
HAL Id: tel-02422395
https://theses.hal.science/tel-02422395v1

Submitted on 22 Dec 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Attack tolerance for services-based applications in the
Cloud

Georges Ouffoué Ouffoué

To cite this version:
Georges Ouffoué Ouffoué. Attack tolerance for services-based applications in the Cloud. Web. Uni-
versité Paris Saclay (COmUE), 2018. English. �NNT : 2018SACLS562�. �tel-02422395�

https://theses.hal.science/tel-02422395v1
https://hal.archives-ouvertes.fr

N
N

T
:2

01
8S

A
C

LS
56

2 Attack Tolerance for Services-based
Applications in the Cloud

Thèse de doctorat de l’Université Paris-Saclay
préparée à Université Paris-Sud

Ecole doctorale n◦580 Sciences et Technologies de l’Information et de la
Communication (STIC)

Spécialité de doctorat : Informatique

Thèse présentée et soutenue à Gif-sur-Yvette, le 21 Décembre 2018, par

GEORGES OUFFOUÉ

Composition du Jury :

Joaquin Garcia-Alfaro
Professeur, Télécom SudParis (SAMOVAR) Président du jury

Frédéric Cuppens
Professeur des Universités, IMT Atlantique (SERES) Rapporteur

Pascal Poizat
Professeur des Universités, Université Paris-Nanterre (LIP6) Rapporteur

Manuel Núñez
Professeur, Universidad Complutense de Madrid Examinateur

Edgardo Montes De Oca
Directeur R&D, Montimage Paris Examinateur

Fatiha Zaı̈di
Maı̂tre de Conférences HDR, Université Paris-Sud (LRI) Directrice de thèse

Ana R. Cavalli
Professeur Émérite, Télécom SudParis (SAMOVAR) Co-encadrante de thèse

Abstract

Web services allow the communication of heterogeneous systems on the Web. These
facilities make them particularly suitable for deploying in the cloud. Although research
on formalization and verification has improved trust in Web services, issues such as high
availability and security are not fully addressed since the solutions proposed are sometimes
attack-specific. In addition, Web services deployed in cloud infrastructures inherit their
vulnerabilities. For example when different tenants in a cloud platform consume the
same instance of the service, attacks such as side-channel can be performed by malicious
tenants. Because of this limitation, they may be unable to perform their tasks perfectly.
In this thesis, we claim that a good tolerance requires attack detection and continuous
monitoring on the one hand; and reliable reaction mechanisms on the other hand. We
therefore proposed a new formal monitoring methodology that takes into account the
risks that our services may face. To implement this methodology, we first developed an
approach of attack tolerance that leverages model-level diversity. We define a model of the
system and derive more robust functionally equivalent variants that can replace the first
one in case of attack. To avoid manually deriving the variants and to increase the level
of diversity, we proposed a second complementary approach. The latter still consists in
having different variants of our services; but unlike the first, we have a single model and the
implementations differ at the language, source code and binaries levels. Moreover, to ensure
detection of insider attacks, we investigated a new detection and reaction mechanism based
on software reflection. While the program is running, we analyze the methods to detect
malicious executions. When these malicious activities are detected, using reflection again,
new efficient implementations are generated as a countermeasure. Finally, we leveraged a
formal Web service testing framework by incorporating these complementary mechanisms
in order to take advantage of the benefits of each of them.

iii

Résumé

Les services Web permettent la communication de systèmes hétérogènes sur le Web.
Ces facilités font que ces services sont particulièrement adaptés au déploiement dans le
cloud. Les efforts de formalisation et de vérification permettent d’améliorer la confiance
dans les services Web, néanmoins des problèmes tels que la haute disponibilité et la sécurité
ne sont pas entièrement pris en compte. Par ailleurs, les services Web déployés dans
une infrastructure cloud héritent des vulnérabilités de cette dernière. En raison de cette
limitation, ils peuvent être incapables d’exécuter parfaitement leurs tâches. Dans cette thèse,
nous pensons qu’une bonne tolérance nécessite un monitoring constant et des mécanismes
de réaction fiables. Nous avons donc proposé une nouvelle méthodologie de monitoring
tenant compte des risques auxquels peuvent être confrontés nos services. Pour mettre en
oeuvre cette méthodologie, nous avons d’abord développé une méthode de tolérance aux
attaques qui s’appuie sur la diversification au niveau modèle. On définit un modèle du
système puis on dérive des variantes fonctionnellement équivalents qui remplaceront ce
dernier en cas d’attaque. Pour ne pas dériver manuellement les variants et pour augmenter
le niveau de diversification nous avons proposé une deuxième méthode complémentaire.
Cette dernière consiste toujours à avoir des variants de nos services; mais contrairement à
la première méthode, nous proposons un modèle unique avec des implantations différentes
tant au niveau des interfaces, du langage qu’au niveau des exécutables. Par ailleurs, pour
détecter les attaques internes, nous avons proposé un mécanisme de détection et de réaction
basé sur la réflexivité. Lorsque le programme tourne, nous l’analysons pour détecter les
exécutions malveillantes. Comme contremesure, on génère de nouvelles implantations en
utilisant toujours la réflexivité. Pour finir, nous avons étendu notre environnement formel
et outillé de services Web en y incorporant de manière cohérente tous ces mécanismes.
L’idée est de pouvoir combiner ces différentes méthodes afin de tirer profit des avantages
de chacune d’elle.

v

To my father Koffi Ouffoué.

Acknowledgements

I would like first to thank YESHOUA HA MASHIAH without whom this thesis would
not have been possible. I would also like to convey my sincere thanks to the members of
the jury for their presence and in particular the reviewers Prof. Cuppens and Prof. Poizat
who kindly evaluated my manuscript. My thanks also go to my thesis advisors Mrs. Fatiha
Zaïdi and Mrs. Ana R. Cavalli for the opportunity they offered me to do my thesis under
their leadership. It was both a very good scientific and human experience. Their expertise
and directions have been invaluable to help me in this thesis. I would like to thank Prof.
Bernard Cousin and Prof. Oumtanaga who set up the partnership that allowed me to come
and pursuing my studies in France. I thank also my parents, my beloved Elodie, my friends
for their unwavering supports. I thank the VALS team of the LRI and the employees
of Montimage Paris and Spain for their warm welcome and integration. I would like to
thank in particular Dr. Huu Nghia Nguyen from Montimage, Dr. Mounir Lallali from
Brest, Dr. Antonio Ortiz and Dr. Cesar Sanchez from Spain for their valuable support
and collaboration during this thesis. Last but not least, I would like to thank the members
of the group "le coup de la pieuvre" for the conviviality offered during every launch and
entertainment parties (baby-foot).

vii

Contents

Abbreviations i

1 Introduction 11
1.1 General Context . 12
1.2 Contributions . 13

1.2.1 Risk-based monitoring methodology 13
1.2.2 Diversity-based attack tolerance . 14
1.2.3 Reflection based attack tolerance . 14
1.2.4 An attack tolerance framework for cloud applications 15

1.3 Publications . 15
1.3.1 Workshops . 16
1.3.2 International Conferences . 16
1.3.3 Talks . 16
1.3.4 Posters . 16

1.4 Outline of the Thesis . 16

2 Attack tolerance: Challenges & directions 19
2.1 Research on Web services . 20
2.2 Security issues related to Web services . 22

2.2.1 XML DoS . 22
2.2.2 Metadata Spoofing . 23
2.2.3 SQL Injections . 23
2.2.4 Capture and Replay Attacks . 23
2.2.5 Session Hijacking . 23
2.2.6 WSDL scanning . 24
2.2.7 Parameter tampering . 24
2.2.8 External reference attack . 24

2.3 Cloud computing security issues . 24
2.3.1 Cloud computing in a nutshell . 24
2.3.2 Cloud Market and challenges . 27
2.3.3 Virtualization vulnerabilities . 31

2.4 Intrusion and attack tolerance for Web services 32
2.4.1 Attack tolerance techniques . 32
2.4.2 Diversity techniques . 35
2.4.3 Attack tolerance techniques for Web services 38

2.5 Formal methods . 39

1

CONTENTS

2.5.1 Static analysis . 39
2.5.2 Dynamic analysis . 40

2.6 Discussion . 42

3 Risk-based passive monitoring 43
3.1 Risk-based monitoring methodology . 44

3.1.1 Identifying Assets . 45
3.1.2 Risk and vulnerability analysis . 47
3.1.3 Threats Modelling . 47
3.1.4 Attack scenarios . 48

3.2 The Montimage Monitoring Tool (MMT) 52
3.2.1 MMT-Security architecture . 52
3.2.2 MMT-Security properties . 53

3.3 Discussion . 54

4 Diversity-based attack tolerance 57
4.1 Model-based diversity for attack tolerance 58

4.1.1 Overview . 58
4.1.2 Authentication example . 59
4.1.3 Experimentations . 62
4.1.4 Discussion . 68

4.2 Implementation-based diversity for attack tolerance 68
4.2.1 Definition of key concepts . 69
4.2.2 Overview of the approach . 69
4.2.3 Experiments and discussion . 75

4.3 Discussion . 79

5 Software reflection based attack tolerance 81
5.1 Background . 82
5.2 Framework . 83
5.3 Case studies . 88

5.3.1 Overview . 88
5.3.2 Detection and mitigation . 94

5.4 Experiments and results . 97
5.5 Discussion . 99

6 An attack tolerance framework for Web-based applications in the cloud.
101

6.1 Web services and cloud applications . 102
6.2 SChorA . 105

6.2.1 A symbolic model and an integrated environment for specifying and
analyzing service choreographies. 105

6.2.2 Passive testing . 106
6.3 Attack tolerance in the cloud . 109

2

CONTENTS

6.3.1 Part 1: Verification and code generation 109
6.3.2 Part 2: Deployment, monitoring and reaction 113

6.4 Discussion . 114

7 Conclusion 117
7.1 Synthesis of results . 117
7.2 Perspectives . 119

A Appendix 121
A.1 Example: Vote application . 121

A.1.1 Verification and code generation . 121
A.1.2 Testing . 122

A.2 Résumé de la thèse en Français . 125
A.2.1 Contexte . 125
A.2.2 Contributions . 126
A.2.3 Publications . 129
A.2.4 Posters . 130

Index 143

3

List of Figures

2.1 Panorama of Web services research contributions. We must understand that
attack tolerance spans these domains. 22

2.2 Cloud services Models . 25
2.3 A typical cloud setup . 27
2.4 Cloud market shares from the Synergy Research Group 28
2.5 Overview of a side channel attack on a cloud platform. 30

3.1 Risk-based monitoring loop . 45
3.2 CLARUS proxy architecture . 46
3.3 Attack tree for unauthorized users attack 49
3.4 Montimage Monitoring Tool overview . 52

4.1 Attack tolerance Framework . 58
4.2 Authentication Model 1 . 59
4.3 Authentication Model 2 . 60
4.4 Authentication Model 3 . 61
4.5 Authentication Model 4 . 61
4.6 Experimentation Framework . 62
4.7 IF specification of Model 1 . 64
4.8 Test objectives . 65
4.9 Generated test cases . 65
4.10 The authentication showing the adaptation GUI 67
4.11 Architecture of the attack tolerance Framework 69
4.12 Feature Model of the e-health service . 70
4.13 WSDL Sample . 71
4.14 XSD Sample . 72
4.15 Server side skeleton . 72
4.16 Attack tolerance through diversity . 73
4.17 Latency with and without our framework 77
4.18 Latency with and without our framework 78

5.1 Attack tolerance framework . 85
5.2 Detection and Reaction model . 86
5.3 API of the HealthOperation Center . 88
5.4 Correct implementation of updatePatient. 88
5.5 Unexpected implementation of updatePatient function. 89
5.6 Setup of the running system. 90

5

LIST OF FIGURES

5.7 Implementation of the checkSource method. 90
5.8 Normal case . 91
5.9 Inconsistent messages diagrams. 93
5.10 Inconsistent messages diagrams. 93
5.11 Security Rule representation in MMT. 95
5.12 Example of usage of metaclasses . 96
5.13 RESTful API of the e-health Center. 97
5.14 Experiments 1 & 2 results . 98

6.1 Chor choreography language [Qiu et al., 2007] 106
6.2 SChorAcloud architecture and components. 109
6.3 Example of definition of a choreography with 2 roles 111

A.1 Verification of the Vote choreography . 122
A.2 Conformance Checking . 123
A.3 Generated skeletons . 124
A.4 Security rule in MMT: The hashes of the called vote method should be equal

to the hash existing in the database before that call 125

6

List of Tables

2.1 Mapping between attack tolerance mechanisms and architectures 34
2.2 Diversity techniques . 38

3.1 DoS/DDoS attack detection . 51

4.1 Scenario 2 measurements . 68
4.2 Threshold measurement . 76
4.3 TD measurements . 77
4.4 Time elapsed to detect dos attacks . 79
4.5 Time elapsed to complete a client request in the presence of a DDoS attack 79

5.1 Taxonomy of malware . 84

7

List of acronyms

API Application Programming Interface

DoS(DDoS) Denial Of Service (Distributed)

FM Feature Model

FSM Finite State Machine

IT Infrastructure Technology

IUT Implementation Under Test

LTL Linear Temporal Logic

MMT Montimage Monitoring Tool

NOP No Operation

REST REpresentational State Transfer

SChorA Symbolic Choreography Analysis

SOA Service Oriented Architecture

SOAP Simple Object Access Protocol

STG Symbolic Transition Graph

SUO System Under Observation

SUT System Under Test

SVM Support Vector Machine

VM Virtual Machine

W3C World Wide Web Consortium

WSDL Web Services Description Language

XML Extensible Markup Language

XSD XML Schema Definition

9

1
Introduction

11

CHAPTER 1. INTRODUCTION

1.1 General Context

Computer systems are now at the heart of all business functions (accounting, customer
relations, production etc) and more generally in everyday life. These systems consist
of heterogeneous applications and data. They should be described through modular
architectures that integrate and compose them in order to meet the needs of the organization.
Service Oriented Architectures (SOA) have been proposed for this purpose. According to
the Gartner Group 1,

Service-oriented architecture (SOA) is a design paradigm and discipline that
helps IT meet business demands. Some organizations realize significant benefits
using SOA including faster time to market, lower costs, better application
consistency and increased agility.

These architectures are distributed and facilitate communication between environments
of heterogeneous nature. The main components of such architectures are Web services. A
web service is a collection of open protocols and standards for exchanging data between
systems. Thus, software applications written in different programming languages and
running on different platforms can therefore use Web services to exchange data. These
services can be internal and only concern one organization. On the other hand, with
technological advances in communication networks especially the Internet and the expansion
of online services via cloud computing or simply the interconnection of IT systems, the
need to expose services to the outside world is growing. Cloud computing for example
enables sharing of IT resources (computing, storage, networks, etc.) on demand over the
Internet. These services are often deployed on the basis of smaller components (containers,
virtual machines, etc.) deployed on a single site or on several geographically distributed
sites. They can also be provided by several different cloud service providers (multi-cloud
applications).

However, Web services since they are open and interoperable, are privileged entry points
for attacks. Web services like many others technologies taking advantage of the Internet,
are also facing attacks on availability, integrity and confidentiality of platforms and user
data. Moreover, Web services deployed in the cloud inherit their vulnerabilities. Recently,
new attacks exploiting cloud vulnerabilities (such as side-channel, VM escape, hacked
interfaces and APIs, account hijacking, etc.) are considerably reducing the effectiveness of
traditional detection and prevention systems (e.g., firewall, intrusion detection systems, etc.)
available in the market. Most of the time, these attacks are orchestrated by competitors
to sabotage opponents companies in order, first to inflict them heavy financial losses, or
secondly to access to confidential information such as intellectual property or private data.
Thus, the enterprise today is under constant attacks from criminal hackers and other
malicious threats. Facing these increasingly destructive attacks, research on Web services
has been focused on modeling, composition and testing. They may not be sufficient to

1https://www.gartner.com/it-glossary/service-oriented-architecture-soa

12

1.2. CONTRIBUTIONS

fully ensuring the confidentiality, integrity and availability requirements of Web services.
Moreover, they can only detect existing attacks with relatively high rates of false positives
and negatives. Because of this limitation, Web services may fail to achieve their goals
when attacks are successful. It is not enough just to detect intrusions; Web services need
to effectively respond to the attack. Existing solutions limited to one application domain
can not maintain an acceptable level of service for users. Continuous availability is then
a critical need. Traditional intrusion detection techniques should be improved, or even
new approaches that are more suited to these environments should be developed. The
goal of our thesis is to answer the question: How to ensure attack or intrusion tolerance of
Web-services based applications?

1.2 Contributions

We define attack tolerance or intrusion tolerance as the capability of a system to continue
to function properly with minimal degradation of performance, despite intrusions. The
aim is to detect the known and unknown attacks and if not possible reduce their impact
on the system. We therefore believe that to ensure an effective attack tolerance, we must
first detect attacks upstream in order to react effectively downstream. Furthermore, it is
also appropriate to take into account functional requirements as well as non-functional
requirements, at all levels: design, specification, development, deployment and execution.
Functional requirements are requirements that define a function of the system to be
developed. In other words, what the system needs to do. Non-functional requirements
are requirements that characterize a desired quality or property of the system such as its
performance, robustness, adaptability, responsiveness, availability, disaster recovery, and so
on. In this thesis, we adopt a new end-to-end security approach based on formal monitoring
and diversity. We therefore proposed a new formal monitoring methodology that takes
into account the risks that our services may face. To implement this methodology, we first
developed approaches of attack tolerance that leverages diversity. The basic idea that we
propose is to have variants of the components of the software. Such variants react and
replace themselves when one of these components is compromised due to the effects of an
attack. More precisely, our contributions are the following:

1.2.1 Risk-based monitoring methodology

We leveraged the traditional risk management loop to build a risk-based monitoring that
integrates risks into monitoring (Chapter 3). We claimed that the detection and prevention
of attacks require a good knowledge of the risks that these systems face. As such, it is
mandatory to include risk management in the monitoring strategy in order to reduce the
probability of failure or uncertainty. This methodology involves the following aspects: i)
assets identification to define what is necessary to protect. ii) Threats and vulnerability
analysis, to evaluate the potential flaws the system may suffer. iii) Risk analysis to
categorize the threats that can exploit the system vulnerabilities. iv) System monitoring to
detect potential occurrences of attacks, and. v) Remediation strategies to repel or mitigate

13

CHAPTER 1. INTRODUCTION

the impact of the attacks. This methodology has been applied throughout this thesis. We
also briefly presented the Montimage Monitoring Tool (MMT) that helps us to detect the
attacks and implement the risk-based approach. The main components, functionality and
the mechanisms used to define security properties of the tool have been described.

1.2.2 Diversity-based attack tolerance

Model-based diversity for attack tolerance

We investigated attack-tolerance at the design phase (Section 4.1). We designed a model
of the software, system. From that model, we derived equivalent models that have the
same purposes as the first one. According to these models, we obtained the corresponding
implementations. In case of a detected attack by our monitoring tool, we dynamically
change the model, choosing a model and its implementation which is more robust in the
presence of the attack. This means that the attacker is confronted to a "new" system for
which his attack is not successful. We evaluated this approach by injecting a brute-force
attack on an authentication Web application we developed for the experiments. This
showed that our approach seemed suitable for brute-force attacks. The limits of this
first approach laid on the derivation of the variants of the model. How to automatically
synthesize them?

Implementation-based attack tolerance

This contribution aims at extending and solving the issues raised by the former approach
(Section 4.2). The idea is still the same like in the previous contribution but here, there
are only one model and several implementations. To this end, we based our work on the
concept of diversification. It should be noted that diversification refers to having multiple
copies for the same concept. We illustrated the approach with a Web service that simplifies
the management task in a hospital. We built several variants using diversity at Web
services pattern, language, source code and binary levels. Furthermore, we designed in a
generic manner attack tolerance to both active and silent attacks. We proposed an active
reconfiguration process that mitigates attacks that are not easy or impossible to detect by
monitoring (i.e., low bit-rate attacks, silent attacks). The experiments showed that the
method proposed seems highly reactive.

1.2.3 Reflection based attack tolerance
In this contribution, our aim was to address attack tolerance in a different manner (chapter
5). In fact in the methods mentioned above, we had the capability to detect attacks coming
from the outside(DDoS, Brute-force,..). In addition, their tolerance features were designed
before the deployment of the software system (e.g. diversification of Web services). That’s
why we thought about finding a solution that would tolerate internal attacks. We proposed
a new attack tolerance methodology for insider attacks that are known to be difficult to
detect because the users are authenticated on the domain. This new contribution integrates
Software reflection techniques as well as monitoring based on log files, for an efficient

14

1.3. PUBLICATIONS

detection and mitigation of such attacks. Reflection is a technique that helps a program
to monitor, analyze and ajust its behavior dynamically. We considered that the software
of the client is located in a safe environment. Potential attacks that can take place are
internal ones. The goal of the intruder was to usurp the actions, i.e. to modify the methods
of the API of the platform. By reflection we obtained the hashes of the source code of any
method of the API. Any deviation at runtime of these hash values means the presence of a
misbehavior. Such misbehavior could be whether an insider attack or a virus attack. We
stored Date, Hour, Operation , hash, host in the file. Any request has then two traces
in the logs: outbound(request) and inbound(response). Moreover, using the Montimage
Monitoring Tool (MMT) we analyzed the code against a Virus DB and detect any change
of the software. We fully implemented a plugin in the MMT tool for the detection of insider
attacks based on reflection. We evaluated the e-health Web service using a realistic testbed.
We evaluated the detection capability of the proposed framework proposed in comparison
with an antivirus software of the market. The experiments show that our attack tolerance
is effective. This contribution explored and laid the groundwork for attack tolerance using
software reflection.

1.2.4 An attack tolerance framework for cloud applications

To do this, we extended a formal framework for choreography testing and conformance
by incorporating the contributions above (Chapter 6). Cloud services are modelled as a
choreography of Web services, each service running a unique, specific business function.
The global choreography is projected on the different roles i.e. different services of this
composition. We verified that each implementation conforms to the model of choreography.
The different models generated locally are checked for the conformance to the original
choreography of the application. From these local models we derive some skeletons in at
least three different programming languages. After having these skeletons generated, the
developer implement the methods and finalize the source code. After the implementation
of the services, one among them is chosen for each role. They are two complementary ways
for the monitoring of the applications. The first way is to test the implementations before
launching them. The purpose is to detect programming errors or deviation with respect
to the requirements. The second way consists in leveraging software reflection. This is to
detect other misbehaviors. At runtime when a misbehaviour is detected, we verify if it is a
programming error or if an attack occurred. We react by applying related countermeasures
using also reflection. Adding mechanisms of detection and reaction on the fly to these
applications verified correct by design, ensures optimal attack tolerance. As a result, we
will ensure a total attack tolerance of cloud applications from both formal and practical
points of view.

1.3 Publications

The main contributions of this thesis have already been published in proceedings of
international conferences as well as presented in national research days.

15

CHAPTER 1. INTRODUCTION

1.3.1 Workshops
1. G. Ouffoué, A. M. Ortiz, A. R. Cavalli, W. Mallouli, J. Domingo-Ferrer, D. Sánchez,and

F. Zaïdi. Intrusion detection and attack tolerance for cloud environments:The clarus
approach. In 2016 IEEE 36th International Conference on Distributed Computing
Systems Workshops (ICDCSW), pages 61–66. IEEE, 2016.

2. G. Ouffoué, F. Zaïdi, A. R. Cavalli, and M. Lallali. Model-based attack tolerance.
In 2017 31st International Conference on Advanced Information Networking and
Applications Workshops (WAINA), pages 68–73, IEEE, 2017.

1.3.2 International Conferences
1. G. Ouffoué, F. Zaïdi, A. R. Cavalli, and M. Lallali. How Web Services Can Be

Tolerant to Intruders through Diversification. ICWS 2017 24th IEEE International
Conference on Web Services, pages 436 - 443, IEEE 2017.

2. G. Ouffoué, F. Zaïdi, A. R. Cavalli, and M. Lallali. An Attack-Tolerant Framework
for Web Services. In 2017 IEEE International Conference on Services Computing
(SCC), pages 503-506, IEEE, 2017.

3. Ana R. Cavalli, Antonio M. Ortiz, Georges Ouffoué, Cesar A. Sanchez, and Fatiha
Zaïdi. Design of a Secure Shield for Internet-based Services using Software Reflection.
ICWS 2018 International Conference on Web Services, Lecture Notes in Computer
Science, vol 10966. Springer, Cham

1.3.3 Talks
1. How web services can be tolerant to intruders through diversification? in Journées du

GDR MTV2/MFDL track. Dec 2017.

1.3.4 Posters
1. Attack Tolerant Cloud in C&ESAR National conference on Security.

1.4 Outline of the Thesis
The rest of the thesis is divided into six chapters. The state of the art is presented in the
next chapter 2 while the main contributions are deeply presented in chapter 3 to 6. More
precisely,

1. Chapter 2 presents in a nutshell, Web services, the security issues and the solutions
proposed in the literature, as well as formal methods,

2. Chapter 3 presents the risk-based monitoring approach as well as MMT, the main
monitoring tool we leveraged in this thesis,

16

1.4. OUTLINE OF THE THESIS

3. Chapter 4 presents model-based diversity and implementation-level diversity, two
approaches leveraging diversity to enable attack tolerance,

4. Chapter 5 presents reflection-based attack tolerance an approach leveraging software
reflection to enable attack tolerance,

5. Chapter 6 presents a complete attack tolerance for cloud applications based on Web
services. This methodology leverages the other contributions and extends SChorA, a
framework for choreography conformance and testing.

6. Chapter 7 concludes this thesis. The limitations of the thesis are discussed and
some future works are also pointed out.

17

2
Attack tolerance: Challenges & directions

Contents
1.1 General Context . 12
1.2 Contributions . 13

1.2.1 Risk-based monitoring methodology 13
1.2.2 Diversity-based attack tolerance 14
1.2.3 Reflection based attack tolerance 14
1.2.4 An attack tolerance framework for cloud applications 15

1.3 Publications . 15
1.3.1 Workshops . 16
1.3.2 International Conferences . 16
1.3.3 Talks . 16
1.3.4 Posters . 16

1.4 Outline of the Thesis . 16

Web services allow the interoperability and communication of heterogeneous systems
in the Web through Internet protocols. These facilities make them particularly useful for
implementing services oriented architectures (SOAs) of companies, cloud services (e.g.,
Amazon, Microsoft, Google) and even governments applications. Besides, the efforts and
findings of the last decades of research on the formalization and the verification of Web
services have given a certain level of assurance on Web services. However new challenges
such as high availability and security issues are not fully addressed. Web services are also
subject to attacks that are destructive even if they are well known. Moreover, Web services
located in cloud platform inherit their vulnerabilities. Very few solutions exist to ensure
the availability of Web services in the presence of these attacks. This chapter presents Web
services and an overview of the literature and explored the scientific works and techniques
that have brought more trust on Web services. The main cloud vulnerabilities are then

19

CHAPTER 2. ATTACK TOLERANCE: CHALLENGES & DIRECTIONS

disclosed. We also present existing attack tolerance techniques highlighting the main issues
that remain unsolved. We explore software formal methods as well, in order to disclose
their benefits for attack tolerance.

2.1 Research on Web services

Service Oriented Architecture (SOA) is an approach that defines a pattern for the imple-
mentation of functionalities, grouped together in execution units called services, offered by
suppliers or producers to customers or consumers. The relationship between the producer
and the consumer of a service is described by means of a contract. The contract formalizes,
according to standards, the functionalities offered by the service as well as the technical
context in which these functionalities must be delivered. However, the contract does not
specify how these features are implemented at the producer level. A service is independent
of a given technology or programming language. Finally a service is publishable and
discoverable: it can be registered by the provider within a directory or register. The
consumer can consult the register and, from the information contained in the contract,
choose to access the service. The SOA approach aims, on the one hand, to facilitate the
reuse of software entities, on the other hand, to improve the interoperability between
a customer and a supplier by reducing coupling. According to the World Wide Web
Consortium (W3C), a Web service is a software system designed to support interoperable
machine-to-machine interaction over a network. In other words, Web services enable the
communication and exchange of data between heterogeneous applications in distributed
systems. The idea is to solve interoperability and complexity issues in the Web.

Web services have increasingly gained a great popularity. Almost all software companies,
governments or even individuals applications are deployed using Web services. This success
story is due in large part to cloud computing. Indeed, in cloud computing with scalable
previsions, abstracted IT infrastructures, platforms and applications with a pay-per-use
model, everything is delivered as a service (XaaS). We will present in detail cloud computing
in next sections. With the heterogeneity of standards, Web services must be safe and reliable,
i.e., they must be able to satisfy the requirements and constraints of users. Consequently,
over the last decades, several research have been carried out with the aim of ensuring the
suitable interactions between Web services and ensuring safety of Web services.

[Hwang et al., 2009] [Morales et al., 2010] [Nguyen et al., 2013] [Cao et al., 2010]
contributed to the verification of Web services. These verification techniques often use
formal methods. The main advantage of formal modeling and analysis, is the establishment
of a high level of confidence on the software. In addition, as Web services became
more and more complex, architectures of Web services which were very often monolithic
evolved to give more modular architectures. A composite Web service is defined as a
Web service with several components that can be developed separately and deployed in
distributed environments. Running tests on such systems requires more effort due to their
size and distributed environments. The conventional verification techniques have been

20

2.1. RESEARCH ON WEB SERVICES

proved insufficient and inadequate. The works [Nguyen et al., 2014] [Cavalli et al., 2010]
have therefore provided a formal framework for testing such systems. Moreover, better
management of these composite services is made possible through efficient techniques such
as service choreography. Service choreography defines requirements from a global point
of view, based on the interactions between a set of participants that are implemented as
services.

[Nguyen et al., 2016] contributed to the development of reliable data service choreogra-
phy using a dedicated projection algorithm. It should also be noted that the implementation
of Web services can lead to significant design and development delays. Reuse and compo-
sition are therefore necessary to reduce the delays and time to market. However, reused
components or entities may not have the same interfaces and may not meet the same
business requirements. A lot of research has helped to investigate and promote software
adaptation. [Mateescu et al., 2012] proposed new techniques based on process algebra. This
allowed them to define innovative adapters obtained from the service description languages.
Several other methods based on model-driven engineering techniques have emerged in order
to address the problem of coping with dynamic service changes [Morin et al., 2009].

Moreover, Web services are mainly involved to ensure the quality of Web services in
order to take into account the requirements of the customers. In addition, given the number
of online services that are functionally equivalent, there was a need for relevant criteria for
helping users to choose the best service that would meet their needs perfectly. The metrics
of quality of service (QoS) and quality of experience (QoE) have therefore been proposed.
The QoS is usually defined as a set of attributes or parameters, such as the response time,
availability or reliability corresponding to a given Web service. [Kondratyeva et al., 2013]
reviewed the works published on QoS evaluation for Web service and proposed a model
based evaluation of QoS to evaluate the quality of Web services. They used weighted Finite
State Machine (FSM). The weight associated with each transition represents the cost of the
corresponding transaction execution (in terms of time for example). The quality parameter
values were estimated via different execution paths of the corresponding FSM.

All these contributions, (cf. Figure 2.1) even though have significantly improve the
state of art, are not enough to protect Web services against malicious and destructive
attacks.

21

CHAPTER 2. ATTACK TOLERANCE: CHALLENGES & DIRECTIONS

Figure 2.1 – Panorama of Web services research contributions. We must understand that
attack tolerance spans these domains.

In fact, the popularity of Web services and the fact, that these services are accessible
from the Internet, make them potential targets for malicious individuals and organizations.
Internet applications and specifically these based on cloud-based Web services are under
constant attack from criminal hackers and other malicious threats They generally perpetrate
malicious attacks for stealing confidential data or altering availability of services. These
attacks affect all actors of the society. For companies, this is a significant loss of turnover.
Imagine an airport company whose reservation application is out of service for even one
hour, the losses could be in millions of dollars. In the same way, the main threat for
governments remains the destruction of critical and strategic military positions. In the
next sections we will present the security issues of Web services as well as cloud computing-
based vulnerabilities.

2.2 Security issues related to Web services

Web services face several attacks. The main attacks are the following [Kuyoro et al., 2012].

2.2.1 XML DoS

A XML DoS(X-DoS) attack can be defined as an explicit attempt by attackers to prevent
legitimate users of a service from using that service. X-DoS can be manifested [Ficco and
Rak, 2011]:

1. By flooding the network with XML messages thereby not allowing legitimate network
traffic

2. By flooding the service with XML requests thereby affecting availability of the
service. Oversize Payload: It is a resource exhaustion attack, which is performed by
querying a service using a very large request message. It exploits the high memory
consumption of XML processing implemented by most Web Service frameworks that
use a tree-based XML processing model. A possible countermeasure against such an
attack consists in the restriction of the total buffer size for incoming Simple Object
Access Protocol (SOAP) messages.

