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Abstract
Axisymmetric turbulence is a two-dimensional three-component flow. The investiga-

tion of this type of turbulence is motivated by the fact that it represents an asymptotic
limit of anisotropic flows and that it has been the subject of theoretical investigations in
the past. In the present manuscript, such a flow is investigated in wall-bounded cylindrical
geometry using spectral and pseudo-spectral numerical simulations.

Previous results on the generation of coherent structures, obtained for freely decaying
flows, are here assessed in the context of statistically steady flows, where the energy is
supplied by either a spectrally localized forcing, or by moving top and bottom plates of
the cylinder. The mean flow displays coherent structures whose properties are compatible
with theoretical predictions.

When an anisotropic forcing protocol is used, a bifurcation is observed from a
non-swirling (two-dimensional two-component, 2D2C) to a swirling (two-dimensional
three-component 2D3C) turbulent flow. This transition is modelled by a system of two
ordinary differential equations (ODE). It is shown that this model is able to reproduce
the essential physics of the transition.

The transition of the axisymmetric (2D3C) to three-dimensional (3D3C) flow is then
investigated using a non-integer dimension, by smoothly introducing azimuthal variations
into the system. It is shown that the 2D2C limit is singular and that small azimuthal
variations allow a redistribution of energy over the different energy components. The
ODE model is adapted for this system by modelling the pressure-strain correlation. It
is shown how the swirl level depends on the non-integer dimension. Large-Eddy Simu-
lations are carried out to assess the robustness of these results at higher Reynolds number.

Key words :
turbulence, coherent structures, turbulence modelling, transition, numerical simula-

tion.

Résumé
La turbulence axisymétrique est un écoulement bidimensionnel trois-composantes.

L’étude de ce type de turbulence est motivée par le fait que celle-ci représente la limite
asymptotique des écoulements anisotropes, et qu’elle a été le sujet des investigations
théoriques dans le passé. Dans ce manuscrit, la turbulence axisymétrique a étudié en
géométrie fermée en utilisant des simulations numériques spectrales et pseudo-spectrales.

Les études antérieures concernant la génération des structures cohérentes, obtenues
dans les écoulements en déclin libre, sont considérées ici dans le contexte des écoulements
statistiquement stationnaires, où l’énergie est injectée soit par un forçage spectralement
localisé ou par une rotation des disques en haut et en bas du cylindre. On montre que les
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structures observées sont conformes aux prédictions théoriques.

Lorsqu’un protocole de forçage anisotrope est utilisé, une bifurcation est observée entre
un état non-tourbillonnant (bidimensionnel deux-composantes, 2D2C) et un écoulement
tourbillonnant turbulent (bidimensionnel trois-composante, 2D3C). Cette transition est
modélisée à travers un système de deux équations différentielles ordinaires (ODE), et on
montre que ce modèle retient la physique essentielle de cette transition.

La transition de l’écoulement axisymétrique à un écoulement tridimensionnel (3D3C)
est ensuite étudiée à l’aide d’une dimension non-entière, en introduisant de façon continue
la variation azimutale dans le système. On montre que la limite 2D2C est singulière et
qu’une petite variation azimutale permet une redistribution d’énergie sur les différentes
composantes énergétiques. Le modèle ODE est adapté pour ce système et on montre
que pour l’écoulement considéré la corrélation pression-déformation est responsable d’un
niveau approximativement proportionnel à la dimension non-entière. Des Simulations
des Grandes Echelles sont réalisées pour évaluer la robustesse des observations à grands
nombres de Reynolds.

Mots-clé :
turbulence, structures cohérentes, modélisation de turbulence, transition, simulation

numérique.
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Chapitre 1

Introduction & Outline

Turbulence is related to human lives in many aspects, since it appears widely in
domains ranging from natural science to industrial engineering. It is also one of the
most difficult problems in fluid mechanics due to its chaotic nature. It is difficult to
fully describe turbulent flows even as “simple” as smoke going out of a chimney. But the
attempts to improve our understanding of the phenomenon have never stopped. During
the 20th century, efforts have been made by physicists and engineers multiplying the
angles of attack to understand and model turbulence. By using different hypotheses, from
the simplest to more and more complicated, many theories as well as modelling methods
have been put forward to explain and predict some general phenomena and macroscopic
properties. Simultaneously, experiments and numerical approaches are designed to validate
results obtained from theories and models. There are famous and classic subjects such
as the Kolmogorov 1941 theory for homogeneous isotropic turbulence, the eddy viscosity
models as well as Reynolds stress models for Reynolds-averaged Navier-Stokes simula-
tions, the eddy-damping quasi-normal Markovian theory for spectral equation closure, etc.

In this thesis, we discuss statistical mechanics methods for Euler flows ; we investigate
turbulence behavior under dimensionality transition, and model the observations. These
features will be briefly presented in the following sections of this chapter.

1.1 Statistical mechanics applied to turbulence (Chapters 2
& 4)

During the last decades, the statistical physics of out-of-equilibrium systems has
become a particularly active field of research and has seen the blooming of various the-
oretical results that are often difficult to be experimentally tested. However, turbulence
offers an appropriate investigation framework for such theories due to the large number
of degrees of freedom that it develops over a wide range of spatio-temporal scales, and
indeed, an approach attempting to better understand turbulence has been established on
the basis of statistical mechanics. Historically, this approach started with the conjecture
of Onsager [1] who came up with the idea to describe the clustering of like-sign point-wise
(thus discrete field) vortices as a result of entropy increase in the context of inviscid
two-dimensional turbulence. This work explains somehow the emergence of long lasting
large-scale structures in turbulence that can be regarded as two-dimensional, and ushers
people to treat two-dimensional turbulence in the way of statistical physics. Tools were
then borrowed from statistical mechanics to try to investigate the continuum inviscid
two-dimensional case, and independently in the early 90s, Miller [2] and Robert and
Sommeria [3] use the Boltzmann entropy S, which is one of the fundamental concepts
in statistical physics, and they succeed in applying the statistical mechanics method to
the Euler equations. This tool is later extended to study more concrete cases, such as
the spontaneous geostrophic ocean jets/rings (the Kuroshio and the Gulf-Stream for
example) [4], and the persisting banded structures and the Great Red Spot on Jupiter
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[5], etc. Because these flows all have two dimensions which are much bigger than the
third one, they are regarded in the context of two-dimensionality and can be explained
as a consequence of statistical equilibria.

The extension of this tool towards three-dimensionality was initiated by Leprovost
et al. [6] by considering the case of the axisymmetric Euler equations. An axisymmetric
system is a system such that, when its evolution equation is written in cylindrical
coordinates (r, θ, z), all azimuthal derivatives are set to zero : ∂θX = 0, meaning that the
system can have motions in all three dimensions but depends only on the two coordinates
r and z. Thus, an axisymmetric case is termed as “2-dimensional 3-component” (denoted
as 2D3C henceforth) or sometimes “2.5-dimensional” : an intermediate situation between
two-dimensionality and three-dimensionality. Such ideal flows do not exist in practice
but are worth investigating from an academic point of view. Furthermore, tokamaks i.e.
fusion plasmas confined by a strong toroidal magnetic field, display close to axisymmetric
behavior. In the absence of forcing and viscous dissipation, an infinite number of
quantities (such as kinetic energy and helicity) are conserved. Similarly as in the 2D
case, a Boltzmann entropy S can be defined, and maximization problems of S (as well as
their equivalent variants) under different selected conservation constraints can be written.
Again, without solving the Navier-Stokes equations, the solutions of such optimization
problems predict the existence of long-lasting and large-scale poloidal structures. Qu et
al. [7, 8, 9] were the first to carry out numerical simulations of axisymmetric flows, with
periodic axial boundary condition. By using a fully spectral method, both large-scale
structures and relevant functional relationships were observed.

In this thesis, we build upon the investigation by Qu et al. [7, 8, 9]. Sections 2.1.1
and 2.1.2 are reserved for a more detailed presentation of statistical mechanics applied
to turbulent flows, and in Chapter 4 these theoretical considerations are assessed using
numerical simulations.

1.2 Numerical methods (Chapter 3)

In the current thesis, two different existing codes are adapted for our purposes. Both
codes are written in Fortran programming language.

Our first code is transformed from the fully spectral method adapted by Qu [8] in
order to simulate axisymmetric turbulence. The code was initially designed by Chen et
al. [10] for numerical studies in magnetohydrodynamics within a cylindrical computation
domain. The method in [10] consists in applying the Chandrasekhar-Kendall (denoted
as “CK” for short in the sequel) basis which is complete and orthonormal to decompose
the velocity field, mainly featured by the utilization of Bessel functions of the first kind
for radial (r direction) decomposition and Fourier series for both azimuthal (θ direction)
and axial (z direction) decompositions. However, the application of Fourier series in the
axial direction imposes periodic boundary conditions to the two ends of z coordinates,
leading to a geometry of an axially periodic cylinder. In our case, adaptation of the
CK basis is carried out : the discretization in the θ direction is suppressed as is done
in [8] since the flows are ideally axisymmetric, and the discretization in the z direction
is performed by sine and cosine functions, in order to confine the cylinder in the axial
direction. Section 3.1 is reserved for a full description of this fully spectral method. The
code is restructured, converted to modern Fortran language and parallelized via the
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OpenMP toolkit. Section 4.1 gives the validation of our first code by comparing our
numerical results with theoretical predictions from the statistical mechanics method and
with numerical findings in [8].

Our second code is based on the pseudo-spectral method designed by Serre and
collaborators [11] aiming at simulating three-dimensional turbulent flows in a cylindrical
cavity. Similarly, Fourier series are used to decompose the velocity field in the azimuthal
direction. But at difference with the fully spectral method, Chebyshev polynomials
of the first kind are applied to discretize the radial and axial directions, avoiding a
singularity point at r = 0. Derivatives are accurately calculated in spectral space while
multiplications are conducted in physical space. In our case, a control parameter of the
axisymmetry level α is inserted into the codes to allow for a dimensionality between
axisymmetric and general three-dimensional spaces. A restructuring and a parallelization
via OpenMP are done. Moreover, the code is also adapted into a strictly axisymmetric
version. Section 3.2 is devoted to the description of this method, and Section 4.2 offers
the validation of the axisymmetric version as a complementary confirmation of theoretical
and numerical results known in axisymmetric turbulence by the statistical mechanics
method.

1.3 Dimensionality transitions (Chapters 5 & 6)

The behavior of turbulent flows depends on the configuration of the system, and can
greatly deviate from ones to others. The dimensionality (two- or three-dimensional) is
clearly a crucial control parameter. For example, by changing the aspect ratio of a flow,
its behavior can be drastically modified. Both forward and inverse, and even split energy
cascades can be observed (meaning that energy is transferred simultaneously to large and
small scales).

One should remark that strictly speaking, the space dimension d should be integer of
either 1 or 2 or 3. In theoretical research, however, it is not a rare procedure to extent
results from integer space dimensions to non-integer space dimensions or even to d > 3.

In this thesis, we will numerically study the dimensionality transition from different
points of view without explicitly engaging the dimension d. Two kinds of transitions will
be focused on :

– the transition from non-swirling (two-dimensional two-component, denoted as
“2D2C” henceforth) to swirling flow (2D3C or 2.5-dimensional as explained in Section
1.1). Chapter 5 is reserved for the presentation of this aspect ;

– the transition from axisymmetric flows (2.5-dimensional) to general cylindrical three-
dimensional flows. Results obtained with the second code (equipped with the axisym-
metry controlling parameter α) are presented in Chapter 6.

Analyses of these two kinds of transition behavior will be carried out in these two
chapters, by proposing corresponding models that describe the system dynamics.

To the best of our knowledge, these are the first models concerning dimensional
transitions of cylindrical flows. As a starting point, we propose the simplest models,
considering global, volume averaged quantities, using techniques reminiscent of early
modelling efforts. Thus a brief introduction on models solving Reynolds-averaged
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Navier-Stokes (called “RANS” hereafter) equations for the mean velocity field is given in
Chapter 2, based on the presentation done by Pope in [12]. In particular, we focus on
turbulent-viscosity models.

1.4 Main contributions and results in this thesis

– Chapters 3 & 4.
A fully spectral code of axisymmetric turbulence is adapted with confinement of
the numerical domain. Theoretical predictions of statistical mechanics methods
concerning axisymmetric turbulence are validated at higher Reynolds numbers than
in the previous investigations [7, 9]. A pseudo-spectral code in cylindrical geometry
is adapted for axisymmetric turbulence with more realistic boundary conditions
and the allowance of higher Reynolds numbers than the spectral code. Theoretical
results (cascade direction, functional relationships) of statistical mechanics methods
are reconsidered.

– Chapter 5.
Investigation of the transition phenomena of axisymmetric turbulence from non-
swirling to swirling regimes through simulations. A model based on large-scale
motions is established to reproduce the transition.

– Chapter 6.
The pseudo-spectral code is further developed to allow the study of flow transitions
from the axisymmetric to the general three-dimensional regime. The nature of the
transition observed in simulations is discussed. The extension of the model derived
in Chapter 5 to match this second kind of dimensionality transition is attempted.

The main text is concluded by a chapter including the conclusions and perspectives, and
some mathematical and technical details are given in the appendices.



Chapitre 2

Theoretical Details

Axisymmetric turbulence is invariant with respect to the azimuthal direction in
cylindrical coordinates, and is thus a sort of 2D3C turbulence. Indeed, it shares many
similarities with two-dimensional turbulence, and the statistical mechanics method for
axisymmetric turbulence can therefore be transposed from that for two-dimensional
turbulence by analogy. Also the transitions that we will study in this thesis have been
explored for the case of 2D turbulence. In this chapter, for pedagogical reasons we start
therefore by discussing 2D turbulence in order to better present axisymmetric turbulence
thereafter and to illustrate the relationship between the two. The statistical mechanics
used to predict stationary states of both 2D and axisymmetric turbulence will be first
detailed (Section 2.1). Then the state of the art concerning the dimensionality transition
in hydrodynamics will be presented in Section 2.2. A brief discussion of RANS models
will be appended to the end of this chapter (Section 2.3).

2.1 Statistical mechanics

2.1.1 Two-dimensional flows

Navier-Stokes equations in two dimensions
The dynamics of unforced incompressible flows is characterized by the Navier-Stokes

equations

∇ · u = 0, (2.1)
∂u

∂t
+ (u · ∇)u = −1

ρ
∇p+ ν∆u, (2.2)

where u is the velocity field, ρ the density, p the pressure and ν the kinematic viscosity.
Though movements evolve in only two dimensions, the velocity can still be written in a
three-dimensional form as u = (u, v, 0) with u and v functions of x and y (if we take
Cartesian coordinates system for example). One can then find, by taking the curl of u,
that the vorticity ω occupies only the z dimension and is always perpendicular to the
velocity :

ω = (∇× u)z. (2.3)

Thus, by taking the curl of Eq.(2.2), one obtains a “new” equation in terms of ω,

∂ω

∂t
+ (u · ∇)ω = ν∆ω, (2.4)

which describes the same as Eq.(2.2). Through the incompressibility condition (2.1) and
the Cauchy-Riemann theorem, the velocity u, as well as the (scalar) vorticity ω, can be
expressed by using a stream function ψ as

u =

(
∂ψ

∂y
,−∂ψ

∂x

)
, ω = ∇× u · ez = −∆ψ. (2.5)
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This offers the possibility to combine the incompressibility condition and the dynamical
equation by substituting u = (∂yψ,−∂xψ) in Eq.(2.4), giving

∂ω

∂t
+

(
∂ω

∂x

∂ψ

∂y
− ∂ω

∂y

∂ψ

∂x

)
= ν∆ω. (2.6)

We introduce here the definition of Poisson brackets {a, b} = ∂xa∂yb− ∂ya∂xb, via which
(2.6) turns into a simpler form

∂ω

∂t
+ {ω, ψ} = ν∆ω. (2.7)

In Eq.(2.7), {ω, ψ} is the non-linear term. In particular, when a is a function of b, i.e.,
a = f(b), it can be easily proved that {a, b} = 0. Therefore, some peculiarities can be
expected in a state where ω = f(ψ). Under such circumstances, the non-linear effects
are absent and the dynamics are affected by viscous dissipation only. In addition to
the functional relationship ω = f(ψ), if viscosity is ruled out i.e. ν = 0, or balanced
by forcing, the dynamics of the two-dimensional system turns into a stationary form
∂tω = 0, which is extremely simple but interesting. A vorticity field that does not
evolve with time is dubbed as “coherent”. We thus call, in practice, the notable and
long-lasting structures “coherent structures”. As we will see, coherent structures coupled
with ω = f(ψ) relationships are observed in several types of flows.

Quantities conserved in two dimensions
In the inviscid limit, the first conserved quantity we consider is the kinetic energy.

Its conservation can be easily proved, for example, under Cartesian coordinates using

the spatial homogeneity hypothesis. In fact, defined as E =

∫
D
u2(r)/2dr, the evolution

equation of E over a spatial statistically homogeneous or periodic domain D in either two
or three dimensions writes

dE
dt

= −νZ (2.8)

with Z =

∫
D
ω2(r)dr the enstrophy. Then in the absence of viscosity, one gets simply

∂tE = 0, showing the conservation of the kinetic energy in 2D and 3D 1.

Apart from E, the statistical moments of ω of any integer order n are also invariants
in 2D. Actually, if we remove the right hand side of Eq.(2.4), the two-dimensional Euler
momentum equation can be obtained

∂ω

∂t
+ (u · ∇)ω = 0. (2.9)

Then the following equation can be derived :

d
dt

∫
D
ωn(r)dr =

∫
D
nωn−1(r)

(
∂ω(r)

∂t
+ u · ∇ω(r)

)
dr = 0, (2.10)

recalling that the case of n = 2 corresponds to the conservation of the 2D enstrophy. The
justification Eq.(2.10) is equivalent to say that integrals of any smooth function C(ω) over
the domain D are conserved

d
dt

∫
D
C(ω(r))dr = 0. (2.11)

1. Note that this considers ν = 0. The limit ν → 0 is non-trivial and only in 2D it can be shown that
energy is conserved in this limit.
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They form a category of invariants called Casimirs of the system [13].

Particularly, the enstrophy Z is a conserved quantity and is positive definite. Its con-
servation blocks the energy to cascade in a forward direction, and inversely forces the
energy to cascade from smaller to larger scales, which leads to the emergence of energetic
large scales. It is observed that in many cases these energetic scales are associated with
well defined coherent structures. A schematic energy spectrum of 2D turbulence can be
seen in Fig.2.1. However, the appearance of such large-scale long-lasting structures can
also be theoretically explained from another angle, namely through statistical mechanics
theories that will be introduced thereafter.

Figure 2.1: Picture cited from [14]. Energy spectrum of a 2D forced turbulent flow. The
forcing takes place at medium scales kin, and energy is largely transferred to larger scales
characterized by kE , yielding an inverse energy cascade. Scaling slopes can be obtained
via dimensional analysis and are numerically as well as experimentally shown to be −5/3

and −3 for respectively the inverse energy cascade and the direct enstrophy (denoted as
Ω in this picture) cascade. ε and ηΩ are corresponding energy and enstrophy flux rates.

Statistical mechanics for 2D turbulence
For long, turbulent flows have been decomposed into a mean flow and the fluctuations

around them. This allows the mean flow and the fluctuation to be approximated by
turbulence models. An effective modelling theory should then be able to provide infor-
mation on both the mean flow and the fluctuations considering only a moderate number
of degrees of freedom but without discarding too much of the physics. Then a tempting
idea is to treat turbulent systems by approaches borrowed from statistical mechanics.
The following paragraphs review the development of such approaches.

In the late years of the 19th century, Kirchoff [15] first noticed that in the case of two-
dimensional incompressible inviscid fluids modelled with point-wise vortices (also called
“vortex gas”), the equations of motion can be considered as a result derived from a quantity

H = −
∑
i 6=j

κiκj ln |ri − rj | (2.12)

where κi is the circulation of the i-th point-wise vortex and ri = (xi, yi) designates the
corresponding position vector. Then the dynamics of the system is characterized by

κi
dri
dt

= ∇i ×H. (2.13)
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The dynamical equation (2.13) is written in a Hamiltonian form. Indeed, if the variables
(xi, yi) are considered conjugate coordinates (and they actually can be), the point-wise
vortex system is a Hamiltonian system. Studies were then undertaken to try to explain
Euler dynamics through this Hamiltonian system. In particular, with a Hamiltonian at
hand, it is normal to look into the equilibrium properties of the system via methods of
statistical mechanics.

Generic attempts date back to the late 1940s initiated by the conjecture of Onsager
[1]. Indeed, 2D turbulence has been observed to be self-organizing into large-scale coherent
structures in nature (like jets, ocean rings, cyclones, etc.), in laboratory experiments and in
numerical simulations. Onsager put forward a theory describing the formation of coherent
structures in 2D systems as a result of equilibrium statistical mechanics. He pointed out
that within a bounded region and at high energies, the system with a large but finite
number of point-wise vortices of which the dynamics are described by the Hamiltonian
(2.12) would evolve to form large structures through the coalescence of like-sign vortices. In
fact, provided a confinement of vortex positions in the physical space and the assumption
of ergodicity, the volume occupied by possible states of the system in the phase space is
finite. This leads to an important result argued by Onsager : beyond a certain threshold of
energy, the entropy should decrease somehow when energy is still fed into the system. He
gave a simpler example of only two point-wise vortices of the same sign, pointing out that
the total kinetic energy becomes higher as the two vortices get closer. Then he presented
his conjecture that the only possible means for the vortex gas system to contain more
energy is to draw like-sign vortices closer, i.e., to give rise to like-sign vortex clusters. A
consequence is that when like-sign vortices are approached to each other, their positions
are “better” arranged compared to the initially chaotic configuration, and the entropy is
bound to decrease. In fact, when the energy of the system has already past a threshold,
fewer possible states can be reached if more energy is injected in, leading to a decrease of
the entropy. In particular, the temperature in traditional statistical mechanics is defined
as

1

T
=
∂S

∂E
, (2.14)

where S designates the entropy that characterizes the number of possible states under
the constraint of a fixed energy level E. Then noticeably, the above point-wise vortex sys-
tem has a negative temperature since the entropy diminishes when kinetic energy increases.

Based on this discontinuous point-vortex model, Onsager then suggested a probabilis-
tic treatment, assuming that the generation of the large-scale two-dimensional vortices
could also be regarded as a result that stems from a Hamiltonian system conserving the
kinetic energy and the enstrophy (in the absence of viscosity). This conjecture, based on
Onsager’s sharp insights and intuitions, was not proved nor developed until the work by
Joyce and Montgomery almost three decades later.

In 1973, Joyce and Montgomery [16] adapted the idea of Onsager for their own system
of charged rods placed in a plasma and aligned with a uniform magnetic field. In this
study of two-dimensional electrostatic guiding center plasma, charged rods are analogous
to point-wise vortices in Onsager’s case since they force, through the combined effect
of the magnetic field, the movement of plasma around them. Then the driven plasma
movement is considered equivalent to the velocity field induced by parallel point-wise
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vortices, and the following results can be used as support for Onsager’s conjecture.

In Joyce and Montgomery’s study, 2N electric rods are taken into account. Half of
them are charged with 1/N while the other half with −1/N , and the system present
an overall electric neutrality. Then equivalently, this represents a point-wise vortex
field whose global circulation is zero, and of which the vorticity of each vortex is equal
to 1/N or −1/N . Hence if one defines ωi = 1/N or −1/N , the Hamilton equations
(2.13) can be involved to describe the dynamics. It is interesting that the quantity H
in Eq.(2.13) is reminiscent of the stream function ψ (recall that in practical 2D fluid
systems, ux = ∂yψ, uy = −∂xψ), except that ψ characterizes a continuous fluid field while
H here characterizes a discrete field. For convenience, the subsequent details are carried
out on the basis of the equivalent point-wise vortices model.

In fact, the discrete vorticity field can be expressed as a function of the spatial posi-
tion r. To obtain this expression, the vortex density distribution function should be first
defined :

ρ±(r) =
1

N

N∑
i=1

δ(r− r±i ),

δ(r− r±i ) =

{
1 if r = r±i

0 if r 6= r±i
,

(2.15)

where ± labels vortices with positive and negative vorticity respectively. Then the distri-
bution of the discrete vorticity field can be established through the density distribution :

ω(r) = ρ+(r)− ρ−(r). (2.16)

Eq.(2.16) means that the normal value of ω is 1/N , −1/N or 0. After some calculation,
it can be found ω = −∆H, which means that the Hamiltonian quantity H can really
be regarded as the discrete stream function ψ. Then similarly, the kinetic energy of the
system is calculated as

E =

∫
ψωdr. (2.17)

The generalized Boltzmann entropy of a system is defined from the distribution density

function f(σ,x) of the system as S = −
∫
f log fdσdx. In Joyce and Montgomery’s case,

this entropy writes

S = −
∫
ρ+(r) log ρ+(r)dr−

∫
ρ−(r) log ρ−(r)dr. (2.18)

As the vortex number and intensity are defined and by default cannot be changed, the
global vorticity, known as the overall circulation Γ, is a conserved quantity :

Γ =

∫
ω(r)dr =

∫
(ρ+(r)− ρ−(r))dr. (2.19)

In order for the system to be isolated from the “environment”, an additional conservation
constraint with respect to the kinetic energy E is imposed, i.e., neither forcing nor dissipa-
tion is included. This is indeed the case according to Onsager’s analysis. Then to derive the
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final equilibrium state of the system, Joyce and Montgomery consider the maximization
of the entropy with E and Γ fixed :

max
ρ
{S(ρ)|E,Γ} . (2.20)

The desired equilibrium states are the solutions of the variational equation

δS − βδE − αδΓ = 0, (2.21)

where β and α are Lagrangian multipliers. A first remark is that β is associated with
the “temperature” in Onsager’s conjecture. In fact, β is the inverse of the thermodynamic
temperature in such kind of studies. By substituting the expressions of S, E and Γ, the
variational equation becomes

δ

∫ [
−ρ+ log ρ+ − ρ− log ρ− − βψ(ρ+ − ρ−)− α(ρ+ − ρ−)

]
dr = 0. (2.22)

As δ
∫
F (ρ) = 0 yields F ′(ρ) = 0, it can be deduced from Eq.(2.22)

1 + log ρ+ + βψ + α = 0,

1 + log ρ− + βψ + α = 0.
(2.23)

One then obtains

ρ+ = exp(−(1 + βψ + α)),

ρ− = exp(−(1− βψ − α)),
(2.24)

which are in forms of Boltzmann distributions. Recalling that ω = ρ+ − ρ−, the final
expression of the vorticity field reads

⇒ ω = exp(−1) (exp(−(βψ + α))− exp(βψ + α))

∼ sinh(−(βψ + α)).
(2.25)

Thus, the vorticity of the point-wise vortices system is a functional of the stream function,
which implies {ω, ψ} = 0. This means that the current result is a stationary solution of
a 2D Euler system. Although the obtained dynamics (2.25) is far from being turbulent,
subsequent simulations of freely decaying two dimensional turbulence within doubly
periodic domains roughly evolve towards systems where the functional relation (2.25) is
well verified [17].

The work of Joyce and Montgomery was a more rigorous support for the conjecture
of Onsager. However, there are some scants of the current model. In fact, the point-wise
vortex model makes sense only when the dilute (low density) limit is satisfied. When the
system presents a higher and higher density of point-wise vortices, the dynamics tends to
depart from what a continuous system should be. Even Onsager himself was uncertain
how the statistics of discrete point-wise vortices could be adapted for situations where the
vorticity field should be continuous. Besides, Onsager underlined that on the basis of the
dilute vortex gas model, a continuous velocity field could be approximated by a certain
number of different ways which led to a variety of equilibrium states. All these difficulties
call the advent of a more proper theory for applying statistical mechanics approaches on
continuous two-dimensional turbulence systems.
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Separately but almost simultaneously, a theory suitable for continuous vorticity
fields has been proposed by Miller [2] and Robert and Sommeria [3] in the early
1990s. In their work, they consider a bounded domain with bounded vorticity mag-
nitude (by some |ω|max). One crucial advance is the introduction of a probability
distribution of local vorticity level ρ(σ, r, t). The presence of this distribution function is
the response to the difficulty of describing the micro-structure of the local vorticity ω(r, t).

