E. Tkachenko, J. M. Rhodes, M. Simons, and . Syndecans, New kids on the signaling block, Circ. Res, vol.96, pp.488-500, 2005.

A. Sutton, V. Friand, D. Papy-garcia, M. Dagouassat, L. Martin et al., Glycosaminoglycans and their synthetic mimetics inhibit RANTES-induced migration and invasion of human hepatoma cells, Mol. Cancer Ther, vol.6, pp.2948-2958, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00195453

A. Koo, C. F. Dewey, and G. Garcia-cardena, Hemodynamic Shear Stress Characteristic of Atherosclerosis-Resistant Regions Promotes Glycocalyx Formation in Cultured Endothelial Cells, AJP Cell Physiol, vol.304, pp.137-146, 2012.

D. Chappell, N. Dörfler, M. Jacob, M. Rehm, U. Welsch et al., Glycocalyx protection reduces leukocyte adhesion after ischemia/reperfusion, Shock, vol.34, pp.133-139, 2010.

F. Peysselon and S. Ricard-blum, Heparin-protein interactions: From affinity and kinetics to biological roles. Application to an interaction network regulating angiogenesis, Matrix Biol, vol.35, pp.73-81, 2014.

F. Chevalier, D. Arnaud, E. Henault, O. Guillevic, F. Siñeriz et al., A fine structural modification of glycosaminoglycans is correlated with the progression of muscle regeneration after ischaemia: Towards a matrix-based therapy?, Eur. Cells Mater, vol.30, pp.51-68, 2015.

C. Luyt, B. Ho-tin-noe, S. E. Colliec-jouault, M. Jacob, M. Osborne-pellegrin et al., Low-Molecular-Weight Fucoidan Promotes Therapeutic Revascularization in a Rat Model of Critical Hindlimb Ischemia, J. Pharmacol. Exp. Ther, vol.305, pp.24-30, 2003.

J. F. Deux, A. Meddahi-pellé, A. F. Le-blanche, L. J. Feldman, S. Colliec-jouault et al., Low molecular weight fucoidan prevents neointimal hyperplasia in rabbit iliac artery in-stent restenosis model, Arterioscler. Thromb. Vasc. Biol, vol.22, pp.1604-1609, 2002.

O. Berteau and B. Mulloy, Sulfated fucans, fresh perspectives: Structures, functions, and biological properties of sulfated fucans and an overview of enzymes active toward this class of polysaccharide, Glycobiology, vol.13, pp.29-40, 2003.

S. Matou, D. Helley, D. Chabut, A. Bros, and A. Fischer, Effect of fucoidan on fibroblast growth factor-2-induced angiogenesis in vitro, Thromb. Res, vol.106, pp.213-221, 2002.

C. Boisson-vidal, F. Zemani, G. Calliguiri, I. Galy-fauroux, S. Colliec-jouault et al., Neoangiogenesis induced by progenitor endothelial cells: Effect of fucoidan from marine algae, Cardiovasc. Hematol. Agents Med. Chem, vol.5, pp.67-77, 2007.

O. Haddad, E. Guyot, N. Marinval, F. Chevalier, L. Maillard et al., Heparanase and Syndecan-4 Are Involved in Low Molecular Weight Fucoidan-Induced Angiogenesis, Mar. Drugs, vol.13, pp.6588-6608, 2015.

A. Purnama, R. Aid-launais, O. Haddad, M. Maire, D. Letourneur et al., Fucoidan in a 3D scaffold interacts with vascular endothelial growth factor and promotes neovascularization in mice, Drug Deliv. Transl. Res, vol.2, pp.187-197, 2013.

V. Nikolova, C. Y. Koo, S. A. Ibrahim, Z. Wangs, D. Spillmann et al., Differential roles for membrane-bound and soluble syndecan-1 (CD138) in breast cancer progression, Carcinogenesis, vol.30, pp.397-407, 2009.

F. Zong, E. Fthenou, F. Mundt, T. Szatmári, I. Kovalszky et al., Specific syndecan-1 domains regulate mesenchymal tumor cell adhesion, motility and migration, PLoS ONE, vol.6, 2011.

F. Corti, F. Finetti, M. Ziche, and M. Simons, The syndecan-4/protein kinase C pathway mediates prostaglandin E2-induced extracellular regulated kinase (ERK) activation in endothelial cells and angiogenesis in vivo, J. Biol. Chem, vol.288, pp.12712-12721, 2013.

R. L. Longley, A. Woods, A. Fleetwood, G. J. Cowling, J. T. Gallagher et al., Control of morphology, cytoskeleton and migration by syndecan-4, J. Cell Sci, vol.112, pp.3421-3431, 1999.

H. Hassan, B. Greve, M. S. Pavao, L. Kiesel, S. A. Ibrahim et al., Syndecan-1 modulates -integrin-dependent and interleukin-6-dependent functions in breast cancer cell adhesion, migration, and resistance to irradiation, FEBS J, vol.280, pp.2216-2227, 2013.

B. Péterfia, T. Füle, K. Baghy, K. Szabadkai, A. Fullár et al., Syndecan-1 Enhances Proliferation, Migration and Metastasis of HT-1080 Cells in Cooperation with Syndecan-2, PLoS ONE, vol.7, 2012.

C. E. Luyt, A. Meddahi-pellé, B. Ho-tin-noe, S. Colliec-jouault, J. Guezennec et al., Low-molecular-weight fucoidan promotes therapeutic revascularization in a rat model of critical hindlimb ischemia, J. Pharmacol. Exp. Ther, vol.305, pp.24-30, 2003.

A. C. Lake, R. Vassy, M. Di-benedetto, D. Lavigne, C. Le-visage et al., Low molecular weight fucoidan increases VEGF165-induced endothelial cell migration by enhancing VEGF165 binding to VEGFR-2 and NRP1, J. Biol. Chem, vol.281, pp.37844-37852, 2006.

G. Sarlon, F. Zemani, L. David, J. P. Duong-van-huyen, B. Dizier et al., Therapeutic effect of fucoidan-stimulated endothelial colony-forming cells in peripheral ischemia, J. Thromb. Haemost, vol.10, pp.38-48, 2012.

H. Hlawaty, N. Suffee, A. Sutton, O. Oudar, O. Haddad et al., Low molecular weight fucoidan prevents intimal hyperplasia in rat injured thoracic aorta through the modulation of matrix metalloproteinase-2 expression, Biochem. Pharmacol, vol.81, pp.233-243, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00649891

S. Soeda, T. Kozako, K. Iwata, and H. Shimeno, Oversulfated fucoidan inhibits the basic fibroblast growth factor-induced tube formation by human umbilical vein endothelial cells: Its possible mechanism of action, Biochim. Biophys. Acta, vol.1497, pp.127-134, 2000.

B. S. Kim, J. Y. Park, H. J. Kang, H. J. Kim, and J. Lee, Fucoidan/FGF-2 induces angiogenesis through JNK-and p38-mediated activation of AKT/MMP-2 signalling, Biochem. Biophys. Res. Commun, vol.450, pp.1333-1338, 2014.

I. Vlodavsky and Y. Friedmann, Molecular properties and involvement of heparanase in cancer metastasis and angiogenesis, J. Clin. Investig, vol.108, pp.341-347, 2001.

F. Levy-adam, G. Abboud-jarrous, M. Guerrini, D. Beccati, I. Vlodavsky et al., Identification and characterization of heparin/heparan sulfate binding domains of the endoglycosidase heparanase, J. Biol. Chem, vol.280, pp.20457-20466, 2005.

F. Levy-adam, H. Q. Miao, R. L. Heinrikson, I. Vlodavsky, and N. Ilan, Heterodimer formation is essential for heparanase enzymatic activity, Biochem. Biophys. Res. Commun, vol.308, pp.885-891, 2003.

C. R. Parish, C. Freeman, and M. D. Hulett, Heparanase: A key enzyme involved in cell invasion, Biochim. Biophys. Acta, pp.99-108, 1471.

C. Crescimanno, D. Marzioni, F. J. Paradinas, B. Schrurs, J. Mühlhauser et al., Expression pattern alterations of syndecans and glypican-1 in normal and pathological trophoblast, J. Pathol, vol.189, pp.600-608, 1999.

N. Adhikari, M. Carlson, B. Lerman, and J. L. Hall, Changes in Expression of Proteoglycan Core Proteins and Heparan Sulfate Enzymes in the Developing and Adult Murine Aorta, J. Cardiovasc. Transl. Res, vol.4, pp.313-320, 2011.

V. Friand, O. Haddad, D. Papy-garcia, H. Hlawaty, R. Vassy et al., Glycosaminoglycan mimetics inhibit SDF-1/CXCL12-mediated migration and invasion of human hepatoma cells, Glycobiology, vol.19, pp.1511-1524, 2009.
URL : https://hal.archives-ouvertes.fr/pasteur-00415323

F. Charni, V. Friand, O. Haddad, H. Hlawaty, L. Martin et al., Syndecan-1 and syndecan-4 are involved in RANTES/CCL5-induced migration and invasion of human hepatoma cells, Biochim. Biophys. Acta, vol.1790, pp.1314-1326, 2009.

J. F. Deux, A. Meddahi-pelle, A. F. Le-blanche, L. J. Feldman, S. Colliec-jouault et al., Low molecular weight fucoidan prevents neointimal hyperplasia in rabbit iliac artery in-stent restenosis model, Arterioscler. Thromb. Vasc. Biol, vol.22, pp.1604-1609, 2002.

E. A. Sweeney, H. Lortat-jacob, G. V. Priestley, B. Nakamoto, and T. Papayannopoulou, Sulfated polysaccharides increase plasma levels of SDF-1 in monkeys and mice: Involvement in mobilization of stem/progenitor cells, Blood, vol.99, pp.44-51, 2002.
URL : https://hal.archives-ouvertes.fr/hal-01053365

O. Salvucci, L. Yao, S. Villalba, A. Sajewicz, S. Pittaluga et al., Regulation of endothelial cell branching morphogenesis by endogenous chemokine stromal-derived factor-1, Blood, vol.99, pp.2703-2711, 2002.

C. Ferreras, G. Rushton, C. L. Cole, M. Babur, B. A. Telfer et al., Endothelial heparan sulfate 6-O-sulfation levels regulate angiogenic responses of endothelial cells to fibroblast growth factor 2 and vascular endothelial growth factor, J. Biol. Chem, vol.287, pp.36132-36146, 2012.

Y. Wang, X. Yang, S. Yamagata, T. Yamagata, and T. Sato, Involvement of Ext1 and heparanase in migration of mouse FBJ osteosarcoma cells, Mol. Cell. Biochem, vol.373, pp.63-72, 2013.

J. Huegel, M. Enomoto-iwamoto, F. Sgariglia, E. Koyama, and M. Pacifici, Heparanase stimulates chondrogenesis and is up-regulated in human ectopic cartilage: a mechanism possibly involved in hereditary multiple exostoses, Am J Pathol, vol.185, pp.1676-1685, 2015.

M. Busse, A. Feta, J. Presto, M. Wilén, M. Gronning et al., Contribution of EXT1, EXT2, and EXTL3 to heparan sulfate chain elongation, J. Biol. Chem, vol.282, pp.32802-32810, 2007.

J. Bibliography-almodovar, J. Mower, A. Banerjee, A. K. Sarkar, N. P. Ehrhart et al.,

, Chitosan-heparin polyelectrolyte multilayers on cortisol bone: periosteum-mimetic, cytophilic, anticacterial coatings, Biotechnol. Bioeng, vol.110, pp.609-618, 2013.

B. Alsoufi, C. Manlhiot, B. Mccrindle, C. Canver, A. Sallehuddin et al., Aortic and mitral valve replacement in children: is there any role for biologic and bioprosthetic substitutes?, European Journal of Cardio-thoracic Surgery, vol.36, pp.84-90, 2009.

B. Barrilleaux, D. Phinney, D. Prockop, and K. O'connor, Review: ex vivo engineering of living tissues with adult stem cells, Tissue Eng, vol.12, pp.3007-3019, 2006.

O. Berteau and B. Mulloy, Sulfated fucans, fresh perspectives: structures, functions, and biological properties of sulfated fucans and an overview of enzymes active toward this class of polysaccharide, Glycobiology, pp.29-40, 2003.

S. Colliec-jouault, J. Millet, D. Helley, C. Sinquin, and A. M. Fischer, Effect of low molecular weight fucoidan on experimental arterial thrombosis in the rabbit and rat, Journal of Thrombosis and Haemostasis, vol.1, issue.5, pp.1114-1115, 2003.

C. R. Correia, P. Sher, R. L. Reis, and J. F. Mano, Liquified chitosan-alginate multilayer capsules incorporating poly(L-lactic acid) microparticles as cell carrier, Soft Matter, vol.9, pp.2125-2130, 2013.

R. R. Costa and J. F. Mano, Polyelectrolyte multilayered assemblies in biomedical technologies, Chem. Soc. Rev, vol.43, pp.3453-3479, 2014.

T. Crouzier, T. Boudou, and C. Picart, Polysaccharide-based polyelectrolyte multilayers
URL : https://hal.archives-ouvertes.fr/hal-01067510

, Curr. Opin. Colloid Interface Sci, vol.15, pp.417-426, 2010.

A. Cumashi, N. Ushakova, M. Preobrazhenskaya, A. D'incecco, A. Piccoli et al., A comparative study of the antiinflammatory, anticoagulant, antiangiogenic, and antiadhesive activities of nine different fucoidans from brown seaweeds, Glycobiology, vol.17, pp.541-552, 2007.

F. Cuomo, F. Lopez, A. Ceglie, L. Maiuro, M. G. Miguel et al., Soft Matter, vol.8, pp.4415-4420, 2012.

J. F. Deux, A. Meddahi-pellé, A. F. Le-blanche, L. J. Feldman, S. Colliec-jouault et al., Low molecular weight fucoidan prevents neointimal hyperplasia in rabbit iliac artery in-stent restenosis model, Arterioscler. Thromb. Vasc. Biol, vol.22, pp.1604-1609, 2002.

J. G?sior, J. Sacha, P. Jele?, J. Zieli?ski, and J. Przybylski, Heart Rate and Respiratory Rate Influence on Heart Rate Variability Repeatability: Effects of the Correction for the Prevailing Heart Rate, Frontiers in Physiology, vol.7, p.356, 2016.

A. Guyomard, G. Muller, and K. Glinel, Buildup of multilayers based on amphiphilic polyelectrolytes, Macromolecules, vol.38, pp.5737-5742, 2005.

K. Hammermeister, G. Sethi, W. Henderson, F. Grover, C. Oprian et al., Outcomes 15 years after valve replacement with a mechanical versus bioprosthetic valve: final report of the Veterans Affairs randomized trial, J Am Coll Cardiol, vol.36, pp.1152-1160, 2000.

M. Harpa, I. Movileanu, L. Sierad, H. Cotoi, H. Suciu et al., Pulmonary heart valve replacement using stabilized acellular xenogeneic scaffolds; effects of seeding with autologous stem cells, Rev Rom Med Lab, vol.23, pp.415-429, 2016.

A. Hegen, A. Blois, C. Tiron, M. Hellesøy, D. Micklem et al., Efficient in vivo Vascularization of Tissue Engineering Scaffolds, J. Tissue Eng. Regen. Med, vol.4, pp.52-62, 2011.