22

2.2. SECURITY ISSUES RELATED TO WEB SERVICES

3. By passing malicious XML content in a request thereby disrupting the service and
making it unavailable for other legitimate users. We can cite Coercive Parsing
also called Deeply-Nested XML. This attack exploits the SOAP message format
by means of inserting of a large number of nested XML tags in the message body.
The goal is to force the XML parser within the server application to exhaust the
computational resources of the host system by processing numerous deeply-nested
tags. A countermeasure could consist in limit the number of namespace declarations
per XML elements. On the other hand, XML specification does neither limit the
number of nested XML elements, nor the length of the namespace URIs. Any
restriction could lead to unpredictable rejection of legitimate messages.

2.2.2 Metadata Spoofing

Metadata is a specific information (creation date, modification date, author name. . .) that
characterizes an electronic component (file, data, picture. . .) and that is useful to its
management. It can be found in emails, social media, websites, and even in phone calls. A
client retrieves all the information regarding a web service invocation (i.e., message format,
network location, security requirements, etc.) from the metadata documents provided by
the web service server. This metadata is usually distributed using communication protocols
like HTTP/S or mail. These circumstances open new attack possibilities aiming at spoofing
these metadata. In this attack, the attackers try to modify the information in server’s
metadata so that user can be redirected to different place.

2.2.3 SQL Injections

When SQL statements are generated, security vulnerabilities can occur. SQL injections can
be generated by inserting characters into SOAP requests, web forms, or URL parameters.
The attacker can access privileged data, or connect to protected areas and compromise the
Web service.

2.2.4 Capture and Replay Attacks

Such an attack can occur when a malicious party intercepts communications between
two peers. An attacker may inserts, removes or modifies information within messages
transmitted between peers. If he can capture messages and SOAP requests, he can replay
them by adding his own information. This can cause malfunction for the actual users of
the service.

2.2.5 Session Hijacking

It occurs when an attacker steals a user’s valid session ID and uses it to gain that user’s
privileges in the Web service. For example, an attacker who by intercepting SOAP messages
can hijack a user’s session in the same way as with typical web application attacks.

23

CHAPTER 2. ATTACK TOLERANCE: CHALLENGES & DIRECTIONS

2.2.6 WSDL scanning
This attack consists in trying to retrieve the WSDL of Web services in order to obtain
precious information [Singhal et al., 2007].

2.2.7 Parameter tampering
This type of attack consists in a modification of the parameters expected by a service to
bypass input validation and gain unauthorized access to some functionality [Singhal et al.,
2007].

2.2.8 External reference attack
It is an attempt to bypass protections by including external references that will be
downloaded after the XML has been validated but before its processed by the application
[Singhal et al., 2007].

In conclusion, Web services are the target of Cyber attacks. Moreover Web services
are increasingly used to develop Enterprise Service Oriented Architectures. These services
are often deployed in the cloud. Indeed [Sharma et al., 2011], have shown the interest of
deploying web services in the cloud. They pointed out that deploying Web services in the
cloud increases the availability and reliability of these services and reduces the messaging
overhead. In fact, the resources, provided per demand in the cloud with great elasticity,
satisfy the requirements of the service consumers. As conclusion, Web services deployed in
the cloud or used for building cloud applications inherit the vulnerabilities of the cloud
platforms. This is why in the next section we will present cloud computing as well as the
security issues related.

2.3 Cloud computing security issues

2.3.1 Cloud computing in a nutshell
The expansion of the Internet has allowed the emergence of cloud computing. The term
cloud computing is not as recent as that. Indeed, according to some, in 1960, John
McCarthy (1927-2011), one of the pioneers of artificial intelligence McCarthy had already
planned that computing facilities would be provided to the general public as a public
service.

Essential characteristics

According to the NIST [Mell and Grance, 2001], essential characteristics of cloud can be
classified as follows:

• On-demand self-service : Different computing capabilities, storage services, soft-
ware services etc. should be accessed as needed by consumers automatically without

24

2.3. CLOUD COMPUTING SECURITY ISSUES

Figure 2.2 – Cloud services Models

service provider’s intervention. The resources are pooled to serve the users at a single
physical location and/or at different physical location according to the optimality
conditions (e.g. security, performance, consumer demand).

• Pricing : No capital expenses are needed. Users may pay and use or pay for services
and capacity as they need.

• Broad network access : All services are available over the network and are also
accessible through standard protocols using web enabled devices computers, laptops,
mobile phones etc.

• User-Centric Interface: Cloud interfaces are location independent and they can
be accessed by well established interfaces such as Web services and Web browsers.

• Autonomous System : Cloud computing systems are autonomous systems man-
aged transparently to users.

• Rapid elasticity: Elasticity is a key functionality of cloud computing. The resources
appear to users as indefinite and are also accessible in any quantity at any time.

25

CHAPTER 2. ATTACK TOLERANCE: CHALLENGES & DIRECTIONS

Software and data inside clouds can be automatically reconfigured and consolidated
to a simple platform depending on user’s needs

• Measured service : A metering capability is deployed in cloud system in order
to charge users. The users can achieve the different quality of services at different
charges in order to optimized resources at different level of abstraction suitable to
the services (e.g. SaaS, PaaS and IaaS).

• Quality of Service (QoS) : Cloud computing can guarantee QoS for users in terms
of hardware or CPU performance, bandwidth, and memory capacity.

Three service models

Three service models can be offered on the cloud(Figure 2.2):

• Software as a service (SaaS): This service model is characterized by the use
of a shared application that runs on a cloud infrastructure. The user accesses
the application via the network through various types of terminals (e.g a web
browser). The application administrator does not manage and control the underlying
infrastructure (networks, servers, applications, storage). He does control only the
functions of the application.

• Platform as a Service (PaaS) : The user has the ability to create and deploy its
own applications on a cloud PaaS infrastructure using the vendor’s languages and tools.
The user does not manage or control the underlying cloud infrastructure (networks,
servers, storage) but controls the deployed application and its configuration.

• Infrastructure as a Service (IaaS): The user rents computing and storage re-
sources, network capabilities and other necessary resources (load sharing, firewall,
cache). The user has the opportunity to deploy any type of software including operat-
ing systems. The user does not manage or control the underlying cloud infrastructure
(Host OS) but has control over operating systems, storage, and applications.

Three service deployments

Three deployments can be offered:

• Private cloud:
The cloud infrastructure is used by a single organization. It can be managed by the
organization or by a third party. The infrastructure can be placed on the premises of
the organization or outside.

• Community cloud: The cloud infrastructure is shared by several organizations for
the needs of a community that wants to pool resources (security, compliance, etc.). It
can be managed by organizations or by a third party and can be placed on premises
or outside. Examples of community clouds are Google Apps for Government and
Microsoft Government Community Cloud.

26

2.3. CLOUD COMPUTING SECURITY ISSUES

Figure 2.3 – A typical cloud setup

• Public cloud : The cloud infrastructure is open to the public or to large industrial
groups. This infrastructure is owned by an organization that sells cloud services.
Amazon with his platform Amazon Web Services (AWS) 1 is one of the leader in the
public cloud market.

• Hybrid cloud: The cloud infrastructure consists of one or more of the above models
that remain separate entities. These infrastructures are interconnected by the same
technology that allows the portability of applications and data.

2.3.2 Cloud Market and challenges

The cloud with its promises and benefits has generated a lot of enthusiasm for companies
of all types and sizes. Internet giants have seen a way to offer new services while secular
companies have seen a way to reduce their operational costs. Cloud infrastructures are
particularly suitable for small companies and start-ups as, in the beginning of their activities,
do not necessarily have huge financial resources for the acquisition of qualified materials.

1https://aws.amazon.com/fr/

27

CHAPTER 2. ATTACK TOLERANCE: CHALLENGES & DIRECTIONS

Figure 2.4 – Cloud market shares from the Synergy Research Group

As we can see on Figure 2.4 2, the Internet giant share the market with some new,
smaller competitors. The leading cloud providers continue grow their share of the worldwide
cloud infrastructure services market. Amazon with Amazon Web Services (AWS) continues
to lead the market with 34% followed by Microsoft 11%, IBM 8 %, and Google 5%. Then
there are next 10 with less than 20 % combined market share. Despite the fact that cloud
adoption is accelerating considerably year-on-year, there are still a number of practical or
research challenges.

A number of challenges which are currently addressed by researchers are identified
([Prasad et al., 2013], [Dillon et al., 2010], [Ahamed et al., 2013]). Although all these
issues are challenging, security and privacy remain a barrier to the complete adoption of
the cloud. In this document we will then focus on the challenge of security. We’ve listed
the top attacks targeting cloud applications and infrastructures.

Cloud based threats

Cloud computing infrastructures are complex and share many of the same vulnerabilities
as legacy IT systems connected to the Internet (e.g., DoS attacks), while offering their own
unique challenges. Most of cloud consumers use cloud services owned by Cloud Service
Providers (CSP) for storage capabilities. In fact, they have no control and visibility of
their own data. According to the IEEE, control is the ability to decide who and what is
allowed to access consumer data. Visibility is the ability to monitor the status of a client’s

2https://www.linkedin.com/pulse/cloud-battleground-wholl-win-skies-rahul-neel-mani/

28

2.3. CLOUD COMPUTING SECURITY ISSUES

data and program. In other words they don’t know the location or the use of their data.
Thus, they need to rely on the service provider to ensure that the platform is secure, and
it implements necessary security properties to keep their data safe [Kazim and Zhu, 2015].
The new threats introduced by cloud computing can be classified as follows: data leakage
vulnerabilities and virtualization based vulnerability. [Kazim and Zhu, 2015].

Data leakage vulnerabilities

Data loss

They mostly occurs due to malicious attackers, data deletion, data corruption, loss of
encryption keys, faults in the storage system, or natural disasters [api, 2016a]. Data loss can
have catastrophic consequences in the business, which may result in bankruptcy [api, 2016b].
Another source of data loss are insecure interfaces and APIs (Application Programming
Interface) [Kazim and Zhu, 2015,M. Raju, 2014]. Cloud Services Providers (CSPs) expose
APIs to third-parties to interact with their cloud services. In fact, whether launching
applications services (SaaS), deploying their own applications (PaaS), or managing virtual
machines (IaaS), cloud consumers use these APIs. Since the APIs are accessible from
anywhere in the Internet, malicious attackers can use them to compromise the confidentiality
and integrity of the enterprise customers [api, 2016a]. In [Georgiev et al., 2012], the authors
show that some web applications such as payment services at Amazon and PayPal, have
flaws in their implementation of the secure sockets layer (SSL) protocol that weaken their
security when accessed through the APIs. Moreover, authentication and access control
principles can also be violated through insecure APIs.

Cache-based side-channel

The prowess of modern cryptography led to the design of algorithms mathematically proven
robust and secure [Rsa, 1977]. Although these algorithms are safe, their software and
hardware implementations may be prone to attacks called covert-channel or side-channel
attacks. A side-channel attack uses communication means that are not normally designed
to leak the information [Kocher et al., 1999].

These attacks consist of two steps. First, a detailed analysis of the power consumption,
the electromagnetic emanation or any other source or the execution timing of a cryptography
system is made. Then, the exploitation of this analysis gives the attacker the ability to
recover some bits of the encryption keys. In the cloud, the main micro-architectural leakage
source is the cache. The side-channel attacks existed long before the emergence of cloud
computing. The attacks in the cloud are possible thanks to the concept of multitenancy.
The term multitenancy refers to a software architecture in which a single instance of
software runs on a server and serves multiple tenants. A tenant is a group of users who
share a common access with specific privileges to the software instance.

The first study that revealed the vulnerability of cloud computing platforms is [Ris-
tenpart et al., 2009]. The attack was conducted on the public cloud platform Amazon

29

CHAPTER 2. ATTACK TOLERANCE: CHALLENGES & DIRECTIONS

Figure 2.5 – Overview of a side channel attack on a cloud platform.

Web Services with the Xen hypervisor 3. Note that a hypervisor is a software system
that provides the launch, management and provisioning of virtual machines in a cloud
platform. In the case of the Xen hypervisor, we distinguish a particular and privileged
virtual machine called Dom0 that acts as orchestrator of other virtual machines and
provides the management functions. The attack took place in two distinct steps. In the
first step, the attacker make a mapping of IP addresses and launches its virtual machine
(VM) on a the same platform (CPU, core) of the target VM. This is called co-residence.
Two virtual machines are considered co-resident if one of the following three conditions
is satisfied: i) They have relatively close internal addresses. ii) There are low network
latencies between virtual machines.iii) The addresses correspond in part to the IP address
of the Dom0 virtual machine.

In the second step, they used a technique called PRIME AND PROBE:

1. The spy fills one or more lines of cache with random data;

2. Then he lets out to the victim so that she can run;

3. Finally, the spy reload the same data in the same cache lines and measuring the time
taken for charging.

A big loading time indicates that theses cache lines has been accessed by the victim
and the spy data has been ejected from the cache. On the other hand, low duration shows
that the relevant part of the L2 cache remained intact. With these measurements, the spy

3https://www.xenproject.org

30

2.3. CLOUD COMPUTING SECURITY ISSUES

inspected the traffic of a Web server and determine keystrokes of the victim. This attack
even if it was a coarse-grained attack, gave researchers compelling reasons for addressing
this new vulnerability [Zhang and Reiter, 2013, Zhang et al., 2012,Yarom and Falkner,
2014]. Nevertheless, this study has opened the field of research and served as a springboard
for future side-channel attacks.

Zhang et al. showed in [Zhang et al., 2014] that the side-channel attacks were also
possible on PaaS platforms. The attack was based on the method of FLUSH AND RELOAD.
The FLUSH AND RELOAD is a variant of the method PRIME AND PROBE.

2.3.3 Virtualization vulnerabilities

Cloud computing leverages the concept of virtualization, that usually enables a new
software layer (hypervisor) atop the operating system. However, virtualization introduces
new security concerns [Studnia et al., 2012]:

• Detecting a virtualized environment: officially, a virtualized platform acts as a
real platform, but an attacker has the possibility to detect if a machine is virtualized
by measuring some instructions at execution time. Then, performing a comparison of
the obtained values with previous measurements, the virtualization can be detected.

• Identifying the hypervisor: all of the hypervisors have their own vulnerabilities
and flaws. Normally a cloud user cannot know on which hypervisor his/her VMs are
running. However a spy can identify the hypervisor by using some specific instructions
not well supported by each kind of hypervisor.

• VM escape: bad configuration within the hypervisor can break isolation between
the hypervisor and the host. A virtual machine could directly interact with the host
operating system. This would compromise all the data stored in the affected virtual
machine and can affect other virtual machines deployed on the same host.

• VM hopping: this kind of attack is based on a virtual machine accessing other
virtual machines. This vulnerability allows remote attacks and malware to compromise
the overall virtual machine security, also granting access for the attackers to the host
computer, the hypervisor and other virtual machines.

• Malicious VM creation: the creation of malicious virtual machines constitutes
a high risk for the system since they can replace the legitimate virtual machines
offering similar services, but making a malicious use of the exchanged data.

After describing the main attacks Web services and cloud platforms can face, we will
present the current state of art of tolerance. We will first review general attack tolerance
techniques. After, we will present the techniques specific to Web services.

31

CHAPTER 2. ATTACK TOLERANCE: CHALLENGES & DIRECTIONS

2.4 Intrusion and attack tolerance for Web services

2.4.1 Attack tolerance techniques

Intrusion tolerance comes from fault tolerance, a term used in dependability [Deswarte
and Powell, 2004]. Dependability is a generic notion that measures the trustworthiness
of a system, so that the users have a justified trust in the service delivered by that
system [Saha, 2007]. It mainly includes four components: reliability, maintainability,
availability and security. Dependability has emerged as a necessity in particular with
industrial developments. The goal was to build systems that are reliable and contain
near-zero defaults. As IT systems are facing both diversified and sophisticated intrusions,
intrusion tolerance, can been considered as one of the crucial attributes of dependability to
maintain. According to [Deswarte and Powell, 2004], the common vulnerability sequence
of fault tolerance is the fault-error-failure sequence. For them, a system failure occurred
when the service its delivers deviates from the normal tasks it was supposed to execute.
Moreover an error is any part of a system that can lead to a failure. They defined a
fault as the probable cause of an error. Applying this sequence in the context of security,
an intrusion can be defined as a malicious fault resulting from a successful attack on a
vulnerability [Veríssimo et al., 2003]. According to the recent development trends and
advancement of intrusion detection, detecting all kinds of intrusions effectively requires a
holistic view of the monitored network. It is impossible in practice to detect all attacks
targeting a computer system.

Intrusion or attack tolerance of a system is then the capability of that system to
continue to function properly with minimal degradation of performance, despite intrusions
or malicious attacks. Several approaches and techniques were proposed in the literature.
The goal of the work in [Wang et al., 2003] is to identify common techniques for building
highly available intrusion tolerant systems. They mention that a major assumption of
intrusion tolerance is IT systems can be faulty and compromised and the main challenge
consists in continuing to provide (possibly degraded) services when attacks are present. In
addition, the main techniques used for attack tolerance ([La, 2016]) are:

• Indirection: It separates clients and servers by an additional layer that can be
considered as another protection barrier. Proxies, wrappers, virtualization, and
sandboxes are some examples of indirection techniques.

• Voting: The voting technique allows to detect misbehavior from the outputs observed
by a set of servers. Indeed, the servers receive the same requests and any differences
of their responses can lead to a consensus result based on the responses of perceived
non-faulty components in the system.

• Redundancy and diversity: Redundancy refers to the extra reserved resources
allocated to a system that are beyond its need in normal working conditions. Diversity
is the idea of having many forms of the same object. It is argued that design diversity
reduce the probability of intrusion [Veríssimo et al., 2003].

32

2.4. INTRUSION AND ATTACK TOLERANCE FOR WEB SERVICES

• Threshold cryptography : The general idea is to fragment a secret S into n pieces
in such a way that it needs at least k shares to reconstruct original S. Anything less
reveals no information.

• Fragmentation redundancy scattering (FRS): It consists in splitting sensitive
data, making them redundant and isolating fragments obtained.

• Dynamic reconfiguration: Reconfiguration takes place after the detection of an
intrusion. In traditional systems reconfiguration is mostly reactive and generally
performed manually by the administrator.

• Detection and recovery: It consists in detecting error after an intrusion has
been activated. Error recovery means recovering from the error once it is detected,
forwarding the systems to a state that ensures correct provision [Veríssimo et al.,
2003].

Furthermore, there are several solutions that provide attack tolerance using one or a
combination of such techniques ([Mishra et al., 2017], [Yan et al., 2016], [Meixner et al.,
2016], [Raj and Varghese, 2011], [Saidane et al., 2009]). The work in [Constable et al.,
2011] explores how to build distributed systems that are attack-tolerant by design. The
idea is to implement systems with equivalent functionality that can respond to attacks
in a more safe way. [Madan and Trivedi, 2004] propose a formalism based on graphs to
model an intrusion tolerant system. In this model they introduce system’s response to
(some of) the attacks. They call this model that incorporates attacker’s actions as well
as the system’s response an Attack Response Graph (ARG). Other approaches have been
developed to cope with intrusion-tolerance.

[Deswarte et al., 2002, Nicomette et al., 2011] proposed an hybrid authorization
service. The main contribution of that study is the introduction of an Intrusion tolerance
authorization scheme. In this scheme the system is able to distribute proofs of authorization
to the participants of the system. For the authors, an application is a set of objects
interacting through method invocations. Thus, a proof of authorization allows objects to
execute operations. Their architecture is based on two main components: the authorization
server and the reference monitors. The authorization server grants or denies rights
for operations involving several participants. The reference monitor controls the access
to the resources on each participating host. Performance measures obtained from an
implementation of this architecture, reveals that this framework needs specialized hardware
for the best implementation of cryptographic operations.

Besides, [Nguyen and Sood, 2010], [Wang et al., 2003] and [La, 2016] classify ITS
(Intrusion Tolerant Systems) architectures into four categories :

• Detection-triggered [Valdes et al., 2002,Valdes et al., 2004,Reynolds et al., 2003]:
these architectures build multiple levels of defense to increase system survivability.
Most of them rely on an intrusion detection that triggers reactions mechanisms.

• Algorithm-driven [O’Brien et al., 2003,Verissimo et al., 2006,Zhang et al., 2005,
Sliti et al., 2009] : these systems employ algorithms such as the voting algorithm,

33

CHAPTER 2. ATTACK TOLERANCE: CHALLENGES & DIRECTIONS

threshold cryptography, and fragmentation redundancy scattering (FRS) to harden
their resilience.

• Recovery-based [Aung et al., 2005,Arsenault et al., 2007,Sousa et al., 2008,Reiser
and Kapitza, 2007] : these systems assume that when a system goes online, it’s
compromised. Periodic restoration to a former good state is necessary.

• Hybrid [Sousa et al., 2007a]: these systems combine different architectures mentioned
above.

Table 2.1 – Mapping between attack tolerance mechanisms and architectures

Mechanisms

Architectures Detection Algorithm Recovery Hybrid

Indirection

[Wang and Upppalli,
2003, Chen et al.,
2009, O’Brien et al.,
2003]

[Stroud et al.,
2004]

7 7

Diversity

[Wang and Upppalli,
2003, Chen et al.,
2009, O’Brien et al.,
2003]

7 7 [Lala,
2003]

FRS

[Stroud et al., 2004,
Zhang et al., 2005]

7 7 7

Threshold
cryptography

7

[Ganger et al.,
2001,Weinstein
and Lepanto,
2003]

7 [Lala,
2003]

Recovery

[Knight et al., 2001,
Wang and Upppalli,
2003, Chen et al.,
2009]

7

[Aung et al.,
2005, Arse-
nault et al.,
2007,Sousa et al.,
2008, Reiser and
Kapitza, 2007]

7

Voting

[Wang and Upppalli,
2003, Valdes et al.,
2002]

[Partha et al.,
2006]

7 7

Table 2.1 depicts the mapping between the attacks and the architectures. This study
shows firstly that these architectures ensure tolerance to attacks for conventional distributed

34

2.4. INTRUSION AND ATTACK TOLERANCE FOR WEB SERVICES

systems. One well known architecture is MAFTIA (Malicious and Accidental Tolerance
Intrusion Architecture [Stroud et al., 2004]). The framework presented in [Karande et al.,
2011] leverages the MAFTIA framework for cloud platforms. The detection relies on
event analysis, while the intrusion detection is based on threshold cryptography. After the
detection, the recovery module reallocates the VM running on these hosts and the hosts
are turned off. But, the main bottleneck of this architecture is the performance overhead.

The survey also exhibited the strengths and the weaknesses of each architecture. The
authors claimed that while the architectures proposed in the literature are efficient some
enhancements need to be taken into account. In fact, in some approaches the detection
algorithm depends on the application monitored and must be developed specifically for
each application considered [Totel et al., 2006]. Moreover some rules proposed for the
detection are sometimes naive (HTTP headers verification). Furthermore, despite good
results are obtained, in some cases there are some false positives and the identification
of the intruded server is not always possible. So the main conclusion of that study is
that the complementary combination of these architectures can lead to the design of more
efficient architectures. Our intrusion tolerance approach for Web services in this thesis will
also combine the attack tolerance mechanisms in a coherent manner by incorporating new
detection methods as we will see in the next chapters. As we will leverage diversity later,
we will present its features in detail in the next section.

2.4.2 Diversity techniques
Definition 1. Diversity4 is the quality or state of having many different forms, types,
ideas, etc. Diversity is used in theory and practice to a much greater extent in other
disciplines. As an example, biodiversity is the fact that it can exist many forms of life in
the nature.

In computer science, many kinds of software diversity exist [Baudry and Monperrus,
2015]:

• Diversity for fault tolerance, or security, re-usability, software testing;

• Diversity for networks, operating systems, components, data structures;

• Diversity in market products.

As our work targets intrusion tolerance, we will concentrate on the use of diversity as a
mean for achieving intrusion tolerance. We will list some existing approaches for diversity
and show how they can be applied or enhanced to fit our requirements. There exists several
types of diversification:

Design diversity

Design diversity refers to diversity at the early stage. N-version programming is one
of the techniques in this area. N-version programming technique can be divided into

4http://www.merriam-Webster.com

35

CHAPTER 2. ATTACK TOLERANCE: CHALLENGES & DIRECTIONS

two steps. The first consists in giving the same specification of a software product to N
(N>=2) independent teams of developers. The implementation are coded using different
programming, platforms, languages and run-time environment. This ensures independent
bugs from all teams. After the development, these implementations are run in parallel and
checked with a voting system. This reduces drastically the presence of bugs. N-version
programming can be enhanced for example by forcing developers to use different data
structures and different algorithms. Another design diversity mean is Recovery blocks
([Pen et al., 2014] [Xu et al., 2016]). Recovery blocks were proposed as a way of structuring
the code, using diverse alternative software solutions, for fault tolerance. The idea is to
have recovery blocks in the program. These spares are diverse variant implementations of
the same function.

Compiler-based diversity

Multi-compiler [Franz, 2010] is an approach based on compiler. The functionality of this
framework is the following. From the source code of any software, the multi-compiler tool
generates several different binaries. The diversity engine leverages some transformations
such address space randomization, NOP operations insertions. All the different versions of
the same program behave in the same way from the point of view of the end-user. The
idea is to increase the cost of the attacker activity, implementing programs with equivalent
functionality that can respond to attacks in a more safe way. As a result a number of
code variants are produced, which ensures the system will be more resistant to attacks. In
conclusion compiler based diversification decreases drastically the risk of code injection
and attacks like buffer overflow attacks.

Source code or runtime diversity

Some other works, rather than addressing diversification at the compiler layer, tried
to produce functionally equivalent programs different from each other by the control
flow. [Allier et al., 2015] provided 9 operations that transform the AST (Abstract Syntax
Tree) of the target program. This reduces the predictability of the program’s computation.
Multi-variant code execution is another runtime technique that prevents malicious code
execution by running a few slightly different instances (variants) of one program in lockstep
and comparing their behavior against each other. It is a dynamic version of N-version
programming. Any divergence among behavior of the variants at these synchronization
points is an indication of an anomaly in the system and raises an alarm. Before each
instruction is executed, the instructions are examined to ensure that the instructions
and operands are the equivalent. Furthermore, in the literature some approaches, like
metamorphic and polymorphic programming, have been investigated. These techniques are
used by attackers to create very dangerous and not easy to detect malwares. Metamorphic
malware is a malware that automatically re-codes itself each time it propagates or is
distributed5. This attack can be develop through some simple operations such as:

5 https://www.blackhat.com/presentations/bh-usa-08/Hosmer

36

2.4. INTRUSION AND ATTACK TOLERANCE FOR WEB SERVICES

• Adding varying lengths of NOP instructions

• Permuting use registers

• Adding useless instructions and loops within the code segments

Some other strong operations could be used :

• Reordering structures

• Program flow modification

• static data structures modification

On can use this method not to attack but to defend itself against other types of attack.
But in practice building a polymorphic code requires very deep programming capabilities.

Multi-layer diversity

Because the above framework only address a particular class of vulnerabilities, recent works
aim at combining many of these approaches in order to enhance the security and intrusion
tolerance are introduced. [Collberg et al., 2012] composed multiple forms of diversity and
code replacement in a distributed system in order to protect it from remote man-at-the-end
attacks. This paper presents a new method to address Remote Man at the end attack.
Remote man-at-the-end (R-MATE) attacks occur in distributed systems where untrusted
clients are in frequent communication with trusted servers over a network, and malicious
users can get an advantage by compromising an untrusted device.

[Obelheiro et al., 2006] show how to achieve intrusion tolerance in practice. They
introduced two main concepts that are useful when one is trying to construct an intrusion
tolerance system:

1. Axis of diversity: a component of a system that may be diversified,

2. Degree of diversity: the number of choices available for a specific axis of diversity.

They explained that there exist many axis of diversity among which we can notice:
application, administrative, location, Commercial-off-the-shelf (COTS) Software DBMS
(Data Base Management System) Middleware Virtual Machines, Compilers Libraries),
Operating System, Security Methods, Hardware. They performed their experiments with
six axes of diversity: implementation, execution environment (COTS), database (COTS),
operating system, hardware, and location and a degree of diversity.

The following table 2.2 depicts the diversity mechanisms

37

CHAPTER 2. ATTACK TOLERANCE: CHALLENGES & DIRECTIONS

Table 2.2 – Diversity techniques

Technique Description Target attack
N- version pro-
gramming

N different versions of the pro-
gram are launched and a vot-
ing mechanism checks source
code errors

Bugs on software; requires a
bug free specification

Recovery Blocks Acceptance test with function-
ally equivalent spares modules

Hardware and software faults

Multi Variant Ex-
ecution

dynamic N-version program-
ming, error checking

Malicious code injection

Multi compiler Diverse binaries for a source
code

Buffer/heap overflow attacks

"Sosification" Change the control flow of the
source code

lack of input validation or
business logic vulnerabilitiesHomomorphic

and polymorphic
programming

2.4.3 Attack tolerance techniques for Web services

Other works were conducted in order to transpose the aforementioned techniques and
framework to Web services. [Sadegh and Azgomi, 2015] presented an attack tolerant Web
services architecture based on Diversity techniques we mentioned above. They designed
several composite Web services (intrusion detection Web services, intrusion containment
Web services, etc. Ficco and al. [Ficco and Rak, 2011] on contrary, proposed an attack
tolerant framework targeting Stealth DoS Attacks. In fact according to the authors
background, Stealth-DoS attack seems difficult to detect because such attacks behaviors
are variable and polymorphic. In order to protect against such attacks, they combine
several anomaly based attack tolerance techniques. There is a dynamic threshold, an
average number of nested XML tags that corresponds to a normal CPU usage, determined
according to the resource overhead consumption.

While these approaches are interesting, some limits remain. First, the solutions are
attack-specific. Moreover, there is no evidence that these frameworks protect against
silent but very dangerous attacks. These attacks are actually developed by hackers who
apply their acquired knowledge on learning and exploiting the vulnerabilities of the target
application. The traffic then during these attacks may seem a priori legitimate. Therefore,
the differentiation between malicious traffic and normal traffic is very difficult to achieve
by conventional detection and intrusion tools. It requires in-depth expertise. In conclusion,
attack tolerance for Web services is now quite insufficient. In conclusion we need a more
efficient intrusion-tolerant mechanism. We will see in the next section other ways of
thinking about attack tolerance namely using formal methods and monitoring.

38

2.5. FORMAL METHODS

2.5 Formal methods
One of the open problems in software engineering is the correct development of computer
systems. We want to be able to design safe systems. A secure design of a software refer
to techniques based on mathematics for the specification, development, and verification
of software and hardware systems. The use of a secure design is especially important in
reliable systems where, due to safety and security reasons, it is important to ensure that
errors are not included during the development process. Secure designs are particularly
effective when used early in the development process, at the requirements and specification
levels, but can be used for a completely secure development of a system. One of the
advantages of using a secure representation of systems is that it allows to rigorously analyze
their properties. In particular, it helps to establish the correctness of the system with
respect to the specification or the fulfilment of a specific set of requirements, to check the
semantic equivalence of two systems, to analyze the preference of a system over another
one with respect to a given criterion, to predict the possibility of incorrect behaviors, to
establish the performance level of a system, etc. Formal methods are well suited to address
the above mentioned issues as there are based on mathematical foundations that support
reasoning. In this section, we briefly present the different techniques that are part of this
set of methods [Attiogbe, 2007].

2.5.1 Static analysis
In these techniques, the code is not executed but some properties are proven. There are
several methods among them:

• Theorem proving: The specification of a program is seen as a theorem to demon-
strate. The reduction of a conjecture, by successive applications of deductive rules
and axioms, constitutes a proof of this conjecture. The interpretation of the failure
of the proof is delicate; indeed, either the property is not demonstrable (problem
of non-decidability) or there are not enough elements or strategies to lead to the
demonstration. Proof assistants are software or software platforms that allow help
the user through the various steps of a proof. Most of the time they have a set of
theories with their axioms and logical systems. Examples of proof assistant are: Coq,
Isabelle etc.

• Model Checking: An abstract representation of the system is used to check the
desired properties. It consists in exhaustively exploring the state space of that given
representation (often a transition system or a graph) for the purpose of verifying
properties that are true or false. The result of the evaluation is either a confirmation
that the properties are true in all states of the input model, or a series of states
leading to a state or property is not true: it is a counter example. Examples of model
checkers are: Cubicle, SMV (Symbolic Model Checker for CTL), Spin etc.