In a two-dimensional Euler system, if damping and forcing effects are both ruled out,
the vorticity transport equation is characterized by pure advection mixing. This results in
finer and finer structures without limit i.e. infinitely thin filaments. When sufficiently long
time is elapsed, such fine structures are no longer within the observable scope and become
difficult to describe. As statistical mechanics has always a preference for macroscopic in-
formation, these extremely thin filaments are, in this sense, undesirable and should be
modelled by some means that allow to predict them in a macroscopic way. The afore-
mentioned vorticity level distribution function ρ(σ, r, t) allows in a statistical manner to
measure the probability of the vorticity ω in vicinity of r to be evaluated between σ and
σ+dσ at moment t. A first property of ρ is the normalization over all possible value levels
of ω :∫

ρ(σ)dσ = 1. (2.26)

Indeed, this allows also the definition of the average and the fluctuation :

ω(r, t) =

∫
ρ(σ, r, t)σdσ,

ω′(r, t) = ω(r, t)− ω(r, t).

(2.27)

The averaged vorticity is the average within the local lattice of area l2, and l can be
understood as the smallest observable/concerned scale in statistical mechanics for Euler
turbulence. According to this statement, ω(r, t) forms a local macroscopic vorticity field.
Quantities based on ω are called “coarse-grained” (also termed as “macroscopic”) quantities,
since non-negligible fluctuation information is excluded in generic relations of ωn for n >
1 i.e. ωn 6= ωn. The authors consider the “fine-grained” (also termed as “microscopic”)
statistical quantities :

E =
1

2

∫
ρσψdσdr =

1

2

∫
ωψdr, (2.28)

Γn =

∫
ρσndσdr =

∫
ωndr. (2.29)

The authors point out that under an imposed scale l, E and Γn approximate the invariants
within accuracies εE and εn. Thus, accuracies get better along with l getting smaller. At a
sufficiently small l, although local small-scale oscillations are erased, the E and Γn approx-
imate rather well E and Γn and should be invariant in Euler conditions. But situations
are different for coarse-grained quantities since (henceforth c.g. stands for “coarse-grained”
and f.g. for “fine-grained”)

Ec.g. = Ef.g. =
1

2

∫
ωψdr,

Γc.g. = Γf.g. =

∫
ωdr,

Γc.g.2 =

∫
ω2dr 6= Γf.g.2 =

∫
ω2dr =

∫
ω2dr +

∫
ω2dr,

(2.30)
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where ω2 ≡ ω2 − ω2 is called the local centered variance of the vorticity.

Similar to the work of Joyce and Montgomery, a generalized Boltzmann entropy of the
continuous system is defined using the distribution function ρ :

S(ρ) = −
∫
ρ log ρdσdr. (2.31)

In fact, this entropy is proved equivalent to the logarithm of the system’s disorder which
represents the number of available microstates corresponding to the macrostate ρ(σ, r)

calculated by combinatorial analyses [18]. The authors succeed in vindicating that the
statistical equilibrium state of the system verifies the maximization of S under the con-
straints of conserved Ef.g. and Γf.g.n :

max
ρ

{
S(ρ)|Ef.g.,Γf.g.n

}
. (2.32)

Precise mathematical justifications are presented in [3]. It is then reasonable to determine
the critical points of the system by solving the variational problem

δS − βδEf.g. −
∑
n

αnδΓ
f.g.
n = 0,

⇐⇒
∫ (

δ(ρ log ρ)− β

2
δ(ρσψ)−

∑
n

αnδ(ρσ
n)

)
dσdr = 0,

(2.33)

where β and αn are Lagrangian multipliers to relevant constraints. By taking the derivation
with respect to ρ, one finds

ρ =
1

Z
exp(−(1− β

2
σψ −

∑
n

αnσ
n)) (2.34)

with Z a normalizing factor. This is a first result of the Miller-Robert-Sommeria theory
that engages all the fine-grained conserved quantities. The ω−ψ functional relationship can
take diverse forms corresponding to different initial conditions. For more details, Robert
and Sommeria [3] point out that the case of Joyce and Montgomery is a low density limit
of the current theory. In [2] and [19], it is shown that in the strong mixing or low energy
limit characterized by βσψ � 1, the maximization problem (2.32) is equivalent to the
minimization of coarse-grained enstrophy under the constraints of conserved fine-grained
energy and fine-grained circulation

min
ω

{
1

2
Γc.g.2 |E

f.g.,Γf.g.
}
. (2.35)

They note that to the lowest order of the expansion of βσψ � 1, only the circulation and
the fine-grained enstrophy are relevant among the moments of averaged vorticity. Then for
some specific initial conditions resulting in a Gaussian vorticity distribution at equilibrium
state, a linear ω−ψ functional relationship can be deduced. In fact, to obtain the critical
points of minimization problem (2.35), one should solve the variational problem

δ(
1

2
Γc.g.2 )− βδEf.g. − αΓf.g. = 0,

⇐⇒
∫

(ωδω − βψδω − αδω)dr = 0,
(2.36)
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which yields ω = βψ + α. Due to the equivalence of the minimization problem (2.35) to
the maximization problem

max
ρ

{
S(ρ)|Ef.g.,Γf.g.,Γf.g.2

}
, (2.37)

a Gaussian distribution, also called the Gibbs state, can be obtained :

ρ(σ, r) =
1

Z(r)
exp(−1

2
(σ + βψ + α)2) (2.38)

with Z(r) ensuring the normalization of the integral of ρ against σ. When the inequality
of βσψ � 1 no longer holds, higher moments Γf.g.n get involved, and the ω−ψ relationship
becomes non-linear and recovers the sinh functional when all constraints of Γf.g.n are
taken into account. However, except the cases where extreme values of vorticity show up,
a good approximation can be expected when only the conservation of the first invariants
is retained.

2.1.2 Axisymmetric flows

General invariants in a three-dimensional Euler flow consist of the kinetic energy and
the helicity only. The difference with respect to 2D is the presence of the vortex stretching
term in the vorticity equation which leads to an increase of enstrophy. Furthermore, there
is a crucial difference between two-dimensional and three-dimensional turbulence : in two
dimensions, a system can be characterized by scalar fields like ψ and ω, which are key
variables in the statistical mechanics approach ; due to the complexity, however, such a
characterization manner cannot be easily fitted into a case of general three-dimensional
turbulence unless additional symmetry is present in the system. Axisymmetric turbulence
is such a 3D system with additional symmetry. As will be introduced in the sequel, the
axisymmetric Euler equations are susceptible to be represented by scalar fields, and have
an infinite number of conserved quantities in the inviscid case, which possibly allows the
application of the Miller-Robert-Sommeria theory.

An axisymmetric turbulence is characterized by the condition ∂θ = 0, signifying az-
imuthal invariance with respect to a fixed axis. Therefore, it is considered as intermediary
between 2D and 3D, and sometimes termed as “2.5-dimensional”. Such kind of systems
are generally described under cylindrical coordinates, and one adopts usually a cylindrical
geometry in both experiments and numerical simulations. On the experimental side, a von
Kármán flow being axisymmetric in the average sense [20], Monchaux et al. [21] shows
the presence of coherent structures within the poloidal plane of the cylindrical device, and
functional relationships between scalars that will be presented in the following subsections
are measured in the averaged flow. On the numerical simulation side, Qu et al. [8, 7, 9]
consider a cylinder with a solid lateral wall but periodic top and bottom boundaries. Un-
der this configuration, functional relationships are also observed in simulations of freely
decaying flows. The cascades of energy, helicity, circulation, and angular momentum are
also studied in stationary out-of-equilibrium cases where forcing and dissipation balance
each other. To date, the theoretical predictions are in satisfactory qualitative agreement
with experimental and numerical results. This motivates further researches on this 2.5-
dimensional regime. Theoretical details, experimental observations and numerical results
will be discussed in this subsection.
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Axisymmetric 3D Euler equations
To apply statistical mechanics to an axisymmetric system, we begin with the incom-

pressible axisymmetric Euler equations written in cylindrical coordinates :

∂ur
∂r

+
ur
r

+
∂uz
∂z

= 0,

∂ur
∂t

+ ur
∂ur
∂r

+ uz
∂ur
∂z
−
u2
θ

r
= −1

ρ

∂p

∂r
,

∂uθ
∂t

+ ur
∂uθ
∂r

+ uz
∂uθ
∂z

+
uθur
r

= 0,

∂uz
∂t

+ ur
∂uz
∂r

+ uz
∂uz
∂z

= −1

ρ

∂p

∂z
.

(2.39)

ur, uθ, uz are the three components of the velocity field, p is the static pressure, and ρ is
the fluid density. A first remark is that all derivative terms with respect to the toroidal
coordinate θ disappear due to the axisymmetry, and that the velocity and pressure fields
therefore depend only on poloidal coordinates r and z. As a result, the system can be
studied on one poloidal plane, which offers some convenience when extending the statistical
method (as well as when post-processing data). Furthermore, the incompressible equation
relates ur and uz, and is independent from uθ. This equation can be rewritten as

1

r

∂(rur)

∂r
+
∂uz
∂z

= 0. (2.40)

Then like in the two-dimensional situation, there exists a scalar function ψ(r, z) such that

ur = −1

r

∂ψ

∂z
,

uz =
1

r

∂ψ

∂r
,

(2.41)

which is the stream function characterizing the poloidal movements. It then becomes
obvious that the dynamics of an axisymmetric system can be characterized by the couple of
scalar fields (ψ, uθ). Further, Leprovost [6] points out that the radial and axial components
in Eqs.(2.39) can be combined by considering the equation for a new variable ξ, the alleged
“potential vorticity” or “pseudo-vorticity”, which is defined as

ξ =
ωθ
r

=
1

r

(
∂ur
∂z
− ∂uz

∂r

)
, (2.42)

where ωθ is the azimuthal component of the vorticity field ω = ∇× u. This combines the
two equations into

∂ξ

∂t
+

ξ

r2

∂ψ

∂z
− 1

r

∂ψ

∂z

∂ξ

∂r
+

1

r

∂ψ

∂r

∂ξ

∂z
− 1

r2

∂u2
θ

∂z
= 0. (2.43)

ψ can also be fitted into the azimuthal equation by introducing the angular momentum
σ = ruθ, leading to

∂σ

∂t
− 1

r

∂ψ

∂z

∂σ

∂r
+

1

r

∂ψ

∂r

∂σ

∂z
= 0. (2.44)

To simplify the expressions, one defines a new variable y = r2/2 and a generalized
Laplacian operator, denoted as ∆∗, giving first a simple expression of Eq.(2.42) :

∆∗ψ ≡
1

2y

∂2ψ

∂z2
+
∂2ψ

∂y2
= −ξ. (2.45)
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Meanwhile, a Poisson brackets that corresponds to the new coordinates (y, z) can also be
defined as

{a, b} =
∂a

∂y

∂b

∂z
− ∂a

∂z

∂b

∂y
. (2.46)

Then after some algebraic manipulations, Eqs.(2.39) are finally reduced into

∂σ

∂t
+ {ψ, σ} = 0,

∂ξ

∂t
+ {ψ, ξ} =

∂

∂z

(
σ2

4y2

)
.

(2.47)

It can be recognized from Eqs.(2.47) that σ presents a pure mixing dynamics, reminiscent
of the vorticity in two-dimensional Euler systems. After some algebra using the Poisson
brackets (2.46), the equations of axisymmetric steady states write

{ψ, σ} = 0,

{ψ, ξ}+ { σ
2y
, σ} = 0,

(2.48)

which then reveals that when steady states are attained, σ, ξ and ψ satisfy the following
functional relationships :

σ = F (ψ),

ξ =
F (ψ)

2y
F ′(ψ) +G(ψ).

(2.49)

In Eqs.(2.49), F and G are arbitrary functions and depend on detailed information of the
steady state. They are determined by initial and boundary conditions which lead to the
current steady state.

Statistical mechanics of axisymmetric turbulence
To apply statistical mechanics, one should start by finding out all the conserved quan-

tities. The first conserved quantity in an inviscid flow is the kinetic energy, which can be
written as

E =
1

2

∫
(u2
r + u2

z)dr +
1

2

∫
u2
θdr

=
1

2

∫
ξψdr +

1

2

∫
σ2

r2
dr.

(2.50)

Otherwise, it is proved in [6] that in an axisymmetric Euler system, the only remaining
conserved quantities are the Casimirs

If =

∫
f(σ)dr and Hg =

∫
ξg(σ)dr, (2.51)

where f and g are arbitrary functions. This is equivalent to the conservation of any mo-
ments of the angular momentum and the generalized helicities

In =

∫
σndr and Hm =

∫
ξσmdr. (2.52)

One can remark that the dynamics of angular momentum σ is described by a pure
advection mixing equation. For a similar reason as that for the vorticity filamentation in
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2D, σ structures of smaller and smaller scales are developed along with the evolution of the
flow due to the pure mixing process. This means that a similar coarse-graining procedure
is needed to define a resolvable scale limit below which the information is less interesting.
Therefore, it is convenient to have again at our disposal the concept of local probability
density function ρ(r, η) which shows the probability of the value of σ at position r to be
between the levels η and η + dη. The coarse-grained angular momentum is thus defined
as

σ(r, t) =

∫
ρ(r, η, t)ηdη. (2.53)

Like in two dimensions, the theory consists in finding solutions of the maximization
problem of a mixing entropy under some conservation constraints. In the current case, the
mixing entropy is defined as

S = −
∫
ρ log ρdηdr, (2.54)

while the conversed quantities are naturally the coarse-grained energy, angular momentum
moments, generalized helicities and the integral of ρ (normalization principle of probability
density functions) with ξ = ξ hypothesis :

E =
1

2

∫
ξψdr +

1

2

∫
σ̄2

r2
dr,

In =

∫
σ̄ndr,

Hm =

∫
ξσ̄mdr,∫

ρdη = 1.

(2.55)

As a result, the maximization problem writes

max

{
S|E, In, Hm,

∫
ρdη = 1

}
. (2.56)

A similar problem arises : an infinity of invariants come into play, which makes solutions
not analytically solvable. This problem can be solved analytically if only a few constraints
are accounted for. For instance, if I1 and H1 are considered exclusively, the maximization
problem turns into

max

{
S|E, I1, H1,

∫
ρdη = 1

}
, (2.57)

giving rise to the variational equation∫
δ

(
−ρ log ρ− βρ

2

(
ξψ +

η2

r2

)
− µξρη − αρη − ζ(r)(ρ− 1)

)
dηdr = 0 (2.58)

with β, µ, α and ζ Lagrangian multipliers. Taking the variation of Eq.(2.58) against ρ
yields

−1− log ρ− β

2

η2

r2
− µξη − αη − ζ = 0. (2.59)
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This leads then to the Gibbs state in axisymmetric turbulence :

ρ(η, r) =
1

Z(r)
exp

(
−β

2

η2

r2
− (µξ + α)η

)
, (2.60)

where Z(r) ensures the normalization of the integral of ρ against η. Equations connecting
ξ, ψ and σ can also be obtained : taking the variation of Eq.(2.58) against ξ yields

−βψ − µσ = 0⇐⇒ F (ψ) = −β
µ
ψ; (2.61)

since Eq.(2.60) corresponds to a Gaussian distribution of σ, one can derive the expression
of σ :

σ = −r
2

β
(µξ + α)⇐⇒ G(ψ) = −α

µ
. (2.62)

Eq.(2.62) is considered, up to a Lagrangian multiplier α, as a Beltramized solution of the
system meaning that there is an alignment between the velocity u and the vorticity ω.

However, it is theoretically proved in [22] that the critical solutions (2.61) and (2.62)
are essentially saddle points of the system, and are linearly unstable facing some “optimal”
perturbations consisting of special spectral modes. In practical scenarii, such perturba-
tions can probably occur due to forcing or dissipation effects. Thus the stationary states
predicted by Eqs.(2.61) and (2.62) might not survive after a sufficiently long period. But
in reverse, these stationary states can be expected to exist during a certain length of time
[22]. This expectation can be proved valid by the presence of big structures and the under-
lying functional relationships in numerical and experimental results discussed in the sequel.

Experimental and numerical results
In experiments of “axisymmetric” turbulence, the most important device is the “French

washing machine” generating a von Kármán flow. Equipped with two counter-rotating
impellers on top and bottom of the vessel, the device is essentially a cylindrical vessel
with radius and a tunable height (distance between the impellers) to modify the aspect
ratio. Each impeller is composed of a disc containing highly curved blades. Readers are
suggested to refer to [20] for complementary details about the experimental setup. Under
different rotation frequencies of the impellers, various flow regimes, with axisymmetric
mean flows, are established with a Reynolds number varying from 102 to 3× 105. Such a
turbulent flow is only statistically axisymmetric.

Herbert et al. [23] carried out such experiments to clarify the energy cascade direction
in axisymmetric flows. They find the scaling laws of the energy spectra were compatible
with the fact that kinetic energy is mainly transferred to and concentrated in large scales of
the order of the cylinder radius, revealing the existence of coherent structures. Monchaux et
al. [21] performed von Kármán experiments with the purpose of seeing whether stationary
out-of-equilibrium systems share any resemblance with classical equilibrium systems. In a
test case at Re = 2.5× 105, big circulating structures are observed in the poloidal plane,
represented by either the time averaged velocity field or the most probable velocity field,
showing that a stationary state is attained during the selected period. In their sequential
experiments, the authors exclude 50% of the flow volume in the vicinity to the impellers
and the lateral wall, and show that functional relashions similar to Eq.(2.49) are satisfied.
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Surprisingly, the mean flow is therefore a solution of the (inviscid and unforced) Euler
equations. They obtained cubic forms of the F function

F (ψ) = p1ψ + p3ψ
3 (2.63)

for both mean and most probable fields, where p1 and p3 are prefixes depending on the
Reynolds number. In each case, the corresponding F expression is used to deduce the G
function which is then shown to be linear and around zero.

Direct numerical simulations of strictly axisymmetric turbulence are performed
by Qu et al. [8, 7, 9]. By developing a fully spectral numerical method initially designed
by Li et al. [24] for magnetohydrodynamics, the authors study both freely decaying and
spectrally forced flows. One striking fact is that energy condensation and functional
relationships are observed in decaying cases. In forced flows, a dual cascade where energy
goes inversely to small wave-numbers and helicity goes forward to large wave-numbers is
observed. However, the flows turn out to be less coherent in the presence of energy in-
jection, probably due to the optimal perturbations induced by the applied spectral forcing.

Theoretical results of statistical mechanics of the Euler equations being verified by
experiments of statistically axisymmetric turbulence, one of the goals of the current
thesis is to try to reproduce the predictions of direct numerical simulations of strictly
axisymmetric turbulence with higher Reynolds number. Two different numerical methods
with confined boundaries will be used (see Chapter 3). Moreover, as stated in the
beginning of this section, axisymmetric turbulence is a rich subject that is worth deeply
looking into. Since it is an intermediate situation between two- and three-dimensional
regimes, transition behaviors crossing from two-dimensionality to three-dimensionality,
where the axisymmetric regime plays the role of a bridge, are of interest and deserve
investigations. Concerning the dimensionality transition in hydrodynamics, theoretical
results are summarized in the next section.

2.2 Transition behavior

Most phenomena in nature are three-dimensional. But sometimes when one dimension
is contracted and becomes much less prominent than the other two, the geometry can
be considered as two-dimensional, whereas some typical three-dimensional features may
still survive at the same time. Atmospheric flows such as cyclones and ocean currents
are good examples where two-dimensional properties can be recognized at large scales
and three-dimensional properties can be observed at small scales. They are largely forced
by gradients of solar heating simultaneously at scales smaller and larger than the layer
thickness : vertical gradients cause three-dimensional convection whereas horizontal
gradients drive planetary scale flows [25].

Under ideal circumstances — such as in theoretical deduction or numerical simulations
— flows can be strictly two-dimensional, and it is also possible and interesting to inquire
the flow behaviors by going from the two-dimensional to the three-dimensional limit.
This is the purpose of the current section : we first succinctly revisit researches on
the two-to-three dimensionality transitions in hydrodynamics (detailed reviews can be
referred to Alexakis and Biferale [26] andPPouquet et al. [27]), and then shed light on
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two other kinds of dimensionality transitions which are the sujects of this thesis.

2.2.1 Dimensionality transition caused by thickness tuning in layer
flows

Celani et al. [28] consider the three-dimensional Navier-Stokes system with periodic
boundary conditions in all three directions. They impose a square geometry to x and
y dimensions with a length of Lx, and at the same time a tunable length Lz to the z
dimension. By continuously changing the thickness of Lz, a transition between two- and
three-dimensionality can be reached. A stochastic Gaussian forcing is activated spatially
only in the x and y directions and spectrally in a narrow band around wave-number kf .
Then, the authors find that even with a thin planar layer geometry of Lz/Lx = 1/32,
a split cascade that conveys energy simultaneously to smaller and larger wave-numbers
than kf is established, and both the inverse and direct cascades are characterized by a
scaling power law proportional to −5/3. This is intuitively comparable to atmospheric
or oceanic flows : eddies whose scales are much larger than the layer thickness behave
like a two-dimensional flow, while eddies much smaller than the layer thickness act
in a three-dimensional manner. Further, their numerical data also reveal a tendency
that when Lz is increased and gets close to the injection scale lf , the inverse energy
flux becomes negligible, leading to a conjecture for a critical aspect ratio above which
the system yields a typical cascade of three-dimensional homogeneous isotropic turbulence.

The reliability of this conjecture is numerically reinforced by Benavides and Alex-
akis [29]. Coincidentally, Benavides and Alexakis consider also a thin layer flow with a
tunable length in the z direction. In their study, the flow is modelled by a horizontal two-
dimensional field in the x and y dimensions coupled to one single Fourier mode in the z
dimension, corresponding to a drastic truncation in the vertical direction :

u2D(t, x, y) =


∂ψ

∂y

−∂ψ
∂x

0

 , uq(t, x, y, z) =

 vx(x, y, t) sin(qz)

vy(x, y, t) sin(qz)

vz(x, y, t) cos(qz)

 . (2.64)

In this model, u2D is the two-dimensional part of the system and uq is the three-
dimensional counterpart. ψ(t, x, y) is the stream function that characterizes u2D in the
(x, y) plane, meaning that u2D is incompressible since it is not difficult to find ∇·u2D = 0.
The parameter q determines the thickness H of the vertical direction : H = π/q. The in-
compressibility condition of uq and the dynamic equations of the system are

∂u2D

∂t
+ u2D · ∇u2D = −uq · ∇uq −∇P + ν∆u2D − µ∆−2u2D + F,

∂uq
∂t

+ u2D · ∇uq = −uq · ∇u2D −∇pq + ν∆uq,

(2.65)

with overlines standing for averaging in the z direction, and P and pq pressures for
respectively the two- and three-dimensional parts. F is a two-dimensional forcing on
(x, y) and is switched on at a scale of order lf . By varying the height H from big to
small values, the authors observe the energy cascade transition discovered by Celani et
al. [28] : a transition that connects a unidirectional forward cascade and a bidirectional
(simultaneously forward and inverse) cascade. As the layer thickness diminishes even
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more, a second transition that connects the bidirectional cascade and a unidirectional
inverse cascade also appears. Therefore, two critical thicknesses of definite regime changes
— H3D and H2D — are obtained. For H > H3D, the flow geometry consists of small scale
vortex tubes in physical space, and the cascade is presented by a typical Kolmogorov
energy spectrum at large wave-numbers. When H is smaller than but close to H3D, a
slight inverse energy transfer begins to appear, and as H goes smaller but still larger
than H2D, a more obvious inverse cascade is observed and a k−5/3 scaling is recognized
in both forward and backward inertial ranges. Large scale 2D coherent structures and
small scale 3D vortex tubes coexist in physical space. These results largely conform with
the findings in [28]. The only difference is that in this model, H3D is not equivalent
to the forcing scale lf , but is about one-order smaller than lf . For H < H2D, all
three-dimensional contributions suffer an exponential decay as time advances, yielding a
purely two-dimensional system along with an inverse energy cascade. For H larger than
but close to H2D, the three-dimensional behavior is strongly intermittent. Last but not
least, it is reported in their work that the changes of dimensionality taking place when H
passes acrossH3D andH2D are rather continuous instead of an expected discontinuous way.

Similarly, experimental studies of the connection between dimensionality and cascade
properties are performed in thin layer experiments. Such experiments were initially
designed to reproduce almost two-dimensional strongly stratified flows (e.g. Sommeria
[30], Flór and van Heijst [31]). More recently these experiments were used to investigate
the transition from 2D to 3D flows. For example, Shats et al. [32] consider an electromag-
netically driven layer flow, and present the dimensionality as the deviation of the viscous
damping rate α compared to that predicted by quasi-two-dimensional model αL. They
find that in single electrolyte layers, the anomalous damping ratio of aD = α/αL departs
from 1 when the layer thickness-forcing scale ratio h/lf is greater than 0.2, and that in
the presence of a large-scale vortex, the departure of aD from 1 takes place at h/lf = 0.04,
showing that the two-dimensionality seems to be easily broken as the layer gets slightly
thicker. The authors suggest that as aD becomes larger, the layer flow displays higher
three-dimensionality. Further, they determine the energy cascade direction by measuring
the third-order structure function S3. They find that for small damping deviations, S3 is
positive and therefore indicates an inverse energy cascade expected in two dimensions ;
for larger damping deviations S3 is negative, revealing a direct energy cascade associated
with 3D dynamics. Thus, a relation between dimensionality and energy cascade direction
is made. In the electromagnetically driven layer experiments conducted by Xia et al. [25],
an even thicker layer of h/lf > 0.5 exhibits a robust inverse energy cascade.

While the above investigations focus on the transition caused by continuously changing
the geometry of thin layer flows, other investigations, which are more theoretical, aim at
a more basic control of the dimensionality, as will be presented in the next subsection.

2.2.2 Dimensionality transition controlled by explicit parameters

One can notice that in the previous subsection, although sometimes the cases
correspond to very thin layers, they are three-dimensional flows in a strict sense. It is
interesting to see whether one can straightforwardly operate on the dimensionality of
a flow, although this may appear abstract when the dimensionality is not an integer.
Such ideas of non-integer dimensions originate in statistical mechanics and quantum field
theory in parallel with the adaptation of non-integer dimensional mathematical tools.
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There exist various theoretical examples such as the non-integer space-time dimension
d = 4 − ε [33] and the ε-expansion [34] in critical phenomena by Wilson et al., the
dimensional renormalization in quantum electrodynamics by Bollini and Giambiagi [35],
the dimensional regularization method in quantum field theory [36] by ’t Hooft and
Veltman, etc. Regarding mathematical tools, the integration in non-integer dimensional
space is proposed by Wilson [37], the generalization of scalar Laplacian operators (by
Palmer and Stavrinou in [38]) as well as of other vector calculus (by Tarasov in [39])
to non-integer dimensions are suggested, in favor of theoretical studies on fractal media
problems. The same idea is then inherited in theoretical investigations on hydrodynamics.

