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Introduction

General context and scope of application

With the rapid evolution of computing technology during the last thirty years, scientific and
engineering computing has become increasing important in many application fields. Such areas
include several applications, like geoscience, internal combustion engine, waste water treatment,
catalytic fluidized-bed and solid particle solar receiver.

In this kind of scientific applications, solving partial differential equations usually leads to
solving sparse linear systems whose size varies according to the cases studied. The solution of
these systems generally constitutes the simulation’s most consuming stage in terms of memory
occupation and computing time and can even contribute up to about 80% of simulation times. In
such applications, the resulting linear systems are very large, sparse and ill-conditioned because
of anisotropy and data heterogeneity and, generally, iterative solvers are employed.

With iterative methods, an approximate solution is computed by taking into account the tolerance
of the convergence chosen by the user. The system-solving is stopped when the tolerance
threshold is reached. The numerical efficiency of these methods is strongly related to that
of the preconditioner used which constitutes a major part of the solve cost. In fact, efficient
preconditioners are necessary to improve the conditioning of linear systems. In this case, the
iterative methods used for solving such systems will converge rapidly and in a reasonable
time. That being said, there is not only one robust preconditioner that yields best results in all
circumstances, and for all application cases. Moreover, many other factors should be taken into
consideration in order to assess the efficiency of a preconditioner M like precision, complexity, the
computing time of the preconditioner itself and finally its scalability or how it behaves on very
large matrices.

One could say that finding a suitable preconditioner for solving a sparse linear system is "a
combination of art and science" cf. [123]. Moreover, it is to be emphasized that designing high
quality preconditioners is not an easy matter, especially in the case of parallel processing cf. [50]. As
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mentioned before, iterative methods compute successive approximations to the solution of a linear
system. The cost of these algorithms depends on the number of iterations required to reach the
stopping criteria defined by the user and the algorithmic cost of each iteration. It can be reduced
by using the appropriate solver options and by the choice of a good preconditioner. However, the
efficiency of the preconditioner relies on the problem size, heterogeneity, discontinuities of the
problem and is difficult to fix them a priori for the whole simulation. Our addressed problems
lead to solve complex systems, for which the difficulty level varies during the simulation itself.
But nevertheless, the preconditioner and the convergence tolerance choice is set once by the user
for the whole simulation. For this reason, we are studying adaptive strategies that will enable
either to switch from one preconditioner to another depending on the systems to be solved during
a simulation so as to get a preconditioner that is most adequate to the matrix treated at every time
step of the simulation, or to build a custom-made preconditioner that consists of several blocks of
local preconditioners computed appropriately for principal submatrices of the global matrix such
that the treatment of the subdomains may not be the same everywhere. In other terms, certain
blocks may require a preconditioner that is more robust than others.

In spite of the existing means for computing the condition number of a matrix (LAPACK library
for example provides routines for estimating the condition number of a matrix), this operation
remains costly in terms of computing time, mainly for large systems. This is one of the reasons
for which we have tried to explore other alternatives, such as error estimators, and to find a link
between the algebraic error estimators and the difficulty of solving the system of linear equations.
Hence we resort to error estimators as indicators to get the information needed about the systems
to be solved, which will help us to choose or even construct the adequate preconditioner of the
matrix.

Since estimators help to identify the areas of the domain with significant errors, we propose to
adjust the preconditioning according to the sources of error. The first chapter provides a study
of such an approach on an experimental basis. The next chapters show, in theory, the types of
preconditioners and solvers that can adapt to the complexity of linear systems using information
from a posteriori error estimates. This thesis is structured as follows.

In Chapter 1, we first introduce the global algorithm of adaptive choice of preconditioners based
on a posteriori error estimators for dynamic simulations in geosciences. The proposed algorithm
aims to switch from one preconditioner to another depending on each of the systems to be solved
during a simulation so as to get a preconditioner that is most adequate to the matrix treated at each
time step of the simulation. In fact, this algorithm establishes choice criteria between two categories
of preconditioners depending on the global value of a posteriori error estimators. We give details
about the concept, the motivations and the results obtained with the solvers BiCGStab and GMRES,
and some preconditioners like Jacobi, ILU(0), CPR. Second, we experimentally investigate the link
between the condition number of matrices and the algebraic estimators. Then, we present the local
algorithm of adaptive choice of preconditioner based on a posteriori error estimators for dynamic
simulations in geosciences. This algorithm uses the domain decomposition concept by partitioning
the initial domain into several subdomains according to the values of error estimators on every
node of the domain, and then constructs local preconditioners on each subdomain. Here also we
will give details about the concept, the motivations and the results obtained with GMRES solver
and LU and ILU(0) preconditioners.

In Chapter 2, we discuss a new adaptive approach for iterative solution of sparse linear systems
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arising from partial differential equations (PDE) with self-adjoint operators. The idea is to use
the a posteriori estimated local distribution of the algebraic error in order to steer and guide the
solve process in such way that the algebraic error is reduced more efficiently in the consecutive
iterations. We first explain the motivation behind the proposed procedure and show that it can be
equivalently formulated as constructing a special combination of preconditioner and initial guess
for the original system. We present some numerical experiments in order to identify when the
adaptive procedure can be of practical use.

Chapter 3 focuses on alternatives to the adaptive error-based preconditioners, that replace exact
inverses by approximate ones for cases where the algebraic error is scattered all over the domain.
The variant considered in this chapter employs a robust preconditioning technique called LORASC
that bounds the condition number from above. to avoid exactly inverting some large blocks of the
matrix. We also derive upper bounds for the condition number of the preconditioned operator
with the resulting approximate adaptive preconditioner. Then the preconditioning costs incurred
by both exact and approximate adaptive preconditioners are addressed as well. Finally, we assess
the feasibility and the reliability of this alternative by some numerical experiments.

In Chapter 4, we introduce a second variant for the adaptive preconditioner. We prove that within
a fixed-point iteration scheme, the growth rate of a dominant part of the algebraic error can
be controlled with such a preconditioner. More precisely, after deriving an error-based block
partitioning of the matrix, where we denote by L the node indices where the algebraic error is
large, we bound this dominant part of the error by a seminorm of the error and then demonstrate
that the decrease of this latter quantity from an iteration to the other depends on the largest
eigenvalue of the L-block of the preconditioned operator M−1A. We present some numerical
results to show that link, and lastly, we test this preconditioner with a PCG solver and compare
against the first variant of the adaptive preconditioner.

In Chapter 5, we apply the adaptive approach of Chapter 2 for iterative solution of linear systems
arising from some industrial simulations. The numerical framework is different from the previous
one, as we focus on linear systems stemming from cell-centered finite volume discretization of
single phase flow models. We adapt the starting assumption and consequently the solve procedure
to the finite volume method. In addition, the approach presented in this chapter allows using any
iterative algebraic solver and is not limited to PCG. Numerical results of a reservoir simulation
example for heterogeneous porous media in two dimensions are discussed later in this chapter.
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PDE Solving

In various mathematical and physical models, we are brought to solve complex non-linear
Partial Differential Equations (PDE). These PDEs lead generally to a non-linear system that is
solved by an iterative Newton cf. Kelley [86]. At each Newton step, the system is linearized and
the generated system is solved by a preconditioned Krylov solver. This phase, which searchs for
all the unknowns concurrently, is the one that consumes most of the time and the global solution
time depends on the number of iterations necessary for the convergence. More specifically, at a
certain time step tn+1, we want to solve the problem

F (Xn+1) = 0 (1)

where F is a nonlinear operator. For this purpose, we are trying to find an approximate solution
Xn+1 by linearizing starting from the solution Xn obtained during the previous time step tn:

F (Xn+1) = JF (Xn)[Xn+1 − Xn] +F (Xn),

where JF (Xn) is the jacobian of F (X) evaluated at Xn. Knowing the zero value of F in Xn+1, we
then write:

JF (Xn)[Xn+1 − Xn] = −F (Xn).

Thus by putting

x := Xn+1 − Xn, A := JF (Xn), b := −F (Xn).

we have a linear system to solve which is written:

A · x = b (2)
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Linear solvers

To solve linear systems, three approaches can be followed. The first one relies on using
direct solve methods [5] in order to get an exact solution (at least in finite precision computations),
the second consists in applying iterative methods which converge towards an approximate solution
and the third is hybrid and is a mix of the two.
A direct method makes it possible to compute the solution of the system in a finite number of
operations and in exact arithmetics. Some of the most known direct methods are:

• LU decomposition method [138]: consists in factorizing the system matrix A into a product of
two triangular matrices (an upper one and a lower one). The solution of the linear system is
then tantamount to solve two triangular systems successively by simple substitution.

• Cholesky method [35]: is a particular case of LU decomposition method when the matrix A
is symmetric positive definite. The lower triangular matrix is the transpose of the upper
triangular one.

• QR factorization method [60]: The idea is still to reach the solution of a triangular linear system.
Yet, in this case the matrix A is factored as the product of a triangular matrix Q and of an
orthogonal matrix Q (Q−1 = QT). The solution of the initial system A · x = b is equivalent
to solving a reduced triangular system : R · x = QT · b.

Some of the advantages of such methods are robustness and precision. In fact, they don’t depend
on the sparsity or the conditioning of linear systems. Yet, most of those algorithms require in
general O(n3) operations to factor dense n× n matrices. In 1969, Strassen introduced the first
algorithm [133] for matrix multiplication whose complexity is less than the conventional O(n3)

times, where the size of the matrices is n× n. With this faster method, Strassen derived an efficient
matrix inversion process of the same complexity: O(nlog27). However, subsequent studies showed
that Strassen’s algorithm has less favourable stability properties than conventional methods as it is
only weakly stable [77]. In 1990, Coppersmith and Winograd improved the asymptotic complexity
of matrix multiplication, down to O(n2.376) thus enabling a faster matrix inversion [40]. This
barrier was broken in the last decade with the design of optimized CW-like algorithms running
in time O(n2.3728639) [94]. On the other hand, this kind of methods requires a great amount of
memory. Added to this is that computing an exact solution is time-consuming. For this reason,
iterative methods are usually preferable. Furthermore, iterative linear solvers and preconditioners
have been subject of research in the last decades and various iterative solution and preconditioning
methods have been developed.

Methods of searching a solution in projection subspaces have been initiated by Krylov [90].
They aim at finding a solution to a linear system A · x = b of dimension n in a subspace of
lower dimensions m < n called search subspace. In a Krylov subspace method, an approximate
solution x(m) is sought from an affine subspace x(0) +Km(A, r(0)) by imposing that the residual
r(m) stays orthogonal to a subspace Lm of dimension m called subspace of constraints. The
subspace Km(A, r(0)) is defined as the set containing of all linear combinations of vectors r(0), A ·
r(0), . . . , Am−1 · r(0), where r(0) = b−A · x(0) is the residual for x(0) the initial guess to the solution.

Among Krylov subspace solvers, we can cite the Conjugate Gradient (CG) method for linear
systems with symmetric positive definite coefficient matrices [76], BiConjugate Gradient (BiCG)
method [93], Conjugate Gradient Squared (CGS) method [130], BiConjugate Gradient Stabilized
(BiCGStab) method [140], Orthomin method [142], Generalized Minimal RESidual (GMRES)
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method [125] and Left Conjugate Direction (LCD) method [43] for non-symmetric systems.

CG method minimizes the A-norm of the error, i.e. the A-norm of the difference between the
exact solution of the linear system and the approximate solution computed by the iterative
solver is decreasing over iterations. For this method, the subspace of constraints is taken as
Lm = Km(A, r(0)). As a consequence, the residual vectors are orthogonal and this property yields
short recurrence formulations (two-term or three-term) for CG method. The standard two-term
formulation of CG is presented in Algorithm 1. Another feature of this method is its superlinear

convergence [99] in

(√
K(A)− 1√
K(A) + 1

)k

; k index designating the iterate, and K(A) the condition

number of A.

Algorithm 1 Conjugate Gradient method
Inputs: Coefficient matrix A, right hand side b, initial guess x0.

1: Compute r0 = b−A · x0 and set p0 := r0
2: j := 0
3: while (non-convergence)
4: αj := (rT

j rj)/(pT
j A · pj)

5: xj+1 := xj + αjpj
6: rj+1 := rj − αjA · pj

7: β j := (rT
j+1rj+1)/(rT

j rj)

8: pj+1 := rj+1 + β jpj
9: end while

Similar to CG, the BiConjugate Gradient (BiCG) algorithm [93, 123] can be derived as projection
process onto Km(A, r(0)) orthogonally to Lm = Km(A, r̆(0)) where r̆(0) is an arbitrary vector
satisfying (r̆(0))Tr(0) 6= 0. Algorithm 2 presents the BiCG method.

Algorithm 2 BiConjugate Gradient method

Inputs: Coefficient matrix A, right hand side b, initial guess x0, initial vector r̆0 such that (r̆(0))Tr(0) 6= 0.
1: Compute r0 = b−A · x0 and set p0 := r0, p̆0 := r̆0
2: j := 0
3: while (non-convergence)
4: αj := (rT

j r̆j)/(p̆T
j A · pj)

5: xj+1 := xj + αjpj
6: rj+1 := rj − αjA · pj

7: r̆j+1 := r̆j − αjAT · p̆j

8: β j := (rT
j+1 r̆j+1)/(rT

j r̆j)

9: pj+1 := rj+1 + β jpj
10: p̆j+1 := r̆j+1 + β jp̆j
11: end while

The Conjugate Gradient Squared (CGS) method [130, 123] was devised as a transpose-free variant
of BiCG, i.e. it avoids computing matrix-vector product with AT. For this purpose, it exploits
the fact that the residual vectors r(m) (resp. r̆(m)) can be expressed as matrix-vector products of
polynomials of A (resp. AT) by the initial residual vector r(0) (resp. r̆(0)) and replaces the products
of polynomials of A with polynomials of AT by squared polynomials of A in the inner product
formulas of the step sizes α(j) and β(j). Algorithm 3 presents the CGS method.
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Algorithm 3 Conjugate Gradient Squared method

Inputs: Coefficient matrix A, right hand side b, initial guess x0, initial vector r̆0 such that (r̆(0))Tr(0) 6= 0.
1: Compute r0 = b−A · x0 and set p0 := r0, w0 := r0
2: j := 0
3: while (non-convergence)
4: αj := (rT

j r̆0)/(r̆T
0 A · pj)

5: vj := wj − αjA · pj
6: xj+1 := xj + αj(vj + wj)
7: rj+1 := rj − αjA · (vj + wj)

8: β j := (rT
j+1 r̆0)/(rT

j r̆0)

9: wj+1 := rj+1 + β jvj
10: pj+1 := wj+1 + β j(vj + β jpj)
11: end while

The BiConjugate Gradient STABilized (BiCGStab) method [140, 123] was developed to avoid the
irregular convergence patterns of the CGS method due to the squaring of the residual polynomials.
In fact, it replaces the squared residual polynomial in CGS by a product of this latter polynomial
by a new one that is defined recursively to smooth the convergence of the algorithm. At each
iteration k of BiCGStab, the degree of this new polynomial is equal to k. Algorithm 4 presents the
BiCGStab method.

Algorithm 4 BiConjugate Gradient STABilized method

Inputs: Coefficient matrix A, right hand side b, initial guess x0, initial vector r̆0 such that (r̆(0))Tr(0) 6= 0.
1: Compute r0 = b−A · x0 and set p0 := r0
2: j := 0
3: while (non-convergence)
4: αj := (rT

j r̆0)/(r̆T
0 A · pj)

5: vj := rj − αjA · pj

6: γj := (vT
j A · vj)/((A · vj)

T(A · vj))

7: xj+1 := xj + αjpj + γjvj)
8: rj+1 := vj − γjA · vj

9: β j := αj(rT
j+1 r̆0)/(γjrT

j r̆0)

10: pj+1 := rj+1 + β j(pj − γjA · pj)
11: end while

GMRES method [125, 123] is a linear solver for general use which is largely used for non-symmetric
linear systems. It is a Krylov subspace method where the subspace of constraints is taken as
Lm = AKm(A, r(0)). Furthermore, there is a special feature of GMRES method: The kth iterate
minimizes the euclidean norm of the residual in the Krylov space based on k vectors, and as every
subspace is included in the subsequent one, the residual decreases monotonously. Algorithm 5
describes the generalized minimal residual method.

We can also cite multigrid methods [26] as another type of iterative solution methods. Multigrid
solvers, comprising algebraic and geometric multigrid solvers, allow to obtain a solution of the
linear system by combining a classic iterative method on the initial mesh with a correction method
on coarse meshes. Algebraic multigrid methods (AMG) have proven to be the most efficient in the
case of linear systems resulting from elliptic or parabolic problems [135].
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Algorithm 5 GMRES method
Inputs: Coefficient matrix A, right hand side b, initial guess x0, Krylov subspace dimension m,
(m + 1)×m Hessenberg matrix Hm of coefficients (Hi,j)1≤i≤m+1,1≤j≤m initialized to 0.

1: Compute r0 = b−A · x0, β := ||r0||2 and v1 := β−1r0
2: j := 1
3: while (j < m)
4: Compute w := A · vj
5: for i = 1 . . . j Do
6: Hi,j := wTvi
7: w := w−Hi,jvi
8: end for
9: Hj+1,j := ||w||2

10: if (Hj+1,j 6= 0)
11: vj+1 := H−1

j+1,jw
12: else
13: Set m = j and go to line 17
14: end if
15: j := j + 1
16: end while
17: Compute ym that minimizes ||βe1 −Hm · y||2, with e1 = (1, 0, . . . , 0)T

18: Update the initial guess xm = x0 + Vm · ym where Vm = [v1, . . . , vm]

Domain decomposition [47] can generally be considered as a numerical technique applied to the
solution of linear systems that combines both iterative and direct methods. In fact, the problem
is partitioned between several subdomains on which the reduced systems are solved via direct
solvers. The convergence of the global system is obtained by iterating and exchanging data
between subdomains. On the whole, domain decomposition methods are an efficient means of
solving various physical and mathematical problems. They have the advantage of providing a
rigorous framework from a mathematical point of view to couple different types of equations,
geometries and meshing.

Preconditioning the linear systems

Moreover, as iterative methods based on Krylov subspaces rely on the construction of a
base from a sequence of successive matrix powers multiplied by the initial residual, it is evident
that they will converge after N iterations, where N is the size of the system. However, in case of
rounding errors, this characteristic is no longer always satisfied. Besides, in practice N may be
very large and the iterative process can reach a sufficient precision much before in simple cases.

The convergence speed of iterative methods depends on certain characteristics of the system’s
matrix, especially on the matrix’s conditioning and spectrum. The conditioning of the matrix A
measures the linear system’s sensitivity to the perturbation of the data A or b. For a given vector
norm || • ||, it is defined as follows:

K(A) = ||A|| ∗ ||A−1|| ; ||A|| := sup
x 6=0

||Ax||
||x|| . (3)



10 State-of-the-art

The convergence can be very slow in case the system is ill-conditioned: the highest the conditioning
is, the most digits of accuracy will be lost during the computation [34].

For this reason, the usage of a preconditioner should be considered in order to reduce the
conditioning of the matrix and by consequence reduce the number of iterations so as to reach
convergence. It is a technique that consists in transforming the initial problem A · x = b into an
equivalent problem M−1A · x = M−1 ·b which can be more easily solved (because the conditioning
of M−1A is less than that of A) by multiplying by a matrix (called preconditioner).

That being said, preconditioning may not be sufficient to speed-up the convergence of a linear
system, because by preconditioning we manage to reduce the conditioning, which is equivalent to
a ratio between maximum and minimum singular values in the case of a Frobenius norm. Yet, the
smallest singular values remain sometimes very low. As a result, the convergence is affected and
numerically we do not get the same behaviour as in theory.

Various types of preconditioners have been suggested in the literature covering the broad field
numerical linear algebra. These fall into different categories. The preconditioners can be classified
according to their construction strategy and are broadly subdivided into three main groups:
implicit, explicit and hybrid preconditioners. Implicit preconditioning methods target the con-
struction of M while explicit methods aim at forming M−1. Preconditioners based on fixed-point
iteration and incomplete factorization preconditioners [123] are two well known examples of
implicit methods. The former are obtained by applying a decomposition strategy on the matrix. A
fixed-point iteration preconditioner is obtained by applying a splitting strategy on the matrix. Of
this type of preconditioners, we can cite the most commonly used ones: Jacobi, SOR and SSOR
[123]. An incomplete factorization preconditioner is obtained by applying a factorization on the
matrix (Gauss method) and respecting certain predefined fill-in rules. Thus, this avoids having
factorization matrices that are denser than the initial matrix. We can mention two common exam-
ples of incomplete factorization methods: Incomplete LU decomposition (ILU) and Incomplete
Cholesky decomposition (IC). The former is valid for general invertible matrices, whereas the
latter necessitates symmetric positive definite matrices with some form of diagonal dominance
but this difficulty can be circumvented by considering shifted matrices. We refer to [123] for more
details on these decompositions and their different variants: ILU with minimal fill-in threshold
(ILUT), ILU without fill-in (ILU(0) method is presented in Algorithm 6), ILU with level of fill p
(ILU(p)p=1,2,...), IC without fill-in (IC(0)), etc. . . Still in the same class of preconditioners, we can
mention preconditioners based on low rank approximation. This technique aims at approximating
the singular value decomposition of a matrix (cf. [65] and references therein). When combined with
a truncated factorization and applied on the unfactorized block which is a Schur complement, this
technique yields LORASC preconditioners [67]. The main features of a LORASC preconditioner
are that it allows to bound the condition number of the preconditioned matrix, and the fact that
the preconditioner is fully algebraic.

Among explicit preconditioning methods, we can cite SPAI preconditioners in which we compute
sparse approximate inverses [63, 70, 6, 21], polynomial preconditioners [98] and domain decom-
position based preconditioners [27]. Polynomial preconditioning reduces the conditioning of the
preconditioned system by introducing polynomials of the matrix as preconditioner. The principle
is based on Cayley-Hamilton theorem according to which it holds for an invertible matrix A of
size n that A−1 can then be written in the form of a polynomial of order n− 1 evaluated at A.
Hence the appropriateness of seeking an approximation of A−1 by a polynomial in A. Thus, this
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Algorithm 6 Incomplete LU factorization without fill-in

Inputs: Coefficient matrix A of size n× n, non zero pattern of the matrix NZ(A).
1: for i = 2 . . . n Do
2: for k = 1 . . . i− 1 such that (i, k) ∈ NZ(A) Do
3: Compute aik := aik/akk
4: for j = k + 1 . . . n such that (i, j) ∈ NZ(A) Do
5: Compute aij := aij − aikakj
6: end for
7: end for
8: end for

approximation of A−1 will form our preconditioner M−1 and consequently we will have M−1A
which will be close to the identity matrix, and as a result its conditioning will be more reduced
(ideally very close to 1): K(M−1A) � K(A). Domain decomposition methods have been the
subject of advanced studies in recent years [116, 136, 47]. There are two types of applications of
these methods: globally like a numerical technique applied to the solution of equations and locally
as a method of preconditioning of linear systems. The success of this kind of methods lies in the
fact that they allow for a high level of parallelism in addition to their easy implementation on
most modern parallel computers [69]. Preconditioning strategies existing in the literature include
Additive Schwarz (ASM), Restricted Additive Schwarz (RAS) and multilevel (DD) preconditioners.
Many studies have been reported on the principle and properties of these preconditioners, for
example in [136, 47, 27]. The approach relies on the partitioning of the initial domain into several
subdomains. Restriction operators are defined to construct submatrices that are specific to each
subdomain. Then, the reduced problems with these local submatrices are solved, we thereby
obtain local preconditioners to which extension operators are applied. The global preconditioner
is ultimately built by summing all these subdomain preconditioners. It should be noted that the
subdomains are taken in such a way that there exists an overlap of variable size between them.
One major difference between ASM and RAS is that for the first, the terms corresponding to the
preconditioning on the overlapping zone are taken into account twice, while for the second, the
extension operators are taken in such a way as to satisfy a partition of unity [47] on the overlapping
zone. The use of this class of methods for problems stemming from porous media flow simulations
has been covered in [74]. Another Domain Decomposition-based preconditioning strategy is the
method of block preconditioning called Block-Jacobi cf. [123]. A Block-Jacobi preconditioner is
defined by considering the diagonal blocks of the matrix. The Block-Jacobi method is the simplest
form of domain decomposition. It can be considered as an Additive Schwarz without overlap
between subdomains. A Block-Jacobi preconditioner is defined by considering the diagonal blocks
Aii of the matrix A where each block contains the coefficients specific to a subdomain i.
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M2(A22)

M1(A11)

M4(A44)

M3(A33)

Figure 1 – Example of Block-Jacobi preconditionner on 4 subdomains without overlap

The application of a Block-Jacobi preconditioner is the simplest but also the most parallel. In fact,
we can easily see that the Block-Jacobi preconditioner, as demonstrated in Figure 1 where Mi(Aii)

stands for the preconditioner chosen for the subdomain i, can be computed in parallel. Indeed, we
only need to separately factor the diagonal blocks in parallel (see Figures 2 and 3).

L11

L22

L33

L44

Figure 2 – Lower triangular matrix L

U11

U22

U33

U44

Figure 3 – Upper triangular matrix U

On the other hand, with such a disposition of blocks, the number of solver iterations tends to
increase with the number of subdomains. To address this problem, some techniques can be used to
allow the exchange of information between subdomains like overlapping or coarse grid correction
for example, see [47] and references therein. It should also be added that for this strategy of
block preconditioning, it is not really necessary to use the same preconditioner for all the blocks.
It is possible to combine several preconditioners: For example, we can refer to [104], where a
Block-Jacobi preconditioner is used on two blocks and various local preconditioning options (such
as Jacobi, SSOR, FSAI * [146]) are chosen depending on the specificities of each block.

*. Factorized Sparse Approximate Inverse.
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It should be noted that explicit preconditioners often necessitate a relatively more filled nonzero
pattern (for the preconditioner to be constructed) to get a close approximation of the inverse, espe-
cially when A is ill-conditioned [12]. By contrast, implicit conditioners can provide a sufficiently
reliable approximation of the inverse, if the matrix is sparse, even if the number of non-zeros in
the preconditioner to be constructed is rather reduced.

There also exist combinations of these two categories of preconditioners that have been introduced
cf. [139, 12, 146]: for example, a explicit preconditioning stage is performed first on matrix
A yielding M1. This is followed by an implicit preconditioning stage on I −M1A, yielding
M2. The final preconditioner obtained is implicit and is expressed: M3 = M−1

2 M1. These hybrid
preconditioners turn out to be more efficient than a simple implicit preconditioner, especially when
matrix I−M1A is more sparse than matrix A. Nevertheless, for the hybrid preconditioner to be
practically viable, preconditioner M1 should have a simple sparse structure (diagonal or tridiagonal
for example). In the rest of this study, we are more interested in implicit preconditioners.

We have given so far an overview of general preconditioning methods. There also exist some
application-specific preconditioners. In fact, to simulate a large-scale physical problem, precondi-
tioners based on physical characteristics normally have a much better performance than ordinary
preconditioners. Wallis and al. [145] have developed a family of Constraint Pressure Residual
(CPR) preconditioners in order to accelerate the convergence of linear solvers for an oil model
called "Black-Oil". This involves a two-stage preconditioning that combines a parallel AMG
preconditioner for the pressure block of the linear system comprising elliptic equations, together
with another parallel preconditioner based on an incomplete factorization (of ILU type) on the
whole system. CPR-AMG [91, 127] is the state of the art of the preconditioners currently used in
dynamic geoscience simulators [29, 135]. It is much more efficient than ILU preconditioners and it
is very popular in the reservoir simulation field since it has a very good robustness with respect to
data heterogeneity and anisotropy of media. A basic presentation of this two-stage preconditioner
is given in Algorithm 7.

Algorithm 7 CPR-AMG Preconditioning
Inputs: pressure block coefficients App, non-pressure block coefficients Ass, coupling blocks Asp and Aps,
pressure unknowns xp, non-pressure unknowns xs, pressure right hand side bp, non-pressure right hand
side bs,

A =

(
App Aps
Asp Ass

)
, x =

[
xp
xs

]
, b =

[
bp
bs

]
.

1: Apply ILU(0) on the full system ILU0(A) · x = b

2: Compute the new residual rp = bp −App · x(1)p −Aps · x(1)s

3: Apply AMG-Vcycle on the residual pressure equation AMG(App) · x(2)p = rp

4: Correct the pressure unknowns xp = x(1)p + x(2)p

In brief, the preconditioning strategies are many and varied. On the other hand, nothing guarantees
that there is an optimal solution for all cases of application, but what is evident is that each solution
is adapted to a certain type of matrices for which it offers more advantages than drawbacks. Let
us recall some criteria for judging the efficiency of a preconditioner:

• the spectrum of M−1A;

• the accuracy, that we can measure by the norm ‖M−1 ·A− I‖ (Indeed, a preconditioner is
expected to approximate the inverse of the system’s matrix);
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• the complexity, especially with the fill-in levels of preconditioners for sparse matrices: SPAI
[63, 70] and ILU(p)p=0,1,2,... [123]. The less regular the sparsity pattern that we have preset
for the preconditioner is, the more complex its construction will be;

• the computation time necessary to build the preconditioner;

• the scalability, i.e. how this preconditioner performs at large scale (on very large matrices),
and if it is highly parallelizable.

Approximate inversion

Approximate inversion is a field in linear algebra that has been actively explored over the last
decades mainly for deriving preconditioning techniques. There is an abundant literature on
this subject [123, 63, 70, 6, 21]. Approximate inversion methods fall into two broad categories:
factorized sparse approximate inverses and approximate inverse methods based on Frobenius
norm minimization.

For the former category, we can mention methods such as incomplete LU factorization with its
different variants (zero fill-in ILU, ILU with level of fill, modified ILU, ILU with threshold) [123].
This factorization computes sparse triangular matrices L and U, respectively lower and upper, so
that the residual matrix R := LU−A satisfies a particular sparsity pattern. This is achieved by
dropping some elements outside of the main diagonal during the Gaussian Elimination process.
Dropping an element means that this non-zero entry was transformed into a zero. The zero fill-in
variant, denoted by ILU(0) is obtained when the chosen zero pattern is exactly the zero pattern of
the matrix A. The broader ILU(p) variant assigns a level of fill p to each element that is processed
by Gaussian elimination, and computes the LU factorization for elements with a level of fill less
than or equal to p. This allows to improve the accuracy of the factorization. The exact factorization
of the matrix A is obtained if p = n− 1, where n is the size of A. Then, the smaller p is taken, the
less accurate and the quicker the factorization becomes. The modified ILU (denoted by MILU)
variant tries to compensate for the entries that were dropped out in approximate factorizations
by substracting them from the diagonal entry in U. The ILU with threshold (denoted by ILUT)
is based on discarding small elements during the Gaussian elimination. For example, dropping
criteria could be set such that the non-zero entries whose magnitude is less than a fixed threshold
are ignored.

Several other incomplete factorizations have been developed as well in the literature, e.g. in-
complete Cholesky, incomplete LDLT factorization [123]. Those factorizations are computed by
a modified Gaussian elimination where fill-ins are limited to certain matrix locations that are
defined by the sparsity pattern. A variety of patterns have been explored, see [128] and references
therein. Furthermore, much work has been done or initiated to address some efficiency issues in
order to get a better parallelism [48, 59, 36].

On the other hand, for the second category of approximate inversion methods, we can cite
sparse approximate inverses first proposed in the 1970s [57, 20]. These methods are based on
approximating the matrix inverse directly, M ≈ A−1. This matrix is then explicitly computed and
stored. It is applied by a matrix-vector product unlike the forementioned factorized approximate
methods which require forward and backward substitution operations. The matrix M is basically
computed as the solution of a constrained minimization problem: min

M∈S
‖I−AM‖F for a right-
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approximate inverse; or as the solution of min
M∈S
‖I−MA‖F for a left-approximate inverse where S

is a set of sparse matrices and ‖ ‖F is the Frobenius norm. Various strategies have been derived for
the choice of S [41, 63, 78]. The approach introduced in [70] resulted in the SPAI preconditioner. In
an attempt to lower the computational cost and storage requirements of building such an inverse,
the Minimal Residual algorithm was designed [37, 123].

When employed as preconditioners, many incomplete factorizations like ILU have scalability
problems often due to low eigenvalues that hamper the convergence of the iterative solver. To
remedy that, particular filtering preconditioners M have been proposed, see [2] and references
therein. They are chosen such that MV = KV, where V is a set of vectors of the directions to
be filtered, that is, V can be filled with eigenvectors of the targeted lowest eigenvalues. In that
case, the corresponding eigenvalues will be shifted to 1 in the spectrum of M−1A. This kind of
spectral property is quite convenient, especially when it comes to very small eigenvalues, and is
often desired. In this respect, we can cite the article [88] where similar low-rank transformations
constructed at several cycles of the Arnoldi procedure were used to translate spread eigenvalues
into the vicinity of 1. Still on the subject of low rank approximation, [51] discusses rank-one
updates, which are suited for stationary methods for solving linear systems A · x = b, to improve
an approximation H of the inverse of the main matrix A during iterations. The method proposed
reduces singular values of I−AH and accelerates the convergence. In [67], an algebraic precondi-
tioner based on a low rank approximation technique was introduced. It is robust as it bounds the
condition number of the preconditioned matrix M−1A by a user defined threshold.

Error estimators

When a mathematical problem is solved using a numerical approximation method, the
computations are subject to error. This error is generally unknown because we simply do not have
the exact solution. However, the question that arises is to know, at the end of a calculation, an
upper bound of the norm of this error. The existence of such an upper bound, called estimator,
would in fact allow to quantify the pertinence of the approximate solution having just been
computed. In this case, the estimator is said to be a posteriori when the estimation phase can
be achieved only during or after the solution phase. On the other hand, the estimator is said to
be a priori if it can be determined before any calculation. This latter estimator is a theoretical
upper bound which gives, for example, an idea about the order of convergence. Nonetheless, the
a priori estimator generally involves undetermined constants, and cannot always be numerically
computed, unlike the a posteriori estimator.

There are many categories of a posteriori error estimators: Explicit residual estimators, cf. [14,
141, 30], the equilibrated residual method, cf. [92, 4], estimators based on smoothed stresses cf.
[148], functional a posteriori estimators cf. [108, 117], hierarchical estimators cf. [18], a posteriori
geometrical error estimators cf. [31, 58], and equilibrated fluxes a posteriori error estimates cf.
[115, 44, 101, 3]. It is this last class of a posteriori error estimators that is of concern to us in this
thesis. The main advantage of equilibrated fluxes estimates is that they provide a fully computable
upper bound of the global error that can be decomposed into several components that identify
the different sources of error in the numerical solution cf. [46, 55]. The distinction between the
different components of the error (in space, in time, of linearization, and algebraic) helps to derive
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adaptive algorithms which ensure a reduction of calculations by imposing a stopping criterion for
iterations (of linearization and of the algebraic solver), by applying a time step adjustment and a
balancing of spatial and temporal error components [144].

Pioneering works were carried out with the primary objective of identifying the algebraic error
during the iterative solution of a linear system, raised from a numerical approximation of partial
differential equations [25, 17, 15, 18, 118, 119, 120, 111]. However, subsequent works using the
theory of the a posteriori error estimates in order to derive rigorous upper bounds of the global
error including algebraic error have later followed [11, 9, 105, 79, 55, 114]. More recent works were
carried on deriving appropriate guaranteed upper bound directly on the algebraic error using
equilibrated flux reconstructions [114, 106, 113].

To the best of our knowledge, almost no work has been done to this day on the use of a posteriori
error estimates of the algebraic error in order to provide an adaptive choice of preconditioners
used for the solution of sparse linear systems stemming from the numerical approximation of
partial differential equations. The goal of this thesis is to fill the gap. We propose different
approaches, one based on the fact that the error estimates can provide a reliable information about
the global error norms and thus gives an idea of each system’s complexity during the simulation.
Then, we derive different variants of an a posteriori-based adaptive preconditioner that is built
following the local distribution of the algebraic error estimate.

Background notions

Some properties of Block-Jacobi preconditioning

In this section, we recall some properties of Block-Jacobi preconditioners. We follow the
theory developed in [12] and generalize the results to the case with m blocks.

Let the symmetric positive definite matrix A be partitioned into m blocks as follows: A = [Aij]

for i, j = 1, . . . , m. We denote by ni the size of the diagonal block Aii, and by (Vi)1≤i≤n the finite
dimensional spaces consistent with the above block partition of A. Let M be the Block-Jacobi
preconditioner of A: M = [Mij] for i, j = 1, . . . , m where:

Mij =

{
Aii if i = j
0ij otherwise

(4)

Let γij be the Cauchy-Schwarz-Bunyakowski (C.B.S.) constant [12] defined for the 2× 2 block
matrix composed by Aii and Ajj as diagonal blocks, Aij and Aji as off-diagonal blocks:

γij := sup
vi∈Vi ,vj∈Vj

vT
i Aijvj(

vT
i AiivivT

j Ajjvj

) 1
2

(5)
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Lemma 0.1. Let λ be an eigenvalue of M−1A. We have

1− max
1≤i≤m

m

∑
j=1
j 6=i

γij ≤ λ ≤ 1 + max
1≤i≤m

m

∑
j=1
j 6=i

γij (6)

Proof. The extreme eigenvalues of A · x = λM · x are the extreme values of

xT ·A · x
xT ·M · x =

m
∑

j=1
xT

j ·Ajj · xj +
m
∑

j=1

m
∑

i=1
i 6=j

xT
j ·Aji · xi

m
∑

j=1
xT

j ·Ajj · xj

; x =

 x1
...

xm


For each pair of distinct indices (i, j), we have:

|xT
j ·Aji · xi| ≤ γij

(
xT

i AiixixT
j Ajjxj

) 1
2 ≤

γij

2
(xT

j ·Ajj · xj + xT
i ·Aii · xi)

Therefore

−
m

∑
j=1

m

∑
i=1
i 6=j

γji

2
(xT

j ·Ajj · xj + xT
i ·Aii · xi) ≤ xT ·A · x−

m

∑
j=1

xT
j ·Ajj · xj ≤

m

∑
j=1

m

∑
i=1
i 6=j

γji

2
(xT

j ·Ajj · xj + xT
i ·Aii · xi)

However, due to the symmetry we notice that:

m

∑
j=1

m

∑
i=1
i 6=j

γji

2
(xT

j ·Ajj · xj + xT
i ·Aii · xi) =

m

∑
j=1

xT
j ·Ajj · xj

m

∑
i=1
i 6=j

γji

Consequently

m

∑
j=1

xT
j ·Ajj · xj(1−

m

∑
i=1
i 6=j

γji) ≤ xT ·A · x ≤
m

∑
j=1

xT
j ·Ajj · xj(1 +

m

∑
i=1
i 6=j

γji)

(1− max
1≤i≤m

m

∑
j=1
j 6=i

γij)
m

∑
j=1

xT
j ·Ajj · xj ≤ xT ·A · x ≤ (1 + max

1≤i≤m

m

∑
j=1
j 6=i

γij)
m

∑
j=1

xT
j ·Ajj · xj

This latter inequality completes the proof.