• Refinement methods : Refinement is fundamentally a relationship between an
abstract object and a less abstract one; one refines the other. Such methods start

39

CHAPTER 2. ATTACK TOLERANCE: CHALLENGES & DIRECTIONS

from the specification of a problem and implements more and more accurately the
program until an executable code is obtained. Each stage of the refinement is proven
correct.

• certified programming : is based on the correspondence between mathematical
proofs and programs. The specification of a program is associated with a logical
formula (a theorem). From a proof of this formula, one extracts a program and a
certificate from this program.

• Abstract interpretation : Abstract interpretation [Cousot and Cousot, 1977]
formalizes the idea that a formal proof can be done at some level of abstraction
where irrelevant details about the semantics and the specification are ignored. This
amounts to proving that an abstract semantics satisfies an abstract specification.

2.5.2 Dynamic analysis

It is the most widespread. It consists of executing the code or simulating it in order to
reveal any bugs. Software testing consists in comparing the result of a program with the
expected result. For this method to be effective, it is necessary to test the various possible
situations. There are two types of tests:

• Functional tests: that consider the program as a black box and are only established
from the knowledge of program specification;

• Structural tests: that, from the knowledge of the program, seek to execute tests
that cover all parts of the code.

A particular type of dynamic analysis is formal monitoring which remains more used for
the detection of attack. This is why we will deeply present formal monitoring.

What is monitoring

Monitoring is the process of dynamically collecting, interpreting and presenting metrics
and variables related to a system’s behavior in order to perform management and control
tasks [Stankovic and Strigini, 2009]. The idea behind monitoring is to measure and observe
performance, connectivity, security issues, application usage, data modifications and any
other variable that permits to determine the current status of the entity being monitored.
By keeping a constant view of the different entities, we can obtain a real-time status of Key
Performance Indicators (KPI) or Service Level Agreements (SLA) compliance as well as
faults and security breaches. Monitoring can be performed in several domains that include
user activity, network and Internet traffic, software applications, services and security. The
monitoring processes should not disturb the normal operation of the protocol, application,
or service under analysis.

40

2.5. FORMAL METHODS

Monitoring techniques

The general processes involved in monitoring are: definition of the detection method to
track and label events and measurements of interest; the transmission of the collected
information to a processing entity; the filtering and classification ; and finally, the generation
decisions associated to the results obtained after the evaluation [Stankovic and Strigini,
2009]. Regarding how to collect events and measurements, monitoring techniques can be
classified into three main categories: active, passive and hybrid approaches.

Active monitoring: the System Under Observation (SUO) is stimulated in order to
obtain responses to determine its behavior under certain circumstances or events. This
technique permits directing requests to the concerned entities under observation. However,
it presents some drawbacks. The injection of requests towards the SUO might affect its
performance. This will vary depending on the amount of data required to perform the
desired tests or monitoring requests. For large amounts of data, the SUO processing load
might increase and produce undesirable effects. Secondly, the injected information might
also influence the measurements that are being taken, for example incurring in additional
delay. Lastly, active monitoring injects data that could be considered invasive. In a network
operator context, it could limit its use and applicability [Chen and Hu, 2002].

Passive monitoring: consists on capturing a copy of the information produced by
the SUO without a direct interaction [Curtis, 2000]. This technique reduces the overhead
required on active monitoring. Conversely, certain delay should be considered when
analyzing large amounts of data. Additionally, in some cases it is not always possible to
perform real-time monitoring because of required offline data post-processing [Anagnostakis
et al., 2002]. This technique has the advantage over the active approach of not performing
invasive requests.

Hybrid monitoring: by combining the aforementioned approaches we can perform
both active and passive monitoring. The idea is to keep passive trace collection and
to inject requests as necessary to maintain a continuous flow of observations and mea-
surements [Zangrilli and Lowekamp, 2004]. In this case, pre-configured, on-demand, or
event-based monitoring requests can be performed. Hybrid monitoring can be used in
systems with limited resources, for example by periodically sending passive traces (with
limited information) and requesting details if complementary information is needed. In
this way, the resources consumed by the monitoring modules are reduced.

The selection of one of these monitoring approaches will depend on different premises
like the level of intrusion allowed by the SUO, the type of data collected (which sometimes
does not require a direct request to be obtained), the specified security policies, or post-
processing and real-time constrains.

In conclusion, it is important to emphasize that test methods as important as they are
not exhaustive. We can only test a number of values. In general, therefore, they do not
constitute proof of correction of the program like in static methods. However [Moy and
Wallenburg, 2010] list some reasons why static methods may still contain defects: i) not all
parts of the product are formally verified, ii) not all properties can be formally verified, for

41

CHAPTER 2. ATTACK TOLERANCE: CHALLENGES & DIRECTIONS

example covert channels can be hard to detect as well as dead code. So a better detection
of bugs or attacks requires a joint use of both static and dynamic analysis techniques. So,
enhancing trust for cloud services consumers by leveraging monitoring, cryptography and
formal methods is the aim of the CLARUS project. We will present an overview of this
project in the next section.

2.6 Discussion
Web services are increasingly used to develop Enterprise Service Oriented Architectures.
Web services are also the target of cyber attacks. Moreover sometimes they leveraged
cloud computing for their deployment. Cloud computing, as a paradigm of distributed
systems, has emerged over the last decade. Cloud computing has revolutionized the industry.
However, as discussed above, cloud infrastructures are the classic as well as specific attack
targets. Web service then inherit the vulnerabilities of cloud computing. We have also
presented techniques to detect and mitigate attacks. To date, there are very few that
are able to manage the intrusions and the attacks and be able to insure the reactions
and counter measures with the aim of protecting the system and guaranteeing its normal
behavior in hostile environments.

Moreover, intrusion detection technologies based on signatures can efficiently catch
known attacks. However, they will be no longer effective because of the rapid growth of
new types of attacks and, indeed, attackers are constantly adapting their techniques to
evade new means of protection or firewall policies. In addition, the construction of attack
signature is a very vulnerable and delicate step. Indeed, the signatures must be sufficiently
precise to match as closely as possible to attack and thus not generating too many false
positives while being sufficiently generic to be able to detect sudden variations of the same
attack. Otherwise, an attacker can modify the scenario of an attack so that it retains its
power to harm but it no longer matches the pattern.

To cope with all these issues it is necessary to consider information security as a
permanent issue that needs to be managed in order to obtain attack-tolerant Web services.
In this thesis we propose to design an attack tolerant system that integrates intrusion
detection methods, formal methods, diverse defence strategies. By means of constant
monitoring, we will provide an attack-tolerant framework, so that potential security breaches
within can be dynamically detected and appropriate mitigation measures can be activated
on-line, so reducing the effects of the detected attacks. As a result, we ensure a total
attack tolerance of Web services from both formal and practical points of view. We will
demonstrate and evaluate practical implementations of the proposed framework, in the
next chapters. The contributions of this chapter have been published in the proceedings of
the International Conference on Distributed Computing Systems Workshops (ICDCSW
2016) [Ouffoué et al., 2016].

42

3
Risk-based passive monitoring

Contents
2.1 Research on Web services . 20
2.2 Security issues related to Web services . 22

2.2.1 XML DoS . 22
2.2.2 Metadata Spoofing . 23
2.2.3 SQL Injections . 23
2.2.4 Capture and Replay Attacks . 23
2.2.5 Session Hijacking . 23
2.2.6 WSDL scanning . 24
2.2.7 Parameter tampering . 24
2.2.8 External reference attack . 24

2.3 Cloud computing security issues . 24
2.3.1 Cloud computing in a nutshell . 24
2.3.2 Cloud Market and challenges . 27
2.3.3 Virtualization vulnerabilities . 31

2.4 Intrusion and attack tolerance for Web services 32
2.4.1 Attack tolerance techniques . 32
2.4.2 Diversity techniques . 35
2.4.3 Attack tolerance techniques for Web services 38

2.5 Formal methods . 39
2.5.1 Static analysis . 39
2.5.2 Dynamic analysis . 40

2.6 Discussion . 42

43

CHAPTER 3. RISK-BASED PASSIVE MONITORING

As it has been presented in the state of the art (Chapter 2), cyber attacks are multiplying
and becoming more and more sophisticated. We seen that in order to better tolerate and
limit the impact of these attacks, the monitoring of the information systems is of paramount
importance for any organization. Traditional intrusion detection systems are deployed to
identify and inhibit attacks as much as possible. Usually, the detection of anomalies is based
on the comparison of observed behaviors with normal behaviors, previously established. An
alert is raised when these two behaviors differ and in case of dysfunction of the information
systems and they are able to act accordingly. Moreover, monitoring makes it possible
to analyze in real time the state of the computer system and the state of the computer
network for preventive purposes.

However, we believe that the monitoring and detection of attacks require an awareness
of the risks that the system might be exposed to. This is why we propose in this chapter
the notion of risk-based monitoring that consists in thinking of the risk when deploying a
monitoring mechanism. We will first briefly present the foundations of this methodology
and then we will describe the metrics we identified for detecting some known attacks. This
methodology has been implemented in the context of the CLARUS H2020 project1 and
the metrics proposed are used for the detection part of the attack tolerance approaches
described in the next chapter. CLARUS is a H2020 European research project [Sánchez and
Domingo-Ferrer, 2015] that focuses on providing solutions to the usual security and privacy
threats that affect cloud computing and hinder a franker migration by end users. Finally
we will present Montimage Monitoring Tool (MMT), our main detection tool leveraged in
this thesis.

3.1 Risk-based monitoring methodology

The supervision or monitoring of information systems is of paramount importance for any
organization. It essentially consists in deploying probes in various parts of the system
based on pre-established checkpoints. With automatic failure reporting, network agents
can respond to key security risks. The disadvantage of such method is the following. If
risks or failures are discovered during operation, the attacks may have already occurred and
one or more parts of the system may be non-functional. So, the detection and prevention
of attacks require a good knowledge of the risks that these systems face. As such, it is
mandatory to include risk management in the monitoring strategy in order to reduce the
probability of failure or uncertainty. Risk management attempts to reduce or eliminate
potential vulnerabilities, or at least reduce the impact of potential threats by implementing
controls and/or countermeasures. In the case, it is not possible to eliminate the risk,
mitigation mechanisms should be applied to mitigate their effects. The traditional risk
management loop at runtime, is composed of six elements: assets, threats, vulnerabilities,
risk, security incidents detection, and remediation. We leveraged this loop to build our

1http://clarussecure.eu

44

3.1. RISK-BASED MONITORING METHODOLOGY

Figure 3.1 – Risk-based monitoring loop

risk-based monitoring loop depicted on the Figure 3.1 Indeed, this risk-based monitoring
solution can be summarized in the following objectives:

1. Identification of system assets,

2. Risk analysis to categorize threats that can exploit system vulnerabilities and result
in different levels of risks,

3. System monitoring to detect potential occurrences of attacks, and finally,

4. Remediation strategies to apply corrective actions for mitigating the impact of the
attack on the target system.

The step 1 to 3 are described in detail below. As an example, the CLARUS proxy will be
used for describing the approach. The step 4 is described in part here because the core
remediation strategies will be described in the next following chapters.

3.1.1 Identifying Assets
Assets are defined as proprietary resources of value to the organization and necessary for
its proper functioning We distinguish business-level assets from system assets. In terms
of business assets, we mainly find information (for example credit card numbers) and

45

CHAPTER 3. RISK-BASED PASSIVE MONITORING

Figure 3.2 – CLARUS proxy architecture

processes (such as transaction management or account administration). The business assets
of the organization are often entirely managed through the information system. System
assets include technical elements, such as hardware, software and networks, as well as the
computer system environment, such as users or buildings. System assets can also represent
some attributes or properties of the system such as the data integrity and availability. This
is particularly true for cloud services consumers.

For a user using the clarus proxy, the main assets can be summarized as:

• Sensitive data integrity: users data must be only accessed by authorized people,
avoiding any third-party use or access.

• Availability: The CLARUS proxy (Figure 3.2) should be available even in the
presence of threats, minimizing the impact on the overall system operation.

• Data Control: users must have more trust and knowledge of how their data is
managed.

• Data access: users should have the possibility to securely access or store their data
through CLARUS.

46

3.1. RISK-BASED MONITORING METHODOLOGY

3.1.2 Risk and vulnerability analysis
Risk is the possibility or likelihood that a threat will exploit a vulnerability resulting in a
loss, unauthorized access or deterioration of an asset. A threat is a potential occurrence that
can be caused by anything or anyone and can result in an undesirable outcome. Natural
occurrences, such as floods or earthquakes, accidental acts by an employee, or intentional
attacks can all be threats to an organization. A vulnerability is any type of weakness
that can be exploited. The weakness can be due to, for example, a flaw, a limitation, or
the absence of a security control. So after identifying valuable assets, it is necessary to
perform vulnerability analysis. This type of analysis attempts to discover weaknesses in
the systems with respect to potential threats. For example, in the context of access control,
vulnerability analysis attempts to identify the strengths and weaknesses of the different
access control mechanisms and the potential of a threat to exploit these weaknesses. For
access control in CLARUS, we identified the following potential vulnerabilities related to:

• Access control (console authentication and Single Sign-On (SSO) mechanisms): the
usurpation of authentication credentials allows access to all of the CLARUS proxy
functionality.

• The mapping of information between the “User-CLARUS” module, the data mapping
module and the explicit authentication: an application uses a SQL database to
store and query its data. The connection is established through a network and the
application directly connects to the database server. If the application is used with
CLARUS, the network server in the application would be changed to connect to the
CLARUS proxy instead. The proxy then offers a module (“USER-CLARUS Protocol”
module) that inspects the incoming data and picks out the data that should be
secured while handing over the rest of the data directly to a corresponding storage
system. To be able to match a user session with the incoming data stream, the
data stream is inspected for user identification traits, for example SQL login phrases,
HTTP tokens or similar unique identification elements. Vulnerability can arise if an
attacker knows the protocol the “User-CLARUS” modules are using (PostgreSQL,
OGC web services, S3. . .) and can intercept traffic and steal sensitive information or
reuse the incoming data to further get access to CLARUS.

• CLARUS access metadata modification: considering the case of the policy server not
being adequately protected, an attacker may change the policies, granting access to
unauthorized users.

3.1.3 Threats Modelling
The first step to avoid or repel the different threats that can affect an asset is to model
them by identifying: affected modules/components, actions/behaviour to trigger the threat,
and potential objective of the threat. The formal model of a threat helps to understand
the operation of the attacks and allows the creation of security mechanisms to protect, not
only the assets, but also the software mechanisms that support them. Once the threats

47

CHAPTER 3. RISK-BASED PASSIVE MONITORING

are modelled, we can identify the vulnerabilities that can affect the system and define
monitoring and remediation mechanisms to minimize the damages that might occur. Again,
considering the access control example: An access control process has two main steps:
authentication and authorization. The latter usually comes after the former in a normal
workflow. The authentication step is the more critical part of the access control process. The
following description illustrates this assertion: Let’s assume that an attacker successfully
impersonates the account of a legitimate user. If the user is the administrator, then the
attacker can create a fake user and grant himself/herself all the necessary privileges for
further attacks, or directly steal sensitive information with the administrator’s capabilities.

3.1.4 Attack scenarios
We focused on two kinds of attacks: access by unauthorized users, DoS/DDoS. Attack
tree formalism will be used for analyzing common attacks against CLARUS. Attack trees
provide a formal, methodical way of describing the security of systems, based on varying
attacks [Schneier, 1999]. Attack trees are represented in a graphical view by constructing
all the possible attacks and then by differentiating the most effective attacks with those
that are beyond the capability of attacker. The remaining attacks are the ones that may
cause damage to the system. The construction of an attack tree starts by placing the goal
of an attack at the top of the tree. Attacks against a system are represented by the tree
structure, with the goal as the root node and the different ways of achieving the goal as
leaf nodes.

Access by unauthorized users attack

Access control can be evaluated to identify threats that can bypass authentication or
authorization mechanisms. Attacks that can occur against the CLARUS authentication or
authorization mechanisms are:

• Dictionary Attacks A dictionary attack is an attempt to discover passwords by
using every possible password in a predefined database or list of common or expected
passwords [Hansche et al., 2003]. In other words, an attacker starts with a database
of words commonly found in a dictionary. Dictionary attack databases also include
character combinations that aren’t normally found in a dictionary but are commonly
used as passwords.

• Brute-Force Attacks A brute-force attack is an attempt to discover passwords
for user accounts by systematically attempting all possible combinations of letters,
numbers, and symbols [Science, 2013]. Attackers use programs that can systematically
try all possible combinations. A hybrid attack combines several techniques and, for
instance, attempts a dictionary attack and then performs a brute-force attack with
one-upped-constructed passwords.

• Rainbow Table Attacks When attempting to find passwords the time it takes
can be reduced by using a rainbow table. Rainbow tables are large databases of

48

3.1. RISK-BASED MONITORING METHODOLOGY

pre-computed cryptographic hashes of guessed passwords [Tipton, 2009]. This allows
deriving a password by looking at the hashed value stored in the table.

• Sniffer Attacks A sniffer attack occurs when an attacker uses a sniffer to capture
information transmitted over a network [Hansche et al., 2003]. Any data sent over a
network in clear text, including passwords, can be captured and read by the program.

• Access aggregation [Tittle et al., 2006] refers to collecting multiple pieces of
non-sensitive information and combining or aggregating them to derive sensitive
information.

• Reconnaissance attacks are access aggregation attacks that combine multiple tools
to identify multiple elements of a system, such as IP addresses, open ports, running
services, operating systems, and more.

As an example, the following attack scenario can arise: the attacker tries to intercept
any information available through the communication between the user and the “User-
CLARUS” module with the aim of collecting data to perform a brute force attack. For that,
information such as the protocol/s used and other private information that is exchanged in
the communications can be gathered via a network sniffer. The attacker can then aggregate
all the collected information and start the brute force attack using also a Dictionary-guided
search, so increasing the success possibilities. The typical attack tree for an intrusion in a
system is depicted in Figure 3.3.

Figure 3.3 – Attack tree for unauthorized users attack

There is one branch containing the Boolean condition AND. The remaining branches
conditions are implicitly OR branches. To intrude into the system, an attacker has 2
choices: either launch a replay attack or try to get account identity. This is why the

49

CHAPTER 3. RISK-BASED PASSIVE MONITORING

Boolean operator is OR. Before getting account identity, the intruder needs to find the
login and the password of the victim. So there is an AND operator. Guessing login is
quite straightforward as it is usually the name or the email of the victim. It results in
a leaf node. Finally, getting the victim’s password is done, for instance, by performing
password sniffing, an access aggregation attack, a Dictionary attack, a brute force attack,
or a combination of these techniques. The intrusion scenario can also be expressed by the
following statement:

(Replay attack), (account-identifier, sniff-password), (account-identifier,
password-access aggregation), (account-identifier, password-dictionary-attack),
(account-identifier, password-Brute-force attack)

Dos/DDos attacks

Denial of Service (DoS) attacks are based on attackers attempting to prevent legitimate
users from accessing information or services. The most common DoS attack is based on
flooding requests to the available services to overload the system. If an attack comes from
a distributed set of sources, or the attacker uses third-party devices to perform the attack,
it is known as a Distributed Denial of Service (DDoS) attack.

Moreover, the first detected symptom of a DoS/DDoS attack directed to a CLARUS
proxy will be a reduction of the proxy’s performance or the total denial of access to the
proxy. To detect these situations, the monitoring module needs to constantly obtain
information on the overall performance of the proxy, including response time, IP address,
network information, CPU statistics, and storage statistics:

• Number of requests per second: refers to the number of requests that a CLARUS
proxy receives in a second. Normally, this value will be very low. However, in the
presence of a DoS/DDoS attack, it will tend to grow rapidly.

• Response time: this metric refers to the time spent by the CLARUS proxy to
respond to a user request. Since the operation of the CLARUS proxy is defined to
be transparent for the user, the response time for any request should be minimal.

• IP address: source addresses of the received requests. Although during the normal
operation of the CLARUS proxy, the requests from a specific user will come from a
unique IP or a specific IP range, the use of dynamic IP assignment from Internet
Service Providers forces the CLARUS proxy to accept requests from any IP address
of the network domain.

• Network information : apart from the aforementioned IP addresses, the Monitoring
module will also collect network flow information, bandwidth usage, protocols and
other traffic statistics that will be combined with other metrics to detect DoS and
DDoS attacks.

50

3.1. RISK-BASED MONITORING METHODOLOGY

• CPU statistics:: mainly refers to CPU and memory usage values that will be
compared with historical records to allow the detection of overloads in order to allow
the Monitoring module to identify the causes.

• Storage statistics:: in the course of a DoS/DDoS attack, the performance of the
CLARUS proxy may be degraded. In this case, the storage operations will be reduced
since no legitimate activity will be performed. Thus, the storage statistics are another
indicator of a possible attack in the CLARUS system.

In order to detect DoS/DDoS attacks, it is necessary to be aware of all the metrics
listed above. Table 3.1 details the metric values that trigger alarms. Each row represents a
warning alert or an alarm that will be triggered if any of the metrics exceeds the indicated
value.

Table 3.1 – DoS/DDoS attack detection

Metric /
type of
alarm

nb of re-
quest/sec-
ond

Response
time

nb of dis-
tinct IPs

Bandwidth
usage

CPU/memory
usage

Storage
opera-
tions

Warning ≥ 2 x
threshold*

≥ 2 x
average
response
time

≥ 2 x last 24
hours range

≥ 0,5 x
bandwidth
capacity

≥ 0,7 capacity 1 active re-
quest

Alarm ≥ 10 x
threshold*

≥ 4 x
average
response
time

≥ 4 x last 24
hours range

≥ 0,8 x
bandwidth
capacity

≥ 0,9 capacity ≥ 1 active
request
& storage
inactive

Once a DoS/DDoS attack has been detected, depending on the seriousness of the attack
(measured through the patterns defined in Table 3.1), the remediation mechanisms to be
applied are as follows:

i) Warning: it means that the attack is not completed yet (the system performance
is not hardly affected), but it can evolve to a serious attack if the performance continues
degrading. In this case, there is no automatic action to be performed, but the warning
will be sent to the administrator. If a series of this kind of alarms are received in a short
period of time, it may be necessary to manually supervise the specific problem, since it
can represent a fault in the system resources planning. ii) Alarm: this situation represents
a serious issue that needs to be solved immediately to allow the system continue working
properly with the adequate quality of service. For that, any new access will be blocked, so
those legitimate users that were using the CLARUS proxy can continue accessing to it.
If the low-performance situation persists, it may be necessary to implement more secure
access to the platform (e.g., by using white IP lists).

After describing the components of the risk-based monitoring, we will present in the
next section Montimage Monitoring tool, one of the main tools we have extended.

51

CHAPTER 3. RISK-BASED PASSIVE MONITORING

3.2 The Montimage Monitoring Tool (MMT)

The MMT (Montimage Monitoring Tool) is a monitoring solution that combines: data
capture; filtering and storage; events extraction and statistics collection; and, traffic analysis
and reporting. It provides network, application, flow and user-level visibility. Through
its real-time and historical views, MMT facilitates network security and performance
monitoring and operation troubleshooting. MMT’s rules engine can correlate network,
system and application events in order to detect operational, security and performance
incidents.

Figure 3.4 – Montimage Monitoring Tool overview
MMT-Security properties can be either “Security rules” or “Attacks” as described by

the following: i) A Security rule describes the expected functional or security behaviour of
the application or protocol under-test. The non-respect of the MMT-Security property
indicates an abnormal behaviour. ii) An Attack describes a malicious behaviour whether
it is an attack model, a vulnerability or a misbehaviour. Here, the respect of the MMT-
Security property indicates the detection of an abnormal behaviour that might imply the
occurrence of an attack.

3.2.1 MMT-Security architecture
MMT-Security is composed of three complementary, but independent, modules:

• MMT-Extract is the core packet-processing module. It is a C library that analyses
network traffic using Deep Packet/Flow Inspection (DPI/DFI) techniques in order
to extract hundreds of network and application based events, including: protocols
field values, network and application QoS parameters and KPIs (like packet loss rate,
Jitter etc.). MMT-Extract incorporates a plug-in architecture for the addition of new
protocols and a public API for integrating third party probes.

52

3.2. THE MONTIMAGE MONITORING TOOL (MMT)

• MMT-Sec is a security analysis engine based on MMT-Security properties. MMT-
Sec analyses and correlates network and application events to detect operational and
security incidents. For each occurrence of a security property, MMT-Sec allows to
detect whether it was respected or violated.

• MMT-Operator is a visualisation application for MMT-Sec. It has not yet been
implemented but will allow collecting and aggregating security incidents, and present
them via a graphical user interface. MMT-Operator will be customizable: the user
will be able to define new views or customize the large list of predefined ones. With its
generic connector, MMT-Operator can be integrated with third party traffic probes.

3.2.2 MMT-Security properties
The MMT-Security properties are written in XML format. This has the advantage of simple
and straightforward structure verification and processing by the tool. An MMT-Security
properties XML file can contain as many properties as required. The file needs to begin with
a <beginning> tag and end with </beginning>. Each property begins with a <property>
tag and ends with </property>.

Formalism description

The MMT-Security properties are intended for formally specifying the occurrence of events
that denotes a security rule to be respected or an attack or vulnerability to be avoided.
They rely on LTL (Linear Temporal Logic) [Gabbay et al., 1994] and are written in XML
format. This has the advantage of being a simple and straight forward structure for the
verification and processing performed by the tool. In the context of this document, we use
the terms of properties and rules interchangeably.

MMT refers to two types of properties “Security rules" and “Attacks" described as
follows:

• A Security rule describes the expected behavior of the application or protocol
under-test whether it is functional or security oriented. The non-respect of the
MMT-Security property indicates an abnormal behavior, e.g. the access to a specific
service must always be preceded by an authentication phase.

• An Attack describes a malicious behavior whether it is an attack model, a vulnerability
or a misbehavior. Here, the respect of the MMT-Security property indicates the
detection of an abnormal behavior that might indicate the occurrence of an attack,
e.g. a big number of requests from the same user in a limited period of time can be
considered as a behavioral attack.

The main definition of an MMT-Security property is defined as follows:

Definition 2. Let W ∈ { BEFORE, AFTER }, n ∈ N, t ∈ R>0 and e1 and e2 two events.
A MMT-Security property is an IF-THEN expression that describes constraints on network
events captured in a trace T = {p1, ..., pm}. It has the following syntax:

53

CHAPTER 3. RISK-BASED PASSIVE MONITORING

e1
W,n,t−−−→ e2

This property expresses that if the event e1 is satisfied (by one or several packets pi , i
∈ {1, ...,m}, then event e2 must be satisfied (by another set of packets pj , j ∈ {1, ...,m})
before or after (depending on the W value) at most n packets and t units of time. e1 is
called triggering context and e2 is called clause verdict.

The nodes of the property tree are: the property node (required), operator nodes
(optional) and event nodes (required). The property node is forcibly the root node and the
event nodes are forcibly leaf nodes. The left branch represents the context and the right
branch represents the trigger. This means that the property is found valid when the trigger
is found valid; and the trigger is checked only if the context is valid. In other words:

• If the context is verified and the trigger is not, then a property non-respect instance
is detected:

– In the case of a “security rule”, this means that the context of the rule has been
found and, since the trigger was not, we conclude that the “security rule” has
been violated.

– In the case of an “attack”, this means that the context of an attack has occurred
but the trace was attack free.

• If the context and the trigger are verified, then a property respect instance is detected.

– In the case of a “security rule”, this means that the context of the rule has been
found, as well as the trigger. We conclude that the “security rule” has been
respected.

– In the case of an “attack”, this means that the context of an attack has occurred,
as well as the trigger. We conclude that the behavioural attack has been detected,
and it is necessary to trigger the appropriate remediation mechanisms depending
on the attack nature.

3.3 Discussion
We presented in this chapter a methodology to perform risk-based monitoring that involves
the following aspects: i) assets identification to define what is necessary to protect. ii)
Threats and vulnerability analysis, to evaluate the potential flaws the system may suffer.
iii) Risk analysis to categorize the threats that can exploit the system vulnerabilities.
iv) System monitoring to detect potential occurrences of attacks, and. v) Remediation
strategies to repel or mitigate the impact of the attacks. We also briefly presented the
Montimage Monitoring Tool (MMT) that helps us to detect the attacks and implement
the risk-based monitoring. This methodology has been applied in a work package of the
CLARUS project and used as a basis of some of the contributions of this thesis. The
risk-based monitoring methodology will support attack-tolerance by defining and executing

54

3.3. DISCUSSION

remediation mechanisms for each of the identified threats. This will enable the continuous
operation of the system even in the presence of attacks. The next following chapters
will present these remediation mechanisms. We contributed to several deliverables of the
CLARUS project including D3.3, D3.4 and D3.6 so on and so forth. This project allowed
us to collaborate with both academic and industrial actors. We had got the opportunity
to share our respective knowledge of security in cloud computing.

55

4
Diversity-based attack tolerance

Contents
3.1 Risk-based monitoring methodology . 44

3.1.1 Identifying Assets . 45
3.1.2 Risk and vulnerability analysis . 47
3.1.3 Threats Modelling . 47
3.1.4 Attack scenarios . 48

3.2 The Montimage Monitoring Tool (MMT) 52
3.2.1 MMT-Security architecture . 52
3.2.2 MMT-Security properties . 53

3.3 Discussion . 54

In the previous chapters, we presented the foundations of our tolerance attack approach.
We introduced the concept of risk-based monitoring. Once the risks of any system are
established and the means of detection identified, it is essential to think about how to set
up mechanisms that will allow to complete the risk-based monitoring loop i.e., to remediate
and tolerate the effects of the potential detected attacks. Moreover, in the chapter 2, we
reviewed diversity, a technique of fault tolerance generally used in many systems to detect
and tolerate design flaws. This method has a clear benefit since its reduces the number of
missed threats. We think that diversity can be used for attack detection and tolerance. In
fact, an efficient attack tolerance solution must combine and take advantage of monitoring,
diversity and adaptation mechanisms in a coherent manner. Furthermore, such a solution
should thwart as many attacks as possible.

In this chapter we propose the following idea that is built on diversification in a great
part. At runtime, in case of an attack has been detected, we dynamically change the
implementation of the running software, choosing an implementation which is more robust.
This idea has been implemented through two complementary approaches. First, we will see

57

CHAPTER 4. DIVERSITY-BASED ATTACK TOLERANCE

model-oriented diversity. This contribution is based on formal models. Then we will present
the second approach, implementation-oriented diversity that reduces the shortcomings of
the first approach and extends it. This second approach leverages Software Product lines
(SPL) for devising a fine-grained attack tolerance system.

4.1 Model-based diversity for attack tolerance

4.1.1 Overview

Increasingly, software must dynamically adapt its behavior at run-time in response to
changing conditions and also in response to attacks in the supporting computing and
communication infrastructure. This first approach aims at handling these changes and
ensure that the system continues to work after the adaptation process. We investigate
attack-tolerance at the design and specification phase. This means that if we derive the
program from a formal model, this model has been validated using, for instance model
checking.

This approach is illustrated on Figure 4.16 and can be resumed as follows:

Figure 4.1 – Attack tolerance Framework

1. A running system is monitored to observe its run-time behavior with our Monitoring
Tool (MMT). We design a formal model of the module that is susceptible to be
suffering an attack. This model in our case is expressed as a finite state machine.

58

4.1. MODEL-BASED DIVERSITY FOR ATTACK TOLERANCE

Our monitored values are abstracted and related to security properties we defined.
These properties are written in linear temporal logic (LTL);

2. From this first model we will obtain others modified models that have the same
functionality but can have more mechanisms to impeach attacks; these models are
more secure and robust;

3. Associated to each model, we will produce an implementation. Given a model,
other models are designed having the same functionality and the same behavior but
different interfaces or required interactions;

4. Violations of the properties we describe above are thus detected by our monitoring
tool. This detection triggers the adaptation process. We replace the model with
another model that is more robust. We verify that the new model satisfies the
properties. Model and implementations changes are then propagated to the running
system. We finally verify that the new module is tolerant to the detected attack.

We illustrated this technique by the following example.

4.1.2 Authentication example

We start with a formal model of an authentication module. It is based on a password
mechanism and we follow with other models that render the authentication more complex
adding other requirements for the user. In our example, after an authentication mechanism
based in a password checking, we propose authentication models with more complex
mechanisms.

Model 1 (Figure 4.2). In this model the mechanism of authentication is based only on
a login and password. This is generally called one factor authentication. This process of
authentication, even though is generally considered the least secure, some Web sites such
as e-commerce platforms continue to deploy it.

