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Abstract

LEARNING FROM MULTIMODAL DATA FOR CLASSIFICATION AND
PREDICTION OF ALZHEIMER’S DISEASE

by Jorge A. SAMPER GONZÁLEZ

Alzheimer’s disease (AD) is the first cause of dementia worldwide, affecting
over 20 million people. Its diagnosis at an early stage is essential to ensure a
proper care of patients, and to develop and test novel treatments. AD is a complex
disease that has to be characterized by the use of different measurements: cogni-
tive and clinical tests, neuroimaging including magnetic resonance imaging (MRI)
and positron emission tomography (PET), genotyping, etc. There is an interest in
exploring the discriminative and predictive capabilities of these diverse markers,
which reflect different aspects of the disease and potentially carry complementary
information, from an early stage of the disease.

The objective of this PhD thesis was thus to assess the potential and to integrate
multiple modalities using machine learning methods, in order to automatically
classify patients with AD and predict the development of the disease from the ear-
liest stages. More specifically, we aimed to make progress toward the translation
of such approaches toward clinical practice.

The thesis comprises three main studies. The first one tackles the differential
diagnosis between different forms of dementia from MRI data. This study was per-
formed using clinical routine data, thereby providing a more realistic evaluation
scenario. The second one proposes a new framework for reproducible evaluation
of AD classification algorithms from MRI and PET data. Indeed, while numer-
ous approaches have been proposed for AD classification in the literature, they
are difficult to compare and to reproduce. The third part is devoted to the pre-
diction of progression to AD in patients with mild cognitive impairment through
the integration of multimodal data, including MRI, PET, clinical/cognitive evalu-
ations and genotyping. In particular, we systematically assessed the added value
of neuroimaging over clinical/cognitive data only. Since neuroimaging is more
expensive and less widely available, this is important to justify its use as input of
classification algorithms.
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Résumé
APPRENTISSAGE A PARTIR DE DONNEES MULTIMODALES POUR LA
CLASIFICATION ET LA PREDICTION DE LA MALADIE D’ALZHEIMER

par Jorge A. SAMPER GONZÁLEZ

La maladie d’Alzheimer (MA) est la première cause de démence dans le monde,
touchant plus de 20 millions de personnes. Son diagnostic précoce est essentiel
pour assurer une prise en charge adéquate des patients ainsi que pour développer
et tester de nouveaux traitements. La MA est une maladie complexe qui nécessite
différentes mesures pour être caractérisée : tests cognitifs et cliniques, neuroim-
agerie, notamment l’imagerie par résonance magnétique (IRM) et la tomographie
par émission de positons (TEP), génotypage, etc. Il y a un intérêt à explorer les
capacités discriminatoires et prédictives à un stade précoce de ces différents mar-
queurs, qui reflètent différents aspects de la maladie et peuvent apporter des in-
formations complémentaires.

L’objectif de cette thèse de doctorat était d’évaluer le potentiel et d’intégrer dif-
férentes modalités à l’aide de méthodes d’apprentissage statistique, afin de classi-
fier automatiquement les patients atteints de la MA et de prédire l’évolution de la
maladie dès ses premiers stades. Plus précisément, nous visions à progresser vers
une future application de ces approches à la pratique clinique.

La thèse comprend trois études principales. La première porte sur le diag-
nostic différentiel entre différentes formes de démence à partir des données IRM.
Cette étude a été réalisée à l’aide de données de routine clinique, ce qui a permis
d’obtenir un scénario d’évaluation plus réaliste. La seconde propose un nouveau
cadre pour l’évaluation reproductible des algorithmes de classification de la MA
à partir des données IRM et TEP. En effet, bien que de nombreuses approches
aient été proposées dans la littérature pour la classification de la MA, elles sont
difficiles à comparer et à reproduire. La troisième partie est consacrée à la prédic-
tion de l’évolution de la maladie d’Alzheimer chez les patients atteints de troubles
cognitifs légers par l’intégration de données multimodales, notamment l’IRM, la
TEP, des évaluations cliniques et cognitives, et le génotypage. En particulier, nous
avons systématiquement évalué la valeur ajoutée de la neuroimagerie par rap-
port aux seules données cliniques/cognitives. Comme la neuroimagerie est plus
coûteuse et moins répandue, il est important de justifier son utilisation dans les
algorithmes de classification.
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Introduction

Dementia is a major public health concern that affects a significant part of the
world population. Only in France, there were about 1 175 000 patients with de-
mentia in 20121. This term describes a group of symptoms usually starting with
memory troubles, behavioural changes and cognitive issues. The symptoms pro-
gressively worsen until the patient’s death. The main type of dementia is Alzheimer’s
disease (AD).

Given that the processes causing these diseases usually start many years before
the symptoms appear, it is of great importance to find a way to identify, as early as
possible, if a certain subject will develop dementia. This is important to provide
adequate care to the patient and information to the family. Moreover, this is vital
in order to provide an effective treatment in the future. Indeed, future therapies
are more likely to be effective if administered early. It is thus important to iden-
tify which patients should be included in clinical trials and/or could benefit of the
treatment. Before the development of dementia, patients go through a phase dur-
ing which they have objective deficits but which are not severe enough to result
in dementia. This phase is called mild cognitive impairment (MCI). Patients with
MCI may remain stable or subsequently progress to dementia.

Diagnosis of AD mainly relies on clinical evaluation and cognitive assessment
using neuropsychological tests. However, in the past decade, diagnosis has evolved
thanks to advances in neuroimaging and fluid biomarkers. Currently, diagno-
sis relies not only on clinical assessment, but also on biomarker-based criteria.
T1-weighted anatomical magnetic resonance imaging (MRI) and 18F 2-fluoro-2-
deoxy-D-glucose (FDG) positron emission tomography (PET) scans provide spa-
tial patterns of atrophy and hypometabolism, respectively. This is used to identify
the topography of neurodegeneration within the brain. Moreover, pathophysio-
logical markers, reflecting the presence of specific abnormal protein deposits, are
also available. Specifically, the two pathological hallmarks of AD, amyloid and
tau, can be assessed in vivo using PET imaging with specific tracers and with
biomarkers of the cerebrospinal fluid (CSF).

However, early and accurate diagnosis remains a difficult task. In particular,
how to optimally combine the different measures and markers remains an open

1www.alzheimer-europe.org

https://www.alzheimer-europe.org/content/download/79291/491583/file/Final%20version%20of%20the%202013%20yearbook%20from%20the%20printers.pdf
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question. To that purpose, machine learning (ML) algorithms are particularly at-
tractive due to their ability to learn relevant patterns within the data and pro-
vide automatic classifications and predictions. In the past years, large datasets
of patients explored with multimodal data have been made available. The most
well known is the Alzheimer’s Disease Neuroimaging Initiative2 (ADNI) but other
publicly available datasets exist, including the Open Access Series of Imaging
Studies3 (OASIS) and the Australian Imaging, Biomarker and Lifestyle Flagship
Study of Ageing4 (AIBL). This has considerably propelled the development of ML
methods to assist diagnosis and prognosis of AD: in the last decade, several hun-
dreds of papers have been published on that topic.

In spite of these intense research activities, there has been very little translation
of these methods to clinical routine. Several reasons may explain this fact.

First, it is very difficult to assess the comparative merits of these approaches.
Even though most of them use the same public dataset, ADNI, it is very difficult
to compare their performances because they differ in terms of subject subsets, im-
age preprocessing or feature extraction procedures. It is thus hard to tell which
method performs best and which component of the approach (e.g. feature extrac-
tion or classification algorithm) has the most influence on the results. Moreover,
these studies are also very difficult to reproduce because several key components
are not readily available. Reproducibility has recently become an important con-
cern in areas of science as varied as cognitive psychology, cancer treatment or neu-
roimaging. It is also a concern in the field of ML for AD detection.

A second reason is probably that, most of these approaches using neuroimag-
ing as input, their performance is very rarely compared to that of clinical/cognitive
data. This aspect has been mostly overlooked by the medical image computing
community while it is critical to progress towards clinical translation of these ML
tools. Indeed, clinical/cognitive data are the core tools used by neurologists to
make the diagnosis. In order to adopt neuroimaging-based ML techniques, they
will need to be convinced that they offer an added value. Moreover, neuroimaging
is more expensive and less widely available than neuropsychological testing.

Finally, most of the published works have been devoted to classification of pa-
tients with AD and cognitively normal (CN) subjects, or prediction of progression
to AD in patients with MCI. However, distinguishing AD patients and CN sub-
jects does not correspond to a clinically realistic scenario. Indeed, several diseases
may cause dementia, including AD but also vascular dementia, dementia with
Lewy Bodies and fronto-temporal dementia, among others. The clinician is thus

2http://adni.loni.usc.edu/
3https://www.oasis-brains.org/
4https://aibl.csiro.au/

http://adni.loni.usc.edu/
https://www.oasis-brains.org/
https://aibl.csiro.au/
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faced with distinguishing between these possible diseases or with cases of subjec-
tive cognitive impairment. Moreover, most papers have used data from research
studies, in which the quality of neuroimaging data is strictly controlled. Few of
them have used clinical routine neuroimaging. Therefore, the evaluation of ML
techniques in clinically realistic conditions has remained insufficient.

* *
*

The general objective of this thesis was to contribute towards the future trans-
lation to clinics of ML approaches for diagnosis and prognosis of AD. To that pur-
pose, we explored different research avenues which can be grouped into three
main categories. The first concerns the evaluation of classification techniques in
a more clinically-realistic scenario. Specifically, we evaluated their performance
for distinguishing between different types of dementia using clinical routine MRI
data. The second objective was to design a framework for reproducible evalua-
tion of classification methods. We designed a unified set of tools for data manage-
ment, image preprocessing, feature extraction, classification and evaluation. These
tools were made freely available to the community. We applied the framework to
compare different modalities (T1 MRI and FDG PET), features, preprocessing and
classifiers. The third objective was to assess the added value of neuroimaging com-
pared to clinical/cognitive data for prediction of AD in patients with MCI. To that
purpose, we leveraged our framework for reproducible evaluation. We proposed
new approaches that combine multimodal data (neuroimaging, clinical/cognitive)
and systematically evaluated their respective performances.

To summarize, our main contributions are:

• The evaluation of ML techniques for distinguishing between different types
of dementia using MRI obtained under clinical conditions.

• The development of a framework for reproducible evaluation of classifica-
tion of AD and its application to T1w MRI and FDG PET.

• The combination of multimodal neuroimaging and clinical/cognitive data
for prediction of progression of MCI patients.

• The release to the community of open source software that was developed
during this PhD.

* *
*
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The document is divided into five chapters.
First, Chapter 1 introduces Alzheimer’s disease and the interest of using ma-

chine learning for its prediction. It also covers the different data modalities, fea-
tures and machine learning techniques used for AD prediction in the last years.

Chapter 2 presents the study of a cohort (CLINAD) of patients affected by dif-
ferent types of dementia. The classification of images obtained in a clinical envi-
ronment and how useful it can result for a differential diagnosis are explored.

In Chapter 3, we tackle the issue of comparability and reproducibility of AD
classification methods. A framework for reproducible and objective classification
experiments in AD using three databases is proposed. It is then used to assess the
influence of different factors in AD classification.

In Chapter 4, previous work (Chapter 3) is extended to the combination of mul-
timodal clinical and neuroimaging data. In particular, the added value of neu-
roimaging over using only clinical data is systematically assessed.

Finally, in Conclusion and Perspectives, the main results are recalled and future
work directions are presented.

In addition, we present, as an appendix, another publication to which we con-
tributed, in collaboration with another PhD student, Junhao Wen. This study ex-
tends the framework we developed for reproducible evaluation to the case of dif-
fusion MRI data.
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Chapter 1

Machine learning from neuroimaging
data to assist the diagnosis of
Alzheimer’s disease

In this chapter we aim to provide an overview of the main concepts involved in
this PhD as well as a state of the art on the topic of classification of Alzheimer’s dis-
ease (AD) from neuroimaging data based on machine learning (ML) techniques.
Note that we do not aim to provide an exhaustive review of all published meth-
ods on the topic. This has been addressed by a recently published review paper
(Rathore et al., 2017), to which we refer the reader.

The chapter is organized as follows. We first briefly present concepts related
to AD and its diagnosis (Section 1.1), followed by a motivation for designing ML
methods in this field (Secion 1.2). We then introduce the data modalities (neu-
roimaging but also non-neuroimaging) that are of interest (Section 1.3). At the
same time, we review the main papers using these modalities either alone or in
combination. Section 1.4 presents the different types of features that can be ex-
tracted from the data. This is followed by a description of some of the most widely
used dimensionality reduction (Section 1.5) and learning methods (Section 1.6). Fi-
nally, we describe how to evaluate the performances of the methods (Section 1.7)
and the main datasets that have been used for that purpose (Section 1.8).

1.1 Alzheimer’s disease

AD is the main cause of dementia. Currently, it has reached epidemic levels,
mainly in developed countries with aging populations, but with higher life ex-
pectancy across the globe, the number of cases are augmenting rapidly in low and
middle income countries. Worldwide, in 2015, there were over 46 millions of per-
sons with dementia, and this number is expected to almost double every 20 years1.

1www.alz.co.uk

https://www.alz.co.uk/research/WorldAlzheimerReport2015.pdf
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This is why research on AD has been made a priority by many countries and in-
ternational organizations.

Underlying mechanisms of the disease start many years before the first clini-
cal symptoms become noticeable. The stage during which pathological changes
accumulate in the absence of any symptoms is called the preclinical or presymp-
tomatic stage (Dubois et al., 2016; Sperling et al., 2011). Then, there is a stage
during which the patient has mild cognitive deficits, mainly memory troubles, but
is not demented. This stage is called mild cognitive impairment (MCI) (Dubois
and Albert, 2004; Albert et al., 2011). Next, along with the aggravation of the
memory problems, language, executive and motor functions start being affected,
making the patient in the impossibility to carry out everyday tasks and thus com-
pletely dependent on caregivers. This stage is called dementia (McKhann et al.,
1984; McKhann et al., 2011).

AD is a complex pathology in which different processes co-exist (Duyckaerts,
Delatour, and Potier, 2009). The first one is the accumulation of amyloid beta
(Aβ) proteins in extracellular space, creating amyloid plaques in the brain. This
accumulation can start up to 20 years before the diagnosis. Another observed
phenomenon is the formation of neurofibrillary tangles made of tau proteins link-
ing to each other inside neurons and causing their death. These processes lead
to the death of neurons resulting in brain atrophy, usually following a specific
pattern, and the corresponding functional loss associated to the affected regions.
AD is mainly a sporadic disease, even though some familial forms exist. In spo-
radic cases, the main known genetic factor is the presence of the allele 4 of the
apolipoprotein E (ApoE4) (Mahley, Weisgraber, and Huang, 2006).

The diagnosis of AD is typically based on clinical assessment and neuropsy-
chological tests, and is usually made once the disease is at an advanced stage.
Earlier diagnosis would allow providing adequate care to the patient (for instance
symptomatic treatment) and accurate information to the patient and their family.
Until now, no effective treatment to slow the progression of the disease, nor to cure
it, exists. Late diagnosis is an important barrier to the design and testing of new
therapies. Indeed, it is likely that, to be effective, future therapies will need to be
administered early in the disease course. In order to achieve an earlier and more
accurate diagnosis, new criteria have been published in the last decade (Dubois
et al., 2007; Dubois et al., 2014; Albert et al., 2011). These criteria use biomarkers to
supplement clinical and cognitive tests. These biomarkers, established thanks to
different techniques including neuroimaging and fluid biomarkers (Hampel et al.,
2014), are able to measure different aspects of the pathological process. However,
to date, they remain mainly used in the more advanced centers. We will review
these biomarkers in more details in Section 1.3.
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1.2 Interest of ML for identification of AD

Early and accurate identification of patients with AD is an important task. An
attractive avenue for that purpose is to design ML approaches that can exploit dif-
ferent types of data to identify patients with AD at an early stage. As previously
mentioned, a subject goes through different stages until the development of AD.
Depending on the stage that is considered, different ML problems can be formu-
lated.

A first question is to differentiate patients with AD dementia (denoted AD pa-
tients in the following) from cognitively normal subjects (CN). This is a classifica-
tion task that will be referred to as AD vs CN in the following. Earlier studies on
ML for AD diagnosis were devoted to this task (e.g. Magnin et al., 2009; Vemuri
et al., 2008; Klöppel et al., 2008b). In general, for this task, high classification per-
formances have been obtained with most studies achieving between 85% and 95%
of accuracy (Rathore et al., 2017). The differences between a CN subject and an AD
patient are easily detectable in brain imaging and cognitive tests so the practical
applications of these classification systems are limited. They could nevertheless be
useful to reinforce the confidence in the diagnosis.

Naturally, studies have then aimed to identify AD from an earlier stage. In
particular, one question is to differentiate MCI patients from CN subjects. The
problem is that MCI in itself is a very heterogeneous condition that could possibly
develop into AD but also into other neurodegenerative diseases, or stay stable as
MCI or even revert back to the CN stage. Therefore, the classification of a patient
as MCI is not very useful to predict AD directly. Nevertheless, this classification
task (MCI vs CN) has been performed in a large number of papers. The obtained
classification accuracy typically ranges from 75% to 85%, even though a few stud-
ies reach over 90% (Rathore et al., 2017).

A more interesting option is to distinguish MCI subjects that will progress to
AD (denoted as pMCI) in the future (e.g. in 12, 18 or 36 months) from those who
will remain stable (denoted as sMCI). If the time-point is fixed (e.g. conversion in
36 months), this can be formulated as a classification problem: pMCI vs sMCI. This
would allow predicting the group of subjects that will likely develop the disease
and could be included in clinical trials. This question has been the subject of in-
tense research but the achieved performance is usually within the 65% - 80% range
(Rathore et al., 2017). A few studies achieved higher accuracies, namely 82% for
(Misra, Fan, and Davatzikos, 2009), 81% for (Eskildsen et al., 2013), 86% for (Cabral
et al., 2015) and 82% for (Moradi et al., 2015). Nevertheless, such results must be
taken with caution since some of these studies involved small samples (Misra, Fan,
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and Davatzikos, 2009; Cabral et al., 2015) or imbalanced groups which may dis-
tort the accuracy metric. Therefore, prediction of progression to AD among MCI
patients remains an unsolved problem.

Would it be possible to go to an even earlier stage and identify CN subjects who
will ultimately develop AD? In theory yes, but it would be necessary to study a
very large number of subjects with a long follow-up, given that only a fraction
of them will develop AD and some only after a long time. Alternative options
could be to restrict the study to older CN subjects (e.g. over 75 years), to CN
subjects who are positive for a specific pathophysiological biomarker (e.g. amyloid
positivity measured using CSF or PET), or to restrict to CN with specific genetic
predisposition. Some of these options are for instance explored in the INSIGHT
study conducted at the Pitié-Salpêtrière hospital (Dubois et al., 2018).

Another challenge for AD classification is differential diagnosis. Indeed, differ-
ent types of dementia exist, including not only AD but also dementia with Lewy
Bodies (LBD), vascular dementia (VD), fronto-temporal dementia (FTD) and oth-
ers. In practice, specialists have to distinguish between several diseases that can
be the cause of a patient’s dementia. A multi-class classification tool able to assist
diagnosis based on brain scans and other biomarkers would provide a valuable
help to clinicians. Systems distinguishing between different dementia would thus
be more useful than those classifying CN vs AD. Only few studies have addressed
differential diagnosis of dementia (Davatzikos et al., 2008; Klöppel et al., 2008b;
Koikkalainen et al., 2016). Differential diagnosis of AD and FTD was considered
in (Davatzikos et al., 2008; Klöppel et al., 2008b). Koikkalainen et al., 2016 con-
sidered AD, FTD, VD, and DLB but they did not include other types of dementia
such as primary progressive aphasia or corticobasal degeneration.

1.3 Modalities involved in AD diagnosis

In this section, we review the main data modalities that are relevant for identi-
fying AD. For each of them, we first briefly explain its interest for AD and then
overview some of the main ML approaches using this modality. We also describe
ML approaches using multimodal data.

1.3.1 Mono-modal approaches

1.3.1.1 Anatomical MRI

T1-weighted MRI provides an anatomical view of the brain. Currently, scanners
have a high spatial resolution and show the different tissue types clearly. Tissue
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damage or loss can be estimated through structural MRI and therefore it is an
excellent method to assess atrophy (Figure 1.1).

FIGURE 1.1: T1 MRI for a cognitively normal subject (left) and for a
patient with Alzheimer’s disease (right). One can note the marked
atrophy of the medial temporal lobe and the enlargement of the ven-

tricles.

Cerebral atrophy is considered a measure of neurodegeneration. It is corre-
lated with tau deposition (Vemuri et al., 2011) and cognitive deficits (Sarazin et al.,
2010). In AD the progression of atrophy is well established, starting in the medial
temporal lobe, then the temporal neocortex, associative parietal areas and frontal
regions. On the other hand, visual and primary sensorimotor cortices remain rela-
tively spared until late in the disease course (Koval et al., 2018).

Another advantage of using MRI is that it is widely available, non-invasive
and relatively cheap compared to other modalities. Moreover, it is recommended
to systematically perform an MRI for evaluation of dementia or cognitive impair-
ment2, mainly for ruling out other possible causes, for example brain tumors.
Therefore, in AD patients, MRI is acquired as part of the clinical routine exami-
nation.

Atrophy measures of the whole brain and certain specific structures obtained
thanks to structural MRI are markers of the neurodegeneration progression and of
the disease stage. Hippocampal atrophy, which can be measured using visual rat-
ings (Scheltens et al., 1992; Boutet et al., 2012), manual volumetry (Lehéricy et al.,
1994) and automatic volumetry (Chupin et al., 2007), is an established biomarker
of AD. Its accuracy to distinguish AD at the dementia stage is quite good (Colliot

2www.has-sante.fr

https://www.has-sante.fr/portail/upload/docs/application/pdf/2011-12/recommandation_maladie_d_alzheimer_et_maladies_apparentees_diagnostic_et_prsie_en_charge.pdf
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et al., 2008) but lower at the MCI stage (Cuingnet et al., 2011). Moreover, hip-
pocampal atrophy is not specific of AD and is found in other dementias (De Souza
et al., 2013).

For all these reasons, anatomical MRI has been the most widely used modal-
ity for developing ML approaches for AD classification and prediction. Based on
whole-brain data, AD vs CN classification is usually highly accurate, with accu-
racies ranging from 80% to 95 % (Aguilar et al., 2013; Bron et al., 2015; Cuingnet
et al., 2011; Farhan, Fahiem, and Tauseef, 2014; Gerardin et al., 2009; Klöppel et
al., 2008b; Magnin et al., 2009; Min et al., 2014; Minhas et al., 2018; Tong et al.,
2014; Vemuri et al., 2008; Zhou et al., 2014; Coupé et al., 2012a). On the other
hand, the results for predicting conversion of MCI patients are not good, with ac-
curacies from 60% to 80% for the classification of sMCI vs pMCI (Aguilar et al.,
2013; Chupin et al., 2009; Cuingnet et al., 2011; Min et al., 2014; Tong et al., 2014;
Adaszewski et al., 2013; Plant et al., 2010; Costafreda et al., 2011; Sørensen et al.,
2016).

The low accuracies obtained when predicting the conversion to AD highlight
the limitation of anatomical MRI, which is used to measure atrophy, a phenomenon
occurring when the disease is already at an advanced stage.

1.3.1.2 PET

Positron emission tomography is a functional imaging technique that provides a
representation of a given metabolic process through the detection of a positron-
emitting isotope that is bound to a biologically active molecule. Depending on the
metabolic process in which this molecule is involved, a specific phenomenon will
be observed. Although PET is not as widely available as MRI, is more expensive,
and involves injection of a radioactive tracer, it is the second most-widely used
modality after anatomical MRI in AD-related ML studies. This is probably because
PET provides information about the disease undetectable with MRI and because
this modality is available in several publicly available research studies on AD such
as ADNI.

1.3.1.2.1 FDG PET FDG is an analog of glucose, the brain’s main source of en-
ergy. A reduction of glucose metabolism indicates impairment of synaptic func-
tion. In AD patients, the hypometabolism is mainly found in the posterior cingu-
late gyri, precuneus, and parietotemporal association cortices (Bailly et al., 2015;
Del Sole et al., 2008), see Figure 1.2. Regional hypometabolism is not a pathophys-
iological marker of AD, but considered a result of its degenerative processes.
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FIGURE 1.2: FDG PET for a cognitively normal subject (left) and for
a patient with Alzheimer’s disease (right). Hypometabolism can be

observed in the parietal associative areas and the temporal lobe.

1.3.1.2.2 Amyloid PET In amyloid PET, a marker that binds to the Aβ protein
is injected to the subject. This amyloid tracer shows the areas of the brain where
there occurs an Aβ deposition (Figure 1.3). The common tracers in use are the
Pittsburgh Compound-B (PiB) (Klunk et al., 2004), marked with 11C, and more
recently the Florbetapir (AV-45) (Choi et al., 2009), Florbetaben (Becker et al., 2013),
and Flutemetamol (Vandenberghe et al., 2010), marked with 18F.

FIGURE 1.3: Amyloid PET for a cognitively normal subject (left)
and for a patient with Alzheimer’s disease (right). The AD patient

presents with diffuse amyloid deposits in the cortex.

The main advantage of the use of amyloid PET is detection of regions with Aβ

deposition, making it a pathophysiological marker of AD (Dubois et al., 2014). The
deposition occurs very early in the disease course. It is both an advantage, as the
pathological process can be detected decades before symptoms, and a drawback,



12

as CN subjects with positive amyloid PET may not develop AD before a very long
time or even not develop it at all.

Amyloid PET in general is expensive to perform and it is not widely available,
being currently mainly confined to research studies.

Since the visual pattern of positivity is particularly striking, there have been
few studies using ML with amyloid PET as a single modality to assist diagnosis
(Vandenberghe et al., 2013).

More recently, PET tracers which can bind to tau protein deposits have been
developed (Villemagne et al., 2018).

1.3.1.3 Diffusion MRI

Diffusion MRI measures the diffusion of water along axons and can provide a
representation of white matter fiber bundles in the brain. It is sensitive to the
microstructural damage that may be present in the white matter bundles and offers
different measures of its integrity. Then, it can be used to measure the anatomical
connectivity between brain regions. It allows detection of anatomical connectivity
injuries that would not be detectable only with anatomical MRI.

Diffusion MRI allows distinguishing the progression pattern of the structural
injury of white matter for AD (Figure 1.4). Since the MCI stage, differences with
control subjects are observed in the para hippocampal gyrus, temporal white mat-
ter, splenium of corpus callosum and posterior cingulum (Chua et al., 2008; Mielke
et al., 2009; Huang and Auchus, 2007; Zhang et al., 2007; Fellgiebel et al., 2005).
Later, for AD, the damage is more severe in the previous regions and also includes
the posterior regions (Bozzali et al., 2002; Nir et al., 2013; Mielke et al., 2009; Huang
and Auchus, 2007; Zhang et al., 2007).

Typically, classifications making use of diffusion MRI only (O’Dwyer et al.,
2012; Maggipinto et al., 2017; Dyrba et al., 2013; Demirhan et al., 2015; Lella et
al., 2017; Haller et al., 2013; Graña et al., 2011; Zhang and Liu, 2018; Termenon et
al., 2011; Lee, Park, and Han, 2015; Prasad et al., 2015) produce results that range
from 76% to 90% of accuracy for CN vs AD, and from 63% to 93% for sMCI vs
pMCI.

A drawback of diffusion MRI is that it is not usually part of a clinical routine
MRI examination. Moreover, it provides high quality only on scanners with a
magnetic field equal or above 3T and results in a longer acquisition time that can
be troublesome for the patient.
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FIGURE 1.4: Diffusion MRI, fractional anisotropy (FA) and mean dif-
fusivity (MD) for a cognitively normal subject (left) and for a patient
with Alzheimer’s disease (right). FA and MD are computed from the
diffusion MRI data. Note that, here, the diffusion MRI is not corrected
for artifacts while the FA and MD maps are obtained after the artifact

correction steps.

1.3.1.4 Functional MRI

Functional MRI (fMRI) provides a measure of changes in blood oxygen levels that
is an indicator of neuronal activity. fMRI is usually acquired during cognitive tasks
or during a resting state (rs-fMRI). Functional connectivity between different brain
regions can then analyzed.

In particular, various studies based on rs-fMRI have evidenced alterations in
the so-called “default-mode network” in MCI and AD patients (Toussaint et al.,
2014; Greicius et al., 2004). Moreover, the regions that showed connectivity alter-
ations match quite well those with a heavier amyloid deposition in AD patients
(Sperling et al., 2009).

Several ML approaches have been designed to assist diagnosis of AD from rs-
fMRI (Chen et al., 2011; Challis et al., 2015; Khazaee, Ebrahimzadeh, and Babajani-
Feremi, 2015). High accuracies have been reported: up to 100% of accuracy to
distinguish AD vs CN (Khazaee, Ebrahimzadeh, and Babajani-Feremi, 2015) and
up to 91% to distinguish MCI from CN (Chen et al., 2011). However, most of these
studies were performed in very small samples (around 20 participants per group).
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Such techniques thus need to be evaluated across large, multicenter, datasets.
As diffusion MRI, fMRI is usually not part of a clinical routine MRI examina-

tion. It is also a technique very sensitive to subject movement and that may be
difficult to harmonize across imaging centers.

1.3.1.5 Non-imaging modalities

Besides imaging, other biomarkers exist for the detection of AD.
Cerebrospinal fluid (CSF) provides several markers, the main ones being amy-

loid β 1-42 (Aβ1−42), total tau protein (T-tau), and phosphorylated tau protein (P-
tau) (Blennow and Zetterberg, 2009). These are pathophysiological markers that
are specific of AD pathology. Nevertheless, they are invasive due to the lumbar
puncture and can be relatively costly (the analysis is not expensive in itself but the
patient is often hospitalized for a day to perform the lumbar puncture).

Genetic factors that increase the likelihood of developing AD have been identi-
fied. The most important genetic factor is the allele ε4 of the ApoE gene (Mahley,
Weisgraber, and Huang, 2006). Besides ApoE4, many other genetic variants as-
sociated to AD have been discovered (Jansen et al., 2019) but they have a weaker
influence compared to ApoE4.

1.3.2 Multimodal approaches

Different modalities can provide different types of information about AD. There-
fore, various works have aimed to combine several modalities in order to increase
classification performances.

1.3.2.1 Anatomical MRI and FDG PET

The most common combination of modalities found in the literature concerns
anatomical MRI and FDG PET. They have reached high classification accuracies
for AD vs CN, up to 95% of accuracy (Hinrichs et al., 2009a; Jie et al., 2015; Suk
and Shen, 2014; Teipel et al., 2015), but excellent performances could already be
reached with a single modality. For the prediction of progression from MCI to AD
(sMCI vs pMCI), the accuracy is up to 75% (Jie et al., 2015; Jie et al., 2013; Suk
and Shen, 2014; Teipel et al., 2015). In such studies, the combination of modalities
resulted in a moderate improvement compared to the use of a single modality.

1.3.2.2 Other combinations

Other works have aimed to combine multiple MRI modalities, including anatomi-
cal MRI, diffusion MRI and functional MRI. (Dyrba et al., 2015b; Dyrba et al., 2013;
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Li et al., 2014a) have combined anatomical and diffusion MRI. (Dyrba et al., 2015a)
have combined anatomical, diffusion and resting-state functional MRI.

1.3.2.3 Combination with non-imaging modalities

Several works have aimed to combined imaging and non-imaging modalities. A
combination of MRI and CSF was used in (Frölich et al., 2017; Liu et al., 2014; Da-
vatzikos et al., 2011), and MRI, FDG-PET and CSF were analyzed in (Lei et al., 2017;
Young et al., 2016; Cheng et al., 2015; Zhang et al., 2011). A few works have com-
bined imaging and clinical data (Thung et al., 2018; Shmulev and Belyaev, 2018;
Kauppi et al., 2018; Ardekani et al., 2017; Frölich et al., 2017; Korolev, Symonds,
and Bozoki, 2016; Wang et al., 2016; Moradi et al., 2015; Da et al., 2014; Casanova
et al., 2013; Cui et al., 2011) for predicting progression to AD in patients with
MCI. It is surprising that there are relatively few works on that topic. Indeed,
clinical/cognitive data is the central modality used for clinical diagnosis of AD.
Moreover, it is widely available and relatively cheap to obtain compared to neu-
roimaging or other biomarkers. Even more surprisingly, models combining clin-
ical/cognitive data with imaging rarely compare their performance to that ob-
tained with clinical/cognitive data alone. This is important to assess the added
value of neuroimaging.