Here, we retrieve a known feature of Block-Jacobi preconditioners: they bound the maximum
eigenvalue of the preconditioned matrix (see for example [89, 12, 103] and references therein).
Indeed, according to Lemma 0.1, a Block-Jacobi preconditioner allows to keep the maximum
eigenvalue of the preconditioned operator M−1A bounded by a constant that depends on the
blocks of matrix. In fact, as the C.B.S. constants are less than or equal to 1 (because A is SPD [12]),
we can deduce that the maximum eigenvalue is bounded by m the number of blocks.
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Under the assumption that the value of max
1≤i≤n

m
∑

j=1
j 6=i

γij is below 1 (which can somehow translate the

block-dominance of the main block diagonal over the off-diagonal blocks), we can derive a bound
for the condition number:

K(M−1A) ≤

1 + max
1≤i≤n

m

∑
j=1
j 6=i

γij


1− max

1≤i≤n

m

∑
j=1
j 6=i

γij


−1

.

In the case when approximate incomplete factorizations are used instead of exact ones for the
diagonal blocks, we can obtain the following property.

Lemma 0.2. Let the preconditioner M̃ = [M̃ij]i,j=1,...,m be defined by:

M̃ij =

{
Ãii if i = j
0ij otherwise

with: α
(1)
i Aii ≤ Ãii ≤ α

(0)
i Aii , ∀i (7)

where the coefficients are such that 0 < α
(1)
i ≤ 1 ≤ α

(0)
i , for all i and the inequalities are in a positive

semidefinite sense, i.e.

α
(1)
i xT

i ·Aii · xi ≤ xT
i · Ãii · xi ≤ α

(0)
i xT

i ·Aii · xi , ∀xi ∈ Vi (8)

Then we have:

K(M̃−1A) ≤ K(M−1A)×
max

1≤i≤n
α
(0)
i

min
1≤j≤n

α
(1)
j

(9)

Proof. In a similar way to the proof of Lemma 0.1, the extreme eigenvalues of M̃−1A are the
extreme values of

xT ·A · x
xT · M̃ · x

=

m
∑

j=1
xT

j ·Ajj · xj +
m
∑

j=1

m
∑

i=1
i 6=j

xT
j ·Aji · xi

m
∑

j=1
xT

j · Ãjj · xj

From (8), we have:

min
1≤i≤m

α
(1)
i

m

∑
j=1

xT
j ·Ajj · xj ≤

m

∑
j=1

xT
j · Ãjj · xj ≤ max

1≤i≤m
α
(0)
i

m

∑
j=1

xT
j ·Ajj · xj

It follows from this latter inequality that:

1

max
1≤i≤m

α
(0)
i

× xT ·A · x
xT ·M · x ≤

xT ·A · x
xT · M̃ · x

≤ 1

min
1≤i≤m

α
(1)
i

× xT ·A · x
xT ·M · x
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Thus, we can deduce inequalities on the respective extreme eigenvalues of M̃−1A and M−1A
which complete the proof:

λmin(M̃−1A) ≥ λmin(M−1A)

max
1≤i≤m

α
(0)
i

and λmax(M̃−1A) ≤ λmax(M−1A)

min
1≤i≤m

α
(1)
i

For more explanation on the inequalities in (7) and the existence of the coefficients α
(0)
i and

α
(1)
i in the assumption of Lemma 0.2, see Remark 3.2 in Chapter 3.
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Abstract

This chapter is divided in two parts. In the first part, we propose a generic approach to
choose or switch the preconditioner used to solve the linear systems in a simulation from a
given range of options. The algorithm is adaptive in the sense that the choices are driven by the
use of the global a posteriori estimation of the algebraic error, and made for the preconditioner
to adjust to the matrix handled at each time step of a simulation. The approach is generic in
the sense that it is not dependent on a specific class of error estimates. Numerical tests with
real data sets taken from reservoir simulations show that with this approach, we can get some
gain in time and efficiency as the robust (and costly to compute) preconditioners are employed
only when needed. In the second part, we introduce an adaptive preconditioning approach
based on the local a posteriori estimation of the algebraic error. In the suggested method, the
matrix is block-wise treated: we propose a Block-Jacobi preconditioner assembled from local
preconditioners computed distinctly for the diagonal blocks according to the error estimates
values on each corresponding subdomain. In fact, we distinguish the subdomains with large
error estimates values (HE subdomains), and the subdomains where the error estimates are low
or negligible (LE subomdains). This way, it is possible to employ more robust preconditioners,
even if they are more computationally costly, for matrix blocks that correspond to the HE
subdomains and less robust, less costly preconditioners for the matrix blocks corresponding to
the LE subdomains. Numerical tests with real data sets taken from reservoir simulations confirm
that computational gains can be achieved thanks to this approach.
Keywords— Choice of preconditioners, error estimates, adaptivity, iterative solve, domain
decomposition, matrix partitioning, block diagonal preconditioning

1.1 Global adaptive preconditioning based on a posteriori error
estimates

A posteriori error estimators are considered to be an efficient means to control non linear
algebraic systems arising from the discretization of PDEs [55]. As it has been mentioned in the
previous chapter, the a posteriori flux balancing error estimation that we are concerned with can
consist of several components of various kinds depending on their sources [55]. In this respect,
we could mention the algebraic error estimate, the linearization error estimate, the discretization
error estimate (or spatial estimate), etc . . . All these error estimates are computed throughout the
simulation, either globally on the whole mesh, or locally for each mesh element, at the rate of one
spatial estimate and one algebraic estimate per time step.

This type of estimates has already been used to establish stopping criteria for the solution of
non-linear PDEs stemming from dynamic simulations in Geosciences [45]. In porous media flow
simuations, the nature of the model * and the way the equations are solved determine the size of
the linearized system (2), namely the size of the Jacobian matrix A, and the length of the vector of
unknowns x. In this chapter, also in Chapter 5 we use the linear systems stemming from single
phase, two-phase, and three-phase flow problems. In the BlackOil model that we consider in these
three chapters, we have three unknowns for the triphasic case, two unknowns for the two-phase
and one unknown for the single-phase case.

The distinction made between error components leads to stopping criteria that show that there is

*. flow models from single-phase to tri-phasic; BlackOil/compositional; in simple or double media (fractured
reservoir)
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no need to pursue iterations of the linear solver once the other error components (of discretization
and linearization) start to become dominant. Similarly, it is needless to continue iterations on the
nonlinear solver when the discretization error component is dominant cf. [55, 46]. The idea is
to introduce thresholds for ratios between error components. For example, we are going to use
scalars that we will note γalg and γlin to compare the algebraic error estimate and the linearization
error estimate respectively with the global error estimate and therefore determine when exactly
one of them does not affect the global error.

Among the error estimators cited above, we are going to focus on spatial and algebraic error
estimators. The obtained approximate solution is considered satisfactory if the algebraic error ηalg
represents a small percentage of the partial global error ηsp:

ηalg < γalg ∗ ηsp (1.1)

The definition of γalg depends on the desired precision, its value is typically of order 0.1 [55].
Here, we would like to point out that this work builds on error estimates, such as the a posteriori
flux balancing estimates cited earlier and that we used in practice in the numerical section of
this chapter, but is not restricted to this particular family of estimates. The adaptive approach
suggested in this thesis is compatible with a broad range of estimates. For more details on the
derivation of some error estimates, we refer to Chapter 2 (cf. Section 2.3) where we give a brief
explanation of how to compute a posteriori flux balancing error estimates in a finite element
framework.

This chapter is organized as follows. In Section 1.1.1, we introduce the concept of adaptive choice
of preconditioning in a simulation by using error estimators a posteriori. Then, the adaptive
preconditioning algorithm is presented in Section 1.1.2. Subsequently, the execution plateform, the
computing framework and the study cases are covered in Sections 1.1.3, 1.1.4 and 1.1.5 respectively.
We use a preconditioned BiCGStab and a preconditioned GMRES to evaluate the efficiency of the
choice of a preconditioner influenced by a posteriori error estimators. We will analyze the results
using BiCGStab in Section 1.1.6 and GMRES in Section 1.1.7. Then, the remainder of the chapter
deals with a local adaptive preconditioning strategy. In Section 1.2.1, we investigate a link between
a posteriori error estimates and the conditioning of the matrices. Section 1.2.2 focuses on the
partitioning of the matrix based on a posteriori error estimates. Section 1.2.3 defines the concept
of variable Block-Jacobi preconditioning according to error estimates. Finally, the efficiency of the
method is assessed with the numerical tests of Section 1.2.4.

1.1.1 Adaptative choice of preconditioners from a posteriori error estimates
in a simulation

In this part, we intend to introduce preconditioners’ choice criteria with a posteriori spatial
and algebraic error estimates. Why did we choose these two estimates in particular? Because the
first includes the sum of error components and the second represents the error component relating
to the iterations of the algebraic solver, which can have a possible link with the preconditioning
quality of the latter. At this stage of study, we are not yet able to prove either theoretically or
experimentally the nature of the link between the computed error estimators and the conditioning
of the matrix. In the rest of this chapter, we will suggest a heuristic of preconditioners choice
whose results will be verified experimentally. In fact, in the same way as for stopping criteria,
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we would like to use a relation similar to (1.1) to choose a preconditioner for a given system.
For this, as it has been mentioned earlier, a posteriori error estimators are computed throughout
the simulation, either globally or locally on each mesh point or node. The idea behind this
approach is to examine the feasibility of global a posteriori error estimators’ usage to choose a
preconditioner for the different systems obtained in the course of the simulation. The aim is to
adapt the preconditioner on the basis of a posteriori error estimators that have been computed
instead of having one fixed preconditioner during the whole simulation for all the systems.

To be more precise, we would like to choose between two classes of preconditioners, on the basis
of the values of error estimators. Preconditioners MS of the first class are more robust than those
of the second class MW, but they can be costlier in terms of memory. By robustness, we mean
the ability to solve a wide range of problems at least reasonably well. In case the algebraic error
estimator ηalg represents a small percentage of the spatial error ηsp, i.e. below a certain threshold
γprec,

ηalg ≤ γprec ∗ ηsp, (1.2)

a preconditioner MW is chosen. In the opposite case, it is a preconditioner MS which is selected.

It is worth noting that the efficiency of such selection procedure depends on the preconditioners
MW and MS that the user provides. Equation (1.2) simply gives an estimation of the ratio of the
algebraic error in comparison with the global error obtained in the simulation, but it doesn’t
give information about the conditioning of the systems. Thus, the user has to provide two
preconditioners where at least the systems preconditioned by MS would converge. This being
said, the algorithm generalizes easily to more than two preconditioners. Only an order of use for
all possible preconditioners needs to be specified.

In the sequel, we introduce the different possible options for the preconditioner’s choice (Section
1.1.2), and check their effect on the convergence in Section 1.1.6. In Section 1.1.7, we examine
the performance of our adaptive algorithms of preconditioner choice with a linear solver that
integrates well with restarting, GMRES.

1.1.2 General parameters

Apart from the computation of the algebraic error estimator (ηalg), there is a number of
parameters to be taken into consideration before selecting the preconditioner to be used. Firstly,
do we have to choose a preconditioner for every system of the simulation, or is this choice made
only for certain systems during the simulation and maintained for subsequent systems? Secondly,
at what iteration is the algebraic error estimator ηalg to be evaluated? Thirdly, are we supposed
to take into account the solution x f obtained in the computing process of ηalg and reuse it as a
starting point x0 for the preconditioned solver even if some of these solvers, such as BiCGStab are
not inherently restartable? Or should we consider the computing of ηalg as a pre-processing stage
and initialize x0 to 0 for the preconditioned solver?

At every time step, we need to solve at least one linear system obtained in one Newton iteration.
In practice, we assume that the linear systems obtained during the same time step have similar
condition numbers. This is, somehow, in the same line with the decision to assess the algebraic
estimator once per time step for reasons of computational savings. Thus, during every time step
of the simulation, it will be possible to choose a preconditioner for the first linear system obtained
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from the first Newton step, and to use this same preconditioner for the rest of the systems obtained
during this time step.

Remark 1.1 (Evaluating the algebraic error estimator). We refer to [45, Remark 4.3] [55, Section 4]
for more details on how to evaluate the algebraic error estimator. In our case, we follow the same
process described in the references above, i.e. in order to compute the algebraic error estimator ηalg
at iteration i of the algebraic solve, we carry out a few j additional iterations. Thus, the degrees of
freedom required for estimating the algebraic error at iteration i will be calculated by evaluating a
difference between the degrees of freedom obtained after i and i + j iterations respectively.

Before choosing the preconditioner, it is necessary to evaluate the algebraic error estimator. To do
this, we need to have performed krest iterations with the linear solver. This way, if need be, the
algebraic estimator will be evaluated for the krest-th iteration of the algebraic solve and we will
run a series of krest additional iterations (that is to say, up to iteration number 2 ∗ krest).

The appropriate response to the third point raised here is not obvious. If we have to restart new
iterations after having evaluated the algebraic estimator and decided on the preconditioner to be
used and if we reuse the last intermediary solution xkrest as a starting vector for the preconditioned
solve, then we can say that the iterative solver is restarted. In the case of BiCGStab, in which only
the initial guess is reinitialized while the other data, such as the arbitrary vector and the research
direction are lost, the effect of such a restart remains a big question mark since it is missing in the
literature. Moreover, in case a linear solver other than BiCGStab is used and within which the
restart option is provided for, like GMRES for example, we see no reason why this option should
not be applied in this context. Hence, we have decided not to reuse the intermediary solution xkrest

in BiCGStab, and reuse it in GMRES (Section 1.1.7).

Algorithm 8 summarizes the approach followed with the configurations outlined above and based
on error estimators for solving nonlinear nonstationary PDEs stemming from simulations in
geosciences with an adaptive choice of preconditioners.

Algorithm 8 Adaptive Choice of Preconditioner
Inputs: MS, MW, γprec, krest, kmax, tmax, nmax

1: for t = t0 until tmax %Time loop
2: Discretize the system
3: Let n = 0, and M = MW
4: while non-convergence and (n < nmax) %Newton loop
5: Linearize the system
6: if (t > t0)
7: if (n == 0)
8: Evaluate the a posteriori error estimators ηalg and ηsp
9: if (ηalg < γprec ∗ ηsp)

10: Choose the less robust preconditioner M = MW
11: else
12: Choose the more robust preconditioner M = MS
13: end if
14: end if
15: end if
16: Solve the linear system with preconditioner M, up to kmax iterations maximum
17: n = n + 1
18: end while
19: end for
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We should note that it is possible to combine the adaptive approach of preconditioner choice
with stopping criteria. In this second version of the adaptive preconditioner’s choice algorithm,
the a posteriori algebraic error estimator ηalg has to be evaluated for every linear system. The
corresponding process is described below.

For every linear system of the simulation, we compute ηalg. Then if the ratio
ηalg
ηsp

is smaller
than γalg, this system is considered to have converged. Otherwise, we choose a preconditioner
in the same way as in the first version (Algorithm 8). This helps to resolve the issue relating
to the interruption of simulations. However, the resulting solution is not always satisfactory,
and leads to an increase in the number of Newton iterations performed. Therefore, in order
to reduce the negative effect of these a posteriori stopping criteria on Newton iterations, the
following configuration has to be applied: in case the solution of the system is stopped by the a
posteriori stopping criterion, then all the subsequent intermediary series of iterations necessary
for evaluating the algebraic estimators ηalg of the same time step are performed with the robust
preconditioner MS. Algorithm 9 describes the algorithm of the adaptive choice of preconditioners
with stopping criteria based on a posteriori error estimators.

Algorithm 9 Adaptive Choice of Preconditioner with Stopping Criteria
Inputs: MS, MW, γprec, γalg, krest, kmax, tmax, nmax

1: for t = t0 until tmax %Time loop
2: Discretize the system
3: Let n = 0, M = MW, StCr = 0
4: while non-convergence and (n < nmax) %Newton loop
5: Linearize the system
6: if (t > t0)
7: if (StCr == 1) M = MS else M = MW end if
8: Evaluate the a posteriori error estimators ηalg and ηsp
9: if (ηalg < γalg ∗ ηsp)

10: n = n + 1, StCr = 1
11: Go to line 5
12: end if
13: if (ηalg < γprec ∗ ηsp)
14: Choose the less robust preconditioner M = MW
15: else
16: Choose the more robust preconditioner M = MS
17: end if
18: end if
19: Solve the linear system with preconditioner M, up to kmax iterations maximum
20: n = n + 1
21: end while
22: end for

1.1.3 Runtime platform

In this section focused on the study of the adaptive approach of global preconditioning,
we run numerical tests on the following execution platform: a Linux cluster that delivers a peak
performance of 110 TeraFlops, and consists of dual-socket 212 nodes with shared memory, with a
memory capacity of 32 gigabytes and eight-core Sandy Bridge processor having a clock rate of
2.60 GHz (Intel Xeon E5-2670). We allocate one compute node and run parallel computations on
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16 processors.

1.1.4 Computing framework

We use real data sets taken from reservoir simulations run on IFPEN’s prototype for
reservoir simulation. We use the ALIEN interface which provides a modern, uniform and generic
API for a wide range of linear solver libraries including Petsc [16], IFPSolver [64] and MCGSolver *

[7, 8]. These last two solvers are the ones we are going to use for the numerical tests presented in
this chapter. These solvers have been developped at IFPEN and provide linear solver algorithms for
IFPEN’s industrial simulations, such as Krylov solvers BiCGStab and GMRES and preconditioners,
like ILU(0) and CPR-AMG.

1.1.5 Presentation of the study cases

SPE10 is an immiscible two-phase reservoir model (oil + water) with a strong heterogeneity
of petrophysical data that was introduced during the "SPE10th Comparison Solution Project" to
compare different upscaling methods [38]. It is composed of 60 vertices in X axis, 220 vertices in
Y axis and 85 vertices in Z axis. This corresponds to a total of over a million vertices. The model
contains five wells: four producing wells located at the ends of the grid and an injection well
in the center. This case is also known as a case in which we are likely to encounter difficulties
concerning the algebraic solving with the linear solver.

3DBlackOil is a test case that corresponds to the simulation of the Black-Oil model. This model
consists of three phases which are water, oil and gas. The oil phase comprises two types of
components: non-volatile oil and volatile oil which can be referred to as oil component and
gas component respectively. The reservoir dealt with in this test case is a three-dimensional
domain (4750m × 3000m × 114m) discretized with a CPG (Corner Point Geometry) grid. We
consider an anisotropic heterogeneous reservoir with a porosity of 30%, three horizontal and
two vertical permeability layers. We consider a gas injection in the initially unsaturated reservoir.
A gas-injection well punctures a corner of the reservoir in the vertical direction (Z axis) and a
producing well is located in the opposite corner. The domain is divided into a grid 38× 24× 5
cells. The simulation lasts either 30 days or 2000 days. The data, the constraints and the PVT
properties (pressure-volume-temperature) are extracted from the SPE1 model designed to simulate
a three-dimensional Black-Oil reservoir, see [110].

1.1.6 Numerical results and comments

Table 1.1 shows the results obtained with a fixed preconditioner for the entire simulation,
with three test cases: SPE10-30days, SPE10-2000days and 3DBlackOil. Table 1.2 provides the results
obtained with the adaptive preconditioning of Algorithm 8 on BiCGStab with the same test cases.
Here, for every system A · x = b, the algebraic estimate ηalg is evaluated at the krest-th iteration of
BiCGStab preconditioned by ILU(0). According to the parameter γprec and to Equation (1.2), the
preconditioner is chosen as detailed earlier. Then, the preconditioned linear solver with this ad

*. MultiCore, ManyCore, MultiGPU Solver



28 Chapter 1. Global and local approaches of adaptive preconditioning

hoc preconditioner is used for solving the system, and can run up to kmax iterations. On the other
hand, the preconditioner choice is made only once per time step, and the same preconditioner is
used for the other systems of the same time step (Algorithm 8).

Table 1.1 – The solve time (SolvTim) and the total number of iterations (IT) needed for convergence of IFPSolver’s
BiCGStab for (SyS) number of systems, with the preconditioner set for the whole simulation.

Test case Preconditioner SyS IT SolvTim

SPE10-30days
ILU(0) 38 3815 163.84

CPR-AMG 35 594 133.39

SPE10-2000days
ILU(0) 141 44699 1983.9

CPR-AMG 139 5352 1009.1

3DBlackOil
ILU(0) 334 20566 84.26

CPR-AMG 342 1504 77.66

Table 1.2 – The solve time (SolvTim) and the total number of iterations (IT) needed for convergence of IFPSolver’s
BiCGStab for (SyS) number of systems, where BiCGStab is restarted twice after krest = 15 iterations. The
first two series of krest iterations are used to calculate the a posteriori estimates necessary for the adaptive
choice of preconditioners for γprec = 10−2.

Test case
Adaptive ILU(0)/CPR-AMG

SyS IT SolvTim Nb ILU(0) Nb CPR-AMG

SPE10-30days 54 668 121.1 13 41

SPE10-2000days 335 10444 1251.3 59 276

3DBlackOil 345 1641 78.52 7 338

The parameter krest is fixed at 15 in order to leave a reasonable minimum of iterations to make a
judicious choice of preconditioner. We effectively get some improvement in computing time when
using simple adaptive preconditioning (Algorithm 8) in comparison with when using only the
preconditioner MW for the entire simulation. In some cases, the adaptive algorithm yields less
computing time than even the preconditioner MS. Since we don’t know in advance what the better
choice is, the adaptive algorithm guides the iterative solver towards the adequate preconditioner.

1.1.7 Adaptive choice with restarted GMRES

As shown in the numerical results cited above, the adaptive preconditioner’s choice algo-
rithm applied to BiCGStab iterative solver sometimes delivers small gains in number of iterations
or in computing time. Therefore, trying another iterative solver may be a possible solution for
testing the performances of the adaptive preconditioner’s choice algorithm we are using.

GMRES is one of the most popular methods for the solution of linear systems with non-symmetric
matrices. It is said to be optimal as the approximate solution is constructed in the Krylov sub-space
that minimizes the euclidean norm of the residual [125]. The restart of GMRES is recommended
when the highest attainable precision is not satisfactory, such as in the case of rounding errors, and
when it becomes necessary to stop the iterations. It is also recommended for saving the memory
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space when the size of Krylov subspace becomes too big to store all the basis vectors. Thus the
restart allows to limit the memory resources necessary for the computing of the solution. However,
the restart may compromise the global optimality. In fact, without restart GMRES converges
exactly in at most N iterations if N is the size of the system while a restarted GMRES may not
converge: There may be a noticeable plateau effect at every restart.

In the remainder of this section, we focus on the GMRES method in its restarted version GMRES(m)
[125] as the iterative linear solver for the adaptive algorithm of preconditioner’s choice based on a
posteriori error estimators. In this case, the method is restarted when the dimension of the Krylov
subspace reaches m, and the current approximate solution computed at each cycle becomes the
initial guess of the coming cycle. The matter of the choice of the restart parameter is not to be taken
lightly as it can remarkably affect the convergence [81, 52]. In the configuration of GMRES solver
for the adaptive preconditioners’ choice algorithm, the parameter m is appropriately set so as to
satisfy the following two main criteria :

— m should be relatively small compared to n (the matrix size) to keep reasonable computing
and memory needs.

— m should not be too small, because in this case the computed a posteriori error estimators
would not be very coherent. The reason for this is that the algebraic error estimators are
computed from approximate solutions stemming from two successive cycles: it would make
no sense to compute those quantities after one cycle of only 5 iterations for example for
GMRES.

1.1.7.1 Restart configuration for GMRES

As a first step, it is necessary to decide on the dimension m of the Krylov subspace in which
the solutions of the linear systems will be computed. A quick search in the literature gives us an
empirical order of magnitude of the dimensions taken in practice for computings done in different
fields not necessarily related to the scope of reservoir simulation. Therefore, we had to check the
convergence of the restarted GMRES solver after cycles of m iterations for all the linear systems
in a simulation, at least with the most robust preconditioner. After experimenting with different
values of m, we have opted for the smallest tested value with which the convergence has been
achieved: m = 100.

After that, some GMRES configurations have been experimented for the adaptive preconditioners’
choice algorithm. The first configuration referred to as (V1) is summarized as follows. For
computing the algebraic error estimates, two consecutive calls to GMRES(m) solver are made
(see Remark 1.1). The first call is made starting from a zero value initial guess x0, and a first
intermediary solution x1 is retrieved after a cycle of m iterations. A second call to the solver is
subsequently made starting from solution x1, and sends back a second intermediary solution x2
after a cycle of m iterations. Once the algebraic error estimator computed from x1 and x2, the
preconditioner is chosen as previously described in Section 1.1.1, and the actual solving of the
systems is carried out with the preconditioned GMRES(m), restarted as many times as necessary
provided that the maximum total number of iterations is not exceeded, which is 5000 iterations or
50 restart cycles (each cycle being equivalent to 100 iterations).

With this first configuration, the adaptive preconditioners’ choice algorithm takes the form
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Algorithm 10 Adaptive Choice of Preconditioner with GMRES (V1/ V2 Versions)
Inputs: MS, MW, γprec, krest, kmax, tmax, nmax, m

1: for t = t0 until tmax %Time loop
2: Discretize the system
3: Set n = 0, and M = MW
4: while non-convergence and (n < nmax) %Newton loop
5: Linearize the system
6: if (t > t0)
7: if (n == 0)
8: Compute a 1st intermediary solution after one cycle of GMRES:
9: x1 = GMRES(m)(A, b, x0 = 0) / x1 = GMRES(m/2)(A, b, x0 = 0)

10: Compute a 2nd intermediary solution after another cycle of GMRES:
11: x2 = GMRES(m)(A, b, x0 = x1) / x2 = GMRES(m/2)(A, b, x0 = x1)
12: Evaluate the a posteriori error estimators ηsp and ηalg from x1 and x2
13: if (ηalg < γprec ∗ ηsp)
14: Choose the less robust preconditioner M = MW
15: else
16: Choose the more robust preconditioner M = MS
17: end if
18: end if
19: end if
20: Compute the final solution with GMRES preconditioned by M:
21: x = GMRES(m)(M, A, b, x0 = x2)
22: n = n + 1
23: end while
24: end for

described in Algorithm 10 (the intermediary solve steps to consider are colored in red).

It will be noted that the computing stage of the algebraic error estimator will have taken two
GMRES cycles, that is to say 200 iterations, which is significant in comparison with what we got
with BiCGStab, for a pretreatment phase that logically should not represent a very considerable
computational load. Thereafter, in an attempt to reduce this computational load, we have
considered a second configuration (V2) such as the first two solver calls necessary for the evaluation
of the algebraic error estimator are made with a Krylov basis that is reduced by half GMRES(m/2),
while the other calls for the actual solving of the system are made with a basis whose size is m
: GMRES(m). This approach reflects that the first two calls to GMRES(m/2) represent merely a
pretreatment step that will give only intermediary solutions and is therefore not worth spending
as many iterations as the rest of the calls to GMRES(m) that come after and yield the final solution
of the system. With this second configuration, the adaptive preconditioner’s choice algorithm
corresponds to Algorithm 10 with the blue intermediary solve steps.

The other possibility we consider worth exploring is what could happen if the solver was not
restarted after the evaluation phase of the algebraic error estimator. For this reason, we have
thought of a third version which is in line with configuration V1, in the sense that the actual
solving of the system is done with a basis of m vectors, and that the first intermediary solution x1
is computed after a first cycle with a basis of m vectors. Yet, the difference is that for computing
the second intermediary solution, we do not start over a new cycle with a basis of m vectors
constructed from x1, but we continue constructing the Krylov basis of 2m vectors where the
solution x2 is to be sought. In other words, x2 would be the solution computed after a cycle of 2m
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iterations whereas x1 is computed just with the first half of that cycle (or the first m vectors of the
constructed basis).

Algorithm 11 is formed by the classical stages of restarted GMRES, but it also includes the
evaluation stage of error estimates and that of changing the preconditioner.

Algorithm 11 Adaptive Choice of Preconditioner with GMRES (V3 Version)
Inputs: Initial guess x0, Krylov subspace dimension m, number es of iterations before evaluating the
algebraic error estimator, (m + 1)×m Hessenberg matrix Hm initialized to 0, initial preconditioner M.

1: InitPrec = true
2: Compute r0 = b−A · x0, β = ||r0||2 and v1 = β−1r0
3: j := 1
4: while (non-convergence and j < m)
5: Compute zj := M−1 · vj
6: Compute w := A · zj
7: for i = 1 . . . j Do
8: Hi,j := (w, vi)
9: w := w−Hi,jvi

10: end for
11: Hj+1,j = ||w||2
12: if (Hj+1,j 6= 0)
13: vj+1 := H−1

j+1,jw
14: else
15: Set m = j and go to line 31
16: end if
17: // Construct an (intermediary) approximate solution:
18: if (InitPrec and j mod es == 0)
19: Compute yj that minimizes ||βe1 −Hj · y||2
20: Save the value xj = x0 + Zj · yj where Zj = [z1, . . . , zj]
21: end if
22: // Evaluate the algebraic estimator:
23: if (InitPrec and j == 2 ∗ es)
24: Compute ηalg from xj and xes. // See Remark 1.1 for evaluating the algebraic error estimator

25: Set the preconditioner M according to the value of ηalg
ηsp

26: InitPrec = f alse
27: end if
28: j := j + 1
29: end while
30: Compute ym that minimizes ||βe1 −Hm · y||2, with e1 = (1, 0, . . . , 0)T

31: Update the initial guess xm = x0 + Vm · ym where Vm = [v1, . . . , vm]
32: // Restart: if (convergence) stop else update x0 := xm and go to line 2 end if

1.1.7.2 Numerical results and comments

We compare the performance of the three preceding configurations on the test cases (SPE10-
30days/3DBlackOil) to determine the one that we will keep for subsequent simulations. Table 1.3
includes for the three configurations the solve times, the total number of iterations and the number
of times each of the two preconditioners is used. The number of times the preconditioner MW is
used shows clearly that configurations V2 and V3 are less efficient. They take significantly more

*. Each GMRES cycle is equivalent to 100 iterations.
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Table 1.3 – The number of times MS = ILU(0) and MW = Poly were used, the solve time (SolvTim), the total number
of iterations (IT) during the 3DBlackOil simulation with the 3 configurations V1, V2 (Algorithm 10) and
V3 (Algorithm 11) of adaptive preconditioner choice for MCGSolver’s GMRES, γprec = 10−2.

Test case Configuration Nb of switches to MW Nb of switches to MS IT * SolvTim

SPE10-30days

V1 34 27 89 (*100) 606.69

V2 3 57 ≈ 121 (*100) 652.08

V3 13 36 ≈ 157 (*100) 1114.07

3DBlackOil

V1 25 472 1494 (*100) 764.50

V2 6 412 ≈ 1779 (*100) 927.19

V3 6 411 ≈ 1857 (*100) 1031.82

iterations and solve time than configuration V1. This can be due to the fact that in these two
configurations, the algebraic error estimators we encounter are rather significant, which shows a
large difference between the two intermediary solutions computed x1 and x2.

In fact, in configuration V2 the two solutions are constructed after half cycles of m/2 iterations,
which are, as it has been observed earlier, insufficient to solve all the systems of the simulation.
Therefore, the high values found in the a posteriori algebraic error estimator can be explained by
the poor quality of the intermediary solutions.

Whereas in configuration V3, the first intermediary solution x1 is computed after one cycle
of m iterations, and greatly differs from the second intermediary solution x2. Indeed, these
two solutions are not constructed within bases of the same dimension. The one in which x2 is
constructed contains that where x1 was built, but contains twice as many vectors, which leads to
the wide gap between the two entities. Not surprisingly in the end the total number of iteration
and the solve time are highest with this configuration V3 since we are using bases of 2m elements
to compute the second intermediary solution x2.

For all these reasons, we have decided to keep only the first configuration V1 for which we present
the numerical results on the test cases SPE10-30days and 3DBlackOil in Table 1.4.
We can thus compare the preconditioners MW = Poly and MS = ILU(0) (ResOpt = 0) with the
adaptive preconditioner (ResOpt = 1). The third and fourth columns of that table show the number
of systems preconditioned by MW and MS respectively.

The first conclusion from analyzing this table is that we obtain a gain with the adaptive strategy
of global preconditioning on some test cases we have carried out. Therefore, the observations
made in Section 1.1.6 for BiCGStab remain valid for GMRES as well. This means that changing the
solver does not substantially affect the performance of the adaptive algorithm. Yet, this method
remains interesting as it allows to steer the choice of the preconditioner during the simulation.

*. GMRES did not converge with cycles of 50 iterations for this test case.
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Table 1.4 – The solve time (SolvTim) and the total number of iterations (IT) needed for convergence of MCGSolver’s
GMRES for (SyS) number of systems, where we fixed the value γprec = 10−2, and GMRES is restarted:
- as much as needed until the convergence is reached (ResOpt = 0),
- 2 times first for the sake of a posteriori estimates computation then as much as needed until the convergence
is reached (ResOpt = 1).

Preconditioner Nb of Calls to Poly Nb of Calls to ILU(0) Total

Test case KrylovDim ResOpt SyS SyS IT SolvTim

SPE10-30days

50
0

38 - 403 (*50) 1800.64

- 39 230 (*50) 583.24

1 24 59 203 (*50) 535.03

100
0

37 - 150 (*100) 1427.05

- 39 90 (*100) 506.66

1 34 27 89 (*100) 606.69

3DBlackOil 100 *
0

338 - 1604 (*100) 1474.46

- 336 1495 (*100) 758.81

1 25 472 1494 (*100) 764.50

1.2 Local adaptive preconditioning based on a posteriori error
estimates

The global approach of adaptive preconditioning based on a posteriori error estimates for
dynamic simulations in Geosciences has experimentally proven to be satisfactory, yet the results of
applications on some real test cases show that the obtained gains remain limited and still below
what had been aspired for. The next step goes further towards the exploitation of a posteriori
error estimates in order to evaluate other adaptive preconditioning strategies. Henceforth, we will
not only rely on criteria on the global sum of estimates on all mesh elements, but we will, this
time, take into account the local values of estimates on every mesh element so as to choose the
preconditioning methods.

Following the same rationale of adaptive mesh refinement [141], in which we refine the mesh
where the values of error estimates are the highest in order to get significantly more precise results
for those areas, the idea we develop in this chapter is that for every linear system to be solved, we
want to construct block preconditioners in which we make a distinction between the blocks of the
matrix that correspond to mesh elements with the highest error estimates and the rest of the blocks
that would correspond to elements with insignificant or non-existent error. In fact, for the former
blocks, we opt for more robust preconditioners even if they are more computationally expensive,
while for the latter ones we can settle for less robust preconditioners that are therefore faster. Here,
however, the expected result is to improve the computing performances. By targeting the parts of
the matrix in which we know that algebraic errors exist, we improve the performance (iterations
and/or computing time) by restricting as much as possible the use of robust preconditioners to
the areas with the most significant errors. This idea is consistent with the concept of domain
decomposition. One Domain Decomposition-based preconditioning strategy that we consider in
the remainder of this chapter is the Block-Jacobi method.

The quality of Block-Jacobi preconditioners is strongly dependent on the coupling between
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unknowns related to distinct local diagonal blocks. The number of non-zero elements in the
off-diagonal blocks with respect to the number of non-zero elements in the diagonal blocks of
A can give an indication of the coupling strength. In case of a strong coupling, Block-Jacobi
preconditioners are generally inadequate and should be avoided. For loosely-coupled subdomains,
Block-Jacobi preconditioners can be reasonably effective. In our study cases, the matrices obtained
from the simulator fall under this later category as the non-zero entries are mainly located in
the diagonal blocks, and are dominant in absolute value over the few non-zero entries located
in the off-diagonal blocks. Furthermore, it is possible to improve a Block-Jacobi preconditioner
by increasing the size of the diagonal blocks, for example by following the strategy suggested in
Section 1.2.3.2. This necessarily leads to a decrease in the number of diagonal blocks and thereby
to a reduction in the degree of parallelism in generating and applying the preconditioner.

Taking into account the characteristics of the matrices dealt with and the features of each of
the methods discussed earlier in the state-of-the-art section, we decide to use a Block-Jacobi
preconditioning method as it has a lower computational cost while more communication is
necessary between subdomains for the other domain decomposition methods. For more details
about these methods, we refer the reader to the article [28].

1.2.1 Error distribution and matrix conditioning

We investigate in this section if there is a link between a posteriori error estimates and the
conditioning of the matrix. To elaborate on this approach from a linear algebra point of view,
especially how the matrices and the vectors on which we are working are built, let us consider
first a simple structured 2D mesh composed of four vertices in each direction. Next, it is assumed
that the nodes are ordered line by line, from bottom to top and from left to right (Figure 1.1).

r r r r
r r r r
r r r r
r r r r

n1 n2 n3 n4

n5 n6 n7 n8

n9 n10 n11 n12

n13 n14 n15 n16

Figure 1.1 – Example of a simple 4× 4 mesh

If we solve a PDE model with two unknowns: u =

(
u(1)

u(2)

)
, then the assembly of the global

system at every Newton iteration is done by blocks of two entries. Let A · x = b be the linear
system produced by the discretization of the PDE with a two-point finite volume scheme, then we
have:

• x is a vector of length 32 (2 unknowns, 16 nodes) that contains the discrete values of the solution
of the PDE on all the mesh elements. Thus, the first element of the vector x represents the value
of the unknown u1 on the first mesh element. The second element of the vector x represents the
value of the unknown u2 on the first mesh element and so on until the last element of the vector
for the last mesh element according to the prescribed order of the mesh elements.
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• b is a vector of length 32 that contains the discrete values of the right hand side function of the
PDE on all the mesh elements.

• A is a 32× 32 matrix with coefficients of the equations that link the unknowns of the solution
over the mesh. For example, every row i of the matrix contains the coefficients associated to the i-th
unknown contained in the solution vector x (these terms are located on the diagonal of the matrix),
and the coefficients associated to the other unknowns of which the diagonal unknown depends
(these are the off-diagonal entries of the matrix). Hence, if there are p non-zero off-diagonal
elements on this line, this means that the i-th unknown depends only on p other unknowns.

Thus, as the shape of the matrix below shows (Figure 1.2), we can distinguish on the one hand the
diagonal blocks (Aii)1≤i≤16 of the matrix that are associated to the meshes because they contain
the dependencies between the unknowns of the solution u(1) and u(2) on the same mesh element,
and on the other hand the off-diagonal blocks (Aij)i 6=j of the matrix that contain the flux terms and
represent for the i-th element the solution’s dependencies on its values on the j-th mesh element.

The diagonal blocks are assembled through the mesh elements while the off-diagonal blocks are
assembled through the links (or interface between two mesh elements on which the flows are
discretized).