Figure 4.2 – Authentication Model 1

Model 2 (Figure 4.3). After, another authentication model is proposed in which we make
the following assumption. A threshold of 3 attempts is defined as a security requirement. If

59

CHAPTER 4. DIVERSITY-BASED ATTACK TOLERANCE

a user attempt is equal to the threshold, the user, by an adaptation mechanism, is required
to fulfil other requirements (questions).

Figure 4.3 – Authentication Model 2

Model 3 (Figure 4.4). This model is based on the deployment of a multi-factor
authentication mechanism. This enhances the security by adding another authentication
process. This can be achieved by:

• SMS: A SMS that contains an authentication code is sent to the user through its
smartphone. If the code entered corresponds to the sent code, then the user is
authenticated.

• USB Smart Card: This is a new way of authentication. The authentication’s keys of
the user are stored on this USB device. After logging in with his login and password,
the user plugs his authentication USB key. This confirms the access of the user to
the system.

• Vocal message: As above, the user can get a vocal code for the second authentication
step.

For this model we choose the first option for the sake of simplicity.
Model 4 (Figure 4.5). In this model we design an authentication model that requires

multiple authentication steps. This will allow us to delay considerably the spy in its
implementation of the attack. This model is thus based on the following mechanisms:

• Keep the system in an abnormal mode;

• Require then a 4 authentication processes: captcha, random challenge questions,
calculus, and password again. This is a kind of moving forward approach;

• Return to the normal mode after the indirections;

• Adding delay: We add a delay to a normal authentication process.

60

4.1. MODEL-BASED DIVERSITY FOR ATTACK TOLERANCE

Figure 4.4 – Authentication Model 3

Figure 4.5 – Authentication Model 4

Note that for this model we use a more complicated model that integrates in addition to
login/password, a private question authentication, a captcha authentication and a second
login/ password step.

To summarize this approach, it can be said that it is a combination of monitoring
methods and the generation of functionally equivalents models that are more robust to
resist to an attack.

One can argue why we do not choose the more secure model first. We provide the
following answer to respond to this assertion. One claim is that the first model can also
detects attacks because we have a policy that says: after more than 3 unsuccessful attempts
the account of the user is locked for security purposes. The first model is also secured. The
main reason for not choosing the last model first, is the user quality of experience (QoE).
Quality of Experience (QoE) is a measure of the overall level of customer satisfaction with

61

CHAPTER 4. DIVERSITY-BASED ATTACK TOLERANCE

Figure 4.6 – Experimentation Framework

a solution1. QoE expresses user satisfaction both objectively and subjectively. To go back
to our example, imagine a legitimate user that forgot his credentials and succeed to log on
at the third attempt. On the first model he can access simply to its information and use
the application without a waiting time. In the last model, for example, he will be bored
answering to questions or doing the captcha image recognition and so one. The challenge
would be to find a reasonable compromise between performance, Quality of Experience
(QoE) and security. The choice can be leveraged depending on the type of application and
consequently on the security level needed.

4.1.3 Experimentations

In this section, we provide a description of the tools or languages we use to implement our
approach.

IF language

IF [Bozga et al., 2002] is a formal method based on communicating timed automata
in order to model asynchronous communicating real-time systems. In IF, a system is
expressed by a set of parallel processes communicating asynchronously through a set of
buffers. An IF process is described as a timed automaton extended with discrete data
variables. A process has a set of control states and a private buffer for input messages, and
can have local data such as discrete variables and clocks. There are two types of control
states: stable states and unstable states.

1http://searchcrm.techtarget.com/definition/Quality-of-Experience

62

4.1. MODEL-BASED DIVERSITY FOR ATTACK TOLERANCE

TestGen-IF Tool

The TestGen-IF tool is based on the IF language simulator [Bozga et al., 2002]. It uses
the IF simulator libraries which provides some functionalities for on-the-fly state-space
traversal. TestGen-IF implements a timed test case generation algorithm [Hwang et al.,
2009]. An IF specification document (.if file) and timed test purposes documents (i.e.,
inputs directory), and the jump depth value (i.e., maxdepth parameter), are given as inputs
to TestGen-IF. During the test generation, when a timed test purpose is satisfied, a Hit
message, the test purpose description and the number of timed test purposes to be satisfied
are displayed.

Test Bench

The experiments were performed on the authentication Web application described in the
previous sections. This application represents an authentication mechanism that can
present different degrees of complexity in order to impeach the attacks. An authentication
interface is available. A user can access its information after providing the correct username
and correct password. We chose a Model Based Testing approach. Model-based testing
(MBT) is an activity in which one can design and derive test cases from an abstract and
high-level model of the system under test (SUT). On the basis of abstract models, test
cases can be derived in the form of test suites. These test suites are not directly executable
because they do not have the same level of abstraction as the executable code. This often
requires manual intervention by a test engineer who has to design an adaptation layer to
convert the abstract tests to the corresponding executable tests. Figure 4.6 depicts our
framework we deployed for our tests. Our Framework can be divided into three parts: the
specification part, the attack execution part and the monitoring and reaction part. This
Framework works as follows. We begin with the specification part which is conducted
through the process described in the sequel.

1. We translated the state machines of the authentication example we presented in the
section 4.1.2 using the IF language [Bozga et al., 2002]. We chose the IF formalism
for the following basic reasons. On the one hand, our models being built as a state
machine, the IF model is therefore suitable to represent them. On the other hand,
we wanted to be able to test our models and have at our disposal TestGen-IF a
model-based testing framework with the IF language as input. This tool allows us
to have more accurate and quasi exhaustive test cases of our models. We give an
illustration of this formalization for the first model (cf. Figure 4.2) in the following
Figure:
This small piece of IF specification describes two states of the finite state machine.
The first state, named login, corresponds to the entry point of the automaton. The
dologin(loginx, passx) statement is a function that provides the inputs of our states; in
our case, the login and the password of the user. In IF, this function is called a signal.
After giving these two inputs, the system moves to the next state named credent.
This state is an internal state. We choose to define this state as an internal state

63

CHAPTER 4. DIVERSITY-BASED ATTACK TOLERANCE

state login #start ;
input dologin (loginx , passx);

nextstate credent ;
endstate ;

state credent # unstable ;
provided ((loginx <> login1)or(passx<>pass1));

output nonok ();
nextstate login;

provided ((loginx = login1)and(passx=pass1));
output ok();
nextstate records ;

endstate ;

Figure 4.7 – IF specification of Model 1

because we want to express a conditional loop depending on the correctness of the
credentials of the user. The attribute #unstable means that the state credent is an
unstable state i.e. a temporary state where no interleaving between different processes
is possible. The statement provided((loginx <> login1) or (passx <> pass1)) and
the statement provided((loginx=login1) and (passx=pass1)) express the guards of
our transition with the keyword provided. In the finite state model provided above
it corresponds to the guards between brackets. If the login and password given as
inputs correspond to the correct login and password of the user, the user can access
to his information (the next state is records). Otherwise, he must type again his
login and password (the next state is login).

2. As usual in a model-based testing approach and in order to use TestGen-IF tool, we
need to specify clearly our test objectives. A test purpose or test objective describes a
particular functionality of the implementation under test, by specifying the property
to be checked in the system implementation. It is an observable action of the system
that once described in IF language is used for guiding the space exploration of the
system’s states. One suite of these test objectives is depicted in Figure 4.8.
This suite of test objectives is called OBJ(1) and contains two test objectives (obj1
and obj2). Each test objective is a conjunction of conditions (condi) that must be
satisfied in order to satisfy the test objective. obj1 is made of five conditions. cond1
verifies that the process is created. cond2 verifies that the source state is "login".
cond3 verifies that the input is dologin() with its two parameters. cond4 verifies that
the output is ok. cond5 verifies that the source state is records. On contrary, obj2
expresses, that when the parameters of the input dologin are wrong, the nonok signal
is sent and as a consequence the system is going back to the initial state.

After the specification phase, we describe the attack execution part of our Framework. The

64

4.1. MODEL-BASED DIVERSITY FOR ATTACK TOLERANCE

OBJ(1)={obj1 , obj2}
obj1= cond1 AND cond2 AND cond3 AND cond4 AND cond5
obj2= cond1 AND cond2 AND cond3 AND cond6 AND cond7
cond1= process : instance = log0
cond2= state : source : login
cond3= action : input dologin (loginx , passx)
cond4= action : output ok()
cond5= state : destination : records
cond6= action : output nonok ()
cond7= state : destination : login

Figure 4.8 – Test objectives

tests objectives and the IF specification described at the specification phase are given as
inputs to TestGen-IF. TestGen-IF launches its processing engine and thus generates test
cases accordingly. The test case is a sequence of inputs and outputs. The question mark
(?) denotes an input while the exclamation mark (!) denotes an output. Then, the line
?dologin{login1,pass1} !ok means if the user discloses the correct credentials (login1 and
pass1), the output must be ok. The line ?cont !ok and ?quit !ok represent the case where,
if the user want to continue to access (respectively quit the system) to his data, the output
should be ok (respectively nonok).

? dologin {login1 ,pass1} !ok{}
? dologin {login1 ,pass2} !nonok {}
?cont{} !ok{}
?quit{} !ok{}
? question {quest1 ,answ1} !ok{}
? question {quest1 ,answ2} !nonok{}
? characters { char1} !ok{}
? characters { char2} !nonok{}

Figure 4.9 – Generated test cases

In order to execute the test on our running system, we need a concretization step that
transform these abstract tests into real test cases. We use the selenium2 tool for this
purpose. Selenium is a Framework that automates Web application testing. The abstract
test cases generated have been translated into a set of http requests. These requests are
based on the recording of the action made by the user with Selenium IDE, one component
of our Selenium tool-suite, on the Web application. We then match the abstract test cases

2 http://www.seleniumhq.org

65

CHAPTER 4. DIVERSITY-BASED ATTACK TOLERANCE

to the corresponding concrete JUnit3 test cases in a script we developed. The tests cases
allowed us to test the implementations of the authentication example. This script will be
used later to inject a brute-force attack on our implementations.

Finally we describe the monitoring and reaction part of the Framework. We examined
all HTTP packets transiting between the client and the Web application. We collect the
packets directly through the eth0 network interface rather than using a sample of packets
obtained from network protocol analyzer tools like Wireshark4. In our Framework, a set
of security properties representing this attack behavior has been specified as an input for
MMT tool. We describe the following rule in order to detect the brute force attack. When
analyzing the packets we record all HTTP request targeting a specific URI of our Web
application (for example, the authentication page URI). From this record, we get all IP
addresses source and count their occurrence in the set of packets. We analyse the traces
using the MMT tool in order to check if attacks have been successful. The are two cases:

1. If we find out for example that any such IP address that has requested more than 3
times to the URI, we raise an alarm and block this IP address. We also leveraged the
metrics defined in the previous chapter. We apply our methodology by adapting the
current model and its implementation with one of our models we designed previously
(see Figure 4.10)

2. Otherwise we continue our analysis of the network traffic.

Using this Framework, we conduct two different but complementary experiments for the
validation of our model-based approach. We will present in detail these experiments in the
next section.

Experiment methodologies

In order to prove the practicability and ability of our approach to tolerate attacks, we imple-
mented the models we presented previously. We describe two different but complementary
scenarios:

1. First we launched the brute-force attack to verify that the Framework ensures
detection and remediation of the attack by changing the model and its implementation.
This attack is an attempt to discover a password by systematically trying every
possible combination of letters, numbers, and symbols in order to discover the correct
combination that works. We use a dictionary of common most used passwords (over
8864 passwords here because the use of a very big dictionary takes a couple of days
in order to obtain the correct password). This tests were performed on an Ubuntu
System with Intel Core i7 CPU and 8 GB of memory.

2. After, we conducted another experimentation that consisted in launching the same
brute-force attack against our three implementations. The idea is to check the

3http://junit.org/junit4/
4https://www.wireshark.org

66

4.1. MODEL-BASED DIVERSITY FOR ATTACK TOLERANCE

robustness of our models and their implementations against this attack. For all
models and implementations, we continuously look for the password of the user in
order to access to the user’s sensitive information page and measure the time needed
to access to this information. We launched the attack and measured the time for
recovering the password of a particular user. These experiments were executed on a
MacBook Pro with Intel Core i5 CPU and 8 GB of memory.

We offer two choices. Let us first assume that we have found the password and try
to access private user data. We then measure the time taken to get to this stage. This
process is termed scenario 1.
In the second choice, we instead launch the attack until we found the password knowing
that at each set of three unsuccessful attempts, the user is blocked and we need to restart
the application to try another attempt. This process is called scenario 2.

Results

Figure 4.10 – The authentication showing
the adaptation GUI

We analyse the results of both scenarios. In scenario 1, according to the detection
policies we express, we observe that Montimage Monitoring Tool (MMT) successfully
detects the attack in a relatively short time and with a high detection rate. As a result, an
alert is delivered to the user (see Figure 4.10). Alongside with the detection, as a defense
mechanism, our model based-adaptation is launched. When the alert for the detected attack
is launched, the adaptation process consists in pointing directly to the implementation
of the next robust model through its URL. The user must finally authenticate himself
trough another authentication process. All these steps we described above are transparent
to the user. We aimed at providing an attack-tolerance Framework that do not disturb the
activity of the user.

The results of scenario 2 are presented in Table 5.14(a).

From this table, we observe that the average time needed to access to our sensitive
data grows slowly from model 1 to model 2, but grows considerably from model 2 to model
3. This means that the third authentication is more robust than the second one which is
more robust than the first implementation for this attack. This was predictable since the
degree of complexity and security increases with the models. We must notice that for this

67

CHAPTER 4. DIVERSITY-BASED ATTACK TOLERANCE

Table 4.1 – Scenario 2 measurements

Implementations Mean time
(s)

Implementation 1 3 384
Implementation 2 3 689
Implementation 3 21 736

example we only used roughly a 8000 words dictionary. Then, the time to execute these
tests shall be more long if a full dictionary was used. Thus, an attacker could not succeed
anyway to access to the user data with the third implementation.

4.1.4 Discussion

We proposed model-based diversity for attack tolerance. We begin by creating a formal
model of our system or a part of this system. We derive a library of equivalent models
that achieve the same functionality as the first one and are verified correct. We derive also
the corresponding implementations of the models. When the MMT tool detects the attack,
we dynamically change the model, choosing a model and its implementation that are more
robust to the attack. However, the principal difficulty of this method lies in building the
models. There are some questions that remain to solve in order to enhance model-based
intrusion tolerance and make it more practical and easy to use by engineers. A difficulty
is to know how many models do we need to generate. To answer to this question we can
argue that it depends on the level of security that the engineer wants to ensure for its
system. Another question is how can we synthesize these variants? We can overcome this
problem by automatically deriving variants of the initial formal model by developing new
operators similar to mutation operators. In the field of software testing, program mutation,
consists in using mutants, that are syntactic change(for example && replaced with || in
a condition) in the specification of the software in order to detect the misbehavior. If a
test suite is able to detect the change, then the mutant is said to be killed. However, in
our case here, these "mutants" can be used for diversifying the models i.e. diversifying the
corresponding state machines. If we do not want or if we are not able to apply this method,
another way of avoiding this question is to have a single model and implementations that
differ at the language, source code and binaries levels. This is what we are going to see in
the next section.

4.2 Implementation-based diversity for attack tolerance

This contribution aims at extending and solving the issues raised by the former approach.
The idea is still the same but here we will only have one model and several implementations

68

4.2. IMPLEMENTATION-BASED DIVERSITY FOR ATTACK TOLERANCE

4.2.1 Definition of key concepts

Throughout this section we have a number of terms that we need to define in order to
precise how they will be used later: Definition 1: Variability is a concept that makes
it possible to express a characteristic or attribute that is not common for the members
of a certain set. In our case, the variability will be described in such a way that the
different variants are equivalent from a functional point of view (not necessarily the same
operations).

Definition 2: A feature model (FM): is usually used in the area of Software Product
Lines as a graphical representation of the differences and similarities between members of
a given family. These points of differentiation are called variability points.

Definition 3: A variant or spare of a Web service is another Web service that performs
the same operations, in other words functionally equivalent to the first one, but differs at
the implementation level.

Definition 4: An epoch here denotes a given constant time interval. Time is thus
divided into slices of period equal to an epoch.

4.2.2 Overview of the approach

The architecture of the proposed framework is depicted on the Figure 4.11.

Figure 4.11 – Architecture of the attack tolerance Framework

We have developed our approach through an example. The example consists in a Web
service for the management of physicians and patients in a hospital. All information are

69

CHAPTER 4. DIVERSITY-BASED ATTACK TOLERANCE

stored in a database. Only the doctors have access to the platform and the information
its contains. In particular, they may monitor the state of health of a patient under his
supervision from the patient admission in the hospital until the end of treatment. For
better clarity, we subdivided the process into three distinct part: a modeling part, a service
generation part and finally a monitoring part.

Part 1: Modeling: Here we modeled the e-health service. We begin by defining the
feature model (FM) of the e-health service (cf. Figure 4.12). The variability points are

Figure 4.12 – Feature Model of the e-health service

described using three common patterns: style, encoding styles and types and language:

• Encoding style: There are two communication style that are used to translate a WSDL
binding to a SOAP message body. They are: document and RPC. The structure of
the SOAP request body with an RPC style contains both the operation name and
the set of method parameters. This operation can return results. A document-style
SOAP message body contains a specific XML structure that can be validated against
a previously defined XML schema.

• Encoding type. There are two encoding models used to translate a WSDL binding to
a SOAP message. They are: literal, and encoded. In the literal model, the data do
not need to be encoded in a special way: they are directly encoded in XML according
to a schema defined in the WSDL. With an encoded model, the message has to use
XSD datatypes, but the structure of the message do not need to conform to any
user-defined XML schema.

• Language: Our Web services spares will be developed with C and C++ languages.

The combination document/encoded as it does not enable interoperability is not used in our
implementation. These variability patterns are set manually when specifying the WSDL
files and the variation is done with respect to the FM. We define four different WSDL files
for our Web services. A sample of the WSDL file is disclosed in the following Figure 4.13.

We see on this figure, the declarations of the types, and the operations that will be
carried out in our Web service. The small example means that we will have the connection
message of a doctor accessing the Web service whose connection parameters are credentials.

70

4.2. IMPLEMENTATION-BASED DIVERSITY FOR ATTACK TOLERANCE

<?xml version="1.0" encoding="UTF−8"?>
<definitions name="med−webservice"

........

<types>
.......

</types>

<message name="connectDoctorRequest">
<part name="credentials" element="ns0:Login"/>

</message>
......

<portType name="healthPortType">
<operation name="connectDoctor">

<input message="tns:connectDoctorRequest"/>
<output message="tns:connectDoctorResponse"/>
<fault name="connectDoctorFault"

message="tns:connectDoctorFault"/>
</operation>

......
</portType>

</definitions>

Figure 4.13 – WSDL Sample

We see the definition of the SOAP port through which the response requests of the
connection operation will pass. We also have the XSD file in which we defined the complex
types DoctorType and PatientType (Figure 4.14).

To add even more randomness, the compilation of these different source codes will be
done with the multicompiler tool we will present in the following sections.

Part 2: Service generation: We construct variants of the implementations of our
Web services and used them in our attack tolerant framework. With the .wsdl and .xsd
files of the previous phase, we generate skeletons of our variants thanks to gSOAP. First,
an header file containing the declarations is generated. We generate then the corresponding
implementations skeletons based on this header file. Figure 4.15 presents the server side
skeleton.

We see on the listing the header files (health.nsmap and soapH.h) generated auto-
matically by gSOAP as well as the file mysql.h header that helps us to connect to the
database. We also have the main function that initializes the soap endpoint. Finally, we
have the empty function __ns1__creationPatient which aims at adding a new patient in
the hospital. We implement these skeletons and adapt them to fit our needs.

After the implementation of these skeletons, we have four ready-to-use implementations.

71

CHAPTER 4. DIVERSITY-BASED ATTACK TOLERANCE

<?xml version="1.0" encoding="UTF−8"?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"

targetNamespace="http://xml.netbeans.org/schema/medical"
xmlns:tns="http://xml.netbeans.org/schema/medical"
elementFormDefault="qualified">

<xsd:complexType name="PatientType">
<xsd:sequence>

<xsd:element name="full−name" type="xsd:string" minOccurs="0"
maxOccurs="1" />

<xsd:element name="address" type="xsd:string" />
<xsd:element name="age" type="xsd:int" />
<xsd:element name="disease" type="xsd:string" />
<xsd:element name="admission−date" type="xsd:date" />
<xsd:element name="exit−date" type="xsd:date" />
<xsd:element name="doctor" type="tns:DoctorType" />

</xsd:sequence>
</xsd:complexType>

Figure 4.14 – XSD Sample

include " health .nsmap"
include "soapH.h"

int main () {
struct soap *soap = soap_new1 (SOAP_XML_INDENT);
if (soap_serve (soap) != SOAP_OK)

soap_print_fault (soap , stderr);
soap_destroy (soap); // delete deserialized objects
soap_end (soap); // delete allocated (deserialized) data
soap_free (soap); // free the soap struct context data

}

int __ns1__creationPatient (struct soap *soap , struct ns2__PatientType *
ns2__Patient , char* * result) {

* result = (char*) soap_malloc (soap , 1024);
.........
.......

}

Figure 4.15 – Server side skeleton

According to our case study, we have diversity based on 2 target languages (C and C ++),
two communication styles (rpc, document), two types of encoding (encoded or literal), two
syntactic modifications (i.e., order of instructions, unnecessary instructions). We will have
at least 15 variants. (document/encoded combination not permitted).

72

4.2. IMPLEMENTATION-BASED DIVERSITY FOR ATTACK TOLERANCE

Even though attacks against Web services are usually unrelated to the source code of the
service, we must be very careful. In fact, the knowledge of the engine used to generate
the skeletons can still leak information. For example, assume that an attacker succeeded
to discover that the Web services are implemented in C through the gSOAP tool, it is
easy for this attacker to infer source code-based attacks, such as buffer/heap overflow,
memory load or even malicious code injection (shell code). This is why, we will pass the
implementations to the multicompiler [Franz, 2010] tool for diversifying the binaries. This
ensures that our implementations will not be vulnerable to the same attacks leveraging the
computation flow (code reuse attack). The tools multicompiler, gSOAP and MMT will be
fully described in the next section.

In addition, multicompiler has many options to generate different binaries. The relevant
options are: i) nop-insertion that inserts NOP operations in the assembly; ii) nop-insertion-
percentage similar to the previous one, but here inserts NOP operation before X% of
instructions; and iii) frandom-seed that randomises the compilation with a 64-bit unsigned
int. We can choose 3 seeds for example 25, 50, 75. Finally we could have for example at
least 75 different variants. The main design of the solution are depicted on Figure 4.16.

Figure 4.16 – Attack tolerance through diversity

This picture shows the first diversification which consists in having syntactical equivalent
implementations and their binaries obtained with multicompiler. In conclusion we have
three layers of diversity. That increases the confidence in the Web service.

Part 3: Monitoring and reaction: This is where the logic of attack tolerance lies.
We design an attack tolerant library of the implementations. The idea is to formally verify
these variants in order to limit the failures leveraging bugs. We launch functional tests on
the implementations to ensure that they work normally. Before the system will be put
online, a learning and testing phase is performed. Target attacks are also applied to these
implementations. We then determine the implementations vulnerable or not to the target
attacks. They will be listed in a vulnerability class. To ensure the continuous availability
of our system we plan to configure our system in two ways (cf. Algorithm 1):

73

CHAPTER 4. DIVERSITY-BASED ATTACK TOLERANCE

1. Normal mode. We divide time into epochs. In each epoch only a unique variant is
chosen at all. When the epoch of time elapses, another implementation is deployed to
ensure continuity of the service. This helps us to thwart to attacks that our system
may not have detected. It is the case of a silent but dangerous attack: Slowloris5.
Slowloris works by opening multiple connections to the targeted Web server and
keeping them open as long as possible. It continuously sends partial HTTP requests,
that are never completed. The attacked servers open more and more connections,
waiting for each of the attack requests to be completed. Undetected or unmitigated,
Slowloris attacks can also last for long periods of time. The recovery will then
mitigate this attack as the server is restarted.

2. Abnormal mode. It is the case where our defense mechanism has successfully
detected one attack. We will obviously react by switching to another more resistant
implementation before even the epoch has elapsed.

Algorithm 1 Web service adaptation
1: while True do
2: epoch← setEpoch()
3: if date == null then
4: date← currentDate()
5: end if
6: if detected then
7: chosenVariant← random(1, nvariants)
8: else
9: current← currentDate()

10: if (current− date) ≥ epoch then
11: chosenVariant← random(1, nvariants)
12: date← current

13: end if
14: end if
15: end while

One can notice that the duration of the epoch is a parameter that must be taken into
account in order to have an efficient tolerance to the targets. Indeed a small epoch induces
too many commutations between the variants and a long epoch can miss a lot of attacks.
We want to have epochs that minimize the latency of the users when they are accessing
the Web service.

Moreover, even conceptually our framework is robust, on the case an attack succeeds,
we will enable another learning phase. The aim of this phase is to adapt an attack database
or training data in order to predict or detect this kind of attack if it appears later. We will

5https://github.com/llaera/slowloris.pl

74

4.2. IMPLEMENTATION-BASED DIVERSITY FOR ATTACK TOLERANCE

leverage event logs and we will record copy of the Web traffic and traces. To reduce the
size of these files, we will fix a maximum size. When new data are being inserted on the
files, if the maximum size is reached, we will remove the oldest entries. Furthermore the
content will be periodically updated.

4.2.3 Experiments and discussion

In this section, we provide a short description of the tools we use to implement our approach.

Multicompiler tool

The multicompiler tool [Franz, 2010] has been developed by Franz et al. in order to defend
against code reuse attacks. Multicompiler is built on top of the standard LLVM project6.
From the source code of any software, the multicompiler tool generates several different
binaries. The diversity engine use some transformations such address space randomization,
NOP operations insertions. As a result a number of code variants are produced, which
ensures the system will be more resistant to attacks. The idea is to increase the cost of the
attacker activity, implementing programs with equivalent functionality that can respond to
attacks in a more safer way. The implementation of this approach could be facilitated by
the use of cloud computing. This makes it possible to scale almost instantaneously to even
very large peak demands without any up-front investment. Furthermore, by using cloud
computing, the cost per unique version of a program is essentially constant, it doesn’t
matter if we are generating 1000 or 10 Millions versions per day, being also possible to
change the demands almost instantaneously.

gSOAP Tool

The gSOAP toolkit [Engelen and Gallivan, 2002] is a C and C++ software development
toolkit for SOAP and REST XML developed in order to make the development of Web
services as platform-neutral as possible. gSOAP provides transparent SOAP API through
the use of compiler technology that hides irrelevant SOAP-specific details from the user.
There are two main components. wsdl2h, the first one, analyzes WSDLs and XML schemas
(separately or as a combined set) and maps the XML schema types C and C++ code header
file (.h). The generic string and float primitive types are encoded and decoded in SOAP
as standardized XML schema types (i.e. xsi:type=”xsd:string” and xsi:type=”xsd:float”).
soapcpp2, the second one, maps SOAP/REST XML messaging protocols to efficient C
and C++ code source skeleton using the previous generated header file. It supports
exposing (legacy) C and C++ applications as XML Web services by auto-generating XML
serialization code and WSDL specifications. As a result, full SOAP interoperability is
achieved with a simple user-loaded SOAP load of SOAP details and allowing it to focus on
application-critical logic.

6http://llvm.org

75

CHAPTER 4. DIVERSITY-BASED ATTACK TOLERANCE

Experiments

The evaluations were performed using the e-health Web service. We obtained 18 variants
that are obtained with rpc

/
document styles, literal

/
encoded encoding, multicompiler (25,

50, 75 random seeds or NOP operation insertion), instructions obfuscation and C/C++
languages. The Web services variants has been compiled with the multicompiler’s clang
and clang++ compilers and deployed as CGI programs. Web services spares were compiled
with multicompiler’s clang and clang++ compilers and deployed as CGI programs on
an apache Web server, to facilitate our recovery mechanism. We only need to adapt the
running implementation without update the endpoint of the service.

In conclusion, we performed four different but complementary experiments. First, we
performed a training experiment in which the detection threshold value i.e, the average
number of packets by second during a normal activity; and also the best epoch value have
been evaluated. We analysed as well, the overhead in term of latency of the framework.
We tested the scalability and performance of e-health Web Service with and without our
strategy. Tests were performed by invoking remote methods 100 times and during different
times a day. After, we evaluated the capability and accuracy of our framework to detect a
Denial of Service (Dos) attack.

The innovative aspect of our detection lies in the fact that we have widened the detection
spectrum of the MMT tool by incorporating new detections of these attacks.

Training experiments

We generated traffic corresponding to a normal use of our Web services at different times
of the day. Table 4.2 discloses the results of the execution. Accordingly to the experiments,

Table 4.2 – Threshold measurement

Min 71051 packets/sec
Max 87766 packets/sec
Average 81966 packets/sec

the threshold will be 81966 packets/sec. To obtain the epoch time of the system, we have
followed the methodology proposed in [Sousa et al., 2007b]. In our case, we redefine TD as
the effective switchover time between our implementations and TP is equivalent to the epoch
we defined previously. Consequently, we have n=18, f=5, k=1, and epoch >= 108 ×TD.
As the average TD is 2.53 seconds, finally the value of epoch is 273.24 seconds (roughly 5
min).

Table 5.14(a) discloses the results of the measurement.

76

4.2. IMPLEMENTATION-BASED DIVERSITY FOR ATTACK TOLERANCE

Table 4.3 – TD measurements

Min 2,30 seconds
Max 2.77 seconds
Average 2.53 seconds

Latency analysis

We also examine the overhead of the attack tolerance framework by carrying out a latency
analysis of the system before and after deploying our methodology. The latency here is the
round-robin duration of a client.

To examine the overhead of the attack tolerance framework, We carried out a latency
analysis of the system before and after deploying our methodology. The latency here is the
round-robin duration of a client. The results are depicted on Figure 4.17.

Figure 4.17 – Latency with and without our framework

It can be seen in this Figure that the graph representing the latency before the approach
is strictly increasing. The graph representing the launch of the approach is not monotonous.
In fact, between 10 and 40 requests, the graph has a peak and there is a stabilization from
50 to 100 requests. This peak is due to the initial recovery overhead. After 50 requests the
two graphs are almost similar. On the contrary, the similarity between these two graphics
after 50 requests is due to several reasons. The first reason is that we have statically
compiled the variants. The latency then doesn’t include compilation overheads. Secondly
we believe that this similarity is due to the principle of temporal locality in which processors
tend to reuse the data and instructions used in the recent past. Moreover, the choice of
CGI as the deployment allows us to reduce the switching time between the variants. All
variants are called from the same endpoint.

Using very large numbers of requests (cf. Figure 4.18), one sees that the trend is the

77

CHAPTER 4. DIVERSITY-BASED ATTACK TOLERANCE

same.

0
10

20

30

40

50

60

70

80

90

100

1000 2000 3000 4000 5000 6000 7000 8000 9000

La
te
nc
y
(s
ec
)

Number of requests

With the framework
Normal

Figure 4.18 – Latency with and without our framework

The overhead is almost insignificant. In real life, Web services receive thousands of
requests per second. Since the overhead of our approach is insignificant for very large
customer requests, our framework is suitable for real applications.

Dos Attack

As we said in the previous section, to tolerate attacks, either we detect them by monitoring,
or we anticipate the occurrence of an attack. We validate the variants by testing them with
the SoapUI7 framework. XML-bomb attack was launched against the services variants.
We found that our variants are not vulnerable to XML-based attacks. Consequently we
will test our Web service with a DoS (Denial of Service) attack, which can be defined as
an explicit attempt by attackers to prevent legitimate users of a service from using that
service. The detection of this attack is enabled by MMT. With MMT, to detect an attack,
a rule describes the patterns that if they are or not verified help to conclude the presence
or absence of the attack. We analyze and record all HTTP requests targeting our endpoint
in order to check if the attacks have been successful. The are two cases: (i) If in a period
of one second the metrics (chapter 3) of the traffic are greater than the corresponding
thresholds, then we may have an attack.(ii) Otherwise, there is no attack. We launched
several times the DoS attack against our Web service.

The DoS attack were launched against our Web service using LOIC (Low Orbit Ion
Cannon) From Table 4.4 and 4.5, the framework seems highly reactive. In fact, the time
to detect a DoS attack is roughly 2.5 seconds. After the detection, we switch to another
implementation of our web service by changing the endpoint of the service in the CGI
folder. We also counter the effects of the attack for example by closing the open ports
and restarting the server. Since web services may not have the same diversity parameters,
there should be some sort of wrapper that connects the customer to the right service.

