Meta-Learning as a Markov Decision Process - TEL - Thèses en ligne
Theses Year : 2019

Meta-Learning as a Markov Decision Process

Meta-Learning en tant que processus de décision Markovien

Abstract

Machine Learning (ML) has enjoyed huge successes in recent years and an ever- growing number of real-world applications rely on it. However, designing promising algorithms for a specific problem still requires huge human effort. Automated Machine Learning (AutoML) aims at taking the human out of the loop and develop machines that generate / recommend good algorithms for a given ML tasks. AutoML is usually treated as an algorithm / hyper-parameter selection problems, existing approaches include Bayesian optimization, evolutionary algorithms as well as reinforcement learning. Among them, auto-sklearn which incorporates meta-learning techniques in their search initialization, ranks consistently well in AutoML challenges. This observation oriented my research to the Meta-Learning domain. This direction led me to develop a novel framework based on Markov Decision Processes (MDP) and reinforcement learning (RL).After a general introduction (Chapter 1), my thesis work starts with an in-depth analysis of the results of the AutoML challenge (Chapter 2). This analysis oriented my work towards meta-learning, leading me first to propose a formulation of AutoML as a recommendation problem, and ultimately to formulate a novel conceptualisation of the problem as a MDP (Chapter 3). In the MDP setting, the problem is brought back to filling up, as quickly and efficiently as possible, a meta-learning matrix S, in which lines correspond to ML tasks and columns to ML algorithms. A matrix element S(i, j) is the performance of algorithm j applied to task i. Searching efficiently for the best values in S allows us to identify quickly algorithms best suited to given tasks. In Chapter 4 the classical hyper-parameter optimization framework (HyperOpt) is first reviewed. In Chapter 5 a first meta-learning approach is introduced along the lines of our paper ActivMetaL that combines active learning and collaborative filtering techniques to predict the missing values in S. Our latest research applies RL to the MDP problem we defined to learn an efficient policy to explore S. We call this approach REVEAL and propose an analogy with a series of toy games to help visualize agents’ strategies to reveal information progressively, e.g. masked areas of images to be classified, or ship positions in a battleship game. This line of research is developed in Chapter 6. The main results of my PhD project are: 1) HP / model selection: I have explored the Freeze-Thaw method and optimized the algorithm to enter the first AutoML challenge, achieving 3rd place in the final round (Chapter 3). 2) ActivMetaL: I have designed a new algorithm for active meta-learning (ActivMetaL) and compared it with other baseline methods on real-world and artificial data. This study demonstrated that ActiveMetaL is generally able to discover the best algorithm faster than baseline methods. 3) REVEAL: I developed a new conceptualization of meta-learning as a Markov Decision Process and put it into the more general framework of REVEAL games. With a master student intern, I developed agents that learns (with reinforcement learning) to predict the next best algorithm to be tried. To develop this agent, we used surrogate toy tasks of REVEAL games. We then applied our methods to AutoML problems. The work presented in my thesis is empirical in nature. Several real world meta-datasets were used in this research. Artificial and semi-artificial meta-datasets are also used in my work. The results indicate that RL is a viable approach to this problem, although much work remains to be done to optimize algorithms to make them scale to larger meta-learning problems.
L'apprentissage automatique (ML) a connu d'énormes succès ces dernières années et repose sur un nombre toujours croissant d'applications réelles. Cependant, la conception d'algorithmes prometteurs pour un problème spécifique nécessite toujours un effort humain considérable. L'apprentissage automatique (AutoML) a pour objectif de sortir l'homme de la boucle. AutoML est généralement traité comme un problème de sélection d’algorithme / hyper-paramètre. Les approches existantes incluent l’optimisation Bayésienne, les algorithmes évolutionnistes et l’apprentissage par renforcement. Parmi eux, auto-sklearn, qui intègre des techniques de meta-learning à l'initialisation de la recherche, occupe toujours une place de choix dans les challenges AutoML. Cette observation a orienté mes recherches vers le domaine du meta-learning. Cette orientation m'a amené à développer un nouveau cadre basé sur les processus de décision Markovien (MDP) et l'apprentissage par renforcement (RL). Après une introduction générale (chapitre 1), mon travail de thèse commence par une analyse approfondie des résultats du Challenge AutoML (chapitre 2). Cette analyse a orienté mon travail vers le meta-learning, menant tout d’abord à proposer une formulation d’AutoML en tant que problème de recommandation, puis à formuler une nouvelle conceptualisation du problème en tant que MDP (chapitre 3). Dans le cadre du MDP, le problème consiste à remplir de manière aussi rapide et efficace que possible une matrice S de meta-learning, dans laquelle les lignes correspondent aux tâches et les colonnes aux algorithmes. Un élément de matrice S (i, j) est la performance de l'algorithme j appliqué à la tâche i. La recherche efficace des meilleures valeurs dans S nous permet d’identifier rapidement les algorithmes les mieux adaptés à des tâches données. Dans le chapitre 4, nous examinons d’abord le cadre classique d’optimisation des hyper-paramètres. Au chapitre 5, une première approche de meta-learning est introduite, qui combine des techniques d'apprentissage actif et de filtrage collaboratif pour prédire les valeurs manquantes dans S. Nos dernières recherches appliquent RL au problème du MDP défini pour apprendre une politique efficace d’exploration de S. Nous appelons cette approche REVEAL et proposons une analogie avec une série de jeux pour permettre de visualiser les stratégies des agents pour révéler progressivement les informations. Cette ligne de recherche est développée au chapitre 6. Les principaux résultats de mon projet de thèse sont : 1) Sélection HP / modèle : j'ai exploré la méthode Freeze-Thaw et optimisé l'algorithme pour entrer dans le premier challenge AutoML, obtenant la 3ème place du tour final (chapitre 3). 2) ActivMetaL : j'ai conçu un nouvel algorithme pour le meta-learning actif (ActivMetaL) et l'ai comparé à d'autres méthodes de base sur des données réelles et artificielles. Cette étude a démontré qu'ActiveMetaL est généralement capable de découvrir le meilleur algorithme plus rapidement que les méthodes de base. 3) REVEAL : j'ai développé une nouvelle conceptualisation du meta-learning en tant que processus de décision Markovien et je l'ai intégrée dans le cadre plus général des jeux REVEAL. Avec un stagiaire en master, j'ai développé des agents qui apprennent (avec l'apprentissage par renforcement) à prédire le meilleur algorithme à essayer. Le travail présenté dans ma thèse est de nature empirique. Plusieurs méta-données du monde réel ont été utilisées dans cette recherche. Des méta-données artificielles et semi-artificielles sont également utilisées dans mon travail. Les résultats indiquent que RL est une approche viable de ce problème, bien qu'il reste encore beaucoup à faire pour optimiser les algorithmes et les faire passer à l’échelle aux problèmes de méta-apprentissage plus vastes.
Fichier principal
Vignette du fichier
84762_SUN-HOSOYA_2019_diffusion.pdf (3.18 Mo) Télécharger le fichier
Origin Version validated by the jury (STAR)
Loading...

Dates and versions

tel-02422144 , version 1 (20-12-2019)
tel-02422144 , version 2 (21-01-2020)

Identifiers

  • HAL Id : tel-02422144 , version 2

Cite

Lisheng Sun-Hosoya. Meta-Learning as a Markov Decision Process. Machine Learning [cs.LG]. Université Paris Saclay (COmUE), 2019. English. ⟨NNT : 2019SACLS588⟩. ⟨tel-02422144v2⟩
539 View
389 Download

Share

More