A =



A1,1 A1,2 0 0 A1,5 0 0 0 0 0 0 0 0 0 0 0
A2,1 A2,2 A2,3 0 0 A2,6 0 0 0 0 0 0 0 0 0 0

0 A3,2 A3,3 A3,4 0 0 A3,7 0 0 0 0 0 0 0 0 0
0 0 A4,3 A4,4 A4,5 0 0 A4,8 0 0 0 0 0 0 0 0
0 0 0 A5,4 A5,5 A5,6 0 0 A5,9 0 0 0 0 0 0 0

A6,1 0 0 0 A6,5 A6,6 A6,7 0 0 A6,10 0 0 0 0 0 0
0 A7,2 0 0 0 A7,6 A7,7 A7,8 0 0 A7,11 0 0 0 0 0
0 0 A8,3 0 0 0 A8,7 A8,8 A8,9 0 0 A8,12 0 0 0 0
0 0 0 A9,4 0 0 0 A9,8 A9,9 A9,10 0 0 A9,13 0 0 0
0 0 0 0 A10,5 0 0 0 A10,9 A10,10 A10,11 0 0 A10,14 0 0
0 0 0 0 0 A11,6 0 0 0 A11,10 A11,11 A11,12 0 0 A11,15 0
0 0 0 0 0 0 A12,7 0 0 0 A12,11 A12,12 A12,13 0 0 A12,16
0 0 0 0 0 0 0 A13,8 0 0 0 A13,12 A13,13 A13,14 0 0
0 0 0 0 0 0 0 0 A14,9 0 0 0 A14,13 A14,14 A14,15 0
0 0 0 0 0 0 0 0 0 A15,10 0 0 0 A15,14 A15,15 A15,16
0 0 0 0 0 0 0 0 0 0 A16,11 0 0 0 A16,15 A16,16


Figure 1.2 – Structure of matrix A

• The numerical analysis of a posteriori error estimates returns a vector EE, of the same length as
the previous vectors x and b, that contains the estimation of the algebraic error on the approximate
solution for every mesh element. Like the matrix A, the vector EE is sparse: It contains far
more zero elements than non-zero elements as demonstrated in Figures 1.3 and 1.4 which display
the values of error estimates over nodes for the test cases studied. This enables us to focus on
the location of non-zeros in the error estimates vector EE to ensure that we have more accurate
computations for these areas of the mesh. One approach of doing this consists in applying locally
a more robust preconditioning. But before that, we would like to make sure that the values of the
algebraic error estimates are correlated with the local conditioning of the submatrices comprised in
the block-diagonal. Also, it should be mentioned that if the value of the error estimate is large on
the i-th mesh element, it would be of interest to check the conditioning of the diagonal block Aii
because it is this submatrix that contains the local dependencies between the solution components
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(a) Mid-simulation at time step : t = t42 (b) End of simulation at time step : t = t95

Figure 1.3 – Distribution of algebraic EE over main domain during simulation (3DBlackOil test case)

on this element.

Therefore, we investigate experimentally if there is a link between the values of error estimates
and the conditioning of the discretization matrix using data from real test cases. We consider two
test cases presented earlier in this chapter (3DBlackOil, SPE10Layer85) for which we extract the
discretization matrices and a posteriori error estimates during specific time steps from the middle
and from the end of the simulation, where the error estimates vector has the most of non-zero
elements. Then we consider mesh partitions of a given size (size), without permutation, that is
to say by keeping the initial order of elements. This way, we have retrieved (EEi)i subvectors of
EE that we map with Aii the corresponding diagonal submatrices of A. After that, we compute
on one hand

(
EEi
)

i the means of vector elements of EEi subvectors and on the other hand the
condition numbers of the submatrices Aii and we compare these quantities. For information, the
meshes are made of 4560 nodes for 3DBlackOil, 12997 nodes for SPE10Layer85. The number of
unknowns per node is 3 for 3DBlackOil, and 2 for SPE10Layer85, which means that the global
sizes of the matrices/vectors are 13680 for 3DBlackOil and 25994 for SPE10Layer85. Figures 1.5, 1.6
represent the condition numbers with respect to the averages of error estimates locally evaluated
by subdomain. We wish to clarify here that since we plot according to the common logarithm, we
have represented zero averages by log10(EEi) = −40 instead of −∞ on the X-axis.

At first sight, we can distinguish in Figures 1.5 and 1.6 three clusters or clouds of points. First, we
have a set of points at top right that contains subdomains in which the average of error estimates
is non-zero (EEi ≥ 10−8) and where the submatrices are relatively ill-conditioned (K(Aii) ≥ 106).
Then there is a second set of points at bottom left that corresponds to the subdomains where error
estimates are equal to zero (EEi == 0) and where the submatrices are relatively well conditioned
(K(Aii) ≤ 106). There is also a third set of points at the top left that consists of subdomains where
the conditioning of the submatrices is rather high even if the error estimates are equal to zero.

Another point to outline is that while zooming the three clouds of points, we observe that the
third cluster is the one that has the fewest points. This trend is being accentuated as we increase
the size of partitions: The third cluster represents only 17% of the total number of points when
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Figure 1.4 – Distribution of algebraic EE over main domain at the end of simulation t = t38 (SPE10Layer85 test case)

(a) size = 200 (b) size = 400

Figure 1.5 – Condition numbers of submatrices VS Error estimates means on subdomains for 2 different sizes of
partitions at end of simulation t = t38 (SPE10Layer85 test case)
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(a) size = 380 (b) size = 760

Figure 1.6 – Condition numbers of submatrices VS Error estimates means on subdomains for 2 different sizes of
partitions at mid-simulation t = t42 (3DBlackOil test case)

size = 400 for the test case SPE10Layer85 (Figure 1.5), while it does not include any point when
size = 760 for the test case 3DBlackOil (Figure 1.6).
In short, the results above show that, experimentally, there is a correlation between error estimates
and the conditioning of the subdomain matrices. The higher error estimates are on a set of mesh
elements, the more badly conditioned the corresponding block in the discretization matrix will be.
This being said, there may be some minor exceptions, mainly towards the end of the simulations
where there are patterns that are difficult to predict (3DBlackOil test case).

1.2.2 Partitioning and permuting the matrix

The methodology used so far to partition the domain is natural and rather basic. It is
similar to a 1D method [23] which consists in attributing (N/#Subdomains) consecutive rows (or
columns) to each part, where N refers to the total number of rows and #Subdomains the number
of parts. On the other hand, it is often possible to reduce intra-processor communication by
partitioning the rows in a better way, not necessarily in a contiguous way, by using graphs to
model the links between mesh elements (that correspond to non-zero entries of the matrix). In
the standard graph model, each row (or column) of the matrix corresponds to a vertex of the
undirected graph G. Hence, by partitioning the vertices of G, we partition the rows (or columns)
of the matrix. However, the standard graph model is limited to symmetric matrices and is not
suited for non symmetric matrices. To accommodate that, some solutions have been proposed
such as the bipartite graph model [75] where we have two distinct sets of vertices: one set to
represent the rows and another one for the columns. The edges between the two sets correspond
to the non-zero coefficients of the matrix.

From graph theory perspective, one characteristic or feature of interest for a splitting, is to minimize
the number of edges that relate two different parts. Another characteristic we would like to satisfy
is to minimize the partition cost function. More precisely, let the undirected graph G be formed by
n vertices whose weights are (wi)i=1,...,n and p is an integer such that ∀ 1 ≤ i ≤ n, 0 < wi ≤ p.
We will denote by C = (Ci,j)i,j=1,...,n the adjacency matrix of the graph G, i.e. its element Ci,j is
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one when there is an edge from vertex i to vertex j, and zero when there is no edge.
Let k ∈ N∗, a k-way partition of G is a set of non empty mutually disjoint subsets, P =

{P(1), P(2), . . . , P(k)} such that
k⋃

i=1
P(i) = G. The cost of partition P is then defined by,

cost =
n

∑
i=1

n

∑
j=1
j/∈Pi

Ci,j , (1.3)

with Pi ∈ P being the subset to which the node i belongs. Thus, the aim of the classic problem of
graph partitioning is to find a k-way partitioning such that the cost of the partition is as low as
possible. This amounts to minimizing the number of edges (or the sum of their weights in the
case of weighted graphs) between different partitions.

Partitioning is achieved by evenly distributing the vertices between the parts while taking the
context into account. In fact, in order to distribute computations and to balance the loads, a
good splitting would be the one that partitions the domain into subdomains with the same sizes.
Figure 1.7 represents the matrix considered in Section 1.2.1, and its graph representation. To
simplify the cuts, we consider that all the edges have the same weights.
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Figure 1.7 – Constructing and partitioning the graph of the matrix into two parts.

Since the problem of partitioning a graph into several subgraphs while minimizing the size of the
cut is NP-hard, heuristics are generally used to get approximate solutions that are satisfactory
enough to replace the optimal solution. There are various software programs that implement
different heuristics. We select METIS as it is one of the most popular graph partitioners [83].
METIS is a library used to partition large meshes or irregular graphs. It can partition a non-
structured graph into a number (k) of parts using either the multilevel recursive bisecting [85], or
the multilevel k-way partitioning [84]. It is this second method that we have tested in this section.
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As has been mentioned earlier, the standard graph model is limited to symmetric matrices while
in our applications, the matrices are not necessarily so. Therefore, the partitioning is performed
on the symmetric matrix A + AT instead of A.

To create an undirected graph from the symmetric matrix, we represent each of the rows (or the
columns) by a vertex and each non-zero off-diagonal entry Aij of the matrix A by an edge between
vertices i and j. Then, we need to determine the weights of the edges and vertices. The weights of
the vertices represent their importance or their complexity. In fact, it is possible to assign different
weights to the vertices to reflect a computing charge that is more or less high at those locations.
This helps to balance the size of partitions not in terms of number of vertices, but according to a
sharper metric that reflects the complexity of each part. On the other hand, the weights of the
edges reflect the degree of connection between vertices. It is a determining factor that affects
the way the partitioner is going to partition the graph. The greater the weight between the two
vertices, the more the partitioner will try to keep them in the same domain.

1.2.2.1 Standard partitioning configuration

Here we conserve the default configuration, where all the vertices have the same weight
since they represent the rows/columns of the matrix. Therefore, there is no particular distinction
between these ones, whereas for weighing the edges, we make use of the coefficients of the matrix.
In fact, the weight of the edge connecting the vertex i and the vertex j, for example will be equal
to the coefficient of the matrix at the intersection of row i and of column j.

Once the graph has been created, and all the weights set, we use the "metismex" function of METIS
for partitioning the graph into k parts where k is a parameter chosen by the user. Each part is
defined by a set of vertex indices. Then, this partitioning of the graph is reflected in the system
by permutations of elements. For the matrix, it is necessary to permute the rows and columns to
form the matrix blocks that correspond to the partitions. This is done as follows,

Ap = RART. (1.4)

For the vectors (solution and right hand side), the permutation is made on the rows in order to
gather the components belonging to the same partition. The permutation operation for a vector v
is then written this way:

vp = R · v; (1.5)

with R being the matrix obtained by assembling the restriction operators Rs specific to each
subdomain s:

R =


R1

R2
...

Rk−1
Rk

 .

If we go back to the example from Figure 1.7, where we have two parts, the first formed by the
nodes from 1 to 8, the second including the nodes from 9 to 16, then the matrix R would match, in
this case, the identity matrix.
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If we take another example with a 9× 9 matrix (the one at the left of Figure 1.8) whose graph
partitioning would give the subdomains Ω1 = {3, 6, 7}, and Ω2 = {1, 2, 4, 5, 8, 9}, then the
permutation operation is written as follows:

R =



0 0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0
1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1


.

The permutation process associated with this partitioning applies as indicated in Figure 1.8.
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Figure 1.8 – Row and column permutations after a partitioning.

After having partitioned the graph and adequately permuted the linear system, we construct
the preconditioner before moving subsequently to the last stage, that is, the solution stage. The
considered preconditioning options will be dealt with later in this document (Section 1.2.3), in
which we will also present the numerical results.

1.2.2.2 Partitioning adjustment based on a posteriori error estimates

Within the context of solving sparse linear systems with an adaptive local choice of precon-
ditioners according to the values of a posteriori error estimates on mesh elements, we model the
problem as a double-criteria partitioning problem. It is no longer only a matter of load balacing
(criterion n°1), but also of intelligent distribution of data depending on the error level (criterion
n°2). For the reasons we have mentioned in Section 1.2.1, and according to an approach that
we will explain in detail later in Section 1.2.3, we would like to use the robust preconditioner
MS for the blocks containing nodes with high values of error estimates, and the less robust
preconditioner MW for the rest. On the other hand, here we aim to limit as far as possible the use
of the preconditioner MS as its use is more costly. For this reason, we have decided to distribute
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the nodes not only according to the coefficients of the matrix (for computational load balancing
or a reduction of dependencies between blocks), but also according to the values of a posteriori
errors estimates. This kind of problem can be seen as a dual-criteria problem of graph partitioning,
for which we suggest the solution described in Algorithm 12.

This solution consists firstly in constructing the graph of the matrix, then in modifying it on the
basis of the values of error estimates so that the vertices corresponding to significant error values
will be strongly linked together. As discussed in the beginning of this Section 1.2.2, this means
creating heavily weighted edges between those vertices. Otherwise, having modified only the
weights of the vertices in proportion to the values of error estimates, there would have been a
scattering of the HE (high level of error) nodes on several parts so as to satisfy the load distribution
criterion, whereas by modifying the edges’ weights, we create artificial connections between the
HE nodes by giving them big weights so that they will be kept together in the least number of
partitions. For this, we initially locate the highest values of error estimates. To do this, we can
either directly specify a minimum threshold (that can be derived from the error estimates theory
for example), or fix a minimum percentage (and thus we will have a threshold defined by the
product of the percentage and the maximum or the average of error estimates). Then, between
these vertices, we are going to create artificial edges that are weighted by the values of error
estimates. If there are already existing edges between these vertices, we modify the edge weights
so as to favour criterion n°2 over criterion n°1. For this, we start by normalizing all the values of
error estimates (by their maximum), then between a vertex i and a vertex j where the respective
values of error estimates EEi and EEj are significant, we fix the edge weight wi,j at,

w(new)
i,j = max

1≤k,l≤n
w(old)

k,l ∗αi,j; αi,j := (1 +
EEi + EEj

2
). (1.6)

In Formula (1.6) above, we multiply the maximum edge weight of the initial graph by a coefficient
that depends on the error values. From the positivity of the values EEi and EEj, and their
normalization, we can deduce the following inequality for the coefficient αi,j,

1 < αi,j ≤ 2. (1.7)

This way, we force the partitioner to take more into account criterion n°2 than criterion n°1.
Once the new graph is completed, we go through the same stages of the process detailed in
Section 1.2.2.1, partitioning into k parts via a call to "metismex" function of METIS, then building
the partition matrix R, and finally the permutation of the linear system. Figure 1.9 represents

Algorithm 12 Partitioning strategy adjusted by a posteriori error estimates
Inputs: A, EE, k

1: Construct the graph that corresponds to the matrix A
2: Normalize EE
3: Locate the vertices SHE corresponding to high values of EE
4: Create artifical EE-weighted edges between the vertices SHE that are not interconnected
5: Replace the edge weights between the already interconnected vertices SHE by greater coefficients involving

EE values
6: Partition into k parts in accordance with the chosen heuristics
7: Build the partition matrix R
8: Permute the linear system by applying R

the partitioning obtained for the matrix considered in the example of Section 1.2.1, after a graph
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adjustment with EE the vector of error estimates. In this example, we assume that the errors are
concentrated on the nodes 6, 10, and 11 of Figure 1.1 for which we consider the following error
estimates:

EE11 = 5 ∗ 10−7, (1.8)

EE10 = 6 ∗ 10−7, (1.9)

EE6 = 7 ∗ 10−7. (1.10)

In the graph from Figure 1.9, the edges in a black solid line correspond to the edges already
existing in the initial graph. Here, we assume that the maximum weight of these edges is equal to
1. The edges that were absent in the initial graph and artificially created after the graph adjustment
strategy are indicated with red dotted lines whereas the edges in black and red stand for the edges
already present in the initial gragh, but whose weights had been modified via Formula (1.6).
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Figure 1.9 – Constructing and partitioning the graph of the matrix into two parts by taking account of the error
estimate values.

When comparing Figures 1.7 and 1.9, we can notice that because of the high values of error
estimates at the nodes 6 and 10, the edge that relates these two nodes is heavily weighted, which
made the node 10 shift from the second part to the first, whereas in order to have the same number
of nodes in each of the parts, the node 8 was shifted in the opposite direction.

One advantage of this modified strategy of clustering based on error estimates is that it makes
it possible not only to have domain partitions that are relatively equal in size (as in the original
version), but also to group in the least domains possible the nodes having the most significant
error estimates. For a rather limited number of subdomains, it is easier to place all the nodes in
a single subdomain with this strategy. While raising considerably the number of domains, we
notice that with this modified strategy, we obtain less HE domains (with high errors) than with
the classical strategy.
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Finally, at this stage the only thing that remains to be done is to construct the adaptive precondi-
tioner in the way described in Section 1.2.3 but this time for the permuted matrix Ap.

1.2.3 Variable block Jacobi-type preconditioning

Error estimates can be good indicators that help identify the parts of the domain where the
algebraic error is important and, consequently, it would be logical to provide more means so as to
locally improve the quality of computations in these areas. Since the iterative solver cannot allow
for such an option, we turned to the preconditioner. Our proposal here is to have a preconditioner
with a variable complexity that adapts to the level of error in the different parts of the domain.
Thus, the domain decomposition is the most natural option for this kind of problem which is not
very far from the context for which the domain decomposition concept was originally initiated,
that is, to separately solve problems relating to subdomains and iterate to correct errors.

1.2.3.1 Defining the concept

While in the domain decomposition preconditioning methods mentioned above the sub-
problems are exactly solved, the Block-Jacobi preconditioner we are considering here in our
adaptive approach of local preconditioning is built from inaccurate factorizations, using incom-
plete block-ILU decompositions on the block diagonal part. Thus, if we consider for example
only two LU-type preconditioners (MS for a robust preconditioner, and MW for a less robust
preconditioner) like in the global approach of Section 1.1, then we will get a preconditioner in
the form M = LU with L and U that will be constructed block by block, as shown in Figures 2, 3,

with the block diagonal factors defined by [Lii , Uii] =

{
MS(Aii) if EEi > 0

MW(Aii) otherwise
where EEi is the

average value of EEi which is the subvector of error estimates on subdomain i. For the choice
of preconditioner, we have retained ILU(0) decomposition [123], which is the least expensive in
computational time, for MW, and LU decomposition [5], which is more expensive but yields an
exact factorization, for MS. We can consider this latter as a direct method for system solving used
here to precondition submatrices of subdomains where the average of error estimates is non-zero.
The advantage of this block decomposition is that the more subdomains there are, the smaller the
size of the submatrices will be. In this way, the cost of LU decomposition remains reasonable.

1.2.3.2 Subdomain merging technique

While applying the adjustment strategy based on a posteriori error estimates, we obtain a
permuted matrix Ap whose block diagonal is formed by submatrices that are ordered according
to the error level. However, it should be noted that when we increase the number of subdomains,
the eigenvalue bounds (cf. Lemma 0.1) are negatively affected. This entails a slower convergence
and an increase in the number of iterations. The idea we want to introduce here now aims at
exploiting the arrangement of the matrix blocks (by level of error) to merge the subdomains that
have nearly the same level of error.
First, this allows us to have less subdomains and thereby less matrix blocks to handle. Secondly,
by proceeding this way, it would be possible to compute one preconditioner common to a set
of subdomains having the same level of error rather than to compute as many preconditioners
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as subdomains, particularly for HE subdomains with high values of error estimates. While the
Block-Jacobi strategy of block adaptive preconditioning consists in computing and applying the
robust preconditioner several times (for every HE subdomain) on matrices with relatively reduced
sizes, the merging technique combined with an adaptive Block-Jacobi preconditioning allows to
compute the robust preconditioner once only, but on bigger matrices (because they resulted from
the merger of at least two subdomains). Thirdly, such preconditioning would be more accurate
since by merging subdomains we compute a preconditioner not only for the diagonal submatrices,
but also for a larger block including as well some extradiagonal matrices that represent the
connections between subdomains.

In the following, we favour the grouping of the HE subdomains (with high error level) because
they are generally very few due to the adjustment of the partitioning based on error estimates. In
some cases, this allows to have one single HE block of a reasonable size, and thus limits the use of
the robust preconditioner MS to only once during the assembly of the adaptive preconditioner.
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Figure 1.10 – Shape of the Block-Jacobi preconditioning matrix after the merger of the first two subdomains

If we reuse the example of Figure 1.7 with 4 subdomains, and assume that the error levels of
the first two subdomains are high and close, then the grouping of these two domains is done as
illustrated in Figure 1.10. There are 3 local preconditionners to be constructed instead of 4, the
first of which is computed for a bigger submatrix, where the off-diagonal matrices A12 and A21
are also taken into account.

1.2.4 Numerical tests

1.2.4.1 Runtime platform

In this part which focuses on the study of the adaptive approach of local preconditioning,
we run numerical tests on an Intel Core i7 mainstream laptop equipped with a quad-core processor,
with a clock rate of 2.7 Ghz and 16 GB of memory.
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1.2.4.2 Computing framework

The adaptive approach of local preconditioning was implemented as prototype in Matlab.
The computing parallelization is managed only by Matlab. The linear solver GMRES that we use
is already defined as a function in Matlab while the preconditioners are derived from "The matlab
suite" collection * of Yousef Saad. The dimension of Krylov subspace for GMRES is set to 100.
This work aims to validate the adaptive preconditioning strategies.

1.2.4.3 Presentation of the study cases

As for the numerical results shown later in this section, they were obtained from real data (of
real application cases). The linear systems (matrices, second member vectors and error estimates)
are extracted from several reservoir simulations. The test cases are the following. SPE10Layer85 is
a SPE10 model (see Section 1.1.5) reduced to one horizontal layer (Layer85) characterized by a
complex permeability field. This non-stationary model simulates transport on a regular Cartesian
grid composed of 60 vertices in X axis and 220 vertices in Y axis. 3DBlackOil is the same model
described in Section 1.1.5. For this latter model, we extract the data of two time steps in the
middle and in the end of the simulation. We also point out that the matrices of this test case are
non-symmetric.

For the computational tests presented here, we consider the same 3DBlackOil test case as in
Section 1.2.1 and add a symmetrized version of SPE10Layer85 test case, obtained by constructing
the system for the pressure variable only. For this latter test case, the matrix is SPD of size
40040× 40040, therefore, the results of Lemmas 0.1 and 0.2 hold.

1.2.4.4 Block preconditioning without permutation

As a first step, we preserve the initial order of the variables, the matrix and other vectors
are not permuted. The initial domain is partitioned as explained in Section 1.2.1, and the number
of subdomains is varied and we compare the performance (number of solver iterations and the
relative residual) obtained with the following preconditioning options:

• ILU0: The preconditioner MW = ILU(0) is applied on the entire global matrix.

• LU: The LU factorization is applied on the entire global matrix.

• HE(LU)_LE(LU): A Block-Jacobi preconditioner is constructed by computing a preconditioner
MS = LU locally on each subdomain.

• HE(LU)_LE(ILU0): A Block-Jacobi preconditioner is constructed according to the adaptive
approach by assembling the local preconditioners block by block: by locally computing a
preconditioner MS = LU on every (HE) subdomain where the mean value of a posteriori
error estimates is significant, and a precondition MS = ILU(0) on every (LE) subdomain
where the mean value of a posteriori error estimates is negligible.

It should be mentioned that in the result tables, #Sub indicates the total number of subdomains
whereas #HE denotes the number of HE subdomains. For the record, the criterion for sorting

*. http://www-users.cs.umn.edu/ saad/software/home.html



1.2. Local adaptive preconditioning based on a posteriori error estimates 47

the subdomains in this section reads as follows. A subdomain i is classified as HE subdomain
if the average value of a posteriori error estimates on the nodes of this subdomain is nonzero.
Otherwise, subdomain i is classified as LE subdomain.

We compare the performances obtained with different preconditioning strategies and with different
partition sizes. In addition to the solve times, we consider it is relevant to carry out a computational
complexity analysis for the preconditioner construction. We provide estimates of the number of
floating-point operations in Tables 1.5, 1.6, 1.7, 1.8, 1.9, 1.10, and 1.11.
Assuming that for a sparse matrix A of size n derived from the discretization of PDEs on a 3D
regular mesh, the computational complexity of an LU factorization is of the same order as a
Cholesky factorization, that is O(n2) complexity cf. [66], and the computational complexity of an
ILU(0) factorization is at most equal to O(nnz(A)), with nnz denoting the number of non-zero
coefficients, cf. [107, Section 3.3.1], the approximate numbers of floating-point operations needed
for computing each preconditioner considered are given by the formulas below:

comp(LU) = O(n2) (1.11)

comp(ILU0) = O(nnz(A)) (1.12)

comp(HE(LU)_LE(LU)) = O( ∑
1≤i≤#Sub

n2
i ) (1.13)

comp(HE(LU)_LE(ILU0)) = O( ∑
i∈HE

n2
i ) +O( ∑

j∈LE
nnz(Aj)) (1.14)

Table 1.5 – The total number of iterations (IT) needed for convergence of preconditioned GMRES for solving the linear
system stemming from mid-simulation of 3DBlackOil test case.

#Sub #HE Prec Option IT Approx. Prec. Constr. Cost (flops) Time (sec.) Rel_Res

1 -

None 1143 - - 9.89 ∗ 10−7

ILU0 843 3.26 ∗ 105 30.49 8.11 ∗ 10−7

LU 1 1.87 ∗ 108 89.39 2.99 ∗ 10−13

18 10
HE(LU)_LE(LU) 728 1.04 ∗ 107 28.71 9.81 ∗ 10−7

HE(LU)_LE(ILU0) 759 5.88 ∗ 106 24.26 9.98 ∗ 10−7

36 15
HE(LU)_LE(LU) 818 5.20 ∗ 106 27.3 9.81 ∗ 10−7

HE(LU)_LE(ILU0) 855 2.29 ∗ 106 17.71 9.96 ∗ 10−7

72 26
HE(LU)_LE(LU) 941 2.60 ∗ 106 18.39 9.98 ∗ 10−7

HE(LU)_LE(ILU0) 951 1.05 ∗ 106 13.94 9.96 ∗ 10−7

144 43
HE(LU)_LE(LU) 1037 1.30 ∗ 106 12.4 9.93 ∗ 10−7

HE(LU)_LE(ILU0) 1037 4.80 ∗ 105 11.22 9.93 ∗ 10−7

With the results obtained (Tables 1.5, 1.6, and 1.7), it can be observed that the adaptive approach
of block preconditioning HE(LU)_LE(ILU0) allows a faster convergence compared with using
one single preconditioner for the entire matrix (ILU0, LU). Indeed, even though the number of
iterations with the adaptive preconditioner is not always lower than that with a LU or ILU(0)
preconditioner, we can observe that the total solve time is higher. This is due to the fact that
computing complete or incomplete factorization of the entire matrix is rather costly. With
respect to a Block-Jacobi preconditioning with the same LU preconditioner for all subdomains
HE(LU)_LE(LU), the adaptive preconditioner performs better than HE(LU)_LE(LU) in Tables 1.5
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Table 1.6 – The total number of iterations (IT) needed for convergence of preconditioned GMRES for solving the linear
system stemming from the end of simulation of 3DBlackOil test case.

#Sub #HE Prec Option IT Approx. Prec. Constr. Cost (flops) Time (sec.) Rel_Res

1 -

None 961 - - 9.92 ∗ 10−7

ILU0 76 3.26 ∗ 105 28.74 9.08 ∗ 10−7

LU 1 1.87 ∗ 108 84.53 5.58 ∗ 10−14

18 13
HE(LU)_LE(LU) 714 1.04 ∗ 107 27.96 9.92 ∗ 10−7

HE(LU)_LE(ILU0) 726 7.57 ∗ 106 23.27 9.94 ∗ 10−7

36 21
HE(LU)_LE(LU) 758 5.20 ∗ 106 25.99 9.95 ∗ 10−7

HE(LU)_LE(ILU0) 763 3.12 ∗ 106 19.38 9.98 ∗ 10−7

72 37
HE(LU)_LE(LU) 799 2.60 ∗ 106 15.99 9.96 ∗ 10−7

HE(LU)_LE(ILU0) 800 1.42 ∗ 106 13.59 9.87 ∗ 10−7

144 64
HE(LU)_LE(LU) 895 1.30 ∗ 106 10.04 9.96 ∗ 10−7

HE(LU)_LE(ILU0) 895 6.51 ∗ 105 10.63 9.85 ∗ 10−7

Table 1.7 – The total number of iterations (IT) needed for convergence of preconditioned GMRES for solving the linear
system stemming from the symmetrized version of SPE10-Layer85 test case.

#Sub #HE Prec Option IT Approx. Prec. Constr. Cost (flops) Time (sec.) Rel_Res

1 -

None 386 396 - - 1 ∗ 10−6

ILU0 3 314 2.9 ∗ 105 122.34 9.99 ∗ 10−7

LU 1 1.60 ∗ 109 7527.89 6.79 ∗ 10−11

64 32
HE(LU)_LE(LU) 3 261 2.50 ∗ 107 60.85 9.99 ∗ 10−7

HE(LU)_LE(ILU0) 3 261 1.25 ∗ 107 61.87 9.99 ∗ 10−7

128 64
HE(LU)_LE(LU) 4 413 1.25 ∗ 107 84.90 9.99 ∗ 10−7

HE(LU)_LE(ILU0) 4 413 6.31 ∗ 106 84.33 9.99 ∗ 10−7

256 127
HE(LU)_LE(LU) 7 028 6.28 ∗ 106 129.36 9.99 ∗ 10−7

HE(LU)_LE(ILU0) 7 028 3.17 ∗ 106 128.24 9.99 ∗ 10−7

512 254
HE(LU)_LE(LU) 6 048 3.13 ∗ 106 105.89 9.99 ∗ 10−7

HE(LU)_LE(ILU0) 6 048 1.60 ∗ 106 107.81 9.99 ∗ 10−7

and 1.6. For Table 1.7) which represents a complex case where the convergence is more difficult
to reach, we obtain results that are as good as HE(LU)_LE(LU). We observe also that for the
three tables, when the number of subdomains is increased, more iterations are needed for the
convergence. This is a characteristic feature of block Jacobi-type methods.

1.2.4.5 Block preconditioning with permutation

In a second phase, we use METIS to partition the domain and permute the linear system
accordingly, as described in Section 1.2.2. Henceforth, the new criterion to be used to sort the
subdomains is the following. A subdomain i is classified as HE subdomain if the maximum value
of a posteriori error estimates on the nodes of this subdomain is greater than a certain percentage
δ of the absolute maximum value of a posteriori error estimates: max

j
(EEi)j > δ max

j,k
(EEk)j.
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Otherwise, subdomain i is classified as LE subdomain. The reason to opt for this maximum
criterion instead of the average criterion is that when we permute the vector of error estimates, the
nonzero elements that were initially aggregated in some localized areas become scattered at all
the subdomains yielding non-zero error average values on subdomains. The maximum criterion
seems to be more suited for this configuration.

Furthermore, if we compare the results of block preconditioning without permutation (Tables 1.6
and 1.7 resp.) and those with permutation (Tables 1.8 and 1.9 resp.), we observe that we manage to
lower the number of iterations by using METIS partitioning. In this case, the maximum criterion
ensures that the number of HE subdomain remains reasonable in comparison with the unpermuted
configuration.

Thereafter, in addition to the preconditioning options (HE(LU)_LE(LU) and HE(LU)_LE(ILU0))
presented in Section 1.2.4.4, we will introduce new ones that are based on the subdomain merging
technique:

• HE(LU,m)_LE(ILU0): A Block-Jacobi preconditioner is computed by computing a precondi-
tioner MS = LU locallly on the merged HE subdomains with significant a posteriori error
estimates values (HE: High Error, m: merge), and a preconditioner MW = ILU(0) locally on
each LE subdomain with negligible a posteriori error estimates values (LE: Low Error).

• HE(LU,m)_LE(ILU0,m): A Block-Jacobi preconditioner is constructed by computing locally a
preconditioner MS = LU on the block resulting from the merger of HE subdomains, and a
preconditioner MW = ILU(0) on the block resulting from the merger of LE subdomains.

Remark 1.2. Note that in the case when all HE subdomains are merged together, and all LE
subdomains are merged together, the bounds of Lemma0.1 are simplified and the resulting
preconditioner M satisfies:

K(M−1A) ≤ 1 + γ

1− γ
; (1.15)

where γ is the C.B.S constant for the matrix consisting of the HE block and the LE block on its
diagonal and the coupling blocks between those two on the off-diagonal part. And when approx-
imate factorizations are used on one or both blocks to build the preconditioner M̃, Lemma 0.2
yields:

K(M̃−1A) ≤ 1 + γ

1− γ
×

max
1≤i≤2

α
(0)
i

min
1≤j≤2

α
(1)
j

; (1.16)

where α
(0)
i , α

(1)
i are defined by (8) with (Aii)i=1,2 standing for the HE block and the LE block

respectively.

To conclude this section, we present in Tables 1.8 and 1.10 the numerical results: the number of
iterations, the total times and the relative residual for solving the linear system stemming from
the final time step of the 3DBlackOil simulation, with all the preconditioning options mentioned
before with or without merger of subdomains, after METIS partitioning and permutation of the
system. Partitioning is carried out either on the initial graph of the matrix or on the graph adjusted
by a posteriori error estimates.
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Table 1.8 – The total number of iterations (IT) needed for convergence of preconditioned GMRES for solving the linear
system stemming from the end of simulation of 3DBlackOil test case. The k-way partitioning of METIS
was applied here followed by proper permutation of the linear system. The percentage used in the error
criterion per subdomain is δ = 5%.

#Sub #HE Prec Option IT Approx. Prec. Constr. Cost (flops) Time (sec.) Rel_Res

1 -

None 961 - - 9.92 ∗ 10−7

ILU0 76 3.26 ∗ 105 28.74 7.43 ∗ 10−7

LU 1 1.87 ∗ 108 84.53 8.54 ∗ 10−13

64 11

HE(LU,m)_LE(ILU0) 102 5.84 ∗ 106 5.79 8.88 ∗ 10−7

HE(LU,m)_LE(ILU0,m) 81 5.89 ∗ 106 7.16 7.46 ∗ 10−7

HE(LU)_LE(ILU0) 118 7.31 ∗ 105 4.17 9.19 ∗ 10−7

128 13

HE(LU,m)_LE(ILU0) 197 2.12 ∗ 106 6.47 9.68 ∗ 10−7

HE(LU,m)_LE(ILU0,m) 99 2.20 ∗ 106 7.33 9.86 ∗ 10−7

HE(LU)_LE(ILU0) 205 3.63 ∗ 105 5.00 9.61 ∗ 10−7

256 19

HE(LU,m)_LE(ILU0) 263 1.24 ∗ 106 5.89 9.95 ∗ 10−7

HE(LU,m)_LE(ILU0,m) 107 1.34 ∗ 106 7.19 9.38 ∗ 10−7

HE(LU)_LE(ILU0) 277 2.55 ∗ 105 5.44 9.90 ∗ 10−7

512 32

HE(LU,m)_LE(ILU0) 453 8.86 ∗ 105 7.68 9.81 ∗ 10−7

HE(LU,m)_LE(ILU0,m) 118 1.03 ∗ 106 7.46 9.38 ∗ 10−7

HE(LU)_LE(ILU0) 483 1.81 ∗ 105 6.99 9.90 ∗ 10−7

Table 1.9 – The total number of iterations (IT) needed for convergence of preconditioned GMRES for solving the linear
system stemming from the symmetrized version of SPE10-Layer85 test case. The k-way partitioning of
METIS was applied here followed by proper permutation of the linear system. The percentage used in the
error criterion per subdomain is δ = 30%

#Sub #HE Prec Option IT Approx. Prec. Constr. Cost (flops) Time (sec.) Rel_Res

1 -

None 386 396 - - 1 ∗ 10−6

ILU0 3 314 2.9 ∗ 105 122.34 9.99 ∗ 10−7

LU 1 1.60 ∗ 109 7527.89 6.79 ∗ 10−11

64 47

HE(LU,m)_LE(ILU0) 949 8.69 ∗ 108 41.05 9.97 ∗ 10−7

HE(LU,m)_LE(ILU0,m) 948 8.69 ∗ 108 40.14 9.98 ∗ 10−7

HE(LU)_LE(ILU0) 1 330 1.84 ∗ 107 48.39 9.99 ∗ 10−7

128 68

HE(LU,m)_LE(ILU0) 1 476 4.54 ∗ 108 39.75 9.99 ∗ 10−7

HE(LU,m)_LE(ILU0,m) 1 499 4.54 ∗ 108 43.71 9.99 ∗ 10−7

HE(LU)_LE(ILU0) 1 391 6.81 ∗ 106 34.69 9.99 ∗ 10−7

256 95

HE(LU,m)_LE(ILU0) 1 544 2.21 ∗ 108 32.76 9.99 ∗ 10−7

HE(LU,m)_LE(ILU0,m) 1 441 2.21 ∗ 108 35.89 9.99 ∗ 10−7

HE(LU)_LE(ILU0) 1 669 2.50 ∗ 106 34.36 9.98 ∗ 10−7

512 130

HE(LU,m)_LE(ILU0) 2 677 1.03 ∗ 108 50.57 9.99 ∗ 10−7

HE(LU,m)_LE(ILU0,m) 2 718 1.03 ∗ 108 59.09 9.99 ∗ 10−7

HE(LU)_LE(ILU0) 2 611 9.92 ∗ 105 47.79 9.99 ∗ 10−7
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Table 1.10 – The total number of iterations (IT) needed for convergence of preconditioned GMRES for solving the
linear system stemming from the end of simulation of 3DBlackOil test case. The k-way partitioning of
METIS was applied here on the graph adjusted by error estimates, followed by proper permutation of the
linear system. The percentage used in the error criterion per subdomain is δ = 5%

#Sub #HE Prec Option IT Approx. Prec. Constr. Cost (flops) Time (sec.) Rel_Res

1 -

None 961 - - 9.92 ∗ 10−7

ILU0 76 3.26 ∗ 105 28.74 7.43 ∗ 10−7

LU 1 1.87 ∗ 108 84.53 8.54 ∗ 10−13

64 3

HE(LU,m)_LE(ILU0) 131 6.73 ∗ 105 4.71 9.68 ∗ 10−7

HE(LU,m)_LE(ILU0,m) 98 7.28 ∗ 105 7.17 9.00 ∗ 10−7

HE(LU)_LE(ILU0) 189 3.94 ∗ 105 4.88 9.77 ∗ 10−7

128 6

HE(LU,m)_LE(ILU0) 167 6.37 ∗ 105 5.21 9.74 ∗ 10−7

HE(LU,m)_LE(ILU0,m) 101 7.17 ∗ 105 7.48 9.95 ∗ 10−7

HE(LU)_LE(ILU0) 286 2.97 ∗ 105 5.72 9.83 ∗ 10−7

256 11

HE(LU,m)_LE(ILU0) 281 5.56 ∗ 105 5.65 9.72 ∗ 10−7

HE(LU,m)_LE(ILU0,m) 118 6.59 ∗ 105 7.49 9.20 ∗ 10−7

HE(LU)_LE(ILU0) 366 2.38 ∗ 105 6.28 9.90 ∗ 10−7

512 19

HE(LU,m)_LE(ILU0) 470 4.25 ∗ 105 7.11 9.83 ∗ 10−7

HE(LU,m)_LE(ILU0,m) 132 5.74 ∗ 105 7.58 9.75 ∗ 10−7

HE(LU)_LE(ILU0) 415 1.77 ∗ 105 8.02 9.69 ∗ 10−7

Table 1.11 – The total number of iterations (IT) needed for convergence of preconditioned GMRES for solving the
linear system stemming from the symmetrized version of SPE10-Layer85 test case. The k-way partitioning
of METIS was applied here on the graph adjusted by error estimates, followed by proper permutation of
the linear system. The percentage used in the error criterion per subdomain is δ = 60%

#Sub #HE Prec Option IT Approx. Prec. Constr. Cost (flops) Time (sec.) Rel_Res

1 -

None 386 396 - - 1 ∗ 10−6

ILU0 3 314 2.9 ∗ 105 122.34 9.99 ∗ 10−7

LU 1 1.60 ∗ 109 7527.89 6.79 ∗ 10−11

64 6

HE(LU,m)_LE(ILU0) 3 692 1.48 ∗ 107 67.67 9.99 ∗ 10−7

HE(LU,m)_LE(ILU0,m) 4 077 1.48 ∗ 107 88.74 9.99 ∗ 10−7

HE(LU)_LE(ILU0) 3 644 2.69 ∗ 106 67.61 9.99 ∗ 10−7

128 10

HE(LU,m)_LE(ILU0) 3 221 1.06 ∗ 107 57.96 9.99 ∗ 10−7

HE(LU,m)_LE(ILU0,m) 2 553 1.06 ∗ 107 59.22 9.99 ∗ 10−7

HE(LU)_LE(ILU0) 3 654 1.29 ∗ 106 65.43 9.99 ∗ 10−7

256 17

HE(LU,m)_LE(ILU0) 4 111 7.74 ∗ 106 74.23 9.99 ∗ 10−7

HE(LU,m)_LE(ILU0,m) 3 662 7.76 ∗ 106 79.27 9.99 ∗ 10−7

HE(LU)_LE(ILU0) 4 106 6.96 ∗ 105 73.41 9.98 ∗ 10−7

512 59

HE(LU,m)_LE(ILU0) 3 096 2.24 ∗ 107 56.08 9.99 ∗ 10−7

HE(LU,m)_LE(ILU0,m) 3 252 2.24 ∗ 107 69.9 9.99 ∗ 10−7

HE(LU)_LE(ILU0) 4 136 6.10 ∗ 105 74.32 9.99 ∗ 10−7

Moreover, we notice that the more we increase the number of domains, the more the complexity
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decreases, but on the other hand, we make more iterations (due to block Jacobi). Consequently, in
the present case where there is no overlap, the number of subdomains should not be increased by
much. Furthermore, we observe that the merger of subdomains allows to decrease the number
of iterations compared to the non-merged version. On the other side, the cost of constructing
the preconditioner becomes more substantial as we deal with larger blocks. Tables 1.9 and 1.10
show that it can be interesting to pay this cost when the case is complex and the convergence
is hard to reach. Another point to outline is that the use of the graph modified by the values of
error estimates to partition the matrix leads to a decrease not only in the number of HE domains,
but also in the computational complexity of adaptive preconditioners in comparison with the
original graph. This is clearly seen when comparing Tables 1.8 and 1.9 with Tables 1.10 and 1.11
respectively.
Lastly, it may be concluded that the adaptive preconditioner HE(LU)_LE(ILU0) offers an acceptable
solution, with almost as many iterations, as much solve time as HE(LU)_LE(LU) preconditioner,
and at a lower preconditioning cost. In addition, we recall that the use of an exact factorization
(such as LU) can pose a problem of memory insufficiency, and therefore is not always possible on
very large matrices such as those we deal with in geoscience simulations.

