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Abstract

STRUCTURAL AND MICROSTRUCTURAL NEUROIMAGING FOR
DIAGNOSIS AND TRACKING OF NEURODEGENERATIVE DISEASES

by Junhao WEN

Biomarker identification and tracking in dementia are essential to better under-
stand the pathological mechanism and disease trajectory. For this purpose, vari-
ous types of data, including cognitive and clinical tests, neuroimaging and fluid
biomarkers, have been used. Another challenge is early diagnosis of dementia. It
is of great importance to diagnose patients in an early stage at which brain damage
is not yet severe and may be reversible. Tracking and diagnosis at an early stage
ultimately ensures a proper care of patients, and monitoring of disease-modifying
therapeutic treatment.

The current PhD aims has two main objectives. First, we aim to identify the
most promising biomarkers at the presymptomatic stage of dementia. More specif-
ically, we studied this in the case of genetic frontotemporal lobar degeneration
(FTLD) due to C9orf72 mutation. The second objective is to advance early diag-
nosis and prognosis by using machine learning (ML) methods with magnetic res-
onance imaging (MRI) data. We tackle this in the context of sporadic Alzheimer’s
disease (AD).

According to these two objectives, the thesis consists of two main parts, each
part comprising two studies. In the first study, biomarkers were identified from
conventional T1-weighted MRI and diffusion tensor imaging (DTI) model. The
second study compared the sensitivity and specificity of the advanced Neurite
Orientation Dispersion and Density Imaging (NODDI) model and to that of con-
ventional techniques, namely T1-weighted MRI and DTI. The second part focuses
on early diagnosis of AD and comprises the last two studies. The third study pro-
poses an open source framework for reproducible evaluation of AD classification
using diffusion MRI and conventional ML methods. The last study extends this
framework to deep learning methods and demonstrates its use on T1-weighted
MRI. Generally, we aim to improve the transparency and reproducibility in the
field, including clarifying the bad practices, sharing the tools and source code for
reproducible research and rigorously comparing different approaches.
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Résumé
by Junhao WEN

L’identification et le suivi de biomarqueur de la démence sont essentiels pour
mieux comprendre les mécanismes pathologiques et la trajectoire de la maladie.
À cette fin, divers types de données, tests cognitifs et cliniques, neuroimagerie et
biomarqueurs des fluides périphériques, ont été utilisés. Le diagnostic précoce
de la démence constitue un autre défi. Il est très important de diagnostiquer les
patients à un stade précoce auquel les lésions cérébrales ne sont pas encore sévères
et peuvent être réversibles. Le suivi et le diagnostic à un stade précoce permettent
une prise en charge adéquate des patients et de mesurer l’efficacité de nouveaux
traitements.

Cette thèse a deux objectifs principaux. Premièrement, nous cherchons à iden-
tifier les biomarqueurs les plus prometteurs au stade présymptomatique de la dé-
mence. Plus spécifiquement, nous avons étudié ce phénomène dans le cas de la
dégénérescence lobaire frontotemporale (FTLD) due à la mutation C9orf72. Le
deuxième objectif est de faire progresser le diagnostic et le pronostic précoces en
utilisant des méthodes d’apprentissage machine et des données d’imagerie par ré-
sonance magnétique (IRM). Nous abordons cette question dans le contexte de la
maladie d’Alzheimer sporadique (MA).

Suivant ces deux objectifs, la thèse se compose de deux parties principales,
chaque partie comprenant deux études. Dans la première étude, les biomarqueurs
ont été identifiés à partir de l’IRM conventionnelle pondérée T1 et du modèle
d’imagerie du tenseur de diffusion (DTI). La deuxième étude a comparé la sen-
sibilité et la spécificité du modèle NODDI (Advanced Neurite Orientation Dis-
persion and Density Imaging) et celle de techniques conventionnelles, à savoir
l’IRM pondérée en T1 et le DTI. La deuxième partie porte sur le diagnostic pré-
coce de la MA et comprend les deux dernières études. La troisième étude propose
un cadre open source pour une évaluation reproductible de la classification de la
MA à l’aide de l’IRM de diffusion et des méthodes classiques d’apprentissage. La
dernière étude étend ce cadre aux méthodes d’apprentissage profond et démontre
son utilisation sur l’IRM pondérée en T1. Généralement, nous visons à améliorer la
transparence et la reproductibilité de ces recherches, notamment en mettant en év-
idence les mauvaises pratiques, en partageant les outils et le code source pour une
recherche reproductible et en comparant rigoureusement différentes approches.
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Introduction

Dementia is a syndrome, usually of a chronic or progressive nature, in which there
are impairments in different cognitive functions, including difficulty in memory,
disturbances in language, behavior, and impairments in activities of daily living
(Burns and Iliffe, 2009b). Worldwide, about 12 million people have dementia, and
this total is likely to increase to 25 million by 2040 (Ferri et al., 2005). Only in
France, there were about 1,175,000 patients with dementia in 20121. The burden
of caring for dementia patients is heavy. Annual costs per patient have been es-
timated at $57,000 in the United States, $64,000 in Italy, $24,000 in Sweden and
$14,000 in Canada (Burns and Iliffe, 2009b).

The most common type of dementia is Alzheimer’s disease (AD), represent-
ing 50% to 70% of cases (Burns and Iliffe, 2009b). Other major forms include
frontotemporal lobar degeneration (FTLD), vascular dementia and dementia with
Lewy bodies. There are no strict boundaries between different forms of demen-
tia and mixed forms often co-exist, meaning that one patient may be affected by
different forms of dementia simultaneously. A small proportion of families have
a genetic form of dementia, mainly caused by a mutation in one of the dementia
genes. For instance, APP, PSEN1 and PSEN2 genes for AD; MAPT, GRN, C9orf72,
and other genes for FTLD (Loy et al., 2014).

There is currently no effective treatment to cure dementia or to alter its progres-
sive course. The main obstacles are as follows. First, early and accurate diagnosis
of dementia is difficult. Given that the disease trajectory usually starts many years
before the symptoms appear, it is of great importance to identify, as early as possi-
ble, if a certain subject will develop dementia. The stages before dementia consist
in the presymptomatic (no symptoms) and prodromal (mild symptoms but no de-
mentia) stages. For instance, the progression of mild cognitive impairment (MCI)
subjects into AD attracts more and more attention to the community (Rathore et
al., 2017). The benefits of early diagnosis and biomarker identification include
identification of treatable physical and psychiatric causes, treatment of comorbid
conditions, initiation of psychosocial support, and instigation of pharmacological
symptomatic treatments (Burns and Iliffe, 2009b). Secondly, one needs to have ro-
bust markers to track disease progression and to monitor the effect of potential

1www.alzheimer-europe.org

https://www.alzheimer-europe.org/content/download/79291/491583/file/Final%20version%20of%20the%202013%20yearbook%20from%20the%20printers.pdf


2

therapeutic treatments. This is particularly important during the presymptomatic
stage. The presymptomatic stage represents the best time-window for the medical
intervention before irreversible brain damage is present. A large body of stud-
ies has looked at the automatic classification for early diagnosis, and biomarkers
identification and tracking during different stages of dementia. Refer to (Rathore
et al., 2017; Floeter and Gendron, 2018) for more details on related topics.

In this work, we consider two types of dementia: sporadic AD and genetic
forms of FTLD. The needs in terms of early diagnosis and biomarker tracking are
quite different. On the one hand, in genetic forms of dementia where the causal
mutation is known, identification of individuals who will become demented is
relatively straightforward since the mutations usually have complete penetrance.
However, for genetic forms of FTLD, biomarkers of the presymptomatic phase are
still lacking. These are crucially needed to identify the best therapeutic window
and to monitor new treatments. On the other hand, there has been a huge progress
in the development of biomarkers of AD, in particular the ability to measure amy-
loid and tau in the CSF and using positron emission tomography (PET) imaging.
However, in sporadic AD, identifying future demented patients remains challeng-
ing.

FTLD and amyotrophic lateral sclerosis (ALS) are neurodegenerative diseases
with common genetic causes, the most frequent being a GGGGCC repeat expan-
sion in the chromosome 9 open reading frame 72 (C9orf72) gene. Currently, the
pathological mechanism behind this disease is still unclear (DeJesus-Hernandez
et al., 2011). Several studies focused on identifying biomarkers at the presymp-
tomatic stage (Rohrer et al., 2015; Walhout et al., 2015; Lee et al., 2016; Cash et al.,
2017; Papma et al., 2017; Popuri et al., 2018; Burns and Iliffe, 2009b; Lee et al., 2016).
Researchers have demonstrated that biomarkers change up to 25 years before es-
timated symptom onset (Rohrer et al., 2015), suggesting that the presymptomatic
phase is the best time-window to monitor the potential therapeutic treatment since
the pathological damage is at its minimum and potentially still reversible (Rohrer
et al., 2013). However, limitations exist and advances are needed. First, most stud-
ies focused on gray matter (GM) analysis based on anatomical MRI and only a few
studies have assessed white matter (WM) with diffusion MRI. Besides, no consen-
sus reached among these studies. For instance, one study (Lee et al., 2016) de-
tected disruptions of white matter (WM) integrity using diffusion tensor imaging
(DTI), whereas another study (Walhout et al., 2015) failed to identify such changes.
Lastly, the data sample of participants in these studies was relatively small, mean-
ing that the statistical power of their studies were limited. Efforts have also been
made to identify biomarkers using other modalities. This includes functional MRI,
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perfusion by arterial spin labeling (ASL) and PET imaging, and neuropsycholog-
ical tests (see (Jiskoot, 2018) for details). However, robust biomarkers of familial
FTLD are urgently needed for staging, prognosis, onset prediction, and treatment
monitoring.

Early diagnosis and prediction of the progression of the disease are critical from
the clinical perspective. In genetic forms of dementia, a genetic consultation can
easily identify carriers of mutation (when the patients have a known mutation).
For sporadic cases, such as sporadic AD, this diagnosis still mainly relies on clini-
cal evaluation and cognitive assessment using neuropsychological tests. In recent
years, diagnosis has evolved thanks to advances in biomarker technology and
neuroimaging. Currently, besides the clinical assessment, neuroimaging-based
biomarkers are also integrated into the diagnosis criteria. T1-weighted (T1w) MRI
and diffusion MRI provide macroscopic spatial patterns of atrophy and micro-
scopic white matter integrity, respectively. These neuroimaging-based markers are
used to describe the topography of neurodegeneration within the brain. Moreover,
pathophysiological markers, reflecting the presence of specific abnormal protein
deposits, conveyed by PET imaging are also available.

Diagnosis of dementia at its late stage has limited value. Researchers are cur-
rently challenging early and accurate diagnosis or prediction of the progression
from mild to severe stage of the disease trajectory. However, this remains a diffi-
cult task. To that objective, machine learning (ML) techniques are of interest due to
their ability to learn relevant patterns within the data, providing promising perfor-
mances for classification and prediction. In the past years, large publicly available
datasets have been made available. These datasets provide multimodal data, in-
cluding MRI, PET and also neuropsychological data. The most well known is the
Alzheimer’s Disease Neuroimaging Initiative2 (ADNI) but other publicly avail-
able datasets exist, including the Open Access Series of Imaging Studies3 (OA-
SIS) and the Australian Imaging, Biomarker and Lifestyle Flagship Study of Age-
ing4 (AIBL). These open-access datasets considerably advanced the development
of ML for AD diagnosis, including both conventional ML and deep learning (DL)
methods (LeCun, Bengio, and Hinton, 2015). One can note that more than sev-
eral hundreds of papers have been published on that topic and new papers are
continuously coming out.

With such intensive research, one may wonder why there has been very little
translation of these methods to clinical routine. The underlying reasons are as fol-
lows. First, bad practices, due to the lack of knowledge from medical imaging to
ML techniques, are unfortunately often present. Several studies (see (O’Dwyer et

2http://adni.loni.usc.edu/
3https://www.oasis-brains.org/
4https://aibl.csiro.au/

http://adni.loni.usc.edu/
https://www.oasis-brains.org/
https://aibl.csiro.au/
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al., 2012; Wang et al., 2019) for example) reporting promising performances con-
founded by data leakage, which refers to the use of test data in any part of the
training process (Kriegeskorte et al., 2009; Rathore et al., 2017). Secondly, it is very
hard, even for the solid papers without data leakage, to assess and compare the
performances across studies and approaches. This is due to the fact that they dif-
fer in terms of participant selection, image preprocessing procedures for feature
extraction or selection, classification models and evaluation procedures. It is thus
hard to tell which method performs best and which component of the approach
(e.g., feature extraction or classification algorithm) has the most influence on the
results. Moreover, these studies are difficult to reproduce. Reproducibility has re-
cently become an intensively debated issue in areas of science such as neuroimag-
ing (Gorgolewski et al., 2016; Poldrack et al., 2017) and ML (Sonnenburg et al.,
2007; Stodden, Leisch, and Peng, 2014; Vanschoren et al., 2014). Finally, most of
the published works have achieved competitive performances for discriminating
AD patients from cognitively normal (CN) subjects. However, the clinical value of
this task may be limited since the patient is already demented. More interesting
challenge tasks for early diagnosis still remain unsolved.

* *
*

The current dissertation has two main objectives.
First, we aim to advance the identification of biomarkers of the presymptomatic

phase of genetic FTLD, focusing on the C9orf72 mutation, using multimodal neu-
roimaging data. To that purpose, we studied a relatively large population of
presymptomatic C9orf72 carriers (N=41), using various neuroimaging modalities.
We first used classical anatomical MRI and diffusion MRI applied to DTI model.
We then used advanced models of multi-shell diffusion MRI data, specifically the
neurite orientation dispersion and density imaging (NODDI) model. For these
different modalities, we developed specific image processing pipelines that were
used for the study and released publicly.

Secondly, we hope to advance the steps towards the future translation to clini-
cal practice of ML approaches for diagnosis and prognosis of AD. To that purpose,
we first proposed a framework for reproducible evaluation of AD classification
methods from diffusion MRI data. This extended a previous framework devoted
to T1w MRI and PET data (Samper-González et al., 2018). In this study, we used
conventional ML models. We then went one step further and checked the poten-
tial of DL models in AD classification. As mentioned above, bad practices exist in
this field. We performed an exhaustive literature survey and critically reviewed
the potential flaws of these studies. We then proposed an open-access framework
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and studied the influence of the key components of the framework on classifica-
tion performances. By doing this, we hope to facilitate the future research on AD
classification and improve the research transparency, reproducibility and objectiv-
ity.

To summarize, the current thesis tries make progress towards answering the
following questions:

• What are the most promising candidate of biomarkers in presymptomatic
stage of C9orf72 diseases?

• How far are we away from the translation to clinical practice of AD classifi-
cation using ML techniques?

The main contributions of this thesis are:

• Identification of early alterations in the presymptomatic stage of C9orf72 dis-
ease using conventional anatomical and diffusion MRI.

• Identification of more sensitive biomarkers using an advanced model (NODDI)
of diffusion MRI.

• The development of a framework for reproducible evaluation of classifica-
tion of AD and its application to diffusion MRI with conventional ML meth-
ods, and to anatomical MRI with DL methods.

• The development and release of open source software packages, focusing on
image processing, statistics and ML techniques.

* *
*

The dissertation consists of five chapters.
First, Chapter 1 introduces the background related to this thesis. This covers: i)

the basic knowledge of frontotemporal lobar degeneration and its genetic forms,
and Alzheimer’s disease, ii) different modalities of neuroimaging data, iii) im-
age processing procedures and iv) two types of analysis approaches (i.e., classical
statistics and ML methods), and datasets used in the current thesis.

Chapter 2 presents the study of a cohort of first-degree relatives of C9orf72 pa-
tients. T1w MRI, DTI and neuropsychological test were examined for identifying
potential biomarkers at the presymptomatic stage.

Chapter 3 extends the previous paper by studying the potential of NODDI and
comparing it sensitivity to that of DTI. It aims to clarify the added value of NODDI
compared to conventional techniques such as DTI and T1w MRI.
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Chapter 4 describes our open source framework for AD classification from dif-
fusion MRI data and applies it to study the value of this modality for these diag-
nostic and prediction tasks.

Chapter 5 extends the previous chapter to DL models and demonstrates its use
on anatomical MRI.

Finally, the main results are recalled and future work directions are presented.
In addition, we present, in appendices, the supplementary materials for Chap-

ter 2, Chapter 3 and Chapter 5, respectively.
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Chapter 1

Background

In this chapter, we aim to provide a straightforward introduction to the main con-
cepts involved in this dissertation. Specifically, this chapter contains the back-
ground knowledge regarding: i) the neurodegenerative diseases that we studied
(Section 1.1); ii) neuroimaging modalities (Section 1.2); iii) main steps for image
preprocessing and feature extraction (Section 1.3); iv) classical statistical models
(Section 1.4), v) machine learning models (Section 1.5), vi) neuroimaging biomark-
ers of C9orf72 carriers (Section 1.6), vii) neuroimaging for classification of AD (Sec-
tion 1.7) and viii) datasets used in this dissertation (Section 1.8).

1.1 Neurodegenerative diseases

Neurodegenerative diseases are characterized by the progressive loss of structure
or function of neurons, due to for instance, the death of neurons. Neurons nor-
mally don’t reproduce or replace themselves, thus such diseases are irreversible5.
Examples of neurodegenerative diseases are AD, FTLD and ALS. In the section,
we briefly introduce the three diseases involved in this PhD.

1.1.1 Alzheimer’s disease

AD is the first cause and represents 60–70% of cases of dementia (Burns and Iliffe,
2009a). Currently, the epidemic situation of AD is becoming more and more grievous.
In 2015, there were approximately 29.8 million people worldwide with AD (Vos et
al., 2016). It affects most often elderly people. Among the general population, it
affects about 6% of people over 65 years of age (Burns and Iliffe, 2009a). Especially
in developed countries, AD is one of the most financially costly diseases (Bonin-
Guillaume et al., 2005).

The underlying cause of Alzheimer’s disease is still poorly understood (Burns
and Iliffe, 2009a). For instance, about 70% of the cases are believed to be influenced
by different genes inherited from patients’ parents (Ballard et al., 2011). Other risk

5https://en.wikipedia.org/wiki/Neurodegeneration

https://en.wikipedia.org/wiki/Neurodegeneration
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factors include a history of head injuries, depression, and hypertension (Burns
and Iliffe, 2009a). The disease trajectory is divided into three main stages, with a
progressive pattern of cognitive and functional impairment.

• Presymptomatic: the stage during which pathological changes accumulate
in the absence of any symptoms (Dubois et al., 2016; Sperling et al., 2011);

• mild cognitive impairment (MCI): the stage during which the patient has
mild cognitive deficits, mainly memory troubles, but is not demented (Dubois
and Albert, 2004; Albert et al., 2011);

• AD: the final stage during which the presence of the memory problems, lan-
guage, executive and motor functions is severe enough to make it impossible
to carry out everyday tasks for the patients (McKhann et al., 1984; McKhann
et al., 2011).

Several competing hypotheses exist and try to explain the cause of the disease
(Duyckaerts, Delatour, and Potier, 2009). The first one is the amyloid hypothesis. It
postulates that extracellular amyloid beta (Ab) deposits are the fundamental cause
of AD (Mudher and Lovestone, 2002; Hardy and Allsop, 1991). This accumula-
tion can start up to 20 years before the diagnosis. Another popular hypothesis is
the so-called tau hypothesis (Mudher and Lovestone, 2002). This hypothesis pro-
posed that tau protein abnormalities initiate the disease cascade. The formation
of neurofibrillary tangles made of tau proteins links to each other inside neurons
and causes the death of neurons. Other hypotheses also exist in the community
(Zlokovic, 2007).

AD is usually diagnosed based on clinical assessment (e.g., person’s medical
history, history from relatives) and neuropsychological tests (e.g., mini mental
state examination, MMSE). This is usually performed once the symptoms occur.
Earlier diagnosis of AD is critical because it not only would allow providing ade-
quate care to the patient, but also provides the best time window for development
of disease-modifying drugs. Until now, there is no definitive evidence to sup-
port that any particular measure is effective in preventing or curing AD. In recent
decades, new criterias have been proposed to achieve an earlier and more accurate
diagnosis (Dubois et al., 2007; Dubois et al., 2014; Albert et al., 2011). These cri-
terias integrated biomarkers, established thanks to different techniques including
neuroimaging and fluid biomarkers (Hampel et al., 2014), into clinical and cogni-
tive tests.
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1.1.2 Frontotemporal lobar degeneration

FTLD is a clinically and pathologically heterogeneous syndrome, which is char-
acterized by progressive decline in behaviour or language associated with degen-
eration of the frontal and anterior temporal lobes (Floeter et al., 2016). FTLD is
considered as an important cause of dementia, in particular in patients younger
than 65 years of age.

There are three main distinct clinical phenotypes of FTLD: (i) behavioural vari-
ant frontotemporal dementia (bvFTD), characterized by changes in behaviour and
personality and cortical degeneration focusing on frontal-predominant regions; (ii)
semantic dementia, showing the loss of knowledge about words and objects in-
volving anterior temporal regions and (iii) progressive nonfluent aphasia, result-
ing in difficulty in language output and grammar associated with left perisylvian
cortical atrophy (Rabinovici and Miller, 2010). FTLD is also pathologically hetero-
geneous. Like most neurodegenerative diseases, FTLD is accompanied with the
presence of insoluble protein in neurons (Le Ber et al., 2008). Three subtypes ex-
ist depending on the type of the protein that aggregates in neuronal inclusions: i)
FTLD-Tau, accounting for 30–40% of FTLD. They are characterized by the accu-
mulation of tau protein in neurons. ii) FTLD-TDP, representing 50–60% of FTLD
cases. TDP-43 (TAR DNA-binding protein) is witnessed to be aggregated in neu-
rons (Neumann et al., 2006); iii) FTLD-FUS, a rare form (10% of FTLD cases). It is
characterized by the presence of FUS-positive inclusions (Neumann et al., 2007).

1.1.2.1 Genetic forms of FTLD

FTLD is also genetically heterogeneous. For the last decade, researchers shed more
light on the genetic forms of FTLD since the identification of two major genes, pro-
granulin gene mutations (PGRN) (Snowden et al., 2006; Baker et al., 2006; Cruts et
al., 2006) and chromosome 9 open reading frame 72 (C9orf72) (DeJesus-Hernandez
et al., 2011), but also with other genes which are less frequently witnessed. Until
2013, more than twelve genes were identified in the literature explaining 50-60%
of familial cases (see (Le Ber, 2013) for details). Here, we present three main genes
representing a familial form of FTLD.

Microtubule-associated protein tau (MAPT) mutation was the firstly identi-
fied in 1998 (Hutton et al., 1998) and helps encode the tau protein. In France,
the frequency of MAPT mutations is approximately 3% of patients with FTLD
and close to 10% in familial forms of the disease (Le Ber et al., 2008). In 2006,
PGRN mutations were identified. This mutation is associated with the TDP-43
positive inclusions in neurons (Snowden et al., 2006; Baker et al., 2006; Cruts et
al., 2006). In France, the relative frequency of PGRN mutations is 13% in familial
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FTLD (Le Ber et al., 2008). Progranulin promotes the growth of neurons and in-
creases the survival of cortical and spinal motor neurons, and could therefore have
a neurotrophic effect. The pathophysiological mechanisms associated with PGRN
mutations are still unknown. In 2011, a GGGGCC repeat expansion in C9orf72
gene was identified in 9p-linked families (c9FTLD/ALS) (DeJesus-Hernandez et
al., 2011). In France, the prevalence rate differed according to the phenotype: 13%
in familial bvFTD (without ALS), but up to 66% in familial FTLD-ALS (Le Ber et
al., 2013). The function of the protein coded by C9orf72 and the pathogenic effect
of the non-coding expansion are still unclear.

Each mutation has a distinct pattern of brain atrophy (Figure 1.1). MAPT and
GRN mutations showed striking temporal and temporoparietal atrophy, respec-
tively. The C9orf72 mutation showed a signature of wide grey matter loss over the
whole brain, with the most striking loss in frontal lobes.

Figure 1.1: Atrophy pattern of three main genetic form of FTLD. Mu-
tation carriers was compared to the control group in the voxel-based
morphometry analysis of grey matter volume. Permission was ob-

tained from (Whitwell et al., 2012)

1.2 Neuroimaging data

When studying neurodegenerative disease based on brain neuroimaging data,
three main steps are involved: i) image acquisition using various modalities; ii)
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image preprocessing to extract features and iii) applying different data analysis
methods, for instance classical statistical models for group comparison or more
advanced machine learning models, on the extracted quantitative features.

In this section, we review the two data modalities that are relevant to this dis-
sertation and provide a basic explanation of these techniques. Specifically, section
1.2.1 presents the anatomical MRI and section 1.2.2 introduces the diffusion MRI.
Note that we only briefly introduce these techniques. One can refer to (Susumu
Mori and J-Donald Tournier, 2013; McRobbie, 2006; Schmitt, Stehling, and Turner,
1998) for more details on different MRI modalities.

1.2.1 Anatomical MRI

T1w MRI uses a short repetition time (TR) and echo time (TE) to enhance the tissue
contrast, thus allowing to study the patient’s brain morphology. T1w MRI usually
offers excellent contrast: fluids are very dark such as CSF in ventricle, GM is grey
and WM is more brighter. This MRI sequence is known as anatomical MRI be-
cause it shows clearly the boundaries between different tissues (Figure 1.2). T1w
MRI is widely used in neurodegenerative diseases to assess brain atrophy or tissue
damage.

Figure 1.2: T1w MRI for a cognitively normal subject (CN) and for
a patient with C9orf72 mutation (PT). One can note the whole brain

atrophy and the enlargement of the ventricles.
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1.2.2 Diffusion MRI

Diffusion MRI (Le Bihan et al., 1986) uses the diffusion of water molecules to gen-
erate contrast in MR images. It allows the mapping of the Brownian motion pro-
cess of molecules, mainly water, in biological tissues (e.g., GM and WM) in vivo
and non-invasively. The motion of water in the brain is not totally isotropic be-
cause the mobility of water is constrained by its cellular environment. The inten-
sity of each voxel reflects the rate of water diffusion at that location in the brain.
When there is no constraint as in free water (e.g., CSF), the motion of water is ran-
domly diffused in all directions (isotropy). When the water motion is constrained
by the tissues (e.g., WM and GM), the diffusion is anisotropic (Merboldt, Hanicke,
and Frahm, 1985). This quality makes diffusion MRI sensitive to the microstruc-
tural damage and indicative for early pathological changes.

The amplitude and anisotropy of the diffusion depends on several parameters,
such as the direction, density or diameter of the fibre bundles. In order to measure
these diffusion parameters (amplitude and anisotropy), one should first acquire an
image with the diffusion-sensitizing gradients turned off (b-value=0 s/mm2) or set
to a very low value (e.g., b-value=5 s/mm2). This is usually referred to as b0 image
and serves as a baseline for later calculated maps. The diffusion-weighted images
(DWI) are then run with different combination of b-value and b-vec (the gradients’
direction), generating the source images sensitized to diffusion in multiple direc-
tions. For illustration purpose, three diffusion images using b-values of 5, 300, 700
and 2200 s/mm2 are shown in Figure 1.3. One can observe that higher b-value
shows progressively more diffusion weighting but also more noise (lower signal-
to-noise ratio, SNR). As a practical matter, most routine clinical diffusion sequence
currently use b-values between 0 and 1000 s/mm2). Note that we denote one im-
age sequence with multiple b-values as multi-shell data. Conversely, we note the
image sequence with a single b-value as single-shell data in this dissertation.
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Figure 1.3: Multi-shell diffusion MRI for a cognitively normal subject
(CN). Images using different b-values, 5, 300, 700, and 2200 s/mm2,

are shown here.

1.2.2.1 Diffusion tensor imaging

Different models can be applied to the preprocessed diffusion MRI data (the de-
tails of image preprocessing will be introduced in section 1.3). One of the most
widely used models is DTI (Basser et al., 1994). DTI is popular for imaging the
white matter of the brain and has been applied to a tremendous variety of neu-
roimaging studies (O’Donnell and Westin, 2011). DTI modelizes each voxel as a
diffusion tensor. The derived tensor anisotropy measures are ratios of the eigen-
values that are used to quantify the shape of the diffusion. The most common
metrics are fractional anisotropy (FA, often referred to as the measure of "white
matter integrity"), mean diffusivity (MD), axial diffusivity (AD) and radial diffu-
sivity (RD). Figure 1.4 shows the DTI metric maps. DTI metrics are computed
according to the following formulas:
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FA =

p
3 [(l1 � l)2 + (l2 � l)2 + (l3 � l)2]q

2(l2
1 + l2

2 + l2
3)

MD =
l1 + l2 + l3

3

AD = l1

RD =
l2 + l3

2

where l = l1+l2+l3
3 , l1, l2, l3 are the eigenvalues of the diffusion tensor.

Although widely used in neuroimaging studies, the DTI model has limitations.
First, DTI metrics lack specificity. They are hard to interpret from the biophysical
point of view. For instance, the change of FA could be caused by numerous factors
(e.g., cell death or change in myelination) (Alexander et al., 2007; O’Donnell and
Westin, 2011). Secondly, DTI is limited when an image voxel suffers from partial
volume effect (e.g., the voxels near to ventricle). Lastly, DTI is able to model only
the major fibre direction. On the other hand, in the brain, a high proportion of WM
voxels are localizing where crossing or fanning fibres are present (Behrens et al.,
2007). This may confound the following analyses dependent on DTI results, such
as DTI tractography.
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Figure 1.4: DTI metric maps. From up to down, FA, MD, RD and AD
are presented.

1.2.2.2 Neurite orientation dispersion and density imaging

Beyond DTI, other models have been proposed in the community (Zhang et al.,
2012; Pasternak et al., 2009; Eaton-Rosen et al., 2017). Neurite orientation disper-
sion and density imaging (NODDI) model was firstly proposed by Zhang et al
(Zhang et al., 2012). They demonstrated that NODDI model, compared to DTI
model, offered higher tissue-specificity. Note that NODDI, compared to conven-
tional DTI model, requires a multi-shell diffusion MRI sequence which takes about
30 minutes to acquire in a clinical routine. The image preprocessing procedure,
which will be detailed in the next section, is similar to that of single-shell data,
including corrections for head motion, susceptibility and eddy-current distortion.

NODDI models the diffusion signal from three compartments: i) free water,
Sf w f is the signal from the free water and Vf w f is the volume fraction of each voxel
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representing free water, ii) intracellular space, Sin and Vin represent the signal and
volume fraction from the intracellular compartment (e.g., intra-axonal in WM) and
iii) extracellular space, Sex and Vex mean the signal and volume fraction from the
extracellular compartment. Thus, the total signal at each voxel can be written with
the following equation:

St = (S f w f ⇥ Vf w f ) + (1 � Vf w f )(Sin ⇥ Vin + (1 � Vin)⇥ Sex)

where St is the measured diffusion signal in total.
The NODDI model derives three metrics: neurite density index (NDI) and ori-

entation dispersion index (ODI) quantify the density and angular variation of neu-
rites, respectively, while free water fraction (FWF) captures the contamination of
tissues by free water at the microstructural level. NODDI metric maps are shown
in Figure 1.5

Figure 1.5: NODDI metric maps. From up to down, NDI, ODI and
FWF are presented.

1.3 Image preprocessing

MR images may suffer from various artifacts. These may result from physiologi-
cal sources (e.g., head motion, respiration and anxiety) or from the scanner itself
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(e.g., geometric distortions and signal losses). A proper image preprocessing is
necessary for a successful quantitative analysis. In the context of classification,
researcher has proven that image processing procedures have a strong influence
on classification results (Uchida, 2013; Lu and Weng, 2007; Cuingnet et al., 2011).
Generally, the image preprocessing procedure includes the main following steps:
bias field correction, intensity rescaling and standardization, skull stripping, eddy
current-induced distortion correction, susceptibility-induced distortion correction
and registration. According to the data modality (e.g., T1w MRI or diffusion) and
the scientific question of interest (e.g., conventional ML or DL methods), differ-
ent sources of artifacts may be present and different correction methods should be
adapted.

In this section, we present the most essential preprocessing steps for T1w MRI
and diffusion MRI. We then introduce the Clinica 6 open-source platform for re-
producible neuroimaging studies implemented and maintained by the ARAMIS
laboratory 7. Lastly, we summarize the extracted features which are used in the
following analyses in this dissertation. Note that we present here only the basic
knowledge on MRI processing, readers can refer to (Bankman, 2008) for more de-
tails.

1.3.1 Bias field correction

MR images can be corrupted by a low frequency and smooth signal caused by
magnetic field inhomogeneities. This bias field induces variations in the intensity
of the same tissue in different locations of the image, which deteriorates the perfor-
mance of image analysis algorithms such as registration (Vovk, Pernus, and Likar,
2007). Several methods exist to correct these intensity inhomogeneities, two pop-
ular ones being the nonparametric nonuniformity intensity normalization (N3) al-
gorithm (Sled, Zijdenbos, and Evans, 1998), available for example in the Freesurfer
software package 8, and the N4 algorithm (Tustison et al., 2010) implemented in
ITK 9. Moreover, MRtrix 10 also provided tools for B1 field inhomogeneity correc-
tion for diffusion MRI data (Zhang, Brady, and Smith, 2001).

1.3.2 Intensity rescaling and standardization

As MRI is usually not a quantitative imaging modality itself, MR images usually
have different intensity ranges and the intensity distribution of the same tissue

6http://www.clinica.run/
7http://www.aramislab.fr
8http://surfer.nmr.mgh.harvard.edu/fswiki/recon-all
9http://hdl.handle.net/10380/3053

10http://www.mrtrix.org

http://www.clinica.run/
http://www.aramislab.fr
http://surfer.nmr.mgh.harvard.edu/fswiki/recon-all
http://hdl.handle.net/10380/3053
http://www.mrtrix.org
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type may be different between two images, which might affect the subsequent im-
age preprocessing steps. The first point can be dealt with by globally rescaling the
image, for example between 0 and 1 using the minimum and maximum intensity
values (Juszczak, Tax, and Duin, 2002). Intensity standardization can be achieved
using techniques such as histogram matching (Madabhushi and Udupa, 2005).

1.3.3 Skull stripping

Non-brain tissues can be an obstacle for image analysis algorithms (Kalavathi and
Prasath, 2016). A large number of methods have been developed for brain extrac-
tion, also called skull stripping, and many are implemented in software tools, such
as the Brain Extraction Tool (BET) (Smith, 2002) available in FSL 11, or the Brain
Surface Extractor (BSE) (Shattuck et al., 2001) available in BrainSuite 12. These
methods are often sensitive to the presence of noise and artifacts, which can result
in over or under segmentation of the brain.

1.3.4 Image registration

Medical image registration consists of spatially aligning two or more images, ei-
ther globally (rigid and affine registration) or locally (non-rigid registration), so
that voxels in corresponding positions contain comparable information. A large
number of software tools have been developed for MRI-based registration (Oliveira
and Tavares, 2014). FLIRT 13 (Greve and Fischl, 2009; Jenkinson et al., 2002; Jenk-
inson and Smith, 2001) and FNIRT 14 (Andersson, Jenkinson, and Smith, 2010) are
FSL tools dedicated to linear and non-linear registration, respectively. The Statis-
tical Parametric Mapping (SPM) software package 15 and Advanced Normaliza-
tion Tools 16 (ANTs) also offer solutions for both linear and non-linear registration
(Ashburner and Friston, 2000; Avants et al., 2014; Friston et al., 1995).

1.3.5 Head motion correction

MR images are sensitive to subject motion due to the sequential acquisition for
multiple volumes, as in the case of diffusion MRI. Subject motion may induce ar-
tifacts and reduce image quality and diagnostic or scientific relevance (Goden-
schweger et al., 2016). Researchers has put a huge effort to prevent, suppress or

11https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/BET/UserGuide
12http://brainsuite.org/processing/surfaceextraction/bse
13https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FLIRT
14https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FNIRT
15https://www.fil.ion.ucl.ac.uk/spm
16http://stnava.github.io/ANTs

https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/BET/UserGuide
http://brainsuite.org/processing/surfaceextraction/bse
https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FLIRT
https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FNIRT
https://www.fil.ion.ucl.ac.uk/spm
http://stnava.github.io/ANTs
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correct motion artifacts. One typical case of head motion artifact can be referred
as MRI-based motion (Godenschweger et al., 2016). It happens when there are at
least two MR images/volumes at different time points within subject. The head
motion caused during the interval time between images/volumes can be calcu-
lated by registration algorithms or by comparison to training data sets on the basis
of 3D volumes. The type of motion can be divided into linear (e.g., rigid) or non-
linear. The registration-based solution can be achieved by the registration tools
mentioned above. Beyond the MRI-based motion, it exists other types of motions
and the corresponding correction methods, including both prospective or retro-
spective head motion correction methods (see (Godenschweger et al., 2016) for
more details).

1.3.6 Eddy current-induced distortion correction

Eddy current-induced off-resonance field, frequently present in diffusion weighted
EPI images, is caused by the rapidly switched diffusion encoding gradients, which
is an additional source of off-resonance. The rapidly changing magnetic field re-
sults in eddy currents (EC) in conductors within the bore, thus in turn inducing a
magnetic field (Andersson and Sotiropoulos, 2016). Numerous studies focused on
the correction of this artifact. The most common used technique is the eddy tool 17

from FSL. This tool integrates the corrections for eddy current-induced distortions
and subject movements. It simultaneously models the effects of diffusion eddy
currents and movements on the image, allowing it to work with higher b-value
data (Andersson and Sotiropoulos, 2016).

1.3.7 Susceptibility-induced distortion correction

Another common artifact of diffusion MRI is the so-called susceptibility-induced
distortion. The reason behind this artifact is as follows. Diffusion images are sen-
sitive to off-resonance fields due to the low bandwidth in the phase-encode (PE)
direction, which results in telltale unidirectional distortions (Schmitt, Stehling, and
Turner, 1998). Various sources of off-resonance exit during image sequence. For in-
stance, the object itself in the scanner will disrupt the existing homogeneous mag-
netic field, rendering the resulting field inhomogeneous. Also, air in the brain and
the presence of metallic ions in tissues can cause similar susceptibility-induced
distortions. In the field, FSL provides a robust tool, topup 18, for susceptibility-
induced distortion correction. One prerequisite is that the data shoud be collected

17https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/eddy
18https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/topup

https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/eddy
https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/topup
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with reversed phase-encode blips, resulting in pairs of images with distortions go-
ing in opposite directions (Andersson, Skare, and Ashburner, 2003; Smith et al.,
2004).

1.3.8 Other processing steps

Beyond these steps mentioned above, other procedures, such as image segmenta-
tion or cortical reconstruction, may also be necessary. For instance, image segmen-
tation is the most critical step in region of interest (ROI) analyses. The regional fea-
tures (e.g., regional volumetric measures based on an anatomical atlas) depend on
the results of image segmentation. Different software, such as FreeSurfer and SPM,
integrate image segmentation steps and one can refer to (Despotović, Goossens,
and Philips, 2015) for more details on different segmentation techniques. Another
example is that the cortical surface reconstruction (Fischl, 2012; Fischl et al., 1999)
is critical to precisely extract the cortex-wise features (e.g., cortical thickness).

1.3.9 Implementation: Clinica open source platform

The complexity of neuroimaging analyses can make it difficult, especially for new-
comers in this field, to perform or reproduce a study. Often, researchers performed
their analysis by combining different software packages widely used in the com-
munity, such as FreeSurfer and SPM. However, such hand-craft strategy makes
it difficult to reproduce their studies for the following reasons. i) Heterogeneous
data organization. No existing automatic tools exist to convert the raw data from
the extensively used databases (e.g., ADNI dataset) to a standard data format.
ii) Inflexible software deployment, different software exist in the field but may
not be mutually compatible. Steps have been made in the right direction. The
Brain Imaging Data Structure (BIDS) data organization standard (Gorgolewski et
al., 2016) and Nipype pipelining system (Gorgolewski et al., 2011) have been pro-
posed in the community. To help further address the limitations mentioned above,
we developed Clinica, a software that aims at making clinical neuroimaging stud-
ies easier and more reproducible.

An overview of Clinica is shown on Figure 1.6. Three main components can
be summarized: i) data management tools, such as automatic tools to convert the
raw data of public databases into BIDS format, or tools for participant selection; ii)
feature extraction pipelines, different software or tools can be easily deployed and
tested with the Nipype modular architecture; iii) Statistics and machine learning,
such as generalized linear model (GLM), conventional ML and DL.
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Figure 1.6: Clinica, an open source platform for reproducible neu-
roimaging studies.

Note that The Clinica software is publicly available and under active devel-
opment. The current dissertation highly depends on the Clinica software. Con-
versely, I contributed to the development of Clinica, namely to the following com-
ponents: T1w MRI surface-based extraction and statistics, DTI processing, NODDI
processing, and machine learning.