1.4 Features

In this section, we give an overview of the main types of features that can be ex-
tracted from brain images and that would subsequently be used as input of ML
methods.

1.4.1 Voxel-based features

Three-dimensional brain images are composed of voxels. An image X (X ∈ Rp)
will consist of a set of p values, where p is the number of voxels in the image.
The number of voxels will depend on the resolution of the image but it typically
ranges from 10 M for 1 mm isotropic T1 MRI data to 500 k for low resolution PET
images (even though many algorithms will take cropped images as input, thereby
working at most with 100 k to 1 M voxels). Many works have considered voxel-
based features (Klöppel et al., 2008b; Casanova et al., 2013; Cuingnet et al., 2011;
Cuingnet et al., 2010; Termenon et al., 2011; Adaszewski et al., 2013; Plant et al.,
2010; Möller et al., 2015; Dyrba et al., 2015a; Dyrba et al., 2013; Hinrichs et al.,
2009a), i.e. the set of features is a set of values computed at each voxel of the
image. In such a case, the dimensionality is that of the image.
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In the case of anatomical MRI data, the feature values are usually not the MRI
signal itself (which is not quantitative and thus not comparable across subjects) but
rather tissue maps (gray matter, white matter and cerebrospinal fluid) obtained
from a segmentation (Figure 1.5). In the case of PET data, the values are usually
the standardized uptake volume ratio (SUVR), and for diffusion MRI, they are
obtained from parametric maps such as fractional anisotropy, mean diffusivity,
axial diffusivity or radial diffusivity.

FIGURE 1.5: Gray matter (GM), white matter (WM) and cerebro-
spinal fluid (CSF) tissue probability maps from T1 MRI, for a cogni-
tively normal subject (left) and for a patient with Alzheimer’s disease

(right). Tissue maps were obtained with the SPM software.

For images of different patients to be comparable, it is necessary to register
them into a common space, either into a predefined template, like that of the Mon-
treal Neurological Institute (MNI) (Evans et al., 1993), or into a template that is spe-
cific to the population under study and that will be estimated (Ashburner, 2007).
After this step, the voxels in corresponding position contain comparable informa-
tion.

A similar idea can be used in the case of cortical thickness measurements (Hut-
ton et al., 2008; Takao, Abe, and Ohtomo, 2010). In such a case, surfaces delimiting
the interface of the cortical gray matter with the white matter and the CSF are ex-
tracted. Cortical thickness is then computed at each vertex of the cortical surface
(Figure 1.6). The set of features is then the collection of thickness values at each
vertex of the surface. Such approach has been used in (Cuingnet et al., 2011; Li
et al., 2014b).
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FIGURE 1.6: Cortical thickness from T1 MRI, for a cognitively normal
subject (left) and for a patient with Alzheimer’s disease (right). One
can observe the thinning of the medial temporal and parietal cortices.

Some authors also perform an additional spatial smoothing of the features (Ve-
muri et al., 2008). With this step, they attempt to compensate for the anatomical
variations between subjects even after the registration and to obtain a more normal
error distribution.

The main advantages of voxel-based approaches are: i) all the information from
the image is used; ii) there are no assumptions on the possible boundaries of the
discriminative regions. The main drawback is the very high dimensionality of
the feature space. However, several ML approaches (including support vector
machines and L2-regularized logistic regression) have been shown to work well
on such high dimensional data.

It is important to have in mind that there are many different possible process-
ing pipelines to extract such sets of features. For anatomical MRI, they can dif-
fer by the possible image corrections that are applied (denoising, bias correction,
etc.), the tissue segmentation procedure and the inter-individual registration. PET
pipelines differ by the presence or absence of a partial volume correction (PVC),
the nature of the PVC procedure, the reference regions used to normalize the inten-
sity and the registration methods. In the literature, the feature extraction pipelines
are highly variable from study to study, making it difficult to compare the results.
In particular, it is not clear if an observed improvement in performance comes
from a newly proposed ML algorithm or from a more efficient preprocessing or
feature extraction.
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1.4.2 Regional features

A natural way to reduce the dimensionality is to parcellate the brain into a set
of anatomical regions. As a result, the p image voxels or vertices from image X
(X ∈ Rp) are grouped into n regions, usually with n � p. Different values can
be calculated for each region depending on the type of image, such as volume or
mean tissue probability for anatomical MRI (Aguilar et al., 2013; Challis et al., 2015;
Cheng et al., 2015; Cuingnet et al., 2011; Jie et al., 2015; Liu et al., 2014; Magnin et
al., 2009; Suk and Shen, 2014; Teipel et al., 2015; Zhang et al., 2011; Zhu, Suk,
and Shen, 2014b; Magnin et al., 2009 ) or cortical volume or thickness for cortical
surface (Aguilar et al., 2013; Cuingnet et al., 2011; Desikan et al., 2009; McEvoy
et al., 2009; Oliveira et al., 2010; Eskildsen et al., 2013; Wee, Yap, and Shen, 2013;
Lillemark et al., 2014) or average SUVR for PET data (Gray et al., 2012; Pagani et
al., 2015).

To obtain such a parcellation, a common approach is to register the patients into
a common space, in which a labeled atlas is available. Examples of atlases include
the Automated Anatomical Labeling (AAL) atlas (Tzourio-Mazoyer et al., 2002),
Hammersmith atlas (Gousias et al., 2008; Hammers et al., 2003) and LONI Prob-
abilistic Brain Atlas (LPBA40) (Shattuck et al., 2008) for voxel-based parcellation
and Desikan-Killiany atlas (Desikan et al., 2006) and Destrieux Atlas (Destrieux
et al., 2010) for surface-based parcellation.

The positive side of regional features is that their number is relatively small.
The downside is that usually the region atlases are not created to reflect the studied
pathology. For example, the boundaries of the atlas regions may not correspond
to the boundaries of the disease alterations. To overcome this drawback, some
authors have proposed disease specific parcellations (Min et al., 2014; Fan et al.,
2007).

1.4.3 Graph features

Diffusion MRI and functional MRI can be used to measure anatomical and func-
tional connectivity, respectively. In such a case, a natural representation consists
in a graph encoding the connection between distant regions. First, the gray mat-
ter has to be parcellated into a set of regions. These will constitute the nodes of
the graph. The edges and their corresponding weights will then be defined from
measures of anatomical or functional connectivity. The matrix representation of
the resulting graph can be directly used as features, as done in (Chen et al., 2011;
Tong et al., 2014; Challis et al., 2015). Another approach is to derive metrics that
will characterize the graph topology (Jie et al., 2014; Dyrba et al., 2015a; Khazaee,
Ebrahimzadeh, and Babajani-Feremi, 2015; Wee et al., 2012; Prasad et al., 2015;
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Schouten et al., 2016; Ebadi et al., 2017; Zhu et al., 2014; Zhan et al., 2015; Cai et al.,
2018).

1.5 Dimensionality reduction

Given the possible high-dimensionality of brain imaging features, various works
have proposed to reduce the number of features. By using different techniques,
some of which will be briefly described next, the number of features is reduced,
expecting to keep a maximum of information while reducing redundant features
in the data. The aim is to avoid over-fitting when training on datasets of relatively
small size (typically a few hundreds of patients), as is often the case in neuroimag-
ing.

Broadly speaking, there are two main types of approaches to reduce the di-
mensionality. The first is feature selection in which a reduced set of features are
selected from the original set. The second is feature transformation which trans-
forms the original features into a set of features of smaller dimension. Note that,
in this case, the original features are not kept.

1.5.1 Feature selection

There are mainly two types of feature selection: univariate and multivariate.

1.5.1.1 Univariate feature selection

Univariate feature selection aims to determine which features, taken in isolation,
are the most discriminant between groups. Techniques differ by the criterion
which is used to assess the discriminative power of features. A simple and com-
mon approach is to use the result of a univariate statistical test (such as Student’s
t-test, ANOVA, Pearson’s correlation, or non-parametric testing) (Cuingnet et al.,
2011; Hinrichs et al., 2009a; Gerardin et al., 2009). A threshold on the p-value
(or equivalently on the test’s statistic) is then chosen to select the most discrim-
inative ones. Bagging (bootstrap aggregating) is sometimes used to make the
selection more robust (Gerardin et al., 2009). A related approach is the Fisher
score which selects features that maximize the difference between classes (Khaz-
aee, Ebrahimzadeh, and Babajani-Feremi, 2015). A different approach is to use
information gain (or Kullback–Leibler divergence), an information-theoretic mea-
sure, which has the advantage of being able to also detect non-linear dependence
(Dyrba et al., 2013; Dyrba et al., 2015b; Plant et al., 2010). Univariate feature selec-
tion has been applied to different types of features, including voxel-based features
and region-based features. However, its application to voxel-based features may
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result in the selection of a spatially scattered set of features, in particular if no
spatial smoothing is applied.

1.5.1.2 Multivariate feature selection

A major drawback of univariate feature selection is that it will not select group of
features that would, together, be discriminative, but among which each feature,
considered in isolation, is not discriminative. For this reason, multivariate feature
selection techniques have been proposed. A thorough review of these techniques
is beyond the scope of the present work, one can refer for instance to (Guyon and
Elisseeff, 2003; Saeys, Inza, and Larrañaga, 2007; Tang, Alelyani, and Liu, 2004).
In our context, various multivariate approaches have been applied, including the
support vector machine-recursive feature elimination (Fan, Shen, and Davatzikos,
2005; Hidalgo-Muñoz et al., 2014; Garali, 2015) and ReliefF (Demirhan et al., 2015)
for instance.

The benefits of feature selection for classification of AD remain controversial.
Indeed, while some approaches found increased performances with feature selec-
tion (Chu et al., 2012; Demirhan et al., 2015; Ota et al., 2015; Tohka, Moradi, and
Huttunen, 2016), other studies reported no improvement (Cuingnet et al., 2011).
This may be due to the fact that the feature selection can be considered as an ad-
ditional learning step, which may be as prone to over-fitting as the classification
algorithm. Over-optimistic performances may be reported when the feature selec-
tion step is not properly cross-validated (see section 1.7.1). This was for instance
demonstrated by (Maggipinto et al., 2017) in the case of AD classification based on
diffusion MRI.

1.5.2 Feature transformation

Dimensionality reduction can also be performed through feature transformation,
which amounts to finding a space of smaller dimension to which the features are
projected. The most classical approach is probably principal component analysis,
which has been applied to AD classification (Park et al., 2012; Salvatore et al.,
2015). Drawbacks of this technique include its restriction to linear transformations
and the difficulty to interpret the meaning of the components (Dyrba et al., 2015a;
Li et al., 2014a; Zhu, Suk, and Shen, 2014b). To alleviate the limitations of linear
transformations, manifold learning approaches have been applied in the context
of AD classification (Guerrero et al., 2014; Wolz et al., 2012).

Feature transformation may be done in a supervised or unsupervised way. In
supervised approaches, the diagnosis (or other clinical information such as cog-
nitive scores) may be used to find a subspace in which the projected features are
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more discriminant. In any case, the feature transformation step must be properly
cross-validated, as previously mentioned in the case of feature selection. However,
one can expect that an inadequate cross-validation will have a more dramatic im-
pact in the case of supervised approaches than for unsupervised ones.

1.6 Learning approaches

Classification of subjects according to their (current or future) diagnosis is a super-
vised learning problem. A large number of learning algorithms have been applied
and developed in this context. In the next section, we present the main categories
of approaches.

1.6.1 Logistic regression

Logistic regression is a regression model that uses a logistic distribution function
to predict the probability of the outcome of a categorical variable. It is a simple
method, but it comes with drawbacks: it is sensitive to multicollinearity and does
not provide accurate results when the dimensionality is high. Nevertheless, it has
been applied with regions of interest (Desikan et al., 2009). In a comparison study
(Cuingnet et al., 2011), the performances of this approach were moderate for AD
vs CN (specificity 94%, sensitivity 69%) and low for sMCI vs pMCI (specificity
82%, sensitivity 24%).

For use in high dimensions, different types of penalties can be added to logistic
regression. The most classical penalties are the l1 norm that will produce sparse
solutions and the l2 norm that will favor regular solutions. Both penalties can also
be combined, forming the elastic-net (Casanova et al., 2013; Teipel et al., 2015).

1.6.2 Support vector machine

Support vector machines (SVM) aim to find an optimal separating hyperplane that
maximizes the margin between points of different classes. The approach is known
to be robust in high dimensions. SVM can be used with different types of kernels.
The most simple and common is the linear kernel but other kernels, providing
non-linear separations, exist, such as the radial basis function kernel. When the
dimensionality is high compared to the number of subjects, a linear kernel is a
natural choice, as non-linear kernels would have the effect of transforming the
data into an even higher dimensional space.

SVM have been applied to AD classification in a very large number of studies
(e.g. Aguilar et al., 2013; Cuingnet et al., 2011; Davatzikos et al., 2011; Dyrba
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et al., 2015b; Farhan, Fahiem, and Tauseef, 2014; Gerardin et al., 2009; Khazaee,
Ebrahimzadeh, and Babajani-Feremi, 2015; Klöppel et al., 2008b; Klöppel et al.,
2008a; Magnin et al., 2009; Min et al., 2014; Vemuri et al., 2008). In the case of AD
vs CN classification, results are very good, typically around 85% - 95% of accuracy
but in the case of sMCI vs pMCI the results drop to between 65 and 80%. Kernels
can also be considered as a similarity measure and they can be designed to handle
non-vectorial objects such as graphs. In (Tong et al., 2014), a graph kernel is used
in an SVM to classify graphs obtained from images.

1.6.3 Ensemble learning

The construction of a model that combines a group of simpler models with differ-
ent strengths is what is pursued in ensemble learning. A set of classifiers is learned
from the available dataset and then a combination of them is designed. Each of the
individual classifiers performs a weighted vote and the combination of the results
determines the predicted class of the subject. This combination is optimized to
improve the global predictor.

The most widely used ensemble learning approach is probably the random
forest algorithm which combines a large number of individual decision trees. Al-
though random forests have been used for AD classification (Ardekani et al., 2017;
Tanpitukpongse et al., 2017; Rodriguez et al., 2016; Wang et al., 2016; Moradi et al.,
2015; Lebedev et al., 2014; Gray et al., 2013; Tripoliti, Fotiadis, and Argyropoulou,
2007), they are not that common, which could appear surprising given their huge
success in other domains. This may be due to the fact that many approaches work
with voxel-based features. In such a case, the random forest, which would take
decisions at the voxel level, does not appear particularly natural and would result
in a high computational cost.

Ensemble learning can also be used to combine different types of classifiers. For
instance, in (Farhan, Fahiem, and Tauseef, 2014), an ensemble of SVM, multilayer
perceptron and decision trees with simple majority voting provided a classification
accuracy of 94% for AD vs CN classification.

1.6.4 Deep neural networks

Deep learning methods can automatically learn relevant features at multiple scales.
This comes with the benefit of requiring fewer specific image processing steps,
such as non-linear spatial registration in the case of MRI, that can have a signifi-
cant influence on the classification output. Deep learning approaches have led to
impressive results and have been widely adopted in various fields including com-
puter vision and natural language processing (LeCun, Bengio, and Hinton, 2015),



1.6. Learning approaches 23

including various medical imaging tasks (Ker et al., 2018; Shen, Wu, and Suk,
2017). However, their value for assisting diagnosis of AD remains to be demon-
strated. Indeed, this is a typical case where the number of samples (i.e. the number
of patients) is usually small which may not be favorable to deep learning, unlike
other applications where the datasets are much larger or where the number of
samples is in terms of voxels or patches.

One of the most popular deep learning models is the convolutional neural net-
work (CNN) (Lecun et al., 1998) due to its potential of uncovering local structural
relations in observations. CNN is the most used deep learning technique for au-
tomatic classification of AD using anatomical brain MRI. We can find applications
that make use of inputs at different levels, such as 2D slices, 3D patches or whole
3D images (Valliani and Soni, 2017; Liu et al., 2018b; Bäckström et al., 2018).

To date, the reported results are competitive with the state-of-the-art but do not
seem to outperform it for the most difficult tasks, such as sMCI vs pMCI. More-
over, in several of these studies (Gunawardena, Rajapakse, and Kodikara, 2017;
Farooq et al., 2017; Wu et al., 2018; Vu et al., 2018; Wang et al., 2017; Wang et al.,
2019), there appears to be data leakage and thus reported performances are likely
to be optimistic (Wen et al., 2019). Mains sources of data leakage in these studies
are the use of data (for example different slices) from the same subject in both the
training and test sets, or the use of the test set to fine-tune hyper-parameters and
architecture.

1.6.5 Patch-based grading

Patch-based methods learn the similarity between the patches in a subject’s image
and the patches in the different training populations. Patch similarity can be esti-
mated by local (Liu, Zhang, and Shen, 2012; Tong et al., 2014) or non-local (Coupé
et al., 2012a; Komlagan et al., 2014; Coupé et al., 2015; Hett et al., 2016; Hett et al.,
2018) approaches. The learned grading, or scoring, is then used for classification.
These approaches are attractive because of their intepretability (one can inspect
the obtained grading maps) and their low computational cost. They have led to
promising results (e.g. from 73% to 83% for pMCI vs sMCI).

1.6.6 Multimodality approaches

Some ML approaches have been specifically designed or adapted with the aim to
combine multiple input modalities. The majority of these works are devoted to
integration of multiple neuroimaging modalities (Hinrichs et al., 2009a; Liu et al.,
2013a; Jie et al., 2013; Dyrba et al., 2013; Li et al., 2014a; Zhu, Suk, and Shen, 2014b;
Suk and Shen, 2014; Dyrba et al., 2015a; Dyrba et al., 2015b; Jie et al., 2015; Teipel
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et al., 2015) rather than combination of imaging with non-imaging data (Zhang
et al., 2011; Davatzikos et al., 2011; Liu et al., 2011; Anagnostopoulos et al., 2013;
Casanova et al., 2013; Liu et al., 2014; Moradi et al., 2015; Cheng et al., 2015).

Several approaches used multiple kernel learning to combine multimodal data
(Dyrba et al., 2015a; Dyrba et al., 2015b; Hinrichs et al., 2009a; Liu et al., 2014;
Zhang et al., 2011; Young et al., 2013). In such approach, each kernel deals with a
given modality and an optimal combination of kernels is estimated.

Multi-task learning is based on the idea of jointly learning different tasks hav-
ing a shared representation (Caruana, 1997). Usually these tasks are related, like
binary classifications such as CN vs AD and sMCI vs pMCI. This method takes
advantage of the similarities and differences between the tasks, to improve the
generalization capability and prediction accuracy of each of the task-specific mod-
els with respect to separately solved tasks. Multi-task learning has been used for
AD classification tasks (Jie et al., 2015; Zhu, Suk, and Shen, 2014a; Zhu, Suk, and
Shen, 2014b; Suk and Shen, 2014; Jie et al., 2013). In general, performances were in
line with the state of the art but not considerably higher.

1.7 Validation

1.7.1 Cross-validation

Cross-validation consists of different techniques to obtain an estimation of the per-
formance of a method on unseen data, while keeping the bias of this estimation as
small as possible. This is achieved through the use of a training set (from which
the algorithm learns) and a test set (where the algorithm is evaluated) that must
remain independent. Data leakage, the use of information coming from the test set
during the training phase, must be avoided.

Special attention must be paid to the optimization of model hyperparameters,
which requires the use of an inner loop of cross-validation, also independent of the
test data. We can find in the literature examples where this step has not been prop-
erly followed (Querbes et al., 2009; Wolz et al., 2011) leading to over-optimistic
results, as presented in (Eskildsen et al., 2013; Maggipinto et al., 2017). Recent
cross-validation guidelines can be found in (Varoquaux et al., 2017).

The simpler cross-validation method is just to split the samples in the dataset
into a training and a test set that do not change during the different experiments
(Cuingnet et al., 2011). The main drawbacks with this approach are that the amount
of data for training the algorithm is reduced and the use of a single test does not
allow the estimation of the performance variability. A proposed solution is to re-
peat the split of the training and testing a large number of times and to average the
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obtained results (Samper-González et al., 2018; Magnin et al., 2009; Moradi et al.,
2015).

Another cross-validation method used is the separation of the data into k par-
titions (usually, k ranges from 2 to 10). Each of these k-folds are then used once as
test set, and the union of the other folds as training set, and the performance is av-
eraged across folds (Vemuri et al., 2008; Zhang et al., 2011; Davatzikos et al., 2011;
Liu et al., 2013a; Aguilar et al., 2013; Casanova et al., 2013; Farhan, Fahiem, and
Tauseef, 2014; Zhu, Suk, and Shen, 2014b; Suk and Shen, 2014; Min et al., 2014; Jie
et al., 2015). In the literature we can also find the use of repeated k-folds (Hinrichs
et al., 2009a; Jie et al., 2013; Dyrba et al., 2013; Zhou et al., 2014; Liu et al., 2014;
Cheng et al., 2015; Samper-González et al., 2017).

Leave-one-out cross-validation is an extreme case of k-folds, when k is equal
to the number of subjects. The algorithm is trained on all the subjects but one,
that is used for testing, and this is repeated n times, once for each different subject
(Gerardin et al., 2009; Tong et al., 2014; Khazaee, Ebrahimzadeh, and Babajani-
Feremi, 2015; Challis et al., 2015; Dyrba et al., 2015a).

1.7.2 Performance metrics

Different metrics are used to characterize the performance of a classifier. Most
of the time, binary classifications are performed so the most used metrics are ac-
curacy (ratio of instances that are correctly categorized to the total number of in-
stances), sensitivity (ratio of instances that are correctly categorized as positive to
the total number of instances categorized as positive) and specificity (ratio of in-
stances that are correctly categorized as negative to the total number of instances
categorized as negative). Another metric commonly used is the area under the
receiver operating characteristic curve (AUC).

In most of the cases, in the neuroimaging field, the datasets used for training
and testing ML methods contain class imbalances (the number of subjects in the
two groups differ). Dataset imbalance distorts the appreciation of the performance
given by the accuracy metric. This is the reason why we encourage the use of
balanced accuracy (the average of sensitivity and specificity) given that it is less
affected by unbalanced datasets.

A problem we have found reviewing the literature is that often only a subset of
these metrics is presented, making it more difficult to compare the performances
of different methods across papers.

Another issue is that many papers claim superiority of an approach with re-
spect to another, based on a slightly better performance. These are often drawn
from a few percentage point difference in balanced accuracy and the difference in
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performance might be related to the specific sample of subjects at hand and not
generalizable to other samples. In other studies, a t-test is used to assess whether
the improvement in performance is statistically significant. However, such ap-
proach is not valid because the t-test assumptions (independence of samples, nor-
mality) are violated, and the behavior of the test is too liberal (Nadeau and Bengio,
2003). Although some corrections such as conservative Z or the corrected resam-
pled t-test have been proposed, their behaviour is not always consistent and they
are rarely used.

A good practice is to report the empirical variance for the performances. How-
ever, one should keep in mind that such approach underestimates the true vari-
ance, since, as exposed in (Nadeau and Bengio, 2003; Bengio and Grandvalet,
2004), there is no unbiased estimate of the variance for cross-validation.

1.8 Datasets

The most frequently used dataset is the Alzheimer’s Disease Neuroimaging Ini-
tiative3 (ADNI) database (Jack et al., 2008; Petersen et al., 2010). ADNI is a mul-
ticentric project that groups the longitudinal studies of over a thousand subjects
in different stages ranging from cognitively normal elderly subjects and MCI to
AD patients. The first ADNI study was followed up with ADNI-GO, ADNI2 and
ADNI3. Neuroimaging modalities include anatomical MRI, FDG PET, amyloid
PET, tau PET, diffusion MRI, and functional MRI. Note that all the modalities are
not present for all the subjects. For instance, diffusion MRI and functional MRI are
not found in ADNI1, tau PET is available only in ADNI3, only about half of the
subjects in ADNI1 have FDG PET. Biomarkers measured in blood and CSF such as
tau and Aβ measurements are also available. Data also includes extensive clinical
and cognitive testing, as well as genetic data.

ADNI is publicly available to researchers (an online application describing the
proposed research needs to be submitted and approved). This has considerably
propelled the research in the field of AD. As a result, the vast majority of studies on
AD classification have made use of the ADNI database. However, unfortunately,
they very rarely use the same subsets of participants. This makes it very difficult
to objectively compare their performances. Moreover, the criteria on which the
subsets of subjects were selected are often not clearly explained, which leads to
wonder if some cherry-picking of subjects may have occurred. Finally, since these
studies use the ADNI, some of their conclusions might be specific to this study
(for instance, specific to the inclusion criteria or to the parameters of the imaging
sequences). It thus remains unclear how they would generalize to other datasets.

3http://adni.loni.usc.edu/

http://adni.loni.usc.edu/
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Other publicly available datasets exist. One of them is the Open Access Series
of Imaging Studies4 (OASIS) database (Marcus et al., 2007) that consists of MRI
scans stored in two collections, a cross sectional study with more than 400 subjects
including young, middle aged and older adults (including a group with dementia)
and a longitudinal study of 150 older adults (including some with mild to mod-
erate AD). Another is the Australian Imaging, Biomarker and Lifestyle Flagship
Study of Ageing5 (AIBL) (Ellis et al., 2010; Ellis et al., 2009). AIBL includes ap-
proximately 1100 participants (AD patients, MCI patients and healthy controls).
Neuroimaging data includes anatomical MRI and amyloid PET. Clinical and cog-
nitive scores are also provided. Part of the AIBL dataset is publicly available, using
a procedure similar to that of ADNI. Even though these two datasets are publicly
available, only very few studies assessed the generalizability of models trained on
ADNI to these other datasets Sørensen et al., 2016; Sørensen et al., 2017; Bhagwat
et al., 2018.

Some AD classification studies used other multicenter research datasets. How-
ever, these datasets are not publicly available. One of them is the European diffu-
sion tensor imaging study in dementia (EDSD) which, as the name suggests, pro-
vides diffusion MRI for all participants. It has been used in (O’Dwyer et al., 2012;
Dyrba et al., 2013; Dyrba et al., 2015a). AddNeuroMed is a European multicen-
tric project for the study of Alzheimer (Lovestone, Francis, and Strandgaard, 2007;
Lovestone et al., 2009). It contains blood and CSF biomarkers and MRI scans for
subjects. It has been used in (Costafreda et al., 2011; Aguilar et al., 2013; Westman
et al., 2011; Doyle et al., 2014; Liu et al., 2011; Anagnostopoulos et al., 2013).

Finally, other publications relied on local datasets (Li et al., 2007; Magnin et al.,
2009; Challis et al., 2015; Vandenberghe et al., 2013), some of them being acquired
in clinical routine (Magnin et al., 2009). Assessment of classification methods on
clinical routine datasets is an important task. Indeed, in research datasets, the
image acquisition sequences are usually harmonized and specific quality control
procedures are used. On the other hand, clinical routine data are usually hetero-
geneous and the image quality can be highly variable.

1.9 Conclusion

A considerable number of approaches have been proposed for automatic classi-
fication of AD from neuroimaging data. However, the evaluation of these ap-
proaches suffer from several important limitations.

4https://www.oasis-brains.org/
5https://aibl.csiro.au/

https://www.oasis-brains.org/
https://aibl.csiro.au/
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First, it is very difficult to state which methods result in the best performances.
Indeed, while most of these works use the same dataset, ADNI, they differ in terms
of subsets of patients used, cross-validation procedures, reported performance
metrics and image preprocessing. It is thus difficult to know if sophisticated tech-
niques outperforms more standard learning algorithms. It is also unclear which
modalities are the most effective and if the combination of modalities leads to a
substantial improvement over monomodal approaches.

A second limitation is that few studies assessed the generalization to other
datasets. Therefore, it is unclear whether the reported performances are specific
to ADNI or if they would be generalizable to other conditions, including different
inclusion criteria and image acquisitions.

Moreover, only few studies combined neuroimaging with clinical/cognitive
data and even fewer compared the performance of neuroimaging to that of clini-
cal/cognitive data alone. While this makes sense for diagnosis tasks such as AD
vs CN, in which clinical/cognitive data is part of the criteria used to define the di-
agnosis to predict (the classification would then be a tautology), it is more difficult
to understand in the case of the prediction of progression to AD in MCI patients.
Indeed, neuroimaging is more expensive than clinical/cognitive assessment and
less widely available. It is thus important to assess its added value.

Finally, most studies used research datasets. It is thus unclear how their results
would translate to clinical routine. Working towards such translation involves sev-
eral aspects. First, it is necessary to assess performance on clinical routine imaging
data, which is not harmonized. Then, comparing AD or MCI patients to controls
does not correspond to a clinically-realistic scenario. Indeed, when a physician
needs to establish a diagnosis, he/she is not facing such a binary choice. The
choice is in fact between different types of dementia (including but not limited to
AD) as well as subjective cognitive deficits.
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Chapter 2

Accuracy of MRI classification
algorithms in a tertiary memory
center clinical routine cohort

This chapter has been submitted as a journal article to Neuroradiology (Morin et
al., 2019):

• Morin A, Samper-González J, Bertrand A, Stroer S, Dormont D, Mendes A,
Coupe P, Ahdidan J, Levy M, Samri D, Hampel H, Dubois B, Teichmann M,
Epelbaum S, and Colliot O, Accuracy of MRI classification algorithms in a
tertiary memory center clinical routine cohort, Submitted to Neuroradiol-
ogy.

2.1 Abstract

Objective: Automated volumetry software (AVS) have recently become widely
available to neuroradiologists. MRI volumetry with AVS may support the diag-
nosis of dementias by identifying regional atrophy. Moreover, automatic clas-
sifiers using machine learning techniques have recently emerged as promising
approaches to assist diagnosis. However, the performance of both AVS and au-
tomatic classifiers has been evaluated mostly in the artificial setting of research
datasets. Our aim was to evaluate the performance of two AVS and an automatic
classifier in the clinical routine condition of a memory clinic.

Methods: We studied 239 patients with cognitive troubles from a single mem-
ory center cohort. Using clinical routine T1-weighted MRI, we evaluated the clas-
sification performance of: i) univariate volumetry using two AVS (volBrain and
NeuroreaderTM); ii) Support Vector Machine (SVM) automatic classifier, using ei-
ther the AVS volumes (SVM-AVS), or whole gray matter (SVM-WGM); iii) reading
by two neuroradiologists. The performance measure was the balanced diagnostic
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accuracy. The reference standard was consensus diagnosis by three neurologists
using clinical, biological (cerebrospinal fluid) and imaging data, and following in-
ternational criteria.

Results: Univariate AVS volumetry provided only moderate accuracies (46% to
71% with hippocampal volume). The accuracy improved when using SVM-AVS
classifier (52% to 85%), becoming close to that of SVM-WGM (52 to 90%). Visual
classification by neuroradiologists ranged between SVM-AVS and SVM-WGM.

Conclusion: In the routine practice of a memory clinic, the use of volumetric mea-
sures provided by AVS yields only moderate accuracy. Automatic classifiers can
improve accuracy and could be a useful tool to assist diagnosis.

2.2 Introduction

The diagnostic criteria of Alzheimer’s disease (AD) and other dementias have
evolved in the past decades from a clinical descriptive perspective to biomarker-
supported definitions, mainly due to innovation in brain imaging, and biological
fluid markers (Jack et al., 2013). Among neuroimaging biomarkers, MRI is the less
invasive, most widely available, cost-effective, is systematically recommended in
dementia and can provide supportive criteria for many neurodegenerative con-
ditions (Armstrong et al., 2013; Dubois et al., 2007; Rascovsky et al., 2011). MRI
can identify areas of atrophy that can suggest particular types of dementia, such
as atrophy of the medial temporal structures in late-onset AD (Fox et al., 1996;
Scheltens et al., 1992) or anterior atrophy in frontotemporal dementia (Rosen et
al., 2002). Assessment of regional atrophy using MRI in dementia has been ex-
tensively studied using visual, semi-quantitative ratings (Fox et al., 1996; Rosen et
al., 2002; Scheltens et al., 1992), manual volumetry, and more recently Automated
Volumetry Software (AVS) (Ahdidan et al., 2017; Chupin et al., 2009; Coupé et al.,
2015; Suppa et al., 2015).