1.2.5 Conclusion

The main conclusion to draw from this chapter is that error estimates can be considered
as an intelligent decision aid tool concerning the choice of the preconditioner. In a first phase,
and on the basis of error estimators, we have been able to choose the right preconditioner to be
used at every time step during a simulation without any preliminary information about the study
case. With the global adaptive algorithm, we realize that overall we have made the right choice
of preconditioner even if the gain in time is not always very significant. In a second step, we
considered the local algebraic error estimates instead of global ones to derive the local adaptive
preconditioning algorithm. The proposed preconditioning strategy shows that performing a
specific handling of the blocks where the a posteriori error estimates are significant is interesting.
However, the approach suggested is not developed enough. Indeed, a naive variant of Block-Jacobi
preconditioner is not sufficient to speed up the solve convergence. Therefore, further research
is needed to find a more appropriate preconditioning strategy. In the sequel, we show different
approaches that we devised to address this problem.
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Abstract

In this chapter, we discuss a new adaptive approach for iterative solution of sparse linear
systems arising from partial differential equations (PDE) with self-adjoint operators. The idea is
to use the a posteriori estimated local distribution of the algebraic error in order to steer and
guide the solve process in such way that the algebraic error is reduced more efficiently in the
consecutive iterations. We first explain the motivation behind the proposed procedure and show
that it can be equivalently formulated as constructing a special combination of preconditioner
and initial guess for the original system. We present some numerical experiments in order to
identify when the adaptive procedure can be of practical use.
Keywords— Algebraic error, adaptivity, iterative solve, preconditioning, domain decomposition

2.1 Introduction

The seminal as well as recent results on a posteriori error estimation allowed various
adaptive concepts in numerical solution of partial differential equations (PDEs). For instance, an
a posteriori local estimation of the discretization error (see, e.g., [14, 141, 30]) forms the basis for
an adaptive mesh refinement. Such refinement can reduce the norm of the discretization error at
a significantly lower cost in comparison to uniform mesh refinement, and typically results in a
close-to-uniform spatial distribution of the error over the domain, see, e.g. [112]. These types of
estimators, however, typically assume the exact solution of the associated algebraic system that is
impossible to achieve in practice.

Inclusion of an inexact (approximate) algebraic solution into error estimators gave rise to inexact
adaptive solution procedures, which, as a crucial ingredient, involve stopping criteria for iterative
algebraic solvers, see, e.g., [10, Section 4]. The corresponding error estimators are typically
decomposed into several parts that are identified with different components of the overall error,
such as linearization, discretization and algebraic. The criteria in literature are based on well
justified heuristics (see, e.g., [19, 55]) and, recently in [113, 114], also on mathematically rigorous
proofs.

A common drawback of the above mentioned, rigorously justified estimators is their evaluation
cost, which is typically (very) high with respect to the cost of an algebraic solver iteration. However,
recent work [144] has resulted in the development of a posteriori estimates that can be easily
coded, cheaply evaluated, and efficiently used in practical simulations providing a guaranteed
control over different error components. It has confirmed that the computation of error estimators
can be accessible even within non-academic contexts.

In this chapter, we introduce a novel adaptive preconditioner for iteratively solving sparse linear
systems arising from PDEs that modifies the iteration process according to the a posteriori
estimated local distribution of the algebraic error. To the best of our knowledge, there are yet no
such procedures described in the literature. This chapter therefore opens a discussion if adaptive
approaches aiming at reducing the algebraic error in targeted parts of the domain are worth
considering (at least in some cases) and how this aim can be achieved. In this chapter we focus on
self-adjoint PDE problems of second order only.

The adaptive procedure proposed in this chapter can be briefly described as follows. In a given
iteration step, based on the algebraic error distribution, a part of the solution domain and the
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associated algebraic degrees of freedom with high algebraic error are indicated. Then a block
matrix splitting is introduced and used in a partitioned matrix procedure in order to yield, in the
consecutive iterations, the residual vectors vanishing in the degrees of freedom indicated in the
first step. We show that the proposed procedure corresponds to building, in a posteriori fashion
based on information on the algebraic error at the above-mentioned iteration step, a particular
combination of preconditioner and initial guess for following iterations. In addition, the sufficient
and necessary conditions for attaining vanishing residuals are discussed.

This chapter is organized as follows. Section 2.2 presents the model problem. Then, for that model,
Section 2.3 briefly recalls one way to estimate the local distribution of the algebraic error using
flux reconstructions. In Section 2.4, we introduce a matrix splitting based on the distribution
of algebraic errors. In Section 2.5, we propose the above mentioned adaptive procedure. In
Section 2.6, we present and comment several numerical experiments before reaching a conclusion
on when this procedure can be useful in accelerating the iterative solver. Finally, the conclusion
overviews the work undertaken in this research and outlines directions for future study.

2.2 Model problem

This section introduces the model problem, and presents the key assumption that motivates
the need for an adaptive solving procedure. This section and the following one (2.2 and 2.3) then
hold for the next chapters( 3 and 4).

Let Ω ⊂ Rd, 1 ≤ d ≤ 3 be a polytopal domain (open, bounded and connected set). We denote by
Ω, Ωo, ∂Ω and Th resp. the closure, interior, boundary and a matching simplicial mesh of Ω. The
extension of the results to nonmatching meshes is possible. We use the standard notation L2(Ω),
H1(Ω) and H1

0(Ω) for the spaces of integrable functions, resp. integrable functions admitting weak
derivations, and trace vanishing on ∂Ω. For a vector w of length n ∈ N and a subset L ⊂ J1, nK,
we denote by wL the restriction of w to its components whose indexes belong to L.

Consider the problem that consists in seeking u : Ω→ R such that:{
−∇ · (K∇u) = f in Ω

u = 0 on ∂Ω
(2.1)

where f : Ω→ R is a source term in L2(Ω), and K is an uniformly bounded and positive definite
diffusion tensor. For the sake of simplicity we assume that f and K are piecewise constant with
respect to the mesh Th. The weak form reads, find u ∈ V := H1

0(Ω) such that

a(u, v) := (K
1
2∇u, K

1
2∇v) = ( f , v) ∀v ∈ V (2.2)

where a is a bilinear form. Associated to Th, let there be a discrete subspace Vh ⊂ V. The Galerkin
solution uh ∈ Vh satisfies

(K
1
2∇uh, K

1
2∇vh) = ( f , vh) ∀vh ∈ Vh. (2.3)

Considering a basis (ϕl)1≤l≤n of Vh, this problem is equivalent to a system of linear algebraic
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equations,
A · x = b, (2.4)

where A ∈ Rn×n is a symmetric positive definite (SPD) matrix defined by Ajk = (K
1
2∇ϕk , K

1
2∇ϕj),

1 ≤ j, k ≤ n, and b ∈ Rn is the right hand side vector, bj = ( f , ϕj). The continuous solution is

then given by uh = ∑n
l=1 xl ϕl . Let x(i) be an approximate solution of (2.4) obtained after running i

iterations of an iterative solver, and u(i)
h = ∑n

l=1 x(i)l ϕl the associated function from Vh. We denote
by r(i) the corresponding algebraic residual vector r(i) := b−A · x(i). A relevant measure of the
algebraic error is the energy norm

‖K
1
2∇(uh − u(i)

h )‖L2(Ω) =

√
a(uh − u(i)

h , uh − u(i)
h ) = ‖x− x(i)‖A = ‖r(i)‖A−1 . (2.5)

The adaptive solution of linear systems proposed in this work is based on the fact that we can
(tightly) estimate the local distribution of the error

‖K
1
2∇(uh − u(i)

h )‖L2(K), ∀K ∈ Th, (2.6)

where K typically stands for the mesh elements (Ω = ∪K). Based on this, we decompose the
domain Ω into two disjoint parts Ω1 and Ω2:{

Ω1 ∪Ω2 = Ω

Ωo
1 ∩Ωo

2 = ∅
(2.7)

where Ω1 is the part with the high algebraic error:

||K1/2∇(uh − u(i)
h )||2L2(Ω1)

� ||K1/2∇(uh − u(i)
h )||2L2(Ω2)

(2.8)

In fact, (2.8) is our main starting hypothesis. Figure 2.1 gives an illustrative example with Ω1 and
Ω2 composed of a single element each.

Ω1Ω2

1 2

3 4

1

43

2

Figure 2.1 – Simple example of the decomposition (2.7) with a 2× 2 mesh grid.

2.3 A posteriori error estimates

In this section we describe briefly one approach to estimate the local distribution of the
algebraic error (2.6) using flux reconstructions following [79, 55, 114] and references therein. We
start by introducing the basic techniques of these a posteriori error estimates, then we detail how
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to get a sharp computable upper bound on the algebraic error. Note that this section recalls
existing techniques and results and we only adapt the a posteriori error estimate of [114] to our
chosen model problem.

2.3.1 Basic a posteriori error estimates

Assuming that a Galerkin solution uh is available, we start by bounding the energy norm of
the error u− uh represented as

‖K
1
2∇(u− uh)‖L2(Ω) = sup

v∈V,‖∇v‖=1
(K

1
2∇(u− uh), K

1
2∇v). (2.9)

Note that following (2.2), then

‖K
1
2∇(u− uh)‖L2(Ω) = sup

v∈V,‖∇v‖=1
{( f , v)− (K

1
2∇uh, K

1
2∇v)}. (2.10)

The key ingredient of our estimate is a reconstructed flux θh which is a piecewise polynomial
function in the Raviart–Thomas–Nédélec subspace RTN(Th) of the infinite-dimensional space
H(div, Ω) which is reconstructed in order to mimic the continuous flux θ := −K∇u. In other
words, θh is reconstructed to satisfy

∇ · θh = f . (2.11)

Recall from Section 2.2 that f is assumed to be piecewise constant with respect to the mesh Th.
Now, we use the Green and the Cauchy–Schwarz inequality together with (2.10) and we follow
[114, Section 4.1], to write

‖K
1
2∇(u− uh)‖L2(Ω) = inf

σ∈H(div,Ω)
∇·σ= f

sup
v∈V
‖∇v‖=1

{( f −∇ · σ, v)

−(K
1
2∇uh+ K−

1
2σ, K

1
2∇v)}

= inf
σ∈H(div,Ω)
∇·σ= f

sup
v∈V
‖∇v‖=1

{−(K
1
2∇uh + K−

1
2σ, K

1
2∇v)}

= inf
σ∈H(div,Ω)
∇·σ= f

‖K
1
2∇uh + K−

1
2σ‖L2(Ω)

≤ ‖K
1
2∇uh + K−

1
2 θh‖L2(Ω).

This gives a guaranteed upper bound on the discretization error. Note that the obtained estimate
relies only on the weak formulation and the reconstructed flux θh. Finally, it is important to
mention that the needed reconstructed flux θh can be easily reconstructed for various discretiza-
tion schemes like finite elements, nonconforming finite elements, discontinuous Galerkin, finite
volumes, and mixed finite elements, see [55] for more details.
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2.3.2 Upper bound on the algebraic error

In this section we suppose that we use an iterative solver to obtain an approximate solution
u(i)

h of (2.3) after running i iterations. In order to estimate the algebraic error we first introduce a

representation of the algebraic residual vector which will be a function s(i)h ∈ L2(Ω) satisfying

(s(i)h , ϕj) = r(i)j , 1 ≤ j ≤ n. (2.12)

Details about the reconstruction of s(i)h with two differents examples can be found in [114, Sec-
tion 5.1]. Note that from (2.12) and the definition of the algebraic residual vector r(i) one can
write

(s(i)h , ϕj) = ( f , ϕj)− (K
1
2∇u(i)

h , K
1
2∇ϕj), 1 ≤ j ≤ n. (2.13)

Consequently,
(s(i)h , vh) = ( f , vh)− (K

1
2∇u(i)

h , K
1
2∇vh). (2.14)

Using (2.3), then (2.14) gives

(s(i)h , vh) = (K
1
2 (∇uh −∇u(i)

h ), K
1
2∇vh). (2.15)

This representation of the algebraic residual vector plays a key role in the estimation of the algebraic
error. By applying the Cauchy-Schwarz inequality together with the Friedrichs inequality on
(2.15), one gets

(K
1
2 (∇uh −∇u(i)

h ), K
1
2∇vh) = (s(i)h , vh)

≤ ‖s(i)h ‖L2(Ω)‖vh‖L2(Ω)

≤ ‖s(i)h ‖L2(Ω)

(
CFhΩ‖∇vh‖L2(Ω)

)
≤ ‖s(i)h ‖L2(Ω)

(
CFhΩλ

− 1
2

K ‖K
1
2∇vh‖L2(Ω)

)
,

where 0 < CF ≤ 1 is the constant from the Friedrichs inequality, hΩ the diameter of the domain
Ω, and λK the smallest eigenvalue of K. First computable upper bound is then obtained for the
algebraic error as

‖K
1
2∇(uh − u(i)

h )‖L2(Ω) ≤ CFhΩλ
− 1

2
K ‖s

(i)
h ‖L2(Ω). (2.16)

However, this upper bound often yields a significant overestimation; see, e.g., [114, Sections 3.1
and 4.2]. An improvement of the upper bound (2.16) can be obtained by using flux reconstruction
techniques and additional algebraic iterations. Following Section 2.3.1 and [114, Section 5.3], we
consider a reconstructed flux θ(i)h ∈ RTN(Th) satisfying ∇ · θ(i)h = f − s(i)h . Then, after ν > 0

additional iterations we similarly construct from the algebraic residual vector r(i+ν) a representation
s(i+ν)

h , and another reconstructed flux θ(i+ν)
h ∈ RTN(Th) satisfying ∇ · θ(i+ν)

h = f − s(i+ν)
h . With

these different reconstructions we have

s(i)h = s(i+ν)
h +∇ · θ(i+ν)

h −∇ · θ(i)h ,
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and therefore (2.15) gives

(K
1
2 (∇uh −∇u(i)

h ), K
1
2∇vh) = (K−

1
2 (θ

(i+ν)
h − θ(i)h ), K

1
2∇vh) + (s(i+ν)

h , vh).

Consequently,

‖K
1
2∇(uh − u(i)

h )‖L2(Ω) ≤ ‖K−
1
2 (θ

(i+ν)
h − θ(i)h )‖L2(Ω) + CFhΩλ

− 1
2

K ‖s
(i+ν)
h ‖L2(Ω) (2.17)

The idea of using additional algebraic iterations is very useful in practice [61]. In fact, for a
sufficiently large value of ν one can assume that there exists γ > 0 such that

CFhΩλ
− 1

2
K ‖s

(i+ν)
h ‖L2(Ω) ≤ γ‖K−

1
2 (θ

(i+ν)
h − θ(i)h )‖L2(Ω),

so that
‖K

1
2∇(uh − u(i)

h )‖L2(Ω) ≤ (1 + γ)‖K−
1
2 (θ

(i+ν)
h − θ(i)h )‖L2(Ω),

which gives an upper bound easily computed and cheaply evaluated in practice even for complex
problems, see [144] for details.

Remark 2.1 (Local indicators for the algebraic error). In order to estimate the local distribution
of the algebraic error (2.6) using flux reconstructions, one can use the local indicators η

(i)
alg,K :=

‖K− 1
2 (θ

(i+ν)
h − θ(i)h )‖L2(K) + CFhΩλ

− 1
2

K ‖s
(i+ν)
h ‖L2(K). Relying on the previous discussion, in practice

with a sufficiently large ν one can use the local algebraic indicator ‖K− 1
2 (θ

(i+ν)
h − θ(i)h )‖L2(K) which

can be the ingredient of our adaptive procedure.

Remark 2.2 (A posteriori error estimates for the total error). A computable upper bound can be
obtained on the energy norm of the total error u− u(i)

h following the same ideas as in Section 2.3.1
and Section 2.3.2,

‖K
1
2∇(u− u(i)

h )‖L2(Ω) ≤ η
(i)
dis + η

(i)
alg,

with
η
(i)
dis := ‖K

1
2∇u(i)

h + K−
1
2 θ

(i)
h ‖L2(Ω)

and
η
(i)
alg := ‖K−

1
2 (θ

(i+ν)
h − θ(i)h )‖L2(Ω) + CFhΩλ

− 1
2

K ‖s
(i+ν)
h ‖L2(Ω),

see [114] for the full demonstration.

Remark 2.3 (A posteriori error estimates in the multilevel setting). There is also another way to
construct upper bounds for the total and algebraic errors without the need of running additional
iterations of the algebraic solver. The construction assumes the existence of the hierarchy of
meshes, with a global solve on the coarsest mesh; see [113] for more details.

2.4 Matrix decomposition and local error reduction

In this section, we introduce a sum splitting of the matrix A associated to the partitioning
(2.7). Then, we propose a preconditioner that ensures that the algebraic error is locally decreased
on the targeted subdomain.
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2.4.1 Matrix decomposition: sum splitting

According to the domain decomposition of (2.7) mentioned above, we denote by A(1) and
A(2) the local stiffness matrices for the subdomains Ω1 and Ω2, respectively. While for the matrix
A we have

Ajk = (K
1
2∇ϕk , K

1
2∇ϕj), 1 ≤ j, k ≤ n ,

we define

A(1)
jk = (K

1
2∇ϕk , K

1
2∇ϕj)Ω1 , 1 ≤ j, k ≤ n, supp ϕk ∩Ω1 6= ∅, supp ϕj ∩Ω1 6= ∅,

A(2)
jk = (K

1
2∇ϕk , K

1
2∇ϕj)Ω2 , 1 ≤ j, k ≤ n, supp ϕk ∩Ω2 6= ∅, supp ϕj ∩Ω2 6= ∅.

For the ease of presentation we assume a convenient ordering such that the variables corresponding
to the vertices of Ω1 are sorted first and those of Ω2 second. Then we can split the original operator,
represented algebraically by the stiffness matrix A, as follows

A = A(1)
p + A(2)

p , (2.18)

where A(1)
p , A(2)

p are symmetric positive semidefinite (SPSD) defined as:

A(1)
p =

(
A(1) 0

0 0

)
; A(2)

p =

(
0 0
0 A(2)

)
.

They are the extensions of the local stiffness matrices A(1) and A(2) to the entire domain. Then,
we get the equivalent formulation of (2.8) in the matrix representation,

(x− x(i))T ·A(1)
p · (x− x(i))� (x− x(i))T ·A(2)

p · (x− x(i)) , (2.19)

where x(i) is the approximate solution at iteration i. Figure 2.2(a) illustrates how the global matrix
A is built from A(1) and A(2). The shaded part represents the common vertices between Ω1 and
Ω2. It is the part of the matrix where the contributions from both subdomains are summed
together.

2.4.2 Matrix decomposition: Block partitioning

In this section, we derive a 2× 2 block-partitioning of the matrix. This enables us to define a
second approach based on appropriate initial guess and preconditioners to reduce the global error
and make the residual nil in Ω1. In general, unless ∂Ω1 ∩ ∂Ω 6= ∅, the matrix A(1) is singular.
Since many common preconditioners and algebraic techniques (such as Cholesky factorization)
are not suitable for a singular matrix, we replace the sum-splitting of the operator, as in (2.18), by
a block partitioning of the matrix, such as

A =

(
AL ALR

ARL AR

)
. (2.20)
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F

E(1)T

E(1)

E(2)

E(2)T

A(2)

A
Aint

A(1)

(a) Splitting of matrix A with local stiffness matri-
ces

AL

ARARL

ALR
A

(b) Algebraic 2× 2 block splitting of matrix A

Figure 2.2 – Splittings of matrix A with local stiffness matrices (left) and the associated algebraic 2× 2 block splitting
(right)

Now if we decompose A(1) and A(2) as:

A(1) =

(
F E(1)

E(1)T
A(1)

int

)
; A(2) =

(
A(2)

int E(2)

E(2)T
AR

)
, (2.21)

then the algebraic 2× 2 block splitting of Figure 2.2(b) is built as follows:

ALR = AT
RL =

(
0

E(2)

)
; AL = A(1) +

(
0 0
0 A(2)

int

)
, (2.22)

where we denote,

Q L: the set of nodes that belong to Ω1,

Q R: the complementary of L.

Clearly, the matrix AR does not contain any information on the common degrees of freedom, since
the shaded part (Aint = A(1)

int + A(2)
int ) is fully and exclusively integrated in AL. Note also that the

matrices AL and AR are symmetric positive definite.

Remark 2.4. The number of degrees of freedom of the overlapping part Aint depends on the
algebraic error distribution. It may not be small with respect to the sizes of AL and AR respectively.

Splitting the vectors b and x according to the partitioning in (2.20) yields the vectors bL, bR, xL
and xR. Then, the corresponding block formulas for the solution x and the residual for x(i) are:

A · x = b ⇐⇒
(

AL ALR
ARL AR

)
·
[

xL
xR

]
=

[
bL
bR

]
⇐⇒

[
bL
bR

]
=

[
AL · xL + ALR · xR
ARL · xL + AR · xR

]
(2.23)

b−A · x(i) = A · (x− x(i)) =

[
AL · (x− x(i))L + ALR · (x− x(i))R
ARL · (x− x(i))L + AR · (x− x(i))R

]
(2.24)

In the following, we present some properties of the submatrix AL, that allow to formulate an
hypothesis for the algebraic errors that suits the 2× 2 block splitting.
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Lemma 2.1 (L-Superiority wrt Ω1). Let w be an arbitrary vector. The following inequality holds:

wT
L ·AL ·wL ≥ wT

L ·A(1) ·wL .

Proof. We know that A(2) is a symmetric positive semi-definite (SPSD) matrix because it is the
local stiffness matrix for subdomain Ω2. Since A(2)

int is a principal submatrix of A(2), it is SPSD as
well. Therefore, the matrix AL −A(1) from (2.22) is SPSD too and we have:

(wT
L ·AL ·wL)− (wT

L ·A(1) ·wL) = wT
L · (AL −A(1)) ·wL ≥ 0 .

From this lemma, hypothesis (2.19) and the equality

(x− x(j))T ·A(1)
p · (x− x(j)) = (x− x(j))T

L ·A(1) · (x− x(j))L ,

we can derive the subsequent corollary.

Corollary 2.1 (L-Dominance). Let x(j) be an arbitrary vector for which (2.19) is satisfied. Then the
following inequalities hold:

(x− x(j))T
L·AL· (x− x(j))L ≥ (x− x(j))T·A(1)

p · (x− x(j))� (x− x(j))T·A(2)
p · (x− x(j)).

If we rewrite the contribution of each set to the energy norm of the error, we have for any
approximate solution x(i) of the initial system (2.4):

||x− x(i)||2A= 〈A·(x− x(i)), x− x(i)〉= 〈b−A · x(i) , x− x(i)〉L︸ ︷︷ ︸
:=L-term

+ 〈b−A · x(i) , x− x(i)〉R︸ ︷︷ ︸
:=R-term

, (2.25)

where

〈b−A · x(i), x− x(i)〉L = ||(x− x(i))L||2AL
+ (x− x(i))T

L ·ALR · (x− x(i))R, (2.26)

〈b−A · x(i), x− x(i)〉R = ||(x− x(i))R||2AR
+ (x− x(i))T

R ·ARL · (x− x(i))L .

Since A is symmetric, we have the equality of the coupling terms:

(x− x(i))T
R ·ARL · (x− x(i))L = (x− x(i))T

L ·ALR · (x− x(i))R .

As expressed in Corollary 2.1, a concentrated algebraic error on a subdomain Ω1 implies that
the AL-inner product of the error is dominant, and so will be the L-term, according to Equation
(2.26). This is why they should be reduced for an efficient decrease of the energy norm of the error.
We recognize that reducing the AL-inner product is a rather delicate matter, because the vectors
(x− x(i))L and AL · (x− x(i))L are unknown. The alternative that we propose and we consider
reasonable is to take into account a coupling term as well, in order to retrieve a partial residual
(b−A · x(i))L that is computable. Then, we can expect that in (2.25), the L-term is dominant in the
global energy norms from the i-th iteration when hypothesis (2.19) holds, and we seek a process
to efficiently decrease them during the preconditioned solve.
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2.5 Adaptive preconditioner for PCG based on local error indi-
cators

Given that the linear systems dealt with are symmetric, we consider a PCG solver in
the following. On the basis of the matrix decomposition described in 2.4.2, we introduce an
adaptive preconditioning strategy enabling to reduce high local algebraic errors when solving
the preconditioned linear system. The application of such a preconditioner starts after some few
iterations that serve as an initialization phase, and is combined to a specific initial guess for the
subsequent iterations of PCG solver. In the early stages of this study, our attention was clearly
focused on substructuring methods that inspired us to apply to targeted error areas of the domain
a similar treatment to the one foreseen for interface degrees of freedom in substructuring. The
article [87] sets a reference framework for our study. It presents partitioned matrix methods along
with Schur complement methods and establishes the equivalence between those two when PCG is
used. It further suggests a more general form for the preconditioner where the local solves need
not be carried out exactly.

2.5.1 Partitioned preconditioners suited for error reduction

As just explained above in Section 2.4.2, a good and affordable idea for ensuring the decay
of local high algebraic errors seems to be to reduce the partial residual associated to the set of
nodes L. In this respect, the techniques based on Schur complement allow to dissociate the L
and R-parts. The following theorem due to Eisenstat (see [87] and references therein) states an
equivalence between the Schur complement solve and a regular solve on the global system, with
special initial guess and preconditioner. For the sequel, we denote the Schur complement matrix
S := AR −ARLA−1

L ALR, and the modified right hand side g := bR −ARLA−1
L bL.

Theorem 2.1. Using the same notation introduced above, let x(k)S be the k-th iterate of PCG solve of the

system S · xS = g with initial guess x(0)S and preconditioner MS, and x(k) be the k-th iterate of PCG solve
of the system A · x = b with initial guess x(0) and preconditioner M such that:

x(0) =

[
A−1

L · (bL −ALR · x
(0)
S )

x(0)S

]
; M =

(
AL ALR

ARL MS + ARLA−1
L ALR

)
. (2.27)

Then there holds, at each iteration k,

x(k) =

[
A−1

L · (bL −ALR · x
(k)
S )

x(k)S

]
.

Proof. We give here an alternative proof to the one given in [87, Theorem 2.1 (i)] as we demonstrate
by induction the results stated. We keep the notation used in [123, Algorithm 9.1,Chapter 9] for
the PCG algorithm for solving (2.4) and we use an S subscript for the formulas associated to
the system S · xS = g. Let x(k) (resp. x(k)S ) be the approximate solution iterates, p(k) (resp. p(k)

S )

the search directions, r(k) (resp. r(k)S ) the residual iterates, z(k) (resp. z(k)S ) the residuals for the

preconditioned systems, and α(k) (resp. α
(k)
S ) the step sizes for solving the global system (2.4) (resp.
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the reduced system S · xS = g) by PCG.

Note that the inverse of M can be expressed as:

M−1 =

(
A−1

L + A−1
L ALRM−1

S ARLA−1
L −A−1

L ALRM−1
S

−M−1
S ARLA−1

L M−1
S

)
.

Next, we proceed by induction on k ∈N to prove that:

x(k) =

[
A−1

L · (bL −ALR · x
(k)
S )

x(k)S

]
; r(k) =

[
0

r(k)S

]
; z(k) =

[
−A−1

L ALR · z
(k)
S

z(k)S

]

p(k) =

[
−A−1

L ALR · p
(k)
S

p(k)
S

]
; (r(k))Tz(k) = (r(k)S )Tz(k)S ; α(k) = α

(k)
S .

For k = 0: the first equality is satisfied by definition for x(0). For the other equalities we have:

r(0) = b−A · x(0) =
[

bL
bR

]
−
[

bL −ALR · x
(0)
S + ALR · x

(0)
S

ARLA−1
L · (bL −ALR · x

(0)
S ) + AR · x

(0)
S

]

=

[
0

g− S · x(0)S

]
=

[
0

r(0)S

]

z(0) = M−1· r(0)= M−1·
[

0
r(0)S

]
=

[
−A−1

L ALRM−1
S · r

(0)
S

M−1
S · r

(0)
S

]
=

[
−A−1

L ALR · z
(0)
S

z(0)S

]

p(0) = z(0) =

[
−A−1

L ALR · z
(0)
S

z(0)S

]
=

[
−A−1

L ALR · p
(0)
S

p(0)
S

]
;

A · p(0) =

[
0

−ARLA−1
L ALR · p

(0)
S + AR · p

(0)
S

]
=

[
0

S · p(0)
S

]
.

Then, p(0)T
A · p(0) = p(0)

S

T
S · p(0)

S .

r(0)
T

z(0) = r(0)S

T
z(0)S ; therefore α(0) =

r(0)
T

z(0)

p(0)TA · p(0)
=

r(0)S

T
z(0)S

p(0)
S

T
S · p(0)

S

= α
(0)
S .
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Let k ∈N, we assume the equalities above are true for k, we then have:

x(k+1)= x(k)+ α(k)p(k)=

[
A−1

L · (bL −ALR · x
(k)
S )

x(k)S

]
+ α

(k)
S

[
−A−1

L ALR · p
(k)
S

p(k)
S

]

=

[
A−1

L · (bL −ALR · (x
(k)
S + α

(k)
S p(k)

S ))

x(k)S + α
(k)
S p(k)

S

]
=

[
A−1

L · (bL −ALR · x
(k+1)
S )

x(k+1)
S

]

r(k+1)= r(k) − α(k)A · p(k)=

[
0

r(k)S

]
− α

(k)
S

[
0

−ARLA−1
L ALR · p

(k)
S + AR · p

(k)
S

]

=

[
0

r(k)S − α
(k)
S S · p(k)

S

]
=

[
0

r(k+1)
S

]
;

z(k+1)= M−1 · r(k+1) =

[
−A−1

L ALRM−1
S · r

(k+1)
S

M−1
S · r

(k+1)
S

]
=

[
−A−1

L ALRz(k+1)
S

z(k+1)
S

]
.

As a consequence, we have:

(r(k+1))Tz(k+1) = (r(k+1)
S )Tz(k+1)

S

Combining this latter equality with the one stemming from the previous step, we obtain

β(k) =
(r(k+1))Tz(k+1)

(r(k))Tz(k)
=

(r(k+1)
S )Tz(k+1)

S

(r(k)S )Tz(k)S

= β
(k)
S .

Thus,

p(k+1) =

[
−A−1

L ALR · (z
(k+1)
S + β

(k)
S p(k)

S )

z(k+1)
S + β

(k)
S p(k)

S

]
=

[
−A−1

L ALR · p
(k+1)
S

p(k+1)
S

]
;

A · p(k+1) =

[
0

S · p(k+1)
S

]
;

Finally α(k+1) =
r(k+1)T

z(k+1)

p(k+1)TA · p(k+1)
=

r(k+1)
S

T
z(k+1)

S

p(k+1)
S

T
S · p(k+1)

S

= α
(k+1)
S .

In the remainder of this section, we generalize Theorem 2.1 to provide sufficient and necessary
conditions on the initial guess and the preconditioner to obtain a nil residual on L at each iteration.

Theorem 2.2 (Sufficient condition for nil residual on L-part). We denote W the Cholesky factor of M:
M = WWT, nL and nR designate the sizes of the diagonal blocks AL and AR respectively. Let x(0)R be an
arbitrary vector of length nR and W1, W2 two invertible matrices of sizes nL and nR respectively. Let the
linear system (2.4) be solved by a PCG solver with a preconditioner M = WWT and an initial guess x(0)

such that:

x(0) =

[
A−1

L · (bL −ALR · x
(0)
R )

x(0)R

]
, W =

(
W1 0

ARLA−1
L W1 W2

)
; (2.28)
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then (b−A · x(k))L = 0 at each iteration k of PCG.

Proof. With

x(0) =

[
A−1

L · (bL −ALR · x
(0)
R )

x(0)R

]
,

there holds:

r(0) =

[
0

bR −ARLA−1
L · bL + (ARLA−1

L ALR −AR) · x
(0)
R

]
=

[
0

g− S · x(0)R

]
.

Therefore

W−1 · r(0) =
[

0
W−1

2 · (g− S · x(0)R )

]
.

Besides, for each iteration k there exists a polynomial qk of degree k such that:

W−1 · r(k) = qk(W
−1AW−T)W−1 · r(0) (2.29)

The definition of preconditioner W in (4.27) yields:

W−1AW−T =

(
W−1

1 ALW−T
1 0

0 W−1
2 SW−T

2

)
(2.30)

Then

qk(W
−1AW−T) =

(
qk(W

−1
1 ALW−T

1 ) 0
0 qk(W

−1
2 SW−T

2 )

)
Consequently, from (2.29) we deduce that:

r(k) =

[
0

W2qk(W
−1
2 SW−T

2 )W−1
2 · (g− S · x(0)R )

]

Remark 2.5. When the sufficient condition above is satisfied, the preconditioner M has the following
shape:

M =

(
W1 0

ARLA−1
L W1 W2

)(
WT

1 WT
1 A−T

L ALR
0 WT

2

)
=

(
W1WT

1 W1WT
1 A−T

L ALR

ARLA−1
L W1WT

1 W2WT
2 + ARLA−1

L W1WT
1 A−T

L ALR

)

If we denote the two SPD matrices M1 := W1WT
1 and M2 := W2WT

2 then:

M =

(
M1 M1A−T

L ALR

ARLA−1
L M1 M2 + ARLA−1

L M1A−T
L ALR

)
;

which is a generalization of the preconditioner defined in (2.27) of Theorem 2.1.
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When the conditions of Theorem 2.2 are fulfilled, we can state that in addition to the A-
orthogonality property, the residual vanishes on L at each iteration. The question that arises next
is to know if the preconditioner defined in Theorem 2.2 is the only one that has this particular
property or if there exist others.

Theorem 2.3 (Necessary condition for nil residual on L-part). Let M be a preconditioner of A such
that the solve of (2.4) by PCG yields a vanishing residual on L at each iteration:

r(k)L = bL −AL · x
(k)
L −ALR · x

(k)
L = 0 , ∀k ≤ k̃ ;

where k̃ is the iteration when x(k̃) = x. Then we have:

dim(Ker((AM−1)LR)) ≥ k̃− 1 . (2.31)

Proof. Still with the notation used in [123, Algorithm 9.1,Chapter 9] for the PCG algorithm, the
successive residuals satisfy a two-term recurrence:

r(i+1) = −α(i)AM−1· r(i)+ (1 +
α(i)β(i−1)

α(i−1)
)r(i) − α(i)β(i−1)

α(i−1)
r(i−1), ∀i ∈N\{0} (2.32)

Let i ∈ J1, k̃K be arbitrary. A vanishing residual on L implies that

r(i+1)
L = r(i)L = r(i−1)

L = 0 ,

then due to (2.32), we get

(AM−1 · r(i))L = 0 ;

which using the 2× 2 block splitting for AM−1 as in (2.20) and the fact that r(i)L = 0 gives

(AM−1)LR · r
(i)
R = 0 (2.33)

We know that the vectors (x− x(0), . . . , x− x(k)) are linearly independent for every k < k̃. Because
A is nonsingular, (r(0) = A · (x− x(0)), . . . , r(k) = A · (x− x(k))) are linearly independent as well.
Since r(j)

L = 0 for j = 0, . . . , k, we deduce that (r(0)R , . . . , r(k)R ) are also linearly independent for
k < k̃.
According to (2.33), this implies that dim(Ker((AM−1)LR)) ≥ k , ∀k < k̃
i.e. dim(Ker((AM−1)LR)) ≥ k̃− 1.

