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Le rôle du système nerveux sensoriel dans l'orchestration de la formation 

osseuse, le remodelage et la régénération tissulaire 

Les progrès dans la compréhension de la biologie osseuse ont permis d’identifier le rôle du 
système nerveux sensoriel dans la formation osseuse, le remodelage et la régénération 
tissulaire. Cependant, le rôle précis du système nerveux sensoriel sur la l’ostéogénèse reste 
encore méconnu. La première partie de ce travail a été d’analyser le rôle des neurones du 
ganglion de la racine dorsale (DRG) sur la différenciation ostéoblastique des cellules 
souches mésenchymateuse (MSCs). Pour répondre à cette question, nous avons utilisé une 
plate-forme microfluidique, qui tente de mimer l’innervation sensorielle du tissu osseux. Dans 
la seconde partie de cette étude, nous avons cherché à mieux caractériser la sous-
population de neurones DRG impliqués dans la régulation directe de la différenciation des 
MSCs vers le lignage ostéoblastique. En conclusion, l’ensemble des résultats permettent de 
montrer que: i) les neurones sensoriels ont un effet positif et direct sur la différenciation 
ostéoblastique des cellules ostéoprogénitrices, ii) la voie de signalisation Wnt/β-caténine est 
impliquée dans cette transduction du signal; iii) cet effet est principalement régulé par des 
neurones sensorimoteur, iv) qui peuvent induire la libération locale de facteurs neuroactifs. 

Mots clés : neurones sensoriels, cellules mésenchymateuses, différenciation des 
ostéoblastes 

 

The role of sensory nervous system in the regulation of bone formation, 
remodeling, and repair 

Advances in the understanding of bone biology have identified the sensory nervous system 
as a critical regulator in the orchestration of bone formation, remodeling, and repair. 
However, the precise role of the sensory nervous system on bone tissue, particularly on 
osteoprogenitor cells, remains unknown. Firstly, we were interested in clarifying whether 
dorsal root ganglion (DRG) neurons would be able to induce the osteoblast differentiation by 
acting directly on mesenchymal stem cells (MSCs). Afterwards, we attempted to understand 
whether the canonical Wnt signaling pathway could be implicated in the DRG neurons-
induced osteoblastogenesis. In the second part of this study, we aimed at better 
characterizing the subset of DRG neurons involved in the direct regulation of osteoblast 
differentiation from MSCs. In this work we provide several novel insights: i) we show that 
sensory neurons have a positive and direct effect on osteoblast differentiation of 
osteoprogenitor cells, ii) by activating the Wnt/β-catenin signaling pathway; and iii) we 
suggest that this effect is mainly regulated by sensorimotor neurons, iv) which possibly 
mediate the local release of neuroactive factors. 

Keywords : DRG neurons, mesenchymal stem cells, osteoblast differentiation 
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BONE.1.1 

 

Bone is a specialized, living, and constantly changing connective tissue that forms, 

along with multiple tissue types, the structural elements of the skeleton (i.e. the 

bones). The mechanical functions of the skeletal system depend on the 

characteristic hardness of bone tissue 1–3. 

Old or microdamaged bone is replaced by newly formed bone in a dynamic process 

termed bone remodeling or bone metabolism. This process requires a tightly 

regulated interplay among the different types of bone cells. A proper balance 

between bone resorption and bone formation maintains bone homeostasis 1–3.  

 

1.1.1. Bone Functions 

 

The most evident functions of bones and skeletal system are the gross functions. 

These functions include mechanical functions, namely structural support for the 

body, leverage/movement, and protection of vital organs. Moreover, bone tissue 

performs several critical functions. It serves as a site for blood cells production (i.e. 

hematopoiesis); depository for certain cytokines and growth factors; and reservoir 

for lipids and minerals, especially calcium and phosphorous. For instance, calcium 

cations are crucial for muscle contractions and controlling the flow of other ions 

involved in the transmission of nerve impulses 1,2. 

 

1.1.2. Bone Structure 

 

1.1.2.1. Gross structure of bone – compact bone and spongy bone 

Bone is a mineralized tissue classified into the compact (cortical) bone and the 

spongy (cancellous or trabecular) bone. Compact bone is a very dense and hard 

tissue that forms the outer shell around the bones (Figure 1). This tissue provides 

resistance to pressure and shocks and protects the spongy bone. On the other 

hand, spongy bone has a relatively porous structure and lies beneath the compact 

bone (Figure 1). It creates the lightweight nature of bones, supports bone marrow, 

and shifts in weight distribution. Most bones contain the two types of tissue. 
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However, the distribution and relative amounts of compact and spongy bones are 

related to the type of bone and its overall functions 2,3.   

A long bone (as an example) is usually divided into the diaphysis (consisting mostly 

of compact bone) and the epiphysis (consisting mostly of spongy bone) (Figure 1). 

 

 

 
Figure 1. Schematic representation of a typical adult long bone gross structure. The 
diaphysis flares outward near the end to form the epiphysis. The outer shell is formed of 
compact bone covered with the periosteum. Beneath the compact bone is the spongy bone. 
Inside the diaphysis is the medullary cavity, which has an inner core of yellow marrow 
(adapted from http://www.istockphoto.com). 

 

 

The diaphysis is the tubular shaft that links the proximal and distal extremities of 

bone (Figure 1). The hollow region in the diaphysis is called the medullary cavity, 

which is filled with red marrow in children or yellow marrow in adults, blood vessels, 

nerves, and lymphatic vessels, and is lined by a delicate connective tissue 

membrane known as endosteum (Figure 1). The outer shell of long bones is 

covered with a dense membrane of connective tissue termed periosteum, except at 

the articular surfaces (i.e. joints). In long bones, the joints are coated by hyaline 

cartilage in order to reduce the friction between adjacent and connected bones 

(Figure 1; see section 1.1.6.2). The periosteum is composed of two distinct layers: 

an outer fibrous layer and an inner osteogenic (cellular or cambium) layer (Figure 
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2). The outer layer is formed by fibroblasts, collagen and elastin fibers, along with a 

distinctive nerve and microvascular network. The inner layer of the periosteum is 

highly cellular, containing fibroblasts, mesenchymal stem cells (MSCs), 

osteoprogenitor cells, and osteoblasts, as well as blood vessels, nerves, and 

lymphatic vessels 2,3. 

The epiphysis is the swollen part at each end of the long bones (Figure 1). It is filled 

with red marrow between the spaces (cavities) of the spongy bone and contains the 

epiphyseal line (Figure 1). In a growing long bone between the epiphysis and the 

diaphysis lies the metaphysis, a narrow portion of bone that contains the epiphyseal 

(grow) plate. The epiphyseal plate is formed by a layer of hyaline cartilage, which is 

replaced by compact bone in the early of adulthood, giving rise to the epiphyseal 

line (see section 1.1.6.2) 2,3. 

 

1.1.2.2. Microstructure of bone – osteon and trabecula 

Compact bone and spongy bone are biologically identical, but its microarchitecture 

is different. The basic structural/functional unit of the compact bone is the osteon or 

Haversian system (Figure 2). Each osteon is composed of a single central 

(Haversian) canal surrounded by concentric layers of mineralized matrix, called 

lamellae (Figure 2). These cylindrical structural units are arranged parallel to one 

another along the long axis of the compact bone. The central canals connect with 

each other, with the medullary cavity, and with the periosteum, via transverse 

branches, known as perforating (Volkmann's) canals (Figure 2). Central and 

perforating canals are lined by endosteum and contain blood vessels, nerves, and 

lymphatic vessels. Besides the structural function of these canals, they are 

responsible for the exchange of oxygen/nutrients and removal of metabolic waste 

products (see section 1.1.5). Between the osteons, the lamellae are called interstitial 

lamellae, and circumferential lamellae are arranged parallel to the periosteum 

(Figure 2) 2,3.  

In the spongy bone, the microscopic unit is the trabecula. The trabeculae are 

composed of lamellae arranged in a honeycomb-like structure (Figure 2). This 

arrangement creates a considerable amount of open space within the bone filled with 

marrow, blood vessels, nerves, and lymphatic vessels 2,3. 
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Figure 2. Schematic representation of the distinct microarchitectures of bone tissue. 
Compact bone is arranged in concentric lamellae around a central canal (osteons). The 
central canals connect with each other, with the medullary cavity, and with the periosteum, 
via perforating canals. Spongy bone is arranged in irregularly lamellae (trabeculae) (adapted 
from https://cnx.org/). 

 

 

1.1.3. Bone Cells – The O‘ Cells 

 

The bone volume is composed by a small amount of bone cells. Nevertheless, these 

cells play an essential role in bone functions. There are four special types of bone 

cells, known as the O´cells: osteoprogenitor cells, osteoblasts, osteocytes, and 

osteoclasts (Figure 3) 1–3. 

 

1.1.3.1. Osteoprogenitor cells 

Osteoprogenitor cells are MSCs with the capacity for extensive self-renewal and 

osteoblast differentiation. These cells are found in the bone marrow and in the inner 

layer of the periosteum (Figure 3) 1–3. 
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1.1.3.2. Osteoblasts 

Osteoblasts or bone-forming cells are mononuclear cells with a limited lifespan 

(Figure 3). Their shape varies from flat to plump, reflecting their level of maturation 

and cellular activity. Osteoblasts develop from multipotent MSCs in a process called 

osteoblastogenesis. During this process, MSCs undergo successive stages of 

differentiation with a decreasing proliferation potential, giving rise to pre-osteoblasts 

and subsequently, osteoblasts. As osteoblasts differentiate, they acquire the ability to 

form bone tissue. Osteoblasts are then responsible for the synthesis/deposition of the 

organic components of bone matrix and orchestration of its mineralization (Figure 3; 

see section 1.1.4). The organic matrix that has not yet been mineralized is known as 

osteoid. Once the osteoid is mineralized, osteoblasts can be buried within the bone 

matrix as an osteocyte, become a bone-lining cell (quiescent flat-shaped osteoblasts 

that cover the bone surfaces), or undergo programmed cell death (i.e. apoptosis). 

Osteoblasts are located on the periosteal and endosteal bone surfaces (Figure 3) 1–3. 

 

 

Figure 3. Bone type of cells: osteoprogenitor cells, osteoblasts, osteocytes, and 
osteoclasts. Each cell type has a specialized function and is found in different locations in 
bones (adapted from http://www.istockphoto.com). 

 

 

1.1.3.3. Osteocytes 

Osteocytes or star-shaped cells are the most common type of bone cell. These 

terminally differentiated cells result from the trapping of osteoblasts within the bone 
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matrix during the mineralization process. Each osteocyte is located inside a space, 

termed lacuna, surrounded by lamellae (Figure 4). Osteocytes form long and multiple 

cytoplasmic processes, known as filopodia, within a network of small channels called 

canaliculi (Figures 3 and 4). The lacunocanalicular system facilitates the 

communication of osteocytes with each other and with osteoblasts/bone-lining cells 

via gap junctions, which are mainly composed of connexin 43 (Cx43). Osteocytes 

play an important role in triggering bone remodeling (see section 1.1.7). Like 

osteoblasts, osteocytes lack mitotic activity 1–3. 

 

 

Figure 4. Schematic representation of the osteocytic lacunocanalicular system. 
Osteocytes are present in lacunae between lamellae. They are connected with each other 
via numerous cellular filopodial processes extended inside the canaliculi (adapted from 
http://www.istockphoto.com). 
 

 

1.1.3.4. Osteoclasts 

Osteoclasts or bone-resorbing cells are multinucleated giant cells with a “foamy” 

cytoplasm (Figure 3). These terminally differentiated cells derive from the fusion of 

myeloid progenitor cells (i.e. hematopoietic lineage cells (HSCs)) in a process called 

osteoclastogenesis. Their differentiation pathway is common to that of macrophages 

and dendritic cells and is under the influence of several factors. Among these factors, 

the macrophage colony-stimulating factor (M-CSF), secreted by osteoprogenitor cells 

and osteoblasts, and receptor for activation of nuclear factor kappa B ligand 

(RANKL), secreted by MSCs, osteoprogenitor cells, osteoblasts, and osteocytes, are 

the two main cytokines involved in osteoclast differentiation. The signaling between 
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M-CSF and its receptor CSF-1R is essential for proliferation of osteoclast precursors. 

The interaction of RANKL/RANK in the presence of M-CSF directly stimulates fusion 

of osteoclast precursors and activation of mature osteoclasts. Osteoblasts also 

express a secreted factor called osteoprotegerin (OPG), which acts as a decoy 

receptor for RANKL to inhibit osteoclastogenesis. Osteoclasts are specialized cells 

that dissolve the mineralized matrix through the synthesis of acids and specific 

enzymes (Figure 3). During this process, termed osteolysis, they release stored 

minerals and soluble factors, which regulate calcium homeostasis and bone 

remodeling (see section 1.1.7). Osteoclasts are found in the periosteum and the 

endosteum (Figure 3) 1–4. 

 

1.1.4. Bone Matrix 

 

Bone matrix is composed of ~60% inorganic (mineral) phase, ~25% organic (protein) 

phase, and ~15% water. The inorganic phase serves as a reservoir for minerals, 

containing ~99% calcium, ~88% phosphate, and ~50% sodium and magnesium of 

the human body. This phase is formed by ~95% hydroxyapatite crystals (resulting 

from the interaction between calcium phosphate and calcium hydroxide -

Ca10(PO4)6(OH)2)), and ~5% other inorganic compounds, such as calcium carbonate, 

calcium fluoride and magnesium fluoride. These minerals give to the bone its 

characteristic hardness and the ability to resist compression. The organic phase 

serves as a depository for cytokines and growth factors and reservoir for lipids. This 

phase consists of ~90% type I collagen triple helices organised in fibrils, ~8% 

noncollagenous proteins (glycoproteins, proteoglycans, cytokines, and growth 

factors), and ~2% lipids. Glycoproteins are the most abundant noncollagenous 

proteins in bone and include osteocalcin, alkaline phosphatase (Alp), osteonectin, 

RGD (Arg-Gly-Asp) peptide - containing proteins (thrombospondin, fibronectin, 

vitronectin, osteopontin, and bone sialoprotein), fibrillin, and tetranectin. 

Proteoglycans are macromolecules characterized by the covalent attachment of long-

chain polysaccharides (glycosaminoglycans, GAGs) to core protein molecules 

composed of the leucine-rich repeat sequences (decorin, biglycan, fibromodulin, and 

osteoadherin). Proteoglycans form a highly hydrated swelled gel-like matrix, which 

provides the bone with the ability to resist stretching and twisting. Cytokines and 

growth factors are important modulators of the bone remodeling process (see section 

1.1.7) 1–3. 
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1.1.5. Neurovascular Supply of Bone 

 

Blood supplies oxygen, nutrients and regulatory factors to bone tissue, and also 

removes metabolic waste products 5,6.   

In long bones (as an example), small arteries of the periosteum (i.e. periosteal 

arteries) enter the diaphysis through many perforating canals to supply the outer part 

(1/3) of compact bone (Figure 2). The inner part (2/3) of compact bone and the 

medullary cavity (including the walls composed of spongy bone) receive nourishment 

from a large nutrient artery that penetrates the diaphysis through a small opening, 

called nutrient foramen (Figure 5). The nutrient artery runs transversely through the 

compact bone and on entering the endosteal cavity divides into proximal and distal 

branches, which course towards each end of the long bone (Figure 5). Each one of 

these two branches divides into several radial branches (Figure 5). The ends of long 

bones are supplied by the metaphyseal/epiphyseal arteries, which arise from arteries 

that supply the associated joint (Figure 5). At the region of metaphysis, 

metaphyseal/epiphyseal arteries anastomose with terminal branches of the nutrient 

artery. As the blood passes through the different parts of the bone, it is collected by 

respective vein (nutrient vein, metaphyseal/epiphyseal veins, and periosteal veins) 

and carried out of the bone (Figure 5) 5,6.  

Nerve fibers accompany the same paths that blood vessels into the bone, where they 

tend to concentrate in the more metabolically active regions. Innervation is involved 

in the regulation of blood supply and bone formation. The periosteum is rich in 

sensory nerve fibers, some of which carry severe pain sensations resulting from a 

trauma, fractures, or bone tumors 7–9.  

 

1.1.6. Bone Formation  

 

There are two processes of bone formation in the fetus and young children, 

intramembranous ossification and endochondral ossification 10,11.  
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Figure 5. Schematic representation of blood supply of a typical long bone. Blood 
supply to long bone comes from three sources: periosteal system, nutrient system, and 
metaphyseal-epiphyseal system (Copyright 2009, John Wiley & Sons, Inc.) 