AVS such as NeuroreaderTM (Ahdidan et al., 2017), and volBrain (Manjon and
Coupé, 2015) provide volumetric measures of anatomical structures. Unlike sub-
jective visual analysis of atrophy, AVS provide objective, quantitative measure-
ment of various regions of interest (ROI) volumes. These tools, which are pro-
gressively being implemented in clinical MRI software have only been evaluated
in research settings (Ahdidan et al., 2017; Azab et al., 2015; Coupé et al., 2015;
Tanpitukpongse et al., 2017). Besides, due to their univariate nature, they cannot
detect complex multivariate combinations of regional atrophies, essential to dis-
criminate between different dementias.
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Automatic classifiers, based on machine learning techniques, are able to au-
tomatically learn complex multivariate discriminative patterns without priors on
specific anatomical structures. Automatic classifiers have also mainly been eval-
uated in research settings, with standardized MRI acquisition and focusing on a
single type of dementia (most often Alzheimer’s disease) and age-matched healthy
controls (Cuingnet et al., 2011; Davatzikos et al., 2008; Klöppel et al., 2008b; Klöp-
pel et al., 2008a; Magnin et al., 2009; Vemuri et al., 2008).

In this study, we evaluated the diagnostic classification performance of AVS
volumetry (volBrain and NeuroreaderTM), automatic classifiers (based on whole
gray matter or on AVS volumes), in a clinical routine cohort of patients present-
ing with various neurodegenerative dementia disorders, depression or subjective
cognitive decline.

2.3 Material and Methods

2.3.1 Participants

All subjects were recruited retrospectively in a tertiary academic expert memory
center (Institute for Memory and Alzheimer’s disease – Department of Neurol-
ogy, Pitié-Salpêtrière University Hospital) from the ClinAD cohort (Teichmann et
al., 2017). The ClinAD cohort consists of 992 consecutive patients who consulted
from 2005 to 2014 for cognitive impairment and who underwent lumbar punc-
ture. Data collection was planned before the index test and reference standard
were performed. All patients had neurological, biological and neuropsycholog-
ical evaluations. Cerebrospinal fluid (CSF) Aβ1−42, tau and phosphorylated tau
was available for all participants. All clinical and biological data were generated
during a routine clinical workup and were retrospectively extracted for the pur-
pose of this study. Therefore, according to French legislation, explicit consent was
waived. However, regulations concerning electronic filing were followed, and pa-
tients and their relatives were informed that anonymised data might be used in
research investigations.

For each patient, the diagnosis was assessed by a group of three neurologists
based on clinical, biological and imaging data, following international consen-
sus criteria for AD (IWG-2) (Dubois et al., 2014), fronto-temporal dementia (FTD)
(Rascovsky et al., 2011), primary progressive aphasia (PPA) of the logopenic (lv-
PPA), semantic (SD) or non-fluent/agrammatic (nf-PPA) (Gorno-Tempini et al.,
2011) variant, cortico-basal syndrome (CBD) (Armstrong et al., 2013), progressive
supranuclear palsy (PSP) (Litvan et al., 1996), posterior cortical atrophy (PCA)
(Tang-Wai et al., 2004), Lewy body dementia (LBD) (McKeith et al., 2005), and
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depression (Association and others, 2013). This consensus diagnosis formed the
reference standard. The classifier and volumetry (index tests) results were not
available to assessors of the reference standard. As clinical presentations and at-
rophy patterns depend mostly on the age of onset of AD (Koedam et al., 2010),
the AD group was separated into Early-onset AD (EOAD) and Late-Onset-AD
(LOAD), with age of onset respectively before and after 65 years. In addition,
342 out of 992 patients were excluded because they presented with mixed pathol-
ogy, vascular disease (Fazekas score > 2 or significant stroke) or unclear diagnosis.
From the 650 patients of the ClinAD cohort, 380 patients were excluded because
the MRI was performed outside our center and was not available for our study,
resulting in 270 patients. We added 12 subjective cognitive decline (SCD) patients,
defined as patients with cognitive complaint but with normal neuropsychological
examination.

Among the 282 patients, seven were excluded due to poor image quality or
failure of image processing pipelines. Specifically, six had a very low MRI quality
on visual analysis (missing slices or strong motion artifacts) and the image pro-
cessing pipelines failed in one participant. The quality of the remaining MRI data
was variable, reflecting the reality of clinical routine, but proved sufficient for re-
liable image processing. The quality of image segmentation results was visually
assessed. Moreover, we excluded diagnostic groups with less than 15 patients (nf-
PPA, PSP, PCA) as automatic classifiers cannot be trained robustly on very small
groups of subjects. As a result, the analyses were performed on 239 patients be-
longing to the following eight diagnostic groups: cortico-basal syndrome, early-
onset AD, late-onset AD, fronto-temporal dementia of the behavioral type, Lewy
body dementia, logopenic variant of primary progressive aphasia, semantic vari-
ant of primary progressive aphasia, and depression. The flow chart is described on
Supplementary Figure 2.5 (at the end of the chapter). In this cohort, the only group
without degenerative condition was that of patients with depression. We aim to
compare the results obtained for depression to that obtained for SCD. To that pur-
pose, we added 12 patients with SCD, defined as patients with cognitive complaint
but with normal neuropsychological examination. For this group, classifiers were
trained using the depression group and applied to the SCD group, because the
training of the classifier on 12 participants would not be robust enough.

Demographic data are summarized in Table 2.1. Difference between groups on
demographic and clinical data was evaluated with ANOVA for continuous data
and χ2 test for binary data using XLStat Software (Addinsoft, www.xlstat.com).
As expected, since we separated the AD group in LOAD and EOAD, age at diag-
nosis was significantly different between groups (in ANOVA and Post-Hoc Test).

www.xlstat.com


2.3. Material and Methods 33

The mini-mental state examination (MMSE) score was also different since the neu-
rodegenerative conditions do not have the same cognitive profile. For example,
language impairment in PPA usually leads to lower MMSE scores than frontal
dysfunction in FTD. There was no difference between groups regarding gender
and MRI magnetic field.

N Age Gender MMSE
Magnetic Field
(1T / 1.5T / 3T)

CBD 31 69.8 ± 1.4 16 M / 15 F 23.2 ± 4.5 16 / 10 / 5
Depression 24 64.5 ± 1.6 6 M / 18 F 25.2 ± 3.2 18 / 3 / 3
EOAD 34 59.7 ± 1.5 13 M / 21 F 20.0 ± 5.5 21 / 7 / 6
FTD 39 67.3 ± 1.3 22 M / 17 F 23.2 ± 4.2 19 / 7 / 13
LBD 22 70.6 ± 1.8 13 M / 9 F 22.3 ± 6.1 13 / 5 / 4
LOAD 49 73.5 ± 1.2 25 M / 24 F 22.4 ± 4.1 24 / 9 / 16
lv-PPA 23 67.0 ± 1.7 15 M / 8 F 19.9 ± 5.2 6 / 6 / 11
SD 17 65.4 ± 2.0 10 M / 7 F 20.9 ± 8.1 7 / 5 / 5
SCD 12 72.5 ± 2.2 3 M / 9 F 25.2 ± 2.9 3/3/6

p-value < 0.0001 0.25 0.01 0.12

TABLE 2.1: Demographic and clinical characteristics of the popula-
tion. Group differences were assessed with ANOVA for continuous
variables and χ2 test for discrete variables. Values are presented as
mean ± SD. CBD = Cortico-basal syndrome, EOAD = Early-onset
AD, FTD = Fronto-temporal dementia of the behavioral type, LBD=
Lewy body dementia, LOAD = Late-Onset-AD, lv-PPA = logopenic
variant of Primary progressive aphasia, SD = Semantic variant of pri-

mary progressive aphasia.

2.3.2 MRI acquisition

All 251 patients had an available brain MRI performed in the Department of Neu-
roradiology at Pitié-Salpêtrière Hospital: 70 on a 3 T MRI GE Sigma HD, 14 on a
1.5 T MRI GE Optima 450, 46 on a 1.5 T MRI GE Horizon and 140 on a 1 T MRI
Philips Panorama. All MRI included a 3D T1-weighted sequence with a spatial
resolution ranging from 0.5 times 0.5 times 1.2 mm3 to 1 times 1 times 1.2 mm3.
Since imaging was performed as part of clinical routine, MRI acquisition parame-
ters were not homogenized.
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2.3.3 Fully automated volumetry software

The NeuroreaderTM software (http://www.brainreader.net) is a commercial clin-
ical brain image analysis tool (Ahdidan et al., 2017). The system provides the vol-
umes of the following structures: intracranial cavity, tissue categories (WM, GM,
and CSF), subcortical GM structures (putamen, caudate, pallidum, thalamus, hip-
pocampus, amygdala and accumbens) and lobes (occipital, parietal, frontal and
temporal). Processing times range from 3 to 7 minutes as a function of image size,
irrespective of magnetic field strength.

The volBrain software (http://volBrain.upv.es) is an online freely-available
academic brain image analysis tool (Manjon and Coupé, 2015). The volBrain sys-
tem takes around 15 minutes to perform the full analysis and provides the same
volumes as NeuroreaderTM except for the lobar volumes, only provided by Neuro-
readerTM. However, the volBrain system provides hemisphere, brainstem and
cerebellum segmentations which were not used in this study.

2.3.4 Automatic classification using SVM

2.3.4.1 Preprocessing: extraction of whole gray matter maps

All T1-weighted MRI images were segmented into gray matter (GM), white mat-
ter (WM) and CSF tissue maps using the Statistical Parametric Mapping unified
segmentation routine with the default parameters (SPM12, London, UK1) (Ash-
burner and Friston, 2000). A population template was calculated from GM and
WM tissue maps using the DARTEL diffeomorphic registration algorithm with the
default parameters (Ashburner, 2007). The obtained transformations and a spatial
normalization were applied to the GM tissue maps. All maps were modulated to
ensure that the overall tissue amount remains constant and normalized to MNI
space. 12 mm smoothing was applied as the classification performed better with
this parameter than with none or less smoothed images.

2.3.4.2 SVM classification

Whole gray matter (WGM) maps were then used as input of a high-dimensional
classifier, based on a linear support vector machine (SVM) classifier. In brief, the
linear SVM looks for a hyperplane which best separates two given groups of pa-
tients, in a very high dimensional space composed of all voxel values. In such
approach, the machine learning algorithm automatically learns the spatial pat-
tern (set of voxels and their weights) allowing the discrimination of diagnostic

1http://www.fil.ion.ucl.ac.uk/spm/

http://www.brainreader.net
http://volBrain.upv.es
http://www.fil.ion.ucl.ac.uk/spm/


2.3. Material and Methods 35

groups. Importantly, the classifier does not use prior information such as anatom-
ical boundaries between structures or a specific anatomical structure (e.g. hip-
pocampus) that would be affected in a given condition. Please refer to (Cuingnet
et al., 2011) for more details.

SVM classification was performed for each possible pair of diagnostic groups
(e.g. EOAD vs FTD, LOAD vs FTD, etc.). The performance measure was the bal-
anced diagnostic accuracy defined as (sensitivity − specificity)/2. Unlike stan-
dard accuracy, balanced accuracy allows the objective comparison of the perfor-
mance of different classification tasks, even in the presence of unbalanced groups
(Cuingnet et al., 2011).

In order to compute unbiased estimates of classification performances, we used
a 10-fold cross validation, meaning that each 10% of the set is used for testing and
the other 90% for training, changing the groups in each out of the ten trials. This
ensures that the patient that is currently being classified has not been used to train
the classifier, a problem known as “double-dipping”. Finally, the SVM classifier
has one hyper-parameter to optimize. The optimization was done using a grid-
search. Again, in order to have a fully unbiased evaluation, the hyper-parameter
tuning was done using a second, nested, 10-fold cross-validation procedure.

Finally, in order to have a fair comparison between WGM maps and AVS vol-
umes, we also performed SVM classification using volumes of each AVS as input,
all regional volumes (for a given AVS) being simultaneously used in a multivariate
manner.

2.3.5 Radiological classification

Two neuroradiologists (AB, with 8 years of experience, and SS, with 4 years of
experience), specialized in the evaluation of dementia, performed a visual classifi-
cation of three diagnosis pairs on the same dataset: FTD vs EOAD, depression vs
LOAD and LBD vs LOAD. We chose FTD vs EOAD and depression vs LOAD for
their relevance in clinical practice. We chose LBD vs LOAD because the SVM clas-
sifier yielded only moderate accuracies, and because the diagnosis of LBD based
on MRI is difficult. The neuroradiologists were blind to all patient data except
MRI.
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2.4 Results

2.4.1 Automated segmentation software

We performed a univariate classification based on each AVS volume separately.
Volumes were normalized to the measured total intracranial volume (mTIV) (us-
ing the formula: Volume/mTIV), as discrimination was slightly better than with
absolute values. VolBrain and NeuroreaderTM performed similarly on univari-
ate classification with balanced accuracy rates ranging from 46% to 71% based on
hippocampal volumes. We show various volumes obtained in NeuroreaderTM in
Supplementary Figure 2.6. We show results of classification based on hippocampal
volume computed with NeuroreaderTM in Figure 2.1. In Supplementary Figures
2.7 to 2.12, we provide classification balanced accuracy based on volumes of other
anatomical structures, known to be of particular interest in various neurodegener-
ative conditions.

FIGURE 2.1: Classification results for univariate classification from
hippocampal volumes obtained with NeuroreaderTM ASS. For each
pair of possible diagnoses, we report the balanced accuracy. Chance
level classification is at 50%. Colder colors (green/blue) correspond
to less accurate classifications while warmer colors (red/orange) cor-

respond to more accurate classifications.

2.4.2 Automatic SVM classification from whole-brain gray matter

maps

Figure 2.2 provides the results of automatic SVM classification from WGM seg-
mentation maps. Balanced accuracies ranged from 52% (LBD vs LOAD) to 90%
(EarlyAD vs SCD). We present in Figure 2.3 two examples of weight maps, which
are graphic representations of the most relevant voxels for classification.
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FIGURE 2.2: Classification results for SVM classification from Whole
Gray Matter maps. For each pair of possible diagnoses, we report the
balanced accuracy. Chance level is at 50%. Colder colors (green/blue)
correspond to less accurate classifications while warmer colors (red /

orange) correspond to more accurate classifications.

FIGURE 2.3: Spatial pattern learned by the classification algorithm.
The maps represent contribution of each voxel to classification to-
wards a given class (blue/green) or the other (yellow/red). Left
panel: FTD (in yellow/red) vs. EOAD (in blue/green) displaying an
anteroposterior gradient of atrophy. Right: LOAD (in blue/green) vs.
depression (in yellow red) with medial temporal lobe voxels mostly

blue/green.
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2.4.3 Automatic SVM classification from AVS volumes

FIGURE 2.4: Classification results for SVM classification from all vol-
umes obtained using volBrain (on top) and NeuroreaderTM (at the
bottom). For each pair of possible diagnoses, we report the bal-
anced accuracy. Chance level is at 50%. Colder colors (green/blue)
correspond to less accurate classifications while warmer colors

(red/orange) correspond to more accurate classifications.

To fully compare AVS with our SVM-WGM classification, we provide, in Fig-
ure 2.4, results of SVM classification from all volumes obtained with volBrain
and NeuroreaderTM in addition to SVM based on WGM. In general, results were
slightly lower than with SVM classification from WGM. Overall, volBrain and
NeuroreaderTM performed similarly, even though one or the other tool achieved
slightly higher performances in some specific cases.

2.4.4 Radiological classification

Classification by experienced neuroradiologists resulted in the following balanced
accuracies : 77% (neuroradiologist 1) and 72% (neuroradiologist 2) for LOAD vs
depression, 72% and 75% for FTD vs EOAD, 57% and 63% for LBD vs LOAD (Table
2.2). Neuroradiological classification performed better than both SVM-AVS and
univariate AVS except for LBD vs LOAD classification in which they performed
equally. The performance of the SVM-WGM was in general comparable to that of
neuroradiologists. However, it was superior to both radiologists for FTD vs EOAD
classification.
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Depression FTD LBD
LOAD EOAD LOAD

Neuroradiologist 1 77% 72% 57%
Neuroradiologist 2 72% 75% 63%
Hippocampal volumetry (AVS) 71% 60% 62%
SVM-AVS (VolBrain) 60% 67% 54%
SVM-AVS (Neuroreader) 76% 67% 63%
SVM-WGM 73% 82% 52%

TABLE 2.2: Comparative performances of neuroradiologists, univari-
ate AVS, and automatic classifiers. The three diagnostic classification

tasks are Depression vs LOAD, FTD vs EOAD and LBD vs LOAD.

2.5 Discussion

In this study, we assessed the diagnostic performance of AVS and SVM classifiers
for various neurodegenerative conditions. SVM classifier based on whole gray
matter provided accurate diagnostic classification for the majority of diagnoses
and was far more accurate than univariate classification based on regional vol-
umes such as hippocampal volume obtained through AVS. The performance of
the SVM classifier was similar or slightly higher to that of trained neuroradiolo-
gists on selected classification tasks.

The best accuracies were obtained with SVM classification from whole gray
matter maps. Balanced accuracy was superior to 70% in 64% of the available com-
binations and superior to 80% in 25% of them. Two studies evaluated SVM classifi-
cation between AD and FTD in a research setting (Davatzikos et al., 2008; Klöppel
et al., 2008a). In this setting, they obtained slightly higher diagnostic classification,
with AD vs. FTD classification ranging from 84% to 90% (in our study: FTD vs.
EOAD: 83% and FTD vs. LOAD: 73%). This slightly superior accuracy might be
explained by the more controlled setting of research studies, in particular less het-
erogeneous MRI acquisitions, and by the fact that our patients were at a slightly
less advanced disease stage. Moreover, in Klöppel et al. (Klöppel et al., 2008a), the
use of anatomopathology as the diagnosis criteria, might have provided more ho-
mogeneous groups of patients, helping to better distinguish different diagnoses.
To the best of our knowledge, only one study has previously evaluated SVM clas-
sifiers in clinical routine with various types of dementia (Koikkalainen et al., 2016).
The accuracies that we report are consistent with those reported in (Koikkalainen
et al., 2016), in which diagnostic accuracy for FTD vs. AD was 80% (in our study,
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FTD vs. LOAD: 73% and FTD vs. EOAD: 83%), for LBD vs. AD 68% (in our study,
LBD vs. EOAD: 77% and LBD vs. LOAD: 52%) and for LBD vs. FTD 77.5 (in our
study, LBD vs. FTD: 67%). In this previous study, as compared to ours, there was
no patient with PPA or CBD. Furthermore, contrarily to our study, diagnoses were
not assessed with the latest diagnosis criteria, especially regarding Alzheimer’s
CSF biomarkers. Finally, this study did not compare the performance of SVM to
that of AVS tools which are quickly becoming standard in radiological routine.
Therefore, to the best of our knowledge, we present the first study of whole-brain
classifiers on clinical routine data based on the latest diagnostic criteria, and with
comparison to AVS tools, the current standard of quantitative clinical radiology.

When focusing on some particularly difficult clinical situations, automatic clas-
sification results are particularly promising. For instance, SVM classification dis-
tinguished depression, EOAD and FTD with an accuracy superior to 80%. In par-
ticular, SVM classification was more accurate than that of trained neuroradiolo-
gists for EOAD vs FTD. These situations often imply facing young patients, with
an atypical symptomatic presentation. In these cases, there is often a dramatic im-
pact on the professional and familial life. Finally, the diagnosis implies different
types of care including choosing between cholinesterase inhibitors in AD versus
antidepressant drugs in depression for instance or making a genetic diagnosis for
FTD. Another challenging situation can be the disentanglement of PPA variants
which all include predominant language impairment but are associated to vari-
able neuropathological lesions (Mesulam et al., 2014). SD could be distinguished
from lv-PPA with an accuracy of 77%. As expected, the classifier, as well as the
neuroradiologists, performed better on dementia known to have a strongly spe-
cific atrophy pattern (such as SD or FTD) (Rosen et al., 2002) and worse on demen-
tia with less specific atrophy patterns (LBD, CBD) (Burton et al., 2002; Whitwell
et al., 2010). Interestingly, the classifier allowed to distinguish SCD from the vast
majority of neurodegenerative diseases with high accuracy. One can note that it
performed better for SCD than for depression. One explanation could be the atro-
phy usually described in depression (Bremner et al., 2000).

Compared to our SVM classifier, univariate classification based on AVS per-
formed poorly. When analyzing the accuracy for diagnosis based on each of the
volumes obtained with AVS, they ranged between 53% and 84%. With hippocam-
pus alone, classifying rates rarely exceeded 70%, which is relatively low. In pre-
vious studies, the role of the hippocampus has been mainly evaluated for the di-
agnosis of AD versus controls or in mild cognitive impairment (MCI) populations
to identify patients who will later progress to AD (Ahdidan et al., 2011; Chupin
et al., 2009; Coupé et al., 2015; Cui et al., 2011; Suppa et al., 2015). In our study,
we evaluated MRI measurements in AD versus other dementia (FTD for instance),
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where hippocampal volumetry alone is known to perform poorly De Souza et al.,
2013; Vos et al., 2016).

Poor performance of univariate classification and improvement when using
SVM classification of both AVS volumes (balanced accuracy ranging from 60 to
80%) emphasize the fact that atrophy in dementia involves complex distributed
spatial pattern. The only study comparing univariate (hippocampus) and multi-
variate analysis in two AVS (NeuroQuantTM and NeuroreaderTM) found different
conclusions (Azab et al., 2015). They did not find any additional prognostic per-
formance with multivariate analysis compared to univariate. Nevertheless, this
study focused on prediction of progression to AD among MCI patients, an objec-
tive that differs from ours. Finally, the SVM classifier using whole gray matter
generally performed better than the multivariate analyses of both AVS. This is
likely because the pattern of atrophy may not coincide with the boundaries of the
anatomical regions delineated by AVS. This demonstrates the interest of letting
the algorithm learn a discriminative pattern from the whole gray matter, without
prior, rather using anatomical boundaries provided by AVS.

Neuroradiological classification was generally more accurate than hippocam-
pal volumetry using AVS. The only exception was for LBD vs LOAD, a differential
diagnosis for which anatomical MRI does not bring much relevant information
and for which all approaches performed relatively poorly. Neuroradiological clas-
sification and SVM-WGM generally achieved similar performance. Nevertheless,
the performance of SVM-WGM was superior for EOAD vs FTD. This indicates that
an automatic classifier can be a useful tool to assist trained neuroradiologists for
difficult situations.

Our study also demonstrates the feasibility of those techniques in the context of
routine MRI data of varying image quality and acquired at different magnetic field
strength. AVS segmentation and SVM classification were successful on almost
every MRI.

One limitation of our study is the use of a binary classifier which does not
totally correspond to the clinical practice where patients can have multiple diag-
nostic hypotheses. Further investigations could include multi-group classification
instead of paired groups, in order to obtain a probability related to each potential
diagnosis. Another limitation that we did not include healthy controls but rather
used two control groups composed of patients with depression and SCD respec-
tively. However, this situation is representative of the clinical routine: patients
seen in a memory clinic are usually diagnosed with a neurological or a psychi-
atric condition, or present with subjective cognitive impairment, and are thus not
“pure” control subjects.

As AVS starts being implemented in clinical routine, a final step in the analysis
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of raw AVS volumes could be a classification with an SVM based on all the AVS
data. By analogy with AVS, our SVM-WGM classifier could be implemented in the
post-processing of MRI in clinical routine. Thus, neuroradiologists could use the
indication provided by the automatic classifier to refine their diagnosis. Also, in
our study, neuroradiologists were operating in highly specialized centers and had
considerable experience with different types of dementia (including rare diseases).
It is thus conceivable that an automatic classifier would be of even greater help in
less specialized centers.

2.6 Conclusion

Our study supports the applicability of computer-assisted diagnostic tools such
as AVS and SVM classifiers to clinical routine data. When facing various demen-
tia disorders, the accuracy of univariate volumetric analysis is too low to assist
clinical decision making. In a clinical routine setting, automatic classifiers provide
high diagnostic accuracy for distinguishing between several types of dementia.
The implementation of advanced MRI-based computer-assisted diagnostic tools
in clinical routine, such as SVM classification, could help to improve diagnostic
accuracy.

2.7 Supplementary material

FIGURE 2.5: Population Flow Chart.
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FIGURE 2.6: Mean volumes obtained through automatical segmenta-
tion using NeuroreaderTM. Volumes are expressed in cm3 or as a per-
centage of Total Intracranial Volume. P-value were calculated using
an ANOVA. CBD = Cortico-basal degeneration, EOAD = Early-onset
AD, FTD = Fronto-temporal dementia of the behavioral type, LBD
= Lewy body dementia, LOAD = Late-Onset-AD, lv-PPA = logopenic
variant of Primary progressive aphasia, SD = Semantic dementia, GM

= Grey Matter, WM = White Matter, CSF = Cerebrospinal Fluid.

FIGURE 2.7: Classification results for univariate classification from
gray matter volumes obtained using NeuroreaderTM. For each pair
of possible diagnoses, we report the balanced accuracy. Chance level
is at 50%. Colder colors (green/blue) correspond to less accurate clas-
sifications while warmer colors (red/orange) correspond to more ac-

curate classifications.
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FIGURE 2.8: Classification results for univariate classification from
caudate nucleus volumes obtained using NeuroreaderTM. For each
pair of possible diagnoses, we report the balanced accuracy. Chance
level is at 50%. Colder colors (green/blue) correspond to less accurate
classifications while warmer colors (red/orange) correspond to more

accurate classifications.

FIGURE 2.9: Classification results for univariate classification from
amygdala volumes obtained using NeuroreaderTM. For each pair of
possible diagnoses, we report the balanced accuracy. Chance level is
at 50%. Colder colors (green/blue) correspond to less accurate clas-
sifications while warmer colors (red/orange) correspond to more ac-

curate classifications.

FIGURE 2.10: Classification results for univariate classification from
temporal lobe volumes obtained using NeuroreaderTM. For each pair
of possible diagnoses, we report the balanced accuracy. Chance level
is at 50%. Colder colors (green/blue) correspond to less accurate clas-
sifications while warmer colors (red/orange) correspond to more ac-

curate classifications.
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FIGURE 2.11: Classification results for univariate classification from
frontal lobe volumes obtained using NeuroreaderTM. For each pair of
possible diagnoses, we report the balanced accuracy. Chance level is
at 50%. Colder colors (green/blue) correspond to less accurate clas-
sifications while warmer colors (red/orange) correspond to more ac-

curate classifications.

FIGURE 2.12: Classification results for univariate classification from
parietal lobe volumes obtained using NeuroreaderTM. For each pair
of possible diagnoses, we report the balanced accuracy. Chance level
is at 50%. Colder colors (green/blue) correspond to less accurate clas-
sifications while warmer colors (red/orange) correspond to more ac-

curate classifications.
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Chapter 3

Reproducible evaluation of
classification methods in Alzheimer’s
disease: framework and application
to MRI and PET data

This chapter has been published as a journal article in NeuroImage:

• Samper-González J, Burgos N, Bottani S, Fontanella S, Lu P, Marcoux A,
Routier A, Guillon J, Bacci M, Wen J, Bertrand A, Bertin H, Habert M-O,
Durrleman S, Evgeniou T, and Colliot O, for the ADNI & the AIBL, Repro-
ducible evaluation of classification methods in Alzheimer’s disease: Frame-
work and application to MRI and PET data, NeuroImage, 183, 504–521, 2018.
https://hal.inria.fr/hal-01858384.

3.1 Abstract

A large number of papers have introduced novel machine learning and feature ex-
traction methods for automatic classification of Alzheimer’s disease (AD). How-
ever, while the vast majority of these works use the public dataset ADNI for evalu-
ation, they are difficult to reproduce because different key components of the val-
idation are often not readily available. These components include selected partic-
ipants and input data, image preprocessing and cross-validation procedures. The
performance of the different approaches is also difficult to compare objectively.
In particular, it is often difficult to assess which part of the method (e.g. prepro-
cessing, feature extraction or classification algorithms) provides a real improve-
ment, if any. In the present paper, we propose a framework for reproducible and
objective classification experiments in AD using three publicly available datasets
(ADNI, AIBL and OASIS). The framework comprises: i) automatic conversion of
the three datasets into a standard format (BIDS); ii) a modular set of preprocessing

https://hal.inria.fr/hal-01858384
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pipelines, feature extraction and classification methods, together with an evalu-
ation framework, that provide a baseline for benchmarking the different compo-
nents. We demonstrate the use of the framework for a large-scale evaluation on
1960 participants using T1 MRI and FDG PET data. In this evaluation, we as-
sess the influence of different modalities, preprocessing, feature types (regional
or voxel-based features), classifiers, training set sizes and datasets. Performances
were in line with the state-of-the-art. FDG PET outperformed T1 MRI for all clas-
sification tasks. No difference in performance was found for the use of different
atlases, image smoothing, partial volume correction of FDG PET images, or fea-
ture type. Linear SVM and L2-logistic regression resulted in similar performance
and both outperformed random forests. The classification performance increased
along with the number of subjects used for training. Classifiers trained on ADNI
generalized well to AIBL and OASIS. All the code of the framework and the ex-
periments is publicly available: general-purpose tools have been integrated into
the Clinica software (www.clinica.run) and the paper-specific code is available at:
https://gitlab.icm-institute.org/aramislab/AD-ML.

3.2 Introduction

Alzheimer’s disease (AD) affects over 20 million people worldwide. Identification
of AD at an early stage is important for adequate care of patients and for testing of
new treatments. Neuroimaging provides useful information to identify AD (Ewers
et al., 2011): atrophy due to gray matter loss with anatomical magnetic resonance
imaging (MRI), hypometabolism with 18F-fluorodeoxyglucose positron emission
tomography (FDG PET), accumulation of amyloid-beta protein with amyloid PET
imaging. A major interest is then to analyse those markers to identify AD at an
early stage. In particular, machine learning methods have the potential to assist in
identifying patients with AD by learning discriminative patterns from neuroimag-
ing data.

A large number of machine learning approaches have been proposed to clas-
sify and predict AD stages (see Falahati, Westman, and Simmons, 2014; Haller,
Lovblad, and Giannakopoulos, 2011; Rathore et al., 2017 for reviews). Some of
them make use of a single imaging modality (usually anatomical MRI) (Cuingnet
et al., 2011; Fan et al., 2008; Klöppel et al., 2008b; Liu, Zhang, and Shen, 2012; Tong
et al., 2014) and others have proposed to combine multiple modalities (MRI and
PET images, fluid biomarkers) (Gray et al., 2013; Jie et al., 2015; Teipel et al., 2015;
Young et al., 2013; Yun, Kwak, and Lee, 2015; Zhang et al., 2011). Validation and
comparison of such approaches require a large number of patients followed over
time. A large number of published works uses the publicly available Alzheimer’s

www.clinica.run
https://gitlab.icm-institute.org/aramislab/AD-ML
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Disease Neuroimaging Initiative (ADNI) dataset. However, the objective compar-
ison between their results is almost impossible because they differ in terms of: i)
subsets of patients (with unclear specification of selection criteria); ii) image pre-
processing pipelines (and thus it is not clear if the superior performance comes
from the classification or the preprocessing); iii) feature extraction and selection;
iv) machine learning algorithms; v) cross-validation procedures and vi) reported
evaluation metrics. Because of these differences, it is arduous to conclude which
methods perform the best, and even whether a given modality provides useful ad-
ditional information. As a result, the practical impact of these works has remained
very limited. Moreover, the vast majority of these works use the ADNI dataset
(ADNI 1 for earlier papers and most often a combination of ADNI 1, ADNI GO
and ADNI 2 for more recent works). Therefore, assessment of generalization to
another dataset is rarely done, even though other publicly available datasets ex-
ist such as the Australian Imaging Biomarker and Lifestyle study (AIBL) and the
Open Access Series of Imaging Studies (OASIS).