Theorems 2.2 and 2.3 provide respectively sufficient and necessary conditions on the preconditioner
to obtain a nil residual on L at each iteration of PCG. There is a special case when these conditions
match each other and the proposed preconditioner is unique. Indeed, for k̃ > nR, we have
dim(Ker((AM−1)LR)) ≥ nR and thus according to the rank-nullity theorem:

rank((AM−1)LR) = nR − dim(Ker((AM−1)LR)) ≤ 0.

Which means that (AM−1)LR = 0. This latter equality is equivalent to the block diagonal shape
(2.30) in the proof of Theorem 2.2.
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2.5.2 Condition number improvement

In this subsection, we discuss the outcome of using the partitioned preconditioner of
Theorem 2.1 with respect to a 2× 2 block diagonal preconditioner in terms of a possible reduction
of the condition number of the preconditioned operator. Considering M (resp. MS) the SPD
preconditioner of A (resp. S), we denote the following condition numbers:

K(A, M) := K(M−
1
2 AM−

1
2 ) ;

K(S, MS) := K(M−
1
2

S SM−
1
2

S ) .

According to [103, Theorem 4.2.], for every block-diagonal preconditioner M̃ of A which has the
shape:

M̃ =

(
AL 0
0 MR

)
(2.34)

such that MR is an arbitrary preconditioner associated with the second diagonal block AR, we
have:

K(S, MR) ≤ K(A, M̃)

Therefore, if we choose MS = MR, we still have:

K(S, MS) ≤ K(A, M̃) (2.35)

Consequently, since the convergence of iterative solvers is commonly affected by the conditioning
of the matrix, from (2.35) we can expect that PCG for the Schur complement system converges
faster than for the original system. According to Theorem 2.1, this amounts to saying that PCG

on (2.4) converges faster when preconditioned by M̂ =

(
AL ALR

ARL MR + ARLA−1
L ALR

)
than by the

block-diagonal M̃ =

(
AL 0
0 MR

)
. Later, in Section 2.6 where we show the numerical results, we

observe this convergence improvement in practice.

2.5.3 Context of use

Let us suggest the context of the solution process for practical use:

¶ A PCG solver with a given preconditioner M is run to solve (2.4).

· At an iteration step j0, an intermediate solution x(j0) is computed to get an estimated
algebraic error distribution.

↪→ Local algebraic error η
(j0)
alg,K is evaluated over each mesh elements K ∈ Th.

¸ This allows for marking the elements with largest errors and extracting their associated node
indices.

↪→ This step yields subdomain Ω1 of (2.7) and (2.8), and L-subset.
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¹ Proceed with permuting the system to obtain a L/R splitting as in (2.20).

º Perform an exact Cholesky factorization on the L-block, build the adaptive preconditioner
and use x(j0) to compute a special initial guess.

↪→W1(such that W1WT
1=AL), x(0) and M as defined in (2.27) with x(0)S := x(j0)

R .

» Run PCG on the permuted system with preconditioner M and the newly computed starting
guess x(0).

Remark 2.6. Concerning step n°5 above, for computing M in (2.27), the MS matrix should ideally
approximate the Schur complement matrix S. Though there already exists a wide range of Schur
complement methods [126, 32, 97], we suggest to recycle the preconditioner M by extracting its
R-block and using it as MS. This allows to save the time required to construct M.

For the sake of comparison, we denote by process 2 the solve procedure described above, and by
process 1 the solve with preconditioner M on the initial system pursued to the end. We can say
that the cost should differ between the two processes. In process 2, more effort is put into building
the preconditioner. The additional cost compared to process 1 is the one related to the Cholesky
factorization of AL. However, the cost of the solve is hopefully diminished due to the convergence
improvement with M over M.

2.6 Numerical results

In this section, we choose different 2D elliptic problems as they usually serve as test cases
for PDE solution algorithms. The following numerical experiments are based on Matlab with PDE
toolbox in order to create a mesh and solve the considered PDE on a domain Ω.
We consider a triangular mesh. If the exact solution is known, the mesh is adaptively refined
according to the distribution of the discretization error during an initialization step before running
tests. Otherwise, the mesh in Delaunay, generated by Matlab initmesh command with the
maximum element size specified by the parameter Hmax. We will call such mesh "uniform" in
the sequel. Once the main linear system is defined, we run few iterations of the linear solver
(20 iterations of PCG) to get a starting distribution of the a posteriori algebraic error estimates
on all the elements of the mesh. From these quantities, we distinguish the L and R subdomains.
Multiple strategies are conceivable for selecting the elements that will form our L-subdomain. We
will define some of them in Section 2.6.1. Next, we solve by the procedure described in Section
2.5.3. Finally, we compare the evolution of the global energy norm and the L-norm of the error
(that we define in Section 2.6.1) within iterations for process 1 and process 2.

2.6.1 Some strategies for initiating the adaptive procedure

In order to build the L-subdomain, we start by sorting the mesh elements according to
the a posteriori algebraic error estimates per element. Then in order to select elements that will
compose L, we need a certain threshold. One option is to take a ratio on the number of elements.
It consists in setting a certain percentage "perc" on the total number of elements, and gathering the
first perc % elements where the a posteriori algebraic error estimate is the largest. However, due
to the complex distribution of errors over elements for some test cases, we believe it would be a
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good idea to adjust the way we choose elements that form Ω1. Henceforth, we apply the so-called
Dörfler criterion [49]. It aims at finding the minimal set E1 within the set of all elements E such
that for some parameter Θ ∈ ]0, 1[ :

L-norm2 := ∑
K∈E1

(ηalg,K)
2 ≥ Θ

(
∑

K∈E
(ηalg,K)

2

)
, (2.36)

where ηalg,K denotes the a posteriori algebraic error estimate over the element K, and the term
"L-norm" in this article will refer, somewhat imprecisely, to the portion of error captured in
Ω1 =

⋃
K∈E1

K. Note that it is actually the A(1)
p -seminorm of the error:

L-norm2 = 〈A(1)
p · (x− x(j0)), x− x(j0)〉 .

In our framework, we believe that (2.36) better reflects Hypothesis (2.8). Indeed, the advantage
over the previous marking strategy is that we are selecting elements that concentrate a certain
percentage of the error instead of directly choosing a percentage of the total number of elements.

Remark 2.7. Whenever the a posteriori discretization error estimates are known, we could exploit
them as an indicator of the right iteration to estimate the starting a posteriori algebraic error
distribution. Indeed, the evaluation of errors would initiate as soon as the iterative solve reaches
an iteration j0 such that:

η
(j0)
alg ≤ γ η

(j0)
disc ,

where η
(j0)
alg and η

(j0)
disc are the total a posteriori algebraic and discretization error estimates respec-

tively, γ > 0 is a scalar parameter. We expect that this approach would give reliable information
on the error distribution since inequalities of this shape have been used as stopping criterion in
many adaptive algorithms in the literature; see, e.g., [46, 55] and the references given there.

For the numerical experiments presented in this section, we decide to consider:

Q a fixed value (20) for j0,

Q a Block-Jacobi preconditioner composed of 50 blocks for M,

Q a stopping threshold value of 10−6 for the euclidean norm of the residual.

In the following, whenever the initial a posteriori algebraic error estimates’ distribution is plotted,
thick horizontal lines labeled with θ1 and θ2 on the color bar indicates the extent of the errors’ range
covered with the Dörfler rates Θ1 and Θ2 considered, i.e. all elements represented in color shades
above the corresponding thresholds θ1 and θ2 respectively form Ω1. As far as the convergence
curves are concerned, the blue one corresponds to process 1 (PCG with block Jacobi preconditioner
M) while process 2 (PCG with our proposed preconditioner) is represented in red and black.
Detailed information about test configuration (mesh, Dörfler rate Θ (as %), size percentage (nL in
% of n)) and results (number of iterations for regular and adaptive solve procedures: itst, itada) are
given in Tables 2.1 and 2.2.
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2.6.2 Poisson’s equation

First, we focus exclusively on Poisson equations of the form

− ∆u = −∂2u
∂x2 −

∂2u
∂y2 = f (x, y) in Ω (2.37)

with homogeneous Dirichlet boundary condition

u = 0 on ∂Ω. (2.38)

This is a particular case of problem (3.51) with the diffusion tensor equal to identity. For our test
cases, we consider two classic examples with given smooth solutions u on the square [−1, 1]:

u(1) =(x + 1)× (x− 1)× (y + 1)× (y− 1)× exp(−α× (x2 + y2)) ; (2.39)

u(2) =(x + 1)× (x− 1)× (y + 1)× (y− 1)× (exp(−α× ((x + 0.5)2

+ (y + 0.5)2))− exp(−β× ((x− 0.5)2 + (y− 0.5)2))) ; (2.40)

with α = 4 000 and β = 3 000.

As far as the mesh configuration is concerned, we consider two uniform meshesM(1) andM(2)

with maximum edge sizes Hmax = 0.1 and Hmax = 0.05 respectively. Then, the total numbers of
elements equal to 87 552 and 354 304 respectively. After discretization, the sizes of matrix A are
43 457× 43 457 and 176 513× 176 513 respectively.

For the first test case, the Galerkin solution is plotted in Figure 2.3, the initial distribution and a

Figure 2.3 – Galerkin solution u(1)
h

posteriori estimation of algebraic error (after j0 = 20 iterations) over the domain Ω are shown in
Figure 2.4 for the first meshM(1) and in Figure 2.6 for the second meshM(2); while the global
energy norm and the L-norm of the error within iterations are shown in Figures 2.5 (forM(1))
and 2.7 (forM(2)) with two different values of the parameter Θ in the Dörfler criterion.
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(a) Algebraic a posteriori error estimates after 20 itera-
tions

(b) Algebraic errors after 20 iterations

Figure 2.4 – Initial distribution and a posteriori estimation of algebraic error for test case n°1 on meshM(1)
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(a) Energy norm of the algebraic error
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(b) L-norm of the algebraic error

Figure 2.5 – Error evolution for test case n°1 on meshM(1)

With the first Dörfler rate Θ1, Ω1 does not take into account all the area where important errors
are observed. We notice in Figures 2.5 and 2.7 the decrease of the global energy norm of the error
and that of the algebraic error on L-marked elements is observed on both processes but more
markedly for the process 2. Now, when we increase the Dörfler rate to a value Θ2 close to one to
cover almost all the high errors’ region, we notice the rapid decrease of the global energy norm of
the error and that of the algebraic error on L-marked elements with process 2 (black curve). The
convergence is faster and there is a 3x and a major 14x speedups in terms of iterations on meshes
M(1) andM(2) respectively (see Table 2.1).

Likewise, we present the results obtained for the second test case. The Galerkin solution is plotted
in Figure 2.8. Figures 2.9 and 2.11 display the initial error distribution over meshesM(1) andM(2).
Figures 2.10 and 2.12 depict the evolution of the global energy norm and the L-norm of the error
for M(1) and M(2) with two different values of the parameter Θ in the Dörfler criterion. In
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(a) Algebraic a posteriori error estimates after 20 itera-
tions

(b) Algebraic errors after 20 iterations

Figure 2.6 – Initial distribution and a posteriori estimation of algebraic error for test case n°1 on meshM(2)
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(a) Energy norm of the algebraic error
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(b) L-norm of the algebraic error

Figure 2.7 – Error evolution for test case n°1 on meshM(2)

those latter figures, we point out that the error reduction in process 2 with Θ1 is better than in
process 1. It becomes even more efficient with the larger Θ2 as it yields a convergence after 65 or
11 iterations only according to the mesh resolution (see Table 2.2). That represents an important
5x (resp. 56x) speedup over PCG. With these results, one can see the potential that the adaptive
method offers when the errors are localized (even on separate zones).
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Figure 2.8 – Galerkin solution u(2)
h

(a) Algebraic a posteriori error estimates after 20 itera-
tions

(b) Algebraic errors after 20 iterations

Figure 2.9 – Initial distribution and a posteriori estimation of algebraic error for test case n°2 on meshM(1)

Table 2.1 – Test configuration and number of iterations for standard and adaptive processes with different values of the
Dörfler rate Θ applied to Poisson problems.

Configuration Iterations
Test case Mesh Θ (as %) nL in % of n itst itada

1 M(1) 87.70 3.50 278 230
99.99 10.99 278 92

1 M(2) 99 9.99 689 322
99.99 15 689 47

2 M(1) 99.82 10 314 96
99.99 25.17 314 65

2 M(2) 99 3.99 614 57
99.99 10 614 11
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(a) Energy norm of the algebraic error
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(b) L-norm of the algebraic error

Figure 2.10 – Error evolution for test case n°2 on meshM(1)

(a) Algebraic a posteriori error estimates after 20 itera-
tions

(b) Algebraic errors after 20 iterations

Figure 2.11 – Initial distribution and a posteriori estimation of algebraic error for test case n°2 on meshM(2)

2.6.3 Diffusion equation with inhomogeneous coefficient

In this section, we tackle diffusion problems with inhomogeneous diffusion tensor of the
form

−∇ · (K∇u) = f (x, y) in Ω = ]0, 1[ (2.41)

with Dirichlet boundary condition
u = u0 on ∂Ω (2.42)

This time, we define the right hand side f as the constant function taking the value 1 on Ω.
The Dirichlet boundary condition is prescribed on ∂Ω by the function:

u0(x, y) =
√

x; (2.43)
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(a) Energy norm of the algebraic error
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(b) L-norm of the algebraic error

Figure 2.12 – Error evolution for test case n°2 on meshM(2)

In the diffusion part of this numerical section, we have considered the algebraic error to assess the
validity of the adaptive procedure when the error detection is ideal (optimal case).

The diffusivity taken here is a highly heterogeneous function of Ω. In the sequel, we will consider
two configurations of the diffusivity. In both cases, the diffusion tensor is defined as a multiple of
the identity matrix: K = c ∗ I; and the multiplication factor c varies through the domain Ω. In the
first test, the diffusivity is defined as in [80, Section 5]:

c(3)(x, y) =

{
105(b9xc+ 1) if b(9x)c ≡ 0 (mod 2) and b(9y)c ≡ 0 (mod 2),

1 otherwise.

We consider a uniform mesh with a maximum edge size Hmax = 0.03 and 30 257 mesh elements.
After discretization, the size of the matrix A is 14 690× 14 690. The Galerkin solution and the
initial algebraic error distribution over the domain Ω are shown in Figure 2.13, while the global
energy norm and the L-norm of the error within iterations are plotted in Figure 2.14. We observe
that curves of process 2 are almost below the curve of process 1 for the L-norm in Figure 2.14. We
also highlight that by going from Θ1 = 0.95 to Θ2 = 0.99 to take into account more error zones,
we increase the size of AL by a factor of three, but the reduction in number of iterations with
respect to PCG was five times larger (8%→ 41%).

For the next test case, we consider the second diffusivity shown in Figure 2.15. The formula of the
corresponding diffusivity function is:

c(4)(x, y) =

{
c0 := 9× 105 if b(9x)c ∈ [1, 7] and b(9y)c ∈ [6, 9]

1 otherwise

This time, with a maximum edge size Hmax = 0.01, we obtain a uniform mesh of 32 544 elements.
The size of the matrix A is 16 057× 16 057. The Galerkin solution and the initial algebraic error
distribution over the domain Ω are depicted in Figure 2.16, while the global energy norm and the
L-norm of the error during iterations are plotted in Figure 2.17. We start with a value Θ1 = 0.81
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(a) Galerkin solution u(3)
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(b) Algebraic errors after 20 iterations

Figure 2.13 – Galerkin solution and initial algebraic error distribution for test case n°3
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(a) Energy norm of the algebraic error
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(b) L-norm of the algebraic error

Figure 2.14 – Error evolution for test case n°3

that ensures that the size of the submatrix AL is about one tenth of the size of the global matrix A.
While the blue and red curves of Figure 2.17 are very close to each other for the global energy
norm, we observe that the red one is always below the blue one when it comes to the L-norm.
For this test case, we see that the high algebraic errors are concentrated on a rectangle. With the
Dörfler rate Θ1, we capture only an upper band of that rectangle. As a consequence, the curves
associated to process 2 will not show any substantial improvement over those of process 1 with
that setting.
On the other hand, increasing the value of the Dörfler rate and considering Θ2 = 0.99 ensures that
the L-subdomain covers almost all the rectangle with large algebraic errors. We obtain a submatrix
AL whose size is about 20% of the size of the global matrix A. Now, we see in Figure 2.17 that the
curves of process 1 (blue) and process 2 (black) are distinct.
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c = 1

c = c0 � 1

Ω

Figure 2.15 – Configuration of the inhomogeneous diffusivity in test case n°4

(a) Galerkin solution u(4)
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(b) Algebraic errors after 20 iterations

Figure 2.16 – Galerkin solution and initial algebraic error distribution for test case n°4
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(a) Energy norm of the algebraic error
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(b) L-norm of the algebraic error

Figure 2.17 – Error evolution for test case n°4
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Table 2.2 – Test configuration and number of iterations for standard and adaptive processes with different values of the
Dörfler rate Θ applied to diffusion problems.

Configuration Iterations
Test case Θ (as %) nL in % of n itst itada

3 95 23.38 1587 1451
99.93 69.98 1587 931

4 81 10 463 440
99.99 21.68 463 353

In almost all of the test cases presented above (except test case n°3), we have voluntarily restricted
ourselves to taking subdomains Ω1 whose size nL does not exceed 25% of n the size of the global
matrix in order to avoid configurations where process 2 is too costly with respect to process 1.
However, it is important to bear in mind that the ideal size of the L-subdomain cannot be always
limited under a certain threshold and is linked to the distribution of the algebraic errors for the
problem considered.

In the light of the above, we can draw the following conclusions:

Q The solve process proposed in this paper is adaptive as it adjusts to the considered problem
thanks to the information stemming from the a posteriori estimation of the algebraic error. It
seems to perform well provided that Ω1 is appropriately built, i.e. we mark and gather in
Ω1 enough (or all ideally) elements that really reflect the regions of the domain where the
solution of the system is more delicate and requires some special local treatment.

Q The adaptive process is better suited for test cases where there is a considerable discrepancy
in errors and a concentration in space that is conducive to adaptivity (like (2.39) and (2.40)).
In such cases, the elements’ marking is facilitated by the fact that the high algebraic errors
seem to properly represent the potential regions that are of interest to us in order to build
Ω1. Herein, one can see an analogy with adaptive refinement in Finite Element Methods.

Q In addition, this procedure seems to perform poorly when the algebraic errors are widely
spread in the domain. In such cases, it becomes costly to include all elements with significant
errors inside Ω1 since we will have to factorize the AL submatrix. And when we fill that
subdomain with only a part of those elements, the procedure yields unsatisfactory results as
we can see with test case n°4. When we include all the region of large errors inside Ω1, the
adaptive procedure performs well as we observed in test cases n°1, n°2 and n°4.

Q Another issue relates to the spread of the error through the whole domain. We notice that
the adaptive procedure performs better when the area with large errors is contiguous. We
can clearly see that by comparing test cases n°3 and n°4.

2.7 Conclusions

In this chapter, we have presented a new adaptive preconditioner for iterative solution
of sparse linear systems arising from PDE problems that is used in combination with a specific
initial guess and based on the estimated local distribution of the algebraic error. The proposed
adaptive procedure aims at efficiently reducing the algebraic error norm by targeting the regions
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where the algebraic error is high. As shown in numerical experiments, in the case of an important
discrepancy in the algebraic error, when it is dominating in certain parts of the domain, notable
speedups can be achieved with the proposed procedure: with a proper treatment on high-error
regions, the number of iterations can be significantly diminished.

We are aware that there is a lot of more work to be done in order to derive a robust practically
applicable and efficient procedure. Nevertheless, the present study has confirmed that the concept
of adaptivity based on the (local) distribution of the algebraic error is worth considering. A
follow-up direction could be to investigate a more general algorithm not necessarily requiring that
the L-subdomain solve is carried out exactly (as suggested e.g. in [87]).
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Abstract

This chapter focuses on a class of application specific preconditioners for iteratively solving
linear systems stemming from the discretization of partial differential equations (PDE). Adaptive
error-based preconditioners have been previously suggested to reduce high local algebraic error.
This type of preconditioners requires an exact factorization/inversion of a submatrix of the
global main matrix. This operation can represent a serious computational impediment during
the solve process. Therefore, we propose here alternatives, still in the same adaptive framework,
that replace exact inverses by approximate ones. This could be a preferred option to consider
when the areas with high algebraic errors are large and scattered.
For this purpose, one can employ robust preconditioning techniques, which bound the condition
number from above e.g. LORASC, to avoid exactly inverting some large blocks of the matrix. In
addition, we present the upper bounds for the condition number of the preconditioned operator
with the resulting preconditioner.
Subsequently, we explain the concept, discuss the preconditioning costs incurred by both exact
and approximate adaptive preconditioners. Finally, we assess the feasibility and the reliability of
this alternative by some numerical experiments.
Keywords— Approximate inverse, inexact factorization, LORASC, condition number bounds,
adaptivity, preconditioning

3.1 Introduction

In the previous chapter, we saw that the size of the L-subset can be large when the algebraic
error is widely spread over the domain. Dealing with non-localized errors raises some issues.
As the L-subset gets larger, the adaptive solve procedure becomes more delicate to use due to
the direct solve to carry out on a sizeable matrix AL. Hence we are interested in a variant of the
adaptive procedure where direct solves are replaced by approximate methods.

All direct methods for solving a linear system are built on the idea of reducing a problem
to the solution of triangular systems by the standard back and forward substitution. These
include methods based on Gaussian Elimination, QR decomposition, LU decomposition, Cholesky
decomposition etc [77] Rounding error analysis has been extensively studied over the years for
this kind of methods, e.g. [62, 77]. In fact, direct methods offer the advantage of robustness and
are generally backward stable. Therefore, they are preferred over other classes of methods when a
high level of accuracy is required.

That being said, one of the well known drawbacks of exact factorization methods is their computa-
tional cost. The associated complexity is too prohibitive. The other possible issue relates to the
density of the factors. The sparsity of the matrix doesn’t imply the sparsity of its factors. A classical
example is when the matrix is sparse but its graph is connected, then the inversion/factorization
generates fill-ins and the inverse/factors become dense.

On the other hand, there exists different ways to perform inexact or approximate inversion such as
incomplete factorizations and low rank approximation. Admittedly, those techniques are always
inferior to direct methods in terms of accuracy, but the computational effort is reduced, which
make them more affordable in practice.

In this chapter, we take into account some of the approximation methods mentioned earlier in
the state-of-the-art to propose an extension of the work initiated in Chapter 2 and derive similar
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approximate adaptive procedures where exact solves are replaced by inexact ones. This process
could be more convenient to carry out in practice for very large matrices as they allow to overcome
the limits imposed by the exact factorization.

This chapter is organized as follows. We start by recalling the framework for error-based parti-
tioned matrix preconditioning in Section 3.2. In Section 3.3, we give an example of an inverse
approximation method called LORASC and describe how to incorporate it in the adaptive precon-
ditioner. We also present the condition number’s bounds for the preconditioned operator with both
exact and approximate adaptive preconditioners in Section 3.4 and discuss the preconditioning
costs in Section 3.5. In Section 3.7, some numerical results are provided and the conclusion remark
is given in Section 3.8.

3.2 Preliminaries

Let us consider a self-adjoint PDE problem discretized by finite element or finite volume
method on a polytopal domain. The equivalent system of linear algebraic equations is written

A · x = b,

where A ∈ Rn×n is a matrix of size n× n, the right hand side b and the solution x are vectors
of length n which is the number of degrees of freedom. The error analysis of the PDE allows
to compute a posteriori error estimates for assessing the pertinence of the approximate solution
at an early stage of the iterative solve process (iteration i). Some error estimates can even be
decomposed in various components that identify different sources of errors [55, 46]. Among these,
we focus on the algebraic error component. Given the values of this component on each mesh
element, we would distinguish two sets of nodes:

Q L: The set of nodes with significant a posteriori algebraic error estimates. Its size is denoted
nL.

Q R: The set of nodes with negligible, or even nil a posteriori algebraic error estimates. Its size
is denoted nR.

Note that R is complementary of the set L in J1, nK. On the basis of such a classification, one can
split the linear system to obtain a 2× 2 block partitioning:

A =

(
AL ALR

ARL AR

)
(3.1)

More details about the sorting and splitting processes can be found respectively in Section 2.4.2
and Section 2.6.1 of Chapter 2.

As far as the algebraic error is concerned, the starting assumption is as expressed in Corollary 2.1
of Chapter 2:

(x− x(i))T
L ·AL · (x− x(i))L ≥ (x− x(i))T ·A(1)

p · (x− x(i))� (x− x(i))T ·A(2)
p · (x− x(i))

where A(1)
p and A(2)

p are the extensions of the local stiffness matrices, A(1) discretized on sub-
domain Ω1 and A(2) discretized on subdomain Ω2, to the whole domain Ω. As explained in
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Section 2.5 of Chapter 2, an initial guess x(0) and a preconditioner M that may ensure the decay of
high local algebraic errors during a PCG solve have the general shape:

x(0) =

[
A−1

L · (bL −ALR · x
(0)
R )

x(0)R

]
, M :=

(
M1 M1A−T

L ALR
ARLA−1

L M1 M2 + ARLA−1
L ALR

)
; (3.2)

where x(0)R ∈ RnR is an arbitrary vector, and M1, M2 are two SPD preconditioners of sizes nL
and nR respectively. Then a particular case for the preconditioner, for which we can establish an
equivalence with a classical Schur complement procedure (see Theorem 2.1 in Chapter 2), is when
M1 = AL:

M :=
(

AL ALR
ARL M2 + ARLA−1

L ALR

)
. (3.3)

Since we are using PCG, we need to provide to the solver either the inverse of the preconditioner
M−1 or its application to a vector. As one can notice in (3.2) or (3.3) this requires inverting AL or
solving systems involving this matrix.

In the previous chapter, it was assumed that an exact Cholesky factorization of AL is known,
therefore solving such systems can be achieved by forward and backward substitutions. However
this assumption may not hold for all test cases, including those where the algebraic error is widely
spread over the domain, because the matrix AL becomes too large to be factored at an affordable
cost. In Section 3.3, we investigate means to circumvent this difficulty by approximating A−1

L .
Doing so introduces approximation errors that prevent the residual from remaining nil on the
L part of the matrix (according to partitioning of (3.1)). Therefore, we shall rather focus on the
quality of the approximate adaptive preconditioner with A−1

L and whether or not we are able to
prove some bounds for the condition number of the global preconditioned matrix M−1A.
In what follows, we give an example of a preconditioner referred to as LORASC that we could
incorporate in the adaptive preconditioner. Some of the advantages of LORASC method are
the following: it allows to bound the condition number of the preconditioned operator, this
preconditioner is fully algebraic and requires no information other than the matrix.

3.3 A low rank approximation on AL

In this section, we detail the building process of this approximation and its injection in the
adaptive preconditioner. This low rank approximation technique has already been suggested in
[67] for constructing preconditioners for Schur complement matrices and is based on Wielandt’s
deflation (see [122] and references therein). The procedure described on [67] requires permuting
the matrix in order to obtain a block-arrow structure and focuses on the last diagonal block that
corresponds to the separator between the disjoint domains. Much of the computational work will
afterwards be performed on this particular block.

First, we describe how to build the approximate inverse of the matrix AL with LORASC
preconditioner [67]. In addition to the ordering based on the algebraic error distribution that gives
a 2× 2 partitioning of (3.1) where L, (resp. R) stand for the degrees of freedom where large (resp.
small) errors were observed, we consider a reordering (k-way algorithm for example) on AL that
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yields a block arrow form,

AL =


AL

11 AL
1Γ

. . .
...

AL
NN AL

NΓ
AL

Γ1 . . . AL
ΓN AL

ΓΓ

 . (3.4)

Then a factorization of AL is,

AL =


AL

11
. . .

AL
NN

AL
Γ1 . . . AL

ΓN SL



(AL

11)
−1

. . .
(AL

NN)
−1

(SL)−1




AL
11 AL

1Γ
. . .

...
AL

NN AL
NΓ

SL

 ,

(3.5)

with SL := AL
ΓΓ −

N
∑

j=1
AL

Γj(A
L
jj)
−1AL

jΓ. Likewise, we can express the inverse of AL as,

A−1
L =


I −(AL

11)
−1AL

1Γ

. . .
...

I −(AL
NN)

−1AL
NΓ

I




(AL
11)
−1

. . .
(AL

NN)
−1

(SL)−1




I
. . .

I
−AL

Γ1(A
L
11)
−1 . . . −AL

ΓN(A
L
NN)

−1 I

.

(3.6)

For a sufficiently large N, we may assume that the (AL
jj)
−1 are computable for 1 ≤ j ≤ N, and

thus SL as well. That being said, as N increases, SL gets denser and it becomes more tedious to
compute (SL)−1. For that reason, the authors of [67] decided to derive an approximation Ã−1

L of
A−1

L by replacing (SL)−1 in the formula above by (S̃L)−1 a corrected low rank approximation of
(SL)−1.

Ã−1
L =


I −(AL

11)
−1AL

1Γ

. . .
...

I −(AL
NN)

−1AL
NΓ

I




(AL
11)
−1

. . .
(AL

NN)
−1

(S̃L)−1




I
. . .

I
−AL

Γ1(A
L
11)
−1 . . . −AL

ΓN(A
L
NN)

−1 I


(3.7)

The first component for approximating (SL)−1 is (AL
ΓΓ)
−1. This suffices to approximate the

maximum eigenvalues of SL as the following upper bound holds.

Lemma 3.1. (Theorem 3.1 in [67]) Let Ã−1
L as defined in (3.7) with S̃L = AL

ΓΓ. Then for every eigenvalue
λ of Ã−1

L AL, we have:
λ ≤ 1

Proof. See [67, Theorem 3.1].

Obviously, a good approximation ÃL of AL is such that the matrix Ã−1
L AL is close to identity.

To this end, one could consider ensuring that the eigenvalues of the first are not so far apart from
those of the second. In this respect, the result of Lemma 3.1 can be seen as a first stage of the
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approximation process, it prevents the eigenvalues of Ã−1
L AL from exceeding 1.

The second stage consists in bounding those eigenvalues from below. One can impose a minimum
threshold ε for the smallest eigenvalue of Ã−1

L AL. This amounts to imposing the same threshold
for the eigenvalues of (S̃L)−1SL. For that, the next component of the approximation is constructed
from the eigenvalues and eigenvectors of (AL

ΓΓ)
−1SL and will serve to approximate the smallest

eigenvalues and deflate them.

Let λ1, . . . , λp be the eigenvalues of (AL
ΓΓ)
−1SL sorted in an increasing order and v1,. . . , vp be the

associated AL
ΓΓ-orthonormal eigenvectors. Let also i ∈ J1, pK such that λj < ε , ∀j ≤ i. We define

Ei := [v1v2 . . . vi] and Σi = [σ1σ2 . . . σi] with σj =
ε− λj

λj
, ∀j ≤ i .

Lemma 3.2. (Theorem 3.1 in [67]) For (S̃L)−1 = (AL
ΓΓ)
−1 + EiΣiET

i , the spectrum of (S̃L)−1SL is
composed of λ1, . . . , λi , 1 and is bounded by ε and 1:

Sp((S̃L)−1SL) = {ε, λi+1, . . . , λp} ⊂ [ε, 1] (3.8)

Proof. See [67, Theorem 3.1].

Hence, Lemma 3.2 allows to show that with the approximation (S̃L)−1 = (AL
ΓΓ)
−1 + EiΣiET

i
the corresponding ÃL is such that the eigenvalues of Ã−1

L AL are between ε and 1 [67]. As a
consequence, the choice of ε has a strong influence on the quality of the approximation. Indeed,
the closest ε is to 1, the more accurate the approximate inverse Ã−1

L will be.

Now if we replace A−1
L by Ã−1

L in (3.2), we obtain the general shape of the approximate precondi-
tioner M̃G:

M̃G(ÃL, M1, M2) :=

(
M1 M1Ã−T

L ALR
ARLÃ−1

L M1 M2 + ARLÃ−1
L ALR

)
. (3.9)

Similarly for (3.3), we obtain the approximate preconditioner in the particular case M̃P:

M̃P(ÃL, M2) :=

(
ÃL ALR

ARL M2 + ARLÃ−1
L ALR

)
. (3.10)

We can notice in both formulae above that we have taken out the computational difficulty relating
to the inverse of AL, as building or applying M̃−1 now depends only on the computation of M−1

1
and M−1

2 for (3.9) or M−1
2 for (3.10) as well as Ã−1

L .

In the sequel, we show the condition number bounds for the preconditioned operator when using
the approximate variant of (3.10) and compare it to the bound obtained with the exact adaptive
preconditioner of (3.3).
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3.4 Some condition number bounds for the exact and the approx-
imate adaptive preconditioners

In this section, we show that κ(M−1A) the condition number of the preconditioned matrix
by the adaptive preconditioner is bounded from above. For that, we bound g(κ(M−1A)) where g
is the function defined by

g : [1, ∞[→ [2, ∞[

x 7→ x +
1
x

.

As g is a monotonically increasing function, bounding g(κ(M−1A)) implies that κ(M−1A) is
bounded as well.

We start with the exact adaptive preconditioner defined in (3.3).

Lemma 3.3. Let W :=
(

WL 0
ARLW−T

L W2

)
be the split form of the exact adaptive preconditioner, i.e.

M = WWT = M =

(
AL ALR

ARL M2 + ARLA−1
L ALR

)
;

with WLWT
L = AL and W2WT

2 = M2, M2 is an arbitrary preconditioner for the Schur complement
S := AR −ARLA−1

L ALR. Then we have:

κ(W−1AW−T) + (κ(W−1AW−T))−1 + 2 ≤ (1 + λmax(W−1
2 SWT

2 ))(1 + λ−1
min(W

−1
2 SW−T

2 )); (3.11)

and:

κ(W−1AW−T) + (κ(W−1AW−T))−1 + 2 ≤ (1 + λmax(W−1
2 ARWT

2 ))(1 + λ−1
min(W

−1
2 SW−T

2 )).
(3.12)

Proof. As W−1 =

(
W−1

L 0
−W−1

2 ARLA−1
L W−1

2

)
, we obtain W−1AW−T =

(
I 0
0 W−1

2 SW−T
2

)
.

W−1AW−T is a symmetric matrix and by consequence we can apply Lemma 8.6 of [22]:

λmax(W−1AW−T) + λmin(W−1AW−T) ≤ λmax(W−1
L ALW−T

L ) + λmax(W−1
2 SW−T

2 )

≤ 1 + λmax(W−1
2 SW−T

2 ). (3.13)

Since AR − S = ARLA−1
L ALR is an SPSD matrix, it also holds that

λmax(W−1
2 SW−T

2 ) ≤ λmax(W−1
2 ARW−T

2 ).

Consequently,

λmax(W−1AW−T) + λmin(W−1AW−T) ≤ 1 + λmax(W−1
2 ARW−T

2 ). (3.14)
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Similarly, for the matrix WTA−1W =

(
I 0
0 WT

2 S−1W2

)
, which is symmetric, the same lemma

mentioned above yields:

λmax(WTA−1W) + λmin(WTA−1W) ≤ λmax(WT
LA−1

L WL) + λmax(WT
2 S−1W2)

≤ 1 + λ−1
min(W

−1
2 SW−T

2 ). (3.15)

By multiplying Inequalities (3.13) and (3.15), we obtain:

κ(W−1AW−T) + (κ(W−1AW−T))−1 + 2 ≤ (1 + λmax(W−1
2 SWT

2 ))(1 + λ−1
min(W

−1
2 SW−T

2 )).

On the other hand, by multiplying Inequalities (3.14) and (3.15), we obtain:

κ(W−1AW−T) + (κ(W−1AW−T))−1 + 2 ≤ (1 + λmax(W−1
2 ARWT

2 ))(1 + λ−1
min(W

−1
2 SW−T

2 )).

Considering a preconditioner that bounds the eigenvalues of S, for example a low-rank approxi-
mation for S: M−1

2 = W−T
2 W−1

2 = S̃−1 such that for a chosen ε > 0:

λmax(W−1
2 SW−T

2 ) ≤ 1; and λmin(W−1
2 SW−T

2 ) ≥ ε;

in this case, Inequality (3.12) yields

κ(W−1AW−T) + (κ(W−1AW−T))−1 ≤ 2
ε

. (3.16)

Now, let us demonstrate analogous bounds for the approximate adaptive preconditioner defined
in (3.10).

Lemma 3.4. Let W̃ :=

(
W̃L 0

ARLW̃−T
L W2

)
be the split form of the approximate adaptive preconditioner,

i.e. M = W̃W̃T; with W̃LW̃T
L = ÃL and W2WT

2 = M2, M2 is an arbitrary preconditioner for the Schur
complement S := AR −ARLA−1

L ALR. We denote

Ŝ := W−1
2 S̆W−T

2

where
S̆ := AR −ARL(2Ã−1

L − Ã−1
L ALÃ−1

L )ALR

then

κ(W̃−1AW̃−T) + (κ(W̃−1AW̃−T))−1 + 2 ≤(
λmax(W̃−1

L ALW̃−T
L ) + λmax(Ŝ)

) (
λ−1

min(W
−1
2 SW−T

2 ) + λ−1
min(W̃

−1
L ALW̃−T

L )

+λmax(W̃−1
L ALRS−1ARLW̃−T

L )× (λmax(W̃T
LA−1

L W̃L)− 1)2
)

(3.17)
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If in addition, the approximation on the L-block is such that

λmax(W̃−1
L ALW̃−T

L ) ≤ 2;

then the bound becomes

κ(W̃−1AW̃−T) + (κ(W̃−1AW̃−T))−1 + 2 ≤(
2 + λmax(W−1

2 ARW−T
2 )

) (
λ−1

min(W
−1
2 SW−T

2 ) + λ−1
min(W̃

−1
L ALW̃−T

L )

+λmax(W̃−1
L ALRS−1ARLW̃−T

L )× (λmax(W̃T
LA−1

L W̃L)− 1)2
)

(3.18)

Proof. We have

W̃−1AW̃−T =

(
W̃−1

L ALW̃−T
L −W̃−1

L (ALÃ−1
L − I)ALRW−T

2
W−1

2 ARL(I− Ã−1
L AL)W̃−T

L Ŝ

)
.