7https://www.soapui.org

78

4.3. DISCUSSION

Table 4.4 – Time elapsed to detect dos attacks

Dos Attack Detection time
1 2.504751 seconds
2 2.397282 seconds
3 2.426627 seconds
4 2.397596 seconds
5 2.424721 seconds
6 3.060523 seconds
7 2.931496 seconds
8 2.455809 seconds
9 2.571891 seconds
10 2.920244 seconds

Table 4.5 – Time elapsed to complete a client request in the presence of a DDoS attack

Nb. of packets/s Before (seconds) After (seconds)
1000 4.45 5.93
2000 5.25 6.91
3000 8.09 9.05
4000 8.34 9.51
5000 9.72 11

4.3 Discussion

We claimed that the problem of attack tolerance of Web services and more particularly
the services stored in the cloud is an open challenge. The conventional techniques alone
can not be enough to protect Web services against increasingly intrusive attacks. It is not
enough to only detect known or new intrusions; system need to react against attacks and
repel them or at least mitigate their effects, while keeping the system running. In this
chapter, we leveraged diversity in order to enable attack tolerance with two approaches. We
began by model-based attack tolerance approach in which there is one model and several
equivalent generated models from that main model. Then we presented, implementation-
oriented diversity that reduces the shortcomings of the first approach and extends it.
During all the steps of the construction of our Web services, i.e., from modeling up to
the concrete instantiation, we have integrated diversification. This allows us to ensure
end-to-end security at all levels of our services. We have shown based on our preliminary
work on a simplified version of the CLARUS project use case, that our approach tolerates
certain types of attacks with a relatively low latency. This confirms that diversification
is effective for attack tolerance of Web services. Nevertheless, diversity is not the unique
approach for achieving attack tolerance. In the next chapter, we will see another attack
tolerance technique. The results of this chapter have been published in the proceedings
of the International Conference on Advanced Information Networking and Applications

79

CHAPTER 4. DIVERSITY-BASED ATTACK TOLERANCE

Workshops (WAINA 2017) [Ouffoué et al., 2017], in the proceedings of the peer-reviewed
International Conference on Web Services (ICWS 2017) [Ouffoué et al., 2017a] and in the
peer-reviewed International Conference on Services Computing (SCC 2017) [Ouffoué et al.,
2017b].

80

5
Software reflection based attack tolerance

Contents
4.1 Model-based diversity for attack tolerance 58

4.1.1 Overview . 58
4.1.2 Authentication example . 59
4.1.3 Experimentations . 62
4.1.4 Discussion . 68

4.2 Implementation-based diversity for attack tolerance 68
4.2.1 Definition of key concepts . 69
4.2.2 Overview of the approach . 69
4.2.3 Experiments and discussion . 75

4.3 Discussion . 79

The risk-based monitoring approach requires effective detection and response techniques.
This is particularly true for so-called internal attacks which are difficult to detect attacks.
This chapter presents a methodology using software reflection to prevent, detect, and
mitigate internal attacks to a running Internet Web services. We think this methodology
is very suitable to design such systems as secure by default, that is, when designing the
software some parts are marked as secured, and any change/modification of these parts
will be an unexpected behavior that needs to be analyzed. If these changes turn out to be
attacks, then some remediation techniques are activated, in order to guarantee that the
system will continue to work even in the presence of an attack. In addition of providing
the methodology, we show how this technique has been used as the basis to develop a real
information system. The main sub-contributions are then as follows:

• We briefly reviewed the literature and explored the scientific work and techniques
about reflection.

81

CHAPTER 5. SOFTWARE REFLECTION BASED ATTACK TOLERANCE

• We propose and describe a new approach exploring the usage of Software Reflection
as a mean of detection and mitigation of insider attacks.

• We describe the approach through a RESTfull e-health Web service.

• We evaluate it with this Web service the e-health Web service using a realistic testbed.
We explain how the attacks are detected and how we use our methodology.

5.1 Background

Software reflection is a way of implementing meta programming techniques (programs
manipulating themselves) and was envisaged to enable the construction of programs that
require the ability to examine or modify their execution behaviors. The foundations of
software reflection were first proposed by [Maes, 1987] that brought some additional features
of reflection and described an original experiment to introduce and show how reflective
architecture can be incorporated in object-oriented languages such as Python [Generowicz
et al., 2004], C++ [Roiser and Mato, 2005], JAVA [Forman et al., 2004], etc. In practice,
there are two types of activities in reflection: introspection and intercession. Introspection
is called read-only reflection in the sense that a component learns the metadata (Classes,
methods, attributes, types) of itself but do not change them. Intercession, on the other
hand, is called read and write reflection in the sense that the component can look up the
metadata of itself or another component and may change them. Software reflection is
nowadays implemented in most of the existing programming language (Python, Java...).
The developers of Java provided a rich reflection API. Reflection can allow applications
to perform operations that otherwise would be impossible, for example, access to some
protected fields. This reflection API is used usually for introspection in the context of Java
beans which is a sort of component model in Java. Introspection enables a Java bean to get
the properties, methods and events of other beans at runtime. This helps the developers
to design and develop their beans without knowing the details of other beans.

At the beginning, reflection techniques were used for adaptability [Affonso and Naka-
gawa, 2013], debugging, self-optimization, integrity verification [Spinellis, 2000], Remote
Method Invocation (Java RMI),... However, in this chapter we present how reflection
can be used as a secure by design technique, having as a consequence to improve the
security of an application and enable attack tolerance for insider attacks. Insider intrusions
on a company are the most difficult to detect because they require extensive means of
defense. Insider attackers are whether, (i) traitors who are legitimate users that sometimes
misuse the access privileges given to them, or (ii) masqueraders who steal identities of some
legitimate users [Salem et al., 2008]. Insider attacks can affect the proper functionality
of a program or corrupt the data used by the programs. Insider intrusions on a company
being the most difficult to detect require extensive means of defence. The survey [Gheyas
and Abdallah, 2016] presents some existing approaches proposing insider threat detection
and prediction algorithms (IDPA) that aim at detecting such attacks.

82

5.2. FRAMEWORK

Furthermore [Sun, 2016] proposed a way of detecting untrusted access to software source
code. Their analysis was carried out on access logs to the SVN repository. Firstly, the log
data was parsed and stored into a Log database. Further, leveraging the data obtained,
they performed Cluster analysis based on the VAT algorithm [Bezdek and Hathaway, 2002].
Data clustering is one of the methods used in machine learning to analyse data. They
assumed that the data overwhelmingly represent normal behaviour and any deviation
of this normal behaviour is considered as an abnormal behaviour. Besides, [Lin, 2016]
explained the lacks of current commercial products addressing malware and insider threat
attacks. He claimed that role-based access control policies are useless in preventing policy
abuse attacks. He then proposed to store the user’s authentication status in an Active
Directory log and to establish a profiling model to capture the normal behaviour. A
deviation of this normal behaviors triggers an alarm.

Although all of these methods are interesting from a theoretical point of view, we think
they are not sufficient to properly detect internal attacks and malware due to the following
reasons: a) In all existing machine learning methods, detection involves a learning step in
which the normal behaviour is described. However, in an internal attack, the usurper’s
behavior often has very little difference compared to the behavior of legitimate one. This
can lead to several false positives in the final detection. b) None of these approaches offer
remediation sketches in order to allow applications to continue functioning even in the
presence of insider attacks. A new approach to insider attack detection and tolerance is
needed. In this chapter, we rather propose to design a generic attack-tolerant methodology
for insider attacks. Our approach integrates the reflection techniques mentioned above as
well as the monitoring of the log files.

5.2 Framework

In any methodology, it is important to explicitly define the assumptions one makes. So we
introduce the assumptions and the definition of basic concepts that will be used in our
methodology.

1. We consider that the software of the client is located in a safe environment for
example in a DMZ (Demilitarized Zone). For this reason no attacker can access the
trusted zone (the case of CLARUS).

2. Some potential attacks that can take place are internal ones. That is, coming from
internal spies. The aim of the attacker is to usurp the actions i.e. to modify the
methods of the platform API.

3. Even if the environment is safe, we also assume that the unsuspecting use of employees
(e.g. the unknowing click of an email attachment) can lead to malware exposures. A
particular case of viruses are ramsonwares for example [Cert, 2017], an attack that
had affected hundreds of thousands of computers worldwide in the first half of 2017,

83

CHAPTER 5. SOFTWARE REFLECTION BASED ATTACK TOLERANCE

paralyzing some public services and businesses. Here we only consider some class
of malware. Our taxonomy of malware is depicted in the following table 5.1 [Sans,
2017].

Table 5.1 – Taxonomy of malware

Attack Description
Virus A virus spreads itself by infiltrating its code into an ap-

plication. The virus is generally not limited to its spread,
which makes the host software unusable, but also launches
malicious routines.

Worm Computer worms are similar to viruses in that they replicate
functional copies of themselves. In contrast to viruses, which
require the spreading of an infected host file, worms are
standalone software.

Trojan A Trojan is a form of malware disguised as useful software.
Its purpose: to be executed by the user, which allows him to
control the computer and to use it for his own purposes.

Spy Spyware does what its name says: it is a spy that collects
various data about the user without the latter realizing it.

Definition 3. An attack is any external or internal interaction with the system that
modifies the behavior or changes some parts of the code making them unsafe. An attack
can also be the presence of malware that has the purpose of spreading and infecting the
machines of the system.

Definition 4. An API is a set of methods and tools that can be used for building software
applications and we can consider them as safe.

Definition 5. Given an API of our system, any change of this API can be considered as
an internal attack.

As presented previously we define a layered framework depicted in Figure 5.1:

• Layer 1: Web Firewall Service. This is the entry-point of the framework.

• Layer 2: Specialized operations. This layer contains the business operations (for
example patients management for an e-health software) of the running application.

• Layer 3: Authentication. We will have a multi-factor authentication namely a
user-password authentication followed by an SMS authentication. This multi-factor
authentication obviously increases the security since the attacker needs much more
time to access to the system.

84

5.2. FRAMEWORK

Lo
gs

/M
on

ito
rin

g/
R

ea
ct

io
n

Layer 4

EXTRANET

Web Service

Specialized
Operations

Documents
management

API 1

API 3API 2

API 4

1

2 3

4

Layer 1

Layer 2

Authentication Layer 3

Running application

IN
T

R
A

N
ET

Figure 5.1 – Attack tolerance framework

• Layer 4. Logs, monitoring and reaction. This layer spans the other layers
presented above. It is responsible of the detection of misbehaviors and the reaction
against such threats in each layer of the running application. The detection of attacks
is based on the monitoring of the log files. Each operation or method invocation is
stored in a log located in each part of the system (application, server and cloud).
The monitoring tool analyses these logs in order to find misbehaviors or attacks
according to some security rules. When the logs or the network probes testify the
presence of an attack or a misbehavior, a classification is made for deploying the
best countermeasures or remediation to these threats. The classification leverages a
vulnerability DB, where the hashes codes of known vulnerabilities are stored.

Any software component (Web Service, Specialized Operations, Documents Manage-
ments and Authentication) has it own API. The whole framework aims at providing attack
tolerance by design for any user of the platform. For example, lets us consider the user 1
who wants to use the Web service. If the Web Service does not work because of an attack,
the user can still access to the documents using the extranet. In the same manner, the
users 2 and 3 can still perform some specific operations (Layer 2) even if some operations

85

CHAPTER 5. SOFTWARE REFLECTION BASED ATTACK TOLERANCE

of Layer 2 stop working. But any component needs the authentication component (Layer3).
Also, let us note that user 4 wants to authenticate himself and that the authentication
component is not available due to an attack, user 4 is not able to access the database or
critical parts of the running application.

Once the assumptions and the general framework described, a detailed description
of the detection and reaction methodology is presented (Layer 4 above). We propose a
methodology that will ensure an efficient attack tolerance. To better tolerate attacks, first
they must be detected. Consequently, detection is an important part of our approach.

Monitoring Layer
i, i ∈ {1, ...,m}

S1

Extract program
execution
(reflection)

S2

Correct ?
Check against

the DB
S3

Exist ?
Virus detected

S4

Countermeasures
S5

Check the M-DB
S6

Exist ?

Save on M-DB
S7

Create reaction
S8

yes
no

yes

no
yes

no

Figure 5.2 – Detection and Reaction model

The whole detection and reaction framework works as follows:

• Monitoring and Detection (States S1 and S2) : We begin with the detection
step. Monitoring and detection are possible thanks to the tool MMT. The programs
are checked at runtime using reflection. The system can be in the normal working
conditions, i.e., the security policies are respected, in this case we have nothing to do.
Or on the other hand, if something abnormal is found, there may be a virus attack,
an API modification or an unknown attack.

86

5.2. FRAMEWORK

• Check against the database of virus (State S3): We analyse the hashed finger-
prints of the program and compare that value in the database of attacks. If the attack
appears in the vulnerability database, it means that the attack is a virus (State S4)
or an attack resulting by the modification of a method of the API. We provide a set
of countermeasures (State S5). If the attack is a malware, the system launches the
corresponding patch. If the threat is a modification of one of the methods of the
API, a countermeasure can be to replace a software component/layer or to change to
the initial API method. These countermeasures will be described later.

• Check against the M-DB (State S6): If the attack that happens is not known
in the vulnerability DB, we check in our own DB, called Montimage DB (M-DB). If
the attack exists, we provide the same countermeasures as mentioned above.

• Save on M-DB (State S7): This case corresponds to the situation in which the
attack has no hash either in the vulnerability DB nor in the M-DB. The hash is then
stored in the M-DB and we define a new countermeasure (State S8).

We can also have security level. Following, we define the security level of the attack
according to the criticality levels as well as the reaction we are going to provide. When an
attack occurs in one of the methods of a given API, the countermeasure corresponding to
the criticality level of this API is triggered. The new corresponding reaction is returned to
mitigate the effect of the attack (State S5).

According to the Security Level (SL) we have: 1) SL Normal means a correct functioning
of the system. The events in the logs are noncritical. Reaction: Nothing to do. 2) SL
Warning means that these events indicate that a component is not in an ideal state and that
other actions may cause a critical error. Reaction: We stimulate the layer or component in
order to check its response to some predefined inputs. According to the responses obtained,
we can locate and correct the misbehavior. 3) SL Attack means: The events indicate
that a component/layer of the system has been affected and that the component/layer
failed or stopped responding due to an attack. The component/layer and the attack are
then identified. Reaction: The layer or component is automatically disconnected from the
network and the other components/layers. It will be quarantined and we will remove the
malicious code. Thus, the removal is a very effective mechanism for avoiding the production
of more viruses. This is to prevent the virus from spreading to other unaffected layers. We
replace the affected component/ layer with new ones. 4) SL Critical Attack means: The
Events demand the immediate attention of the system administrator. They are generally
directed at the global level. The events indicate that one or several components or layers
of the system have been affected at the same time due to an attack. This is also the case
where any critical part(databases, storage) of the system has been accessed. Reaction: We
react like in the case above. In the case a critical part like the storage has been destroyed,
there is a recovery step in which the data are restored with backup data. The security
levels mentioned above will be incorporated in the future extension of this work.

87

CHAPTER 5. SOFTWARE REFLECTION BASED ATTACK TOLERANCE

5.3 Case studies

5.3.1 Overview

We propose an e-health Web application example that is a software for the management
of patients and doctors of an hospital. In the field of health, data are ultra sensitive and
critical. An incorrect modification can lead to the admission of inappropriate treatment
that can lead to premature death of the patient. On the other hand, any leakage of
information relating to the state of health of a patient, for example an AIDS patient may
result in the patient being excluded from society. This is the main reason why, we chose
the field of health to illustrate our approach. The simplified API consists of 4 methods,
that are presented in Figure 5.3.

HealthOperation
getConnected(login, password) : token
listPatient() : boolean
createPatient() : boolean
updatePatient(idPatient, token) : boolean

Figure 5.3 – API of the HealthOperation Center

It is assumed that this API is by definition safe, i.e., it is only accessible by au-
thorised people. Let’s suppose the following code is used as the implementation of the
updatePatient method (Figure 5.4):

def updatePatient (self , idPatient , token):
’’’
This function updates the patient .
Only authorized users , can do this operation .
’’’
log= checkSource ();
if self. validateToken (token):
with open(’patients .txt ’) as f:

for line in f:
if idPatient in line:

...
logging .info(" updatePatient "+log)
break

log= checkSource ();
return result

Figure 5.4 – Correct implementation of updatePatient.

Let us note that both: a) In this scenario, as protection measure, a user wanting to
perform an action must first obtain a token provided by the super-administrator. b) This

88

5.3. CASE STUDIES

token should be validated before updating the database.
Leveraging this fact, let us suppose that the malicious attacker extends the class by

redefining the updatePatient method as follows (Figure 5.5):

def updatePatient (self , idPatient , token):
’’’
This function updates the patient .
There is no validation of the token.
’’’
with open(’patients .txt ’) as f:

for line in f:
if idPatient in line:

...
break

Figure 5.5 – Unexpected implementation of updatePatient function.

These lines of code are functionally similar to the first implementation of the updatePa-
tient method but the length of the code is not the same. The insider attacker got a token
from one of his colleagues who has more privileges than him. There is no verification
of that token. The attack can, for example, modify the API and insert fake values into
the system or can retrieve confidential data. In this way, the requests of the users of the
application do not return correct results. An attack can also be the presence of a malware
that has the purpose of spreading and infecting the machines of the system.

Following our methodology, this attack is detected by using software reflection. This is
a Meta programming technique. It is possible in many programming languages to be able
to dynamically get the code and even the execution trace of a method, class, module. One
can also modify the class at runtime. In Python the inspect module provides functions for
learning about live objects, including modules, classes, instances, functions, and methods.
Functions can be used in this module to retrieve the original source code for a function,
look at the arguments of a method on the stack, and extract the sort of information useful
for producing library documentation for your source code.

We suppose that the API is the one described previously. For detecting attacks, we will
use logs located on two endpoints: on premises, on the server (proxy). We then will store
them in addition to the general information such as the date and time, the hash of the
stack of any running code. These hashes are made possible by the method checkSource()
defined in Figure 5.7.

Consequently, any line in all logs has the following format:
Date Hour Operation hash . We also consider that, every request made by a user using

the API is followed by an answer from the server. Any request has then two traces in the
logs: outbound and inbound. For instance, if the user sends a getConnected request, it will
produce the corresponding getConnected outbound in the log file of the application. When
the server responds to that request, it will produce getConnected inbound in the log file
of the application. Consider now the case of the updatePatient() method that interests

89

CHAPTER 5. SOFTWARE REFLECTION BASED ATTACK TOLERANCE

Cloud

c

log

log b

API API’Proxy

e-health
log a

input output

input output

Figure 5.6 – Setup of the running system.

def checkSource ():
a = inspect . getsource (inspect .stack ()\

[1][0])
m = hashlib .md5 ()
m. update (a)
return format (hashlib . sha224 (a)\

. hexdigest ())

Figure 5.7 – Implementation of the checkSource method.

us in particular. Let’s detail how the client can use that method in a correct way and
also in cases where the attack is manifest. As we showed in the first implementation of
updatePatient method (Figure 5.4), the checkSource() method is called before and after
the operation itself. We suppose that the hash of the outbound operation corresponds to
the first checkSource() call while the inbound operation one’s corresponds to the second
call of checkSource(). Both hashes should obviously match because they are obtained from
the same method. The log file of the application will be:

Date Hour Methode Hash Host
07/11/2017 10:00:00 AM ! updatePatient(Outbound) 2224d35250e... a
07/11/2017 10:15:00 AM ? updatePatient(Inbound) 2224d35250e... b

Reciprocally upon receiving the updatePatient request, updatePatient inbound is written

90

5.3. CASE STUDIES

a: Client b: Server

10 : 00, update(Outbound)

10 : 05, update(Inbound)
10 : 10, update(Outbound)

10 : 15, update(Inbound)

Figure 5.8 – Normal case

in the log file located on the server. When the server responds to that request, it will
produce an updatePatient outbound in the server’s log file (Figure 5.8). The server’s log
will be:

Date Hour Methode Hash Host
07/11/2017 10:05:00 AM ?updatePatient(Inbound) 2224d35250e...... b
07/11/2017 10:10:00 AM !updatePatient(outbound) 2224d35250e...... a

Let’s see the case where an attacker has succeeded to launch his attack against the
API. We describe then the situation when an attack occurs. Any of these cases seem to
show that there is an attack: someone has modified the API and overridden one or several
methods:

• No hash: This is the case where we see some information of the methods but there is
no Hash. This happens when the attack overrides the method but do not implement
it correctly (Figure 5.5).
Let us note that on the client side we have (note that the server side is the same):

Date Hour Methode Hash Host
07/11/2017 10:00:00 AM !updatePatient(Outbound) a
07/11/2017 10:15:00 AM ?updatePatient(Inbound) b

It is also possible to get only one hash for the outbound operation and nothing for
the inbound operation.

Date Hour Methode Hash Host
07/11/2017 10:00:00 AM !updatePatient(Outbound) 2224d35250e... a
07/11/2017 10:15:00 AM ?updatePatient(Inbound) b

91

CHAPTER 5. SOFTWARE REFLECTION BASED ATTACK TOLERANCE

• Hashes not equal: Here we consider that we got some relevant information in the logs
but the hashes of both Outbound and Inbound are not the same. This can appear on
the client side, the server side or both. This happens when the attacker uses the same
core algorithm used on the correct code but the instructions or the implementation
of the rest of the code is not the same.
We have on the client side:

Date Hour Methode Hash Host
07/11/2017 10:00:00 AM !updatePatient(Outbound) 2224d35250e... a
07/11/2017 10:15:00 AM ?updatePatient(Inbound) 2504d35222e... b

On the server side:

Date Hour Methode Hash Host
07/11/2017 10:05:00 AM ?updatePatient(Inbound) 0c251145317... b
07/11/2017 10:10:00 AM !updatePatient(outbound) 53171140c25... a

• Inconsistency: Here we can get some inconsistencies in the logs. For instance on
the client log (respectively server log) we got an Inbound (respectively Outbound)
operation before an Outbound (respectively Inbound).

Date Hour Methode Hash Host
07/11/2017 10:00:00 AM ?updatePatient(Inbound) 0c251145317... b
07/11/2017 10:15:00 AM !updatePatient(Outbound) 0c251145317... a

On the server side:

Date Hour Methode Hash Host
07/11/2017 10:05:00 AM !updatePatient(Outbound) 0c251145317... b
07/11/2017 10:10:00 AM ?updatePatient(Inbound) 0c251145317... a

– Operations are not ordered:

92

5.3. CASE STUDIES

a: Client b: Server

10 : 00, update(Inbound)

10 : 05, update(Outbound)
10 : 10, update(Inbound)

10 : 15, update(Outbound)

Figure 5.9 – Inconsistent messages diagrams.

a: Client b: Server

10 : 00, update(Outbound)

10 : 05, update(Inbound)
10 : 15, update(Outbound)

10 : 10, update(Inbound)

Figure 5.10 – Inconsistent messages diagrams.

– Timestamps are not ordered:

– We can also have the inconsistency with the dates or hours in the log files.
(Above Figure 5.10) We show on the client side:

Date Hour Methode Hash Host
07/11/2017 10:00:00 AM !updatePatient(Outbound) 0c251145317... b
07/11/2017 10:10:00 AM ?updatePatient(Inbound) 0c251145317... a

On the server side :

Date Hour Methode Hash Host
07/11/2017 10:05:00 AM ?updatePatient(Inbound) 0c251145317... b
07/11/2017 10:15:00 AM !updatePatient(Outbound) 0c251145317... a

The inconsistency lies in the fact that the client receive updatePatient(Inbound)
before the server sent updatePatient(Inbound).
Let us remark that we could have any combination of the inconsistencies
mentioned above.

93

CHAPTER 5. SOFTWARE REFLECTION BASED ATTACK TOLERANCE

5.3.2 Detection and mitigation
For detecting these attacks, regarding the methodology presented in section 5.2, we applied
the following security policies (rules). On the client application:

• Rule 1: Any update request should have hashes for its operations (outbound and
inbound) on the log files and these hashes must correspond.

• Rule 2: Any outbound operation should be followed by an inbound operation.

• Rule 3: If the outbound and the inbound operations have the same hashes, the
inbound one shouldn’t appear before the outbound one.

The rules on the server side are the same as those of the client seen above. On the server
side:

• Rule 4: Any update request should have hashes for its operations (outbound and
inbound) on the log files and these hashes must correspond.

• Rule 5: Any inbound operation should be followed by an outbound operation.

• Rule 6: If the outbound and the inbound operations have the same hashes, the
outbound one shouldn’t appear before the inbound one. Aggregating the two logs we
will have these news rules:

• Rule 7: For any outbound operation that appears in the log of the application, there
must be a corresponding inbound operation in the log of the server coming from the
application and the outbound (from the application) operation must occurred (clock
indication) before the inbound operation(from the server).

• Rule 8: For any inbound operation that appears in the log of the server, there must
be a corresponding outbound operation in the log of the application whose source
is the server; and the outbound (from the server) operation must occurred (clock
indication) before the inbound operation (from the application).

In the case of attack against the API, by comparing the hashes of both outbound and
inbound operations, one can see that a lambda instruction has been called without being
the right one. Thus the attack is detected. In the same way we can detect the external
attacker. For a good and efficient monitoring of and how to specify those rules, we will use
the MMT tool and investigate how we can enhance the Complex Event Processing engine.
The central concept in the CEP field is therefore the event. It must be noted that the
events that we take into account within MMT-Security properties are related to observable
system/network communications. In the case of a telecommunication network, they refer
to traffic packets and flows. In other contexts, they can relate to any action that can be
stored in a server/database/software log file. MMT runs on a modular architecture. Any
additional features or protocol is incorporated by a development of a specific plugin. So

94

5.3. CASE STUDIES

Code Listing 5.1 – Example of MMT’s specification of Rule 1
<beginning>
<property

value="THEN"
delay_units="s"
delay_min="0+"
delay_max="2"
property_id="1"
type_property="ATTACK"
description="Detection of the insider attack">

<event
value="COMPUTE"
event_id="1"
description="reception of the outbound operation in the log"
boolean_expression="((log.op == 1)

&& ((#strcmp(log.op, updatePatient(outbound)) != 0)
&& (log.hash!= ’’))"/>

<event
value="COMPUTE"
event_id="2"
description="reception of the inbound operation in the log"
boolean_expression="(((log.op== 1)

&& (#strcmp(log.op, updatePatient(outbound)) == 0)
&& (log.hash!=’’))
&& (#strcmp(log.hash, log.hash.1) != 0))"/>

</property>
</beginning>

Where: Event 1 (e1): reception of the outbound operation (log.op) in the log with a hash
(log.hash!= ”), and Event 2 (e2): reception of the inbound operation in the log and we
compare the hash with the previous hash (the built-in C function strcmp was used for the
comparison).

Figure 5.11 – Security Rule representation in MMT.

we have developed a plugin that allows us to parse the available information on log files so
that MMT can infer rules from the information contained in these files.

We then specified the rules describe above. For example Rule 1: Any update re-
quest should have hashes for its operations (outbound and inbound) on the log files
and these hashes must correspond, as depicted in Figure 5.11. This XML document
expresses the rule 1 in the formalism of the MMT tool. This is an attack detection rule
(type_property="ATTACK"). In this example, if the context and the trigger are verified,
then an attack/evasion has been detected. Note that & is equivalent to logical AND
and strcmp is the classical string comparison function in C.

In summary, we proposed some rules for the efficient detection of an insider attack
using MMT. After the detection, we must react in order to ensure the attack tolerance
capability of the framework. The mitigation and the remediation techniques are as follows.
To mitigate an insider attack, there are three ways of reacting. a) The first way is to
dynamically change the implementation of the class at runtime. In this way any further
attacks leveraging that issue will be thwarted. This is called Behavioral Reflection i.e.
reification of execution. b) The second way is to disable the overridden function. This
is called Structural Reflection i.e. reification of structure. c) Finally we can also change
the class at runtime according to a period of time to increase the randomness. We will

95

CHAPTER 5. SOFTWARE REFLECTION BASED ATTACK TOLERANCE

illustrate the first method in the next section through experimentation.

These are made possible by using metaclass and reflection in python. A metaclass is
defined as "the class of a class". Any class whose instances are themselves classes, is a
metaclass. Reflection is the process by which a program can observe and modify its own
structure and behavior at runtime. Let’s show how we can change a class at runtime in
the following example [Dougblack, 2017].

import types

’’’Overrides the implementation of the method updatePatient ’’’
def newUpdatePatient (idPatient , token):

......
print ’ update completed ’

return True;

class MetaClass (type):
def __new__ (cls , name , bases , attrs):

for name , value in attrs.items ():
if type(value) is types. MethodType :

if attack =True:
attrs[name] = newUpdatePatient (value)

return super (MetaClass , cls). __new__ (name , bases , attrs)

class HealthOperation (object):
__metaclass__ = MetaClass

def updatePatient (self , idPatient , token):
....
return True;

Figure 5.12 – Example of usage of metaclasses

We assume that the main class is the HealthOperation and we consider that if an attack
has been suspected, we change the implementation of the updatePatient method with
the new one newUpdatePatient at runtime (Figure 5.12). In this snippet, we create a
metaclass named MetaClass. Our metaclass parses all the methods and attributes of the
class HealthOperation and when the attack has been detected (by evaluating the attack
variable for example), the implementation of the updatePatient method is dynamically
changed at runtime by the new method newUpdatePatient. This example is naive but
explains how we can use reflection.

96

5.4. EXPERIMENTS AND RESULTS

5.4 Experiments and results

To implement and test our approach, we developed a python RESTful Web-service with
the FLASK [Ronacher, 2017] framework. This Web service implements and extends the
example of the hospital seen previously. The preference of REST above SOAP is obviously
because REST is easier to use and is more flexible. It has the following advantages over
SOAP as it is fast, effective, and there is no need of expensive tools to interact with the
Web service.

The service has two main databases, a database of viruses (Virus DB) and a database
for MMT(MMT DB) which contains the meta-data of the methods (name, module, source
code). To be sure that these databases can not be corrupted, standard database protection
techniques have been used. These databases have been encrypted and the data they contain
as well. For the whole framework, the methodology is the one explained in the previous
section. The operations related to both the patients and the doctors (creation, list, update,
deletion) were implemented as REST requests (POST, GET, PUT, DELETE).

Figure 5.13 – RESTful API of the e-health Center.

The use-case conducted is the following. We assume that one or more operations of the
service have been compromised by injecting the code with a known virus. This may be the
case, for example, if one of the project partners has clicked on a malicious link received
in an e-mail. The requests launched by the different users are intercepted and analyzed
with the detection tool (MMT) before executing the corresponding method. In this step,
there is a comparison between the hash code of the methods invoked and the hash code we
have in MMT DB. If the hash is equivalent to the hash of the method that is in the DB, it
means that nothing malicious happens. If the hash does not correspond to the hash of
the method that is in the DB, an alarm is issued and as a countermeasure, the safe code
of the operation existing in the DB is dynamically executed so that the corrupted code
can not spread. This also ensures continuity of the service for the users. By doing so, all
subsequent attempts by the attackers will not succeed.

97

CHAPTER 5. SOFTWARE REFLECTION BASED ATTACK TOLERANCE

We evaluated the framework in the presence of virus samples of VirusShare 1. Experi-
ments have been launched. We showed below these experiments. In the first experiment
we investigated the overhead(overall time needed to respond to the requests of the clients)
generated by the framework when an attack is detected. The second experiment aims at
comparing the accuracy (time to detect an attack) of our detection tool with the classical
detection commercial off-the-shelf (COTS) tools.

Experiment 1: We measured the average time to make a client request without attack
and when the attack is detected. The results are recorded in the following table 5.14(a).
We find that these values are very close. It can be concluded that the approach does not
induce much overhead and that this is transparent to the user.

Experiment 2: In this part, the ability of the framework to detect viruses attack in
comparison to a conventional anti-virus. A virus was injected into the Web Service. For
security and simplicity issues, a new virus has been proposed. This virus modifies all the
codes of the classes, methods or functions of the python modules of a given directory tree.
We established a signature of the new virus. We added this signature to our virus database
as well as that of the anti-virus ClamAv 2 a well known anti-virus for all operating systems.
We used a logical signature (a logical signature allows combining of multiple signatures in
extended format using logical operators) as well as a hash-based signature(namely md5).
The sample of the logical signature is the following.

sample;Engine:0-20,Target:0;((3&4)|(0|1|2|3|4));
66696c65746f696e666563740a;696e6665637465640a;

66696c656c6973740a;696620547275650a;73797356d0a746

Our local database is based on the site’ virusshare database. This site contains all
the hashes (md5) of known malware. For fairness we only launched ClamAv in the folder
containing our web service implementation. We run the virus and try to detect it with
both antivirus. The results in terms of detection time are recorded in the table 5.14(b).
From the table 5.14(b) we can conclude that our framework is twice faster than ClamAv.