 

 

1.1.6.1. Intramembranous ossification 

Intramembranous ossification is the source of compact and spongy tissues of flat 

bones of the skull, the mandible, and the clavicle. This process occurs from sheets of 

a relatively undifferentiated connective tissue, called embryonic connective tissue or 

mesenchyme, containing MSCs. Intramembranous ossification occurs about the 

same time as blood vessels begin to develop (see section 1.1.9). It begins as MSCs 

proliferate and condense within the mesenchyme, forming small and dense/compact 

clusters of cells, called ossification centers (Figure 6a). Some of the MSCs support 

capillary formation, while others differentiate into osteoprogenitor cells and then 

osteoblasts to form bone tissue. Blood components help osteoblasts to produce and 

mineralize the osteoid (Figure 6a). As ossification proceeds, some osteoblasts are 

trapped within the matrix, where they become osteocytes (Figure 6b). The 



 

12 
 

mineralized matrix grows outwards from the ossification centers in small struts 

termed bony spicules. These spicules eventually fuse with each other giving rise to 

the trabeculae of the woven bone. As the spicules interconnect they trap blood 

vessels within the bone (Figure 6c). Periosteum is formed from compact layers of 

MSCs lining the periphery of the ossification center (Figure 6c). Osteoblasts of the 

inner surface of the periosteum, deposit layers of bone matrix and fill spaces 

between trabeculae, creating a zone of compact bone parallel to the remaining 

spongy bone (Figure 6d). Once the rudimentary spongy and compact bones are 

formed, the endosteum begins to develop. Crowds of blood vessels near the spongy 

bone, condensate and form the red marrow 11,12.  

 

 

 

Figure 6. Schematic representation of the intramembranous ossification process. a) 
MSCs proliferate and condense into centers of ossification, where they differentiate into 
osteoblasts that secrete osteoid. b) Osteoblasts trapped inside the calcified matrix become 
osteocytes. c) Bone matrix develops into trabeculae of woven bone. Blood vessels grow into 
spaces between trabeculae. Mesenchyme at the periphery of the bone matrix condenses 
and develops into the periosteum. d) Osteoprogenitor cells of the inner layer of the 
periosteum differentiate into osteoblasts, which produce the compact bone parallel to the 
existing spongy bone (adapted from www.accessmedicine.com). 

 

 

1.1.6.2. Endochondral (intracartilaginous) ossification 

In endochondral ossification, the MSCs first differentiate into hyaline cartilage 

(avascular tissue), which is later replaced by bone tissue (highly vascular tissue). 
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This type of ossification is responsible for the formation of most of the bones of the 

skeleton, particularly short and long bones. Endochondral ossification begins as 

clusters of MSCs differentiate into chondrocytes (i.e. cartilage cells). Chondrocytes 

then form a cartilaginous skeletal precursor, whose shape resembles a small version 

of the bone to be formed. This hyaline cartilage template is covered with a 

membrane, called perichondrium, which later become the periosteum (Figure 7-1). 

Some MSCs of the perichondrium differentiate into osteoprogenitor cells and then 

osteoblasts to form a bone collar around the diaphysis (Figure 7-2). This periosteal 

bone collar supports the growing bone. In the center of the cartilage template, 

chondrocytes undergo a degenerative process. This process is characterized by 

chondrocyte proliferation and differentiation into hypertrophic chondrocytes (Figure 7-

2), and ultimately their apoptosis (Figure 7-3). The terminally differentiated 

chondrocytes stop to produce collagen and other proteoglycans and begin to secrete 

Alp, which promote the calcification of the surrounding cartilage matrix (Figure 7-2). 

In addition, these chondrocytes secrete vascular endothelial cell growth factor 

(VEGF), which induces the sprouting of blood vessels from the perichondrium (Figure 

7-2; see section 1.1.9). As hypertrophic chondrocytes die, they leave cavities within 

the calcified cartilage matrix (Figure 7-3). A periosteal bud penetrates the diaphysis, 

previously perforated by osteoclasts, invades these cavities and branch in opposite 

directions  (Figure 7-3). The periosteal bud contains blood vessels, nerves, and 

lymphatic vessels. The blood vessels carry HSCs, osteoprogenitor cells, and other 

cells into the cavities. The HSCs will later form the bone marrow. Osteoblasts derived 

from osteoprogenitor cells use the calcified cartilage as a scaffold to create spongy 

bone in the primary ossification center (Figure 7-3). Osteoblasts of the newly formed 

periosteum deposit compact bone around the spongy bone. Osteoclasts break down 

some spongy bone and form the medullary cavity (Figure 7-4). The development of 

secondary ossification centers continues somewhat later (after birth) in the epiphyses 

by a similar process (Figure 7-4). Bone replaces hyaline cartilage, except the 

articular cartilage and epiphyseal plate of long bones. Articular cartilage persists 

throughout adult life while the epiphyseal plates remain until early adulthood, i.e. until 

the bone stops growing (Figure 7-5). The epiphyseal line replaces the epiphyseal 

plate and the diaphysis and epiphysis regions fuse together to form a single adult 

bone in a process known as the epiphyseal closure (Figure 7-5) 10–12. 
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Figure 7. Schematic representation of the endochondral ossification process. 1) A 
hyaline cartilage model of the respective bone is formed. 2) Around the diaphysis of the 
cartilage model, a periosteal bone collar is produced by perichondrium. In the center region, 
the chondrocytes undergo a degenerative process with cell enlargement (hypertrophy) and 
matrix calcification 3) Chondrocytes die and leave cavities within the calcified cartilage 
matrix. Blood vessels penetrate the bone collar and invade the cavities in the diaphysis 
bringing osteoprogenitor cells to this region. These cells become osteoblasts, which form the 
spongy bone around the cavities. In this way, the primary ossification center is established in 
the diaphysis. 4) Osteoclasts dissolve some spongy bone to develop the medullary cavity 
and osteoblasts produce the compact bone beneath the periosteum. Secondary ossification 
centers appear at the epiphyses. 5) Bone replaces cartilage except the articular cartilage, 
which persists throughout adult life, and the epiphyseal plate, 6) which is replaced by 
epiphyseal line in the early of adulthood (adapted from www.accessmedicine.com). 
 

 

1.1.7.  Bone Remodeling  
 

Bone remodeling (metabolism) is a dynamic process by which old/microdamaged 

bone is replaced by new bone. This process plays an essential role in calcium 

homeostasis and ensures the mechanical integrity of the skeleton. An imbalance in 

the regulation of bone resorption and bone formation results in metabolic bone 

diseases, such as osteoporosis (bone resorption>bone formation) and osteopetrosis 

(bone formation>bone resorption). Most of the metabolism occurs at the bone 

surfaces. Due to the higher surface area of spongy bone compared to cortical bone, 

most of the turnover takes place at the endosteal surface of spongy bone. Bone 
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remodeling occurs due to coordinated actions of osteoclasts, osteoblasts, 

osteocytes, and bone lining cells, associated with blood vessels and nerves. 

Together, they form a temporary anatomical structure, called basic multicellular unit 

(BMU) or bone remodeling unit (BRU) 13–17.  

 

1.1.7.1. Bone remodeling cycle 

Bone remodeling cycle involves a series of highly regulated phases: resting 

(activation), resorption, reversal (transition), formation, and mineralization 

(termination) (Figure 8) 13–16.  

 

Figure 8. Schematic representation of the bone remodeling cycle. Bone remodeling 
consists of a series of sequential phases that are highly regulated. Bone resorption by 
osteoclasts is followed by the recruitment of osteoblasts and formation of new bone matrix. 
The newly synthesized matrix is then slowly mineralized (adapted from 
http://www.istockphoto.com). 
 

 

The activation of the quiescent bone surface results in the retraction of bone-lining 

cells by matrix metalloproteinases (MMPs). This activation process is partly regulated 

by osteocytes, which act as sensors of mechanical loading and biochemical stimuli. 

Osteoclast precursor cells are then recruited by chemotaxis to the activated surface 

and fuse to form mature osteoclasts (Figure 8). These osteoclasts attach to the bone 

surface through a contiguous adhesion belt, known as sealing (clear) zone, which 

creates an isolated microenvironment beneath the cell. Within the sealing zone, the 

osteoclast plasma membrane develops into the ruffled border, which acts as the 

resorptive organelle of these cells (Figure 9). As a consequence, osteoclasts dissolve 

the inorganic matrix by creating an acidic microenvironment through the secretion of 

several acids and a large amount of protons (H+), and digest the organic matrix by 
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releasing specific enzymes, such as lysosomal enzymes, tartrate-resistant acid 

phosphatase (TRAP), cathepsin K, and MMP-9 (Figure 9). Bone degradation 

products are then removed from the functional secretory domain via transcytotic 

vesicles (Figure 9). Osteoclast activity results in the formation of resorption pits on 

bone surface, called as Howship's lacunae (Figure 9). Once the osteoclasts have 

completed their work, mononuclear cells with an unclear phenotype prepare the 

surface of Howship's lacunae for bone formation and provide matrix-derived signals, 

such as transforming growth factor-β (TGF- β) and insulin-like growth factor I and II 

(IGF-I/II), for osteoblast differentiation and migration (Figure 8) 13–17.  

 

 

 

 

Figure 9. Schematic representation of the osteoclast activity. Osteoclasts form sealing 
and ruffled borders. Bone resorption is achieved by transport of protons into the resorption 
lacunae through vacuolar H+-ATPase and secretion of specific enzymes (cathepsin K, MMP-
9 and TRAP). Matrix degradation products are removed from the functional secretory domain 
via transcytotic vesicles (adapted from Takahashi et al., BoneKEy Reports, 2014). 

 

 

The bone remodeling cycle is finished with the synthesis/deposition of organic 

components of bone matrix by osteoblasts, and its subsequent mineralization (Figure 

8). The collagen network is synthesized first followed by incorporation of non-
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collagenous proteins. The production of type I collagen and formation of the 

collagenous matrix is followed by an increased expression of ALP. This gradually 

decreases when matrix mineralization is progressed. Osteocalcin appears at the 

latest stages of differentiation pathway, approximately at the onset of mineralization. 

The newly formed bone surface is completely covered with bone-lining cells and 

maintained until the next remodeling cycle is initiated (Figure 8). The resorption 

activity in adult human bone takes approximately 3 weeks and the formation 

response 3 to 4 months 13–17. 

 

1.1.7.2. Regulatory factors in bone remodeling  

The regulation of bone remodeling is both systemic and local. The main interrelated 

systemic factors include: genetics; age; nutrition; exercise (mechanical loading); and 

hormones, particularly thyroid hormones, thyroid-stimulating hormone (TSH), 

parathyroid hormone (PTH) / parathyroid hormone-related protein (or PTHrP), 

calcitonin, calcitriol (1,25-dihydroxyvitamin D, 1,25(OH)2D or Vitamin D), growth 

hormone, gonadal hormones, insulin, and glucocorticoids. Table 1 summarises the 

role of the “classic” hormones in bone metabolism 18,19.  

As far as local regulation of bone remodeling is concerned, it has been identified a 

large number of autocrine/paracrine molecules produced by bone cells and soluble 

factors released from the bone matrix during osteolysis. Important growth factors, 

cytokines, and prostaglandins acting on bone turnover are tabulated in Table 2, 

according to its function 18–21.  

Another category of molecules called semaphorins (Sema) has been recognized as a 

modulator of bone remodeling. Sema are a class of secreted and membrane-

associated proteins that were originally identified as axonal growth cone guidance 

molecules. It was found that Sema4D, expressed in osteoclasts, and Sema3A, 

abundantly expressed in osteoblasts, are important regulators of bone metabolism. 

During bone resorption, Sem4D inhibits bone formation by binding to its receptor 

(Plexin-B1) present in osteoblasts 22. On the other hand, Sema3A, secreted by 

sensory neurons, promotes bone formation indirectly by modulating the local nerve 

ingrowth and not by acting directly on osteoblasts (see chapter 1.3) 23.  

More recently, microRNAs (miR) have been regarded as one of the most important 

modulators in bone turnover. miR are short single strand non-coding molecules of 

RNA (between 18 and 25 nucleotides long) that negatively regulate gene expression 

either by mRNA degradation or translational silencing. In this context, miR can act as 
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both negative and positive regulators of differentiation of osteoblasts and osteoclasts 

(Table 3) 24. 

 

 

Table 1. Hormones involved in bone remodeling. 

Decrease Bone 
Resortion 

Increase Bone 
Resorption 

Increase Bone 
Formation 

Decrease Bone 
Formation 

Calcitonin PTH/PTHrP Growth hormone Glucocorticoids 

Estrogens Glucocorticoids Vitamin D metabolites Thyroid hormones 

TSH Thyroid hormones Androgens  

 High-dose vitamin D Estrogens  

  Progesterone  

  Insulin  

  Low-dose PTH/PTHrP  

  TSH  

  Thyroid hormones  

PTH, parathyroid hormone; PTHrP, parathyroid hormone-related protein; TSH, thyroid-stimulating 
hormone 

 

Table 2. Growth factors, cytokines, and prostaglandins involved in bone 

remodeling. 

 
Stimulate bone 

formation 
Stimulate bone 

resorption 
Inhibit bone 
resorption 

Inhibit bone 
formation 

Growth factors 

BMP-2, BMP-4, 
BMP-5, BMP-6, 
BMP-7, BMP-9, 

TGF-β, IGF-I, IGF-
II, PDGF, VEGF, 

FGF 

EGF, PDGF, FGF, 
GM-CSF, M-CSF 

TGF-β BMP-3 

Cytokines and 
Prostaglandins 

IL-3, IL-13, IL-17 
IFN, CT-1 

TNF, RANKL, IL-1, 
IL-6, IL-8, IL-11, 

PGE1, PGE2, 
PGG2, PGH2, PGI2 

OPG, IFNγ, IL-4, 
Il-10, IL-12, IL-18, 

IL-23 
 

BMP, bone morphogenetic protein; CT1- cardiotrophin-1; EGF, epidermal growth factor; FGF, 
fibroblast growth factor; GM-CSF, granulocyte-macrophage colony-stimulating factor; IFNγ, interferon 
gamma; IGF, insulin-like growth factor; IL, interleukine; M-CSF, macrophage-colony stimulating factor; 
OPG, osteoprotegerin; PDGF, platelet-derived growth factor; PG, prostaglandin; RANKL, receptor 
activator of nuclear factor kappa-B ligand; TGF- β, tumor growth factor-beta; TNF, tumor necrosis 
factor 
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Table 3. Key miR regulators of bone remodeling  

 Activate Differentiation Inhibit Differentiation 

Osteoblasts 

MiR-15b; MiR-17~92; MiR-20a; 

MiR-29a; MiR-181a; MiR-322; 

MiR-335-5p 

MiR-17-5p; MiR-30c; MiR-34c; 

MiR-93; MiR-100; MiR-125b; 

MiR-133a; MiR-135a; MiR-137; 

MiR-138; MiR-141; MiR-200a; 

MiR-143; MiR-182; MiR-

204/211; MiR-205; MiR-206; 

MiR-208; MiR-217; MiR-218; 

MiR-338; MiR-542-3p; MiR-637; 

MiR-764-5p 

Osteoclasts 
MiR-21; MiR-29b; MiR-31; MiR-

34a; MiR-148a; MiR-223 

MiR-29b; MiR-125a; MiR-146a; 

MiR-155; MiR-223; MiR-503 

Adapted from Alečković M and Kang Y, BoneKEy Reports, 2015. 

 

 

1.1.8.  Canonical Wnt Signaling Pathway in bone formation and 

remodeling 
 

The canonical Wnt pathway (Wnt/β-catenin pathway) regulates many cellular 

activities, such as proliferation, differentiation, maturation, migration, survival, and 

apoptosis. It is widely demonstrated that this pathway is critical for osteoblast 

differentiation and function and consequently, for bone formation and metabolism. 

Wnt/β-catenin pathway is also important in adipogenesis, chondrogenesis and 

hematopoiesis and may be stimulatory or inhibitory at different stages of 

osteoblastogenesis 25–28. 

The central function of the canonical Wnt pathway is the regulation of β-catenin 

(encoded by Ctnnb1) stabilization. β-catenin is a dual-function protein that 

coordinates cell-cell adhesion and acts as an intracellular signal transducer in the 

Wnt/β-catenin pathway. β-catenin binds to cadherin and α-catenin at the plasma 

membrane, and this cadherin-catenin complex links to the actin filaments and several 

actin-binding proteins to promote cell-cell adhesion (Figure 10) 25–28. 
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When Wnt/β-catenin signaling is not activated, β-catenin is degraded after being 

recruited to a complex composed of axin, adenomatous polyposis coli (APC), 

glycogen synthase kinase (GSK) 3β, and other proteins (Figure 10). Axin and APC 

act as scaffold proteins promoting the interaction of β-catenin with GSK-3β. The 

phosphorylation of β-catenin by GSK-3β targets it for ubiquitination and 

subsequently, recognition and constitutive degradation by the ubiquitin-proteasome 

system (Figure 10) 25–28.  