W̃−1AW̃−T is a symmetric, thus we can apply Lemma 8.6 of [22]:

λmax(W̃−1AW̃−T) + λmin(W̃−1AW̃−T) ≤ λmax(W̃−1
L ALW̃−T

L ) + λmax(Ŝ) (3.19)

On the other hand, we denote

Q := W̃T
LA−1

L W̃L + (W̃T
LA−1

L W̃L − I)W̃−1
L ALRS−1ARLW̃−T

L (W̃T
LALW̃L − I),

then

W̃TA−1W̃ =

(
Q (W̃−1

L − W̃T
LA−1

L )ALRS−1W2

WT
2 S−1ARL(W̃−T

L −A−1
L W̃L) WT

2 S−1W2

)
;

and consequently

λmax(W̃TA−1W̃) + λmin(W̃TA−1W̃) ≤ λmax(Q) + λmax(WT
2 S−1W2)

From the definition of Q, we can deduce that:

λmax(Q) ≤ λmax(W̃T
LA−1

L W̃L) + λmax(W̃−1
L ALRS−1ARLW̃−T

L )× λ2
max(W̃

T
LA−1

L W̃L − I)

Combining those two latter inequalities yields

λ−1
min(W̃

−1AW̃−T) + λ−1
max(W̃

−1AW̃−T) ≤λ−1
min(W

−1
2 SW−T

2 ) + λ−1
min(W̃

−1
L ALW̃−T

L )+

λmax(W̃−1
L ALRS−1ARLW̃−T

L )× (λmax(W̃T
LA−1

L W̃L)− 1)2

(3.20)

By multiplying (3.19) by (3.20), we obtain Inequality (3.17).
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Now, if λmax(W̃−1
L ALW̃−T

L ) ≤ 2, let (λ, y) be an eigenpair of Ŝ. We have:

〈Ŝ · y, y〉 = 〈W−1
2 ARW−T

2 · y, y〉 − yT ·W−1
2 ARL(2Ã−1

L − Ã−1
L ALÃ−1

L )ALRW−T
2 · y

= 〈W−1
2 ARW−T

2 · y, y〉 − (W̃−1
L ALRW−T

2 · y)T(2I− W̃−1
L ALW̃−T

L )(W̃−1
L ALRW−T

2 · y)
(3.21)

Let z ∈ RnL , we have: 〈(2I− W̃−1
L ALW̃−T

L ) · z, z〉 = 〈2z, z〉 − 〈W̃−1
L ALW̃−T

L · z, z〉
But

〈W̃−1
L ALW̃−T

L · z, z〉 ≤ 〈z, z〉 ×max
t 6=0

〈W̃−1
L ALW̃−T

L · t, t〉
〈t, t〉 = 〈z, z〉 × λmax(W̃−1

L ALW̃−T
L ).

If λmax(W̃−1
L ALW̃−T

L ) ≤ 2 (which is satisfied for LORASC for example) then:

〈W̃−1
L ALW̃−T

L · z, z〉 ≤ 2〈z, z〉;

Therefore, 〈(2I− W̃−1
L ALW̃−T

L ) · z, z〉 ≥ 0 for all z ∈ RnL , in particular for z := W̃−1
L ALRW−T

2 · y.
Thus, it follows from (3.21) that:

〈Ŝ · y, y〉 ≤ 〈W−1
2 ARW−T

2 · y, y〉.

Hence:
λmax(Ŝ) ≤ λmax(W−1

2 ARW−T
2 ).

By injecting this latter inequality in (3.19) we obtain:

λmax(W̃−1AW̃−T) + λmin(W̃−1AW̃−T) ≤ 2 + λmax(W−1
2 ARW−T

2 ) (3.22)

By multiplying (3.22) by (3.20), we obtain Inequality (3.18).

Remark 3.1. The bound (3.18) is valid when a LORASC preconditioner is used as an approximation
of the L-block since it ensures that λmax(W̃−1

L ALW̃−T
L ) ≤ 1. Moreover, this bound can slightly be

improved

κ(W̃−1AW̃−T) + (κ(W̃−1AW̃−T))−1 + 2 ≤(
1 + λmax(W−1

2 ARW−T
2 )

) (
λ−1

min(W
−1
2 SW−T

2 ) + λ−1
min(W̃

−1
L ALW̃−T

L )

+λmax(W̃−1
L ALRS−1ARLW̃−T

L )× (λmax(W̃T
LA−1

L W̃L)− 1)2
)

(3.23)

When comparing the inequalities involving the condition number of the preconditioned operator
with the exact and approximate adaptive preconditioners, we can see that the formulas are similar
and have the same shapes. In fact, the left factor in the bound of (3.23) is equal to the one in (3.12).
This is due to the fact that the low-rank approximation on the block AL bounds the maximum
eigenvalue of the corresponding block of the preconditioned matrix by 1. By contrast, the right
factor in (3.23) contains more terms than that of (3.23). This is explained by the fact that the
preconditioned operator does not have a block-diagonal shape when the approximate adaptive
preconditioner is used, as is the case with the exact one.
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3.5 Preconditioning cost

We devote this subsection to take a look at the cost associated with the use of an adaptive
preconditioner. Furthermore, we propose a comparison between the preconditioning costs of exact
and approximate adaptive preconditioners. Those include the build costs and the application costs
but we will focus exclusively on the build costs as the application costs should not in principle
differ much because the two preconditioners have the same shape.

Let M2 be an arbitrary SPD preconditioner of size nR. We denote Madap the adaptive precondi-
tioner using exact inverse of AL as defined in (3.3). As far as the build is concerned, constructing
Madap requires factorizing the matrix AL whereas constructing M̃P(ÃL, M2) requires factorizing a
small diagonal block AL

ΓΓ = CΓCT
Γ of the block-arrow matrix AL and computing a few smallest

eigenvalues of the generalized eigenvalue problem

SL · u = λAL
ΓΓ · u; (3.24)

which is equivalent to the following eigenvalue problem:

C−1
Γ (AL

ΓΓ − SL)C−T
Γ · ū = ζū (3.25)

where ζ = 1− λ and ū = CT
Γu. Using Cholesky factorization to transform a generalized eigenvalue

problem involving symmetric matrices into a standard eigenvalue problem is common practice
[1]. Note that both matrices AL

ΓΓ and SL in (3.24) are SPD therefore λ > 0. In addition, with
Lemma 3.1, we get 0 < λ ≤ 1. Consequently, 0 ≤ ζ < 1. This implies that the smallest eigenvalues
of (3.24) and their associated eigenvectors can be deduced from the largest eigenvalues of (3.25)
and the corresponding eigenvectors. This technique allows to avoid the costly computation of
the smallest eigenvalues (and their eigenvectors). Indeed, the iterative process of computing
the smallest eigenvalues is based on a shift and invert approach [124], which requires applying
iteratively the operator (SL − µAL

ΓΓ)
−1AL

ΓΓ, i.e. solving in each iteration a system with the matrix
SL − µAL

ΓΓ, where µ here stands for a shift. This latter scalar is an initial approximate guess in the
vicinity of which the smallest eigenvalues are located [124, Section 4.1.3]. This approach, called
spectral transformation, can also be used for eigenvalues located in the interior of the spectrum
[54, 68].

Furthermore, for the computation of few largest eigenvalues of the matrix WΓΓ := C−1
Γ (AL

ΓΓ −
SL)C−T

Γ ), we apply the Implicitly Restarted Lanczos Method (IRLM [131]).The procedure can
be broadly summarized as follows. Let nev be the number of eigenvalues desired. In ARPACK,
this implies a Krylov space of dimension at least equal to m = 2nev is going to be constructed
[95, Section 2.3.3]. A Lanczos on this Krylov space would approximately cost (2nnz(WΓΓ) ×
m) operations and yield an orthogonal basis V where the symmetric operator WΓΓ would be
represented by the real symmetric tridiagonal matrix H := VTWΓΓV. The eigenpairs of this latter
matrix are then computed, at a cost of 6m2 or mlog(m) depending on the matrix and the method
chosen, QR or Divide and Conquer, see [42, Section 4] and [24, 71, 39]. After that, the eigenvectors
for the initial matrix WΓΓ are formed from those of H and the basis V at a cost of m2× nΓ, nΓ being
the size of WΓΓ (see [95, Section 2.3.3]. As the process is partially iterated (on the unwanted Ritz
eigenpairs, see [132, Section 3]) a few times if not all the eigenvalues have converged, the total cost
for finding the wanted eigenvalues would be estimated at O(2nnz(WΓΓ)×m + 6m2 + m2 × nΓ) or
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O(2nnz(WΓΓ)×m + mlog(m) + m2 × nΓ). According to the definition of SL following (3.5), the
matrix WΓΓ can be expressed:

WΓΓ = C−1
Γ (

N

∑
j=1

AL
Γj(A

L
jj)
−1AL

jΓ)C
−T
Γ .

As a consequence, WΓΓ is likely to be dense, nnz(WΓΓ) is at most equal to n2
Γ and the Lanczos phase

is the most dominant one in terms of complexity cost for the computation of few largest eigenpairs
of WΓΓ with O(2n2

Γ ×m) operations at most. Building the exact adaptive preconditioner requires
the exact inverse of AL which is tantamount, in a way, to constructing (SL)−1 (see (3.6)). The cost
of this computation is O(n3

Γ/3) operations. As we are interested in a few largest eigenvalues, the
Krylov subspace dimension m is taken small with respect to the matrix size nΓ. For this reason, the
cost of the exact preconditioner O(n3

Γ/3) is higher than that of the approximate one O(2n2
Γ ×m).

3.6 Possible choices for M2

From this point forward, the discussion that follows and the properties proven are only
theoretical. For the numerical tests (Section 3.7), we deal with a block-Jacobi preconditioner M2
computed from AR for comparison purposes with the numerical results of Chapter 2.

It is worth mentioning here that formulas similar to (3.9) and (3.10) were used and analyzed in
some previous studies [109, 121, 129, 134]. In another article [13], this kind of preconditioners
were studied in a broader way with arbitrary 2× 2 splittings. In particular, we note that Formula
(6) in [13, Section 4] is identical to the inverse of (3.9) whereas (3.10) corresponds to the particular
case where only one approximate inverse is used (M1 = ÃL) and was cited in [109, 129].

In this latter case, a good candidate for M2 can be deduced from expressing M̃−1A. Indeed, when
M2 = AR −ARLÃ−1

L ALR then M̃−1A has a block lower triangular shape and its lower right block
corresponds to the identity matrix.

The question that may arise at this level is, what is the ideal preconditioner M2, when Ã−1
L the

approximation of A−1
L is fixed? Axelsson et al. answered this question and proved in [13, Section 4]

that the ideal choice is

M2 = α−1D2;

D2 := AR −ARL(Ã−1
L + Ã−T

L − Ã−T
L ALÃ−1

L )ALR; (3.26)

α := trace(Ã−1
L AL)/nL. (3.27)

The formulas above determine the optimal preconditioner in the sense of trace/determinant
ratio of the preconditioned matrix. This ratio is referred to as the K-condition number and it is
an alternative quantity to the classical condition number that is used to obtain estimates of the
number of PCG iterations [82]. The scalar α defined in (3.27) serves to minimize the K-condition
number. As for the condition number κ(M̃−1

P A), it is sufficient to consider a block M2 that is
proportional to D2, as detailed below. For ease of reference, we keep the notation used in that
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article and denote H the global preconditioner M̃−1
P constructed with M2 = D2 of (3.26):

H := M̃−1
P (ÃL, D2). (3.28)

In what follows, and for a chosen approximation ÃL, we further explain why the matrix D2
(that defines H) is a good candidate as far as the minimization of the condition number of
M̃−1

P (ÃL, M2)A for a varying M2 is concerned. For that, we denote by γ the C.B.S. constant for
the partitioning (3.1) and follow the same reasoning as in [12, Section 4]. Lemma 3.5 recalls a
property of Theorem 9.5 of [12] that states that with a 2× 2-block preconditioner built from exact
off-diagonal blocks and approximations of the diagonal blocks of the matrix A can bound (from
above and below) the eigenvalues of the preconditioned operator. The bounds of Lemma 3.5 are
not optimal like the original ones of [12, Theorem 9.5] but their expressions are simpler, shorter and
sufficient for the purpose of this section. For symmetric positive semi-definite matrices B1 and B2
in Rn×n, we recall the following notation: B1 ≤ B2 if and only if ∀y ∈ Rn, yT · B1 · y ≤ yT · B2 · y.

Lemma 3.5. Let C :=

(
ÃL ALR

ARL ÃR

)
with ÃL and ÃR two approximations of AL and AR respectively

such that there exist scalars α0, α1, β0 and β1 such that 0 < α1 ≤ 1 ≤ α0 and 0 < β1 ≤ 1 ≤ β0 and:

α1AL ≤ ÃL ≤ α0AL (3.29)

β1AR ≤ ÃR ≤ β0AR (3.30)

Then

λmax(C−1A) ≤
(

1−max
{

1− α1

1 + γ
,

1− β1

1 + γ

})−1

(3.31)

λmin(C−1A) ≥
(

1 + max
{

α0 − 1
1− γ

,
β0 − 1
1− γ

})−1

(3.32)

K(C−1A) ≤
(

1 + max
{

α0 − 1
1− γ

,
β0 − 1
1− γ

})(
1−max

{
1− α1

1 + γ
,

1− β1

1 + γ

})−1

(3.33)

Proof. In a similar way to the proof of Theorem 9.5 in [12], with ζ0 = 1, ζ1 = 1.

Remark 3.2. Given the matrices AL and AR, note that inequalities like (3.29) and (3.30) can be
obtained by choosing a preconditioner that bounds the extreme eigenvalues of the preconditioned
operator. In such case, the scalars α0 and α1 can be respectively taken as the inverse of the

lowerbound (
1
ξ0

) and the inverse of the upperbound (
1
ξ1

) of the preconditioned operator’s

eigenvalues as described in the following. Indeed, for the matrix AL for example, let us denote
ÃL = W̃LW̃T

L the preconditioner that bounds the preconditioned operator’s eigenvalues, i.e.:

∃ξ0 > 0, ∃ξ1 > 0, ξ0 ≤ λ(Ã−1
L AL) ≤ ξ1

Then, by introducing the Rayleigh quotient for arbitrary non-zero vectors, we have:

∀x 6= 0, ξ0 ≤ λmin(Ã−1
L AL) ≤

xT · W̃−1
L ALW̃−T

L · x
xTx

≤ λmax(Ã−1
L AL) ≤ ξ1.
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Therefore by considering y := W̃−T
L · x, we get:

∀y 6= 0, ξ0(yT · W̃LW̃T
L · y) ≤ yT ·AL · y ≤ ξ1(yT · W̃LW̃T

L · y).

That is

∀y 6= 0,
1
ξ1

(yT ·AL · y) ≤ yT · ÃL · y ≤
1
ξ0

(yT ·AL · y).

It may be inferred from Lemma 3.5, in particular from Inequality (3.33), that the closer
to each other the scalars α0, α1 and β0, β1 respectively are, the smaller the upper bound on
the condition number of C−1A is, and thereby the better the quality of the preconditioner C
becomes. In other words, we may consider this latter as a function of the gaps (∆α := α0 − α1 and
∆β := β0 − β1) that is optimal when (∆α, ∆β) = (0, 0).

Note that M̃P(ÃL, M2) of (3.10) is a particular case of C in Lemma 3.5. In the sequel, we will see
how this latter applies to M̃P(ÃL, M2) with some choices of M2.

Corollary 3.1. Let ÃL and M2 be such that there exist scalars α0, α1, θ0 and θ1 such that 0 < α1 ≤ 1 ≤ α0
and 0 < θ1 ≤ 1 ≤ θ0 and:

α1AL ≤ ÃL ≤ α0AL (3.34)

θ1AR ≤ M2 ≤ θ0AR (3.35)

Then

K(M̃−1
P (ÃL, M2)A) ≤

(
1 + max

{
α0 − 1
1− γ

,
θ0 + α−1

1 γ2 − 1
1− γ

})(
1−max

{
1− α1

1 + γ
,

1− θ1

1 + γ

})−1

(3.36)

Proof. We know that for all vectors x and y of lengths nL and nR respectively, we have:

(xT ·ALR · y)2

xT ·AL · x
≤ γ2yT ·AR · y

By taking x := A−1
L ALR · y for arbitrary y, we get:

(yT ·ARLA−1
L ALR · y)2

yT ·ARLA−1
L ALA−1

L ALR · y
= yT ·ARLA−1

L ALR · y ≤ γ2yT ·AR · y

This means that ARLA−1
L ALR ≤ γ2AR.

Note here that in the case when nL < nR, the matrix ARLA−1
L ALR is singular and thus there exists

no positive scalar ω such that: ωAR ≤ ARLA−1
L ALR. As a consequence, we can only write:

0 ≤ ARLA−1
L ALR ≤ γ2AR (3.37)

From (3.34), we obtain:

α−1
0 A−1

L ≤ Ã−1
L ≤ α−1

1 A−1
L
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Hence

α−1
0 ARLA−1

L ALR ≤ ARLÃ−1
L ALR ≤ α−1

1 ARLA−1
L ALR

After injecting (3.37), we obtain:

0 ≤ ARLÃ−1
L ALR ≤ α−1

1 γ2AR

Thus

θ1AR ≤ M2 + ARLÃ−1
L ALR ≤ (θ0 + α−1

1 γ2)AR

Finally, all that remains is to apply Lemma 3.5 with C = M̃P(ÃL, M2), β0 = θ0 + α−1
1 γ2 and

β1 = θ1.

Corollary 3.2. Let ÃL be such that there exist scalars α0, α1:

γ2(1− α−1
0 ) < α1 ≤ 1 ≤ α0 (3.38)

α1AL ≤ ÃL ≤ α0AL (3.39)

Then

K(M̃−1
P (ÃL, D2)A) ≤

(
1 + max

{
α0 − 1
1− γ

,
(1− α1)γ

2

(1− γ)α2
1

})(
1−max

{
1− α1

1− γ
,

γ2(α0 − 1)
α0α1(1− γ)

})−1

(3.40)

Proof. The bottom right diagonal block of M̃P(ÃL, D2) equals to

D2 + ARLÃ−1
L ALR = AR −ARL(Ã−T

L − Ã−T
L ALÃ−1

L )ALR .

Due to (3.39), we have:

α−1
0 ÃL ≤ AL ≤ α−1

1 ÃL and α−1
0 A−1

L ≤ Ã−T
L ≤ α−1

1 A−1
L

Thus, we can write

α−1
0 Ã−T

L ≤ Ã−T
L ALÃ−1

L ≤ α−1
1 Ã−T

L

Consequently, we have

α−1
1 (1− α−1

1 )A−1
L ≤ (1− α−1

1 )Ã−T
L ≤ Ã−T

L − Ã−T
L ALÃ−1

L ≤ (1− α−1
0 )Ã−T

L ≤ α−1
1 (1− α−1

0 )A−1
L

Then

α−1
1 (α−1

0 − 1)ARLA−1
L ALR ≤ −ARL(Ã−T

L − Ã−T
L ALÃ−1

L )ALR ≤ α−1
1 (α−1

1 − 1)ARLA−1
L ALR

And with (3.37) we obtain:

γ2α−1
1 (α−1

0 − 1)AR ≤ −ARL(Ã−T
L − Ã−T

L ALÃ−1
L )ALR ≤ γ2α−1

1 (α−1
1 − 1)AR
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Therefore(
1 + γ2α−1

1 (α−1
0 − 1)

)
AR ≤ AR −ARL(Ã−T

L − Ã−T
L ALÃ−1

L )ALR ≤
(

1 + γ2α−1
1 (α−1

1 − 1)
)

AR

To complete the proof, we apply Lemma 3.5 to ÃL, ÃR := D2 + ARLÃ−1
L ALR, β0 := 1 +

γ2α−1
1 (α−1

1 − 1) and β1 := 1 + γ2α−1
1 (α−1

0 − 1). Thanks to (3.38), this latter coefficient is posi-
tive.

Remark 3.3. We shall make some remarks before we move to the next theorem.

— In the case of a general M2, Corollary 3.1 gives the formulas for the scalars β0 and β1,
as defined in Lemma 3.5, that are involved in the bounds of the extreme eigenvalues of
M̃−1

P (ÃL, M2)A:

β0 := θ0 + α−1
1 γ2; β1 := θ1;

thus yielding the gap ∆β = θ0 − θ1 + α−1
1 γ2 ≥ γ2. This means that even if we improve

the quality of the approximations ÃL and M2 by respectively reducing the gaps ∆α and
∆θ := θ0 − θ1, we do not necessarily reduce the gap ∆β. Indeed, this latter is bounded from
below by a constant that does not depend on the approximations.

— In the particular case of D2, Corollary 3.2 gives the formulas for the scalars β0 and β1,
as defined in Lemma 3.5, that are involved in the bounds of the extreme eigenvalues of
M̃−1

P (ÃL, D2)A:

β0 := 1 + γ2α−1
1 (α−1

1 − 1); β1 := 1 + γ2α−1
1 (α−1

0 − 1);

Thus yielding the gap ∆β = γ2α−1
1 (α−1

1 − α−1
0 ) =

γ2

α0α2
1
× ∆α. As a consequence, improving

the quality of the approximation ÃL results not only in a lower ∆α but also in a lower ∆β

because those two quantities are proportional. Hence, the relevance of the choice M2 = D2
for a low condition number of M̃−1

P (ÃL, M2)A.

In spite of the good theoretical property of D2, the question whether this matrix is computable in
practice remains open. If so, applying the preconditioner M̃−1

P (ÃL, D2) requires either inverting
the matrix D2 or applying D−1

2 to vectors of size nR. Yet, it may not be feasible in practice to
compute or apply its inverse to arbitrary vectors especially if it is too dense. For such cases, we
propose the alternative preconditioning strategy that is presented in the following theorem.

Theorem 3.1. Let Ã−1
L be a given approximation of A−1

L , close enough so that D2 is positive definite. We
set

M−1 := M̃−1
P (ÃL, D̃2) =

(
I −Ã−1

L ALR
0 I

)(
Ã−1

L 0
0 D̃−1

2

)(
I 0

−ARLÃ−1
L I

)
; (3.41)

where D̃2 is a close approximation of D2 that bounds the condition number of D2D̃−1
2 , by a predefined

constant i.e.:

∃C1 > 0 such that κ(D2D̃−1
2 ) < C1 (3.42)
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Then the preconditioner M bounds the condition number of the preconditioned operator M−1A:

∃C > 0 such that κ(M−1A) ≤ C κ(M̃−1
P (ÃL, D2)A) (3.43)

Proof. Let L1 and L such that L1LT
1 = H−1 and L−TL−1 = M−1 We have:

λmax(M−1A) = λmax(L−1AL−T) = max
y 6=0

〈 y, L−1AL−T · y〉
〈 y, y〉

= max
y 6=0

〈 y, L−1L1L−1
1 AL−T

1 LT
1 L−T · y〉

〈 y, y〉

= max
y 6=0

〈 LT
1 L−T · y, (L−1

1 AL−T
1 ) · LT

1 L−T · y〉
〈 LT

1 L−T · y, LT
1 L−T · y〉

×
〈 LT

1 L−T · y, LT
1 L−T · y〉

〈 y, y〉

≤
(

max
z 6=0

〈 z, L−1
1 AL−T

1 · z〉
〈 z, z〉

)
×
(

max
y 6=0

〈 y, L−1L1LT
1 L−T · y〉

〈 y, y〉

)
≤ λmax(L−1

1 AL−T
1 )× λmax(L−1L1LT

1 L−T) = λmax(HA)× λmax(H−1M−1)

In a similar fashion, we can show that

λmin(M−1A) ≥ λmin(HA)× λmin(H−1M−1);

and thus:

κ(M−1A) =
λmax(M−1A)

λmin(M−1A)
≤ κ(HA)× κ(H−1M−1) (3.44)

From the definition of H, we have:

H =

(
I −Ã−1

L ALR
0 I

)(
Ã−1

L 0
0 D−1

2

)(
I 0

−ARLÃ−1
L I

)
Therefore

H−1 =

(
I 0

ARLÃ−1
L I

)(
ÃL 0
0 D2

)(
I Ã−1

L ALR
0 I

)
And

H−1M−1 =

(
I 0

ARLÃ−1
L I

)(
I 0
0 D2D̃−1

2

)(
I 0

−ARLÃ−1
L I

)
Then: Sp(H−1M−1) = {1} ∪ Sp(D2D̃−1

2 )

From this latter equality and the fact that the condition number of D2D̃−1
2 is bounded by C1, we

deduce that the condition number of H−1M−1 is bounded as well by a constant C that depends
on C1:

∃C > 0 such that κ(H−1M−1) ≤ C. (3.45)
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On the other hand, we have

κ(HA) = κ(M̃−1
P (ÃL, D2)A). (3.46)

Ultimately, Inequality (3.43) follows from (3.44), (3.46) and (3.45)

There exist some preconditioners that allow to bound the condition number of the preconditioned
operator, such as domain decomposition-based preconditioners (like BDD or two-level Schwarz)
[47] or LORASC [67]. The first mentioned are not well suited in this context for D̃2 because they
usually require solution of subdomain problems arising from the discretization of the PDE. Yet,
D2 does not stem from any PDE. On the other hand, LORASC preconditioner could be used to
build D̃2 as this preconditioner is fully algebraic and requires no other information other than
the matrix. However, constructing this preconditioner for D2 requires finding a permutation
of this latter matrix into a block-arrow shape and inverting exactly the diagonal blocks of the
permuted matrix. This operation might be costly if we cannot guarantee that the size of the blocks
in the block-arrow shape is small enough. The subsequent corollary presents a modified low rank
approximation strategy as an alternative to the standard LORASC strategy.

Corollary 3.3. Let Ã−1
L be a given approximation of A−1

L , close enough so that D2 is positive definite. Let
N2 be a symmetric positive definite preconditioner of D2 that bounds the maximum eigenvalue of N−1

2 D2:

∃C2 > 0 such that λmax(N−1
2 D2) ≤ C2. (3.47)

Let 0 < ε < 1 be a given threshold, and λ1, . . . , λnR be the eigenvalues of N−1
2 D2 sorted in an increasing

order and v1, . . . , vnR be the associated N2-orthonormal eigenvectors. Let also i ∈ J1, nRK such that

λj < ε , ∀j ≤ i. We define Ei := [v1v2 . . . vi] and Σi = [σ1σ2 . . . σi] with σj =
ε− λj

λj
, ∀j ≤ i . For

the preconditioner

M−1 := M̃−1
P (ÃL, D̃2) =

(
I −Ã−1

L ALR
0 I

)(
Ã−1

L 0
0 D̃−1

2

)(
I 0

−ARLÃ−1
L I

)
; (3.48)

where D̃−1
2 := N−1

2 + EiΣiET
i , we have:

κ(M−1A) ≤ C2

ε
κ(M̃−1

P (ÃL, D2)A). (3.49)

Proof. Following the same reasoning as in the proof of Theorem 3.1, we obtain:

κ(M−1A) ≤ κ(H−1M−1)× κ(M̃−1
P (ÃL, D2)A). (3.50)

Since Sp(H−1M−1) = {1} ∪ Sp(D̃−1
2 D2), we have:

κ(H−1M−1) = κ(D̃−1
2 D2).

On the other hand, and in a similar way to the proofs of Lemmas 3.1 and 3.2, we can show that:

Sp(D̃−1
2 D2) = {ε, λi+1, . . . , λnR}
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Consequently,

κ(H−1M−1) =
λnR

ε
.

But,

λnR = λmax(N−1
2 D2) ≤ C2

Therefore

κ(M−1A) ≤ C2

ε
× κ(M̃−1

P (ÃL, D2)A).

Over the classical LORASC method, Corollary 3.3 presents the advantage of replacing the exact
inverse of the interface submatrix by an approximate inverse. The alternative method is less
cumbersome and requires only that the maximum eigenvalue be bound. This can be easily
achieved by just taking a simple Block-Jacobi preconditioner for instance for N2.

3.7 Numerical results

In the previous sections, we explained the concept and motivations for the adaptive LORASC
error-based preconditioner where the LORASC preconditioner is used as an approximate inverse
that replaces the exact inverse of the submatrix AL in the expression of the exact adaptive
error-based preconditioner (see (3.3)). In this section, we analyze the efficiency of this new
preconditioner on a set of matrices stemming from the discretization by the finite element method
of diffusion models with inhomogeneous coefficients on two-dimensional (2D) domains. The
following numerical experiments are based on Matlab with PDE toolbox in order to create a mesh
and solve the considered PDE on a domain Ω. We use the ’initmesh’ command with the maximum
element size indicated by the input Hmax to build a mesh according to Delaunay triangulation.
Once the main linear system is defined after the discretization with P1 finite elements, we run 20
iterations of PCG to get a starting distribution of the algebraic error on all the elements of the mesh
from which we distinguish subdomains L and R with significant high algebraic error and low
algebraic error respectively. The interested reader can find in the previous chapter (Section 2.6.1)
full details on the manner in which this domain splitting is carried out. Then the solve process
is continued either with the initial preconditioner, chosen to be a Block-Jacobi preconditioner
composed of 50 blocks, or an adaptive error-based preconditioner until the residual norm goes
below the threshold 10−6. In the sequel, we test and compare three adaptive preconditioners:

— The exact adaptive preconditioner which uses an exact factorization of AL.

— The approximate LORASC-based adaptive preconditioner which uses a low rank factoriza-
tion to approximate A−1

L , see (3.10).

— The approximate IC(0)-adaptive preconditioner which uses an incomplete Cholesky factoriza-
tion with zero-fill to approximate A−1

L . It is used as an example of incomplete-factorization-
based preconditioner and serves merely for comparison purposes.
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To construct the approximate LORASC-based adaptive preconditioner, the graph partitioner METIS
[83] is used to obtain the block-arrow shape form of (3.4), and the function ’eigs’ of Matlab, which
uses ARPACK [95], is called to compute the smallest eigenvalues and associated eigenvectors of
the generalized eigenvalues problem (3.24). The construction of LORASC is such that it deflates
the small eigenvalues below a threshold ε = 0.2, and thus the eigenvalues of the preconditioned
matrix Ã−1

L AL are lower bounded by ε = 0.2.

Let Ω ⊂ R2 be a polytopal domain (open, bounded and connected set). The diffusion model with
inhomogeneous coefficients that we consider here may be written as follows:{

−∇ · (K∇u) = f in Ω,

u = u0 on ∂Ω,
(3.51)

where u : Ω → R is the unknown function, u0 : ∂Ω → R is the Dirichlet boundary function,
f : Ω → R is a source term, and K is an uniformly bounded and positive definite diffusion
tensor. The diffusion tensor is defined as a multiple of the identity matrix K = c ∗ I. The factor
c here stands for the diffusivity and can be a highly heterogeneous function of Ω. We consider
in the sequel three test cases with different diffusivity functions. For the initial Block-Jacobi
preconditioner and the three adaptive preconditioners derived at the beginning of this section,
we plot curves that show the evolution of the global energy norm of the error and of the local
portion of error captured in subset L. This latter quantity is the L-norm defined in Section 2.6.1 of
Chapter 2. Furthermore, we study the effectiveness of the approximate adaptive preconditioners
by examining their behavior in terms of weak and strong scalibility. We recall that the size of the
problem proportionally increases with respect to the number of partitions in weak scaling while it
is fixed and only the number of partitions varies in strong scaling.

3.7.1 Test case n°1

In the first test, we set the domain Ω = [−1, 1], and consider an homogeneous Dirichlet
boundary condition on ∂Ω. We fix the diffusivity to the value 1 on the whole domain and hence
obtain a classical Poisson’s equation. The source term f is appropriately chosen such that the
exact solution of the PDE is:

u = (x + 1)× (x− 1)× (y + 1)× (y− 1)×
(exp(−α× ((x + 0.5)2 + (y + 0.5)2)− exp(−β× ((x− 0.5)2 + (y− 0.5)2))),

with α = 300 and β = 200. The first test case of this chapter is similar to the second one of
Chapter 2 where the error is localized on two circular spots of the domain. The parameters (α, β

and the mesh size) were modified to increase the size of the set L. Table 3.1 gathers the number of
iterations required to solve the preconditioned system (itLORASC when adaptive LORASC-based
preconditioner is considered, itIC(0) for adaptive preconditioner based on Incomplete Cholesky
without fill-in, itexact for exact adaptive preconditioner of (3.3) and itBJ for the Block-Jacobi
preconditioner) along with nev the number of deflated eigenvalues, Nmult the number of matrix-
vector operations required to compute those eigenvalues via function ’eigs’ of Matlab, and the
dimension m of the search Krylov subspace, with respect to the problem size and the number of
partitions N. The values of the condition number of the matrix AL are reported in the table as
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well (κ(AL)).

Table 3.1 – Weak scaling results for test case n°1. The number of iterations are given for exact and approximate
adaptive preconditioner using LORASC or Incomplete Cholesky IC(0).

n nnz nL κ(AL) N nΓ nnz(WΓ) m nev Nmult itLORASC itIC(0) itexact itBJ

68 280 494 203 10 244 3 898 8 680 190 072 90 21 152 192 463 87 537

107 649 494 203 16 149 6 233 16 1 435 734 343 190 44 310 162 568 37 666

191 183 494 203 28 672 11 836 32 2 976 2 921 064 396 92 631 123 763 10 897

Table 3.2 contains the results for the strong scaling. It outlines the changes in the dimension
of search space, the number of eigenvalues extracted and iterations as the number of partitions
increases.

Table 3.2 – Strong scaling results for test case n°1.

n nnz nL N nΓ nnz(WΓ) m nev Nmult itLORASC

191 183 1 334 875 28 672 4 651 209 853 86 21 146 170

191 183 1 334 875 28 672 8 1 183 577 748 156 40 256 109

191 183 1 334 875 28 672 16 1 935 1 337 690 258 60 415 128

191 183 1 334 875 28 672 32 2 976 2 921 064 396 92 631 123

Figure 3.1 depicts for the test case n°1 the way in which the error norms, the global error norm and
the local portion of error in L, vary during the iterative solve with the four different preconditioners
introduced earlier in this section. The matrix size and parameters’ settings considered to plot
these curves are the ones reported in the last row of Table 3.1.
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Figure 3.1 – Error evolution for test case n°2

We remark from those Tables 3.1 and 3.2 that in general, only few eigenvalues need to be computed
for LORASC. We also notice that nev and m grow when we increase the number of partitions. In
addition, we underline the fact that the dimension of the search Krylov subspace considered here
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always satisfies the condition required in [95]: m ≥ 2 ∗ nev. In addition, we may infer from the
results in Table 3.4 that the number of partitions does not necessarily have to be the highest that is
technically possible. With this test case, the optimal one, which yields the least iterations, is 8.

3.7.2 Test case n°2

For the test case hereafter, we consider Ω = [0, 1], define the right hand side f as the
constant function taking the value 1 in Ω and the Dirichlet boundary condition is prescribed on
∂Ω by the function:

u0(x, y) =
√

x; (3.52)

whereas the diffusivity is defined as,

c(3)(x, y) =

{
105(b9xc+ 1) if b(9x)c ≡ 0 (mod 2) and b(9y)c ≡ 0 (mod 2).

1 otherwise.

This second test case is similar to the third one of Chapter 2 where the error is scattered on the
domain. By contrast, the mesh size and the size of the set L were increased. Tables 3.3 and 3.4
present the computational results of this test case.

Table 3.3 – Weak scaling results for test case n°2. The number of iterations are given for exact and approximate
adaptive preconditioner using LORASC or Incomplete Cholesky IC(0).

n nnz nL κ(AL) N nΓ nnz(WΓ) m nev Nmult itLORASC itIC(0) itexact itBJ

14 690 100 650 10 281 6 008 8 183 12 321 24 4 58 929 1067 920 1569

41 699 288 725 26 584 62 546 16 1 024 262 228 136 32 262 1 143 1 607 1 142 2 527

78 428 544 350 50 000 8 790 32 1 633 170 853 216 23 403 2 227 2 456 2 181 3 541

Table 3.4 – Strong scaling results for test case n°2.

n nnz nL N nΓ nnz(WΓ) m nev Nmult itLORASC

78 428 544 350 50 000 4 96 4 626 20 2 44 2 214

78 428 544 350 50 000 8 290 29 244 38 5 81 2 185

78 428 544 350 50 000 16 687 72 003 90 12 171 2 186

78 428 544 350 50 000 32 1 633 170 853 216 23 403 2 227

Figure 3.2 illustrates how the error norms change over iterations for test case n°2 with standard
solve procedure, adaptive solve procedure and variants of this latter. The matrix size and
parameters’ settings considered to plot the curves are indicated in the second row of Table 3.3.
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Figure 3.2 – Error evolution for test case n°1

From the results shown in Tables 3.3 and 3.4 and Figure 3.2, we see that the behavior of the
LORASC-based adaptive preconditioner is very close to that of the exact one, whereas the IC(0)-
based one is slightly less efficient but still way better than the standard PCG with Block-Jacobi
preconditioner.

It is also relevant to take a look at the number of matrix-vector operations needed for the Implicitly
Restarted Lanczos Method in order to check that the computation of eigenvalues is not excessively
costly. Indeed, the results reported in Tables 3.3, 3.4, 3.1, and 3.2 confirm this expectation, as Nmult
is roughly double the dimension of the search subspace (≈ 2m) which is small with respect to nL
(or nΓ).

3.8 Conclusion

We have proposed in this chapter the approximate adaptive preconditioners as an alternative
to exact adaptive preconditioners. The latter have the advantage of efficiency, but the former
entails lower computational costs. We have discussed two examples of approximate adaptive
preconditioners, one based on Incomplete Cholesky with no fill-in, and the other one based on
a LORASC preconditioner. The numerical results presented above clearly demonstrate that the
efficiency of the approximate adaptive preconditioners depends on the type of approximation
considered. In this sense, we can say that the LORASC-based preconditioner behaves better than
the IC(0)-based one. In fact, it should be emphasized that the LORASC adaptive preconditioner
yields an error reduction that is very close to the exact case by computing a few eigenvalues only.
In sum, and in light of these observations, LORASC adaptive preconditioner appears to be a good
candidate to replace the exact adaptive preconditioner as it has proven its ability to behave almost
as robustly as the latter but with lower computation costs.
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Chapter 4. Adaptive a posteriori error estimates-based preconditioner for controlling a local

algebraic error norm

Abstract

In this chapter, we introduce another variant for the adaptive preconditioner for iterative
solution of sparse linear systems arising from partial differential equations with self-adjoint
operators. With such a preconditioner, we prove that within a fixed-point iteration scheme, the
growth rate of a dominant part of the algebraic error can be controlled. In fact, after deriving an
error-based block partitioning of the matrix, where we denote by L the node indices where the
algebraic error is large, we bound this dominant part of the error by a seminorm of the error and
then demonstrate that the decrease of this latter quantity depends on the largest eigenvalue of
the L-block of the preconditioned operator M−1A. We present some numerical results to show
that link, and lastly, we test this preconditioner with a PCG solver and compare against the first
variant of the adaptive preconditioner.
Keywords— Adaptive preconditioner, fixed-point iteration, error’s growth rate, block partition-
ing

4.1 Introduction

We recall the study context introduced previously. We are interested in solving a linear
system A · x = b by an iterative method. The system stems from the discretization of a partial
differential equation for which an error analysis has been undertaken and a posteriori algebraic
error estimates are available. The magnitudes of these estimates indicate that the algebraic error is
concentrated on some specific areas of the domain, which leads to a certain error-driven domain
decomposition.