Comparison papers (Cuingnet et al., 2011; Sabuncu and Konukoglu, 2014) and
challenges (Allen et al., 2016; Bron et al., 2015) have been an important step to-
wards objective evaluation of machine learning methods by allowing the bench-
mark of different methods on the same dataset and with the same preprocessing.
Nevertheless, such studies provide a “static” assessment of methods. Evaluation
datasets are used in their current state at the time of the study, whereas new pa-
tients are continuously included in studies such as ADNI. Similarly, they are lim-
ited to the classification and preprocessing methods that were used at the time of
the study. It is thus difficult to complement them with new approaches.

In this paper, we propose a framework for the reproducible evaluation of ma-
chine learning algorithms in AD and demonstrate its use on classification of PET
and MRI data obtained from three publicly available datasets: ADNI, AIBL and
OASIS. Specifically, our contributions are three-fold: i) a framework for the man-
agement of publicly available datasets and their continuous update with new sub-
jects, and in particular tools for fully automatic conversion into the Brain Imaging
Data Structure1 (BIDS) format (Gorgolewski et al., 2016); ii) a modular set of pre-
processing pipelines, feature extraction and classification methods, together with
an evaluation framework, that provide a baseline for benchmarking of different
components; iii) a large-scale evaluation on T1 MRI and PET data from three pub-
licly available neuroimaging datasets (ADNI, AIBL and OASIS).

We demonstrate the use of this framework for automatic classification from
T1 MRI and PET data obtained from three datasets (ADNI, AIBL and OASIS).
We assess the influence of various components on the classification performance:

1http://bids.neuroimaging.io

http://bids.neuroimaging.io
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modality (T1 MRI or PET), feature type (voxel or regional features), preprocess-
ing, diagnostic criteria (standard NINCDS/ADRDA criteria or amyloid-refined
criteria), classification algorithm. Experiments were first performed on the ADNI,
AIBL and OASIS datasets independently, and the generalization of the results was
assessed by applying classifiers trained on ADNI to the AIBL and OASIS data.

All the code of the framework and the experiments is publicly available: general-
purpose tools have been integrated into Clinica2 (Routier et al., 2018), an open-
source software platform that we developed to process data from neuroimaging
studies, and the paper-specific code is available at: https://gitlab.icm-institute.
org/aramislab/AD-ML.

3.3 Materials

3.3.1 Datasets

Part of the data used in the preparation of this article were obtained from the
Alzheimer’s Disease Neuroimaging Initiative database3. The ADNI was launched
in 2003 as a public-private partnership, led by Principal Investigator Michael W.
Weiner, MD. The primary goal of ADNI has been to test whether serial MRI, PET,
other biological markers, and clinical and neuropsychological assessment can be
combined to measure the progression of mild cognitive impairment (MCI) and
early AD. Over 1,650 participants were recruited across North America during the
three phases of the study (ADNI 1, ADNI GO and ADNI 2). Around 400 partici-
pants were diagnosed with AD, 900 with MCI and 350 were control subjects. Three
main criteria were used to classify the subjects (Petersen et al., 2010). The normal
subjects had no memory complaints, while the subjects with MCI and AD both
had to have complaints. CN and MCI subjects had a mini-mental state examina-
tion (MMSE) score between 24 and 30 (inclusive), and AD subjects between 20 and
26 (inclusive). The CN subjects had a clinical dementia rating (CDR) score of 0, the
MCI subjects of 0.5 with a mandatory requirement of the memory box score being
0.5 or greater, and the AD subjects of 0.5 or 1. The other criteria can be found in
(Petersen et al., 2010).

We also used data collected by the AIBL study group. Similarly to ADNI, the
Australian Imaging, Biomarker and Lifestyle Flagship Study of Ageing4 seeks to
discover which biomarkers, cognitive characteristics, and health and lifestyle fac-
tors determine the development of AD. AIBL has enrolled 1100 participants and

2http://www.clinica.run
3http://adni.loni.usc.edu/
4https://aibl.csiro.au/

https://gitlab.icm-institute.org/aramislab/AD-ML
https://gitlab.icm-institute.org/aramislab/AD-ML
http://www.clinica.run
http://adni.loni.usc.edu/
https://aibl.csiro.au/


3.3. Materials 51

collected over 4.5 years worth of longitudinal data: 211 AD patients, 133 MCI pa-
tients and 768 comparable healthy controls. AIBL study methodology has been
reported previously (Ellis et al., 2010; Ellis et al., 2009). Briefly, the MCI diagnoses
were made according to a protocol based on the criteria of Winblad et al., 2004
and the AD diagnoses on the NINCDS-ADRDA criteria (McKhann et al., 1984).
Note that about half of the subjects diagnosed as healthy controls reported mem-
ory complaints (Ellis et al., 2010; Ellis et al., 2009).

Finally, we used data from the Open Access Series of Imaging Studies5 project
whose aim is to make MRI datasets of the brain freely available to the scientific
community. We focused on the “Cross-sectional MRI Data in Young, Middle Aged,
Nondemented and Demented Older Adults” set (Marcus et al., 2007), which con-
sists of a cross-sectional collection of 416 subjects aged 18 to 96. 100 of the included
subjects over the age of 60 have been clinically diagnosed with very mild to mod-
erate AD. The criteria used to evaluate the diagnosis was the CDR score. All par-
ticipants with a CDR greater than 0 were diagnosed with probable AD. Note that
there are no MCI subjects in OASIS.

3.3.2 Participants

3.3.2.1 ADNI

Three subsets were created from the ADNI dataset: ADNIT1w, ADNICLASS and
ADNICLASS, Aβ. ADNIT1w comprises all participants (N=1,628) for whom a T1-
weighted (T1w) MR image was available at baseline. ADNICLASS comprises 1,159
participants for whom a T1w MR image and an FDG PET scan, with a known ef-
fective resolution, were available at baseline. ADNICLASS, Aβ is a subset of ADNI-
CLASS that comprises 918 participants with a known amyloid status determined
from a PiB or an AV45 PET scan using 1.47 and 1.10 as cutoffs, respectively (Lan-
dau et al., 2013). For each ADNI subset, five diagnosis groups were considered:

• CN: subjects who were diagnosed as CN at baseline;

• AD: subjects who were diagnosed as AD at baseline;

• MCI: subjects who were diagnosed as MCI, EMCI or LMCI at baseline;

• pMCI: subjects who were diagnosed as MCI, EMCI or LMCI at baseline, were
followed during at least 36 months and progressed to AD between their first
visit and the visit at 36 months;

5https://www.oasis-brains.org/

https://www.oasis-brains.org/
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• sMCI: subjects who were diagnosed as MCI, EMCI or LMCI at baseline, were
followed during at least 36 months and did not progress to AD between their
first visit and the visit at 36 months.

Naturally, all participants in the pMCI and sMCI groups are also in the MCI
group. Note that the reverse is false, as some MCI subjects did not convert to AD
but were not followed long enough to state whether they were sMCI or pMCI.
We did not consider the subjects with significant memory concerns (SMC) as this
category only exists in ADNI 2.

Tables 3.1, 3.2 and 3.3 summarize the demographics, and the MMSE and global
CDR scores of the participants composing ADNIT1w, ADNICLASS and ADNICLASS, Aβ.

3.3.2.2 AIBL

The AIBL dataset considered in this work is composed of 608 participants for
whom a T1-weighted MR image was available at baseline. The criteria used to
create the diagnosis groups are identical to the ones used for ADNI. Table 3.4
summarizes the demographics, and the MMSE and global CDR scores of the AIBL
participants.

3.3.2.3 OASIS

The OASIS dataset considered in this work is composed of 193 participants aged
61 years or more (minimum age of the participants diagnosed with AD). Table 3.5
summarizes the demographics, and the MMSE and global CDR scores of the OA-
SIS participants.
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N Age Gender MMSE CDR

CN 418 74.7 ± 5.8 [56.2, 89.6] 209 M / 209 F 29.1 ± 1.1 [24, 30] 0: 417; 0.5: 1
MCI 868 73.0 ± 7.6 [54.4, 91.4] 512 M / 356 F 27.6 ± 1.8 [23, 30] 0: 2; 0.5: 865; 1: 1
AD 342 75.0 ± 7.8 [55.1, 90.9] 189 M /153 F 23.2 ± 2.1 [18, 28] 0.5: 165; 1: 176; 2: 1

TABLE 3.1: Summary of participant demographics, mini-mental state examination (MMSE) and global clinical dementia rating
(CDR) scores for ADNIT1w. Values are presented as mean ± SD [range]. M: male, F: female

N Age Gender MMSE CDR

CN 282 74. 3 ± 5.9 [56.2, 89.0] 147 M / 135 F 29.0 ± 1.2 [24, 30] 0: 281; 0.5: 1
MCI 640 72.7 ± 7.5 [55.0, 91.4] 378 M / 262 F 27.8 ± 1.8 [23, 30] 0: 1; 0.5: 638; 1:1
sMCI 342 71.8 ± 7.5 [55.0, 88.6] 202 M / 140 F 28.1± 1.6 [23, 30] 0.5: 342
pMCI 167 74.9 ± 6.9 [55.0, 88.3] 98 M / 69 F 27.0 ± 1.7 [24, 30] 0.5: 166; 1: 1

AD 237 74.9 ± 7.8 [55.1, 90.3] 137 M / 100 F 23.2 ± 2.1 [18, 27] 0.5: 99; 1: 137; 2: 1

TABLE 3.2: Summary of participant demographics, mini-mental state examination (MMSE) and global clinical dementia rating
(CDR) scores for ADNICLASS. Values are presented as mean ± SD [range]. M: male, F: female
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N Age Gender MMSE CDR

CN Aβ− 116 72.2 ± 6.1 [56.2, 89.0] 60 M / 56 F 29.0 ± 1.3 [24,30]] 0: 115; 0.5: 1
Aβ+ 63 75.7 ± 5.8 [65.7, 85.6] 26 M / 37 F 28.9 ± 1.1 [24, 30] 0: 63

MCI Aβ− 195 70.0 ± 7.9 [55.0, 91.4] 107 M / 88 F 28.5 ± 1.4 [24, 30] 0: 1; 0.5: 193; 1: 1
Aβ+ 253 73.0 ± 6.8 [55.0, 87.8] 142 M / 111 F 27.7 ± 1.8 [23, 30] 0.5: 253

sMCI Aβ− 147 69.7 ± 7.7 [55.5, 91.4] 82 M / 65 F 28.5 ± 1.4 [25, 30] 0.5: 147
Aβ+ 118 72.5 ± 6.5 [55.0, 87.8] 67 M / 51 F 27.9± 1.7 [23, 30] 0.5: 118

pMCI Aβ− 10 70.1 ± 6.7 [60.0, 81.6] 5 M / 5 F 27.6 ± 2.0 [24, 30] 0.5: 9; 1: 1
Aβ+ 84 73.2 ± 6.9 [55.0, 85.9] 47 M / 37 F 27.2 ± 1.8 [24, 30] 0.5: 84

AD Aβ− 18 77.2 ± 8.1 [60.6, 90.3] 16 M / 2 F 23.4 ± 2.0 [20, 26] 0.5: 7; 1: 11
Aβ+ 126 74.1 ± 8.1 [55.1, 90.3] 65 M / 61 F 22.9 ± 2.1 [19, 26] 0.5: 54; 1: 71; 2: 16

TABLE 3.3: Summary of participant demographics, mini-mental state examination (MMSE) and global clinical dementia rating
(CDR) scores for ADNICLASS,Aβ. The amyloid status (Aβ−: negative, Aβ+: positive) was determined from each participant’s

amyloid PET scan (PiB or AV45). Values are presented as mean ± SD [range]. M: male, F: female
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N Age Gender MMSE CDR

CN 442 72.5 ± 6.2 [60, 92] 191 M / 251 F 28.7 ± 1.2 [25, 30] 0: 415; 0.5: 26; 1: 1
MCI 94 75.2 ± 7.0 [60, 96] 50 M / 44 F 27.1 ± 2.1 [20, 30] 0: 6; 0.5: 87; 1: 1
sMCI 21 75.8 ± 6.1 [64, 87] 12 M / 9 F 27.9 ± 1.6 [25, 30] 0.5: 21
pMCI 16 78.0 ± 7.3 [63, 91] 8 M / 8 F 26.9 ± 2.0 [22, 30] 0.5: 16

AD 72 73.4 ± 7.9 [55, 93] 30 M / 42 F 20.5 ± 5.6 [6, 29] 0.5: 31; 1: 32; 2: 7; 3: 2

TABLE 3.4: Summary of participant demographics, mini-mental state examination (MMSE) and global clinical dementia rating
(CDR) scores for AIBL. Values are presented as mean ± SD [range]. M: male, F: female

N Age Gender MMSE CDR

CN 93 76.8 ± 8.4 [62, 94] 25 M / 68 F 28.9 ± 1.21 [25, 30] 0: 93
AD 100 76.8 ± 7.1 [62, 96] 41 M / 59 F 24.3 ± 4.15 [14, 30] 0.5: 70; 1: 28; 2: 2

TABLE 3.5: Summary of participant demographics, mini-mental state examination (MMSE) and global clinical dementia rating
(CDR) scores for OASIS. Values are presented as mean ± SD [range]. M: male, F: female
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3.3.3 Imaging data

3.3.3.1 ADNI

3.3.3.1.1 T1-weighted MRI The acquisition protocols of the 3D T1w images can
be found in (Jack et al., 2008) for ADNI 1 and (Jack et al., 2010) for ADNI GO/2.
The images can be downloaded as they were acquired or after having undergone
several preprocessing correction steps, which include correction of image geom-
etry distortion due to gradient non-linearity (gradwarp), correction of the image
intensity non-uniformity that occurs when RF transmission is performed with a
more uniform body coil while reception is performed with a less uniform head coil
(B1 non-uniformity), and reduction of intensity non-uniformity due to the wave
or the dielectric effect at 3 T or of residual intensity non-uniformity for 1.5 T scans
(N3) (Jack et al., 2010; Jack et al., 2008).

3.3.3.1.2 FDG-PET The ADNI FDG PET protocol consisted of a dynamic acqui-
sition of six five-minute frames (ADNI 1) or four five-minute frames (ADNI GO/2),
30 to 60 minutes post-injection (Jagust et al., 2015; Jagust et al., 2010). Images at
different stages of preprocessing (frame averaging, spatial alignment, interpola-
tion to a standard voxel size, and smoothing to a common resolution of 8 mm full
width at half maximum) are available for download. Even though not used in the
experiments, 11C-Pittsburgh compound B (PIB), for ADNI 1, and 18F-Florbetapir,
also known as AV45, for ADNI 1/GO/2, were acquired to image the deposition
of amyloid in the brain. The protocol consisted of a dynamic acquisition of four
five-minute frames from 50 to 70 minutes post-injection (Jagust et al., 2015; Jagust
et al., 2010). As for the FDG PET, images at different stages of preprocessing are
available for download.

3.3.3.2 AIBL

The T1w MR images used for the AIBL subjects were acquired using the ADNI
3D T1w sequence, with 1 × 1 mm in-plane resolution and 1.2 mm slice thickness,
TR/TE/TI=2300/2.98/900, flip angle 9◦, and field of view 240× 256 and 160 slices
(Ellis et al., 2010). Even though they were not used in the experiments, Florbetapir,
PiB and Flutemetamol PET data were also acquired.

3.3.3.3 OASIS

For each OASIS subject, three or four T1w images, with 1 × 1 mm in-plane reso-
lution and 1.25 mm slice thickness, TR/TE/TI=9.7/4.0/20, flip angle 10◦, field of
view 256× 256 and 128 slices, were acquired on a 1.5 T scanner in a single imaging
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session (Marcus et al., 2007). For each subject, an average of the motion-corrected
co-registered images resampled to 1 mm isotropic voxels, as well as spatially nor-
malized images, are also available for download.

3.4 Methods

We developed a unified set of tools for data management, image preprocessing,
feature extraction, classification, and evaluation. These tools have been integrated
into Clinica (Routier et al., 2018), an open-source software platform that we de-
veloped. Conversion tools allow an easy update of the datasets as new subjects
become available. The different components were designed in a modular way:
processing pipelines using Nipype (Gorgolewski et al., 2011), and classification
and evaluation tools using the scikit-learn6 library (Pedregosa et al., 2011). This
allows the development and testing of other methods as replacement for a given
step, and the objective measurement of the impact of each component on the re-
sults. A simple command line interface is provided and the code can also be used
as a Python library.

3.4.1 Converting datasets to a standardized data structure

Even though public datasets are extremely valuable, an important difficulty with
these studies lies in the organization of the clinical and imaging data. As an ex-
ample, the ADNI and AIBL imaging data, in the state they are downloaded, do
not rely on community standards for data organization and lack of a clear struc-
ture. Multiple image acquisitions exist for a given visit of a participant and the
complementary image information is contained in numerous csv files, making the
exploration of the database and subject selection very complicated. To organize
the data, we selected the BIDS format (Gorgolewski et al., 2016), a community
standard enabling the storage of multiple neuroimaging modalities. Being based
on a file hierarchy rather than on a database management system, BIDS can be
easily deployed in any environment. Very importantly, we provide the code that
automatically performs the conversion of the data as they were downloaded to
the BIDS organized version, for all the datasets used: ADNI, AIBL and OASIS.
This allows direct reproducibility by other groups without having to redistribute
the dataset, which is not allowed in the case of ADNI and AIBL. We also provide
tools for subject selection according to desired imaging modalities, duration of fol-
low up and diagnoses, which makes possible the use of the same groups with the

6http://scikit-learn.org

http://scikit-learn.org
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largest possible number of subjects across studies. Finally, we propose a BIDS-
inspired standardized structure for all the outputs of the experiments.

3.4.1.1 Conversion of the ADNI dataset to BIDS

The ADNI to BIDS converter requires the user to have downloaded all the ADNI
study data (tabular data in csv format) and the imaging data of interest. Note
that the downloaded files must be kept exactly as they were downloaded. The
following steps are performed by the automatic converter (no user intervention is
required). To convert the imaging data to BIDS, a list of subjects with their sessions
is first obtained from the ADNIMERGE spreadsheet. This list is compared for each
modality of interest to the list of scans available, as provided by modality-specific
csv files (e.g. MRILIST.csv). If the modality was acquired for a specific pair of
subject-session, and several scans and/or preprocessed images are available, only
one is converted. Regarding the T1 scans, when several are available for a sin-
gle session, the preferred scan (as identified in MAYOADIRL_MRI_IMAGEQC_
12_08_15.csv) is chosen. If a preferred scan is not specified then the higher quality
scan (as defined in MRIQUALITY.csv) is selected. If no quality control is found,
then we choose the first scan. Gradwarp and B1-inhomogeneity corrected im-
ages are selected when available as these corrections can be performed in a clinical
setting, otherwise the original image is selected. 1.5 T images are preferred for
ADNI 1 since they are available for a larger number of patients. Regarding the
FDG PET scans, the images co-registered and averaged across time frames are se-
lected. The scans failing quality control (if specified in PETQC.csv) are discarded.
Note that AV45 PET scans are also converted, though not used in the experiments.
Once the images of interest have been selected and the paths to the image files
identified, the imaging data can be converted to BIDS. When in dicom format,
the images are first converted to nifti using the dcm2niix tool, or in case of error
the dcm2nii tool (Li et al., 2016). The BIDS folder structure is generated by creat-
ing a subfolder for each of the subjects. A session folder is created inside each of
the subject subfolders, and a modality folder is created inside each of the session
subfolders. Finally, each image in nifti is copied to the appropriate folder and re-
named to follow the BIDS specifications. Clinical data are also converted to BIDS.
Data that do not change over time, such as the subject’s sex, education level or
diagnosis at baseline, are obtained from the ADNIMERGE spreadsheet and gath-
ered in the participants.tsv file, located at the top of the BIDS folder hierarchy. The
session-dependent data, such as the clinical scores, are obtained from specific csv
files (e.g. MMSE.csv) and gathered in <subjectID>_session.tsv files in each par-
ticipant subfolder. The clinical data being converted are defined in a spreadsheet
(clinical_specifications_adni.xlsx) that is available with the code of the converter.
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The user can easily modify this file if he/she wants to convert additional clinical
data.

3.4.1.2 Conversion of the AIBL dataset to BIDS

The AIBL to BIDS converter requires the user to have downloaded the AIBL non-
imaging data (tabular data in csv format) and the imaging data of interest. The
conversion of the imaging data to BIDS relies on modality-specific csv files that
provide the list of scans available. For each AIBL participant, the only T1w MR
image available per session is converted. Note that even though they are not used
in this work, we also convert the Florbetapir, PiB and Flutemetamol PET images
(only one image per tracer is available for each session). Once the images of in-
terest have been selected and the paths to the image files identified, the imaging
data are converted to BIDS following the same steps as described in the above sec-
tion. The conversion of the clinical data relies on the list of subjects and sessions
obtained after the conversion of the imaging data and on the csv files containing
the non-imaging data. Data that do not change over time are gathered in the par-
ticipants.tsv file, located at the top of the BIDS folder hierarchy, while the session-
dependent data are gathered in <subjectID>_session.tsv files in each participant
subfolder. As for the ADNI converter, the clinical data being converted are de-
fined in a spreadsheet (clinical_specifications.xlsx) available with the code of the
converter, which the user can modify.

3.4.1.3 Conversion of the OASIS dataset to BIDS

The OASIS to BIDS converter requires the user to have downloaded the OASIS-1
imaging data and the associated csv file. To convert the imaging data to BIDS,
the list of subjects is obtained from the downloaded folders. For each subject,
among the multiple T1w MR images available, we select the average of the motion-
corrected co-registered individual images resampled to 1 mm isotropic voxels, lo-
cated in the SUBJ_111 subfolder. Once the paths to the image files have been iden-
tified, the images in Analyse format are converted to nifti using the mri_convert
tool of FreeSurfer (Fischl, 2012), the BIDS folder hierarchy is created, and the im-
ages are copied to the appropriate folder and renamed. The clinical data are con-
verted using the list of subjects obtained after the conversion of the imaging data
and the csv file containing the non-imaging data, as described in the previous sec-
tion.
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3.4.2 Preprocessing pipelines

Two pipelines were developed to preprocess the anatomical T1w MRI and PET im-
ages. These pipelines have a modular structure based on Nipype allowing the user
to easily connect and/or replace components, and rely on well established proce-
dures using publicly available standard image processing tools. These pipelines
are available in Clinica under the names t1-volume-* and pet-volume.

3.4.2.1 Preprocessing of T1-weighted MR images

For anatomical T1w MRI, the preprocessing pipeline was based on SPM127. First,
the Unified Segmentation procedure (Ashburner and Friston, 2005) is used to si-
multaneously perform tissue segmentation, bias correction and spatial normaliza-
tion of the input image. Next, a group template is created using DARTEL, an algo-
rithm for diffeomorphic image registration (Ashburner, 2007), from the subjects’
tissue probability maps on the native space, usually GM, WM and CSF tissues, ob-
tained at the previous step. Here, not only the group template is obtained, but also
the deformation fields from each subject’s native space into the DARTEL template
space. Lastly, the DARTEL to MNI method (Ashburner, 2007) is applied, providing
a registration of the native space images into the MNI space: for a given subject
its flow field into the DARTEL template is combined with the transformation of
the DARTEL template into MNI space, and the resulting transformation is applied
to the subject’s different tissue maps. As a result, all the images are in a common
space, providing a voxel-wise correspondence across subjects.

3.4.2.2 Preprocessing of PET images

The PET preprocessing pipeline relies on SPM12 and on the PETPVC8 tool for par-
tial volume correction (PVC) (Thomas et al., 2016). We assume that each PET im-
age has a corresponding T1w image that has been preprocessed using the pipeline
described above. The first step is to perform a registration of the PET image to the
corresponding T1w image in native space using the Co-register method of SPM
(Friston et al., 1995). An optional PVC step with the regional voxel-based (RBV)
method (Thomas et al., 2011) can be performed using as input regions the differ-
ent tissue maps from the T1w in native space. Then, the PET image is registered
into MNI space using the same transformation as for the corresponding T1w (the
DARTEL to MNI method is used). The PET image in MNI space is then inten-
sity normalized according to a reference region (eroded pons for FDG PET) and
we obtain a standardized uptake value ratio (SUVR) map. Finally, we mask the

7http://www.fil.ion.ucl.ac.uk/spm/software/spm12/
8https://github.com/UCL/PETPVC

http://www.fil.ion.ucl.ac.uk/spm/software/spm12/
https://github.com/UCL/PETPVC
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non-brain regions using a binary mask resulting from thresholding the sum of the
GM, WM and CSF tissue probability maps for the subject in MNI space. The re-
sulting masked SUVR images are also in a common space and provide voxel-wise
correspondence across subjects.

3.4.3 Feature extraction

Two types of features were extracted from the imaging data: voxel and region fea-
tures. After preprocessing, both the T1w MRI and FDG PET images are in the
MNI space. The first type of features simply corresponds, for each image, to all
the voxels in the brain. The signal obtained from the T1w MR images is the gray
matter density and the one obtained from the FDG PET images is the SUVR. Re-
gional features correspond to the average signal (gray matter density or SUVR,
respectively) computed in a set of regions of interest (ROIs) obtained from differ-
ent atlases, also in MNI space. The five atlases selected contain both cortical and
subcortical regions, and cover the brain areas affected by AD. They are described
below:

• AAL2 (Tzourio-Mazoyer et al., 2002) is an anatomical atlas based on a single
subject. It is the updated version of AAL, which is probably the most widely
used parcellation map in the neuroimaging literature. It was built using
manual tracing on the spatially normalized single-subject high-resolution T1
volume in MNI space (Holmes et al., 1998). It is composed of 120 regions
covering the whole cortex as well as the main subcortical structures.

• AICHA (Joliot et al., 2015) is a functional atlas based on multiple subjects.
It was built using parcellation of group-level functional connectivity profiles
computed from resting-state fMRI data of 281 healthy subjects. It is com-
posed of 345 regions covering the whole cortex as well as the main subcorti-
cal structures.

• Hammers (Gousias et al., 2008; Hammers et al., 2003) is an anatomical atlas
based on multiple subjects. It was built using manual tracing on anatomi-
cal MRI from 30 healthy subjects. The individual subjects parcellations were
then registered to MNI space to generate a probabilistic atlas as well as a
maximum probability map. The latter was used in the present work. It is
composed of 69 regions covering the whole cortex as well as the main sub-
cortical structures.

• LPBA40 (Shattuck et al., 2008) is an anatomical atlas based on multiple sub-
jects. It was built using manual tracing on anatomical MRI from 40 healthy
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subjects. The individual subject parcellations were then registered to MNI
space to generate a maximum probability map. It is composed of 56 regions
covering the whole cortex as well as the main subcortical structures.

• Neuromorphometrics9 is an anatomical atlas based on multiple subjects. It
was built using manual tracing on anatomical MRI from 30 healthy subjects.
The individual subject parcellations were then registered to MNI space to
generate a maximum probability map. It is composed of 140 regions covering
the whole cortex as well as the main subcortical structures. Data were made
available for the “MICCAI 2012 Grand Challenge and Workshop on Multi-
Atlas Labeling”.

The main difference between the LBPA40, Hammers and Neuromorphomet-
rics atlases is the degree of detail (i.e. the number of regions) of the anatomical
parcellation.

3.4.4 Classification models

We considered three different classifiers: linear SVM, logistic regression with L2
regularization, and random forest, all available in Clinica. The linear SVM was
used with both the voxel and the regional features because its computational com-
plexity depends only on the number of subjects when using its dual form. On
the other hand, the logistic regression with L2 regularization and random forest
models were only used for the region-based analyses given that their complexity
depends on the number of features, which becomes infeasible with images con-
taining about 1 million voxels. We used the implementations of the scikit-learn
library (Pedregosa et al., 2011).

For each of the tasks performed, we obtain the feature weights that describe
the importance of a given feature for the current classification task. These weights
are stored as part of the output of the classifications, as is the information to recon-
struct the classifiers, like the optimal parameters found. We can obtain, for each
classification, an image with the representation of weights across brain voxels or
regions.

3.4.4.1 Linear SVM

The first method included is linear SVM. To reduce computational load, the Gram
matrix K = (k(xi, xj))i,j was precalculated using a linear kernel k for each pair
of images (xi, xj) (using the region or voxel features) for the provided subjects.
This Gram matrix is used as input for the generic SVM. We chose to optimize the

9http://www.neuromorphometrics.com

http://www.neuromorphometrics.com
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penalty parameter C of the error term. An advantage of SVM is that, when using a
precomputed Gram matrix (dual SVM), computing time depends on the number
of subjects, and not on the number of features. Given its simplicity, linear SVM is
useful as a baseline to compare the performance of the different methods.

3.4.4.2 Logistic regression with L2 regularization

The second method is logistic regression with L2 regularization (which is classi-
cally used to reduce overfitting). We optimized, as for the linear SVM, the penalty
parameter C of the error term. Logistic regression with L2 regularization directly
optimizes the weights for each feature, and the number of features influences the
training time. This is the reason why we only used it for regional features.

3.4.4.3 Random forest

The third classifier used is the random forest. Unlike both linear SVM and logistic
regression, random forest is an ensemble method that fits a number of decision
trees on various sub-samples of the dataset. The combined estimator prevents
overfitting and improves the predictive accuracy. Based on the implementation
provided by the scikit-learn library (Pedregosa et al., 2011), there is a large num-
ber of parameters that can be optimized. After preliminary experiments to assess
which had a larger influence, we selected the following two hyperparameters to
optimize: i) the number of trees in the forest; ii) the number of features to consider
when looking for the best split. Random forest was only used for regional features
and not voxel features, due to its high computational cost.

3.4.5 Evaluation strategy

3.4.5.1 Cross-validation

Evaluation of classification performances mainly followed the recent guidelines
provided by (Varoquaux et al., 2017). Cross-validation (CV), the classical strategy
to maintain the independence of the train set (used for fitting the model) and the
test set (used to evaluate the performances), was performed. The CV procedure in-
cluded two nested loops: an outer loop evaluating the classification performances
and an inner loop used to optimize the hyperparameters of the model (C for SVM
and L2 logistic regression, the number of trees and features for a split for the ran-
dom forest). It should be noted that the use of an inner loop of CV is important
to avoid biasing performances upward when optimizing hyperparameters. This
step has not always been appropriately performed in the literature (Querbes et al.,
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2009; Wolz et al., 2011) leading to over-optimistic results, as presented in (Eskild-
sen et al., 2013; Maggipinto et al., 2017).

We implemented in Clinica three different outer CV methods: k-fold, repeated
k-fold and repeated random splits (all of them stratified), using scikit-learn based
tools (Pedregosa et al., 2011). The choice of the method would depend on the com-
putational resources at hand. However, whenever possible, it is recommended to
use repeated random splits with a large number of repetitions to yield more sta-
ble estimates of performances and better estimates of empirical variance. There-
fore, we used for each experiment 250 iterations of random splits. We report the
full distribution of the evaluation metrics in addition to the mean and empirical
standard-deviation, as done in (Raamana and Strother, 2017) that uses of neuro-
predict (Raamana, 2017). It should nevertheless be noted that there is no unbiased
estimate of variance for cross-validation (Bengio and Grandvalet, 2004; Nadeau
and Bengio, 2003) and that the empirical variance largely underestimates the true
variance. This should be kept in mind when interpreting the empirical variance
values. Also, we chose not to perform statistical testing of the performance of dif-
ferent classifiers. This is a complex matter for which there is no universal solution.
In many publications, a standard t-test on cross-validation results is used. How-
ever, such an approach is way too liberal and should not be applied, as shown by
Nadeau and Bengio, 2003. Better behaved approaches have been proposed such
as the conservative Z or the corrected resampled t-test (Nadeau and Bengio, 2003).
However, such approaches must be used with caution because their behaviour de-
pends on the data and the cross-validation set-up. We thus chose to avoid the use
of statistical tests in the present paper, in order not to mislead the reader. Instead,
we reported the full distributions of the metrics.