1.3.10 Extracted features

According to the type of analysis (i.e., GLM or machine learning), features were ex-
tracted based on different preprocessing procedures. We summarize and present
here all the features extracted based on the Clinica software and involved in our
analyses (Figure 1.7).
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Figure 1.7: Extracted neuroimaging features from both diffusion MRI
and T1w MRI used in the current dissertation.

• A) voxel WM+FA features: diffusion MRI was preprocessed for head motion
correction, eddy current-induced distortion correction and susceptibility-induced
distortion correction. Then DTI model was fit to generate FA map, which was
masked by T1w MRI tissue (WM) probability map.

• B) voxel WM+MD features: MD map was masked by T1w MRI tissue (WM)
probability map.

• C) voxel GM+FA features: FA map was masked by T1w MRI tissue (GM)
probability map.

• D) voxel GM+MD features: MD map was masked by T1w MRI tissue (GM)
probability map;

• E) voxel GM+WM+FA features: FA map was masked by T1w MRI tissue
(WM+GM) probability map.

• F) voxel GM+WM+MD features: MD map was masked by T1w MRI tissue
(WM+GM) probability map.

• G) regional FA features from JHU white-matter tractography atlas (denoted
as JHUTract25): FA map was quantized by JHUTract25 atlas, including 20
white matter tracts.
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• H) regional MD features from JHUTract25: MD map was quantized by JHUTract25
atlas.

• I) regional FA features from ICBM-DTI-81 white-matter labels atlas (denoted
as JHULabel): FA map was quantized by JHULabel atlas, including 48 white
matter tracts.

• J) regional MD features from JHULabel: MD map was quantized by JHULa-
bel atlas.

• K) regional ODI features from JHUTract25: NODDI model was fit to the pre-
processed diffusion data and generated ODI map. ODI maps was quantized
by JHUTract25 atlas.

• L) regional NDI features from JHUTract25: NDI map was quantized by JHUTract25.

• M) regional Desikan FWF features: FWF map was projected at the middle
cortex and quantized by Desikan atlas.

• N) voxel GM density map: voxel features from T1w MRI gray matter density
map. T1w MRI was preprocessed with a complex procedure, including non-
linear registration, intensity normalization, segmentation, etc.

• O) full brain density map from T1w MRI. T1w MRI was preprocessed only
with intensity rescaling, bias field correction and a linear registration into
MNI space.

• P) regional Desikan density map: regional feature from T1w MRI quantized
by Desikan atlas. T1w MRI was preprocessed with a complex processing
procedure, including segmentation, cortical construction.

• Q) regional AAL2 density map: regional features from T1w MRI quantized
by AAL2 atlas. T1w MRI was preprocessed with a complex processing pro-
cedure, including segmentation, non-linear registration.

With the extracted features from both T1w MRI and diffusion MRI, further
analysis can be performed depending on the scientific question of interest. In the
current dissertation, we applied these features into two categories of analyses: i)
classical statistics (see Section 1.4) for identifying neuroimaging biomarkers at the
presymptomatic stage of C9orf72 carriers and ii) advanced ML techniques (see
Section 1.5) for early and accurate diagnosis of AD.
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1.4 Classical statistics

Classical statistical models have been used to identify biomarkers in dementia
during the disease trajectory. Generally, this approach helps decide if significant
difference exists between two groups within a disease population on the chosen
features (e.g., regional volumetric measures). For instance, researchers collected
one group of AD patients (denoted as AD) and another group of cognitively nor-
mal subjects (denoted as CN). Here, the chosen feature could be the volumetric
measures of each ROI based on an pre-defined anatomical atlas. By leveraging the
classical statistics, researchers may address the following scientific questions:

• i) Is there significant difference in brain atrophy between two groups (re-
flected by the p-value)?

• ii) How much is the magnitude of this difference (reflected by the effect size)?

The Generalized Linear Model (GLM), the most common type of regression
model, could be used for this purpose. A p-value can be derived from a hypothesis
test for each ROI, resulting in the so-called uncorrected p-values (one for each
ROI). A correction (e.g., bonferroni correction) for these multiple comparisons can
be then performed to reduce the false positive rate (also known as Type 1 error).
GLM has been widely used in neuroimaging studies to identify neuroimaging-
based biomarkers.

In this section, we present the basic knowledge of GLM. Readers should feel
free to skip this section given their background and knowledge. Conversely, for
more details, see (McCullagh, 2018) on this topic.

1.4.1 Generalized linear model

GLM is a flexible and generalized form of ordinary linear regression. One should
not confuse the general linear model and the generalized linear model: the gen-
eralized linear model allows for the distribution of the error of the response vari-
ables to be non-normal (e.g., binomial distribution), whereas general linear model
requires strictly a Gaussian distribution.

In a GLM, both systematic and random components can be encompassed. A
GLM can be characterized by the following components:

• i) A dependent variable Y whose distribution with parameter q is one of the
exponential family of probability distributions.

• ii) A set of independent variables (Xi) and the linear predictor Y = Â bXi.
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• iii) A linking function q = f (Y) to connect the distribution parameter and
the dependent variable Y of the model.

Thus a GLM could be written as follows:

Y = b0 + b1X1i + b2X2i + ... + bpXpi + ei

where ei is the errors part.
Fitting the formulated GLM can be achieved by maximum likelihood. The

maximum likelihood estimates can be found using an iteratively reweighted least
squares algorithm or a Newton’s method with updates of the form. For more basis
of mathematics, refer to (Nelder and Wedderburn, 1972).

1.4.2 P-value and effect size

Statistical significance, namely p-value, is the probability that the observed differ-
ence between two groups is due to chance (Sullivan and Feinn, 2012). The p-value
is often used in a dichotomous way. For instance, if the p-value is larger than the
chosen alpha level (e.g, 0.05), any observed difference is due to the sampling vari-
ability or by chance. Conversely, an opposite conclusion, the two groups are sig-
nificantly different, is made if the p-value is smaller than 0.05. This interpretation
may have limitations. First, the alpha level is more or less arbitrarily, subjectively
and manually chosen. R. A. Fisher, in the 1920’s, firstly proposed 0.05 as a stan-
dard (Fisher, 1992). This was driven partly by the fact that the five percent cutoff,
in a normal distribution, falls nearby the second standard deviation away from the
mean of the distribution. Currently, some researchers have advocated to shift the
alpha level to be more strict (e.g., 0.005 or 0.001) (Benjamin et al., 2018). However,
others argued that to boil all this down to a binary decision based on a p-value
threshold of 0.05, 0.01, 0.005, or anything else, is not acceptable (Trafimow et al.,
2018). Moreover, p-value is dependent on the sample size, which means that, with
a sufficiently large sample, a statistical test will almost always demonstrate a sig-
nificant difference. Thus, reporting only the p-value for a hypothesis test analysis
is not adequate for readers to fully understand the results. Argues still exist about
the correct use of p-value and researchers have become increasingly aware of its
shortcomings and the potential for abuse (see the call on this issue on Nature for
more details: https://www.nature.com/articles/d41586-019-00857-9).

Effect size, the magnitude of the differences between groups, was proposed to
be reported along together with the p-value. Effect size can refer to the raw differ-
ence between group means, or absolute effect size, as well as standardized mea-
sures of effect, which are calculated to transform the effect to an easily understood
scale (Sullivan and Feinn, 2012). One property of effect size is its independence

https://www.nature.com/articles/d41586-019-00857-9
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from the sample size, leading to the use to quantitatively compare results from
different studies. Commonly used effect size indices are as follows:

• i) Cohen’s d is based on differences between means and derived as the dif-
ference between two means divided by a standard deviation.

• ii) Cohen’s f2 is one form of effect size measures to use in the context of an
F-test for ANOVA.

• iii) Cohen’s q is used with correlation differences between two Fisher trans-
formed Pearson regression coefficients..

1.5 Machine learning

Another application focuses on using the advanced ML methods for automatic dis-
ease diagnosis and prognosis, due to their main virtue of modelling high-dimensional
neuroimaging data. This approach can be categorized into two phases accord-
ing to time and the computational hardware development (e.g., GPU). During the
first phase, researchers leveraged conventional ML models, such as kernel ma-
chines (e.g., SVM) and graphical models (e.g., Bayesian network), for individual-
ized disease diagnosis. It was widely applied to several neurodegenerative dis-
eases and obtained promising performances for certain tasks, such as diagnosis of
AD (Rathore et al., 2017). At that time, neural network was also in the field but did
not attract so much attention as today. The turning point of neural network came
until 2009, when researchers obtain impressive performance on the classification
tasks based on the ImageNet dataset (Deng et al., 2009). This was the beginning of
second phase for early dementia diagnosis. A large body of studies has looked at
the potential of DL methods, most often the convolutional neural network (CNN),
for instance, for AD classification in the very recent years.

Although no clear separation of the two phases, researchers usually refer the
traditional algorithms, such as SVM and RF, as conventional ML methods. These
methods are limited in their ability to process natural data in their raw form and
demand hand-craft feature engineering. Whereas, DL has the ability to learn
the data with intermediate feature representation, which automatically and au-
tonomously extract low-to-high level features. With the huge algorithm advance
and also hardware computational power improvement (e.g., GPU), nowadays is
the gold rush era of DL. DL conversely demands a huge appetite of data and com-
putational power (LeCun, Bengio, and Hinton, 2015).

In this section, we briefly introduce these techniques. Again, for the readers
who seek for more details on the related topics, please refer to (Bishop, 2009) about
conventional ML and (Goodfellow et al., 2016) about DL.
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1.5.1 Conventional machine learning

A large number of conventional ML algorithms was firstly introduced in the con-
text of dementia classification. Here, we present the main algorithms used in the
field.

1.5.1.1 Support vector machine

Support vector machines (SVM) is a popular kernel machine algorithm because
of its robustness to high dimensional data and to the overfitting problem. The
mechanism of SVM is to find an optimal separating hyperplane that maximizes the
margin between two classes. Apart from the linear classification task, SVMs can
be used for a non-linear classification by means of the so-called kernel trick. The
kernel functions are used to map the original data (linear/nonlinear ) into a higher
dimensional space with view to making it linearly separable. Different types of
kernels can be applied in this case. When the dimensionality is high compared to
the number of subjects, like in the case of neuroimaging studies, a linear kernel is
a natural choice, as non-linear kernels would have the effect of transforming the
data into an even higher dimensional space.

1.5.1.2 Logistic regression

Logistic regression (LR) is another widely used model in the context of classifica-
tion. It models the relationship between the categorical dependent variable (e.g.,
group labels for AD and CN) and one or more independent variables (i.e., the
extracted features). This approach can be seen as a special case of GLM, or of lin-
ear regression, but with the two major distinct properties. First, the conditional
distribution of LR is a Bernoulli distribution rather than a Normal distribution.
Secondly, it outputs the probabilities restricted to (0,1) through the logistic distri-
bution function, rather than the outcomes themselves.

With its simple implementation, LR was adopted in the task of AD classifica-
tion (Desikan et al., 2006). However, it exists evident drawbacks. First, the as-
sumption of linearity between the dependent and independent variables is not
always valid. Secondly, it is sensitive to multicollinearity and outliers. Lastly, LR
does not provide accurate results with high dimensional data. In that case, it can
be regularized with different types of penalties (e.g., the l1 and l2 norm) in order
to prevent overfitting.
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1.5.1.3 Random forest

Random forest (RF) is a typical representative of the ensemble learning method. It
outputs the final decision by constructing a multitude of individual trees at train-
ing time (Ho, 1995). RFs have also been used, although not as frequently as other
approaches, for AD classification (see (Rathore et al., 2017) for details). Most of
the studies adopted the voxel-based approach, which would take decisions at the
voxel level, resulting in a high computational cost.

More generally, ensemble learning approaches can also be adopted with differ-
ent weak classifiers. For instance, in (Farhan, Fahiem, and Tauseef, 2014), a bunch
of different classifiers (e.g., SVM, multilayer perceptron and decision trees) was
used and a majority voting was followed to provide a classification accuracy of
94% for AD vs CN classification.

1.5.2 Deep learning

DL has become more and more popular in the very recent years and has been ap-
plied to various fields, including medical imaging. This section introduces the ba-
sic concepts regarding the key aspects of DL, including the main building layers of
CNN, classical CNN architectures and methods to tackle the overfitting problem.
Readers should feel free to skip this section given their background and knowl-
edge. Conversely, for more details, see (Goodfellow et al., 2016).

1.5.2.1 Main building layers of CNN

CNNs are the most widely used type of network for computer vision and image
analysis. A CNN is made of an input and an output layer, as well as different
hidden layers. The hidden layers typically include convolutional layers, pooling
layers, activation functions and fully connected (FC) layers.

The convolutional layer is the core building block of a CNN. It acts as an auto-
matic feature extractor (on the contrary, conventional ML methods would typically
use hand-craft feature extraction or selection). Convolutional layers apply learn-
able filters to all available receptive fields with a convolutional operation. A filter
or kernel is a 2D (or 3D for MRI) matrix of weights. A receptive field is a local
patch of the input image, of the same size as the filter. The filter is convolved with
all the local receptive fields. The application of a given filter to the whole input
image generates a feature map or activation map. All the feature maps are then
stacked to constitute the output volume of a convolutional layer. Several hyper-
parameters (number of filters, stride size and padding size) control the size of the
output volume (see (Dumoulin and Visin, 2016) for more details).
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Another building block of CNNs is the pooling layer, which reduces the dimen-
sionality of the feature maps. The pooling layer combines the outputs of a cluster
of neurons of the current layer into a single neuron in the next layer (Ciresan et al.,
2011; Krizhevsky, Sutskever, and Hinton, 2012). Pooling can be of different types,
such as max, average and sum pooling (Scherer, Müller, and Behnke, 2010).

To learn a mapping between the adjacent convolutional layers, one applies ac-
tivation functions to the output volume of each convolutional layer. The rectified
linear unit (ReLU) is the most common activation function and ensures a sparse
and non-linear representation (Glorot, Bordes, and Bengio, 2011; Krizhevsky, Sutskever,
and Hinton, 2012; Nair and Hinton, 2010). However, ReLU can be fragile during
backpropagation. Indeed, the fact that ReLU sets all negative values to be zero
can cause the problem of gradient vanishing or dying ReLU. If this happens, the
gradient flowing through the unit will be forever zero during backpropagation.
One alternative, leaky ReLU, can overcome this drawback by introducing a small
negative slope (e.g. 0.01), thus allowing a small positive gradient when the unit is
not active (Maas, Hannun, and Ng, 2013).

FC layers learn the relationship between the features, extracted by previous
convolutional and pooling layers, and the target (in our case the patient’s diag-
nosis). In a FC layer, all the neurons in the current layer are connected to all the
neurons in the previous layer. The output volumes (one for each feature map)
from the previous convolutional layers are first flattened and then fed as input
to the FC. For a n-class classification problem, the output of the last FC layer is
composed of n neurons which values indicate membership to a given class. This
can be transformed into n probabilities by using a softmax function on the outputs
(Goodfellow et al., 2016).

The loss function is used to measure the difference between the predicted and
true labels. Cross entropy loss, measuring the distance between the output dis-
tribution and the real distribution, is widely used in classification tasks (Boer et
al., 2005). Other loss functions were also discussed in the literature, such as mean
squared error (MSE) loss and hinge loss (see (Janocha and Czarnecki, 2017) for
details).

The weights and biases of the network are learned using an optimization algo-
rithm, such as the stochastic gradient descent (SGD). Most often, backpropagation
is used to successively update the weights of the different layers.
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1.5.2.2 Classical CNN architectures

Several CNN architectures have become classical, often due to their performance
on the ImageNet Large Scale Visual Recognition Challenge (ILSVRC): a bench-
mark in object category classification and detection on hundreds of object cate-
gories and millions of images (Deng et al., 2009). These architectures were origi-
nally designed for 2D natural images. However, some of them have been adapted
to the applications of MRIs.

Before the ILSVRC that began in 2010, Yann Lecun proposed LeNet-5 to rec-
ognize handwritten digits from the MNIST database (Lecun et al., 1998). This
network includes seven layers: two convolutional layers associated with pooling
layers, followed by three FC layers.

In 2012, AlexNet (Krizhevsky, Sutskever, and Hinton, 2012) significantly out-
performed all the prior competitors of the ILSVRC, reducing the top-5 error from
26% to 15.3%. The network went deeper than LeNet-5, with more filters per layer.
It consisted of five convolutional layers with decreasing filter size (11x11, 5x5 and
3x3) and three FC layers.

The runner-up at ILSVRC 2014 was VGGNet (Simonyan and Zisserman, 2014),
which consists of 16 convolutional layers. It was appealing because of its uniform
architecture, including only 3x3 convolutional filters cross the entire architecture.
One of the main conclusion of this architecture is that using many small filters of
size 3x3 is more efficient than using only a few filters of bigger size. The winner
of that year was GoogleNet or Inception V1 (Szegedy et al., 2015). It went deeper
(22 layers) and achieved a top-5 error rate of 6.67%. This architecture was inspired
by LeNet-5 and implemented a novel element called the inception layer. The idea
behind the inception layer is to convolve over larger receptive fields, but also keep
a fine resolution based on smaller receptive fields. Thus, different filter sizes (from
1x1 to 5x5) were used in the same convolutional layer.

ILSVRC 2015 was won by the Residual Neural Network (ResNet) (He et al.,
2016) with a top-5 error rate of 3,57%. ResNet includes over a hundred layers by
introducing a novel architecture with shortcut connections that perform identity
mapping and heavy batch normalization. Such shortcut connections make the
deep residual nets easier to optimize than their counterpart “plain” nets.

DenseNet was presented at ILSVRC 2016 (Huang et al., 2017). It introduces the
so-called dense block: each layer receives the outputs of all previous layers as in-
put. The underlying assumption of dense connectivity is that each layer should
have access to all the preceding feature maps and this “collective knowledge”
therefore helps to improve the performance. In the same way than ResNet, dense
connectivity allows the construction of very deep CNNs, such as DenseNet-264
which consists of 264 layers.
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1.5.2.3 Methods to deal with overfitting

Neuroimaging datasets of AD patients are usually of relatively small size (typi-
cally a few hundreds of samples) compared, for instance, to those in computer
vision (typically several million). DL models tend to easily overfit when trained
on small samples due to the large number of learnt parameters (Goodfellow et al.,
2016). Here, we summarize the main strategies to alleviate overfitting.

Data augmentation aims at generating new data samples from the available
training data (Perez and Wang, 2017). It can be categorized into: i) transforma-
tion methods, which apply a combination of simple transformations (e.g. rotation,
distortion, blurring and flipping) on the training data and ii) data synthesis meth-
ods, which aim to learn the training distribution to then generate new samples.
Data synthesis often relies on autoencoders (AE) (Bourlard and Kamp, 1988; Hin-
ton and Zemel, 1994; Yann, 1987) and Generative Adversarial Networks (GANs)
(Goodfellow, 2016).

Dropout randomly and independently drops neurons, setting their output value
to be zero along with their connections (Srivastava et al., 2014). This aims to make
the network less complex and thus less prone to overfitting.

Another approach involves a regularization of the weights which makes the
model less complex. This enhances the generalizability of the model. In DL, a
common regularization is weight decay, where the updated weights are regular-
ized by multiplying by a factor slightly smaller than 1 (Krogh and Hertz, 1992).

Batch normalization is a procedure which normalizes the input of a given set
of layers (the normalization is done using the mean and standard-deviation of a
batch, hence the name) (Ioffe and Szegedy, 2015). This procedure acts as a regu-
larizer, in some cases eliminating the need for dropout (Ioffe and Szegedy, 2015).
In addition, it helps battle against the gradient explosion phenomenon and allows
using much higher learning rates and being less careful about initialization (Pani-
grahi, Chen, and C. Jay Kuo, 2018).

Transfer learning is a broadly defined terminology. In general, it consists in
using a model trained on a given task, called the source task (e.g. ImageNet classi-
fication task or unsupervised learning task), in order to perform a target task (e.g.
AD classification). Here, we introduce two transfer learning approaches that have
been used in the context of AD classification. The first one is based on performing
unsupervised learning before the supervised learning on the task of interest. It is
supposed to be useful when one has limited labeled data but a larger set of unla-
beled data. In that case, the most common approach is to use an AE (Yann, 1987).
Strictly speaking, the AE is made of two parts: an encoder layer and a decoder
layer. Generally, several AEs are stacked, the resulting being called stacked AE,
but which we will refer to as AE for the sake of simplicity. The encoder learns to
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compress the original data and produces a representation, the decoder then recon-
structs the input using only this representation. An illustration of AE is shown
in Figure 1.8. The weights and biases of the target network (e.g. CNNs) are then
initialized with those of the encoder part of AE, which should provide a better
initialization. The second approach involves transferring a model trained on Ima-
geNet to the problem of classification of AD. As for the AE, the weights and biases
of the target network are initialized with those of the source network. The idea
behind is that random weight initialization of DL models may place parameters in
a region of the parameter space where poor generalization occurs, while transfer
learning may provide a better initialization (Erhan et al., 2010).

Figure 1.8: For the n-th AE, the encoder part is made of one convolu-
tional layer (Conv n), one pooling layer (Pooling n) and one activation
function, sequentially. Correspondingly, the decoder part consists of
one activation function, one unpooling layer (Unpooling n) and one
deconvolutional layer (Deconv n), sequentially. The n AEs’s encoder
and decoder parts are separated and then stacked to construct the fi-
nal stacked AE. This layer-wise fashion ensures that the output of the
former AE’s encoder/decoder connects as input for the next AE’s en-
coder/decoder. The intermediate representation provides a reduced

representation of the data.

Early Stopping consists in stopping the learning process at an earlier point.
It aims to determine the number of epochs (or iterations) at which the network
should be stopped before being severely overfitted. For instance, one can select
the model parameters corresponding to the lowest validation error rather than the
last updated parameters. Various other stopping criterions have been proposed
(Prechelt, 2012; Yao, Rosasco, and Caponnetto, 2007; Zhang and Yu, 2005).
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1.5.3 Validation

1.5.3.1 Cross-validation

Cross-validation aims at assessing how the trained model will generalize to an in-
dependent data set. Alternatively stated, it consists of applying the model trained
on a training data (from which the model learns) to the unseen dataset (test data,
where the model is evaluated), while keeping the bias of this estimation as small
as possible. In the application of neuroimaging and ML, it is critical to perform a
proper cross-validation. However, data leakage (Rathore et al., 2017; Kriegeskorte
et al., 2009), the use of information coming from the test set during the training
phase, still occurred in a considerable proportion of peer-reviewed papers in the
literature.

Different strategies may be adopted according to the algorithm you choose. In
the case of conventional ML models, researchers have addressed the importance
of the proper way for the optimization of model hyperparameters (e.g., the C pa-
rameter of SVM, controlling how much you want to avoid misclassifying each sub-
ject). Recent cross-validation guidelines, highly demanding an inner loop of cross-
validation, or nested cross-validation, was proposed in (Varoquaux et al., 2017).
Moreover, bad practices due to this can be witnessed in the literature, where this
step has not been properly followed (Querbes et al., 2009; Wolz et al., 2011), leading
to over-optimistic results, as presented in (Eskildsen et al., 2013; Maggipinto et al.,
2017). On the other hand, the cross-validation in DL seems more tricky. First, un-
like conventional ML models which have limited hyperparameter for optimizing,
DL models have a huge number of hyperparameters for tuning, including both
model architecture hyperparameters (e.g., number of layers) and training hyper-
parameters (e.g., learning rate). Due to the limitation of computational power and
time, one can not try each combination of these hyperparameters in an exhaustive
manner. Moreover, the need of an independent test dataset is more urgent in DL
because the process of hyperparameter optimization could easily contaminate the
so-called test dataset, which is actually the validation dataset in many studies. Ac-
cordingly, the data leakage problem flooded seriously in DL and cautions need to
be advocated. See the State of the art section in Chapter 5 for details.

1.5.3.2 Performance metrics

Different metrics are used to quantify the performance of a trained model. In the
context of a binary classification, accuracy, sensitivity and specificity are most of-
ten used. In this setting, we introduce the following definitions:

• True positive (TP): number of instances that are correctly identified;
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• False positive (FP): number of instances that are incorrectly identified;

• True negative (TN): number of instances that are correctly rejected;

• False negative (FN): number of instances that are incorrectly rejected.

sensitivity =
TP

TP + FN

speci f icity =
TN

TN + FP

accuracy =
TP + TN

TN + FP + TP + FN
Another metric commonly used is the area under the receiver operating char-

acteristic curve (AUC), which quantify the performance measurement for classifi-
cation problem at various thresholds. It tells how much the model is capable of
distinguishing between classes.

Nevertheless, in the domain of neuroimaging, the collected datasets are often
imbalanced, meaning that the majority group has much more subjects than the
minority group. Data imbalance distorts the metric of accuracy. Alternatively, we
encourage to use balanced accuracy, which is the average of the sensitivity and
the specificity. It is less affected by unbalanced data. Unfortunately, through our
literature review, which will be detailed in Chapter 4 and 5, we have found that,
often, only a subset of these metrics is presented, most often the accuracy, leading
to biased performances.

Another question is how to objectively compare the performances across stud-
ies. Many papers claim superiority of an approach with respect to another, based
on either a slightly quantitative improvement of accuracy (e.g., 1 to 3 percentage)
or a statistical test (e.g., t-test). However, such claims are often inadequate be-
cause: i) a few percentage point difference might be related to the specific sample
of subjects at hand and not generalizable to the whole population, and ii) stan-
dard hypothesis tests are not valid in the context of cross-validation (Nadeau and
Bengio, 2000). Instead, a good practice is to report the empirical variance for the
performances. However, one should keep in mind that such approach underes-
timates the true variance, since, as exposed in (Nadeau and Bengio, 2000; Bengio
and Grandvalet, 2004), there is no unbiased estimate of the variance for cross-
validation.
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1.6 Neuroimaging biomarkers of C9orf72 diseases at
presymptomatic stage

FTLD and ALS are neurodegenerative diseases sharing common genetic causes,
the most frequent being the C9orf72 gene (DeJesus-Hernandez et al., 2011; Ren-
ton et al., 2011), accounting for between 13% and 26% of genetic cases (Mahoney
et al., 2012a). The clinical phenotype associated with C9orf72 repeat expansion
could be bvFTD, ALS, FTD-ALS or less commonly PPA (Snowden et al., 2012).
The presymptomatic stage can be defined as the stage during which pathological
changes accumulate in the absence of any symptoms, but the underlying pathol-
ogy may become active already. Thus, robust biomarkers are highly demanded
in order to track and monitor the disease trajectory, especially at the presymp-
tomatic stage. From a clinical trial perspective, presymptomatic carriers of ge-
netic mutation represent the optimal target population for the development of new
disease-modifying treatments against C9orf72 carriers. It is now well-known that
neurodegenerative diseases cause biological and morphological changes decades
before symptom onset (Bateman et al., 2012); the presymptomatic stage represents
the best time for therapeutic interventions because it allows stopping the neurode-
generative process before irreversible brain damage occurs. Thus, establishing the
chronology of structural and microstructural changes during the presymptomatic
stage is crucial to identify markers of disease progression and monitor the effect of
treatments.

Researchers have tried to establish the blueprint of neuroimaging-based biomark-
ers at the presymptomatic phase (Rohrer et al., 2015; Walhout et al., 2015; Lee et
al., 2016; Cash et al., 2017; Papma et al., 2017; Popuri et al., 2018; Bertrand et al.,
2017; Papma et al., 2017; Jiskoot, 2018). The modalities involved among these
studies are T1w MRI (Rohrer et al., 2015; Walhout et al., 2015; Lee et al., 2016;
Cash et al., 2017; Papma et al., 2017; Popuri et al., 2018), diffusion MRI (Lee et
al., 2016; Bertrand et al., 2017; Papma et al., 2017) and functional MRI (Lee et al.,
2016). Moreover, recent preclinical development of disease-modifying drugs, such
as antisense oligonucleotides that target mutant RNA, offer promising therapeutic
perspectives in C9orf72 disease. However, no robust biomarkers of genetic FTLD
exist yet to i) stratify correctly into treatment groups based on the pathological
subtypes, ii) assess the diseases severity and progression, iii) discriminate between
the disease stages (e.g., presymptomatic stage or late symptomatic stage) and iv)
finally to track and monitor disease progression and the therapeutic treatment re-
sponse. Please refer to (Floeter and Gendron, 2018; Jiskoot, 2018) for more details
on biomarkers of C9orf72 disease.
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1.7 Classification of AD based on neuroimaging data

Early and accurate diagnosis of AD is difficult, partly because of the large number
of measures involved, such as neuroimaging and fluid biomarkers or neuropsy-
chological tests. The ability of ML algorithms to learn relevant patterns within the
data is expected to enable accurate automatic classifications and predictions.

It has been suggested that the neuroimaging-based biomarkers can be valuable
to track the characteristics of neurodegeneration, as measured with structural MRI
(Frisoni et al., 2010). Further alterations quantified by other modalities were also
discussed (Agosta et al., 2012). However, the subtle changes at the early stages of
AD are difficult to distinguish. Thus early and accurate identification of patients
with AD remains challenging. In recent years, a large body of papers has been
published on neuroimaging and machine learning (ML) techniques for automatic
classification of AD. Depending on the stages that are considered, different classi-
fication tasks can be formulated.

• i) AD vs CN: to classify patients with AD dementia (AD) from cognitively
normal subjects (CN);

• ii) MCI vs CN: to classify subjects with mild cognitive impairment from cog-
nitively normal subjects;

• iii) pMCI vs sMCI: to distinguish the progression of MCI subjects to AD,
meaning to classify subjects that will progress to AD (denoted as pMCI) in
the future (e.g. in 12, 18 or 36 months) from those who will remain stable
(denoted as sMCI);

• iv) AD vs MCI: to classify patients with AD dementia from the MCI subjects;

• v) multiclass classification: to classify subjects into one of three or more
classes.

A large majority of studies (see (Magnin et al., 2009; Vemuri et al., 2008; Klöppel
et al., 2008) for example) examined the task of AD vs CN and achieved encourag-
ing but varied performances, generally ranging from 76% to 95% of accuracy for
conventional ML methods (see review paper (Rathore et al., 2017) for details), from
80% to 100% for DL methods. The distinguishable pattern between AD and CN
is evident and easily detectable in MRI and cognitive tests, thus the translation
to clinical practice from this task is limited, but it could be useful to reinforce the
confidence in the diagnosis.
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Other studies have then focused on discriminating MCI subjects from cogni-
tively normal subjects (MCI vs CN). The difficulty of this task is the heterogene-
ity of the MCI state, which means that a MCI subject could possibly develop AD
but also other neurodegenerative diseases, or remain stable as MCI or even revert
back to the CN stage. Therefore, this task may not be very relevant to predict AD
directly, but a large number of papers has performed this task. The obtained clas-
sification accuracy typically ranges from 65% to 85% for conventional ML, even
though a few studies reach over 90% (Rathore et al., 2017), and from 62% to 98%
for DL.

A more challenging task is to predict the progression of MCI subjects to AD:
pMCI vs sMCI. In the literature, the classification perforances varied across stud-
ies, ranging from 62% to 83% for conventional ML (Rathore et al., 2017) and from
62% to 83% for DL. Indeed, a few studies achieved higher accuracies (e.g., Cabral
et al., 2015). Nevertheless, such results must be taken with caution since some
of these studies involved i) small samples (Misra, Fan, and Davatzikos, 2009;
Cabral et al., 2015), ii) imbalanced groups and iii) inadequate details on the cross-
validation procedure, which may lead to over-optimistic results.

The task of AD vs MCI was also presented in the literature (see (Wee et al., 2013;
Lillemark et al., 2014) as example). The performances across papers differ, ranging
from 70% to 90% for conventional ML (Rathore et al., 2017) and from 67% to 100%
for DL. However, with similar limitations, these performances may be biased and
over-optimistic.

Apart from the binary classification tasks mentioned above, researchers have
also looked at multiclass classification. Generally, this is more challenging and
several papers used DL, most often convolutional neural networks (CNN), for that
purpose. The performances vary according to the specific tasks and the validity of
their methodology (see (Islam and Zhang, 2018; Valliani and Soni, 2017) as exam-
ple).

The review papers, such as in (Rathore et al., 2017) aid to get an overview of
the state of the art. In the current PhD, we performed a systematic and exhaus-
tive literature search regarding classification of AD using conventional ML with
diffusion MRI (see Chapter 4) and CNNs with anatomical MRI (see Chapter 5).
According to the high accuracies obtained in the literature, one may question how
much confidence we can put on the reported accuracies? One step further, how far
are we away from the translation to clinical practice? One will see in the results of
our literature reviews that the reported accuracies in the literature are not directly
comparable across studies. Moreover, the high accuracies, sometimes nearly a per-
fect accuracy, are not always reliable due to the existence of bad practices.
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1.8 Datasets

In this section, we briefly present the datasets which were used in this dissertation.

1.8.1 PREVDEMALS dataset for C9orf72 carriers

PREVDEMALS is a national multicentric study cohort which enrolled patients
and their first-degree relatives of C9orf72 mutation carriers from 48 families. This
study was approved by the Comité de Prévention des Personnes Ile de France VI
of the Hôpital Pitié-Salpêtrière, and written informed consent was obtained from
all participants.

The aim of this study is to identify biomarkers of this disease at the presymp-
tomatic stage. All the patients underwent an anatomical MRI (T1w MRI), diffu-
sion MRI (both single-shell and multi-shell diffusion MRI), functional MRI, FLAIR
MRI, arterial spin labeling (ASL) MRI, FDG PET scans and cognitive tests. We
used only the T1w and diffusion MRI data in this dissertation.

1.8.2 Public databases for AD

Three publicly available datasets have been mainly used for the study of AD:
the Alzheimer’s Disease Neuroimaging Initiative (ADNI), the Australian Imaging,
Biomarkers and Lifestyle (AIBL) and the Open Access Series of Imaging Studies
(OASIS). In the following, we briefly describe these datasets and provide expla-
nations on the diagnosis labels provided. Indeed, the diagnostic criteria of these
studies differ, hence there is no strict equivalence between the labels of ADNI and
AIBL, and those of OASIS.

The ADNI study is composed of 4 cohorts: ADNI-1, ADNI-GO, ADNI-2 and
ADNI-3. These cohorts are dependent and longitudinal, meaning that a given pa-
tient may be examined at multiple points in time and that different cohorts may
include the same patients. Many modalities are included in these datasets includ-
ing clinical, genetic, imaging (MRI and PET) data, as well as biospecimen analyses
such as blood, urine and cerebrospinal fluid (CSF). Diagnosis labels are given by a
physician after a series of tests (Petersen et al., 2010). The existing labels are:

• AD (Alzheimer’s disease): mildly demented patients;

• MCI (mild cognitive impairment): patients in the prodromal phase of AD;

• NC (normal controls): elderly control participants;
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• SMC (significant memory concern): participants with cognitive complaints
and no abnormal neuropsychological findings. The designations SMC and
subjective cognitive decline (SCD) are equivalently found in the literature.

Since the ADNI-GO and ADNI-2 cohorts, new patients at the very beginning of
the prodromal stage have been recruited (Aisen et al., 2010), hence the MCI label
has been split into two labels:

• EMCI (early MCI): patients at the beginning of the prodromal phase;

• LMCI (late MCI): patients at the end of the prodromal phase (similar to the
previous label MCI of ADNI-1).

The AIBL project includes a longitudinal cohort of patients. Several modalities
are present in the dataset, such as clinical and imaging (MRI and PET) data, as
well as the analysis of blood and CSF samples. As in ADNI, the diagnosis is given
according to a series of clinical tests (Ellis et al., 2010; Ellis et al., 2009) and the
existing labels are AD, MCI and NC.

The OASIS project includes three cohorts, OASIS-1, OASIS-2 and OASIS-3. The
first cohort OASIS-1 is only cross-sectional, whereas the other two are longitudinal.
Available data is far more limited than in ADNI with only few clinical tests and
imaging data (MRI and PET only in OASIS-3). Diagnosis labels are given only
based on the clinical dementia rating (CDR) scale (Marcus et al., 2007). Two labels
can be found in the OASIS-1 dataset:

• AD, which corresponds to patients with a non-null CDR score. This class
gathers patients who would be spread between the MCI and AD classes in
ADNI. A subdivision of this class is done based on the CDR, the scores of
0.5, 1, 2 and 3 representing very mild, mild, moderate and severe dementia,
respectively;

• Control, which corresponds to patients with a CDR of zero. Unlike in ADNI,
some of the controls are younger than 55.

In many datasets, the label related to the stability of the diagnosis (i.e. sMCI
and pMCI) is not given in the baseline data and must be deduced from the lon-
gitudinal data. The way these labels were defined in our study is described in
the Materials section and its implementation is available at: https://gitlab.
icm-institute.org/aramislab/AD-ML.

Note that some of the image preprocessing steps may have already been per-
formed by the dataset provider. However, different preprocessing pipelines can be
run on the same dataset, so the name of the dataset does not provide sufficient in-
formation to know which methods have been applied to the data. It is thus crucial
to describe all the preprocessing steps applied to the subjects’ images.

https://gitlab.icm-institute.org/aramislab/AD-ML
https://gitlab.icm-institute.org/aramislab/AD-ML
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Chapter 2

Early Cognitive, Structural, and
Microstructural Changes in
Presymptomatic C9orf72 Carriers
Younger Than 40 Years

This chapter has been published as a journal article on JAMA Neurology (Bertrand
et al., 2017):

• Bertrand, A., Wen, J. (Co-first author), Rinaldi, D., Houot, M., Sayah, S.,
Camuzat, A., Fournier, C., Fontanella, C., Routier, A., Couratier, P., Pasquier,
F., Habert, M., Hannequin, D., Martinaud, O., Caroppo, P., Levy, R., Dubois,
B., Brice, A., Durrleman, S., Colliot, O., Le Ber, I. Early Cognitive, Structural,
and Microstructural Changes in Presymptomatic C9orf72 Carriers Younger
Than 40 Years, JAMA neurology, 75(2), pp.236-245. https://hal.inria.fr/
hal-01654000/document.

2.1 Abstract

IMPORTANCE Presymptomatic carriers of chromosome 9 open reading frame 72
(C9orf72) mutation, the most frequent genetic cause of frontotemporal lobar de-
generation and amyotrophic lateral sclerosis, represent the optimal target popula-
tion for the development of disease-modifying drugs. Preclinical biomarkers are
needed to monitor the effect of therapeutic interventions in this population.

OBJECTIVES To assess the occurrence of cognitive, structural, and microstruc-
tural changes in presymptomatic C9orf72 carriers.

DESIGN,SETTING,AND PARTICIPANTS The PREVDEMALS study is a prospec-
tive, multicenter, observational study of first-degree relatives of individuals car-
rying the C9orf72 mutation. Eighty-four participants entered the study between
October 2015 and April 2017; 80 (95%) were included in cross-sectional analyses

https://hal.inria.fr/hal-01654000/document
https://hal.inria.fr/hal-01654000/document
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of baseline data. All participants underwent neuropsychological testing and mag-
netic resonance imaging; 63 (79%) underwent diffusion tensor magnetic resonance
imaging. Gray matter volumes and diffusion tensor imaging metrics were calcu-
lated within regions of interest. Anatomical and microstructural differences be-
tween individuals who carried the C9orf72 mutation (C9+) and those who did not
carry the C9orf72 mutation (C9-) were assessed using linear mixed-effects models.
Data were analyzed from October 2015 to April 2017.

MAIN OUTCOMES AND MEASURES Differences in neuropsychological scores,gray
matter volume, and white matter integrity between C9+ and C9- individuals.

RESULTS Of the 80 included participants, there were 41 C9+ individuals (24[59%]
female; mean [SD] age, 39.8 [11.1] years) and 39 C9- individuals (24 [62%] female;
mean [SD] age, 45.2 [13.9] years). Compared with C9- individuals, C9+ individ-
uals had lower mean (SD) praxis scores (163.4 [6.1] vs 165.3 [5.9]; P = 0.01) and
intransitive gesture scores (34.9 [1.6] vs 35.7 [1.5]; P = 0.004), atrophy in 8 cor-
tical regions of interest and in the right thalamus, and white matter alterations
in 8 tracts. When restricting the analyses to participants younger than 40 years,
compared with C9- individuals, C9+ individuals had lower praxis scores and in-
transitive gesture scores, atrophy in 4 cortical regions of interest and in the right
thalamus, and white matter alterations in 2 tracts.

CONCLUSIONS AND RELEVANCE Cognitive, structural, and microstruc-
tural alterations are detectable in young C9+ individuals. Early and subtle praxis
alterations, underpinned by focal atrophy of the left supramarginal gyrus, may
represent an early and non-evolving phenotype related to neurodevelopmental
effects of C9orf72 mutation. White matter alterations reflect the future phenotype
of frontotemporal lobar degeneration/amyotrophic lateral sclerosis, while atro-
phy appears more diffuse. Our results contribute to a better understanding of the
preclinical phase of C9orf72 disease and of the respective contribution of magnetic
resonance biomarkers.