R. Henaine, . F. Roubertie, M. Vergnat, and J. Ninet, Valve replacement in children: A challenge for a whole life. Archives of Cardiovascular Diseases, vol.105, pp.517-528, 2012.

H. Hlawaty, N. Suffee, A. Sutton, O. Oudar, O. Haddad et al., Low molecular weight fucoidan prevents intimal hyperplasia in rat injured thoracic aorta through the modulation of matrix metalloproteinase-2 expression, Biochem. Pharmacol, vol.81, pp.233-243, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00649891

T. T. Ho, K. E. Bremmel, M. Krakowska, D. N. Striger, B. Thierry et al., Tuning polyelectrolyte multilayer structure by exploiting natural variation in fucoidan chemistry, Soft Matter, vol.11, pp.2110-2124, 2015.

B. B. Hsu, S. R. Hagerman, K. Jamieson, J. Veselinovic, N. O'neill et al., Multilayer films assembled from naturally-derived materials for controlled protein release, Biomacromolecules, vol.15, pp.2049-2057, 2014.

L. Hung and S. Rahimtoola, Prosthetic Heart Valves and Pregnancy, Circulation, vol.107, pp.1240-1246, 2003.

H. Kerdjoudj, N. Berthelemy, F. Boulmedais, J. Stoltz, P. Menu et al., Soft Matter, vol.6, pp.3722-3734, 2010.

A. Lichtenberg, I. Tudorache, S. Cebotari, S. Ringes-lichtenberg, G. Sturz et al., In vitro re-endothelialization of detergent decellularized heart valves under simulated physiological dynamic conditions

, Biomaterials, vol.27, pp.4221-4229, 2006.

M. Lundin, F. Solaqa, E. Thormann, L. Macakova, E. Blomberg et al., , vol.27, pp.7537-7548, 2011.

N. Marinval, P. Saboural, O. Haddad, M. Maire, K. Bassand et al., , vol.10, p.185, 2016.

S. Mauray, E. De-raucourt, F. Chaubet, O. Maïga-revel, C. Sternberg et al., Comparative anticoagulant activity and influence on thrombin generation of dextran derivatives and of a fucoidan fraction, J. Biomater. Sci. Polym, vol.9, pp.373-387, 1998.

J. Millet and S. C. Jouault,

S. Mauray, J. Theveniaux, C. Sternberg, and C. Boisson-vidal,

A. M. Fischer, Antithrombotic and anticoagulant activities of a low molecular weight fucoidan

, Thromb Haemost, vol.81, pp.391-395, 1999.

S. Neuenschwander and S. Hoerstrup, Heart valve tissue engineering; Transplant Immunology, vol.12, pp.359-365, 2004.

G. Neufel, T. Cohen, S. Gengrinovitch, and Z. Poltorak, Vascular endothelial growth factor (VEGF) and its receptors, The FASEB Journal, vol.13, pp.9-22, 1999.

A. Purnama, R. Aid-launais, O. Haddad, M. Maire, D. Letourneur et al., Fucoidan in a 3D scaffold interacts with vascular endothelial growth factor and promotes neovascularization in mice, Drug Deliv. Transl. Res, vol.2, pp.187-197, 2013.

J. Puvimanasinghe, E. Steyerberg, J. Takkenberg, M. Eijkemans, L. Herwerden et al., Prognosis After Aortic Valve Replacement With a Bioprosthesis Predictions Based on Meta-Analysis and Microsimulation, Circulation, vol.103, pp.1535-1541, 2001.

J. F. Quinn, S. J. Pas, A. Quinn, H. P. Yap, R. Suzuki et al., J. Am. Chem. Soc, vol.134, 2012.

S. Rahimtoola, Choice of Prosthetic Heart Valve in Adults, J Am Coll Cardiol, vol.55, pp.2413-2426, 2010.

B. Richard, M. C. Bouton, S. Loyau, D. Lavigne, and D. Letourneur, Jandort-Perrus, M.; Arocas, V. Modulation of protease nexin-1 activity by polysaccharides, Thromb Haemost, vol.95, issue.2, pp.229-264, 2006.

N. Saha, C. Monge, V. Dulong, C. Picart, and K. Glinel, Biomacromolecules, vol.14, pp.520-528, 2013.

V. Sales, B. Mettler, G. Engelmayr, E. Aikawa, J. Bischoff et al., Endothelial progenitor cells as a sole source for ex vivo seeding of tissue-engineered heart valves, Tissue Eng. A, vol.16, pp.257-267, 2010.

T. Serizawa, M. Yamaguchi, and M. Akashi, Biomacromolecules, vol.3, pp.724-731, 2002.

L. Shen, P. Chaudouet, J. Ji, and C. Picart, pH-amplified multilayer films based on hyaluronan: influence of HA molecular weight and concentration on film growth and stability
URL : https://hal.archives-ouvertes.fr/hal-00670225

, Biomacromolecules, vol.12, pp.1322-1331, 2011.

P. X. Sheng, Y. Ting, J. P. Chen, and L. Hong, J. Colloid Interface Sci, vol.275, pp.131-141, 2004.

T. H. Silva, ;. A. Alves, B. M. Ferreira, J. M. Oliveira, L. L. Reys et al., Materials of marine origin: a review on polymers and ceramics of biomedical interest, Int Mater Rev, vol.57, pp.276-306, 2012.

C. Stamm, A. Khosravi, N. Grabow, K. Schmohl, N. Treckmann et al., Biomatrix/polymer composite material for heart valve tissue engineering, Ann. Thorac. Surg, vol.78, pp.2084-2092, 2004.

B. Thierry, F. M. Winnik, Y. Merhi, J. Silver, and M. Tabrizian, Fucoidans from brown seaweeds: an update on structures, extraction techniques and use of enzymes as tools for structural elucidation, Biomacromolecules, vol.4, issue.22, p.8131, 2003.

M. T. Ale, J. D. Mikkelsen, and A. S. Meyer, Important Determinants for Fucoidan Bioactivity: A Critical Review of Structure-Function Relations and Extraction Methods for Fucose-Containing Sulfated Polysaccharides from Brown Seaweeds, Marine Drugs, vol.2011, issue.10, pp.2106-2130

A. N. Alexopoulou, H. A. Multhaupt, and J. R. Couchman, Syndecans in wound healing, inflammation and vascular biology, Int. J. Biochem. Cell Biol, vol.39, pp.505-528, 2007.

J. Almodovar, J. Mower, A. Banerjee, A. K. Sarkar, N. P. Ehrhart et al.,

, Chitosan-heparin polyelectrolyte multilayers on cortisol bone: periosteum-mimetic, cytophilic, anticacterial coatings, Biotechnol. Bioeng, vol.110, pp.609-618, 2013.

M. Aloisi and S. Schiaffino, Growth of elementary blood vessels in diffusion chambers: electron microscopy of capillary morphogenesis, Virchows Arch B Cell Pathol, vol.8, pp.328-341, 1971.

B. Alsoufi, C. Manlhiot, B. Mccrindle, C. Canver, A. Sallehuddin et al., Aortic and mitral valve replacement in children: is there any role for biologic and bioprosthetic substitutes?, European Journal of Cardio-thoracic Surgery, vol.36, pp.84-90, 2009.

A. E. Aplin, S. M. Short, and R. L. Juliano, Anchorage-dependent regulation of the mitogen-activated protein kinase cascade by growth factors is sup-ported by a variety of integrin alpha chains, J Biol Chem, vol.274, pp.31223-31228, 1999.

R. K. Assoian, Anchorage-dependent cell cycle progression, J Cell Biol, vol.136, 1997.

R. K. Assoian and M. A. Schwartz, Coordinate signaling by integrins and receptor tyrosine kinases in the regulation of G1 phase cell-cycle pro-gression, Curr Opin Genet Dev, vol.11, pp.48-53, 2001.

D. H. Ausprunk and J. Folkman, Migration and proliferation of endothelial cells in preformed and newly formed blood vessels during tumor angio-genesis, Microvasc Res, vol.14, pp.53-65, 1977.

A. D. Bach, J. P. Beier, J. Stern-staeter, and R. E. Horch, Skeletal muscle tissue engineering, J. Cell. Mol. Med, vol.8, pp.413-422, 2004.

L. Bachelet, I. Bertholon, D. Lavigne, R. Vassy, M. Jandrot-perrus et al., Affinity of low molecular weight fucoidan for P-selectin triggers its binding to activated human platelets, Biochim. Biophys. Acta Gen. Subj, vol.1790, pp.141-146, 2009.

S. Balaji, A. King, T. M. Crombleholme, and S. G. Keswani, The Role of
URL : https://hal.archives-ouvertes.fr/hal-00202869

, Endothelial Progenitor Cells in Postnatal Vasculogenesis: Implications for Therapeutic Neovascularization and Wound Healing, Adv. Wound Care, vol.2, pp.283-295, 2013.

I. Barbosa, C. Morin, S. Garcia, A. Duchesnay, M. Oudghir et al., A synthetic glycosaminoglycan mimetic (RGTA) modifies natural glycosaminoglycan species during myogenesis, J. Cell Sci, vol.118, pp.253-264, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00172753

B. Barrilleaux, D. Phinney, D. Prockop, and K. O'connor, Review: ex vivo engineering of living tissues with adult stem cells, Tissue Eng, vol.12, pp.3007-3019, 2006.

D. Barritault and J. Caruelle, Regenerating agents (RGTAs): a new therapeutic approach, Ann Pharm Fr, vol.64, issue.2, pp.135-179, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00109668

M. D. Bass, R. C. Williamson, R. D. Nunan, J. D. Humphries, and A. Byron,

M. R. Martin, P. Humphries, and M. J. , A Syndecan-4 Hair Trigger Initiates Wound Healing through Caveolin-and RhoG-Regulated Integrin Endocytosis, Dev. Cell, vol.21, pp.681-693, 2011.

D. A. Beattie, A. Beaussart, A. Mierczynska-vasilev, S. L. Harmer, B. Thierry et al., , vol.28, pp.1683-1688, 2012.

M. Belting, Heparan sulfate proteoglycan as a plasma membrane carrier, Trends Biochem Sci, vol.28, pp.145-151, 2003.

O. Berteau and B. Mulloy, Sulfated fucans, fresh perspectives: structures, functions, and biological properties of sulfated fucans and an overview of enzymes active toward this class of polysaccharide, Glycobiology, pp.29-40, 2003.

M. I. Bilan, A. A. Grachev, A. S. Shashkov, M. Kelly, C. J. Sanderson et al., Further studies on the composition and structure of a fucoidan preparation from the brown alga Saccharina latissima, Carbohydrate Research, vol.345, issue.14, pp.2038-2047, 2010.

M. I. Bilan, A. A. Grachev, N. E. Ustuzhanina, A. S. Shashkov, and N. E. Nifantiev,

, Carbohydr. Res, vol.337, pp.719-730, 2002.

M. I. Bilan and A. I. Usov, Structural Analysis of Fucoidans, Natural Product Communications, vol.3, issue.10, pp.1639-1648, 2008.

F. Blanquaert, D. Barritault, and C. , Effects of heparin-like polymers associated with growth factors on osteoblast proliferation and phenotypic expression, J. Biomed. Mater Res1999, vol.44, pp.63-72

S. Bodine-fowler, Skeletal muscle regeneration after injury: an overview, J Voice, vol.8, issue.1, pp.53-62, 1994.

C. Boisson-vidal, S. Colliec-jouault, and A. M. Fischer, Therapeutic Potential of Fucoidans in Ischemic Diseases, Mar. Med. Glycomics, 2013.

C. Boisson-vidal, F. Zemani, G. Calliguiri, I. Galy-fauroux, S. Colliec-jouault et al., Neoangiogenesis induced by progenitor endothelial cells: effect of fucoidan from marine algae, Cardiovasc. Hematol. Agents Med. Chem, vol.5, pp.67-77, 2007.

J. H. Bongaerts, J. J. Cooper-white, and J. R. Stokes, Biomacromolecules, vol.10, pp.1287-1294, 2009.

M. Borden, M. Attawia, Y. Khan, and C. T. Laurencin, Tissue engineered microspherebased matrices for bone repair: design and evaluation, Biomaterials, vol.23, pp.551-560, 2002.

C. Bouvard, I. Galy-fauroux, F. Grelac, W. Carpentier, A. Lokajczyk et al., Low-Molecular-Weight Fucoidan Induces Endothelial Cell Migration via the PI3K/AKT Pathway and Modulates the Transcription of Genes Involved in Angiogenesis, Mar. Drugs, vol.13, pp.7446-7462, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01514447

T. V. Brennan, L. Lin, J. D. Brandstadter, V. R. Rendell, K. Dredge et al., Heparan sulfate mimetic PG545-mediated antilymphoma effects require TLR9-dependent NK cell activation, J. Clin. Invest, vol.126, pp.207-219, 2016.

A. Brown, C. J. Robinson, J. T. Gallagher, and T. L. Blundell, Cooperative heparinmediated oligomerization of fibroblast growth factor-1 (FGF1) precedes recruitment of FGFR2 to ternary complexes, Biophys. J, vol.104, issue.2, pp.1720-1730, 2013.

A. Carpentier, From valvular xenograft to valvular bioprosthesis, Med Instrum, vol.11, pp.98-101, 1965.

J. J. Castellot, K. Wong, B. Herman, R. L. Hoover, D. F. Albertini et al., Binding and internalization of heparin by vascular smooth muscle cells, J. Cell. Physiol, vol.124, pp.13-20, 1985.

B. Casu, A. Naggi, and G. Torri, Heparin-derived heparan sulfate mimics to modulate heparan sulfate-protein interaction in inflammation and cancer, Matrix Biol, vol.29, pp.442-452, 2010.

K. L. Chan, Is aortic stenosis a preventable disease?, J. Am. Coll. Cardiol, vol.42, pp.593-599, 2003.

D. Chappell, N. Dörfler, M. Jacob, M. Rehm, U. Welsch et al., Glycocalyx protection reduces leukocyte adhesion after ischemia/reperfusion, Shock, vol.34, pp.133-139, 2010.

D. Chappell, K. Hofmann-kiefer, M. Jacob, M. Rehm, J. Briegel et al., TNF-alpha induced shedding of the endothelial glycocalyx is prevented by hydrocortisone and antithrombin, Basic Res Cardiol, vol.104, p.78, 2009.

D. Chappell, M. Jacob, K. Hofmann-kiefer, D. Bruegger, M. Rehm et al., Hydrocortisone preserves the vascular barrier by protecting the endothelial glycocalyx, Anesthesiology, vol.107, pp.776-784, 2007.

F. Chaubet, L. Chevolot, J. Jozefonvicz, and P. Durand,

;. Dordrecht and . Boston, , pp.313-358, 2000.

M. C. Chen, W. L. Hsu, P. A. Hwang, and T. C. Chou, Low Molecular Weight Fucoidan Inhibits Tumor Angiogenesis through Downregulation of HIF-1/VEGF Signaling under Hypoxia, Mar. Drugs, vol.13, pp.4436-51, 2015.

F. Chevalier, D. Arnaud, E. Henault, O. Guillevic, F. Sineriz et al.,

D. Garcia, D. Barritault, D. Letourneur, G. Uzan, A. Meddahi-pellé et al., A fine structural modification of glycosaminoglycans is correlated with the progression of muscle regeneration after ischaemia: Towards a matrix-based therapy?, Eur. Cells Mater, vol.30, issue.2, pp.51-68, 2015.