In fluid mechanics, one intuitive proposition is to directly embed the dimension d as
a control parameter somehow into the governing equations of the system. The dimen-
sionality is no more measured by the aspect ratio of geometries, but by the dimension
parameter d instead. To achieve this, Frisch et al. [40] extend a second-order closure
model of homogeneous isotropic turbulence, namely the eddy-damped quasi-normal
Markovian approximation, into its arbitrary-dimension version where d is thus extended
to non-integer values. The feasibility relies on related mathematical tools that allow, for
example, the integration over “spherical” surface of non-integer dimension, the derivation
of non-integer order, etc. The derivation of this model is out of the scope of this presen-
tation. Readers interested in more details are recommended to refer to [41]. As a result,
d appears explicitly in the final governing equations as a tunable parameter. Again, the
energy cascade direction serves as a criterion to judge the dimensionality. Several findings
can be cited from their work. First, a critical crossover dimension dc = 2.03 at which the
cascade direction reverses is given in [40]. Although in [41] dc is declared to be 2.05, it is
clear that using this adapted model, the dimensionality transition takes place at a point
very close to the two-dimensionality limit. Second, by ruling out the viscous dissipation
and energy injection and by assuming a E(k) ∝ k−m scaling at the initial moment, they
find that the solution with m = 5/3, corresponding to a Kolmogorov scaling, is stable for
any d > 2. Third, situations with d < 2 are not realizable with this model. Indeed, the
authors find that when d < 2, even when the energy spectrum is initially imposed to be
positive, it usually (but not necessarily) drops to negative values after arbitrarily short
time. Therefore, a methodology other than the EDQNM model is needed to consider
non-integer dimensions smaller than 2.

For d < 2 and still in the context of homogeneous isotropic turbulence, Frisch et al. [42]
conduct Fourier decimation operation to the velocity field, which consists in a quenched
mode filtering process :

u(x) =
∑
k

eik·xθkûk, (2.66)

where θk is a random number whose value is determined as

θk =

{
1 with probability hk
0 with probability 1− hk

,

k ≡ |k|,

hk = C

(
k

k0

)d−2

.

(2.67)

C is constant and is normally set as 1 in their study. k0 is a reference wave-number
corresponding to the largest scale of the system. The parameter d is the dimensionality
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and varies within the interval of (0, 2]. This process is inspired by the fact that in a
sphere of radius k, the number of modes involved in the dynamics scales as kd for
large k [43]. When the number of triad interactions in the spectral space is decimated,
the authors observe a critical dimension of dc = 4/3 at which the −5/3 spectrum
scaling begins to emerge. An inverse energy cascade is observed for 4/3 < d < 2, and
as d approaches 2, the range of the −5/3 scaling becomes wider. The Kolmogorov
constant CKol that appears in the spectrum expression E(k) = Ckolε

2/3k−5/3 diverges as
(d−4/3)−2/3, revealing that dc = 4/3 is in fact the cut-off dimension valid for this method.

At difference with the energy closure and Fourier decimation manners, Yakhot and
Orszag [44] considered the possibility of extending the turbulence dimensionality by
applying a renormalization group procedure. They also succeed in determining a critical
dimensionality at which the energy flux sign changes, and find dc = 2.56 for Kolmogorov
flows. This shows that the value of dc depends on what kind of models and hypotheses
one adopts to approximate turbulence dynamics.

Another abstract way to control the dimensionality transition is studied by Giuliani
et al. [45]. Instead of inserting explicitly the dimension d in equations, the authors choose
to treat the problem from the angle of conserved quantities. When viscosity and forcing
are not considered, the first conserved quantity is the kinetic energy, and the second one
is the enstrophy in two-dimensional flows or the helicity in three-dimensional flows. They
then use the Gledzer-Ohkitani-Yamada shell model [46, 47] without dissipation and energy
injection :(

∂

∂t
+ νk2

n

)
ûn = ikn(anû

∗
n+1û

∗
n+2 +

bn
2
û∗n−1û

∗
n+1 +

cn
4
û∗n−1û

∗
n−2) + fn. (2.68)

This is a governing equation in the spectral space, assuming that each shell is coupled
with the nearest and the next-nearest shells. Herein, n = 1, . . . , N is the shell number,
kn = k0r

n is the shell wave-number, boundary conditions are set as aN−1 = aN = b1 =

bN = c1 = c2 = 0, and the superscript * signifies data from the last time step. By
assuming zero dissipation and forcing ν = fn = 0, the energy invariance

∑
n |ûn|2 = C

imposes an + bn+1 + cn+2 = 0. A simplified treatment is selected by letting an = 1, bn = δ

and cn = δ − 1. The second quantity can hence be expressed as

Q =
∑
n

kαn |ûn|2 with 2α =
1

δ − 1
. (2.69)

For a two-dimensional case, α = 2 and δ = 5/4, giving rise to Q = Z =
∑

n k
2
n|ûn|2 ;

when a three-dimensional case is desired, α = 1 + iπ/ ln 2 and δ = 1/2, yielding
Q = H =

∑
n(−1)nkn|ûn|2. Therefore, by continuously varying δ from 1/2 to 5/4, the

system passes from two-dimensionality to three-dimensionality. A critical value δc = 1 is
thus found at which the energy flux changes sign, but in a discontinuous way.

2.2.3 Dimensionality transition studied in the present thesis

In the present thesis, we investigate two kinds of dimensionality transitions, a concrete
kind and an abstract kind. Both of them are related to axisymmetric turbulence in
confined cylindrical configurations.
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The concrete transition treats strictly axisymmetric flows, and considers the con-
tinuous change from non-swirling (weak toroidal energy component, thus purely 2D2C)
regime to swirling (strong toroidal energy component, thus 2D3C) regime. This can be
realized by controlling the energy injections in the toroidal and poloidal directions via a
fully spectral method. Technical details of the numerical implementation are presented in
Section 3.1.

The abstract transition focuses on passing from axisymmetric (azimuthal invariant)
regimes to general three-dimensional (free azimuthal variation) regimes. Axisymmetric
flows are mathematically described by the peculiarity of ∂θ = 0. However, they can also be
described from another angle : for axisymmetric flows, the variation period in the azimuthal
direction is +∞. Similarly, general 3D flows retained in a cylinder can be considered
as flows of which the azimuthal variation period is 2π. Then here comes an interesting
question : What are flows with an azimuthal variation period between +∞ and 2π ? If one
looks into the dimensionless Navier-Stokes equations, one can find that such situations of
intermediate periodicity can be fitted in a dimensionless cylinder. To illustrate this, we
start from the three-dimensional Navier-Stokes equation under cylindrical coordinates. As
is normally done, one can normalize the equations by using characteristic quantities of
time τ , length L and velocity U . The idea is that instead of defining one universal length
scales to feature structure sizes of the flow, we choose two different scales LP and LT to
respectively characterize variation lengths for poloidal and toroidal components. By fixing
r = LP r̄ and z = LP z̄ in the poloidal direction, one has ∂r = (1/LP )∂r̄ and ∂z = (1/LP )∂z̄.
With LT in the toroidal direction, one has : rθ = LT (rθ) = LT r̄θ̄. Thus, the azimuthal
derivative terms are rewritten as (1/r)∂θ = (1/LT )(1/r̄)∂θ̄. In the Navier-Stokes equations
with length normalized only, a ratio LP /LT appears in azimuthal derivative terms. It can
be further reduced into one single control parameter :

α =
LP
LT

. (2.70)

This leads to the three-dimensional Navier-Stokes equations written as :
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(2.71)

One notices that there is a mapping θ ∈ [0, 2π/α] 7→ θ̄ ∈ [0, 2π] in Eq.(2.71). The
limit α = 0 corresponds to the situation of LT → ∞, standing for an infinitely large
azimuthal period, and matches thus the strictly axisymmetric regime ; in the other limit
α = 1, one has LP = LT and the general three-dimensional regime with a 2π azimuthal
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periodicity is recovered. By this means, extension can be made to situations of α > 1,
this represents some kind of vibratory regime in the azimuthal direction, but this is out
of the scope of the current thesis. By continuously varying the value of α from 0 to 1,
a transition from the axisymmetric to the general three-dimensional regime can be realized.

To our knowledge, this is the first time that these two kinds of transitions are in-
vestigated. Results and analyses will be presented in Chapter 5 for the transition from
axisymmetric non-swirling to swirling (2D2C−→2D3C) regime, and in Chapter 6 for the
transition from axisymmetric to general three-dimensional (2D3C−→3D3C) regime. In
this thesis, some techniques reminiscent of early RANS models are used to model the
transitions. A summary of principles of these models is given in the next section.

2.3 Statistical modelling of turbulence

RANS equations for the mean velocity are not directly solvable due to the unclosed
Reynolds stress 〈u′iu′j〉 with u′i and u′j velocity fluctuations in the i and j directions (in a
Cartesian representation). Hence a closure should be formulated somehow by modelling
〈u′iu′j〉. Turbulent-viscosity models of the Reynolds stress are based on the turbulent-
viscosity hypothesis put forward by Boussinesq in the 19th century :

〈u′iu′j〉 =
2

3
kδij − νT

(
∂Ui
∂xj

+
∂Uj
∂xi

)
, (2.72)

with k the turbulent energy, δij the Kronecker symbol, νT the turbulent viscosity (or
eddy viscosity), Ui and Uj mean velocity components in related directions, and xi and xj
corresponding coordinates. The turbulent viscosity νT is considered to be the product of
a specific velocity u∗ and a specific length l∗ :

νT = u∗l∗. (2.73)

Within the frame of the turbulent-viscosity hypothesis, we need to approximate these u∗

and l∗ as well as some other quantities. The logic is that once u∗ and l∗ specified, νT is
obtained and 〈u′iu′j〉 can be calculated according to Eq.(2.72), so the RANS equations for
the mean velocity field can be solved. We focus here on three kinds of models

1. Algebraic models, among which the mixing-length model is the most repre-
sentative. The mixing-length model was devised by Prandtl for two-dimensional
boundary-layer flows, who considered that the mixing-length l∗ = lm is analogue
to the molecular free path. Besides, it was assumed that the specific velocity is the
product of the mixing length and the absolute value of averaged stream-wise velocity
gradient. This gives

νT = u∗l∗ = l2m

∣∣∣∣∂U∂y
∣∣∣∣ . (2.74)

Later, some developments of this model to fit three-dimensional flows were suggested
by Smagorinsky [48] basing u∗ on the mean strain rate and by Baldwin and Lomax
[49] basing u∗ on the mean rotation rate, with the latter widely used in industrial
applications.

2. Turbulent-kinetic-energy model. Still, l∗ in this model was taken as the mixing
length lm, but u∗ was modelled in another manner as

u∗ = ck1/2, =⇒ νT = ck1/2lm, (2.75)
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with c a model constant. This model was separately proposed by Kolmogorov [50]
and Prandtl [51], and is termed as “one-equation model” since there remains the
turbulent kinetic energy k to be modelled through its transport equation. Each term
(production, diffusion and dissipation) in this transport equation was modelled as
a function of lm and k, thus making the whole turbulent-viscosity model solvable.
Especially, the dissipation rate ε was simply considered to scale as k3/2/lm. However,
later extensions of turbulent-viscosity model required that apart from k, ε should be
modelled by its own transport equation, giving rise to the k-ε model.

3. k-ε model. This is a kind of “two-equation model” : the same lm and k modelling
as above are kept in this model ; an additional modelling process is imposed for the
dissipation rate ε using its transport equation. However, the exact transport equation
of ε possesses eight terms to approximate. Consequently, the transport equation
of ε was empirically simplified by terms representing its diffusion, production and
dissipation mechanisms.

Turbulent-viscosity models assume that the Reynolds-stress depends on the local values
of k, ε and ∂Ui/∂xj , which is questionable in regions of strong inhomogeneity. Therefore,
corrections such as those for near-wall regions [52, 53] and low-Re [54] were proposed.
Besides, other proposals such as deriving and modelling the transport equation of νT [55]
were intended but merely for aerodynamic applications. Otherwise, some fundamental
changes of the turbulent-viscosity model (2.72) was performed, with the Reynolds-stress
developed to the second order approximation, but still based on the modelling of k
and ε [56]. Thus derived was the non-linear k-ε model with improved performance and
applicability compared to the standard k-ε model.

In parallel with turbulent-viscosity models, another kind of Reynolds-stress model
aims at modelling the transport equation of 〈u′iu′j〉. However, with such a principle,
the modelling of the Reynolds-stress flux, the pressure-strain-rate correlation and the
dissipation tensor are needed, with a tremendous diversity of proposals to be found in
the literature. In Chapter 5 for example, we illustrate the form of the pressure strain
correlation proposed by Hanjalić and Launder [57], since we will use its form to model
the transitions in axisymmetric turbulence.

Different Reynolds-stress models having their own advantages, shortcomings and suit-
able application range, they provide a basis of reference for modelling trials of various
other cases. Particularly, during the establishment of the models in this thesis, some ideas
will be borrowed from these RANS models through analogy of situations, mechanisms,
etc.





Chapitre 3

Numerical Methods

Two kinds of numerical methods will be introduced in this chapter, the first being
fully spectral and the second being pseudo-spectral. Both methods integrate the Navier-
Stokes equations in a confined cylindrical vessel. They differ in boundary conditions. In
general, the no-penetration condition is valid for both methods, but the no-slip condition
is applied strictly in the pseudo-spectral method only. The sketch of the flow domain is
given in Fig.3.1. Various domain aspect ratios can be considered by imposing different
values of the radius R and height H.

Figure 3.1: Sketch of the computational domain.

Qu et al. [7, 8, 9] were the first to numerically investigate strictly axisymmetric tur-
bulence. For this, they used a fully spectral method. In their simulations, the upper and
lower bounds of the vessel are open by setting periodic conditions to them, and a par-
tial slip is allowed on the lateral wall. To follow this work, we decide to add gradually
the restrictions comparable to realistic experimental set-ups. Therefore, the first part of
simulations, using the fully spectral method, focuses on simulations with partial slip but
totally confined boundaries, and the second part of simulations, using a pseudo-spectral
method, on simulations with more realistic (no-slip) boundaries.

3.1 The fully spectral method (FSM)

The main idea of spectral methods is to use an orthonormal basis to decompose the ve-
locity and the pressure fields. As one will notice, the current fully spectral method (FSM)
consists actually in a Galerkin-type approximation : the basis satisfies naturally the wished
boundary conditions. The advantage of fully spectral methods is that the derivations are
calculated in their spectral form which are analytical and accurate. However, the disad-
vantage, as one will see in the sequel, is that the nonlinear term will occupy a large amount
of computational resources. To illustrate these two points as well as other specialties, this
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section gives the details of the theoretical derivation and the numerical implementation of
the method. Initially devised by Chen et al. [10] for magnetohydrodynamics in cylindrical
domain, the code was later developed by Li et al. [58] for 2D turbulence with circular
boundaries, and then adapted to axisymmetric turbulence by Qu [8].

3.1.1 Eigenfunction of the curl

The basis of our FSM is derived from the eigenfunctions of the curl operator under
cylindrical coordinates, inspired by the work of Montgomery et al. [59, 10, 60] and
Chandrasekhar and Kendall (CK) [61] on magnetohydrodynamic (MHD) flows.

These eigenfunctions of the curl operator can form an orthonormal basis to expand
divergence-free vector fields under cylindrical coordinates, therefore including incompress-
ible velocity fields, up to certain symmetries and boundary conditions. The expansion can
basically be written as

u(r, θ, z, t) =
∑
qmn

ξqmn(t)Aqmn(r, θ, z), (3.1)

where ξqmn are called CK mode coefficients with q, m, n mode numbers of r, θ, z dimen-
sions respectively, and Aqmn is the basis depending on CK eigenfunctions :

Aqmn = I
− 1

2
qmn [λqmn∇Ψqmn × ez +∇× (∇Ψqmn × ez)] , (3.2a)

(∇2 + λ2
qmn)Ψqmn = 0. (3.2b)

A first remark is that ξqmn and Aqmn are generally complex, since Ψqmn can possibly be
complex functions. Imposing some extra constraints, they can be restricted to be in the
real number space purely. Without loss of generality, the inner product here is defined as
the average of the integral over the cylinder volume :

〈A1(r, θ, z),A2(r, θ, z)〉 =
1

V

∫
V
A1(r, θ, z),A∗2(r, θ, z)rdrdθdz, (3.3)

where A1 and A2 are two vectors belonging to the CK basis, V is the volume, and the
superscript symbol ∗ denotes the conjugate of a complex field. In this context, the prefix
I
−1/2
qmn in Eq.(3.2a) is a coefficient ensuring that the CK basis is normalized :

1

V

∫
V
AqmnA

∗
qmnrdrdθdz = 1. (3.4)

A second remark is that Aqmn is divergence-free. Thus the velocity field, expanded in the
form (3.1), meets naturally the incompressibility condition :

∇ · u = 0. (3.5)

A third remark, resulting from the second one, is that all Aqmn vectors are eigenfunctions
of the curl : ∇×Aqmn = λqmnAqmn. One can then deduce the expression of the vorticity
field ω, curl of u, without lots of difficulty :

ω(r, θ, z, t) =
∑
qmn

λqmnξqmn(t)Aqmn(r, θ, z). (3.6)

Moreover, this virtue can lead to the simplicity of the spectral expression of the Navier-
Stokes equations, as will be shown in Section 3.1.3.

The concrete expressions of Aqmn depending on detailed symmetries and boundary
conditions will be developed in the next subsection.
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3.1.2 Expressions of CK basis for axisymmetric flows confined in a
closed cylindrical domain

We aim at imposing the axisymmetry condition : ∂θ = 0. Then the expression of CK
basis of the current thesis originates in solving the Helmholtz equation (3.2b), except
that the mode index m must be excluded. Like solving the Laplace equation, the variable
separation approach is adopted assuming that the solutions can be written as

Ψqn(r, z) = R(r)Z(z), (3.7)

where R and Z are scalar functions of r and z. This develops Eq.(3.2b) into

R′′

R
+

1

r

R′

R
+ λ2

qn = −Z
′′

Z
. (3.8)

As the left-hand side of Eq.(3.8) is a function of r and the right-hand side of z, they must
be reduced to a constant independent from both r and z, denoted as αqn, giving

R′′ +
1

r
R′ + (λ2

qn − αqn)R = 0, (3.9a)

Z ′′ + αqnZ = 0. (3.9b)

Notice that Eq.(3.9b) is the harmonic oscillation equation if αqn is chosen positive. The
corresponding solutions on z are periodic, or say trigonometric functions reflecting to
Fourier modes. Thus we prefer to denote αqn = kn conventionally, which is reminiscent of
Fourier wave-numbers. Solutions are then well known as

Z(z) = Aeiknz +Be−iknz (3.10)

with A and B complex constants. Return to the equation concerning r. Choices are that
λ2
qn − α2

qn = λ2
qn − k2

n > 0, making Eq.(3.9a) the 0th order Bessel differential equation of
the first kind. With λ2

qn − k2
n = γ2

q , solutions are then well known as

R(r) = CJ0(γqr), (3.11)

where J0 is the 0th order Bessel function of the first kind and C is a constant. By substi-
tuting Eqs.(3.10) and (3.11) in Eq.(3.7), one obtains a first form of Ψqn :

Ψqn = J0(γqr)(Ae
iknz +Be−iknz). (3.12)

Further reduction of this expression needs the definition of boundary conditions in the z
direction. For instance, Qu et al. [8, 7, 9] considered periodic boundaries on the z dimension
and set A = 0, giving rise to

Ψqn = J0(γqr)e
−iknz. (3.13)

Since a confinement with no-penetration (slipping is allowed) condition on top and bottom
is in our consideration, we pose A = a+ bi and B = −a− bi to obtain

Ψqn = J0(γqr) sin(knz). (3.14)

We notice that Ψqn is no longer a mapping to the complex number space. As a result, the
derived CK basis is a set of vector fields in the real number space, accompanied by real
expansion coefficients.
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In order to distinguish this expansion in the real number space from its general complex
form, it will be denoted subsequently as

u(r, z, t) =
∑
qn

Cqn(t)Bqn(r, z), (3.15)

where Bqn is the basis in the real number space and Cqn is the related real coefficient. By
substituting Eq.(3.14) in Eq.(3.2a), one obtains the final expression of the basis :

Bqn(r, z) = I
− 1

2
qn

−knγqJ1(γqr) cos(knz)

λqnγqJ1(γqr) sin(knz)

γ2
qJ0(γqr) sin(knz)

 , (3.16a)

=⇒u(r, z, t) =
∑
qn

Cqn(t)I
− 1

2
qn

−knγqJ1(γqr) cos(knz)

λqnγqJ1(γqr) sin(knz)

γ2
qJ0(γqr) sin(knz)

 , (3.16b)

=⇒ω(r, z, t) =
∑
qn

λqnCqn(t)I
− 1

2
qn

−knγqJ1(γqr) cos(knz)

λqnγqJ1(γqr) sin(knz)

γ2
qJ0(γqr) sin(knz)

 . (3.16c)

Similarly, Iqn is the normalization constant guaranteeing :

1

V

∫
V
Bqn ·BqndV = 1, (3.17)

and its expression will be deduced in Appendix A.1. The determination of parameters γq
and kn remain to be done.

γq is determined by imposing the no-penetration boundary condition on the lateral
wall at r = R with R now the cylinder radius :

ur(r = R, z) =
∑
qn

Cqn(t)I
− 1

2
qn (−knγqJ1(γqR) cos(knz)) = 0. (3.18)

We then share the same approach as Qu [8] which imposes that J1(γqR) is zero for all
q modes. γq is therefore the qth root of equation J1(Rx) = 0, and should actually be
strictly positive. As a result, the q modes will be counted starting from 1 : q = 1, 2, 3, ...,
representing the qth strictly positive zero of J1(Rx).

Generally, λqn and kn should take both positive and negative values. For the case
where the z direction is treated periodically, n = 0,±1,±2,±3, ... with kn = 2nπ/H

where H is the cylinder height, and both positive and negative λqn should be considered.
The orthogonality and the completeness of the CK basis thus derived are theoretically
demonstrated by Yoshida et al. [62, 63, 64]. To fulfill the completeness of our basis (3.16a),
both positive and negative λqn should similarly be considered, but differences are that kn
should be chosen as

kn = nπ/H with n = 1, 2, 3, ... (3.19)
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We then rewrite the expansion (3.15) as

u(r, z, t) ≡
±λ∑
qn

Cqn(t)Bqn(r, z)

≡
+λ∑
qn

Cqn(t)Bqn(r, z) +
−λ∑
qn

Cqn(t)Bqn(r, z)

≡
∑
qn

C+λ
qn (t)B+λ

qn (r, z) +
∑
qn

C−λqn (t)B−λqn (r, z),

(3.20)

where r varies from 0 to R, and z varies from 0 to H. We introduce the notation
∑±λ

qn

to represent a summing over qn series of both positive and negative λ, and the notation
C+λ
qn B+λ

qn (respectively C−λqn B−λqn ) refers to the terms on the side of +λ (respectively −λ).
Using this notation, the poloidal stream function ψ, the angular momentum σ and the
pseudo-vorticity ω have their analytically expanded form as

ψ(r, z) = −r
∫
ur(r, z)dz

= r
±λ∑
qn

CqnI
−1/2
qn γqJ1(γqr) sin(knz),

(3.21a)

σ(r, z) = ruθ(r, z) = r

±λ∑
qn

CqnI
−1/2
qn λqnγqJ1(γqr) sin(knz), (3.21b)

ξ(r, z) =
ωθ
r

=
1

r

±λ∑
qn

CqnI
−1/2
qn λ2

qnγqJ1(γqr) sin(knz). (3.21c)

A first remark is that the basis Bqn satisfies the divergence-free condition as mentioned
before, resulting in the natural satisfaction of the incompressibility condition ∇ · u = 0.
Besides, one can notice that under Bqn, uθ is zero on all boundaries and on the axis of
r = 0. However, since J0(γqR) 6= 0, uz 6= 0 on the lateral wall. The slip of uz is therefore
allowed on this wall. Similarly, the slip of ur is allowed on the top and the bottom of
the cylinder since cos(0) = cos(knH) = 1 6= 0, but one has ur = 0 on r = 0. Finally,
penetration is strictly prohibited on all wall boundaries. The axis of r = 0 is in fact a
location of singularity for our system. In the presence of axisymmetry, ur and uθ should
be strictly 0 on r = 0, which is an additional boundary condition well satisfied by Bqn.

Numerical verification of the completeness of Bqn

Mathematical demonstration of the orthonormality and the completeness of Bqn under
these boundary conditions is given in Appendix A, while numerical verifications of this
completeness will be introduced in this paragraph. The principle is to decompose velocity
fields in the spectral space and then to recompose them back in the physical space. The
qualitative comparison consists in visualizing whether the original fields are identical to
the recomposed ones, while quantitively, relative errors between original and recomposed
energy will be compared : Err = (Eoriginal−Erecomposed)/Eoriginal. Testing cases are shown
in Tab.3.1. Visualization comparisons are presented in Fig.3.2. From Tab.3.1, one can see
that for Case 1, the resolution of (qmax, nmax) = (52, 45) is sufficient, and the fields are
well recovered with high accuracy. As Case 2 contains much higher-order frequencies in
the axial direction, a truncation of qmax = 45 in the z dimension is no longer sufficient
(Err = 1.57%). But if qmax is raised to a sufficiently high value, like qmax = 225 in
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Case 3, the relative error decreases again to a negligible level. These testing results then
numerically prove the completeness of the basis Bqn.

Case 1 2 3

ψ(r, z) = sin2(
2πz

H
)(r −R)3r2 P10(

z

H/2
− 1)(r −R)3r2 P10(

z

H/2
− 1)(r −R)3r2

uθ(r, z) = sin3(
2πz

H
)(r −R)2r 0 0

(qmax, nmax) = (52, 45) (52, 45) (52, 225)

Eoriginal = 2.04783636× 101 1.19498710× 102 1.19498710× 102

Erecomposed = 2.04780028× 101 1.17624925× 102 1.19482179× 102

Err = 1.76188811× 10−5 1.56803790× 10−2 1.38336538× 10−4

Table 3.1: Testing cases verifying the completeness of Bqn. P10 is the 10th-order Legendre
polynomial.

3.1.3 Spectral form of the Navier-Stokes equation

Using the CK basis Bqn, we know that the velocity field u meets analytically the
incompressibility condition. Therefore, ∇ · u is no longer within our consideration in the
sequel, and we are going to focus only on the dynamics of the system, of which the spectral
form can be derived via Bqn. The derivation begins with a reformulation of the Navier-
Stokes equation :

∂u

∂t
= u× ω − 1

ρ
∇pt + ν∇2u, (3.22)

where ω = ∇× u is the vorticity vector, and pt = p + ρu2/2 is the total pressure. Then
one carries out inner product operation (3.3) between Eq.(3.22) and a certain basis vector
Bqn, assuming that the velocity field is decomposed as in Eq.(3.16b), which leads to the
presence of the expansion constant Cqn on the left-hand side of the equation :

∂

∂t
Cqn =

1

V

∫
V
Bqn ·

[
(u× ω)− 1

ρ
∇pt + ν∇2u

]
dV. (3.23)

The reason of the reformulation (3.22) resides in the fact that the pressure term disappears
after the integration :∫

V
Bqn · ∇ptdV =

∫
V
∇(ptBqn)dV −

∫
V
pt∇ ·BqndV = 0. (3.24)
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(a) Case 1. (b) Case 2. (c) Case 3.

Figure 3.2: Comparison of the stream function ψ in the three cases detailed in Tab.3.1.
With naked eye, original (top) and recomposed (bottom) fields show no difference for
Cases 1 and 3, while they are slightly different close to the top and bottom of the cylinder
for Case 2 due to insufficiency of vertical resolution.