In Chapter 2, we have gathered the areas where the algebraic error was high in a subset of
indices L. Then we have tried to find a way to efficiently reduce the energy norm of the error
by expressing it as a sum of two terms : a first term that depends on L, that we call L-term and
which is dominant –according to the information stemming from a posteriori error estimates–
and a second term that does not depend on L that we call R-term (see (2.25)). The first term is
presented in two forms. On one hand, it can be expressed as a scalar product of the projections
of the residual and the error on the nodes of L. On the other hand, it can also be split into the
sum of a norm of the error projected on the indices of L, and a coupling term (see (2.26)). As this
latter term is also involved in the formula of the R-term, it is quite natural to seek to lessen the
impact of the norm of the error projected on the indices of L. Yet, we were not able to devise a
strategy to reduce it as the error vector remains generally unknown. That brought us to slightly
change the target criterion and focus on the projection of the residual on the nodes of L. Making
this projection nil implies that the L-term is cancelled (equal to zero). For this purpose, we have
introduced an adequate adaptive solve procedure and its equivalent preconditioner and initial
guess for PCG solver. We have explained that for this solver and with appropriate preconditioner
and initial guess, it was possible to cancel a projection of the residual, but limiting a projection of
the error was a complicated matter as the search directions in conjugate gradient methods are
chosen to reduce the global energy norm of the error, not a part of it.

This chapter is organized as follows: Section 4.2 recalls the starting assumption on the algebraic
error, then we discuss in Section 4.3 a first approach to locally reduce the localized large algebraic
errors on the basis of the orthogonality properties of the preconditioned conjugate gradient (PCG)
solver. In Section 4.4, we analyze the behavior of the partial error within a fixed-point iteration
scheme. In Section 4.5, we derive specific preconditioners that would ensure that from an iteration
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i to an iteration i + 1, the evolution of that algebraic error localized on the targeted subdomains is
controlled. More precisely, the growth rate of the local algebraic error between those two iterations
can be bounded by a fixed coefficient. Section 4.6 makes the connection with the preconditioner
derived in Chapter 2. The behaviors of both preconditioners are examined through some numerical
tests presented in Section 4.7.

4.2 Preliminaries

We consider the same model problem dealt with in Section 2.2 of Chapter 2 and reuse
the relevant notation in what follows. We also take up the starting assumption of a domain
decomposition that is based on the algebraic error, i.e. we can estimate the local distribution of the
error on all mesh elements and consequently decompose the main domain Ω into two disjoint
subdomains Ω1 and Ω2 such that: {

Ω1 ∪Ω2 = Ω

Ωo
1 ∩Ωo

2 = ∅
(4.1)

where Ω1 is the part with the high algebraic error:

||K1/2∇(uh − u(i)
h )||2L2(Ω1)

� ||K1/2∇(uh − u(i)
h )||2L2(Ω2)

(4.2)

According to the domain decomposition of (4.1), we denote by A(1) and A(2) the local stiffness
matrices for the subdomains Ω1 and Ω2, respectively. While for the matrix A we have

Ajk = (K
1
2∇ϕk , K

1
2∇ϕj), 1 ≤ j, k ≤ n ;

we define A(1) and A(2) the Neumann matrices local to subdomains Ω1 and Ω2 respectively:

A(1)
jk = (K

1
2∇ϕk , K

1
2∇ϕj)Ω1 , 1 ≤ j, k ≤ n, supp ϕk ∩Ω1 6= ∅, supp ϕj ∩Ω1 6= ∅

A(2)
jk = (K

1
2∇ϕk , K

1
2∇ϕj)Ω2 , 1 ≤ j, k ≤ n, supp ϕk ∩Ω2 6= ∅, supp ϕj ∩Ω2 6= ∅

For the ease of presentation we assume a convenient ordering such that the variables corresponding
to the vertices of Ω1 are numbered first and those of Ω2 second. Then we can split the original
operator, represented algebraically by the stiffness matrix A, as follows

A = A(1)
p + A(2)

p , (4.3)

where A(1)
p , A(2)

p are symmetric positive semidefinite (SPSD) with the following shapes:

A(1)
p =

(
A(1) 0

0 0

)
; A(2)

p =

(
0 0
0 A(2)

)
.

They are the extensions of the local stiffness matrices (also called Neumann matrices [47]) A(1) and
A(2) to the whole domain, see Formula (2.21) and Figure 2.2 in Chapter 2. Indeed, if we define the
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restriction matrices R1 and R2 from the global set of degrees of freedom to the set of degrees of
freedom related to Ω1 and to Ω2 respectively, then

A(1)
p = RT

1 A(1)R1; (4.4)

A(2)
p = RT

2 A(2)R2;

Let nL ∈N be the number of nodes in subdomain Ω1, then with a convenient node ordering, we
have

∀(xL, xR) ∈ RnL ×RnR : R1 ·
(

xL
xR

)
= xL. (4.5)

Furthermore, we obtain the equivalent formulation to (4.2) in the realm of matrices:

(x− x(i))T ·A(1)
p · (x− x(i))� (x− x(i))T ·A(2)

p · (x− x(i)) , (4.6)

where x(i) is the approximate solution at iteration i. Note that summing both sides of Inequality
(4.6) gives the energy norm of the error: (x− x(i))T ·A · (x− x(i)).

4.3 Local error reduction with PCG

Inequality (4.6) expresses that A(1)
p -seminorm of the error is the dominant part of the energy

norm of the error. Thus, it is this quantity that should be targeted and decreased. For this purpose,
we are going to discuss the orthogonality property that allows a decrease of the energy norm
of the error in PCG solver, then we try to derive a similar orthogonality property to ensure the
reduction of the dominant share of the algebraic error, which is localized in Ω1.
In what follows, for Euclidean vectors a and b of size m (a, b) denotes a dot product, and for a
symmetric matrix B of dimension m×m, we write (a, b)B := (a, B · b).
Let x(i) be the approximate solution of (2.4) obtained at iteration i, with a PCG method using a
preconditioner M.

Definition 4.1. Let B be a SPSD matrix and (x(j))j a sequence of vectors, x(j)−→
j

x. We say that a

B-orthogonality property is satisfied when for every iteration j, we have

(B · (x− x(j+1)), x(j) − x(j+1)) = 0 . (4.7)

Lemma 4.1. Let B be a SPSD matrix. The B-orthogonality property satisfied for a sequence of vectors
(x(j))j approximating the vector x, ensures the decrease of the B-seminorm of the algebraic error (B · (x−
x(j)), x− x(j)) from any iteration j to iteration j + 1.

Proof. In fact, due to B-orthogonality we have for every iteration j:

(x− x(j+1), x(j) − x(j+1))B = 0
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And

||x− x(j)||2B = ||x− x(j+1)||2B + ||x(j) − x(j+1)||2B − 2 ∗ (x− x(j+1), x(j) − x(j+1))B

= ||x− x(j+1)||2B + ||x(j) − x(j+1)||2B
≥ ||x− x(j+1)||2B

While iteratively solving (2.4), we could seek two orthogonalities in particular for the following
reasons:

•A-orthogonality: It allows to minimize the global energy norm of the error according to
Lemma 4.1.

•A(1)
p -orthogonality: It allows, according to Lemma 4.1, to reduce the dominant part of the global

energy norm of the error as assumed in (2.19).

In our context, a primary goal is to reduce the A(1)
p -seminorm of the algebraic error, which

is dominant according to the starting assumption (2.19). As stated in Lemma 4.1, the A(1)
p -

orthogonality is a sufficient condition for the decrease of those quantities. For this reason, we
now investigate means of ensuring the A(1)

p -orthogonality property. The A-orthogonality is
satisfied by definition thanks to the properties of the PCG method. Since we prefer to stay
within the framework of PCG, there is no room in the choice of search directions. But the step
size configuration constitutes a point for reflection, in the sense that there could exist some
preconditioner M which yields particular step sizes such that the A(1)

p -orthogonality holds too.

Lemma 4.2. Consider a PCG iterative process [123, Algorithm 9.1,Chapter 9] to solve the linear system
(2.4), and denote by r(j) and p(j) the residual and descent direction respectively at iteration j. The
A-orthogonality property is guaranteed by the step size αj:

αj =
r(j)T ·M−1 · r(j)

p(j)T ·A · p(j)
=

p(j)T · r(j)

p(j)T ·A · p(j)
; (4.8)

whereas the A(1)
p -orthogonality property can be guaranteed by the value taken by the step size αj:

αj =
p(j)T ·A(1)

p · (x− x(j))

p(j)T ·A(1)
p · p(j)

. (4.9)

Proof. The recurrence formulas of PCG give:x(j+1) = x(j) + αjp(j)

r(j+1) = r(j) − αjA · p(j)
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Therefore,

(x(j) − x(j+1))T ·A · (x− x(j+1)) = 0 ⇐⇒ (αjp(j))T · r(j+1) = 0

⇐⇒ p(j)T
· (r(j) − αjA · p(j)) = 0

⇐⇒ αj =
p(j)T · r(i)

p(j)T ·A · p(j)

We can prove the A(1)
p -orthogonality with (4.9) analogously. The right part of the equality (4.8)

can be demonstrated by induction from the recurrence formulas of PCG expressed above.

Lemma 4.2 gives step sizes that ensure A-orthogonality and A(1)
p -orthogonality, respectively.

Naturally, one can wonder when the two expressions (4.8) and (4.9) above match, i.e.:

p(j)T · r(j)

p(j)T ·A · p(j)
=

p(j)T ·A(1)
p · (x− x(j))

p(j)T ·A(1)
p · p(j)

(4.11)

The formula above cannot be used in practice because the term A(1)
p · (x− x(j)) cannot be computed

as x is unknown. We outline here a special case when (4.11) holds: when x− x(0) is an eigenvector
of M−1A. Indeed, let λ ∈ R∗ be the associated eigenvalue. We have:

p(0) := M−1 · r(0) = M−1A · (x− x(0)) = λ(x− x(0)) and A · p(0) = λr(0)

Hence,

p(0)T · r(0)

p(0)T ·A · p(0)
=

1
λ

and
p(0)T ·A(0)

p · (x− x(0))

p(0)T ·A(0)
p · p(0)

=
1
λ

.

However, this assumption is too strong to be satisfied in practice for a PCG solver. In fact, it allows
for the convergence in one iteration because:

M−1A · (x− x(0)) = λ(x− x(0)) =⇒



z(0) := M−1 · r(0) = λ(x− x(0));

p(0) := z(0) = λ(x− x(0));

α(0):=
r(0)

T · z(0)

p(0)T ·A · p(0)

=
λ

λ2×
(x− x(0))TA(x− x(0))
(x− x(0))TA(x− x(0))

=
1
λ

=⇒ x(1) := x(0) + α(0)p(0) = x

This reflects the difficulty of reducing the A(1)
p seminorm of the error with a PCG solver, and

motivates seeking another procedure to ensure the local reduction of dominant errors.
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4.4 Controlling the local algebraic error in fixed-point iteration
scheme

Controlling the evolution of the left hand side of (4.6), which is the dominant part of the
energy norm of the error, from an iteration to another is limited and kept under a given threshold
is equivalent to ensuring the following property:

∃τ > 0, ∀i ∈N, (x− x(i+1))T ·A(1)
p · (x− x(i+1)) ≤ τ(x− x(i))T ·A(1)

p · (x− x(i)).

Thus considering a fixed-point iteration scheme

x(i+1) := x(i) + M−1 · (b−A · x(i)), ∀i ∈N; (4.12)

with an arbitrary initial guess x(0) brings us to search for a preconditioner M−1 that satisfies the
property:

∃τ > 0, ∀u ∈ Rn : ((I−M−1A) · u)T ·A(1)
p · ((I−M−1A) · u) ≤ τuT ·A(1)

p · u; (4.13)

because due to (4.12), we have x− x(i+1) = (I−M−1A) · (x− x(i)).

In what follows, we state some lemmas that are useful for establishing the necessary and sufficient
conditions for property (4.13).

Lemma 4.3. Let P be a symmetric positive semi-definite matrix, Q be an invertible matrix of size n ∈N

and V be an arbitrary subspace of Rn. The following two assertions are equivalent:

— ∃τ1 > 0, ∀u ∈ V : ((I−Q) · u)T · P · ((I−Q) · u) ≤ τ1uT · P · u;

— ∃τ2 > 0, ∀u ∈ V : (Q · u)T · P · (Q · u) ≤ τ2uT · P · u;

Proof. We denote by || ||P : x 7→
√

xT · P · x the seminorm defined by P on Rn. To prove the
equivalence of the assertions, it suffices to notice that for any u ∈ Rn we have:

||u−Q · u||2P ≤ 2||u||2P + 2||Q · u||2P

and
||Q · u||2P = ||u− (u−Q · u)||2P ≤ 2||u||2P + 2||u−Q · u||2P.

Lemma 4.4. Let P be a symmetric positive semi-definite matrix and Q be an invertible matrix of size
n ∈N. If

∃τ > 0, ∀u ∈ Rn : ((I−Q) · u)T · P · ((I−Q) · u) ≤ τuT · P · u;

then Ker(P) is invariant of Q, i.e. ∀v ∈ Ker(P) : Q · v ∈ Ker(P).

Proof. We give a proof by contrapositive of this lemma. If Ker(P) is not invariant of Q then there
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exists a vector u0 ∈ Ker(P) such that Q · u0 /∈ Ker(P). Thus:

∀τ > 0, ∃u0 ∈ Rn : ((I−Q) · u0)
T · P · ((I−Q) · u0) = ||Q · u0||2P > 0 = τ(uT

0 · P · u0).

The next corollary follows from the above lemma by taking P := A(1)
p and Q := M−1A.

Corollary 4.1. Let M−1 be a preconditioner of the matrix A that satisfies:

∃τ > 0, ∀u ∈ Rn : ((I−M−1A) · u)T ·A(1)
p · ((I−M−1A) · u) ≤ τuT ·A(1)

p · u;

then Ker(A(1)
p ) is invariant of M−1A.

This corollary provides a necessary condition for the property (4.13) to be satisfied. On the other
hand, we aim at proving sufficient condition for that property with the following lemma:

Lemma 4.5. Let M−1 be a preconditioner of the matrix A.
If Range(A(1)

p ) is invariant of (M−1A)TA(1)
p (M−1A) then:

∃τ > 0, ∀u ∈ Range(A(1)
p ) : ((I−M−1A) · u)T ·A(1)

p · ((I−M−1A) · u) ≤ τuT ·A(1)
p · u;

Proof. A(1)
p and (M−1A)TA(1)

p (M−1A) are symmetric positive semidefinite.

In addition, if Range(A(1)
p ) is invariant of (M−1A)TA(1)

p (M−1A) then, (M−1A)TA(1)
p (M−1A)

and A(1)
p , seen as linear operators from Range(A(1)

p ) to Range(A(1)
p ), are symmetric positive

semidefinite and symmetric positive definite respectively. In this case, we can introduce the
following generalized eigenvalue problem:

Find(yk , µk) ∈ Range(A(1)
p )×R such that (M−1A)TA(1)

p (M−1A) · yk = µkA(1)
p · yk. (4.14)

Since A(1)
p is a SPD operator on Range(A(1)

p ), the eigenvalues of (4.14) can be chosen so that they

form a basis of Range(A(1)
p ) that is both A(1)

p -orthonormal and (M−1A)TA(1)
p (M−1A)-orthogonal.

Let m = dim(Range(A(1)
p )) = rank(A(1)

p ) and let u ∈ Range(A(1)
p ) then:

u =
m

∑
k=1

(A(1)
p · u, yk)yk

(M−1A)TA(1)
p (M−1A) · u =

m

∑
k=1

(A(1)
p · u, yk)(M

−1A)TA(1)
p (M−1A) · yk =

m

∑
k=1

µk(A
(1)
p · u, yk)A

(1)
p · yk

uT · (M−1A)TA(1)
p (M−1A) · u =

m

∑
k=1

µk(A
(1)
p · u, yk)

2

≤ ( max
1≤i≤m

µi)
2

m

∑
k=1

(A(1)
p · u, yk)

2 = ( max
1≤i≤m

µi)
2uT ·A(1)

p · u

And the result of Lemma 4.3 ends the proof.
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It must be emphasised that Lemma 4.5 gives a sufficient condition for Property (4.13) to be true
not on the whole space Rn but only on a subspace of it. However, the error e(i) := x− x(i) is not
guaranteed to belong to that subspace as the initial guess x(0) is arbitrarily chosen. Therefore, this
sufficient condition is too restrictive, since its effect is valid only for the iterations when the error
lies in the range of A(1)

p . It is also worth mentioning that the necessary condition of Corollary 4.1
and the sufficient condition of Lemma 4.5 do not match. In the sequel, we will derive a second
property that is similar to (4.13), involves a definite matrix and for which we can derive a sufficient
and necessary condition.

4.5 Deriving a block partitioning and controlling the correspond-
ing algebraic error norm

By proceeding in the same way as in Chapter 2, Section 2.4.2, we replace the sum-splitting
of the operator, as in (4.3), by a block-partitioning of the matrix, such as

A =

(
AL ALR

ARL AR

)
, (4.15)

where the L-part stands for the set of nodes that belong to Ω1 and the R-part for the rest. nL and
nR designate the sizes of the diagonal SPD blocks AL and AR respectively. We recall that in this
case, if we denote:

AL := RT
1 ALR1 =

(
AL 0
0 0

)
, (4.16)

then by combining the formulation of (4.6) with the superiority property of Lemma 2.1 in Chapter 2,
which states that the AL-norm is higher than the A(1)-seminorm, we have:

(x− x(i))T ·AL · (x− x(i)) ≥ (x− x(i))T ·A(1)
p · (x− x(i))� (x− x(i))T ·A(2)

p · (x− x(i)) (4.17)

Therefore, instead of controlling the dominant A(1)
p -seminorm of the error, we will focus on the

AL-seminorm of the error which is larger. To ensure that the evolution of this latter in a fixed-point
iteration scheme from an iteration to another is limited and kept below a fixed coefficient, we have
to find a preconditioner M−1 such that

∃τ > 0, ∀u ∈ Rn : ((I−M−1A) · u)T ·AL · ((I−M−1A) · u) ≤ τuT ·AL · u. (4.18)

Lemma 4.4 applied to the matrices P := AL and Q := M−1A yields the following corollary.

Corollary 4.2. Let M−1 be a preconditioner of the matrix A that satisfies

∃τ > 0, ∀u ∈ Rn : ((I−M−1A) · u)T ·AL · ((I−M−1A) · u) ≤ τuT ·AL · u,

then Ker(AL) is invariant of M−1A.
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Lemma 4.6. Ker(AL) is invariant of M−1A if and only if

∃M1 ∈ RnL×nL , ∃M3 ∈ RnR×nL , ∃M4 ∈ RnR×nR : M−1A =

(
M1 0
M3 M4

)
.

Proof. As AL =

(
AL 0
0 0

)
and AL is SPD, we have: Ker(AL) =

{(
0

yR

)
|yR ∈ RnR

}
. Let

M−1A =

(
M1 M2
M3 M4

)
, then ALM−1A =

(
ALM1 ALM2

0 0

)
. Let yR ∈ RnR , we have:

ALM−1A ·
(

0
yR

)
=

(
ALM2yR

0

)
.

Therefore, Ker(AL) is invariant of M−1A if and only if ∀y ∈ Ker(AL), ALM−1A · y = 0, i.e.

∀yR ∈ RnR , ALM2 · yR = 0

Since AL is SPD, this latter property is equivalent to:

∀yR ∈ RnR , M2 · yR = 0

which means that M2 = 0.

Lemma 4.7. Let M−1 be a preconditioner of the matrix A such that

M−1A =

(
M1 0
M3 M4

)
, (4.19)

where M1 ∈ RnL×nL , M3 ∈ RnR×nL , M4 ∈ RnR×nR . Then

∃τ > 0, ∀u ∈ Rn : (M−1A · u)T ·AL · (M−1A · u) ≤ τuT ·AL · u.

Proof. With (4.19), we have

(M−1A)TAL(M
−1A) =

(
MT

1 MT
3

0 MT
4

)(
AL 0
0 0

)(
M1 0
M3 M4

)
=

(
MT

1 ALM1 0
0 0

)
.

Let u =

(
uL
uR

)
∈ Rn, we have:

uT · (M−1A)TAL(M
−1A) · u =

(
uL
uR

)T

·
(

MT
1 ALM1 0

0 0

)
·
(

uL
uR

)
= uT

L ·MT
1 ALM1 · uL

and

uT ·AL · u =

(
uL
uR

)T

·
(

AL 0
0 0

)
·
(

uL
uR

)
= uT

L ·AL · uL.
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We consider the following generalized eigenvalue problem

find (λk , yk) ∈ R×RnL such that MT
1 ALM1 · yk = λkAL · yk. (4.20)

MT
1 ALM1 and AL are both symmetric positive definite matrices, therefore the eigenvectors yk can

be chosen so that they form a basis of RnL that is both AL-orthonormal and MT
1 ALM1-orthogonal.

As a consequence, we can write:

uL =
nL

∑
k=1

(AL · uL, yk)yk

MT
1 ALM1 · uL =

nL

∑
k=1

(AL · uL, yk)M
T
1 ALM1 · yk =

nL

∑
k=1

(AL · uL, yk)λkAL · yk

uT
L ·MT

1 ALM1 · uL =
nL

∑
k=1

λk(AL · uL, yk)
2 ≤ ( max

1≤i≤nL
λi)

nL

∑
k=1

(AL · uL, yk)
2 = ( max

1≤i≤nL
λi)uT

L ·AL · uL.

(4.21)

Hence (M−1A · u)T ·AL · (M−1A · u) ≤ ( max
1≤i≤nL

λi)uT ·AL · u.

Theorem 4.1. Let A =

(
AL ALR

ARL AR

)
be an SPD matrix, and AL be defined as in (4.16). For any

invertible matrix M−1 we have

∃τ > 0, ∀u ∈ Rn : ((I−M−1A) · u)T ·AL · ((I−M−1A) · u) ≤ τuT ·AL · u

if and only if

∃W1 ∈ RnL×nL , W3 ∈ RnR×nL , W4 ∈ RnR×nR : M−1 =

(
W1 −W1ALRA−1

R
W3 W4

)
. (4.22)

Proof. According to Corollary 4.2, Lemmas 4.6 and 4.7, we have:[
∃τ > 0, ∀u ∈ Rn : ((I−M−1A) · u)T ·AL · ((I−M−1A) · u) ≤ τuT ·AL · u

]
⇐⇒

[
R1M−1ART

2 = 0
]

;

where R1 ∈ RnL×n, R2 ∈ RnR×n are restriction matrices defined such that R1 :
(

xL
xR

)
∈ Rn 7→

xL ∈ RnL , and R2 :
(

xL
xR

)
∈ Rn 7→ xR ∈ RnR . Let W1 ∈ RnL×nL , W2 ∈ RnL×nR , W3 ∈ RnR×nL , W4 ∈ RnR×nR

such that M−1 =

(
W1 W2
W3 W4

)
.

Then R1M−1 =
(
W1 W2

)
and ART

2 =

(
ALR
AR

)
. Hence:

R1M−1ART
2 = 0 ⇐⇒ W1ALR + W2AR = 0 ⇐⇒ W2 = −W1ALRA−1

R .
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Remark 4.1. Note that in the proof of Lemma 4.7, Inequality (4.21) is sharp, therefore the minimum
coefficient τ that satisfies the property in Theorem 4.1 is the maximum eigenvalue λk of (4.20).

Remark 4.2. On another hand, it is worth observing that Theorem 4.1 does not impose any special
requirements on matrices W1, W3 and W4. As a consequence, it is up to the user to set those blocks
in a convenient way. For instance, the choice of a matrix W3 := −A−1

R ARLWT
1 and symmetric

diagonal blocks W1 and W4 may be considered for the purposes of symmetry. In this case, it is
possible to use M−1 as a preconditioner outside the framework of fixed-point iteration schemes,
for a PCG solver for example.

As far as the block W4 is concerned, we can choose it to be equal to A−1
R as this inverse is

already needed for an off-diagonal block.

Furthermore, if we denote S := AL −ALRA−1
R ARL we can deduce the expression of the upper left

block M1 of the matrix M−1A from (4.22) in Theorem 4.1 and the generalized eigenvalue problem
(4.20) becomes:

find (λk , yk) ∈ R×RnL such that SWT
1 ALW1S · yk = λkAL · yk; (4.23)

We are interested in the maximum λk as it gives the value of τ, i.e. the minimum upperbound
of the error’s growth rate. It is straightforward that the eigenvalues λk form the spectrum of
the matrix SWT

1 ALW1SA−1
L . To render this spectrum bounded from above, three options can be

considered:

v W1 = S−1: This choice reduces the spectrum of SWT
1 ALW1SA−1

L to 1 since

SWT
1 ALW1S = AL.

v W1 = A−1
L : This choice makes the spectrum of SWT

1 ALW1SA−1
L bounded from above by 1. In

fact,
SWT

1 ALW1SA−1
L = (SA−1

L )2;

And Sp(SA−1
L ) ⊂ ]0, 1] (see the proof of Lemma 3.1).

v Taking W1 as a SPD preconditioner such that the eigenvalues of W1AL are below a fixed scalar
ν > 0, implies that the maximum λk (and hence the minimal τ) is less than ν2 (see Lemma 4.8
below).

It should be outlined that the first two choices are more theoretical than practical as it is often
costly to compute the exact inverse of a large block AL or a dense Schur complement matrix S.
The third choice is more affordable in practice, as there are many preconditioning strategies to
bound the maximum eigenvalue of the preconditioned operator, e.g. domain decomposition-based
preconditioners (like one-level Additive Schwarz, BDD or two-level Schwarz) [47] or LORASC
[67].

Lemma 4.8. Let W1 be a SPD preconditioner of AL such that for a fixed scalar ν > 0, we have

λmax(W1AL) ≤ ν; (4.24)

then it holds that:

λmax(SW1ALW1SA−1
L ) ≤ ν2. (4.25)
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the eigenvalues of W1AL are below a fixed scalar ν > 0.

Proof. We know that

SW1 = ARW1 −ALRA−1
R ARLW1

Therefore since W1 and ALRA−1
R ARL are SPD matrices, the eigenvalues of ALRA−1

R ARLW1 are
nonnegative therefore

λmax(SW1) ≤ λmax(ALW1).

And also from the proof of Lemma 3.1:

λmax(SA−1
L ) ≤ 1.

Thus

λmax(SW1ALW1SA−1
L ) ≤ λmax(SW1)λmax(ALW1)λmax(SA−1

L )

≤ λ2
max(ALW1)

≤ ν2.

4.6 Link with the adaptive preconditioner for PCG based on lo-
cal error indicators

In this section, we consider the preconditioner introduced in Section 2.5 of Chapter 2, and
make the link with the preconditioner suggested in Section 4.5. Indeed, we exploit the lemmas
proven in this latter section to derive the properties satisfied by the adaptive preconditioner
introduced in Chapter 2.

First, we start by the preconditioner M =

(
AL ALR

ARL MS + ARLA−1
L ALR

)
suggested in Theorem 2.1,

where MS is a preconditioner for S := AR − ARLA−1
L ALR. That theorem states that when

preconditioned by this preconditioner, the PCG solver on the whole system becomes equivalent to
a PCG solver on a reduced Schur complement system resulting in a nil residual on the nodes of
Ω1 (i.e. the L-part) at each iteration:

∀i > 0, R1 · r(i) = R1A · (x− x(i)) = 0, (4.26)

where R1 is the restriction matrix of (4.5). In the following lemma, we prove that this property is
still satisfied with a fixed-point iteration scheme (4.12).

Lemma 4.9. Let M =

(
AL ALR

ARL MS + ARLA−1
L ALR

)
where MS is invertible. When M−1 is used as the

preconditioner of the fixed-point iteration scheme defined in (4.12), then property (4.26) holds regardless of
the choice of the initial guess x(0).
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Proof. The inverse of M is expressed as

M−1 =

(
A−1

L + A−1
L ALRM−1

S ARLA−1
L −A−1

L ALRM−1
S

−M−1
S ARLA−1

L M−1
S

)

Therefore,

M−1A =

(
I A−1

L ALR(I−M−1
S S)

0 M−1
S S

)

A(I−M−1A) =

(
0 0
0 S− SM−1

S S

)
.

Thus, R1A(I−M−1A) = 0
Consequently, for any iteration i > 0 we have

R1r(i) = R1A · (x− x(i)) = R1A(I−M−1A) · (x− x(i−1)) = 0

For the more general shape of the adaptive preconditioner proposed in Theorem 2.2, we prove in
what follows that Property (4.26) still holds but this time for a specific initial guess x(0).

Lemma 4.10. Let x(0)R be an arbitrary vector of RnR and W1 ∈ RnL×nL , W2 ∈ RnR×nR two invertible
matrices. Let the linear system A · x = b be solved by a fixed-point iteration scheme (4.12) with a
preconditioner M = WWT and an initial guess x(0) such that

x(0) =

[
A−1

L · (bL −ALR · x
(0)
R )

x(0)R

]
, W =

(
W1 0

ARLA−1
L W1 W2

)
; (4.27)

then R1 · (b−A · x(i)) = 0 at each iteration i > 0.

Proof. The definition of x(0) yields

x− x(0) =

[
−A−1

L ALR · (xR − x(0)R )

xR − x(0)R

]
=

(
−A−1

L ALR
I

)
· (xR − x(0)R ).

We know that due to (4.12), we have for any i,

R1 · (b−A · x(i)) = R1A · (x− x(i)) = R1A(I−M−1A)i · (x− x(0)).

Therefore, proving the lemma amounts to prove that

∀i ∈N, R1A(I−M−1A)i
(
−A−1

L ALR
I

)
= 0. (4.28)

Let us demonstrate that by induction.
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For i = 0,

R1A
(
−A−1

L ARL
I

)
=
(
AL ALR

) (−A−1
L ARL
I

)
= 0.

We denote M1 := W1WT
1 , and MS := W2WT

2 . A quick computation of the inverse of W gives

M−1 = W−TW−1 =

(
M−1

1 + A−1
L ALRM−1

S ARLA−1
L −A−1

L ALRM−1
S

−M−1
S ARLA−1

L M−1
S

)

I−M−1A =

(
I−M−1

1 AL −M−1
1 ALR + A−1

L ALRM−1
S S

0 I−M−1
S S

)
(4.29)

Let i ∈N, we assume the induction hypothesis (4.28) for i, then due to (4.29) we have

R1A(I−M−1A)i+1
(
−A−1

L ALR
I

)
=
(
AL ALR

)
(I−M−1A)i(I−M−1A)

(
−A−1

L ALR
I

)
=
(
AL ALR

)
(I−M−1A)i

(
−A−1

L ALR(I−M−1
S S)

(I−M−1
S S)

)

=
(
AL ALR

)
(I−M−1A)i

(
−A−1

L ALR
I

)
(I−M−1

S S)

= 0.

Thus, we can apply the induction hypothesis for i to show that (4.28) is true for i + 1.

Moreover, as far as the algebraic error norm is concerned, if we denote by

AR :=
(

0 0
0 AR

)
∈ Mn,n(R), (4.30)

we can derive the subsequent corollary for these adaptive preconditioners:

Corollary 4.3. Let M−1 be an adaptive preconditioner of the matrix A as defined in Lemma 4.10. When
M−1 is used as the preconditioner of the fixed-point iteration scheme defined in (4.12), then it holds that:

∃τ > 0, ∀u ∈ Rn : (M−1A · u)T ·AR · (M−1A · u) ≤ τuT ·AR · u.

The minimum value of τ is the maximum eigenvalue of the generalized eigenvalue problem:

find (λk , yk) ∈ R×RnR such that MT
4 ARM4 · yk = λkAR · yk; (4.31)

where M4 is the bottom right block of size nR × nR of the matrix M−1A.

Proof. First, if we look at the shape of the adaptive preconditioners either in its general shape (as
in Lemma 4.10) or in its particular shape (as in Lemma 4.9) we notice that the preconditioned
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operator takes the following block shape:

∃(M1, M3, M4) ∈ MnL ,nL(R)×MnL ,nR(R)×MnR ,nR(R) : M−1A =

(
M1 M3
0 M4

)
Therefore, we can apply Lemma 4.7 by switching or commuting the roles of the subsets L and R.
In this case, the result follows immediately.

Now, let us summarize and comment the results of the corollaries of this section. We have proven
that the main feature of adaptive preconditioner introduced for PCG solver in Chapter 2, that is
the projection of the residual on the nodes of subdomain Ω1 (L-part) is nil at each iteration, is
still valid with a fixed-point iteration scheme. We also proved that the adaptive preconditioner
satisfies with the same scheme a criterion that expresses that the AR-seminorm of the error does
not increase more than τ-times from iteration i to iteration i + 1. Of course, the discussion over
the choices of the diagonal blocks of the preconditioner in the end of Section 4.5 holds for this
part as well. On another note, there is no question that this AR-seminorm of the error represents
a share of the global energy norm of the error. The evolution of this share from an iteration to
another is controlled by the adaptive preconditioner and the growth rate is kept under a fixed
threshold. That being said, the starting hypothesis (4.6) does not enable us to determine whether
this share is dominant. Indeed, (4.6) expresses that the local algebraic error on subdomain Ω1,
which is the A(1)

p -seminorm of the error, is dominant over the local algebraic error on subdomain

Ω2, which is the A(2)
p -seminorm of the error. Yet, in general we cannot prove any partial order or

superiority relationship, in the sense of matrix positiveness, between the matrices AR and A(2)
p

as we did between the matrices AL and A(1)
p . Indeed, we demonstrate that with the following

counterexample. We consider a Poisson’s equation with Dirichlet boundary conditions on the
square [0, 1]× [0, 1]. We discretize this PDE by FEM on the uniform grid shown in Figure 4.1.
Note that with FEM, the boundary conditions are taken into account in the evaluation of the right

Ω2

Ω1

1 2 3

4 5 6

7 8 9

6

8

1 2 3

4

7 9

Figure 4.1 – Simple example of the decomposition with a 2× 2 mesh grid.

hand side vector of the linear system. The global matrix obtained for the natural ordering of the
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degrees of freedom (from 1 to 9) is:

A =



1 −1/2 0 −1/2 0 0 0 0 0
−1/2 2 −1/2 0 −1 0 0 0 0

0 −1/2 1 0 0 −1/2 0 0 0
−1/2 0 0 2 −1 0 −1/2 0 0

0 −1 0 −1 4 −1 0 −1 0
0 0 −1/2 0 −1 2 0 0 −1/2
0 0 0 −1/2 0 0 1 −1/2 0
0 0 0 0 −1 0 −1/2 2 −1/2
0 0 0 0 0 −1/2 0 −1/2 1


If we consider the domain decomposition illustrated in Figure 4.1, then the set of interior nodes
of subdomain Ω2 comprises only the node 9 whereas the nodes 5, 6 and 8 are in the interface.
Therefore, if we keep the natural ordering then the matrices AR and A(2)

p are equal to:

AR =



0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1



A(2)
p =



0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 1 −1/2 0 −1/2 0
0 0 0 0 −1/2 1 0 0 −1/2
0 0 0 0 0 0 0 0 0
0 0 0 0 −1/2 0 0 1 −1/2
0 0 0 0 0 −1/2 0 −1/2 1


Therefore, the difference is:

A(2)
p −AR =



0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 1 −1/2 0 −1/2 0
0 0 0 0 −1/2 1 0 0 −1/2
0 0 0 0 0 0 0 0 0
0 0 0 0 −1/2 0 0 1 −1/2
0 0 0 0 0 −1/2 0 −1/2 0
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And its eigenvalues can be computed: λ1 ≈ −0.45161; λ2 = 0; λ3 ≈ 0.59697; λ4 = 1; λ5 ≈
1.8546. We can notice that they are not all nonnegative.

Furthermore, it should be stressed that the properties of the adaptive preconditioner introduced
in Theorem 2.1 of Chapter 2, and the preconditioner introduced in Lemma 4.1 of this chapter
are complementary, in the sense that each allows to control a share of the global energy norm of
the error. The first one requires inverting the L-block corresponding to a subdomain with a high
algebraic error, reduces the AR-seminorm of the error and cancels the residual on the nodes of
L, whereas the second one requires inverting the R-block corresponding to a subdomain with
low algebraic error and ensures the growth rate of the AL-seminorm of the error stays below a
given threshold. Therefore, the choice between those two depends on the size of submatrix AR
with respect to AL. Note also that the exact inverse of the matrix A satisfies the shapes of both
preconditioners.

4.7 Numerical results

In this section, we consider the experimental framework of Section 2.6 of Chapter 2, and
reuse the test cases and configuration described in Section 2.6.2. The tests are carried in Matlab.
We generate a uniform mesh and use PDE toolbox to solve the considered PDE on the domain
Ω = [−1, 1]. Once the linear system is built, we run a few iterations of the linear solver (20
iterations of PCG preconditioned by a Block-Jacobi preconditioner) to get an initial estimation of
the algebraic error on all the elements of the mesh. From the values of these a posteriori error
estimates, we determine the subsets of indices L and R.

We check first with a fixed-point iteration scheme that the result of Theorem 4.1 is applicable in
practice and that the growth rate of the AL-seminorm of the error is controlled by the choice of the
block W1 in the preconditioner defined in (4.22). We denote this preconditioner as the L-adaptive
preconditioner. We would like to mention that the L-adaptive preconditioner implemented in
our Matlab prototype is nested (see [100]) in the sense that it does not build the inverse of the
block AR but the application of the preconditioner is carried out by a call to an inner solver
(PCG in our configuration) with a reduced relative tolerance of 10−2 and a reduced maximum
number of iterations (set to 100). As a preconditioner for the inner solve, we reuse the initial
Block-Jacobi preconditioner restricted to the R-indices. For checking purposes, we consider two
different preconditioners for the block W1 for which an upper bound for the eigenvalues of the
preconditioned operator is known: a LORASC preconditioner and a Block-Jacobi preconditioner
for AL. For the latter one, we vary the number of diagonal blocks (2, 4, or 8).

Second, we test the L-adaptive preconditioner with PCG solver and compare its results to the
preconditioner introduced in Chapter 2, that we denote as the R-adaptive preconditioner. For
the numerical experiments with PCG, we consider a fixed block-size (≈ 5000) for the diagonal
blocks used to build Block-Jacobi preconditioners, and a stopping threshold value of 10−6 for the
euclidean norm of the residual.

The first three test cases of Section 2.6 in Chapter 2 are reused here. As far as the mesh configuration
is concerned, we take an uniform mesh with maximum edge size Hmax = 0.1 (for the first two test
cases) and Hmax = 0.01 (for the third test case), and the total number of elements is equal to 87 552
(for the first two test cases) and 32 544 (for the third test case). After discretization, the size of the
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matrix A is 43 457× 43 457 (for the first two test cases) and 16 057× 16 057 (for the third test case).

