 0 (γ q R).

(A.8)

A.2 Completeness

The basis B qn being proved orthonormal, the expansion coefficient C qn can be obtained by

with V the volume of the domain V = πR 2 H. Remind that the dynamics of an axisymmetric system can be characterized by the scalar fields (ψ, u θ ), with ψ the stream function within the poloidal plane and u θ the azimuthal component of the velocity field. In this section, we are going to prove that this basis is indeed complete for an axisymmetric turbulent field (ψ(r, z), u θ (r, z)) with Dirichlet boundary conditions :

For simplicity of interpretation, we consider here the scalar field ψ/r instead of ψ directly. We first assume that the two variables r and z of ψ/r can be treated separately :

Knowing that the radial and axial components of u can be expressed as

(A.12)

we obtain the expressions of u r and u z as a function of R 1 and Z 1 :

Since u r has to be zero at r = 0, we have R 1 (0) = 0. Moreover, with the boundary condition ψ(R, z) = 0, R 1 (r) is also imposed to be zero at r = R. This implies that

Annexe D

Calculation of Integrals in the Non-axisymmetric PSM D.1 Volume-averaging in the non-axisymmetric PSM

The volum-average of a variable g(r, θ, z) within a cylindrical domain writes

with R the radius, H the height and V the volume of the cylinder. Usually, the azimuthal extent ranges from 0 to 2π and the volume equals πR 2 H. But when the axisymmetry constraint is gradually relaxed, yielding systems with periodicity greater than 2π, the calculation differs. Indeed, in such cases the azimuthal periodicity is 2π/α, with α the control parameter of the axisymmetry level, accounting for a volume of

As explained in Section 3.2.2, however, the azimuthal extent of θ ∈ [0, 2π/α] should be mapped to θ ∈ [0, 2π], and the integrals are thus calculated within the mapped domain.

We recall the introduction of the parameter α :

Hence, the infinitesimal increment in the azimuthal direction rdθ changes into (r/α)d θ, and consequently, the volume average of g is calculated as

which has almost the same form as that in integer dimensions. Otherwise, using the normalization principle r = Rr and z = (H/2)z, the volume average can also be calculated by

g(r, θ, z)rdrd θdz,

with V the dimensionless volume and D the mapped domain.

Transfer terms

After the procedure described above, the poloidal transfer term appears to be

with

where J A is an arbitrary variable. By analogy, the toroidal transfer term rewrites as

where J B is another arbitrary variable. With the nopenetration boundary condition, one can easily show that

This means that the remaining u r u 2 θ /r is finally responsible for the energy redistribution between toroidal and poloidal directions :

A positive T designates an energy transfer from the toroidal direction to the poloidal direction and vice versa.

Pressure terms

The toroidal pressure term does not exist in axisymmetric flows. Similarly, through the method of integration by parts, one can deduce that the poloidal pressure term disappears after volume-averaging. We drop the negative sign and the density ρ for simplicity :

we consider the Euler equations that rule out the dissipation and forcing effects. We start with

We multiply Eq.(E.11a) by u 2 θ and Eq.(E.11b) by 2u r u θ , and obtain

The summation of these two equations gives

+ u 2 θ u z ∂u r ∂z

+ 2u 2 r u θ ∂u θ ∂r

(3)

-

(E.13)

Further simplifications are :

-for Term (1) :

-u 2 θ u r ∂u r ∂r ;

(E.

-for Term (2) :

-u 2 θ u r ∂u z ∂z .

(E.15)

Then Eq.(E.13) becomes

Using the incompressibility condition

Eq.(E.16) can be simplified as

(E.18)

We then perform the volume-average of Eq.(E.18). With the boundary condition u θ = 0 on all boundaries and given the fact that u θ = 0 on the axis, we find As a result, we have (E.20)