2.2 Introduction

Frontotemporal lobar degeneration (FTLD) and amyotrophic lateral sclerosis (ALS)
are neurodegenerative dis- eases with common genetic causes, the most frequent
being a GGGGCC repeat expansion in the chromosome 9 open reading frame 72
(C9orf72) gene (DeJesus-Hernandez et al., 2011; Renton et al., 2011). This expan-
sion may lead to a loss of C9orf72 function and causes abnormal neuronal ag-
gregation of nuclear RNA foci, dipeptides repeats (DPR), and transactive response
DNA-binding protein 43 (TDP-43) inclusions (Cruts et al., 2013). Recent preclinical
development of disease-modifying drugs, such as antisense oligonucleotides that
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tar-get mutant RNA, offer promising therapeutic perspectives in C9orf72 disease
(Donnelly et al., 2013; Jiang et al., 2016).

Presymptomatic carriers of genetic mutation represent the optimal target pop-
ulation for the development of new disease-modifying treatments against FTLD
and ALS. It is now established that neurodegenerative diseases cause biological
and morphological changes decades before symptom onset (Bateman et al., 2012);
the presymptomatic stage represents the best time-window for therapeutic inter-
ventions, by allowing the possibility to stop the neurodegenerative process be-
fore irreversible brain damage. Establishing the chronology of structural and mi-
crostructural changes during the presymptomatic stage is thus crucial, in order to
identify markers of disease progression and monitor the effect of treatments. Three
studies (Lee et al., 2016; Rohrer et al., 2015; Walhout et al., 2015) have suggested
that atrophy, studied with anatomical MRI, could be detected years before symp-
tom onset in C9orf72 presymptomatic carriers, but were limited by the small num-
ber of participants. One study also detected alterations of white matter integrity,
using diffusion MRI (Lee et al., 2016), but another failed to identify such changes
(Walhout et al., 2015). The present work aims at assessing cognitive, structural and
microstructural changes in a large cohort of asymptomatic C9orf72 carriers, in or-
der to characterize the presymptomatic course of the disease and identify potential
neuroimaging biomarkers of preclinical disease progression.

2.3 Material and Methods

2.3.1 Participants

Eighty-four individuals out of 48 C9orf72 families, all first degree relatives of
C9orf72 mutation carriers, were enrolled in a national multicentric study (PrevDe-
mAls) between 2015 and 2017.

At inclusion, asymptomatic status of participants was ascertained based on rel-
ative’s interview, neurological examination and the normality of behavioral scales
and neuropsychological scores, taking into account age and educational level.
Neuropsychological tests are detailed in Supplementary A eMethod1. Two partic-
ipants were excluded from the analysis because mild cerebellar syndrome or cog-
nitive impairment were detected during the visit; two other participants were ex-
cluded because of incomplete MRI protocol. Eighty neurologically healthy partic-
ipants were finally included in the analyses. The C9orf72 genetic status was deter-
mined by repeat-primed-PCR on lymphocytes DNA. Forty-one participants (C9+)
carried a pathogenic expansion (>23 GGGGCC repeats); 39 participants without
expansion (C9-) constituted the control group. Expected ages at onset of C9orf72
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carriers were estimated by averaging the ages at onset of affected relatives, simi-
larly to previous studies (Rohrer et al., 2015).

2.3.2 MRI acquisition

All MRI acquisitions were performed on a 3T MR system (Siemens Prisma 3T
n= 64; Philips Achieva 3T n= 9; GE 3T n=7), in 3 imaging centers belonging to
the harmonized national network of CATI (Centre d’Acquisition et de Traitement
d’Images, cati-neuroimaging.com/) (Operto et al., 2016). CATI performs on-site
visits for the setup of imaging protocols and regular follow-up. 3DT1 sequence
parameters were similar for the 3 centers, while DTI sequence was performed in
only one center (see Supplementary A eMethod2 for detailed sequence parame-
ter). Systematic quality check of MR images were performed by CATI, using a
dedicated software programme with quantitative and qualitative indices, allow-
ing the check for 1) protocol consistency (MRI scanner, software version, type of
reception coil, acquisition slab position, sequence parameters and sequence order);
2) presence and localization of artifacts (motion artifacts, spike artifacts, other); 3)
overall image quality based on signal-to-noise ratio, contrast-to-noise ratio and in-
tensity non-uniformity (Operto et al., 2016). Among the 80 MR dataset, 75 (94%)
were considered of good quality and 5 (6%) of acceptable quality.

2.3.3 Anatomical MRI processing

FreeSurfer image analysis software 5.3 (http://surfer.nmr.mgh.harvard.edu) was
used to process the T1-weighted images. The processing pipeline included non-
uniformity and intensity correction, skull stripping, grey/white matter segmen-
tation, reconstruction of the cortical surface, extraction of cortical ROI volumes
using the Desikan atlas, and subcortical ROI volumes and total intracranial vol-
ume (TIV) using the aseg atlas. We used for analyses the normalized volume of
each ROI, defined as NVROI = (TIVm.VROI)/TIV, where TIVm is the average to-
tal intracranial volume computed across all participants, which is constant, and
VROI is the volume of the ROI. The role of the constant multiplicative factor TIVm
is simply to preserve the order of magnitude of NVROI similar to that of VROI.

2.3.4 Diffusion MRI processing

All raw DWI volumes were aligned to the average b0 image with first 6 degrees
of freedom (dof), to correct for head motion, and diffusion directions were ap-
propriately updated (Leemans and Jones, 2009). A registration with 12 dof was
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used to correct for eddy current distortions. These registrations were done us-
ing the FSL flirt tool (www.fmrib.ox.ac.uk/fsl). Field map image was used to
correct for echo-planar imaging (EPI) induced susceptibility artifacts (Jezzard and
Balaban, 1995) with the FSL prelude/fugue tools. DWI volumes were corrected
for nonuniform intensity using ANTs N4 bias correction algorithm (Tustison and
Avants, 2013). A single multiplicative bias field from the averaged b0 image was
estimated (Jeurissen et al., 2014). The DWI datasets were up-sampled at 1mm in
order to improve the registration between the T1-weighted image and the DWI. A
diffusion tensor model was fitted at each voxel to calculate Fractional Anisotropy
(FA), Mean Diffusivity (MD), Radial Diffusivity (RD) and Axial Diffusivity (AD)
maps. White matter tracts were defined using the JHU white-matter tractography
atlas (Mori et al., 2005), with a 25% probabilistic threshold. For each subject, the
FA map was registered onto the JHU atlas template with the ANTs SyN algorithm
(Avants et al., 2008). Then, the estimated non-linear deformation was applied to
the parametric maps and we extracted, in each patient, the average values of DTI
metrics (FA, MD, RD and AD) within each tract of the JHU atlas.

2.3.5 Statistical analysis

Statistical analyses were performed using R 3.4.0 (The R Foundation for Statistical
Computing, Vienna, Austria) and GraphPad Prism 7.0 (La Jolla, CA, USA). De-
mographic characteristics and clinical tests were compared between groups using
chi-squared test (for dichotomous and categorical variables) or Mann-Whitney test
(for numerical variables). Structural and microstructural differences between car-
riers and non-carriers of the C9orf72 mutation were assessed using linear mixed-
effects models. We used real age and group (i.e., mutation status) as fixed effects,
and family membership as random effect, with the following model:

yj
ik = µ + b ⇥ genderi + l ⇥ agei + h ⇥ groupi + Uk + e

j
ik

where yj
ik is the response of the jth ROI for the ith subject and the kth family; genderi,

agei and groupi are the fixed effects; µ, b, l and h are their estimated parameters;
Uk is the random effect measuring the difference between the average response in
the family and in the whole population; e

j
ik is the random error.

www.fmrib.ox.ac.uk/fsl
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2.4 Results

2.4.1 Participants

There were no statistical differences between C9+ and C9- subjects regarding age
at evaluation and demographic characteristics (Table 3.1). In C9+ subjects, real age
and expected years to onset were strongly correlated (Supplementary A eFigure 1,
p < 0.001; r2 = 0.802, Pearson correlation coefficient), with a mean estimated age
of onset of 58.9 ± 4.9 years. C9+ subjects had significantly lower praxis score; this
difference remained statistically significant in subjects  40-year-old, who were
25.4 ± 8.1 years to onset (165.2 ± 3.4 in C9+ vs. 167.6 ± 0.6 in C9-, p=0.036).
Praxis score was significantly correlated with age in both C9+ and C9- (Fig. 2.1 B).
When analyzing the subscores of praxis test, all were lower for the C9+ group, but
statistical significance was reached only for the subscore of non-transitive gestures
(Fig. 2.1 C); this difference remained statistically significant in subjects  40-year-
old (35.0 ± 1.7 in C9+ vs. 36 ± 0 in C9-, p = 0.036). Lastly, the total recall score of
the FCRT test was significantly lower in C9+ as compared to C9- (Fig. 2.1E), but
with a large overlap of scores between the 2 groups (Fig. 2.1 F), and no significant
difference among subjects  40-year-old (47 ± 1.3 in C9+ vs. 47 ± 1.4 in C9-, p =
0.08).
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Characteristic Mean(SD) P Value
C9-(n = 39) C9+(n = 41)

Demographic characteristics
Age, y 45.2 (13.9) 39.8 (11.1) 0.08
<40 y, No. (%) 16 (41) 22 (54) NA
Female, No. (%) 24 (62) 24 (59) 0.78
Right laterality, No. (%) 33 (85) 35 (85) 0.92
Expected time to onset, y NA 19.3 (11.2) NA
Familial phenotype, No. (%)
FTLD 15 (38) 18 (44)

0.77
ALS 2 (5) 3 (7)
Mixed 21 (54) 20 (49)
Unavailable 1 (3) 0
MMSE score (maximum, 30) 28.8 (1.5) 28.6 (1.3) 0.34
MDRS score
Total score (maximum, 144) 141.5 (3.2) 141.4 (2.6) 0.54
Initiation (maximum, 37) 36.5 (1.3) 36.6 (1.1) 0.72
Concept (maximum, 39) 38.3 (1.2) 38.3 (1.1) 0.75
Attention (maximum, 37) 36.7 (0.8) 36.7 (0.6) 0.95
Construction (maximum, 6) 5.9 (0.2) 6.0 (0.0) 0.23
Memory (maximum, 25) 24.0 (1.4) 23.8 (1.6) 0.81
FBI 0.8 (1.8) 1.3 (2.6) 0.54
FAB score (maximum, 18) 16.8 (1.4) 17.1 (0.9) 0.39
Mini-SEA
Emotion recognition test (maximum, 35) 29.9 (2.7) 29.8 (2.5) 0.73
Faux pas test (maximum, 30) 26.2 (4.7) 25.6 (3.5) 0.13
Praxis score
Total score (maximum, 168) 165.3 (5.9) 163.4 (6.1) 0.01
Finger dexterity (maximum, 36) 35.5 (1.2) 35.4 (1.2) 0.57
Melokinetic apraxia (maximum, 24) 23.2 (1.5) 22.8 (2.3) 0.37
Nonrepresentational gestures (maximum, 36) 35.7 (0.9) 35.4 (1.2) 0.16
Intransitive gestures (maximum, 36) 35.7 (1.5) 34.9 (1.6) 0.004
Transitive gestures (maximum, 36) 35.2 (2.0) 34.9 (2.9) 0.79
Benson figure
Copy (maximum, 17) 16.5 (0.8) 16.6 (0.6) 0.92
Recall (maximum, 17) 12.8 (2.2) 13.0 (2.5) 0.52
Free and cued recall test
Free recall (maximum, 48) 35.6 (4.8) 32.9 (5.5) 0.06
Total recall (maximum, 48) 47.1 (1.5) 46.4 (1.5) 0.005
Delayed free recall (maximum, 16) 13.2 (2.1) 13.0 (2.2) 0.88
Delayed total recall (maximum, 16) 15.5 (1.8) 15.6 (0.9) 0.70
Boston naming test (maximum, 30) 27.2 (2.0) 27.2 (2.2) 0.93
Fluency tasks
Categories (animals) 36.1 (10.3) 36.3 (7.1) 0.82
Letter (P) 24.7 (8.0) 23.5 (6.5) 0.23

Table 2.1: Study Group Characteristics. Abbreviations: ALS, amy-
otrophic lateral sclerosis; C9-, individuals without the C9orf72 muta-
tion; C9+, individuals with the C9orf72 mutation; FAB, frontal assess-
ment battery; FBI, Frontal Behavioural Inventory; FTLD, frontotem-
poral lobar degeneration ; MMSE, Mini-Mental State Examination;
MDRS, Mattis dementia rating scale; NA, not applicable; SEA, Social

Cognition and Emotional Assessment.
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Figure 2.1: Early Cognitive Changes in C9orf72 Mutation Carriers.
Outliers are presented as individual data points. The exact age of
individuals is not provided to prevent individuals from identifying

their mutation status.

2.4.2 Association of C9orf72 Mutation With Cortical Structures

C9+ participants showed diffuse cortical atrophy within the associative cortex,
with a sparring of primary sensorimotor and visual cortex, frontobasal cortex, and
superior temporal cortex (Figure 2.2A). After correction for multiple comparisons,
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this association remained significant for 1 frontal, 3 inferior temporal, and 4 pari-
etal ROIs (Figure 2.2B) (eTable 1 in the Supplementary A). In these 8 ROIs, we
performed the same analyses restricted to participants younger than 40 years and
found significant atrophy within the right caudal middle frontal cortex, left and
right precuneus cortex, and left supramarginal cortex.

Figure 2.2: Cortical Atrophy in C9orf72 Mutation Carriers. Color-
coded representation of P values corresponding to the association of
C9orf72 mutation with the volume of cortical regions of interest be-
fore (A) and after (B) correction for multiple comparisons. C, Graphs
of normalized cortical volumes as a function of age in individuals
who carried the C9orf72 mutation (C9+) and individuals who did not
carry the C9orf72 mutation (C9-). The exact age is not provided to

prevent individuals from identifying their mutation status.

2.4.3 Association of C9orf72 Mutation With Subcortical Structures

C9+ participants showed significant atrophy in the left and right thalamus com-
pared with C9- participants (Figure 2.3A). After correction for multiple compar-
isons, this association remained significant for the right thalamus (Figure 2.3B)
(eTable 2 in the Supplementary A) and persisted when restricting the analysis to
participants younger than 40 years.
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Figure 2.3: Subcortical Atrophy in C9orf72 Mutation Carriers. Color-
coded representation of P values corresponding to the association of
C9orf72 mutation with the volume of subcortical structures before (A)
and after (B) correction for multiple comparisons. C, Graph of nor-
malized thalamic volumes in the left thalamus as a function of age in
individuals who carried the C9orf72 mutation (C9+) and individuals
who did not carry the C9orf72 mutation (C9-). D, Graph of normal-
ized thalamic volumes in the right thalamus as a function of age in
C9+ and C9- individuals. The exact age is not provided to prevent

individuals from identifying their mutation status.

2.4.4 Association of C9orf72 Mutation With White Matter Microstruc-
ture

C9+ participants showed diffuse alteration of white matter microstructure (i.e., de-
creased fractional anisotropy, increased mean diffusivity, axial diffusivity, and ra-
dial diffuivity), predominating in frontal regions and affecting corticospinal tracts
bilaterally (Figure 2.4) (eTable 3 and eFigure 2 in the Supplementary A). Only for
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this modality, we observed that the oldest C9+ participant was an outlier for some
DTI metrics (eFigure 2 in the Supplementary A); to make sure that results were
not driven by this outlier, we performed the same analyses without this partici-
pant and still found significant differences in 23 DTI metrics (instead of 27) within
the same white matter tracts. After correction for multiple comparisons, 8 tracts
remained significantly altered: the left corticospinal tract, the right anterior thala-
mic radiation, 4 tracts connected to the frontal lobes (i.e., forceps minor, bilateral
inferior fronto-occipital fasciculus, and right superior longitudinal fasciculus), and
2 tracts connected to the temporal lobes (i.e., bilateral inferior longitudinal fasci-
culus). In these tracts, we performed the same analyses restricted to participants
younger than 40 years and still found significantly increased radial diffusivity and
decreased fractional anisotropy within the right anterior thalamic radiation and
increased radial diffusivity within the right forceps minor.

Figure 2.4: Alterations of White Matter in C9orf72 Mutation Carriers.
Color-coded representation of P values corresponding to the associ-
ation of C9orf72 mutation with the diffusion tensor magnetic reso-
nance imaging scalars of white matter regions of interest, both before

(left 3) and after (right 3) correction for multiple comparisons.
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2.4.5 Correlation Between Structural Changes and Clinical Scores

We looked for possible correlations between the neuropsychological scores altered
in C9+ participants (i.e., praxis, intransitive gestures, and free cued and recall test
scores) and the markers of structural and microstructural alterations in C9+ partic-
ipants (i.e., volume of cortical and subcortical regions and DTI metrics significantly
altered in C9+ individuals after correction for multiple comparisons). No correla-
tion was found between the 3 scores and structural or microstructural changes.

2.5 Discussion

Using a large cohort of presymptomatic C9orf72 carriers, this study reveals unex-
pected results. We show that cognitive, structural, and microstructural changes
can be detected very early in C9+ individuals aged 20 to 40 years, corresponding
to a mean (SD) time to expected onset of 25.4 (8.1) years. We also show that praxis
score appears as the first cognitive do- main to be altered in young C9+ individ-
uals. Lastly, we show that presymptomatic C9+ individuals display distinct pat-
terns of atrophy and white matter alterations; cortico- subcortical atrophy appears
as a diffuse process, while white matter microstructural changes predominate in
the areas specifically affected during FTLD and ALS.

In this study, we choose to model the effect of C9orf72 mutation on atrophy
and white matter microstructure using the real age of subjects. Instead of real
age, some authors (Rohrer et al., 2015) have used the distance to mean age of on-
set in affected relatives, as an estimation of expected years to onset in presymp-
tomatic carriers of C9orf72. However, age of onset is highly variable even within
individuals of the same family, one of the possible reasons being a possible antic-
ipation phenomenon (Van Mossevelde et al., 2017). Thus, it must be highlighted
that quantification of the effects of C9orf72 mutation on brain structure remains
currently limited by the difficulty to accurately estimate expected age at onset in
presymptomatic carriers.

2.5.1 Cognitive, Structural and Microstructural Changes are De-
tected in Young C9+ Subjects

During the preclinical course of neurodegenerative diseases, structural changes
are expected 10-15 years and clinical changes 5 years before expected symptom
onset, according to the largest presymptomatic FTLD (Rohrer et al., 2015) and
Alzheimer’s disease cohorts (Bateman et al., 2012; Benzinger et al., 2013). How-
ever, the pace of progression varies depending on the underlying mutation. In
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C9orf72-FTLD patients, disease duration can be remarkably long (Gómez-Tortosa
et al., 2013; Khan et al., 2012; Suhonen et al., 2015) and atrophy progresses at a
slow rate (Whitwell et al., 2015), as compared to other genetic or sporadic forms.
Thus, it is conceivable that the preclinical phase of C9orf72 disease would last
particularly long. Our study evidences that subtle cognitive, structural and mi-
crostructural alterations can be detected in young C9orf72 carriers before 40 years
of age. This finding suggests that young subjects may represent the optimal tar-
get population for future disease-modifying interventions. Previous studies have
suggested that atrophy emerge in young C9orf72 carriers (Lee et al., 2016; Rohrer
et al., 2015), either based on group differences obtained on extrapolated measures
(Rohrer et al., 2015), or because no acceleration of atrophy was detected during
aging in C9orf72 carriers (Lee et al., 2016). Our results confirm this hypothesis,
by showing significant differences of metrics directly measured in young C9+ and
C9- subjects.

2.5.2 Praxis Impairment Is an Early Feature of C9orf72 Disease

The evidence of subtle praxis alterations in young C9+ subjects is a surprising
result. One study has suggested that cognitive and behavioral changes could oc-
cur 10 to 15 years from symptom onset in presymptomatic C9orf72 carriers, based
on extrapolated data (Rohrer et al., 2015); however, praxis evaluation was not re-
ported. Our result is particularly striking, as a clear separation was visible between
the praxis scores of C9+ and C9- young individuals (Figure 2.1B). Praxis score
has been reported to decrease during normal aging (Peigneux and Linden, 1999;
Rodrigues Cavalcante and Caramelli, 2009); similarly, it was inversely correlated
with age in both C9- and C9+ subjects in our study (Figure 2.1B). The difficulty
of this task may explain its sensitivity to detect subtle preclinical changes in C9+
subjects. The observed impairment in non-transitive gestures (symbolic gestures
without the use of an object) is a feature of ideomotor apraxia, which involves
the posterior part of the left parietal lobe, mainly the left supramarginal gyrus
(Króliczak, Piper, and Frey, 2016). Consistently, the impairment in non-transitive
gestures in young C9+ subjects was associated with a focal atrophy of this region
(i.e., left supramarginal cortex). No correlation was detected between volume of
left supramarginal cortex and non-transitive gesture score in C9+ subjects; this lack
of correlation was likely related to the relatively low variance of the score, which
was only slightly altered in C9+ (1 to 6 points below the normal score of 36, see Fig-
ure 2.1D). Praxis alteration was unexpected, as it is not a salient feature of C9orf72
FTLD; although it has been occasionally reported (Floris et al., 2015; Mahoney et
al., 2012b; Mahoney et al., 2012a; Van Langenhove et al., 2013), it is usually less
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marked than executive and behavioral dysfunction (Devenney et al., 2014; Floeter
et al., 2017; Sha et al., 2012; Suhonen et al., 2017). Thus, praxis impairment may
represent an early-expressed and non-evolving phenotype of C9orf72 mutation.
These intriguing findings stress the need to characterize C9orf72 mutation alter-
ations on the scale of the entire lifespan of mutation carriers, including childhood,
in order to disentangle possible developmental alterations (Lee et al., 2016; Wal-
hout et al., 2015), from potential preclinical prognostic markers of C9orf72 disease.
It also emphasizes the fact that neuropsychological features of C9orf72 mutation
may extend well beyond the classical spectrum of FTLD, and require extensive
neuropsychological characterization.

Additionally, we also observed a slight decrease in recall performance in C9+
carriers. Interestingly, C9orf72 mutation is associated with abnormal deposition
of TDP-43, DPR and RNA foci in the hippocampus (Mackenzie, Frick, and Neu-
mann, 2014). However, the slight memory impairment we observed appeared less
striking than praxis impairment: there was a large overlap of values between C9+
and C9- subjects, and the difference did not persist when restricting the analysis
to subjects  40 years of age. Moreover, we did not detect any significant atrophy
in the hippocampus of C9+ subjects.

2.5.3 C9orf72 Mutation Is Associated With Early Thalamic Atro-
phy

Thalamic atrophy appears as a reliable effect of C9orf72 mutation. Thalamic atro-
phy has been previously reported in smaller cohorts of presymptomatic C9orf72
carriers (Lee et al., 2016; Rohrer et al., 2015; Walhout et al., 2015), and also in symp-
tomatic C9orf72 carriers with FTLD (Floeter et al., 2016; Mahoney et al., 2012a) or
ALS (Agosta et al., 2017). Thalamic atrophy may be related to the presence of
pathological deposits, i.e. TDP-43 and/or DPR, but it can also be caused by deaf-
ferentation processes secondary to the diffuse cortical atrophy, due to the high
number of connections between the hemispheric cortex and the thalamus. These
mechanisms are not exclusive and may be associated, which would explain the
high sensitivity of previous studies for detecting early thalamic atrophy in C9+
subjects.
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2.5.4 White Matter Microstructural Changes, but not Cortical At-
rophy Reflects the Expected Topography of FTLD-ALS in
C9+ Subjects

Our study demonstrates a major difference of pattern between atrophy and white
matter alterations in C9+ subjects. Atrophy appears as a widespread phenomenon,
with a relative sparing of primary motor cortex and frontobasal cortex, areas that
are preferentially involved during ALS and FTLD, respectively (Figure 2.2). Con-
versely, white matter alterations seem to preferentially target corticospinal tracts
and frontal white matter (Figure 2.4). These suggest that in C9+ subjects, white
matter changes may be more predictive of future cognitive and motor deficits
than cortical atrophy. These different patterns are reminiscent of the topography
of the two histopathological hallmarks of C9orf72 mutation, DPR and TDP-43.
Even if this is still debated, DPR deposits have a diffuse distribution unrelated
to the clinical phenotype of patients (Davidson et al., 2016; Davidson et al., 2014;
Gomez-Deza et al., 2015; Mackenzie et al., 2015), and seem to precede TDP-43 de-
position (Vatsavayai et al., 2016). Conversely, TDP-43 deposits may represent a
downstream process more correlated to clinical symptoms. Furthermore, TDP-43
deposits are present both in cortical neurons and white matter glial cells (Neu-
mann et al., 2007); thus, white matter changes, possibly more reflective of future
clinical deficits, may relate more to TDP-43 pathology than to DPR in presymp-
tomatic C9orf72 disease.

2.6 Conclusion

The present work demonstrates that pathological processes emerge during early
adulthood in C9orf72 mutation carriers. Early and subtle praxis alterations in
young C9+ subjects, underpinned by a focal atrophy of the left supramarginal
gyrus, may represent a non-evolving phenotype, which highlights the possible
overlaps and intricacy between neurodevelopmental and neurodegenerative pro-
cesses. The distinct patterns of atrophy and white matter changes observed in
C9+ subjects suggest that white matter integrity might be more reflective of the
future FTLD/ALS phenotype than atrophy. Our results contribute to a better un-
derstanding of the spectrum of C9orf72 disease, and of the respective contribution
of MR biomarkers in assessing disease-related changes.
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Chapter 3

Neurite density is reduced in the
presymptomatic phase of C9orf72
disease

This chapter has been published as a journal article on Journal of Neurology, Neu-
rosurgery, and Psychiatry (Wen et al., 2019):

• Wen, J., Zhang, H., Alexander, D., Durrleman, S., Routier, A., Rinaldi, D.,
Houot, M., Couratier, P., Hannequin, D., Pasquier, F., Zhang, J., Colliot, O.,
Le Ber, I. and Bertrand, A. Neurite density is reduced in the presymptomatic
phase of C9orf72 disease, J Neurol Neurosurg Psychiatry, pp.jnnp-2018. https:
//hal.inria.fr/hal-01907482/document.

3.1 Abstract

OBJECTIVE. To assess the added value of neurite orientation dispersion and den-
sity imaging (NODDI) compared to conventional DTI and anatomical MRI to de-
tect changes in presymptomatic carriers of chromosome 9 open reading frame 72
(C9orf72) mutation.

METHODS. The PREVDEMALS study is a prospective, multicenter, observa-
tional study of first-degree relatives of individuals carrying the C9orf72 mutation.
Sixty-seven participants (38 presymptomatic C9orf72 mutation carriers [C9+], 29
non carriers [C9-]) were included in the present cross-sectional study. Each partic-
ipant underwent one single-shell, multi-shell diffusion MRI and 3DT1 MRI. Volu-
metric measures, DTI and NODDI metrics were calculated within regions of inter-
est. Differences in white matter integrity, gray matter volume and free water frac-
tion between C9+ and C9- individuals were assessed using linear mixed-effects
models.

RESULTS. Compared with C9-, C9+ demonstrated white matter abnormalities
in 10 tracts with neurite density index, and only 5 tracts with DTI metrics. Effect

https://hal.inria.fr/hal-01907482/document
https://hal.inria.fr/hal-01907482/document
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size was significantly higher for the neurite density index than for DTI metrics in
two tracts. No tract had a significantly higher effect size for DTI than for NODDI.
For gray matter cortical analysis, free water fraction was increased in 13 regions in
C9+, whereas 11 regions displayed volumetric atrophy.

CONCLUSIONS. NODDI provides higher sensitivity and greater tissue-specificity
compared to conventional DTI for identifying white matter abnormalities in the
presymptomatic C9orf72 carriers. Our results encourage the use of neurite den-
sity as biomarker of the preclinical phase.

3.2 Introduction

Frontotemporal lobar degeneration (FTLD) and amyotrophic lateral sclerosis (ALS)
are two degenerative diseases that share common genetic causes, the most fre-
quent being a GGGGCC repeat expansion in the chromosome 9 open reading
frame 72 (C9orf72) gene. DeJesus-Hernandez et al., 2011; Renton et al., 2011.
Early stages of C9orf72 carriers have received much interest, because presymp-
tomatic carriers represent the optimal target population for the development of
new disease-modifying treatments against FTLD and ALS. Anatomical magnetic
resonance imaging (MRI) derived metrics, such as volumetry, have revealed brain
atrophy in presymptomatic individuals who carry the C9orf72 mutation (C9+).
(Rohrer et al., 2015; Walhout et al., 2015; Lee et al., 2016; Bertrand et al., 2017;
Cash et al., 2017; Papma et al., 2017; Popuri et al., 2018). Three studies (Lee et
al., 2016; Bertrand et al., 2017; Papma et al., 2017) also detected disruptions of
white matter integrity using diffusion tensor imaging (DTI) technique, whereas
another study failed to identify such abnormalities (Walhout et al., 2015). The
DTI results are promising but with limitations. First, DTI metrics, such as frac-
tional anisotropy (FA), are non-specific biomarker of microstructural architecture.
(Alexander et al., 2007; O’Donnell and Westin, 2011). For instance, FA changes
could be underpinned by combinations of neurite density reduction and orienta-
tion dispersion changes Zhang et al., 2012. Besides, DTI is limited when an im-
age voxel suffers from partial volume effect. Neurite orientation dispersion and
density imaging (NODDI) was proposed to characterize alterations of microstruc-
tural integrity with higher tissue-specificity (Zhang et al., 2012). NODDI derives
a neurite density index (NDI) and orientation dispersion index (ODI) to quantify
the density and angular variation of neurites, respectively. In addition, NODDI
includes a free water fraction (FWF) parameter designed to capture the contami-
nation of tissues by free water at the microstructural level.

In the present work, we assess the added value of NODDI compared to conven-
tional DTI and anatomical MRI to detect changes at the presymptomatic phase of
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C9orf72 disease. We hypothesize that NDI and ODI offer higher sensitivity than
FA, mean diffusivity (MD), axial diffusivity (AD) and radial diffusivity (RD) for
detecting white matter abnormalities. Additionally, FWF is compared with vol-
umetry and may provide complementary information for identifying gray matter
changes.

3.3 Material and Methods

3.3.1 Participants

Eighty-six first-degree relatives of C9orf72 mutation carriers from 48 families were
enrolled in an ongoing national multicentric study (PREVDEMALS) between Oc-
tober 2015 and October 2017. This study was approved by the Comité de Préven-
tion des Personnes Ile de France VI of the Hôpital Pitié-Salpêtrière, and written
informed consent was obtained from all participants. At inclusion, asymptomatic
status of participants was ascertained based on relative’s interview, neurologi-
cal examination, and the normality of behavioral scales and neuropsychological
scores, taking into account age and educational level. In the present study, sixty-
seven neurologically healthy participants, who underwent a single-shell diffusion
weighted image (DWI) sequence, a multi-shell DWI sequence and a 3DT1 se-
quence, were included in the analyses. C9orf72 genetic status was determined
by repeat-primed polymerase chain reaction on lymphocytes DNA. Thirty-eight
C9+ participants carried a pathogenic expansion (>23 GGGGCC repeats); twenty-
nine control participants did not carry this expansion (C9-). The study population
characteristics are shown in Table 3.1. Demographic characteristics and clinical
tests were compared between groups using the c2 test for dichotomous and cat-
egorical variables or Mann-Whitney test for numerical variables. There was no
statistical difference between C9+ and C9- regarding age at inclusion (P = 0.18),
gender (P = 0.65) and clinical scores (Mini-Mental State Examination, P = 0.83;
Mattis dementia rating scale, P = 0.37; Frontal assessment battery, P = 0.40).
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Characteristic Mean(SD) P Value
C9- (n=29)) C9+(n = 38)

Demographic characteristics
Age, y 44.8 (13.5) 40.7 (11.5) 0.18
Female, No. (%) 17 (59) 19 (50) 0.65
Right laterality, No. (%) 24 (83) 33 (87) 0.91
Expected time to onset, y NA 18.6 (11.4) NA
Familial phenotype, No. (%)
FTLD 12 (42) 18 (47)

0.91
ALS 2 (7) 3 (8)
Mixed 14 (48) 17 (45)
Unavailable 1 (3) 0
Neuropsychological scores
MMSE score (maximum, 30) 28.7 (1.2) 28.5 (1.5) 0.83
FAB (maximum, 18) 16.9 (1.3) 17.1 (1.2) 0.40
MDRS score (maximum, 144) 141.9 (2.2) 141.3 (2.7) 0.37

Table 3.1: Study Group Characteristics. Abbreviations: ALS, amy-
otrophic lateral sclerosis; FAB, Frontal Assessment Battery; FTLD,
frontotemporal lobar degeneration; MDRS, Mattis Dementia Rating

Scale; MMSE, Mini-Mental State Examination; NA, not applicable.

3.3.2 MRI acquisition

All MRI acquisitions were performed on a 3-T MRI system (Siemens Prisma Syngo
3T) in a single center (Paris) belonging to the harmonized national network of the
Centre d’Acquisition et de Traitement d’Images (http://cati-neuroimaging.com/)
(Operto et al., 2016). The Centre d’Acquisition et de Traitement d’Images per-
formed onsite visits for the setup of imaging protocols and regular follow-up. Each
participant underwent a 3DT1 sequence with the following parameters: voxel size
1.1x1.1x1.1 mm3; TE/TR = 2.93/2200 ms; Bandwidth = 240 Hz. One single-shell
DWI sequence with two repeats was acquired for DTI with the following param-
eters: voxel size 2.5x2.5x2.5 mm3; TE/TR = 90/7300 ms; Bandwidth = 1580 Hz; 64
diffusion-weighted directions, b-value = 1000 s/mm2, 9 T2-weighted images (b-
value = 0 s/mm2, referred to as b0 image). One field map image was acquired to
estimate the susceptibility-induced off-resonance field. One three-shell DWI se-
quence with two repeats was acquired with reversed phase encoding directions
for NODDI model: voxel size 2x2x2 mm3; TE/TR = 70/3000 ms; Bandwidth =
2090 Hz; 60, 32 and 9 diffusion-weighted directions at b-value = 2200, 700 and
300 s/mm2 respectively; 13 b0 images. Of note, the DTI analysis was based on
the single-shell data (b=1000 s/mm2). Indeed, DTI model is known to be a poor
representation of the DWI signals at the high b-value (> 2000). On the other hand,
the low b-values (300 and 700) are acquired at prolonged TE designed to accom-
modate the high b-value. So these low b-values data are not representative of
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standard DTI data. Systematic quality checks of MRI results were performed by
the Centre d’Acquisition et de Traitement d’Images as in previous work (Bertrand
et al., 2017). All images were of satisfactory quality except for one T1 acquisition
and one single-shell DWI acquisition from different individuals. These two images
were excluded respectively from gray matter and white matter analyses.

3.3.3 Anatomical MRI processing

T1-weighted images were processed with the FreeSurfer image analysis suite (Ver-
sion 5.3; https://surfer.nmr.mgh.harvard.edu/), including skull stripping, in-
tensity normalization, cortical and subcortical segmentation, cortical surface re-
construction and parcellation of the cortex using the Desikan-Killiany atlas (De-
sikan et al., 2006). We studied gray matter volumes of 68 cortical regions of interest
(ROIs) and 18 subcortical ROIs. The list of regions is provided in Supplementary
B (supplementary-appendix e-1). All ROI volumes were normalized by total in-
tracranial volume (TIV).

3.3.4 DTI processing

The single-shell DWI data were processed with the same approach as in previous
work (Bertrand et al., 2017). To summarize, head motion was corrected by rigidly
registering the raw DWI volumes to the average b0 image, and an affine regis-
tration was used to correct for eddy current-induced distortions. The field map
image was used to estimate the susceptibility-induced off-resonance field (Jenk-
inson and Smith, 2001). A single multiplicative bias field from the averaged b0
image was estimated and applied to the single-shell DWI data (Jeurissen et al.,
2014). FA, MD, RD and AD were estimated using an iteratively reweighted linear
least squares estimator (Tournier, Calamante, and Connelly, 2012). Each individ-
ual FA map was aligned onto the JHU white-matter tractography atlas template
(Hua et al., 2008) with a rigid plus deformable registration (Avants et al., 2008).
MD, AD and RD maps were subsequently registered into the JHU atlas using the
transformation field from the previous step. The regional mean values of FA, MD,
AD and RD maps were extracted. The list of regions is provided in Supplementary
B (supplementary-appendix e-2).

3.3.5 NODDI processing

From the pairs of images with reversed phase encoding directions, the susceptibility-
induced off-resonance field was estimated using topup tool (Andersson, Skare, and

https://surfer.nmr.mgh.harvard.edu/
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Ashburner, 2003). Besides, eddy current-induced distortions and subject move-
ments were corrected by simultaneously modelling the effects of diffusion eddy
currents and movements on the image using eddy tool (Andersson and Sotiropou-
los, 2016). The b-vector was subsequently corrected. The NODDI model was then
fitted to the artifact-corrected data, generating NDI, ODI and FWF maps using
NODDI Matlab toolbox (https://www.nitrc.org/projects/noddi_toolbox). For
white matter analysis, DTI model was applied to the middle-shell data (b-value =
700 s/mm2) to generate the FA map, in order to estimate the transformation field
from the native diffusion space to the JHU space. Then NDI and ODI maps were
registered into the JHU space using the transformation field obtained from the
previous step. Finally, the regional mean values of NDI and ODI were calculated.

For gray matter analysis, the normalized skull-stripped T1 image in FreeSurfer
conformed space was rigidly registered onto the first b0 image of the artifact-
corrected multi-shell DWIs. Then the inverse transformation field was applied
to register FWF map in the FreeSurfer conformed space with a linear interpola-
tion. For subcortical ROI analysis, a 2-voxel morphological erosion operator was
performed on each segmented subcortical ROI (Pfefferbaum et al., 2010). For cor-
tical ROI analysis, FWF signal was projected onto cortical middle surface. The
projected FWF value was calculated with a weighted average of signals from the
seven intermediate surfaces, which were expanded at different fraction of cortical
thickness (35%, 40%, 45%, 50%, 55%, 60% and 65%) from the white surface. Subse-
quently, the averaged middle surface was registered onto the FsAverage template
in FreeSurfer conformed space using a surface-based registration method (Fischl
et al., 1999). The aim of the erosion and middle surface projection approach was to
avoid the partial volume effect (i.e., elimination of free water contamination at the
edges of ventricle and the borders of the brain parenchyma). Finally, the regional
mean values of FWF were extracted for further cortical and subcortical analyses.

3.3.6 Statistical analysis

All statistical analyses were performed with R Version 3.4.0 (The R Foundation).
Structural and microstructural differences between C9+ and C9- participants were
assessed using linear mixed-effects models. We used real age, gender and group
(i.e., mutation status) as fixed effects and family membership as random effect
measuring the difference between the average response in the family and in the
whole population (supplementary B supplementary-appendix e-3). Likelihood ra-
tio test was used to test each effect and P values were corrected by the Benjamini-
Hochberg method with a significance level of P < 0.05. Besides, the effect size of

https://www.nitrc.org/projects/noddi_toolbox
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each ROI between C9+ and C9- was also reported using Cohen’s f2. Effect sizes ob-
tained for different models or metrics (e.g., NODDI vs DTI) were compared using
permutation tests with 10000 iterations for significant ROIs.

3.4 Results

3.4.1 White matter analysis

Figure 3.1 displays altered white matter tracks after correction for multiple com-
parisons. Compared with C9-, C9+ showed extensive alterations in white matter
integrity (i.e., reduced NDI, elevated MD, AD and RD), involving several fronto-
temporal related tracts (i.e., bilateral inferior fronto-occipital fasciculus, bilateral
inferior longitudinal fasciculus, right uncinate fasciculus, right anterior thalamic
radiation, forceps minor) and both cortico-spinal tracts. 10 tracts were significantly
altered in C9+ with NDI, and only 5 tracts with DTI metrics (MD, AD or RD). Re-
sults before correction for multiple comparisons are shown in supplementary B
(supplementary-figure e-1). Effect size results confirmed that NDI was more sen-
sitive than DTI metrics: among the 11 tracts in which significant differences were
detected in either NDI or DTI metrics (MD, AD or RD), 7 tracts had higher effect
size with NDI than with DTI metrics (Figure 3.2). The effect size was significantly
higher with NDI than with DTI for two of these tracts: left inferior fronto-occipital
fasciculus (P = 0.009) and right uncinate fasciculus (P = 0.008). None of the tracts
had a significantly higher effect size with DTI than with NDI. Effect size results
are shown in supplementary B (supplementary-table e-1).
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Figure 3.1: White matter alterations in C9orf72 mutation carriers.
Colour-coded representation of p values corresponding to the asso-
ciations of C9orf72 mutation with white matter integrity after correc-
tion for multiple comparisons. (a) Mean diffusivity (MD), (B) axial
diffusivity (AD), (c) radial diffusivity (RD) and (D) NDI, neurite den-

sity index (NDI).
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Figure 3.2: Effect size of white matter alterations in C9orf72 mutation
carriers. Effect size (cohen’s f2) corresponding to the associations of
C9orf72 mutation with white matter integrity. Only ROIs in which
significance, after correction for multiple comparisons, was detected
in either NDI or DTI metrics are displayed. aTR, anterior thalamus
radiation tract; csT, corticospinal tract; DTI, diffusion tensor imaging;
Fmajor, forceps major tract; Fminor, forceps minor tract; IFOF, infe-
rior fronto-occipital fasciculus; ILF, inferior longitudinal fasciculus;
L, left; NDI, neurite density index; R, right; ROI, region of interest;
sLF, superior longitudinal fasciculus; sLFT, superior longitudinal fas-

ciculus (temporal part); UF, uncinate fasciculus.