When a Wnt secreted glycoprotein (e.g. Wnt3a and Wnt10b) binds to its Frizzled 

(Fzd) receptor and co-receptor low-density lipoprotein receptor-related protein (LRP) 

- 5/6, axin and the cytoplasmic protein disheveled (Dsh) are recruited and tethered to 

the ligand-receptor complex (Figure 10). Axin binds to the phosphorylated LRP5/6 

and disables the degradation complex. Phosphorylated Dsh binds to the Fzd receptor 

and transduces a signal for inhibition of the GSK3β activity, which leads to 

accumulation of nonphosphorylated β-catenin in the cytosol (Figure 10). The 

stabilized β-catenin is then translocated into the nucleus to activate the 

transcriptional expression of Wnt-related genes via lymphoid enhancer binding factor 

(Lef) and T cell factors (Tcf) (Figure 10). Runt-related transcription factor 2 (Runx2) is 

a direct target gene of β-catenin/Tcf/Lef. Wnt/β-catenin signaling activates expression 

of Runx2 in MSCs for the control of osteoblast differentiation and bone formation. It 

determines the osteoblastogenesis at the early stage and inhibits it at the late stage. 

Runx2 interacts with other transcription factors, especially osterix, to regulate the 

transcriptional expression of important bone phenotyping genes, such as collagen 

type I alpha 1 chain (Col1a1), Alp, and bone gamma-carboxyglutamic acid-containing 

protein (Bglap, encoding osteocalcin). Tumor necrosis factor ligand superfamily 

member 11 (Tnfrsf11b), encoding the anti-osteoclastogenic factor OPG, is known to 

be another Wnt-related gene. The canonical Wnt signaling suppresses indirectly 

osteoclast differentiation and bone resorption through upregulation of OPG in 

osteoblasts 25–28. 

The amplitude of the Wnt/β-catenin signaling is fine-tuned in part via negative 

feedback by secreted extracellular antagonists, such as secreted Fzd-related 

peptides (sFRPs), Wnt inhibitory factor (Wif) - 1, dickkopf (Dkk) 1/2, and sclerostin. 

While sFRPs and Wif-1 interact directly with Wnt proteins, Dkk 1/2 and sclerostin 

bind to the extracellular domains of LRP5/6, thus preventing signaling activation and 

leading to decreased bone formation 25–28.  
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Figure 10. Schematic representation of the canonical Wnt signaling pathway. β-catenin 
forms a cadherin-catenin complex at the plasma membrane that regulates cell-cell adhesion. 
(Left panel) In the absence of Wnt signaling, β-catenin is prone to degradation, by forming a 
complex with axin, APC and GSK3-β. β-catenin is phosphorylated by GSK3-β that marks it 
for ubiquitination and subsequent degradation by the proteasome. (Right panel) In the 
presence of Wnt signaling, β-catenin is uncoupled from the degradation complex, 
accumulates and translocates into the nucleus, where it acts as a co-activator of Lef/Tcf 
transcription factors (adapted from Reya T and Clevers H, Nature, 2005). 

 

 

The canonical Wnt signaling cooperates with a number of other bone formation 

signaling pathways, such as PTH/PTHrP, bone morphogenetic proteins (BMPs)/TGF-

β, and Indian hedgehog. 
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1.1.9.  Angiogenesis/Vascularization in bone formation and remodeling 

 

Bone formation and remodeling processes require the action of both intrinsic and 

extrinsic inductive factors produced from multiple cell types, which function in a 

hierarchical and temporal fashion to control angiogenesis and osteogenesis. 

Endothelium (i.e. the inner lining of blood vessels) is an integral part of bone tissue, 

and its interaction with bone cells is crucial for skeletal development, homeostasis, 

and healing 30. The interplay between endothelial and bone cells has been 

extensively investigated, and numerous modes of cell communication have been 

proposed, specifically via secretion of humoral factors, growth factors, chemokines, 

and direct cell-cell contact through gap junctional proteins 31. Among the growth 

factors, VEGF expressed in endothelial cells plays a critical role in the orchestration 

of bone formation and remodeling, by increasing the production of BMPs 32. In 

addition, other factors secreted by endothelium, such as endothelin-1 and 

angiotensin-II, are also able to induce bone formation 33–35.  

Previous studies have shown that angiogenesis is preceded by peripheral innervation 

during bone formation and regeneration 31, suggesting that peripheral nervous 

system controls these processes through the local release of neuronal mediators. A 

recent study indicates that sonic hedgehog, a traditional neurogenic morphogen, 

inversely regulates the vascular morphogens angiopoietin-1 and angiopoietin-2, thus 

contributing to blood vessel growth, maturation and stabilization in a neurovascular 

network 36.  

These and other studies provide a robust body of evidence that bone is regulated by 

different tissues/systems, evidencing its complexity and dynamic nature 29. In this 

dissertation we focused on the regulation of osteoblast and bone formation by the 

sensory nervous system. 
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SENSORY NERVOUS SYSTEM.1.2 

 

The sensory nervous system is the part of the peripheral nervous system responsible 

for processing sensory information. Sensory neurons carry this information as a 

nerve impulse from the viscera, sense organs, muscles, bones and joints towards the 

central nervous system (CNS), where the information is perceived and interpreted. 

Despite this classic function, a specific subgroup of sensory neurons also has the 

ability to release neuropeptides from their peripheral endings to regulate organ/tissue 

activities 37–39. 

 

1.2.1.  Functional Organization of the PNS 
 

The peripheral nervous system (PNS) consists of the nervous tissue that lies outside 

the brain and spinal cord (i.e. outside the CNS). It forms the communication network 

between the CNS and rest of the body. The CNS interacts with the PNS through 12 

of cranial nerves, which connect the brain to areas of the head and neck, and 31 

pairs of spinal nerves, which connect the spinal cord to the rest of the body. The 

spinal nerve emerges from the spinal cord between adjacent vertebrae through an 

opening called intervertebral foramen. Each spinal nerve is formed by dorsal root 

housing afferent (sensory) neurons and ventral root carrying efferent (motor) 

neurons. These two roots are actually parts of the two major divisions of the PNS: 

sensory, or afferent, and motor, or efferent, divisions (Figure 11). The sensory 

division consists of afferent neurons that carry sensory information from receptors in 

the periphery of the body to the CNS (Figure 11). The motor division contains 

efferent neurons that carry motor information from the brain to the rest of the body. 

This division is subdivided into somatic nervous system and autonomic nervous 

system (Figure 11). The somatic nervous system includes the voluntary motor 

neurons and transmits signals from the CNS to skeletal (striated) muscles (Figure 

11). It is responsible for stimulating muscle contraction (conscious activities). The 

autonomic nervous system includes the involuntary motor neurons and transmits 

signals from the CNS to cardiac muscle, smooth muscles, and glands (Figure 11). It 

is responsible for secretion of chemical signals from the glands and maintains the 

proper function of the visceral organs, such as the heart, stomach, and intestines 
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(subconscious activities). There are two subdivisions of the autonomic nervous 

system, the sympathetic and parasympathetic (Figure 11). The sympathetic nervous 

system is responsible for mobilization of energy and resources during times of stress 

and arousal, while the parasympathetic nervous system acts as an antagonist that 

returns the body to its normal resting state (Figure 11). This antagonistic functional 

relationship serves as a balance to help maintain homeostasis 37–39.  

 

 

Figure 11. Functional organization of the peripheral nervous system. The PNS is 
divided into sensory (afferent) and motor (efferent) divisions. The afferent division sends 
sensory signals to the CNS and the efferent division receives motor signals from the CNS. 
The efferent division can be subdivided into two groups: autonomic and somatic nervous 
systems. The autonomic nervous system itself can be divided into the sympathetic and 
parasympathetic nervous systems (adapted from www.apsubiology.org) 
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1.2.2. Basic Function and Structure of a Neuron 
 

The nervous system contains two types of cells: glial cells and neurons. The glial 

cells protect and nourish the neurons and are the key element to support their 

function. Neurons are considered to be the basic working unit of the nervous tissue. 

These specialized cells receive and transmit signals to other cells. They have a main 

part called cell body or soma and extensions of their membranes, generally referred 

to as processes. The cell body contains the nucleus and cytoplasm with most of the 

major organelles (Figure 12) 37–39.  

 

 

Figure 12. Schematic representation of neuron structure. (Left) A motor neuron with a 
single axon projected from the cell body, which is located in the ventral root ganglion, to the 
effector cell. (Right) A sensory neuron with an axon that divides into a central and peripheral 
branch just after it leaves the cell body, which is located in the dorsal root, trigeminal root, 
and nodose ganglia. The peripheral branch carries the electrical impulse from the receptor 
cell to the cell body; the central branch and axon terminals carry the impulse from the cell 
body to the CNS (adapted from Lodish H, et al. New York: W. H. Freeman; 2000). 
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There is one important process called an axon, which is the fiber that emerges from 

the cell body and projects to target cells (Figure 12). The single axon can branch 

repeatedly into axon terminals to communicate with multiple target cells via synapses 

(Figure 12). The neuron transmitting the signal is termed the presynaptic neuron, and 

the neuron receiving the signal is called the postsynaptic neuron. There are two 

different types of synapses, electrical and chemical. At electrical synapses, current 

flows directly and passively from pre- to postsynaptic cells through specialized 

membrane channels (gap junctions) (Figure 13A). At chemical synapses, the 

vesicular release of chemical messengers (neurotransmitters) by a presynaptic cell 

into the synaptic cleft, produces secondary current flow in a postsynaptic cell by 

activating specific receptors on the plasma membrane (Figure 13B). The current flow 

switches the postsynaptic membrane from an internal negative charge to a positive 

charge state. This change is known as depolarization, which generates an action 

potential or nerve impulse. This depolarization of the membrane is followed by a 

rapid repolarization, returning the membrane potential to the resting state 37–39. 

Another type of process extended from the cell body is the dendrite (Figure 12). 

Dendrites are usually highly branched and are responsible for receiving most of the 

information from axon terminals of other neurons (Figure 12) 37–39.  

The specialized structure where the axon emerges from the cell body is known as the 

axon hillock or initial segment (Figure 12). This structure integrates signals from 

multiple synapses 37–39.  

Many axons are wrapped with a layered myelin sheath, which acts as an insulator 

and speeds the transmission of the nerve impulse along the axon (Figure 12). In the 

PNS, this sheath is made of specialized cells known as Schwann cells. Each gap 

uncovered by myelin is termed a node of Ranvier and is critical for myelin 

functionalization. The action potential jumps between axonal nodes of Ranvier to 

increase the speed of its propagation (Figure 12)  40. 

In the PNS, a cluster of neuron cell bodies is referred to as a ganglion and a bundle 

of axons or fibers are called a nerve 39–41.  
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Figure 13. Schematic representation of electric and chemical synapses. (A) At an 
electrical synapse, ions flow directly and passively through gap junctions resulting in a 
localized depolarization of the postsynaptic membrane. (B) At a chemical synapse, when the 
neurotransmitters released by presynaptic cell bind to specific receptors on the postsynaptic 
membrane, the ligand-gated ion channels open and ions cross the membrane changing its 
charge (adapted from Purves D, et al. Sunderland (MA): Sinauer Associates; 2004). 

 

 

1.2.3.  Types of Sensory Receptors  

 

Sensory receptors are either specialized endings of sensory neurons or separate 

cells that signal to sensory neurons. They are adapted to respond to specific stimuli 

and to convert them into nerve impulses that are transmitted to the CNS. Different 

types of sensory neurons have different sensory receptors. Sensory receptors can be 

classified on the basis of their morphology or function. Morphologically, there are 

three groups of sensory receptors: free nerve endings, encapsulated nerve endings, 

and specialized transducing cells. Free nerve endings are simply free dendrites 

extend into a tissue (Figure 14a). This type of sensory receptor is sensitive to heat, 

cold, and tissue injury. An encapsulated nerve ending is a nerve ending wrapped in a 

round capsule of connective tissue (Figure 14b). Mechanical forces stimulate this 
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type of sensory receptor. Specialized transducing cells detect stimuli from special 

senses such as vision, hearing, smell, taste, and balance (Figure 14c). Each of the 

specialized cells is sensitive to a unique special sense. 41  

Functionally, there are three major classes of sensory receptors: mechanoreceptors, 

nociceptors, and thermoreceptors. Mechanoreceptors are free nerve endings that 

respond to mechanical stimuli, such as touch, vibration, stretch, pressure, and 

movement. Nociceptors are unspecialized free nerve endings that respond to 

noxious stimuli, including extreme temperatures, acidic pH, and tissue damage, by 

sending pain signals to the CNS. Thermoreceptors monitor changes in temperature 

inside the body and in its surroundings 37–39.  

 

 

 

 

Figure 14. Schematic representation of sensory receptor types. (a) Simply receptors are 
neurons with free nerve endings. (b) Complex neural receptors have nerve endings enclosed 
in connective tissue capsules. (c) Most special senses receptors are cells that release 
neurotransmitter onto sensory neurons, initiating an action potential (adapted from 
www.pasadena.edu). 
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1.2.4.  Classification of the Sensory Nerve Fibers  
 

According to the Lloyd-Hunt classification, the sensory nerve fibers can be classified 

into type I-fibers, with diameters from 13 to 20 µm (80-120 m/s conduction velocity); 

type II-fibers, with diameters between 6 and 12 µm (35-75 m/s conduction velocity); 

type III-fibers, with diameters from 1 to 5 µm (5.0-30 m/s conduction velocity); and 

type IV-fibers represented by the unmyelinated nerve fibers, with diameters between 

0.2 and 1.5 (0.5-2.0 m/s conduction velocity) (Table 4). Type I-fibers are frequently 

subdivided in type Ia and Ib to differentiate among afferences from muscle spindles 

and Golgi tendons. The Erlanger-Gasser classification is used to define both afferent 

and efferent fibers. Thus, type I-fibers represents the Aα-fibers of the Erlanger-

Gasser classification; type II-fibers equivalents to the Aβ-fibers; type III-fibers 

corresponds to the Aδ-fibers; and type IV-fibers represents C fibers (Table 4) 42. 

 

Table 4. Classification of sensory nerve fibers. 

Lloyd-Hunt 
Classification 

Erlanger-Gasser 
Classification 

Myelin 
Fiber 

Diameter 
(μm) 

Conduction 
Velocity 

(m/s) 

Type of Receptor 
Supplied 

Ia and Ib Aα Yes 13-20 80-120 Mechanoreceptor 

II Aβ Yes 6-12 35-75 Mechanoreceptor 

III Aδ Yes 1-5 5.0-30 
Mechanoreceptor 
Thermoreceptor 

Nociceptor 

IV C No 0.2-1.5 0.5-2.0 
Mechanoreceptor, 
Thermoreceptor 

Nociceptor 
Adapted from www.clinicalgate.com 

 

 

1.2.5.  Dual Afferent and “Efferent” Function of Sensory Neurons 

 

Sensorimotor neurons are a subpopulation of polymodal nociceptive sensory 

neurons (i.e. respond to painful thermal, mechanical, and chemical stimuli) with a 

dual afferent and efferent function. They contain predominantly C-fibers and a 
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smaller population of Aδ-fibers. The cell bodies of the sensorimotor neurons lie in the 

dorsal root and trigeminal root ganglia. A sensorimotor neuron has a single axon that 

divides into a central and peripheral branch just after it leaves the cell body. The 

central branch conveys information about a stimulus to the CNS (afferent function). 

The peripheral branch communicates with target cells through the release of 

neurotransmitters from specialized swelling of the axon called varicosities (efferent 

function) 43. The main neuropeptides released in the periphery include calcitonin 

gene-related peptide (CGRP), substance P (SP), and neurokinin A (NKA). CGRP 

and SP are frequently coexpressed and/or coreleased from sensorimotor neurons. 

These sensory neuropeptides are implicated in the neurogenic inflammatory 

response, CGRP mediates vasodilatation and SP mediates plasma extravasation. 

There is evidence of other cotransmitters in the sensory nerve endings, such as the 

vasoactive intestinal polypeptide, bombesin, and adenosine triphosphate (ATP) 37. 

Histologic and functional studies have shown that these neurons are widely 

distributed in many organs/tissues, such as the heart, blood vessels, smooth muscle 

of the bladder and airways, skeletal muscle, and gastrointestinal tract. According to 

the target organ/tissue, sensory neuropeptides can be differentially expressed in the 

peripheral terminals of C- and Aδ-fibers 37.  

The activation of peripheral endings of sensorimotor neurons by noxious stimuli (e.g. 

tissue damage) leads to the release of pain neurotransmitters at the central ending. 