The first term on the right-hand side of Eq.(3.24) is zero, since by applying Green’s
formula, one has∫

V
∇(ptBqn)dV =

∫
∂V

(ptBqn) · ndS = 0. (3.25)

Recall that the radial component of Bqn on the lateral wall equals to zero, and so does
the axial component on the top and the bottom boundaries. The second term on the
right-hand side of Eq.(3.24) vanishes since the CK basis is naturally divergence-free. This
emphasizes one of the advantages of using the CK basis : there is no need to treat explicitly
the pressure term. Another advantage refers to the treatment of the viscous term :

∇2u = ∇(∇ · u︸ ︷︷ ︸
0

)−∇×∇× u

= −
±λ∑
qn

λ2
qnCqnBqn,

(3.26)

knowing that all Bqn are eigenvectors of the curl. Therefore, the Navier-Stokes equation
reduces to :

∂

∂t
C+λ
qn =

±λ∑
q1n1

±λ∑
q2n2

λq2n2Cq1n1Cq2n2

[
1

V

∫
V
B+λ
qn · (Bq1n1 ×Bq2n2) dV

]
− νλ2

qnC
+λ
qn ,

∂

∂t
C−λqn =

±λ∑
q1n1

±λ∑
q2n2

λq2n2Cq1n1Cq2n2

[
1

V

∫
V
B−λqn · (Bq1n1 ×Bq2n2) dV

]
− νλ2

qnC
−λ
qn .

(3.27)
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One can see that essentially, the numerical method consists in simulating the time evolution
of Cqn. However, the first term on the right-hand side of the spectral equations, called
the convolution term, complicates the procedure. Here we give the full expression of the

integral
1

V

∫
V
B±λqn · (Bq1n1 ×Bq2n2) dV :

1

V

∫
V
B±λqn · (Bq1n1 ×Bq2n2) dV =

1

V

∫ H

z=0

∫ 2π

θ=0

∫ R

r=0
rdrdθdzI−

1
2

qn I
− 1

2
q1n1I

− 1
2

q2n2

{cos(knz) sin(kn1z) sin(kn2z)knγqγq1γq2J1(γqr) [γq1λq2n2J1(γq2r)J0(γq1r)− γq2λq1n1J1(γq1r)J0(γq2r)]

+ sin(knz) cos(kn1z) sin(kn2z)kn1γqγq1γq2J1(γq1r)
[
γq2λ

±
qnJ1(γqr)J0(γq2r)− γqλq2n2J0(γqr)J1(γq2r)

]
+ sin(knz) sin(kn1z) cos(kn2z)kn2γqγq1γq2J1(γq2r)

[
γqλq1n1J0(γqr)J1(γq1r)− γq1λ±qnJ1(γqr)J0(γq1r)

]}
.

(3.28)

One can notice that this convolution term does not vary along with the time-advancing.
Because the computation to obtain this term is very time-expensive, it should indeed
be pre-calculated before the simulation. Its size can be largely constrained after some
analyses of the n-n1-n2 dependence, but it still gives rise to a seven-dimensional array
which occupies a large amount of RAM resources. Consider an illustration example with a
truncation of nmax = 45 and qmax = 52. The size of the convolution array attains 24.9 Gb,
although it has already been reduced to 1/30 of its original by the n-n1-n2 dependence.
Due to this truncation limit, the Reynolds number of simulations cannot reach a very high
level. But still, the Reynolds numbers allowed by this new CK basis Bqn is higher than
those in [8, 7, 9].

3.1.4 Forcing method

Since the method is fully spectral, it is intuitive to apply a spectral forcing approach.
The principle is similar to that in [8, 7, 9], namely a negative viscosity forcing [65]. The
difference is that in [8], only one single parameter α is set to control the injection rate
in both the poloidal (meaning the r-z plane) and the toroidal (meaning the θ direction)
components, while in our simulations, we use two different parameters, named cP and cT
(the subscript “P” stands for “poloidal” and “T” for “toroidal”). To avoid ambiguity, the
negative viscosity ν− is replaced by −ν in the following.

We define the poloidal and toroidal portions of the kinetic energy EP and ET as

EP ≡
1

V

∫
V

1

2
(u2
r + u2

z)
2dV,

ET ≡
1

V

∫
V

1

2
(u2
θ)

2dV.
(3.29)

By the same deduction procedure as in Appendix B for other statistical quantities, one
can easily prove that their modal expressions write

EP,qn =
1

4
(C+λ

qn + C−λqn )2,

ET,qn =
1

4
(C+λ

qn − C−λqn )2.

(3.30)

Then the modal equations respectively for EP and ET are :

=⇒


∂EP,qn
∂t

= transferP,qn − 2νλ2
qnEP,qn + 2cP νλ

2
qnEP,qn,

∂ET,qn
∂t

= transferT,qn − 2νλ2
qnET,qn + 2cT νλ

2
qnET,qn,

(3.31)
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with “transferP,qn” and “transferT,qn” modal energy transfer terms by nonlinear effets.
From Eq.(3.31), it is clear that cP governs exactly the poloidal forcing and cT exactly
the toroidal energy injection. By adjusting separately the values of (cP , cT ), scenarii of
different toroidal movement intensities can be achieved (this will be presented in Chapter
5 where the transition from non-swirling to swirling turbulence will be studied.).

A first remark from Eq.(3.31) is
∑

qn transferP,qn = −
∑

qn transferT,qn, because the
integral of the total energy transfer is equal to zero. In [8, 7, 9], energy is shown to
be transferred to the largest scales in axisymmetric turbulence. The Reynolds friction
term corresponding to an all-scale dissipation (in fact, it aims particularly at removing
ernergy at big scales) is however not included in Eq.(3.31). This choice is motivated by
the fact that [8, 7] find that the insertion of this term is not necessary, probably due to
the presence of the cylindrical wall. The geometry in the current thesis is well confined in
all directions, and the solid walls are therefore expected to prevent even more the flow
structures from growing unlimitedly.

3.1.5 Time step

The time scheme used in this FSM is the 4th-order Runge-Kutta scheme. For the
determination of time step, we use an adaptive time step method. The time step ∆t is
determined by evaluating the Courant number at every time :

C(tm) =
U(tm)∆t(tm)

∆x
⇐⇒ ∆t(tm) =

C(tm)dx
U(tm)

, (3.32)

where U is a characteristic velocity that reflects the velocity of largest magnitude at time
tm, and dx is a characteristic meshing length referring to the smallest discretized length
gap within the domain. Because the numerical method is fully spectral, we choose U
related to the root mean square of the total kinetic energy

U(tm) =

√
2E(tm)

3
with E(tm) =

1

2

±λ∑
qn

C2
qn(tm), (3.33)

and define ∆x as the reciprocal of the maximal effective wave-number

∆x =
1√

k2
max + γ2

max
=

1√
(nmaxπ/H)2 + γ2

max
. (3.34)

The criterion of C is fixed empirically at 0.05 and is validated to be optimal by Qu [8]
through a series of tests. All of our computations converge well with this value. This
gives rise to a variable time step mechanism during the simulation. However, ∆t may be
large after a long period of energy dissipation. To ensure that the time discretization is
fine enough, another condition is superposed : if ∆t is evaluated to be greater than 0.001,
then it is forced to be 0.001, i.e. the upper bound of ∆t is 0.001.

As mentioned in Section 3.1.3, the integral (3.28) needs to be pre-calculated. A numer-
ical approximation rule of definite integration is needed. To obtain the result with high
precision, we choose to adopt the Gaussian quadrature method.
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3.1.6 Simulation resolution

A classic way to check that the resolution is sufficient for a given Reynolds number is
to implement a series of simulations of the same flow with increasing resolutions. When
simulations of resolutions higher than a certain level yield identical behavior, this level is
said sufficient for the flow. Rigorous as it is, this method is expensive in both aspects of
time and computational resources. In the context of our numerical method, the resolution
is assessed by comparisons between the smallest simulated scale and the dissipative
scales of the turbulent flow, inspired by the standard practice in pseudo-spectral DNS
of isotropic turbulence [58]. Since dissipative scales are the smallest scales of a flow, the
resolution can be considered of good quality if the smallest simulated scales are smaller
than the dissipative scales.

We introduce first the concept of the effective wave-number k, defined as |λqn| :

k(q, n) = |λqn| =
√
k2
n + γ2

q . (3.35)

Thus the smallest simulated scale is determined by the largest effective wave-number :

k(qmax, nmax) =
√
k2

max + γ2
max. (3.36)

As per Kolmogorov’s theory, the energy dissipative scale depends only on the viscosity ν
and the energy dissipation rate εE , and is derived by dimensional analysis to be

kE = CEε
1/4
E ν−3/4, (3.37)

with CE ∼ O(1) a constant. Besides, we consider also the dissipative scales of enstrophy
Z, angular momentum I1 and helicity H1 by similarly assuming that they depend only on
ν and respective dissipation rates εZ , εI1 and εH1 . Then by dimensional analyses, these
scales are derived to be

kZ = CZε
1/6
Z ν−1/2,

kI1 = CI1ε
1/2
I1
ν−1,

kH1 = CH1ε
1/5
H1
ν−3/5,

(3.38)

where CZ , CI1 and CH1 are constants of magnitude O(1). By investigating the spectral
governing equations of E, Z, I1 and H1, the spectral formulae of their dissipation rates
can be derived as well :

εE = ν

±λ∑
qn

λ2
qnC

2
qn,

εZ = 2ν
±λ∑
qn

λ4
qnC

2
qn,

εI1 =
4ν

π

∑
q,odd n

λ2
qn(C−λqn − C+λ

qn )sign(J0(γqR))

nγq
,

εH1 = ν
±λ∑
qn

λ3
qnC

2
qn.

(3.39)

The scales defined in (3.37) and (3.38) are compared to the smallest numerical scales in
our simulations. This testing method has been applied to all simulations using the FSM.
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3.1.7 Verification tests

Some first tests are performed here to validate the FSM before using it. We choose to
verify the conservation, during an early period, of the kinetic energy E and of some of the
Casimirs In and Hm. For an inviscid flow constrained by the same boundary conditions as
ours, their conservation is mathematically demonstrated in [6]. Respectively, we investgate
numerically the behavior of E, I0, I1, H1 and H2 with zero viscosity. This can be easily
accomplished since their modal expressions are derived in Appendix B. Then tests of
different resolutions, from the lowest to the highest available, are implemented with ν = 0,
R = π and H = 1.7π. Time signals (see Fig.3.3) are plotted using the dimensionless time
scale τ , the initial turnover time, defined as

τ =
linit

Uinit
, (3.40)

where linit is the initial integral length scale and Uinit is related to the root mean square
of the initial kinetic energy :

linit =

±λ∑
qn

(√
k2
n + γ2

q

)−1
Eqn(t = 0)

±λ∑
qn
E(t = 0, q, n)

, (3.41a)

Uinit =

√
2E(t = 0)

3
. (3.41b)

From Fig.3.3, one can conclude that the kinetic energy E and the helicity H1 are
well conserved for all resolutions (in fact, it can be proved that they are mathematically
conserved under the current basis Bqn even with truncation), and that the rest of the
quantities diverge due to the truncation effect. But tendencies allow to tell that the
higher the resolution, the later and the less the conservations are violated.

3.2 The pseudo-spectral method (PSM)

For axisymmetric cases with higher Reynolds numbers, the fully spectral method
described in the previous section is no longer usable due to the huge resource occupation
caused by Eq.(3.28). Therefore, we turn to a pseudo-spectral method (PSM) based on
the Chebyshev (Gauss-Lobatto) collocation expansion method. For this, we use a code
devised by Raspo et al. [66] and developed by Peres et al. [67] and integrating the full
Navier-Stokes equations (with ∂r, ∂z and ∂θ 6= 0) in a closed cylindrical domain. We use
this code for two different aims : (i) to investigate strictly axisymmetric turbulence at
higher Reynolds numbers than those permitted by the FSM and with boundary conditions
closer to those of realistic setups including in particular the von Kármán experiment ; and
(ii) to investigate the transition from axisymmetric (∂θ = 0) to 3D turbulence. For this,
we adapte the code in two different ways.

The initial version of the code, developed by Raspo et al. [66], is first briefly described
in Section 3.2.1. We then present in Section 3.2.2 the modifications that we have done
so as to investigate the flows of interest. The results of some validation tests are finally
presented in Section 3.2.4.
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Figure 3.3: Temporal signals of statistical invariants for inviscid simulations under dif-
ferent resolutions. The curves are normalized by initial values of corresponding quantities.

3.2.1 Brief description of the initial version of the code

The specialty of pseudo-spectral methods lies in the fact that derivatives are calculated
in spectral space to ensure the numerical precision, while multiplication of terms will be
conducted in physical space to reduce time expenses. The code developed by Raspo et al.
[66] uses Chebyshev polynomials to decompose the radial and axial components of flow
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fields, while azimuthal components are descretized by Fourier modes.

We will show that the Chebyshev (Gauss-Lobatto) collocation method allows to
impose real wall boundary conditions to the flow domain. In fact, as the poloidal plane is
treated in the physical space, it is more intuitive and convenient to add desired conditions
to the domain boundaries.

Apart from the decomposition bases, the PSM that we use here has several differences
compared with the FSM presented in the last section :

1. The current PSM decomposes the three velocity components separately, while the
FSM has recourse to a vectorial basis that decomposes the three components once
for all. Thus, unlike Eq.(3.27), there will be three control equations concerning the
three components separately.

2. Most of the calculations will be manipulated in the physical space in the form of
matrix products. One of the advantages of this Chebyshev collocation method is that
the 1st- and the 2nd-order derivatives of the expanded variable can be analytically
expressed in the physical space in a matrix form. Therefore, the flow evolution within
the poloidal plane will be directly simulated in the physical space. This is the most
important element which will make high Reynolds numbers accessible.

3. For each velocity component as well as for pressure, both Dirichlet and Neumann
boundary conditions can be imposed to the walls of the cylinder. When Dirichlet
boundary condition are imposed (the boundary value can only be 0), one imposes
the no-penetration condition ; when Neumann boundary condition is switched on
(the value of the boundary derivative against the wall’s normal direction can also
only be 0), one imposes the no-slip condition.

The time discretization method of the PSM is proposed by Raspo et al. [66], featured
by its modified projection method, is directly applicable in our cases.

Forcing method
To mimic the mechanical forcing by counter-rotating impellers, angular velocities Ω of

opposite signs are added to the upper and the lower bounds of our computational domain,
and they play the role of “rotors”. The lateral wall is fixed. The curved blades are not
taken into consideration for the sake of simplicity (see Fig.3.4). However, the junction
areas between the rotors and the lateral walls present some singularity. Take the upper
bound of the cylinder as example. The rotation velocity attains its maximum ΩR at the
outer radius of the rotors, but the nodes on the lateral boundary and vertically right under
the rotor layer should be motionless, meaning that there is a drop of |uθ| from ΩR to 0 at
this junction area. The lower bound should deal with the same problem. To regularize this
singularity, a boundary layer function of Vθ(z̄) = e−(z̄−1)/µ is applied on the lateral wall
which softens the discontinuous drop into an exponential decrease. Here µ is an arbitrary
shape parameter that equals 0.006 and is independent of the grid size. Otherwise, it is
shown by Serre and Bontoux [68] that the value 0.006 represents reasonably the gap size
of the junction in experimental devices.



40 Chapitre 3. Numerical Methods

Figure 3.4: Sketch of the PSM numerical set-up. The impellers are simplified into sym-
metrically counter-rotating discs.

3.2.2 Adaptation of the code to investigate the transition from axisym-
metric to 3D turbulence (∂θ 7→ α∂θ ; α ∈ [0, 1])

As already mentioned, the original version of the code integrates the Navier-Stokes
equation without restriction on the spatial derivatives. Our purpose is to investigate
axisymmetric flows (∂θ = 0), but also flows slowly varying in the azimuthal direction
(∂θ 7→ α∂θ with 0 6 α 6 1).

Axisymmetric flows are mathematically described by the peculiarity ∂θ = 0. However,
they can also be described from another angle : for axisymmetric flows, the variation
period in the azimuthal direction is +∞. Similarly, general 3D flows retained in a cylinder
can be considered as flows of which the azimuthal variation period is 2π. Then here comes
an interesting question : what are flows with an azimuthal variation period between +∞
and 2π ?

If such intermediary flows can be simulated, then there should be some variation ten-
dencies that characterize their physics. One subject to look into is the characteristic length
scale of toroidal structures (denoted as LT ). For axisymmetric flows, since the azimuthal
variation period is infinity, the toroidal characteristic length scale should also be infinitely
long : LT = +∞. For a general 3D flow, the toroidal characteristic length scale should be
of the same order as that in the poloidal plane (denoted as LP ), and conventionally we de-
fine them to be identical and equal to the cylinder radius R : LT = LP = R. However, for
cases where the azimuthal variation period is between +∞ and 2π, one has LT ∈ [R,+∞).
Then toroidal lengths can in fact be normalized by LT instead of LP , while original nor-
malization of poloidal lengths is kept. We can define dimensionless coordinates r̄, z̄ and θ̄
such that :

r = Rr̄,

z =
H

2
z̄ =

R

G
z̄,

rθ = LT rθ = LT r̄θ̄ =
LT
R
Rr̄θ̄,

(3.42)
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with G ≡ 2R/H the aspect ratio of the poloidal plane. We introduce the notation
α = R/LT and the toroidal normalization becomes rθ = Rr̄θ̄/α. By applying this toroidal
characteristic length scale and the α parameter, the Navier-Stokes equations can be rewrit-
ten as

1

G

∂ūr
∂r̄

+
1

G

ūr
r̄

+
1

G

1

r̄
α
∂ūθ
∂θ̄
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∂ūz
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ReΩ
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∂ūθ
∂t̄

+
ReΩ

G

(
1

G
ūr
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∂ūθ
∂θ̄

+ ūz
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(3.43)

where t̄ is the dimensionless time, ūr, ūθ and ūz are dimensionless velocity components,
ReΩ ≡ R2Ω/ν is the large-scale Reynolds number based on Ω, and p̄ ≡ p/(ρR2Ω2/2) is the
dynamic pressure coefficient based on Ω. All of the derived variables are then discretized
within (r̄, z̄) ∈ [−1, 1] × [−1, 1] by Chebyshev polynomials. There are two arguments to
clarify before fitting these equations into numerical simulations :

1. Since LT ∈ [R,+∞), one has α ∈ [0, 1]. For the case where α = 0, the toroidal char-
acteristic length scale is infinity. This also leads to the disappearance of azimuthal
derivation terms, and Eq.(3.43) returns to its axisymmetric version. For α = 1,
toroidal characteristic length scale is R, and Eq.(3.43) keeps the general 3D version.
Then, the cases of α ∈ [0, 1] represent the flows of which the regime is between
axisymmetric and general three-dimensional.

2. One can observe that in Eq.(3.43), ∂θ is replaced by ∂θ̄ where θ̄ signifies the rescaled
azimuthal coordinate. This means that there is a mapping of the definition domain
of θ to a rescaled definition domain of θ. For the sake of numerical feasibility, this
rescaled azimuthal definition domain should be θ̄ ∈ [0, 2π].

In general, the result of the upper two arguments is that when adapting the algorithm,
one inserts the α-like factors before the azimuthal derivation terms :

∂

∂θ
7→ α

∂

∂θ̄
and

∂2

∂θ2
7→ α2 ∂

2

∂θ̄2
, (3.44)

with θ̄ varies also from 0 to 2π. This means that we consider velocity fields slowly varying
in the azimuthal direction.

3.2.3 Spatial and temporal resolution

We will check the spatial and temporal resolution for the PSM by using the same
method as for the FSM : the mesh size will be compared with the dissipation scales of
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different statistical quantities, while the time step fineness will be judged by calculating
the Courant number. However, differences arise from the fact that we now use a non-
homogeneous mesh :

1. Spatial resolution. Dissipation rates of various quantities are calculated through
the decomposition and integration methods mentioned in Appendices C and D, and
will be used to derive the dissipative wave-numbers like those in Section 3.1.6. The
effective wave-number of the largest mesh size will be chosen to compare with them.
Because of the property of Gauss-Lobatto collocation points, the largest mesh size
lies at the center of the domain. We denote its radial and axial dimensions as ∆Rmax

and ∆Hmax, and define the corresponding maximal effective wave-number as

kmax =

√(
2π

∆Rmax

)2

+

(
2π

∆Hmax

)2

. (3.45)

This effective wave-number will then be compared with the dissipation wave-numbers
of E, Z, I1 and H1.

2. Temporal resolution. Like in the FSM, we use the Courant number as a criterion
to determine the required time step. The time step appears in the calculation of
solver matrices. These matrices need to be recalculated if ∆t̄ changes its value.
We then adopt a fixed time step mechanism to simplify the procedure and to avoid
extra time expense, given the fact that the calculation of these matrices takes several
minutes. Due to the non homogeneity of the grid, we calculate the Courant number
for each velocity component on each grid node.
For axisymmetric flows, the Courant numbers are calculated as :

Cr(r, z, t) =

∣∣∣∣ur(r, z, t)∆t∆R(r, z)

∣∣∣∣ , (3.46a)

Cz(r, z, t) =

∣∣∣∣uz(r, z, t)∆t∆H(r, z)

∣∣∣∣ , (3.46b)

with ∆R(r, z) and ∆H(r, z) the local grid sizes in the radial and axial directions
respectively. The maximal value among them, max(Cr(r, z, t), Cz(r, z, t)), will be
picked out as the characterizing Courant number of the current time step.
For non-axisymmetric flows, the Courant numbers are calculated as :

Cr(r, θ̄, z, t) =

∣∣∣∣ur(r, θ̄, z, t)∆t∆R(r, θ̄, z)

∣∣∣∣ ,
Cθ(r, θ̄, z, t) =

∣∣∣∣uθ(r, θ̄, z, t)∆tr∆θ̄

∣∣∣∣ ,
Cz(r, θ̄, z, t) =

∣∣∣∣uz(r, θ̄, z, t)∆t∆Z(r, θ̄, z)

∣∣∣∣ ,
Cmax(r, θ̄, z, t) = max(Cr(r, θ̄, z, t), Cθ(r, θ̄, z, t), Cz(r, θ̄, z, t)).

(3.47)

3.2.4 Verification test of axisymmetric freely decaying flows

In this subsection, a verification test of the PSM code will be conducted. For this,
we simply run simulations by using respectively the PSM and the FSM, and compare
the results of both. For the FSM, the code is written for strictly axisymmetric flows ;
for the PSM, axisymmetric flows can be simulated by setting α = 0. The two cases are
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for the same geometry (R = π and H = 1.7π), initial condition (see Fig.3.5), viscosity
(ν = 0.005), and boundary conditions :

ūr = 0 on lateral walls,
∂ūr
∂r̄

= 0 on top and bottom,

ūθ = 0 on ∂D,
∂ūz
∂z̄

= 0 on lateral walls,

ūz = 0 on top and bottom,

(3.48)

and are freely decaying from the initial condition. As mentioned in Section 3.2.1, the
PSM code indeed allows to simulate flows with partial slip boundary conditions, which is
reflected in Fig.3.5b by the fact that ur is not zero on top and bottom of the cylinder.

Fig.3.6 is the contour plots of ψ at a certain time during the evolution and shows
qualitatively the coincidence of the two simulations. Further, the coincidence is quantita-
tively validated by the kinetic energy curves in Fig.3.7 which are perfectly superimposed.
Besides, resolution tests and Courant number evolution are also shown (see Figs.3.8 and
3.9), showing the reliability of the two simulations. For details, the resolution for the FSM
test case is (qmax, nmax) = (52, 45), giving rise to a maximal effective wave-number of 59,
and for the PSM test case it is (N,M) = (246, 257), giving rise to a maximal effective
wave-number of 247 ; the time step of the FSM test case varies along the simulation, as
mentioned in Section 3.1.5, and ∆t for the PSM test case is fixed as 5× 10−4 s.

(a) Initial stream function ψ (b) Initial radial velocity component ur

Figure 3.5: Visualization of initial conditions for the comparison cases.
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(a) ψ of PSM (b) ψ of FSM

Figure 3.6: Contour plots of ψ for the PSM and the FSM at t = 5 s. Some slight
differences can be remarked and may be due to numerical errors.
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Chapitre 4

Coherent Structures in Statistically
Stationary Axisymmetric Turbulence

The general behavior of axisymmetric turbulence was recently studied in [7, 8, 9] in
cylindrical geometry, periodic in its axial direction, at fairly low Reynolds number. Coher-
ent structures predicted by statistical mechanics of the Euler equations were nevertheless
observed in freely decaying flows. In the current thesis, both our FSM and PSM codes for
axisymmetric flows allow not only the confinement of the cylinder, but also the possibility
for higher Re. It is therefore interesting to try to numerically assess in forced flows the
possible existence of coherent structures. Particularly, the PSM allows to investigate a
configuration which is close to the von Kármán flow [21], where coherent structures are
experimentally seen. In this chapter, therefore, we will present the results obtained by
FSM and PSM in statistically steady states, and compare our observations with those in
[7, 8, 9] and [21].

4.1 Spectrally forced axisymmetric flow

In this section, results obtained for statistically steady flow using the FSM will be
presented and compared to those obtained in [7, 8, 9]. We recall that the computational
configuration in [7, 8, 9] is different from ours. Therein, a periodic boundary condition is
imposed in the z direction, which leads to an axial decomposition using complex Fourier
series. At difference, the computation domain in our thesis is confined in the z direction,
and trigonometric functions in the real number space are employed to decompose the
axial direction. The numerical method poses a constraint on the Reynolds number in our
simulations, as in [7, 8, 9]. Indeed, the fact of employing trigonometric functions in the
real number space instead of complex Fourier series allows a certain reduction of the size
of array (3.28), and thus a possible access to higher Reynolds numbers. Many interesting
results, either with or without energy injection, are given and analyzed in [7, 8, 9],
concerning the presence of coherent structures, functional relationships between different
variables, energy spectra, cascade directions, velocity probability distribution functions
(called “PDF” hereafter), etc. We will evaluate these quantities and make comparisons
between our results and those in [7, 8, 9].

We consider the aspect ratio as in [8] with R = π and H = 1.7π. We present
the results of a simulation, with a kinematic viscosity of ν = 0.0025 and a selected
band of wave-number k ∈ [11, 15] for the spectral forcing presented in Section 3.1.4.
The stationary Reynolds number Re ≡

√
2E/3H/ν is about 1230. To achieve this,

the resolution is (qmax, nmax) = (52, 45), generating a maximal effective wave-number
kmax ≈ 59.
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4.1.1 Temporal results

Time signals of the statistical quantities and the resolution tests are shown in Fig.4.1.
Time is normalized by a characteristic time defined as

τ =
R√
2E/3

. (4.1)

The curves of E, H0 and I1 show an almost quiescent stationary state while those of H1

and I2 fluctuate are more intermittent. However, all of these quantities are rather well
conserved during 2τ ≤ t ≤ 15τ . The resolution test compares the characteristic physical
cut-off wave-numbers defined in Section 3.1.6 with the numerical maximum wave-number.
The curves of the resolution tests show that except at the beginning of the simulation,
during the transient state, there is a sufficient overall resolution.

Because statistical mechanics theories predict the existence of coherent structures, it
will be interesting to inspect their emergence. Contour plots of the stream function ψ at
different times are shown in Fig.4.2 and those of σ in Fig.4.3. For σ plots, no notable
structures can be observed. For ψ, in contrast, coherent structures are better distinguish-
able. One can see that at certain moments, big structures appear and persist, while at
some others moments, they break into smaller ones which then tend to reunite again to
extend their sizes. We reiterate the conclusion drawn in [22] that the critical points of
the variational problem (2.57) are linearly unstable solutions of the Euler equations. It is
also experimentally confirmed by [21] that coherent structures cannot resist the impact
of some “optimal” perturbations. It is clearly possible that the modal injection method
induces some movements playing the role of optimal perturbations that force the coherent
structures to wobble and to crush. The dynamics of ψ being stable only during certain
time periods, we investigate the averaged behaviors of the system during these periods.