Without detec-
tion

With detec-
tion

0,0545 seconds 0,0553 seconds
((a)) Latency measurements

Our framework ClamAv
5,534 seconds 12,870 seconds

((b)) Detection time

Figure 5.14 – Experiments 1 & 2 results

Moreover, we think our framework is more suitable than the conventional anti-viruses for
the following reasons. MD5-based anti-malware only works against static-infections that

1https://virusshare.com
2https://www.clamav.net

98

5.5. DISCUSSION

never change. However, there are also polymorphic malwares that change continuously
their source code. So whether it’s static signatures or dynamic signatures, attackers can
still do zero-days attack. But with our methodology, any attack that will take place will
necessarily be detected because we base our detection on the sources of our modules and
not on the sources of viruses. This is fundamental for attack tolerance. The only condition
is to make sure that this database can not be easily compromised.

5.5 Discussion
In this chapter we have presented a generic secure methodology to detect and remediate
insider attacks on Web-based services. Our approach is based on reflection and monitoring
techniques. We have also presented a multi-layer architecture and show how we are able to
detect at runtime changes of the kernel application that might be considered as attacks. In
addition, to be able to detect attacks our methodology allows to enable/disable different
layers of the system in order to stop the attack and allow the system to continue working.
Our goal is to have always a part of the system always running, even in the presence of
an attack and be able to provide some ”critical” services in any situation. As conclusion,
software reflection is suitable for attack tolerance. So, in the next chapter, we will see
how we can leverage reflection as well as the other methods of attack tolerance presented
previously to build a more complete attack tolerance framework. The results of this chapter
have been published in the proceedings of the peer-reviewed International Conference on
Web Services (ICWS 2018) [Cavalli et al., 2018].

99

6
An attack tolerance framework for

Web-based applications in the cloud.

Contents
5.1 Background . 82
5.2 Framework . 83
5.3 Case studies . 88

5.3.1 Overview . 88
5.3.2 Detection and mitigation . 94

5.4 Experiments and results . 97
5.5 Discussion . 99

In the previous chapters, as part of the implementation of our risk-based monitoring
methodology, we presented different approaches of attack tolerance. These approaches
were based on the concepts of diversity and software reflection. In addition, we shown that
Web services are increasingly being used to deploy applications in the cloud. We think
that it would be interesting on the one hand, to find a way to consider and express these
applications to allow them to benefit optimally from our attack tolerance methods. On the
other hand we believe that the methods of attack tolerance we presented, although different
can be used in a complementary way to ensure an additional and complete tolerance.
Based on these two observations, we propose in this chapter, a complete attack tolerance
framework for Web services deployed in the cloud. For this aim, we first explain why we
express such cloud applications as a choreography of services that must be continuously
monitored and tested. In fact, very often individual Web services are not sufficient to meet
the requirements of end users. It may therefore be necessary to compose Web services
together to meet complex needs. Choreography one approach for achieving composition is
an unambiguous way of describing the relationships between services in a global peer-to-peer
collaboration and has the advantage of requiring no centralized actor. Each participant of

101

CHAPTER 6. AN ATTACK TOLERANCE FRAMEWORK FOR WEB-BASED
APPLICATIONS IN THE CLOUD.

that choreography is deployed in a container. Thus, our services will leverage the features of
cloud platforms such as elasticity and scalability. Then we will leverage SChorA, a formal
Web service testing framework by incorporating some of the attack tolerance mechanisms
in order to take advantage of the benefits of each of them. As a result, our approach is
unique in the sense that it offers a complete attack tolerance for Web services, from both
formal and practical points of view. We will present the theoretical framework of this
approach in the following.

6.1 Web services and cloud applications

Service-oriented architectures (SOA) are primarily intended to facilitate the integration of
new applications into information systems of companies or organizations by optimizing
exchanges and operations. The advantage of SOA is that these services are standardized.
They can be interpreted in a simple way by other applications sharing the same standards
and potentially exploitable by all the entities of the target system. Besides, it is important
to note that Web services and the cloud converge. With the expansion of cloud-based
online services or simply the interconnection of Information Systems of companies, the need
to expose services to the outside is growing. As we saw in the chapter 2, cloud computing
facilitates access to computing resources. These resources are provisioned for public
convenience and benefit the availability, the elasticity of cloud computing. The advent
of cloud computing has made it possible to provide innovative Information Technology
(IT) services. [Yang and Zhang, 2012] claim that SOA and cloud computing are actually
complementary since SOA can help realize Software as a Service (SaaS) applications rapidly.
So since SOA supports the processing of services and the cloud allows the provision of
these services quickly, the combination of these two principles is relevant for businesses
giving them more flexibility.

Moreover cloud applications are distributed applications. A distributed application
can be defined as a set of concurrently running and interoperable software processes. In
addition, it should be noted that there are three models of deployment of distributed
applications in the cloud ([Etchevers, 2012]):

1. Infrastructure-oriented solutions: Infrastructure-based solutions envision the
deployment of an application in the cloud through the implementation of a set of
virtualized hardware resources. They come in the form of a public or private cloud.
This type of cloud application can benefit from several services provided in the cloud
such as database storage, virtual machine cloning, or memory ballooning.

2. Service oriented solutions: Service-oriented solutions are platforms where ap-
plications are often deployed in the form of composition of high-level services and
the administration as the orchestration of these services according to User-defined
policies through Service Level Agreements (SLAs).

102

6.1. WEB SERVICES AND CLOUD APPLICATIONS

3. Application-oriented solutions: This third category of solutions aims at com-
bining the service-oriented approach, in which a distributed application is defined
as a composition of high-level services, and the infrastructure-oriented approach,
which explains how an application breaks down within a set of virtual resources.
Application-oriented solutions thus offer a high degree of parameterization for the
user to define the application to be implemented.

In addition, Cloud Technology Partners (CTP), a Hewlett Packard Enterprise company,
claimed that cloud applications are best deployed as a collection of cloud services [Cloudtp,
2018]. The idea is to build up services and then combine those services into composite
services or complete composite applications. According to them the benefits of such are
manifold. First, the separation of the application services physically, executing on the
proper machine instances, can help to track and maintain the services of the application.
Additional benefits may include re-usability. One can break up applications into hundreds
of underlying services that have value when used by other applications.

In our case, to fully benefit from the benefits of the cloud we will consider our applications
as a composition of SOAPWeb services in the cloud. The applications will be a choreography
of Web services and they will be deployed in the form of containers. The reasons of these
considerations are the following:

• Choreography over Orchestration. Generally service compositions are classified
into two styles: orchestrations and choreographies. Orchestration always represents
control from one participant’s perspective, called orchestrator. Unlike the orchestra-
tion, there is no privilege entities in the choreography. Orchestration provides a good
way for controlling the flow of the application when there is synchronous processing.
But orchestration incurs a performance overhead due to the additional layer of the
orchestration platform itself. A choreography description specifies the interactions
between the roles of a collaboration. An implementation of a choreography is a set
of services that perform role behaviors. Choreography enables faster end-to-end
processing as services can be executed in parallel. In choreography adding or updat-
ing services is easier as they can be plugged in/out of the collaboration. However,
complexity is shifted in choreography. Each service would have its own flow logic. We
choose to deploy our applications as choreography because we want our services to be
autonomous and tolerant to attack. The absence of a central orchestrator therefore
has the advantage of allowing us to increase reactivity. Furthermore [Kopp and Bre-
itenbücher, 2017] envision to modelling the provisioning of distributed multi-Cloud
applications as a choreography model, wherein each participant flow executes the
provisioning of one part of the application. They claimed that since composite cloud
applications have to be provisioned across multiple different private Clouds, a single
centralized provisioning engine or workflow is not possible. [Gomes et al., 2015] also
claimed that service choreography would become the norm for internet applications.
Indeed, the authors argue that applications are increasingly developed especially
based on existing services. Moreover the interconnection of services is facilitated
by the use of distributed cloud platforms. [Furtado et al., 2014] argued that Web

103

CHAPTER 6. AN ATTACK TOLERANCE FRAMEWORK FOR WEB-BASED
APPLICATIONS IN THE CLOUD.

services composition, in particular choreography is a suitable solution used to build
application and systems on the cloud. They built a middleware solution that is capa-
ble of automatically deploying and executing Web services on the cloud. We agree
with them that choreography is a good approach for deploying cloud applications
based on Web services. In our case we will deploy our application on the cloud as
service choreographies that integrate attack tolerance features.

• SOAP over REST. It is true that more and more cloud services and cloud appli-
cations are deployed using REST APIs. As we saw in the previous chapter, REST
"REpresentational State Transfer" is an architectural style and is based on different
HTTP methods: GET, POST, PUT and DELETE. The advantage is the simplicity
of use and exploitation on the Web. SOAP (Simple Object Access Protocol) is a
messaging protocol. It allows programs that run on separate operating systems XML
(Extensible Markup Language). Although frequently associated with the HTTP
protocol, SOAP supports other protocols such as SMTP. It is usually much slower
than REST.
However, REST APIs can expose to new risks. REST does not implement any specific
security patterns like SOAP. Even though some authentication and access control
mechanisms are provided, the following bad examples when implementing APIs can
induce data loss:

– HTTPS protected API without any authentication: HTTPS alone may be not
sufficient for ensuring security of APIs.

– Unprotected identity and keys and weak API keys: authentication and identity
platforms are used to grant access to services on behalf of a user. Weak semantics
of such identity platforms may expose the system to identity impersonating.

So protecting REST API is of paramount importance. REST APIs developers need
to follow specific good practices in order to build strong APIs. In contrast, SOAP
uses the Web Services Security (WS-Security [Oasis, 2006]) communications protocol
to apply security to Web services. WS-Security allows one to sign SOAP messages
to ensure integrity, confidentiality, and security tokens to ensure the identity of the
issuer. From a security standpoint, WS-Security (Web Service Security) protocol,
which provides end-to-end message level security using SOAP messages, is widely
applied in cloud computing to protect the security of most cloud computing related
Web services. In addition, cloud providers like Salesforce and Oracle offer SOAP
APIs to expose their customer relationship management (CRM) services. This kind
of application needs in fact a high level of reliability and security. All these facts
justify our choice of SOAP over REST.

In conclusion we propose to develop our distributed applications as a choreography of
SOAP Web services and deployed in the cloud. We believe that applications developed in
the form of service choreography and deployed in the cloud are ideal because:

• There is a single central component so no strong coupling between services

104

6.2. SCHORA

• A failed service can be started quickly. One can increase the computing and storage
capabilities of these services on demand in a transparent way. One can stop these
services easily when he doesn’t need them anymore.

• One can benefit from the latest security patches implemented by cloud service
providers (CSP).

• Cloud providers are proposing redundant mechanisms in several regions of the world.

However, before and when deploying such choreography one should ensure that this
choreography is realizable and the participants of this choreography act according to the
requirements. We need also reliable tools and frameworks. For this goal, we will leverage
SChorA ([Nguyen, 2013]), a conformance and testing framework for choreographies. We
will present this framework in the next section.

6.2 SChorA

SChorA 1is a Web service choreography conformance and testing environment proposed
by [Nguyen, 2013]. This framework aims to solve the key issues in choreography-based
top-down development; i) Conformance: Does a set of peers conform to the choreography?
ii) Realizability: Whether a choreography is realizable i.e ensuring that a choreography
can be practically implemented. iii) Projection: Ability to derive local models of a global
choreography on peers.

To solve these issues, the framework has the following features that we will see quickly:

• A symbolic model and an integrated environment for specifying and analyzing service
choreographies;

• Passive testing of Choreographies.

6.2.1 A symbolic model and an integrated environment for specifying and
analyzing service choreographies.

A description language for modeling choreography has been proposed. Its semantics are
given by Symbolic transition Graph (STG) [Hennessy and Lin, 1995]. It can be used
to specify either global view or local view by using global or local events. A STG is a
transition system. Each transition of STG is labelled by a guard and a basic event. So
the choreography is expressed as a STG. When the models on the roles are available, the
conformance is then verified. To verify such conformance, the models of the roles are
transformed into STG and then combined to form an overall STG. To verify that this
overall STG obtained is equivalent to the STG of the global choreography, the techniques
of branching bi-simulation is used. In theoretical computing, a bisimulation is a binary
relation between state transition systems, checking whether they behave in the same way.

1http://SChorA.lri.fr

105

CHAPTER 6. AN ATTACK TOLERANCE FRAMEWORK FOR WEB-BASED
APPLICATIONS IN THE CLOUD.

A ::= BA (basic activities)
| A;A (sequential)
| AuA (choice)
| A ‖ A (parallel)

BA ::= skip (no action)
| c[i,j] (communication)

Basic: [[skip]] =̂ {〈〉}
[[c[i,j]]] =̂ {〈c[i,j]〉}

Sequential: [[A1;A2]] =̂ [[A1]]
a[[A2]]

Choice: [[A1 uA2]] =̂ [[A1]] ∪ [[A2]]
Parallel: [[A1 ‖ A2]] =̂ [[A1]] ./ [[A2]]

(a) Syntax & Semantics

Figure 6.1 – Chor choreography language [Qiu et al., 2007]

In other words, two systems are bisimilar if they are capable of imitating each other. A
logical formula is obtained from this bisimulation step. This formula is given as input
to a SMT solver that checks for satisfiability. A positive verdict shows conformance.
For the realizability and projection issues, the framework works as follows. From the
description of the choreography, if there are non-realizable parts, some additional messages
are incorporated to the graph to allow all the transitions to be realizable. Once the
realizability is verified, there are projected on the different roles or peers.

6.2.2 Passive testing

When role models are not available, the conformance between the specification and the
implementation is made possible by passive testing. The author chose the Chor [Qiu
et al., 2007] language because it is expressive and abstract enough to enable one to specify
collaborations. Figure 6.1 presents the semantic of that language. In order to formally verify
the choreography, the author proposed another language ChorD which is an extension of
the Chor language with data. The requirements for the roles projected are described in
a sublanguage of Chor called role language. The semantics of a Chor (local or global)
specification C is given in terms of its set of all specification traces, trace set for short, that
represent all possible run of the specification [Qiu et al., 2007]. To obtain the requirements
for each role of a choreography, there is a projection (nproj) that hides the interactions
that do not concern the role itself.

The passive testing approach proposed in [Nguyen, 2013] was the following. From a
choreography C, a trace set is obtained. Then, the set of local requirements of its roles is
obtained by using the natural projection function as we mentioned previously. From each Ri
also a trace set exists. He obtains li, from each role. From n collected logs, he synthesizes a
global log, denoted as L. A pre-order operator was used to see if one of the traces has some
patterns present in the other. When a message is sent or received by a peer of the IUT,
an observation is recorded in the log file. At the role level, interactions are represented
with "!" that indicates a sending and "?" that indicates a reception. Observations are then

106

6.2. SCHORA

annotated accordingly in logs. To ease the reconstruction of the order between observations
of different logs li, the author incorporated the time of the observation in the log. Formally,
the observation is defined as follows. Given an Implementation Under Test (IUT) which
consists of n peers P = {P1, . . . , Pi, . . . , Pn}, an observation is a tuple ob = (act, id, t, s, r,m)
where act ∈ {SEND,RECEIVE} indicates a sending or a reception, id is a message identity,
t is the reception or sending time, s, r ∈ P with s 6= r are the sender and the receiver, and
m is the message. A log li = 〈ob1, ob2, . . . , obm〉 for a peer Pi is a sequence of all the
observations of messages which are sent/received by Pi to/from others peers of the IUT.

The previous conformance relation (pre-order relation) while useful, was not strong
enough to detect complex misbehaviours. To improve the detection, another complementary
approach was proposed. This new approach can detect non conformance by the verification
of properties provided by the standards or by the choreography experts. In order to express
such properties some terminologies were proposed: message and event, candidate events
local and global properties. The messages and event exchanged between the members
where formalized as follows.

Definition 6 (Message and Event). Given a finite set of action names Ω, of labels , and
of atomic data values , a message m takes the following form:

o(l1 = v1, . . . , ln = vn)

where o ∈ Ω represents the action. The composite data of the message is represented by
a set {l1 = v1, . . . , ln = vn}, in which each field of this data structure is pointed by a label
li ∈ and its value is vi ∈ dom(vi).

For example a message can be:

Request(location = Paris, people/name = Georges, people/job = researcher)

A message is an instance of an event. It means that an event expresses a set of messages
which have the same operation name. For deriving a sub-class of an event in which
the messages respect a particular condition the term candidate event was proposed. A
candidate event is then a pair event/predicate. Formally candidate events are defined as
follows:

Definition 7 (Candidate Event). A candidate event (CE) is a pair o(l1 = v1, . . . , ln
= vn)/φ(x1, . . . , xn), denoted by o()/φ(), where o(l1 = v1, . . . , ln = vn) is a message and
φ(x1, . . . , xn) is a predicate. The predicate can be omitted if it is true.

Example 1. An example of CE is:

CE1 = People (age = x)/(x >= 18)

Which represents any adult people i.e. whose age is greater than 18.

107

CHAPTER 6. AN ATTACK TOLERANCE FRAMEWORK FOR WEB-BASED
APPLICATIONS IN THE CLOUD.

For detecting misbehaviours one should express properties both at the role and the
choreography level. As consequence there are two types of property, local and global. The
local properties of a member of a choreography are expressed as follows.

Definition 8 (Local Property). A local property P is a 2-tuple (cont, conseq) composed of
a Context cont AND/OR a Consequence conseq AND/OR an Operation op. It is denoted
as:

P ::= cont
d−→ conseq

where:

• d is an integer, d > 0

• Context is a sequence of CEs, o1/φ1, o2/φ2, . . . , on/φn〉

• Consequence is a set of CEs, {CE1, . . . , CEm}.

On the other hand, the global properties, the properties of the choreography, should
verify are defined as follows.

Definition 9 (Global Property). A global property is described as:

G ::= SET −→ SET ′

where SET and SET ′ are two sets of local properties.

These properties are then checked on the execution traces of the IUT which are collected
at running time.

Summary: We chose to leverage SChorA in this chapter for the following reasons.
First, we explained in section 6.1 that we wanted to take advantage of the properties
offered by the cloud such as the elasticity to deploy our Web services-based applications.
In addition we showed why we prefer choreography rather than orchestration. SChorA
by its formal richness is a tool that is perfectly suited for verification of our Web services
choreographies. SChorA also supports the passage of values in choreographies. This
is particularly useful for checking complex interactions. Secondly, SChorA has some
similarities with the approaches we proposed in previous chapters. This is particularly the
case of the reflection-based attack tolerance approach. As a reminder, the detection of
attacks by reflection was done by the use of logs files deployed in each of the components
of our application. We developed a plugin to analyze properties that we defined through
the formalism of MMT. In comparison SChorA also uses logs for passive tests. Moreover,
the semantics of the properties of the passive testing tool are similar to those of MMT. We
believe that using SChorA in conjunction with our attack tolerance methodology can only
be beneficial. Thus we will see in the following section how concretely this can be done.

108

6.3. ATTACK TOLERANCE IN THE CLOUD

6.3 Attack tolerance in the cloud
This section will present in detail how we will leverage SChorA as well as our previous work
for building a full attack tolerance framework. Adding mechanisms of detection and reaction
on the fly to these applications verified correct, ensures optimal attack tolerance. Our
framework consists of two main parts (Figure 6.2). The first part that deals with modeling,
verification and code generation and the second part where the system is deployed, tested
and monitored. A part of the methodology in this section has been illustrated through a
vote choreography in Appendix A.

Figure 6.2 – SChorAcloud architecture and components.

6.3.1 Part 1: Verification and code generation
We proposed to model any Web-based application as a choreography of Web services using
the description language of SChorA. We check our choreographies from a formal point of
view. From the overall choreography, one verifies the realizability thanks to SChorA. Once
this stage is over, we project the choreography on the different roles. We then obtain local
models on the peers. After having formally verified the conformance of the models, w.r.t the
choreography, it is advisable to be able to implement these projected models on the peers
in a way that the services obtained are correct by construction. The goal is to automate
code generation. We propose for this aim to use a new Domain Specific Language (DSL)
for our choreography called ChorGen. DSLs are language families dedicated to a particular
domain (SQL for databases is an example, unlike GPLs (Java) that can potentially handle
all domains). DSLs have been promoted because users or Experts in a given business
domain may not have the skills to write programs in traditional languages. However they
can more easily understand terms related to their target domains, for example a baker will

109

CHAPTER 6. AN ATTACK TOLERANCE FRAMEWORK FOR WEB-BASED
APPLICATIONS IN THE CLOUD.

understand the key words, cake, cookies than classes (Java). The ChorGen language has
the following grammar:

grammar org.xtext.example.Chor with org.eclipse.xtext.common.Terminals

generate chor "http://www.xtext.org/example/Chor"
Model:
(choreographies+= Choreography)+;

Choreography:
’choreography’ name=ID ’{’
(roles+=Roles)*
’}’
;
Roles:
’role’ name=ID ’{’

operations+=Operation
’}’
;
Operation:
’operations’ ’{’

(methods+=Function)*
’}’
;
Function:
name=ID ’(’(params+=Param)* ’)’
;
Param:
name=ID type=ID ’,’ |name =ID type=ID
;

This means that a choreography contains several roles that expose some operations to
interact with the other roles. An example of a well defined implementation is the following:

We used model-driven engineering technologies (Xtext2 for grammar analysis, Xtend3)
for code generation) for the specification, the semantic, the compilation and code generation
from the ChorGen language to our three target languages: Wsdl, Python and PHP. Indeed
these tools allow one to easily create associated compiler/ interpreter and even a suitable
environment (code editor with syntax highlighting, autocompletion, etc.). So once the local
models are projected from the global choreography, we write the corresponding codes using
the syntax of the ChorGen language taking into account the interactions added to the
specifications. This is the case for example when in the verification phase, interactions are
added to the models to make the choreography realizable. After we generate the skeletons

2https://www.eclipse.org/Xtext/
3https://www.eclipse.org/xtend/

110

6.3. ATTACK TOLERANCE IN THE CLOUD

choreography chor{
role client {

operations {
send(IP String)
receive (Data string)

}
}
role server {

operations {
verify (IP String)
ack(IP string)

}
}

}

Figure 6.3 – Example of definition of a choreography with 2 roles

of the services that will implement our choreography thanks to the functionalities offered by
our language. In particular, we generate the Wsdl files (interface file of our Web services)
as well as the skeletons of the implementations of these services in the Python, PHP and
Java languages. In addition to the skeletons of these services we have the possibility to
generate JUnit (if the developer chose Java) test cases that will allow us to test the services
once implemented (functional testing).

The advantage of doing such code generation is the reduction of service development
time. This allows us to be more efficient when implementing the services. This is useful, for
example, for choreographies containing a very large number of peers. Another advantage is
that since all interactions are taken into account in ChorGen, we are sure that developers will
not forget to implement them since their signatures are available. This is very suitable for
top-down approaches of choreography development. After having these skeletons generated,
the developer completes the implementations. The next step consists in describing some
properties in the formalism we presented above. The properties are check by SChorA’s
test engine in order to see if the implementations are conform to the choreography. The
purpose is to detect non conformance w.r.t. the requirements and correct them before
deploying the services. Furthermore, the current version of SChorA test engine can not
explain the backward properties. From the vote choreography presented in Appendix A,
backward properties are: i) every citizen must be registered before he/she can vote, ii) the
list of candidates must be sent only to a registered citizen. This kind of properties can be
implemented in MMT.

111

CHAPTER 6. AN ATTACK TOLERANCE FRAMEWORK FOR WEB-BASED
APPLICATIONS IN THE CLOUD.

Algorithm 2 Observer or manager execution
1: detected← false

2: while true do
3: if detected then
4:
5: setLocalCountermeasures()
6: chosenVariant← random(1, nvariants)
7: chosenVariant.state← active

8: notifyAllMembers(IP)
9: nextInstruction← buffer.pop()

10: setTimer(Timer)
11:
12: while Timer do
13: buffer← buffer U ack()
14: end while
15:
16: for (do i=0 To N)
17: if !ack[i] then
18: notifyMember(IP, i)
19: end if
20: end for
21: bind(chosenVariant)
22: sendInstruction(chosenVariant, nextInstruction)
23: else
24: if receiveChange[IP,i] then
25: sendAck(mac(IP), i)
26: end if
27: end if
28: end while

112

6.3. ATTACK TOLERANCE IN THE CLOUD

6.3.2 Part 2: Deployment, monitoring and reaction

To ensure redundancy, as we described in the previous step, we suppose that there are
diversified implementations in three target languages, Java, Php and Python. Added to
this, we diversify the data structures and the sequences of the instructions so as to have
different AST for the variants of the implementations obtained. So we will have at least 6
different implementations for each of the peers in the choreography.

In accordance with our attack tolerance methodology, one implementation at a time is
chosen. The others are started but inactive. In addition, we assume that the implementa-
tions are localized in a safe environment that is to say are not connected to the outside and
that only the active implementation can be attacked. When the current implementation is
attacked, it is replaced by one of the variants. We assume that the communication channels
between the choreography members are reliable. So, only the different roles can emit false
messages when they are attacked or compromised. Each member of the choreography is
deployed in a container on a public cloud platform. They are observation probes (algorithm
2) available for each role in the choreography. These agents are in charge of monitoring
and detecting attacks. They will also be given the ability to implement the replacement of
the container when the attack is detected. These agents do not normally interact directly
with the members of the choreography. They are therefore not visible from the outside and
are located in a safe environment. They are considered safe and they do not crash. The
members of the choreography have each a log file that will be used for detecting attacks.
We stored Date, Hour, Operation ,hash on these logs.

When a member is attacked, with respect to the rules described in the MMT tool, the
monitoring agent interrupts the connection of the attacked container while saving the last
unexecuted requests. It replaces the current damaged container with another container
(line 5,6 in algorithm 2). Afterwards, he notifies the other members of the choreography
and send them the information about the new active implementation (line 7). He expects
to receive acknowledgments from the other members during a certain period of time (line 9
to 13). For example, it sends the new IP address of the new deployed member to the other
members of the choreography. Acknowledgments should be received with the correct hash
of the IP address to ensure that members have obtained the correct address. After the end
of the timer, if he does not receive the acknowledgments from all members, he sends again
the message to the members (Line 15 to 19). Otherwise if there is no detection of attack,
the manager keeps working. If he receive a message of a new member (line 23) he answers
back (line 24).

In the same way in algorithm 3 we describe how the members of the choreography
act. They are initially in the inactive state. Then, one of the members is chosen after a
detection of attack or misbehaviour. This member becomes active (line 6 algorithm 2),
launches the list of remaining non executed instructions he receives from the manager (line
4 algorithm 3) and continues to perform his normal tasks (algorithm 3 line 7). We see the
value of using these applications in cloud computing because you can deploy/disconnect
containers quickly

113

CHAPTER 6. AN ATTACK TOLERANCE FRAMEWORK FOR WEB-BASED
APPLICATIONS IN THE CLOUD.

Algorithm 3 Choreography member execution
1: while True do
2: if receiveActivation then
3: if receive(instruction) then
4: execute(instruction)
5: end if
6:
7: continueExecution()
8: end if
9: end while

Since the implementations of our services verified conform to the description of the
choreography, the next step is to ensure that when these services are deployed, there will
be no other misbehaviours such as attacks or viruses. The idea is to leverage the risk-based
monitoring presented in chapter 3. Recall that in this methodology, we first identify
the assets we want to preserve and then we analyze the risks (attacks, vulnerabilities)
that these assets may be confronted with. In our case we will derive properties from the
risk analysis phase. These new properties will be added to those in the previous section
to continuously monitor the services. The monitoring is done by using the reflection
methodology as presented in chapter 5. Thus, at runtime when a misbehaviour is detected,
we react by applying the attack tolerance methodology (rejuvenation and recovery of the
implementation and reflection).

In summary, the framework is useful for the following reasons. First of all, our services
are in a sense correct by construction since the code generation is made from the projected
models of the choreography which is verified realizable. Then tests will be performed before
and when the services are deployed to detect possible deviations of the implementation
w.r.t. the choreography. To detect attacks that can happen, after risk analysis, we have
a continuous monitoring and reaction that mitigate the effects of those attacks. The
introduction of the reflection methodology ensures tolerance to a wide variety of attacks
and threats including malware. Last but not least, deploying the choreographies in the
cloud allows us to take advantage of the elasticity and continuous delivery capabilities
offered by cloud services. This enhances the attack tolerance of such choreographies since
the time to recover from an attack is short. We will then have a full attack tolerance loop
for services-based applications deployed in the cloud. This comprehensive approach is
therefore different from existing approaches that aim to simply deploy choreographies in
the cloud without focusing on robust means of verification and monitoring.

6.4 Discussion

We proposed in this chapter an approach of attack tolerance of applications deployed in
the cloud and developed from Web services. We first expressed these applications in the

114

6.4. DISCUSSION

cloud as service choreographies. We have detailed and explained the interest of modeling
these applications in this way. These choreographies that can be verified (conformance,
realizability and projection) using SChorA a formal environment for choreography testing
and verification. In addition, we developed a DSL that allowed us to automatically
specify and generate skeletons of our Web services in the target programming languages.
The idea was to diversify the implementations as we mentioned in chapter 4. This is
one contribution of this chapter. According to the methodology, once these services are
developed, the next step is to deploy the choreography with the peers launched on clouds.
For the detection of attacks or misbehaviours, the idea was to leverage the reflection-based
attack tolerance presented in chapter 6 5 in conjunction with SChorA property-based
detection of misbehaviours. This will result in the specification of some specific rules that
aimed at monitoring the whole framework, locally (at the peer level) and globally (at the
collaboration level).

Moreover, we have at our disposal, the following software components. The MMT
plugin that parses information contained in log files and write security properties on them
is operational. The format of the properties of this module is the same as the format of the
properties of MMT presented in the chapter 3. The modeling and verification components
of the SChorA framework as well as ChorGen for code generation in Wsdl, Php, python
and Java are available. Some parts should be refined (SChorA property testing) so that
we can validate this framework experimentally. As a perspective, we think that in order to
fully implement this approach, one should follow this experimental protocol:

1. Specifying the choreography in the ChorD language and verifying the realizability,
conformance and projection of that choreography using SChorA conformance tool.

2. Generating the Wsdl files and the skeletons of the peers in Java, Python and Php
and implementing them.

3. Specifying some properties in order to check the conformance of the implementation
w.r.t the choreography and expressing them in the formalism of SChorA passive test
engine. Specifying the remaining properties using the formalism of MMT.

4. In line with our risk-based monitoring approach, checking of the assets of the
choreography in order to anticipate potential vulnerabilities and attacks.

5. Specifying some MMT properties for monitoring the peers and detecting attacks.

6. Deploying the peers on different cloud providers to enhance diversity.

115

7
Conclusion

Contents
6.1 Web services and cloud applications . 102
6.2 SChorA . 105

6.2.1 A symbolic model and an integrated environment for specifying and
analyzing service choreographies. 105

6.2.2 Passive testing . 106
6.3 Attack tolerance in the cloud . 109

6.3.1 Part 1: Verification and code generation 109
6.3.2 Part 2: Deployment, monitoring and reaction 113

6.4 Discussion . 114

7.1 Synthesis of results
In this thesis, we proposed a new attack tolerance framework based on formal monitoring
techniques as well as software engineering techniques. We claim that a good tolerance
requires attack detection and continuous monitoring on the one hand; and reliable reaction
mechanisms on the other hand. We obtained the following results;

Risk-based monitoring. We leveraged the traditional risk management loop to build
a risk-based monitoring that integrates risks into monitoring. We claimed that the detection
and prevention of attacks require a good knowledge of the risks that these systems face.
As such, it is mandatory to include risk management in the monitoring strategy in order
to reduce the probability of failure or uncertainty. This methodology involves the following
aspects: i) assets identification to define what is necessary to protect. ii) Threats and
vulnerability analysis, to evaluate the potential flaws the system may suffer. iii) Risk
analysis to categorize the threats that can exploit the system vulnerabilities. iv) System

117

CHAPTER 7. CONCLUSION

monitoring to detect potential occurrences of attacks, and. v) Remediation strategies to
repel or mitigate the impact of the attacks.