Concomitantly, in general neurotransmitters are released from the peripheral 

terminals to promote neurogenic inflammation and tissue repair. The majority of 

these stimuli activate a specific receptor. One of the main receptors expressed in 

sensorimotor neurons is the transient receptor potential vanilloid subfamily member 1 

(TRPV1), also known as capsaicin receptor. Only TRPV1 is activated by capsaicin, 

the pungent compound found in hot peppers that elicits a burning sensation. This 

receptor is not expressed in most of other neurons, which confers to capsaicin a 

relative specificity for afferent C- and Aδ-fibers. As other noxious stimuli, the 

activation of TRPV1 by capsaicin evokes the neurotransmitter release from 

varicosities of sensorimotor neurons. On the other hand, prolonged activation of 

TRPV1 by capsaicin inhibits the neurotransmission through a combination of effects, 

including TRPV1 desensitization 37.  
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SENSORY NERVOUS SYSTEM AND BONE.1.3 

 

It is clear that bone tissue is richly innervated by afferent nerve fibers. These fibers 

were found in the periosteum, mineralized bone, medullary cavity, and epiphyseal 

plate, with distinct densities. Indeed, the periosteum and areas with higher metabolic 

rate display a more intense network of sensory nerve fibers than that of the other 

bone parts, suggesting a role of the sensory nervous system on bone metabolism 44–

48. 

In contrast to the sympathetic nervous system, a positive role of the sensory nervous 

system has been reported in the regulation of bone development, homeostasis and 

repair. Animal studies have demonstrated that capsaicin-mediated sensory 

denervation leads to a significant bone loss 49,50. More recently, it was shown that 

mice with conditional knockout of Sema3A in sensory neurons had a significant 

decrease of bone sensory innervation and consequent decrease of bone mass, 

similar to general Sema3A knockout mice. Interestingly, mice with specific ablation of 

Sema3A in osteoblasts had normal bone mass. These findings revealed that 

Sema3A produced in sensory neurons plays an essential role in bone remodeling by 

contributing to the local development of sensory nerve fibers in an autocrine manner 

23. 

Bone tissue is mainly innervated by small diameter myelinated (Aδ) fibers and 

unmyelinated peptide-rich C-fibers 46,51–53. The presence of nonpeptidergic C-fibers 

and large diameter fibers, particularly Aβ, in bone is still unclear 46,52,54,55. Most 

sensory nerve fibers that innervate bone tissue respond to noxious stimuli by 

releasing neuropeptides, especially CGRP and SP 46,52,53. Importantly, many bone 

cells express a wide variety of receptors that are activated by sensory neuropeptides, 

thus modulating bone metabolism and repair 56. It was demonstrated a direct 

anabolic and catabolic effect of SP on bone remodeling 57. On the other hand, CGRP 

was described to promote bone formation by acting directly on osteoblastogenesis 

and indirectly on osteoclastogenesis58,59. 
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HYPOTHESIS, OBJECTIVES AND EXPERIMENTAL DESIGN.02 

 

The role of the sensory nervous system in bone physiology and pathophysiology has 

been drawing increased interest of the scientific community over the last few years. 

However, it is unclear how and in which bone cells can sensory neurons orchestrate 

the regulation of bone formation, remodeling and regeneration. In this context, we 

raised the following hypothesis: 

 

« Sensory neurons induce the process of osteoblast differentiation by acting 

directly on MSCs » 

 

To evaluate this hypothesis, the following specific objectives were set: 

 

1. To develop and validate a microfluidic platform for culture of dorsal root 

ganglion (DRG) neurons and MSCs that more faithfully represents the in 

vivo scenario of bone sensory innervation. 

2. To optimize the culture conditions of each cell population in order to 

preserve their physiological properties. 

3. To assess the impact of the DRG neurons on proliferation and 

differentiation of MSCs. 

4. To investigate the effect of DRG neurons on Cx43 and N-cadherin 

expression in MSCs during the osteoblast differentiation. 

5. To identify signaling pathways involved in DRG neurons-induced 

osteoblastogenesis. 

6. To characterize the subset of DRG neurons and the main neuronal factors 

directly implicated on osteoblast lineage development. 

 

This dissertation can be divided into two main parts (Article 1 and Article 2). The 

article 1 concerns fundamental discoveries on the direct interaction and 

communication of DRG neurons with MSCs in a microfluidic platform (Figure 15). The 

article 2 stands on the role of capsaicin-sensitive DRG neurons and the emerging 

sensory neuropeptides, particularly Substance P and CGRP, in the regulation of 

osteoblast differentiation (Figure 16). 
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Figure 15: Experimental design of article 1. DRG neurons and MSCs were cocultured in a 
microfluidic platform. After 4 and 7 days of coculture, cellular and molecular biology 
techniques were performed to analyse the expression profile of osteoblast-related genes and 
proteins in MSCs. 

 

 

 

Figure 16: Experimental design of article 2. On day 4 of culture, DRG neurons were 
stimulated with capsaicin for 1h. Substance P and CGRP levels in the cell culture medium 
were quantified by ELISA. This medium was also used as conditioned medium (CM) to 
culture MSCs. After 4 and 7 days of culture, cell and molecular biology techniques were 
performed to analyse the expression profile of osteoblast-related genes and proteins in 
MSCs. 
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ABSTRACT.3.1 

   

Innervation by the sensory nervous system plays a key role in skeletal formation and 

in orchestration of bone remodeling and repair. However, it is unclear how and in 

which bone cells can sensory nerves acts to control these processes. Here, we show 

a microfluidic coculture system comprising dorsal root ganglion (DRG) neurons and 

mesenchymal stem cells (MSCs) that more faithfully represents the in vivo scenario 

of bone sensory innervation. We report that DRG neurons promote the osteogenic 

differentiation capacity of MSCs by mediating the increase of alkaline phosphatase 

activity and the upregulation of osteoblast-specific genes. Furthermore, we show that 

DRG neurons have a positive impact on Cx43 levels in MSCs during 

osteoblastogenesis, especially at an early stage of this process. Conversely, we 

described a negative impact of DRG neurons on MSCs N-cadherin expression at a 

later stage. Finally, we demonstrate a cytoplasmic accumulation of β-catenin 

translocation into the nucleus, and subsequently Lymphoid Enhancer Binding Factor 

1 - responsive transcriptional activation of downstream genes in cocultured MSCs. 

Together, our study provides a robust body of evidence that the direct interaction of 

DRG neurons with MSCs in a bone-like microenvironment leads to an enhancement 

of osteoblast differentiation potential of MSCs. The osteogenic effect of DRG neurons 

on MSCs is mediated through the regulation of Cx43 and N-cadherin expression and 

activation of the canonical/β-catenin Wnt signaling pathway. 
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INTRODUCTION.3.2 

 

Specific bone cell activity, local factors, and systemic hormones regulate the skeletal 

morphogenesis and homeostasis 1. However, accumulated evidence has 

demonstrated that central and peripheral nervous systems play also an essential role 

in bone formation, remodeling, and regeneration 2. Histologic studies revealed the 

presence of sensory and sympathetic nerve fibers, frequently accompany with blood 

vessels, in the periosteum, trabecular and cortical bone, bone marrow, and 

epiphyseal plate 3,4. Interestingly, the distribution pattern of nerve fibers was shown to 

vary according to the bone region. The periosteum and mineralized bone regions 

with high osteogenic activity present an intensive network of sensory and 

sympathetic nerve fibers expressing neurotransmitters and neurotrophins 3–8. 

Additionally, bone cells have shown to actively respond to a wide range of neuronal 

signaling molecules through specific receptors 9. A large number of animal 

experiments has reinforced these observations by demonstrating that denervation 

has a detrimental effect on bone development, homeostasis and repair 10,11. More 

recently, a work published by Fukuda and coleagues 12 revealed that sensory 

nervous system (SNS) is the main regulator of bone formation and remodeling in 

mice. In this work, the authors identified the Semaphorin 3A (Sema3A) produced in 

sensory neurons as a crucial protein for proper bone mass accrual. Similarly, it was 

reported that intravenous administration of Sema3A in Sema3A-/- mice prevented 

bone loss 13.    

Taken together, these in vivo findings have proven that SNS plays an extensive and 

pivotal role in bone physiology and pathophysiology. However, this evidence at 

molecular/cellular levels is poorly understood. Indeed, the underlying molecular 

mechanisms and bone cells under direct control of SNS remain unclear and further 

studies are required. Additionally, the majority of in vitro studies comprising sensory 

neurons and bone cells were performed with conventional cocultures that are far 

from mimicking the in vivo scenario of bone sensory innervation 14–16. 

In this study, we used a microfluidic coculture system in order to explore in a more 

accurate microenvironment the effect of dorsal root ganglion (DRG) neurons on the 

ability of mesenchymal stem cells (MSCs) to undergo osteoblast differentiation. Our 

results demonstrate that DRG neurons enhance the osteoblastogenesis by regulating 
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the canonical/β-catenin Wnt signaling pathway and expression of osteoblast-related 

genes/proteins in MSCs. 
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RESULTS.3.3 

 

3.3.1. Microfluidic devices allow the neurite outgrowth within the MSCs 

compartment  

 

The identification of the role of the SNS in the regulation of osteogenesis raises a 

fundamental question whether DRG neurons operate directly in osteoblast 

differentiation of MSCs. To explore this hypothesis, we fabricated a microfluidic 

platform, whose design was adapted from previously validated geometric patterns for 

neuronal studies 17. Conventional lithography techniques were used to create the 

microfluidic device, which consist of a miniaturized two-chamber system (Figure 1a) 

connected by well-defined microgrooves (Figure 1b). This microdevice enables to 

separately culture the cell bodies of DRG neurons and target cells, using specific 

culture media for each cell type, and assess the distinct gene/protein profile of each 

cell population 18,19. 

 

 

Figure 1. Microfluidic coculture device. Conventional photolithography and soft 
lithography techniques were used to create the microfluidic device. Phase contrast 
microphotograph of the (a) device and (b) microgrooves with the following dimensions: 3.6 
µm of high, 7 µm wide, and 148 µm long (spaced 48 µm one another). Scale bar = 10 µm. 

 

 

Primary cultures of DRG neurons and MSCs were obtained from adult male Wistar 

rats (Supplementary Figure S1). The morphology of DRG neurons was analyzed by 

immunofluorescence (IF) for calcitonin gene-related peptide (CGRP) (Supplementary 
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Figure S1A). The spindle-shaped morphology of bone marrow MSCs was verified 

under an optical microscope (Supplementary Figure S1B), and the expression of 

positive and negative cell surface markers was confirmed by flow cytometry 

(Supplementary Figure S1C). 

Prior to assembling the coculture system in the microfluidic device (Figure 2), MSCs 

were cultured alone under standard conditions until they attained confluence. 

Thereafter, DRG neurons were seeded into the somal side of the microdevice, while 

MSCs were plated into the axonal side (Figure 2a). DRG neurons were incubated in 

growing medium and MSCs were cultured with osteogenic induction medium (OIM). 

IF against β-III Tubulin was performed on day 7 to observe neurite outgrowth within 

the microfluidic platform. We observed that DRG neurons spread neurites from the 

neural cell bodies, placed on the somal side, toward the MSCs compartment through 

microgrooves (Figure 2a, arrows). Notably, neurites could be detected within the 

axonal side in close proximity with MSCs from day 4 of coculture (Figure 2b, arrow).  

 

 

Figure 2. Neurites cross the microgrooves to the axonal side of the microfluidic 
device. Sensory neurons derived from rat DRG (5 x 104 cells/cm2) and rat bone marrow 
MSCs (104 cells/cm2) were cocultured in microfluidic devices for 7 days. DRG neurons were 
maintained in DMEM supplemented with 2 % (v/v) B-27 and 1 μM AraC; MSCs were 
incubated in OIM composed of DMEM-low glucose with 10 % (v/v) FBS, 1x10-9 M 
dexamethasone, 10 mM β-glycerophosphate, and 50 μg/mL ascorbic acid. (a and b) The 
presence of neurites reaching MSCs was evaluated on day 7 of coculture by IF using an 
antibody directed against a neuronal specific marker (β-III Tubulin) coupled to Alexa Fluor® 
488 (green), and DAPI (nuclei; blue) under a confocal microscope. Actin filaments of MSCs 
were stained using Alexa Fluor® 568 (red)-conjugated phalloidin. Arrows point to neurites. 
Scale bar = 100 µm (a), 50 µm (b). 

 

 

To assess the impact of coculture with DRG neurons on MSCs proliferation in the 

microfluidic platform, we evaluated DNA content and metabolic activity in MSCs after 
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4 and 7 days of coculture in the presence of OIM (Figure 3). No differences were 

found in the DNA concentration between MSCs in mono and coculture (Figure 3a). 

However, we observed an increase of 40 % on day 4 and more than 55 % on day 7 

in the metabolic activity of cocultured MSCs in relation to their respective control 

MSCs (Figure 3b). These results indicate that coculture with DRG neurons stimulates 

the metabolic activity of MSCs during osteoblastogenesis. 

 

 

Figure 3. DRG neurons stimulate the metabolic activity in MSCs. Sensory neurons 
derived from rat DRG (5 x 104 cells/cm2) and rat bone marrow MSCs (104 cells/cm2) were 
cocultured in microfluidic devices for 7 days. DRG neurons were maintained in DMEM 
supplemented with 2 % (v/v) B-27 and 1 μM AraC; MSCs were incubated in OIM composed 
of DMEM-low glucose with 10 % (v/v) FBS, 1x10-9 M dexamethasone, 10 mM β-
glycerophosphate, and 50 μg/mL ascorbic acid. (a) The DNA concentration of MSCs was 
determined at 4 and 7 days of coculture by CyQUANT™ Cell Proliferation Assay. (b) The 
relative metabolic activity of MSCs was measured at 4 and 7 days of coculture by resazurin-
based assay and normalized to the monoculture levels on day 4. Data expressed as 
mean ± SD. (n) indicates the total number of samples for each group. **p < 0.01 statistically 
different from monoculture. The results represent three independent experiments. 

 

 

3.3.2. DRG neurons enhances the differentiation of MSCs towards the 

osteoblast lineage     

 

The osteoblast formation from MSCs involves several cellular/molecular processes, 

including the transcriptional regulation of bone phenotyping genes 20.  To investigate 

whether the coculture with DRG neurons had an influence on the osteoblast 

differentiation capacity of MSCs in the microdevice, we analyzed the transcriptional 

expression of osteoblast-marker genes in MSCs by RT-qPCR after 4 and 7 days of 

coculture in OIM (Figure 4a-d). Genes of interest included runt-related transcription 

factor 2 (Runx2), also known as core-binding factor subunit alpha-1 (Cbfa1), 
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specificity protein transcription factor 7 (Sp7, encoding osterix), collagen type I alpha 

1 chain (Col1a1), and bone gamma-carboxyglutamate protein (Bglap, encoding 

osteocalcin). Runx2/Cbfa1 and Sp7 are two master regulatory genes required for 

osteoblast differentiation 21–24. Runx2/Cbfa1 is the earliest and the most specific 

transcription factor of osteoblastogenesis, guiding the immature bone development. 

This protein can regulate the expression of important osteoblastic genes, regulate 

Runx2 itself, and also interacts with other proteins expressed in osteoblasts, 

including osterix, to modulate the osteoblast genetic program 25–27. Col1a1 is 

considered an early marker for osteoblast differentiation associated to bone ECM 

formation 28,29. On the other hand, Bglap is characterized as a highly specific late 

osteoblastic marker related to bone ECM mineralization 30. In our research, we found 

a significant upregulation of Runx2/Cbfa1 (2.5-fold change), Sp7 (2.8-fold change), 

Col1a1 (2-fold change), and Bglap (3.4-fold change) in MSCs cocultured with DRG 

neurons for 4 days, when compared with MSCs in monoculture (Figure 4a-d). 

Similarly, an increase of Bglap expression was detected on day 7 in MSCs in 

coculture (3.4-fold change compared with monoculture at the same timepoint) (Figure 

4d). Interestingly, there were no differences in the transcription of osteoblast-related 

genes between mono and cocultured MSCs under standard culture conditions 

without osteogenic stimulation (Supplementary Figure S2A-E). These findings reveal 

that coculture with DRG neurons leads to an increase in the transcriptional 

expression of osteoblast-specific genes in MSCs during osteoblastogenesis.  