4.1.2 Time-averaged results

There are indeed stable time intervals of different lengths during which the ψ structures
keep their sizes and do not move a lot. Fig.4.4 shows the time-averaged ψ and σ iso-
contours and functional relationships. Time average has been performed on the interval
4τ 6 t 6 6τ . Large and smooth structures of ψ are seen. A clear fitting of the function
σ = F (ψ) = 0.1ψ + 0.08ψ

3 is extracted by the least square method. By focusing on the
coherent bulk where the effect of dissipation is less important than on the boundaries, and
with the expression of F (ψ), the fitting of the function G(ψ) = ξ − σ′

σ/r2 can also be
done, yielding G(ψ) = 0.9ψ. This means that the bulk flow resembles a solution of the
axisymmetric Euler equations (2.49).

4.1.3 Energy spectrum

Energy and helicity cascades
The energy and helicity cascades in three-dimensional turbulence have long been the

focus of many studies. First described by Richardson [69] in 1922, a three-dimensional
turbulent flow transfers energy from bigger to smaller and smaller scales until the vis-
cous dissipation comes into play. Basing on this description as well as a set of additional
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Figure 4.1: Temporal signals of statistical invariants and resolution tests for a forced
simulation. In this simulation, velocity fields of 2τ 6 t 6 15τ are considered stationary
and are thus used.

hypotheses, Kolmogorov [70] proposed in 1941, for stationary turbulent flows with suf-
ficiently high Reynolds numbers, a formula of the energy spectrum within the inertial
range :

E(k) = CEε
2/3k−5/3, (4.2)
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(a) Dominance of negative
structures.

(b) Presence of a dipole system. (c) Dissolution of the positive
structure.

(d) Strong disorder of the flow. (e) Reorganization into a new
dipole.

(f) Tendency of destabilization
again.

Figure 4.2: Contour plots of the stream function ψ within the poloidal plane (r, z) ∈
[0, R]× [0, H] at different times. Both emergence and dissolution of big structures can be
observed.

where CE is the Kolmogorov constant which is expected to be universal, ε is the stationary
energy dissipation rate and k is the wave-number.

The cascade of helicity is also of interest because it is another invariant in general
three-dimensional flows, but its sign is not definite. Brissaud et al. [71] first discuss different
scenarii in homogeneous isotropic turbulence. For the helicity, the authors propose that
H1 is always transferred in the forward direction ; for the kinetic energy, they propose that
the cascade can take place in either the forward or the inverse direction, but in both of
the two possibilities the energy cascade obeys the same scaling law (4.2) within the energy
inertial range. Further, for the case of direct helicity cascade with inverse energy cascade,
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(a) (b) (c)

(d) (e) (f)

Figure 4.3: Contour plots of the angular momentum σ within the poloidal plane (r, z) ∈
[0, R]× [0, H] at different times. No persistent structure appears.

they suppose that the scaling law for the direct helicity inertial range is

H1(k) ∼ δ2/3k−4/3 =⇒ E(k) ∼ δ2/3k−7/3, (4.3)

with δ the stationary helicity dissipation rate. However, as pointed out by Chen et al. [72],
this scaling behavior is generally absent and may appear when the helicity has one single
definite sign. The reason of stating this condition is similar to that in two-dimensional
turbulence where the enstrophy Z is invariant and positive definite and thus hinders
the forward cascade. Numerical illustration of this mechanism is first given by Borue
and Orszag [73], and at the same time, simulations therein reveal a coexistence of direct
cascades of both energy and helicity with

H1(k) ∼ δ2/3ε−1/3k−5/3. (4.4)

In later investigations, the helicity is divided into its positive and negative contributions
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Figure 4.4: Time-averaged ψ, σ and relationships of σ = F (ψ) and ξ − σ′
σ/r2 = G(ψ)

during 4τ 6 t 6 6τ . The scatter plots of functions F and G consider only the points
within the bulk of (r, z) ∈ [3R/16, 7R/8]× [H/16, 15H/16].

[74, 72], leading to scaling predictions

E±(k) ∼ CEε2/3k−5/3

[
1± CH1/CE

2k

(
δ

ε

)]
,

⇐⇒H±1 (k) ∼ CEε2/3k−2/3

[
1± CH1/CE

2k

(
δ

ε

)]
,

(4.5)

with CH1 a constant characterizing the helicity cascade. Biferale et al. [75] consider then
only one sign of E and H1 of a homogeneous isotropic flow and observe a local energy
cascade in the inverse direction with E(k) ∼ k−5/3 which corresponds to a direct helicity
cascade with E(k) ∼ k−7/3.

However, there is no classic theory describing the scaling behavior of axisym-
metric turbulence. In von Kármán flows, where only the average flow is axisymmetric,
a −1.7 energy scaling for the direct helicity cascade region is reported experimentally by
Pinton and Labbé [76] and by Zocchi et al. [77] through local measurements under the
Taylor hypothesis. Without using the Taylor hypothesis, Herbert et al. [23] show a dual
cascade compatible with cascades of E and H1 in opposite directions : inverse cascade
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with E(k) ∼ k−1 and forward cascade with E(k) ∼ k−2.2 for Re ≥ 105. They explain that
such a scaling is compatible with direct cascade of H1 and inverse cascade of E, associated
to the non-locality of the energy transfer. This means that the interaction between big
scales and small scales caused by strong shear is an important issue in real von Kármán
flows since there are strong mean flows which will not allow the flow to be statistically
isotropic. In isotropic 2D turbulence, this distinction between local and non-local transfer
and its influence on scaling was investigated in [78]. Numerically, strictly axisymmetric
flows with periodic boundary conditions in the axial direction is simulated in Qu et al.
[8, 9]. The spectrum of a helical case (where H1 has one single definite sign) is studied
and a dual cascade of E and H1 in opposite directions is also found but with different
scaling laws : E(k) ∼ k−5/3 for E and E(k) ∼ k−5.5 for H1, this latter scaling being
probably due to the influence of intermittency.

Results
In our case, because the helicity depicted in Fig.4.1 is positive definite, a forward

helicity cascade accompanied by an inverse energy cascade can be expected. We then
choose the stable period of 4τ ≤ t ≤ 6τ , and the energy spectrum is shown in Fig.4.6a. This
spectrum shows the coexistence of an inverse and of a direct cascade (see “total energy”).
These cascades can be better characterized by the averaged energy flux spectrum. Indeed,
if one combines the two governing equations in Eq.(3.31), a simpler spectral form can be
obtained :

∂E(k, t)

∂t
= T (k, t)− 2νk2E(k, t) + F (k, t), (4.6)

with T (k, t) the transfer spectrum function and F (k, t) the forcing function. Then, the
flux spectrum function Π(k) can be defined as

Π(k, t) =

∫ k

0
T (κ, t)dκ, (4.7)

and a positive value designates a gain of energy from smaller scales.

The averaged energy flux is shown in Fig.4.5, where a clear positive range of the flux
function Π(k) for k < 11 can be seen. Meanwhile, one observes in Fig.4.5 that there is a
rather strong energy cascade in the forward direction, meaning that one has a case with
a split energy cascade. It is however possible that at higher Reynolds number only one of
these cascades persists. It will be shown in Chapter 5 that in the system of interest, energy
can be preferentially transferred towards large scales or towards small scales depending
on the ratio between the toroidal and the poloidal energy components ET /EP .

In Fig.4.6a, the inverse energy cascade is shown to be compatible with a −5/3 scaling
in [71] for homogeneous isotropic cases. One remark is that the peak of energy takes
place at k = 2 corresponding to the size of the dipole structures observed in Fig.4.4a. If
one separates the total kinetic energy into its poloidal and toroidal parts as is done in
Fig.4.6a, it can be observed that the inverse energy cascade is mainly conducted by the
poloidal contribution and that the direct helicity cascade is dominated by the toroidal
contribution, and the same observation can be found in [8]. On one hand, the absence of
big and persistent structures in contour plots of σ can be explained by this phenomenon
because little toroidal energy is transferred to big scales ; on the other hand, this also
leads to the fact that the integral value of ET is much smaller than EP , with the ratio
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Figure 4.5: Time-averaged energy flux spectrum. Both an inverse and a forward energy
fluxes are observed.

ET /EP estimated to be 0.16, which is similar to that in [8]. In Fig.4.6b, the PDFs of both
radial and axial velocity components ur and uz are close to a Gaussian distribution, only
the azimuthal component exhibits flaring tails, meaning that the intermittency is largest
for uθ. Some scaling laws which are not very clear are proposed in Fig.4.6a. As we will
see in the next section, the cascade scaling is even less observable when strong rotation is
present in the system. Also, one should always be aware that the effective wave-number
k in our context, defined as Eq.(3.35), are considered to be equivalent to, but are in fact
different from traditional Fourier wave-numbers, and that there is no theoretical scaling
prediction for axisymmetric turbulence. One can also expect that as the Reynolds number
gets higher, flatter scaling slopes for the direct helicity cascade may appear.
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Figure 4.6: Energy spectra and velocity PDF of a helical case from the FSM code.

Because a higher Reynolds number of axisymmetric flows is reachable by the PSM, in
the next section, results of forced PSM cases will be interpreted and compared with the
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results of this section and with those of experiments.

4.2 Axisymmetric flow generated by counter-rotating discs

In the previous section we used a spectral forcing. In order to approach the experi-
mental boundary conditions, we consider in this section axisymmetric flows which are
generated by rotating top and bottom discs. This is performed using the PSM code, again
by setting α = 0. We remind that the pseudo-spectral method, which is fundamentally
different from the fully spectral method, avoids the direct calculation of the convolution
product (array (3.28)) in spectral space and therefore needs less computational resources.
This allows to attain higher Reynolds numbers. By using Chebyshev polynomials as
decomposition basis, more realistic boundary conditions can be achieved, namely solid
wall boundaries without penetration nor slip, which is also a difference with the FSM.
The forcing which is closer to experiments allows a better comparison with the results
from the experiments by Monchaux et al. [21]. In [21], the functional relationships of
σ = F (ψ) and ξ − F ′

F/r2 = G(ψ) were investigated. Here we will also focus on these
issues. Regarding spectral analysis, the Bqn basis which we used to analyze the spectra
in the last section is no longer applicable to decompose the velocity field because uθ 6= 0

at the top and bottom of the cylinder. But the energy spectra of the central flow bulk
can still be studied through the Bqn basis, by excluding the data at boundary areas.

In a real von Kármán device (see Fig.4.7), the cylindrical vessel is equipped with
two rotating impellers on the top and the bottom. Each impeller consists of a disc and
numerous curved blades. By changing the rotation direction and by tuning the rotation
speed of each disc, different scenarii can be achieved, but the most classical scenario is to set
up a counter-rotation with the same constant angular velocity. In this thesis, the curved
blades are not considered in simulations to avoid meshing difficulty and programming
complexity.

Figure 4.7: Picture from [21], representing the working principle of a von Kármán device.
Toroidal mean flow is indicated by blue, poloidal mean flow by red arrows.

For experimental details we refer to [21]. There are also many other different
experimental set-ups using the von Kármán device. Investigations point out that the
essential elements that have crucial effects to the results are the aspect ratio 2R/H ([22]),
the rotation speed asymmetry ([79]), the blade curvature ([20]) and Reynolds number
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([21, 80]). However, Ravelet et al. [20] show that even with different curved blades, the
scenarii are the same as long as the discs are symmetrically counter-rotating. These
conclusions then support the reasonability of comparing our no-blade simulations to
experimental flows stirred by impellers, if they share the same aspect ratio and the same
symmetrically counter-rotation, and attain sufficiently high Reynolds numbers.

Knowing that the radius of the von Kármán vessel in [21] is R = 100 mm and the
height (distance between inner faces of impellers) is H = 180 mm, in this section we also
set the aspect ratio of our computational domain to be H/R = 1.8. Precisely we have
R = π and H = 1.8π (z ∈ [−0.9π, 0.9π]), and collocation point numbers in these two
dimensions are (N,M) = (676, 649) yielding a maximal effective wave-number of 650. The
time step is fixed as ∆t = 5× 10−5 s. The angular velocity of counter-rotating boundaries
is fixed as Ω = 5 and the kinematic viscosity as ν = 0.002, yielding a macroscale Reynolds
number of ReΩ ≡ R2Ω/ν = 25000. We adopt in this section this definition of Reynolds
number not only because it appears in the non-dimensional governing equations (and thus
in the algorithm), but also due to the fact that it is a common choice for von Kármán
experiments. Indeed, it is reasonable because in such cases, R is the forcing scale and ΩR

should be the characteristic velocity that determines the energy level. For comparison, if
we pick up the definition of the Reynolds number of the FSM section, our ReΩ = 25000 is
equivalent to Re ≡

√
2E/3H/ν = 3170 at its stationary state, which is 2.5 times higher

than that in the last section.

4.2.1 Temporal results

Temporal signals of the statistical quantities and the resolution tests are shown in
Fig.4.8. We apply again the typical time τ calculated by Eq.(4.1) to normalize the phys-
ical time. All of these quantities of E, H1, I1, I2 and H0 are rather well conserved after
t = 53τ . Particularly, it is expected that I1 converges finally to 0 because the angular
momentum is largely generated by the rotating discs, and in our case the discs are strictly
counter-rotating. The curves of the resolution tests tell that the current spatial resolution
is sufficiently fine. Because coherent structures are predicted by statistical mechanics the-
ories of the Euler equations, and more precisely that symmetric counter-recirculating toric
cells are reported in experiments, it will be interesting to see whether the simulated flow
reproduces these structures. Contour plots of ψ and σ at different times are presented in
Figs.4.9 and 4.10, showing the stability of the structures of both variables. Indeed, since
in this case the forcing is well localized in space, the applied big scale injection may be
less destabilizing than the spectral forcing used in the previous section. The shear layer
in the middle that delimits the two recirculating cells is not static and moves in a chaotic
manner around its average position at z = 0, which is in agreement with experimental
observations [21]. Further, compared to Figs.4.2 and 4.3 of the last section, there turns
out to be a higher coherence between instantaneous values of ψ and σ, and thus better
fittings for the averaged functional relationships of F (ψ) and G(ψ) can be expected.

4.2.2 Time-averaged results

Because the flow is statistically stationary after t = 53τ , an averaging operation is
applied to the evolution in the time interval of 53τ till the end of 97τ . Averaged contour
pictures of ψ and σ (within the entire domain) are given in Figs.4.11a, 4.11b and 4.11c.
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Figure 4.8: Temporal signals of statistical invariants and resolution tests for a forced
simulation. As explained in Appendix C, the dissipation rate of I1 andH1 in a mechanically
forced case are not well defined, and hence only the energy and enstrophy dissipation rates
are used to check the resolution.

Coherent structures can be observed for both ψ and σ. For ξ, the structures are difficult
to detect since there are extreme value appearing at r ≈ 0. However, when the color scales
are adapted to zoom on smaller values, the vorticity structures resemble those of ψ. The
averaged fields in [21] are shown in Fig.4.12. One can see that the structures of our case
are very similar to those in [21], and that both of them are located in areas close to the
lateral wall and occupy a radial extent of R/2. As for scatter plots of F (ψ) and G(ψ),
the same principle as that in [21] is adopted to use only the central flow bulk data of
r ≤ 0.81R and −0.56H/2 ≤ z ≤ 0.56H/2. Indeed, boundary areas are locations where
viscous effects, strong shears and impeller stirring take place and may lead to obvious
deviations from theoretical predictions considering Euler equations which are inviscid and
unforced. Scatter plots concerning the flow bulk as well as the fittings obtained via the
least square method are presented in Figs.4.11d and 4.11e. A high similarity between them
and those of [21] can be seen : they are all cubic and the fittings of G of both possess a
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(a) t = 88τ . (b) t = 90τ . (c) t = 92τ .

(d) t = 94τ . (e) t = 96τ . (f) t = 97τ .

Figure 4.9: Contour plots of the stream function ψ within the poloidal plane (r, z) ∈
[0, R]× [0, H] at different times.

horizontal band of zero. Compared to those of the FSM in the last section, the current
functional fittings are much neater and clearer. The fitting of σ = F (ψ) appears to be in
a cubic form of F (ψ) = −41882ψ

3
+ 2.05ψ which is compatible with the observation in

[21]. The fitting of ξ − σ′
σ/r2 = G(ψ) turns out to be G(ψ) = −346020ψ

3
+ 15.16ψ, and

exhibits a wide range of G(ψ) = 0.

Low Reynolds numbers results
For comparison, we now investigate the effect of Reynolds number. For this, we also

give the results of cases of which the kinematic viscosity is respectively 10 times and 100

times greater, corresponding to ReΩ = 2500 and ReΩ = 250. For these flows, coherent
structures and functional relationships can still be observed. Tendencies (see respectively
Fig.4.13 and Fig.4.14) are that as ReΩ gets smaller, coherent structures become more
circular, and the functional relationships progressively disappear, as expected since the
flow is not expected any more to be a solution of the Euler equations.

4.2.3 Energy spectra of central flow bulk

On one hand, the modes of Chebyshev polynomials are not as intuitive as those of the
FSM, let alone the comparison to wave-numbers of the Fourier transform. The Chebyshev
modes cannot be directly linked with physical length scales, which can be reflected from
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(a) t = 88τ . (b) t = 90τ . (c) t = 92τ .

(d) t = 94τ . (e) t = 96τ . (f) t = 97τ .

Figure 4.10: Contour plots of the angular momentum σ within the poloidal plane (r, z) ∈
[0, R]× [0, H] at different times.

the fact that the Gauss-Lobatto collocation points are not equi-distant. On the other, the
Bqn basis derived in FSM part is no longer complete for a decomposition of a velocity
field of which uθ 6= 0 on the top and the bottom of the cylinder. However, if one chooses
to consider only the velocity field of the flow bulk, Bqn is again valid to decompose the
filtered velocity field. Since the temporal signal of the helicity H1 in Fig.4.8 possesses
one single definite sign (effect of the formation of toric recirculating cells resulting in the
alignment of u and ω), one can imagine that there might be a similar dual cascade :
forward for the helicity and inverse for the energy. The spectra concerning the flow bulk
are depicted in Fig.4.15. Almost all of the energy is contained in the toroidal component.
A flatter slope is observed for k ≤ 15 and a steeper slope of −3 controls the region
of k ≥ 20. These slopes can be reasonably associated to inverse and direct cascades,
respectively. However, the Reynolds number is too low and the scaling ranges consequently
too small to accurately assess asymptotic scaling. Indeed, these slopes are different from
existing theoretical attempts, experimental observations and numerical estimations. First,
they are not compatible with −5/3 and −7/3 scalings in [75] that treats isotropic flows
obtained from decimated Navier-Stokes equations. Second, they are different from the
−1 and −2.2 power laws in [23]. Indeed, although the flow investigated in this section
is also subjected to strong mean motions and should have strong non-locality, there is
a difference between the flows in [23] and our simulated flow : in [23], the radial and
azimuthal energy components are of the same order and are one-order greater than
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(a) ψ (b) σ (c) ξ

(d) (e)

Figure 4.11: Time-averaged ψ, σ and relationships σ = F (ψ) and ξ − σ′
σ/r2 = G(ψ)

during 53τ ≤ t ≤ 97τ for ReΩ = 25000. The scatter plots of functions F and G consider
only the points within the region of (r, z) ∈ [0, 0.81R]× [−0.56H/2, 0.56H/2].

Figure 4.12: Pictures cited from [21] showing time-averaged fields. Time-averaged ψ and
uθ for ReΩ = 2.5 × 105. The arrow plot represents the ψ field and the colored contour
displays the uθ field.

the axial energy component, while in our case, the toroidal (azimuthal) component is
one-order more intensive than the poloidal (radial + axial) component. Third, the slopes
seen in Fig.4.15 are different to those obtained by FSM either in [8] or in the last section
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(a) ψ (b) σ (c) ξ

(d) (e)

Figure 4.13: Time-averaged ψ, σ and relationships σ = F (ψ) and ξ − σ′
σ/r2 = G(ψ)

during the stationary state for ReΩ = 2500. The scatter plots of functions F and G

consider only the points within the bulk of (r, z) ∈ [0, 0.81R]× [−0.56H/2, 0.56H/2].

of this thesis. One can note that in either the case of [8] or the case in the last section,
the poloidal energy component is more important than the toroidal, but the situation is
reversed in the current simulation due to the presence of a strong counter-rotation. A
supposition can be put forward that in axisymmetric flows, the scaling behavior is highly
dependent on the energy distribution among the radial, azimuthal and axial directions,
and can be significantly affected by the adopted filtering principles. At least, the for-
mer half of this supposition will be confirmed by simulations presented in the next chapter.

4.3 Summary

In this chapter, we compare the results of both the FSM and the PSM to those of
existing studies. Coherent structures are observed in both instantaneous and averaged
fields, in agreement with theoretical predictions and experimental observations. Functional
relationships are clear in averaged fields of off-boundary flow bulks, and are particularly
clear in the PSM results where a higher Reynolds number is reached and the flow is
forced by rotating discs rather than by a spectral forcing. This is the first time that
the existence of such coherent structures and associated relationships is evidenced in
strictly axisymmetric forced turbulence (in literature, experimental results were obtained
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(a) ψ (b) σ (c) ξ

(d) (e)

Figure 4.14: Time-averaged ψ, σ and relationships σ = F (ψ) and ξ − σ′
σ/r2 = G(ψ)

during the stationary state for ReΩ = 250. The scatter plots of functions F and G consider
only the points within the bulk of (r, z) ∈ [0, 0.81R]× [−0.56H/2, 0.56H/2].
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Figure 4.15: Comparison of bulk energy spectra. The flow bulk is defined as (r, z) ∈
[0, 0.81R]× [−0.56H/2, 0.56H/2].
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in statistically axisymmetric turbulence, numerical results in freely decaying turbulence).

Energy spectra and scaling behaviors are particularly discussed in parallel with a
succinct review of relative theoretical, experimental and numerical works in literature.
For the results issuing from the FSM, the extracted scaling slopes are comparable to those
obtained by Qu et al. [8, 7, 9]. As for the PSM part, the extracted scaling slopes differ from
the reported results in [75, 23]. We suspect that spectra scalings of von Kármán turbulence
depend on the energy distribution among the radial, azimuthal and axial components.
Let us recall that the numerical and experimental Reynolds numbers are also very different.

The comparison and agreement of the two parts serve us as confirmation of the reliabil-
ity of the two codes. This step of validation is important because the codes will be used for
other studies, concerning the transition behavior from non-swirling axisymmetric flows to
swirling axisymmetric flows (see Chapter 5) and the transition from strictly axisymmetric
flows to general cylindrical 3D flows (see Chapter 6). Simulations from non-swirling to
swirling axisymmetric flows will be conducted by using the FSM code, while the simula-
tions from strictly axisymmetric flows to general cylindrical 3D flows will be conducted
by using the PSM code.





Chapitre 5

Transition from Non-swirling to
Swirling Axisymmetric Turbulence

The work presented in this chapter was done in collaboration with Bérengère Dubrulle
(SPEC, CEA Saclay) and Hugues Faller (LIMSI). The present chapter is the copy of an
early version of a manuscript in preparation, which will be shortly submitted to Physical
Review Fluids : Z. Qin, H. Faller, B. Dubrulle, A. Naso and W. Bos, Transition from
non-swirling to swirling axisymmetric turbulence.

5.1 Introduction

Transitions between different states of fluid flow have been intensively studied since
the work of Osborne Reynolds, who systematically characterized the transition from
laminar to turbulent pipe flow [81]. In that transition, the control parameter which
allows to switch from one state to another is the Reynolds number. More recently,
transitions between different turbulent states have received attention [26]. For instance,
the transition between two- and three-dimensional turbulence was first investigated by
Frisch, Lesieur and Sulem [40]. The control parameter used in this work was the flow
dimensionality D, and the authors reported that the energy cascade direction (forward
in three dimensions, backward in two dimensions) changes for a value of D close to 2.
Transitions between different turbulent states have recently received even more attention,
in particular in the context of thin fluid layers [28, 29], where the control parameter is
the ratio between the thickness of the fluid layer and the scale at which energy is in-
jected. In these numerical investigations the Navier-Stokes equations were integrated in a
periodic domain, and the only external force to which the flow was subject was the forcing.

A distinct manner to influence the effective dimension of a turbulent flow consists
in applying anisotropic body forces. For instance, a recent investigation showed the
existence of a subcritical transition in rotating Rayleigh-Bénard convection [82], where a
condensate appears for a particular choice of the control parameters. Other examples are
the application of a magnetic field on a conductive fluid, resulting in the appearance of the
Lorentz force, or the application of a solid body rotation, introducing the Coriolis force in
the momentum balance [83]. When the order of magnitude of these forces becomes large
compared to that of the inertial ones, the flow becomes invariant, or almost, along the di-
rection of the magnetic field or of the rotation axis, respectively. These two configurations
therefore exhibit transitions from three-dimensional three-velocity-component (3D3C)
to two-dimensional three-velocity-component (2D3C) turbulent flows. In other words,
the flows in these examples have three non-zero velocity components, but these three
components can vary either in the three dimensions or in a plane only (perpendicular to
the axis of rotation or to the magnetic field).
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A different transition between turbulent states is the transition from a 3D3C to a
three-dimensional two-component (3D2C) flow. A typical example is strongly stratified
turbulence, in which the dynamics is almost entirely confined in the plane perpendicular
to the imposed density gradient, but these two velocity components vary strongly in the
three directions [84].

In the present work we will investigate by direct numerical simulation a transition from
2D2C to 2D3C turbulence. This transition occurs in strictly axisymmetric turbulence,
solution of the Navier-Stokes equations modified such that the flow is invariant in the
azimuthal direction. This system is intermediate between two- and three-dimensional
turbulence, and was recently investigated by direct numerical simulation (DNS). It was
shown in particular that an inverse energy cascade, responsible for the generation of
large scale coherent structures, and a direct helicity cascade towards small scales can
coexist in this flow [7, 9]. As predicted from theoretical works using statistical mechanics
tools [6, 85, 22], different behaviors were obtained for non-swirling (zero azimuthal
velocity component) and for swirling flows. We investigate here the transition from the
non-swirling (two-dimensional two-component, 2D2C) to the swirling (two-dimensional
three-component, 2D3C) regime.

The chapter is organized as follows. We first recall the definition of strictly axisym-
metric turbulence and give some definitions in Section 5.2. The numerical method and the
results of the simulations carried out are presented in Section 5.3. A statistical model is
derived and its results are compared with these numerical data in Section 5.4. Finally, our
conclusions are reported in Section 5.5.

5.2 Axisymmetric turbulence

We consider incompressible, Newtonian and isothermal axisymmetric turbulence. The
flow is confined in a cylindrical domain of radius R and of axis length H, and is solution of
the Navier-Stokes equations written in cylindrical coordinates (r, θ, z) for the three velocity
components u = (ur, uθ, uz). The system is assumed invariant in the toroidal direction. In
practice, this means that u = (ur(r, z), uθ(r, z), uz(r, z)) and that the pressure p = p(r, z),
so that any toroidal variation ∂θ(u, p) is zero. All external effects which can inject energy
into the system in this simplified system are modelled by a forcing term added in the
momentum equation. Under these assumptions, the flow is solution of the following system
of equations :

Dt[ur] = fr + ν∆rur −
1

ρ
∂rp+

u2
θ

r
, (5.1)

Dt[uz] = fz + ν∆zuz −
1

p
∂zp, (5.2)

Dt[uθ] = fθ + ν∆θuθ −
uruθ
r

, (5.3)

where the operator Dt is defined as

Dt[g] = ∂tg + ur∂rg + uz∂zg, (5.4)

ρ is the fluid density, ν its kinematic viscosity, and ∆i are the three components of the
cylindrical vector Laplacian. Incompressibility is ensured by the relation

1

r
∂r(rur) + ∂zuz = 0. (5.5)
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The forcing f considered in this investigation is based on the negative viscosity method
[65] and will be defined more precisely later on.