(a) Algebraic a posteriori error estimates after 20 itera-
tions

(b) Algebraic errors after 20 iterations

Figure 4.2 – Initial distribution and a posteriori estimation of algebraic error for test case n°1

For the first test case, the initial distribution and a posteriori estimation of algebraic error (after
j0 = 20 iterations) over the domain Ω are shown in Figure 4.2 where the color shades selected in
the subdomain Ω1 are indicated by the red marker on the left subfigure.
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Figure 4.3 – Evolution of the AL-seminorm of the error with a fixed-point iteration scheme for test case n°1

Figure 4.3 displays the AL-seminorm of the error when using a fixed-point iteration scheme
preconditioned by four configurations of the L-adaptive preconditioner, whereas the evolution of
the global energy norm and the L-norm of the error when using a PCG solver preconditioned by a
Block-Jacobi preconditioner, the R-adaptive preconditioner and the L-adaptive preconditioner is
represented in Figure 4.4.

Likewise, we present the results obtained for the second test case. Figure 4.5 displays the initial
error distribution over the mesh.



124
Chapter 4. Adaptive a posteriori error estimates-based preconditioner for controlling a local

algebraic error norm

0 100 200 300

Iterations

10
-4

10
-2

10
0

E
rr

o
r 

n
o
rm

BJ

R-adap prec

L-adap prec (BJ(2))

L-adap prec (LORASC)

(a) Energy norm of the algebraic error
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(b) L-norm of the algebraic error

Figure 4.4 – Error evolution with PCG for test case n°1

(a) Algebraic a posteriori error estimates after 20 itera-
tions

(b) Algebraic errors after 20 iterations

Figure 4.5 – Initial distribution and a posteriori estimation of algebraic error for test case n°2

Figure 4.6 shows the AL-seminorm of the error when using a fixed-point iteration scheme with
the L-adaptive preconditioner. The global energy norm and the L-norm of the error are plotted in
Figure 4.7 for the PCG solves with the L-adaptive and the R-adaptive preconditioners.

The results of the third test case are as following. Figure 4.8 displays the initial algebraic
error distribution over the mesh, and the evolution of the AL norm of the error with a fixed-
point iteration scheme preconditioned by L-adaptive preconditioners. Then the evolution of the
global energy norm and the L-norm of the error when using a PCG solver preconditioned by a
Block-Jacobi preconditioner, the R-adaptive preconditioner and the L-adaptive preconditioner is
represented in Figure 4.9.
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Figure 4.6 – Evolution of the AL-seminorm of the error with a fixed-point iteration scheme for test case n°2
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(a) Energy norm of the algebraic error
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(b) L-norm of the algebraic error

Figure 4.7 – Error evolution with PCG for test case n°2
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(a) Algebraic a posteriori error estimates after 20 itera-
tions
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(b) Evolution of the AL-seminorm of the error

Figure 4.8 – Initial distribution of algebraic error and evolution of the AL-seminorm of the error with a fixed-point
iteration scheme for test case n°3
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(a) Energy norm of the algebraic error
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(b) L-norm of the algebraic error

Figure 4.9 – Error evolution with PCG for test case n°3

Figures 4.3 and 4.6 show that the AL-seminorm of the error is monotonically decreasing when a
LORASC preconditioner or a two-block diagonal preconditioner is used to approximate AL. But it
is not the case when we use a block diagonal preconditioner with more than two blocks.

This fact relates to ν, the upper bound of the largest eigenvalue of W1AL. Indeed, it follows
from Lemma 4.8 that the growth rate of the AL-seminorm of the error (i.e. the minimal τ in
(4.18)) is less than or equal to ν2. Lemma 0.1 and Lemma 3.2 yield the value of the bound ν

obtained when W1 is taken as a m-block diagonal preconditioner and a LORASC preconditioner

of AL respectively. ν is equal to 1 + max
1≤i≤m

m
∑

j=1
j 6=i

γij for the former and to 1 for the latter, where the

CBS constants γij are defined by (5) adapted to AL. Since AL is positive definite, then the
(
γij
)

ij
are less than 1. In practice, and for the matrices tested in this section, a single CBS constant is
very small, thus for a two-block diagonal preconditioner, the expression of ν contains only one
CBS constant. As a consequence, ν2 = (1 + γ12)

2 is, to a certain extent, close to 1, resulting in
monotonic AL-seminorm of the error. The same finding applies for the case when a LORASC
preconditioner is selected for W1 as ν equals 1. However, for larger number of blocks (here for
example m ∈ {4, 8}), ν comprises the sum of m− 1 CBS constants, which is significant. Therefore,
ν2 greatly exceeds 1 and the AL-seminorm of the error is not monotonic this time. In summary,
the magnitude of ν2 determines the rate of decline of the AL-seminorm of the error. In other
words, the growth rate τ is controlled by the quality of the preconditioner for the L-block. All this
is reflected in Figures 4.3, 4.6 and 4.8.

Furthermore, one observes that those preconditioners, which we refer to as L-adap prec (BJ(2))
and L-adap prec (LORASC) in the graph legends above and for which the AL-seminorm of the
error is strictly decreasing in a fixed-point iteration scheme, perform well when a PCG solver
is used as well (Tables 4.4, 4.7 and 4.9). Table 4.1 gives the number of iterations for the PCG
solve with the L-adaptive preconditioners, with the R-adaptive preconditioner and with an initial
Block-Jacobi preconditioner. We notice that even though the number of iterations of PCG is
reduced when going from the initial BJ preconditioner to the R-adaptive preconditioner, we still

*. The 20 iterations count here is due to the fact that the intermediate solution is used to compute the new initial
guess for the R-adaptive preconditioner.
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Table 4.1 – The total number of iterations (IT) needed for the convergence of the preconditioned solve of the linear
systems stemming from test cases 1, 2 and 3.

Test case n°1 Test case n°2 Test case n°3

initial BJ prec. 371 310 1 267

R-adap prec. * 36 (+20) 65 (+20) 1 069 (+20)

L-adap prec. (LORASC) 40 35 26

L-adap prec (BJ(2)) 6 9 23

get an improvement by using the L-adaptive one, in both variants L-adap prec (LORASC) and
L-adap prec (BJ(2)). In fact, the drop in the number of iterations is more important in the third
test case where the R-adaptive preconditioner is not sufficient to significantly reduce the number
of iterations, whereas the L-adaptive one manages to converge within around twenty iterations
only. This can be due to the fact that the algebraic error is more scattered in this third test case,
and that the size of AL is almost twice that of AR for this test case.

4.8 Conclusion

In this chapter, we have presented a second variant of an algebraic preconditioner that
is designed to control the growth rate of the AL-seminorm of the error when used within a
fixed-point iteration scheme. Indeed, we have proven the relationship between that growth rate
and the largest eigenvalue of the L-block of the preconditioned operator M−1A. Furthermore,
we also made the link with the first variant introduced in Chapter 2, and proved the properties
satisfied for this shape of preconditioners in a fixed-point iteration scheme. Then, we tested the
second variant in a PCG solver and compared it with the first variant. The results are encouraging
with fewer iterations needed for convergence.
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Abstract

In this chapter, we apply the adaptive approach of Chapter 2 for iterative solution of linear
systems arising from some industrial simulations. The numerical framework is different from
that of Chapter 2, as we are now dealing with linear systems stemming from cell-centered
finite volume discretization of single phase flow models. We adapt the starting assumption and
consequently the solve procedure to the finite volume method. Numerical results of a reservoir
simulation example for heterogeneous porous media in two dimensions are discussed. Using
the adaptive solve procedure, we obtain a significant gain in terms of the number of time steps
and iterations compared to a standard solve.
Keywords— single phase flow, finite volume method, Schur complement, steady/unsteady
problems.

5.1 Introduction

In this chapter we propose an efficient adaptive solve procedure for solving linear systems
stemming from finite-volume discretization of PDEs. For the ease of presentation, the following
section starts by a steady model of single phase flow in porous media then an unsteady model of
the same problem extends the scope of the experimentation (in Section 5.5.2.1).

This chapter is structured as follows. Section 5.2 introduces the steady problem of single phase flow
in porous media with finite volume discretization, Section 5.3 formulates the starting hypothesis
and presents some elements related to the field of a posteriori error analysis that justify the need
for an adaptive solving procedure. Section 5.4 provides details of that error reducing approach.
Finally, the numerical results of the procedure are shown in Section 5.5.

Some notations

Let Ω ⊂ Rd, 1 ≤ d ≤ 3 be a polytopal domain (open, bounded and connected set). We denote by
Ω, Ωo, ∂Ω and Th the closure, interior, boundary and a matching simplicial mesh of Ω, respectively.
We consider that the domain Ω can be decomposed into n non-overlapping Lipschitz polyhedra
Ki such that Ko

i ∩ Ko
j = ∅ and

⋃
i Ki = Ω. For a polyhedron Ki, hi designates its the diameter, |Ki|

its d-Lebesgue measure and V(i) the set of indices of neighboring polyhedra. This tessellation of
Ω is denoted Th with h = maxi hi.

Let us denote by F = Fint ∪ Fext the set of mesh edges where Fint (resp. Fext) is the set of inner
(resp. boundary) egdes. For a mesh element Ki, Fi is the set of all its edges, and for an edge
σ ∈ Fi, |σ| denotes the (d− 1)-Lebesgue measure of σ while nσ,i and di,σ respectively denote the
unit normal vector to the edge σ and outward to Ki, and the distance between the cell center of Ki
and the edge center of σ

We use the standard notation L2(Ω), H1(Ω) and H1
0(Ω) for the spaces of integrable functions,

resp. integrable functions admitting weak derivations, and trace vanishing on ∂Ω. For a vector w
of length n ∈N and a subset L ⊂ J1, nK, we denote by wL the restriction of w to its components
whose indexes belong to L.
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5.2 Cell-centered finite volume discretization

Similar to Section 2.2 in Chapter 2 for finite element method, here we first introduce the
steady single phase flow model problem in a simple cell-centered finite volume discretization,
then define the resulting linear system of algebraic equations and present the key assumption that
motivates the need for an adaptive solving procedure.

Consider the problem that consists in seeking p : Ω→ R such that:{
−∇ · (K∇p) = f in Ω

p = 0 on ∂Ω
(5.1)

where f : Ω → R is a source term in L2(Ω), and K = κI is an uniformly bounded and positive
definite permeability tensor. For the sake of simplicity we assume that f and κ are cellwise
constant with respect to the mesh Th, and denote by fi and κi their values on a mesh element Ki.
The existence of a solution and the convergence of the scheme were proven in [56]. We refer the
reader to the latter book for a more rigorous framework of the discretization by finite volume
method.

By integrating the law (5.1) over a mesh element Ki, and applying the Stokes formula we obtain:∫
∂Ki

(K∇p) ·nids +
∫

Ki

f dx = ∑
σ∈Fi

∫
σ
(K∇p) ·nσ,idσ +

∫
Ki

f dx = 0; (5.2)

If we introduce the discrete unknowns pi per mesh element Ki and define a cellwise constant
function p

h
that takes the values pi on the mesh elements Ki, then the fluxes

∫
σ(K∇p) ·nσ,idσ can

be approximated as functions of the discrete unknowns:∫
σ
(K∇p) ·nσ,idσ ≈ Fi,σ(p

h
);

where we have in a finite volume scheme with two point flux approximation for example:

Fi,σ(p
h
) =


Tσi,j(pi − pj) with Tσi,j = |σ|

(
κi

di,σ
+

κj

dj,σ

)−1(
κi

di,σ
×

κj

dj,σ

)
if σ = σij 6⊂ ∂Ω;

Tσi (pi) with Tσi =
|σ|κi
di,σ

otherwise.

(5.3)

In (5.3), Fi,σ(p
h
) denotes a flux through the edge σ, whereas Tσi,j and Tσi are transmissivities.

Therefore, (5.2) becomes:

∑
σi∈Fi∩Fint

Fi,σ(p
h
) + ∑

σ∈Fi∩Fext

Fi,σ(p
h
) = |Ki| fi

( ∑
σ∈Fi∩Fext

Tσi + ∑
σi,j∈Fi∩Fint

Tσi,j)pi − ∑
σi,j∈Fi∩Fint

Tσi,j pj = |Ki| fi (5.4)
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This means that the vector x = (pi)1≤i≤n is the solution of the linear system A · x = b where:

∀i, j ∈ J1, nK, i 6= j : bi := |Ki| fi ; Aii = ∑
σi∈Fi∩Fext

Tσi + ∑
σi,j∈Fi∩Fint

Tσi,j ; Aij =

{
Tσi,j if j ∈ V(i);

0 otherwise.

(5.5)

Remark 5.1. According to (5.3), we notice that Tσi,j = Tσj,i for arbitrary neighbors i and j. Therefore,
it should be noted from the definition (5.5) that the matrix A is symmetric. In addition, it is
diagonally dominant with positive diagonal entries. A is thus symmetric positive definite.

5.3 Matrix decomposition and local error reduction

An iterative Krylov solver is used to solve the system A · x = b. At each iteration j of the
iterative solver, we denote by x(j) the approximate solution obtained, and by p(j)

h the associated
approximate function.

In Chapter 2, for a finite element discretization we discussed how to derive adaptive precondition-
ers, based on a posteriori error estimators, in order to effectively decrease the energy norm of the
error. The original cellwise constant finite volume approximation p

h
∈ P0(Th) is not appropriate

for energy-norm type a posteriori error estimation as it is only piecewise constant. For this reason,
a postprocessed approximation that has more regularity is introduced p̃

h
[143, 55].

This time for a finite volume scheme, and as mentioned in the introduction chapter, the a posteriori
error analysis allows to derive estimates for the classical associated error norm:

‖K1/2∇(p− p̃
h
)‖2

L2(Ω) ≤ ηdisc + ηalg;

where ηdisc and ηalg are a posteriori error estimates of the error components: the former term
is supposed to approximate the discretization error and the latter the algebraic error [55]. In
addition, such quantities can be obtained locally on each mesh element, therefore, analogous to
Chapter 2, we use algebraic error estimates at a fixed iteration i of the iterative solver to have a
domain decomposition:

Ω1 ∪Ω2 = Ω

Ωo
1 ∩Ωo

2 = ∅;

where Ω1 is the part with the high algebraic error estimates:

∑
K∈Th(Ω1)

(η
(i)
alg,K)

2 � ∑
K∈Th(Ω2)

(η
(i)
alg,K)

2 (5.6)

Remark 5.2. From (5.5), we can derive formulas for two matrices A(1) and A(2) local to Ω1 and Ω2
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respectively by considering for all i 6= j in J1, nK such that Ki ⊂ Ω1 and Kj ⊂ Ω1:

A(1)
ii = ∑

σi∈Fi∩Fext

Tσi + ∑
σi,l∈Fi∩Fint

l∈V1(i)

Tσi,l ; A(1)
ij =

{
Tσi,j if j ∈ V(i);

0 otherwise;
(5.7)

and for all i 6= j in J1, nK such that Ki ⊂ Ω2 and Kj ⊂ Ω2:

A(2)
ii = ∑

σi∈Fi∩Fext

Tσi + ∑
σi,l∈Fi∩Fint

l∈V2(i)

Tσi,l ; A(2)
ij =

{
Tσi,j if j ∈ V(i);

0 otherwise;
(5.8)

where V1(i) (resp. V2(i)) denotes the set of indices belonging to V(i) but whose associated
polyhedra are included in Ω1 (resp. Ω2). Therefore, we can express the global matrix A as a sum:

A = A(1) + A(2) + F; (5.9)

where for all i 6= j in J1, nK :

Fii =


∑

σi,l∈Fi∩Fint
l∈V2(i)

Tσi,l if Ki ∈ Ω1;

∑
σi,l∈Fi∩Fint

l∈V1(i)

otherwise;
Fij =


Tσi,j if Ki ∈ Ω1 and j ∈ V2(i);

Tσi,j if Ki ∈ Ω2 and j ∈ V1(i);

0 otherwise;

(5.10)

Formula (5.9) recalls the sum splitting of the matrix as detailed in Section 2.4 of Chapter 2 for the
finite element discretization method. The difference is that now for the finite volume method, we
have a third term F that is not local to only one subdomain. This is due to the fact that the finite
element scheme is by definition vertex-centered whereas the finite volume scheme considered
here is cell-centered. This kind of scheme provides an approximation of the solution that is
piecewise constant on a primal mesh. That being said, there exist some vertex-centered finite
volume schemes that introduce a so-called dual mesh, which is a conforming triangulation of the
domain Ω, around the vertices; see, e.g. [53]. However, for the current context of the application,
as the a posteriori error estimates implemented in IFPEN’s software were derived for cell-centered
schemes, we focus on this latter type of schemes in the sequel.

In finite volume method, we cannot reproduce in the language of matrices an inequality that is
equivalent to the main starting hypothesis (2.8) as in the case of finite element method (Section 2.2
in Chapter 2) but we have some estimations of the terms involved in that hypothesis. Replacing
the exact terms by their estimates in that inequality yields the assumption (5.6).

Accordingly, since we are filtering the mesh elements with high errors in Ω1, we expect an
inequality that can be written in the form:

(xL − x(i)L )T ·AL · (xL − x(i)L )� (xR − x(i)R )T ·AR · (xR − x(i)R ) (5.11)

is satisfied where L and R are subsets that include the indices of mesh elements contained in Ω1
and Ω2 respectively. We denote by nL and nR the sizes of AL and AR respectively. Their sum is



134
Chapter 5. Application to test cases stemming from industrial simulations with finite volume

discretization

equal to the size of A: nL + nR = n.

We recall that since A is SPD, AL and AR are SPD as well and the two terms involved in
assumption (5.11) are a part of the global energy norm of the initial system:

||x− x(i)||2A = 〈A · (x− x(i)), x− x(i)〉 = 〈b−A · x(i), x− x(i)〉L︸ ︷︷ ︸
:=L-term

+ 〈b−A · x(i), x− x(i)〉R︸ ︷︷ ︸
:=R-term

,

where

〈b−A · x(i), x− x(i)〉L = ||(x− x(i))L||2AL
+ (x− x(i))T

L ·ALR · (x− x(i))R (5.12)

〈b−A · x(i), x− x(i)〉R = ||(x− x(i))R||2AR
+ (x− x(i))T

R ·ARL · (x− x(i))L .

Due to the symmetry, the coupling terms are identical:

(x− x(i))T
R ·ARL · (x− x(i))L = (x− x(i))T

L ·ALR · (x− x(i))R .

Assumption (5.11) implies that the AL-inner product of the error is dominant, and so will be the
L-term according to (5.12). Therefore, reducing them may efficiently reduce the energy norm of the
error. As the vectors (x− x(i))L and AL · (x− x(i))L cannot be computed, we favor the alternative
of reducing the partial residual (b−A · x(i))L to decrease the L-term. A straightforward manner
to bring that partial residual down to zero is by using a Schur complement reduction that we
detail in the next section.

5.4 Adaptive linear solver

In this section, we explain an approach for reducing the dominant part of the algebraic error.
This procedure is based on the exact decomposition on the L-block and a Schur complement on the
R-block. In the field of linear algebra and the theory of matrices, the literature is rich on these two
techniques. For a detailed description of these concepts, we refer the reader to [147, 137] and the
references therein. Another popular use for those techniques is the construction of preconditioners.
Approximate or inexact factorization is often used as a preconditioner for iterative solvers such as
PCG [123]. In domain decomposition methods as well, many research works were made to devise
preconditioners for the global matrix A from techniques that approximately solve the reduced
Schur complement system [47, 96]. We also specify that, when a PCG solver is used, the solve
procedure described below, which is based on a reduced Schur complement system, is equivalent
to iteratively solving the global system A · x = b with the initial guess and the preconditioner
introduced in Chapter 2. Furthermore, we check if the procedure applied in Chapter 2 can be
valid for other solvers than PCG.
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5.4.1 Schur complement procedure

Let us define the following matrices:

S = AR −ARLA−1
L ALR; AL = D1D2 (5.13)

N1 = ARLD−1
2 ; N2 = D−1

1 ALR (5.14)

E1 =

[
D1 0
N1 I

]
; E2 =

[
D2 N2

0 S

]
(5.15)

where I is the identity matrix of the same size as AR and S is referred to as the Schur complement
of the R block AR. Since AL is nonsingular (because it is a principal submatrix of A which is SPD),
the Schur complement is well defined. The matrices D1 and D2 are exact factors of AL where D1
is the lower triangular factor, and D2 is the upper triangular one.

With the definitions of (5.14) and (5.15), we have the equality:

A = E1E2 (5.16)

and we can write:

A · x = b⇔
{

E1 · z = b,

E2 · x = z.

(P.1)

(P.2)

Splitting the system A · x = b into two systems related to L and R domains with the Schur
complement is tantamount to solve the system (P’) in the following two stages:

À Solve of (P.1): The matrix E1 is lower triangular, and therefore (P.1) represents a forward
substitution:

(P.1)⇔
{

D1 · zL = bL

N1 · zL + zR = bR
⇔
{

zL = D−1
1 · bL

zR = bR −N1 · zL
(5.18)

Á Solve of (P.2): We first solve a reduced system with the Schur complement S. Then, we perform
a backward substitution with an upper triangular matrix D2.

(P.2)⇔

S · xR = zR

D2 · xL + N2 · xR = zL
⇔
{

S · xR = zR

xL = D−1
2 · (zL −N2 · xR)

(5.19a)

(5.19b)

The size of system (5.19a) is smaller than the size of system A · x = b because its size is equal
to the size of R domain, where no significant algebraic errors were observed. In order to avoid
forming the (possibly dense) matrix S, an iterative Krylov solver can be used for solving (5.19a) as
well. Let x(i)R be the approximate solution obtained after i iterations. The associated solution x(i)L
may be calculated by (5.19b) as:

x(i)L = D−1
2 · (zL −N2 · x

(i)
R ) (5.20)

The adaptive solving procedure can be summarized in two major stages presented below. Algo-
rithm 1m for the setting up of the method (splitting and permuting) and Algorithm 1n for the
computation phase.
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Algorithm 1m Error-Based Domain De-
composition

Inputs: Ω
1: Evaluate the local algebraic error over

the mesh elements
↪→ η

(alg)
l

2: Mark the elements Kl with largest alge-
braic errors η

(alg)
l

↪→ Ω1-subdomain
3: Extract the node indices associated to

elements of Ω1
↪→ L-subset

4: Find the complementary of L in the set
of node indices

5: Permute the system to obtain a L/R
block splitting
Outputs: Ω1, L, R

Algorithm 1n Schur complement proce-
dure

Inputs: L, R, A, b, MS
1: Perform an exact factorization on the

L-block
2: Solve (P.1) by simple substitution
3: Solve the Schur complement system

(5.19a) via an iterative solver with pre-
conditioner MS
↪→ xR solution

4: Inject the obtained vector in (5.19b) and
proceed by backward and forward sub-
stitution
↪→ updated xL solution

Outputs: xL, xR

Remark 5.3. In the first step of Algorithm 1m, the algebraic error estimation can be done in different
ways, we cite for example [55, Section 4.] where the authors present a simple and practical way to
estimate the algebraic error.

5.4.2 Error reduction properties of the adaptive procedure

We recall in the following lemma some formulas for the residual and the energy norm of
the error that hold with the Schur complement method.

Lemma 5.1. By applying the Schur complement procedure described in Subsection 5.4.1, we obtain at each
iteration i of an iterative solver for any x(i)R approximating xR and associated x(i)L given by (5.20):

b−A · x(i) =
[

0
zR − S · x(i)R

]
||x− x(i)||2A = 〈(x− x(i))/R, zR − S · x(i)R 〉

(5.21)

(5.22)

Proof.

(b−A · x(i))/L
(2.24)
= AL · (x− x(i))/L + ALR · (x− x(i))/R

(2.23)
= bL −AL · x

(i)
L −ALR · x

(i)
R

(5.20)
= bL − (bL −D1N2 · x

(i)
R )−ALR · x

(i)
R

(5.14)
= 0

And similarly,

(b−A · x(i))/R
(2.24)
= ARL · (x− x(i))/L + AR · (x− x(i))/R

(2.23)
= bR −ARL · x

(i)
L −AR · x

(i)
R

(5.14)
= bR −N1D2 · x

(i)
L −AR · x

(i)
R

(5.20)
= bR + N1 · (N2 · x

(i)
R − zL)−AR · x

(i)
R

(5.18) & (5.13)
= zR − S · x(i)R



5.5. Numerical results 137

By looking at the block expression of the residual vector in (5.21), it can be stated that the L-part
of that vector is eliminated and there remains only the R-part. Consequently, in Formula (5.22)
we got rid of the L-term which was dominant and that the energy norm now depends only on
the scalar product between (x− x(i))/R the error vector projected on R, and the residual of the
solution of (5.19a).
We would add that in practice, the only components we actually need to compute, for the whole
solving process, are the factors D1 and D2. The benefit of solving (5.19a) by some Krylov method
is that it only requires matrix-vector products S times a vector w which can be performed without
computing the entries of the Schur complement matrix S. This way, the solving process combines
a direct solver in the subdomain L with an iterative solver for the subdomain R. Thus, it can
be seen as an hybrid direct/iterative solver. As for the choice of the preconditioning to be used
during the iterative solve, we refer to [126, 32, 97] for a range of preconditioners for the Schur
complement. Sometimes, a preconditioner MR of the submatrix AR can be used to precondition
the Schur complement S.

So far, we have shown that decreasing the algebraic error by reducing the residual on the L-part
to zero is achievable for other solvers than PCG. This represents an extension of the results of
Chapter 2.

5.5 Numerical results

In this section, we present numerical results of tests where we apply the adaptive solve
procedure in a reservoir simulation for heterogeneous porous media. The model problem is a
single phase flow model, for which we consider two types of problems: steady (as introduced
in Section 5.2) and unsteady (see Section 5.5.2.1). We first validate the procedure in the simpler
steady case with an initial prototype. Once the method validated, we assess its performance on the
real simulator with the unsteady case. The simulations are run on IFPEN’s prototype for reservoir
simulation.

In the sequel, we solve the linear systems stemming from the PDEs by the adaptive Schur
procedure and compare it to the classical solve procedure. Both procedures employ the same
Krylov solver and the same incomplete factorization. The classical solve is performed with an
incomplete factorization preconditioner for the global matrix A, whereas the adaptive Schur
procedure uses an incomplete factorization of the submatrix AR to precondition the reduced Schur
complement system. We also consider a stopping threshold value of 10−6 for the euclidean norm
of the residual.

5.5.1 Steady problem: Heterogeneous media and uniform mesh refinement

For the first test case, we deal with a steady problem. As it generates one single system, we
extract data (matrix, right hand side vector and error estimates) from the simulator and solve the
linear system with a prototype of the adaptive approach that uses the no-fill Incomplete Cholesky
factorization and a PCG solver.
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Figure 5.1 – SPE10 permeability (left) and pressure field (right). Section 5.5.1.

In this test, we use the same configuration described in [102, Section 6.3]. We consider a het-
erogeneous porous media with domain (0, 1200) × (0, 2200) partitioned by a grid of 60× 220
rectangular cells. The permeability tensor corresponds to that of the layer 85 of the tenth SPE
comparative solution project model field [38]. Figure 5.1 shows the permeability field (on the left)
and the pressure field (on the right). The source term is f = 0. We have tested four values (0.10,

0.15, 0.25 and 0.33) for the size percentage δ :=
nL
n

(see Section 5.3). The evolution of the energy
norm is displayed in the graph of Figure 5.2.

We notice from the graph above that by initially taking a subset L which is ten times smaller than
the size of the global system, we get a decrease of almost 30% in the number of iterations for the
adaptive solve with respect to the standard one. The convergence is still accelerated by a wider
coverage of the high error areas. This is reflected in the decrease of the number of iterations when
we progressively increase the parameter δ, until we obtain a speedup of more than 50% with
respect to the standard solve for δ = 0.33.



5.5. Numerical results 139

0

2,
00

0

4,
00

0

6,
00

0

8,
00

0

10
,0

00

12
,0

00

10−6

10−5

10−4

10−3

10−2

10−1

100

Iterations

Er
r

o
r

n
o

r
m

Standard solve Adaptive solve (δ = 0.10)
Adaptive solve (δ = 0.15) Adaptive solve (δ = 0.25)
Adaptive solve (δ = 0.33)

Figure 5.2 – Evolution of the energy norm of the error with the standard and adaptive solve procedures (steady case).

5.5.2 Unsteady problem: Heterogeneous media and uniform mesh refinement

For the second test case, we handle an unsteady problem of a single phase flow model.

5.5.2.1 The model

Often used in reservoir simulation, this unsteady model describes the flow of a single fluid
through a porous medium Ω ⊂ Rd, d ∈ {2, 3}, over a certain time interval. On the one hand, we
consider the characteristics of the fluid that follow. We denote by p the pressure of the fluid, by ρ

its mass density, by µ its viscosity, by c f its compressibility and by v the fluid velocity. On the
other hand, the physical characteristics of the porous medium are its porosity φ, and its absolute
permeability tensor K. This latter measures the ability of the porous medium to transmit fluid
in each direction. We also denote by cR the rock compressibility and by ρ0 the fluid density at a
reference pressure p0.

It is assumed that the mass diffusion and mass dispersion fluxes are negligible and that no fluid
mass can cross the fluid-solid interface. Then, the conservation of mass is expressed by the
following equation:

∂(φρ)

∂t
= −∇ · (ρv) + q, (5.23)

where q is the source or sink term that is square integrable in time and space.



140
Chapter 5. Application to test cases stemming from industrial simulations with finite volume

discretization

In addition, Darcy’s law gives the expression of the fluid velocity:

v = − 1
µ

K(∇p− ρg∇z); (5.24)

where g is the magnitude of the gravitational acceleration and z is the depth.

An equation of state gives the relationship between the fluid compressibility and the partial
derivative of the density with respect to the pressure evaluated at a fixed temperature T:

c f =
1
ρ

∂ρ

∂p

∣∣∣∣∣
T

. (5.25)

Similarly, the rock compressibility is defined by

cR =
1
φ

dφ

dp
. (5.26)

The time differentiation of φρ in (5.23) yields:(
φ

∂ρ

∂p
+ ρ

dφ

dp

)
∂p
∂t

= −∇ · (ρv) + q.

By injecting the compressibility formulae (5.25), (5.26) and the momentum conservation’s law
(5.24), in the mass conservation’s law (5.23), we obtain

ρ(c f + cR)φ
∂p
∂t

= ∇ ·
(

ρ

µ
K(∇p− ρg∇z)

)
+ q. (5.27)

We consider that the medium contains a single fluid (oil or gas) that is slightly compressible. Thus,
the fluid compressibility stays constant when the pressure varies within a certain range of values.
In this case, integrating (5.25) yields:

ρ = ρ0ec f (p−p0). (5.28)

Hence, with (5.28), the governing PDE (5.27) is a parabolic equation for the main unknown which
is the pressure p. For proofs of the existence, uniqueness and regularity of a solution to this
system, and for discretization and linearization approaches, we refer to [33] and references therein.

5.5.2.2 Simulation results

As far as the computing framework is concerned, we have implemented GMRES solver and
the adaptive solve procedure on MCGSolver [7, 8]. For exact and inexact LU factorizations, we
used the library Eigen [72]. The transfer of error estimates between the linear solver (MCGSolver)
and the simulator is operated by the ALIEN interface (see Section 1.1.4 in Chapter 1). Note
that, as we consider a horizontal 2D case, gravitational effects are not taken into account in the
numerical tests. A simulation over a 24-hour period was conducted in this study. We consider
a 2D cartesian grid (60× 220). At each time ti, an initial time step ∆t(0)i is set, a linear system
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Injection well Injection well

Injection well Injection well

Production well

Figure 5.3 – Configuration for the numerical test case of Section 5.5.2

is generated and solved with GMRES solver. Note that usually the non-linear solver does not
converge when the linear system’s solve did not converge. Note also that when the non-linear

solver does not converge, the time step is halved ∆t(j+1)
i :=

∆t(j)
i

2
until reaching convergence with

j = jc. In this case,
(

∆t(j)
i

)
j<jc

(resp. ∆t(jc)
i ) are called failed (resp. accepted) time steps at the time

ti. The next time is set from the accepted time step ti+1 := ti + ∆t(jc)
i .

The size of the system matrix A is 12 997 × 12 997, whereas the size of the submatrix AL is
417× 417. For the sake of comparison, the solves in the simulation are carried out according to
two procedures. The first is the standard solve using an ILU(0) factorization of the matrix A as a
preconditioner. The second one is the adaptive procedure described in Section 5.4.1.

The locations of the wells at the reservoir are indicated on Figure 5.3 above. The wells are arranged
in a five-spot pattern, with the production well positioned at the center. The distribution of
a posteriori error estimates during the beginning and the end of the simulation is plotted on
Figure 5.4.

We are interested in the number of iterations needed at every time step of the simulation for the
standard solve procedure and the adaptive Schur procedure respectively. Whenever that number
reaches 4 000, which is the maximum number of iterations allowed, this indicates a failed time step.
One can observe that the first failed time step occurs at the sixth time t6 for the standard procedure.
Therefore, the subsequent times

(
tj
)

j>6 differ from the standard and adaptive procedure. Yet, we
still can compare the two procedures during the first time steps that are identical and common
for them both. The number of iterations for the times in question is displayed in Figure 5.5. The
evolution of the norm of the residual over iterations with both procedures is plotted for each time
step in Figure 5.6. With respect to the standard solve procedure, we observe a speedup with the
adaptive Schur procedure in the first common time steps.
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(a) A posteriori error estimates at the beginning of the
simulation

(b) A posteriori error estimates at the end of the simu-
lation

Figure 5.4 – Distribution of a posteriori error estimates during the single phase flow simulation
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Figure 5.5 – Number of iterations during the first four time steps after initialization

Moreover, this trend is confirmed on a larger scale for a whole simulation. The total numbers
of time steps and GMRES iterations are reported in Figure 5.7. The charts of this latter indeed
indicate that more time steps and iterations are needed for the simulation when the standard solve
procedure is employed compared to the adaptive one.
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Figure 5.6 – Convergence of the solve procedures during the first five time steps after initialization.
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Figure 5.7 – The total number of time steps and iterations needed for the whole simulation with the standard and
adaptive procedures. The maximum number of iterations allowed per solve is set to 4 000.
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The solve times are collected in Table 5.1. We notice that the standard solve takes less time than
the adaptive procedure in the first two time steps, and more time on the third and fourth time
steps.

Table 5.1 – The solve times (in seconds) for the first four time steps of the simulation with the standard and adaptive
procedures.

Standard Solve Adaptive Schur

Time step n 1 7.15 14.26

Time step n 2 5.59 6.91

Time step n 3 4.68 3.84

Time step n 4 21.06 5.84

5.6 Conclusion

In this chapter, we have adapted the a posteriori error estimates hypothesis for the finite
volume discretization of the model problem. Then we presented the adaptive Schur procedure
to exploit this hypothesis in order to effectively reduce the algebraic error and accelerate the
convergence. Lastly, we showed the numerical results of the method applied to the framework of
reservoir simulation. The results of the initial tests are encouraging. The comparison with the
standard solve illustrates the performance of the adaptive procedure and in particular reveals that
a significant speedup in terms of the number of time steps and iterations can be achieved. Yet,
the results for the time gain of this method are not as conclusive as for the number of iterations
and time steps because the implementation of the approach was unsophisticated making the
computations with the Schur complement costly in time. There is certainly room for improvement
in this regard. For future perspectives, we could rely on hierarchical matrices [73] and the relevant
techniques that are efficient for data-sparse representations of certain densely populated matrices
such as the Schur complement in the elliptic models to reduce the costs in floating point operations
(the complexity) and time. In addition, further test cases are envisaged, such as two-phase or
multiphase flow models.



Conclusion

Choosing the appropriate preconditioning method for iterative algebraic solvers in numerical
solution of partial differential equations is a broad subject of research. The fact that the linear
systems are various and the characteristics of the matrices handled differ according not only to
the type of the application but also to the test case makes choosing the convenient preconditioner
a real challenge for numerical engineers and mathematicians. In this thesis we have investigated
this issue, and devised some strategies that allow to monitor the choice of the preconditioner
according to the information stemming from a posteriori error estimates.

The first point of the thesis is that error estimates can provide a reliable information about the
global error norms and thus gives an idea of each system’s complexity during the simulation. On
the basis of such information, we have been able to choose the appropriate preconditioner for the
iterative solver at every time step of the simulation. From that perspective, error estimates may be
considered as an intelligent decision aid tool as far as the preconditioning strategy is concerned
(first part of Chapter 1).

The second point concerns the usefulness of error estimates when used locally. Within a domain
decomposition framework, they help identify the areas of the domain where the error is significant.
We have experimentally investigated the existence of a link between the local algebraic error and
the conditioning of the corresponding diagonal blocks of the matrix. We have noticed that in
general when the error is high, the corresponding diagonal submatrix is ill-conditioned. As a
consequence, we suggested a block-diagonal preconditioner where the robustness of the blocks
was adjusted to the magnitude of local error estimates of the corresponding subdomains. In
terms of performance, this solution offers a compromise between the number of iterations and
the complexity of building the preconditioner. Yet, we do not think a naive block-diagonal
preconditioner is sufficient to significantly improve the convergence and that a more sophisticated
preconditioning strategy is needed instead (second part of Chapter 1).

The third point concerns the adaptive preconditioner that is built with an exact factorization of
the block where the local error estimates are high. When used with PCG in combination with a
specific initial guess, we have noticed that it enables to efficiently reduce the algebraic error and
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enhance the solve convergence. However, this approach has its limits as regards the inversion of
the block with high error. It also seems to have difficulties when dealing with much scattered high
error zones (Chapter 2).

To circumvent the computational burden of exact matrix inversion, approximate adaptive precon-
ditioners are introduced as alternatives to the original ones. With respect to the latter, the former
use approximate inverses. The efficiency of this type of preconditioner depends on the quality
of the approximation considered. In the case of a low rank approximation, the numerical results
show that the approximate adaptive preconditioner yields an error reduction that is very close to
the exact adaptive preconditioner even by computing a few eigenvalues only (Chapter 3).

To control the growth rate of a relevant seminorm of the error with a fixed-point iteration, a second
variant of the adaptive preconditioner is needed. With this preconditioner, we are able to prove
that the growth rate of the error seminorm in question depends on the largest eigenvalue of a
specific block of the preconditioned operator M−1A. Even if the theory stands for fixed-point
iteration scheme, the experimentation shows that this kind of preconditioner behaves well with
PCG solver also, and can outperform the first variant (Chapter 4).

Finally, the last part of this study recalls a solve procedure, based on a Schur complement,
that is equivalent, in the case of a PCG, to solve the initial system with the first adaptive
preconditioner introduced. This part investigates the performance of this procedure when applied
to the framework of reservoir simulation. Even though significant speedups can be obtained with
the adaptive solve procedure, there remains sufficient scope for further improvements as concerns
the Schur complement computations, and extension of the theory and experiments to other PDE
models (Chapter 5).

Many questions regarding the enhancement of solving linear systems, stemming from PDEs, using
error estimates remain open. We list some perspectives related to the topics in this thesis that we
would like to explore in the future:

— the use of hierarchical matrices for the Schur complement part,

— efficient implementation on multicore GPU-accelerated architectures.
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