Alkaline phosphatase (Alp) is another early marker for osteoblast lineage 

development participating in the bone ECM deposition. Intracellular Alp quantification 

assay and cytochemical staining were conducted to further understand the effect of 

coculture with DRG neurons on osteoblast differentiation capacity of MSCs (Figure 

4e and f). Accordingly, MSCs cocultured with DRG neurons for 4 days exhibited 

more intense purple staining for Alp than monocultured MSCs (Figure 4e). On the 

other hand, there were no differences between MSCs in mono and coculture after 7 

days, showing both for cell conditions a weak Alp-staining (Figure 4e). Identical 

results were achieved with Alp activity quantification assay (Figure 4f). Additionally, 

no differences were found in the Alp activity between mono and cocultured MSCs 

under standard culture conditions (Supplementary Figure S2F). These results 

suggest that coculture with DRGs neurons promotes the osteogenic activity in MSCs 

during osteoblast differentiation. Taken together, these results strongly suggest a 

direct involvement of SNS in the regulation of osteoblastogenesis in MSCs. 
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Figure 4. DRG neurons enhance the osteoblast differentiation ability of MSCs. Sensory 
neurons derived from rat DRG (5 x 104 cells/cm2) and rat bone marrow MSCs (104 cells/cm2) 
were cocultured in microfluidic devices for 7 days. DRG neurons were maintained in DMEM 
supplemented with 2 % (v/v) B-27 and 1 μM AraC; MSCs were incubated in OIM composed 
of DMEM-low glucose with 10 % (v/v) FBS, 1x10-9 M dexamethasone, 10 mM β-
glycerophosphate, and 50 μg/mL ascorbic acid. (a-d) Expression profile of Runx2, Sp7, 
Col1a1 and Bglap in MSCs was assessed at 4 and 7 days of coculture by RT-qPCR and 
depicted as a relative ratio to the housekeeping gene Hprt1 normalized to the monoculture 
levels on day 4. (e and f) Alp activity in MSCs was analyzed at 4 and 7 days of coculture by 
Alp activity quantification assay and cytochemical staining. Scale bar = 300 µm. Data 
expressed as mean ± SD. (n) indicates the total number of samples for each group. *p < 
0.05; **p < 0.01 statistically different from monoculture. The results represent three 
independent experiments. 
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3.3.3. DRG neurons modulate the expression of Cx43 and N-cadherin in 

MSCs during osteoblastogenesis 

 

Direct cell-cell communication via gap junctions is an important mechanism by which 

bone cells coordinate their activities. Gap junction alpha-1 protein (GJA1), also 

known as connexin 43 (Cx43), is the most abundant connexin in all bone cells. 

Extensive research has established a crucial role for Cx43 and subsequent 

intercellular channels in differentiation, function, and survival of osteoblasts in vitro 

and in vivo 31,32. Therefore, we evaluated the Cx43 localization and expression during 

the osteoblast differentiation of MSCs cocultured with DRG neurons in the 

microfluidic device. For this, we performed IF and Western blotting (WB) using an 

anti-Cx43 antibody (Figure 5a and b). We found an increase of Cx43 levels mainly in 

the cytosol and perinuclear area of MSCs after 4 and 7 days of coculture compared 

with control MSCs cultured for the same period of time (Figure 5a and b). 

Interestingly, the highest expression of Cx43 was detected on day 4 of coculture 

(Figure 5a and b). These observations show that DRG neurons have a positive 

impact on Cx43 levels in MSCs during osteoblastogenesis.  

Several lines of evidence have indicated that N-cadherin, also known as Cadherin-2 

or neural cadherin, regulates the osteoblastogenesis 33. On the light of these findings, 

we conducted IF and WB against N-cadherin in order to investigate the impact of 

coculture with DRG neurons on N-cadherin localization and expression of MSCs 

maintained in OIM (Figure 5a and b). We observed that MSCs cocultured with DRG 

neurons for 4 days exhibited a sharp increase of N-cadherin levels compared with 

MSCs cultured alone mostly in the cytosol and perinuclear region (Figure 5a and b). 

Conversely, the levels of N-cadherin after 7 days of coculture were lower than MSCs 

in monoculture (Figure 5a and b). In both mono and cocultured MSCs, the staining of 

N-cadherin was diffuse, with a nonjunctional as well as junctional localization (Figure 

5a). These findings demonstrate that coculture with DRG neurons mediates N-

cadherin expression changes in MSCs during osteoblast differentiation. 

Taken together, these findings suggest that SNS modulates the Cx43 and N-

cadherin expression in MSCs during osteoblastogenesis.  
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Figure 5. DRG neurons have an impact on Cx43 and N-cadherin expression in MSCs 
during osteoblast differentiation. Sensory neurons derived from rat DRG (5 x 104 

cells/cm2) and rat bone marrow MSCs (104 cells/cm2) were cocultured in microfluidic devices 
for 7 days. DRG neurons were maintained in DMEM supplemented with 2 % (v/v) B-27 and 1 
μM AraC; MSCs were incubated in OIM composed of DMEM-low glucose with 10 % (v/v) 
FBS, 1x10-9 M dexamethasone, 10 mM β-glycerophosphate, and 50 μg/mL ascorbic acid. (a) 
Subcellular distribution of Cx43 and N-cadherin in MSCs was evaluated at 4 and 7 days of 
coculture by IF using antibodies directed against Cx43 and N-cadherin coupled to Alexa 

Fluor® 594 (red), and DAPI (nuclei; blue) under a confocal microscope. Scale bar = 100 m.  
(b) Cx43 and N-cadherin expression in MSCs was analyzed at 4 and 7 days of coculture by 
WB and depicted as a relative ratio to the respective loading control α-tubulin normalized to 
the monoculture value on day 4. The results represent three independent experiments. 
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3.3.4. DRG neurons promotes the activation of the Canonical/β-catenin 

Wnt signaling pathway in MSCs 

 

It has been widely demonstrated that the canonical Wnt signaling pathway is a key 

regulator of osteogenesis by determining the cell fate decision of MSCs. β-catenin is 

the molecular node of this pathway and its stability and localization are crucial for 

intracellular signal transduction 34. To elucidate whether this mechanism is implicated 

in osteoblast differentiation of MSCs cocultured with DRG neurons in the 

microdevice, we evaluated the subcellular distribution of β-catenin in MSCs by IF 

(Figure 6). In our study, we observed a significant increase of cytoplasmic β-catenin 

expression in cocultured MSCs for 4 and 7 days compared with the respective 

control MSCs (Figure 6a and b). We also found that the nuclei of MSCs in coculture 

for 4 days exhibited greater β-catenin levels than those in monoculture, indicating 

more β-catenin translocated from the cytoplasm to the nucleus (Figure 6a, c, and d). 

Interestingly, the addition of DRG neurons to the MSCs culture resulted in a 3.4-fold 

increase of nuclear β-catenin in MSCs on day 7 of coculture, although not associated 

with a significant transfer of β-catenin into the nucleus (Figure 6a, c, and d). 

Furthermore, a significant 1.6-fold increase of β-catenin gene (Ctnnb1) was detected 

in cocultured MSCs for 4 days compared with MSCs in monoculture (Figure 6e). In 

contrast, no differences were observed in Ctnnb1 expression between MSCs in 

mono and coculture after 7 days (Figure 6e). These results show that coculture with 

DRG neurons promotes the cytosolic accumulation and nuclear translocation of β-

catenin in MSCs.  

 

 

 

 

 

 

 

 

 

 

 

 



 

52 
 

 

Figure 6. DRG neurons induce cytoplasmic accumulation of β-catenin and its 
translocation into the nucleus in MSCs. Sensory neurons derived from rat DRG (5 x 104 

cells/cm2) and rat bone marrow MSCs (104 cells/cm2) were cocultured in microfluidic devices 
for 7 days. DRG neurons were maintained in DMEM supplemented with 2 % (v/v) B-27 and 1 
μM AraC; MSCs were incubated in OIM composed of DMEM-low glucose with 10 % (v/v) 
FBS, 1x10-9 M dexamethasone, 10 mM β-glycerophosphate, and 50 μg/mL ascorbic acid.    
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It is well documented that β-catenin exerts its effect on gene transcription by 

functioning as a transcriptional co-activator. The best-characterized binding partners 

for β-catenin in the nucleus are the members of the T-cell factor (Tcf)/lymphoid 

enhancer factor (Lef) DNA-binding family. In osteoblast progenitor cells, this 

interaction leads to transcriptional activation of Wnt target genes, particularly 

Runx2/Cbfa1, Sp7, TNF receptor superfamily member 11b (Tnfrsf11b), and CCN 

family member 1 (Ccn1), also known as cysteine-rich angiogenic inducer 61 (Cyr61), 

which regulate the osteoblastogenesis 35–37. Based on this, we first examined the 

nuclear colocalization between active-β-catenin and Lef1 in MSCs committed to 

osteoblast lineage and cocultured with DRG neurons in the microfluidic platform. To 

achieve this, we performed IF using double labeling against these proteins (Figure 

7a). The yellow fluorescence resulting of the β-catenin and Lef1 channels overlap 

showed a strong colocalization between these two proteins in nuclei of cocultured 

MSCs for 7 days (Figure 7a, arrows). On the other hand, there seemed to be no 

differences between MSCs in mono and coculture after 4 days (Figure 7a). Then, we 

analyzed the expression of Tnfrsf11b and Ccn1/Cyr61 Wnt-responsive genes in 

MSCs by RT-qPCR after 4 and 7 days of the coculture. We found a significant 

upregulation of Tnfrsf11b (1.5-fold change) and Ccn1/Cyr61 (1.8-fold change) in 

MSCs cocultured with DRG neurons for 4 days, when compared with monocultured 

MSCs (Figure 7b and c). The same results were not verified for day 7 (Figure 7b and 

c). These findings demonstrate that coculture with DRG neurons controls the Lef1-

responsive transcriptional activation of Tnfrsf11b and Ccn1/Cyr61 in MSCs during 

osteoblast differentiation.  

Together, these results suggest that SNS regulates the activation of the canonical/β-

catenin Wnt signaling pathway in MSCs during osteoblastogenesis. 

 

 

 

Figure 6. (continuation) (a) Subcellular distribution of β-catenin in MSCs was evaluated at 4 
and 7 days of coculture by IF using antibodies directed against β-catenin coupled to Alexa 
Fluor® 488 (green), and DAPI (nuclei; blue) under a confocal microscope. Scale bar = 100 

m. (b-d) The level of fluorescence for β-catenin was measured at 4 and 7 days of coculture 
by using the ImageJ software in each MSC and normalized to the monoculture value on day 
4. Data expressed as median, 25 and 75 percentiles, min/max. (n) indicates the total number 
of cells counted for each group. (e) Expression profile of Ctnnb1 in MSCs was assessed at 4 
and 7 days of coculture by RT-qPCR and depicted as a relative ratio to the housekeeping 
gene Hprt1 normalized to the monoculture value on day 4. Data expressed as mean ± SD. 
(n) indicates the total number of samples for each group. *p < 0.05; ***p < 0.001 statistically 
different from monoculture. The results represent three independent experiments. 
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Figure 7. DRG neurons lead to colocalization between β-catenin and Lef1 into the 
nucleus, where together regulate the expression of Wnt-responsive genes in MSCs. 
Sensory neurons derived from rat DRG (5 x 104 cells/cm2) and rat bone marrow MSCs (104 

cells/cm2) were cocultured in microfluidic devices for 4 and 7 days. DRG neurons were 
maintained in DMEM supplemented with 2 % (v/v) B-27 and 1 μM AraC; MSCs were 
incubated in OIM composed of DMEM-low glucose with 10 % (v/v) FBS, 1x10-9 M 
dexamethasone, 10 mM β-glycerophosphate, and 50 μg/mL ascorbic acid.                              
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DISCUSSION.3.4 

 

The majority of the existent in vitro studies focusing on the communication between 

the SNS and bone tissue were performed with coculture models using direct cell-cell 

contact 14–16. However, these models have been widely criticized for not mimicking 

the in vivo scenario of bone sensory innervation. To circumvent this drawback, we 

developed microfluidic devices in order to establish a controlled and isolated 

coculture system between DRG neurons and MSCs, where only the neurites reach 

the MSCs as it happens in the in vivo situation. Despite embryonic DRG neuron 

cultures have the advantage of higher cell density and greater neurite outgrowth they 

are dependent on neurotrophins to survive. Most neurotrophins, especially nerve 

growth factor (NGF or beta-NGF), are pleiotropic causing multiple biological effects 

38. For this reason we focused on the use of adult DRG neurons.  

Osteoblast differentiation of MSCs in vitro can be achieved by the presence of 

dexamethasone, ascorbic acid and β-glycerol phosphate in the culture medium 39,40. 

Under these culture conditions, the commitment/maturation of MSCs towards 

osteoblast lineage have been divided into three hallmark stages. The first stage is 

marked by the increase in the number of cells as result of MSCs proliferation. This is 

followed by cell cycle arrest and early osteoblastic differentiation of MSCs associated 

with ECM deposition/maturation. The final stage is characterized by the late 

osteoblastic differentiation related to ECM mineralization 41. The temporal pattern of 

expression of genes/proteins characterizing the different stages of osteoblast lineage 

development varies according to the cell culture models 42.  

The formation of bone ECM during the second stage of osteoblastogenesis is 

associated with the maximal expression of Alp and transcriptional activation of early 

osteoblastic genes, particularly Col1a1. In the later stages of osteoblast                                                  

 

Figure 7. (continuation) (a) Nuclear colocalization of active-β-catenin and Lef1 in MSCs 
was evaluated at 4 and 7 days of coculture by IF with antibodies directed against active-β-
catenin coupled to Alexa Fluor® 488 (green), Lef1 coupled to Alexa Fluor® 594 (red), and 
DAPI (nuclei; blue) under a confocal microscope. Arrows point to nuclear colocalization. 

Scale bar = 100 m and 20 m inset images. (b and c) Expression profile of Tnfrsf11b and 
Ccn1/Cyr61 in MSCs was assessed at 4 and 7 days of coculture by RT-qPCR, and depicted 
as a relative ratio to the housekeeping gene Hprt1 normalized to the monoculture value on 
day 4. Data expressed as mean ± SD. (n) indicates the total number of samples for each 
group. *p < 0.05 statistically different from monoculture. The results represent three 
independent experiments. 
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differentiation while the Alp levels are decreased, the expression of genes related to 

mineralization, such as Bglap and Spp1 (encoding osteopontin), are increased at the 

transcriptional level 41,43. Accordingly, in our research, we found a significant 

upregulation of early osteoblast-specific genes, especially Runx2, Sp7, and Col1a1 in 

MSCs cocultured with DRG neurons for 4 days in the presence of OIM. We also 

observed a peak on day 4 of Alp levels in cocultured MSCs under the same culture 

conditions. Moreover, after 7 days of coculture under osteogenic stimulation, the 

mRNA expression of Bglap in MSCs was significantly increased, and the levels of Alp 

tended to decline. These results indicate that on day 4 of coculture with DRG 

neurons, MSCs were in the second stage of osteoblastogenesis. We can also 

presume that on day 7 of coculture, the now preosteoblasts had progressed to the 

final stage to become mature osteoblasts. The effect of DRG neurons on 

transcriptional regulation of osteoblast-marker genes in MSCs after 14 days of 

coculture in the presence of OIM was also evaluated, but no differences were 

detected between mono and cocultured MSCs (data not shown). Interestingly, there 

were no differences in the transcription of osteoblast-related genes and also in the 

activity of Alp between MSCs in mono and coculture without OIM (Supplementary 

Figure S2). Together, these results provide a strong evidence for a role of DRG 

neurons in enhancing the osteoblast differentiation from MSCs. However, its effect 

per se is not sufficient to induce the osteoblastogenesis in vitro. 

Multiple studies have provided insights into the importance of Cx43 in osteoblast and 

bone formation 31,32. Specifically, it was shown that mutations in GJA1 impair the 

osteoblast lineage development and cause skeletal anomalies associated with 

oculodentodigital dysplasia 44. The impact of the SNS on Cx43-mediated 

osteoblastogenesis is unknown, although few reports indicate a role of neuropeptides 

in this process. Specifically, was demonstrated that CGRP and Substance P are 

implicated on the promotion of osteoblast proliferation and activity through an 

increase of gap junctional intercellular communication (GJIC) and Cx43 expression 

45,46. Recently, an in vitro study showed that Cx43 expression and GJIC are 

increased during the osteoblast formation, both at transcriptional and translational 

levels. The authors also demonstrated that Cx43 and subsequent GJIC play a central 

role in early osteoblast differentiation by mediating the expression of Runx2 47. These 

reports may explain the sharp increase of Cx43 expression in MSCs cocultured with 

DRG neurons for 4 days in the presence of the OIM. Despite a significant decrease 

on day 7, the Cx43 levels in cocultured MSCs were significantly higher than in MSCs 
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cultured alone for the same period. Interestingly, we observed a mainly cytosolic and 

perinuclear distribution of Cx43. Some studies have proposed that the subcellular 

localization of Cx43 is related to different signaling activities, which contribute 

differently to the regulation of cell proliferation and differentiation 48. These results 

show for the first time that DRG neurons have a positive effect on MSCs Cx43 

expression and maybe on GJIC during osteoblast differentiation, especially at an 

early stage. 