L. Chevolot, A. Foucault, F. Chaubet, N. Kervarec, C. Sinquin et al., Further data on the structure of brown seaweed fucans: Relationships with anticoagulant activity, Carbohydr. Res, vol.319, pp.154-165, 1999.

L. Chevolot, B. Mulloy, J. Ratiskol, A. Foucault, and S. Colliec-jouault, A disaccharide repeat unit is the major structure in fucoidans from two species of brown algae

, Carbohydr. Res, vol.330, pp.529-535, 2001.

A. O. Chizhov, A. Dell, H. R. Morris, S. M. Haslam, R. A. Mcdowell et al.,

S. , A study of fucoidan from the brown seaweed Chorda filum. Carbohydrate Research, vol.320, pp.108-119, 1999.

Y. Cho, E. J. Cho, J. H. Lee, S. J. Yu, Y. J. Kim et al., Fucoidaninduced ID-1 suppression inhibits the in vitro and in vivo invasion of hepatocellular carcinoma cells, Biomed. Pharmacother, vol.83, pp.607-616, 2016.

L. Chollet, P. Saboural, C. Chauvierre, J. N. Villemin, D. Letourneur et al., Fucoidans in Nanomedicine : Fucoidans in Nanomedicine. Marine drugs, 2016.

C. Chothia and E. Y. Jones, The molecular structure of cell adhesion molecules

, Annu Rev Biochem, vol.66, pp.823-62, 1997.

S. Colliec-jouault, J. Millet, D. Helley, C. Sinquin, and A. M. Fischer, Effect of low molecular weight fucoidan on experimental arterial thrombosis in the rabbit and rat, Journal of Thrombosis and Haemostasis, vol.1, issue.5, pp.1114-1115, 2003.

R. Cooper, C. Dragar, K. Elliot, J. H. Fitton, J. Godwin et al., BMC Complementary Altern. Med, vol.2, p.11, 2002.

C. R. Correia, P. Sher, R. L. Reis, and J. F. Mano, Liquified chitosan-alginate multilayer capsules incorporating poly(L-lactic acid) microparticles as cell carrier, Soft Matter, vol.9, pp.2125-2130, 2013.

V. M. Correlo, L. F. Boesel, E. Pinho, A. R. Costa-pinto, . Alves et al., Melt-based compression-molded scaffolds from chitosanpolyester blends and composites: Morphology and mechanical properties, J Biomed Mater Res A, vol.91, pp.489-504, 2009.

R. R. Costa and J. F. Mano, Polyelectrolyte multilayered assemblies in biomedical technologies, Chem. Soc. Rev, vol.43, pp.3453-3479, 2014.

J. R. Couchman, Transmembrane Signaling Proteoglycans, Annu. Rev. Cell Dev

, Biol, vol.26, pp.89-114, 2010.

T. Crouzier, T. Boudou, and C. Picart, Polysaccharide-based polyelectrolyte multilayers, Curr. Opin. Colloid Interface Sci, vol.15, pp.417-426, 2010.
URL : https://hal.archives-ouvertes.fr/hal-01067510

A. Cumashi, N. Ushakova, M. Preobrazhenskaya, A. D'incecco, A. Piccoli et al., A comparative study 233 of the anti-inflammatory, anticoagulant, antiangiogenic, and antiadhesive activities of nine different fucoidans from brown seaweeds, Glycobiology, vol.17, pp.541-552, 2007.

L. Cunha and A. Grenha, Sulfated Seaweed Polysaccharides as Multifunctional Materials in Drug Delivery Applications, Mar. Drugs, vol.14, p.42, 2016.

F. Cuomo, F. Lopez, A. Ceglie, L. Maiuro, M. G. Miguel et al., Soft Matter, vol.8, pp.4415-4420, 2012.

D. S. Da-costa, R. A. Pires, A. M. Frias, R. L. Reis, and I. Pashkuleva, Sulfonic groups induce formation of filopodia in mesenchymal stem cells, J Mater Chem, vol.22, pp.7172-7180, 2012.

G. E. Davis and D. R. Senger, Endothelial Extracellular Matrix, vol.97, pp.1093-1107, 2005.

G. E. Davis and C. W. Camarillo, An alpha 2 beta 1 integrin-dependent pinocytic mechanism involving intracellular vacuole formation and coalescence regulates capillary lumen and tube formation in three-dimensional collagen matrix, Exp Cell Res, vol.224, pp.39-51, 1996.

G. E. Davis and K. J. Bayless, An integrin and Rho GTPase-dependent pinocytic vacuole mechanism controls capillary lumen formation in collagen and fibrin matrices

G. E. Davis, K. J. Bayless, and A. Mavila, Molecular basis of endothelial cell morphogenesis in three-dimensional extracellular matrices, Anat Rec, vol.268, pp.252-275, 2002.

E. Dejana, L. R. Languino, N. Polentarutti, G. Balconi, J. J. Ryckewaert et al.,

M. J. Donati, M. B. Mantovani, A. Marguerie, and G. , Interaction between fibrinogen and cultured endothelial cells. Induction of migration and specific binding, J Clin Invest, vol.75, pp.11-18, 1985.

P. Desgranges, C. Barbaud, J. P. Caruelle, D. Barritault, and J. Gautron, A substituted dextran enhances muscle fiber survival and regeneration in ischemic and denervated rat EDL muscle, FASEB J, vol.13, issue.6, pp.761-767, 1999.

P. Desgranges, J. P. Caruelle, G. Carpentier, D. Barritault, and M. Tardieu, Beneficial use of fibroblast growth factor 2 and RGTA, a new family of heparan mimics, for endothelialization of PET prostheses, J Biomed Mater Res, vol.58, issue.1, pp.1-9, 2001.

P. Desgranges, D. Barritault, J. P. Caruelle, and M. Tardieu, Transmural endothelialization of vascular prostheses is regulated in vitro by Fibroblast Growth Factor 2 and heparan-like molecule, Int J Artif Organs, vol.20, issue.10, pp.589-98, 1997.

J. F. Deux, A. Meddahi-pellé, A. F. Le-blanche, L. J. Feldman, S. Colliec-jouault et al., Letourneur, D. Low molecular weight fucoidan prevents neointimal hyperplasia in rabbit iliac artery in-stent restenosis model

, Arterioscler. Thromb. Vasc. Biol, vol.22, pp.1604-1609, 2002.

C. J. Drake, S. J. Brandt, T. C. Trusk, and C. D. Little, TAL1SCL is expressed in endothelial progenitor cells/angioblasts and defines a dorsal-to-ventral gradient of vasculogenesis, Dev Biol, vol.192, pp.17-30, 1997.

C. J. Drake and C. D. Little, VEGF and vascular fusion: implications for normal and pathological vessels, J Histochem Cytochem, vol.47, pp.1351-1355, 1999.

D. Du, S. Mckean, J. A. Kelman, J. Laschinger, C. Johnson et al., Early Mortality After Aortic Valve Replacement With Mechanical Prosthetic vs Bioprosthetic Valves Among Medicare Beneficiaries, JAMA Intern. Med, vol.174, p.1788, 2014.

A. R. Duarte, J. F. Mano, and R. L. Reis, Perspectives on: Supercritical Fluid Technology for 3D Tissue Engineering Scaffold Applications, J Bioact Compat Polym, vol.24, pp.385-400, 2009.

A. R. Duarte, J. F. Mano, and R. L. Reis, Supercritical fluids in biomedical and tissue engineering applications: a review, Int Mater Rev, vol.54, pp.214-236, 2009.

E. Durand, D. Helley, A. Al-haj-zen, C. Dujols, P. Bruneval et al., Effect of low molecular weight fucoidan and low molecular weight heparin in a rabbit model of arterial thrombosis, J. Vasc. Res, vol.45, pp.529-537, 2008.

A. Elfenbein and M. Simons, Syndecan-4 signaling at a glance, J. Cell Sci, vol.126, pp.3799-804, 2013.

A. Elfenbein, A. Lanahan, T. X. Zhou, A. Yamasaki, E. Tkachenko et al., Syndecan 4 regulates FGFR1 signaling in endothelial cells by directing macropinocytosis, Sci. Signal, vol.5, issue.223, p.36, 2012.

T. C. Fan and H. Chang,

I. W. Chen, H. Y. Wang, and M. D. Chang, A heparan sulfatefacilitated and raft-dependent macropinocytosis of eosinophil cationic protein, Traffic, vol.8, pp.1778-1795, 2007.

F. Fang, G. Orend, N. Watanabe, T. Hunter, and E. Ruoslahti, Dependence of cyclin E-CDK2 kinase activity on cell anchorage, Science, vol.271, pp.499-502, 1996.

M. E. Favretto, R. Wallbrecher, S. Schmidt, R. Van-de-putte, and R. Brock, Glycosaminoglycans in the cellular uptake of drug delivery vectors -Bystanders or active players?, J. Control. Release, vol.180, pp.81-90, 2014.

S. Fermas, F. Gonnet, A. Sutton, N. Charnaux, B. Mulloy et al., Sulfated oligosaccharides (heparin and fucoidan) binding and dimerization of stromal cell-derived factor-1 (SDF-1/CXCL 12) are coupled as evidenced by affinity CE-MS analysis, Glycobiology, vol.18, pp.1054-1064, 2008.
URL : https://hal.archives-ouvertes.fr/hal-01967643

J. H. Fitton, Therapies from fucoidan; multifunctional marine polymers, Mar. Drugs, vol.9, pp.1731-1760, 2011.

O. Fondard, D. Detaint, B. Iung, C. Choqueux, H. Adle-biassette et al., Extracellular matrix remodelling in human aortic valve disease: The role of matrix metalloproteinases and their tissue inhibitors, Eur. Heart J, vol.26, pp.1333-1341, 2005.

C. Frantz, K. M. Stewart, and V. M. Weaver, The extracellular matrix at a glance, J. Cell Sci, vol.123, pp.4195-4200, 2010.

V. Friand, O. Haddad, D. Papy-garcia, H. Hlawaty, R. Vassy et al., Glycosaminoglycan mimetics inhibit SDF-1/CXCL12-mediated migration and invasion of human hepatoma cells, Glycobiology, vol.19, pp.1511-1524, 2009.
URL : https://hal.archives-ouvertes.fr/pasteur-00415323

I. V. Fuki, M. E. Meyer, and K. J. Williams, Transmembrane and cytoplasmic domains of syndecan mediate a multi-step endocytic pathway involving detergentinsoluble membrane rafts, Biochem. J, vol.351, pp.607-612, 2000.

J. G?sior, J. Sacha, P. Jele?, J. Zieli?ski, and J. Przybylski, Heart Rate and Respiratory Rate Influence on Heart Rate Variability Repeatability: Effects of the Correction for the Prevailing Heart Rate, Frontiers in Physiology, vol.7, p.356, 2016.

F. G. Giancotti and E. Ruoslahti, Integrin signaling, Science, vol.285, pp.1028-1032, 1999.

M. E. Gomes, H. L. Holtorf, R. L. Reis, and A. G. Mikos, Influence of the porosity of starch-based fiber mesh scaffolds on the proliferation and osteogenic differ-entiation

M. E. Gomes, A. S. Ribeiro, P. B. Malafaya, R. L. Reis, and A. M. Cunha, A new approach based on injection moulding to produce biodegradable starch-based polymeric scaf-folds: morphology, mechanical and degradation behaviour

, Biomaterials, vol.22, pp.883-892, 2001.

L. Gonzalez-lavin and D. Ross, Homograft aortic valve replacement. A five-year experience at the National Heart Hospital, London, J Thorac Cardiovasc Surg, vol.60, pp.1-12, 1970.

S. J. Goodger, C. J. Robinson, K. J. Murphy, N. Gasiunas, N. J. Harmer et al., Evidence that heparin saccharides promote FGF2 mitogenesis through two distinct mechanisms, J. Biol. Chem, vol.283, p.13001, 2008.

M. Gurvan, T. Tonon, D. Scornet, J. M. Cock, and B. Kloareg, The cell wall polysaccharide metabolism of the brown alga Ectocarpus siliculosus. Insight into the evolution of extracellular matrix polysaccharides in Eukaryotes, New Phytol, vol.188, pp.82-97, 2010.

A. Guyomard, G. Muller, and K. Glinel, Buildup of multilayers based on amphiphilic polyelectrolytes, Macromolecules, vol.38, pp.5737-5742, 2005.

O. Haddad, E. Guyot, N. Marinval, F. Chevalier, L. Maillard et al.,

C. Morizot, O. Oudar, A. Sutton, N. Charnaux, and H. Hlawaty, Heparanase and Syndecan-4 Are Involved in Low Molecular Weight Fucoidan-Induced Angiogenesis

, Mar. Drugs, vol.13, pp.6588-6608, 2015.

D. J. Hamel, I. Sielaff, A. E. Proudfoot, and T. M. Handel, Chapter 4 Interactions of Chemokines with Glycosaminoglycans, 2009.

K. Hammermeister, G. Sethi, W. Henderson, F. Grover, C. Oprian et al.,

J. Engl and . Med, , vol.328, pp.1289-96, 1993.

F. Hammersen, The ultrastructure of microvessels and their contents following ischemia and reperfusion, Prog Appl Microcirc, vol.13, pp.1-26, 1989.

Y. P. Han, T. L. Tuan, H. Wu, M. Hughes, and W. L. Garner, TNF-alpha stimulates activation of pro-MMP2 in human skin through NF-(kappa)B mediated induction of MT1-MMP, J. Cell Sci, vol.114, pp.131-139, 2001.

T. M. Handel, Z. Johnson, S. E. Crown, E. K. Lau, and A. E. Proudfoot, Regulation of protein function by glycosaminoglycans-as exemplified by chemokines, Annu. Rev. Biochem, vol.74, pp.385-410, 2005.

M. Harpa, I. Movileanu, L. Sierad, H. Cotoi, H. Suciu et al., Pulmonary heart valve replacement using stabilized acellular xenogeneic scaffolds; effects of seeding with autologous stem cells, Rev Rom Med Lab, vol.23, pp.415-429, 2016.

W. He, T. Yong, W. E. Teo, Z. W. Ma, and S. Ramakrishna, Fabrication and endothelialization of collagen-blended biodegradable polymer nanofibers: Potential vascular graft for blood vessel tissue engineering, Tissue Eng, vol.11, pp.1574-1588, 2005.

A. Hegen, A. Blois, C. Tiron, M. Hellesøy, D. Micklem et al.,

, Regen. Med, vol.4, pp.52-62, 2011.

B. Heissig, K. Hattori, M. Friedrich, S. Rafii, and Z. Werb, Angiogenesis: vascular remodeling of the extracellular matrix involves metallopro-teinases, Curr Opin Hematol, vol.10, pp.136-141, 2003.

R. Henaine, . F. Roubertie, M. Vergnat, and J. Ninet, Valve replacement in children: A challenge for a whole life. Archives of Cardiovascular Diseases, vol.105, pp.517-528, 2012.

C. B. Henry and B. R. Duling, TNF-alpha increases entry of macromolecules into luminal endothelial cell glycocalyx, Am J Physiol Heart Circ Physiol, vol.279, pp.2815-2823, 2000.