Diversity-based attack tolerance. First, we presented a model-based diversity for
attack tolerance. We investigated attack tolerance at the design and specification phase.
The idea was the following. From a formal model of a system, i.e. a representation of the
system namely as a Timed Extended Finite State Machine (TEFSM), we derive equivalent
models that are functionally equivalent and that are supposed to be more resistant. From
these models, we derived the corresponding implementations. We ensure that these models
has been validated using, for instance model checking and testing techniques. As an
example, we can consider an authentication Web application, which is based on a password
mechanism and we defined other models using more complex authentication such as n-
factors authentication. The experiments show that the proposed mechanisms could tolerate
attacks such as brute-force attacks. However, the principal difficulty of this method led in
the derivation of the equivalent models. Moreover, one of the remaining questions that
needed to be solved was: how can we synthesize these variants?

Secondly, we proposed a complementary approach. This contribution aimed at extending
and solving the issues raised by the former approach. During all the steps of the construction
of our software, i.e., from modeling to the concrete instantiation, we have integrated
diversification. The idea was still the same but we only have one model and several
implementations. Our intuition laid on the fact that having diverse layers and points
of failure increase the security as it allows tolerance to a greater variety of attacks. We
illustrated the approach with a Web service that simplifies the management task in a
hospital. First of all, we defined a Feature Model that describes the variability points of
the service. Three variability patterns (Encoding style, Encoded type, Language) and the
corresponding WSDL files were defined. After this specification step, the derivation of the
variants was made possible in a semi-automatic manner. In fact, we used gSOAP, a C/C++
compiler, to generate the corresponding skeletons of the code of our Web services and
implemented them. To add more randomness we diversified the binaries of the services to
obtain different equivalent implementations of the Web service. We tested the framework
with a DoS attack to check the attack tolerance. The experiments show that our approach
tolerates certain types of attacks with a relatively low latency.

Reflection-based attack tolerance. Our aim was to address attack tolerance for
insider attacks. We investigated meta-programming techniques in particular software
reflection. Reflection helps a program to monitor or modifying its components and behavior
at run-time. We relied on reflection to build our method of attack tolerance. The basic idea
was therefore the following. We considered that the software of the client is located in a safe
environment. Some potential attacks that can take place are internal ones. That is, coming
from internal hackers. The goal of the intruder is to usurp the actions, i.e., to modify
the methods of the API of the platform. We designed a layered framework. By reflection
we obtained all the hash of the source code of any methods of the API. Any deviation

118

7.2. PERSPECTIVES

at runtime of that hash value means the presence of a misbehavior. Such misbehavior
could be whether an insider attack or a virus attack. We stored date, hour, operation
,hash, host in the file. Any request has then two traces in the logs: outbound(request)
and inbound(response). We described the situation when an attack occurs, i.e. someone
has modified the API and overridden one or several methods. First, this is the case where
we see some information of the methods but there is no hash. It is also possible to get
only one hash for the outbound operation and nothing for the inbound operation. The
hashes of both Outbound and Inbound could not correspond in the log files, if there is
an attack. Finally, we can get some inconsistencies in the logs: timestamps incoherence,
method inconsistencies (answer before request), or combination of inconsistencies. For the
monitoring part of the framework, the programs are checked at runtime using reflection
as we mentioned earlier. For detecting attacks, we use logs located on the two endpoints:
on premises, on the server. We developed a new plugin for this kind of detection in
the monitoring tool MMT. We applied some security policies (rules). We conducted two
different but complementary experiments :

• We measured the average time to make a client request without attack and when the
attack is detected.

• We evaluated the ability of the framework to detect viruses attack in comparison to
a conventional anti-virus.

The experiments show that our attack tolerance is effective.

Attack tolerance framework for services-based applications. We proposed a
theoretical correct-by construction and correct-at runtime attack tolerance framework for
Web services-based application in the cloud. For this goal, we first express any application
deployed in the cloud as a choreography of services which must be continuously monitored
and tested. Choreography is an unambiguous way of describing the relationships between
services in a global peer-to-peer collaboration and has the advantage of requiring no
centralized actor. Each participant of that choreography is deployed in one virtual machine
or container. Then, we extend a formal framework for choreography testing by incorporating
the tolerance methods for detecting and mitigating attacks presented. Adding mechanisms
of detection and reaction on the fly to these applications verified correct by design, will
ensure optimal attack tolerance.

Throughout this thesis, we have proposed innovative mechanisms for attack tolerance
for Web services deployed in the cloud. We believe that these techniques may be applied
for other types of applications. Now let’s discuss improvements and open directions.

7.2 Perspectives
We defined in this thesis attack tolerance or intrusion tolerance as the capability of a
system to continue to function properly with minimal degradation of performance, despite

119

CHAPTER 7. CONCLUSION

intrusions. The aim was to detect the known and unknown attacks and if not possible to
reduce their impact on the system. Although we obtained satisfactory results, we believe
that we could improve the tolerance to attacks if we could somehow anticipate or predict
these attacks. So in addition to detection and remediation, it would be necessary to be
able to predict and anticipate future attacks. We think that these two following axes would
be interesting to investigate.

Diagnosticability and predictability. [Ibrahim, 2016]. Diagnosis consists in design-
ing and implementing algorithms for verifying the formal properties of the system, ensuring
that a model, which is known in advance of observable events, allows the detection and
the discrimination of a set of possible failures. Similarly, predictability is the ability to
predict a future occurrence of a fault using the observable events preceding. We think that
if we can predict the occurrence of a fault, it would be interesting to prevent it from taking
place and therefore to tolerate attacks effectively. However, an important step for using
diagnosticability and predictability for attack tolerance will be therefore the formalization
of faults that can occur from attacks.

Big data and machine learning. Recently Machine Learning have emerged as
a mean to enhance security ([Buczak and Guven, 2016]). The authors describes the
literature review of Machine Learning (ML) and data mining (DM) methods for intrusion
detection. This study evaluated the different existing algorithms. They pointed out that
the most effective methods for cyber detection must be established and adapted to the
specificity of the attacks. Furthermore, adding big data to machine learning ([Suresh
et al., 2016]) can improve cyber security. The introduction of Big Data processing led
to a new era in the design and development of large-scale data processing systems. The
idea is that data in raw format makes it possible to create statistical baselines to identify
normality. Subsequently, it is possible to instantly determine when the data deviates from
this standard. This historical data also makes it possible to create predictive and statistical
models. While some supervised and unsupervised learning algorithms are already available
for Big Data, there is big room for improvement. It has be recognized that the false-positive
rate of machine learning algorithms, are too high and the alerts generated are not always
sufficiently interpretable to enable their exploitation. In summary, there is research avenue
for the application of such techniques for attack tolerance. [Suresh et al., 2016].

The result of using either/both predictability or ML and Big data in conjunction to
our attack tolerance methods will be the design and the implementation of a framework for
software systems, that are attack tolerant in the sense they have the possibility to continue
to deliver their services even when after a successful attack, and be able to recover quickly
and learn from the past.

120

A
Appendix

A.1 Example: Vote application
For illustrating the approach of chapter 6, we propose an electronic voting application
for the election of the president in a certain country. This application allows citizens to
register on the electoral lists and to vote electronically. The application is described by
the VoteElecService choreography. It is composed of three basic members: Inscription,
Vote and Citizen. The first member of that choreography allows to register a citizen on
the electoral lists by providing the personal information (surname, first name, date of
birth, address, ...). Another service called Inscription supports the Vote service. Once
registered, this citizen can vote electronically after verification of his registration by the
member Vote. Subsequently, this service will provide the list of associated candidates and
their identification number (1, 2, ...) in addition to the number zero that is associated with
the blank ballot. A registered citizen will vote by selecting one or more voting numbers
(including the blank ballot) and submitting his/her choices.

A.1.1 Verification and code generation

The vote choreography is modelled in Chor as follows: inscription[1,2];voteRequest[1,3];
resultVerifInfo[3,2]; rejection[2,1]u(confirmation[3,1];liste[3,1];vote[1,3]) where the Citi-
zen member, the Inscription member, the Vote member and the result member correspond
to respectively 1, 2 and 3. In order to formally verify the choreography, we adapted
this specification in the ChorD language which is an extension of the Chor language
with data. The resulting specification is: inscription[c, i]. < info >;voteRequest[c, v]. <
y >;resultVerifInfo[v, i]. < x >;([x = 0]| > rejection[v, c]+[x! = 0]| >(confirmation[v, c]
;liste[v, c];ote[c, v])). The results of the formal analysis of the choreography are depicted
in the following figure A.1.

As one can observe, the choreography is fully realizable without the need of adding
new interactions. It is therefore generated on the different roles. We also describe some
implementations models in order to check the conformance of the locals models, w.r.t to
the choreography (figure A.2). And from these descriptions, we generate skeletons of the
roles (figure A.3) that the developer should complete later.

121

APPENDIX A. APPENDIX

Figure A.1 – Verification of the Vote choreography

A.1.2 Testing

For the choreography conformance, we define the following rules:

1. Every citizen must be registered before he/she can vote;

2. When the citizen does not exist in the electoral files, we must send him a refusal;

3. The service must answer all the requests of the citizens;

122

A.1. EXAMPLE: VOTE APPLICATION

Figure A.2 – Conformance Checking

4. The service must validate the exact choice of the candidate;

5. The service must send the correct list of candidates to a citizen;

6. A citizen can only vote once;

7. The list of candidates must be sent only to a registered citizen;

8. A citizen must receive the list of candidates before making his choice;

123

APPENDIX A. APPENDIX

Figure A.3 – Generated skeletons

9. A citizen should be able to vote whenever he/she wants the first time;

10. The service should register any citizen.

The properties i) the service must validate the exact choice of the candidate; ii) The
service must answer all the requests of the citizens. iii) the service should register any
citizen can be specified by a local property of Citizen role: P1 = voteRequest[c,v]!(-)>
-(2)-> rejection[v,c]?(-), confirm[v,c]?(-) .

For the global properties, as there is a local order of events, the local ones are enough to
verify the conformance of the whole choreography. The global properties are only necessary
in the case there are no local order of the events.

Moreover, in line with our risk-based monitoring approach the main assets remain
the votes of the citizens and the availability of the platform. These citizens must be able
to vote at any time of the election day. The main attacks that can be expected are the
usurpation of the citizens identity, the modification of the votes (by a human being, by
a program or a virus), the denial of services (XML DoS). For detecting such attacks the
following rules/or prevention mechanisms can be checked:

• XML Dos Attacks: the attack is executed by sending a very large SOAP message to
the attacked web service. The countermeasure is to use strict schema validation in
the Wsdl files i.e. limiting the range of the data types.

• Usurpation of the identity of the user: The implementation of strict authentication
mechanisms such two factors authentication and very strong authentication passwords
are sufficient.

• Modification of the source code of the voting service: We assume that a member
of the development team can modify the algorithm of the vote method in order to
help a candidate or a political party of his choice to win the elections. A property
(figure A.4) consists in ensuring that every method called should have the same hash
as previously before deployment as we did in chapter 5.

124

A.2. RÉSUMÉ DE LA THÈSE EN FRANÇAIS

<beginning>
<property value="THEN" delay_units="s" delay_min="0+" delay_max="2"

property_id="10" type_property="ATTACK" description="Detection of
the insider attack: Any update request should have hashes for its operations
(outbound and inbound) on the log files and these hashes must correspond.">

<event value="COMPUTE" event_id="1" description="reception of the
inboud operations in the log" boolean_expression="((log.hash == ’1’)
&& ((#strcmp(log.method, ’vote(inbound)’) != 0)&&
(log.hash != ’’))"/>

<event value="COMPUTE" event_id="2" description="reception of the
outbound operation in the log" boolean_expression="(log.hash!=’’)
&&(#strcmp(log.method, ’vote(outbound)’) == 0) &&
(log.hash!=’’) && (#strcmp(log.hash, log.hash.1) != 0))"/>

</property>
</beginning>
</beginning>

Figure A.4 – Security rule in MMT: The hashes of the called vote method should be equal
to the hash existing in the database before that call

A.2 Résumé de la thèse en Français

A.2.1 Contexte

Les systèmes informatiques sont actuellement au coeur de toutes les fonctions de l’entreprise
(comptabilité, production, facturation...) et plus généralement sont au coeur des activités
habituelles du quotidien. Ces systèmes sont très souvent composés d’applications et de
données hétérogènes. Ces composants doivent être donc décrits par des architectures
modulaires qui permettent la composition et l’intégration de ces composants pour satisfaire
les besoins des organisations. Les architectures orientées services (SOA en anglais) ont été
proposées ces dernières années pour atteindre cet objectif de modularité.

Une architecture orientée service est un paradigme qui permet aux organisations
d’avoir une infrastructure informatique répondant à leurs besoins métier. Ces architectures
sont distribuées et facilitent la communication entre des environnements hétérogènes.
Le principal élément d’une architecture orientée service est le service Web. Un service
Web est une collection de protocoles et de standards pour l’échange de données sur le
Web. Cela facilite donc la communication de différentes applications conçues avec des
techniques et des langages différents. Ces services peuvent être situés localement ou
distribués géographiquement sur des environnements virtualisés tels que le cloud.

En effet, avec les avancées technologiques dans les réseaux de communication en
particulier Internet, et l’expansion des services en ligne, le besoin d’exposer les services
pour attirer des clients ou pour asseoir sa compétitivité sur Internet s’est considérablement
accru ces dernières années. Les plateformes Cloud par exemple permettent le partage des
ressources informatiques (stockage, calcul, réseaux...) à la demande au travers d’Internet.

125

APPENDIX A. APPENDIX

Ces services sont souvent déployés sous la forme de composants unitaires (machines
virtuelles, conteneurs, machine sans serveur). Avec la démocratisation d’Internet et du
Cloud, bon nombre d’organisations ont réalisé d’énormes bénéfices en déployant des
architectures orientées service. Ces bénéfices sont notamment perçus en terme de réduction
des coûts, d’agilité et un time-to-market qui continue de croitre.

Cependant, les services Web, par leur interorpérabilité et le fait qu’ils soient parfois
exposés sur Internet fait d’eux des cibles potentielles des attaques ou autres comporte-
ments malveillants. Les services Web aussi bien que les autres technologiques tirant profit
d’Internet, sont soumis à des attaques visant la disponibilité, l’intégrité et la confiden-
tialité des plateformes et des utilisateurs. De plus les services Web déployés dans les
environnements Cloud héritent des vulnérabilités de ces derniers. Récemment de nouvelles
attaques exploitant les vulnérabilités du cloud on émergées (attaques par canaux auxiliaires,
détournement de machines virtuelles, usurpation d’identité...). Ces attaques ont réduit
l’efficacité des outils de détection et de prévention classiques disponibles sur le marché. Très
souvent ces attaques sont perpétrées soit par des organisations ou entreprises pour infliger
des dommages aux entreprises concurrentes, pour leur infliger des pertes financières ou pour
voler de la propriété intellectuelle; soit par des individus en manque de reconnaissance et
avides d’argent. En substance, les systèmes d’information des entreprises sont aujourd’hui
sous la menace constante d’attaques malveillantes. En parallèle, la recherche dans la
communauté des services Web s’est focalisée sur la modélisation, la composition et la
vérification. Certes ces recherches ont amélioré la confiance et la fiabilité des services
Web, néanmoins elles peuvent s’avérer insuffisantes pour assurer complètement les besoins
en sécurité des infrastructures orientées service. De plus, peu de travaux proposent des
solutions de détection pratiques et ces derniers sont limités par leur degré de détection. Les
techniques proposées sont bien souvent restreintes à un seul type d’attaque. A cause de
toutes ces limitations, les services Web peuvent ne pas pouvoir accomplir parfaitement les
tâches qui leur sont assignées. Nous pensons qu’il n’est pas suffisant de seulement détecter
les attaques. Les services Web doivent également disposer de moyens pour faire face à ces
attaques. Leur continuité de service est donc cruciale. Ceci étant, les outils traditionnels de
détection des intrusions devraient être améliorés et de nouveaux mécanismes de détection
plus sophistiqués devraient être proposés. Le but de notre thèse est donc essentiellement
de répondre à la question : comment rendre les services Web tolérants aux attaques?

A.2.2 Contributions

Nous définissons la tolérance aux intrusions/attaques comme la capacité d’un système
informatique à assurer un fonctionnement normal avec une dégradation minimale des
performances malgré les intrusions. Le but étant de détecter aussi bien les attaques
classiques et si cela n’est pas possible, réduire leur impact sur le système. Nous pensons
néanmoins que pour assurer une tolérance effective des attaques une détection en amont
suivie d’une réaction en aval est plus que primordiale. D’autre part, il est aussi opportun de
tenir compte des contraintes fonctionnelles aussi bien que des contraintes non-fonctionnelles
et ce, dans toutes les phases de développement du système à savoir, la conception, le

126

A.2. RÉSUMÉ DE LA THÈSE EN FRANÇAIS

développement, la recette et le déploiement. Les contraintes fonctionnelles sont en fait des
contraintes qui définissent une fonction du système à développer tandis que les contraintes
non-fonctionnelles sont des contraintes qui caractérisent une qualité ou un attribut du
système telle que la performance, la robustesse, l’adaptabilité, la disponibilité... Dans cette
thèse, nous adoptons une approche de bout-en bout de la tolérance aux attaques en se
basant essentiellement sur les mécanismes de diversification et sur les méthodes formelles.
C’est pourquoi nous proposons une méthodologie de supervision formelle qui tient compte
des risques pour l’évaluation de nos services Web. Pour mettre en oeuvre cette approche,
notre idée de base est d’avoir des variantes des composants de notre service Web. Ces
variantes réagissent et sont remplacées quand l’une d’entre eux est compromise par une
attaque. Plus précisément, les contributions proposées sont les suivantes :

Le monitorage basé sur les risques (chapitre 3

Nous nous sommes appuyés sur la boucle traditionnelle de gestion des risques pour en
ressortir une approche de monitorage basée sur les risques. Nous faisons l’hypothèse que la
détection et la prévention d’attaque requièrent une bonne connaissance des risques auxquels
les services Web peuvent être confrontés. Il est donc opportun voire obligatoire d’inclure la
gestion des risques lorsqu’on veut surveiller ces services dans le but principal de réduire la
probabilité des attaques ou des comportements malveillants. Cette méthodologie possède
quatre piliers fondamentaux :

• l’identification des parties ou des éléments dont la compromission peut être préjudi-
ciables au bon fonctionnement du sytème ou du service;

• l’analyse des menaces et des vulnérabilités pour évaluer les potentielles failles du
système;

• l’analyse des risques pour évaluer la probabilité que ces vulnérabilités puissent
conduire à des attaques effectives,

• le monitorage du système pour détecter l’occurrence de potentielles attaques;

• le déploiement de mécanismes de remédiation pour permettre au système de continuer
à fournir son service en présence d’attaques.

Cette méthodologie a été appliquée tout au long de cette thèse. Elle a donc été mise en
oeuvre dans les contributions ci-dessous suivantes.

Tolérance aux attaques basée sur la diversification (chapitre 4)

Premièrement, nous avons investigué la tolérance aux attaques dès les premières phases de
conception de nos services. Nous avons proposé un modèle du système exprimé sous forme
d’une machine à états étendue. A partir de ce modèle, nous dérivons des variantes fonction-
nellement équivalentes. Nous nous assurons que ces modèles sont validés notamment en les
testant. De ces modèles, nous dérivons les implémentations correspondantes. Lorsqu’une

127

APPENDIX A. APPENDIX

attaque est détectée par le monitorage, nous changeons dynamiquement l’implémentation.
Ce qui signifie que l’attaquant est confronté à un nouveau système dont il n’a pas forcément
connaissance des vulnérabilités de celui-ci. Nous avons proposé comme exemple, une
application Web d’authentification qui permet en se basant sur un mécanisme de mots de
passe plus simple de passer à des mécanismes plus robustes mais plus contraignants pour
l’utilisateur tels que l’authentification à deux facteurs. Nous avons évalué cette approche
en injectant une attaque de type brute-force dans l’application d’authentification. Ces
expérimentations ont montrée que l’approche permettait de tolérer ce type d’attaque. Les
limites de cette première approche résidaient dans la difficulté à dériver automatiquement
les variantes.

C’est pourquoi dans une approche complémentaire nous avons étendu la première. Cette
seconde approche vise essentiellement à répondre aux insuffisances de la première approche.
L’idée de base est la même, mais la mise en oeuvre est un brin différente. Notre intuition
résidait dans le fait qu’avoir divers points d’échec permettait d’améliorer la sécurité puisque
cela induit la tolérance à une grande variété d’attaque. Nous avons donc dans cette nouvelle
approche inclut la diversification dans toutes les étapes; de la phase de modélisation à la
phase de déploiement des services Web. Nous avons illustré cette approche par un service
Web qui simplifie les opérations de gestion dans un hôpital . Comme dans la première
méthode, nous définissons un modèle du service. Cette fois ci nous avons choisi un modèle
permettant d’exprimer les parties variables de notre service. Ces points de variation (style
d’encodage, language, type d’encodage) assurent la diversification des variantes au niveau
des implémentations. Après cette étape de spécification, la dérivation des variantes se fait
d’une manière semi-automatique. Pour ajouter davantage de diversification, nous avons
diversifié les exécutables de nos services. Nous avons évalué l’approche avec une attaque de
type déni de services. Cela montre que l’approche induit peu de surcouts de performance
pour une réaction rapide à ces attaques.

Tolérance aux attaques basée sur le mécanisme de réflexivité (chapitre 5)

Dans cette contribution, nous avons abordé la tolérance aux attaques des services Web
d’une manière différente de celles des deux approches que nous avons mentionnées plus haut.
En effet dans ces approches, la détection se faisait pour les attaques externes aux services.
De plus, leur capacité de tolérance était complètement décrite à la phase de conception des
services. Ici, nous proposons une tolérance qui couvre un large spectre d’attaques en incluant
les attaques dites internes qui sont réputées difficiles à détecter. Cette nouvelle contribution
intègre les techniques de réflexivité et de monitorage pour une détection efficiente de ce
genre d’attaques. La réflexivité est une technique qui permet aux programmes de s’analyser,
et d’ajuster leur comportement dynamiquement. Nous considérons que le logiciel du client
se trouve dans un environnement sûr. Les potentielles attaques qui peuvent survenir sont
seulement celles qui proviennent de l’intérieur. En utilisant les techniques de réflexivité,
nous déterminons les hash de toutes les méthodes de notre service Web. Toute déviation
lorsque le système est en cours de fonctionnement traduit une comportement malicieux. Ce
comportement malicieux peut être une modification du code par un tiers ou une infection

128

A.2. RÉSUMÉ DE LA THÈSE EN FRANÇAIS

de virus. Nous stockons les informations suivantes : Date, heure, opération, hash, origine
dans nos fichiers de journalisation. Toutes les requêtes contiennent deux traces (requête
et réponse) dans ces fichiers de journalisation. Nous avons développé un nouveau plugin
permettant à notre outil de monitoring MMT de ce type d’attaque. Nous avons évalué
cette approche en déployant un service Web modulaire. Nous avons injecté un virus dans
ce service et nous avons en particulier comparé la détection de notre approche à celle des
antivirus classiques du marché. Ces expériences ont montré que notre approche était plus
efficace dans la détection de ce virus. Ce qui montre le bien fondé de réflexivité pour
détecter ce genre d’attaque.

Une approche de tolérance pour les applications basées sur les services Web et dé-
ployées dans le cloud chapitre (6)

Nous avons proposé une méthodologie pour la tolérance aux applications dans le cloud qui
sont construites à base de services Web. Pour ce faire, nous avons étendu un cadre formel
de vérification et de test de services Web en incorporant les contributions précédentes.
Dans cette approche, les services Web sont modélisés sous la forme de chorégraphies de
services, chacun exécutant une fonction clé de la collaboration. Une chorégraphie est un
moyen de décrire une collaboration point à point entre les services et a l’avantage de ne
pas avoir un acteur central de décision tels que rencontrés dans les systèmes distribués
actuels. Une fois que cette chorégraphie est vérifiée formellement par exemple pour s’assurer
qu’elle est réalisable, elle est projetée sur les différents pairs. Nous vérifions également
que ces modèles locaux sont conformes à la chorégraphie globale. Par ailleurs, à partir
de ces modèles locaux, nous dérivons les squelettes des interfaces du service ainsi que des
implémentations en divers langages cibles(Java, Python et PHP) afin que les programmeurs
puissent choisir le langage qui leur sied et compléter l’implémentation. Nous avons pour
ce faire, proposer un langage intermédiaire qui permet de produire ces squelettes à partir
d’une description textuelle des chorégraphies. Après cette phase de diversification, une
parmi ces implémentations est choisie. Nous disposons de deux manières de monitorage de
l’application. La première manière consiste à tester les implémentations avant qu’elles ne
soient déployées. Cela à pour but de détecter les fautes de conception. La seconde manière
consiste à utiliser les techniques de réflexivité énoncées dans la section précédente. Cela a
pour but de détecter les comportements anormaux tels que les attaques. Nous réagissons
également en utilisant la réflexivité. En conclusion, le fait d’ajouter ces mécanismes de
détection et de réaction en ligne à cette chorégraphie vérifiée formellement assure une
tolérance complète aux attaques.

A.2.3 Publications

Les principaux résultats de cette thèse ont été publiées dans des conférence internationales
avec comité de lecture ainsi que lors de séminaires nationaux suivants :

129

APPENDIX A. APPENDIX

Workshops

1. G. Ouffoué, A. M. Ortiz, A. R. Cavalli, W. Mallouli, J. Domingo-Ferrer, D. Sánchez,and
F. Zaïdi. Intrusion detection and attack tolerance for cloud environments : The clarus
approach. In 2016 IEEE 36th International Conference on Distributed Computing
Systems Workshops (ICDCSW), pages 61–66. IEEE, 2016.22.

2. G. Ouffoué, F. Zaïdi, A. R. Cavalli, and M. Lallali. Model-based attack tolerance.
In 2017 31st International Conference on Advanced Information Networking and
Applications Workshops (WAINA), pages 68–73. IEEE, 2017.

Conférence internationales

1. G. Ouffoué, F. Zaïdi, A. R. Cavalli, and M. Lallali. How web services can be tolerant
to intruders through diversification? ICWS 2017 24th IEEE International Conference
on Web Services, pp.436 - 443, 2017,

2. G. Ouffoué, F. Zaïdi, A. R. Cavalli, and M. Lallali. An Attack-Tolerant Framework
for Web Services. In 2017 IEEE International Conference on Services Computing
(SCC), pages. IEEE, 2017.

3. Ana R. Cavalli, Antonio M. Ortiz, Georges Ouffoué, Cesar A. Sanchez, and Fatiha
Zaïdi. Design of a Secure Shield for Internet-based Services using Software Reflection.
ICWS 2018 International Conference on Web Services,

Présentations

1. How web services can be tolerant to intruders through diversification? lors Journées
du GDR MTV2/MFDL track. Dec 2017.

A.2.4 Posters
1. Attack Tolerant Cloud lors de la conférence nationale en sécurité C&ESAR 2017.

130

Bibliography

[Rsa, 1977] (1977). RSA algorithm. https://people.csail.mit.edu/rivest/Rsapaper.pdf.

[api, 2016a] (2016a). The top cloud computing threats and vulnerabilities in an enter-
prise environment. http://www.cloudcomputing-news.net/news/2014/nov/21/top-cloud-
computing-threats-and-vulnerabilities-enterprise-environment/.

[api, 2016b] (2016b). Vulnerable apis continue to pose threat to cloud.
http://www.darkreading.com/risk/vulnerable-apis-continue-to-pose-threat-to-
cloud/d/d-id/1138983.

[Affonso and Nakagawa, 2013] Affonso, F. J. and Nakagawa, E. Y. (2013). A reference ar-
chitecture based on reflection for self-adaptive software. In 2013 VII Brazilian Symposium
on Software Components, Architectures and Reuse, pages 129–138.

[Ahamed et al., 2013] Ahamed, F., Shahrestani, S., and Ginige, A. (2013). Cloud comput-
ing: Security and reliability issues. pages 1–12.

[Allier et al., 2015] Allier, S., Barais, O., Baudry, B., Bourcier, J., Daubert, E., Fleurey, F.,
Monperrus, M., Song, H., and Tricoire, M. (2015). Multi-tier diversification in web-based
software applications. IEEE Software, 32(1):83–90.

[Anagnostakis et al., 2002] Anagnostakis, K., Ioannidis, S., Miltchev, S., Greenwald, M.,
Smith, J., and Ioannidis, J. (2002). Efficient packet monitoring for network management.
In IEEE/IFIP Network Operations and Management Symposium (NOMS), pages 423–
436.

[Arsenault et al., 2007] Arsenault, D., Sood, A., and Huang, Y. (2007). Secure, resilient
computing clusters: Self-cleansing intrusion tolerance with hardware enforced security
(scit/hes). In The Second International Conference on Availability, Reliability and
Security (ARES’07), pages 343–350.

[Attiogbe, 2007] Attiogbe, C. (2007). Contributions aux approches formelles de développe-
ment de logiciels : intégration de méthodes formelles et analyse multifacette.

[Aung et al., 2005] Aung, K., Park, K., and Park, J. S. (2005). A rejuvenation methodol-
ogy of cluster recovery. In CCGrid 2005. IEEE International Symposium on Cluster
Computing and the Grid, 2005., volume 1, pages 90–95 Vol. 1.

[Baudry and Monperrus, 2015] Baudry, B. and Monperrus, M. (2015). The multiple facets
of software diversity: Recent developments in year 2000 and beyond. ACM Comput.
Surv., 48(1):16:1–16:26.

131

BIBLIOGRAPHY

[Bezdek and Hathaway, 2002] Bezdek, J. C. and Hathaway, R. J. (2002). Vat: a tool
for visual assessment of (cluster) tendency. In Neural Networks, 2002. IJCNN ’02.
Proceedings of the 2002 International Joint Conference on, volume 3, pages 2225–2230.

[Bozga et al., 2002] Bozga, M., Graf, S., and Mounier, L. (2002). If-2.0: A validation envi-
ronment for component-based real-time systems. In Proceedings of the 14th International
Conference on Computer Aided Verification, pages 343–348. Springer-Verlag.

[Buczak and Guven, 2016] Buczak, A. L. and Guven, E. (2016). A survey of data mining
and machine learning methods for cyber security intrusion detection. IEEE Communi-
cations Surveys Tutorials, 18(2):1153–1176.

[Cao et al., 2010] Cao, T. D., Phan-Quang, T. T., Felix, P., and Castanet, R. (2010).
Automated runtime verification for web services. In 2010 IEEE International Conference
on Web Services, pages 76–82.

[Cavalli et al., 2010] Cavalli, A. R., Cao, T., Mallouli, W., Martins, E., Sadovykh, A.,
Salva, S., and Zaïdi, F. (2010). Webmov: A dedicated framework for the modelling and
testing of web services composition. In IEEE International Conference on Web Services,
ICWS 2010, Miami, Florida, USA, July 5-10, 2010, pages 377–384. IEEE Computer
Society.

[Cavalli et al., 2018] Cavalli, A. R., Ortiz, A. M., Ouffoué, G., Sanchez, C. A., and Zaïdi,
F. (2018). Design of a secure shield for internet and web-based services using software
reflection. In Web Services – ICWS 2018. Springer International Publishing.

[Cert, 2017] Cert (2017). "wannacry". http://cert-mu.govmu.org/English/Documents/
WhitePapers/WhitePaper-The20WannaCryRansomwarAttack.pdf.

[Chen et al., 2009] Chen, L., Li, Z., Gao, C., and Liu, L. (2009). Dynamic forensics
based on intrusion tolerance. In 2009 IEEE International Symposium on Parallel and
Distributed Processing with Applications, pages 469–473.

[Chen and Hu, 2002] Chen, T. M. and Hu, L. (2002). Internet performance monitoring.
In Proceedings of the IEEE, pages 1592 –1603.

[Cloudtp, 2018] Cloudtp (2018). Cloud-ready application develop-
ment: Step-by-step guide. https://www.cloudtp.com/doppler/
5-steps-building-cloud-ready-application-architecture/.

[Collberg et al., 2012] Collberg, C., Martin, S., Myers, J., and Nagra, J. (2012). Distributed
application tamper detection via continuous software updates. In Proceedings of the 28th
Annual Computer Security Applications Conference, ACSAC ’12, pages 319–328. ACM.

[Constable et al., 2011] Constable, R., Mark, M. B., and Robbert, V. R. (2011). Investi-
gating Correct-by-Construction Attack-Tolerant Systems. Technical report, Department
of Computer Science, Cornell University.