N-cadherin is another functional protein involved in osteogenesis 33. However, its 

impact on osteoblast lineage development is not consensual among experts. Many 

reports have shown that N-cadherin hinders the osteoblast formation and function 

49,50. On the other hand, we and others have demonstrated that N-cadherin is 

required for early stages of osteoblastogenesis 51,52. A recent in vivo study described 

a dual action of this protein on osteolineage cells depending upon their differentiation 

level. The authors demonstrated that N-cadherin maintains the pool of 

osteoprogenitor and stem cells and prevents the osteoblast differentiation of lineage-

committed cells and function of mature osteoblasts 53. In our research, we detected 

an increase of N-cadherin expression in MSCs cocultured with DRG neurons for 4 

days, followed by a decrease three days later. These findings indicate that DRG 

neurons differentially modulate the expression of N-cadherin in MSCs according to 

their osteoblast developmental stage.  

Different mechanisms have been proposed for regulation of osteoblast differentiation 

by N-cadherin. One of them is the increase of N-cadherin-mediated cell-cell 

adhesion, resulting in activation of signaling events that promote osteoblast gene 

expression. Interestingly, was suggested that the increase of cell-cell adhesion leads 

to an increase of Cx43-mediated GJIC and subsequent activation of osteoblast-

marker genes, both at transcriptional and translational levels. It has also been 

reported that the interaction of N-cadherin with molecular players of the Wnt signaling 

pathway triggers intracellular signal transduction. In particular, the interaction of N-

cadherin with β-catenin at the plasma membrane results in β-catenin sequestration, 

reduction of the cytosolic β-catenin pool and inhibition of the canonical Wnt signaling. 

Finally, N-cadherin can interact with the Wnt-co-receptors LRP5 or LRP6, promoting 

the β-catenin degradation, reduction of Wnt/β-catenin signaling, and decrease of 

osteoblastogenesis 54. 

In this study, we detected a sharp increase in cytoplasmic accumulation of β-catenin 

and its translocation into the nucleus of MSCs cocultured with DRG neurons. In 
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addition, the IF staining showed that β-catenin largely colocalized with Lef1 in the 

nucleus of MSCs cocultured for 7 days. More importantly, we found an upregulation 

of Wnt target genes implicated in the osteoblast lineage development in MSCs 

cocultured with DRG neurons for 4 days. These results reveal for the first time that 

DRG neurons promote the activation of the canonical Wnt signaling pathway in 

MSCs. Interestingly, recent reports have indicated that this pathway directly 

increases the metabolism of osteoblast-lineage cells by stimulating the aerobic 

glycolysis, glutamine catabolism as well as fatty acid oxidation 55. Consistently, we 

observed an increase in the metabolic activity of MSCs cocultured with DRG 

neurons. However, we cannot exclude that the sensory neurons may also be acting 

through other signaling pathways. Indeed, a recent study showed that NGF-TrkA 

signaling by sensory nerves coordinates the osteoprogenitor lineage progression and 

bone formation in vivo 56.  

The present study provides several lines of evidence that DRG neurons play an 

incremental role for osteoblastogenesis by acting directly on MSCs and activating the 

Wnt/β-catenin signaling pathway. Furthermore, we were able to define the temporal 

pattern of expression of genes/proteins involved in the ability of MSCs to undergo 

osteogenic differentiation in response to DRG neurons communication (Figure 8).  

Overall, these findings provide new insights into how SNS enhances bone formation 

and can inform the development of future therapeutic strategies for bone 

regeneration/repair that takes into account the SNS. 

 

 
Figure 8. Role of DRG neurons in different phases of osteoblast differentiation from 
MSCs. DRG neurons promote the osteogenic differentiation potential of MSCs by regulating 
the canonical/β-catenin Wnt signaling pathway and expression of osteoblast-related 
genes/proteins in MSCs. 
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MATERIAL AND METHODS.3.5 

 

3.5.1. Microfluidic devices fabrication 

 

Microfluidic devices were obtained using standard photolithography and soft 

lithography procedures 17. 

 

3.5.2. Coculture of DRG neurons and MSCs in the microfluidic devices 

 

Microfluidic devices were electrostatically attached over glass coverslips, previously 

coated with 0.1 mg/mL Poly-D-lysine (PDL, Sigma-Aldrich®, St. Louis, MI, USA) and 

20 μg/mL laminin (Sigma-Aldrich®). After attained the confluence, MSCs were 

seeded in the axonal side of a microfluidic device at a density of 104 cells/cm2 while 

freshly harvested and dissociated DRG neurons were plated in the somal side at a 

density of 5 x 104 cells/cm2 and left undisturbed in a humidified incubator to allow 

adhesion. DRG neurons were cultured in growing medium composed of Dulbecco's 

modified eagle's medium (DMEM, Life Technologies™, Gibco®, Carlsbad, CA, USA), 

with 2 % (v/v) B-27 Serum-Free Supplement® (B-27, Gibco®) and 1 % (v/v) 

penicillin/streptomycin (Pen/Strep, Gibco®). MSCs were incubated in OIM, which 

consisted of DMEM - low glucose supplemented with 10 % (v/v) fetal bovine serum 

(FBS, P30-3305, PAN™ - Biotech, Aidenbach, Germany), 1 % (v/v) Pen/Strep, 1x10-

9 M dexamethasone (Sigma-Aldrich®), 10 mM β-glycerophosphate (Sigma-Aldrich®) 

and 50 μg/mL ascorbic acid (Sigma-Aldrich®). Non-neuronal cells were eliminated 

using 1 μM cytosine arabinofuranoside (AraC, also known as cytarabine, Sigma-

Aldrich®). Cocultures were maintained for 7 days in a humidified atmosphere, and the 

media were renewed on day 4 of coculture. 

 

3.5.3. Immunofluorescence staining 

 

DRG neurons and MSCs were washed with Phosphate-Buffered Saline (PBS; 0.1 M, 

pH 7.4) and fixed in 1 % (v/v) paraformaldehyde (PFA, MM France, Brignais, France) 

for 10 min at room temperature (RT). After a wash with PBS, cells were 

permeabilized for 5 min with 0.1 % (v/v) triton® X-100 (EDM Millipore, Billerica, MA, 
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USA) and washed once more. Then, cells were blocked with 1 % (w/v) bovine serum 

albumin (BSA, GE Healthcare, Chicago, IL, USA) for 30 min at RT to minimize the 

non-specific binding. Cells were further incubated with the primary antibody solution 

for 1 h at RT. After a wash with PBS, cells were incubated for 45 min in the dark with 

a solution containing the appropriated conjugated secondary antibody. Nuclei were 

counterstained for 5 min with 4',6-diamidino-2-phenylindole (DAPI, 1:5000; Life 

Technologies™, Molecular Probes®). All dilutions were made in PBS. Images were 

acquired in a Leica TCS SPE Confocal Laser Scanning Microscope (Leica, Wetzlar, 

Germany). 

 

3.5.4. Cell metabolic activity and proliferation assays 

 

DNA content of MSCs was determined using CyQUANT™ Cell Proliferation Assay 

Kit (Life technologies™, Molecular Probes®), according to manufacturer’s 

instructions. 

The resazurin-based assay was performed for detection of metabolic activity of 

MSCs. Briefly, 400 μL of fresh culture medium supplemented with 0.01 mg/mL (w/v) 

resazurin (Sigma-Aldrich®) was added directly to each microfluidic device. MSCs 

were incubated at 37 ºC for 4 h, and then 100 μL from each device was transferred to 

a 96-well microplate. Fluorescence (λem = 530 nm, λex = 590 nm) was measured on 

a VICTOR™ X3 Multilabel Plate Reader (PerkinElmer, Waltham, MA, USA). DNA 

content of MSCs was determined using CyQUANT™ Cell Proliferation Assay kit (Life 

technologies™, Molecular Probes®), according to manufacturer’s instructions. 

 

3.5.5. RNA extraction, cDNA synthesis, and RT-qPCR analysis 

 

Total RNA was extracted from MSCs by using the RNeasy® Plus Micro Kit (Qiagen, 

Hilden, Germany) according to the manufacturer’s protocol. RNA final concentration 

and purity (OD260/280) was determined using a NanoPhotometer® P 330 (Implen 

GmbH, Munich, Germany). 50 ng of total RNA was reverse transcribed into cDNA 

using the Maxima Reverse Transcriptase kit (Thermo Scientific™, Thermo Fisher 

Scientific, Waltham, MA, USA), according to the manufacturer’s protocol. RT-qPCR 

experiments were run using a CFX Connect™ Real-Time PCR Detection System 

(Bio-Rad Laboratories, Hercules, CA, USA) and analyzed with the CFX Manager™ 
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software, version 3.0 (Bio-Rad Laboratories). Target gene expression was quantified 

using the cycle threshold (Ct) values and relative mRNA expression levels were 

calculated as follows: 2^ (Ct reference gene - Ct target gene). Rat ribosomal protein 

lateral stalk subunit P0 (Rplp0), glyceraldehyde 3-phosphate dehydrogenase 

(Gapdh), and hypoxanthine phosphoribosyl transferase 1 (Hprt1) were used as 

reference genes. 

 

3.5.6. Alkaline phosphatase activity detection 

 

Quantitative determinations of Alp were performed in MSCs lysates by using the 

LabAssay™ ALP kit (Wako Pure Chemical Industries, Ltd., Chūō-ku, Osaka, Japan) 

following manufacturer’s instructions. Absorbance at 405 nm was measured on a 

VICTOR™ X3 Multilabel Plate Reader. Cell lysates were analyzed for protein content 

using the Pierce™ BCA Protein Assay Kit (Thermo Scientific™) according to the 

manufacturer’s protocol, and intracellular Alp levels were normalized for total protein 

concentration.  

For cytochemical staining, MCSs were washed with PBS and fixed in 4 % (v/v) PFA 

for 10 min at RT. After a wash with water, cells were incubated for 30 min in a 

solution with 0.01 % Naphtol AS-MX phosphate (Sigma-Aldrich®) and 0.03 % Fast 

Violet B salt (Sigma-Aldrich®), at RT in the dark. Finally, cells were 

washed with water and air-dried. Images were acquired in a Leica MZ10F 

stereomicroscope (Leica). 

 

3.5.7. Protein extraction, precipitation and Western blotting analysis 

 

Cells were lysed on ice for 15 min with lysis buffer containing 1 % (v/v) triton® X-100, 

and 1 % (v/v) Nonidet-P40 enriched with a protease and phosphatase inhibitor 

cocktail (Sigma-Aldrich®). To separate proteins from cellular debris, cells lysates 

were spun down and the supernatant (proteins) were quantified using the Pierce 

BCA Protein Assay Kit (Thermo Scientific™). 40 μg of total protein was precipitated 

with acetone, denatured in loading buffer, separated by sodium dodecyl sulphate-

polyacrylamide gel electrophoresis (SDS-PAGE), on a 10 % polyacrylamide gel, and 

electroblotted to the Hybond™-C Extra nitrocellulose membrane (GE Healthcare Life 

Sciences, Chicago IL, USA). Membranes were blocked for 1 h with 5 % BSA and 0.5 
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% Tween-20 in PBS and immunoblotted overnight at 4 °C with primary antibodies. 

Horseradish peroxidase (HRP) - conjugated secondary antibodies were used 

accordingly. Immunodetection was carried out with the Clarity™ Western ECL 

detection kit reagents (Bio-Rad Laboratories). Membranes were visualized on 

ImageQuant™ LAS 4000 mini (GE Healthcare Life Sciences) and bands intensity 

was quantified using the ImageJ software. 

 

3.5.8. Statistical analysis 

 

GraphPad Prism® software, version 5.0 (GraphPad Software Inc, Sandiego, CA, 

USA) was used for statistical analysis. Results are presented as a bar with the mean 

± standard deviation (mean ± SD) or box-plot with median and min to max whiskers. 

Significant differences between two independent groups were established using the 

Mann-Whitney U test. Values of p < 0.05 were considered statistically significant.  
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SUPPLEMENTARY INFORMATION.3.8 

 

3.8.1. Supplementary Figures 

 

 

Supplementary Figure S1. DRG neurons and MSCs rat primary cultures 
characterization. (A) Sensory neurons, isolated from rat DRG and dissociated using a 
prolonged collagenase treatment followed by mechanical trituration, were cultured in DMEM 
containing 2 % (v/v) B-27 supplement and 1 % Pen/Strep. Cell morphology was evaluated by 
IF 7 days after isolation, using an antibody directed against calcitonin gene-related peptide 
(CGRP) coupled to Alexa Fluor® 488 (green), and DAPI (nuclei; blue) under a confocal 
microscope. Scale bar = 100 µm. (B and C) Rat bone marrow MSCs were selected by plastic 
adherence in the presence of DMEM - low glucose supplemented with 10 % (v/v) FBS and 1 
% (v/v) Pen/Strep. (B) 5 days after isolation, cell morphology was observed under an 
inverted phase contrast microscope and (C) immunophenotypic analysis was performed by 
flow cytometry (CD29, CD90 and CD105 as MSCs specific markers and CD34 and CD45 as 
hematopoietic markers). 
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Supplementary Figure S2. DRG neurons do not have the capacity to induce osteoblast 
differentiation of MSCs in the absence of an osteogenic stimulus. Sensory neurons 
derived from rat DRG (5 x 104 cells/cm2) and rat bone marrow MSCs (104 cells/cm2) were 
cocultured in microfluidic devices for 7 days. DRG neurons were maintained in DMEM 
supplemented with 2 % (v/v) B-27 and 1 μM AraC; MSCs were incubated in standard culture 
medium composed of DMEM-low glucose with 10 % (v/v) FBS. (A-E) Expression profile of 
Runx2, Sp7, Col1a1, Bglap, and Ctnnb1 in MSCs was assessed at 4 and 7 days of coculture 
by RT-qPCR and normalized to the monoculture levels on day 4. Gene expression levels 
were calculated as a relative ratio to the average value of housekeeping gene Rplp0. Data 
expressed as mean ± SD. (n) indicates the total number of samples for each group. (F) Alp 
activity in MSCs was analyzed at 4 and 7 days of coculture by Alp cytochemical staining. The 
results represent four independent experiments. 
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3.8.2. Supplementary Experimental Procedures 

 

3.8.2.1. Microfluidic devices fabrication 

Microfluidic devices were obtained using standard photolithography and soft 

lithography procedures. The first step comprised the fabrication of a master mold, 

which consists of two layers of photoresist structures on a flat silicon wafer substrate. 

Afterward, poly (dimethylsiloxane) (PDMS, Sylgard 184, Dow Corning, Midland, MI, 

USA) was mixed with a curing agent at a w/w of 10:1 and poured onto the silicon 

wafer. Master mold with PDMS was then placed in a vacuum desiccator for 15 min to 

remove air bubbles from the PDMS. Subsequently, PDMS was cured at 60 ºC for 2 h, 

and microfluidic chambers were cut and separated from the master mold. Reservoirs 

were punched out using an 8 mm tissue biopsy punch. Finally, the microfluidic 

devices were sterilized in 70 % (v/v) ethanol and allowed to dry in a laminar flow 

hood. 

Before use, microfluidic devices were irradiated with UV light for 20 min to create 

reactive species on the surface, which when placed together with glass coverslips to 

form an electrostatic bond. UV irradiation also makes the surface hydrophilic helping 

the addition of liquids. 

 

3.8.2.2. Rat bone marrow mesenchymal stem cells isolation 

Primary bone marrow MSCs were obtained from a healthy 6-10 week-old male 

Wistar rat. Briefly, after sacrificing the rat by CO2, back limbs were harvested and soft 

tissue attached to the skeleton was removed. Femora and tibia were washed with 

ice-cold hank's balanced salt solution (HBSS, Gibco®), supplemented with 10 % (v/v) 

Pen/Strep, and the extremities were clipped to expose the marrow. Bones were then 

transferred to a 1.5 mL microcentrifuge tube, which was subsequently inserted into a 

15 mL centrifuge tube and centrifuged for 1 minute at 3000 rpm to collect the 

marrow. The obtained pellet was resuspended in standard culture medium, which 

consisted of DMEM - low glucose with 10 % (v/v) FBS and 1 % (v/v) Pen/Strep. Cells 

were dispersed using a 21G needle for 4-6 times and filtered through a 100 μm cell 

strainer to remove bone fragments and cell clumps. The cell suspension was then 

centrifuged at 1200 rpm for 5 min, resuspended in standard culture medium, and 

maintained in a humidified incubator (37 °C and 5 % CO2). The medium was 

changed after 3 days to remove non-adherent cells, and subsequently, the adherent 
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cells were cultured to confluence (the medium was renewed every 3/4 days). Cells 

from the first passage were used in all studies. 