3.4.2 Cortical gray matter analysis

Figure 3.3 displays altered cortical regions after correction for multiple compar-
isons. Compared with C9-, C9+ showed reduced cortical gray matter volume and
elevated FWF. 13 ROIs were significantly altered with FWF (4 frontal, 1 temporal,
4 parietal, 3 occipital and the left insula), and 11 ROIs with volumetry (2 frontal, 5
temporal and 4 parietal ROIs). Results before correction for multiple comparisons
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are shown in supplementary B (supplementary-figure e-2). Figure 3.4 displays ef-
fect sizes for the 21 regions that were significantly altered according to either FWF
or volumetry. Among the 21 regions, the left insula (P = 0.002), the lateral occipital
cortex (P = 0.001) and the left pericalcarine cortex (P = 0.008) had a significantly
higher effect size with FWF than with volumetry. Only the left temporal pole cor-
tex showed significantly higher effect size with volumetry than with FWF (P =
0.02). Effect size results are shown in supplementary B (supplementary-table e-2).

Figure 3.3: Cortical alterations in C9orf72 mutation carriers. Colour-
coded representation of p values corresponding to the associations of
C9orf72 mutation with the cortical ROI measures ((a), ROI volume
and (B) FWF, respectively) after correction for multiple comparisons.

FWF, free water fraction; ROI, region of interest.
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Figure 3.4: Effect size of cortical alterations in C9orf72 mutation car-
riers. Effect size (cohen’s f2) corresponding to the associations of
C9orf72 mutation with the cortical ROI measures (ROI volume and
FWF, respectively). Only ROIs in which significance, after correc-
tion for multiple comparisons, was detected in either volumetry or
FWF are displayed. CMF, caudal middle frontal cortex; CUN, cuneus
cortex; FUS, fusiform; FWF, free water fraction; INS, insula; IP, infe-
rior parietal cortex; IT, inferior temporal cortex; L, left; LIN, lingual;
LO, lateral occipital cortex; MOF, medial orbitofrontal cortex; PCC,
pericalcarine; POC, postcentral cortex; PPC, pars opercularis cortex;
PREC, precuneus; R, right; RMF, rostral middle frontal cortex; ROI,
region of interest; SM, supramarginal cortex; SP, superior parietal cor-

tex; TP, temporal pole cortex.

3.4.3 Subcortical gray matter analysis

Compared with C9-, C9+ showed subcortical volume reduction of the right thala-
mus after correction for multiple comparisons. FWF failed to detect any significant
alterations (Figure 3.5). Results before correction for multiple comparisons are pre-
sented in supplementary B (supplementary-figure e-3). The right thalamus did not
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show statistically higher effect size with volumetry than with FWF (P = 0.062). Ef-
fect size results are shown in supplementary B (supplementary-table e-3).

Figure 3.5: Subcortical alterations in C9orf72 mutation carriers.
Colour-coded representation of p values corresponding to the asso-
ciations of C9orf72 mutation with the subcortical ROI measures ((a)
ROI volume and (B) FWF) after correction for multiple comparisons.

FWF, free water fraction; ROI, region of interest.

3.5 Discussion

The current study, for the first time, compared NODDI to conventional DTI and
anatomical MRI in a large cohort of presymptomatic C9orf72 carriers. There are
three key findings. First, we demonstrate that NODDI provides higher sensitivity
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than DTI for detecting white matter microstructural changes. Second, the greater
tissue-specificity of NODDI suggests that the reduction of neurite density is a more
likely cause of signal changes than the alterations of neurite orientation dispersion
during the presymptomatic stage. Third, the pattern of FWF alterations slightly
differs from that of gray matter volumetric atrophy, suggesting that both FWF
and volumetry provide complimentary information on the integrity of cortical and
subcortical structures.

When comparing the multi-shell DWI sequence with the standard single-shell
DWI sequence, we hypothesized that NODDI could be more sensitive than con-
ventional DTI for detecting white matter abnormalities during the presymptomatic
stage. Previous works have shown that NODDI could be more sensitive than DTI
for detecting white matter changes related to aging (Kodiweera et al., 2016) or
young onset Alzheimer’s disease (Slattery et al., 2017). Here, for the first time,
we show that NODDI outperformed DTI for identifying white matter abnormali-
ties during the presymptomatic stage of a neurodegenerative disease. The spatial
pattern of white matter changes is consistent with previous findings with conven-
tional DTI (Lee et al., 2016; Bertrand et al., 2017; Papma et al., 2017). Specifically,
reduced NDI was mainly found in the cortico-spinal tract and frontal-temporal
related tracts during the presymptomatic stage for C9orf72 carriers, which were
preferentially involved in symptomatic mutation carriers who develop FTLD, ALS
or both. On the other hand, to the best of our knowledge, there has been no prior
study using NODDI in C9orf72 disease, neither at the presymptomatic nor at the
symptomatic stage. The interpretation of specificity for DTI metrics has been dis-
cussed (Song et al., 2002; DeBoy et al., 2007), suggesting that RD and AD reflect
respectively demyelination and axonal damage and both provide more specific
information than FA. However, these interpretations were also argued in the lit-
erature (Wheeler-Kingshott and Cercignani, 2009). Compared with DTI, the more
biophysically motivated NODDI model allows more direct analysis of indepen-
dent microstructural effects: the loss of neurite density and the alteration of neu-
rite orientation dispersion. This potential for greater tissue-specificity has moti-
vated application of NODDI in a few neurodegenerative disease studies (Song et
al., 2018; Schneider et al., 2017; Kamagata et al., 2016; Slattery et al., 2017; Grussu
et al., 2017). In young onset Alzheimer’s disease, one study showed widespread
NDI reduction and regional ODI reduction in the corpus callosum and internal
capsule of patients (Slattery et al., 2017). In Parkinson disease, another study
observed reduced NDI in the substantia nigra and putamen of patients (Kama-
gata et al., 2016). In the present study, we detected widespread NDI decrease in
the white matter, but no alteration of ODI (Figure 3.1). This suggests that the re-
duction of neurite density, not the alterations of neurite orientation dispersion, is
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the predominant pathological process in white matter during the presymptomatic
stage of C9orf72 carriers. Interestingly, similar reduction of neurite density within
cortico-spinal tract have been found in ALS patients (Broad et al., 2017). Our ob-
servation suggests that the neurite loss is the main pathological process, but this
needs further histological confirmation. We note however that Grussu et al have
demonstrated, in the tissue specimen of multiple sclerosis, that ODI correlated
well with histological measures of neurite orientation dispersion, and NDI with
histological measures of neurite density (Grussu et al., 2017).

Mapping the free water in tissues is important in order to estimate the vari-
ations in extracellular volume (related to free water fraction) due to pathological
processes (Pasternak et al., 2009). FWF has been applied in several neurodegener-
ative diseases. Using a bi-tensor model, FWF has been demonstrated as an imag-
ing biomarker of progression of Parkinson’s disease in the posterior substantia
nigra (Planetta et al., 2016; Burciu et al., 2017). Interestingly, a chronic treatment
effect of rasagiline, an irreversible inhibitor of monoamine oxidase-B as a medi-
cal monotherapy, has been verified with FWF in basal ganglia in Parkinson’s dis-
ease (Burciu et al., 2016). These findings support the use of FWF as a promising
biomarker in neurodegenerative diseases to evaluate the free water related alter-
ations. In the present study, FWF detected free water alterations mainly in frontal
and temporal lobes. This finding is consistent with previous studies using volu-
metric measure (Rohrer et al., 2015; Walhout et al., 2015; Lee et al., 2016; Bertrand
et al., 2017; Cash et al., 2017; Papma et al., 2017; Popuri et al., 2018). The unique
differences detected with FWF in left insula and left lateral occipital lobe were also
reported in literatures using volumetric measure (Rohrer et al., 2015; Walhout et
al., 2015; Lee et al., 2016; Cash et al., 2017). These suggest that macroscopic brain
atrophy may accompany free water alterations inside the cortex. Surprisingly,
FWF failed to show changes in subcortical structures, such as the thalamic atro-
phy where a significant effect of C9orf72 mutation was evidenced by volumetry.
These findings suggest that distinct degenerative processes could occur in cortical
and subcortical structures at the same time during the presymptomatic stage.

Reliability of an imaging technique is an important issue for its use in clinical
trials. We do not have test-retest scans in our participants. However, the reliability
of NODDI has been assessed in previous studies (Tariq et al., 2012; Chang et al.,
2015). NODDI metrics were shown to have excellent reproducibility with coeffi-
cients of variation below 5% in all measured regions of interest and even below 3%
in the vast majority of regions (Chang et al., 2015). Furthermore, the reproducibil-
ity of NODDI metrics was shown to be comparable to that of conventional DTI
(Tariq et al., 2012). This, together with its higher sensitivity to detect white matter
alterations, supports the use of NODDI in clinical trials.
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3.6 Limitations

Our study has the following limitations. First, the cross-model comparison be-
tween NODDI and DTI used two different DWI acquisitions, which were per-
formed within one week sequentially for each participant. However, the single-
shell and multi-shell DWI sequences were optimized for DTI and NODDI model,
respectively. Thus, this systematic comparison helps clarify the added value of
a longer but clinically feasible multi-shell diffusion sequence. Second, caution
should be exercised in diffusion MRI-based cortical analysis. NODDI, by construc-
tion, accounts for partial volume effects from CSF contamination, thus minimizing
the influence of atrophy on the NODDI metrics. Moreover, a recent paper (Parker
et al., 2018) has explicitly looked at the influence of cortical thickness on NODDI
metrics, showing that the majority of changes in NODDI metrics persisted follow-
ing adjustment for cortical thickness. Nevertheless, the cortex is a thin structure
compared to the resolution of diffusion MRI and partial volume effect may im-
pact on the computation of regional FWF measures. Although we implemented
specific image processing procedures to mitigate partial volume effects, it is still
possible that some partial volume effect remains, impacting on FWF estimates.
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Chapter 4

Reproducible evaluation of diffusion
MRI features for automatic
classification of patients with
Alzheimer’s disease

This chapter has been submitted as a journal article to Neuroinformatics (Wen et
al., 2018b):

• Wen, J., Samper-González, J., Bottani, S., Routier, A., Burgos, N., Jacquemont,
T., Fontanella, S., Durrleman, S., Epelbaum, S., Bertrand, A., and Colliot, O.
Reproducible evaluation of diffusion MRI features for automatic classifica-
tion of patients with Alzheimer’s disease., Submitted to Neuroinformatics.
https://arxiv.org/pdf/1812.11183.pdf.

4.1 Abstract

Diffusion MRI is the modality of choice to study alterations of white matter. In
the past years, various works have used diffusion MRI for automatic classification
of Alzheimer’s disease. However, the performances obtained with different ap-
proaches are difficult to compare because of variations in components such as in-
put data, participant selection, image preprocessing, feature extraction, feature se-
lection (FS) and cross-validation (CV) procedure. Moreover, these studies are also
difficult to reproduce because these different components are not readily available.
In a previous work (Samper-González et al., 2018), we proposed an open- source
framework for the reproducible evaluation of AD classification from T1-weighted
(T1w) MRI and PET data. In the present paper, we extend this framework to dif-
fusion MRI data. The framework comprises: tools to automatically convert ADNI
data into the BIDS standard, pipelines for image preprocessing and feature extrac-
tion, baseline classifiers and a rigorous CV procedure. We demonstrate the use of

https://arxiv.org/pdf/1812.11183.pdf
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the framework through assessing the influence of diffusion tensor imaging (DTI)
metrics (fractional anisotropy - FA, mean diffusivity - MD), feature types, imaging
modalities (diffusion MRI or T1w MRI), data imbalance and FS bias. First, voxel-
wise features generally gave better performances than regional features. Secondly,
FA and MD provided comparable results for voxel-wise features. Thirdly, T1w
MRI performed better than diffusion MRI. Fourthly, we demonstrated that using
non-nested validation of FS leads to unreliable and over-optimistic results. All
the code is publicly available: general-purpose tools have been integrated into
the Clinica software (www.clinica.run) and the paper-specific code is available at:
https://gitlab.icm-institute.org/aramislab/AD-ML.

4.2 Introduction

Alzheimer’s disease (AD), the most prevalent form of dementia, is expected to
affect 1 out of 85 people in the world by the year 2050 (Brookmeyer et al., 2007).
Neuroimaging offers the possibility to study pathological brain changes associated
with AD in vivo (Ewers et al., 2011). The most common neuroimaging modali-
ties used to study AD are T1-weighted (T1w) magnetic resonance imaging (MRI)
and positron emission tomography (PET) with various tracers (Frisoni et al., 2010;
Vemuri and Jack, 2010). These techniques allow studying different types of alter-
ations in the gray matter (GM). However, while AD is often considered primarily
a gray matter disease, white matter (WM) is also extensively altered. There has
thus been an increased interest in using diffusion MRI to study alterations in WM
as the disease progresses (Fellgiebel et al., 2006; Kantarci et al., 2001; Müller et al.,
2007; Müller et al., 2005).

In the past decades, there has been a strong interest in developing machine
learning methods to assist diagnosis and prognosis of AD based on neuroimaging
data (Rathore et al., 2017; Falahati, Westman, and Simmons, 2014; Haller, Lovblad,
and Giannakopoulos, 2011). In particular, a large number of studies using ma-
chine learning have looked at the potential of diffusion MRI for AD classification
Maggipinto et al., 2017; Dyrba et al., 2015b; Lella et al., 2017; Cui et al., 2012; Xie
et al., 2015; Li et al., 2014. Several of these studies make use of the same pub-
licly available dataset: the Alzheimer’s Disease Neuroimaging Initiative (ADNI)
(adni.loni.usc.edu). However, classification performances are not directly compa-
rable across these studies because of differences in participant selection, feature
extraction and selection, and performance metrics. It is thus difficult to know
which approach performs best and which components of the method have the
greatest influence on classification performances. We recently proposed a frame-
work for the reproducible evaluation of machine learning algorithms in AD and

www.clinica.run
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demonstrated its use on PET and T1w MRI data (Samper-González et al., 2018).
The framework is composed of tools for management of public datasets and in
particular their conversion into the Brain Imaging Data Structure (BIDS) format
(Gorgolewski et al., 2016), standardized preprocessing pipelines, feature extrac-
tion tools and classification algorithms as well as procedures for evaluation. This
framework was devoted to T1w MRI and PET data.

In the present work, we extend this framework to diffusion MRI data. We first
perform a systematic review of the previous works devoted to automatic classifi-
cation of AD using diffusion MRI data. We then present the different components
of the framework, namely tools to convert ADNI diffusion MRI data into BIDS,
preprocessing pipelines, feature extraction and selection methods and evaluation
framework. We finally apply the framework to study the influence of various com-
ponents on the classification performance: feature type (voxel-wise or regional
features), imaging modality (T1w or diffusion MRI), data imbalance and feature
selection (FS) strategy.

All the code (both of the framework and of the experiments) is publicly avail-
able: the general-purpose tools have been incorporated into Clinica (Routier et al.,
2018), an open-source software platform that we developed for brain image anal-
ysis, and the paper-specific code is available at: https://gitlab.icm-institute.
org/aramislab/AD-ML.

4.3 State of the art

AD is associated with altered integrity of WM, in particular the loss of cellular
barriers that constrain free water motion (Xie et al., 2006). The fact that DTI was
designed to study WM microstructure has led to the hypothesis that DTI-based
features can be used for AD classification (Selnes et al., 2013). In recent years, a
large body of research has been published for classification of AD using diffusion
MRI. Here, we provide a review of these works.

We performed an online search of publications concerning classification of AD
using diffusion MRI. We included only publications in English language, only
original research publications (excluding review papers) and only peer-reviewed
papers (either in journals or in conference proceedings), thereby excluding ab-
stracts and preprints. We first searched on PubMed with the following search crite-
ria: i) keywords: “(((classification diffusion MRI alzheimer’s disease[Title/Abstract])
OR classification DTI alzheimer’s disease[Title/Abstract]) OR diagnosis DTI alzheimer’s
disease[Title/Abstract]) OR diagnosis diffusion MRI alzheimer’s disease[Title/Abstract]”,
ii) publication date: before the 31st October 2018, and iii) study species: humans.

https://gitlab.icm-institute.org/aramislab/AD-ML
https://gitlab.icm-institute.org/aramislab/AD-ML
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We identified 616 studies based on these criteria. Among these studies, 105 re-
view papers were excluded. Based on the abstract, we then selected only papers
devoted to AD classification and using at least diffusion MRI. This resulted in 18
studies. Secondly, another query was performed on Scopus with the following cri-
teria: i) keywords: “(TITLE- ABS-KEY(classification OR diagnosis) AND TITLE-
ABS-KEY((diffusion AND mri) OR dti) AND TITLE-ABS-KEY((alzheimer’s OR
alzheimer) AND disease))”, and ii) publication date before the search day (the 31st
October 2018). This resulted in 425 studies. We then excluded 104 review papers.
Moreover, limiting to only peer-reviewed journals or conference proceedings re-
sulted in 298 studies. Based on the abstract, we selected only papers devoted to
AD classification and using at least diffusion MRI, resulting in 27 studies. After
merging the studies found by both PubMed and Scopus, we obtained 32 stud-
ies. To complete this search, we also did a search on Google Scholar with key-
words: “classification diffusion MRI alzheimer’s disease” or “classification DTI
alzheimer’s disease” or “diagnosis DTI alzheimer’s disease” or “diagnosis diffu-
sion MRI alzheimer’s disease”. Two additional studies were included, resulting in
a total of 34 studies which are presented in the current state-of-the-art section.

These 34 studies can be categorized according to the following criteria. i) Stud-
ied modality. While the majority used only diffusion MRI, some used multimodal
data (combining diffusion MRI with T1w MRI or functional MRI for instance). ii)
Type of features. We subdivided between papers using DTI metric features, such
as fractional anisotropy (FA) and mean diffusivity (MD), and those using more ad-
vanced features, such as tract-based or network-based features. iii) Classifiers. The
most commonly used are SVM but RF, LR, NN or NB were also used in some stud-
ies. iv) Dataset. The most commonly used dataset is the ADNI although it does not
constitute an overwhelming majority, unlike for T1w-MRI or PET studies. This is
probably because diffusion MRI was not present in ADNI1. v) Classification tasks.
Some studies focused on the discrimination between AD patients and CN subjects
while other tackled classification of patients with MCI or prediction of progression
to AD among MCI patients. A summary of these characteristics for the different
studies is presented in Table 4.1 (for those using DTI metric features) and Table
4.2 (for connectivity or tractography features). Besides, if multimodal imaging or
different type of features (i.e., DTI metric and more advanced features) were used
in a study, we reported the accuracy of the best performance.
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Study Subject Modality dMRI Feature Classifier Database Performance

AD MCI CN CN/ CN/ sMCI/ AD/
AD MCI pMCI MCI

(Ahmed et al., 2017) 45 58 52 dMRI Hippocampal SVM ADNI 0.901 0.791 – 0.771
T1w voxel MD

(Cui et al., 2012) – 0.79b 204 dMRI Regional FA SVM MAS – 0.711 – –T1w
(Dyrba et al., 2013) 137 – 143 dMRI Voxel FA, MD SVM EDSD 0.831 – – –

(Dyrba et al., 2015b) – 0.35c 25 dMRI Voxel FA, MD, SVM EDSD – 0.771,d 0.681 –T1w MO

(Dyrba et al., 2015a) 28 – 25 dMRI, T1w, Voxel FA, MD, SVM DZNE 0.892 – – –fMRI MO

(Demirhan et al., 2015) 43 – 70 dMRI Voxel and SVM ADNI 0.881 0.781 – 0.861
Regional FA

(Friese et al., 2010) 21 – 20 dMRI, T1w Voxel FA, MD LR Local 0.882 – – –
(Graña et al., 2011) 20 – 25 dMRI Voxel FA, MD SVM HSA 1.001 – – –

(Gao et al., 2015) – 41 63 dMRI, T1w, Regional FA – UHG – 0.851 – –fMRI
(Jung et al., 2015) 27 18 – dMRI, T1w Regional FA, MD SVM MICPNU – – – 0.871

(Lee, Park, and Han, 2015) 35 73 33 dMRI Voxel FA, MO SVM MICPNU 0.881 – – 0.901

(Lella et al., 2017) 40 – 40 dMRI Voxel FA, MD SVM, RF, NB ADNI 0.781 – – –

(Mesrob et al., 2012) 15 – 16 dMRI Voxel and regional SVM RRMC 1.001 – – –T1w FA, MD
(Li et al., 2014) 21 – 15 dMRI, T1w Regional FA SVM TJH 0.941 – – –

(Maggipinto et al., 2017) 90 90 89 dMRI Voxel FA, MD RF ADNI 0.761 0.601 – –

(O’Dwyer et al., 2012) – 19a,14b 40 dMRI Voxel FA, MD, SVM EDSD – 0.931 – –RD, AD
(Haller et al., 2013) – 18e, 13 f , 35g – dMRI Voxel FA SVM Local – – 0.991,e, f –

(Schouten et al., 2016) 77 – 173 dMRI, T1w, Regional FA, LR PRODEM 0.952 – – –fMRI MD
(Termenon et al., 2011) 15 – 20 dMRI Voxel FA, MD SVM, RVM, NN HSA 0.991 – – –

(Xie et al., 2015) – 64b 64 dMRI, T1w Voxel FA, MD SVM MCXWH – 0.841 – –

(Zhang and Liu, 2018) 48 39h, 75i 51 dMRI Regional FA, SVM, LR ADNI 0.901 – 0.931 –MD, RD, AD

Table 4.1: Summary of the studies using DTI metric features for AD classification. Abbreviations: dMRI: diffusion MRI; T1w: T1-weighted MRI; fMRI: functional MRI;
SVM: support vector machine; RVM: relevance vector machine; RF: random forest; NB: naive bayes; LR: logistic regression; NN: nearest neighbor; 1: accuracy; 2: area
under the curve; EDSD: European DTI Study on Dementia; MAS: Sydney Memory and Aging; RRMC: Research and Resource Memory; HSA: Hospital de Santiago Apostol;
PRODEM: Prospective Registry on Dementia study; ADNI: Alzheimer’s Disease Neuroimaging Initiative; IDC: Ilsan Dementia Cohort; MCXWH: Memory Clinical at Xuan
Wu Hospital; TJH: Tong Ji Hospital; MICPNU: Memory Impairment Clinic of Pusan National University Hospital; UHG: University Hospital of Geneva; DZNE: German
Center for Neurodegenerative Diseases Rostock database; Local: private database; RD: radial diffusivity; AD: axial diffusivity; MO: mode of anisotropy; a: non-amnestic
Mild Cognitive Impairment; b: amnestic Mild Cognitive Impairment; c: MCI-Ab 42-; d: MCI-Ab 42+; e: sd-aMCI, single domain amnestic MCI; f: sd-fMCI, single domain

frontal MCI; g: md-aMCI, multiple domains amnestic MCI; h: late MCI; i: early MCI; –, not applicable.
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AD MCI CN CN/ CN/ sMCI/ AD/
AD MCI pMCI MCI

(Amoroso et al., 2017) 47 – 52 dMRI Network measures – ADNI 0.953 – – –

(Cai et al., 2018) 165 – 165 dMRI Network measures LDA ADNI 0.852 – – –T1w

(Doan et al., 2017) 79 55 – dMRI Tract measures, regional LR NorCog – – – 0.713
30a FA, MD, RD, AD

(Ebadi et al., 2017) 15 15 15 dMRI Network measures LR, RF, NB, – 0.802 0.702 – 0.802
SVM, NN

(Lee, Park, and Han, 2013) – 39 39 dMRI Network measures, voxel SVM ADNI – 1.002 – –and regional FA
(Lella et al., 2018) 40 30 52 dMRI Network measures SVM ADNI 0.773 – – –
(Nir et al., 2015) 37 113 50 dMRI Tract measures, FA, MD SVM ADNI 0.852 0.792 – –

(Prasad et al., 2015) 38 38b
50 dMRI Network measures SVM ADNI 0.782 – 0.632 –74c

(Schouten et al., 2017) 77 – 173 dMRI Network measures, voxel LR PRODEM 0.922 – – –FA, MD, RD, AD

(Wee et al., 2012) – 10 17 dMRI Network measures SVM DUBIAC �� 0.962 – –fMRI

(Wang et al., 2018a) – 169 379 dMRI Network measures SVM, RF ADNI �� 0.753 – –T1w NACC

(Zhu et al., 2014) – 22 22 dMRI Network measures SVM NACC �� 0.952 – –fMRI
(Zhan et al., 2015) 39 112 51 dMRI Network measures LR ADNI 0.711 0.571 – 0.691

Table 4.2: Summary of the studies using tract-based or network-based features for AD classification. Abbreviations: dMRI: diffusion MRI; T1w: T1-weighted MRI; fMRI:
functional MRI; SVM: support vector machine; LDA: linear discriminant analysis; RF: random forest; NB: naive bayes; LR: logistic regression; NN: nearest neighbor; 1:
balanced accuracy; 2: accuracy; 3: area under the curve; DUBIAC: Duke-UNC Brain Imaging and Analysis Center; RRMC: Research and Resource Memory; PRODEM:
Prospective Registry on Dementia study; ADNI: Alzheimer’s Disease Neuroimaging Initiative; NACC: National Alzheimer’s Coordinating Center; NorCog: Norwegian

registry for persons being evaluated for cognitive symptoms in specialized health care. a: subjective decline MCI; b: late MCI; c: early MCI; –, not applicable.
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Twenty-one studies used DTI metrics as features (see details in Table 4.1). Among
the DTI derived metrics, FA and MD were most frequently used (O’Dwyer et al.,
2012; Maggipinto et al., 2017; Dyrba et al., 2013; Dyrba et al., 2015b; Lella et al.,
2017; Mesrob et al., 2012; Zhang and Liu, 2018; Xie et al., 2015; Friese et al., 2010;
Schouten et al., 2016; Jung et al., 2015; Dyrba et al., 2015a). Besides, RD, AD and
MO were also examined in some papers (O’Dwyer et al., 2012; Dyrba et al., 2015b;
Lee, Park, and Han, 2015; Zhang and Liu, 2018; Dyrba et al., 2015a). Voxel- and
region-wise features were both used. For voxel-wise classification, all voxels from
the segmented GM or WM were used. For region-wise classification, the mean
value within each ROI of DTI metric maps were extracted using an anatomical at-
las. The most commonly used atlases were the JHU atlases (Hua et al., 2008). Ten
studies adopted only diffusion MRI for AD classification (O’Dwyer et al., 2012;
Maggipinto et al., 2017; Dyrba et al., 2013; Lella et al., 2017; Zhang and Liu, 2018;
Termenon et al., 2011; Demirhan et al., 2015; Haller et al., 2013; Graña et al., 2011;
Lee, Park, and Han, 2015). The other eleven studies looked at the potential of
multimodal MRI, for instance T1w MRI and diffusion MRI, for AD diagnosis and
compared the performances cross modalities. For the DTI metric-based studies,
SVM was most frequently used (O’Dwyer et al., 2012; Dyrba et al., 2013; Dyrba
et al., 2015b; Lella et al., 2017; Cui et al., 2012; Mesrob et al., 2012; Zhang and Liu,
2018; Termenon et al., 2011; Xie et al., 2015; Jung et al., 2015; Demirhan et al., 2015;
Ahmed et al., 2017; Li et al., 2014; Lee, Park, and Han, 2015; Graña et al., 2011;
Haller et al., 2013; Dyrba et al., 2015a).

Thirteen works demonstrated the usage of more complex features, such as
tract-based or network-based features (see details in Table 4.2). In such approaches,
tractography is used to extract WM tracts from diffusion MRI data. To be reli-
able, such a procedure requires to have high angular resolution diffusion imaging
data. Then, tract-based approaches compute indices that characterize the tract, in-
cluding tract volume, average FA/MD across the tract or more advanced features
(Doan et al., 2017; Nir et al., 2015; Lee, Park, and Han, 2013). Such indices are used
as input of the classifier. In network-based features, the result of the tractography
(also called the tractogram) is used to build a graph of anatomical connections.
Usually, the GM is parcellated into a set of anatomical regions and the connec-
tivity between two given regions is computed based on the tractogram. To that
purpose, different measures have been used, including the number of fibers or the
average FA along the connection. This results in a connectivity network which
can be described through network-based measures. Such features characterize the
local and global topology of the network and are fed to a classifier. Ten stud-
ies used network-based features derived from diffusion MRI for AD classification
(Schouten et al., 2017; Ebadi et al., 2017; Prasad et al., 2015; Wee et al., 2012; Cai
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et al., 2018; Lella et al., 2018; Wang et al., 2018b; Zhan et al., 2015; Amoroso et al.,
2017; Zhu et al., 2014).

There is a high variability in terms of classification performances across stud-
ies. For DTI metric features, the classification accuracy ranges from 0.71 to 1 for
task CN vs AD. With regard to the accuracies across types of features, no consis-
tency existed across studies. For instance, Nir et al observed that, in their study,
the performances of MD outperformed FA (Nir et al., 2015). However, O’Dwyer et
al reported higher accuracy for FA than MD in their experiments (O’Dwyer et al.,
2012) and another study obtained comparable accuracies for both metrics (Dyrba
et al., 2013). Conflicting results were also reported for the comparison of different
modalities. Mesrob et al obtained higher accuracy with T1w MRI than with diffu-
sion MRI (Mesrob et al., 2012) while Dyrba et al came to the opposite conclusion
(Dyrba et al., 2015b). For network- or tract-based features, the classification accu-
racy ranges from 0.71 to 0.95 for task CN vs AD, a range which is comparable to
that obtained with DTI metrics.

In this work, we choose to focus on DTI metrics because: i) they are more sim-
ple than connectivity or tractography features; ii) they can be easily computed
and can make use of standard diffusion MRI sequences, thus are more adapted to
translation to clinical practice, iii) to date, there is no clear evidence that connec-
tivity/tractography features lead to higher accuracies for AD classification and
iv) conflicting results exist regarding the respective performance of different DTI
metrics in this context.

4.4 Materials

The data used in the preparation of this article were obtained from the Alzheimer’s
Disease Neuroimaging Initiative database (ADNI) (adni.loni.usc.edu). The ADNI
was launched in 2003 as a public-private partnership, led by Principal Investiga-
tor Michael W. Weiner, MD. The primary goal of ADNI has been to test whether
serial MRI, PET, other biological markers, and clinical and neuropsychological
assessment can be combined to measure the progression of MCI and early AD.
Over 1,650 participants were recruited across North America during the first three
phases of the study (ADNI1, ADNI GO and ADNI2). Around 400 participants
were diagnosed with AD, 900 with MCI and 350 were control subjects. Three main
criteria were used to classify the subjects (Petersen et al., 2010). The normal sub-
jects had no memory complaints, while the subjects with MCI and AD both had
to have complaints. CN and MCI subjects had a MMSE score between 24 and 30
(inclusive), and AD subjects between 20 and 26 (inclusive). The CN subjects had
a CDR score of 0, the MCI subjects of 0.5 with a mandatory requirement of the
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memory box score being 0.5 or greater, and the AD subjects of 0.5 or 1. The other
criteria can be found in (Petersen et al., 2010).

Five diagnosis groups were considered:

• CN: subjects who were diagnosed as CN at baseline;

• AD: subjects who were diagnosed as AD at baseline;

• MCI: subjects who were diagnosed as MCI, EMCI or LMCI at baseline;

• pMCI: subjects who were diagnosed as MCI, EMCI or LMCI at baseline, were
followed during at least 36 months and progressed to AD between their first
visit and the visit at 36 months;

• sMCI: subjects who were diagnosed as MCI, EMCI or LMCI at baseline, were
followed during at least 36 months and did not progress to AD between their
first visit and the visit at 36 months.

Naturally, all participants in the pMCI and sMCI groups are also in the MCI
group. Note that the reverse is false, as some MCI subjects did not convert to AD
but were not followed long enough to state whether they were sMCI or pMCI.

The DWIs of ADNI were downloaded in October 2016. They all came from
ADNI GO and ADNI2 phases. Two different acquisition protocols are described
for DWIs: Axial DTI (images with “Sequence” field starting by “AX_DTI” and
“Axial_DTI” in the file of “IDA_MR_Metadata_Listing.csv”) and Enhanced Ax-
ial DTI (images with “Sequence” field equal to “Enhanced_Axial_DTI” in the file
of “IDA_MR_Metadata_Listing.csv”). In total, Axial DTI were available for 1019
visits and Enhanced Axial DTI for 102 visits. Only Axial DTI images were avail-
able for the baseline visit (222). In the current study, we included the participants
whose diffusion and T1w MRI scans were both available at baseline. These DWIs
were acquired with the following parameters: 35 cm field of view, 128⇥128 ac-
quired matrix, reconstructed to a 256⇥256 matrix; voxel size: 1.35⇥1.35⇥2.7mm ;
scan time = 9 min; 41 diffusion-weighted directions at b-value = 1000 s/mm2 and
5 T2-weighted images (b-value = 0 s/mm2, referred to as b0 image). Besides, each
participant underwent a T1w MRI sequence with following parameters: 256⇥256
matrix; voxel size = 1.2⇥1.0⇥1.0 mm ; TI = 400 ms; TR = 6.98 ms; TE = 2.85 ms;
flip angle = 11�. We used QC information provided by ADNI to select participants
(see below Section 4.1). Moreover, QC was conducted on the results of the prepro-
cessing pipeline (see below Section 4.2). Four participants were excluded because
of the lower image resolution (4.5⇥4.5⇥4.5mm). Finally, 46 CN, 97 MCI, 54 sMCI,
24 pMCI and 46 AD were included.
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Table 4.3 summarizes the demographics, and the MMSE and global CDR scores
of the participants in this study.

N Age Gender MMSE CDR

CN 46 72.7 ± 6.0[59.8,89.0] 21M/25F 28.9 ± 1.4[24,30] 0:46
MCI 97 72.9 ± 7.3[55.0,87.8] 62M/35F 27.7 ± 1.7[24,30] 0.5:97
sMCI 54 72.6 ± 7.7[55.0,87.8] 21M/25F 28.0 ± 1.7[24,30] 0.5:54
pMCI 24 74.2 ± 6.1[56.5,85.3] 16M/8F 26.8 ± 1.4[24,30] 0.5:24
AD 46 74.4 ± 8.4[55.6,90.3] 28M/18F 23.4 ± 1.9[20,26] 0.5:17;1:29

Table 4.3: Summary of participant demographics, mini-mental state
examination (MMSE) and global clinical dementia rating (CDR)
scores. Values are presented as mean ± SD [range]. M: male, F: fe-

male

4.5 Methods

The classification framework is illustrated in Figure 4.1. It includes: tools for
data management, image processing, feature extraction and selection, classifica-
tion, and evaluation. Conversion tools allow an easy update of ADNI as new sub-
jects become available. To facilitate future development and testing, the different
components were designed in a modular-based architecture: processing pipelines
using Nipype (Gorgolewski et al., 2011), and classification and evaluation tools
using the scikit-learn 19 library (Pedregosa et al., 2011). Thus the objective mea-
surement of the impact of each component on the results could be clarified. A
simple command line interface is provided and the code can also be used as a
Python library.

19http://scikit-learn.org

http://scikit-learn.org
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Figure 4.1: Overview of the framework.

4.5.1 Converting datasets to a standardized data structure

Public datasets, such as ADNI, are extremely useful to the research community.
However, using the ADNI can be difficult because the downloaded raw data does
not possess a clear and uniform organization. We thus proposed to convert ADNI
data into the BIDS format (Gorgolewski et al., 2016), a community standard which
allows storing multiple neuroimaging modalities as well as clinical and sociode-
mographic data. BIDS is based on a file hierarchy rather than on a database man-
agement system. It can thus be easily deployed in any research laboratory.

The ADNI to BIDS converter that we developed allows to automatically con-
vert the raw dataset downloaded from the ADNI website to BIDS. The converter
requires that the user has downloaded all the ADNI study data (tabular data in csv
format) and the imaging data of interest. Importantly, the downloaded files must
be kept exactly as they were downloaded. All conversion steps are then performed
by the automatic converter, requiring no user intervention.

Details regarding conversion of clinical, sociodemographic and T1w MRI data
can be found in (Samper-González et al., 2018). For the DWIs, first, we selected
from the file “IDA_MR_Metadata_Listing.csv”, all entries containing “DTI” in the
“Sequence” field. Images with a sequence name containing “Enhanced” were dis-
carded. Then, “IMAGEUID” field was matched to corresponding “loni_image”
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field of ‘MAYOADIRL_MRI_IMAGEQC_12_08_15.csv’ file, to find QC informa-
tion for each image. In cases where there existed several scans for a visit, we kept
the one marked as selected (1 in ‘series_selected’ field of QC csv file). If there was
no image marked as selected, then we chose the image with the best quality, (as
specified in “series_quality” field, ranging from 1 to 4, 1 being excellent and 4 be-
ing unusable), excluding the images that failed QC (series_quality = 4). If there
were several images for the same visit and QC information was not present, we
chose the scan that was acquired the first. Once paths for each of the selected im-
ages were gathered, the images in dicom format were converted to nifti format
using the dcm2niix20 tool, or in case of error the dcm2nii21 tool (Li et al., 2016). Im-
ages failing the conversion using both tools were manually discarded. Finally, the
converted images in nifti format were organized in the corresponding BIDS folder.
Note that all these steps are automatically performed by the converter.

We also provide tools for subject selection according to the duration of follow
up and the diagnose. In the present study, all the participants whose T1w MRI
and diffusion MRI scans were available at baseline were included. Finally, we
organized all the outputs of the experiments into a BIDS-inspired standardized
structure.

4.5.2 Preprocessing pipelines

4.5.2.1 Preprocessing of T1w MRI

The image processing pipeline for T1w MRI was previously described in (Samper-
González et al., 2018). In brief, the Unified Segmentation procedure (Ashburner
and Friston, 2005) is first used to simultaneously perform tissue segmentation, bias
correction and spatial normalization of the input image. Next, a group template
is created using DARTEL (Ashburner, 2007), from the subjects’ tissue probability
maps in native space obtained at the previous step. Lastly, the DARTEL to MNI
method (Ashburner, 2007) is applied, providing a registration of the native space
images into the MNI space. Besides, the GM and WM tissue maps from DAR-
TEL template were binarized (with a threshold of 0.3) to obtain the corresponding
tissue masks that are subsequently used in diffusion MRI pipeline.

20https://github.com/rordenlab/dcm2niix
21https://www.nitrc.org/plugins/mwiki/index.php/dcm2nii:MainPage

https://github.com/rordenlab/dcm2niix
https://www.nitrc.org/plugins/mwiki/index.php/dcm2nii:MainPage
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4.5.2.2 Preprocessing of diffusion MRI

For each subject, all b0 images were rigidly registered to the first b0 image and
then averaged as the b0 reference. The raw DWIs were corrected for eddy current-
induced distortions and subject movements by simultaneously modelling the ef-
fects of diffusion eddy currents and movements on the image using eddy tool
(Andersson and Sotiropoulos, 2016) from FMRIB Software Library (FSL) software
(Jenkinson et al., 2012). To correct for susceptibility-induced distortions, as fieldmap
data were not available in ADNI GO or ADNI2, the T1w MRI was used instead in
this context. The skull-stripped b0 image was registered to the T1w MRI with two
sequential steps: first a rigid registration using FSL flirt tool and then a non-linear
registration using SyN registration algorithm from ANTs (Avants et al., 2008). SyN
is an inverse-consistent registration algorithm allowing EPI induced susceptibility
artifacts correction (Leow et al., 2007). Finally, the DWI volumes were corrected
for nonuniform intensity using the ANTs N4 bias correction algorithm (Tustison
and Avants, 2013) and the diffusion weighting directions were appropriately up-
dated (Leemans and Jones, 2009). The implementation of these different steps is
available in the dwi-preprocessing-using-t1 pipeline of Clinica.

We performed QC on the results of the preprocessing pipeline. Specifically, we
inspected the results for the presence of head motion artifacts and eddy current
artifacts. Registration quality was also visually checked by overlapping the source
image onto the target image. All preprocessed data were considered of acceptable
quality.