T. D. Henry, B. H. Annex, G. R. Mckendall, M. A. Azrin, J. J. Lopez et al., The VIVA Trial Vascular Endothelial Growth Factor in Ischemia for Vascular Angiogenesis, Circulation, vol.107, pp.1359-1365, 2003.

A. T. Hertig, Angiogenesis in the early human chorion and in the primary placenta of the macaque monkey, Contrib Embryol, vol.25, pp.39-81, 1935.

D. Heymann, C. Ruiz-velasco, J. Chesneau, J. Ratiskol, and C. Sinquin,

S. Jouault and . Anti-metastatic, Properties of a Marine Bacterial Exopolysaccharide-Based Derivative Designed to Mimic Glycosaminoglycans, Molecules, vol.4, issue.3, p.309, 2016.
URL : https://hal.archives-ouvertes.fr/inserm-01644773

V. Hintze, A. Miron, S. Möller, M. Schnabelrauch, S. Heinemann et al.,

, J Tissue Eng Regen Med, 2012.

H. Hlawaty, N. Suffee, A. Sutton, O. Oudar, O. Haddad et al., Low molecular weight fucoidan prevents intimal hyperplasia in rat injured thoracic aorta through the modulation of matrix metalloproteinase-2 expression, Biochem. Pharmacol, vol.81, pp.233-243, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00649891

T. T. Ho, K. E. Bremmel, M. Krakowska, D. N. Striger, B. Thierry et al., Tuning polyelectrolyte multilayer structure by exploiting natural variation in fucoidan chemistry, Soft Matter, vol.11, pp.2110-2124, 2015.

A. D. Holtkamp, S. Kelly, R. Ulber, and S. Lang, Fucoidans and fucoidanases-focus on techniques for molecular structure elucidation and modification of marine polysaccharides, Appl. Microbiol. Biotechnol, vol.82, pp.1-11, 2009.

B. B. Hsu, S. R. Hagerman, K. Jamieson, J. Veselinovic, N. O'neill et al., Multilayer films assembled from naturallyderived materials for controlled protein release, Biomacromolecules, vol.15, pp.2049-2057, 2014.

L. Hung and S. Rahimtoola, Prosthetic Heart Valves and Pregnancy, Circulation, vol.107, pp.1240-1246, 2003.

D. W. Hutmacher, Scaffolds in tissue engineering bone and cartilage, Biomaterials, vol.21, pp.2529-2572, 2000.

R. O. Hynes and A. Naba, Overview of the Matrisome-An Inventory of Extracellular Matrix Constituents and Functions, Cold Spring Harb Perspect Biol, vol.4, p.4903, 2012.

Y. Ikeda, S. Charef, M. O. Ouidja, V. Barbier-chassefière, F. Sineriz et al., Synthesis and biological activities of a library of glycosaminoglycans mimetic oligosaccharides

, Biomaterials, vol.32, pp.769-776, 2011.

T. Indest, J. Laine, K. S. Kleinschek, and L. F. Zemljic, Colloids Surf. A, vol.360, pp.210-219, 2010.

R. V. Iozzo and R. D. Sanderson, Proteoglycans in cancer biology, tumour microenvironment and angiogenesis, J. Cell. Mol. Med, vol.15, pp.1013-1031, 2011.

R. V. Iozzo, Matrix proteoglycans: from molecular design to cellular function, Annu Rev Biochem, vol.67, pp.609-52, 1998.

Y. Ishida, A. Kimura, Y. Kuninaka, M. Inui, K. Matsushima et al., Pivotal role of the CCL5 / CCR5 interaction for recruitment of endothelial progenitor cells in mouse wound healing, vol.122, pp.711-721, 2012.

B. Iung, G. Baron, E. G. Butchart, F. Delahaye, C. Gohlke-barwolf et al.,

W. Tornos, P. Vanoverschelde, J. L. Vermeer, F. Boersma, E. Ravaud et al., A prospective survey of patients with valvular heart disease in Europe: The Euro Heart Survey on Valvular Heart Disease, Eur Heart J, vol.24, pp.1231-1243, 2003.

W. R. Jamieson, A. I. Munro, R. T. Miyagishima, G. L. Grunkemeier, L. H. Burr et al., Eur J Cardiothorac Surg, vol.13, issue.2, pp.151-160, 1998.

H. M. Kagan and W. Li, Lysyl oxidase: properties, specificity, and biological roles inside and outside of the cell, J. Cell. Biochem, vol.88, pp.660-672, 2003.

E. C. Keeley, J. R. Moorman, L. Liu, L. W. Gimple, L. C. Lipson et al., Plasma Chemokine Levels Are Associated with the Presence and Extent of Angiographic Coronary Collaterals in Chronic Ischemic Heart Disease, PLoS ONE, 2011.

J. Kentish, Smooth muscle and the cardiovascular and lymphaticsystems

S. Stranding and E. , Gray's Anatomy: The anatomical basis of clinical practice

P. Philadelphia and . Elsevier, , pp.127-144, 2008.

H. Kerdjoudj, N. Berthelemy, F. Boulmedais, J. Stoltz, P. Menu et al., Soft Matter, vol.6, pp.3722-3734, 2010.

B. S. Kim, J. Y. Park, H. J. Kang, H. J. Kim, and J. Lee, Fucoidan/FGF-2 induces angiogenesis through JNK-and p38-mediated activation of AKT/MMP-2 signalling

, Biochem. Biophys. Res. Commun, vol.450, pp.1333-1338, 2014.

Y. M. Kim, J. W. Jang, O. H. Lee, J. Yeon, E. Y. Choi et al., Endostatin inhibits endothelial and tumor cellular invasion by blocking the activation and catalytic activity of matrix metalloproteinase 2, Cancer Res, vol.60, pp.5410-5413, 2000.

M. F. Klemm, D. F. Van-helden, and . Luff,

S. E. , J Comp Neurol, vol.334, pp.159-67, 1993.

E. H. Knelson, J. C. Nee, and G. C. Blobe, Heparan sulfate signaling in cancer, Trends Biochem. Sci, vol.39, pp.277-288, 2014.

H. Kylin, The biochemistry of seaweed. Hoppe Seylers, Z Physiol Chem, vol.83, pp.171-97, 1913.

A. C. Lake, R. Vassy, M. Di-benedetto, D. Lavigne, C. Le-visage et al., Low molecular weight fucoidan increases VEGF165-induced endothelial cell migration by enhancing VEGF165 binding to VEGFR-2 and NRP1

, Biol. Chem, vol.281, pp.37844-37852, 2006.

K. Lambaerts, S. Wilcox-adelman, and P. Zimmermann, The signalling mechanisms of syndecan heparan sulphate proteoglycans, Curr. Opin. Cell Biol, vol.21, pp.662-669, 2009.

R. Langer and J. P. Vacanti, Tissue. Eng Sci, vol.260, pp.920-926, 1993.

S. Laurent, P. Boutouryie, P. Lacolley, and . Structural,

, Hypertension, vol.45, pp.1050-1055, 2005.

H. Lee, K. W. Chang, H. Y. Yang, P. W. Lin, S. U. Chen et al., MT1-MMP regulates MMP-2 expression and angiogenesis-related functions in human umbilical vein endothelial cells, Biochem. Biophys. Res. Commun, vol.437, issue.2, pp.232-238, 2013.

K. Lee, E. A. Silva, and D. J. Mooney, Growth factor delivery-based tissue engineering: general approaches and a review of recent developments, J. R. Soc. Interface, vol.8, pp.153-170, 2011.

S. Levenberg, J. Rouwkema, M. Macdonald, E. S. Garfein, D. S. Kohane et al., Engineering vascularized skeletal muscle tissue, Nat. Biotechnol, vol.23, pp.879-884, 2005.

B. Lévy and J. S. Silvestre, Angiogenèse et anti-angiogenèse -Angiogenèse postischémique: aspects expérimentaux, perspectives thérapeutiques, Lippincott. Servier, pp.34-47, 2009.

B. Li, F. Lu, X. Wei, R. Zhao, and . Fucoidan, Structure and Bioactivity. Molecules, vol.13, pp.1671-1695, 2008.

L. Li, T. Wan, M. Wan, B. Liu, R. Cheng et al., The effect of the size of fluorescent dextran on its endocytic pathway, Cell Biol. Int, vol.39, pp.531-539, 2015.

A. Lichtenberg, I. Tudorache, S. Cebotari, S. Ringes-lichtenberg, G. Sturz et al., In vitro reendothelialization of detergent decellularized heart valves under simulated physiological dynamic conditions, Biomaterials, vol.27, pp.4221-4229, 2006.

M. Lindroos, M. Kupari, J. Heikkila, and R. Tilvis, Prevalence of aortic valve abnormalities in the elderly: an echocardiographic study of a random population sample, J Am Coll Cardiol, vol.21, pp.1220-1225, 1993.

Y. T. Lu, P. G. Hellewell, and T. W. Evans, Ischemia-reperfusion lung injury: contribution of ischemia, neutrophils, and hydrostatic pressure, Am J Physiol, vol.273, issue.1, pp.46-54, 1997.

M. Lundin, F. Solaqa, E. Thormann, L. Macakova, E. Blomberg et al., , vol.27, pp.7537-7548, 2011.

C. Luyt, B. Ho-tin-noe, S. ;. Colliec-jouault, A. M. Jacob, M. Osborne-pellegrin et al.,

, Weight Fucoidan Promotes Therapeutic Revascularization in a Rat Model of Critical Hindlimb Ischemia, J. Pharmacol. Exp. Ther, vol.305, pp.24-30, 2003.

R. R. Makkar, R. R. Smith, K. Cheng, K. Malliaras, L. E. Thomson et al., Intracoronary cardiosphere-derived cells for heart regeneration after myocardial infarction (CADUCEUS): A prospective, randomised phase 1 trial, Lancet, vol.379, pp.895-904, 2012.

P. B. Malafaya, G. A. Silva, and R. L. Reis, Natural-origin polymers as carriers and scaffolds for biomolecules and cell delivery in tissue engineering applications, Adv Drug Deliv Rev, vol.59, pp.207-240, 2007.

P. P. Malafaya, A. J. Pedro, A. Peterbauer, C. Gabriel, H. Redl et al., Chitosan particles agglomerated scaffolds for cartilage and osteochondral tissue engin-eering approaches with adipose tissue derived stem cells, J Mater Sci Mater Med, vol.16, pp.1077-85, 2005.

S. Marastoni, G. Ligresti, E. Lorenzon, A. Colombatti, and M. Mongiat, Extracellular matrix: a matter of life and death, Connect. Tissue Res, vol.49, pp.203-206, 2008.

X. Marechal, R. Favory, O. Joulin, D. Montaigne, S. Hassoun et al., Endothelial glycocalyx damage during endotoxemia coincides with microcirculatory dysfunction and vascular oxidative stress, Shock, vol.29, pp.572-576, 2008.

N. Marinval, P. Saboural, O. Haddad, M. Maire, K. Bassand et al.,

H. Hlawaty, Identification of a pro-angiogenic potential of a low molecular weight highly sulfated fraction of fucoidan from ascophyllum nodosom, vol.10, p.185, 2016.

L. A. Martinez-lemus, The dynamic structure of arterioles, Basic Clin. Pharmacol

. Toxicol, , vol.110, pp.5-11, 2012.

M. M. Martino, F. Tortelli, M. Mochizuki, S. Traub, D. Ben-david et al., Engineering the Growth Factor Microenvironment with Fibronectin Domains to Promote Wound and Bone Tissue Healing, Sci. Transl. Med, vol.3, pp.100-89, 2011.

A. M. Martins, M. I. Santos, H. S. Azevedo, P. B. Malafaya, and R. L. Reis, Natural origin scaffolds with in situ pore forming capability for bone tissue engineering applica-tions, Acta Biomater, vol.4, pp.1637-1682, 2008.

A. Martins, S. Chung, A. J. Pedro, R. A. Sousa, A. P. Marques et al., Hierarchical starch-based fibrous scaffold for bone tissue engineering applications, J Tissue Eng Regen Med, vol.3, pp.37-42, 2009.

S. Matou, D. Helley, D. Chabut, A. Bros, and A. Fischer, Effect of fucoidan on fibroblast growth factor-2-induced angiogenesis in vitro, Thromb. Res, vol.106, pp.213-221, 2002.

S. Mauray, E. De-raucourt, F. Chaubet, O. Maïga-revel, C. Sternberg et al., Comparative anticoagulant activity and influence on thrombin generation of dextran derivatives and of a fucoidan fraction, J. Biomater. Sci. Polym, vol.9, pp.373-387, 1998.

W. H. Mcneely and . Fucoidan, , pp.117-138, 1959.

A. Meddahi, J. Benoit, N. Ayoub, A. Sézeur, and D. Barritault, Heparin-like polymers derived from dextran enhance colonic anastomosis resistance to leakage, J. Biomed

. Mater and . Res, , vol.31, pp.293-297, 1996.

A. Meddahi-pellé, C. Alexakis, D. Papy-garcia, J. Caruelle, and D. Barritault,

, Heparin-like polymer improved healing of gastric and colic ulceration, J. Biomed

. Mater and . Res, , vol.60, pp.497-501, 2002.

A. Meddahi-pellé, I. Bataille, P. Subra, and D. Letourneur, Biomatériaux vasculaires: Du génie biologique et médical au génie tissulaire, Medecine/Sciences, vol.20, pp.679-684, 2004.

G. Melina, F. De-robertis, J. A. Gaer, M. Amrani, A. Khaghani et al.,

, Mid-term pattern of survival, hemodynamic performance and rate of complications after Medtronic freestyle versus homograft full aortic root replacement: results from a prospective randomized trial, J Heart Valve Dis, vol.13, pp.972-975, 2004.

J. E. Meredith and M. A. Schwartz, Integrins, adhesion and apoptosis, Trends Cell Biol, vol.7, pp.146-150, 1997.

K. Meyer, G. L. Hobby, E. Chaffee, and M. H. Dawson, The hydrolysis of hyaluronic acid by bacterial enzymes, J. Exp. Med, vol.71, issue.2, pp.137-183, 1940.

A. G. Mikos, Y. Bao, L. G. Cima, D. E. Ingber, J. P. Vacanti et al., Preparation of poly(glycolic acid) bonded fiber structures for cell attachment and transplantation, J Biomed Mater Res, vol.27, pp.183-192, 1993.

A. G. Mikos, G. Sarakinos, S. M. Leite, J. P. Vacanti, and R. Langer, Laminated threedimensional biodegradable foams for use in tissue engineering, Biomaterials, vol.14, pp.323-353, 1993.

A. G. Mikos, A. J. Thorsen, L. A. Czerwonka, Y. Bao, R. Langer et al., Preparation and Characterization of Poly(L-Lactic Acid) Foams. Polymer (Guildf), vol.35, pp.1068-77, 1994.

J. Millet and S. C. Jouault,

S. Mauray, J. Theveniaux, C. Sternberg, C. Boisson-vidal, and A. M. Fischer, Antithrombotic and anticoagulant activities of a low molecular weight fucoidan, Thromb Haemost, vol.81, pp.391-395, 1999.