For hyperparameter optimization, we implemented an inner k-fold. For each
split, the model with the highest balanced accuracy is selected, and then these se-
lected models are averaged across splits to profit of model averaging, that should
have a stabilizing effect. In the present paper, experiments were performed with
k = 10 for the inner loop.

3.4.5.2 Metrics

As output of the classification, we report the balanced accuracy, area under the
ROC curve (AUC), accuracy, sensitivity, specificity and, in addition, the predicted
class for each subject, so the user can calculate other desired metrics with this
information.
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3.4.6 Classification experiments

The different classification tasks considered in our analyses for each dataset, driven
by the data availability, are detailed in Table 3.6. Details regarding the group com-
positions can be found in Tables 3.2, 3.3, 3.4 and 3.5. In general, we perform clinical
diagnosis classification tasks, or “predictive” tasks of the evolution of MCI sub-
jects. Note that tasks involving progression from MCI to AD were not performed
for AIBL due to the small number of participants in the sMCI and pMCI categories.
However, the framework would allow performing these experiments very easily
when more progressive MCI subjects become publicly available in AIBL. Depend-
ing on the type of features, the performance of several classifiers with different
parameters was tested. For voxel features, the only classifier was the linear SVM.
Four different levels of smoothing were applied to the images using a Gaussian
kernel, from no smoothing to up to 12 mm full width at half maximum (FWHM).
For region-based classification experiments, three classifiers were tested: linear
SVM, logistic regression and random forest. The features were extracted using
five atlases: AAL2, AICHA, Hammers, LPBA40 and Neuromorphometrics. This
information is summarized in Table 3.7. For the datasets under study, different
imaging modalities were available: while both T1w MRI and FDG PET images
were available for the ADNI participants, only T1w MRI were available for AIBL
and OASIS participants. For each modality considered, both voxel and region fea-
tures were extracted using the different parameters detailed in Table 3.7. All the
classification experiments tested in this work are summarized in Table 3.8. If not
otherwise stated, the FDG PET features were extracted from images that did not
undergo PVC.

tasks_ADNI tasks_AIBL tasks_OASIS

CN vs AD CN vs AD CN vs AD
CN vs pMCI CN vs MCI
sMCI vs pMCI
CN vs MCI
CN- vs AD+
CN- vs pMCI+
sMCI- vs pMCI+
sMCI+ vs pMCI+
MCI- vs MCI+

TABLE 3.6: List of classification tasks for each dataset.
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Voxel-based Linear SVM Smoothing 0 mm
Smoothing 4 mm
Smoothing 8 mm
Smoothing 12 mm

Region-based Linear SVM Atlas AAL2
Atlas Neuromorphometrics
Atlas Hammers
Atlas LPBA40
Atlas AICHA

Logistic Regression Atlas AAL2
Atlas Neuromorphometrics
Atlas Hammers
Atlas LPBA40
Atlas AICHA

Random Forest Atlas AAL2
Atlas Neuromorphometrics
Atlas Hammers
Atlas LPBA40
Atlas AICHA

TABLE 3.7: Summary of classifiers and parameters used for each type
of features.
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Dataset Imaging Modality Feature Type Tasks

ADNI

T1w MRI
Voxel-based tasks_ADNI
Region-based tasks_ADNI

FDG PET
With PVC

Voxel-based tasks_ADNI
Region-based tasks_ADNI

Without PVC
Voxel-based tasks_ADNI
Region-based tasks_ADNI

AIBL T1w MRI
Voxel-based tasks_AIBL
Region-based tasks_AIBL

OASIS T1w MRI
Voxel-based tasks_OASIS
Region-based tasks_OASIS

TABLE 3.8: Summary of all the classification experiments run in our
analysis for each dataset, imaging modality, feature type (different
parameters tested, see Table 3.7) and task (more details in Table 3.6).

3.5 Results

Here, we present a selection of the results that we believe are the most valuable.
The complete results of all experiments (including other tasks, preprocessing pa-
rameters, features or classifiers) are available in the repository containing all the
code and experiments (https://gitlab.icm-institute.org/aramislab/AD-ML).
In the following subsections, we present the results using the balanced accuracy
as performance metric but all the other metrics are available in the results.

3.5.1 Influence of the atlas

To assess the impact of the choice of atlas on the classification accuracy and to po-
tentially identify a preferred atlas, the linear SVM classifier using regional features
was selected. Features from T1w MRI and FDG PET images of ADNI participants
were extracted using five different atlases: AAL2, AICHA, Hammers, LPBA40 and
Neuromorphometrics. Three classification tasks were studied: CN vs AD, CN vs
pMCI and sMCI vs pMCI.

As shown in Figure 3.1, no specific atlas provides the highest classification ac-
curacy for all the tasks. For example, Neuromorphometrics and AICHA provide
better results for CN vs AD on T1w and FDG PET images, along with LBPA40 for
T1w, while AAL2 provides the highest balanced accuracy for CN vs pMCI and
sMCI vs pMCI on both imaging modalities. The same analysis was performed

https://gitlab.icm-institute.org/aramislab/AD-ML
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FIGURE 3.1: Influence of atlas. Distribution of the balanced accu-
racies obtained from the T1w MRI (top) and FDG PET (bottom) im-
ages of ADNI participants using the reference classifier (linear SVM)
and regional features from different atlases for the CN vs AD, CN vs

pMCI and sMCI vs pMCI tasks.

on AIBL subjects (T1w MR images only) and, similarly, no atlas consistently per-
formed better than others across tasks. For the following region-based experi-
ments, the AAL2 atlas was chosen as reference atlas as it leads to good classifi-
cation accuracies and is widely used in the neuroimaging community. Again, all
other results are available in the repository.

3.5.2 Influence of the smoothing

T1w MRI and FDG PET images were not smoothed or smoothed using Gaussian
kernels with FWHMs of 4 mm, 8 mm and 12 mm. To determine the influence of
different smoothing degrees on the classification accuracy, a linear SVM classifier
using voxel features was chosen. Three classification tasks were studied: CN vs
AD, CN vs pMCI and sMCI vs pMCI. The results in Figure 3.2 show that, for
most classification tasks, the balanced accuracy does not vary to a great extent
with the smoothing kernel size. The only variations are observed for the CN vs
pMCI and sMCI vs pMCI tasks when the features were extracted from T1w MR
images: the balanced accuracy increases slightly with the kernel size. The same



3.5. Results 69

FIGURE 3.2: Influence of smoothing. Distribution of the balanced
accuracy obtained from the T1w (top) and FDG PET (bottom) images
of ADNI participants using the reference classifier (linear SVM) and
voxel features with different degrees of smoothing for the CN vs AD,

CN vs pMCI and sMCI vs pMCI tasks.

analysis was run using T1w MR images from the AIBL dataset. The mean balanced
accuracy also increased slightly with the kernel size, but the standard deviations
of the balanced accuracies are larger than for ADNI. As the degree of smoothing
does not have a clear impact on the classification performance, we chose to present
the subsequent results related to the voxel-based classification with a reference
smoothing of 4 mm.

3.5.3 Influence of the type of features

We compared the balanced accuracies obtained for the voxel features with refer-
ence smoothing (Gaussian kernel of 4 mm FWHM) to the ones obtained for the
regional features with reference atlas (AAL2) when using linear SVM classifiers.
These features were extracted from T1w MRI and FDG PET images of ADNI par-
ticipants. The same three classification tasks as before were evaluated.

The results, displayed in Table 3.9, do not show notable differences between the
mean balanced accuracies obtained using voxel or regional features. In the case of
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the AIBL dataset, the balanced accuracy is higher for the region-based classifica-
tion (for AD vs CN: voxel-based 0.79 [± 0.059], region-based 0.86 [± 0.042]), but
we can observe that the corresponding standard deviations are high.

T1w – Linear SVM FDG PET – Linear SVM

Voxel-based Region-based Voxel-based Region-based

(4 mm smoothing) (AAL2 atlas) (4 mm smoothing) (AAL2 atlas)

CN vs AD 0.87 ± 0.026 0.84 ± 0.024 0.88 ± 0.022 0.88 ± 0.023

CN vs pMCI 0.74 ± 0.035 0.78 ± 0.031 0.77 ± 0.028 0.80 ± 0.030

sMCI vs pMCI 0.66 ± 0.040 0.70 ± 0.034 0.71 ± 0.037 0.73 ± 0.036

TABLE 3.9: Influence of feature types. Mean balanced accuracy
and standard deviation obtained for three tasks (CN vs AD, CN vs
pMCI and sMCI vs pMCI) using the reference classifier (linear SVM)
with voxel (reference smoothing: 4 mm) and region (reference at-
las: AAL2) features extracted from T1w MRI and FDG PET images

of ADNI subjects.

3.5.4 Influence of the classification method

Region-based experiments were carried out using three different classifiers to eval-
uate if there were variations in balanced accuracies depending on the chosen clas-
sifier. Regional features were extracted using the reference AAL2 atlas from T1w
MRI and FDG PET images of ADNI participants. The three previously defined
classification tasks were performed.

The results displayed in Figure 3.3 show that both the linear SVM and logis-
tic regression with L2 regularization models lead to similar balanced accuracies,
consistently higher than the one obtained with random forest for all the tasks and
imaging modalities tested.
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FIGURE 3.3: Influence of classification method. Distribution of the
balanced accuracy obtained from the T1w MRI (top) and FDG PET
(bottom) images of ADNI participants using different region-based
classifiers (reference atlas: AAL2) for the CN vs AD, CN vs pMCI

and sMCI vs pMCI tasks.

3.5.5 Influence of the partial volume correction of PET images

Both region and voxel-based analyses were performed using linear SVM classifiers
to evaluate if correcting PET images for partial volume effect had an influence
on the classification accuracy. FDG PET images of ADNI participants with and
without PVC were used for these experiments.

The results displayed in Figure 3.4 show little difference between the balanced
accuracies obtained with and without PVC. When using voxel features, the av-
erage balanced accuracy is almost identical no matter the presence or absence of
PVC. Using regional features, there is a very small increase in mean balanced ac-
curacy when the FDG PET images are not corrected for partial volume effect.
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FIGURE 3.4: Influence of partial volume correction. Distribution of
the balanced accuracy obtained from the FDG PET images of ADNI
participants with and without PVC using the reference classifier (lin-
ear SVM) and regional features derived from the AAL2 atlas (top)
and voxel features with 4 mm of smoothing (bottom) for the CN vs

AD, CN vs pMCI and sMCI vs pMCI tasks.

3.5.6 Influence of the magnetic field strength

Most T1w scans of ADNI 1 participants were acquired on 1.5 T scanners while
3 T scanners were used to acquire MR images for participants of ADNIGO/2. To
assess whether the difference in field strength had an impact on the classification
performance, we computed the balanced accuracy separately for the subjects who
had 1.5 T and 3 T scans. The results are displayed on Table 3.10. We observed that,
no matter the experiment, the balanced accuracy is always higher for the 3 T scan
subset compared to the 1.5 T scan subset, which is not surprising as 3 T images
should have a better signal-to-noise ratio.
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Voxel-based (4 mm smoothing) Region-based (AAL2 atlas)

1.5 T 3 T 1.5 T 3 T

CN vs AD 0.85 0.88 0.84 0.85
CN vs pMCI 0.73 0.74 0.77 0.78
sMCI vs pMCI 0.60 0.66 0.62 0.71

TABLE 3.10: Influence of magnetic field strength. Mean balanced ac-
curacy obtained for three tasks (CN vs AD, CN vs pMCI and sMCI
vs pMCI) using the reference classifier (linear SVM) with voxel (ref-
erence smoothing: 4 mm) and region (reference atlas: AAL2) features
extracted from T1w MR images of ADNI subjects. The mean bal-
anced accuracy was computed separately for subjects whose images
were acquired on 1.5 T (most ADNI 1 subjects) and 3 T (ADNIGO/2

subjects) MRI scanners.

3.5.7 Influence of the class imbalance

The tasks that we performed are done with unbalanced classes. Such class imbal-
ance ranges from very mild (1.2 times more CN than AD for ADNI) to moderate
(1.7 times more CN than pMCI and 2 times more sMCI than pMCI for ADNI) to
very strong (6.1 times more CN than AD in AIBL). We aimed to assess if such
class imbalance influenced the performance. To that purpose, we randomly sam-
pled subgroups and performed experiments with 237 CN vs 237 AD, 167 pMCI
vs 167 CN and 167 pMCI vs 167 pMCI for ADNI and 72 CN and 72 AD for AIBL.
We ensured that the demographic and clinical characteristics of the balanced sub-
sets did not differ from the original ones. Results are presented on Figure 3.5.
For ADNI, the performance was similar to that obtained with the full population.
For AIBL, the performance was substantially higher with balanced groups for the
voxel-based features. It thus seems that a very strong class imbalance (as in the
case of AIBL where the proportion is 6 to 1) leads to lower performance but that
moderate class imbalance (up to 2 to 1 in ADNI) are adequately handled.
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FIGURE 3.5: Influence of class imbalance. Distribution of the bal-
anced accuracies obtained using voxel (reference smoothing: 4 mm)
and regional (reference atlas: AAL2) features extracted from T1w
MRI and FDG PET images using the reference classifier (linear SVM)
when training using unbalanced and balanced datasets. Four tasks
were tested: CN vs AD, CN vs pMCI and sMCI vs pMCI for ADNI

subjects, and CN vs AD for AIBL subjects.



3.5. Results 75

3.5.8 Influence of the dataset

We also wanted to know how consistent were the results across datasets, and thus
we compared the classification performances obtained from ADNI, AIBL and OA-
SIS, for the task of differentiating control subjects from patients with Alzheimer’s
disease. Voxel (4 mm smoothing) and regional (AAL2 atlas) features were ex-
tracted from T1w MR images and used with linear SVM classifiers. We tested
two configurations: training and testing the classifiers on the same dataset, and
training a classifier on ADNI and testing it on AIBL and OASIS. Results are dis-
played in Table 3.11. Performances obtained on ADNI and AIBL are comparable
and much higher than those obtained on OASIS. When training on ADNI and test-
ing on AIBL or OASIS, the balanced accuracy was at least as high as when training
and testing on AIBL or OASIS respectively, suggesting that classifiers trained on
ADNI generalize well to the other datasets. In particular, training on ADNI sub-
stantially improved the classification performances on OASIS. We aimed to assess
whether this was due to the larger number of subjects in ADNI. To that purpose,
we performed the same experiments but with subsets of participants of equal size
for each dataset. We randomly sampled populations of 70 AD patients and 70 CN
participants from each of the datasets, ensuring that the demographic and clini-
cal characteristics of the subpopulations did not differ from the original ones. As
can be seen from Table 3.11, using the subset, the improvement disappears for the
voxel-based but remains for the regional features.
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Training dataset Testing dataset
Voxel-based Region-based

(4 mm smoothing) (AAL2 atlas)

Full dataset

ADNI ADNI 0.87 ± 0.025 0.84 ± 0.024
AIBL AIBL 0.85 ± 0.003 0.86 ± 0.004
ADNI AIBL 0.87 0.88
OASIS OASIS 0.70 ± 0.058 0.71 ± 0.053
ADNI OASIS 0.76 0.76

Subset

ADNI ADNI 0.85 ± 0.048 0.81 ± 0.06
AIBL AIBL 0.86 ± 0.048 0.85 ± 0.058
ADNI AIBL 0.86 0.87
OASIS OASIS 0.67 ± 0.063 0.64 ± 0.072
ADNI OASIS 0.67 0.7

TABLE 3.11: Influence of dataset. Average ± SD of the balanced ac-
curacy obtained for the reference linear SVM classifier when differ-
entiating CN and AD subjects using voxel (4 mm smoothing) and re-
gional (AAL2 atlas) features extracted from T1w MR images for three
datasets: ADNI, AIBL and OASIS. Upper rows display results for the
full population. Lower rows display results for subsets of equal size
for each dataset. The subsets were obtained by randomly sampling
populations of 70 AD patients and 70 CN participants from each of
the datasets. Note that for the “full dataset” experiment, a balanced
subset of AIBL was used (i.e. 72 CN and 72 AD subjects). When the
testing dataset differs from the training dataset, there is no CV and

thus no empirical SD.

3.5.9 Influence of the training dataset size

Learning curves were computed to assess how the performance of linear SVM clas-
sifiers varies depending on the size of the training dataset. Using only ADNI par-
ticipants, we tested four scenarios: voxel and region features extracted from T1w
MRI and FDG PET images. As cross-validation, 250 iterations were run where the
dataset was randomly split into a test dataset (30% of the samples) and a training
dataset (70% of the samples). The maximum number of subjects used for training
and testing for each of the different tasks is of 362 for CN vs AD, of 313 for CN vs
pMCI and of 355 for sMCI vs pMCI. For each run, 10 classifiers were trained and
evaluated on the same test set using from 10% to all of the training set (from 7%
to up to 70% of the samples), increasing the number of samples used by 10% on
each step. Therefore, the number of participants used for training ranged from 20
to 197 for CN, 24 to 239 for sMCI , 12 to 117 for pMCI and 17 to 166 for AD. We
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can observe from the learning curves in Figure 3.6 that, as expected, the balanced
accuracy increases with the number of training samples.

Learning curves were also computed for the CN vs AD task when using larger
datasets obtained by combining participants from ADNI and AIBL (balanced sub-
set composed of 72 CN subjects and 72 AD subjects) and from ADNI, AIBL and
OASIS. Results are displayed in Figure 3.7. We observe that for an equivalent num-
ber of subjects, combining ADNI and AIBL or only using ADNI leads to a simi-
lar balanced accuracy. For regional features, the performance is slightly higher
when combining ADNI and AIBL compared to when only using ADNI, but the
difference is largely within the standard deviation. The balanced accuracy keeps
increasing slightly as more subjects are used for training when combining ADNI
and AIBL. However, when combining ADNI, AIBL and OASIS, the performance
is worse than when only using ADNI or combining ADNI and AIBL, no matter the
number of subjects. This is probably due to the fact that ADNI and AIBL follow
the same diagnosis and acquisition protocols, which differ from those of OASIS.

FIGURE 3.6: Influence of training dataset size. Learning curves for
the T1w MRI (top) and FDG PET (bottom) images of ADNI partici-
pants using voxel features with 4 mm of smoothing (left) and regional
features derived from the AAL2 atlas (right) for the CN vs AD, CN

vs pMCI and sMCI vs pMCI tasks.
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FIGURE 3.7: Influence of training set size when combining datasets.
Learning curves for the voxel features with 4 mm of smoothing (left)
and regional features derived from the AAL2 atlas (right) extracted
from T1w MR images for the CN vs AD task when using subjects
from ADNI only, from both ADNI and AIBL, and from ADNI, AIBL
and OASIS. Note that a balanced subset of AIBL was used (i.e. 72 CN

and 72 AD subjects).

3.5.10 Influence of the diagnostic criteria

We defined new classification tasks by refining the previously used diagnostic cri-
teria using information regarding the amyloid status of each subject, when avail-
able. As can be seen in Figure 3.8, when comparing the performance of these tasks
with their related tasks not using the amyloid status, the mean balanced accuracy
is higher, or at least the same, for all the newly defined tasks. We have to note that
this performance is reached in spite of counting with a lower number of subjects,
given that the amyloid status is not known for all the subjects.
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FIGURE 3.8: Influence of diagnostic criteria. Distribution of the bal-
anced accuracy obtained from the T1w MRI and FDG PET images of
ADNI participants using the voxel-based SVM classifier with a 4-mm
smoothing for the CN- vs AD+, CN- vs pMCI+, sMCI- vs pMCI+, and

sMCI+ vs pMCI+ tasks.

3.5.11 Computation time

In total, we performed 279 experiments using the SVM classifier, 155 experiments
using the logistic regression classifier and 26 experiments using the random forest
classifier (see Tables 3.6, 3.7 and 3.8 for the details of the tasks and parameters).
Using a machine with 72 cores (Xeon E5-2699 @ 2.30 GHz) and 256 GB of RAM, it
took six days to run the 434 SVM + logistic regression experiments and eight days
to run the 26 random forest experiments.

3.6 Discussion

We presented an open-source framework for the reproducible evaluation of AD
classification methods that contains the following components: i) converters to
normalize three publicly available datasets into BIDS; ii) standardized preprocess-
ing and feature extraction pipelines for T1w MRI and PET; iii) standard classifi-
cation algorithms; iv) cross-validation procedures following recent best practices.
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We demonstrated its use for the assessment of different imaging modalities, pre-
processing options, features and classifiers on three public datasets.

In this work, we first aim to contribute to make evaluation of machine learn-
ing approaches in AD: i) more reproducible; ii) more objective. Reproducibility is
the ability to reproduce results based on the same data and experimental proce-
dures. Calls to increase reproducibility have been made in different fields, includ-
ing neuroimaging (Poldrack et al., 2017) and machine learning (Ke et al., 2017).
Reproducibility differs from replication, which is the ability to confirm results on
independent data. Key elements of reproducible research include: data sharing,
storing of data using community standards, fully automatic data manipulation,
sharing of code. Our work can contribute to increase reproducibility of AD ML
research through different aspects. A first component is the fully automatic con-
version of three public datasets into the community standard BIDS. Indeed, ADNI
and AIBL cannot be redistributed. Through these tools, we hope to make it easy
to reproduce experiments based on these datasets without redistributing them. In
particular, we offer a huge saving of time to users compared to simply making
public the list of subjects used. This is particularly true for complex multimodal
datasets such as ADNI (with plenty of incomplete data, multiple instances of a
given modality and complex metadata). The second key component is publicly
available code for preprocessing, feature extraction and classification. These con-
tributions are gathered in Clinica10, a freely available software platform for clinical
neuroscience research studies. In addition to increased reproducibility, we hope
that these tools will also make the work of researchers easier.

We also hope to contribute to more objective evaluations. Objective evaluation
of a new approach (classification algorithm, feature extraction method or other)
requires to test this specific component without changing the others. Our frame-
work includes standard approaches for preprocessing and feature extraction from
T1-weighted MRI and FDG PET data, and standard classification tools. These con-
stitute a set of baseline approaches against which new methods can easily be com-
pared. Researchers working on novel methods can then straightforwardly replace
a given part of the pipeline (e.g. feature extraction, classification) with their own
solution, and evaluate the added value of this specific new component over the
baseline approach provided. We also propose tools for rigorous validation, largely
based on recent guidelines of Varoquaux et al., 2017 and implemented based on the
standard software scikit-learn (Pedregosa et al., 2011). These include: i) large num-
ber of repeated random split to extensively assess the variability of performances;
ii) reporting the full distribution of accuracies and standard deviation rather than
only mean accuracies; iii) adequate nested CV for hyperparameter tuning.

10www.clinica.run

www.clinica.run
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We then demonstrated the use of the framework on different classification tasks
based on T1 MRI and FDG PET data. Through this, we aim to provide a baseline
performance to which advanced machine learning and feature extraction methods
can be compared. These baseline performances are in line with the state-of-the-
art results, which have been summarized in (Arbabshirani et al., 2017; Falahati,
Westman, and Simmons, 2014; Rathore et al., 2017), where classification accuracies
typically range from 80% to 95% for CN vs AD, and from 60% to 80% for sMCI vs
pMCI. For instance, using a linear SVM, regional features (AAL2) and FDG PET
data, we report 88% for CN vs AD, 80% for CN vs pMCI and 73% for sMCI vs
pMCI.

Diagnosis criteria used in ADNI are those from NINCDS-ADRDA (McKhann
et al., 1984) which only rely on patients’ symptoms and cognitive status. However,
a definite diagnosis of AD can only be made at autopsy and clinical diagnosis has
been found to be erroneous in a substantial proportion of cases (Knopman et al.,
2001). In the past decade, substantial progress has been made in the diagnosis of
AD. In particular, it has been suggested to not only rely on clinical and cognitive
evaluations but also on imaging and CSF biomarkers. This has resulted in new
diagnostic criteria. Even though the gold-standard remains postmortem examina-
tion, this has led to a more accurate diagnosis of AD during the life of the patient.
In particular, the presence of beta-amyloid and/or tau proteins has been proposed
in IWG (Dubois et al., 2007), IWG-2 (Dubois et al., 2014) and NIA-AA (Albert et al.,
2011; Jack et al., 2011; McKhann et al., 2011; Sperling et al., 2011). In this work, we
assessed if using amyloid-refined diagnosis groups improved the performance.
Amyloid status was determined from each participant’s amyloid PET scan (PiB
or AV45). We found that classification using amyloid-refined diagnoses always
performed better or at least similarly to the related tasks using NINCDS-ADRDA
diagnoses, even though the training sets then comprise fewer individuals.

Classifications from FDG PET consistently performed better across tasks, fea-
tures and classification methods than from T1w MRI. Some studies support our
finding (Dukart, Schroeter, and Mueller, 2011; Gray et al., 2013; Ota et al., 2015;
Young et al., 2013) while others do not find a difference in performance (Hinrichs
et al., 2009b; Zhang et al., 2011; Zhu, Suk, and Shen, 2014a). Given the larger
sample size of our study and the rigorous evaluation design, we believe that the
superior performance of FDG PET compared to MRI is a robust finding. It is likely
due to the fact that hypometabolism can be detected earlier in the disease course,
before atrophy (Jack Jr et al., 2010).

Diverse parameters and options are used as for preprocessing and feature ex-
traction in AD machine learning studies. Their influence on classification perfor-
mance is not clear and constitutes a problem for the comparability of classification
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methods. We assessed the effect of the choice of atlas, of degree of smoothing, of
the correction of PET images for partial volume effect, and of the type of features
(regions or voxels). We found no systematic effect of each of these different com-
ponents on the performances. Some studies found an influence of the atlas on the
classification performance (Ota et al., 2015; Ota et al., 2014). However, the number
of subjects in this study was small. In (Chu et al., 2012), an improvement of 3% was
found when using a combination of a few ROIs compared to using all the voxels.
In our study, a much larger number of subjects and a strict validation process were
used.

We compared three widely used classification methods: SVM, logistic regres-
sion with L2 regularization and random forests. Our main finding was the under-
performance of the latter. This might be caused by the nature of brain imaging
data that contains relatively homogeneous values, and which should show de-
pendence across voxels or brain regions. These characteristics of the data could
explain why techniques trying to find a smooth combination of features, such as
those using L2 regularization, are more suited for single modality classification
problem. On the other hand, random forests or other ensemble methods could be
useful when combining features from different modalities such as images, clinical
data and cognitive scores, as done in (Moradi et al., 2015; Sørensen and Nielsen,
2018). In other papers comparing several standard classification algorithms such
as SVM, LDA or Naive Bayes (Aguilar et al., 2013; Cabral et al., 2015; Sabuncu and
Konukoglu, 2014), results did not show differences between methods.

We also assessed the influence of class imbalance, which in our datasets ranges
from very mild (1.2 times more CN than AD for ADNI) to moderate (1.7 times
more CN than pMCI and 2 times more sMCI than pMCI for ADNI) to very strong
(6.1 times more CN than AD in AIBL). In the case of voxel-based features, we
found that a very strong class imbalance (as in the case of AIBL where the propor-
tion is 6 to 1) leads to lower performance but that moderate class imbalance (up to
2 to 1 in ADNI) are adequately handled. On the other hand, there was no influence
of class imbalance for regional features. This highlights that it may be beneficial to
use balanced groups for training when there is a very strong class imbalance and
when using very high dimensional features.

We assessed the influence of various components on classification performance:
modality (T1w MRI vs PET), type of features, choice of atlas, PVC, smoothing, clas-
sifier. Other studies have assessed the influence of other components: different
types of anatomical features including volume, cortical thickness and other sur-
face characteristics (Gómez-Sancho, Tohka, and Gómez-Verdejo, 2018; Schwarz et
al., 2016; Westman et al., 2013), feature selection techniques (Tohka, Moradi, and
Huttunen, 2016), normalization to intracranial volume (Voevodskaya et al., 2014;
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Westman et al., 2013). Moreover, Tohka, Moradi, and Huttunen, 2016 compared
LASSO and elastic-net to SVM and found that the former methods provide in-
creased performance. Assessing the influence of these different components could
also be done using our framework. In this paper, we restricted the application of
the framework to a set of components that were chosen for the following reasons.
Voxel-based and regional features were both included because they are widely
used. On the other hand, cortical measures based on Freesurfer were not included
due to their computational cost. PVC is a very common preprocessing for PET
data. Smoothing is widely used for voxel-based analyses in the neuroimaging
community and it seemed useful to assess its influence. Nevertheless, there is al-
ways some arbitrariness in such choices and it would be interesting to study other
components with the framework.

In this work, we used predefined features (at the region or voxel-level). An-
other family of approaches that should be mentioned is that of methods that learn
features directly from the data. Patch-based methods aim to automatically learn
the nonlocal similarity between a subject and a training set (Coupé et al., 2015;
Coupé et al., 2012a). Also, deep learning approaches can automatically learn rele-
vant features at multiple scales, and have recently become popular for automatic
classification of AD (Bäckström et al., 2018; Liu et al., 2018b; Lu et al., 2018; Suk,
Lee, and Shen, 2017). Both types of approaches have led to promising results (e.g.
from 73% to 83% for pMCI vs sMCI). Moreover, various works have proposed
to use different types of data-driven feature selection (e.g. univariate statistical
tests, multivariate approaches) (Chu et al., 2012; Tohka, Moradi, and Huttunen,
2016; Vemuri et al., 2008) and dimensionality reduction (e.g. principal component
analysis, manifold learning) (Beheshti and Demirel, 2015; Guerrero et al., 2014;
Liu, Zhang, and Shen, 2015; Salvatore et al., 2015). These approaches have the
potential to improve the performance but they need to be validated using rigor-
ous cross-validation procedures (Eskildsen et al., 2013; Maggipinto et al., 2017).
The evaluation of the added value of all these approaches could be done using our
framework. This is out of the scope of the present paper and is left for future work.

Using multiple datasets is important to assess if the performances are robust
to different populations, acquired in different conditions. A first component con-
sisted in performing the same experiments on different datasets. We found that
classification results were similar for ADNI and AIBL datasets, but much lower
for OASIS. The lower performance for OASIS is likely due to the diagnosis crite-
ria which are less rigorous (in OASIS, all participants with CDR>0 are considered
AD). It is also valuable to know how a classifier will perform when trained on one
dataset and tested on another one. The classifiers trained on ADNI data gener-
alized well to AIBL and OASIS. Interestingly, for OASIS, the performances were
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substantially increased when training on ADNI compared to when training on
OASIS. Such improvement may arise from several factors: larger training set size,
higher image quality or stricter diagnostic criteria. When using subsets of equal
size, the improvement obtained for voxel-based features disappeared, suggesting
that increased training set size is important, in particular when using very high
dimensional features. On the other hand, for regional features, training on the
ADNI subset improved performances compared to training on the OASIS subset,
suggesting that other factors (image quality, stricter diagnostic criteria) contribute
to the improvement. In general, we can say that classifiers are able to general-
ize across different datasets, as is also concluded in (Dukart et al., 2013; Sabuncu
and Konukoglu, 2014) particularly if they are obtained using large multicentric
datasets with strict diagnostic criteria, as is the case for ADNI.

Unsurprisingly, increased training set size led to increased classification per-
formances. This improvement of the results depending on the training set size has
also been found in other studies such as (Abdulkadir et al., 2011; Chu et al., 2012;
Franke et al., 2010). One can note that when combining multiple datasets, perfor-
mances also increased with training set size. However, when combining OASIS
together with ADNI and AIBL, the performance was lower than when using only
AIBL and ADNI. This is consistent with the fact that performances for OASIS are
systematically lower than those obtained on ADNI and AIBL. Again, this is likely
due to diagnostic criteria which are less rigorous in OASIS. Interestingly, with the
current number of samples available, the point where the results stop improving
has not been reached. The performance of the classifier reaches a limit imposed
by the number of images that have been provided for training, meaning that more
data are necessary to find the top performance of a classifier. These results high-
light the need for more publicly available datasets, on which most of the current
research in the field relies.