The DTI model was then fitted to generate FA and MD maps using MRtrix
(Tournier, Calamante, and Connelly, 2012). FA maps were nonlinearly registered
onto the JHU atlas FA template in MNI space with the ANTs SyN algorithm (Avants
et al., 2008). The estimated nonlinear deformation was finally applied to the MD
maps to have all the FA and MD maps in the same space. These procedures were
implemented in the dwi-processing-dti pipeline of Clinica.

4.5.3 Feature extraction

We extracted two types of features: voxel-wise and regional features. After image
preprocessing, all T1w MRI and diffusion MRI are in MNI space and we have a
voxel-wise correspondence across subjects. Voxel-wise features simply correspond
to all the voxels in GM for T1w MRI. In order to extract the DTI-based voxel-wise
features, FA and MD maps were masked using the tissue masks (i.e., WM, GM
and GM+WM tissue binarized masks) obtained from T1w MRI pipeline. Then
a Gaussian smoothing kernel with FWHM at 8 mm was applied to the masked
FA and MD maps. The resulting maps were masked again by the tissue masks.
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Thus voxels in GM, WM or GM+WM tissue maps were used as voxel-wise fea-
tures for diffusion MRI. Regional features correspond to the average value (GM
density for T1w MRI; FA or MD for diffusion MRI) computed in a set of ROIs ob-
tained from different atlases. AAL2 atlas containing 120 ROIs (Rolls, Joliot, and
Tzourio-Mazoyer, 2015) was used for T1w MRI. Two JHU atlases, ICBM-DTI-81
white-matter labels atlas (referred as JHULabel with 48 ROIs) and JHU white-
matter tractography atlas with a 25% threshold (referred as JHUTract25 with 20
ROIs), were used for diffusion MRI. The different features are shown in Table 4.4.

Modality Feature Type Feature

Diffusion MRI
Voxel-wise

WM-FA
WM-MD
GM-FA
GM-MD

WM+GM-FA
WM+GM-MD

Region-wise JHULabel-FA/MD
JHUTract25-FA/MD

T1w MRI Voxel-wise GM-Density
Region-wise AAL2

Table 4.4: Summary of the different types of features.

4.5.4 Classification

Classification was performed using a linear SVM for both voxel-wise and regional
features. As output of the classification, we reported the balanced accuracy, AUC,
accuracy, sensitivity, specificity. Additionally, the optimal margin hyperplane (OMH)
coefficient maps were reported. The OMH coefficient map represents the influence
of each voxel or region on the classification performance. Thus, the OMH coeffi-
cient map characterizes the potential anatomical patterns associated to a given
classifier (Cuingnet et al., 2013).

4.5.5 Cross-validation

As emphasized in the recent literature (Varoquaux et al., 2017), it is important to
properly perform the cross-validation (CV) procedures. In the present work, the
CV procedure included two nested loops: an outer loop evaluating the classifica-
tion performances and an inner loop used to optimize the hyperparameters of the
model (C for SVM). More precisely, repeated random splits (all of them stratified)
with 250 repetitions was used for outer CV. For hyperparameter optimization, we
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used an inner loop with 10-fold CV. For each split, the model with the highest
balanced accuracy is selected, and then these selected models are averaged across
splits to profit of model averaging.

When FS is performed, it is crucial that FS is adequately incorporated into the
CV procedure. FS is a process to identify relevant features and thereby reduce
the dimensionality. It has the potential to reduce overfitting (Bermingham et al.,
2015). In the present work, we aim to explore the impact of FS bias. The FS bias,
also known as non-nested FS strategy, arises when FS is performed on the entire
dataset and not within the CV procedure, thus introducing data leakage. On the
contrary, a nested FS is a procedure blind to the test data and embedded into the
nested CV (Maggipinto et al., 2017).

Two different FS algorithms were applied: an ANOVA univariate test and an
embedding SVM recursive feature elimination (SVM-RFE) (Guyon et al., 2002;
Chandrashekar and Sahin, 2014). Specifically, the ANOVA test can been seen as a
filter without taking the classifier into account and was performed for each feature
independently. SVM-RFE uses the coefficients from the SVM models to assess fea-
ture importance. Then the least important features, which have the least effect on
classification, are iteratively pruned from the current set of features. The remain-
ing features are kept for the next iteration until the desired number of features has
been obtained. For both methods, we tested varying numbers of selected features
(1% of the total number of features and then from 10% to 100%, increasing by 10%
at each step).

4.5.6 Classification experiments

Four different classification tasks were considered: CN vs AD, CN vs pMCI, sMCI
vs pMCI and CN vs MCI.

For all classification tasks, we assessed the influence of different components
on the performance. First of all, we compared the performance obtained with dif-
ferent DTI metrics (FA, MD), different feature types (voxel, regional) and different
atlases. Secondly, we compared the classification performance between diffusion
MRI and T1w MRI. To note, the nested CV procedure, in each iteration, guaranteed
the same subjects for data split (i.e., training and testing data) between modalities.
Thirdly, we studied the impact of imbalanced data. Three tasks (i.e., CN vs pMCI,
CN vs MCI and sMCI vs pMCI) have imbalanced data: the number of subjects of
the majority group is nearly twice as many as that of the minority group. To assess
the impact of data imbalance, a random down-sampling technique was used for
each imbalanced task. In each iteration of the outer CV, this technique randomly
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excluded certain subjects from the majority group to ensure the subject balance
between groups. Lastly, we evaluated the effect of FS bias.

4.6 Results

Here, we present the results of classification tasks using original data or balanced
data in Tables 4.5 and 4.6. Balanced accuracy was used as performance metric.
All the results with other performance metrics are available at https://gitlab.
icm-institute.org/aramislab/AD-ML.

Modality Feature CN/AD CN/pMCI sMCI/pMCI CN/MCI

Diffusion MRI

WM-FA 0.73 ± 0.099 0.52 ± 0.108 0.43 ± 0.088 0.57 ± 0.090
WM-MD 0.71 ± 0.098 0.53 ± 0.087 0.49 ± 0.048 0.59 ± 0.068
GM-FA 0.71 ± 0.097 0.59 ± 0.107 0.48 ± 0.089 0.57 ± 0.088
GM-MD 0.76 ± 0.095 0.61 ± 0.115 0.51 ± 0.098 0.60 ± 0.084

WM+GM-FA 0.71 ± 0.099 0.59 ± 0.112 0.47 ± 0.094 0.58 ± 0.086
WM+GM-MD 0.76 ± 0.098 0.60 ± 0.118 0.51 ± 0.106 0.60 ± 0.088
JHULabel-FA 0.70 ± 0.107 0.51 ± 0.112 0.47 ± 0.088 0.57 ± 0.081
JHULabel-MD 0.50 ± 0 0.50 ± 0 0.50 ± 0 0.50 ± 0
JHUTract25-FA 0.66 ± 0.102 0.54 ± 0.118 0.47 ± 0.078 0.55 ± 0.077
JHUTract25-MD 0.47 ± 0 0.50 ± 0 0.50 ± 0 0.50 ± 0

T1w MRI GM-Density 0.88 ± 0.066 0.73 ± 0.112 0.64 ± 0.113 0.58 ± 0.086
AAL2 0.86 ± 0.073 0.69 ± 0.120 0.64 ± 0.118 0.59 ± 0.090

Table 4.5: Results of all the classification experiments using original
(imbalanced) data. Balanced accuracy was used as performance met-

ric. Values are presented as mean ± standard deviation (SD).

Modality Feature CN/pMCI sMCI/pMCI CN/MCI

Diffusion MRI

WM-FA 0.55 ± 0.151 0.44 ± 0.150 0.56 ± 0.113
WM-MD 0.61 ± 0.140 0.48 ± 0.138 0.55 ± 0.090
GM-FA 0.60 ± 0.137 0.47 ± 0.151 0.59 ± 0.107
GM-MD 0.62 ± 0.144 0.51 ± 0.146 0.57 ± 0.101

WM+GM-FA 0.61 ± 0.146 0.44 ± 0.156 0.57 ± 0.110
WM+GM-MD 0.62 ± 0.139 0.51 ± 0.150 0.57 ± 0.105
JHULabel-FA 0.53 ± 0.138 0.47 ± 0.138 0.57 ± 0.101
JHULabel-MD 0.55 ± 0.088 0.48 ± 0.142 0.58 ± 0.078
JHUTract25-FA 0.57 ± 0.135 0.48 ± 0.142 0.54 ± 0.118
JHUTract25-MD 0.64 ± 0.148 0.53 ± 0.144 0.59 ± 0.103

Table 4.6: Results of all the classification experiments using balanced
data. Balanced accuracy was used as performance metric. Values are

presented as mean ± standard deviation (SD).

https://gitlab.icm-institute.org/aramislab/AD-ML
https://gitlab.icm-institute.org/aramislab/AD-ML
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4.6.1 Influence of the type of features

Generally, voxel-wise features provided higher accuracies than regional features.
While the difference was moderate for FA, it was particularly striking for MD:
MD region-wise classifications did not perform better than chance for all tasks.
In general, for voxel-wise features, the performances obtained with FA and MD
were of the same order of magnitude. However, one can note that accuracies were
(moderately but systematically) higher for MD than for FA. Finally, for MD, the
inclusion of GM (either in isolation or when combined with WM) considerably
increased the performance over the use of WM alone (see Table 4.5).

4.6.2 Influence of the imaging modality

Compared to diffusion MRI, T1w MRI lead to higher accuracies for tasks CN vs
AD, CN vs pMCI and sMCI vs pMCI (Figure 4.2). On the other hand, both modal-
ities led to low performance for the task CN vs MCI.

Figure 4.2: Distribution of the balanced accuracy obtained from both
T1w and diffusion MRI for tasks CN vs AD, CN vs pMCI and sMCI vs
pMCI. Both the results for voxel (top) and regional (bottom) feature

with reference atlases are shown.
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4.6.3 Influence of the imbalanced data

For voxel-wise classification, compared to the results of classification using im-
balanced data, balanced data showed comparable accuracies for all three tasks, as
shown in Figure 4.3. For MD region-wise approach, switching from imbalanced
data to balanced data, accuracy considerably increased from 0.5 to 0.64 for task
CN vs pMCI and from 0.5 to 0.59 for task CN vs MCI.
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Figure 4.3: Distribution of the balanced accuracy obtained from the
randomly balanced classifications for tasks CN vs MCI, CN vs pMCI
and sMCI vs pMCI. For comparison, the original data classification
results are also displayed. Both the results for voxel (top 2) and re-

gional (bottom 2) feature are shown.
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4.6.4 Influence of the feature selection bias

To assess the influence of FS bias, the experiments were restricted to GM+WM-
FA and GM+WM-MD features for task CN vs AD, which are the cases with the
highest number of features and for which the performance is higher. Results are
presented in Figure 4.4.

For both FS algorithms, the non-nested approach resulted in vastly over-optimistic
evaluations of performances, from 5% up to 40% increase in balanced accuracy.
Specifically, for ANOVA, the highest balanced accuracy was obtained with the
first 1% most informative voxels for non-nested approach (0.78 for FA and 0.83
for MD), and with all available voxels for nested approach (0.71 for FA and 0.76
for MD). For SVM-RFE, the highest balanced accuracy was achieved with the first
10% most informative voxels for non-nested approach (0.99 for FA and 0.83 for
MD), and with the first 70% most informative voxels with FA (0.75) and the first
1% most informative voxels with MD (0.77) for nested approach. Compared to
non-FS (no FS was performed), the nested ANOVA FS did not give better perfor-
mance. Whilst while the nested SVM-RFE obtained slightly higher accuracies than
non-FS: balanced accuracy increases from 0.71 (non-FS) to 0.75 (nested FS) for FA
and 0.76 (non-FS) to 0.77 (nested FS) for MD.
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Figure 4.4: Balanced accuracy of CN vs AD obtained varying the
number of voxels for ANOVA and SVM-RFE approaches. (A)

GM+WM-FA feature; (B) GM+WM-MD feature.

4.6.5 Potential anatomical pattern

Figure 4.5 displays the OMH coefficient maps for the most successful task CN
vs AD. For MD features, discriminative voxels were mainly within the GM (hip-
pocampus and medial temporal cortex) (Figure 4.5B). When restricting the analy-
sis to WM, only small regions were discriminative and these regions where out-
side those of the JHUTract25 atlas (Figure 4.5D), which is consistent with the poor
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performances obtained with MD regional features. For GM- density features (Fig-
ure 4.5C), the discriminative voxels also included these regions but were more
extended (including some regions in the lateral temporal cortex and in the parietal
and frontal lobes). For FA, discriminative voxels included both GM and WM re-
gions (Figure 4.5A). In the GM, discriminative voxels were mainly located within
the medial temporal lobe. In the WM, they were more diffuse and absent of the
deep WM. These regions were close to the forceps minor and major tracts and
inferior fronto-occipital fasciculus.

Figure 4.5: Normalized coefficient maps in MNI space. Task CN
vs AD with A) GM+WM-FA features; B) GM+WM-MD features; C)
GM-Density features; D) WM-MD features superimposed onto the
JHUTract25 atlas (in gray). Warm colors, it means higher likelihood

of classification into AD.

4.7 Discussion

In the present work, we proposed an open-source framework for the reproducible
evaluation of AD classification from diffusion MRI, which extends our previous
framework devoted to T1w MRI and PET. We demonstrated its use to assess the
influence of different components on classification performances, specifically i)
feature types, ii) imaging modalities (T1w MRI and diffusion MRI), iii) data im-
balance and iv) FS strategies.

Generally, we hopefully contribute to make evaluation of machine learning ap-
proaches in AD more reproducible and more objective. Firstly, providing the tools
to fully automatically convert original ADNI diffusion MRI into the community
standard BIDS, we hope to facilitate the future work of researchers. Secondly, the
literature (Uchida, 2013; Cuingnet et al., 2011; Lu and Weng, 2007) suggested that



4.7. Discussion 95

image processing procedures, including steps such as preprocessing, parcellation,
registration and intensity normalization, have a strong influence on classification
results. Hence, a standard diffusion MRI processing pipeline was proposed in
the present work. Lastly, we proposed rigorous CV procedures following recent
best practices (Varoquaux et al., 2017). The key components are publicly available
in Clinica, a freely available software platform for clinical neuroscience research
studies. We hope this framework will allow researchers to easily and rigorously
evaluate their own classification algorithms, FS algorithms or image processing
pipelines.

We then aimed to provide a baseline performance for future work. The results
obtained in our framework were in line with the state-of-the-art. In our experi-
ments, we obtained the balanced accuracy with 0.76 for task CN vs AD, 0.60 for
task CN vs MCI and 0.61 for task CN vs pMCI. In general, the performances are
low and support the idea that DTI metrics, alone, are not highly discriminant for
AD classification. However, one can note that, in the literature, several studies us-
ing DTI-based features reported superior performances over our work (O’Dwyer
et al., 2012; Nir et al., 2015; Demirhan et al., 2015; Mesrob et al., 2012; Termenon
et al., 2011; Graña et al., 2011). However, these discrepancies may come from i) the
differences in image quality due to different dataset, ii) different sample size and
iii) the FS bias, which we will specifically discuss below.

Different types of DTI-based features were assessed. Generally, voxel-wise fea-
tures provided higher accuracies than region-wise features. This was consistent
with a previous study (Demirhan et al., 2015), which reported accuracies of 0.75
for region-wise classification and of 0.88 for voxel-wise classification. Of note, the
most discriminative voxels for WM-MD classification are outside the regions of
the JHUTract25 atlas. This finding explains the poor performances obtained us-
ing MD regional features. Thus, the atlas used for region-wise approaches should
be chosen with care. Moreover, FA and MD gave comparable performances for
voxel-wise classification. This finding was supported by previous studies (Dyrba
et al., 2013; Maggipinto et al., 2017; Lella et al., 2017). One study, which adopted a
non-nested FS, reported that MD (accuray of 0.81) outperformed FA (accuracy of
0.75) to discriminate CN from AD (Nir et al., 2015).

We also systematically compared the classification performance between T1w
and diffusion MRI. The results showed that T1w MRI outperformed diffusion
MRI. Several previous studies have compared the performances of these two modal-
ities. Mesrob et al found that T1w MRI outperformed diffusion MRI (accuracy of
O.77 for T1w MRI vs 0.69 for FA from DTI) for task CN vs AD (Mesrob et al.,
2012). However, their results were biased due to the adoption of a non-nested FS.
Cui et al founded superior performance of T1w MRI over diffusion MRI (accuracy
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of 0.61 for T1w MRI vs 0.54 for FA from DTI) when classifying CN from MCI for
both modalities (Cui et al., 2012). Using a predefined hippocampus ROI approach,
Ahmed et al obtained comparable accuracies for both modalities for tasks CN vs
AD (accuracy of O.71 for T1w MRI vs 0.72 for MD from DTI) and CN vs MCI (accu-
racy of O.65 for T1w MRI vs 0.68 for MD from DTI) (Ahmed et al., 2017). Given the
larger sample size and proper FS procedure in our work, we believe that the supe-
rior performances of T1w MRI over diffusion MRI is reliable and robust. Several
factors could explain the better performances of T1w MRI. First, it is controversial
but possible that WM degeneration is a secondary degenerative process compared
to brain atrophy (Xie et al., 2006; Agosta et al., 2011). Another possibility is that
ADNI diffusion MRI acquisitions used within our study do not make use of the
state-of-the-art methods that impact on image quality. In particular, no fieldmap
data is acquired which leads to suboptimal correction of magnetic susceptibility
artifacts (Wu et al., 2008).

We evaluated the impact of data imbalance on the classification performance. It
is commonly agreed that imbalanced data may adversely impact the classification
performance as the learned model will be biased towards the majority class to min-
imize the overall error rate (Estabrooks, 2000; Japkowicz and Others, 2000; Dubey
et al., 2014). Efforts have been made to deal with imbalanced data, which could be
generally classified as algorithmic level (Akbani, Kwek, and Japkowicz, 2004) and
data level (Dubey et al., 2014). In the current study, for voxel-wise classification,
we found that the low accuracies obtained in discriminating pMCI from sMCI or
CN are potentially caused by the small sample size, rather than by the imbalanced
data. Interestingly, Dubey et al showed that a balanced data obtained by several
data resampling techniques gave better results than the imbalanced data using
T1w MRI from ADNI (Dubey et al., 2014). Thus our hypothesis for the limited
sample size needs to be further confirmed as more subjects are becoming avail-
able.

In the literature, researchers have emphasized that “double-dipping”, referring
to the use of test subjects in any part of the training process, such as non-nested FS
in this context, is bad practice and may lead to over-fitted classification (Kriegesko-
rte et al., 2009; Rathore et al., 2017). Similarly, in a recent study, Maggipinto et al
showed that the adoption of FS strategies should be taken with care (Maggip-
into et al., 2017). They proved that a biased FS, usually a non-nested FS, leads
to over-optimistic results. Unfortunately, many previous studies using diffusion
MRI for AD classification adopted the non-nested FS and reported nearly perfect
classification (O’Dwyer et al., 2012; Mesrob et al., 2012; Graña et al., 2011). In the
current study, our finding reinforced the message that non-nested FS could result
in over-optimistic results. With the adoption of the non-nested SVM-RFE FS, a
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nearly perfect performance was achieved. Besides, FA outperformed MD for clas-
sification accuracies for this non-nested FS approach. Similar patterns were also
witnessed in the study of Maggipinto et al (Maggipinto et al., 2017). Replacing
the non-nested FS with the nested one, we obtained considerably inferior perfor-
mances. On the other hand, we found that, with SVM-RFE not with ANOVA, the
nested FS could potentially (slightly) improve the performance compared to the
case no FS was performed. The difference between ANOVA and SVM-RFE may
stem from the fact that ANOVA is performed for each feature (voxel) indepen-
dently while GM and WM in contiguous voxels are highly correlated (Mechelli
et al., 2005). Interestingly, another study found that, with the adoption of ReliefF
algorithm, FS improved the classification accuracy up to 8% compared to the non-
FS for task CN vs AD (Demirhan et al., 2015). However, they did not give enough
details concerning their validation scheme. In particular, it is not clear if they used
a nested FS (Demirhan et al., 2015).

Visualization of optimal margin hyperplane coefficient maps allowed to study
which voxels contribute the most to the discrimination. FA, MD and GM-Density
features shared a typical AD anatomical pattern: voxels in hippocampus and tem-
poral lobe showed more discriminative ability in the classification. These findings
were consistent with the literature. DTI-based group comparison analyses demon-
strated altered FA or MD in the hippocampus (Fellgiebel et al., 2006; Kantarci et al.,
2001; Müller et al., 2005; Müller et al., 2007; Hanyu et al., 1998) and in the temporal
lobe (Hanyu et al., 1998; Fellgiebel et al., 2005; Head et al., 2005; Stahl et al., 2007).
Moreover, the OMH coefficient map displayed a diffuse pattern for WM voxels in
our work. Similar patterns of WM voxels were also witnessed in the FS procedure
using diffusion MRI (Demirhan et al., 2015; Dyrba et al., 2013).

Our study has the following limitations. First, ADNI diffusion MRI data was
not acquired using the state-of-the-art methods which leads to suboptimal image
quality. Related works have proven the negative impact of low image quality on
MRI analyses (Yendiki et al., 2014; Alexander-Bloch et al., 2016; Reuter et al., 2015).
It is thus possible that diffusion MRI acquired using more recent protocols would
provide higher classification accuracies. Second, our experiments were performed
with a limited data sample size. The limitation came from the data currently avail-
able in ADNI. In a previous study (Samper-González et al., 2018), we have demon-
strated that increased training set size led to increased classification performances.
Thus, both limitations can result in inferior classification performances. Lastly, our
study only explored DTI-based features. With a proper CV and FS, more sophisti-
cated features, such as brain tractography- or network-based features, could also
be studied.
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Chapter 5

Convolutional Neural Networks for
Classification of Alzheimer’s Disease:
Overview and Reproducible
Evaluation

This chapter has been submitted as a journal article to Medical Image Analysis:

• Wen, J., Thibeau–Sutre, E., Samper-González., J, Routier, A., Bottani, S., Dur-
rleman, S., Burgos, N., Colliot, O. Convolutional Neural Networks for Clas-
sification of Alzheimer’s Disease: Overview and Reproducible Evaluation,
Submitted to Medical Image Analysis. https://arxiv.org/pdf/1904.07773.
pdf.

5.1 Abstract

Early and accurate diagnosis of Alzheimer’s disease (AD) is an important and
challenging task. Numerous studies have proposed to address this challenge us-
ing machine learning (ML) from brain imaging data. In particular, in the past
two years, over 30 papers have proposed to use convolutional neural network
(CNN) for AD classification. However, the classification performances across stud-
ies are difficult to compare due to variations in components such as participant
selection, image preprocessing or validation procedure. Moreover, these stud-
ies are hardly reproducible because their frameworks are not publicly accessible
and because implementation details are lacking. Lastly, some of these papers
may reported biased performances due to inadequate or unclear validation pro-
cedure and also it is unclear how the model architecture and parameters were
chosen. In the present work, we aim to address these limitations through three
main contributions. First, we performed a systematic literature review of studies
using CNN for AD classification from anatomical MRI. We identified four main

https://arxiv.org/pdf/1904.07773.pdf
https://arxiv.org/pdf/1904.07773.pdf
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types of approaches:i) 2D slice-level, ii) 3D patch-level, iii) ROI-based and iv) 3D
subject-level CNN. Moreover, we found that more than half of the surveyed pa-
pers may have suffered from data leakage and thus reported biased performances.
Our second contribution is an open-source framework for classification of AD us-
ing CNN and T1-weighted MRI. The framework comprises: tools to automati-
cally convert ADNI, AIBL and OASIS data into the BIDS standard, a modular
set of image preprocessing procedures, classification architectures and an evalu-
ation framework. Thirdly, we used this framework to rigorously compare dif-
ferent CNN architectures, which are representative of the existing literature, and
to study the influence of key components on classification performances. Impor-
tantly, the data was split into training/validation/test sets at the very beginning.
Training/validation sets were used in a CV procedure for model selection. To
avoid any overfitting of the test sets by testing different architectures, hyperpa-
rameters or preprocessing, the test sets were left untouched until the end of the
peer-review procedure. We included three test sets: one from ADNI to assess
generalization to different patients from the same study, one from AIBL for gen-
eralization to a different study but with similar imaging protocols and inclusion
criteria, one from OASIS to assess generalization to different protocols and inclu-
sion criteria. [Results will be modified after peer-review]. On the validation set,
the ROI-based (hippocampus) CNN achieved highest balanced accuracy (0.86 for
AD vs CN and 0.80 for sMCI vs pMCI) compared to other approaches. Trans-
fer learning with autoencoder pre-training did not improve the average accuracy
but reduced the variance. Training using longitudinal data resulted in similar
or higher performance, depending on the approach, compared to training with
only baseline data. Sophisticated image preprocessing did not improve the re-
sults. Lastly, CNN performed similarly to standard SVM for task AD vs CN but
outperformed SVM for task sMCI vs pMCI, demonstrating the potential of deep
learning for challenging diagnostic tasks. All the code of the framework and the
experiments is publicly available: general-purpose tools have been integrated into
the Clinica software (www.clinica.run) and the paper-specific code is available at:
https://gitlab.icm-institute.org/aramislab/AD-ML.

5.2 Introduction

Alzheimer’s disease (AD), a chronic neurodegenerative disease causing the death
of nerve cells and tissue loss throughout the brain, usually starts slowly and wors-
ens over time (McKhann et al., 1984). AD is expected to affect 1 out of 85 peo-
ple in the world by the year 2050 (Brookmeyer et al., 2007). The cost of caring

www.clinica.run
https://gitlab.icm-institute.org/aramislab/AD-ML
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for AD patients is also expected to raise dramatically, thus the need of individual
computer-aided systems for early and accurate AD diagnosis.

Magnetic resonance imaging (MRI) offers the possibility to study pathologi-
cal brain changes associated with AD in vivo (Ewers et al., 2011). Over the past
decades, neuroimaging data have been increasingly used to characterize AD by
means of machine learning (ML) methods, offering promising tools for individ-
ualized diagnosis and prognosis (Falahati, Westman, and Simmons, 2014; Haller,
Lovblad, and Giannakopoulos, 2011; Rathore et al., 2017). A large number of stud-
ies have proposed to use predefined features (including regional and voxel-based
measurements) from image preprocessing pipelines followed by different types of
classifiers, such as support vector machines (SVM) or random forests. Such ap-
proach is often referred to as conventional ML (LeCun, Bengio, and Hinton, 2015).
More recently, deep learning (DL), as a newly emerging ML methodology, has
made a big leap in the domain of medical imaging (Bernal et al., 2018; Liu et al.,
2018a; Selvikvåg Lundervold and Lundervold, 2018; Razzak, Naz, and Zaib, 2018;
Wen et al., 2018a). As the most widely used architecture of DL, convolutional neu-
ral network (CNN) has attracted huge attention due to its great success in image
classification (Krizhevsky, Sutskever, and Hinton, 2012). Contrary to conventional
ML, DL allows the automatic abstraction of low-to-high level latent feature repre-
sentations (e.g. lines, dots, or edges for low level features, and objects or larger
shapes for high level features). Thus, one can hypothesize that DL depends less
on image preprocessing and requires less prior on other complex procedures, such
as feature selection, resulting in a more objective and less bias-prone process (Le-
Cun, Bengio, and Hinton, 2015).

Very recently, numerous studies have proposed to assist diagnosis of AD by
means of CNNs (Aderghal et al., 2018; Aderghal, Benois-Pineau, and Afdel, 2017;
Aderghal et al., 2017; Bäckström et al., 2018; Basaia et al., 2018; Cheng and Liu,
2017; Cheng et al., 2017; Farooq et al., 2017; Gunawardena, Rajapakse, and Kodikara,
2017; Hon and Khan, 2017; Hosseini Asl et al., 2018; Islam and Zhang, 2018; Islam
and Zhang, 2017; Korolev et al., 2017; Lian et al., 2018; Li, Liu, and Alzheimer’s
Disease Neuroimaging Initiative, 2018; Li, Cheng, and Liu, 2017; Lin et al., 2018;
Liu et al., 2018c; Liu et al., 2018b; Liu et al., 2018e; Qiu et al., 2018; Senanayake,
Sowmya, and Dawes, 2018; Shmulev, Belyaev, and The Alzheimer’s Disease Neu-
roimaging Initiative, 2018; Taqi et al., 2018; Valliani and Soni, 2017; Vu et al., 2018;
Vu et al., 2017; Wang et al., 2019; Wang et al., 2017; Wang et al., 2018b; Wu et al.,
2018). However, classification performances among these studies are not directly
comparable because they differ in terms of: i) sets of participants; ii) image pre-
processing procedures, iii) cross-validation (CV) procedure and iv) reported eval-
uation metrics. It is thus impossible to determine which approach performs best.
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The generalization ability of these approaches also remains unclear. In DL, the use
of fully independent test sets is even more critical than in conventional ML, be-
cause of the very high flexibility with numerous possible model architecture and
training hyperparameter choices. Assessing generalization to other studies is also
critical to ensure that the characteristics of the considered study have not been
overfitted. In previous works, the generalization may be questionable due to: i)
inadequate validation procedures, ii) absence of independent test set, or iii) test set
chosen from the same study.

In our previous studies (Samper-González et al., 2018; Wen et al., 2018b), we
have proposed an open source framework for reproducible evaluation of AD clas-
sification using conventional ML methods. The framework comprises: i) tools
to automatically convert three publicly available datasets into the Brain Imaging
Data Structure (BIDS) format (Gorgolewski et al., 2016) and ii) a modular set of pre-
processing pipelines, feature extraction and classification methods, together with
an evaluation framework, that provide a baseline for benchmarking the different
components. We demonstrated the use of this framework on positron emission
tomography (PET), T1-weighted (T1w) MRI (Samper-González et al., 2018) and
diffusion MRI data (Wen et al., 2018b).

In the present work, we extended the framework to DL approaches using CNNs.
We first reviewed and summarized the different studies using CNNs and anatom-
ical MRI for AD classification. In particular, we reviewed their validation proce-
dures and the possible presence of data leakage. Then, different CNN architectures
were implemented in our open source framework. We compared the performance
of these approaches and studied the influence of key components on the classifi-
cation performance. The proposed CNNs were also compared to a conventional
ML approach based on a linear SVM. Lastly, we assessed the generalization abil-
ity of the CNN models within (training and testing on ADNI) and across datasets
(training on ADNI and testing on AIBL or OASIS).

All the code of the framework and the experiments is publicly available: general-
purpose tools have been integrated into Clinica (Routier et al., 2018), an open-
source software platform that we developed to process data from neuroimaging
studies, and the paper-specific code is available at: https://gitlab.icm-institute.
org/aramislab/AD-ML.

5.3 State of the art

We performed an online search of publications concerning classification of AD
using neural networks based on anatomical MRI in PubMed and Scopus, from
January 1990 to the 15th of January 2019. This resulted in 406 records which were

https://gitlab.icm-institute.org/aramislab/AD-ML
https://gitlab.icm-institute.org/aramislab/AD-ML
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screened according to their abstract, type and content (more details are provided
in online supplementary C eMethod 1) to retain only those focused on the classi-
fication of AD stages using at least anatomical MRI as input of a neural network.
This resulted in 71 studies. Out of these 71, 32 studies used CNN on image data
in an end-to-end framework, which is the focus of our work. We found that a sub-
stantial proportion of these studies performed a biased evaluation of results, due
to the presence of data leakage, hence we first discuss the data leakage issues that
we encountered in our bibliography (Section 3.1). We then review the 32 studies
that used end-to-end CNNs on image data, the main focus of this work (Section
3.2). Finally, we briefly describe other studies that were kept in our bibliography
but that are out of our scope (Section 3.3).

5.3.1 Main causes of data leakage

Unbiased evaluation of classification algorithms is critical to assess their potential
clinical value. A major source of bias is data leakage, which refers to the use of test
data in any part of the training process (Kriegeskorte et al., 2009; Rathore et al.,
2017). Data leakage can be difficult to detect for DL approaches as they can be
complex and very flexible. We assessed the prevalence of data leakage among the
papers described in section 3.2 and analyzed its causes. The articles were labeled
into three categories: i) Clear when data leakage was explicitly witnessed; ii) Un-
clear when no sufficient explanation was offered and iii) None detected. The results
are summarized in the last of column of Table 5.1. They were further categorized
according to the cause of data leakage. Four main causes were identified:

• Bad data split. Not splitting the dataset at the subject-level when defining
the training, validation and test sets can result in data from the same subject
to appear in several sets. This problem can occur when patches or slices are
extracted from a 3D image, or when images of the same subject are available
at multiple time points. (Bäckström et al., 2018) showed that, using a lon-
gitudinal dataset, a biased dataset split (at the image level) can result in an
accuracy increase of 8 percent points compared to an unbiased split (at the
subject-level).

• Late split. Procedures such as data augmentation, feature selection or AE
pre-training must never use the test set and thus be performed after the
training/validation/test split to avoid biasing the results. For example, if
data augmentation is performed before isolating the test data from the train-
ing/validation data, then images generated from the same original image
may be found in both sets, leading to a problem similar to the wrong data
split.
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• Biased transfer learning. Transfer learning can result in data leakage when
the source and target domains overlap, for example when a network pre-
trained on the AD vs CN task is used to initialize a network for the MCI
vs CN task and that the CN subjects in the training or validation sets of the
source task (AD vs CN) are also in the test set of the target task (MCI vs CN).

• Absence of an independent test set. The test set should only be used to
evaluate the final performance of the classifier, not to chose the training hy-
perparameters (e.g. learning rate) of the model. A separate validation set
must be used beforehand for hyperparameter optimization.

Note that we did not consider data leakage occurring when designing the net-
work architecture, possibly chosen thanks to successive evaluations on the test set,
as the large majority of the studies does not explicit this step.

All these data leakage causes may not have the same impact on data perfor-
mance. For instance, it is likely that a wrong data split in a longitudinal dataset or
at the slice-level is more damaging than a late split for AE pre-training.

5.3.2 Classification of AD with end-to-end CNNs

This section focuses on CNNs applied to an Euclidean space (here a 2D or 3D
image) in an end-to-end framework (from the input to the classification). A sum-
mary of these studies can be found in Table 5.1. The table indicates whether data
leakage was potentially present, which can have biased the performance upwards.
Below, we categorized studies according to the type of input of the network: i) 2D
slice-level, ii) 3D patch-level, iii) ROI-based and iv) 3D subject-level.
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Study Performance Approach Data leakage
AD/CN sMCI/pMCI MCI/CN AD/MCI Multi-class

(Aderghal, Benois-Pineau, and Afdel, 2017) 0.841 – 0.651 0.671 – ROI-based None detected
(Aderghal et al., 2018) 0.902 – 0.732 0.832 – ROI-based None detected

(Bäckström et al., 2018) 0.901 – – – – 3D subject-level None detected
(Cheng et al., 2017) 0.871 – – – – 3D patch-level None detected

(Cheng and Liu, 2017) 0.851 – – – – 3D subject-level None detected
(Islam and Zhang, 2018) – – – – 0.931 2D slice-level None detected

(Korolev et al., 2017) 0.801 – – – – 3D subject-level None detected
(Li, Cheng, and Liu, 2017) 0.881 – – – – 3D subject-level None detected

(Li, Liu, and Alzheimer’s Disease Neuroimaging Initiative, 2018) 0.901 – 0.741 – – 3D patch-level None detected
(Lian et al., 2018) 0.901 0.801 – – – 3D patch-level None detected
(Liu et al., 2018e) 0.911 0.781 – – – 3D patch-level None detected
(Liu et al., 2018b) 0.911 – – – – 3D patch-level None detected
(Qiu et al., 2018) – 0.831 – – – 2D slice-level None detected

(Senanayake, Sowmya, and Dawes, 2018) 0.761 – 0.751 0.761 – 3D subject-level None detected
(Shmulev, Belyaev, and The Alzheimer’s Disease Neuroimaging Initiative, 2018) – 0.621 – – – 3D subject-level None detected

(Valliani and Soni, 2017) 0.811 – – – 0.571 2D slice-level None detected
(Aderghal et al., 2017) 0.911 – 0.661 0.701 – ROI-based Unclear (b,c)

(Basaia et al., 2018) 0.992 0.752 – – – 3D subject-level Unclear (b)
(Hon and Khan, 2017) 0.961 – – – – 2D slice-level Unclear (a,c)

(Hosseini Asl et al., 2018) 0.991 – 0.941 1.001 0.951 3D subject-level Unclear (a)
(Islam and Zhang, 2017) – – – – 0.741 2D slice-level Unclear (b,c)

(Lin et al., 2018) 0.891 0.731 – – – ROI-based Unclear (b)
(Liu et al., 2018c) 0.851 0.741 – – – 3D patch-level Unclear (d)
(Taqi et al., 2018) 1.001 0.741 – – – 2D slice-level Unclear (b)
(Vu et al., 2017) 0.851 – – – – 3D subject-level Unclear (a)

(Wang et al., 2018b) 0.981 – – – – 2D slice-level Unclear (b)
(Bäckström et al., 2018) 0.991 – – – – 3D subject-level Clear (a)

(Farooq et al., 2017) – – – – 0.991 2D slice-level Clear (a,c)
(Gunawardena, Rajapakse, and Kodikara, 2017) – – – – 0.961 3D subject-level Clear (a,b)

(Vu et al., 2018) 0.861 – 0.861 0.771 0.801 3D subject-level Clear (a,c)
(Wang et al., 2017) – – 0.911 – – 2D slice-level Clear (a,c)
(Wang et al., 2019) 0.991 – 0.981 0.941 0.971 3D subject-level Clear (b)
(Wu et al., 2018) – – – – 0.951 2D slice-level Clear (a,b)

Table 5.1: Summary of the studies performing classification of AD using CNNs on anatomical MRI. Summary of the studies performing classification of AD using CNNs
on anatomical MRI. Studies are categorized according to the potential presence of data leakage: (A) studies without data leakage; (B) studies with potential data leakage.
Types of data leakage if presented: a, Wrong dataset split; b, Absence of independent test set; c, Late split; d, Biased transfer learning. 1: accuracy; 2: balanced accuracy. * In
(Bäckström et al., 2018), data leakage was introduced on purpose in order to study its influence. Thus, this study is present in both categories. † Use of imbalanced accuracy

on a severely imbalanced dataset (one class is less than half of the other), leading to an over-optimistic estimation of performance.



106

5.3.2.1 2D slice-level CNN

Several studies used 2D CNNs with input composed of the set of 2D slices ex-
tracted from the MRI 3D volume (Farooq et al., 2017; Gunawardena, Rajapakse,
and Kodikara, 2017; Hon and Khan, 2017; Islam and Zhang, 2018; Islam and
Zhang, 2017; Qiu et al., 2018; Taqi et al., 2018; Valliani and Soni, 2017; Wang et al.,
2017; Wang et al., 2018b; Wu et al., 2018). The main advantages of this approach
are: i) existing CNNs which had huge successes for natural image classification
tasks (e.g. ResNet and VGGNet) can be easily borrowed and used in a transfer
learning fashion; ii) the number of training samples is the number of slices, thus
potentially much larger than the number of subjects.

In this subsection of the bibliography, we found only one study in which nei-
ther data leakage was detected neither biased metrics were used (Valliani and Soni,
2017). They used a single axial slice per subject (taken in the middle of the 3D
volume) to compare the ResNet to an original CNN with only one convolutional
layer and two FC layers. They studied the impact of both transfer learning by ini-
tializing their networks with models trained on ImageNet, and data augmentation
with affine transformations. They conclude that the ResNet architecture is more
efficient than their baseline CNN and that pre-training and data augmentation im-
prove the accuracy of the ResNet architecture.

In all other studies, we detected a problem in the evaluation: either data leak-
age was present (or at least suspected) (Farooq et al., 2017; Gunawardena, Ra-
japakse, and Kodikara, 2017; Hon and Khan, 2017; Islam and Zhang, 2017; Taqi
et al., 2018; Wang et al., 2017; Wang et al., 2018b; Wu et al., 2018) or they used an
imbalanced metric on a severely imbalanced dataset (one class is less than half of
the other) (Islam and Zhang, 2018; Qiu et al., 2018). Causes of data leakage are
described in 3.1 section. Theses studies differ in terms of slice selection: i) one
study used all slices of a given plane (except the very first and last ones that are
not informative) (Farooq et al., 2017); ii) other studies selected several slices using
an automatic (Hon and Khan, 2017; Wu et al., 2018) or manual criterion (Qiu et al.,
2018); iii) one study used only one slice (Wang et al., 2018b). Working with several
slices implies to fuse the classifications obtained at the slice-level to obtain a clas-
sification at the subject-level. Only one study (Qiu et al., 2018) explained how they
performed this fusion. Other studies didn’t implement fusion and reported the
slice-level accuracy (Farooq et al., 2017; Gunawardena, Rajapakse, and Kodikara,
2017; Hon and Khan, 2017; Wang et al., 2017; Wu et al., 2018) or it is unclear if the
accuracy was computed at the slice- or subject-level (Islam and Zhang, 2018; Islam
and Zhang, 2017; Taqi et al., 2018).