E. S. Miranda, T. H. Silva, R. L. Reis, and J. F. Mano, Nanostructured natural-based polyelectrolyte multilayers to agglomerate chitosan particles into scaffolds for tissue engineering, Tissue Eng Part A, vol.17, pp.2663-74, 2011.

S. M. Mithieux, A. S. Weiss, and . Elastin, Adv Protein Chem, vol.70, pp.437-61, 2005.

M. Mizuno, Y. Nishitani, T. Tanoue, Y. Matoba, T. Ojima et al., Quantification and localization of fucoidan in Laminaria japonica using a novel antibody, Biosci. Biotechnol. Biochem, vol.73, pp.335-338, 2009.

D. J. Mooney, D. F. Baldwin, N. P. Suh, J. P. Vacanti, and R. Langer, Novel approach to fabricate porous sponges of poly (D,L-lactic-co-glycolic acid) without the use of organic solvents, Biomaterials, vol.17, pp.1417-1439, 1996.

J. Moore and S. Thibeault, Insights into the role of elastin in vocal fold health and disease, vol.26, pp.269-75, 2012.

V. K. Morya, J. Kim, and E. K. Kim, Algal fucoidan: structural and size-dependent bioactivities and their perspectives, Applied Microbiology and Biotechnology, vol.93, issue.1, pp.71-82, 2012.

P. Mourao, Use of Sulfated Fucans as Anticoagulant and Antithrombotic Agents: Future Perspectives, Curr. Pharm. Des, vol.10, pp.967-981, 2004.

B. Mulloy and C. C. Rider, Cytokines and proteoglycans: an introductory overview

, Biochem. Soc. Trans, vol.34, pp.409-422, 2006.

K. Muona, K. Mäkinen, M. Hedman, H. Manninen, and S. Ylä-herttuala, 10-year safety follow-up in patients with local VEGF gene transfer to ischemic lower limb

, Gene Ther, vol.19, pp.392-395, 2012.

J. Myllyharju and K. I. Kivirikko, Collagens, modifying enzymes and their mutations in humans, flies and worms, Trends Genet, vol.20, issue.1, pp.33-43, 2004.

R. J. Naik, R. Sharma, D. Nisakar, G. Purohit, and M. Ganguli, Exogenous chondroitin sulfate glycosaminoglycan associate with arginine-rich peptide-DNA complexes to alter their intracellular processing and gene delivery efficiency, Biochim. Biophys

A. Biomembr, , vol.1848, pp.1053-1064, 2015.

S. Nakamura, M. Nambu, T. Ishizuka, H. Hattori, Y. Kanatani et al., Effect of controlled release of fibroblast growth factor-2 from chitosan/fucoidan micro complex-hydrogel on in vitro and in vivo vascularization, J. Biomed. Mater. Res. Part A, vol.85, pp.619-627, 2008.

I. Nakase, A. Tadokoro, N. Kawabata, T. Takeuchi, H. Katoh et al., Interaction of arginine-rich peptides with membrane-associated proteoglycans is crucial for induction of actin organization and macropinocytosis, Biochemistry, vol.46, pp.492-501, 2007.

A. Nardella, F. Chaubet, C. Boisson-vidal, C. Blondin, P. Durand et al., Carbohydr. Res, vol.289, pp.201-208, 1996.

S. Neuenschwander and S. Hoerstrup, Heart valve tissue engineering; Transplant Immunology, vol.12, pp.359-365, 2004.

G. Neufel, T. Cohen, S. Gengrinovitch, and Z. Poltorak, Vascular endothelial growth factor (VEGF) and its receptors, The FASEB Journal, vol.13, pp.9-22, 1999.

M. Nieuwdrop, M. C. Meuwese, H. Vink, J. B. Hoekstra, J. J. Kastelein et al.,

S. , The endothelial glycocalyx: a potential barrier between health and vascular disease, Curr Opin Lipidol, vol.16, pp.507-511, 2005.

K. Nishi and K. Saigo, Cellular internalization of green fluorescent protein fused with

. Arf6, J Biol Chem, vol.282, pp.27503-27517, 2007.

T. Nishino, A. Fukuda, T. Nagumo, M. Fujihara, and E. Kaji, Inhibition of the generation of thrombin and factor Xa by a fucoidan from the brown seaweed Ecklonia kurome

, Thromb. Res, vol.96, pp.37-49, 1999.

T. Nishino, C. Nishioka, H. Ura, and T. Nagumo, Isolation and partial characterization of a novel amino sugar-containing fucan sulfate from commercial fucus vesiculosus fucoidan, Carbohydrate Research, vol.255, pp.213-224, 1994.

V. Nkomo, J. Gardin, T. Skelton, J. Gottdiener, C. Scott et al., Burden of valvular heart diseases: apopuation-basedstudy, Lancet, vol.368, p.1005, 2006.

L. Norgren, W. R. Hiatt, and J. A. Dormandy, Inter-Society Consensus for the Management of Peripheral Arterial Disease (TASC II), Eur J Vasc Endovasc Surg, vol.33, issue.1, pp.1-75, 2007.

S. Novo, G. Coppola, and G. Milio, Critical limb ischemia: definition and natural history, Curr Drug Targets Cardiovasc Haematol Disord, vol.4, issue.3, pp.219-244, 2004.

M. F. O'brien, M. A. Gardner, R. B. Garlick, M. B. Davison, H. L. Thomson et al., The CryoLife-O'Brien stentless aortic porcine xenograft valve, J Card Surg, vol.13, pp.376-385, 1998.

B. Ohkawara, A. Glinka, and C. Niehrs, Rspo3 Binds Syndecan 4 and Induces Wnt/PCP Signaling via Clathrin-Mediated Endocytosis to Promote Morphogenesis, Dev. Cell, vol.20, pp.303-314, 2011.

J. M. Oliveira, S. S. Silva, J. F. Mano, and R. L. Reis, Innovative technique for the preparation of porous bilayer hydro-xyapatite/chitosan scaffolds for osteochondral applications, Key Eng Mater, pp.927-957, 2006.

D. Papy-garcia, M. Christophe, M. B. Huynh, S. Fernando, S. Ludmilla et al., Raisman-Vozari, R. Glycosaminoglycans, protein aggregation and neurodegeneration, Curr. Protein Pept. Sci, vol.12, pp.258-268, 2011.

K. M. Park and S. Gerecht, Harnessing developmental processes for vascular engineering and regeneration, vol.141, pp.2760-2769, 2014.

M. S. Patankar, S. Oehninger, T. Barnett, R. L. Williams, and G. F. Clark, A Revised Structure for Fucoidan May Explain Some of Its Biological Activities *, J. Biol. Chem, pp.21770-21776, 1993.

F. J. Pavinatto, L. Caseli, O. N. Oliveira, and . Biomacromolecules, , vol.11, pp.1897-1908, 2010.

C. K. Payne, S. A. Jones, C. Chen, and X. Zhuang, Internalization and trafficking of cell surface proteoglycans and proteoglycan-binding ligands, Traffic, vol.8, pp.389-401, 2007.

M. S. Pepper, Role of the matrix metalloproteinase and plasminogen activatorplasmin systems in angiogenesis, Arterioscler Thromb Vasc Biol, vol.21, p.1104, 2001.

E. Percival and A. G. Ross, The isolation and purification of fucoidin from brown seaweeds, J Chem Soc, pp.717-720, 1950.

L. Pereira, A. M. Amado, A. T. Critchley, F. Van-de-velde, and P. J. Ribeiro-claro, Identification of selected seaweed polysaccharides (phycocolloids) by vibrational spectroscopy (FTIR-ATR and FT-Raman). Food Hydrocoll, vol.23, pp.1903-1909, 2009.

F. Peysselon and S. Ricard-blum, Heparin-protein interactions: From affinity and kinetics to biological roles. Application to an interaction network regulating angiogenesis, Matrix Biol, vol.35, pp.73-81, 2014.

P. Pibarot and J. G. Dumesnil, Prosthetic Heart Valves. Circulation, p.119, 2009.
URL : https://hal.archives-ouvertes.fr/hal-01843145

V. H. Pomin, Fucanomics and galactanomics: Current status in drug discovery, mechanisms of action and role of the well-defined structures, Biochimica et Biophysica Acta, vol.1820, issue.12, pp.1971-1979, 2012.

D. L. Prockop, A. L. Sieron, and S. W. Li, Two unusual metalloproteinases that are essential for procollagen processing probably have important roles in development and cell signaling, Matrix Biol, vol.16, pp.399-408, 1998.

S. Prokoph, E. Chavakis, K. R. Levental, A. Zieris, U. Freudenberg et al., Sustained delivery of SDF-1? from heparin-based hydrogels to attract circulating pro-angiogenic cells, Biomaterials, vol.33, pp.4792-4800, 2012.

D. Puppi, A. M. Piras, F. Chiellini, E. Chiellini, A. Martins et al., Optimized electro-and wet-spinning techniques for the production of polymeric fibrous scaffolds loaded with bisphosphonate and hydroxyapatite, J Tissue Eng Regen Med, vol.5, pp.253-63, 2011.

A. Purnama, R. Aid-launais, O. Haddad, M. Maire, D. Letourneur et al., Fucoidan in a 3D scaffold interacts with vascular endothelial growth factor and promotes neovascularization in mice, Drug Deliv. Transl. Res, vol.2, pp.187-197, 2013.

S. Puvaneswary, S. Talebian, H. Balaji, M. Raman, M. Mehrali et al., Fabrication and in vitro biological activity of TCP-Chitosan-Fucoidan composite for bone tissue engineering, Carbohydr. Polym, vol.134, pp.799-807, 2015.

J. Puvimanasinghe, E. Steyerberg, J. Takkenberg, M. Eijkemans, L. Herwerden et al., Prognosis After Aortic Valve Replacement With a Bioprosthesis Predictions Based on Meta-Analysis and Microsimulation, Circulation, vol.103, pp.1535-1541, 2001.

D. A. Pye, R. R. Vives, J. E. Turnbull, P. Hyde, and J. T. Gallagher, Heparan Sulfate Oligosaccharides Require 6-O -Sulfation for Promotion of Basic Fibroblast Growth Factor Mitogenic Activity, J. Biol. Chem, vol.273, pp.22936-22942, 1998.

X. Qiu, A. Amarasekara, and V. Doctor, Effect of oversulfation on the chemical and biological properties of fucoidan, Carbohydr. Polym, vol.63, pp.224-228, 2006.

J. F. Quinn, S. J. Pas, A. Quinn, H. P. Yap, R. Suzuki et al., J. Am. Chem. Soc, vol.134, 2012.

R. Rahbarghazi, S. M. Nassiri, S. H. Ahmadi, E. Mohammadi, S. Rabbani et al., Dynamic induction of pro-angiogenic milieu after transplantation of marrow-derived mesenchymal stem cells in experimental myocardial infarction, Int. J. Cardiol, vol.173, pp.453-466, 2014.

S. Rahimtoola, Choice of Prosthetic Heart Valve in Adults, J Am Coll Cardiol, vol.55, p.250, 2010.

R. Julien, Thèse de doctorat en chimie et science des matériaux, sous la direction du Professeur Estelle Renard et du Docteur Daniel Grande, Structures fibreuses tridimensionnelles de biopolymères pour l'ingénierie tissulaire, p.226, 2012.

E. Rederstorff, P. Weiss, S. Sourice, P. Pilet, F. Xie et al., An in vitro study of two GAG-like marine polysaccharides incorporated into injectable hydrogels for bone and cartilage tissue engineering, Acta Biomater, vol.7, issue.5, pp.2119-2149, 2011.

M. Rehm, D. Bruegger, F. Christ, P. Conzen, M. Thiel et al., Shedding of the endothelial glycocalyx in patients undergoing major vascular surgery with global and regional ischemia, Circulation, vol.116, pp.1896-1906, 2007.

L. L. Reys, S. S. Silva, J. M. Oliveira, A. M. Frias, J. F. Mano et al., Valorization of Chitosan from Squid Pens and Further Use on the Development of Scaffolds for Biomedical Applications, Int J Artif Organs, vol.34, p.704, 2011.

D. Ribatti and V. Djonov, Intussusceptive microvascular growth in tumors, Cancer Lett, vol.316, pp.126-131, 2012.

B. Richard, M. C. Bouton, S. Loyau, D. Lavigne, and D. Letourneur, Jandort-Perrus, M.; Arocas, V. Modulation of protease nexin-1 activity by polysaccharides, Thromb Haemost, vol.95, issue.2, pp.229-264, 2006.

D. Riou, S. Colliec-jouault, D. Pinczon-du-sel, S. Bosch, S. Siavoshian et al., Antitumor and antiproliferative effects of a fucan extracted from ascophyllum nodosum against a non-small-cell breonchopulmonary carcinoma line, Anticancer Res, vol.16, issue.3A, pp.1213-1221, 1996.

C. J. Robinson, B. Mulloy, J. T. Gallagher, and S. E. Stringer, VEGF165-binding sites within heparan sulfate encompass two highly sulfated domains and can be liberated by K5 lyase, J. Biol. Chem, vol.281, pp.1731-1740, 2006.

O. Roger, S. Colliec-jouault, J. Ratiskol, C. Sinquin, J. Guezennec et al., Chevolot, L. Polysaccharide labelling: Impact on structural and biological properties

, Carbohydr. Polym, vol.50, pp.273-278, 2002.

J. Rosenbloom, W. R. Abrams, and R. Mecham, Extracellular matrix 4: the elastic fiber

J. Faseb, , vol.7, pp.1208-1226, 1993.

V. Rouet, Y. Hamma-kourbali, E. Petit, P. Panagopoulou, P. Katsoris et al., A Synthetic Glycosaminoglycan Mimetic Binds Vascular Endothelial Growth Factor and Modulates Angiogenesis, J. Biol. Chem, vol.280, pp.32792-32800, 2005.

F. Rouzet, L. Bachelet-violette, J. Alsac, M. Suzuki, A. Meulemans et al., Radiolabeled fucoidan as a p-selectin targeting agent for in vivo imaging of platelet-rich thrombus and endothelial activation, J. Nucl. Med, vol.52, pp.1433-1440, 2011.

J. E. Rundhaug, Matrix metalloproteinases and angiogenesis, Angiogenesis Review Series. J. Cell. Mol. Med, vol.9, pp.267-285, 2005.

K. Ruscher, Induction of hypoxia inducible factor 1 by oxygen glucose deprivation is attenuated by hypoxic preconditioning in rat cultured neurons, Neurosci Lett, vol.254, issue.2, pp.117-137, 1998.

P. Saboural, F. Chaubet, F. Rouzet, F. Al-shoukr, R. Azzouna et al., Purification of a Low Molecular Weight Fucoidan for SPECT Molecular Imaging of Myocardial Infarction, Mar. Drugs, pp.4851-4867, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01866736

N. Saha, C. Monge, V. Dulong, C. Picart, K. Glinel et al., , vol.14, pp.520-528, 2013.

J. Salbach, T. D. Rachner, M. Rauner, U. Hempel, U. Anderegg et al.,

, Regenerative potential of glycosaminoglycans for skin and bone, J Mol Med (Berl), vol.90, pp.625-660, 2012.

V. Sales, B. Mettler, G. Engelmayr, E. Aikawa, J. Bischoff et al., , vol.252

A. Exarhopoulos, M. Moses, F. Schoen, M. Sacks, and J. Mayer, Endothelial progenitor cells as a sole source for ex vivo seeding of tissue-engineered heart valves, Tissue Eng. A, vol.16, pp.257-267, 2010.