We will distinguish throughout this study the poloidal plane (r, z) from the toroidal
(azimuthal) direction. The interaction between the toroidal and the poloidal dynamics
is represented by the last terms on the right-hand sides of Eqs.(5.1) and (5.3). These
coupling terms will be of major importance in the following. A simple measure of the flow
dimensionality is the ratio γ = ET /EP , where ET and EP respectively denote the toroidal
and poloidal components of energy :

ET =

〈
u2
θ

〉
2

, (5.6)

EP =

〈
u2
r + u2

z

〉
2

, (5.7)

and 〈...〉 are volume averages. If γ = 0 the flow is purely poloidal (uθ = 0), whereas if
γ > 0 toroidal and poloidal velocity fluctuations coexist. These energy components are
solutions of equations that can be derived from the Navier-Stokes equations (5.1-5.5) and
formally write :

dEP
dt

= FP − εP + T , (5.8)

dET
dt

= FT − εT − T , (5.9)

where εP and εT are viscous dissipation terms (εP , εT > 0), FP and FT are forcing terms
(FP , FT > 0), and the transfer from the toroidal to the poloidal energy components is
(deduction in Appendix E.1) :

T =

〈
u2
θur
r

〉
. (5.10)

5.3 Numerical simulations

5.3.1 Method and parameters

The Navier-Stokes equations (5.1-5.5) were integrated by using a fully spectral method
based on an expansion of the velocity field in a basis consisting of a combination of Fourier
modes in the axial direction and of Bessel functions in the radial one [7] (the code is based
on the original design of [58]). In this approach, n and q are the mode-numbers respectively
associated to the axial and radial directions, kn being the axial wave-number and γq the
qth zero of the Bessel function J1 in the radial direction. This allows to define a global
wave-number defined as k(n, q) = (k2

n + γ2
q )1/2. As already mentioned, use was made of

the negative viscosity method [65] :

f̂i(k) = ciνh(k)ûi(k), i ∈ {r, θ, z}, (5.11)

where ĝ denotes the spectral coefficient associated with a function g(r, θ, z), h(k) = k2

for kf,min 6 k 6 kf,max and zero elsewhere, and ci is a dimensionless forcing coefficient
measuring the intensity of energy injection in the i direction (i ∈ {r, θ, z}). Contrary
to the configuration investigated in [7, 9], in which the flow was periodic in the axial
direction, we imposed a confinement of the fluid in the cylindrical domain by using a
suitable choice of the axial mode-numbers n.
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Figure 5.1: Time evolution of the poloidal and toroidal energy components for : (a)
cP = 3, cT = 1 (cT /cP = 1/3) and (b) cP = 1, cT = 3 (cT /cP = 3). Time is normalized
by τ = R/(2E/3)1/2, where E is the total kinetic energy of the flow time-averaged in the
statistically steady state.
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Figure 5.2: (a) Ratio between the energy components time-averaged during the steady
state, γ = ET /EP , plotted as a function of the forcing parameters ratio, cT /cP , for
the complete set of simulations. (b) Transfer from the toroidal to the poloidal energy
components, T =

〈
u2
θur/r

〉
, plotted as a function of cT /cP .
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(a) (b)

Figure 5.3: Contour plots of the time-averaged poloidal stream function ψ defined as :
ur = −∂zψ/r, uz = ∂rψ/r. The average is performed during the statistically steady state.
The time interval over which ψ is averaged is (a) 4 < t/τ < 16 and (b) 9 < t/τ < 22.
Forcing parameters are : (a) cP = 3, cT = 1 (cT /cP = 1/3) and (b) cP = 1.2, cT = 3.6

(cT /cP = 3).
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Figure 5.4: Time-averaged (a,b) energy spectra of the total, poloidal and toroidal energy,
and (c,d) energy flux. Values of the forcing parameters : (a,c) cP = 3, cT = 1 (cT /cP =

1/3), (b,d) cP = 1.2, cT = 3.6 (cT /cP = 3). The vertical dashed lines indicate the range
of wave-numbers in which forcing is applied.
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More than 150 simulations were carried out in a cylindrical domain of radius R = π

and height H = 1.7π. In all of them the viscosity was set to ν = 0.01. Calculations were
performed using 52 modes in the radial direction and 45 modes in the axial one. The forcing
band, 11 6 k 6 15, corresponds to scales intermediate in size between the dissipation scale
and the cylinder size, as in [9], which allows for the existence of cascades towards both
small and large scales. The forcing coefficients were set such that cr = cz ≡ cP and cθ ≡ cT .
The values of cP and cT were both chosen in the interval [1, 3.6]. Statistically steady states
were reached in all cases. The results presented in the following subsection were obtained
during them.

5.3.2 Numerical results

We first show in Fig.5.1 the time evolution of the poloidal and toroidal energy
components, for two distinct choices of the forcing parameters such that cT /cP = 1/3

and cT /cP = 3 respectively. Statistically steady states are observed after a transient
time. In this regime, although both energy components fluctuate around finite values
when cT /cP = 3 (Fig.5.1(b)), the toroidal energy component ET is found to be zero for
cT /cP = 1/3 (Fig.5.1(a)). In the latter case, the flow therefore remains 2D2C, without
swirl (uθ = 0).

A more refined information is provided in Fig.5.2(a), in which the ratio between the
toroidal and poloidal energy components time-averaged during the statistically state, γ, is
plotted as a function of the ratio cT /cP (in the range of cT and cP values considered here,
γ depends only on the ratio of these parameters). A transition from a 2D2C (ET = 0)
to a 2D3C (ET 6= 0) state, occurring for cT /cP ≈ 1, is clearly visible. For weak toroidal
forcing, the flow is purely poloidal, governed by purely two-dimensional dynamics. We
recall here that axisymmetric turbulence can, in the absence of toroidal fluctuations, be
reformulated, using a suitable change of variables, as purely Cartesian two-dimensional
turbulence [86, 87]. When cT /cP ≈ 1, a sharp transition is observed towards a swirling
state, where both toroidal and poloidal velocity components are finite.

The different natures of the flows for cT /cP < 1 and cT /cP > 1 are also illustrated in
Fig.5.3, in which the poloidal flow time-averaged during the stationary state is shown.
Coherent large-scale structures reminiscent of two-dimensional turbulence are clearly
visible in the case cT /cP < 1 (Fig.5.3(a)), which is not the case when cT /cP > 1

(Fig.5.3(b)), whatever the time interval chosen. The exact type of structures obtained
in the former case may depend on the time interval chosen, as is well known in forced
two-dimensional wall-bounded turbulence [88].

Finally, we illustrate the different dimensionalities of the flows for cT /cP < 1 and
cT /cP > 1 by showing in Fig.5.4(a,b) energy spectra. When cT /cP < 1 (Fig.5.4(a)), a
clear signature of an inverse energy cascade is observed, unlike in the case cT /cP > 1

(Fig.5.4(b)). This result is confirmed in Fig.5.4(c,d), in which the energy flux is shown.
For the purely poloidal flow (Fig.5.4(c)), an important part of the energy is transferred
to lower wave-numbers. This is not the case in the swirling regime (Fig.5.4(d)), where the
energy flux is predominantly directed towards the large wave-numbers.

To summarize, we have shown numerically the existence of a transition from 2D2C to
2D3C turbulent flows. The control parameter of this transition is the ratio between the
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forcing coefficients, cT /cP , the transition occurring for cT /cP ≈ 1. The order parameter is
the ratio between the toroidal and poloidal components of energy, γ, which measures the
flow “componentionality” : 2D2C for γ = 0, 2D3C for γ 6= 0. We now derive a model allow-
ing to reproduce this transition. A crucial term to model is the transfer from the toroidal
to the poloidal energy components, T , defined in Eq.(5.10). This term was calculated by
direct numerical simulation ; its time-average in the statistically steady state is plotted as
a function of cT /cP in Fig.5.2(b). For cT /cP < 1 (2D2C turbulence), no transfer occurs
between both flow components, as expected. For 1 < cT /cP . 1.3, energy is preferentially
transferred from the poloidal to the toroidal fields (T < 0, the poloidal field “feeds” the
toroidal one), whereas for higher values of cT /cP it is transferred from the toroidal to the
poloidal directions (T > 0).

5.4 Statistical model

In order to elucidate the nature of the transition, we developed a statistical model
of the dynamics. Our aim was to derive the simplest possible model able to capture
the steady states of the system (5.8-5.9), by estimating the five terms appearing on the
right-hand sides of these equations.

The derivation of the statistical model is presented in Section 5.4.1-5.4.3. The values
of its free parameters are then determined in Section 5.4.5, by using the direct numerical
simulation data. We finally calculate analytically, in Section 5.4.6, the stationary solutions
EP and ET of the model, and compare them to the direct numerical simulations results.

5.4.1 Dissipation modelling

We first estimate the viscous dissipation terms εP and εT . Even though the Reynolds
number of our simulations is only moderate, we will use for the sake of simplicity argu-
ments in principle valid for high Reynolds number flows. In this regime, the dissipation
rate is in general not set by viscosity, but rather by the nonlinear energy transfer between
scales.

This inertial transfer is associated with the nonlinear advection term of the Navier-
Stokes equations, which formally writes for axisymmetric flows ur∂rg + uz∂zg, where g
can be any of the velocity components. For such flows the nonlinear advection is therefore
due to the poloidal velocity components ur, uz. The dissipation rates εP and εT can be
therefore estimated as

εP = dP
EP
τ
, (5.12)

εT = dT
ET
τ
, (5.13)

where dP and dT are dimensionless model parameters, and τ is a typical time scale asso-
ciated with the poloidal motion :

τ ∼ L/E1/2
P . (5.14)

In this expression L is a length scale, undefined at this stage. We will come back to
this point later on. Equations (5.12, 5.13, 5.14) form the simplest possible model for the
dissipation terms εP and εT .
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5.4.2 Forcing modelling

According to Eq.(5.11), the simplest model for the forcing is :

FP = βP cP νEP , FT = βT cT νET , (5.15)

where βP and βT are model parameters.

5.4.3 Transfer modelling

In order to model the transfer term T =
〈
u2
θur/r

〉
, we first derive an equation for the

triple product u2
θur. Using the incompressibility condition and ignoring viscous dissipation

and forcing, it is possible to derive from the axisymmetric Navier-Stokes equations (5.1-
5.5) the following equality (deduction in Appendix E.2) :

∂t(u
2
θur) = −

[
1

r
∂r
(
ru2

ru
2
θ

)
+ ∂z

(
uruzu

2
θ

)
+

2u2
ru

2
θ

r
−
u4
θ

r
+
u2
θ

ρ
∂rp

]
. (5.16)

Applying the operator 〈 〉 to this equation leads to :

∂t
〈
u2
θur
〉

= −
〈

2u2
ru

2
θ

r

〉
+

〈
u4
θ

r

〉
−
〈
u2
θ

ρ
∂rp

〉
. (5.17)

Following [57], the pressure term is modelled as :〈
u2
θ

ρ
∂rp

〉
∼ 1

τ

〈
u2
θur
〉
, (5.18)

where the typical correlation time of the triple correlations is τ , defined in Eq.(5.14).
Combining Eqs.(5.17) and (5.18) and making the crude assumption that 〈f(r)〉 ∼ 〈g(r)〉 ⇒
〈f(r)/r〉 ∼ 〈g(r)/r〉 allows to propose the following rough, statistically homogeneous model
for the transfer term :〈

u2
θur
r

〉
∼ −τ

〈
2u2

ru
2
θ

r2
−
u4
θ

r2

〉
∼ τ

〈
u2
θ

r2

(
u2
θ − 2u2

r

)〉
. (5.19)

Estimating r as R in the right-hand side of Eq.(5.19), assuming that
〈
u2
r

〉
≈
〈
u2
z

〉
, and

neglecting all correlations between u2
θ, u

2
r and u2

z, the transfer can therefore be estimated
as :

T = ζτ
ET
R2

(ET − EP )

= ζτ
E2
T

R2

(
1− γ−1

)
, (5.20)

where ζ is a dimensionless parameter of the model and τ can be estimated as in Eq.(5.14).

Inserting the estimates (5.12, 5.13, 5.15, 5.20) in the sytem (5.8, 5.9) leads to a model
remarkably similar to a classical Reynolds-stress model formulated in cylindrical coordi-
nates [89]. More sophisticated approaches might be envisaged if the present estimate does
not capture the physics of the system.
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Figure 5.5: ETE
1/2
P /εT calculated by DNS, plotted as a function of γ (red dots). The

(black) line shows the best data fitting 0.19+0.41 exp(−1.1γ2.5). Following Eq.(5.13), this
fitting provides an estimate of L′ = L/dT .

5.4.4 Determination of the length scale L

The model derived in the previous subsections requires an expression for the length
scale L appearing in the expression of the time scale τ , Eq.(5.14). As a first guess, we
assumed that the typical poloidal length scale is proportional to the domain size, and
therefore set L = R. Under this assumption, the model only displays a weak qualitative
agreement with the numerical data.

Our second choice consists in extracting a length scale L(γ) from the numerical data
using Eq.(5.13) (an equivalently choice would have been to use Eq.(5.12) instead). For
this, we plotted for each run the quantity ETE

1/2
P /εT (thereby estimating L/dT according

to Eq.(5.13)) as a function of γ. As shown in Fig.5.5, this quantity is well approximated
by the relation :

L′ ≡ L/dT ∼ ETE1/2
P /εT ∼ 0.19 + 0.41 exp(−1.1γ2.5). (5.21)

We will thereafter use this expression of L′ ≡ L/dT (γ). With this choice, the model can
be rewritten as :

dEP
dt

= βP cP νEP − d′P
E

3/2
P

L′(γ)
+ ζ ′

ETE
1/2
P

L′(γ)
(γ − 1) , (5.22)

dET
dt

= βT cT νET −
ETE

1/2
P

L′(γ)
− ζ ′

ETE
1/2
P

L′(γ)
(γ − 1) , (5.23)

where d′P = dP /dT and ζ ′ = ζ/dT .

5.4.5 Determination of the model parameters

The model (5.22-5.23) contains four a priori free parameters βP , βT , d′P and ζ ′,
whose value need to be determined. This was done by applying a linear regression to
the DNS results, plotting : (i) Fi as a function of Ei (i ∈ {P, T}, see Eq.(5.15)) ; (ii) εP
as a function of E3/2

P /L′(γ) (Eqs.(5.12), (5.14) and (5.21)) ; and (iii) T as a function of
ETE

1/2
P (γ − 1)/L′(γ) (Eqs.(5.20), (5.14) and (5.21)).
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Figure 5.6: Determination of the model parameters (a) βP , βT (b) d′P and (c) ζ ′ by linear
regression of the DNS data.

As shown in Fig.5.6, all the resulting curves display approximately linear dependencies,
which confirms our modelling. We found : βP ≈ 51, βT ≈ 156, d′P ≈ 0.28, and ζ ′ ≈ 0.024.
The linear approximation is particularly well satisfied for FT and T . For FP and εP this
approximation is less satisfying, in particular for small values of these quantities.

We compare in Fig.5.7(a) the transfer modellings (5.20, 5.14, 5.21) (with ζ ′ = 0.024)
with the definition of T , Eq.(5.10), for different values of γ. A good agreement is obtained,
thereby providing a first, partial validation of the model.

5.4.6 Analytical solution of the model and comparison with the numer-
ical data

Steady states of the system (5.22-5.23) can be easily determined. They are solutions
of the following equation for γ :

γ

[
γ2 +

1− η
η

γ +
1− d′P η − ζ ′

ζ ′η

]
= 0, (5.24)

where η = (βT cT )/(βP cP ). For any η (or, equivalently, any cT /cP ), γ = 0 is a solution.
For η > ηc such that :

ηc =
2− ζ ′ + 2

√
1− ζ ′(d′P + 1)

ζ ′ + 4d′P
, (5.25)

corresponding to a value of (cT /cP )c ≈ 1.13, another solution exists :

γ =
η − 1 +

√
(η − 1)2 + 4η[1 + (d′P η − 1)/ζ ′]

2η
. (5.26)

The resulting function γ(cT /cP ) is plotted in Fig.5.7(b), and displays an excellent
agreement with the numerical results.

The asymptotic value of γ = ET /EP defined in Eq.(5.26) for large values of cT /cP (or
ζ) is limζ→∞ γ =

(
1 +

√
1 + 4d′P /ζ

′
)
/2 ≈ 3.95, which is therefore the maximal value of

the ratio between the toroidal and poloidal energy components permitted in this system
(see Fig.5.7(b)).
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Figure 5.7: (a) Steady state values of the transfer T plotted as a function of γ : models
(5.20, 5.14) with Eq.(5.21) and ζ ′ = 0.024, compared with the numerical simulations
results. (b) Steady state values of γ plotted as a function of cT /cP : analytical solution
of the model (5.26) with βP = 51, βT = 156, d′P = 0.28, and ζ ′ = 0.024, compared to
the numerical simulations results. The horizontal dashed line shows the asymptotic value(
1 +

√
1 + 4d′P /ζ

′
)
/2.

5.5 Conclusion

Direct numerical simulations of axisymmetric turbulence forced by a negative viscos-
ity method show the existence of a sharp transition between 2D2C, purely poloidal, or
non-swirling turbulence, and the 2D3C poloidal-toroidal, or swirling turbulence. On the
level of kinetic energy, the steady states of the system are well captured by a statistical
model, reminiscent of a Reynolds-stress closure. This model is derived using assumptions
usually valid in the limit of high Reynolds number turbulence. It would be interesting to
investigate numerically the dependence of the transition on the Reynolds number.

Finally, a transition from 2D3C (strictly axisymmetric) to 3D3C turbulence could be
investigated by using similar tools. This will be done in the next chapter of this thesis.





Chapitre 6

Transition from Axisymmetric to
General Three-dimensional

Turbulence

In the previous chapter, we investigated the transition from non-swirling to swirling
flow in a purely axisymmetric set-up. This transition was therefore considering the 2D2C
to 2D3C transition. The next step towards realistic flows is the transition from 2D3C
to 3D3C flows and this is what will be considered in this chapter. To carry out this
investigation, we use the pseudo-spectral code which has been modified as described in
Section 3.2. The results will be modelled, as in the previous chapter, by a description in
terms of volume-averaged kinetic energy components.

6.1 Non-integer dimensions

One of the cornerstones of the theory of isotropic turbulence is its supposed small-
scale universality at high Reynolds numbers. In practice only very few flows are close to
isotropic. For instance, oceanic and atmospheric flows are three-dimensional but due to
the presence of geometrical confinement and body-forces (rotation and/or stratification)
the nature of the turbulent motions is at certain scales more two- than three-dimensional.

Compared to academic isotropic flows, realistic flows thus show features which are
somewhere between 3D (presence of a direct energy cascade towards small scales) and
2D (presence of well-defined coherent structures) turbulence. Such situations can be
investigated numerically by directly integrating the Navier-Stokes equations combined
with the appropriate body-forces and boundary conditions. In the present chapter we
proceed differently by modifying the Navier-Stokes equations to mimic the anisotropic
behavior corresponding to a dynamical dimension which is somewhere between two and
three.

The way in which we do this is the following. We consider the Navier-Stokes equations
in cylindrical coordinates (a simplified form of Eq.(3.43)) :

D
(α)
t [ur] = fr + ν∆(α)

r ur − ∂rp+
u2
θ

r
, (6.1)

D
(α)
t [uz] = fz + ν∆(α)

z uz − ∂zp, (6.2)

D
(α)
t [uθ] = fθ + ν∆

(α)
θ uθ −

α

r
∂θ̄p−

uθur
r

, (6.3)

where the operator D(α)[g] is defined as

D(α)[g] = ∂tg + ur∂rg + uz∂zg + α
uθ
r
∂θ̄g, (6.4)
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∆
(α)
i are the three components of the cylindrical vector Laplacian, where, as in D(α)[g],

all azimuthal derivatives are multiplied by α or α2 according to their order.

Incompressibility is ensured by the relation

r−1∂r(rur) + ∂zuz + αr−1∂θ̄(uθ) = 0. (6.5)

The above system represents the Navier-Stokes equations for α = 1 and axisymmetric flow
for α = 0. In between these two values the flow is expected to show a transition between
the two regimes. It is this transition that we will try to characterize in the following.

6.2 Numerical set-up

As in the simulations presented in Chapter 5, the computational domain has a
cylindrical geometry with an aspect ratio of H/R = 1.7. The kinematic viscosity is
ν = 0.01.

In the present chapter the flow is forced through a linear forcing [90, 91]

fi = βui. (6.6)

This forcing is different from the spectral-band forcing, as it is applied to all scales of the
velocity field.

Its implementation is easier which is convenient since in the pseudo-spectral method,
based on Chebyshev polynomials it is more difficult to define the wave-number k used
before in the spectral code. The forcing is applied in the poloidal plane only, fθ = 0 and
fr = fz with a coefficient β = 0.04 s−1. Computations with azimuthal forcing showed
that a very strong dominant, almost uniform azimuthal flow was generated without a
very interesting dynamics, and we focus therefore on the case of pure poloidal forcing.
Recalling the fact that in this limit the α = 0 axisymmetric flow does not generate any
toroidal component, our choice will allow to see for which value of α this purely poloidal
flow becomes unstable.

The physical time step is set to be ∆t = 5 × 10−4 s, and the temporal resolution
is assessed by monitoring the Courant number as a function of time (see Fig.6.1).
The maximal Courant number is chosen in the manner described in Section 3.2.3.
Simulations with different α varying from 0 (strictly non-axisymmetric case) to 1 (normal
three-dimensional case) are carried out, namely α = 0, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.4,
0.5, 0.6, 0.7, 0.8, 0.9, 1.

With these numerical settings, the attainable large-scale Reynolds number, defined
as Re ≡ H

√
2E/3/ν, is about 300, which is rather low. In particular the case α = 0

is challenging, since due to the inverse cascade that we have evidenced in this case, the
energy at the large scales increases importantly and is difficultly dissipated at moderate
spatial resolution. Even at the relatively low Reynolds numbers considered, simulations
could be carried out for a limited time only and the modified Laplacian ∆

(α)
i in expression

(6.1) was replaced by the normal Laplacian ∆
(1)
i in the following. The non-integer

dimension α therefore affects only the nonlinear and pressure terms in these simulations.
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Figure 6.1: Temporal evolution of Courant number for α = 0.3. After a certain early
moment, the Courant number is smaller than 0.5, thereby confirming that the temporal
resolution is sufficient.

In order to investigate higher Reynolds number dynamics and to be able to use the
modified Laplacian ∆

(α)
i , we compared our simulations to results using the spectral van-

ishing viscosity method [92]. This method, of the Large Eddy Simulation type, allows to
attain higher Reynolds numbers and details. Results will be presented in Section 6.6.

6.3 Results of the simulations

6.3.1 Flow visualizations and azimuthal structures

Fig.6.2 shows the instantaneous kinetic energy in cross-sections through the median
(z = 0) of the cylinder. For values of α > 0.15, we observe a self-organization into
azimuthally periodic flower-like structures. We have found in the literature mentions of
such structures in three-dimensional cylindrical flows in rotor-stator disc cavities. For
instance, in the experimental study by Czarny et al. [93] or the numerical work of Craft
et al. [94] using unsteady k-ε RANS model, the emergence of lobes in flows stirred by one
single rotating disc were reported. We do not have discs and we do not know whether
these observations are related.

We propose here a phenomenological explanation of the effect. When changing α, the
typical gradient length scale in the azimuthal direction changes such that LT = α−1L

(1)
T ,

where L(1)
T is the length scale for α = 1, the three-dimensional case, as was explained in

Section 3.2.2. We assume that a certain size of structures is generated by the poloidal
forcing, typically of the size of the box, since the linear forcing adds energy to all scales.
Through nonlinear interactions, these scales destabilize and will also have a finite extend
in the azimuthal direction. It can be expected that the azimuthal and poloidal sizes of
the structure are of the same order of magnitude. If this is so, a larger number of poloidal
structures fits into the box if LT � R. The number of structures will thus increase when
α diminishes and the number of azimuthal structures will scale as

Ns ∼ α−1. (6.7)

We have evaluated the spatial frequency of the lobes in the horizontal cross-section by
counting the number of flow structures during the steady state (Fig.6.2). It is shown in
Fig.6.3 that the general trend of the number of lobes is well reproduced by the function
Ns = 2/α.
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(a) α = 0. (b) α = 0.05. (c) α = 0.1.

(d) α = 0.15 : 9-lobe pattern. (e) α = 0.2 : 10-lobe pattern. (f) α = 0.25 : 8-lobe pattern.

(g) α = 0.3 : faint 5-lobe pattern. (h) α = 0.4. (i) α = 0.5.

(j) α = 0.6 : 4-lobe pattern. (k) α = 0.7 : 4-lobe pattern. (l) α = 0.8.

(m) α = 0.9. (n) α = 1.0 : symmetric pattern.

Figure 6.2: Typical instantaneous kinetic energy distribution at z = 0 during the statis-
tically steady state of the simulations.
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function Ns = 2/α.
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Figure 6.4: Dimensionless energy components plotted as a function of α.

6.3.2 Statistical characterization

We show in Fig.6.4 the α-dependence of the dimensionless kinetic energy defined as

E =
E

(Hβ)2
, (6.8)

and of dimensionless poloidal energy and azimuthal energy components, defined as

EP =
EP

(Hβ)2
, ET =

ET
(Hβ)2

. (6.9)

It can be observed that E and EP reach their maximum at α = 0, then drop abruptly as
α increases, and attain an approximately constant value for α & 0.3. In between 0 and
0.3, the dimensionality parameter α exerts a significant influence on the dynamics.

The situation is inversed for ET which vanishes at α = 0 and increases for larger α
values. Indeed, when axisymmetry is imposed, it was shown in Chapter 5 that a pure
poloidal forcing leads to a two-dimensional two-component dynamics. It is therefore
normal and reassuring to observe the same dynamics in the present investigation, by
using a different forcing and a different numerical code.

Because the azimuthal dynamics is unforced, the only possible sources of the increase
of ET are the nonlinear transfer of energy T from the radial energy component (see
Chapter 5), and the pressure-velocity correlation, which is zero for α = 0 and which will
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Figure 6.5: Axisymmetry level described by the ratios Rr, Rθ, Rz. For α = 0, the three
ratios are 0, as expected due to the axisymmetry constraint. (a) linear-linear scale ; (b)
linear-log scale.

be analyzed and modelled in the next section.

Therefore, if the dependence of the kinetic energy on α is an indicator of dimension-
ality, then the transition from the axisymmetric to the three-dimensional regime appears
to be within the interval α ∈ [0, 0.3], where EP decreases and ET increases from 0 to an
almost constant value.

We now introduce gradient-based indicators to measure the axisymmetry level. These
indicators are

Rr =
〈
(

1
r
∂ur
∂θ

)2〉
〈
(
∂ur
∂r

)2
+
(
∂ur
∂z

)2〉 , Rz =
〈
(

1
r
∂uz
∂θ

)2〉
〈
(
∂uz
∂r

)2
+
(
∂uz
∂z

)2〉 , Rθ =
〈
(

1
r
∂uθ
∂θ

)2
〉

〈
(
∂uθ
∂r

)2
+
(
∂uθ
∂z

)2
〉
. (6.10)

The quantities Rr, Rz and Rθ are therefore defined as the ratio between the strength
of the volume-averaged azimuthal derivatives and that of the poloidal derivatives.
Their values measure directly the weight of azimuthal variations. Since their definitions
involve derivatives, their value is more sensitive to small-scale variations than those of
energy-based quantities. Rr, Rz and Rθ are plotted as a function of α in Fig.6.5. One can
note that all of them are increasing functions of α and do not reach stable plateaus. This
confirms that the axisymmetry constraint is gradually relaxed as α increases. The log-scale
plot of Fig.6.5b shows that Ri (i ∈ {r, θ, z}) increases strongly for α < 0.2. Therefore, if
the behaviors of Ri can be considered as indicators of small-scale dimensionality, then
the transition from the axisymmetric to the three-dimensional regime takes place within
the interval α ∈ [0, 0.2].