3.7 Conclusions

Our framework for reproducible classification experiments aims to address cur-
rent issues faced in the area of machine learning-based AD classification, such
as comparability and reproducibility of the results. Its application to T1w MRI
and FDG PET data allowed the extensive assessment of the influence of imag-
ing modality, preprocessing options, features and algorithms on the performances.
These results provide a baseline performance against which other approaches can
be compared. We hope that both the framework and the experimental results will
be useful to researchers working in the AD field.
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Chapter 4

Reproducible evaluation of methods
for predicting progression to
Alzheimer’s disease from clinical and
neuroimaging data

This chapter has been published as a conference paper in the proceedings of SPIE
Medical Imaging 2019:

• Samper-González J, Burgos N, Bottani S, Habert MO, Evgeniou T, Epelbaum
S, Colliot O, for the ADNI, Reproducible evaluation of methods for predict-
ing progression to Alzheimer’s disease from clinical and neuroimaging data.
In Proc. SPIE Medical imaging Conference, San Diego, CA, USA, Feb. 2019.

4.1 Introduction

Alzheimer’s disease (AD) is the first cause of dementia worldwide, affecting over
20 million people. Identifying AD at an early stage is essential to ensure a proper
care of patients and also to develop and test novel treatments. AD progression
can be characterized using different measurements. Neuropsychological tests can
measure the cognitive decline of a subject in areas such as learning and mem-
ory, executive functioning, processing speed, attention, and semantic knowledge
(Bondi et al., 2008). Neuroimaging can provide measures of atrophy due to gray
matter loss with anatomical magnetic resonance imaging (MRI), of hypometabolism
with 18F-fluorodeoxyglucose positron emission tomography (FDG PET) and of
accumulation of amyloid-beta and tau proteins with amyloid-PET and tau-PET
imaging (Ewers et al., 2011). There is an interest in exploring the predicting capa-
bilities of these markers, that reflect different aspects of the disease, from an early
stage. A large body of research on the early stages of AD has focused on patients
with mild cognitive impairment (MCI), who have objective cognitive deficits but
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do not yet have dementia. Some of these patients will subsequently develop de-
mentia while others will remain stable. Identifying those who will develop AD is
major challenge.

The development of machine learning (ML) approaches for computer-aided
diagnosis and prognosis of AD has been a very active topic in the past decade
(Fan et al., 2008; Davatzikos et al., 2008; Magnin et al., 2009; Duchesne et al., 2008;
Gerardin et al., 2009; Cuingnet et al., 2010; Cuingnet et al., 2013; Vemuri et al.,
2008; Klöppel et al., 2008b; Cuingnet et al., 2011; Hett et al., 2018; Bron et al., 2015;
Coupé et al., 2012b; Gray et al., 2013; Liu, Zhang, and Shen, 2012; Liu et al., 2018b;
Moradi et al., 2015; Querbes et al., 2009; Teipel et al., 2015; Tohka, Moradi, and
Huttunen, 2016; Zhu, Suk, and Shen, 2014a; Yun, Kwak, and Lee, 2015; Liu et al.,
2018a; Suk, Lee, and Shen, 2017; Eskildsen et al., 2015). In particular, numerous
ML methods (Coupé et al., 2012a; Hett et al., 2018; Cuingnet et al., 2011; Suk, Lee,
and Shen, 2017; Misra, Fan, and Davatzikos, 2009; Adaszewski et al., 2013; Liu
et al., 2013b; Eskildsen et al., 2013; Costafreda et al., 2011; Gray et al., 2012; Cabral
et al., 2015; Davatzikos et al., 2011; Tang et al., 2015; Cui et al., 2011; Sørensen et al.,
2016; Chincarini et al., 2011; Moradi et al., 2015; Cheng et al., 2015; Young et al.,
2013; Suk, Lee, and Shen, 2014; Li et al., 2015; Choi and Jin, 2018) have been pro-
posed to predict progression to AD among patients with MCI from neuroimaging
data, see for example (Arbabshirani et al., 2017; Falahati, Westman, and Simmons,
2014; Rathore et al., 2017) for reviews on that topic. To compare these approaches
in an objective way is practically impossible, given their differences in: i) subsets
of patients; ii) image preprocessing pipelines; iii) feature extraction and selection;
iv) machine learning algorithms; v) cross-validation procedures and vi) reported
evaluation metrics. This makes it difficult to establish if a method outperforms an-
other or to measure the contribution of different components (preprocessing, fea-
tures, ML algorithm), limiting the practical impact of these studies. Additionally,
these studies rarely compare their results to models built from clinical/cognitive
data only. This is an important point to demonstrate the utility of sophisticated
neuroimaging-based methods. Indeed, cognitive assessments are cheaper to per-
form and do not require sophisticated equipment, compared to neuroimaging or
other biomarkers. Furthermore, these different components are often not made
publicly available by the authors. Reproducibility, the ability to reproduce results
based on the same data and experimental procedures, can be a first step in the di-
rection of making the evaluation of machine learning approaches more objective.
In that respect, data sharing, storing of data using community standards, fully au-
tomatic data manipulation and sharing of code are essential to enable reproducible
research.

In our previous work (Samper-González et al., 2018; Samper-González et al.,
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2017), we proposed a framework for the reproducible evaluation of machine learn-
ing algorithms in AD. The framework comprised the following components. Tools
for fully automatic conversion into the BIDS (Brain Imaging Data Structure) com-
munity standard (Gorgolewski et al., 2016) of public datasets including the Alzheimer’s
Disease Neuroimaging Initiative (ADNI). This saves other researchers a large amount
of time and allows them to use or to reproduce experiments using this data. We
proposed standard preprocessing and feature extraction pipelines for different
imaging modalities that are made available in a modular way. Tools for clas-
sification using standard machine learning algorithms (support vector machine,
random forest, logistic regression), following rigorous validation and providing
extensive reporting, were developed. This set of tools allows the objective evalua-
tion of the influence of specific elements, given that they can be straightforwardly
replaced. This framework was then used for an extensive evaluation of differ-
ent parameters, features, and classification algorithms on classification tasks using
unimodal neuroimaging data (T1 MRI and FDG PET).

In this paper, we extend our previous work to the combination of multimodal
clinical and neuroimaging data. The present study is focused on the prediction of
progression of subjects with mild cognitive impairment (MCI) to AD, a clinically
important task. Compared to our previous work, the contributions of the present
paper are the following. First, we compare the performance of neuroimaging-
based models to that of models using only clinical data. Indeed, given that clinical
data is more widely available, it would be a more natural choice as input data for
baseline models. Second, we propose a simple trick to improve the performance of
neuroimaging-based models: training on AD patients and controls (rather than on
progressive and stable MCI patients) and applying the resulting model to predic-
tion of progression to AD. Third, we assess the performance of the combination of
multiple modalities (clinical, neuroimaging and APOE genotype). Finally, while
the previous paper was restricted to the prediction of progression to AD at 36
months, we study the performance for various dates (from 12 to 36 months).

All the code of the framework and the experiments is publicly available: general-
purpose tools have been integrated into Clinica1 (Routier et al., 2018), an open-
source software platform for neuroimaging studies, and the paper-specific code is
available at: https://gitlab.icm-institute.org/aramislab/AD-ML.

1 http://www.clinica.run

https://gitlab.icm-institute.org/aramislab/AD-ML
http://www.clinica.run
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4.2 Materials and methods

4.2.1 Data

All the data used in the preparation of this article were obtained from the ADNI
database. The same group of subjects as in our previous work (Samper-González
et al., 2018) was used, except three subjects that were excluded because of missing
neuropsychological tests. It consists of 748 subjects for whom a T1w MRI and an
FDG PET scan, with a known effective resolution, were available at baseline. Our
definition for stable and progressing mild cognitive impairment subjects was:

• sMCIN: subjects who were diagnosed as MCI, EMCI or LMCI at baseline,
were followed during at least N months and did not progress to AD between
their first visit and the visit at N months;

• pMCIN: subjects who were diagnosed as MCI, EMCI or LMCI at baseline,
were followed during at least N months and progressed to AD between their
first visit and the visit at N months.

Even though not the main focus of this work, CN Aβ- (cognitively normal sub-
jects with a negative amyloid status) and AD Aβ+ subjects (AD patients with a
positive amyloid status) were used for some of the experiments (section 2.5.2).
They were diagnosed at baseline and had a known amyloid status, determined
from a PiB or an AV45 PET scan using standard cutoff values of 1.47 and 1.10,
respectively (Landau et al., 2013).

Population details can be observed in Table 4.1. Subject lists were obtained
automatically using our publicly-available code.

Additionally, for some of the experiments, we had to use different subsets of
the population, because some of the features were not available for all the subjects.
Specifically, this was the case for experiments using amyloid status and for those
using volumetric MRI and regional PET measures available in the ADNIMERGE
tabular file. The two tables describing each used subset are included in the Results
section (Tables 4.2 and 4.3). For these two subsets, we verified that the charac-
teristics of age, gender, MMSE and CDR of these subgroups followed the same
distribution as that of the study population.

4.2.2 Data conversion

ADNI is a complex multimodal dataset with plenty of incomplete data, multiple
instances of a given modality and complex metadata. To allow reproducibility,
as in our previous work, ADNI was fully automatically converted into BIDS for-
mat, a community standard (Gorgolewski et al., 2016). We performed conversion
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N Age* Gender MMSE* CDR
sMCI36 340 71.8±7.5 [55.0, 88.6] 201 M / 139 F 28.1±1.6 [23, 30] 0.5: 340
pMCI36 167 74.9±6.9 [55.0, 88.3] 98 M / 69 F 27.0±1.7 [24, 30] 0.5: 166; 1: 1

CN Aβ- 115 72.2±6.1 [56.2, 89.0] 59 M / 56 F 29.0±1.3 [24,30] 0: 115
AD Aβ+ 126 74.1±8.1 [55.1, 90.3] 65 M / 61 F 22.9±2.1 [19, 26] 0.5: 54; 1: 71; 2: 16

* Values are presented as mean±SD [range]. M: male, F: female

TABLE 4.1: Studied populations. Summary of participant demographics, mini-mental state examination (MMSE) and global
clinical dementia rating (CDR) scores

N Age* Gender MMSE* CDR
sMCI36 267 71.4±7.5 [55.0, 88.6] 158 M / 109 F 28.2±1.6 [23, 30] 0.5: 267
pMCI36 135 73.2±6.9 [55.0, 88.3] 80 M / 55 F 27.1±1.8 [24, 30] 0.5: 134; 1: 1
* Values are presented as mean±SD [range]. M: male, F: female

TABLE 4.2: Subpopulation used for the experiments using MRI-derived volumes and a regional FDG-PET feature (as available
in ADNIMERGE)

N Age* Gender MMSE* CDR
sMCI36 265 71.0±7.3 [55.0, 88.6] 148 M / 117 F 28.3±1.6 [23, 30] 0.5: 265
pMCI36 94 72.9±7.0 [55.0, 85.9] 52 M / 42 F 27.2±1.8 [24, 30] 0.5: 93; 1.0: 1
* Values are presented as mean±SD [range]. M: male, F: female

TABLE 4.3: Subpopulation used for the experiments using the amyloid status
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of T1w MRI and FDG PET imaging modalities, and of selected clinical/cognitive
data. For T1 scans, gradwarp and B1-inhomogeneity corrected images were se-
lected when available, otherwise the original image was selected. When several
T1 scans were available for a single session, the preferred scan, if available, or
higher quality scan, was chosen. For FDG PET scans, the images co-registered
and averaged across time frames were selected. Images in DICOM format were
converted to NIFTI format. All images are organized in a folder hierarchy follow-
ing the BIDS specifications. Regarding the clinical data, scores of interest were
extracted from the csv files provided by ADNI and gathered in tsv files located
in the BIDS folder hierarchy. From the clinical data, we used socio-demographic
data (gender, education level), APOE genotype, and five neuropsychological tests
results: mini-mental state examination (MMSE) score, the sum of boxes of clini-
cal dementia rating (CDR-SB) test, the scores of Alzheimer’s Disease Assessment
Scale cognitive sub-scale (ADASCog) separated into four categories (memory, lan-
guage, concentration and praxis), the Logical Memory (immediate and delayed
recall) test, and the Rey Auditory Verbal Learning Test (RAVLT). Also, some vol-
umetric and regional neuroimaging measures provided by ADNI (available in the
ADNIMERGE csv file) were gathered: volumetric measures for different regions
(ventricles, hippocampus, entorhinal cortex, fusiform gyrus, mid-temporal gyrus)
computed from MRI and the average FDG-PET of angular, temporal, and posterior
cingulate regions. Volumetric MRI measures were normalized according to the in-
tracranial volume of each subject. The converter that we developed was integrated
into the Clinica software (see previous work (Samper-González et al., 2018)). Note
that the downloaded files must be kept exactly as they were downloaded. The dif-
ferent steps are then performed by the automatic converter (no user intervention
is required).

4.2.3 Preprocessing and feature extraction

T1w MR and FDG PET images were preprocessed as previously described (Samper-
González et al., 2018). For anatomical T1w MRI, the t1-volume-new-template
pipeline from Clinica was applied. Based on SPM12, it applies the Unified Seg-
mentation (Ashburner, 2007), DARTEL (Ashburner, 2007) and DARTEL to MNI
(Ashburner and Friston, 2005) procedures. As a result, we obtain tissue maps in
a common space, providing a voxel-wise correspondence across subjects. FDG
PET preprocessing was done using pet-volume pipeline from Clinica, which is
also based on SPM12. Making use of the T1w preprocessing pipeline, PET image
was registered to the T1w native space and then to the common space. Intensity
normalization using the pons region as reference and brain masking were applied.
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The resulting standardized uptake value ratio (SUVR) maps are also in a common
space providing voxel-wise correspondence across subjects.

4.2.4 Age correction

Age correction of T1w MR and FDG PET images was done, separately, as in (Dukart,
Schroeter, and Mueller, 2011). For each voxel, a linear regression was performed
between the age and the value (GM density or PET SUVR) at this voxel, using CN
amyloid negative subjects. Then images were corrected according to the expected
values for the subject’s age.

4.2.5 Classification approaches

To predict the progression of MCI subjects to AD, we trained classifiers for the task
sMCI vs pMCI, based on different data modalities. We first assessed prediction
using clinical/cognitive data alone. We then studied the use of T1w MRI and FDG-
PET imaging data, either alone or in combination with clinical/cognitive data.

All the classifications were done using Clinica software tools which wraps dif-
ferent tools from scikit-learn2 (Pedregosa et al., 2011). We relied on standard clas-
sifiers, namely support vector machines (SVM) and random forests (RF).

4.2.5.1 Classification using clinical data

First, we considered only demographic and clinical data. The first task used as fea-
tures a combination of gender, education level, MMSE score and the sum of boxes
of CDR test (we will refer to this set of features as Clinicalbase). MMSE and CDR-SB
tests are generic cognitive tests. We then tested the added value of two memory
tests: RAVLT and Logical Memory (LogMem). We also evaluated the added value
of ADAS-Cog, a test that is usually performed only in more specialized centers.
Note that the ADAS-Cog was separated into four domains, as explained in Sec-
tion 4.2.2. Finally, we assessed the added value of the APOE4 genotype.

4.2.5.2 Image-based classification

We then assessed the performance of neuroimaging data, namely T1w MRI and
FDG PET modalities taken separately. For this purpose, we used SVM classifiers
trained on all voxels (GM maps) of preprocessed and age corrected images. First,
we used a standard approach in which the classifier was trained on the popula-
tion of sMCI and pMCI subjects. We then assessed another approach in which the
classifier was trained to distinguish between CN Aβ- and AD Aβ+ groups, and

2http://scikit-learn.org

http://scikit-learn.org
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the resulting classifier was applied to sMCI and pMCI subjects to predict disease
progression. Indeed, if we see the evolution of Alzheimer’s disease from subjects
being cognitive normal progressing in time to demented patients, we can define
CN Aβ-, sMCI, pMCI and AD Aβ+ as an ordered list of possible states of a subject.
Training the classifier on the simpler task of differentiating the CN Aβ- and AD
Aβ+ states, could allow it to learn a disease pattern that would be more difficult to
obtain if training directly on sMCI and pMCI subjects. We tested whether the in-
formation contained in this learned classifier is directly transferable to the problem
of predicting disease progression.

4.2.5.3 Integrating clinical and imaging data

Finally, we assessed the combination of clinical and neuroimaging data. For each
neuroimaging modality, we constructed a score from the SVM classifier. Indeed,
for each image, a score can be obtained from an SVM as ŷ = w ∗ x + b. For each
subject, two scores are computed, one for T1w MRI and one for FDG PET scans
(Scores T1, FDG). These scores can be seen as markers of AD-like spatial pattern
of neurodegeneration: gray matter atrophy pattern in the case of anatomical T1w
MRI and hypometabolism pattern in the case of FDG PET. We then combined de-
mographic and clinical data with these two scores (containing information from
imaging data) into a random forest classifier. Namely, we first used Clinicalbase

features, and Scores T1, FDG. We then added RAVLT and ADASCog tests.
Moreover, we compared the performance of the neuroimaging SVM scores

(Scores T1, FDG) to that of MRI-derived volumes and regional FDG-PET value (as
available in ADNIMERGE). For this purpose, the same experiments, using Clinicalbase

features, RAVLT and ADASCog tests, and volumetric and FDG-PET data were
performed on the subpopulation containing all the required values (Table 4.2).

4.2.5.4 Integrating amyloid status

In addition, we explored the predictive value of amyloid status, either in isola-
tion or combined with the other studied variables (clinical, T1 and FDG-PET neu-
roimaging). The status was determined from a PiB or an AV45 PET scan using
standard cutoff values of 1.47 and 1.10, respectively (Landau et al., 2013). These
experiments were performed on the subpopulation for which amyloid status was
available (Table 4.3).

4.2.5.5 Prediction at different time-points

We also wanted to assess the influence of using different time spans for MCI sub-
jects progressing to AD. We obtained lists of subjects who progressed to AD before
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12, 18, 24 and 30 months from the baseline. We assessed the performance of mod-
els using: i) Clinicalbase features and ADASCog; ii) Clinicalbase features, ADASCog
and Scores T1, FDG.

4.2.6 Validation

Cross validation, following strict guidelines as presented in (Varoquaux et al.,
2017), was applied to all the experiments: results are the mean of 250 iterations
of stratified random splits with 80% of samples used for training and remaining
20% for testing. RF classifiers were trained using fixed hyperparameters: 100 trees,
tree depth limited to 5 levels and only the square root of the total number of fea-
tures is considered when looking for a split. For linear SVM classifiers, the hyper-
parameter controlling regularization was optimized using an inner 10-fold cross
validation.

As output of the classification, we report the balanced accuracy, area under the
ROC curve (AUC), accuracy, sensitivity, specificity and, in addition, the predicted
class for each subject, so the user can calculate other desired metrics with this
information.

4.3 Results

4.3.1 Classification using clinical data

Classification results using only clinical/cognitive data are presented in Table 4.4.
Classifications obtained using sociodemographical and simpler generic cogni-

tive tests (namely MMSE and CDR-SB), provided a balanced accuracy of only 68%
and an AUC of 0.75. The addition of the RAVLT (a memory test) led to a strong im-
provement (balanced accuracy of 74%, AUC of 0.82). This was also the case for the
addition of the ADAS-Cog features (balanced accuracy of 75%, AUC of 0.84). Com-
pared to the RAVLT, the other memory test LogMem, resulted in a much lower im-
provement (balanced accuracy of 70%, AUC of 0.79) and the combination of both
memory tests (RAVLT and LogMem) did not improve the results. Finally, the com-
bination of ADAS-Cog and RAVLT provided a very small improvement (balanced
accuracy of 76%, AUC of 0.85). On the other hand, the addition of APOE4 did not
improve the performance.

Based on these results, the APOE was not considered in the subsequent exper-
iments and the RAVLT was preferred to the LogMem test.
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Classifier - Features Bal. acc. AUC Acc. Sens. Spec.

RF - Clinicalbase 0.660 0.726 0.684 0.587 0.734
RF - Clinicalbase + LogMem 0.702 0.792 0.728 0.624 0.78
RF - Clinicalbase + RAVLT 0.742 0.823 0.75 0.717 0.767

RF - Clinicalbase + LogMem + RAVLT 0.745 0.836 0.755 0.712 0.777
RF - Clinicalbase + ADAS 0.754 0.836 0.760 0.736 0.772

RF - Clinicalbase + RAVLT + ADAS 0.762 0.852 0.768 0.743 0.781

RF - Clinicalbase + RAVLT + APOE4 0.756 0.838 0.759 0.750 0.763
RF - Clinicalbase + ADAS + APOE4 0.757 0.842 0.766 0.731 0.784

RF - Clinicalbase + RAVLT + ADAS + APOE4 0.765 0.857 0.772 0.746 0.785
Clinicalbase: gender, education level, MMSE score, sum of boxes of CDR test

TABLE 4.4: Results for models based on clinical data only (socio-
demographic, cognitive data and APOE genotype)

4.3.2 Integration of imaging and clinical data

Classification results using either neuroimaging alone or in combination with clin-
ical/cognitive data are presented in Table 4.5.

When trained on sMCI vs pMCI, the performance of T1w MRI and FDG PET
data alone was substantially lower than that of clinical data (including ADAS-
Cog or RAVLT) and comparable to that of Clinicalbase. Still, the performance of
FDG PET was superior to that of MRI. Interestingly, training SVM classifiers on
the CN Aβ- vs AD Aβ+ task and evaluating them on sMCI vs pMCI, improved
the performance for FDG PET modality (balanced accuracy of 76% and AUC of
0.82) compared to training and testing on sMCI and pMCI classes (balanced ac-
curacy of 71% and AUC of 0.78). Using this approach, FDG PET alone reached a
performance similar to that of clinical data (including ADAS-Cog or RAVLT).

The combination of clinical and imaging data further improved the results.
When using T1w MRI and FDG PET scores, socio-demographics, and neuropsy-
chological tests, we reached a balanced accuracy of 79% and the AUC was 0.88.

We then compared the results obtained using the SVM scores (computed from
voxel-based GM and PET SUVR maps) to those obtained with MRI-derived fea-
tures and a regional FDG PET measure (obtained from ADNIMERGE file). The
studied subpopulation is presented in Table 4.2. Results are shown in Table 4.6.
The performances were slightly lower than that obtained using the scores for T1
and FDG PET obtained from SVMs. In this subpopulation, only ADNIMERGE
features provided a balanced accuracy of 73% and an AUC of 0.83, while only
SVM scores provided a balanced accuracy of 78% and an AUC of 0.81. In the case
where clinical/cognitive scores were also added, the use of ADNIMERGE gave
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a balanced accuracy of 80% and an AUC of 0.89, while SVM scores produced a
balanced accuracy of 80% and an AUC of 0.90.

Classification results using either neuroimaging alone or in combination with
clinical/cognitive data are presented in Table 4.5.

When trained on sMCI vs pMCI, the performance of T1w MRI and FDG PET
data alone was substantially lower than that of clinical data (including ADAS-
Cog or RAVLT) and comparable to that of Clinicalbase. Still, the performance of
FDG PET was superior to that of MRI. Interestingly, training SVM classifiers on
the CN Aβ- vs AD Aβ+ task and evaluating them on sMCI vs pMCI, improved
the performance for FDG PET modality (balanced accuracy of 76% and AUC of
0.82) compared to training and testing on sMCI and pMCI classes (balanced ac-
curacy of 71% and AUC of 0.78). Using this approach, FDG PET alone reached a
performance similar to that of clinical data (including ADAS-Cog or RAVLT).

The combination of clinical and imaging data further improved the results.
When using T1w MRI and FDG PET scores, socio-demographics, and neuropsy-
chological tests, we reached a balanced accuracy of 79% and the AUC was 0.88.

We then compared the results obtained using the SVM scores (computed from
voxel-based GM and PET SUVR maps) to those obtained with MRI-derived fea-
tures and a regional FDG PET measure (obtained from ADNIMERGE file). The
studied subpopulation is presented in Table 4.2. Results are shown in Table 4.6.
The performances were slightly lower than that obtained using the scores for T1
and FDG PET obtained from SVMs. In this subpopulation, only ADNIMERGE
features provided a balanced accuracy of 73% and an AUC of 0.83, while only
SVM scores provided a balanced accuracy of 78% and an AUC of 0.81. In the case
where clinical/cognitive scores were also added, the use of ADNIMERGE gave
a balanced accuracy of 80% and an AUC of 0.89, while SVM scores produced a
balanced accuracy of 80% and an AUC of 0.90.

4.3.3 Integration of amyloid status

Classification results using amyloid status are shown in Table 4.7. The studied
subpopulation is presented in Table 4.3. In general, using amyloid status only
provided very small improvement. However, it is interesting to note that the im-
provement was more substantial for models based on clinical/cognitive data: for
instance (in terms of balanced accuracy) from 67% to 70% for Clinicalbase, from 73%
to 78% for Clinicalbase + RAVLT and from 74% to 80% for for Clinicalbase + RAVLT
+ ADAS. On the other hand, adding amyloid status did not improve substantially
models including T1 MRI and FDG PET data.
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Classifier - Features Bal. acc. AUC Acc. Sens. Spec.

SVM - T1w MRI 0.670 0.736 0.698 0.586 0.754
SVM (trained on CN Aβ- vs AD Aβ+) - T1w MRI 0.679 0.764 0.708 0.547 0.811

SVM - FDG PET 0.708 0.777 0.732 0.633 0.782
SVM (trained on CN Aβ- vs AD Aβ+) - FDG PET 0.761 0.818 0.788 0.666 0.856

RF - Clinicalbase + Score T1 0.717 0.792 0.732 0.671 0.763
RF - Clinicalbase + Score FDG 0.760 0.831 0.791 0.669 0.852

RF - Clinicalbase + Scores T1,FDG 0.769 0.855 0.796 0.685 0.852
RF - Clinicalbase + RAVLT + Scores T1,FDG 0.791 0.881 0.809 0.735 0.846
RF - Clinicalbase + ADAS + Scores T1,FDG 0.790 0.873 0.810 0.729 0.851

RF - Clinicalbase + RAVLT + ADAS + Scores T1,FDG 0.792 0.888 0.811 0.736 0.849
Clinicalbase: gender, education level, MMSE score, sum of boxes of CDR test

TABLE 4.5: Results for models based on imaging data only and on the combination of imaging and clinical data
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Classifier - Features Bal. acc. AUC Acc. Sens. Spec.

RF - Clinicalbase 0.646 0.711 0.680 0.545 0.747
RF - Clinicalbase + RAVLT 0.716 0.816 0.726 0.683 0.748
RF - Clinicalbase + ADAS 0.769 0.850 0.779 0.737 0.800

RF - Clinicalbase + RAVLT + ADAS 0.767 0.860 0.776 0.740 0.795

RF - ADNI T1 0.699 0.773 0.734 0.594 0.804
RF - ADNI FDG 0.696 0.764 0.719 0.628 0.765

RF - ADNI T1,FDG 0.733 0.828 0.756 0.663 0.802
RF - Clinicalbase + RAVLT + ADNI T1,FDG 0.782 0.869 0.795 0.74 0.823

RF - Clinicalbase + RAVLT + ADAS + ADNI T1,FDG 0.796 0.885 0.809 0.755 0.836

Scores T1 0.661 0.722 0.665 0.649 0.673
Scores FDG 0.755 0.805 0.791 0.649 0.862

Scores T1,FDG 0.776 0.814 0.806 0.686 0.866
RF - Clinicalbase + RAVLT + Scores T1,FDG 0.799 0.883 0.818 0.740 0.857

RF - Clinicalbase + RAVLT + ADAS + Scores T1,FDG 0.803 0.896 0.822 0.746 0.860

TABLE 4.6: Results using MRI-derived volumes and a regional FDG-PET feature (as available in ADNIMERGE). The studied
subpopulation is described in Table 4.2.
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Classifier - Features Bal. acc. AUC Acc. Sens. Spec.

RF - Clinicalbase 0.667 0.75 0.695 0.591 0.742
RF - Clinicalbase + Score T1 0.741 0.819 0.760 0.688 0.793

RF - Clinicalbase + Score FDG 0.773 0.854 0.808 0.680 0.867
RF - Clinicalbase + RAVLT 0.725 0.828 0.759 0.653 0.797
RF - Clinicalbase + ADAS 0.761 0.855 0.782 0.703 0.819

RF - Clinicalbase + RAVLT + ADAS 0.744 0.870 0.793 0.638 0.849
RF - Clinicalbase + RAVLT + Scores T1,FDG 0.797 0.889 0.843 0.699 0.895
RF - Clinicalbase + ADAS + Scores T1,FDG 0.803 0.888 0.830 0.730 0.876

RF - Clinicalbase + RAVLT + ADAS + Scores T1,FDG 0.798 0.898 0.850 0.688 0.908

RF - Clinicalbase + Aβ 0.700 0.786 0.706 0.685 0.716
RF - Clinicalbase + Score T1 + Aβ 0.747 0.837 0.763 0.704 0.789

RF - Clinicalbase + Score FDG + Aβ 0.782 0.862 0.816 0.691 0.873
RF - Clinicalbase + RAVLT + Aβ 0.782 0.876 0.799 0.745 0.819
RF - Clinicalbase + ADAS + Aβ 0.765 0.860 0.784 0.713 0.816

RF - Clinicalbase + RAVLT + ADAS + Aβ 0.796 0.900 0.829 0.725 0.866
RF - Clinicalbase + RAVLT + Scores T1,FDG + Aβ 0.799 0.906 0.837 0.719 0.879
RF - Clinicalbase + ADAS + Scores T1,FDG + Aβ 0.805 0.890 0.830 0.737 0.872

RF - Clinicalbase + RAVLT + ADAS + Scores T1,FDG + Aβ 0.800 0.911 0.848 0.697 0.902

TABLE 4.7: Results using the amyloid status. The studied subpopulation is described in Table 4.3.
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4.3.4 Prediction at different time-points

Results for prediction at different time-points are presented in Table 4.8. The per-
formance improved along with the follow up time. There are two main expla-
nations for this behavior. First, it is possible that short-term prediction is more
difficult. Indeed, at earlier time points, some sMCI patients might be more diffi-
cult to distinguish because they are in fact close to dementia (for instance, they will
convert at the next visit). On the other hand, at later time points, MCI patients who
have still not converted may be more likely to not have AD. The second reason is
that we have a reduced number of progressing MCI subjects for shorter follow up
times. It is thus more difficult to train an efficient classifier.

Features 12 m 18 m 24 m 30 m 36 m

Clinicalbase + ADAS 0.630 0.654 0.707 0.714 0.754
Clinicalbase + ADAS + Scores T1,FDG 0.611 0.679 0.724 0.728 0.790

Number of subjects 12 m 18 m 24 m 30 m 36 m

sMCI 467 448 415 407 340
pMCI 39 55 87 87 167

TABLE 4.8: Balanced accuracy for sMCI vs pMCI task for different
follow up times with the number of subjects in each class.

4.4 Conclusions

In this paper, we extend our previous work by proposing a reproducible evalu-
ation of methods to predict progression of MCI subjects to AD, based on multi-
modal clinical and neuroimaging data. In particular, we systematically compared
the performance to models using only clinical/cognitive data. Importantly, all the
tools (including automatic data conversion, standardized imaging preprocessing
pipelines and machine learning evaluation framework) are made publicly avail-
able. Our experimental results, based on rigorous and transparent evaluation pro-
cedures, led to several interesting conclusions.

Overall, the best performances are around 79% - 80% of balanced accuracy and
0.89 - 0.91 of AUC. These results are competitive to those reported in the literature
(see for instance those reported in this recent review paper (Rathore et al., 2017)).
The performance is also comparable to deep learning results (Suk, Lee, and Shen,
2014; Li et al., 2015; Choi and Jin, 2018), whose classification accuracies range be-
tween 60% and 84%. This is interesting because our results are obtained using
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standard machine learning algorithms (linear SVM and random forests). Such sim-
ple techniques thus seem to be competitive with more sophisticated approaches.
We believe that these results may serve as a baseline for comparing new methods.

In this paper, multimodal data included not only multiple neuroimaging modal-
ities (T1 MRI and PET) but also clinical/cognitive data. In particular, we system-
atically compared the performance of neuroimaging-based models to those using
only clinical/cognitive data. We found that when using only socio-demographics
and neuropsychological tests as input, it is already possible to achieve decent per-
formances. Note that this is not a tautology (as would be the case for AD vs CN
classification), since only clinical data at baseline is used to predict diagnosis at a
future point in time. Also, we can observe that the use RAVLT and/or ADAS-Cog
tests led to substantially higher performances, as compared to when using only
MMSE and CDR-SB. Importantly, the performance of such models was superior
to that of standard classifiers based on neuroimaging data only. We believe that it
is an important message for the medical image community. Indeed, in this com-
munity, the majority of papers do not compare the performance of image-based
models to that of clinical data only.