The main limitation of the 2D slice-level approach is that MRI is 3-dimensional,
whereas the 2D convolutional filters analyze all slices of a subject independently.
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Moreover, there are many different ways to select slices that are used as input
(as all of them may not be informative) and slice-level accuracy and subject-level
accuracy are often confused.

5.3.2.2 3D patch-level CNN

To compensate for the absence of 3D information in the 2D slice-level approach,
more studies focused on the 3D patch-level classification (see Table 5.1). In these
frameworks, the input is composed of a set of 3D patches extracted from an image.
In principle, this could results, as in the 2D slice-level approach, in a larger sam-
ple size, since the number of samples would be the number of patches (and not
the number of subjects). However, this potential advantage is not used in the sur-
veyed papers because they trained independent CNNs for each patch. Additional
advantages of patches are the lower memory usage which may be useful when one
has limited resources and the lower number of learnt parameters. However, this
last advantage is present only when one uses the same network for all patches.

Two studies (Cheng et al., 2017; Liu et al., 2018c) used very large patches.
Specifically, they extracted 27 overlapping 3D patches of size 50x41x40 voxels cov-
ering the whole volume of the MRI data (100x81x80 voxels). They individually
trained 27 convolutional networks (one per patch) comprising four convolutional
layers and two FC layers. Then, an ensemble CNN was trained to provide a deci-
sion at the subject level. This ensemble CNN is partly initialized with the weights
of the previously trained CNNs. (Liu et al., 2018c) reused exactly the same archi-
tecture than (Cheng et al., 2017) and enriched it with a fusion of PET and MRI
inputs. They also gave the results obtained using the MRI modality only, which is
the result reported in Table 5.1.

(Li, Liu, and Alzheimer’s Disease Neuroimaging Initiative, 2018) used smaller
patches (32x32x32). By decreasing the size of the patches, they had to take into
account a possible discrepancy between patches taken at the same coordinates for
different subjects. To avoid this dissimilarity between subjects without performing
a non-linear registration, they clustered their patches using k-means. Then they
trained one CNN per cluster, and assembled the features obtained at the cluster-
level in a similar way than (Cheng et al., 2017; Liu et al., 2018c).

The following three studies (Lian et al., 2018; Liu et al., 2018e; Liu et al., 2018b)
decided to use even smaller patches (19x19x19). Nevertheless, they did not use all
possible patches from the MRI data but chose only some of them based on anatom-
ical landmarks. These anatomical landmarks are found in a supervised manner via
a group comparison between AD and CN subjects. However, this method requires
a non-linear registration in order to build the correspondence between voxels of
different subjects. Similarly to other studies, in (Liu et al., 2018b), one CNN is
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pre-trained for each patch and the outputs are fused to obtain the diagnosis of a
subject. The approach of (Liu et al., 2018e) is slightly different as they consider that
one patch cannot be labelled with a diagnosis, hence they do not train one CNN
per patch individually before ensemble learning but train the ensemble network
from scratch. Finally (Lian et al., 2018) proposed a weakly-supervised guidance:
the loss of the network is based on the final classification scores at the subject-level
as well as the intermediate classification done on the patch- and region-level.

There are far less data leakage problems in this section, with only one doubt on
the validity of the transfer learning between the AD vs CN task and the MCI vs
CN task in (Liu et al., 2018c) because of a lack of explanations. Nevertheless this
has no impact on the result of the AD vs CN task for which we didn’t detect any
problem of data leakage.

As for 2D-slice level in which a selection of slices must be made, one must
choose the size and stride of patches. The choice of these hyperparameters will
depend on the MRI preprocessing (e.g. a non-linear registration is likely needed
for smaller patches). Nevertheless, note that the impact of these hyperparameters
has been studied in the pre-cited studies (which has not been done for the 2D slice-
level approaches). The main drawback of these approaches is the complexity of the
framework: one network is trained for each patch position and these networks are
successively fused and retrained at different levels of representation (region-level,
subject-level).

5.3.2.3 ROI-based CNN

3D patch-level methods use the whole MRI by slicing it in smaller inputs. How-
ever, most of these patches are not informative as they contain parts of the brain
that are not affected by the disease. Methods based on regions of interest (ROI)
overcome this issue by focusing on regions which are known to be informative. In
this way, the complexity of the framework can be decreased as fewer inputs are
used to train the networks. In all the following studies, the ROI chosen was the
hippocampus, which is well-known to be affected early in AD (Dickerson et al.,
2001; Salvatore et al., 2015; Schuff et al., 2009). Studies differ by the definition of
the hippocampal ROI.

(Aderghal, Benois-Pineau, and Afdel, 2017; Aderghal et al., 2017; Aderghal et
al., 2018) performed a linear registration and defined a 3D bounding box compris-
ing all the voxels of the hippocampus according to a segmentation with the AAL
atlas. As they use only one or three patches (based on hippocampus) per patient,
they do not cover the entire region. The first study (Aderghal, Benois-Pineau, and
Afdel, 2017) only uses the sagittal view and classifies one patch per patient. The
architecture of the CNN is made of two convolutional layers associated with max
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pooling, and one FC layer. In the second study (Aderghal et al., 2017), all the views
(sagittal, coronal and axial) are used to generate patches. Then, three patches are
generated per subject and accordingly three networks are trained for each view
and then fused. The last study of the same author (Aderghal et al., 2018) focuses
on the transfer learning from anatomical MRI to diffusion MRI, which is out of our
scope.

In (Lin et al., 2018) a non-linear registration was performed to obtain a voxel
correspondence between the subjects, and the voxels belonging to the hippocam-
pus were identified after a segmentation implemented with MALP-EM (Ledig et
al., 2015). 151 patches were extracted per image with sampling positions fixed dur-
ing experiments. Each of them was made of the concatenation of three 2D slices
along the three possible planes (sagittal, coronal and axial) originated at one voxel
belonging to the hippocampus.

The main drawback of this methodology is that it studies only one (or a few) re-
gions while AD alterations span over multiple brain areas. However, it may allow
to avoid overfitting because the inputs are smaller ( 3000 voxels in our bibliogra-
phy) and fewer than in methods allowing patch combinations.

5.3.2.4 3D subject-level CNN

Recently, with the boost of high-performance computing resources, more studies
used a 3D subject-level approach (see Table 5.1). In this approach, the whole MRI is
used at once and the classification is performed at the subject level. The advantage
is that the spatial information is fully integrated.

Some studies readapted two classical architectures to fit the whole MRI: the
ResNet and VGGNet (Korolev et al., 2017; Shmulev, Belyaev, and The Alzheimer’s
Disease Neuroimaging Initiative, 2018). In both cases, results obtained on VGG
and ResNet are equivalent, and their best results are below those of other studies
of the same section. Another study (Senanayake, Sowmya, and Dawes, 2018) pro-
posed to use a set of complex modules from classical architectures such as ResNet
and DenseNet (dilated convolutions, dense blocks and residual blocks), also with-
out success.

Other studies defined original architectures (Bäckström et al., 2018; Basaia et
al., 2018; Cheng and Liu, 2017; Hosseini Asl et al., 2018; Li, Cheng, and Liu, 2017;
Vu et al., 2018; Wang et al., 2019). Among these, we did not detect data leakage
in only three of them (Bäckström et al., 2018; Cheng and Liu, 2017; Li, Cheng, and
Liu, 2017). (Bäckström et al., 2018; Cheng and Liu, 2017) had a similar approach
by training one network from scratch on augmented data. One crucial difference
between these two studies is the preprocessing step: (Bäckström et al., 2018) used a
non-linear registration whereas (Cheng and Liu, 2017) performed no registration.
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(Li, Cheng, and Liu, 2017) proposed a more complex framework fusing the results
of a CNN and three networks pre-trained with an AE.

For the other studies using original architectures, we suspect data leakage (Bäck-
ström et al., 2018; Basaia et al., 2018; Hosseini Asl et al., 2018; Vu et al., 2017; Vu
et al., 2018; Wang et al., 2019), hence their performance cannot be fairly compared
to the previous ones. However we noted that (Hosseini Asl et al., 2018; Vu et al.,
2017; Vu et al., 2018) studied the impact of pre-training with an AE, and concluded
that it improved their results (accuracy increased from 5 to 10 percent points).

In 3D-subject level approach the number of samples is small compared to the
number of parameters to optimize. Indeed, there is one sample per subject, typi-
cally a few hundreds to thousands subjects in a dataset, thus increasing the risk of
overfitting.

5.3.2.5 Conclusion

A high number of these 32 studies presented biased performance because of data
leakage: 10 were labeled as Unclear because of lack of explanations, and 6 as Clear
in which we assert the presence of data leakage (we do not count here the study of
Backstrom et al (Bäckström et al., 2018) as data leakage was done deliberately to
study its impact). This means that about 50% of the surveyed studies could report
biased performances (see Table 1 and Section 3.1 for more details).

In addition to that problem, most studies are not comparable because the datasets
used, subjects selected among them and preprocessing performed are different.
Furthermore, these studies often do not motivate the choice of their architecture
or hyperparameters. It might be that many of them have been tried (but not re-
ported) thereby resulting in biased performances on the test set. Finally, the code
is often not available, neither are key implementation details (such as hyperpa-
rameters values) making them difficult if not impossible to reproduce.

5.3.3 Other deep learning approaches for AD classification

Several studies found in our literature search are out of our scope: either CNNs
were not used in an end-to-end manner or not applied to images, or other net-
work architectures were implemented, or the approach required longitudinal or
multimodal data.

In several studies, the CNN is used as a feature extractor only and the clas-
sification is performed using either a random forest (Chaddad, Desrosiers, and
Niazi, 2018), SVM with linear or polynomial kernels and logistic regression (Çitak-
ER, Goularas, and Ormeci, 2017), extreme ML (Lin et al., 2018), SVM with differ-
ent kernels (Shen et al., 2018), or logistic regression and XGBoost (decision trees)
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(Shmulev, Belyaev, and The Alzheimer’s Disease Neuroimaging Initiative, 2018).
Only Shmulev et al compared the results obtained with the CNN classification and
those obtained with other classifiers based on features extracted by the CNN and
concluded that the latter is more efficient. Instead of being directly applied to the
image, CNNs can be applied to pre-extracted features. This is the case of (Suk
et al., 2017) where the CNN is applied to the outputs of several regression models
performed between MRI-based features and clinical scores with different hyper-
parameters. CNNs can also be applied to non-Euclidean spaces, such as graphs of
patients (Parisot et al., 2018) or the cortical surface (Mostapha et al., 2018).

Other architectures have been applied to anatomical MRI. Many studies used
a variant of the multilayer perceptron composed of stacked FC layers (Amoroso et
al., 2018; Baskar, Jayanthi, and Jayanthi, 2018; Cárdenas-Peña, Collazos-Huertas,
and Castellanos-Dominguez, 2017; Cárdenas-Peña, Collazos-Huertas, and Castellanos-
Dominguez, 2016; Dolph et al., 2017; Gorji and Haddadnia, 2015; Gutiérrez-Becker
and Wachinger, 2018; Jha, Kim, and Kwon, 2017; Lu et al., 2018; Mahanand et al.,
2012; Maitra and Chatterjee, 2006; Ning et al., 2018; Raut and Dalal, 2017; Shams-
Baboli and Ezoji, 2017; Zhang et al., 2018; Zhou et al., 2019) or of a probabilistic
neural network (Duraisamy, Shanmugam, and Annamalai, 2019; Mathew, Vivek,
and Anurenjan, 2018). In other studies, high-level representations of the features
are extracted using both unsupervised (deep Boltzmann machine (Suk, Lee, and
Shen, 2014) and AE (Suk, Lee, and Shen, 2015)) and supervised structures (deep
polynomial networks (Shi et al., 2018)), and an SVM is used for classification. Non-
CNNs architectures require extensive preprocessing as they have to be applied to
imaging features such as cortical thickness, shapes, or texture and regional fea-
tures. Moreover, feature selection or embedding is also often required (Amoroso
et al., 2018; Dolph et al., 2017; Jha, Kim, and Kwon, 2017; Lu et al., 2018; Mahanand
et al., 2012; Mathew, Vivek, and Anurenjan, 2018; Suk, Lee, and Shen, 2015; Suk,
Lee, and Shen, 2014) to further reduce dimensionality.

DL-based classification approaches are not limited to cross-sectional anatom-
ical MRI. Longitudinal studies exploit information extracted from several time
points of the same subject. A specific structure, the recurrent neural network, has
been used to study the temporal correlation between the images (Bhagwat et al.,
2018; Cui, Liu, and Li, 2018; Wang et al., 2018c). Several studies exploit multi-
modal data (Aderghal et al., 2018; Cheng and Liu, 2017; Esmaeilzadeh et al., 2018;
Li et al., 2015; Liu et al., 2016; Liu et al., 2015; Liu et al., 2018c; Liu et al., 2018d; Lu et
al., 2018; Ning et al., 2018; Ortiz et al., 2016; Qiu et al., 2018; Raut and Dalal, 2017;
Senanayake, Sowmya, and Dawes, 2018; Shi et al., 2018; Shmulev, Belyaev, and
The Alzheimer’s Disease Neuroimaging Initiative, 2018; Spasov et al., 2018; Suk,
Lee, and Shen, 2014; Thung, Yap, and Shen, 2017; Vu et al., 2017; Vu et al., 2018;
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Zhou et al., 2019; Zhou et al., 2017), such as multiple imaging modalities (positron
emission tomography and diffusion tensor imaging), demographic data, genetics,
clinical scores, or cerebrospinal fluid biomarkers. Note that multimodal studies
that also reported results with MRI only (Aderghal et al., 2018; Cheng and Liu,
2017; Liu et al., 2018c; Qiu et al., 2018; Senanayake, Sowmya, and Dawes, 2018;
Shmulev, Belyaev, and The Alzheimer’s Disease Neuroimaging Initiative, 2018;
Vu et al., 2017; Vu et al., 2018) are displayed in Table 5.1. Exploiting multiple time-
points and/or modalities is expected to improve the classification performance.
However, these studies can be limited by the small number subjects having all the
required time points and modalities.

5.4 Materials

The data used in our study are from three public datasets: ADNI AIBL and OASIS.
Information about these datasets is presented in supplementary C eMethod 2. We
used the T1w MRI available in each of these studies. For the detailed MRI proto-
cols, one can see (Samper-González et al., 2018). This also describes which T1 MRI
was chosen in case where multiple images for a given visit exist.

The ADNI dataset used in our experiments comprises 1455 participants for
whom a T1w MR image was available at at least one visit. For each ADNI subset,
five diagnosis groups were considered:

• CN: sessions of subjects who were diagnosed as CN at baseline and stayed
stable during the follow-up;

• AD: sessions of subjects who were diagnosed as AD at baseline and stayed
stable during the follow-up;

• MCI: sessions of subjects who were diagnosed as MCI, EMCI or LMCI at
baseline, who did not encounter multiple reversions and conversions and
who did not regress to CN diagnosis;

• pMCI: sessions of subjects who were diagnosed as MCI, EMCI or LMCI at
baseline, and progressed to AD between the current visit and the visit at 36
months;

• sMCI: sessions of subjects who were diagnosed as MCI, EMCI or LMCI at
baseline, never progressed to AD months and were followed at least 36 months
after the current visit.

Naturally, all sessions of the pMCI and sMCI groups are included in the MCI
group. Note that the reverse is false, as some MCI subjects did not convert to
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AD but were not followed long enough to state whether they were sMCI. More-
over, for 30 sessions, the preprocessing did not pass the quality check (QC) (see
the Method section) and these data were removed from our dataset. 2 subjects
were entirely removed because the preprocessing failed for all their sessions. Ta-
ble ?? summarizes the demographics, and the MMSE and global CDR scores of the
ADNI participants.

Table 5.2 summarizes the demographics, and the MMSE and global CDR scores
of the participants in this study.

Subjects Sessions Age Gender MMSE CDR

CN 330 1830 74.4 ± 5.8[59.8,89.6] 160M/170F 29.1 ± 1.1[24,30] 0:330
MCI 787 3458 73.3 ± 7.5[54.4,91.4] 464M/323F 27.5 ± 1.8[23,30] 0:2;0.5:785
sMCI 298 1046 72.3 ± 7.4[55.0,88.4] 175M/123F 28.0 ± 1.7[23,30] 0.5:298
pMCI 295 865 73.8 ± 6.9[55.1,88.3] 176M/119F 26.9 ± 1.7[23,30] 0.5:293;1:2
AD 336 1106 75.0 ± 7.8[55.1,90.9] 185M/151F 23.2 ± 2.1[18,27] 0.5:160;1:175; 2:1

Table 5.2: Summary of participant demographics, mini-mental state
examination (MMSE) and global clinical dementia rating (CDR)
scores for ADNI. Values are presented as mean ± SD [range]. M:

male, F: female

The AIBL dataset considered in this work is composed of 598 participants for
whom a T1w MR image and an age value was available at at least one visit. The
criteria used to create the diagnosis groups are identical to the ones used for ADNI.
Table 5.3 summarizes the demographics, and the MMSE and global CDR scores of
the AIBL participants. After the preprocessing pipeline, 7 sessions were removed
without changing the number of subjects.

N Age Gender MMSE CDR

CN 429 72.5 ± 6.2[60,92] 183M/246F 28.8 ± 1.2[25,30] 0:406;0.5:22;1:1
MCI 93 75.4 ± 6.9[60,96] 50M/43F 27.0 ± 2.1[20,30] 0:6;0.5:86;1:1
sMCI 13 76.7 ± 6.5[64,87] 8M/5F 28.2 ± 1.5[26,30] 0.5:13
pMCI 20 78.1 ± 6.6[63,79] 10M/10F 26.7 ± 2.1[22,30] 0.5:20
AD 76 73.9 ± 8.0[55,93] 33M/43F 20.6 ± 5.5[6,29] 0.5:31;1:36;2:7;3:2

Table 5.3: Summary of participant demographics, mini-mental state
examination (MMSE) and global clinical dementia rating (CDR)
scores for AIBL. Values are presented as mean ± SD [range]. M: male,

F: female
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The OASIS dataset considered in this work is composed of 193 participants
aged 62 years or more (minimum age of the participants diagnosed with AD). Ta-
ble 5.4 summarizes the demographics, and the MMSE and global CDR scores of the
OASIS participants. After the preprocessing pipeline, 39 sessions were excluded
leading to the loss of the same amount of subjects.

N Age Gender MMSE CDR

CN 76 76.5 ± 8.4[62,94] 14M/62F 29.0 ± 1.2[25,30] 0:76
AD 78 75.6 ± 7.0[62,96] 35M/43F 24.4 ± 4.3[14,30] 0.5:56;1:20;2:2

Table 5.4: Summary of participant demographics, mini-mental state
examination (MMSE) and global clinical dementia rating (CDR)
scores for OASIS. Values are presented as mean ± SD [range]. M:

male, F: female

5.5 Methods

In this section, we present the main components of our framework: automatic con-
verters of public datasets for reproducible data management (Section 5.1), prepro-
cessing of MRI data (5.2), classification models (5.3), transfer learning approaches
(5.4), classification tasks (5.5), evaluation strategy (5.6) and framework implemen-
tation details (5.7).

5.5.1 Converting datasets to a standardized data structure

ADNI, AIBL and OASIS, as public datasets, are extremely useful to the research
community. However, they may be difficult to use because the downloaded raw
data do not possess a clear and uniform organization. We thus used our previ-
ously developed converters (Samper-González et al., 2018) (available in the open
source software platform Clinica) to convert the raw data into the BIDS format
(Gorgolewski et al., 2016). Finally, we organized all the outputs of the experiments
into a standardized structure, inspired from BIDS.

5.5.2 Preprocessing of T1w MRI

In principle, CNN require only minimal preprocessing because of their ability to
automatically extract low-to-high level features. However, in AD classification
where datasets are relatively small and thus where deep networks may be dif-
ficult to train, it remains unclear whether they can benefit from more extensive
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preprocessing. Moreover, previous studies have used varied amounts of prepro-
cessing procedures but without systematically assessing their impact. Thus, in
the current study, we compared two different image preprocessing procedures:
one “Minimal” and one more “Extensive” procedure. Both procedures included
bias correction, and (optional) intensity rescaling. In addition, the “Minimal” pro-
cessing included a linear registration while the “Extensive” included non-linear
registration and skull-stripping.

In brief, the “Minimal” preprocessing procedure performs the following opera-
tions. The N4ITK method (Tustison et al., 2010) was firstly used to correct the bias
field. Next, a linear (affine) registration was performed using SyN algorithm from
ANTs (Avants et al., 2008) to register each image from the native space to the MNI
space (ICBM 2009c nonlinear symmetric template) (Fonov et al., 2011; Fonov et al.,
2009). To improve the computational efficiency, the registered images were further
cropped to remove the border background. The final image size is 169⇥208⇥179
with 1 mm3 isotropic voxels. Intensity rescaling, which was performed based on
the min and max values, denoted as MinMax, was set to be optional to study its
influence on classification results.

In the “Extensive” preprocessing procedure, bias correction and non-linear reg-
istration are performed using the Unified Segmentation approach (Ashburner and
Friston, 2005) available in SPM12. Note that we do not use the tissue segmentation
but only the nonlinearly registered, bias corrected, MR images. Subsequently, we
perform skull-stripping based on a brain mask drawn in MNI space. We chose
this mask-based approach over direct image-based skull-stripping procedures be-
cause the later did not prove robust on our data. This mask-based approach is less
accurate but more robust. In addition, we performed intensity rescaling as in the
“Minimal” pipeline.

We performed QC on the outputs of the preprocessing procedures. For the
“Minimal” procedure, we used DL-based QC framework 22 (Fonov et al., 2018) to
automatically check the quality of the linearly registered data. This software out-
puts a probability indicating how accurate the registration is. We visually checked
the scans whose probability was lower than a threshold of 0.70. Out of these, 30
ADNI scans, 7 AIBL scans, and 39 OASIS scans had a bad linear registration and
were excluded.

5.5.3 Classification models

We considered four different approaches for classification: i) 3D subject-level CNN,
ii) 3D ROI-based CNN, iii) 3D patch-level CNN and iv) 2D slice-level CNN.

22https://github.com/vfonov/deep-qc

https://github.com/vfonov/deep-qc
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In the case of DL, one challenge is to find the “optimal” model (i.e. global min-
ima), including the architecture hyperparameters (e.g. number of layers, dropout,
batch normalization) and the training hyperparameters (e.g. learning rate, weight
decay).

We first reviewed the architectures used in the literature among the studies in
which no data leakage problem was witnessed (Table 1A). There was no consensus
in the litterature, thus we used the following heuristic strategy for the each of the
four approaches.

For the 3D subject-level approach, we began with an overfitting model that was
very heavy because of the high number of FC layers (4 convolutional blocks + 5
FC layers). Then, we iteratively repeated the following operations:

• the number of FC layers was decreased until accuracy on the validation set
decreased substantially;

• we added one more convolutional block.

In this way, we explored the architecture space from 4 convolutional blocks + 5
FC layers to 7 convolutional blocks + 2 FC layers. Among the best performing
architectures, we chose the shallowest one: 5 convolutional blocks + 3 FC layers.

As the performance was very similar for the different architectures tested with
the 3D subject-level approach and as this search method is time costly, it was not
used for the 3D patch-level approach for which only four different architectures
were tested:

• 4 convolutional blocks + 2 FC layers;

• 4 convolutional blocks + 1 FC layer;

• 7 convolutional blocks + 2 FC layers;

• 7 convolutional blocks + 1 FC layer.

The best architecture (4 convolutional blocks + 2 FC layers) was kept and used both
in 3D patch-level and ROI-based approaches. Note that the other architectures
were only slightly worse.

For these 3 approaches, other architecture hyperparameters were explored:
with or without batch normalization, with or without dropout.

For the 2D slice-level approach, we chose to use a classical architecture, the
ResNet-18 with FC layers added at the end of the network. We explored from 1 to
3 added FC layers and the best results were obtained with one. We then explored
the number of layers to fine-tune (2 FC layers or the last residual block + 2 FC
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layers) and chose to fine-tune the last block and the 2 FC layers. We always used
dropout and tried different dropout rates.

For all four approaches, training hyperparameters (learning rate, weight decay)
were adapted for each model depending on the evolution of the training accuracy.

The list of the chosen architecture hyperparameters is given in online supple-
mentary C eTables 1, 2 and 3. The list of the chosen training hyperparameters is
given in online supplementary C eTables 4 and 5.

5.5.3.1 3D subject-level CNN

For the 3D-subject-level approach, the proposed CNN architecture is shown in
Figure5.1. The CNN consisted of 5 convolutional blocks, 3 FC layers and one soft-
max layer. Each convolutional block was sequentially made of one convolutional
layer, one batch normalization layer, one ReLU and one max pooling layer (more
architecture details are provided in online supplementary C eTable 1).

Figure 5.1: Architecture of the 3D subject-level CNNs. For each con-
volutional block, we only presented the convolutional layer and max
pooling layer. Filters for each convolutional layer represent the num-
ber of filters ⇥ filter size. Feature maps of each convolutional block
represent the number of feature maps ⇥ size of each feature map.
Conv: convolutional layer; MaxP: max pooling layer; FC: fully con-

nected layer.

5.5.3.2 3D ROI-based and 3D patch-level CNN

For the 3D ROI-based and 3D patch-level approaches, the chosen CNN architec-
ture, shown in Figure 5.2, consisted of 4 convolutional blocks (with the same struc-
ture as in the 3D subject-level), 3 FC layers and one softmax layer (more architec-
ture details are provided in online supplementary C eTable 2).
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To extract the 3D patches, a sliding window (50⇥50⇥50 mm3) without overlap
was used to convolve over the entire image, generating 36 patches for each image.

For the 3D ROI-based approach, we chose the hippocampus as a ROI, as done
in previous studies. We used a cubic patch (50⇥50⇥50 mm3) enclosing the left
(resp. right) hippocampus. The center of this cubic patch was manually chosen
based on the MNI template image (ICBM 2009c nonlinear symmetric template).
We ensured visually that this cubic patch included all the hippocampus.

For the 3D patch-level approach, two different training strategies were con-
sidered. First, all extracted patches were fitted into a single CNN (denoting this
approach as 3D patch-level single-CNN). Secondly, we used one CNN for each
patch, resulting in finally 36 (number of patches) CNNs (denoting this approach
as 3D patch-level multi-CNN).

Figure 5.2: Architecture of the 3D ROI-based and 3D patch-level
CNNs. For each convolutional block, we only presented the convo-
lutional layer and max pooling layer. Filters for each convolutional
layer represent the number of filters ⇥ filter size. Feature maps of
each convolutional block represent the number of feature maps ⇥ size
of each feature map. Conv: convolutional layer; MaxP: max pooling

layer; FC: fully connected layer.

5.5.3.3 2D slice-level CNN

For 2D slice-level, the ResNet pre-trained on ImageNet was adopted and fine-
tuned. The architecture is shown in Figure 5.3. The architecture details of ResNet
can be found in He et al (He et al., 2016). We added one FC layer and one softmax
layer on top of the ResNet (more architecture details are provided in online sup-
plementary C eTable 3). Fine-tuning was performed only on the last convolutional
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layers and last FC layer and the added FC layer. The weight and bias of the other
layers of the CNN were frozen during fine-tuning to avoid overfitting.

For each subject, each sagittal slice was extracted and replicated into R, G and B
channels respectively, in order to generate a RGB image. The first and last twenty
slices were excluded due to the lack of information, which resulted in 129 RGB
slices for each image.

Figure 5.3: Architecture of the 2D slice-level CNN. An FC layer (FC2)
was added on top of the ResNet. The last five convolutional layers
and the last FC of ResNet (green dotted box) and the added FC layer
(purple dotted box) were fine-tuned and the other layers were frozen
during training. Filters for each convolutional layer represent the
number of filters ⇥ filter size. Feature maps of each convolutional
block represent the number of feature maps ⇥ size of each feature

map. Conv: convolutional layer; FC: fully connected layer.

5.5.3.4 Majority voting system

For 3D patch-level, 3D ROI-based and 2D slice-level CNNs, we adopted a soft
voting system (Raschka, 2015) to generate the subject-level decision. The subject-
level decision is generated based on the decision for each slice (resp. for each patch
/ for the left and right hippocampus ROI).

The subject-level decision was calculated based on the predicted probabilities
p of all the slices/patches/ROIs/CNNs from the same patient:
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ŷ = arg max
x

m

Â
j

wj pij

where wj is the weight assigned to the j-th patch/slice/ROI/CNN. wj reflects the
importance of each slice/patch/ROI/CNN and is weighted by the normalized ac-
curacy of the j-th slice/patch/ROI/CNN.

For 3D patch-level multi-CNN approach, the 36 CNNs were trained indepen-
dently. In this case, the weaker classifiers’ weight (accuracy < 0.7) was set to be 0
with the consideration that the labels’ probabilities of these classifiers could harm
the majority voting system (e.g. AD and CN has both probabilities near to 0.5).

5.5.3.5 Comparison to a linear SVM on voxel-based features

For comparison purpose, classification was also performed with a linear SVM clas-
sifier. The SVM took as input the modulated GM density maps non-linearly reg-
istered using the DARTEL method (Ashburner, 2007) as in our previous study
(Samper-González et al., 2018).

5.5.4 Transfer learning

Two different approaches were used for transfer learning: i) AE pre-training for
3D CNNs; and ii) ResNet pre-trained on ImageNet for 2D CNNs.

5.5.4.1 AE pre-training

The AE was constructed based on the corresponding architecture of CNN. Specif-
ically, the encoder part of the AE shared the same architecture with the CNN: the
encoder is composed of a sequence of convolutional blocks, each block having one
convolutional layer, one batch normalization layer, one ReLU and one max pool-
ing layer. The architecture of the decoder mirrored that of the encoder, except
that the order of the convolution layer and the ReLU was swapped. Of note, the
pre-training with AE and classification with CNNs in our experiments used the
same training and validation data splits in order to avoid potential data leakage
problems. Also, each AE was trained on all available data in the training sets. For
instance, all MCI, AD and CN subjects in training dataset were used to pre-train
the AE for the AD vs CN classification task.
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5.5.4.2 ImageNet pre-training

For the 2D-slice experiments, we investigated the possibility to transfer a ResNet
pre-trained on ImageNet (He et al., 2016) to our specific tasks. Next, the fine-
tuning procedure was performed on the chosen layers (see Figure 5.3).

5.5.5 Classification tasks

We performed two tasks in our application: first, the AD vs CN classification, a
baseline task to easily compare the results of our different framework. Then the
best frameworks obtained on this task were selected to perform the prediction task
sMCI vs pMCI: the weights and biases of the model learnt on the source task (AD
vs CN) were transferred to a new model fine-tuned on the target task (sMCI vs
pMCI). For SVM, the sMCI vs pMCI was done either training directly on sMCI vs
pMCI or using training on AD vs CN and applying the trained model to sMCI vs
pMCI.

5.5.6 Evaluation strategy

5.5.6.1 Validation procedure

Rigorous validation is essential to objectively assess the performance. This is par-
ticularly critical in the case of DL as one may easily overfit the validation dataset
when manually performing model selection and hyperparameter fine-tuning. An
independent test set should be, at the very beginning, partitioned and concealed.
It should not be touched until the CV, based on the training and validation dataset,
is finished and the final model is chosen. This test dataset should be used only to
assess the performance (i.e. generalization) of a fully specified and trained clas-
sifier (Kriegeskorte et al., 2009; Ripley, 1996; Sarle, 1997). Considering this, we
chose a classical split into training/validation/test sets. Training/validation sets
were used in a CV procedure for model selection while the test set was left un-
touched. Of note, as mentioned in the beginning, we have not yet used the test set
and will do so only after the review process of the paper has been finished. Only
the best performing model for each approach (3D subject-level, 3D patch-level, 3D
ROI-based, 2D slice-level) as defined by the CV on training/validation sets, will
be tested on the test set.

First, the test set was built as follows. ADNI data was split into training/validation
and test sets. The ADNI test dataset consisted of 100 randomly chosen age- and
sex-matched subjects for each diagnostic class (i.e. 100 CN subjects, 100 AD pa-
tients). The rest of ADNI data was used as training/validation set. We ensured
that age and sex distributions between training/validation and test sets were not
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significantly different. Two other test sets were composed of all subjects of OASIS
and AIBL. Thus, as a result, we have three test sets: i) an ADNI test set which will
be used to assess model generalization within the same dataset (thereby assessing
that model choice has not overfitted the training/validation set); ii) an AIBL test
set which will be used to assess generalization to another dataset but with similar
inclusion criteria and image acquisition parameters to those of ADNI; iii) an OA-
SIS test which will be used to assess generalization to other inclusion criteria and
image acquisition parameters.

Secondly, the model selection procedure, including model architecture selec-
tion and training hyperparameters fine-tuning, was performed using only the
training/validation dataset. For that purpose, a 5-fold CV was performed, which
resulted in one fold (20%) of the data for validation and the rest for training. Note
that the 5-fold data split was performed only once for all experiments with a fixed
seed number (random_state = 2), thus guaranteeing that all the experiments used
exactly the same subjects during CV. Also, no overlapping exists between the MCI
subjects used for AE pre-training (using all available AD, CN and MCI) and the
test dataset of sMCI vs pMCI. Thus, the evaluation of the cross-task transfer learn-
ing (from AD vs CN to sMCI vs pMCI) is unbiased. Finally, for the linear SVM,
the hyperparameter C controlling the amount of regularization was chosen using
an inner loop of 10-fold CV (thereby performing a nested CV).

5.5.6.2 Metrics

We computed the following performance metrics: balanced accuracy, AUC, accu-
racy, sensitivity and specificity. In the manuscript, for the sake of concision, we
report only the balanced accuracy but all other metrics are available at https:
//gitlab.icm-institute.org/aramislab/AD-ML.

5.5.7 Implementation details

The image preprocessing procedures were implemented with Nipype (Gorgolewski
et al., 2011). The DL models were built using the Pytorch library 23 (Paszke et al.,
2017). The linear SVM was built using scikit-learn (Pedregosa et al., 2011). Tensor-
boardX 24 was embedded into the current framework to dynamically monitor the
training process. Specifically, we evaluated and reported the training and valida-
tion accuracy/loss after each epoch or certain iterations. Of note, instead of using

23https://pytorch.org/
24https://github.com/lanpa/tensorboardX

https://gitlab.icm-institute.org/aramislab/AD-ML
https://gitlab.icm-institute.org/aramislab/AD-ML
https://pytorch.org/
https://github.com/lanpa/tensorboardX
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only the current batch of data, the accuracy was evaluated based on all the train-
ing/validation data. Moreover, we organized the classification outputs in a hierar-
chical way inspired from BIDS, including the TSV files containing the classification
results, the outputs of TensorboardX for dynamic monitoring of the training and
the best performing models selected based on the validation accuracy.

We applied the following early stopping strategy for all the classification exper-
iments: the training procedure does not stop until the validation loss is continu-
ously higher than the lowest validation loss for N epochs. Otherwise, the training
continues to the end of the pre-defined number of epochs. The selected model
was the one which obtained the highest validation accuracy during training. For
the AE pre-training, the AE was trained to the end of the pre-defined number of
epochs. We then visually check the validation loss and the quality of the recon-
structed images.

All experiments were performed on the cluster of the Brain and Spine Institute
25 in Paris, which is equipped with 4 NVIDIA P100 GPU cards (64 GB shared
memory) and 24 CPUs (120 GB shared memory).

5.6 Experiments and results

5.6.1 Results on training/validation set

The different classification experiments and results (validation accuracy during 5-
fold CV) are detailed in Table 5.5. For each experiment, the training process of the
best fold (with highest validation accuracy) is presented as illustration (see sup-
plementary C eFigures 1-4 for details). Lastly, the training hyperparameters (e.g.
learning rate and batch size) for each experiments are presented in supplementary
C eTable 4.

25https://icm-institute.org/

https://icm-institute.org/
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Classification Training Image Intensity Data split Training Transfer Task Validation accuracyarchitectures data preprocessing rescaling approach learning

3D subject-level CNN

Baseline Minimal
None

subject-level single-CNN None

AD vs CN

0.50 ± 0.00[0.50,0.50,0.50,0.50,0.50]

MinMax 0.77 ± 0.08[0.78,0.87,0.83,0.75,0.63]
AE pre-train 0.78 ± 0.05[0.79,0.83,0.82,0.79,0.68]

Longitudinal
Minimal

MinMax subject-level single-CNN AE pre-train

0.85 ± 0.03[0.89,0.87,0.86,0.82,0.82]
Extensive 0.85 ± 0.05[0.88,0.91,0.85,0.85,0.78]

Minimal sMCI vs pMCI 0.74 ± 0.03[0.75,0.77,0.70,0.76,0.72]
Baseline 0.74 ± 0.03[0.72,0.76,0.72,0.78,0.71]

3D ROI-based CNN
Baseline

Minimal MinMax subject-level single-CNN AE pre-train

AD vs CN 0.86 ± 0.03[0.84,0.89,0.86,0.88,0.82]
sMCI vs pMCI 0.80 ± 0.03[0.84,0.79,0.75,0.79,0.82]

Longitudinal AD vs CN 0.85 ± 0.02[0.84,0.87,0.86,0.88,0.82]
sMCI vs pMCI 0.79 ± 0.03[0.82,0.78,0.73,0.79,0.81]

3D patch-level CNN

Baseline

Minimal MinMax subject-level

single-CNN

AE pre-train

AD vs CN 0.72 ± 0.09[0.75,0.83,0.75,0.73,0.56]
Longitudinal 0.72 ± 0.06[0.77,0.74,0.77,0.69,0.61]

Baseline
multi-CNN

AD vs CN 0.81 ± 0.03[0.85,0.81,0.75,0.79,0.83]
sMCI vs pMCI 0.76 ± 0.04[0.80,0.75,0.68,0.79,0.78]

Longitudinal AD vs CN 0.79 ± 0.02[0.81,0.75,0.80,0.80,0.80]
sMCI vs pMCI 0.76 ± 0.03[0.78,0.77,0.71,0.78,0.76]

2D slice-level CNN
Baseline

Minimal MinMax subject-level single-CNN ImageNet pre-train AD vs CN
0.79 ± 0.04[0.82,0.83,0.72,0.82,0.76]

Longitudinal 0.79 ± 0.05[0.79,0.85,0.80,0.82,0.70]
Baseline slice-level 1.00 ± 0[1.00,1.00,1.00,1.00,1.00]

SVM

Baseline

DartelGM SPM-based subject-level None None

AD vs CN 0.85 ± 0.02[0.85,0.88,0.83,0.86,0.84]
sMCIvspMCI1 0.69 ± 0.02[0.71,0.70,0.66,0.67,0.72]
sMCIvspMCI2 0.72 ± 0.04[0.67,0.78,0.70,0.76,0.68]

Longitudinal
AD vs CN 0.85 ± 0.01[0.87,0.85,0.84,0.86,0.85]

sMCIvspMCI1 0.68 ± 0.07[0.76,0.76,0.59,0.63,0.65]
sMCIvspMCI2 0.69 ± 0.03[0.66,0.73,0.70,0.73,0.65]

Table 5.5: Summary of all the classification experiments and validation results in our analyses. MinMax: for CNNs, intensity
rescaling was done based on min and max values, resulting all values to be in the range of [0, 1]; SPM-based: the intensity
rescaling was performed with SPM; AE: autoencoder. For DL models, sMCI vs pMCI tasks were done with as follows: the
weights and biases of the model learnt on the source task (AD vs CN) were transferred to a new model fine-tuned on the target
task (sMCI vs pMCI). For SVM, the sMCI vs pMCI was done either training directly on sMCI vs pMCI or using training on

AD vs CN and applying the trained model to sMCI vs pMCI.
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5.6.1.1 3D subject-level

Influence of intensity rescaling. We first assessed the influence of intensity rescal-
ing. Without rescaling, the CNN did not perform better than chance (balanced ac-
curacy = 0.50 ± 0.00) and there was an obvious generalization gap (high training
but low validation accuracy). With intensity rescaling, the balanced accuracy im-
proved to 0.77 ± 0.08. Based on these results, intensity rescaling was used in all
subsequent experiments.

Influence of transfer learning (AE pre-training). The performance was slightly
higher with AE pre-training (0.78 ± 0.05) than without (0.77 ± 0.08) and the stan-
dard deviation was lower. Based on this, we decided to always use AE pre-
training, even though the difference is small.

Influence of the training dataset size. We then assessed the influence of the
amount of training data, comparing training using only baseline data to those with
longitudinal data. The performance was substantially higher with longitudinal
data (0.85 ± 0.03) compared to baseline data only (0.78 ± 0.05). We choose to con-
tinue exploring the influence of this choice because the four different approaches
have a very different number of learnt parameters and the sample size is intrinsi-
cally augmented in 2D slice-level and 3D single-CNN patch-level approaches.