The previous results show that a “transition” from axisymmetric to three-dimensional
dynamics takes place between α = 0 and α = 1. The behavior of the flow is radically
different when α = 0, by comparison with the other values of α considered. The dependence
on α for energy-based anisotropy is most important for α < 0.3, while gradient-based
quantities are most importantly affected by the value of α when α < 0.2.
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6.4 Energy based model of the transition

In this section the model proposed in the previous chapter to reproduce the swirling
transition is extended to study the transition from 2D2C/2D3C to 3D3C. Exact equations
governing the volume-averaged energy budget of the poloidal and toroidal energy can be
derived from the Navier-Stokes equations (2.71)

∂EP
∂t

= T + FP − εP + Π,

∂ET
∂t

= −T + FT − εT −Π,

(6.11)

where

Π = 〈uθ
rρ

∂p

∂θ
〉 = −

(
〈ur
ρ

∂p

∂r
〉+ 〈uz

ρ

∂p

∂z
〉
)
, (6.12)

and we recall that FP and FT are energy forcing powers, εP and εT are energy dissipation
rates, and T is the energy transfer between azimuthal and radial directions (see Chapter 5
and Appendix E). By a similar process to that presented in Appendix E.1, it can be shown
that in the non-axisymmetric case, one has again T = 〈uru2

θ/r〉. When the non-complete
axisymmetry is introduced, we have that ∂θ 7→ α∂θ̄, so that

Π = α〈uθ
rρ

∂p

∂θ̄
〉. (6.13)

This pressure-strain correlation appears as a new term in the energy balance once axisym-
metry is broken. In the following we will model this term.

6.4.1 Model for the pressure-strain correlation

The simplest possible model for the pressure-strain correlation is the Rotta model [95].
The pressure-strain correlation acts to restore isotropy in anisotropic flows. Rotta’s model
uses a linear relation between the anisotropy of the flow and the strength of Π, and is
written in Cartesian coordinates as

Πij =
cΠ

T

(
Rij −

1

3
Rmmδij

)
, (6.14)

where cΠ is a parameter to be determined, Rij = 〈uiuj〉 is the second-order velocity
correlation, δij denotes the Kronecker symbol and T is a characteristic time.

We focus here on the poloidal and toroidal energy components. For fully three-
dimensional, volume-averaged flows in cylindrical geometry (α=1), the isotropic state can
be expected to be such that Eθ = Er = Ez =⇒ ET = EP /2 = E/3. By analogy with
Eq.(6.14), we can therefore assume that :

Π(α = 1) =
cΠ

T

(
ET −

1

3
E

)
, (6.15)

with the characteristic time being T = L/E1/2.

The question is how this model should be modified for incomplete axisymmetry (0 <
α < 1). The simplest modification allowing the correct limits (Eq.(6.15) as α → 1 and 0
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as α→ 0) is

Π(α) = α
cΠ

T

(
ET −

1

3
E

)
= α

cΠ

3T
(2ET − EP ) . (6.16)

This model will be shown not to describe the data in the following. The reason for this is
not clear from the outset, but it will be shown that replacing (6.16) by

Π(α) = α
cΠ

T
(ET − λEP ) , (6.17)

with λ a free constant, the pressure model describes the data more accurately.

The presence of this pressure-strain correlation term changes the energy balance dras-
tically. Indeed, even in the absence of toroidal forcing the pressure-strain correlation allows
a transfer from the poloidal to the toroidal component. This can be seen from expression
(6.17), where, even for zero toroidal energy, the poloidal energy can be redistributed, as
long as α 6= 0.

6.4.2 Adaptation of the model to α 6= 0

In the model used in the previous chapter, we have modelled the terms T , FP , FT , εP
and εT . We recall the equations used :

T =
ζτET (ET − EP )

L2
, (6.18)

Fi = ciEi, (6.19)

εi = di
Ei
τ
, (6.20)

with i ∈ {T, P}. In the axisymmetric case we modelled the typical time scale as

τ(α = 0) ∼ L/E1/2
P (6.21)

since in this case the poloidal velocity field dominates the dynamics and, in the absence
of the transfer term, advects the toroidal velocity as if it were a passive scalar. In the fully
three-dimensional case the toroidal velocity plays the same role in the dynamics as the
poloidal one, and therefore we model the time scale as

τ(α = 1) ∼ L

(EP + ET )1/2
. (6.22)

For any α ∈ [0, 1], the simplest expression reducing to these forms in the axisymmetric
case for α = 0 and in a classic three-dimensional form for α = 1 is :

τ(α) ∼ L

(EP + αET )1/2
. (6.23)

The forcing Fi does not need any modelling in the present simulations since all modes
are forced so that Fi appears in closed form, Fi = ciEi.
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Figure 6.6: Scatter plots of dissipation rates to extract dissipation coefficients dP and
dT . The linear fittings show that the model (6.20,6.23) for the dissipation rates appears
to work well.
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Figure 6.8: Scatter plots for obtention of cΠ in the pressure-strain models from numerical
data : (a) Eq.(6.16) and (b) Eq.(6.17).

6.4.3 Numerical assessment of the model

In Fig.6.6 we assess the performance of the dissipation rate model (6.20,6.23). For
simplicity, we first choose a constant characteristic scale L independent from α and γ.
This choice is shown to work well in Fig.6.6, the linear fittings yielding δP ≈ δT = 0.9.
The model therefore does not need any refinement as was needed for the axisymmetric
model, where the integral length scale was found to be a function of γ : it does not seem
to be an important function of α in the present simulations.

The modelling of the transfer term (6.18,6.23) is assessed in Fig.6.7. It is observed that
the model constant fluctuates around zero. However, the constant of the transfer term is
not easy to determine near the axisymmetric limit, because it is zero in the limit α = 0

and cT = 0 and since we have only carried out simulations for the case cT = 0 in the
present chapter, we cannot evaluate ζ, at least not near the α = 0 limit. We will therefore
retain the same model as in Chapter 5, and change only the form of the integral time scale.

The pressure-strain model is the main novelty introduced in the present chapter. We
first show that the simple extension (6.16) of the Rotta model does not work. Fig.6.8a
shows that this form of the model is not satisfied by the data. When we use the expression
(6.17) in which an additional model constant λ is introduced, a simultaneous fitting of
the parameters cΠ and λ allows to reproduce the data relatively well, giving cΠ = 0.498

and λ = 1.50, even though the scatter remains important. This is shown in Fig.6.8b.

To summarize, the model can be written as

T =
ζτET (ET − EP )

L2
,

Fi = ciEi,

εi = di
Ei
τ
,

Π(α) = α
cΠ

τ
(ET − λEP ) ,

τ(α) ∼ L

(EP + αET )1/2
,

(6.24)

where dT ≈ dP = 0.90, cΠ = 0.498, λ = 1.50, ζ remains undetermined, and cT and cP
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will be varied in order to form different ratios between them (as is done in Chapter 5).
The model is now complete and we will evaluate its properties in the following section.

6.5 Insights from the simplified model

Now that we have a closed description for the toroidal-poloidal energy dynamics, we
focus on the steady state predictions of the model. The toroidal balance, in the absence
of toroidal forcing writes

0 = −T − εT −Π. (6.25)

Let us first consider the simplified case where T = 0. This is exact in the α = 0 limit.
We have then directly a balance of energy redistribution by the pressure term Π and the
toroidal dissipation εT . Using the expressions of the model, this gives

α
cΠ

τ
(ET − λEP ) = −dT

ET
τ

(6.26)

with an expression for the energy ratio,

γ ≡ ET
EP

=
αλ

dT /cΠ + α
. (6.27)

According to the model, the energy ratio is therefore a nonlinear function of α. We have
plotted this relation in Fig.6.9 and superimposed it to our numerical data. The agreement
is satisfactory.
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Figure 6.9: Energy ratio γ = ET /EP plotted as a function of α for cT = 0. Dots stand
for numerical data, while the line stands for Eq.(6.27).

What we have learned here is that the nonlinear dependence of the energy ratio on α
is a direct consequence of the presence of the pressure-strain term, which redistributes
the energy over the different energy components.

Another question is how the results from Chapter 5 change when the value of α is varied
simultaneously with a change in the forcing anisotropy cT /cP . Does a clear bifurcation
persist or will the traces of this bifurcation be washed away completely by a gradual
introduction of the third dimension and thus of the pressure-strain energy redistribution ?
In order to check this, we have integrated the model (6.24), with ζ = 0 at cT /cP = 0,
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and ζ = 0.024 (the same value as that used in Chapter 5) for cT /cP 6= 0. The steady
state results are presented in Fig.6.10. We observe that the transition observed in Chapter
5 gradually smoothens out when α 6= 0. Particularly, the bifurcation of γ appears to be
sensitive to α. For small α close to 0, as is shown in Fig.6.10c, the behavior of α 6= 0 is
very different from that of α = 0. Indeed, this has already been predicted by Eq.(6.17),
explaining that once α 6= 0, Π will be an important source of energy transfer from the
poloidal to the toroidal direction.
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Figure 6.10: (a-c) Energy ratio γ = ET /EP plotted as a function of the forcing amplitude
ratio cT /cP , for different values of α.

6.6 Results at higher Reynolds numbers

The nature of our forcing and the numerical method we used restrict the value of
the Reynolds number which can be reached in our simulations. In particular in the
axisymmetric, non-swirling limit, where the dynamics are governed by an inverse cascade,
the linear forcing tends to feed large scales too efficiently for the viscous dissipation to
damp.

Therefore, since we want to assess whether the observed results are not only a low
Reynolds number effect, in the present section we carry out Large-Eddy Simulations
where the equations are modified using a Spectral Vanishing Viscosity method [92, 67].

The effective viscosity used is ν = 10−4 and is therefore 100 times smaller than that
used in our DNS. The Reynolds number is increased by the same factor. The dimensional
indicator α is now also present in the Laplacian of the Navier-Stokes equations. The forcing
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is again purely poloidal and linear. The limit α = 0 might be difficultly attainable with
such a forcing, but we have succeeded to simulate approximately steady state regimes for
the values α = 0.05, 0.15, 0.4, 0.6, 0.8, where γ(t) attained a constant value.
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Figure 6.11: Energy ratio γ = ET /EP plotted as a function of α at cT = 0 and cP = 0.04 :
comparison between DNS (Re ≈ 300), LES (Re ≈ 30000) and Eq.(6.27) (with λ = 0.5 and
dT /cΠ = 0.15).

The results of these LES calculations are compared to the DNS results in Fig.6.11. It
is observed that the swirl indicator γ increases more rapidly for small values of α when
Re is higher. We have not enough data to confirm this trend, but simulations are still
running (July 18th). If other values of α confirm the sharper transition towards three-
dimensionality, the values of cΠ and λ in the pressure model and the value of dT in the
dissipation model might need adjustment to correctly reproduce this. For λ = 0.5 and
dT /cΠ = 0.15, Fig.6.11 shows that the relation (6.27) fits well the data produced by LES.
This shows that (6.27) tends to the asymptotic value ET /EP ≈ 0.5 for large α. This is
equivalent to the energy distribution in homogeneous isotropic turbulence at stationary
state (Er = Ez = Eθ). It seems that the different value, λ = 1.5 observed in the DNS, can
be due to the limited Reynolds number.

6.7 Summary

A continuous change of dimension, from axisymmetric to three-dimensions was
introduced in the system of equations. The result is a flow which develops an almost pe-
riodic azimuthal pattern of the kinetic energy, with a frequency inversely proportional to α.

Both the kinetic energy and velocity-gradient statistics show a clear transition. The
energy model from Chapter 5 is adapted to this case by modelling the pressure-strain
correlation term. The functional dependence of the swirl indicator γ as a function of the
dimensionality α can be understood, using this model, as a balance between pressure
distribution, forcing, and dissipation.





Chapitre 7

Conclusions and Perspectives

7.1 Conclusions

The objective of the present thesis was to contribute to a better understanding of
axisymmetric turbulence. The main questions that were addressed are :

1. Are the theoretical predictions on axisymmetric turbulence, derived for the inviscid
and unforced dynamics, valid in a more realistic context ?

2. What are the characteristics of the 2D2C-2D3C (swirling to non-swirling) transition
in the framework of axisymmetric turbulence ?

3. When we introduce a non-integer dimension, how different is the case of axisym-
metric turbulence from three-dimensional turbulence ? And how can we characterize
this transitional cross-over ?

Strictly axisymmetric turbulence does not exist. However the theoretical results
[6, 85, 22] were derived for this case and puzzling agreement was observed between
the theory and experimental results of three-dimensional turbulence where only the
mean-field was axisymmetric [21]. As in the work by Qu et al. [7, 9], we therefore
used direct numerical simulations to understand the properties of strictly axisymmetric
turbulence, and to characterize the common features with two- and three-dimensional
turbulence.

The numerical tools we used for this were a fully spectral code [8] and a pseudo-
spectral code [66, 67]. Both codes were modified in order to obtain the results presented
in the previous chapters. The spectral code was modified in order to change the axial
boundary condition from periodic to wall-bounded, by changing the expansion basis
in the axial direction. The pseudo-spectral code was modified in order to allow for a
non-integer dimension. All numerical details were presented in Chapter 3.

The results associated with the three questions above were presented in Chapters 4-6,
respectively and will here be briefly summarized.

1. In the case of axisymmetric flow in a closed cylindrical vessel, in the case of spectral
forcing at an intermediate wave-number, large-scale structures are observed and the
associated predicted relations between the stream function and the vorticity are
observed in the bulk of the flow. These structures are however not stable and do not
last for more than several eddy turnover times. The destabilization may be caused
by the spectral forcing. The toroidal flow does not show clear structures for the case
considered.
When the flow is set into movement by counter-rotating top and bottom discs, the
toroidal component of the flow is more important than for the case of isotropic
forcing. Again large-scale structures are observed and the associated functional rela-
tionships among ψ, σ and ξ are observed at a Reynolds number of several thousands.
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The presence of coherent structures and functional relationships showing that they
are solutions of the Euler equations is shown for the first time in strictly axisymmetric
forced turbulence.

2. This importance of the type of forcing on the toroidal dynamics motivates to look
at the dependence of the toroidal forcing in a systematic way. For this we simulated
more than 150 cases using the fully spectral code, where the poloidal and toroidal
energy levels were controlled by the forcing parameters cP and cT , resulting in differ-
ent values of the swirling strength γ = ET /EP . It is observed that in this system the
swirling transition is a sharp bifurcation between swirling and non-swirling states,
where the non-swirling state is characterized by a poloidal inverse energy cascade. To
understand this bifurcation, a statistical model based on large scale dynamics is pro-
posed, with model coefficients fitted from DNS data. The model reproduces well the
bifurcation behavior, showing that the energy balance in axisymmetric turbulence
can be well approximated by its large-scale dynamics.

3. These interesting observations trigger the question of how close the dynamics are to
realistic flows, where the axisymmetry is, at best, only partial. The introduction of
a non-integer dimension shows that the purely axisymmetric state is a singular limit
and that only little variation in the azimuthal direction is sufficient to break the
2D2C dynamics. The simulations in this chapter are modelled, again, by an ODE
model mimicking the dynamics of the toroidal and poloidal energy components. The
new term, representing the pressure-strain redistribution of energy, allows to explain
the dependence of the swirling level γ on the dimensionality parameter α which we
introduced into the system.

These observations logically trigger new questions discussed as perspectives in the
following.

7.2 Perspectives

Some open questions and random ideas are summarized here.

1. Given the success in describing the transitions in Chapters 5 and 6, one can ask
what other types of flows can be described, on a global level, by simple ODE models
such as the ones derived in this thesis.

2. We used a Rotta-type model in Chapter 6 to represent the return to isotropy of
turbulence, but a free constant λ, in this model determined the isotropic state to
which the flow tends to return. How is this value of λ determined as a function of
the dimension, the geometry and the Reynolds number ?

3. Are the observed transitions in the current setting robust enough to be observed
at very high Reynolds numbers ? Our simulations were limited by RAM and time
constraints. Some evidence using LES was obtained in Chapter 6 that the dimen-
sional cross-over is still observable for higher Reynolds numbers, but this should be
checked in a more detailed way.

4. Furthermore, we have not attempted a simultaneous parameter-scan of α and γ (di-
mensionality and swirling strength). The model has shown that the swirl transition is
far less abrupt for partially three-dimensional flows than for the purely axisymmetric
case. This can be assessed in simulations to predict whether a swirling transition can
possibly be observed in experiments.
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5. Can the observed dynamics be compared to turbulence in magnetically confined
fusion plasmas ? Indeed, in reactors of the tokamak type, the toroidal magnetic field
reduces strongly the variations in the toroidal direction and this system is therefore
perhaps the real system which is the closest to axisymmetric turbulence. Does the
swirling transition exist in such systems, and if it does, what are the consequences
for plasma confinement ?
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Annexe A

Mathematical Demonstration of
Orthogonality and Completeness of

the Basis Bqn

We consider a cylinder of radius R and height H as fluid domain for an axisymmetric
flow. In order to set the no-penetration boundary condition on the two ends of the cylinder,
we have chosen the expansion method

u(r, z, t) =

±λ∑
q,n>0

Cqn(t)Bqn(r, z)

=
±λ∑
q,n>0

Cqn(t)I
− 1

2
qn

−knγqJ1(γqr) cos(knz)

λqnγqJ1(γqr) sin(knz)

γ2
qJ0(γqr) sin(knz)

 ,

(A.1)

where kn = nπ/H with n = 1, 2, 3, ..., γq is the qth strictly positive root of J1(Rx) = 0,
λqn = ±

√
γ2
q + k2

n, and Iqn is the normalization constant. The demonstration will use the
inner product defined by Eq.(3.3).

A.1 Orthogonality

The demonstration of orthogonality consists in showing that the inner product of Bqn

between different q or n or λqn of opposite signs reduces to zero. The inner product of
Bq1n1 and Bq2n2 writes

〈Bq1n1 ,Bq2n2〉 =I−1/2
q1n1

I−1/2
q2n2

1

V

∫ H

z=0

∫ 2π

θ=0

∫ R

r=0
rdrdθdz

[kn1kn2γq1γq2J1(γq1r)J1(γq2r) cos(kn1z) cos(kn2z)

+λq1n1λq2n2γq1γq2J1(γq1r)J1(γq2r) sin(kn1z) sin(kn2z)

+ γ2
q1γ

2
q2J0(γq1r)J0(γq2r) sin(kn1z) sin(kn2z)

]
.

(A.2)
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1. n1 6= n2. One can derive :
∫

cos
(n1π

H
z
)

cos
(n2π

H
z
)
dz =

H

2π

[
1

n1 − n2
sin

(
(n1 − n2)π

H
z

)
+

1

n1 + n2
sin

(
(n1 + n2)π

H
z

)]
∫

sin
(n1π

H
z
)

sin
(n2π

H
z
)
dz =

H

2π

[
1

n1 − n2
sin

(
(n1 − n2)π

H
z

)
− 1

n1 + n2
sin

(
(n1 + n2)π

H
z

)] ,

=⇒


∫ H

0
cos
(n1π

H
z
)

cos
(n2π

H
z
)
dz = 0∫ H

0
sin
(n1π

H
z
)

sin
(n2π

H
z
)
dz = 0.

,

=⇒〈Bq1n1 ,Bq2n2〉 = 0.

(A.3)

2. q1 6= q2. Recalling J1(γqR) = 0, one obtains the following result :
∫
J1(γq1r)J1(γq2r)rdr =

r

γ2
q1 − γ2

q2

[γq2J1(γq1r)J0(γq2r)− γq1J0(γq1r)J1(γq2r)]∫
J0(γq1r)J0(γq2r)rdr =

r

γ2
q1 − γ2

q2

[γq1J1(γq1r)J0(γq2r)− γq2J0(γq1r)J1(γq2r)]

,

=⇒


∫ R

0
J1(γq1r)J1(γq2r)rdr = 0∫ R

0
J0(γq1r)J0(γq2r)rdr = 0.

,

=⇒〈Bq1n1 ,Bq2n2〉 = 0.

(A.4)

3. n1 = n2 = n, q1 = q2 = q, but λq1n1 = |λqn| and λq2n2 = −|λqn|. In this case the
inner product (A.2) becomes

〈Bq1n1 ,Bq2n2〉 =I−1
qn

1

V

∫ H

z=0

∫ 2π

θ=0

∫ R

r=0
rdrdθdz (

k2
nγ

2
qJ

2
1 (γqr) cos2(knz)− λ2

qnγ
2
qJ

2
1 (γqr) sin2(knz) + γ4

qJ
2
0 (γqr) sin2(knz)

) .

(A.5)

After some algebra using the following identities :∫ R

0
J2

1 (γqr)rdr =
R2

2
J2

0 (γqR),∫ R

0
J2

0 (γqr)rdr =
R2

2
J2

0 (γqR),∫ H

0
cos2

(nπ
H
z
)
dz =

H

2
,∫ H

0
sin2

(nπ
H
z
)
dz =

H

2
,

(A.6)



A.2. Completeness 97

one gets

〈Bq1n1 ,Bq2n2〉 =
γ2
qJ

2
0 (γqR)

2Iqn

(
k2
n − λ2

qn + γ2
q

)
= 0,

(A.7)

since λ2
qn = k2

n + γ2
q .

By now the orthogonality of the basis Bqn has been demonstrated, and the expression of
the normalization constant Iqn can be obtained by considering the case where n1 = n2 = n,
q1 = q2 = q and λq1n1 = λq2n2 :

〈Bq1n1 ,Bq2n2〉 =
γ2
qJ

2
0 (γqR)

2Iqn

(
k2
n + λ2

qn + γ2
q

)
= 1,

=⇒Iqn = λ2
qnγ

2
qJ

2
0 (γqR).

(A.8)

A.2 Completeness

The basisBqn being proved orthonormal, the expansion coefficient Cqn can be obtained
by

Cqn =
1

V

∫
V
u ·Bqnrdrdθdz, (A.9)

with V the volume of the domain V = πR2H. Remind that the dynamics of an axisym-
metric system can be characterized by the scalar fields (ψ, uθ), with ψ the stream function
within the poloidal plane and uθ the azimuthal component of the velocity field. In this
section, we are going to prove that this basis is indeed complete for an axisymmetric tur-
bulent field (ψ(r, z), uθ(r, z)) with Dirichlet boundary conditions :

ψ(0, z) = ψ(R, z) = 0, uθ(0, z) = uθ(R, z) = 0,

ψ(r, 0) = ψ(r,H) = 0, uθ(r, 0) = uθ(r,H) = 0.
(A.10)

For simplicity of interpretation, we consider here the scalar field ψ/r instead of ψ
directly. We first assume that the two variables r and z of ψ/r can be treated separately :

ψ(r, z) = rR1(r)Z1(z). (A.11)

Knowing that the radial and axial components of u can be expressed as

ur = −1

r

∂ψ

∂z
,

uz =
1

r

∂ψ

∂r
,

(A.12)

we obtain the expressions of ur and uz as a function of R1 and Z1 :
ur(r, z) = −R1(r)Z ′1(z),

uz(r, z) =

[
1

r
R1(r) +R′1(r)

]
Z1(z).

(A.13)

Since ur has to be zero at r = 0, we have R1(0) = 0. Moreover, with the boundary
condition ψ(R, z) = 0, R1(r) is also imposed to be zero at r = R. This implies that
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the function R1(r) can be expanded by using 1st-order Bessel functions of the first kind
J1(γpr) with J1(γpR) = 0. These functions form an orthogonal and complete basis for any
function defined on [0, R] and are equal to 0 at both ends :

R1(r) =

+∞∑
p

αpJ1(γpr),

αp =
2

R2J2
0 (γpR)

∫ R

0
R1(r)J1(γpr)rdr.

(A.14)

Using such basis functions, ψ, ur and uz can be rewritten as

ψ(r, z) = r
+∞∑
p

αpJ1(γpr)Z1(z), (A.15)

ur(r, z) = −
+∞∑
p

αpJ1(γpr)Z
′
1(z), (A.16)

uz(r, z) =

+∞∑
p

[
1

r
αpJ1(γpr) + αpJ

′
1(γpr)

]
Z1(z) (A.17)

=

+∞∑
p

αpγpJ0(γpr)Z1(z). (A.18)

Similarly, uθ can be separated into two parts concerning respectively r and z, and a
decomposition of the r part into a series of J1(γpr) is adequate :

uθ = R2(r)Z2(z) =

+∞∑
p

βpJ1(γpr)Z2(z),

βp =
2

R2J2
0 (γpR)

∫ R

0
R2(r)J1(γpr)rdr.

(A.19)

We can then decompose the velocity field u by calculating the coefficients Cqn :

Cqn =
1

V I
1/2
qn

∫
V
u ·Bqnrdrdθdz

=
1

V I
1/2
qn

∫
V



−
+∞∑
p

αpJ1(γpr)Z
′
1(z)

+∞∑
p

βpJ1(γpr)Z2(z)

+∞∑
p

αpγpJ0(γpr)Z1(z)


·

−knγqJ1(γqr) cos(knz)

λqnγqJ1(γqr) sin(knz)

γ2
qJ0(γqr) sin(knz)

 rdrdθdz

=
1

V I
1/2
qn

∫
V

(
+∞∑
p

αpJ1(γpr)Z
′
1(z)knγqJ1(γqr) cos(knz)

+

+∞∑
p

βpJ1(γpr)Z2(z)λqnγqJ1(γqr) sin(knz)

+

+∞∑
p

αpγpJ0(γpr)Z1(z)γ2
qJ0(γqr) sin(knz)

)
rdrdθdz.

(A.20)



A.2. Completeness 99

Due to the orthogonality of Bessel functions of the first kind, the integrals∫ R

0
J1(γpr)J1(γqr)rdr and

∫ R

0
J0(γpr)J0(γqr)rdr are equal to 0 when p 6= q. Thus the

expression of Cqn can be simplified as

Cqn =
1

V I
1/2
qn

∫
V

(
αqJ1(γqr)Z

′
1(z)knγqJ1(γqr) cos(knz)

+ βqJ1(γqr)Z2(z)λqnγqJ1(γqr) sin(knz)

+ αqγqJ0(γqr)Z1(z)γ2
qJ0(γqr) sin(knz)

)
rdrdθdz

=
R2J2

0 (γqR)γq 2π

2V I
1/2
qn

∫ H

0

[
αqknZ

′
1(z) cos(knz) + βqλqnZ2(z) sin(knz) + αqγ

2
qZ1(z) sin(knz)

]
dz.

(A.21)

Using integration by parts, one obtains∫ H

0
Z ′1(z) cos(knz)dz = [Z1(z) cos(knz)]

∣∣∣z=H
z=0

+

∫ H

0
knZ1(z) sin(knz)dz. (A.22)

Recall that Z1 vanishes at the two ends of the cylinder : Z1(0) = Z1(H) = 0. This leads
to ∫ H

0
Z ′1(z) cos(knz)dz =

∫ H

0
knZ1(z) sin(knz)dz. (A.23)

Then the expression of Cqn can be recombined yielding

Cqn =
J2

0 (γqR)γq

HI
1/2
qn

∫ H

0

[
αqk

2
nZ1(z) sin(knz) + βqλqnZ2(z) sin(knz) + αqγ

2
qZ1(z) sin(knz)

]
dz

=
J2

0 (γqR)γq

HI
1/2
qn

∫ H

0

[
βqλqnZ2(z) sin(knz) + αqλ

2
qnZ1(z) sin(knz)

]
dz.