132

http://cert-mu.govmu.org/English/Documents/WhitePapers/WhitePaper-The20WannaCryRansomwarAttack.pdf
http://cert-mu.govmu.org/English/Documents/WhitePapers/WhitePaper-The20WannaCryRansomwarAttack.pdf
https://www.cloudtp.com/doppler/5-steps-building-cloud-ready-application-architecture/
https://www.cloudtp.com/doppler/5-steps-building-cloud-ready-application-architecture/

BIBLIOGRAPHY

[Cousot and Cousot, 1977] Cousot, P. and Cousot, R. (1977). Abstract interpretation: a
unified lattice model for static analysis of programs by construction or approximation
of fixpoints. In Conference Record of the Fourth Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, pages 238–252. ACM Press, New
York, NY.

[Curtis, 2000] Curtis, J. (2000). Passive measurement. http://wand.cs.waikato.ac.nz/old/
wand/publications/jamie_420/final/node9.html.

[Deswarte et al., 2002] Deswarte, Y., Abghour, N., Nicomette, V., and Powell, D. (2002).
Intrusion-tolerant authorization for internet applications. In Supplement of the IEE/IFIP
International Conferencce on Dependable Systems and Networks, DSN’ 2002.

[Deswarte and Powell, 2004] Deswarte, Y. and Powell, D. (2004). Intrusion tolerance for
internet applications. In Building the Information Society, pages 241–256. Springer US.

[Dillon et al., 2010] Dillon, T., Wu, C., and Chang, E. (2010). Cloud computing: Issues
and challenges. In 2010 24th IEEE International Conference on Advanced Information
Networking and Applications, pages 27–33.

[Dougblack, 2017] Dougblack (2017). Metaclasses. https://dougblack.io/words/
metaclasses.html.

[Engelen and Gallivan, 2002] Engelen, R. A. V. and Gallivan, K. A. (2002). The gsoap
toolkit for web services and peer-to-peer computing networks. In Cluster Computing
and the Grid, 2002. 2nd IEEE/ACM International Symposium on, pages 128–128.

[Etchevers, 2012] Etchevers, X. (2012). Déploiement d’applications patrimoniales en envi-
ronnements de type informatique dans le nuage. PhD thesis, Université de Grenoble.

[Ficco and Rak, 2011] Ficco, M. and Rak, M. (2011). Intrusion tolerant approach for
denial of service attacks to web services. In Proceedings of the 2011 First International
Conference on Data Compression, Communications and Processing, CCP ’11, pages
285–292. IEEE Computer Society.

[Forman et al., 2004] Forman, R., Forman, N., and Ibm, J. (2004). Java reflection in
action.

[Franz, 2010] Franz, M. (2010). E unibus pluram: Massive-scale software diversity as a
defense mechanism. In Proceedings of the 2010 Workshop on New Security Paradigms,
NSPW ’10, pages 7–16. ACM.

[Furtado et al., 2014] Furtado, T., Francesquini, E., Lago, N., and Kon, F. (2014). A
middleware for reflective web service choreographies on the cloud. In Proceedings of the
13th Workshop on Adaptive and Reflective Middleware, ARM ’14, pages 9:1–9:6. ACM.

[Gabbay et al., 1994] Gabbay, D. M., Hodkinson, I., and Reynolds, M. (1994). Temporal
Logic Mathematical Foundations and Computational Aspects. Clarendon Press.

133

http://wand.cs.waikato.ac.nz/old/wand/publications/jamie_420/final/node9.html
http://wand.cs.waikato.ac.nz/old/wand/publications/jamie_420/final/node9.html
https://dougblack.io/words/metaclasses.html
https://dougblack.io/words/metaclasses.html

BIBLIOGRAPHY

[Ganger et al., 2001] Ganger, G. R., Khosla, P. K., Bakkaloglu, M., Bigrigg, M. W.,
Goodson, G. R., Oguz, S., Pandurangan, V., Soules, C. A. N., Strunk, J. D., and
Wylie, J. J. (2001). Survivable storage systems. In Proceedings DARPA Information
Survivability Conference and Exposition II. DISCEX’01, volume 2, pages 184–195 vol.2.

[Generowicz et al., 2004] Generowicz, J., Lavrijsen, W. T., Marino, M., and Mato, P.
(2004). Reflection-based python-c++ bindings. Lawrence Berkeley National Laboratory.

[Georgiev et al., 2012] Georgiev, M., Iyengar, S., Jana, S., Anubhai, R., Boneh, D., and
Shmatikov, V. (2012). The most dangerous code in the world: validating SSL certificates
in non-browser software. In ACM Conference on Computer and Communications Security,
pages 38–49.

[Gheyas and Abdallah, 2016] Gheyas, I. A. and Abdallah, A. E. (2016). Detection and
prediction of insider threats to cyber security: a systematic literature review and
meta-analysis. Big Data Analytics, 1:6.

[Gomes et al., 2015] Gomes, R., Lima, J., Rocha, F. C. R. D., and Georgantas, N. (2015). A
Model-Based Approach to Pragmatic Service Choreography Deployment. In Proceedings
of Second Workshop on Seamless Adaptive Multi-cloud Management of Service-based
Applications.

[Hansche et al., 2003] Hansche, S., Berti, J. C., and Hare, C. (2003). Official (isc) 2 guide
to the cissp exam.

[Hennessy and Lin, 1995] Hennessy, M. and Lin, H. (1995). Symbolic bisimulations. Theor.
Comput. Sci., 138(2):353–389.

[Hwang et al., 2009] Hwang, I., Lallali, M., Cavalli, A. R., and Verchère, D. (2009). Mod-
eling, validation, and verification of PCEP using the IF language. In Formal Techniques
for Distributed Systems, Joint 11th IFIP WG 6.1 International Conference FMOODS
2009 and 29th IFIP WG 6.1 International Conference FORTE 2009, Lisboa, Portugal,
June 9-12, 2009. Proceedings, volume 5522, pages 122–136. Springer.

[Ibrahim, 2016] Ibrahim, H. (2016). SAT-Based Diagnosability and Predictability Analysis
in Centralized and Distributed Discrete Event Systems. PhD thesis, Université Paris-
Saclay.

[Karande et al., 2011] Karande, V., Vishal, M., Pais, M., and Alwyn, R. (2011). A
framework for intrusion tolerance in cloud computing. In Advances in Computing and
Communications, volume 193, pages 386–395.

[Kazim and Zhu, 2015] Kazim, M. and Zhu, S. Y. (2015). A survey on top security
threats in cloud computing. International Journal of Advanced Computer Science and
Applications (IJACSA), 6.

134

BIBLIOGRAPHY

[Knight et al., 2001] Knight, J., Heimbigner, D., Wolf, A. L., Carzaniga, A., Hill, J.,
Devanbu, P. T., and Gertz, M. (2001). The willow architecture : Comprehensive
survivability for large-scale distributed applications.

[Kocher et al., 1999] Kocher, P., Jaffe, J., and Jun, B. (1999). Differential power analysis.
In Proceedings of the 19th Annual International Cryptology Conference on Advances in
Cryptology, pages 388–397. Springer-Verlag.

[Kondratyeva et al., 2013] Kondratyeva, O., Kushik, N., Cavalli, A. R., and Yevtushenko,
N. (2013). Evaluating quality of web services: A short survey. In 2013 IEEE 20th
International Conference on Web Services, Santa Clara, CA, USA, June 28 - July 3,
2013, pages 587–594. IEEE Computer Society.

[Kopp and Breitenbücher, 2017] Kopp, O. and Breitenbücher, U. (2017). Choreographies
are Key for Distributed Cloud Application Provisioning. In ZEUS, volume 1826 of CEUR
Workshop Proceedings, pages 67–70. CEUR-WS.org.

[Kuyoro et al., 2012] Kuyoro, S., Ibikunle, F., and Okolie, S. (2012). Security issues in
web services.

[La, 2016] La, V. H. (2016). Security Monitoring for Network Protocols and Applications.
PhD thesis, Université Paris-Saclay.

[Lala, 2003] Lala, J. (2003). Foundations of intrusion tolerant systems. In Foundations
of Intrusion Tolerant Systems, 2003 [Organically Assured and Survivable Information
Systems], pages i–vii.

[Lin, 2016] Lin (2016). Detecting insider security threats. https://content.pivotal.io/blog/
a-data-science-approach-to-detecting-insider-security-threats.

[M. Raju, 2014] M. Raju, B. L. (2014). Survey about cloud computing threats. (IJCSIT)
International Journal of Computer Science and Information Technologies, 5:384–389.

[Madan and Trivedi, 2004] Madan, B. B. and Trivedi, K. S. (2004). Security modeling
and quantification of intrusion tolerant systems using attack-response graph. Journal of
High Speed Networks, 13(4):297–308.

[Maes, 1987] Maes, P. (1987). Concepts and experiments in computational reflection.
SIGPLAN Not., 22(12):147–155.

[Mateescu et al., 2012] Mateescu, R., Poizat, P., and Salaün, G. (2012). Adaptation of
service protocols using process algebra and on-the-fly reduction techniques. IEEE Trans.
Software Eng., 38(4):755–777.

[Meixner et al., 2016] Meixner, C., Develder, C., Tornatore, M., and Mukherjee, B. (2016).
A survey on resiliency techniques in cloud computing infrastructures and applications.
IEEE Communications Surveys and Tutorials, 18(3):2244–2281.

135

https://content.pivotal.io/blog/a-data-science-approach-to-detecting-insider-security-threats
https://content.pivotal.io/blog/a-data-science-approach-to-detecting-insider-security-threats

BIBLIOGRAPHY

[Mell and Grance, 2001] Mell, P. and Grance, T. (2001). Nist special publication 800-
145 the definition of cloud computing. http://csrc.nist.gov/publications/nistpubs/800-
145/SP800-145.pdf.

[Mishra et al., 2017] Mishra, P., Pilli, E. S., Varadharajan, V., and Tupakula, U. K. (2017).
Intrusion detection techniques in cloud environment: A survey. J. Network and Computer
Applications, 77:18–47.

[Morales et al., 2010] Morales, G., Maag, S., Cavalli, A. R., Mallouli, W., de Oca, E. M.,
and Wehbi, B. (2010). Timed extended invariants for the passive testing of web services.
In IEEE International Conference on Web Services, ICWS 2010, Miami, Florida, USA,
July 5-10, 2010, pages 592–599. IEEE Computer Society.

[Morin et al., 2009] Morin, B., Barais, O., Jezequel, J., Fleurey, F., and Solberg, A. (2009).
Models@ run.time to support dynamic adaptation. Computer, 42(10):44–51.

[Moy and Wallenburg, 2010] Moy, Y. and Wallenburg, A. (2010). Tokeneer: Beyond formal
program verification. In 2010 International Congress on Embedded Real Time Software
and System.

[Nguyen, 2013] Nguyen, H. N. (2013). Une Approche Symbolique pour la Vérification et le
Test des Chorégraphies de Services. PhD thesis, Université Paris-Sud.

[Nguyen et al., 2013] Nguyen, H. N., Poizat, P., and Zaïdi, F. (2013). Automatic skeleton
generation for data-aware service choreographies. In IEEE 24th International Symposium
on Software Reliability Engineering, ISSRE 2013, Pasadena, CA, USA, November 4-7,
2013, pages 320–329. IEEE Computer Society.

[Nguyen et al., 2014] Nguyen, H. N., Zaïdi, F., and Cavalli, A. R. (2014). A framework for
distributed testing of timed composite systems. In 21st Asia-Pacific Software Engineering
Conference, APSEC 2014, Jeju, South Korea, December 1-4, 2014. Volume 1: Research
Papers, pages 47–54. IEEE.

[Nguyen et al., 2016] Nguyen, H. N., Zaïdi, F., and Cavalli, A. R. (2016). Effectively
testing of timed composite systems using test case prioritization. In Gou, J., editor,
The 28th International Conference on Software Engineering and Knowledge Engineering,
SEKE 2016, Redwood City, San Francisco Bay, USA, July 1-3, 2016., pages 408–413.
KSI Research Inc. and Knowledge Systems Institute Graduate School.

[Nguyen and Sood, 2010] Nguyen, Q. and Sood, A. (2010). A comparison of intrusion-
tolerant system architectures. IEEE Security & Privacy, 9(4):24 – 31.

[Nicomette et al., 2011] Nicomette, V., Powell, D., Deswarte, Y., Abghour, N., and Zanon,
C. (2011). Intrusion-tolerant fine-grained authorization for internet applications. Journal
of Systems Architecture, 57(4):441 – 451.

[Oasis, 2006] Oasis (2006). Oasis web services security (wss) tc. https://www.oasis-open.
org/committees/tc_home.php?wg_abbrev=wss.

136

https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wss
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wss

BIBLIOGRAPHY

[Obelheiro et al., 2006] Obelheiro, R. R., Bessani, A. N., Lung, L. C., and Correia, M.
(2006). How practical are intrusion-tolerant distributed systems? Technical report,
Departamento de Informática Faculdade de Ciências da Universidade de Lisboa Portugal.

[O’Brien et al., 2003] O’Brien, D., Smith, R., Kappel, T., and Bitzer, C. (2003). Intrusion
tolerance via network layer controls. In Proceedings DARPA Information Survivability
Conference and Exposition, volume 1, pages 90–96 vol.1.

[Ouffoué et al., 2016] Ouffoué, G., Ortiz, A. M., Cavalli, A. R., Mallouli, W., Domingo-
Ferrer, J., Sánchez, D., and Zaïdi, F. (2016). Intrusion detection and attack tolerance for
cloud environments: The clarus approach. In 2016 IEEE 36th International Conference
on Distributed Computing Systems Workshops (ICDCSW), pages 61–66. IEEE.

[Ouffoué et al., 2017] Ouffoué, G., Zaïdi, F., Cavalli, A. R., and Lallali, M. (2017). Model-
based attack tolerance. In 2017 31st International Conference on Advanced Information
Networking and Applications Workshops (WAINA), pages 68–73. IEEE.

[Ouffoué et al., 2017a] Ouffoué, G., Zaïdi, F., Cavalli, A. R., and Lallali, M. (2017a).
How web services can be tolerant to intruders through diversification. In 2017 IEEE
International Conference on Web Services (ICWS), pages 436–443.

[Ouffoué et al., 2017b] Ouffoué, G. L. A., Zaïdi, F., Cavalli, A. R., and Lallali, M. (2017b).
An attack-tolerant framework for web services. In 2017 IEEE International Conference
on Services Computing (SCC), pages 503–506.

[Partha et al., 2006] Partha, P., Rubel, P., Atighetchi, M., Webber, F., Sanders, W., Seri,
M., Ramasamy, H., Lyons, J., Courtney, T., Agbaria, A., Cukier, M., Gossett, J.,
and Keidar, I. (2006). An architecture for adaptive intrusion-tolerant applications:
Experiences with auto-adaptive and reconfigurable systems. Softw. Pract. Exper., 36(11-
12):1331–1354.

[Pen et al., 2014] Pen, K., Huang, C., Wang, P., and Hsu, C. (2014). Enhanced n-version
programming and recovery block techniques for web service systems. In Proceedings
of the International Workshop on Innovative Software Development Methodologies and
Practices, pages 11–20. ACM.

[Prasad et al., 2013] Prasad, M. R., Ramavathu, L., and Bapuji (2013). Cloud computing
: Research issues and implications. 2:134–140.

[Qiu et al., 2007] Qiu, Z., Zhao, X., Cai, C., and Yang, H. (2007). Towards the Theoretical
Foundation of Choreography. In Proc. of WWW’07.

[Raj and Varghese, 2011] Raj, S. and Varghese, G. (2011). Analysis of intrusion-tolerant
architectures for web servers. In 2011 International Conference on Emerging Trends in
Electrical and Computer Technology, pages 998–1003.

137

BIBLIOGRAPHY

[Reiser and Kapitza, 2007] Reiser, H. P. and Kapitza, R. (2007). Hypervisor-based efficient
proactive recovery. In 2007 26th IEEE International Symposium on Reliable Distributed
Systems (SRDS 2007), pages 83–92.

[Reynolds et al., 2003] Reynolds, J. C., Just, J., Clough, L., and Maglich, R. (2003). On-
line intrusion detection and attack prevention using diversity, generate-and-test, and
generalization. In 36th Annual Hawaii International Conference on System Sciences,
2003. Proceedings of the, pages 8 pp.–.

[Ristenpart et al., 2009] Ristenpart, T., Tromer, E., Shacham, H., and Savage, S. (2009).
Hey, you, get off of my cloud: Exploring information leakage in third-party compute
clouds. In Proceedings of the 16th ACM Conference on Computer and Communications
Security, pages 199–212. ACM.

[Roiser and Mato, 2005] Roiser, S. and Mato, P. (2005). The seal c++ reflection system.

[Ronacher, 2017] Ronacher, A. (2017). The flask framework. http://flask.pocoo.org.

[Sadegh and Azgomi, 2015] Sadegh, B. and Azgomi, M. A. (2015). A new architecture
for intrusion-tolerant web services based on design diversity techniques. Journal of
Information Systems and Telecommunication (JIST).

[Saha, 2007] Saha, G. K. (2007). Understanding dependable computing concepts. Ubiquity,
2007(November):1:1–1:1.

[Saidane et al., 2009] Saidane, A., Nicomette, V., and Deswarte, Y. (2009). The design of a
generic intrusion-tolerant architecture for web servers. IEEE Transactions on Dependable
and Secure Computing, 6(1):45–58.

[Salem et al., 2008] Salem, M., Hershkop, S., and Stolfo, S. (2008). A Survey of Insider
Attack Detection Research, pages 69–90. Springer US.

[Sánchez and Domingo-Ferrer, 2015] Sánchez, D. and Domingo-Ferrer, J. (2015). Clarus
- a framework for user centred privacy and security in the cloud. In Position paper at
Cloudscape VII.

[Sans, 2017] Sans (2017). Glossaries. http://www.sans.org/security-resources/
glossary-of-terms/.

[Schneier, 1999] Schneier, B. (1999). Modelling security threats. https://www.schneier.
com/academic/archives/1999/12/attack_trees.html.

[Science, 2013] Science, U. C. (2013). System administration database. “blocking brute
force attacks". http://www.cs.virginia.edu/~csadmin/gen_support/brute_force.php,.

[Sharma et al., 2011] Sharma, R., Sood, M., and Sharma, D. (2011). Modeling cloud saas
with soa and mda. In Advances in Computing and Communications, pages 511–518.
Springer Berlin Heidelberg.

138

http://flask.pocoo.org
http://www.sans.org/security-resources/glossary-of-terms/
http://www.sans.org/security-resources/glossary-of-terms/
https://www.schneier.com/academic/archives/1999/12/attack_trees.html
https://www.schneier.com/academic/archives/1999/12/attack_trees.html
http://www.cs.virginia.edu/~csadmin/gen_support/brute_force.php

BIBLIOGRAPHY

[Singhal et al., 2007] Singhal, A., Winograd, T., and Scarfone, K. (2007). Recommenda-
tions of the national institute of standards and technology.

[Sliti et al., 2009] Sliti, M., Hamdi, M., and Boudriga, N. (2009). Intrusion-tolerant
framework for heterogeneous wireless sensor networks. In 2009 IEEE/ACS International
Conference on Computer Systems and Applications, pages 633–636.

[Sousa et al., 2008] Sousa, P., Bessani, A., Neves, N. F., and Obelheiro, R. (2008). The
forever service for fault/intrusion removal. In Proceedings of the 2Nd Workshop on
Recent Advances on Intrusiton-tolerant Systems, WRAITS ’08, pages 5:1–5:6. ACM.

[Sousa et al., 2007a] Sousa, P., Bessani, A. N., Correia, M., Neves, N. F., and Verissimo,
P. (2007a). Resilient intrusion tolerance through proactive and reactive recovery. In 13th
Pacific Rim International Symposium on Dependable Computing (PRDC 2007), pages
373–380.

[Sousa et al., 2007b] Sousa, P., Bessani, A. N., Correia, M., Neves, N. F., and Verissimo,
P. (2007b). Resilient intrusion tolerance through proactive and reactive recovery. In
13th Pacific Rim International Symposium on Dependable Computing (PRDC 2007),
pages 373–380.

[Spinellis, 2000] Spinellis, D. (2000). Reflection as a mechanism for software integrity
verification. ACM Transactions on Information and System Security, 3(1):51–62.

[Stankovic and Strigini, 2009] Stankovic, V. and Strigini, L. (2009). A survey on online
monitoring approaches of computer-based systems.

[Stroud et al., 2004] Stroud, R., Welch, I., Warne, J., and Ryan, P. (2004). A qualitative
analysis of the intrusion-tolerance capabilities of the maftia architecture. In International
Conference on Dependable Systems and Networks ICDSN, pages 453–461.

[Studnia et al., 2012] Studnia, I., Alata, E., Deswarte, Y., Kaâniche, M., and Nicomette, V.
(2012). Survey of security problems in cloud computing virtual machines. Computer and
Electronics Security Applications Rendez-vous (C&ESAR). Cloud and security: threat or
opportunity, 5:61–74.

[Sun, 2016] Sun (2016). Behaviour in accessing a source code repos-
itory. http://www.arcserve.com/us/~/media/Files/AboutUs/CATX/
analysis-of-user-behaviour-in-accessing-a-source-code-repository.pdf.

[Suresh et al., 2016] Suresh, A. T., Yu, F. X., McMahan, H. B., and Kumar, S. (2016).
Distributed mean estimation with limited communication. CoRR, abs/1611.00429.

[Tipton, 2009] Tipton, H. F. (2009). Official (isc) 2 guide to the cissp cbk.

[Tittle et al., 2006] Tittle, E., Stewart, J. M., and Chapple, M. (2006). Cissp: Certified
information systems security professional study guide.

139

http://www.arcserve.com/us/~/media/Files/AboutUs/CATX/analysis-of-user-behaviour-in-accessing-a-source-code-repository.pdf
http://www.arcserve.com/us/~/media/Files/AboutUs/CATX/analysis-of-user-behaviour-in-accessing-a-source-code-repository.pdf

BIBLIOGRAPHY

[Totel et al., 2006] Totel, E., Majorczyk, F., and Mé, L. (2006). Cots diversity based
intrusion detection and application to web servers. In Proceedings of the 8th International
Conference on Recent Advances in Intrusion Detection, RAID’05, pages 43–62. Springer-
Verlag.

[Valdes et al., 2002] Valdes, A., Almgren, M., Cheung, S., Deswarte, Y., Dutertre, B.,
Levy, J., Saïdi, H., Stavridou, V., and ás E. Uribe, T. (2002). An architecture for an
adaptive intrusion-tolerant server. In Security Protocols, 10th International Workshop,
Cambridge, UK, April 17-19, 2002, Revised Papers, pages 158–178.

[Valdes et al., 2004] Valdes, A., Almgren, M., Cheung, S., Deswarte, Y., Dutertre, B.,
Levy, J., Saïdi, H., Stavridou, V., and Uribe, T. (2004). An architecture for an
adaptive intrusion-tolerant server. In Security Protocols, pages 158–178. Springer Berlin
Heidelberg.

[Veríssimo et al., 2003] Veríssimo, P., Neves, N., and Correia, M. (2003). Intrusion-tolerant
architectures: Concepts and design. In Architecting Dependable Systems, pages 3–36,
Berlin, Heidelberg. Springer Berlin Heidelberg.

[Verissimo et al., 2006] Verissimo, P. E., Neves, N. F., Cachin, C., Poritz, J., Powell, D.,
Deswarte, Y., Stroud, R., and Welch, I. (2006). Intrusion-tolerant middleware: the road
to automatic security. IEEE Security Privacy, 4(4):54–62.

[Wang et al., 2003] Wang, F., Raghavendra, U., and Killian, C. (2003). Analysis of tech-
niques for building intrusion tolerant server systems. In IEEE Military Communications
Conference (MILCOM), volume 2, pages 729–734.

[Wang and Upppalli, 2003] Wang, F. and Upppalli, R. (2003). Sitar: a scalable intrusion-
tolerant architecture for distributed services - a technology summary. In Proceedings
DARPA Information Survivability Conference and Exposition, volume 2, pages 153–155
vol.2.

[Weinstein and Lepanto, 2003] Weinstein, W. and Lepanto, J. (2003). Camouflage of
network traffic to resist attack (contra). In Proceedings DARPA Information Survivability
Conference and Exposition, volume 2, pages 126–127 vol.2.

[Xu et al., 2016] Xu, H., Zhou, Y., and Lyu, M. (2016). N-version obfuscation. In
Proceedings of the 2Nd ACM International Workshop on Cyber-Physical System Security,
pages 22–33. ACM.

[Yan et al., 2016] Yan, Q., Yu, F. R., Gong, Q., and Li, J. (2016). Software-defined
networking (sdn) and distributed denial of service (ddos) attacks in cloud computing
environments: A survey, some research issues, and challenges. IEEE Communications
Surveys and Tutorials, 18(1):602–622.

[Yang and Zhang, 2012] Yang, X. and Zhang, H. (2012). Cloud computing and soa conver-
gence research. In 2012 Fifth International Symposium on Computational Intelligence
and Design, volume 1, pages 330–335.

140

BIBLIOGRAPHY

[Yarom and Falkner, 2014] Yarom, Y. and Falkner, K. (2014). Flush+reload: A high
resolution, low noise, l3 cache side-channel attack. In 23rd USENIX Security Symposium
(USENIX Security 14), pages 719–732.

[Zangrilli and Lowekamp, 2004] Zangrilli, M. and Lowekamp, B. B. (2004). Using passive
traces of application traffic in a network monitoring system. In Proceedings of the 13th
IEEE International Symposium on, High performance Distributed Computing, pages 77 –
86.

[Zhang et al., 2005] Zhang, T., Zhuang, X., and Pande, S. (2005). Building intrusion-
tolerant secure software. In Proceedings of the International Symposium on Code
Generation and Optimization, CGO ’05, pages 255–266. IEEE Computer Society.

[Zhang et al., 2012] Zhang, Y., Juels, A., Reiter, M., Michael, K., and Ristenpart, T.
(2012). Cross-vm side channels and their use to extract private keys. In Proceedings of
the 2012 ACM Conference on Computer and Communications Security, pages 305–316.
ACM.

[Zhang et al., 2014] Zhang, Y., Juels, A., Reiter, M. K., and Ristenpart, T. (2014). Cross-
tenant side-channel attacks in paas clouds. In Proceedings of the 2014 ACM SIGSAC
Conference on Computer and Communications Security. ACM.

[Zhang and Reiter, 2013] Zhang, Y. and Reiter, M. K. (2013). Düppel: retrofitting com-
modity operating systems to mitigate cache side channels in the cloud. In Proceedings
of the 2013 ACM SIGSAC conference on Computer ’s communications security, pages
827–838. ACM.

141

Titre :Tolérance aux attaques pour les applications orientées services Web dans le cloud

Mots clés : Tolérance aux attaques, services Web, supervision, cloud, tests passifs, réflexivité

Résumé :
Les services Web permettent la communication de
systèmes hétérogènes sur le Web. Ces facilités font
que ces services sont particulièrement adaptés au
déploiement dans le cloud. Les efforts de forma-
lisation et de vérification permettent d’améliorer la
confiance dans les services Web, néanmoins des
problèmes tels que la haute disponibilité et la sécurité
ne sont pas entièrement pris en compte. Par ailleurs,
les services Web déployés dans une infrastructure
cloud héritent des vulnérabilités de cette dernière.
En raison de cette limitation, ils peuvent être inca-
pables d’exécuter parfaitement leurs tâches. Dans
cette thèse, nous pensons qu’une bonne tolérance
nécessite un monitoring constant et des mécanismes
de réaction fiables. Nous avons donc proposé une
nouvelle méthodologie de monitoring tenant compte
des risques auxquels peuvent être confrontés nos
services. Pour mettre en œuvre cette méthodologie,
nous avons d’abord développé une méthode de
tolérance aux attaques qui s’appuie sur la diversifi-
cation au niveau modèle. On définit un modèle du
système puis on dérive des variantes fonctionnel-

lement équivalents qui remplaceront ce dernier en
cas d’attaque. Pour ne pas dériver manuellement les
variants et pour augmenter le niveau de diversifi-
cation nous avons proposé une deuxième méthode
complémentaire. Cette dernière consiste toujours à
avoir des variants de nos services ; mais contraire-
ment à la première méthode, nous proposons un
modèle unique avec des implantations différentes tant
au niveau des interfaces, du langage qu’au niveau
des exécutables. Par ailleurs, pour détecter les at-
taques internes, nous avons proposé un mécanisme
de détection et de réaction basé sur la réflexivité.
Lorsque le programme tourne, nous l’analysons pour
détecter les exécutions malveillantes. Comme contre-
mesure, on génère de nouvelles implantations en uti-
lisant toujours la réflexivité. Pour finir, nous avons
étendu un environnement formel et outillé de ser-
vices Web en y incorporant de manière cohérente
tous ces mécanismes. L’idée est de pouvoir combi-
ner ces différentes méthodes afin de tirer profit des
avantages de chacune d’elle. Nous avons validé toute
cette approche par des expériences réalistes.

Title : Attack tolerance for services-based applications in the Cloud

Keywords : Attack tolerance, Web services, monitoring, cloud, passive tests, reflection

Abstract : Web services allow the communication of
heterogeneous systems on the Web. These facilities
make them particularly suitable for deploying in the
cloud. Although research on formalization and veri-
fication has improved trust in Web services, issues
such as high availability and security are not fully ad-
dressed. In addition, Web services deployed in cloud
infrastructures inherit their vulnerabilities. Because of
this limitation, they may be unable to perform their
tasks perfectly. In this thesis, we claim that a good to-
lerance requires attack detection and continuous mo-
nitoring on the one hand ; and reliable reaction me-
chanisms on the other hand. We therefore proposed
a new formal monitoring methodology that takes into
account the risks that our services may face. To im-
plement this methodology, we first developed an ap-
proach of attack tolerance that leverages model-level
diversity. We define a model of the system and derive
more robust functionally equivalent variants that can

replace the first one in case of attack. To avoid ma-
nually deriving the variants and to increase the level of
diversity, we proposed a second complementary ap-
proach. The latter always consists in having different
variants of our services ; but unlike the first, we have
a single model and the implementations differ at the
language, source code and binaries levels. Moreover,
to ensure detection of insider attacks, we investiga-
ted a new detection and reaction mechanism based
on software reflection. While the program is running,
we analyze the methods to detect malicious execu-
tions. When these malicious activities are detected,
using reflection again, new efficient implementations
are generated as countermeasure. Finally, we levera-
ged a formal Web service testing framework by incor-
porating these complementary mechanisms in order
to take advantage of the benefits of each of them. We
validated our approach with realistic experiments.

Université Paris-Saclay
Espace Technologique / Immeuble Discovery
Route de l’Orme aux Merisiers RD 128 / 91190 Saint-Aubin, France

BIBLIOGRAPHY

145

	Abbreviations
	Introduction
	General Context
	Contributions
	Risk-based monitoring methodology
	Diversity-based attack tolerance
	Reflection based attack tolerance
	An attack tolerance framework for cloud applications

	Publications
	Workshops
	International Conferences
	Talks
	Posters

	Outline of the Thesis

	Attack tolerance: Challenges & directions
	Research on Web services
	Security issues related to Web services
	XML DoS
	Metadata Spoofing
	SQL Injections
	Capture and Replay Attacks
	Session Hijacking
	WSDL scanning
	Parameter tampering
	External reference attack

	Cloud computing security issues
	Cloud computing in a nutshell
	Cloud Market and challenges
	Virtualization vulnerabilities

	Intrusion and attack tolerance for Web services
	Attack tolerance techniques
	Diversity techniques
	Attack tolerance techniques for Web services

	Formal methods
	Static analysis
	Dynamic analysis

	Discussion

	Risk-based passive monitoring
	Risk-based monitoring methodology
	Identifying Assets
	Risk and vulnerability analysis
	Threats Modelling
	Attack scenarios

	The Montimage Monitoring Tool (MMT)
	MMT-Security architecture
	MMT-Security properties

	Discussion

	Diversity-based attack tolerance
	Model-based diversity for attack tolerance
	Overview
	Authentication example
	Experimentations
	Discussion

	Implementation-based diversity for attack tolerance
	Definition of key concepts
	Overview of the approach
	Experiments and discussion

	Discussion

	Software reflection based attack tolerance
	Background
	Framework
	Case studies
	Overview
	Detection and mitigation

	Experiments and results
	Discussion

	An attack tolerance framework for Web-based applications in the cloud.
	Web services and cloud applications
	SChorA
	A symbolic model and an integrated environment for specifying and analyzing service choreographies.
	Passive testing

	Attack tolerance in the cloud
	Part 1: Verification and code generation
	Part 2: Deployment, monitoring and reaction

	Discussion

	Conclusion
	Synthesis of results
	Perspectives

	Appendix
	Example: Vote application
	Verification and code generation
	Testing

	Résumé de la thèse en Français
	Contexte
	Contributions
	Publications
	Posters

	Index