We proposed a simple trick that allows a substantial improvement in the per-
formance of a standard neuroimaging-based classifier (here a linear SVM). The
trick consists in training the model on a simpler task (CN Aβ- vs AD Aβ+) and ap-
plying it to a more difficult task (prediction of progression in MCI patients). This
can be seen as a very simple form of transfer learning, a widely used approach in
machine learning.

The combination of clinical and imaging data further improved the results.
Nevertheless, the improvement remained moderate compared to using only clin-
ical/cognitive data (from 76% to 79%). This is important to consider because ac-
quisition of neuroimaging data requires expensive equipment which may not be
available in all clinical centers.

In conclusion, we proposed a reproducible framework for evaluation of meth-
ods for predicting progression to AD. Results obtained using this approach could
serve as baseline for comparison of more sophisticated approaches.
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Conclusion & Perspectives

The general objective of this thesis was to contribute towards the future translation
to clinics of machine learning (ML) approaches for diagnosis and prognosis of AD.
Three main lines of research were followed to advance towards this goal. First, the
evaluation of classification techniques for distinguishing among different types
of dementia, making use of MRI data obtained in a clinical routine environment.
Second, the development of an end-to-end, public, freely available, framework for
reproducible evaluation of classification methods. This framework was used to
compare different modalities, features, preprocessing and classifiers. Third, the
assessment of the added value of neuroimaging with respect to clinical/cognitive
data for prediction of AD in patients with MCI. We proposed and evaluated dif-
ferent multimodal approaches combining both types of data.

Our first study supports the applicability of computer-assisted diagnostic tools
such as automatic volumetric software tools (AVS) and SVM classifiers to clinical
routine data. The diagnostic performance of AVS and SVM classifiers was assessed
for various neurodegenerative conditions. SVM classifier based on whole gray
matter provided accurate diagnostic classification for the majority of diagnoses
and was far more accurate than classification based on simple volumetry, and still
better than SVM classification based on regional volumes such as hippocampal
volume obtained through AVS. When facing various dementia disorders, the ac-
curacy of univariate volumetric analysis is too low to assist clinical decision mak-
ing. The performance of the SVM classifier was similar or slightly higher to that
of trained neuroradiologists on selected classification tasks. As expected, the clas-
sifier, as well as the neuroradiologists, performed better on dementia known to
have a strongly specific atrophy pattern and worse on dementia with less specific
atrophy patterns. The implementation of advanced MRI-based computer-assisted
diagnostic tools in clinical routine, such as SVM classification, could help to im-
prove diagnostic accuracy. On some particularly difficult clinical situations, neu-
roradiologists could use the assistance of the automatic classifier to refine their
diagnosis. Our study also demonstrates the feasibility of those techniques in the
context of routine MRI data of varying image quality and acquired at different
magnetic field strengths.
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Nevertheless, this study has limitations. First of all, we considered (multiple)
binary classifications and did not use a multi-class approach. A binary classifica-
tion can correspond to some clinical situations (for instance, the clinician hesitat-
ing between early-onset AD and FTD). Nevertheless, for larger-scale applicability,
it would be necessary to consider truly multi-class classification. Moreover, even
though our data included MRI from different field strengths and with varied se-
quence parameters, we did not systematically study the impact of these factors on
the results. Finally, our study fits within the context of assisting neuroradiologists
in their evaluation but does not address the broader question of the neurological
diagnosis which would consider different types of data.

In a second study, we proposed a framework for reproducible classification ex-
periments, aiming to address current issues faced in the area of ML-based AD clas-
sification, such as comparability and reproducibility of the results. Our framework
is composed of a set of tools for automatic conversion of these three databases,
standard image preprocessing pipelines (based on widely known, public and freely
available software tools) and ML tools following current best practices. We then
demonstrated the use of the framework on different classification tasks based on
T1 MRI and FDG PET data on three public datasets. These baseline performances
are in line with the state-of-the-art results. We demonstrated that FDG PET was
consistently outperforming T1w MRI. We found that classification using amyloid-
refined diagnoses always performed better or at least similarly to the related tasks
using NINCDS-ADRDA diagnoses, even though the training sets then comprise
fewer individuals. On the other hand, we found no systematic effect of the choice
of atlas, of degree of smoothing, of the correction of PET images for partial volume
effect, and of the type of features (regions or voxels) on the performances. We also
found that a very strong class imbalance leads to lower performance when using
very high dimensional features, but that moderate class imbalance is adequately
handled. Using multiple datasets, we showed that classifiers are able to general-
ize across different populations. We observed that increased training set size led
to increased classification performances. While this is expected, this is still an im-
portant result, showing that larger datasets are likely to be a decisive factor for the
future improvement of performances, as observed in other fields such as computer
vision. Thus, the availability of larger public datasets appears a key factor for the
improvement of ML in medicine.

A limitation of this study is that we considered only relatively standard fea-
tures and classifiers. Interestingly, these performed comparably to published re-
sults obtained with more advanced approaches. Nevertheless, other methods
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would need to be considered in the future including deep neural network clas-
sifiers and patch-based grading for instance.

We then extended our previous work by proposing a reproducible evaluation
of methods to predict progression of MCI subjects to AD. An important contribu-
tion is that the performances of models using only clinical/cognitive data, neu-
roimaging data and then both are compared. The best performances, around 79%
- 80% of balanced accuracy, use standard ML algorithms. Since they are competi-
tive to those reported in the literature, they may serve as a baseline for comparing
new methods. We found that when using only socio-demographics and neuropsy-
chological tests as input, it is already possible to achieve decent performances that
improve further with the use of more elaborated tests. We need to remark that the
performance of such models was superior to that of standard classifiers based on
neuroimaging data only. An important message for the medical image community
is then that image-based models’ performance must be systematically compared
to that of clinical data only. Then, we proposed a trick consisting in training the
model on a simpler task (CN Aβ- vs AD Aβ+) and applying it to a more diffi-
cult task (prediction of progression in MCI patients). This simple form of transfer
learning improves the prediction performance. The combination of clinical and
imaging data further improved the results. Nevertheless, the improvement re-
mained moderate compared to using only clinical/cognitive data. This result must
be taken into account, given that neuroimaging data is not always available in a
clinical environment.

This study has the following limitations. First, we only considered the clini-
cal/cognitive tests included in ADNI. Other medical centers may have different
practices, for instance using other types of memory tests. Also, this study was
based on a research dataset in which the acquisition of data is done in a controlled
setting (this being true not only for neuroimaging but also for other data). To push
further the translation towards clinical routine, it would be necessary to evalu-
ate the approach on clinical routine data, as done in our first study on differential
diagnosis.

Another important output of this PhD thesis is the release of open source soft-
ware tools to the community. These tools concern: automatic conversion of three
public databases, standard image preprocessing pipelines, and ML tools following
current best practices. All these contributions were integrated into the Clinica soft-
ware platform (http://www.clinica.run), which should increase their long-term
sustainability. We hope that both our framework and the experimental results will

http://www.clinica.run
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be useful to researchers working in the field, allowing them to objectively evaluate
and compare their new approaches. Through this, we aim to provide a baseline
performance to which advanced ML and feature extraction methods can be com-
pared.

Reproducibility is the ability to reproduce results based on the same data and
experimental procedures. In different fields, including neuroimaging (Poldrack et
al., 2017) and ML (Ke et al., 2017), awareness regarding reproducibility has raised.
Key elements of reproducible research include: data sharing, storing of data using
community standards, fully automatic data manipulation, and sharing of code.
Our contributions fit within a larger-scale community effort on reproducibility. In-
deed, we aimed to rely, as much as possible, on community standard and tools,
including the BIDS standard for data organization, the Nipype pipelining system,
standard tools for preprocessing and ML (such as scikit-learn). We hope that this
will make it easier for other researchers to reuse our contributions. Thus, in ad-
dition to increasing reproducibility in the field of AD classification, we hope that
these tools will also make the work of researchers easier.

* *
*

There are multiple perspectives to our work.
First, we are interested in advancing differential diagnosis of dementias. As

mentioned above, one of the limitations of our first study was the use of a binary
classifier to distinguish only between two types of conditions. This does not totally
correspond to the clinical practice where patients can have multiple diagnostic hy-
potheses. In order to overcome this problem, we propose to extend our work with
the use of multiclass classification methods. We could start by reusing the output
of our one-versus-one SVMs and obtain a predicted class. Also, a one-versus-all
approach could be tested. Another possibility would be to use approaches that are
inherently multiclass.

Our work on reproducible evaluation could be extended to other features or
classification approaches. In our experiments, we used as input features all the
voxels in an image and regional measures obtained from atlases. We would like to
also extend the comparison to other features, for example surface features such as
cortical thickness obtained from MRI or cortical representation of PET scans. An-
other perspective would be to add feature selection, although a first approach has
been done in one of our studies (Appendix A). This extension would allow us to
evaluate the influence of different feature selection or feature extraction methods.
In addition, more ML algorithms could be integrated to the framework. In particu-
lar, deep learning methods are currently riding a wave of popularity, and it would
be very interesting to observe their behaviour under strict evaluation conditions.
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Another perspective, related to the Clinica platform, is to update the code that
converts the ADNI database to BIDS. Since ADNI is a living database that un-
dergoes changes continuously, the data converter must be adapted to the new
versions of the data made public every time major changes occur. Specifically,
our current converter does not include all modalities. Recently, in a collaboration
with another PhD student (Appendix A), we added diffusion MRI data but other
modalities are available which have not yet been included in the converter (FLAIR,
fMRI, Tau PET, etc.).

Another perspective of our work would be to continue exploring the predic-
tion of progression of MCI subjects to AD. In Chapter 4, the presented methods
using random forests should be compared to the use of other classification meth-
ods, such as SVM, to observe which one performs better. Indeed, the random
forest appeared as an attractive choice for integrating heterogeneous data but its
computational cost is higher than that of SVM. We want to further explore the
evolution of the classification performance for different time windows. In partic-
ular, since we have observed that more homogeneous datasets tend to provide
better results, we could try to align subjects timelines according to the visit at
which they progressed to AD. We could then use the data obtained from the visit
at conversionTime − N months for training the algorithms. Finally, although the
use of longitudinal data, coming from a follow-up of several visits, as inputs of
the algorithms, also looks promising, we would like to stay focused on the use of
single visit data for predicting the progression of subjects to AD. This would be an
effort to provide results more readily translatable into the clinical practice, and to
have an impact on people’s lives, the ultimate goal of our research.
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Appendix A

Reproducible evaluation of diffusion
MRI features for automatic
classification of patients with
Alzheimer’s disease

The work described in this appendix has been done in collaboration with another
PhD student, Junhao Wen. It has been submitted as a journal article to Neuroin-
formatics:

• Wen J, Samper-González J, Bottani S, Routier A, Burgos N, Jacquemont T,
Fontanella S, Durrleman S, Epelbaum S, Bertrand A, and Colliot O, for the
ADNI, Reproducible evaluation of diffusion MRI features for automatic clas-
sification of patients with Alzheimer’s disease, Submitted to Neuroinformat-
ics. https://arxiv.org/pdf/1812.11183.pdf.

https://arxiv.org/pdf/1812.11183.pdf
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Abstract 

Diffusion MRI is the modality of choice to study alterations of white matter. In the past years, 

various works have used diffusion MRI for automatic classification of Alzheimer’s disease. 

However, the performances obtained with different approaches are difficult to compare 

because of variations in components such as input data, participant selection, image 

preprocessing, feature extraction, feature selection (FS) and cross-validation (CV) procedure. 

Moreover, these studies are also difficult to reproduce because these different components are 

not readily available. In a previous work (Samper-González et al. 2018), we proposed an open-

source framework for the reproducible evaluation of AD classification from T1-weighted 

(T1w) MRI and PET data. In the present paper, we extend this framework to diffusion MRI 

data. The framework comprises: tools to automatically convert ADNI data into the BIDS 

standard, pipelines for image preprocessing and feature extraction, baseline classifiers and a 

rigorous CV procedure. We demonstrate the use of the framework through assessing the 

influence of diffusion tensor imaging (DTI) metrics (fractional anisotropy - FA, mean 

diffusivity - MD), feature types, imaging modalities (diffusion MRI or T1w MRI), data 

imbalance and FS bias. First, voxel-wise features generally gave better performances than 

regional features. Secondly, FA and MD provided comparable results for voxel-wise features. 

Thirdly, T1w MRI performed better than diffusion MRI. Fourthly, we demonstrated that using 

non-nested validation of FS leads to unreliable and over-optimistic results. All the code is 

publicly available: general-purpose tools have been integrated into the Clinica software 

(www.clinica.run) and the paper-specific code is available at: https://gitlab.icm-

institute.org/aramislab/AD-ML. 

Keywords: classification, machine learning, reproducibility, Alzheimer's disease, diffusion 

magnetic resonance imaging, DTI, open-source  
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1. Introduction 

Alzheimer's disease (AD), the most prevalent form of dementia, is expected to affect 1 out of 

85 people in the world by the year 2050 (Brookmeyer et al. 2007). Neuroimaging offers the 

possibility to study pathological brain changes associated with AD in vivo (Ewers et al. 2011). 

The most common neuroimaging modalities used to study AD are T1-weighted (T1w) 

magnetic resonance imaging (MRI) and positron emission tomography (PET) with various 

tracers (Frisoni et al. 2010; Vemuri & Jack 2010). These techniques allow studying different 

types of alterations in the gray matter (GM). However, while AD is often considered primarily 

a gray matter disease, white matter (WM) is also extensively altered. There has thus been an 

increased interest in using diffusion MRI to study alterations in WM as the disease progresses 

(Fellgiebel et al. 2006; Kantarci et al. 2001; Müller et al. 2005; Müller et al. 2007).  

In the past decades, there has been a strong interest in developing machine learning 

methods to assist diagnosis and prognosis of AD based on neuroimaging data (Rathore et al. 

2017a; Falahati et al. 2014; Haller et al. 2011). In particular, a large number of studies using 

machine learning have looked at the potential of diffusion MRI for AD classification 

(Maggipinto et al. 2017; Dyrba, Barkhof, et al. 2015; Lella et al. 2017; Cui et al. 2012; Xie et 

al. 2015; Li et al. 2014). Several of these studies make use of the same publicly available 

dataset: the Alzheimer’s Disease Neuroimaging Initiative (ADNI) (adni.loni.usc.edu). 

However, classification performances are not directly comparable across these studies because 

of differences in participant selection, feature extraction and selection, and performance 

metrics. It is thus difficult to know which approach performs best and which components of 

the method have the greatest influence on classification performances. We recently proposed a 

framework for the reproducible evaluation of machine learning algorithms in AD and 

demonstrated its use on PET and T1w MRI data (Samper-González et al. 2018). The framework 

is composed of tools for management of public datasets and in particular their conversion into 
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the Brain Imaging Data Structure (BIDS) format (Gorgolewski et al., 2016), standardized 

preprocessing pipelines, feature extraction tools and classification algorithms as well as 

procedures for evaluation. This framework was devoted to T1w MRI and PET data. 

In the present work, we extend this framework to diffusion MRI data. We first perform 

a systematic review of the previous works devoted to automatic classification of AD using 

diffusion MRI data. We then present the different components of the framework, namely tools 

to convert ADNI diffusion MRI data into BIDS, preprocessing pipelines, feature extraction and 

selection methods and evaluation framework. We finally apply the framework to study the 

influence of various components on the classification performance: feature type (voxel-wise or 

regional features), imaging modality (T1w or diffusion MRI), data imbalance and feature 

selection (FS) strategy.  

All the code (both of the framework and of the experiments) is publicly available: the 

general-purpose tools have been incorporated into Clinica (Routier et al. 2018), an open-source 

software platform that we developed for brain image analysis, and the paper-specific code is 

available at: https://gitlab.icm-institute.org/aramislab/AD-ML.  
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2. State of the art  

AD is associated with altered integrity of WM, in particular the loss of cellular barriers that 

constrain free water motion (Xie et al. 2006). The fact that DTI was designed to study WM 

microstructure has led to the hypothesis that DTI-based features can be used for AD 

classification (Selnes et al. 2013). In recent years, a large body of research has been published 

for classification of AD using diffusion MRI. Here, we provide a review of these works.  

We performed an online search of publications concerning classification of AD using 

diffusion MRI. We included only publications in English language, only original research 

publications (excluding review papers) and only peer-reviewed papers (either in journals or in 

conference proceedings), thereby excluding abstracts and preprints. We first searched on 

PubMed with the following search criteria: i) keywords: “(((classification diffusion MRI 

alzheimer's disease[Title/Abstract]) OR classification DTI alzheimer's disease[Title/Abstract]) 

OR diagnosis DTI alzheimer's disease[Title/Abstract]) OR diagnosis diffusion MRI 

alzheimer's disease[Title/Abstract]”, ii) publication date: before the 31st October 2018, and iii) 

study species: humans. We identified 616 studies based on these criteria. Among these studies, 

105 review papers were excluded. Based on the abstract, we then selected only papers devoted 

to AD classification and using at least diffusion MRI. This resulted in 18 studies. Secondly, 

another query was performed on Scopus with the following criteria: i) keywords: “(TITLE-

ABS-KEY(classification OR diagnosis) AND TITLE-ABS-KEY((diffusion AND mri) OR dti) 

AND TITLE-ABS-KEY((alzheimer's OR alzheimer) AND disease))”, and ii) publication date 

before the search day (the 31st October 2018). This resulted in 425 studies. We then excluded 

104 review papers. Moreover, limiting to only peer-reviewed journals or conference 

proceedings resulted in 298 studies. Based on the abstract, we selected only papers devoted to 

AD classification and using at least diffusion MRI, resulting in 27 studies. After merging the 

studies found by both PubMed and Scopus, we obtained 32 studies. To complete this search, 
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we also did a search on Google Scholar with keywords: “classification diffusion MRI 

alzheimer's disease” or “classification DTI alzheimer's disease” or “diagnosis DTI alzheimer's 

disease” or “diagnosis diffusion MRI alzheimer's disease”. Two additional studies were 

included, resulting in a total of 34 studies which are presented in the current state-of-the-art 

section.  

These 34 studies can be categorized according to the following criteria. i) Studied 

modality. While the majority used only diffusion MRI, some used multimodal data (combining 

diffusion MRI with T1w MRI or functional MRI for instance). ii) Type of features. We 

subdivided between papers using DTI metric features, such as fractional anisotropy (FA) and 

mean diffusivity (MD), and those using more advanced features, such as tract-based or 

network-based features. iii) Classifiers. The most commonly used are support vector machines 

(SVM) but random forests (RF), logistic regression (LR), nearest neighbors (NN) or naive 

Bayes (NB) were also used in some studies. iv) Dataset. The most commonly used dataset is 

the ADNI although it does not constitute an overwhelming majority, unlike for T1w-MRI or 

PET studies. This is probably because diffusion MRI was not present in ADNI1. v) 

Classification tasks. Some studies focused on the discrimination between AD patients and CN 

(cognitively normal) subjects while other tackled classification of patients with MCI (mild 

cognitive impairment) or prediction of progression to AD among MCI patients. A summary of 

these characteristics for the different studies is presented in Tables 1 (for those using DTI 

metric features) and Table 2 (for connectivity or tractography features). Besides, if multimodal 

imaging or different type of features (i.e., DTI metric and more advanced features) were used 

in a study, we reported the accuracy of the best performance. 
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Table 1. Summary of the studies using DTI metric features for AD classification. 
Abbreviations: dMRI: diffusion MRI; T1w: T1-weighted MRI; fMRI: functional MRI. 
SVM: support vector machine; RVM: relevance vector machine; RF: random forest; NB: naive 
Bayes; LR: logistic regression; NN: nearest neighbor. 
1: accuracy; 2: area under the curve. 
EDSD: European DTI Study on Dementia; MAS: Sydney Memory and Aging; RRMC: 
Research and Resource Memory; HSA: Hospital de Santiago Apostol; PRODEM: Prospective 
Registry on Dementia study; ADNI: Alzheimer’s Disease Neuroimaging Initiative; IDC: Ilsan 
Dementia Cohort; MCXWH: Memory Clinical at Xuan Wu Hospital; TJH: Tong Ji Hospital; 
MICPNU: Memory Impairment Clinic of Pusan National University Hospital; UHG: 
University Hospital of Geneva; DZNE: German Center for Neurodegenerative Diseases 
Rostock database; Local: private database.  
RD: radial diffusivity; AD: axial diffusivity; MO: mode of anisotropy.  
a: non-amnestic Mild Cognitive Impairment; b: amnestic Mild Cognitive Impairment; c: MCI-
Aβ 42−; d: MCI-Aβ 42+; e: sd-aMCI, single domain amnestic MCI; f: sd-fMCI, single domain 
frontal MCI; g: md-aMCI, multiple domains amnestic MCI; h: late MCI; i: early MCI; --, not 
applicable. 
 

Study Subject Modality Feature Classifier Database Performance 

 
AD MCI CN     

CN/ 
AD 

CN/ 
MCI 

sMCI/ 
pMCI 

AD/ 
MCI 

Ahmed et al. 
2017 

45 58 52 dMRI, T1w Hippocampal 
voxel MD 

SVM ADNI 0.901 0.791 -- 0.771 

Cui et al. 2012 -- 79b 204 dMRI, T1w Regional FA SVM MAS -- 0.711 -- -- 

Dyrba et al. 
2013 

137 -- 143 dMRI Voxel FA, MD SVM EDSD 0.831 -- -- -- 

Dyrba, 
Barkhof, et al. 

2015 

-- 35c, 
42d 

25 dMRI, T1w Voxel FA, MD, 
MO 

SVM EDSD -- 0.771,d 0.681 -- 

Dyrba, 
Grothe, et al. 

2015 

28 -- 25 dMRI, T1w, 
fMRI 

Regional FA, 
MD, MO 

SVM DZNE 0.892 -- -- -- 

Demirhan et 
al. 2015 

43 -- 70 dMRI Voxel and 
regional FA 

SVM ADNI 0.881 0.781 -- 0.861 

Friese et al. 
2010 

21 -- 20 dMRI, T1w Voxel FA, MD LR Local 0.882 -- -- -- 

Graña et al. 
2011 

20 -- 25 dMRI Voxel FA, MD SVM HSA 11 -- -- -- 

Gao et al. 
2015 

-- 41 63 dMRI, T1w, 
fMRI 

Regional FA -- UHG -- 0.851 -- -- 

Jung et al. 
2015 

27 18 -- dMRI, T1w Regional FA, 
MD 

SVM MICPNU -- -- -- 0.871 

Lee, Park, and 
Han 2015 

35 73 33 dMRI Voxel FA, MO SVM ADNI 0.881 -- -- 0.901 
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Lella et al. 
2017 

40 -- 40 dMRI Voxel FA, MD SVM, RF, 
NB 

ADNI 0.781 -- -- -- 

Mesrob et al. 
2012 

15 -- 16 dMRI, T1w Voxel and 
regional FA, 

MD 
SVM RRMC 11 -- -- -- 

M. Li et al. 
2014 

21 -- 15 dMRI, T1w Regional FA SVM TJH 0.941 -- -- -- 

Maggipinto et 
al. 2017 

90 90 89 dMRI Voxel FA, MD RF ADNI 0.761 0.601 -- -- 

O’Dwyer et 
al. 2012 

-- 19a,14b 40 dMRI Voxel FA, MD, 
RD, AD 

SVM EDSD -- 0.931 -- -- 

S. Haller et al. 
2013 

-- 18e, 13f, 
35g 

-- dMRI Voxel FA SVM Local -- -- 0.991,e,f -- 

Schouten et al. 
2016 

77 -- 173 dMRI, T1w, 
fMRI 

Regional FA, 
MD 

LR PRODEM 0.952 -- -- -- 

Termenon et 
al. 2011 

15 -- 20 dMRI Voxel FA, MD SVM, 
RVM, NN 

HSA 0.991 -- -- -- 

Y. Xie et al. 
2015 

-- 64b 64 dMRI, T1w Voxel FA, MD SVM MCXWH -- 0.841 -- -- 

Zhang and Liu 
2018 

48 39h, 75i 51 dMRI Regional FA, 
MD, RD, AD 

SVM, LR ADNI 0.901 -- 0.931 -- 
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Table 2. Summary of the studies using tract-based or network-based features for AD 
classification. 
Abbreviations: dMRI: diffusion MRI; T1w: T1-weighted MRI; fMRI: functional MRI. 
SVM: support vector machine; LDA: linear discriminant analysis; RF: random forest; NB: 
naive bayes; LR: logistic regression; NN: nearest neighbor. 
1: balanced accuracy; 2: accuracy; 3: area under the curve. 
DUBIAC: Duke-UNC Brain Imaging and Analysis Center; RRMC: Research and Resource 
Memory; PRODEM: Prospective Registry on Dementia study; ADNI: Alzheimer’s Disease 
Neuroimaging Initiative; NACC: National Alzheimer’s Coordinating Center; NorCog: 
Norwegian registry for persons being evaluated for cognitive symptoms in specialized health 
care. 
a: subjective decline MCI; b: late MCI; c: early MCI; --, not applicable. 
 
 

Study Subject Modality dMRI Feature Classifier Database Performance 

 
AD MCI CN     

CN/ 
AD 

CN/ 
MCI 

sMCI/ 
pMCI 

AD/ 
MCI 

Amoroso et al. 
2017 

47 -- 52 dMRI Network measures -- ADNI 0.953 -- -- -- 

Cai et al. 2018 165 -- 165 dMRI, 
T1w 

Network measures LDA ADNI 0.852 -- -- -- 

Doan et al. 
2017 

79 55, 
30a 

-- dMRI Tract measures, regional 
FA, MD, RD, AD 

LR NorCog -- -- --  
0.713 

Ebadi et al. 
2017 

15 15 15 dMRI Network measures LR, RF, NB, 
SVM, NN 

-- 0.802 0.702 -- 0.802 

Lee, Park, and 
Han 2013 

-- 39 39 dMRI Tract measures, voxel 
and regional FA 

SVM ADNI -- 12 -- -- 

Lella et al. 2018 40 30 52 dMRI Network measures SVM ADNI 0.773 -- -- -- 
Nir et al. 2015 37 113 50 dMRI Tract measures, FA, MD SVM ADNI 0.852 0.792 -- -- 
Prasad et al. 

2015 

38 38b,74c 50 dMRI Network measures SVM ADNI 0.782 -- 0.632 -- 

Schouten et al. 
2017 

77 -- 173 dMRI Network measures, voxel 
FA, MD, RD, AD 

LR PRODEM 0.922 -- -- -- 

Wee et al. 2012 -- 10 17 dMRI, 
fMRI 

Network measures SVM DUBIAC -- 0.962 -- -- 

Wang et al. 
2018 

-- 169 379 dMRI, 
T1w 

Network measures SVM, RF ADNI, 
NACC 

-- 0.753 -- -- 

Zhu et al. 2014 -- 22 22 dMRI, 
fMRI 

Network measures SVM NACC -- 0.952 -- -- 

Zhan et al. 2015 39 112 51 dMRI Network measures LR ADNI 0.711 0.571  
0.691 
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Twenty-one studies used DTI metrics as features (see details in Table 1). Among the 

DTI derived metrics, FA and MD were most frequently used (O’Dwyer et al. 2012; Maggipinto 

et al. 2017; Dyrba et al. 2013; Dyrba, Barkhof, et al. 2015; Lella et al. 2017; Mesrob et al. 2012; 

Zhang & Liu 2018; Termenon et al. 2011; Xie et al. 2015; Friese et al. 2010; Schouten et al. 

2016; Jung et al. 2015; Dyrba, Grothe, et al. 2015). Besides, radial diffusivity (RD), axial 

diffusivity (AD) and mode of anisotropy (MO) were also examined in some papers (O’Dwyer 

et al. 2012; Dyrba, Barkhof, et al. 2015; Lee et al. 2015; Zhang & Liu 2018; Dyrba, Grothe, et 

al. 2015). Voxel- and region-wise features were both used. For voxel-wise classification, all 

voxels from the segmented GM or WM were used. For region-wise classification, the mean 

value within each region of interest (ROI) of DTI metric maps were extracted using an 

anatomical atlas. The most commonly used atlases were the John Hopkins University (JHU) 

atlases (Hua et al. 2008). Ten studies adopted only diffusion MRI for AD classification 

(O’Dwyer et al. 2012; Maggipinto et al. 2017; Dyrba et al. 2013; Lella et al. 2017; Zhang & 

Liu 2018; Termenon et al. 2011; Demirhan et al. 2015; Haller et al. 2013; Graña et al. 2011; 

Lee et al. 2015). The other eleven studies looked at the potential of multimodal MRI, for 

instance T1w MRI and diffusion MRI, for AD diagnosis and compared the performances cross 

modalities. For the DTI metric-based studies, SVM was most frequently used (O’Dwyer et al. 

2012; Dyrba et al. 2013; Dyrba, Barkhof, et al. 2015; Lella et al. 2017; Cui et al. 2012; Mesrob 

et al. 2012; Zhang & Liu 2018; Termenon et al. 2011; Xie et al. 2015; Jung et al. 2015; 

Demirhan et al. 2015; Ahmed et al. 2017; Li et al. 2014; Lee et al. 2015; Graña et al. 2011; 

Haller et al. 2013; Dyrba, Grothe, et al. 2015).  

Thirteen works demonstrated the usage of more complex features, such as tract-based 

or network-based features (see details in Table 2). In such approaches, tractography is used to 

extract WM tracts from diffusion MRI data. To be reliable, such a procedure requires to have 

high angular resolution diffusion imaging data. Then, tract-based approaches compute indices 
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that characterize the tract, including tract volume, average FA/MD across the tract or more 

advanced features (Doan et al. 2017; Nir et al. 2015; Lee et al. 2013). Such indices are used as 

input of the classifier. In network-based features, the result of the tractography (also called the 

tractogram) is used to build a graph of anatomical connections. Usually, the GM is parcellated 

into a set of anatomical regions and the connectivity between two given regions is computed 

based on the tractogram. To that purpose, different measures have been used, including the 

number of fibers or the average FA along the connection. This results in a connectivity network 

which can be described through network-based measures. Such features characterize the local 

and global topology of the network and are fed to a classifier. Ten studies used network-based 

features derived from diffusion MRI for AD classification (Schouten et al. 2017; Ebadi et al. 

2017; Prasad et al. 2015; Wee et al. 2012; Cai et al. 2018; Lella et al. 2018; Wang et al. 2018; 

Zhan et al. 2015; Amoroso et al. 2017; Zhu et al. 2014).  

There is a high variability in terms of classification performances across studies. For 

DTI metric features, the classification accuracy ranges from 0.71 to 1 for task CN vs AD. With 

regard to the accuracies across types of features, no consistency existed across studies. For 

instance, Nir et al observed that, in their study, the performances of MD outperformed FA (Nir 

et al. 2015). However, O’Dwyer et al reported higher accuracy for FA than MD in their 

experiments (O’Dwyer et al. 2012) and another study obtained comparable accuracies for both 

metrics (Dyrba et al. 2013). Conflicting results were also reported for the comparison of 

different modalities. Mesrob et al obtained higher accuracy with T1w MRI than with diffusion 

MRI (Mesrob et al. 2012) while Dyrba et al came to the opposite conclusion (Dyrba, Barkhof, 

et al. 2015). For network- or tract-based features, the classification accuracy ranges from 0.71 

to 0.95 for task CN vs AD, a range which is comparable to that obtained with DTI metrics.  

In this work, we choose to focus on DTI metrics because: i) they are more simple than 

connectivity or tractography features; ii) they can be easily computed and can make use of 
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standard diffusion MRI sequences, thus are more adapted to translation to clinical practice, iii) 

to date, there is no clear evidence that connectivity/tractography features lead to higher 

accuracies for AD classification and iv) conflicting results exist regarding the respective 

performance of different DTI metrics in this context.  
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 3. Materials 

The data used in the preparation of this article were obtained from the Alzheimer’s Disease 

Neuroimaging Initiative database (ADNI) (adni.loni.usc.edu). The ADNI was launched in 

2003 as a public-private partnership, led by Principal Investigator Michael W. Weiner, MD. 