A. J. Salgado, R. A. Sousa, J. T. Oliveira, N. Silva, N. M. Neves et al., Novel tissue engineering 3D scaffolds for spinal cord injury based on starch/ polycaprolactone blends: Development and prelim-inary assessment of their biological performance, Tissue Eng, vol.13, pp.1736-1743, 2007.

F. Sanada, Y. Taniyama, J. Azuma, I. Yuka, Y. Kanbara et al., Therapeutic Angiogenesis by Gene Therapy for Critical Limb Ischemia, Choice of Biological Agent. Immunol. Endocr. Metab. Agents Med

. Chem, , vol.14, pp.32-39, 2014.

F. J. Schoen and R. J. Levy, Calcification of tissue heart valve substitutes: progress toward understanding and prevention, Ann Thorac Surg, vol.79, pp.1072-1080, 2005.

, Second European Consensus Document on chronic critical leg ischemia, Circulation, vol.84, issue.4, pp.1-26, 1991.

. R. Seger and E. G. Krebs, The MAPK signaling cascade, FASEB J, vol.9, p.726, 1995.

M. Sekkal and P. Legrand, A spectroscopic investigation of the carrageenans and agar in the 1500-100 cm ?1 spectral range, Spectrochim. Acta, vol.49, pp.209-221, 1993.

D. R. Senger, S. R. Ledbetter, K. P. Claffey, A. Papadopoulos-sergiou, C. A. Peruzzi et al., Stimulation of endothelial cell migration by vascular permeability factor/vascular endothelial growth factor through cooperative mechanisms involving the alphavbeta3 integrin, osteopontin, and thrombin, Am J Pathol, vol.149, p.293, 1996.

D. R. Senger, C. A. Perruzzi, M. Streit, V. E. Koteliansky, A. R. De-fougerolles et al., The alpha1beta1 and alpha2beta1 integrins provide critical support for vascular endothelial growth factor signaling, endothelial cell migration, and tumor angiogenesis, Am J Pathol, vol.160, pp.195-204, 2002.

K. Senni, J. Pereira, F. Gueniche, C. Delbarre-ladrat, C. Sinquin et al., Marine polysaccharides: a source of bioactive molecules for cell therapy and tissue engineering, vol.9, pp.1664-81, 2011.

T. Serizawa, M. Yamaguchi, and M. Akashi, Biomacromolecules, vol.3, pp.724-731, 2002.

N. W. Shammas, Epidemiology, classification, and modifiable risk factors of peripheralarterial disease. Vasc Health Risk Manag, vol.3, pp.229-263, 2007.

L. Shen, P. Chaudouet, J. Ji, and C. Picart, pH-amplified multilayer films based on hyaluronan: influence of HA molecular weight and concentration on film growth and stability, Biomacromolecules, vol.12, pp.1322-1331, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00670225

P. X. Sheng, Y. Ting, J. P. Chen, and L. Hong, J. Colloid Interface Sci, vol.275, pp.131-141, 2004.

M. Shimamura, H. Nakagami, Y. Taniyama, and R. Morishita, Gene therapy for peripheral arterial disease, Expert Opin. Biol. Ther, pp.1-10, 2014.

S. M. Short, G. A. Talbott, and R. L. Juliano, Integrin-mediated signaling events in human endothelial cells, Molecular Biology of the Cell, vol.9, pp.1969-1980, 1998.

S. S. Silva, T. C. Santos, M. T. Cerqueira, A. P. Marques, L. L. Reys et al., The use of ionic liquids in the processing of chitosan/silk hydrogels for biomedical applications, Green Chem, vol.14, pp.1463-70, 2012.

T. H. Silva, ;. A. Alves, B. M. Ferreira, J. M. Oliveira, L. L. Reys et al., Materials of marine origin: a review on polymers and ceramics of biomedical interest, Int Mater Rev, vol.57, pp.276-306, 2012.

S. Davis, D. A. Parish, and C. R. , Heparan Sulfate: A Ubiquitous Glycosaminoglycan with Multiple Roles in Immunity, Front. Immunol, p.4, 2013.

S. Soeda, T. Kozako, K. Iwata, and H. Shimeno, Oversulfated fucoidan inhibits the basic ¢broblast growth factor-induced tube formation by human umbilical vein endothelial cells: its possible mechanism of action, Biochim. Biophys. Acta, vol.1497, pp.127-134, 2000.

M. Song, H. Jang, J. Lee, J. H. Kim, S. H. Kim et al., Regeneration of chronic myocardial infarction by injectable hydrogels containing stem cell homing factor SDF-1 and angiogenic peptide Ac-SDKP, Biomaterials, vol.35, pp.2436-2445, 2014.

G. F. Springer, H. A. Wurzel, G. M. Mcneal, N. J. Ansell, and M. F. Doughty, Isolation of anticoagulant fractions from crude fucoidin, Proc Soc Exp Biol Med, vol.94, issue.2, 1957.

C. Stamm, A. Khosravi, N. Grabow, K. Schmohl, N. Treckmann et al., Biomatrix/polymer composite material for heart valve tissue engineering, Ann. Thorac. Surg, vol.78, pp.2084-2092, 2004.

K. R. Stenmark, M. E. Yeager, K. C. El-kasmi, E. Nozik-grayck, E. V. Gerasimovskaya et al., Essential Regulator of

, Vascular Wall Structure and Function, Annu. Rev. Physiol, vol.75, pp.23-47, 2013.

M. D. Sternlicht and Z. Werb, How matrix metalloproteinases regulate cell behavior

, Annu Rev Cell Dev Biol, vol.17, pp.463-516, 2001.

S. E. Stringer, The role of heparan sulphate proteoglycans in angiogenesis, Biochem Soc Trans, vol.34, pp.451-453, 2006.

N. Suffee, H. Hlawaty, . Meddahi-pelle, L. Maillard, L. Louedec et al., RANTES/CCL5-induced pro-angiogenic effects depend on CCR1, CCR5 and glycosaminoglycans, Angiogenesis, vol.15, pp.727-744, 2012.

A. Sutton, V. Friand, D. Papy-garcia, M. Dagouassat, L. Martin et al., Glycosaminoglycans and their synthetic mimetics inhibit RANTES-induced migration and invasion of human hepatoma cells, Mol. Cancer Ther, vol.6, pp.2948-2958, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00195453

M. Suzuki, L. Bachelet-violette, F. Rouzet, A. Beilvert, G. Autret et al., Ultrasmall superparamagnetic iron oxide nanoparticles coated with fucoidan for molecular MRI of intraluminal thrombus, vol.10, pp.73-87, 2014.

A. Synytsya, D. J. Choi, R. Pohl, Y. S. Na, P. Capek et al., Structural Features and Anti-coagulant Activity of the Sulphated Polysaccharide SPS-CF from a Green Alga Capsosiphon fulvescens, Mar. Biotechnol, vol.17, pp.718-735, 2015.

K. Takahashi and S. Yamanaka, Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors, Cell, vol.126, issue.4, pp.663-76, 2006.

M. Takahashi, Retinal Cell Therapy Using iPS Cells, Nippon Ganka Gakkai Zasshi, vol.120, issue.3, pp.210-234, 2016.

H. Teng, Y. Yang, H. Wei, Z. Liu, Z. Liu et al., Fucoidan Suppresses Hypoxia-Induced Lymphangiogenesis and Lymphatic Metastasis in Mouse Hepatocarcinoma, Mar. Drugs, vol.13, pp.3514-3530, 2015.

B. Thierry, F. M. Winnik, Y. Merhi, J. Silver, and M. Tabrizian, Biomacromolecules, vol.4, pp.1564-1571, 2003.

H. Thorlacius, B. Vollmar, U. T. Seyfert, D. Vestweber, and M. D. Menger, The polysaccharide fucoidan inhibits microvascular thrombus formation independently from P-and L-selectin function in vivo, Eur. J. Clin. Invest, vol.30, pp.804-810, 2000.

J. Tillman, A. Ullm, and S. V. Madihally, Three-dimensional cell colonization in a sulfate rich environment, Biomaterials, vol.27, pp.5618-5644, 2006.

E. Tkachenko and M. Simons, Clustering induces redistribution of syndecan-4 core protein into raft membrane domains, J. Biol. Chem, vol.277, 2002.

E. Tkachenko, E. Lutgens, R. Stan, and M. Simons, Fibroblast growth factor 2 a Cdc42-dependent macropinocytic pathway, J. Cell Sci, vol.117, pp.3189-3199, 2004.

E. Tkachenko, J. M. Rhodes, and M. Simons, Syndecans: New kids on the signaling block, Circ. Res, vol.96, pp.488-500, 2005.

C. Urbich and S. Dimmeler, Endothelial progenitor cells: Characterization and role in vascular biology, Circ. Res, vol.95, pp.343-353, 2004.

A. I. Usov, G. P. Smirnova, M. I. Bilan, and A. S. Shashkov, Polysaccharides of algae

, Brown alga Laminaria saccharina (L.) Lam. as a source of fucoidan

B. Khimiya, , vol.24, pp.437-445, 1998.

A. I. Usov and M. I. Bilan, Fucoidans -sulfated polysaccharides of brown algae, Russian Chemical Reviews, vol.78, issue.8, pp.785-799, 2009.

J. Usprech, W. Chen, K. Li, and C. Simmons, Heart valve regeneration: The need for systems approaches, WIREs Syst Biol Med, vol.8, pp.169-182, 2016.

N. E. Ustyuzhanina, M. I. Bilan, N. A. Ushakova, A. I. Usov, and M. Kiselevskiy,

N. E. Nifantiev, Fucoidans : pro-or antiangiogenic agents, Glycobiology, vol.24, pp.1265-74, 2014.

N. E. Ustyuzhanina, N. A. Ushakova, K. A. Zyuzina, M. I. Bilan, A. L. Elizarova et al.,

A. V. Madzhuga, V. B. Krylov, M. E. Preobrazhenskaya, and A. Usov,

I. , Influence of fucoidans on hemostatic system, Mar. Drugs, vol.11, pp.2444-2458, 2013.

X. M. Van-wijk, V. L. Thijssen, R. Lawrence, . Van-den, S. A. Broek et al., Interfering with UDP-GlcNAc metabolism and heparan sulfate expression using a sugar analogue reduces angiogenesis, ACS Chem. Biol, vol.8, pp.2331-2338, 2013.

J. Vera, J. Castro, A. Gonzales, and A. Moenne, Seaweed polysaccharides and derived oligosaccharides stimulate defense responses and protection against pathogenes in plants, vol.9, pp.2514-2539, 2011.

R. B. Vernon and E. H. Sage, Between molecules and morphology: Extra-cellular matrix and creation of vascular form, Am J Pathol, vol.147, pp.873-883, 1995.

N. Verzijl, J. Degroot, S. R. Thorpe, R. A. Bank, J. N. Shaw et al., Effect of Collagen Turnover on the Accumulation of Advanced Glycation End Products, J. Biol. Chem, vol.275, pp.39027-39031, 2000.

I. Vesely, Heart valve tissue engineering, Circ. Res, vol.97, pp.743-755, 2005.

F. Vinals and J. Pouyssegur, Confluence of vascular endothelial cells induces cell cycle exit by inhibiting p42/p44 mitogen-activated protein kinase activity, Mol Cell Biol, vol.19, pp.2763-2772, 1999.

K. Von-der-mark, J. Park, S. Bauer, and P. Schmuki, Nanoscale engineering of biomimetic surfaces: cues from the extracellular matrix, Cell Tissue Res, vol.339, pp.131-53, 2009.

W. Vongpatanasin, D. Hillis, and R. Lange, Characteristics of prosthetic valves, N Engl J Med, vol.335, pp.407-416, 1996.

J. E. Wagenseil and R. P. Mecham, Vascular Extracellular Matrix and Arterial Mechanics. Natl. Inst. Heal, vol.89, pp.957-989, 2009.

K. K. Wary, F. Mainiero, S. J. Isakoff, E. E. Marcantonio, and F. G. Giancotti, The adaptor protein Shc couples a class of integrins to the control of cell cycle progression, Cell, vol.87, pp.733-743, 1996.

Y. Weng, J. Chen, Q. Tu, Q. Li, M. Maitz et al., Biomimetic modification of metallic cardiovascular biomaterials: from function mimicking to endothelialization in vivo. Interface Focus, vol.2, pp.356-365, 2012.

A. Weymann, B. Schmack, T. Okada, P. Soós, R. Istók et al., Reendothelialization of Human Heart Valve Neoscaffolds Using Umbilical Cord-Derived Endothelial Cells, Circ. J, vol.77, pp.207-216, 2013.

T. N. Wight, B. P. Toole, and V. C. Hascall, The Extracellular Matrix: an Overview -Hyaluronan and the Aggregating Proteoglycans

R. P. Mecham and . Ed, , vol.1, 2011.

K. Wilczek, P. Chodor, R. Walas, M. Krason, R. Przybylski et al., , pp.980-984, 2010.

P. Wilczek, R. Major, L. Lipinska, J. Lackner, and A. Mzyk, Thrombogenicity and biocompatibility studies of reduced graphene oxide modified acellular pulmonary valve tissue, Mater. Sci. Eng. C, vol.53, pp.310-321, 2015.

P. Wilczek, M. Zembala, T. Cichon, R. Smolarczyk, . Szala et al., Scaffold construction for effective transfer of cardiac stem cells to the damaged heart. Kardiochirurgiai Torakochirurgia Polska, pp.1897-4252, 2012.

B. Wu, G. Liu, G. Zhang, and V. S. Craig, Stiff chains inhibit and felxible chains promote protein adsorption to polyelectrolyte-multilayers, Soft Matter, vol.10, pp.3806-3816, 2014.

L. P. Yan, J. M. Oliveira, A. L. Oliveira, S. G. Caridade, J. F. Mano et al.,

, Macro/microporous silk fibroin scaffolds with potential for articular cartilage and meniscus tissue engineering applications, Acta Biomater, vol.8, pp.289-301, 2012.

M. Yang, Y. H. Lin, W. P. Shi, H. C. Shi, Y. J. Gu et al., Surface heparin treatment of the decellularized porcine heart valve: Effect on tissue calcification

, Biomed. Mater. Res. -Part B Appl. Biomater, vol.2015, pp.1-6

C. Ye, Y. Wang, H. Su, P. Yang, N. Huang et al., Construction of a fucoidan/laminin functional multilayer to direction vascular cell fate and promotion hemocompatibility, Mater Sci Eng C Mater Biol Appl, vol.1, pp.236-278, 2016.

X. Ye, H. Wang, J. Zhou, H. Li, J. Liu et al., The Effect of Heparin-VEGF Multilayer on the Biocompatibility of Decellularized Aortic Valve with Platelet and Endothelial Progenitor Cells, Plos One, vol.8, issue.1, p.54622, 2013.

J. Yoo, M. J. Jeong, H. J. Cho, E. S. Oh, and M. Y. Han, Dynamin II interacts with syndecan-4, a regulator of focal adhesion and stress-fiber formation, Biochem Biophys Res Commun, vol.328, pp.424-431, 2005.