Influence of preprocessing. We then assessed the influence of the preprocess-
ing comparing the “Extensive” and “Minimal” preprocessing procedures. The per-
formance was equivalent with the “Minimal” preprocessing (0.85 ± 0.03) and with
the “Extensive” preprocessing (0.85 ± 0.05). Hence in the following experiments
we kept the “Minimal” preprocessing.

Classification of sMCI vs pMCI. The balanced accuracy was the same for base-
line data and for longitudinal data (0.74 ± 0.03).

5.6.1.2 3D ROI-based

For AD vs CN, the balanced accuracy was 0.86 ± 0.03 for baseline data and 0.85
± 0.02 for longitudinal data. This is comparable to the results obtained with the
subject-level approach. For sMCI vs pMCI, the balanced accuracy was 0.80 ± 0.03
for baseline data and 0.79 ± 0.03 for longitudinal data. This is substantially higher
than with the 3D-subject level approach.

5.6.1.3 3D patch-level

Single CNN. The accuracy was 0.72 ± 0.09 for baseline data and 0.72 ± 0.06 for
longitudinal data.

Multi CNN. For AD vs CN, the accuracy was 0.81 ± 0.03 for baseline data and
0.79 ± 0.02 for longitudinal data, thereby outperforming the single CNN approach.
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For sMCI vs pMCI, the accuracy was 0.76 ± 0.04 for baseline data and 0.76 ± 0.03
for longitudinal data. The performance for both tasks is lower than that of the
3D ROI-based approach. Compared to the 3D subject-level approach, this method
works better for sMCI vs pMCI.

5.6.1.4 2D slice-level

In general, the performance of the 2D-slice level approach was lower to that of
the 3D ROI-based, 3D patch-level multi CNN and 3D subject-level (when trained
with longitudinal data) approaches but higher than that of the 3D patch-level sin-
gle CNN approach. For 2D slice-level, the use of longitudinal data for training did
not improve the performance (0.79 ± 0.04 for baseline data; 0.79 ± 0.05 for longi-
tudinal data). Finally, we studied the influence of data leakage using a slice-level
data split strategy. As expected, the accuracy was 1.00 ± 0.00.

5.6.1.5 Linear SVM

For task AD vs CN, the accuracies were 0.85 ± 0.02 when trained with baseline
data and 0.85 ± 0.01 when trained with longitudinal data. For task sMCI vs pMCI,
when training from scratch, the accuracies were 0.690.02 when trained with base-
line data and 0.680.07 when trained with longitudinal data. When using transfer
learning from the task AD vs CN to the task sMCI vs pMCI, the accuracies were
0.720.04 (when trained with baseline data) and0.690. 03 (when trained with longi-
tudinal data). The performance of the SVM on AD vs CN is thus higher than that
of most DL models and comparable to the best ones. Whereas for task sMCI vs
pMCI, the accuracy of the SVM is lower than that of DL models.

5.6.2 Results on the test sets

Results on the three test sets (ADNI, OASIS and AIBL) are presented in Table ??.
For each category of approach, we only applied the best models for both baseline
and longitudinal data. The results will be computed and presented after the end
of the peer-review process.



5.6.
Experim

ents
and

results
127

Classification Training Image Intensity Data split Training Transfer Task Validation ADNI test AIBL test OASIS test
architectures data preprocessing rescaling approach learning accuracy accuracy accuracy accuracy

3D subject-level CNN

Baseline

Minimal MinMax subject-level single-CNN AE pre-train
AD vs CN 0.78 ± 0.05

Longitudinal 0.85 ± 0.03
Baseline sMCI vs pMCI 0.75 ± 0.02

Longitudinal 0.74 ± 0.03

3D ROI-based CNN
Baseline

Minimal MinMax subject-level single-CNN AE pre-train

AD vs CN 0.86 ± 0.03
sMCI vs pMCI 0.80 ± 0.03

Longitudinal AD vs CN 0.85 ± 0.02
sMCI vs pMCI 0.79 ± 0.03

3D patch-level CNN
Baseline

Minimal MinMax subject-level single-CNN AE pre-train

AD vs CN 0.81 ± 0.03
sMCI vs pMCI 0.76 ± 0.04

Longitudinal AD vs CN 0.79 ± 0.02
sMCI vs pMCI 0.76 ± 0.03

2D slice-level CNN
Baseline

Minimal MinMax subject-level single-CNN ImageNet pre-train
AD vs CN 0.79 ± 0.04

Longitudinal 0.79 ± 0.05
Baseline slice-level 1.00 ± 0

SVM
Baseline

DartelGM SPM-based subject-level None None

AD vs CN 0.85 ± 0.02
sMCIvspMCI1 0.72 ± 0.04

Longitudinal AD vs CN 0.85 ± 0.01
sMCIvspMCI2 0.69 ± 0. 03

Table 5.6: Summary of all the classification experiments and validation results in our analyses. MinMax: for CNNs, intensity
rescaling was done based on min and max values, resulting all values to be in the range of [0, 1]; SPM-based: the intensity

rescaling was performed with SPM; AE: autoencoder.
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5.7 Discussion

The present studies contains three main contributions. First, we performed a sys-
tematic and critical literature review, which highlighted several important prob-
lems. Then, we proposed an open-source framework for the reproducible evalua-
tion of AD classification using CNNs and T1w MRI. Finally, we applied the frame-
work to rigorously compare different CNN approaches and to study the impact of
key components on the performances. We hope that the present paper will pro-
vide a more objective assessment of the performance of CNN for AD classification
and constitute a solid baseline for future research.

This paper first proposes a survey of existing CNN methods for AD classifi-
cation. We hope to provide a useful overview of the different strategies. How-
ever, the survey highlighted several serious problems with the existing literature.
First, we found that data leakage was potentially present in half of the 32 surveyed
studies. This problem was evident in six of them and possible (due to inadequate
description of the validation procedure) in ten others. This is a very serious is-
sue, in particular considering that all these studies have undergone peer-review.
This was likely to bias the performance upwards. In addition, in our experiments,
we simulated one type of data leakage and found, as expected, that it led to a
biased evaluation of the accuracy (1.00 instead of 0.79). Similar findings were ob-
served in (Bäckström et al., 2018). Moreover, the survey highlighted that many
studies did not motivate the choice of their architecture or training hyperparame-
ters. Only two of them (Wang et al., 2019; Wang et al., 2018b) explored and gave
results obtained with different architecture hyperparameters. However, it is pos-
sible that these performances were computed on the test set to help choosing their
final model, hence they may be contaminated by data leakage. For other studies,
it is also likely that they tried multiple number of choices leading to biased per-
formances on the test set.We believe that these issues may potentially be caused
by the lack of expertise in medical imaging or DL. For instance, splitting at the
slice-level comes from a lack of knowledge of the nature of medical imaging data.
We hope that the present paper will help to spread knowledge and good practices
in the field.

Then, we proposed an open-source framework for reproducible experiments
on AD classification using CNN. Some studies in our bibliography also provided
their code on open source platforms (Hon and Khan, 2017; Hosseini-Asl, Gimel’farb,
and El-Baz, 2016; Korolev et al., 2017; Liu et al., 2018c). Of note, two studies (Cheng
and Liu, 2017; Liu et al., 2018c) used the online code of (Hosseini-Asl, Gimel’farb,
and El-Baz, 2016) to compare to their framework and neither of them succeeded
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in reproducing the results of the original study (for the AD vs CN task they re-
port both an accuracy of 0.82 while the original study reports an accuracy of 0.99).
Our framework comprises unified tools for data management using the commu-
nity standard BIDS (Gorgolewski et al., 2016), modular preprocessing pipelines, a
set of CNN models which are representative of the literature and rigorous valida-
tion procedures. It builds upon our previously proposed framework but extends
it to DL techniques (Samper-González et al., 2018; Wen et al., 2018b). We hope to
contribute in improving the reproducibility and objectivity in application of AD
classification using DL methods. Our open-source framework facilitates the re-
producible and objective evaluation of performances. It also allows to rigorously
study the impact of the different components. Calls and emphasises have been
made on reproducibility in both neuroimaging (Gorgolewski and Poldrack, 2016;
Poldrack et al., 2017) and ML (Sonnenburg et al., 2007; Stodden, Leisch, and Peng,
2014; Vanschoren et al., 2014). We hope that our framework will be useful to future
research in the field. Indeed, researchers can easily embed new CNN architectures
or image preprocessing pipelines and study their added value.

We then demonstrated the use of our framework on three public datasets.
Through this, we aim to provide a trustworthy baseline performance for the com-
munity. On the validation dataset, the diagnostic accuracy of CNNs ranged from
0.72 to 0.86 for task AD vs CN and from 0.74 to 0.80 for task sMCI vs pMCI, re-
spectively. These baseline performances are in line with the state-of-the-art results
(studies without data leakage in Table 1A), where classification accuracy typically
ranged from 0.76 to 0.91 for the task AD vs CN and 0.62 to 0.83 for the task sMCI
vs pMCI.

Different approaches, namely 3D subject-level, 3D ROI-based, 3D patch-level
and 2D slice-level CNNs, were compared. Our study is the first one to system-
atically compare the performances of the four approaches. In the literature, three
studies (Cheng et al., 2017; Li, Liu, and Alzheimer’s Disease Neuroimaging Ini-
tiative, 2018; Liu et al., 2018c) using a 3D patch-level approach compared their
results with a 3D subject-level approach. In all studies, the 3D patch-level multi-
CNN gave better results than the 3D-subject CNN (3 or 4 percent points of dif-
ference between the two approaches). However, except for Liu et al (Liu et al.,
2018c) who reused the code provided by (Hosseini-Asl, Gimel’farb, and El-Baz,
2016), the methods used for the comparison are poorly described and the studies
would thus be difficult, if not impossible, to reproduce. In general, in our com-
parative study, the 3D ROI-based approach provided the best performances. The
3D subject-level CNN was competitive with 3D ROI-based for AD vs CN classi-
fication but not for sMCI vs pMCI. The superior performance of the ROI-based
approach may appear surprising since it uses only a specific portion of the brain
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(the hippocampus) while 3D subject-level approach uses all information available.
Indeed, even though the hippocampus is affected early and severely by AD (Braak
and Braak, 1998), alterations in AD are not confined to the hippocampus and ex-
tend to other regions in the temporal, parietal and frontal lobes. A previous com-
parative study, using different types of ML techniques but not CNN, has shown
that whole-brain approaches are more effective than methods using only the hip-
pocampus (Cuingnet et al., 2011). In the case of DL, it is possible that the ROI-
based CNNs work better because they are less complex (fewer learnt parameters)
than the 3D subject-level CNNs, thus leading to less overfitting. It may thus be
that whole brain approaches would result in higher performance when trained on
larger samples. Two papers in the literature using hippocampal ROI reported high
accuracies for task AD vs CN (0.84 and 0.90), comparable to ours, even though
their definition of the ROI was different (Aderghal et al., 2018; Aderghal, Benois-
Pineau, and Afdel, 2017). As for the 3D subjects (Bäckström et al., 2018; Cheng
and Liu, 2017; Korolev et al., 2017; Li, Cheng, and Liu, 2017; Senanayake, Sowmya,
and Dawes, 2018; Shmulev, Belyaev, and The Alzheimer’s Disease Neuroimaging
Initiative, 2018) results of the literature varied across papers, from 0.76 to 0.90. Al-
though we cannot prove it directly, we believe that this variability stems from the
high risk of overfitting. Moreover, 3D patch-level and 2D slice-level approaches
led to lower accuracies compared to 3D ROI-based or 3D subject-level CNNs. One
can hypothesize that this is because the spatial information is not adequately mod-
eled by these approaches (no 3D consistency between slices, no consistency at the
border of patches). Other studies with 3D patch-level approaches in the literature
(Cheng et al., 2017; Lian et al., 2018; Li, Liu, and Alzheimer’s Disease Neuroimag-
ing Initiative, 2018; Liu et al., 2018b; Liu et al., 2018e) reported higher accuracies
(from 0.87 to 0.91) than ours (0.81). We hypothesize that it may come from the in-
creased complexity of their approach, including patch selection and fusion. Only
one paper (without data leakage) has explored 2D slice-level using ImageNet pre-
trained ResNet (Valliani and Soni, 2017). Their accuracy is very similar to ours
(0.81 for task AD vs CN). Here, we provided a direct comparison with other ap-
proaches and demonstrated that a 2D slice-level approach leads to lower perfor-
mances compared to 3D ROI-based or 3D subject-level CNNs.

For the 3D patch-level, we showed that the multi-CNN approach (0.81) was
superior to the single-CNN approach (0.72). This is probably because fitting all
patches/slices into one single CNN could lead to losing the voxel correspondence
across patches/slices. However, the multi-CNN approach (0.81) obtained lower
accuracies compared to the 3D subject-level approach (0.85).

After the peer-review process, when the results on the three test datasets have
been obtained, we will include a paragraph discussing the results on the test dataset
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and the implications for the generalizability of the models. We will discuss both
generalizability to unseen data of the same study (ADNI) and to other studies with
similar (AIBL) or different (OASIS) inclusion criteria and imaging parameters.

We studied the influence of several key choices on the performance. First, we
studied the influence of AE pre-training and showed that it did not improve the
average accuracy over training from scratch. However, AE pre-training resulted in
a lower variance over the 5-folds of the CV. Three previous papers studied the im-
pact of AE pre-training (Hosseini-Asl, Gimel’farb, and El-Baz, 2016; Vu et al., 2017;
Vu et al., 2018) and found that it improved the results. However, they are all at least
suspected of data leakage. We thus conclude that, to date, it is not proven that AE
pre-training leads to increased average accuracy. A difficulty in AD classification
using DL is the limited data sample for training. We demonstrated that train-
ing with longitudinal data gave superior (3D subject-level) or comparable (other
approaches) performances compared to baseline data. This discrepancy across ap-
proaches may come from the fact that 3D subject-level CNNs were more complex
(more learnt parameters) than other approaches, and thus that more training data
has more impact on this approach. The absence of improvement for the major-
ity of cases may be due to several factors. First, training with longitudinal data
implies training with data from more advanced disease stages, since patients are
seen at a later point in the disease course. This may have an adverse effect on the
performance of the model when tested on baseline data, at which the patients are
less advanced. Also, since the additional data come from the same patient, this
does not provide a better coverage of inter-individual variability. We studied the
impact of image preprocessing. First, as expected, we found that CNNs cannot be
successfully trained without intensity rescaling. We then studied the influence of
two different procedures (“Minimal” and “Extensive”). Of note, “Extensive” pro-
cedure requires redundantly a non-linear registration, instead of a linear one, and
skull stripping compared to “Minimal” procedure. They led to comparable results.
In principle, this is not surprising as DL methods do not require extensive prepro-
cessing. In the litterature, varied types of preprocessing have been used. . Some
studies used non-linear registration (Bäckström et al., 2018; Basaia et al., 2018; Lian
et al., 2018; Liu et al., 2018b; Liu et al., 2018e; Lin et al., 2018; Wang et al., 2019;
Wang et al., 2018b) while others used only linear (Aderghal, Benois-Pineau, and
Afdel, 2017; Aderghal et al., 2017; Aderghal et al., 2018; Hosseini Asl et al., 2018;
Li, Liu, and Alzheimer’s Disease Neuroimaging Initiative, 2018; Liu et al., 2018c;
Shmulev, Belyaev, and The Alzheimer’s Disease Neuroimaging Initiative, 2018)
or no registration (Cheng and Liu, 2017). None of them compared these different
preprocessings with the exception of (Bäckström et al., 2018) which compared pre-
processed data using FreeSurfer to no preprocessing. They found that training the
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network with the raw data obtained inferior classification performance (38% drop
for accuracy) compared to the preprocessed data using FreeSurfer (Bäckström et
al., 2018). However, FreeSurfer comprises a complex pipeline with many prepro-
cessing steps so it is unclear, from their results, which part drives the superior
performance.

One interesting question is whether DL could perform better than conventional
ML methods for AD classification. Here, we chose to compare CNN to a linear
SVM. SVM has been used in many AD classification studies and obtained com-
petitive performances (Falahati, Westman, and Simmons, 2014; Haller, Lovblad,
and Giannakopoulos, 2011; Rathore et al., 2017). In the current study, compared to
SVM, CNN gave comparable performances for task AD vs CN and superior per-
formances for task sMCI vs pMCI. Note that we used a standard linear SVM with
standard voxel-based features. For task AD vs CN, we do not claim that possibly
more sophisticated DL architectures would not outperform the SVM. However,
this is not the case with the architectures that we tested which are representative
of the existing literature on AD classification. Besides, it is possible that CNN will
outperform SVM when larger public dataset are available in the future. On the
other hand, the CNN outperformed the SVM for the most difficult (and more in-
teresting) sMCI vs pMCI classification task (0.80 vs 0.72). This is an interesting
result which demonstrates the potential of DL for challenging diagnostic tasks.

Unbiased evaluation of the performances is an essential task in ML. This is par-
ticularly critical for deep learning because of the extreme flexibility of the models
and the numerous possible choices that can be made regarding architecture and
hyperparameter choices. In particular, it is crucial that such choices are not made
using the test set. We chose a very strict validation strategy in that respect: the test
sets were left untouched until the end of the peer-review process. This guarantees
that only the final models, after all possible adjustments, are carried to the test set.
Moreover, it is important to assess generalization not only to unseen subjects but
also to other studies in which image acquisitions or patient inclusion criteria can
vary. In the present paper, we used three test sets from ADNI, AIBL and OASIS to
assess generalization to these different conditions.

Our study has the following limitations. First, a very large number of differ-
ent choices can be made regarding the model architecture and training hyperpa-
rameters. Even though we did our best efforts to make meaningful choices and
for testing a relatively large number of possibilities, we cannot exclude that other
choices could have led to better results. [Note to reviewers: suggestions for other
choices are welcome, as long as they are within a reasonable number]. To over-
come this limitation, our framework is freely available to the community. We will
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thus hope that other researchers will use it to propose and validate potentially bet-
ter performing models. In particular, with our proposed framework, researchers
can easily try their own models without touching the concealed test dataset. Sec-
ondly, the CV procedures were performed only once. Of course, the training is not
deterministic and one would ideally want to repeat the CV to get a more robust
estimate of the performance. However, we did not perform this due to limited
computational resources. Finally, overfitting always exist in our experiments, al-
beit different techniques have been tried (e.g. transfer learning, dropout or weight
decay). This phenomenon occurs mainly due to our small data sample in AD clas-
sification. It is likely that training with much larger datasets would result in higher
performance models. However, in the field of AD, such very large datasets are not
yet publicly available.
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Conclusion & Perspectives

The objectives of this dissertation are to advance: i) the discovery of biomarkers of
the presymptomatic phase of genetic forms of FTLD due to C9orf72 disease, and
ii) the computer-aided diagnosis and prognosis of AD based on machine learning
techniques. Specifically, for C9orf72 carriers, with promising disease-modifying
therapies tested in clinical trials, we currently lack robust biomarkers for moni-
toring the therapeutic effect. These biomarkers are also essential for improving
staging, prognosis and onset prediction. We have therefore investigated and com-
pleted the clinical spectrum for potential markers based on neuroimaging data
and neuropsychological tests in presymptomatic C9orf72 carriers. For AD classifi-
cation, we critically and objectively reviewed the state-of-the-art in the field, point-
ing out the bad practices and tricky traps regarding both neuroimaging and ML
aspects. We then proposed our open source framework, demonstrated its use on
three public datasets, and studied the influences of key components in the frame-
work on the classification performances. With all these, we hope to provide a
baseline performance and facilitate future researchers with the improvement of
transparency, reproducibility and objectivity.

Early cognitive, structural, and microstructural mark-
ers in presymptomatic C9orf72 carriers younger than 40
years

We evidenced that subtle cognitive, structural, and microstructural alterations can
be detected in C9orf72 carriers younger than 40 years. This finding indicate that
the young C9orf72 carriers may represent the best target population for future
disease-modifying clinical trials. First, praxis impairment is an early and intrigu-
ing feature of C9orf72 disease. This finding is surprising and indicates an early-
expressed and non-evolving phenotype of C9orf72 mutation and encourages to
examine extensive neuropsychological tests during the entire lifespan of C9orf72
carriers. Secondly, early thalamic atrophy seems to be a reliable hallmark at early
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stage of C9orf72 mutation carriers. Two mechanisms may exist and are not ex-
clusive with each other for this phenomenon: i) thalamic atrophy may be related
to the presence of pathological deposits, ie, TDP-43 and/or DPR or ii) it can also
be caused by deafferentation processes secondary to the diffuse cortical atrophy
owing to the high number of connections between the hemispheric cortex and the
thalamus. Lastly, microstructural WM integrity corruption but not cortical atrophy
reflects the expected topography of C9orf72 disease. Our study demonstrated two
distinct patterns between WM and GM. Atrophy demonstrates a widespread pat-
tern and WM conversely targets corticospinal tracts and frontal WM, suggesting
that WM changes may be more predictive of future cognitive and motor deficits
than cortical atrophy. Our results contribute to a better understanding of the pre-
clinical phase of C9orf72 disease and of the respective contribution of magnetic
resonance biomarkers. However, the main limitation of our study is its cross-
sectional design. Our findings need to be confirmed on longitudinal study design.

NODDI offers promising biomarkers with higher speci-
ficity and sensitivity at presymptomatic stage

In a second study, we hope to find more sensitive and more specific biomark-
ers in presymptomatic C9orf72 carriers. More specifically, this study evaluated
the added value of NODDI in the detection of brain microstructural changes in
presymptomatic C9orf72 carriers compared to conventional techniques, namely
DTI and volumetric analysis based on T1w MRI. In conclusion, NODDI offers
higher sensitivity compared with conventional DTI for detecting white matter in-
tegrity abnormalities. Moreover, it offers the potential to reveal a more specific
substrate of white matter damage, suggesting here that it consists mainly of re-
duced neurite density during the presymptomatic stage. These findings encour-
age the use of NODDI, a multishell DWI sequence taking nearly 30 minutes, in
clinical studies. Our work highlights the potential use of NODDI for biomarker
tracking, disease staging and diagnosis, and therapeutic treatment monitoring in
neurodegenerative diseases.

The currents study has the following limitations. First, the cross-model com-
parison between NODDI and DTI used two different DWI acquisitions. How-
ever, the single-shell and multishell DWI sequences were optimized for DTI and
NODDI model, respectively. Thus, this systematic comparison helps clarify the
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added value of a longer but clinically feasible multishell diffusion sequence. Sec-
ond, caution should be exercised in diffusion MRI-based cortical analysis. NODDI,
by construction, accounts for partial volume effects from cerebrospinal fluid (CSF)
contamination, thus minimizing the influence of atrophy on the NODDI metrics.
Nevertheless, the cortex is a thin structure compared with the resolution of diffu-
sion MRI, and partial volume effect may impact on the computation of regional
FWF measures. Although we implemented specific image processing procedures
to mitigate partial volume effects, it is still possible that some partial volume effect
remains, impacting on FWF estimates.

Challenges and cautions in classification of AD: a long
but promising pathway to clinical translation with deep
learning

Another important contribution of this dissertation is to clarify where we currently
are and how far we are away from the translation to clinical practice regarding
classification of AD using neuroimaging and ML techniques. The last two studies
extended the previous work of a colleague (Samper-González et al., 2018), which
proposed a reproducible framework based on conventional ML methods for AD
classification and demonstrated its use on T1w MRI and PET data. In this disser-
tation, we expanded this framework to diffusion MRI with conventional ML, and
T1w MRI with DL methods.

The main contributions are summarized as follows. First, our exhaustive liter-
ature overview of the state-of-the-art revealed bad practices in the field. These in-
clude various traps for data leakage and the biased metrics for classification perfor-
mance quantification (e.g., imbalanced dataset), resulting in often over-optimistic
results. In the current dissertation, we demonstrated two sources of data leakage
with our experiments. The first scenario is the adoption of a non-nested feature
selection using SVM. The second example is the adoption of a bad data split strat-
egy in DL methods. Other types of data leakage also exist in the filed and lead to
unreliable and over-optimistic results. This is a serious obstacle for future clinical
translation as these models may have poor generalization power for unseen data.
Secondly, we proposed our open source framework for reproducible evaluation
of these classification methods. It consist of a set of tools for automatic conver-
sion of the three public databases, standard image preprocessing pipelines and
ML tools following current best practices. Thirdly, we demonstrated the use of
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the framework on two applications: i) conventional ML methods with DTI-based
features and ii) CNNs with T1w MRI from the three public datasets. These base-
line performances are in line with the state-of-the-art results. We systematically
studied the impacts of key components, such as type of features and image pre-
pocessing procedure, on the classification performance. Moreover, in conjunction
with our previous work (Samper-González et al., 2018), the last two studies in this
dissertation clarify that PET, T1w MRI and diffusion MRI obtained inferior perfor-
mance one after another by using conventional ML methods. DL methods did not
boost the classification performance compared to conventional ML models, such
as SVM, possibly due to the fact that very large neuroimaging datasets, compa-
rable to ImageNet dataset, are not available yet. Lastly, we stressed our opinions
and suggestions regarding the existing issues and challenges in the field. Specifi-
cally, the data leakage problem is not trivial and should be strictly avoided during
experiment design. Another open question regards the architecture and hyperpa-
rameter optimization in DL. In this dissertation, we explicitly explained how this
optimization was performed. Moreover, one is encouraged to split an independent
test dataset at the very beginning in order to avoid the data leakage and quantify
the generalizability power of the trained model to unseen data.

Compared to conventional ML methods, DL seems to be more promising in
clinical translation. The first prerequisite is the robustness and reliability of the
classification performance. This means that the experimental design should strictly
follow the good practices and avoid the potential biased results. As emphasized
in the current dissertation, we hope to attract the attention of the whole commu-
nity to follow those good practices. Moreover, another advantage of DL is the
feasibility of real-time (or near real-time) application in clinical practice. In the
application of conventional ML techniques, data preprocessing is dedicated and
time-consuming (usually hours for one MRI). Alternatively, DL methods has mini-
mum dependency on image preprocessing, which requires nearly 10 to 30 minutes
for one MRI. Also, once trained, the model can be simultaneously applied to new
patients, thus generating interpretable outputs from imaging data for immediate
use in clinical decision making. One obstacle for this pathway is the poor perfor-
mance precision, such as for task sMCI vs pMCI. This poor performance could be
boosted when big data of medical image are available. Researchers are advancing
this in the right direction. First, databases, such as ADNI, OASIS, AIBL, have been
made publicly accessible in recent decades. Moreover, research hot topic has been
focused on few-shot learning, which requires only a small sample of training data.

Limitations also exist in our last two studies. For conventional ML methods
with diffusion MRI data, first, the diffusion MRI from ADNI has a limited sample
size and was not acquired using the state-of-the-art methods. Better performance
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could be possibly obtained with more recent protocols or larger samples. Secondly,
we only explored the potential of DTI-based features, while more advanced fea-
tures, such as brain tractography- or network-based features, could also be stud-
ied. Regarding DL methods with T1w MRI, first, we experimented with a set of
reasonable set of model architecture and training hyperparameters, but did not
perform an extensive search due to the limited time and computational power.
To overcome this limitation, our framework is freely available to the community.
Thus we call for researchers to assist the search of the optimal model by using our
framework. Moreover, overfitting always exist in our experiments, albeit different
techniques have been tried (e.g. transfer learning, dropout or weight decay).

Release of open source software packages for scientific
reproducibility

In this dissertation, another important contribution is the development and release
of open source software packages to the community. This thesis highly depends on
these open source software packages and conversely contributes to their develop-
ment. First, Clinica software platform (http://www.clinica.run) offers the tools
for automatic conversion of three public databases, standardized image prepro-
cessing pipelines, and general implementation of statistical and ML models. The
four studies highly relies on Clinica for data conversion, image preprocessing for
feature extraction and data analysis. Secondly, the implementation of classical sta-
tistical models, which was used for the statistical analysis in the first two studies
(Chapter 2 and Chapter 3), is publicly accessible on GitHub (https://github.com/
anbai106/NeuroStatisticR). Lastly, another software package (https://gitlab.
icm-institute.org/aramislab/AD-ML), for reproducible evaluation of ML meth-
ods for AD classification, was made publicly accessible. This not only includes
the general implementation of ML models (both conventional ML and DL mod-
els), but also the experiments results and pre-trained models, which are specific to
the last two studies in the dissertation (Chapter 4 and Chapter 5). We hope that
our framework, the experimental results and the saved pre-trained models will be
useful to researchers working in the field, allowing them to objectively evaluate
and compare their new approaches.

* *
*

There are multiple perspectives to our work.

http://www.clinica.run
https://github.com/anbai106/NeuroStatisticR
https://github.com/anbai106/NeuroStatisticR
https://gitlab.icm-institute.org/aramislab/AD-ML
https://gitlab.icm-institute.org/aramislab/AD-ML
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First, we hope to advance our work on presymptomatic C9orf72 carriers with
the design of longitudinal studies. A previous study (Rohrer et al., 2015) pro-
posed a hypothetical pattern of biomarker changes in family FTLD: from early
presymptomatic phase to symptom onset, CSF biomarkers are firstly visible, fol-
lowed by markers from PET tracer binding. Later at the presymptomatic stage,
neuroimaging changes, including lower functional and structural connectivity and
GM volume, appear. Shortly before or around symptom onset, behavioural symp-
toms and deficits in social cognition can be objectified. Functional changes and
deficits in other cognitive domains are often only quantifiable after symptom on-
set (Rohrer et al., 2015; Jiskoot, 2018). However, this was obtained using extrapo-
lated measures. Longitudinal studies would not only shed light on the temporal
and spatial cascade of pathological changes in a larger lifespan, but also allow the
validation of biomarkers robustness and disease-modifiying therapies response.

Secondly, we are interested in advancing computer-aided diagnosis of demen-
tias. As mentioned above, one of the limitations using conventional ML methods
and diffusion MRI is the use of only DTI-based feature, we hope to explore more
advanced features, such as tractography- and network-based features, under strict
evaluation conditions. Moreover, in our framework, we only considered a uni-
modal approach and a single type of classifier. Another prospective is to extend
our work to the multimodal or ensemble learning approach, as such approaches
were also present in the literature and obtained competitive performances.

Another perspective is to advance the work on reproducible evaluation of CNNs
for AD classification. First of all, we will quantify the generalization power of our
trained models on the unseen independent datasets after the peer-review process
(Chapter 5 is submitted to Medical Image Analysis and under review). This pro-
cess ensures no contamination for the test dataset and thus avoids the potential
data leakage during the revision stage. Moreover, we currently implemented only
binary classifiers, distinguishing between two types of conditions. This is not the
natural use case in clinical practice where multiple diagnostic situations exist. As
the huge success of ImageNet classification which is a multiclass classification task,
we naturally thought to extend our current work to multiclass scenarios. Instead of
using one-vs-one or one-vs-all strategy, for instance, in the case of SVM, DL mod-
els were designed to solve the multiclass classification with a more direct fashion:
softmax function offers the probability of being classified into each category for
each subject. Lastly, we hope that the saved pre-trained models could be useful
for transfer learning and application transplantation. For instance, our models
pre-trained on AD classification (source task) may be transferred to another target
task, such as classification of different phenotypes of FTLD (target task).
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Another interesting proposal, such as Kaggle online competition 26, could be
established to the whole community for the search of optimal models. We need the
efforts of the whole community for the search of the optimal model for AD classifi-
cation due to the above-mentioned limitations. Following the rigorous evaluation
procedures, such as adoption of subject-level data split, concealing independent
test dataset and use of balanced accuracy, participants can easily use our open-
source framework for automatic data downloading and converting, image prepro-
cessing, and network architecture construction. Different approaches and models
thus could be objectively compared.

One further step may be decided. One can notice that our DL models always
suffer from overfitting although strategies, such as drop out, batch normaliza-
tion and weight decay, have been adopted. Two possible solutions could be con-
sidered. First, the community works together to build the medical "ImageNet"
dataset. Similar proposition has been made (http://langlotzlab.stanford.edu/
projects/medical-image-net/. Notwithstanding that the community is advanc-
ing in the right direction, such as the availability of open access dataset ADNI,
OASIS and AIBL, this may be difficult since medical data is sensitive. Alterna-
tively, data augmentation could be taken into account. Recent huge advances in
deep unsupervised learning, especially GANs, enable neural networks to dupli-
cate the true data under similar data distribution. Hopefully, these approaches
could satisfy the huge appetite of DL models.

26https://www.kaggle.com

http://langlotzlab.stanford.edu/projects/medical-image-net/
http://langlotzlab.stanford.edu/projects/medical-image-net/
https://www.kaggle.com
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Appendix A

Early Cognitive, Structural, and
Microstructural Changes in
Presymptomatic C9orf72 Carriers
Younger Than 40 Years

This appendix is the supplementary material of the Chapter 2, which has been
published as a journal article on JAMA Neurology (Bertrand et al., 2017):

• Bertrand, A., Wen, J. (Co-first author), Rinaldi, D., Houot, M., Sayah, S.,
Camuzat, A., Fournier, C., Fontanella, C., Routier, A., Couratier, P., Pasquier,
F., Habert, M., Hannequin, D., Martinaud, O., Caroppo, P., Levy, R., Dubois,
B., Brice, A., Durrleman, S., Colliot, O., Le Ber, I. Early Cognitive, Structural,
and Microstructural Changes in Presymptomatic c9orf72 Carriers Younger
Than 40 Years, JAMA neurology, 75(2), pp.236-245. https://hal.inria.
fr/hal-01654000/document.

https://hal.inria.fr/hal-01654000/document
https://hal.inria.fr/hal-01654000/document
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eMethods 1. Neuropsychological and behavioral tests 
 
All the participants underwent a comprehensive neuropsychological and behavioral 
evaluation, based on internationally validated scales. Behavioral disorders were assessed 
using the Frontal Behavioural Inventory (FBI), the Neuropsychiatric Inventory (NPI), the 
Frontal Behavioural scale, the Frontotemporal dementia Rating Scale (FRS), the CBI-R and 
Starskein apathy scale. Functional disability was assessed using the Frontal CDR and DAD 
scale (Disability Assessment for Dementia). Depression and anxiety were assessed using the 
STAI and BDI-II scale. All the participants also underwent a detailed neuropsychological 
battery evaluating global cognitive efficiency (Mini Mental State Examination (MMSE)1, 
MATTIS dementia rating scale (MDRS2); executive functions (Frontal Assessment battery3);  
social cognition and theory of mind (Social Emotion Assessment 4); episodic memory (Free 
and cued recall test); language (verbal fluencies, Boston Naming test) visuospatial processing 
(Benson figure copy) and gestural praxis. Gestural praxis were assessed with a shortened 
version of the Batterie d’Evaluation des Praxies5 with 5 testing conditions: (a) manual 
dexterity, using imitation of finger configuration, (b) melokinetic apraxia, using motor 
programming and alternate gestures, (c) imitation of non-representational gestures, (d) 
pantomime of intransitive gestures, (e) pantomime of transitive gestures. 
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eMethods 2. Magnetic resonance imaging sequence parameters 
 
Parameters of 3DT1 sequence were as follow: spatial resolution = (1.1x1.1x1.1) mm3; TE/TR 
= 2.8-3ms/minimum; Bandwidth: 240-255 Hz. The 64 subjects imaged on a Siemens MR also 
underwent DTI with the following parameters: spatial resolution = (2x2x2.5) mm3; TE/TR = 
90/7300ms; Bandwidth = 1580 Hz.  Each DTI scan comprised 64 directions diffusion-
weighted images (b value = 1000 s/mm2), 9 T2-weighted images (b value = 0 s/mm2) and a 
B0 field map. 
 
  



 

© 2017 American Medical Association. All rights reserved. 

eFigure 1. Correlation between age and expected years to onset 
 
 

 
 
In c9+ subjects, real age and expected years to onset (based on the mean familial age at onset) 
showed strong correlation with high shared variance (Pearson correlation coefficient, p < 
0.0001; r2 = 0.802). 
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eFigure 2. Diffusion tensor magnetic resonance imaging metrics 
 

 
 
Graphs of DTI metrics as a function of age in c9+ and c9- subjects. The exact position of x-
values (age) is not provided, in order to prevent individual subjects from identifying their 
mutation status.  
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eTable 1. Effect of C9orf72 mutation on volume of cortical regions of interest 
 
 c9orf72 mutation  
 Coefficient Uncorr. 

p value 
Corr. p 
value 

Frontal lobe    
Left frontal pole -76.8 0.016* 0.100
Left medial orbitofrontal -199.8 0.096 0.211 
Left lateral orbitofrontal -185.1 0.113 0.240 
Left pars orbitalis -20.7 0.771 0.832
Left pars triangularis -178.5 0.141 0.254 
Left pars opercularis -339.6 0.038* 0.155 
Left rostral middle frontal -208.3 0.536 0.675
Left caudal middle frontal -381.2 0.039* 0.155 
Left superior frontal -1062.6 0.007* 0.053 
Left precentral -578.0 0.073 0.178
Right frontal pole -28.1 0.502 0.649 
Right medial orbitofrontal -0.1 1.000 1.000 
Right lateral orbitofrontal -182.2 0.190 0.308
Right pars orbitalis -138.5 0.058 0.155 
Right pars triangularis -109.8 0.394 0.558 
Right pars opercularis -278.4 0.066 0.166
Right rostral middle frontal -635.8 0.053 0.155 
Right caudal middle frontal -490.1 0.005* 0.046* 
Right superior frontal -736.1 0.054 0.155 
Right precentral -476.9 0.086 0.201 
Temporal lobe    
Left temporal pole -212.6 0.015* 0.100 
Left banks sts -54.6 0.572 0.695 
Left transverse temporal -74.3 0.116 0.240 
Left superior temporal -372.3 0.177 0.294 
Left middle temporal -78.1 0.771 0.832 
Left inferior temporal -1155.7 <0.001* 0.005* 
Left fusiform -502.2 0.033* 0.155 
Left entorhinal -107.0 0.135 0.254 
Left parahippocampal -51.1 0.485 0.649 
Right temporal pole -111.4 0.157 0.274 
Right banks sts  -2.0 0.980 0.994 
Right transverse temporal -15.3 0.694 0.800 
Right superior temporal -376.5 0.142 0.254 
Right middle temporal -178.0 0.547 0.676 
Right inferior temporal -924.3 0.002* 0.018* 
Right fusiform -833.8 <0.001* 0.008* 
Right entorhinal -48.6 0.506 0.649 
Right parahippocampal -115.9 0.059 0.155 
Parietal lobe    
Left postcentral -377.6 0.094 0.211 
Left superior parietal -692.9 0.045* 0.155 
Left inferior parietal -674.2 0.030* 0.155 
Left precuneus -711.3 <0.001* 0.008* 
Left supramarginal -972.2 <0.001* 0.008* 
Left paracentral -17.3 0.855 0.899 
Right postcentral -344.6 0.126 0.245 
Right superior parietal -854.9 0.005* 0.046* 
Right inferior parietal -649.2 0.058 0.155 
Right precuneus -677.8 0.002* 0.018* 
Right supramarginal -308.8 0.232 0.358 
Right paracentral -37.5 0.717 0.812 
Occipital lobe    
Left lingual -380.1 0.051 0.155
Left lateral occipital -695.0 0.019* 0.107 
Left cuneus -137.2 0.051 0.155 
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Left pericalcarine 76.2 0.213 0.336 
Right lingual -132.0 0.501 0.649 
Right lateral occipital -590.6 0.051 0.155 
Right cuneus -117.5 0.163 0.277 
Right pericalcarine 111.1 0.122 0.245 
Cingulate gyrus    
Left rostral anterior cingulate -74.8 0.349 0.505 
Left caudal anterior cingulate -38.2 0.728 0.812 
Left isthmus cingulate -142.3 0.059 0.155 
Left posterior cingulate -13.7 0.890 0.917 
Right rostral anterior cingulate -93.2 0.265 0.400 
Right caudal anterior cingulate 18.5 0.859 0.899 
Right isthmus cingulate -32.6 0.670 0.785 
Right posterior cingulate 42.8 0.589 0.702 
Insula    
Left insula -111.3 0.320 0.473 
Right insula -96.1 0.441 0.613 
 
Effect of c9orf72 mutation on volume of cortical ROI, with age and sex as covariates. 
Uncorr.: uncorrected for multiple comparison; Corr.: corrected for multiple comparisons. 
Cortical ROI showing significant p-value after correction are shown in bold. 
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eTable 2. Effect of C9orf72 mutation on volume of subcortical structures 
  
 c9orf72 mutation 
 Coefficient Uncorr. p 

value 
Corr. p 
value 

Left cerebellum cortex -1043.4 0.385 0.629 
Right cerebellum cortex -687.2 0.570 0.790 

Left ventral diencephalon -31.3 0.704 0.810 
Right ventral diencephalon -7.8 0.915 0.935 

Left putamen -141.9 0.302 0.556 
Right putamen -176.0 0.176 0.420 
Left pallidum -84.6 0.065 0.342 

Right pallidum -57.1 0.186 0.420 
Left caudate -25.8 0.720 0.810 

Right caudate -6.6 0.935 0.935 
Left accumbens area -18.5 0.480 0.720 

Right accumbens area -24.5 0.309 0.556 
Left amygdala -20.2 0.659 0.810 

Right amygdala -71.1 0.151 0.420 
Left thalamus proper -383.0 0.022* 0.202 

Right thalamus proper -444.1 0.001* 0.010* 
Left hippocampus -161.6 0.100 0.360 

Right hippocampus -175.6 0.076 0.342 
 
Effect of c9orf72 mutation on volume of subcortical structures, with age and sex as 
covariates. Uncorr.: uncorrected for multiple comparison; Corr.: corrected for multiple 
comparisons. Subcortical ROI showing significant p-value after correction is shown in bold.
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eTable 3. Effect of C9orf72 mutation on diffusion tensor magnetic resonance imaging metrics 
 
 FA MD RD AD 
 Coeff.  