 

3.8.2.3. Rat dorsal root ganglion neurons isolation 

Primary DRG neurons were obtained from healthy 6-10 week-old male Wistar rats. 

Briefly, after sacrificing the rats by CO2, spinal columns were removed and placed in 

HBSS with 10 % (v/v) Pen/Strep. Columns were opened from the caudal to the 

rostral end with scissors to reveal the DRG. Then, DRG were individually recovered, 

placed in DMEM and the nerve trunks removed with a scalpel blade. Subsequently, 

DRG were digested with 10 mg/mL Collagenase, Type IV (Gibco®) for 2 h at 37 ºC. 

After centrifugation at 1200 rpm for 5 min, the pellet was resuspended in DMEM. 

Afterward, DRG were mechanically dissociated using fire-polished glass Pasteur 

pipettes (full diameter and ½ diameter). The cell suspension was then centrifuged at 

1200 rpm for 5 min 3 times and resuspended in growing medium composed of 

DMEM with 2 % (v/v) B-27, 1 μM cytosine arabinofuranoside (AraC, also known as 

cytarabine), and 1 % (v/v) Pen/Strep. 

 

3.8.2.4. Flow cytometric analysis 

Trypsinized MSCs (5 x 104 cells) were fixed in 1 % (v/v) PFA for 10 min at 4 °C. Cells 

were then washed with PBS and incubated in the dark with antibodies anti-CD29-

Cy5, anti-CD34-FITC, anti-CD105-Cy5 (20 μg/mL; Bioss Antibodies Inc., Woburn, 

MA, USA), anti-CD45-PE-CY5, and anti-CD90-FITC (20 μg/mL; Becton Dickinson, 

East Rutherford, NJ, USA) for 60 min at 4 °C. Matched isotype control antibodies 

were used as negative controls. Cells were then washed twice with PBS and 

resuspended in PBS. For immunophenotyping analysis, a typical forward and side 

scatter gate was set to exclude dead cells and aggregates. A total of 7000 events in 

the gate were collected and fluorescence was analyzed with a BD Accuri™ C6 Flow 

Cytometer (Becton Dickinson, Franklin Lakes, NJ, USA) using the CFlow® Plus 

software. 
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IN BRIEF.3.9 

 

Data presented in this first part show an enhancement of osteoblast differentiation 

potential of MSCs in a direct response to the DRG neurons interaction and 

communication. The osteogenic effect of DRG neurons on MSCs is mediated 

through the activation of the canonical Wnt signaling pathway. This “efferent” function 

of DRG neurons raises a question about the specific identity of its subpopulation. 

Indeed, the capsaicin-sensitive sensory neurons represent a peculiar type of sensory 

neurons able to communicate peripherally with target cells via release of the stored 

neurotransmitters 60. Based on this, in the second part of this dissertation, we aimed 

at better characterizing the subset of DRG neurons involved in osteoblast 

differentiation of MSCs, by investigating the effect of capsaicin-activated sensory 

neurons on this process and identifying the key neurotransmitters. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

74 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

75 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ARTICLE 2.04 

 

 

 

 

 

 

 

 

 

 

 

 



 

76 
 

 

 

  



 

77 
 

Activation of capsaicin-sensitive dorsal root ganglion 

neurons induces the osteoblast differentiation of 

mesenchymal stem cells in vitro  

 

Diana Isabel Silva1*, Bruno Paiva dos Santos1, Hugo Oliveira1, 

Joëlle Amédée1 

 

1 Univ. Bordeaux, Tissue Bioengineering, U1026, F-33076 Bordeaux, France; 

INSERM, Tissue Bioengineering, U1026, F-33076 Bordeaux, France. 

*Correspondence: diana.da-silva@inserm.fr 

 

 

 

 

Manuscript under preparation 

 

 

 

 

 

 

 

 

 

 

 

 

mailto:diana.da-silva@inserm.fr


 

78 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

79 
 

ABSTRACT.4.1 

 

Bone formation, remodeling, and regeneration processes are under the control of the 

sensory nervous system. Recently, we identified the mesenchymal stem cells 

(MSCs) as a direct target of the sensory neurons. However, little knowledge 

concerning the subpopulation of these neurons that is involved in osteoblast 

differentiation of MSCs has been accumulated. In this study, we focused on the effect 

of capsaicin-sensitive sensory neurons activation on osteoblastogenesis in vitro.  

Bone marrow MSCs were cultured with conditioned medium (CM) originated from the 

culture medium of dorsal root ganglion (DRG) neurons treated with capsaicin. The 

transcriptional and translational expressions of genes known as markers of 

osteoblast differentiation were analysed in MSCs by RT-qPCR and alkaline 

phosphatase (ALP) activity assay.  

The activation of capsaicin-sensitive DRG neurons was confirmed by an increase in 

the levels of two important sensory neuropeptides, calcitonin gene-related peptide 

and Substance P, in the culture medium. We report that MSCs cultured for 4 days 

with CM obtained from culture medium of capsaicin-activated DRG neurons showed 

a transcriptional upregulation of osteoblast-related genes. Moreover, we observed a 

significant increase of ALP intracellular levels in MSCs maintained under these 

culture conditions for 7 days. Our study suggests that the activation of capsaicin-

sensitive DRG neurons induces the osteoblast differentiation of MSCs. 
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INTRODUCTION.4.2 

 

Accumulated evidence supports the concept that innervation is involved in the 

regulation of bone development, maintenance and healing 1–3. Moreover, evidence 

for an important role of the sensory innervation has emerged in the regulation of 

osteoblast and bone formation 4–7. A study of Fukuda and colleagues revealed that 

Semaphorin 3A produced by sensory nerves plays a key role in bone homeostasis 

through the modulation of the local nerve ingrowth 6. The role of the sensory nervous 

system on osteogenesis was further explored in a recent work published by our 

group. In this study, we demonstrated that sensory neurons play a direct and positive 

role on transcriptional and translational programs of osteoblast differentiation of 

MSCs in vitro. However, the specific subset of sensory neurons and the main 

neuropeptides directly implicated in this process remain unclear.  

Extensive research has described that the activation of transient receptor potential 

vanilloid subfamily member 1 (TRPV1) in sensory neurons by capsaicin, the pungent 

compound in hot chili pepper, promotes the release of neuropeptides, particularly 

calcitonin gene-related peptide (CGRP) and Substance P 8–12. Interestingly, it was 

shown that the amount of sensory neuropeptides is markedly increased at the sites 

of bone formation due to the increase of TRPV1 expression in the local sensory 

neurons 13. TRPV1 is commonly found in small diameter (Aδ) myelinated and 

peptidergic C-sensory nerve fibers 14–16. However, some studies have suggested that 

TRPV1 is also expressed at very low levels in a substantial portion of nonpeptidergic 

C-sensory nerve fibers 17–20. Activation of TRPV1 by noxious mechanical, chemical, 

or thermal stimuli, leads to the influx of calcium and sodium cations into the sensory 

neurons triggering its depolarization and consequent neurotransmitter release 8,21,22.  

In the present study, we used conditioned medium (CM) originated from the culture 

medium of capsaicin-stimulated dorsal root ganglion (DRG) neurons to culture 

MSCs. 

The objective was to explore the role of activated capsaicin-sensitive DRG neurons, 

on the ability of MSCs to undergo osteoblast differentiation. Our results suggest that 

capsaicin-induced activation of sensory neurons induces the osteoblastogenesis in 

vitro possibly by mediating the release of neuropeptides. 
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RESULTS.4.3 

 

4.3.1. CM obtained from the culture medium of activated capsaicin-

sensitive DRG neurons triggers the osteoblast differentiation process in 

MSCs 

 

Sensory neurons are an important target for capsaicin, and its activation elicite the 

release of CGRP and Substance P 8–12. In this sense, after 4 days of culture, DRG 

neurons were treated with 100 nM capsaicin for 1h. Subsequently, ELISA was 

conducted to measure the levels of CGRP and Substance P levels in culture medium 

(Figure 1). As expected, DRG neurons exposure to capsaicin significantly increased 

the release of CGRP (Figure 1A) and Substance P (Figure 1B), when compared with 

unexposed DRG neurons, suggesting an activation of capsaicin-sensitive sensory 

neurons. 

 

Figure 1. Capsaicin evokes a marked release of CGRP and Substance P in primary 
cultures of DRG neurons. Sensory neurons isolated from rat DRG (5 x 104 cells/cm2) were 
treated on day 4 of culture with capsaicin (100 nM, for 1h). ELISA determined (A) CGRP and 
(B) Substance P levels in the cell culture medium. Data express mean ± SD. (n) indicates the 
total number of samples for each group. *p < 0.05, ***p < 0.001, statistical difference from the 
control without capsaicin. 
 

 

Osteoblastogenesis is characterized by transcriptional and translational regulation of 

bone phenotyping genes 23. To investigate whether the culture with CM derived from 

the culture medium of capsaicin-activated DRG neurons had an influence on the 
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osteoblast differentiation capacity of MSCs, we analysed the expression of 

osteoblast-related genes in MSCs by RT-qPCR after 4 and 7 days of culture (Figure 

2). The studied genes included runt-related transcription factor 2 (Runx2), specificity 

protein transcription factor 7 (Sp7, encoding osterix), collagen type I alpha 1 chain 

 

 

 

Figure 2. CM originated from capsaicin-sensitive DRG neurons leads to osteoblast 
lineage development from MSCs. Rat bone marrow MSCs (104 cells/cm2) were cultured in 
a six-well plate for 7 days with CM from DRG neurons treated with capsaicin (100 nM, for 
1h). (A-E) Expression profile of Runx2, Sp7, Col1a1, Bglap and Ctnnb1 in MSCs was 
assessed at 4 and 7 days of culture by RT-qPCR and depicted as a relative ratio to the 
housekeeping gene Gapdh, normalized to the levels of positive control (MSCs cultured under 
osteogenic conditions) on day 4. (F) ALP activity in MSCs was analyzed on day 7 of culture 
by ALP activity quantification assay. Data expressed as mean ± SD. (n) indicates the total 
number of samples for each group. *p < 0.05 statistically different from control without 
capsaicin. 
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(Col1a1), bone gamma-carboxyglutamate protein (Bglap, encoding osteocalcin), and 

catenin beta 1 (Ctnnb1, encoding β-catenin).  Runx2, Sp7, Col1a1, and Ctnnb1 were 

considered markers of early osteoblastogenesis, and Bglap was used as a late 

marker. We found an upregulation of the early osteoblastic genes in MSCs 

maintained for 4 days in CM originated from the culture medium of capsaicin-treated 

DRG neurons when compared with MSCs incubated with nontreated DRG neurons-

CM (Figure 2A-E). In addition, the alkaline phosphatase (ALP) activity quantification 

assay revealed a significant increase of intracellular levels of this protein in MSCs 

cultured with CM obtained from the culture medium of stimulated DRG neurons 

(Figure 2F). These findings suggest that the activation of capsaicin-sensitive sensory 

neurons induces the osteoblast differentiation and activity in MSCs. 
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DISCUSSION.4.4 

 

It has been demonstrated a pivotal participation of sympathetic and sensory nervous 

systems in both local and systemic bone metabolism 23–26. Electrophysiological and 

histological studies have enabled to identify the nature and distribution of bone nerve 

fibers 19,23–25,27–30. Furthermore, several studies have identified the expression of 

receptors for numerous neurotransmitters in bone cells 31. Small diameter myelinated 

fibers, particularly Aδ, and unmyelinated peptide-rich C-fibers are the main sensory 

nerve fibers found on bone tissue 19,20,32,33. Sensory neuropeptides, especially CGRP 

and Substance P, are expressed in these type of fibers 34. In addition, both Aδ- and 

C-fibers are characterized by expression of TRPV1 14–16,20. It is well documented that 

the TRPV1 activation in sensory neurons by a noxious stimulus (e.g. capsaicin) 

promotes the release of neurotransmitters from both central and peripheral terminals 

10–12. Accordingly, we found that capsaicin-induced activation of DRG neurons 

elicited a pronounced release of CGRP and Substance P 8,10–12. Multiple studies 

have provided insights into the importance of sensory neuropeptides in bone integrity 

13. It was shown that some hereditary sensory neuropathies, such as familial 

dysautonomia, are related to skeletal disorders due to decrease of unmyelinated 

sensory nerve fibers and consequent decrease of local neuropeptides 35–37. 

Specifically, CGRP and Substance P have been identified to contribute to 

osteoblastogenesis in vitro 38–41.  Some studies have demonstrated that the addition 

of CGRP to MSCs osteogenic culture medium results in an increase of osteoblast 

marker genes expression, particularly, Runx2, Alp, Col1a1, and Bglap, in these cells 

42. Likewise, the addition of Substance P to the cell culture medium has been 

reported to increase the transcriptional expression of Runx2, Col1a1 and Bglap in 

osteoblastic cells at a late stage of osteoblast differentiation 41,43. Moreover, it was 

described that Substance P stimulates the early osteoblastogenesis by upregulating 

the Sp7 in MSCs and activating the Wnt-β-catenin signaling pathway in MC3T3-E1 

cells 41,44,45. Interestingly, this neuropeptide was also described to stimulate the 

osteoblast activity by enhancing gap junction intercellular communication 46. In our 

research, we observed an upregulation of early osteoblastic genes (i.e. Runx2, Sp7, 

Col1a1, and Ctnnb1) in MSCs cultured for 4 days with CM obtained from the culture 

medium of capsaicin-activated sensory neurons. Furthermore, under the same 
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culture conditions, we found on day 7 a significant increase of osteogenic activity in 

MSCs.   

Together, these findings suggest an involvement of stimulated myelinated Aδ and 

unmyelinated peptide-rich C-fibers in the positive regulation of early osteoblastic 

differentiation of MSCs in vitro, possibly by mediating the release of neuropeptides 

like CGRP and Substance P.  

Understanding the neuro-skeletal interplay can inform the development of new 

therapeutic approaches for bone regeneration/repair based on the targeting of 

receptors activated by neuropeptides released from a specific type of sensory nerve 

fibers. 
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MATERIAL AND METHODS.4.5 

4.5.1. Rat primary cells isolation and culture 

 

Primary DRG neurons and bone marrow MSCs were obtained from healthy male 6-

10 week-old male Wistar rats, as described previously. 

DRG neurons (104 cells/cm2) were seeded on glass coverslips, previously coated 

with 0.1 mg/mL Poly-D-lysine (PDL, Sigma-Aldrich®, St. Louis, MI, USA) and 20 

μg/mL laminin (Sigma-Aldrich®). Cells were maintained for 4 days in Dulbecco's 

modified eagle's medium (DMEM, Life Technologies™, Gibco®, Carlsbad, CA, USA), 

with 2 % (v/v) B-27 Serum-Free Supplement® (B-27, Gibco®), and 1 % (v/v) 

penicillin/streptomycin (Pen/Strep, Gibco®). On day 4 of culture, DRG neurons were 

treated for 1h with 100 nM capsaicin (Sigma-Aldrich®). Then, samples of collected 

medium were centrifuged at 3,000 rpm for 10 min at 4 ºC to remove cell debris, 

filtered through a 0.22 μm filter, and stored at -80°C until use. 

Conditioned medium (CM) was originated from cultured medium of DRG neurons 

untreated or treated with capsaicin.  

MSCs (104 cells/cm2) were plated in a six-well plate and preincubated for 3 days with 

standard culture medium, consisting of DMEM - low glucose supplemented with 10 % 

(v/v) fetal bovine serum (FBS, P30-3305, PAN™ - Biotech, Aidenbach, Germany), 1 

% (v/v) Pen/Strep. Then, cells were cultured for 7 days with 50% standard culture 

medium plus 50% untreated or capsaicin-treated DRG neurons-CM in a humidified 

incubator (the CM was renewed on day 4 of culture). MSCs incubated for the same 

period with osteogenic medium (standard culture medium containing 1x10-9 M 

dexamethasone, 10 mM β-glycerophosphate, and 50 μg/mL ascorbic acid) were used 

as a positive control of osteoblast differentiation. 