The primary goal of ADNI has been to test whether serial MRI, PET, other biological markers, 

and clinical and neuropsychological assessment can be combined to measure the progression 

of MCI and early AD. Over 1,650 participants were recruited across North America during 

the first three phases of the study (ADNI1, ADNI GO and ADNI2). Around 400 participants 

were diagnosed with AD, 900 with MCI and 350 were control subjects. Three main criteria 

were used to classify the subjects (Petersen et al. 2010). The normal subjects had no memory 

complaints, while the subjects with MCI and AD both had to have complaints. CN and MCI 

subjects had a mini-mental state examination (MMSE) score between 24 and 30 (inclusive), 

and AD subjects between 20 and 26 (inclusive). The CN subjects had a clinical dementia 

rating (CDR) score of 0, the MCI subjects of 0.5 with a mandatory requirement of the memory 

box score being 0.5 or greater, and the AD subjects of 0.5 or 1. The other criteria can be found 

in (Petersen et al. 2010). 

Five diagnosis groups were considered:  

● CN: subjects who were diagnosed as CN at baseline; 

● AD: subjects who were diagnosed as AD at baseline; 

● MCI: subjects who were diagnosed as MCI, EMCI or LMCI at baseline; 

● pMCI: subjects who were diagnosed as MCI, EMCI or LMCI at baseline, were 

followed during at least 36 months and progressed to AD between their first visit and the visit 

at 36 months; 
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● sMCI: subjects who were diagnosed as MCI, EMCI or LMCI at baseline, were 

followed during at least 36 months and did not progress to AD between their first visit and 

the visit at 36 months. 

Naturally, all participants in the pMCI and sMCI groups are also in the MCI group. 

Note that the reverse is false, as some MCI subjects did not convert to AD but were not 

followed long enough to state whether they were sMCI or pMCI.  

The diffusion-weighted images (DWIs) of ADNI were downloaded in October 2016. 

They all came from ADNI GO and ADNI2 phases. Two different acquisition protocols are 

described for DWIs: Axial DTI (images with “Sequence” field starting by “AX_DTI” and 

“Axial_DTI” in the file of “IDA_MR_Metadata_Listing.csv”) and Enhanced Axial DTI 

(images with “Sequence” field equal to “Enhanced_Axial_DTI” in the file of 

“IDA_MR_Metadata_Listing.csv”). In total, Axial DTI were available for 1019 visits and 

Enhanced Axial DTI for 102 visits. Only Axial DTI images were available for the baseline 

visit (222). In the current study, we included the participants whose diffusion and T1w MRI 

scans were both available at baseline. These DWIs were acquired with the following 

parameters: 35 cm field of view, 128×128 acquired matrix, reconstructed to a 256×256 matrix; 

voxel size: 1.35×1.35×2.7mm ; scan time = 9 min; 41 diffusion-weighted directions at b-value 

= 1000 s/mm2 and 5 T2-weighted images (b-value = 0 s/mm2, referred to as b0 

image). Besides, each participant underwent a T1w MRI sequence with following parameters: 

256×256 matrix; voxel size = 1.2×1.0×1.0 mm ; TI = 400 ms; TR = 6.98 ms; TE = 2.85 ms; 

flip angle = 11°. We used quality check (QC) information provided by ADNI to select 

participants (see below Section 4.1). Moreover, QC was conducted on the results of the 

preprocessing pipeline (see below Section 4.2). Four participants were excluded because of 

the lower image resolution (4.5×4.5×4.5mm). Finally, 46 CN, 97 MCI, 54 sMCI, 24 pMCI 

and 46 AD were included.  
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Table 3 summarizes the demographics, and the MMSE and global CDR scores of the 

participants in this study. 

Table 3. Summary of participant demographics, mini-mental state examination (MMSE) and 
global clinical dementia rating (CDR) scores. Values are presented as mean ± SD [range]. M: 
male, F: female 
 

 N Age Gender MMSE CDR 

CN 46 72.7 ± 6.0 [59.8, 89.0] 
 

21 M / 25 F 28.9 ± 1.4 [24,30] 0: 46 

MCI 97 72.9 ± 7.3 [55.0, 87.8] 62 M / 35 F 27.7 ± 1.7 [24,30] 0.5: 97 

sMCI 54 72.6 ± 7.7 [55.0, 87.8] 21 M / 25 F 28.0 ± 1.7 [24,30] 0.5: 54 

pMCI 24 74.2 ± 6.1 [56.5, 85.3] 16 M / 8 F 26.8 ± 1.4 [24,30] 0.5: 24  

AD 46 74.4 ± 8.4 [55.6, 90.3] 28 M / 18 F 23.4 ± 1.9 [20,26] 0.5: 17; 1: 29;  
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4. Methods 

The classification framework is illustrated in Figure 1. It includes: tools for data management, 

image processing, feature extraction and selection, classification, and evaluation. Conversion 

tools allow an easy update of ADNI as new subjects become available. To facilitate future 

development and testing, the different components were designed in a modular-based 

architecture: processing pipelines using Nipype (Gorgolewski et al. 2011), and classification 

and evaluation tools using the scikit-learn2 library (Pedregosa et al., 2011). Thus the objective 

measurement of the impact of each component on the results could be clarified. A simple 

command line interface is provided and the code can also be used as a Python library.  

 

 

Figure 1. Overview of the framework. 
 
 
 
 
 

                                                
2 http://scikit-learn.org 
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4.1 Converting datasets to a standardized data structure 

Public datasets, such as ADNI, are extremely useful to the research community. However, 

using the ADNI can be difficult because the downloaded raw data does not possess a clear and 

uniform organization. We thus proposed to convert ADNI data into the BIDS format 

(Gorgolewski et al. 2016), a community standard which allows storing multiple neuroimaging 

modalities as well as clinical and sociodemographic data. BIDS is based on a file hierarchy 

rather than on a database management system. It can thus be easily deployed in any research 

laboratory.  

The ADNI to BIDS converter that we developed allows to automatically convert the 

raw dataset downloaded from the ADNI website to BIDS. The converter requires that the user 

has downloaded all the ADNI study data (tabular data in csv format) and the imaging data of 

interest. Importantly, the downloaded files must be kept exactly as they were downloaded. All 

conversion steps are then performed by the automatic converter, requiring no user intervention.  

Details regarding conversion of clinical, sociodemographic and T1w MRI data can be 

found in (Samper-González et al. 2018). For the DWIs, first, we selected from the file 

“IDA_MR_Metadata_Listing.csv”, all entries containing “DTI” in the “Sequence” field. 

Images with a sequence name containing “Enhanced” were discarded. Then, “IMAGEUID” 

field was matched to corresponding “loni_image” field of 

‘MAYOADIRL_MRI_IMAGEQC_12_08_15.csv’ file, to find QC information for each 

image. In cases where there existed several scans for a visit, we kept the one marked as selected 

(1 in ‘series_selected’ field of QC csv file). If there was no image marked as selected, then we 

chose the image with the best quality, (as specified in “series_quality” field, ranging from 1 to 

4, 1 being excellent and 4 being unusable), excluding the images that failed QC (series_quality 

= 4). If there were several images for the same visit and QC information was not present, we 

chose the scan that was acquired the first. Once paths for each of the selected images were 
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gathered, the images in dicom format were converted to nifti format using the dcm2niix3 tool, 

or in case of error the dcm2nii4 tool (Li et al. 2016). Images failing the conversion using both 

tools were manually discarded. Finally, the converted images in nifti format were organised in 

the corresponding BIDS folder. Note that all these steps are automatically performed by the 

converter. 

We also provide tools for subject selection according to the duration of follow up and 

the diagnose. In the present study, all the participants whose T1w MRI and diffusion MRI scans 

were available at baseline were included. Finally, we organized all the outputs of the 

experiments into a BIDS-inspired standardized structure. 

 

4.2 Preprocessing pipelines 

4.2.1 Preprocessing of T1w MRI 

The image processing pipeline for T1w MRI was previously described in (Samper-González 

et al. 2018). In brief, the Unified Segmentation procedure (Ashburner & Friston 2005) is first 

used to simultaneously perform tissue segmentation, bias correction and spatial normalization 

of the input image. Next, a group template is created using DARTEL (Ashburner 2007), from 

the subjects’ tissue probability maps in native space obtained at the previous step. Lastly, the 

DARTEL to MNI method (Ashburner 2007) is applied, providing a registration of the native 

space images into the MNI space. Besides, the GM and WM tissue maps from DARTEL 

template were binarized (with a threshold of 0.3) to obtain the corresponding tissue masks that 

are subsequently used in diffusion MRI pipeline.  

                                                
3https://github.com/rordenlab/dcm2niix 
4https://www.nitrc.org/plugins/mwiki/index.php/dcm2nii:MainPage	 
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4.2.2 Preprocessing of diffusion MRI 

For each subject, all b0 images were rigidly registered to the first b0 image and then averaged 

as the b0 reference. The raw DWIs were corrected for eddy current-induced distortions and 

subject movements by simultaneously modelling the effects of diffusion eddy currents and 

movements on the image using eddy tool (Andersson & Sotiropoulos 2016) from FMRIB 

Software Library (FSL) software (Jenkinson et al. 2012). To correct for susceptibility-induced 

distortions, as fieldmap data were not available in ADNI GO or ADNI2, the T1w MRI was 

used instead in this context. The skull-stripped b0 image was registered to the T1w MRI with 

two sequential steps: first a rigid registration using FSL flirt tool and then a non-linear 

registration using SyN registration algorithm from ANTs (Avants et al. 2008). SyN is an 

inverse-consistent registration algorithm allowing EPI induced susceptibility artifacts 

correction (Leow et al. 2007). Finally, the DWI volumes were corrected for nonuniform 

intensity using the ANTs N4 bias correction algorithm (Tustison & Avants 2013) and the 

diffusion weighting directions were appropriately updated (Leemans & Jones 2009). The 

implementation of these different steps is available in the dwi-preprocessing-using-t1 pipeline 

of Clinica. 

 We performed QC on the results of the preprocessing pipeline. Specifically, we 

inspected the results for the presence of head motion artifacts and eddy current artifacts. 

Registration quality was also visually checked by overlapping the source image onto the target 

image. All preprocessed data were considered of acceptable quality.  

The DTI model was then fitted to generate FA and MD maps using MRtrix (Tournier 

et al. 2012). FA maps were nonlinearly registered onto the JHU atlas FA template in MNI space 

with the ANTs SyN algorithm (Avants et al. 2008). The estimated nonlinear deformation was 

finally applied to the MD maps to have all the FA and MD maps in the same space. These 

procedures were implemented in the dwi-processing-dti pipeline of Clinica. 
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4.3 Feature extraction 

We extracted two types of features: voxel-wise and regional features. After image 

preprocessing, all T1w MRI and diffusion MRI are in MNI space and we have a voxel-wise 

correspondence across subjects. Voxel-wise features simply correspond to all the voxels in GM 

for T1w MRI. In order to extract the DTI-based voxel-wise features, FA and MD maps were 

masked using the tissue masks (i.e., WM, GM and GM+WM tissue binarized masks) obtained 

from T1w MRI pipeline. Then a Gaussian smoothing kernel with full width at half maximum 

(fwhm) at 8 mm was applied to the masked FA and MD maps. The resulting maps were masked 

again by the tissue masks. Thus voxels in GM, WM or GM+WM tissue maps were used as 

voxel-wise features for diffusion MRI. Regional features correspond to the average value (GM 

density for T1w MRI; FA or MD for diffusion MRI) computed in a set of ROIs obtained from 

different atlases. AAL2 atlas containing 120 ROIs (Rolls et al. 2015) was used for T1w MRI. 

Two JHU atlases, ICBM-DTI-81 white-matter labels atlas (referred as JHULabel with 48 

ROIs) and JHU white-matter tractography atlas with a 25% threshold (referred as JHUTract25 

with 20 ROIs), were used for diffusion MRI. The different features are shown in Table 4.  
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Table 4. Summary of the different types of features. 

Modality Feature Type Feature  

Diffusion MRI 

Voxel-wise 

WM-FA 

WM-MD 

GM-FA 

GM-MD 

WM+GM-FA 

WM+GM-MD 

Region-wise 
JHULabel-FA/MD 

JHUTract25-FA/MD 

T1w MRI 
Voxel-wise GM-Density 

Region-wise AAL2 

 

 

4.4 Classification 

Classification was performed using a linear SVM for both voxel-wise and regional features. 

As output of the classification, we reported the balanced accuracy, AUC, accuracy, sensitivity, 

specificity. Additionally, the optimal margin hyperplane (OMH) coefficient maps were 

reported. The OMH coefficient map represents the influence of each voxel or region on the 

classification performance. Thus, the OMH coefficient map characterizes the potential 

anatomical patterns associated to a given classifier (Cuingnet et al. 2013). 
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4.5 Cross-validation 

As emphasized in the recent literature (Varoquaux et al. 2017), it is important to properly 

perform the cross-validation (CV) procedures. In the present work, the CV procedure included 

two nested loops: an outer loop evaluating the classification performances and an inner loop 

used to optimize the hyperparameters of the model (C for SVM). More precisely, repeated 

random splits (all of them stratified) with 250 repetitions was used for outer CV. For 

hyperparameter optimization, we used an inner loop with 10-fold CV. For each split, the model 

with the highest balanced accuracy is selected, and then these selected models are averaged 

across splits to profit of model averaging.  

When FS is performed, it is crucial that FS is adequately incorporated into the CV 

procedure. FS is a process to identify relevant features and thereby reduce the dimensionality. 

It has the potential to reduce overfitting (Bermingham et al. 2015). In the present work, we aim 

to explore the impact of FS bias. The FS bias, also known as non-nested FS strategy, arises 

when FS is performed on the entire dataset and not within the CV procedure, thus introducing 

data leakage. On the contrary, a nested FS is a procedure blind to the test data and embedded 

into the nested CV (Maggipinto et al. 2017).  

Two different FS algorithms were applied: an ANOVA univariate test and an 

embedding SVM recursive feature elimination (SVM-RFE) (Guyon et al. 2002; Chandrashekar 

& Sahin 2014). Specifically, the ANOVA test can been seen as a filter without taking the 

classifier into account and was performed for each feature independently. SVM-RFE uses the 

coefficients from the SVM models to assess feature importance. Then the least important 

features, which have the least effect on classification, are iteratively pruned from the current 

set of features. The remaining features are kept for the next iteration until the desired number 

of features has been obtained. For both methods, we tested varying numbers of selected features 
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(1% of the total number of features and then from 10% to 100%, increasing by 10% at each 

step). 

 

4.6 Classification experiments 

Four different classification tasks were considered: CN vs AD, CN vs pMCI, sMCI vs pMCI 

and CN vs MCI.  

For all classification tasks, we assessed the influence of different components on the 

performance. First of all, we compared the performance obtained with different DTI metrics 

(FA, MD), different feature types (voxel, regional) and different atlases. Secondly, we 

compared the classification performance between diffusion MRI and T1w MRI. To note, the 

nested CV procedure, in each iteration, guaranteed the same subjects for data split (i.e., training 

and testing data) between modalities. Thirdly, we studied the impact of imbalanced data. Three 

tasks (i.e., CN vs pMCI, CN vs MCI and sMCI vs pMCI) have imbalanced data: the number 

of subjects of the majority group is nearly twice as many as that of the minority group. To 

assess the impact of data imbalance, a random down-sampling technique was used for each 

imbalanced task. In each iteration of the outer CV, this technique randomly excluded certain 

subjects from the majority group to ensure the subject balance between groups. Lastly, we 

evaluated the effect of FS bias. 
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5. Results 

Here, we present the results of classification tasks using original data or balanced data in Tables 

5 and 6. Balanced accuracy was used as performance metric. All the results with other 

performance metrics are available at https://gitlab.icm-institute.org/aramislab/AD-ML.  

 

Table 5. Results of all the classification experiments using original (imbalanced) data. 
Balanced accuracy was used as performance metric. Values are presented as mean ± standard 
deviation (SD).  

Imaging Modality Feature  CN vs 
AD 

CN vs 
pMCI 

sMCI vs 
pMCI CN vs MCI 

Diffusion MRI 

 WM-FA 0.73± 
0.099 

0.52± 
0.108 

0.43± 
0.088 

0.57± 
0.090 

 WM-MD 0.71± 
0.098 

0.53± 
0.087 

0.49± 
0.048 

0.59± 
0.068 

 GM-FA 0.71± 
0.097 

0.59± 
0.107 

0.48± 
0.089 

0.57± 
0.088 

 GM-MD 0.76± 
0.095 

0.61± 
0.115 

0.51± 
0.098 

0.60± 
0.084 

 WM+GM-FA 0.71± 
0.099 

0.59± 
0.112 

0.47± 
0.094 

0.58± 
0.086 

 WM+GM-MD 0.76± 
0.098 

0.60± 
0.118 

0.51± 
0.106 

0.60± 
0.088 

 JHULabel-FA 0.70± 
0.107 

0.51± 
0.112 

0.47± 
0.088 

0.57± 
0.081 

 JHULabel-MD 0.50± 
0 

0.50± 
0 

0.50± 
0 

0.50± 
0 

  JHUTract25-FA 0.66± 
0.102 

0.54± 
0.118 

0.47± 
0.078 

0.55± 
0.077 

 JHUTract25-MD 0.47± 
0 

0.50± 
0 

0.50± 
0 

0.50± 
0 

T1w MRI 

GM-Density 0.88± 
0.066 

0.73± 
0.112 

0.64± 
0.113 

0.58± 
0.086 

AAL2 0.86± 
0.073 

0.69± 
0.120 

0.64± 
0.118 

0.59± 
0.090 
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Table 6. Results of all the classification experiments using balanced data. Balanced accuracy 
was used as performance metric. Values are presented as mean ± standard deviation (SD). 

Imaging Modality Feature  CN vs pMCI sMCI vs pMCI CN vs MCI 

Diffusion MRI 

 WM-FA 
0.55± 
0.151 

0.44± 
0.150 

0.56± 
0.113 

 WM-MD 
0.61± 
0.140 

0.48± 
0.138 

0.55± 
0.090 

 GM-FA 
0.60± 
0.137 

0.47± 
0.151 

0.59± 
0.1073 

 GM-MD 
0.62± 
0.144 

0.51± 
0.146 

0.57± 
0.101 

 WM+GM-FA 
0.61± 
0.146 

0.44± 
0.156 

0.57± 
0.110 

 WM+GM-MD 
0.62± 
0.139 

0.51± 
0.150 

0.57± 
0.105 

 JHULabel-FA 
0.53± 
0.138 

0.47± 
0.138 

0.57± 
0.101 

 JHULabel-MD 
0.55± 
0.088 

0.48± 
0.142 

0.58± 
0.078 

  JHUTract25-FA 
0.57± 
0.135 

0.48± 
0.142 

0.54± 
0.118 

 JHUTract25-MD 
0.64± 
0.148 

0.53± 
0.144 

0.59± 
0.103 

 
 
5.1 Influence of the type of features 

Generally, voxel-wise features provided higher accuracies than regional features. While the 

difference was moderate for FA, it was particularly striking for MD: MD region-wise 

classifications did not perform better than chance for all tasks. In general, for voxel-wise 

features, the performances obtained with FA and MD were of the same order of magnitude. 

However, one can note that accuracies were (moderately but systematically) higher for MD 
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than for FA. Finally, for MD, the inclusion of GM (either in isolation or when combined with 

WM) considerably increased the performance over the use of WM alone (see Table 5). 

 

5.2 Influence of the imaging modality 

Compared to diffusion MRI, T1w MRI lead to higher accuracies for tasks CN vs AD, CN vs 

pMCI and sMCI vs pMCI (Figure 2). On the other hand, both modalities led to low performance 

for the task CN vs MCI.  

 
Figure 2. Distribution of the balanced accuracy obtained from both T1w and diffusion MRI 
for tasks CN vs AD, CN vs pMCI and sMCI vs pMCI. Both the results for voxel (top) and 
regional (bottom) feature with reference atlases are shown. 
 
 
5.3 Influence of the imbalanced data 

For voxel-wise classification, compared to the results of classification using imbalanced data, 

balanced data showed comparable accuracies for all three tasks, as shown in Figure 3. For MD 

region-wise approach, switching from imbalanced data to balanced data, accuracy considerably 

increased from 0.5 to 0.64 for task CN vs pMCI and from 0.5 to 0.59 for task CN vs MCI.  
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Figure 3. Distribution of the balanced accuracy obtained from the randomly balanced 
classifications for tasks CN vs MCI, CN vs pMCI and sMCI vs pMCI. For comparison, the 
original data classification results are also displayed. Both the results for voxel (top 2) and 
regional (bottom 2) feature are shown.  
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5.4 Influence of the feature selection bias 

To assess the influence of FS bias, the experiments were restricted to GM+WM-FA and 

GM+WM-MD features for task CN vs AD, which are the cases with the highest number of 

features and for which the performance is higher. Results are presented in Figure 4.  

For both FS algorithms, the non-nested approach resulted in vastly over-optimistic 

evaluations of performances, from 5% up to 40% increase in balanced accuracy. Specifically, 

for ANOVA, the highest balanced accuracy was obtained with the first 1% most informative 

voxels for non-nested approach (0.78 for FA and 0.83 for MD), and with all available voxels 

for nested approach (0.71 for FA and 0.76 for MD). For SVM-RFE, the highest balanced 

accuracy was achieved with the first 10% most informative voxels for non-nested approach 

(0.99 for FA and 0.83 for MD), and with the first 70% most informative voxels with FA (0.75) 

and the first 1% most informative voxels with MD (0.77) for nested approach. Compared to 

non-FS (no FS was performed), the nested ANOVA FS did not give better performance. Whilst 

while the nested SVM-RFE obtained slightly higher accuracies than non-FS: balanced accuracy 

increases from 0.71 (non-FS) to 0.75 (nested FS) for FA and 0.76 (non-FS) to 0.77 (nested FS) 

for MD.  
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Figure 4. Balanced accuracy of CN vs AD obtained varying the number of voxels for ANOVA 
and SVM-RFE approaches. (A) GM+WM-FA feature; (B) GM+WM-MD feature. 
 
 

5.5 Potential anatomical pattern  

Figure 5 displays the OMH coefficient maps for the most successful task CN vs AD. For MD 

features, discriminative voxels were mainly within the GM (hippocampus and medial temporal 

cortex) (Figure 5B). When restricting the analysis to WM, only small regions were 

discriminative and these regions where outside those of the JHUTract25 atlas (Figure 5D), 

which is consistent with the poor performances obtained with MD regional features. For GM-

density features (Figure 5C), the discriminative voxels also included these regions but were 

more extended (including some regions in the lateral temporal cortex and in the parietal and 

frontal lobes). For FA, discriminative voxels included both GM and WM regions (Figure 5A). 

In the GM, discriminative voxels were mainly located within the medial temporal lobe. In the 

WM, they were more diffuse and absent of the deep WM. These regions were close to the 

forceps minor and major tracts and inferior fronto-occipital fasciculus.  
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Figure 5. Normalized coefficient maps in MNI space. Task CN vs AD with A) GM+WM-FA 
features; B) GM+WM-MD features; C) GM-Density features; D) WM-MD features 
superimposed onto the JHUTract25 atlas (in gray). Warm colors, it means higher likelihood of 
classification into AD. 
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6. Discussion 

In the present work, we proposed an open-source framework for the reproducible evaluation of 

AD classification from diffusion MRI, which extends our previous framework devoted to T1w 

MRI and PET. We demonstrated its use to assess the influence of different components on 

classification performances, specifically i) feature types, ii) imaging modalities (T1w MRI and 

diffusion MRI), iii) data imbalance and iv) FS strategies. 

Generally, we hopefully contribute to make evaluation of machine learning approaches 

in AD more reproducible and more objective. Firstly, providing the tools to fully automatically 

convert original ADNI diffusion MRI into the community standard BIDS, we hope to facilitate 

the future work of researchers. Secondly, the literature (Uchida 2013; Cuingnet et al. 2011; Lu 

& Weng 2007) suggested that image processing procedures, including steps such as 

preprocessing, parcellation, registration and intensity normalization, have a strong influence 

on classification results. Hence, a standard diffusion MRI processing pipeline was proposed in 

the present work. Lastly, we proposed rigorous CV procedures following recent best practices 

(Varoquaux et al. 2017). The key components are publicly available in Clinica, a freely 

available software platform for clinical neuroscience research studies. We hope this framework 

will allow researchers to easily and rigorously evaluate their own classification algorithms, FS 

algorithms or image processing pipelines.  

 We then aimed to provide a baseline performance for future work. The results obtained 

in our framework were in line with the state-of-the-art. In our experiments, we obtained the 

balanced accuracy with 0.76 for task CN vs AD, 0.60 for task CN vs MCI and 0.61 for task CN 

vs pMCI. In general, the performances are low and support the idea that DTI metrics, alone, 

are not highly discriminant for AD classification. However, one can note that, in the literature, 

several studies using DTI-based features reported superior performances over our work 

(O’Dwyer et al. 2012; Nir et al. 2015; Demirhan et al. 2015; Mesrob et al. 2012; Termenon et 
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al. 2011; Graña et al. 2011). However, these discrepancies may come from i) the differences in 

image quality due to different dataset, ii) different sample size and iii) the FS bias, which we 

will specifically discuss below.  

Different types of DTI-based features were assessed. Generally, voxel-wise features 

provided higher accuracies than region-wise features. This was consistent with a previous study 

(Demirhan et al. 2015), which reported accuracies of 0.75 for region-wise classification and of 

0.88 for voxel-wise classification. Of note, the most discriminative voxels for WM-MD 

classification are outside the regions of the JHUTract25 atlas. This finding explains the poor 

performances obtained using MD regional features. Thus, the atlas used for region-wise 

approaches should be chosen with care. Moreover, FA and MD gave comparable performances 

for voxel-wise classification. This finding was supported by previous studies (Dyrba et al. 

2013; Maggipinto et al. 2017; Lella et al. 2017). One study, which adopted a non-nested FS, 

reported that MD (accuray of 0.81) outperformed FA (accuracy of 0.75) to discriminate CN 

from AD (Nir et al. 2015).  

We also systematically compared the classification performance between T1w and 

diffusion MRI. The results showed that T1w MRI outperformed diffusion MRI. Several 

previous studies have compared the performances of these two modalities. Mesrob et al found 

that T1w MRI outperformed diffusion MRI (accuracy of O.77 for T1w MRI vs 0.69 for FA 

from DTI) for task CN vs AD (Mesrob et al. 2012). However, their results were biased due to 

the adoption of a non-nested FS. Cui et al founded superior performance of T1w MRI over 

diffusion MRI (accuracy of 0.61 for T1w MRI vs 0.54 for FA from DTI) when classifying CN 

from MCI for both modalities (Cui et al. 2012). Using a predefined hippocampus ROI 

approach, Ahmed et al obtained comparable accuracies for both modalities for tasks CN vs AD 

(accuracy of O.71 for T1w MRI vs 0.72 for MD from DTI) and CN vs MCI (accuracy of O.65 

for T1w MRI vs 0.68 for MD from DTI) (Ahmed et al. 2017). Given the larger sample size and 
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proper FS procedure in our work, we believe that the superior performances of T1w MRI over 

diffusion MRI is reliable and robust. Several factors could explain the better performances of 

T1w MRI. First, it is controversial but possible that WM degeneration is a secondary 

degenerative process compared to brain atrophy (Xie et al. 2006; Agosta et al. 2011). Another 

possibility is that ADNI diffusion MRI acquisitions used within our study do not make use of 

the state-of-the-art methods that impact on image quality. In particular, no fieldmap data is 

acquired which leads to suboptimal correction of magnetic susceptibility artifacts (Wu et al. 

2008).  

We evaluated the impact of data imbalance on the classification performance. It is 

commonly agreed that imbalanced data may adversely impact the classification performance 

as the learned model will be biased towards the majority class to minimize the overall error 

rate (Estabrooks 2000; Japkowicz & Others 2000; Dubey et al. 2014). Efforts have been made 

to deal with imbalanced data, which could be generally classified as algorithmic level (Akbani 

et al. 2004) and data level (Dubey et al. 2014). In the current study, for voxel-wise 

classification, we found that the low accuracies obtained in discriminating pMCI from sMCI 

or CN are potentially caused by the small sample size, rather than by the imbalanced data. 

Interestingly, Dubey et al showed that a balanced data obtained by several data resampling 

techniques gave better results than the imbalanced data using T1w MRI from ADNI (Dubey et 

al. 2014). Thus our hypothesis for the limited sample size needs to be further confirmed as 

more subjects are becoming available.  

In the literature, researchers have emphasized that “double-dipping”, referring to the 

use of test subjects in any part of the training process, such as non-nested FS in this context, is 

bad practice and may lead to over-fitted classification (Kriegeskorte et al. 2009; Rathore et al. 

2017b). Similarly, in a recent study, Maggipinto et al showed that the adoption of FS strategies 

should be taken with care (Maggipinto et al. 2017). They proved that a biased FS, usually a 
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non-nested FS, leads to over-optimistic results. Unfortunately, many previous studies using 

diffusion MRI for AD classification adopted the non-nested FS and reported nearly perfect 

classification (O’Dwyer et al. 2012; Mesrob et al. 2012; Graña et al. 2011). In the current study, 

our finding reinforced the message that non-nested FS could result in over-optimistic results. 

With the adoption of the non-nested SVM-RFE FS, a nearly perfect performance was achieved. 

Besides, FA outperformed MD for classification accuracies for this non-nested FS approach. 

Similar patterns were also witnessed in the study of Maggipinto et al (Maggipinto et al. 2017). 

Replacing the non-nested FS with the nested one, we obtained considerably inferior 

performances. On the other hand, we found that, with SVM-RFE not with ANOVA, the nested 

FS could potentially (slightly) improve the performance compared to the case no FS was 

performed. The difference between ANOVA and SVM-RFE may stem from the fact that 

ANOVA is performed for each feature (voxel) independently while GM and WM in contiguous 

voxels are highly correlated (Mechelli et al. 2005). Interestingly, another study found that, with 

the adoption of ReliefF algorithm, FS improved the classification accuracy up to 8% compared 

to the non-FS for task CN vs AD (Demirhan et al. 2015). However, they did not give enough 

details concerning their validation scheme. In particular, it is not clear if they used a nested FS 

(Demirhan et al. 2015). 

Visualization of optimal margin hyperplane coefficient maps allowed to study which 

voxels contribute the most to the discrimination. FA, MD and GM-Density features shared a 

typical AD anatomical pattern: voxels in hippocampus and temporal lobe showed more 

discriminative ability in the classification. These findings were consistent with the literature. 

DTI-based group comparison analyses demonstrated altered FA or MD in the hippocampus 

(Fellgiebel et al. 2006; Kantarci et al. 2001; Müller et al. 2005; Müller et al. 2007; Hanyu et al. 

1998) and in the temporal lobe (Hanyu et al. 1998; Fellgiebel et al. 2005; Head et al. 2005; 

Stahl et al. 2007). Moreover, the OMH coefficient map displayed a diffuse pattern for WM 
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voxels in our work. Similar patterns of WM voxels were also witnessed in the FS procedure 

using diffusion MRI (Demirhan et al. 2015; Dyrba et al. 2013). 

Our study has the following limitations. First, ADNI diffusion MRI data was not 

acquired using the state-of-the-art methods which leads to suboptimal image quality. Related 

works have proven the negative impact of low image quality on MRI analyses (Yendiki et al. 

2014; Alexander-Bloch et al. 2016; Reuter et al. 2015). It is thus possible that diffusion MRI 

acquired using more recent protocols would provide higher classification accuracies. Second, 

our experiments were performed with a limited data sample size. The limitation came from the 

data currently available in ADNI. In a previous study (Samper-González et al. 2018), we have 

demonstrated that increased training set size led to increased classification performances. Thus, 

both limitations can result in inferior classification performances. Lastly, our study only 

explored DTI-based features. With a proper CV and FS, more sophisticated features, such as 

brain tractography- or network-based features, could also be studied.  
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