(x10) 
Uncorr. 
p value 

Corr. p 
value 

Coeff. 
(x103) 

Uncorr. p 
value 

Corr. p 
value 

Coeff. 
(x104) 

Uncorr. 
p value 

Corr. p 
value 

Coeff. 
(x104) 

Uncorr. 
p value 

Corr. p 
value 

L. anterior thalamic radiation -0.120 0.035* 0.099 0.026 0.163 0.326 0.358 0.062 0.113 0.326 0.083 0.122 
R. anterior thalamic radiation -0.180 0.004* 0.049* 0.044 0.037* 0.229 0.596 0.011* 0.041* 0.546 0.015* 0.055 
L. corticospinal tract -0.165 0.008* 0.049* 0.006 0.531 0.758 0.279 0.002* 0.015* 0.209 0.004* 0.022* 
R. corticospinal tract -0.098 0.120 0.239 0.002 0.865 0.911 0.178 0.045* 0.099 0.124 0.086 0.122 
L. cingulum cingulate gyrus -0.230 0.105 0.239 0.022 0.334 0.542 0.506 0.053 0.105 0.410 0.065 0.119 
R. cingulum cingulate gyrus -0.171 0.246 0.378 -0.010 0.722 0.861 0.220 0.418 0.517 0.121 0.616 0.648 
L. cingulum hippocampus 0.018 0.867 0.867 0.057 0.103 0.229 0.244 0.439 0.517 0.360 0.249 0.312 
R. cingulum hippocampus 0.096 0.435 0.622 0.012 0.732 0.861 -0.024 0.970 0.970 0.024 0.924 0.924 
Forceps major -0.146 0.109 0.239 0.008 0.790 0.877 0.300 0.158 0.226 0.226 0.302 0.355 
Forceps minor -0.169 0.016* 0.052 0.001 0.958 0.958 0.277 0.016* 0.045* 0.187 0.067 0.119 
L. inferior fronto occipital 
fasciculus -0.163 0.010* 0.049* 0.023 0.077 0.229 0.334 

<0.001
* 0.008* 0.290 0.002* 0.015* 

R. inferior fronto occipital 
fasciculus -0.129 0.009* 0.049* 0.012 0.352 0.542 0.225 0.025* 0.062 0.189 0.058 0.119 
L. inferior longitudinal 
fasciculus -0.038 0.582 0.670 0.037 0.001* 0.027* 0.285 0.006* 0.040* 0.311 0.001* 0.015* 
R. inferior longitudinal 
fasciculus -0.081 0.235 0.378 0.041 0.005* 0.055 0.267 0.009* 0.041* 0.314 0.002* 0.015* 
L. superior longitudinal 
fasciculus -0.064 0.146 0.265 0.018 0.046* 0.229 0.159 0.080 0.133 0.167 0.053 0.119 
R. superior longitudinal 
fasciculus -0.136 0.015* 0.052 0.018 0.103 0.229 0.279 0.012* 0.041* 0.244 0.018* 0.055 
L. uncinate fasciculus -0.065 0.489 0.652 0.011 0.591 0.788 0.190 0.302 0.402 0.165 0.348 0.386 
R. uncinate fasciculus -0.030 0.800 0.842 -0.032 0.082 0.229 -0.116 0.503 0.559 -0.182 0.195 0.260 
L. superior longitudinal 
fasciculus temporal 0.072 0.593 0.670 0.025 0.193 0.350 0.047 0.743 0.782 0.155 0.072 0.119 
R. superior longitudinal 
fasciculus temporal -0.062 0.603 0.670 0.034 0.088 0.229 0.174 0.109 0.168 0.232 0.019* 0.055 
 
Effect of c9orf72 mutation on DTI metrics, with age and sex as covariates. Uncorr.: uncorrected for multiple comparison; Corr.: corrected for multiple 
comparisons. L.: left; R.: right. Tract with at least one DTI metric showing significant p-value after correction are shown in bold. 
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Appendix B

Neurite density is reduced in the
presymptomatic phase of C9orf72
disease

This appendix is the supplementary material of the Chapter 3, which has been
published as a journal article on Journal of Neurology, Neurosurgery, and Psychi-
atry (wen_neurite_nodate):

• Wen, J., Zhang, H., Alexander, D., Durrleman, S., Routier, A., Rinaldi, D.,
Houot, M., Couratier, P., Hannequin, D., Pasquier, F., Zhang, J., Colliot, O.,
Le Ber, I. and Bertrand, A. Neurite density is reduced in the presymptomatic
phase of C9orf72 disease, J Neurol Neurosurg Psychiatry, pp.jnnp-2018. https:
//hal.inria.fr/hal-01907482/document.
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Supplementary material 
 
Appendix e-1: Regions for gray matter analyses.  
Appendix e-2: Regions for white matter analyses. 
Appendix e-3: Mixed effects model.  
Figure e-1: Color-coded representation of P values corresponding to the associations of 
C9orf72 mutation with white matter integrity before correction for multiple comparisons. 
Figure e-2: Color-coded representation of P values corresponding to the associations of 
C9orf72 mutation with the cortical ROI measures before correction for multiple comparisons. 
Figure e-3: Color-coded representation of P values corresponding to the associations of 
C9orf72 mutation with the subcortical ROI measures before correction for multiple 
comparisons. 
Table e-1: Effect sizes for DTI metrics and for NDI in white matter tracts. 
Table e-2: Effect sizes for FWF and gray matter volume in cortical regions. 
Table e-3: Effect sizes for FWF and gray matter volume in subcortical regions. 
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Appendix e-1. Regions for gray matter analyses. 
 
We studied the following 68 cortical regions obtained from the Desikan-Killiany atlas: 
Frontal lobe: left frontal pole, left medial orbitofrontal, left lateral orbitofrontal, left pars 
orbitalis, left pars triangularis, left pars opercularis, left rostral middle frontal, left caudal, 
middle frontal, left superior frontal, left precentral, right frontal pole, right medial orbitofrontal, 
right lateral orbitofrontal, right pars orbitalis, right pars triangularis, right pars opercularis, right 
rostral middle frontal, right caudal middle frontal, right superior frontal, right precentral. 
Temporal lobe: left temporal pole, left banks sts, left transverse temporal, left superior 
temporal, left middle temporal, left inferior temporal, left fusiform, left entorhinal, left 
parahippocampal, right temporal pole, right banks sts , right transverse temporal, right superior 
temporal, right middle temporal, right inferior temporal, right fusiform, right entorhinal, right 
parahippocampal. 
Parietal lobe: left postcentral, left superior parietal, left inferior parietal, left precuneus, left 
supramarginal, left paracentral, right postcentral, right superior parietal, right inferior parietal, 
right precuneus, right supramarginal, right paracentral. 
Occipital lobe: left lingual, left lateral occipital, left cuneus, left pericalcarine, right lingual, 
right lateral occipital, right cuneus, right pericalcarine. 
Cingulate gyrus: left rostral anterior cingulate, left caudal anterior cingulate, left isthmus 
cingulate, left posterior cingulate, right rostral anterior cingulate, right caudal anterior 
cingulate, right isthmus cingulate, right posterior cingulate. 
Insula: left insula, right insula. 
 
The following 18 subcortical regions were included for gray matter volume analyses: 
left cerebellum cortex, right cerebellum cortex, left ventral diencephalon, right ventral 
diencephalon, left putamen, right putamen, left pallidum, right pallidum, left caudate, right 
caudate, left accumbens area, right accumbens area, left amygdala, right amygdala, left 
thalamus proper, right thalamus proper, left hippocampus, right hippocampus. 
 
The following 12 subcortical regions were included for gray matter FWF analyses. The other 6 
ROIs were excluded because, after the 2-voxel erosion procedure, they were too small to 
produce reliable regional estimates. 
left putamen, right putamen, left pallidum, right pallidum, left caudate, right caudate, left 
amygdala, right amygdala, left thalamus proper, right thalamus proper, left hippocampus, right 
hippocampus. 
 
 
Appendix e-2: Regions for white matter analyses. 
 
We studied the following 20 tracts based on JHU atlas for white matter analyses:  
left anterior thalamic radiation, right anterior thalamic radiation, left corticospinal tract, right 
corticospinal tract, left cingulum cingulate gyrus, right cingulum cingulate gyrus, left cingulum 
hippocampus, right cingulum hippocampus, forceps major, forceps major, left inferior fronto-
occipital fasciculus, right inferior fronto-occipital fasciculus, left inferior longitudinal 
fasciculus, right inferior longitudinal fasciculus, left superior longitudinal fasciculus, right 
superior longitudinal fasciculus, right uncinate fasciculus, left uncinate fasciculus, left superior 
longitudinal fasciculus temporal, right superior longitudinal fasciculus temporal. 
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Appendix e-3. Mixed effects model.  
 
Group differences between carriers and non-carriers of the C9orf72 mutation were assessed 
using linear mixed-effects models. We used age, gender and group (i.e., mutation status) as 
fixed effects, and family membership as random effect, with the following model: 
 

!"#
(%) = ( + *	 ×	-./0.1" + 2	 ×	34."	 + 5	 ×	-1678" + U# 	+ :"#

(%)	 
 
where Y<=(>) is the response of the j@A	region of interest (ROI) for the i@A subject and the	k@A 
family; Gender<	, Age<	  and Group<  are the fixed effects; µ , β , λ  and η  are their estimated 
parameters; U= is the random effect measuring the difference between the average response in 
the family and in the whole population; E<=(>)	is the random error. 
 
 
 
 
Figure e-1. Color-coded representation of P values corresponding to the 
associations of C9orf72 mutation with white matter integrity before 
correction for multiple comparisons. 
Abbreviations: FA, fractional anisotropy; MD, mean diffusivity; AD, axial diffusivity; RD, 
radial diffusivity; NDI, neurite density index; ODI, orientation dispersion index. 
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Table e-1. Effect sizes for DTI metrics and for NDI in white matter tracts. 
The effect sizes for both NDI and DTI are shown below. For DTI, only the largest effect size 
among the different DTI metrics is shown. For regions for which a significant difference 
between C9+ and C9- was detected for any of the metrics, we compared the effect size of 
NODDI to that of DTI using a permutation test procedures with 10000 iterations. The table 
presents the P values corresponding to these permutation tests (with a significance level of P < 
0.05).  
Abbreviations: ART, anterior thalamus radiation tract; CST, cortico-spinal tract; CCG, 
Cingulum (cingulate gyrus) tract; CH, Cingulum (hippocampus) tract; Fmajor, forceps major 
tract; Fminor, forceps minor tract; IFOF, inferior fronto-occipital fasciculus; ILF, inferior 
longitudinal fasciculus; SLF, superior longitudinal fasciculus; UF, uncinate fasciculus; SLFT, 
superior longitudinal fasciculus (temporal part); R., right; L., left; NDI, neurite density index; 
DTI, diffusion tensor imaging; NA, not applicable. 
 
 

ROI Effect size 
(NDI/DTI) 

P value ROI Effect size 
(NDI/DTI) 

P value 

L.ART 0.06/0.04 NA L.IFOF 0.2/0.21 0.773 
R.ATR 0.12/0.09 0.365 R.IFOF 0.27/0.11 0.009* 
L.CST 0.05/0.07 NA L.ILF 0.09/0.23 0.051 
R.CST 0.09/0.03 0.154 R.ILF 0.16/0.17 0.719 
L.CCG 0.03/0.04 NA L.SLF 0.08/0.06 NA 
R.CCG 0.02/0.02 NA R.SLF 0.13/0.07 0.139 
L.CH 0.01/0.05 NA L.UF 0.03/0.02 NA 
R.CH 0.07/0.01 NA R.UF 0.17/0.01 0.008* 

Fmajor 0.09/0.05 0.207 L.SLFT 0.06/0.05 NA 
Fminor 0.1/0.06 0.307 R.SLFT 0.06/0.1 0.258 

 
 
 
 
Figure e-2. Color-coded representation of P values corresponding to the 
associations of C9orf72 mutation with the cortical ROI measures before 
correction for multiple comparisons. 
Abbreviations: FWF, free water fraction. 
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Table e-2: Effect sizes for FWF metrics and gray matter volume in cortical 
regions. 
The effect sizes for both FWF and gray matter volume in cortical regions are shown below. For 
regions for which a significant difference between C9+ and C9- was detected for any of the 
metrics, we compared the effect size of FWF to that of volumetry using a permutation test 
procedures with 10000 iterations. The table presents the P values corresponding to these 
permutation tests (with a significance level of P < 0.05).  
Abbreviations: CMF, caudal middle frontal cortex; CUN, cuneus cortex; FUS, fusiform; IP, 
inferior parietal cortex; IT, inferior temporal cortex; INS, insula; LO, lateral occipital cortex; 
LIN, lingual; PPC, pars opercularis cortex; PCC, pericalcarine; POC, postcentral cortex; PREC, 
precuneus; RMF, rostral middle frontal cortex; SP, superior parietal cortex; SM, supramarginal 
cortex; TP, temporal pole cortex; MOF, medial orbitofrontal cortex; BK, bankssts cortex; CAC, 
caudal anterior cingulate cortex; ENT, entorhinal cortex; FP, frontal pole cortex; IC, isthmus 
cingulate cortex; LOF, lateral orbitofrontal cortex; MT, middle temporal cortex; PAC, 
paracentral cortex; PHC, para hippocampal cortex; PB, pars orbitalis cortex; PTR, pars 
triangularis cortex; PCG, posterior cingulate cortex; PRC, precentral cortex; RAC, rostral 
anterior cingulate cortex; SF, superior frontal cortex; ST, superior temporal cortex; TT, 
transverse temporal cortex; R., right; L., left; FWF, free water fraction; NA, not applicable. 
  

ROI Effect size 
(FWF/Volumetry) 

P value ROI Effect size 
(FWF/Volumetry) 

P value 

L.CMF 0.06/0.12 0.734 L.PREC 0.12/0.23 0.466 
L.CUN 0.06/0.03 0.653 L.RMF 0.1/0 0.052 
L.FUS 0.09/0.12 0.305 L.SP 0.1/0.09 0.712 
L.IP 0.11/0.01 0.072 L.SM 0.11/0.18 0.639 
L.IT 0.17/0.14 0.259 L.TP 0/0.12 0.025* 

L.INS 0.19/0 0.002* R.FUS 0.06/0.17 0.096 
L.LO 0.32/0.09 0.001* R.IT 0.07/0.15 0.406 
L.LIN 0.11/0.06 0.092 R.MOF 0.12/0.02 0.051 
L.PPC 0.12/0.06 0.201 R.PREC 0.07/0.14 0.483 
L.PCC 0.12/0.01 0.008* R.SP 0.03/0.14 0.140 
L.POC 0.09/0.08 0.558 L.PB 0.08/0 NA 
R.CMF 0.04/0.06 NA L.PTR 0.08/0.01 NA 
L.BK 0.08/0.01 NA L.PCG 0.06/0 NA 

L.CAC 0.04/0.01 NA L.PRC 0.07/0.09 NA 
L.ENT 0.02/0.01 NA L.RAC 0/0.01 NA 
L.FP 0.02/0.1 NA L.SF 0.06/0.11 NA 
L.IC 0.01/0.02 NA L.ST 0.01/0.04 NA 

L.LOF 0.11/0.06 NA L.TT 0.01/0.04 NA 
L.MOF 0.01/0.01 NA R.BK 0.05/0.01 NA 
L.MT 0.08/0.01 NA R.CAC 0.04/0.03 NA 
L.PAC 0.02/0.02 NA R.CUN 0/0.04 NA 
L.PHC 0.07/0 NA R.ENT 0.06/0 NA 
R.FP 0.04/0 NA R.IP 0.01/0.01 NA 
R.INS 0.05/0.02 NA R.IC 0.04/0 NA 
R.LOF 0.08/0.01 NA R.LO 0.06/0.04 NA 
R.LIN 0.04/0.02 NA R.MT 0.06/0.07 NA 
R.PAC 0.05/0.03 NA R.PRC 0.03/0.06 NA 
R.PHC 0.03/0.09 NA R.RAC 0.08/0.02 NA 
R.PPC 0.09/0.03 NA R.RMF 0.06/0.02 NA 



Wen supplementary 
 

 
 

6 

R.PB 0.04/0.08 NA R.SF 0.09/0.08 NA 
R.PTR 0.04/0.03 NA R.ST 0.07/0.04 NA 
R.PCC 0.09/0.01 NA R.SM 0.03/0.05 NA 
R.POC 0.05/0.05 NA R.TP 0.04/0.06 NA 
R.PCG 0.09/0 NA R.TT 0/0.01 NA 

  
 
Figure e-3. Color-coded representation of P values corresponding to the 
associations of C9orf72 mutation with the subcortical ROI measures before 
correction for multiple comparisons. 
Abbreviations: FWF, free water fraction. 
 

 
 
 
Table e-3. Effect sizes for FWF metrics and gray matter volume in 
subcortical regions. 
The effect sizes for both FWF and gray matter volume in subcortical regions are shown below.  
For regions for which a significant difference between C9+ and C9- was detected for any of the 
metrics, we compared the effect size of FWF to that of volumetry using a permutation test 
procedures with 10000 iterations. The table presents the P values corresponding to these 
permutation tests (with a significance level of P < 0.05). For FWF effect size analysis, 6 ROIs 
were excluded because, after the 2-voxel erosion procedure, they were too small to produce 
reliable regional estimates. 
 
Abbreviations: CB, cerebellum cortex; VD, ventral diencephalon; PUT, putamen; PAL, 
pallidum; CAU, caudate; ACC, accumbens area; THA, thalamus; HIP, hippocampus; FWF, 
free water fraction; NA, not applicable. 
 
 

ROI Effect size 
(FWF/Volumetry) 

P value ROI Effect size 
(FWF/Volumetry) 

P value 

L. CB  NA/0 NA R.CAU 0.01/0 NA 
R.CB NA/0 NA L.ACC NA/0 NA 
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L.VD NA/0 NA R.ACC NA/0 NA 
R.VD NA/0 NA L.AMY 0/0.03 NA 
L.PUT 0.05/0.03 NA R.AMY 0/0.04 NA 
R.PUT 0.03/0.05 NA L.THA 0.06/0.05 NA 
L.PAL 0/0.02 NA R.THA 0.03/0.16 0.062 
R.PAL 0.09/0.02 NA L.HIP 0/0.10 NA 
L.CAU 0.02/0.00 NA R.HIP 0/0.11 NA 
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Appendix C

Convolutional Neural Networks for
Classification of Alzheimer’s Disease:
Overview and Reproducible
Evaluation

This appendix is the supplementary material of the Chapter 5, which has been
submitted to a journal article on to Medical Image Analysis:

• Wen, J., Thibeau–Sutre, E., Samper-González., J, Routier, A., Bottani, S., Dur-
rleman, S., Burgos, N., Colliot, O. Convolutional Neural Networks for Clas-
sification of Alzheimer’s Disease: Overview and Reproducible Evaluation,
Submitted to Medical Image Analysis. https://arxiv.org/pdf/1904.07773.
pdf.
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We present additional methodological explanations, tables and figures in this supplementary           
material. More specifically, we first present in detail the methodology of our literature review              
(eMethod 1). We then describe the datasets used in our study in eMethod 2. From eTable1 to                 
eTable3, we present the architecture hyperparameters for the chosen models. The training            
hyperparameters for autoencoder pre-training and classification are shown in eTable 4 and eTable 5,              
respectively. Lastly, the monitoring of training process, including the display of the            
training/validation loss and accuracy, is presented from eFigure 1 to eFigure 4. 

  

eMethod 1. Literature search method  

eMethod 2. Datasets used in our study 

eTable 1.  Architecture for 3D subject-level CNN. 
eTable 2.  Architecture for 3D ROI-based and patch-level CNN 
eTable 3.  Architecture for 2D slice-level CNN 
eTable 4 . Training hyperparameters for classification experiments. 
eTable 5 . Training hyperparameters for autoencoder pretraining experiments. 
eFigure 1.  Training process monitoring for 3D subject-level CNN 
eFigure 2.  Training process monitoring for 3D ROI-based CNN 
eFigure 3.  Training process monitoring for 3D patch-level CNN 
eFigure 4.  Training process monitoring for 2D slice-level CNN 

 
  



eMethod 1.  Literature search methodology 

We searched PubMed and Scopus for articles published up to the time of the search (15th of January 2019).                   
Our request contains words linked to four different concepts: Alzheimer’s disease, classification, deep             
learning and neuroimaging. The words matching these concepts were identified in the abstracts and titles of                
the articles of a first bibliography done on Google Scholar. In Scopus a restriction was added to remove the                   
articles linked to electroencephalography that appeared with our query and were out of our scope. This                
restriction was not applied in PubMed as it concerns only a few articles (less than 10). The line of the query                     
linked to the neuroimaging concept was extended to all fields, as some authors do not mention at all in the                    
title, abstract or keywords the modalities that they employed. 
 
Scopus query: 

TITLE-ABS-KEY ( alzheimer's  OR  alzheimer  OR  "Mild Cognitive Impairment" )  
AND  
TITLE-ABS-KEY ( classification  OR  diagnosis  OR  identification  OR  detection  OR  recognition )  
AND  
TITLE-ABS-KEY ( cnn OR "Convolutional Network" OR "Deep Learning” OR "Neural Network" OR             
autoencoder  OR  gan ) 
AND  
ALL ( mri OR "Magnetic Resonance Imaging" OR "Structural Magnetic Resonance Imaging" OR             
neuroimaging  OR  brain-imaging )  
AND NOT  
TITLE-ABS-KEY ( eeg  OR  eegs  OR  electroencephalogram  OR  electroencephalographic ) 
 
PubMed query: 

(alzheimer's [Title/Abstract] OR alzheimer [Title/Abstract] OR "Mild Cognitive Impairment" [Title/Abstract]          
) 
AND 
(cnn OR "Convolutional Network" [Title/Abstract] OR "Deep Learning" [Title/Abstract] OR "Neural           
Network" [Title/Abstract] OR autoencoder [Title/Abstract] OR gan [Title/Abstract] ) 
AND 
(classification [Title/Abstract] OR diagnosis [Title/Abstract] OR identification [Title/Abstract] OR detection          
[Title/Abstract] OR recognition [Title/Abstract] ) 
AND 
(mri OR "Magnetic Resonance Imaging" OR "Structural Magnetic Resonance Imaging" OR neuroimaging OR             
brain-imaging) 
 

391 records were found with Scopus and 80 records were found with PubMed. After merging the two                 
sets and removing duplicates, 406 records were identified. Before filtering the result, we removed from this                
list 10 conference proceedings books and 1 non-english article. We finally ended with 395 records to filter. 

Once identified, all records were filtered in a 3-step process. We selected the records based on the                 
abstract, the type and the content. 

1.1. Record screening based on abstract 

During this step, the abstracts of the articles were read to keep only the methods corresponding to the                  
following criteria: 

- use of anatomical MRI (when the modality was specified), 
- classification of AD stages, then we excluded papers using deep learning to preprocess, segment or               

complete data, as well as the classification of different diseases or classification of different symptoms               
in AD population (depression, ICD…), 

- exclusion of animal models, 
- exclusion of reviews. 



We chose to exclude the 31 reviews of our set as none of them focused on our topic. We did not detail the                       
reasons of the exclusion of the papers in the diagram as many papers cumulate several criteria of exclusion.                  
After this screening phase, we were left with 124 records. 

1.2. Record screening based on type 

Our search on PubMed and Scopus comprises only peer-reviewed items. However, there is a different level of                 
peer-review between conference papers and journal articles, hence we kept all journal articles and recent               
conference papers (published since 2017). We decided to not only restrict to journal articles because it would                 
have reduced the number of items to 48. We decided to keep recent conference papers because we considered                  
that if the older ones were not transformed into journal articles it may mean that their contributions were not                   
sufficient. After this step, the set contained 93 items. 

1.3. Record screening based on content 

This step was mainly used to sort the papers between the different sections of our state-of-the art. We detected                   
in this way papers that were out of the scope of our review (longitudinal and multimodal studies, deep learning                   
techniques other than CNN). We excluded only 22 papers because of i) use of another modality (1 paper); ii)                   
duplicate content (2 papers); iii) lack of explanation on the method employed (7 papers); iv) no access to the                   
content (12 papers). This step was reviewed by another member of the team to confirm the exclusions. In the                   
end, our search resulted in 71 conference and journal articles, including 32 that are centered on our topic. 
 
 
 

Diagram summarizing the bibliographic methodology 

 

  



eMethod 2.  Datasets used in our study 

Part of the data used in the preparation of this article were obtained from the Alzheimer’s Disease                 
Neuroimaging Initiative database (adni.loni.usc.edu). The ADNI was launched in 2003 as a public-private             
partnership, led by Principal Investigator Michael W. Weiner, MD. The primary goal of ADNI has been to test                  
whether serial MRI, PET, other biological markers, and clinical and neuropsychological assessment can be              
combined to measure the progression of mild cognitive impairment (MCI) and early AD. Over 1,650               
participants were recruited across North America during the three phases of the study (ADNI1, ADNI GO and                 
ADNI2). Around 400 participants were diagnosed with AD, 900 with MCI and 350 were control subjects.                
Three main criteria were used to classify the subjects (Petersen et al. 2010). The normal subjects had no                  
memory complaints, while the subjects with MCI and AD both had to have complaints. CN and MCI subjects                  
had a mini-mental state examination (MMSE) score between 24 and 30 (inclusive), and AD subjects between                
20 and 26 (inclusive). The CN subjects had a clinical dementia rating (CDR) score of 0, the MCI subjects of                    
0.5 with a mandatory requirement of the memory box score being 0.5 or greater, and the AD subjects of 0.5 or                     
1. The other criteria can be found in (Petersen et al. 2010). 

We also used data collected by the AIBL study group. Similarly to ADNI, the Australian Imaging,                
Biomarker & Lifestyle Flagship Study of Ageing seeks to discover which biomarkers, cognitive             
characteristics, and health and lifestyle factors determine the development of AD. AIBL has enrolled 1100               
participants and collected over 4.5 years worth of longitudinal data: 211 AD patients, 133 MCI patients and                 
768 comparable healthy controls. AIBL study methodology has been reported previously (Ellis et al. 2009;               
Ellis et al. 2010). Briefly, the MCI diagnoses were made according to a protocol based on the criteria of,                   
(Winblad et al. 2004) and the AD diagnoses on the NINCDS-ADRDA criteria (McKhann et al. 1984). Note                 
that about half of the subjects diagnosed as healthy controls reported memory complaints (Ellis et al. 2009;                 
Ellis et al. 2010). 

Finally, we used data from the Open Access Series of Imaging Studies project whose aim is to make                  
MRI datasets of the brain freely available to the scientific community. We focused on the "Cross-sectional                
MRI Data in Young, Middle Aged, Nondemented and Demented Older Adults" set (Marcus et al. 2007),                
which consists of a cross-sectional collection of 416 subjects aged 18 to 96. 100 of the included subjects over                   
the age of 60 have been clinically diagnosed with very mild to moderate AD. The criteria used to evaluate the                    
diagnosis was the CDR score. All participants with a CDR greater than 0 were diagnosed with probable AD.                  
Note that there are no MCI subjects in OASIS.  



eTable 1.  Architecture hyperparameters for 3D subject-level CNN. 

As the architecture depends on the size of the input, it slightly differs between the two types of preprocessing                   
(i.e. “Minimal” or “Extensive”). This difference only affects the size of the input of the first FC layer (FC1).                   
The output size of each layer is reported depending on the preprocessing used in the last two columns. 

The padding size in convolutional layers has been set to 1 not to decrease the size of the convolutional layer                    
outputs. Without any padding, the number of nodes at the end of the last convolutional layer is too small to                    
reconstruct the image correctly using an autoencoder for the Extensive preprocessing. 

The padding size in pooling layers depends on the input: columns of zeros are added along a dimension until                   
the size along this dimension is a multiple of the stride size. 

Layer Filter 
size 

Number of 
filters / neurons 

Stride 
size 

Padding 
size 

Dropout 
rate 

Output size 
(Minimal) 

Output size 
(Extensive) 

Conv1+BN+ReLU 3x3x3 8 1 1 -- 8x169x208x179 8x121x145x121 

MaxPool1 2x2x2 -- 2 adaptive -- 8x85x104x90 8x61x73x61 

Conv2+BN+ReLU 3x3x3 16 1 1 -- 16x85x104x90 16x61x73x61 

MaxPool2  2x2x2 -- 2 adaptive -- 16x43x52x45 16x31x37x31 

Conv3+BN+ReLU 3x3x3 32 1 1 -- 32x43x52x45 32x31x37x31 

MaxPool3  2x2x2 -- 2 adaptive -- 32x22x26x23 32x16x19x16 

Conv4+BN+ReLU 3x3x3 64 1 1 -- 64x22x26x23 64x16x19x16 

MaxPool4 2x2x2 -- 2 adaptive -- 64x11x13x12 64x8x10x8 

Conv5+BN+ReLU 3x3x3 128 1 1 -- 128x11x13x12 128x8x10x8 

MaxPool5  2x2x2 -- 2 adaptive -- 128x6x7x6 128x4x5x4 

Dropout -- -- -- -- 0.5 128x6x7x6 128x4x5x4 

FC1 -- 1300 -- -- -- 1300 1300 

FC2 -- 50 -- -- -- 50 50 

FC3 -- 2 -- -- -- 2 2 

Softmax -- -- -- -- -- -- 2 

 
BN: batch normalization; Conv: convolutional layer; FC: fully connected; MaxPool: max pooling. 

  



eTable 2.  Architecture hyperparameters for 3D ROI-based and patch-level CNN. 
The padding size in pooling layers depends on the input: columns of zeros are added along a dimension until                   
the size along this dimension is a multiple of the stride size. 

Layer Filter size Number of 
filters / neurons 

Stride 
size 

Padding 
size 

Dropout 
rate 

Output size 

Conv1+BN+ReLU 3x3x3 15 1 0 -- 15x48x48x48 

MaxPool1 2x2x2 -- 2 adaptive -- 15x24x24x24 

Conv2+BN+ReLU 3x3x3 25 1 0 -- 25x22x22x22 

MaxPool2  2x2x2 -- 2 adaptive -- 25x11x11x11 

Conv3+BN+ReLU 3x3x3 50 1 0 -- 50x9x9x9 

MaxPool3  2x2x2 -- 2 adaptive -- 50x5x5x5 

Conv4+BN+ReLU 3x3x3 50 1 0 -- 50x3x3x3 

MaxPool4  2x2x2 -- 2 adaptive -- 50x2x2x2 

Dropout1 -- -- -- -- 0.5 50x2x2x2 

FC1 -- 50 -- -- -- 50 

Dropout2 -- -- -- -- 0.5 50 

FC2 -- 40 -- -- -- 40 

FC3 -- 2 -- -- -- 2 

Softmax -- -- -- -- -- 2 

 
BN: batch normalization; Conv: convolutional layer; FC: fully connected; MaxPool: max pooling. 

 

  



eTable 3.  Architecture hyperparameters for 2D slice-level CNN. 
Table B explicits the architecture of our 2D slice-level CNN. Shortcuts are displayed with arrows and are                 
adding the two feature maps linked together and applying ReLU to form a new feature map given to the                   
following layer. 
When shortcuts are linking feature maps of different sizes, the arrow is associated with a downsampling layer                 
(see table A) applied to the largest feature map. 
 

A. Characteristics of the downsampling layers 

Layer Filter size Number of 
filters / neurons 

Stride 
size 

Padding 
size 

Dropout 
rate 

Conv8 1x1 128 2 0 -- 

Conv13 1x1 256 2 0 -- 

Conv18 1x1 512 2 0 -- 
 

B. Architecture of the 2D slice-level CNN (adaptation of the ResNet-18) 

 



eTable 4.  Training hyperparameters for classification experiments.  
A summary of the experiments can be found in Table A. The corresponding hyperparameters are listed in                 
Table B indicated by the experiments numbers. 
Common hyperparameters for all experiments: optimizer: Adam; Adam parameters: betas=(0.9, 0.999),           
epsilon=1e-8; loss: cross entropy. 
When transfer learning is applied, the corresponding experiment number is given between brackets and can be                
found in eTable 5 for AE pretraining (AE) and eTable 4 for cross-task transfer learning (CTT). 
 
 

A. Summary of experiments performed 

Experiment 
number 

Classification 
architectures 

Training 
data  

Image 
preprocessing  

Intensity 
rescaling 

Data split Training 
approach 

Transfer 
learning 

Task 

1 

3D 
subject-level 

CNN 

Baseline 
Minimal 

 

None 

subject-level 
single-CNN 

 

None 

AD vs CN 

2 MinMax 

3  AE (1) 

4 

 
Longitudinal 

Minimal MinMax subject-level single-CNN AE (1) 

5 Extensive 

MinMax subject-level single-CNN 
 

AE (2) 

6 
Minimal 

CTT (4) 
sMCI vs pMCI 

7 Baseline CTT (3) 

8 

3D ROI-based 
CNN 

Baseline 

Minimal MinMax subject-level single-CNN 

AE (3) AD vs CN 
 

9 CTT (8) sMCI vs pMCI 

10 
Longitudinal 

AE (4) AD vs CN 

11 CTT (10) sMCI vs pMCI 

12 

3D patch-level 
CNN 

Baseline 
Minimal MinMax subject-level single-CNN 

AE (5) 
AD vs CN 

13 Longitudinal AE (6) 

14 
 

Baseline 

Minimal MinMax subject-level multi-CNN 

AE (7) AD vs CN 

15 CTT (14) sMCI vs pMCI 

16 
Longitudinal 

AE (8) AD vs CN 

17 CTT (16) sMCI vs pMCI 

18 

2D slice-level 
CNN 

Baseline 
Minimal MinMax subject-level single-CNN 

ImageNet 
pre-train AD vs CN 

19 Longitudinal 

20 Baseline Minimal MinMax 
slice-level 

(data 

leakage) 

single-CNN 
ImageNet 
pre-train AD vs CN 

 

  



B. Hyperparameters corresponding to experiments described in Table A. 

Approach Experiment Number of 
epochs 

Learning 
rate 

Batch size Dropout 
rate 

Weight 
decay Patience 

3D subject-level 
CNN 

1 50 1e-4 12 0.5 1e-4 10 
2 50 1e-4 12 0.5 1e-4 10 
3 50 1e-4 12 0.5 1e-4 10 
4 50 1e-4 12 0.5 1e-4 5 
5 50 1e-4 12 0.5 1e-4 5 
6 50 1e-5 12 0.5 1e-4 10 
7 50 1e-5 12 0.5 1e-4 20 

3D ROI-based 
CNN 

8 200 1e-5 32 0.5 1e-4 10 
9 200 1e-5 32 0.5 1e-3 20 

10 200 1e-5 32 0.5 1e-4 10 
11 200 1e-5 32 0.5 1e-3 20 

3D patch-level 
CNN 

12 200 1e-5 32 0.5 1e-3 20 
13 200 1e-5 32 0.5 1e-3 20 
14 200 1e-5 32 0.5 1e-4 15 
15 200 1e-5 32 0.5 1e-3 20 
16 200 1e-5 32 0.5 1e-4 15 
17 200 1e-5 32 0.5 1e-3 20 

2D slice-level 
CNN 

18 50 1e-6 32 0.8 1e-4 15 
19 100 1e-6 32 0.8 1e-4 15 
20 50 1e-6 32 0.8 1e-4 15 

 

  



eTable 5.  Training hyperparameters for autoencoder pretraining experiments.  
A summary of the experiments can be found in table A. The corresponding hyperparameters are listed in Table                  
B using the same experiments numbers. 
Common hyperparameters for all experiments: optimizer: Adam; Adam parameters: betas=(0.9, 0.999),           
epsilon=1e-8; loss: mean squared entropy loss; training data: AD + MCI + CN; data split: subject-level. The                 
stopping criterion is the maximal number of epochs. 
 
 

A. Summary of autoencoder pretraining experiments performed. 

Experiment 
number 

Classification 
architectures Training data  Image 

preprocessing  
Intensity 
rescaling 

Training 
approach 

1 3D 
subject-level 

CNN 
Baseline 

Minimal 
MinMax single-CNN 

2 Extensive 

3 3D ROI-based 
CNN 

Baseline 
Minimal MinMax single-CNN 

4 Longitudinal 

5 

3D patch-level 
CNN 

Baseline 

Minimal MinMax 

single-CNN 
6 Longitudinal 

7 Baseline 
multi-CNN 

8 Longitudinal 

 

B. Hyperparameters corresponding to autoencoder pretraining experiments described in Table A. 

Approach Experiment Number of 
epochs 

Learning 
rate 

Batch size Weight 
decay 

3D subject-level 
CNN 

1 50 1e-4 12 1e-4 
2 30 1e-4 12 1e-4 

3D ROI-based 
CNN 

3 200 1e-5 32 0 
4 100 1e-5 32 0 

3D patch-level 
CNN 

5 20 1e-5 32 0 
6 15 1e-5 32 0 
7 15 1e-5 32 0 
8 15 1e-5 32 0 

 
 

  



eFigure 1 . Training process monitoring for 3D subject-level CNN 

Training and validation accuracy/loss during the training process were evaluated after the forward pass of 20                
batches. The accuracy and loss curves were smoothed with a threshold (0.6). 

For each plot a subfigure letter is used and the corresponding information on the experiment may be found in                   
the table below or in eTable 4 according to the “Experiment number”. 

Subfigure  Experiment 
number 

Fold 
displayed 

Epoch where 
training stopped 

Epoch of the highest 
validation accuracy 

Highest validation 
accuracy 

A 1 2 32 22 0.50 
B 2 2 37 27 0.87 
C 3 2 28 28 0.83 
D 4 2 11 10 0.87 
E 5 2 10 9 0.91 
F 6 2 23 1 0.77 
G 7 2 42 37 0.77 

 



eFigure 2 . Training process monitoring for 3D ROI-based CNN. 

Training and validation accuracy/loss during the training process were evaluated after each epoch. The              
accuracy and loss curves were smoothed with a threshold (0.6). 

For each plot a subfigure letter is used and the corresponding information on the experiment may be found in                   
the table below or in eTable 4 according to the “Experiment number”. 

Subfigure  Experiment 
number 

Fold 
displayed 

Epoch where 
training stopped 

Epoch of the highest 
validation accuracy 

Highest validation 
accuracy 

A 8 2 141 125 0.89 

B 9 1 60 60 0.84 

C 10 3 89 51 0.88 

D 11 3 55 48 0.82 

 

 

 
 

 

  



eFigure 3 . Training process monitoring for 3D patch-level CNN 

Training and validation accuracy/loss during the training process were evaluated after each epoch. The              
accuracy and loss curves were smoothed with a threshold (0.6). 

For each plot a subfigure letter is used and the corresponding information on the experiment may be found in                   
the table below or in eTable 4 according to the “Experiment number”. For multi-CNN experiments the CNN                 
number is provided. 

Subfigure Experiment 
number 

Fold 
displayed 

CNN 
number 

Epoch where 
training stopped 

Epoch of the highest 
validation accuracy 

Highest validation 
accuracy 

A 12 2 -- 51 31 0.83 

B 13 2 -- 51 31 0.83 

C 14 1 5 110 110 0.85 

D 15 1 19 148 46 0.80 

E 16 1 29 96 86 0.81 

F 17 1 19 58 30 0.78 

 

 

 



eFigure 4 . Training process monitoring for 2D slice-level CNN 

Training and validation accuracy/loss during the training process were evaluated after each epoch. The              
accuracy and loss curves were smoothed with a threshold (0.6).  

For each plot a subfigure letter is used and the corresponding information on the experiment may be found in                   
the table below or in eTable 4 according to the “Experiment number”. 

Subfigure Experiment 
number 

Fold 
displayed 

Epoch where 
training stopped 

Epoch of the highest 
validation accuracy 

Highest validation 
accuracy 

A 18 2 21 11 0.85 

B 19 2 15 15 0.84 

C 20 2 49 49 1.00 
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