P. D. Yurchenco, P. Lu, K. Takai, V. M. Weaver, R. O. Hynes et al., Basement Membranes : Cell Scaffoldings and Signaling Platforms, pp.1-28, 2011.

E. Zakhem, S. Raghavan, R. R. Gilmont, and K. N. Bitar, Chitosan-based scaffolds for the support of smooth muscle constructs in intestinal tissue engineering, Biomaterials, vol.33, pp.4810-4817, 2012.

F. Zemani, D. Benisvy, I. Galy-fauroux, A. Lokajczyk, S. Colliec-jouault et al., Low-molecular-weight fucoidan enhances the proangiogenic phenotype of endothelial progenitor cells, Biochem. Pharmacol, vol.70, issue.2, pp.1167-1175, 2005.

J. Zhou, B. Wang, W. Tong, E. Maltseva, G. Zhang et al., Colloids Surf. B, vol.62, pp.250-257, 2008.

J. Zhou, B. Wang, W. Tong, E. Maltseva, G. Zhang et al., J. Colloids Surf. B, vol.62, pp.250-257, 2008.

X. Zhu, M. Ohtsubo, R. M. Bohmer, J. M. Roberts, and R. K. Assoian, Adhesiondependent cell cycle progression linked to the expression of cyclin D1, activation of cyclin E-cdk2, and phosphorylation of the retinoblastoma protein, J Cell Biol, vol.133, pp.391-403, 1996.

J. J. Ziarek, C. T. Veldkamp, F. Zhang, N. J. Murray, A. Kartz et al., Heparin Oligosaccharides Inhibit Chemokine (CXC Motif) Ligand 12 (CXCL12) Cardioprotection by Binding Orthogonal to the Dimerization Interface , Promoting Oligomerization, and Competing with the Chemokine (CXC Motif) Receptor 4, J. Biol. Chem, p.12, 2013.

P. Zilla, J. Brink, P. Human, and D. Bezuidenhout, Prosthetic heart valves: catering for the few, Biomaterials, vol.29, pp.385-406, 2008.

P. Zimmermann, Z. Zhang, G. Degeest, E. Mortier, I. Leenaerts et al., Syndecan recycling is controlled by syntenin-PIP2 interaction and Arf6, Dev Cell, vol.9, pp.377-388, 2005.

A. Zykwinska, M. Marquis, C. Sinquin, S. Cuenot, and S. Colliec-jouault, Assembly of HE800 exopolysaccharide produced by a deep-sea hydrothermal bacterium into microgels for protein delivery applications, Carbohydr Polym, vol.142, pp.213-234, 1920.
URL : https://hal.archives-ouvertes.fr/hal-01723470

, Communications Communications affichées et commentées

, Journée Biologie Interface

, Poster Biologie Interface: Effet pro-angiogénique du fucoïdane: Rôles des chimiokines et de leurs récepteurs protéoglycanniques

A. Marinval, P. Saboural, O. Haddad, D. Letourneur, N. Charnaux et al.,

, Journée de l'Institut Interdisciplinaire en Sciences Expérimentales

, Poster IISE: Angiogenesis potentialized by highly sulfated fucoidan: role of the chemokines and the proteoglycanes

A. Marinval, P. Saboural, O. Haddad, D. Letourneur, N. Charnaux et al.,

E. Poster, Characterization of the proangiogenic potential by highly sulfated fucoidan: role of the chemokines and the glycosaminoglycans

:. N. Auteurs, P. Marinval, K. Saboural, O. Bassand, M. Haddad et al.,

A. Chauvièrre, N. Sutton, and H. Charnaux, Hlawaty The 83rd European Atherosclerosis Society (EAS) Congres, 22-25/03/2015 -The Scottish Exhibition and Conference Center

E. Poster, Characterization of the proangiogenic potential by highly sulfated fucoidan: role of the chemokines and the glycosaminoglycans

A. Marinval, P. Saboural, O. Haddad, D. Letourneur, N. Charnaux et al.,

N. Poster, Characterization of the proangiogenic potential of highly sulfated fucoidan: role of the chemokines and the glycosaminoglycans

:. N. Auteurs, P. Marinval, K. Saboural, O. Bassand, M. Haddad et al.,

A. Chauvièrre, N. Sutton, and H. Charnaux, Hlawaty 6e Congrès de la Société Française d'Angiogenèse (SFA

S. Poster, Characterization of the proangiogenic potential of highly sulfated fucoidan: role of the chemokines and the glycosaminoglycans

:. N. Auteurs, P. Marinval, K. Saboural, O. Bassand, M. Haddad et al.,

A. Chauvièrre, N. Sutton, H. Charnaux, and . Hlawaty, Communications orales 12e Congrès de la Nouvelle Société Francophone d'Athérosclérose (NSFA

, Oral: Pro-angiogenic action of low molecular weight fucoidan in endothelial damaged-glycocalyx cell model: a promising natural therapeutic tool for ischemia treatment

:. N. Auteurs, P. Marinval, O. Saboural, M. Haddad, K. Maire et al., Hlawaty 15th Biennial Meeting of the International Society for Applied Cardiovascular Biology (ISACB

, Oral: Regeneration of acellularized porcine pulmonary valve in presence of fucoidan and VEGF: biological prosthesis construction ready for transplantation

A. Marinval, M. Morenc, N. Charnaux, P. Wilczek, and H. Hlawaty, References 1. Hirohata S, Sakakibara J (1999) Angioneogenesis as a possible elusive triggering factor in rheumatoid arthritis, Lancet, vol.353, p.1331

B. Mansson, D. Carey, and M. Alini, Cartilage and bone metabolism in rheumatoid arthritis. Differences between rapid and slow progression of disease identified by serum markers of cartilage metabolism, J Clin Invest, vol.95, pp.1071-1077, 1995.

C. Q. Chu, M. Field, M. Feldmann, and R. N. Maini, Localization of tumor necrosis factor alpha in synovial tissues and at the cartilage-pannus junction in patients with rheumatoid arthritis, Arthritis Rheum, vol.34, pp.1125-1132, 1991.

R. Madhok, A. Crilly, J. Watson, and H. A. Capell, Serum interleukin 6 levels in rheumatoid arthritis: correlations with clinical and laboratory indices of disease activity, Ann Rheum Dis, vol.52, pp.232-234, 1993.

P. Miossec, Interleukin-17 in rheumatoid arthritis: if T cells were to contribute to inflammation and destruction through synergy, Arthritis Rheum, vol.48, pp.594-601, 2003.

L. Semerano, G. Clavel, E. Assier, A. Denys, and M. C. Boissier, Blood vessels, a potential therapeutic target in rheumatoid arthritis?, Joint Bone Spine, vol.78, pp.118-123, 2011.

J. M. Kremer, R. Blanco, and M. Brzosko, Tocilizumab inhibits structural joint damage in rheumatoid arthritis patients with inadequate responses to methotrexate: results from the double-blind treatment phase of a randomized placebo-controlled trial of tocilizumab safety and prevention of structural joint damage at one year, Arthritis Rheum, vol.63, pp.609-621, 2011.

Z. K. Otrock, J. A. Makarem, and A. I. Shamseddine, Vascular endothelial growth factor family of ligands and receptors: review, Blood Cells Mol Dis, vol.38, pp.258-268, 2007.

, Angiogenesis

M. Shibuya, Vascular endothelial growth factor receptor-1 (VEGFR-1/Flt-1): a dual regulator for angiogenesis, vol.9, p.225, 2006.

G. Clavel, C. Valvason, and K. Yamaoka, Relationship between angiogenesis and inflammation in experimental arthritis, Eur Cytokine Netw, vol.17, p.202, 2006.

G. Clavel, C. Marchiol-fournigault, and R. G. , Ultrasound and Doppler micro-imaging in a model of rheumatoid arthritis in mice, Ann Rheum Dis, vol.67, pp.1765-1772, 2008.

J. Lu, T. Kasama, and K. Kobayashi, Vascular endothelial growth factor expression and regulation of murine collagen-induced arthritis, J Immunol, vol.164, pp.5922-5927, 2000.

D. Bandt, M. , B. Mahdi, M. H. Ollivier, and V. , Blockade of vascular endothelial growth factor receptor I (VEGF-RI), but not VEGF-RII, suppresses joint destruction in the K/BxN model of rheumatoid arthritis, J Immunol, vol.171, pp.4853-4859, 2003.

L. Buanec, H. Delavallée, L. Bessis, and N. , TNFalpha kinoid vaccination-induced neutralizing antibodies to TNFalpha protect mice from autologous TNFalpha-driven chronic and acute inflammation, Proc Natl Acad Sci, vol.103, pp.19442-19447, 2006.

L. Delavallée, L. Buanec, H. Bessis, and N. , Early and longlasting protection from arthritis in tumour necrosis factor alpha (TNFalpha) transgenic mice vaccinated against TNFalpha, Ann Rheum Dis, vol.67, pp.1332-1338, 2008.

L. Semerano, J. Biton, and L. Delavallée, Protection from articular damage by passive or active anti-tumour necrosis factor (TNF)-a immunotherapy in human TNF-a transgenic mice depends on anti-TNF-a antibody levels, Clin Exp Immunol, vol.172, pp.54-62, 2013.

L. Amit, I. Ben-aharon, L. Vidal, L. Leibovici, and S. M. Stemmer, The impact of Bevacizumab (Avastin) on survival in metastatic solid tumors-a meta-analysis and systematic review, PLoS One, vol.8, p.51780, 2013.

F. H. Rad, L. Buanec, H. Paturance, and S. , VEGF kinoid vaccine, a therapeutic approach against tumor angiogenesis and metastases, Proc Natl Acad Sci, vol.104, pp.2837-2842, 2007.
URL : https://hal.archives-ouvertes.fr/inserm-00180303

Y. A. Muller, H. W. Christinger, B. A. Keyt, and A. M. De-vos, The crystal structure of vascular endothelial growth factor (VEGF) refined to 1.93 A resolution: multiple copy flexibility and receptor binding, Structure, vol.5, pp.1325-1328, 1997.

J. S. Kong, S. A. Yoo, and J. W. Kim, Anti-neuropilin-1 peptide inhibition of synoviocyte survival, angiogenesis, and experimental arthritis, Arthritis Rheum, vol.62, p.179, 2010.

A. Starzec, R. Vassy, and A. Martin, Antiangiogenic and antitumor activities of peptide inhibiting the vascular endothelial growth factor binding to neuropilin-1, Life Sci, vol.79, pp.2370-2371, 2006.

S. Iyer, D. D. Leonidas, and G. J. Swaminathan, The crystal structure of human placenta growth factor-1 (PlGF-1), an angiogenic protein, at 2.0 A resolution, J Biol Chem, vol.276, pp.12153-12161, 2001.

M. W. Parker, P. Xu, X. Li, V. Kooi, and C. W. , Structural basis for selective vascular endothelial growth factor-A (VEGF-A) binding to neuropilin-1, J Biol Chem, vol.287, pp.11082-11089, 2012.

S. Soker, S. Gollamudi-payne, H. Fidder, H. Charmahelli, and M. Klagsbrun, Inhibition of vascular endothelial growth factor (VEGF)-induced endothelial cell proliferation by a peptide corresponding to the exon 7-encoded domain of VEGF165, J Biol Chem, vol.272, pp.31582-31588, 1997.

A. Miellot, R. Zhu, and S. Diem, Activation of invariant NK T cells protects against experimental rheumatoid arthritis by an IL-10-dependent pathway, Eur J Immunol, vol.35, pp.3704-3713, 2005.

M. Murakami, S. Iwai, and S. Hiratsuka, Signaling of vascular endothelial growth factor receptor-1 tyrosine kinase promotes rheumatoid arthritis through activation of monocytes/macrophages, Blood, vol.108, pp.1849-1856, 2006.

E. H. Nam, S. R. Park, and P. H. Kim, TGF-beta1 induces mouse dendritic cells to express VEGF and its receptor (Flt-1) under hypoxic conditions, Exp Mol Med, vol.42, pp.606-613, 2010.

W. U. Kim, S. S. Kang, and S. A. Yoo, Interaction of vascular endothelial growth factor 165 with neuropilin-1 protects rheumatoid synoviocytes from apoptotic death by regulating Bcl-2 expression and Bax translocation, J Immunol, vol.177, pp.5727-5735, 2006.

M. Terme, E. Tartour, and J. Taieb, VEGFA/VEGFR2-targeted therapies prevent the VEGFA-induced proliferation of regulatory T cells in cancer, Oncoimmunology, vol.2, p.25156, 2013.

W. Hansen, M. Hutzler, and S. Abel, Neuropilin 1 deficiency on CD4 ? Foxp3 ? regulatory T cells impairs mouse melanoma growth, J Exp Med, vol.209, pp.2001-2006, 2013.

M. Terme, S. Pernot, and E. Marcheteau, VEGFA-VEGFR pathway blockade inhibits tumor-induced regulatory T-cell proliferation in colorectal cancer, Cancer Res, vol.73, pp.539-539, 2013.

M. C. Boissier, E. Assier, and J. Biton, Regulatory T cells (Treg) in rheumatoid arthritis, Joint Bone Spine, vol.76, pp.10-14, 2009.

S. Nadkarni, C. Mauri, and M. R. Ehrenstein, Anti-TNF-alpha therapy induces a distinct regulatory T cell population in patients with rheumatoid arthritis via TGF-beta, J Exp Med, vol.204, pp.33-39, 2007.

J. Biton, L. Semerano, and L. Delavallée, Interplay between TNF and regulatory T cells in a TNF-driven murine model of arthritis, J Immunol, vol.186, p.3899, 2011.

J. Biton, M. C. Boissier, and N. Bessis, TNFa: activator or inhibitor of regulatory T cells?, Joint Bone Spine, vol.79, pp.119-123, 2012.

H. Nie, Y. Zheng, and R. Li, Phosphorylation of FOXP3 controls regulatory T cell function and is inhibited by TNF-a in rheumatoid arthritis, Nat Med, vol.19, pp.322-328, 2013.

A. Thiolat, L. Semerano, and Y. M. Pers, Interleukin-6 receptor blockade enhances CD39 ? regulatory T cell development in rheumatoid arthritis and in experimental arthritis, Arthritis Rheumatol, vol.66, pp.273-283, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01870438

J. Cortes, V. Calvo, and N. Ramirez-merino, Adverse events risk associated with bevacizumab addition to breast cancer chemotherapy: a meta-analysis, Ann Oncol, vol.23, pp.1130-1137, 2012.

D. Zagury, A. Burny, and R. C. Gallo, Toward a new generation of vaccines: the anti-cytokine therapeutic vaccines, Proc Natl Acad Sci, vol.98, pp.8024-8029, 2001.

S. M. Bertin-maghit, C. J. Capini, and N. Bessis, Improvement of collagen-induced arthritis by active immunization against murine IL-1beta peptides designed by molecular modelling, Vaccine, vol.23, pp.4228-4235, 2005.

C. J. Capini, S. M. Bertin-maghit, and N. Bessis, Active immunization against murine TNFalpha peptides in mice: generation of endogenous antibodies cross-reacting with the native cytokine and in vivo protection, Vaccine, vol.22, pp.3144-3153, 2004.

R. A. Ratsimandresy, E. Duvallet, and E. Assier, Active immunization against IL-23p19 improves experimental arthritis, Vaccine, vol.29, pp.9329-9336, 2011.