(A.24)

In order to verify whether the basis is complete, the usual method is to recompose the
expanded fields and to compare them with their initial expressions to see if there is a loss
of information. We verify first the scalar field ψ. Using the basis Bqn, one has

ur(r, z) = −
±λ∑
q,n>0

CqnI
− 1

2
qn knγqJ1(γqr) cos(knz), (A.25)

ψ(r, z) =

∫
−rur(r, z)dz

=

∫
r

±λ∑
n>0,q

CqnI
− 1

2
qn knγqJ1(γqr) cos(knz)dz

= r

±λ∑
n>0,q

CqnI
− 1

2
qn γqJ1(γqr) sin(knz).

(A.26)
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We then substitute (A.24) into (A.26) to get

ψ(r, z) = r

±λ∑
n>0,q

CqnI
− 1

2
qn γqJ1(γqr) sin(knz)dz

= r
±λ∑
n>0,q

J2
0 (γqR)γ2

q

HIqn

∫ H

0

[
βqλqnZ2(z′) sin(knz

′) + αqλ
2
qnZ1(z′) sin(knz

′)
]
dz′J1(γqr) sin(knz)

= r
+λ∑
n>0,q

J2
0 (γqR)γ2

q

HIqn

∫ H

0

[
βqλqnZ2(z′) sin(knz

′) + αqλ
2
qnZ1(z′) sin(knz

′)
]
dz′J1(γqr) sin(knz)

+ r

−λ∑
n>0,q

J2
0 (γqR)γ2

q

HIqn

∫ H

0

[
βqλqnZ2(z′) sin(knz

′) + αqλ
2
qnZ1(z′) sin(knz

′)
]
dz′J1(γqr) sin(knz)

= 2r
∑
n>0,q

J2
0 (γqR)γ2

q

HIqn

[∫ H

0
αqλ

2
qnZ1(z′) sin(knz

′)dz′
]
J1(γqr) sin(knz)

= r
∑
q

αqJ1(γqr)

[∑
n>0

2

H

∫ H

0
Z1(z′) sin(knz

′)dz′ sin(knz)

]
.

(A.27)

By comparing with (A.15), we now have to prove∑
n>0

2

H

∫ H

0
Z1(z′) sin(knz

′)dz′ sin(knz) = Z1(z). (A.28)

In fact, since Z1 equals 0 at z = 0 and H, we can extend it from the interval [0, H] to
[−H,H] to form an odd function. Then the extended Z1 can be decomposed into a sum
of Fourier series over [−H,H] with a period of 2H :

Z1(z) =
+∞∑
n=1

(
an cos(

2nπz

2H
) + bn sin(

2nπz

2H
)

)
+
a0

2
, (A.29)

an =
2

2H

∫ H

−H
Z1(z) cos(

2nπz

2H
)dz, n = 0, 1, 2 . . . (A.30)

bn =
2

2H

∫ H

−H
Z1(z) sin(

2nπz

2H
)dz, n = 1, 2 . . . (A.31)

As Z1 is now an odd function, we have an = 0, and Z1 depends only on sine functions :

Z1(z) =

+∞∑
n=1

bn sin(
2nπz

2H
)

=
+∞∑
n=1

bn sin(
nπz

H
),

(A.32)

bn =
2

2H

∫ H

−H
Z1(z) sin(

2nπz

2H
)dz

=
1

H

∫ H

−H
Z1(z) sin(

nπz

H
)dz

=
2

H

∫ H

0
Z1(z) sin(

nπz

H
)dz, n = 1, 2 . . .

(A.33)
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which leads to

Z1(z) =
+∞∑
n=1

2

H

∫ H

0
Z1(z′) sin(

nπz′

H
)dz′ sin(

nπz

H
). (A.34)

Then (A.28) is proved, meaning that the decomposition and recomposition via the basis
Bqn keeps all information of the scalar field ψ. It should be noticed that both +λ and −λ
modes are considered in the demonstration, explaining their compulsory coexistence in
forming the basis. By a similar interpretation, it is not difficult to demonstrate that the
scalar field uθ suffers no information loss through the expansion using Bqn. One remark is
that the kn in the basis is defined as nπ/H, which is in fact 2nπ/(2H) and is indeed the
wave-number in the z direction for the extended odd domain. This also means that by
using a spectral method using this basis, we are actually simulating the evolution of the
whole odd ψ field defined over [−H,H]. After the advancement of each time step, what we
obtain is still an odd field with boundary conditions ψ(r, 0) = ψ(r,H) = ψ(r,−H) = 0,
which is a consequence imposed by the properties of sine functions, and which is desirable
in our case.

In conclusion, the basis Bqn is complete for incompressible axisymmetric velocity fields
with boundary conditions :

uθ(0, z) = 0, uθ(R, z) = 0,

uθ(r, 0) = 0, uθ(r,H) = 0,

ψ(0, z) = 0, ψ(R, z) = 0,

ψ(r, 0) = 0, ψ(r,H) = 0.





Annexe B

Modal Expression of Statistical
Quantities in the FSM

In this appendix we give the expressions of the principal integral quantities, as a
function of the expansion coefficients Cqn used in our fully spectral code. These quantities
are the kinetic energy E, the first two non-zero moments of the angular momentum
I1 and I2, the circulation H0 and the helicity H1. By substituting the expansion of u
Eq.(3.16b) and ω Eq.(3.16c) in the definition of the quantities of interest, one can derive
their analytical expressions as a function of Cqn :

The total kinetic energy

E =
1

V

∫
V

1

2
u2dV

=
1

2V

∫ H

z=0

∫ 2π

θ=0

∫ R

r=0

±λ∑
q1n1

±λ∑
q2n2

Cq1n1Cq2n2I
− 1

2
q1n1I

− 1
2

q2n2Bq1n1 ·Bq2n2rdrdθdz

=
1

2V

∫ H

z=0

∫ 2π

θ=0

∫ R

r=0

∑
qn

I−1
qn

(
C+λ
qn B+λ

qn + C−λqn B−λqn

)
·
(
C+λ
qn B+λ

qn + C−λqn B−λqn

)
rdrdθdz

=
1

2V

∫ H

z=0

∫ 2π

θ=0

∫ R

r=0

+λ∑
qn

C2
qnI
−1
qn Bqn ·Bqnrdrdθdz +

1

2V

∫ H

z=0

∫ 2π

θ=0

∫ R

r=0

−λ∑
qn

C2
qnI
−1
qn Bqn ·Bqnrdrdθdz

+
1

V

∫ H

z=0

∫ 2π

θ=0

∫ R

r=0

∑
qn

C+λ
qn C

−λ
qn I

−1
qn B

+λ
qn ·B−λqn rdrdθdz

=
1

2

±λ∑
qn

C2
qn

1

V

∫ H

z=0

∫ 2π

θ=0

∫ R

r=0
I−1
qn Bqn ·Bqnrdrdθdz

+
∑
qn

C+λ
qn C

−λ
qn I

−1
qn

1

V

∫ H

z=0

∫ 2π

θ=0

∫ R

r=0
B+λ
qn ·B−λqn rdrdθdz

=
1

2

±λ∑
qn

C2
qn,

(B.1)
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The angular momentum

I1 =
1

V

∫
V
σdV =

1

V

∫ H

z=0

∫ 2π

θ=0

∫ R

r=0
uθr

2drdθdz

=
1

V

∫ H

z=0

∫ 2π

θ=0

∫ R

r=0

±λ∑
qn

CqnI
− 1

2
qn λqnγqJ1(γqr) sin(knz)r

2drdθdz

=
2π

πR2H

±λ∑
q,odd n

CqnI
− 1

2
qn λqnγq

∫ R

r=0
r2J1(γqr)dr

∫ H

z=0
sin(knz)dz

=
2

R2H

±λ∑
q,odd n

CqnI
− 1

2
qn λqnγq

[
−R

2

γq
J0(γqR)

]
2H

nπ

=
4

π

±λ∑
q,odd n

− CqnλqnJ0(γqR)

nγq|λqnJ0(γqR)|

=
4

π

∑
q,odd n

(C−λqn − C+λ
qn )J0(γqR)

nγq|J0(γqR)|
,

(B.2)

The variance of the angular momentum

I2 =
1

V

∫
V
σ2dV =

1

V

∫ H

z=0

∫ 2π

θ=0

∫ R

r=0
u2
θr

3drdθdz

=
2π

V

∫ H

z=0

∫ R

r=0

±λ∑
q1n1

±λ∑
q2n2

Cq1n1Cq2n2I
− 1

2
q1n1I

− 1
2

q2n2λq1n1λq2n2γq1γq2J1(γq1r)J1(γq2r) sin(kn1z) sin(kn2z)r
3drdz

=
2π

V

∑
q1=q2=q,n

(
C+λ
qn − C−λqn

)(
C+λ
qn − C−λqn

)
λ2
qnI
−1
qn γ

2
q

∫ H

z=0

∫ R

r=0
J2

1 (γqr) sin2(knz)r
3drdz

+
2π

V

∑
q1 6=q2,n

(
C+λ
q1n − C

−λ
q1n

)(
C+λ
q2n − C

−λ
q2n

)
|λq1nλq2n|I

− 1
2

q1nI
− 1

2
q2nγq1γq2∫ H

z=0

∫ R

r=0
J1(γq1r)J1(γq2r) sin(knz) sin(knz)r

3drdz

=
2π

πR2H

∑
q1=q2=q,n

(
C+λ
qn − C−λqn

)2
λ2
qnγ

2
q

Iqn

R4

6
J2

0 (γqR)
H

2

+
2π

πR2H

∑
q1 6=q2,n

(
C+λ
q1n − C

−λ
q1n

) (
C+λ
q2n − C

−λ
q2n

)
|λq1nλq2n|γq1γq2

I
1
2
q1nI

1
2
q2n

4R2γq1γq2
(γ2
q1 − γ2

q2)2
J0(γq1a)J0(γq2a)

H

2

=
∑

q1=q2=q,n

R2
(
C+λ
qn − C−λqn

)2
6

+
∑

q1 6=q2,n

4γq1γq2
(
C+λ
q1n − C

−λ
q1n

) (
C+λ
q2n − C

−λ
q2n

)
J0(γq1a)J0(γq2a)

(γ2
q1 − γ2

q2)2|J0(γq1a)J0(γq2a)|
,

(B.3)
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The circulation

H0 =
1

V

∫
V
ξdV =

1

V

∫ H

z=0

∫ 2π

θ=0

∫ R

r=0
ωθdrdθdz

=
2π

V

±λ∑
qn

CqnI
− 1

2
qn λ

2
qnγq

∫ H

z=0

∫ R

r=0
J1(γqr) sin(knz)drdz

=
2π

V

±λ∑
q,odd n

CqnI
− 1

2
qn λ

2
qnγq

∫ R

r=0
J1(γqr)dr

∫ H

z=0
sin(knz)dz

=
2π

πR2H

±λ∑
q,odd n

CqnI
− 1

2
qn λ

2
qnγq

1− J0(γqR)

γq

2H

nπ

=
4

πR2

±λ∑
q,odd n

Cqn|λqn|(1− J0(γqR))

nγq|J0(γqR)|
,

(B.4)

The helicity

H1 =
1

V

∫
V
ξσdV =

1

V

∫ H

z=0

∫ 2π

θ=0

∫ R

r=0
ωθuθrdrdθdz

=
2π

V

±λ∑
q1n1

±λ∑
q2n2

Cq1n1Cq2n2I
− 1

2
q1n1I

− 1
2

q2n2λ
2
q1n1

λq2n2γq1γq2

∫ R

r=0
J1(γq1r)J1(γq2r)rdr

∫ H

z=0
sin(kn1z) sin(kn2z)dz

=
2π

V

∑
qn

(C+λ
qn + C−λqn )(C+λ

qn − C−λqn )|λ3
qn|I−1

qn γ
2
q

∫ R

r=0
J2

1 (γqr)rdr
∫ H

z=0
sin(knz)dz

=
2π

V

∑
qn

(C+λ
qn + C−λqn )(C+λ

qn − C−λqn )|λ3
qn|I−1

qn γ
2
q

R2

2
J2

0 (γqR)
H

2

=
∑
qn

(C+λ
qn + C−λqn )(C+λ

qn − C−λqn )|λqn|
2

=
1

2

∑
qn

([C+λ
qn ]2 − [C−λqn ]2)|λqn|

=
1

2

∑
qn

([C+λ
qn ]2λ+

qn + [C−λqn ]2λ−qn)

=
1

2

±λ∑
qn

C2
qnλqn.

(B.5)

These modal expressions give us the possibility to analyze the contributions of different
modes on the principal statistical quantities. For instance, one can observe that only odd
n modes contribute to the angular momentum I0 and to the circulation H0, and that
the helicity H1 can be separated into two parts consisting respectively of positive and
negative λ modes. Such a decomposition was used in [9] to investigate the individual
dynamics of different types of helical modes (see also Alexakis [74]). Generic expressions

can also be derived for the enstrophy Z =
1

V

∫
V

(
ω2/2

)
dV , the poloidal kinetic energy

EP =
1

V

∫
V

[
(u2
r + u2

z)/2
]
dV , the toroidal kinetic energy ET =

1

V

∫
V

(
u2
θ/2
)
dV , etc.





Annexe C

Calculation of ψ in the
Axisymmetric PSM

As shown by Eq.(2.41), there exist relationships between ψ, ur and uz when the flow
is axisymmetric. By knowing ur and uz, one can hence derive the ψ field. Due to the
no-penetration condition, ur equals zero on the lateral boundary and can therefore be
decomposed by Bessel functions of the first kind. We then choose to obtain ψ from ur,
and for simplicity, we pick J1(γqr) to decompose the r direction and cos(knz) in the z
direction where γq is the qth root of J1(Rx) = 0 and kn = (nπ)/H with n = 0, 1, 2, .... ur
is thus decomposed as

ur(r, z) =
∑
qn

ûr,qnJ1(γqr) cos(knz), (C.1)

and because ur = −(1/r)∂zψ, one has

ψ(r, z) = −
∫
rur(r, z)dz = −r

∑
q,n=0

ûr,qnJ1(γqr)z−r
∑
q,n>0

ûr,qnJ1(γqr)
sin(knz)

kn
. (C.2)

Special emphasis should be given to the definition of the domain. Whereas (r̄, z̄) ∈
[−1, 1] × [−1, 1] for Chebyshev polynomials, the decomposition above requires (r, z) ∈
[0, R]× [0, H]. ūr(r̄, z̄) should first be rescaled to ur(r, z) in physical space, and ûr coeffi-
cients are calculated by

ûr,qn =


2

HR2J2
0 (γqR)

∫ H

0
dz
∫ R

0
ur(r, z)J1(γqr)rdr for n = 0,

4

HR2J2
0 (γqR)

∫ H

0
cos(knz)dz

∫ R

0
ur(r, z)J1(γqr)rdr for n = 1, 2, ....

(C.3)

The Gauss quadrature is again used to numerically calculate the integrals. As the
data obtained by this PSM fall on the Gauss-Lobatto collocation points designed for
Chebyshev polynomials on both r and z directions, we have used the Gauss-Chebyshev
quadrature method based on Gauss-Lobatto collocation points.

This decomposition method will be applied to calculate not only the ψ field for com-
parison with that obtained by the FSM as a verification (where radial slip is allowed on
vertical ends), but also ψ fields with realistic wall boundaries to extract functional rela-
tionships between ψ, σ and ξ. Further, this quadrature method is also used to calculate
the kinetic energy E, the angular momentum I1, its variance I2, the circulation H0 and
the helicity H1 through their original definitions by direct integration in physical space. In
fact, because there may be energy forcing in the form of disc rotation, uθ can be non-zero
on top and bottom of the cylinder. Thus the basis Bqn engaged in the FSM is no longer
complete for such cases, and the statistical quantities can no longer be calculated through
their expression of modal sums.





Annexe D

Calculation of Integrals in the
Non-axisymmetric PSM

D.1 Volume-averaging in the non-axisymmetric PSM

The volum–average of a variable g(r, θ, z) within a cylindrical domain writes

〈g〉 =
1

V

∫ H
2

z=−H
2

∫ 2π

θ=0

∫ R

r=0
g(r, θ, z)rdrdθdz, (D.1)

with R the radius, H the height and V the volume of the cylinder. Usually, the azimuthal
extent ranges from 0 to 2π and the volume equals πR2H. But when the axisymmetry
constraint is gradually relaxed, yielding systems with periodicity greater than 2π, the
calculation differs. Indeed, in such cases the azimuthal periodicity is 2π/α, with α the
control parameter of the axisymmetry level, accounting for a volume of

V =

∫ H
2

z=−H
2

∫ 2π
α

θ=0

∫ R

r=0
rdrdθdz =

πR2H

α
. (D.2)

As explained in Section 3.2.2, however, the azimuthal extent of θ ∈ [0, 2π/α] should be
mapped to θ̄ ∈ [0, 2π], and the integrals are thus calculated within the mapped domain.
We recall the introduction of the parameter α :

rθ = Ltrθ = Ltr̄θ̄ =
Lt

R
Rr̄θ̄ =

1

α
rθ̄. (D.3)

Hence, the infinitesimal increment in the azimuthal direction rdθ changes into (r/α)dθ̄,
and consequently, the volume average of g is calculated as

〈g〉 =
1

V

∫ H
2

z=−H
2

∫ 2π
α

θ=0

∫ R

r=0
g(r, θ, z)rdrdθdz

=
α

πR2H

∫ H
2

z=−H
2

∫ 2π

θ̄=0

∫ R

r=0
g(r, θ̄, z)rdr

1

α
dθ̄dz

=
1

πR2H

∫ H
2

z=−H
2

∫ 2π

θ̄=0

∫ R

r=0
g(r, θ̄, z)rdrdθ̄dz,

(D.4)

which has almost the same form as that in integer dimensions. Otherwise, using the nor-
malization principle r = Rr̄ and z = (H/2)z̄, the volume average can also be calculated
by

〈g〉 =
1

V

∫
D
g(r̄, θ̄, z̄)dV

=
1

2π

∫ 1

z̄=−1

∫ 2π

θ̄=0

∫ 1

r̄=0
g(r̄, θ̄, z̄)r̄dr̄dθ̄dz̄,

(D.5)

with V the dimensionless volume and D the mapped domain.
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D.2 Dissipation rates in non-axisymmetric PSM simulations

Since the basis Bqn is not rigorously complete for flows forced by rotating discs, the
energy dissipation rate ε cannot be calculated through its modal summation form either,
and should be analysed in another way. We consider the governing equation of the kinetic
energy which writes

1

V

∫
D
ū ·
(
∂ū

∂t̄
+ (ū · ∇) ū

)
dV =

1

V

∫
D
ū ·
(
−1

ρ
∇p̄+ ν∇2ū

)
dV , (D.6)

where V is the normalized volume of the computational domain. In order to calculate the
energy dissipation, one should compute the integral of ū · ∇2ū over the whole domain
including wall boundaries. ū · ∇2ū can be rewritten as

ū · ∇2ū = ū · [∇(∇ · ū)−∇×∇× ū]

= −ū · (∇×∇× ū)

= ∇ · (ū× (∇× ū))− (∇× ū)2 .

(D.7)

One can remark that − (∇× ū)2 is always negative and thus contributes to the dissipation.
The volume integrals of ∇ · (ū× (∇× ū)) can be written as

1

V

∫
D
∇ · (ū× (∇× ū)) dV =

1

V

∮
∂D

(ū× (∇× ū)) · ndS, (D.8)

and

ū× (∇× ū) =


ū2
θ

r̄
+ ūθ

∂ūθ
∂r̄
− ūθ

r̄
α
∂ūr
∂θ̄
− ūz

∂ūr
∂z̄

+ ūz
∂ūz
∂r̄

ūz
r̄
α
∂ūz
∂θ̄
− ūz

∂ūθ
∂z̄
− ūrūθ

r̄
− ūr

∂ūθ
∂r̄

+
ūr
r̄
α
∂ūr
∂θ̄

ūr
∂ūr
∂z̄
− ūr

∂ūz
∂r̄
− ūθ

r̄
α
∂ūz
∂θ̄

+ ūθ
∂ūθ
∂z̄

 . (D.9)

With the no-penetration and no-slip condition, (ū× (∇× ū))·n is zero on wall boundaries
except ūθ∂z̄ūθ on the top and the bottom of the cylinder due to the disc rotation. Thus,
one has

1

V

∫
D
∇ · (ū× (∇× ū)) dV =

1

V

∮
top

ūθ
∂ūθ
∂z̄

dS − 1

V

∮
bottom

ūθ
∂ūθ
∂z̄

dS, (D.10)

which corresponds to the energy injection. Otherwise, if disc rotation is switched off, this
term vanishes and has no contribution.

In conclusion, the expression of the energy dissipation takes the form

ε̄E =
1

V

∫
D
ν(∇× ū)2dV . (D.11)

By a similar way, one can deduce that the enstrophy dissipation rate takes the form

ε̄Z =
1

V

∫
D
ν(∇× ω̄)2dV . (D.12)

The calculation of εE and εZ introduced in this appendix corresponds more generally
to cylindrical flows, and the axisymmetric case is only a special situation. Thus these
methods will be used to calculate εE and εZ in Section 4.2 where axisymmetric flows are
simulated by the PSM with mechanical forcing, and the obtained εE and εZ will be used
to test the quality of the mesh resolution. Dissipation rates of different energy components
of non-axisymmetric flows in Chapter 6 are also calculated in this way.



Annexe E

Details for Axisymmetric Modelling

E.1 Governing equations for poloidal and toroidal energy
components

To obtain the governing equations for the poloidal and toroidal energy components :

EP ≡
1

V

∫
V

1

2
(u2
r + u2

z)dV,

ET ≡
1

V

∫
V

1

2
(u2
θ)dV,

(E.1)

one starts with the forced axisymmetric Navier-Stokes equation for the three velocity
components under cylindrical coordinates

∂ur
∂t

+ ur
∂ur
∂r
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∂ur
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−
u2
θ

r
= −1

ρ
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(
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1

r

∂ur
∂r

+
∂2ur
∂z2
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r2

)
+ fr,

(E.2a)

∂uθ
∂t

+ ur
∂uθ
∂r

+ uz
∂uθ
∂z

+
uruθ
r

= ν

(
∂2uθ
∂r2

+
1

r

∂uθ
∂r

+
∂2uθ
∂z2

− uθ
r2

)
+ fθ, (E.2b)

∂uz
∂t

+ ur
∂uz
∂r

+ uz
∂uz
∂z

= −1

ρ

∂p

∂z
+ ν

(
∂2uz
∂r2

+
1

r

∂uz
∂r

+
∂2uz
∂z2

)
+ fz, (E.2c)

and focuses on the nonlinear terms and pressure terms. To deduce the energy governing
equations, one multiplies Eq.(E.2a) by ur, Eq.(E.2b) by uθ and Eq.(E.2c) by uz, and sums
up the r and z components to express the poloidal energy component. By applying the
volume-integration to the obtained equations, one can write the forced governing equations
for EP and ET :

∂EP
∂t

+
1

V

∫
V

(∇ · JP −
uru

2
θ

r
)dV = −εP + FP ,

∂ET
∂t

+
1

V

∫
V

(∇ · JT +
uru

2
θ

r
)dV = −εT + FT ,

(E.3)

where εP and εT are viscous dissipation rates in corresponding directions, and FP and
FT are energy forcing powers. We especially focus on the second terms (integral forms of
the transfer terms) and the disappearance of the pressure terms in Eq.( E.3).
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Transfer terms
After the procedure described above, the poloidal transfer term appears to be
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(E.4)

with JP = (ur(u
2
r + u2

z)/2,JA, uz(u2
r + u2

z)/2) where JA is an arbitrary variable. By
analogy, the toroidal transfer term rewrites as

uruθ
∂uθ
∂r

+ uzuθ
∂uθ
∂z

+
uru

2
θ

r
= ∇ · JT +

uru
2
θ

r
, (E.5)

with JT = (uru
2
θ/2,JB, uzu2

θ/2) where JB is another arbitrary variable. With the no-
penetration boundary condition, one can easily show that

1

V
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JP · ndS = 0,

1

V

∫
V
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V
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JT · ndS = 0.

(E.6)

This means that the remaining 〈uru2
θ/r〉 is finally responsible for the energy redistribution

between toroidal and poloidal directions :

T =
1

V

∫
V

uru
2
θ

r
dV = 〈

u2
θur
r
〉. (E.7)

A positive T designates an energy transfer from the toroidal direction to the poloidal
direction and vice versa.

Pressure terms
The toroidal pressure term does not exist in axisymmetric flows. Similarly, through the

method of integration by parts, one can deduce that the poloidal pressure term disappears
after volume-averaging. We drop the negative sign and the density ρ for simplicity :
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(3)

− p∇ · u︸ ︷︷ ︸
vanishes

.
(E.8)



E.2. Dynamic equation of the toroidal-to-poloidal transfer 113

– With the boundary conditions uz(z = 0) = 0 and uz(z = H) = 0, the volume-
integration of Term (2) is shown to vanish :
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(E.9)

– With the boundary condition ur(r = R) = 0, the volume-integration of the combi-
nation of terms (1) and (3) also equals 0 :

1

V

∫ H

z=0

∫ 2π

θ=0

∫ R

r=0

(
∂(urp)

∂r
+
urp

r

)
rdrdθdz =

1

V

∫ H

z=0

∫ 2π

θ=0

∫ R

r=0

∂(rurp)

∂r
drdθdz

=
1

V

∫ H

z=0

∫ 2π

θ=0
(rurp)

∣∣∣∣r=R
r=0

dθdz

= 0.

(E.10)

This shows that the pressure has no influence on the toroidal-to-poloidal energy redistri-
bution. But if one treats separately the radial and axial energy components, one remarks
that the pressure is indeed an active factor to reallocate energy between the r and z di-
rections, since the volume-averaged results 〈urp/r〉 and 〈uzp/z〉 are not 0. In Fig.E.1, we
show the ratio of radial to axial energy as a function of γ. It is observed that the ratio
does not change much over the range 0 < γ < 4.
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Poloidal isotropy in axisymmetric systems

Figure E.1: Ratio of Er/Ez. The energy isotropization between the radial and axial
directions can be observed : as γ increased, the ratio is stabilized around 1 though it has
a slight rising tendency for large γ.

E.2 Dynamic equation of the toroidal-to-poloidal transfer

In this appendix we derive the model for the toroidal-to-poloidal transfer term
〈uru2

θ/r〉. The idea is to derive the transport equation of uru2
θ from the Navier-Stokes

equations. By manipulating the radial and azimuthal components of the Navier-Stokes
equations, an equation for uru2

θ can be derived. Since our object is a pure transfer term,
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we consider the Euler equations that rule out the dissipation and forcing effects. We start
with

∂ur
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+ ur
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∂ur
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−
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= −1
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, (E.11a)
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+
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= 0. (E.11b)

We multiply Eq.(E.11a) by u2
θ and Eq.(E.11b) by 2uruθ, and obtain
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2uruθ
∂uθ
∂t

+ 2u2
ruθ

∂uθ
∂r

+ 2uruθuz
∂uθ
∂z

+
2u2

ru
2
θ

r
= 0. (E.12b)

The summation of these two equations gives
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Further simplifications are :
– for Term (1) :
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– for Term (2) :
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Then Eq.(E.13) becomes
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Using the incompressibility condition
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Eq.(E.16) can be simplified as
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We then perform the volume-average of Eq.(E.18). With the boundary condition uθ = 0

on all boundaries and given the fact that uθ = 0 on the axis, we find
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(E.19a)
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As a result, we have
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