 

4.5.2. CGRP and Substance P levels quantification 

 

Measurements of the CGRP and Substance P levels in cell culture medium of 

capsaicin-stimulated DRG neurons were performed using CGRP (rat) EIA Kit (SPI-

Bio®, Bertin Pharma, Montigny-le-Bretonneux, France) and ELISA Kit for Substance 

P (SP) (Cloud-clone Corp, Katy TX, USA), respectively, according to the 

manufacturer's instruction. 
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4.5.3. RNA extraction, cDNA synthesis, and RT-qPCR analysis 

 

Total RNA was extracted from MSCs by using the RNeasy® Micro Kit (Qiagen, 

Hilden, Germany) according to the manufacturer’s protocol. RNA final concentration 

and purity (OD260/280) was determined using a NanoPhotometer® P 330 (Implen 

GmbH, Munich, Germany). 100 ng of total RNA was reverse transcribed into cDNA 

using the Maxima Reverse Transcriptase kit (Thermo Scientific™, Thermo Fisher 

Scientific, Waltham, MA, USA), according to the manufacturer’s protocol. RT-qPCR 

experiments were run using a CFX Connect™ Real-Time PCR Detection System 

(Bio-Rad Laboratories, Hercules, CA, USA) and analyzed with the CFX Manager™ 

software, version 3.0 (Bio-Rad Laboratories). Target gene expression was quantified 

using the cycle threshold (Ct) values and relative mRNA expression levels were 

calculated as follows: 2^ (Ct reference gene - Ct target gene). Rat ribosomal protein 

lateral stalk subunit P0 (Rplp0), glyceraldehyde 3-phosphate dehydrogenase 

(Gapdh) and hypoxanthine phosphoribosyl transferase 1 (Hprt1) were used as 

reference genes. 

 

4.5.4. Alkaline phosphatase activity assay 
 

Quantitative determinations of ALP were performed in MSCs lysates by using the 

LabAssay™ ALP kit (Wako Pure Chemical Industries, Ltd., Chūō-ku, Osaka, Japan) 

following manufacturer’s instructions. Absorbance at 405 nm was measured on a 

VICTOR™ X3 Multilabel Plate Reader. Cell lysates were analyzed for protein content 

using the Pierce™ BCA Protein Assay Kit (Thermo Scientific™) according to the 

manufacturer’s protocol, and intracellular ALP levels were normalized by the total 

protein concentration.  

 

4.5.5. Statistical analysis 

 

GraphPad Prism® software, version 5.0 (GraphPad Software Inc, Sandiego, CA, 

USA) was used for statistical analysis. Results are presented as a bar with the mean 

± standard deviation (mean ± SD). Significant differences between two independent 

groups were established using the Mann-Whitney U test. Values of p < 0.05 were 

considered statistically significant.  
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IN BRIEF.4.8 

 

Data presented in this second part suggest an inducement of osteoblast 

differentiation of MSCs in response to the culture with CM obtained from culture 

medium of capsaicin-activated DRG neurons. We also suggest that this osteogenic 

effect could be mediated through the increased release of sensory neuropeptides, 

especially CGRP and SP. However, further studies are required to confirm these 

hypotheses. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

94 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

95 
 

 

 

 

 

 

 

 

 

 

 

 

GENERAL DISCUSSION.05 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



 

96 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

97 
 

GENERAL DISCUSSION.05 

 

An increasing number of bone sensory innervation studies have been contributing to 

the understanding of bone physiology and pathophysiology. Notably, independent 

data indicate that the sensory nervous system has a positive role in the regulation of 

bone development, metabolism, and repair 61–64. Despite being an area of intensive 

research, the direct or indirect link between sensory neurons and bone cells is not 

clear. Indeed, there is still much to be uncovered about the cellular and molecular 

mechanisms involved in this link. The main purpose of this work was to explore the 

role of the sensory neurons on the successive steps of osteoblast differentiation from 

MSCs.  

In article 1, we were interested in clarifying whether DRG neurons would be able to 

induce osteoblastogenesis by acting directly on MSCs. To address this question, we 

employed a microfluidic platform to coculture DRG neurons and MSCs in separate 

compartments. Despite the spatial and fluidic isolation, this platform allowed the 

interaction of DRG neurons with MSCs via neurites extended along well-defined 

microchannels, as it happens in the in vivo scenario of bone sensory innervation. We 

started by optimizing the culture conditions of each cell population in order to 

preserve their physiological properties (see section 8.1). Then, we focused on the 

expression analysis of key osteoblastic genes in MSCs cocultured with DRG 

neurons. We showed for the first time that although sensory neurons are not able to 

induce the osteoblast differentiation of MSCs in vitro, they significantly enhance this 

process, by increasing the mRNA levels of early and late markers of osteoblogenesis 

and promoting the ALP activity in lineage-committed MSCs after 4 and 7 days of 

coculture. Interestingly, this effect was abolished for longer coculture times. 

Afterwards, we investigated a possible involvement of Cx43 and N-cadherin during 

DRG neurons-enhanced osteoblastogenesis. A number of studies have been 

evidentiating a modulatory effect of these proteins in bone formation and remodeling 

65–67. In our study, we revealed that sensory neurons modulate the Cx43 and N-

cadherin levels during osteoblast differentiation of MSCs. Finaly, we attempted to 

understand whether the canonical Wnt signaling pathway could be implicated in the 

osteoblastogenesis enhanced by DRG neurons. Several studies have indicated that 

this pathway plays a central role in bone development and homeostasis 68,69. 

Accordingly, we demonstrated that sensory neurons regulate the Wnt/β-catenin 
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signaling activation during osteoblast differentiation of MSCs. However, we cannot 

reject an eventual contribution of other signaling pathways in this process. On the 

light of these findings, it would be interesting to analyse the effect of MSCs on the 

“classic” afferent function of sensory neurons. Recently, it was reported a 

bidirectional communication between osteoblast-like cells and sensory neurons. 

Kodama and colleagues demonstrated that the release of ATP from osteoblast-like 

cells, induced by an inflammatory stimulus like bradykinin, activates the P2X7 

receptor expressed in sensory neurons. This finding suggests that osteoblast-like 

cells might serve as sensors of environmental stimuli, which are then transmitted to 

the CNS via sensory neurons 70. In addition, it would also be interesting to investigate 

the role of sensory neurons in differentiation and activity of other bone cells, 

particularly in osteoclasts. 

In article 2, we aimed at better characterizing the subset of DRG neurons involved in 

the regulation of osteoblast differentiation from MSCs. For this, we maintained MSCs 

with culture medium obtained from CM of capsaicin-activated DRG neurons and 

searched for genes and proteins that are known markers of osteoblastogenesis. We 

suggest that the activation of capsaicin-sensitive sensory neurons induce the 

osteoblast lineage development from MSCs in vitro, by increasing the ALP 

intracellular levels and transcriptional expression of early osteoblastic genes in MSCs 

after 4 and 7 days of culture. In this regard, it would be important to analyse the 

expression of late osteoblastic genes and proteins at longer culture times. We also 

suggest that the osteogenic effect of sensory neurons on MSCs could be mediated 

by the increased release of sensory neuropeptides, especially CGRP and SP. Indeed 

these sensory neuropeptides were already described to contribute to 

osteoblastogenesis in vitro 71–74. In order to clarify whether the CGRP and/or SP are 

directly involved in osteoblast differentiation, we intend to test the inhibitory effect of 

antagonists for CGRP (e.g. BIBN4096BS) and SP (e.g. SR140333) receptors 

expressed in MSCs.  Based on the remarkable specificity of capsaicin for Aδ- and 

peptidergic C- fibers 37, we assume a particular involvement of these fiber types in 

osteoblastogenesis. Because it was shown that capsaicin receptor TRPV1 is 

expressed in osteoblast-like cells and regulates the osteoblast differentiation 75 one 

of the main concerns regarding this second work is whether the capsaicin, present in 

the CM, may be acting directly on MSCs, thus influencing its differentiation. 

Taken together, these findings establish that sensory neurons have an important role 

in osteoblastogenesis. However, we can presume that these neurons can have a 
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differentiated role in two distinct in vivo processes. In the absence of an 

environmental stimulus sensory neurons are not able to induce osteoblast and bone 

formation. However, they seem to contribute to bone metabolism and homeostasis 

by improving osteoblast and bone formation (Article 1). On the other hand, in the 

presence of a noxious stimulus similar to the capsaicin, such as bradykinin (produced 

at the sites of tissue injury), they should have an essential role for bone 

repair/regeneration by inducing osteoblastogenesis and bone formation (Article 2).  

Altogether, this work offers new comprehensive data regarding how bone tissue is 

regulated at the cellular and molecular levels by the sensory nervous system. It 

further supports the idea that the role of sensory innervation is particularly important 

at early stages of the osteoblast differentiation process.  
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PERSPECTIVES.06 

 

6.1. Angiogenesis and sensory innervation: impact on osteogenesis 

 

Unequivocal evidence has been provided on the pivotal role of angiogenesis in 

skeletal development and bone repair 76,77. Moreover, it has been recognized an 

important role of the sensory nervous system on angiogenesis 31,76–79. However, the 

interplay between the endothelial cells, sensory neurons, and bone cells remains 

obscure. 

A number of molecular partners have been identified in angiogenesis and neural 

development. For instance, although PDGF and VEGF are recognized for their role in 

angiogenesis, they also enhance the proliferation, migration, and survival of glial cells 

and stimulate the axonal outgrowth 78–80. Furthermore, it has been demonstrated that 

endothelial cells respond to neural guidance molecules, including netrins, slits, 

semaphorins and ephrins, suggesting interplay between endothelial and neuronal 

cells. Indeed, it was shown that Sema3A suppress VEGF-mediated angiogenesis, by 

binding to the neuropilin 1 (NRP1) expressed in endothelial cells. NRP1 is a receptor 

for both Sema3A and VEGF and it has been proposed to integrate the co-patterning 

between the nervous and vascular systems 81. In addition, it was reported that 

peripheral nerves, associated with Schwann cells, are able to secrete VEGF and 

thereby promote blood vessels development 81. Notably, it was recently 

demonstrated that the activation of the tyrosine kinase receptor type 1 (TrkA) by 

nerve growth factor (NGF) coordinates the angiogenesis and ossification of 

developing endochondral bone 82,83. 

Based on these events and in our new discoveries, we perspective to understand 

whether the sensory nervous system may promote the osteogenic effect of 

endothelial cells. For this, we intend to explore the interaction/communication 

between endothelial precursor cells, sensory neurons, and MSCs in a microfluidic 

platform in order to identify main regulators of both osteoblastic and endothelial 

precursor cells differentiation.  
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6.2. Angiogenesis and neurotisation in bone tissue engineering 

 

The knowledge obtained from this work allowed us to start to develop a new 

composite material to favor neurotisation, angiogenesis, and osteogenesis in a bone 

regeneration context. This material consists on a biphasic composite formed by a 

polymeric phase, elastin-like polypeptides (ELPs) cross-linked through polyethylene 

glycol (PEG) to form a gel, and a mineral phase composed of nano-hydroxyapatite 

(nHA).  ELPs are formed by multiple repeats of Val-Pro-Gly-Xaa-Gly pentapeptides, 

where Xaa can be any amino acid except proline. As ELPs are derived from elastin, 

which is an extracellular matrix protein, they can offer biologically relevant functional 

cues to cells and tissues. Furthermore, ELPs are genetically encoded biopolymers 

and thus bioactive peptide moieties, particularly the pentapeptide Ile-Lys-Val-Ala-Val 

(IKVAV), can be included in its backbone 84,85. IKVAV is a motif derived from laminin, 

which has shown to promote neuron attachment and growth, endothelial cell 

mobilization, capillary branching, and revascularization 86–89. This peptide is our 

candidate to include in the ELP backbone in order to provide a composite material 

with fundamental cues for both neurotisation and angiogenesis. 

PEG is currently FDA-approved for multiple medical applications. When combined 

with biodegradable polymers, such as ELPs, PEG presents a great potential for the 

design of tailor made extracellular matrices for tissue repair. Although PEG is not 

biodegradable, it has been shown that PEG with a molar mass below 20kDa is easily 

secreted in urine, reducing the risk of its in vivo accumulation and associated toxicity 

90. 

Finally, the use of nHA particles will allow mimicking the nano/microstructure of bone 

tissue. Previous studies in our group have shown that the inclusion of nHA at low 

mass ratios (2.8% w/w) within a pullulan/dextran matrix is sufficient to support new 

bone formation 91,92.  

In conclusion, ELPs will provide the polymeric phase with cellular adhesion 

sequences to promote both neurotisation and angiogenesis; PEG phase will enable 

to modulate degradation and the rigidity profile of the composite and; nHA combined 

with the developed composite gel will offer osteoconductive cues to favor 

osteogenesis without compromising the composite rigidity and degradability. 

The different components will be obtained by chemical synthesis (PEG and nHA) and 

protein engineering (ELPs), allowing to precisely control of the system composition. 

This new composite will be first evaluated in cultures of endothelial cells, sensory 
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neurons and MSCs, and then in small animal models. 

This approach, focusing on a holistic approach for bone tissue, represents a novelty 

in the field of bone tissue engineering and has the potential to rupture with current 

bone regeneration approaches. 
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OPTIMIZATION OF CELL CULTURE CONDITIONS.8.1 

The effect of four different sera on morphology, viability, and osteogenic activity of 

MSCs was tested in order to define which one was the most appropriate to our 

studies (Table 1 and Figure 1). We found that MSCs cultured with sera 1, 3 and 4 for 

5 days exhibited a characteristic long and fusiform shape, while MSCs incubated with 

serum 5 showed heterogeneous size and morphology (Figure 1A). A resazurin-based 

assay revealed that MSCs cultured with serum 4 for 4 and 7 days displayed more 

viability than MSCs incubated with sera 1, 3 and 5 (Figure 1B). Importantly, there 

were no differences between MSCs maintained in standard culture medium and 

osteogenic medium with serum 4 (Figure 1B). Contrariwise, sera 1, 3 and 5 seem to 

have a detrimental effect on viability of MSCs commited to osteoblast lineage (Figure 

1B). The ALP activity assay showed an increase of ALP intracellular levels in MSCs 

cultured with serum 5, when compared with MSCs incubated with other sera (Figure 

1C). However, only MSCs maintained with serum 4 seem to positively respond to the 

osteogenic induction (Figure 1C). These findings indicate that the serum 4 is the 

most appropriate to analyse the role of DRG neurons on osteoblast lineage 

development from MSCs. 

 

 

Table 1.  Tested sera specifications. 

Serum Catalog Lote Manufacturer 

1 S1810 S13903S1810 Biowest 

3 S1810 S13604S1810 Dominique Dutscher 

4 P30-3301A P150508 PAN-Biotech 

5 500101KK P160308 PAN-Biotech 
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Figure 1. The effect of four different sera on morphology, viability and osteogenic 
activity of MSC. Rat bone marrow MSCs (104 cells/cm2) were cultured with different sera (1, 
3, 4 and 5) in a six-well plate for 7 days. (A) 5 days after isolation, the cell morphology was 
observed under an inverted phase contrast microscope. (B) The viability of MSCs maintained 
with or without osteogenic induction was measured at 4 and 7 days of culture by resazurin-
based assay, and (C) the intracellular levels of ALP were determined on day 7 by using ALP 
activity quantification assay. 
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To assess the effect of mitotic inhibition on DRG neurons culture heterogeneity and 

neurite formation within the microfluidic platform, we cocultured MSCs with DRG 

neurons maintained in the presence or absence of the AraC mitotic inhibitor (also 

known as Cytosine β-D-arabinofuranoside, (β-D-Arabinofuranosyl)cytosine, 

Arabinocytidine, Arabinosylcytosine, Cytarabine, or Cy tosine arabinoside). 

The population of DRG neurons within the microdevice was evaluated on day 7 of 

coculture by phase contrast microcopy (Figure 2A and B) and IF against β-III Tubulin 

(Figure 2C and D). We found the formation of extended DRG neurons projections 

towards the axonal side of the microfluidic device in both cell culture conditions  

 

 

Figure 2. The effect of mitotic inhibition on DRG neurons culture heterogeneity and 
neurite formation within the microfluidic platform. Sensory neurons derived from rat 
DRG (5 x 104 cells/cm2) and rat bone marrow MSCs (104 cells/cm2) were cultured in the 
microfluidic devices for 7 days. MSCs were maintained in standard culture medium and DRG 
neurons were incubated in growing medium (A and C) nonsupplemented or (B and E) 
supplemented with 1 μM AraC mitotic inhibitor. DRG neurons culture heterogeneity and 
neurite formation were evaluated on day 7 of coculture under (A and B) inverted phase 
contrast microscopy, and (C and D) IF confocal microscopy using an antibody directed 
against β-III Tubulin coupled to Alexa Fluor® 488 (green), and DAPI (nuclei; blue). Actin 
filaments of MSCs were stained using Alexa Fluor® 568 (red)-conjugated phalloidin.  
(as) axonal side; (ss) somal side; arrows point to non-neuronal cells; Scale bar = 100 µm. 
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(Figure 2C and D). However, the culture of DRG neurons without mitotic inhibition 

exhibited a heterogeneous population of DRG neurons and non-neuronal cells 

(Figure 2A and C, arrows). A homogeneous population of pure DRG neurons was 

achieved by using the AraC during the culture time (Figure 4B and D). These results 

show that use of a mitotic inhibitor is required to establish a coculture of pure DRG 

neurons and MSCs in the microfluidic platform. 
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