Y. S. Hah, Y. J. Koh, and H. S. Lim, Double-antiangiogenic protein DAAP targeting vascular endothelial growth factor A and angiopoietins attenuates collagen-induced arthritis, Arthritis Res Ther, vol.15, p.85, 2013.

R. O. Williams, M. Feldmann, and R. N. Maini, Anti-tumor necrosis factor ameliorates joint disease in murine collagen-induced arthritis, Proc Natl Acad Sci, vol.89, p.9784, 1992.

N. Saidenberg-kermanac'h, A. Corrado, and D. Lemeiter, TNF-a antibodies and osteoprotegerin decrease systemic bone loss associated with inflammation through distinct mechanisms in collagen-induced arthritis, Bone, vol.35, pp.1200-1207, 2004.

Y. Wang, G. Da, and H. Li, Avastin exhibits therapeutic effects on collagen-induced arthritis in rat model, Inflammation, vol.36, pp.1460-1467, 2013.

T. Nagai, M. Sato, and T. Kutsuna, Intravenous administration of anti-vascular endothelial growth factor humanized monoclonal antibody bevacizumab improves articular cartilage repair, Arthritis Res Ther, vol.12, p.178, 2010.

L. Yu, X. Wu, and Z. Cheng, Interaction between bevacizumab and murine VEGF-A: a reassessment, Invest Ophthalmol Vis Sci, vol.49, pp.522-527, 2008.

S. T. Choi, J. H. Kim, and J. Y. Seok, Therapeutic effect of antivascular endothelial growth factor receptor I antibody in the established collagen-induced arthritis mouse model, Clin Rheumatol, vol.28, pp.333-337, 2009.

S. A. Yoo, D. G. Bae, and J. W. Ryoo, Arginine-rich antivascular endothelial growth factor (anti-VEGF) hexapeptide inhibits collagen-induced arthritis and VEGF-stimulated productions of TNF-alpha and IL-6 by human monocytes, J Immunol, vol.174, pp.5846-5855, 2005.

L. Delavallée, L. Semerano, and E. Assier, Active immunization to tumor necrosis factor-alpha is effective in treating chronic established inflammatory disease: a long-term study in a transgenic model of arthritis, Arthritis Res Ther, vol.11, p.195, 2009.

P. Durez, P. Vandepapeliere, and P. Miranda, Therapeutic vaccination with TNF-kinoid in TNF antagonist-resistant rheumatoid arthritis: a phase II randomized, controlled clinical trial, PLoS One, vol.9, p.113465, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01358106

H. Y. Tian, Z. H. Tang, X. L. Zhuang, X. S. Chen, and X. B. Jing, Biodegradable synthetic polymers: preparation, functionalization and biomedical application, Prog. Polym. Sci, vol.37, pp.237-280, 2011.

K. Fu, D. W. Pack, A. M. Klibanov, and R. Langer, Visual evidence of acidic environment within degrading poly(lactic-co-glycolic acid) (PLGA) microspheres, Pharm. Res, vol.17, pp.100-106, 2000.

R. De-santis, A. Russo, A. Gloria, U. D'amora, T. Russo et al., Towards the design of 3D fiber-deposited poly(epsilon-caprolactone)/iron-doped hydroxyapatite nanocomposite magnetic scaffolds for bone regeneration, J. Biomed. Nanotechnol, vol.11, pp.1236-1246, 2015.

Z. W. Huang, V. Laurent, G. Chetouani, J. Y. Ljubimov, E. Holler et al., New functional degradable and bio-compatible nanoparticles based on poly(malic acid) derivatives for site-specific anticancer drug delivery, Int. J. Pharm, vol.423, pp.84-92, 2012.
URL : https://hal.archives-ouvertes.fr/inserm-00864846

Y. Liu, W. Wang, J. Wang, Z. Yuan, S. Tang et al., HUVEC cell affinity evaluation and integrin-mediated mechanism study on PHSRN-modified polymer, Colloids Surf. B Biointerfaces, vol.84, pp.6-12, 2011.

J. Wang, C. Ni, Y. Zhang, M. Zhang, W. Li et al., Preparation and pH controlled release of polyelectrolyte complex of poly (L-malic acid-co-D, Llactic acid) and chitosan, Colloids Surf. B Biointerfaces, vol.115, pp.275-279, 2014.

J. Y. Ljubimova, J. Portilla-arias, R. Patil, H. Ding, S. Inoue et al., Toxicity and efficacy evaluation of multiple targeted polymalic acid conjugates for triple-negative breast cancer treatment, J. Drug Target, vol.21, pp.956-967, 2013.

H. Ding, G. Helguera, J. A. Rodriguez, J. Markman, R. Luria-perez et al., Polymalic acid nanobioconjugate for simultaneous immunostimulation and inhibition of tumor growth in HER2/neu-positive breast cancer, J. Control. Release, vol.171, pp.322-329, 2013.

B. S. Lee, M. Vert, and E. Holler, Water-soluble Aliphatic Polyesters: Poly(malic acid) s, Biopolymers Online, pp.75-103, 2002.

Y. Liu, W. Wang, J. Wang, Y. Wang, Z. Yuan et al., Blood compatibility evaluation of poly(d,l-lactide-co-b-malic acid) modified with the GRGDS sequence, Colloids Surf. B Biointerfaces, vol.75, pp.370-376, 2010.

L. Wang, X. Jia, Y. Chen, Y. Che, and Z. Yuan, Synthesis, degradability, and cell affinity of poly (DL-lactide-co-RS-hydroxyethyl-b-malolactonate), J. Biomed. Mater. Res. A, vol.87, pp.459-469, 2008.

M. Mozafari, M. Gholipourmalekabadi, N. P. Chauhan, N. Jalali, S. Asgari et al., Synthesis and characterization of nanocrystalline forsterite coated poly (l-lactide-co-b-malic acid) scaffolds for bone tissue engineering applications, Mater. Sci. Eng. C, vol.50, pp.117-123, 2015.

O. Coulembier, P. Deg-ee, J. L. Hedrick, and P. Dubois, From controlled ring-opening polymerization to biodegradable aliphatic polyester: especially poly (b-malic acid) derivatives, Prog. Polym. Sci, vol.31, pp.723-747, 2006.

M. Haidopoulos, S. Turgeon, C. Sarra-bournet, G. Laroche, and D. Mantovani, Development of an optimized electrochemical process for subsequent coating of 316 stainless steel for stent applications, J. Mater. Sci. Mater. Med, vol.17, pp.647-657, 2006.

X. W. Ng, Y. Huang, K. L. Liu, S. G. Lim, H. H. Chen et al., In vitro evaluation of cenderitide-eluting stent I -an antirestenosis and proendothelization approach, J. Pharm. Sci, vol.103, pp.3631-3640, 2014.

P. Mcdonald, J. Lyons, L. Geever, and C. Higginbotham, In vitro degradation and drug release from polymer blends based on poly(dl-lactide), poly(l-lactideglycolide) and poly(?-caprolactone), J. Mater. Sci, vol.45, pp.1284-1292, 2009.

S. Schmitz-hertzberg, W. C. Mak, K. K. Lai, C. Teller, and F. F. Bier, Multifactorial design of poly(d,l-lactic-co-glycolic acid) capsules with various release properties for differently sized filling agents, J. Appl. Polym. Sci, vol.130, pp.4219-4228, 2013.

J. Qian, W. Xu, W. Zhang, and X. Jin, Preparation and characterization of biomorphic poly(l-lactide-co-b-malic acid) scaffolds, Mater. Lett, vol.124, pp.313-317, 2014.

K. L. Lai, B. He, and Z. W. Gu, Preparation and cell compatibility of functionalized biodegradable poly(DL-lactide-co-RS-b-malic acid), Chin. J. Polym. Sci, vol.26, pp.177-186, 2008.

Y. Zhang, C. Ni, G. Shi, J. Wang, M. Zhang et al., The polyion complex nanoprodrug of doxorubicin (DOX) with poly(lactic acid-co-malic acid)-blockpolyethylene glycol: preparation and drug controlled release, Med. Chem. Res, vol.24, pp.1189-1195, 2015.

C. T. Goodhue and E. E. Snell, The bacterial degradation of pantothenic acid. III. Enzymatic formation of aldopantoic acid, Biochemistry, vol.5, pp.403-408, 1966.

V. Nurmikko, E. Salo, H. Hakola, K. Mâkinen, and E. E. Snell, The bacterial degradation of pantothenic acid. II. Pantothenate hydrolase, Biochemistry, vol.5, pp.399-402, 1966.

Y. Ikada, H. Iwata, F. Horii, T. Matsunaga, M. Taniguchi et al., Blood compatibility of hydrophilic polymers, J. Biomed. Mater. Res, vol.15, pp.697-718, 1981.

F. Ouhib, S. Randriamahefa, P. Guerin, and C. Barbaud, Synthesis of new statistical and block co-polyesters by ROP of a,a,b-trisubstituted b-lactones and their characterizations, Des. Monomers Polym, vol.8, pp.25-35, 2005.

C. Barbaud, F. Faÿ, F. Abdillah, S. Randriamahefa, and P. Gu-erin, Synthesis of new homopolyester and copolyesters by anionic ring-opening polymerization of a, a 0 ,b-trisubstituted b-lactones, Macromol. Chem. Phys, vol.205, pp.199-207, 2004.

R. Belibel, T. Avramoglou, A. Garcia, C. Barbaud, and L. Mora, Effect of chemical heterogeneity of biodegradable polymers on surface energy: a static contact angle analysis of polyester model films, Mater. Sci. Eng. C, vol.59, pp.998-1006, 2015.
URL : https://hal.archives-ouvertes.fr/inserm-01373889

A. M. Reed and D. K. Gilding, Biodegradable polymers for use in surgery-poly (ethylene oxide)/poly (ethylene terephthalate) (PEO/PET) copolymers: 2. In vitro degradation, Polymer, vol.22, pp.499-504, 1981.

F. E. Kohn, J. W. Vandenberg, G. Vanderidder, and J. Feijen, The ring-opening polymerization of D,L-lactide in the melt initiated with tetraphenyltin, J. Appl. Polym. Sci, vol.29, pp.4265-4277, 1984.

M. K. Ross and J. A. Crow, Human carboxylesterases and their role in xenobiotic and endobiotic metabolism, J. Biochem. Mol. Toxicol, vol.21, pp.187-196, 2007.

Y. Qiao, X. Duan, L. Fan, W. Li, H. Wu et al., Synthesis of controlled molecular weight poly (b-malic acid) and conjugation with HCPT as a polymeric drug carrier, J. Polym. Res, vol.21, pp.1-7, 2014.

F. Unger, M. Wittmar, F. Morell, and T. Kissel, Branched polyesters based on poly [vinyl-3-(dialkylamino)alkylcarbamate-co-vinyl acetate-co-vinyl alcohol]-graft-poly(d,l-lactide-co-glycolide): effects of polymer structure on in vitro degradation behaviour, Biomaterials, vol.29, 2008.

C. F. Van-nostrum, T. F. Veldhuis, G. W. Bos, and W. E. Hennink, Hydrolytic degradation of oligo(lactic acid): a kinetic and mechanistic study, Polymer, vol.45, pp.6779-6787, 2004.

S. Li, H. Garreau, and M. Vert, Structure-property relationships in the case of the degradation of massive poly (a-hydroxy acids) in aqueous media, J. Mater. Sci. Mater. Med, vol.1, pp.198-206, 1990.
URL : https://hal.archives-ouvertes.fr/hal-00417724

A. T. Nazre and S. Lin, Theoretical strength comparison of bioabsorbable (PLLA) plates and conventional stainless steel and titanium plates used in internal fracture fixation, 1994.

J. Leng, A. K. , and .. Lau, Multifunctional Polymer Nanocomposites, 2010.

R. Belibel, Polymer Degradation and Stability, vol.130, pp.288-299, 2016.

, Résumé Fucoïdanes extraits de l'algue brune Ascophyllum nodosum : Effets pro-angiogéniques in vitro et régénération de valves pulmonaires acellularisées

, Le but de cette thèse est d'une part, d'établir étude structure-fonction de fucoïdanes extraits de l'algue Ascophyllum nodosum sur leurs effets pro-angiogéniques in vitro (migration et formation de réseau vasculaire en 2D par des cellules endothéliales humaines, HUVECs) et le rôle des GAGs endogènes ; et d'autre part, l'étude du potentiel régénératif d'un biofilm de fucoïdane/VEGF appliqué sur des prothèses de valves cardiaques porcines acellularisées. Dans notre première étude, nos résultats montrent que la fraction de fucoïdane de bas poids moléculaire (LMWF, 4900 g/mol) induit de effets proangiogéniques plus importants qu'une fraction de moyen poids moléculaire (MMWF, 26700 g/mol) sur les HUVECs. De plus, le LMWF garde un potentiel pro-angiogénique avec des cellules HUVECs n'exprimant pas de GAGs endogènes et peut être internalisé par une endocytose dépendante de la clathrine dans laquelle les GAGs seraient partiellement impliqués. Dans notre deuxième étude, nos analyses démontrent que l'application d'un biofilm de fucoïdane/VEGF sur des valves pulmonaires porcines acellularisées induit un potentiel antithrombotique et permet l'adhérence et la survie des HUVECs, Les fucoïdanes sont des polysaccharides sulfatés d'origine marine portant des activités biologiques diverses et comparable au glycosaminoglycanes (GAGs) endogènes. Leur utilisation comme agents thérapeutiques dans le traitement de maladies cardiovasculaires est envisagée. L'hétérogénéité structurelle liée à leur diversité naturelle et aux méthodes d'extraction et de purification, induisent des variations dans leurs propriétés physico-chimiques et leurs effets biologiques

, Mots clefs : Fucoïdane; Glycosaminoglycanes; Biothérapie cardiovasculaire

, Resume Fucoidans extracted from brown seaweed Ascophyllum nodosum: in vitro pro-angiogenic effects and regeneration of acellularized porcine pulmonary valves

, Their use as therapeutic agents in cardiovascular diseases treatment is considered. The structural heterogeneity linked to their natural diversity and to the extraction and purification methods induce variation in their physico-chemical properties and biological activities. The aim of this study is first to etablish a structure-function study of fucoidans extracted from the seaweed Ascophyllum nodosum on their in vitro pro-angiogenic effects (cell migration and vascular network formation by human endothelial cells, HUVECs) and the role of the endogenous GAGs; and the study of the regenerative potential of the application of a biofilm of fucoidan/VEGF on acellular porcine heart valves. In the first part, our results show the the fractionated low molecular weight fucoidan (LMWF, 4900 g/mol) induces higher pro-angiogenic effects than medium molecular weight fucoidan (MMWF, 26700 g/mol) on HUVECs. LMWF kept a pro-angiogenic potential with GAGfree HUVECs and is mainly endocyted in a clathrin-dependant pathway in which GAGs could be partially involved. In our second study, our data demonstrated that the application of the biofilm fucoidan/VEGF on acellular porcine pulmonary valves induce antithrombotic potential and allow the adhesion and survival of HUVECs. This work suggest that this method allows re-endothelialization of acellular heart valve and could be used to develop self, Fucoidans are marine sulfated polysaccharides carrying various biological activities comparable to endogenous glycosaminoglycans (GAGs)